Science.gov

Sample records for parametres micro-mecaniques influents

  1. Influent Fractionation for Modeling Continuous Anaerobic Digestion Processes.

    PubMed

    Lübken, Manfred; Kosse, Pascal; Koch, Konrad; Gehring, Tito; Wichern, Marc

    2015-01-01

    The first dynamic model developed to describe anaerobic digestion processes dates back to 1969. Since then, considerable improvements in identifying the underlying biochemical processes and associated microorganisms have been achieved. These have led to an increasing complexity of both model structure and the standard set of stoichiometric and kinetic parameters. Literature has always paid attention to kinetic parameter estimation, as this determines model accuracy with respect to predicting the dynamic behavior of biogas systems. As sufficient computing power is easily available nowadays, sophisticated linear and nonlinear parameter estimation techniques are applied to evaluate parameter uncertainty. However, the uncertainty of influent fractionation in these parameter optimization procedures is generally neglected. As anaerobic digestion systems are currently increasingly used to convert a broad variety of organic biomass to methane, the lack of generally accepted guidelines for input characterization adapted to the simulation model's characteristics is a considerable limitation of model application to these substrates. Directly after the introduction of the standardized Anaerobic Digestion Model No. 1 (ADM1), several publications pointed out that the model's requirement of a detailed influent characterization can hardly be fulfilled. The main shortcoming of the model application was addressed in the reliable and practical identification of the model's input state variables for particulate and soluble carbohydrates, proteins and lipids, as well as for the inerts. Several authors derived biomass characterization procedures, most of them dedicated to a particular substrate, and some of them being of general nature, but none of these approaches have resulted in a practical standard protocol so far. This review provides an overview of existing approaches that improve substrate influent characterization to be used for state of the art anaerobic digestion models. PMID

  2. Influence of influent wastewater communities on temporal variation of activated sludge communities.

    PubMed

    Lee, Sang-Hoon; Kang, Hyun-Jin; Park, Hee-Deung

    2015-04-15

    Continuously feeding influent wastewater containing diverse bacterial species to a wastewater treatment activated sludge bioreactor may influence the activated sludge bacterial community temporal dynamics. To explore this possibility, this study tracked influent wastewater and activated sludge bacterial communities by pyrosequencing 16S rRNA genes from four full-scale wastewater treatment plants over a 9-month period. The activated sludge communities showed significantly higher richness and evenness than the influent wastewater communities. Furthermore, the two communities were different in composition and temporal dynamics. These results demonstrate that the impact of the influent wastewater communities on the activated sludge communities was weak. Nevertheless, 4.3-9.3% of the operational taxonomic units (OTUs) detected in the activated sludge were shared with the influent wastewater, implying contribution from influent wastewater communities to some extent. However, the relative OTU abundance of the influent wastewater was not maintained in the activated sludge communities (i.e., weak neutral assembly). In addition, the variability of the communities of the shared OTUs was moderately correlated with abiotic factors imposed to the bioreactors. Taken together, temporal dynamics of activated sludge communities appear to be predominantly explained by species sorting processes in response to influent wastewater communities. PMID:25655320

  3. Detailed PCB congener characterization of influent and effluent at New York and New Jersey WPCPs

    SciTech Connect

    Durell, G.S.; Lizotte, R.D. Jr.; Solomon, M.H.; Green, J.W.; Spadone, J.; Pires, L.

    1995-12-31

    The waste streams at 26 New York City and New Jersey water pollution control plants (WPCP) were characterized for PCB. Time-integrated influent and effluent samples were collected during normal and high (storm) flow conditions; high flow influent simulated what may by-pass the plant and be discharged through combined sewer overflows. State-of-the-art congener-specific analytical methods were used to achieve detection limits from 0.05 to 0.3 ng/L. Concentrations of 71 individual PCB congeners that constitute approximately 95% of the total PCB in Aroclors and environmental samples were determined. The PCB concentrations and congener distributions varied notably among plants. Individual congener concentrations were typically well below 1 ng/L in the effluent, with a few congeners being detected at 5 to 10 ng/L levels in some samples. The concentrations were under 1 ng/L in most influent samples, with occasional determinations above 10 ng/L. The average total PCB concentration, defined as the sum of the 71 individual congener concentrations, at the 26 WPCPs were 27, 110, and 160 ng/L for normal flow effluent, normal flow influent, and high flow influent, respectively. The results indicate that PCB levels in New York City and New Jersey WPCP discharges are generally low, with most effluent having total PCB concentrations below 0.05 {micro}g/L. The PCB levels in the influent were commonly under 0.1 {micro}g/L and became slightly elevated at most plants during storms while at some plants the increase in flow appeared to dilute the PCB in the influent. The WPCPs remove, on average, approximately 75% of the PCB received in the influent.

  4. Calibration and validation of a phenomenological influent pollutant disturbance scenario generator using full-scale data.

    PubMed

    Flores-Alsina, Xavier; Saagi, Ramesh; Lindblom, Erik; Thirsing, Carsten; Thornberg, Dines; Gernaey, Krist V; Jeppsson, Ulf

    2014-03-15

    The objective of this paper is to demonstrate the full-scale feasibility of the phenomenological dynamic influent pollutant disturbance scenario generator (DIPDSG) that was originally used to create the influent data of the International Water Association (IWA) Benchmark Simulation Model No. 2 (BSM2). In this study, the influent characteristics of two large Scandinavian treatment facilities are studied for a period of two years. A step-wise procedure based on adjusting the most sensitive parameters at different time scales is followed to calibrate/validate the DIPDSG model blocks for: 1) flow rate; 2) pollutants (carbon, nitrogen); 3) temperature; and, 4) transport. Simulation results show that the model successfully describes daily/weekly and seasonal variations and the effect of rainfall and snow melting on the influent flow rate, pollutant concentrations and temperature profiles. Furthermore, additional phenomena such as size and accumulation/flush of particulates of/in the upstream catchment and sewer system are incorporated in the simulated time series. Finally, this study is complemented with: 1) the generation of additional future scenarios showing the effects of different rainfall patterns (climate change) or influent biodegradability (process uncertainty) on the generated time series; 2) a demonstration of how to reduce the cost/workload of measuring campaigns by filling the gaps due to missing data in the influent profiles; and, 3) a critical discussion of the presented results balancing model structure/calibration procedure complexity and prediction capabilities. PMID:24439993

  5. Parametric mapping

    NASA Astrophysics Data System (ADS)

    Branch, Allan C.

    1998-01-01

    Parametric mapping (PM) lies midway between older and proven artificial landmark based guidance systems and yet to be realized vision based guidance systems. It is a simple yet effective natural landmark recognition system offering freedom from the need for enhancements to the environment. Development of PM systems can be inexpensive and rapid and they are starting to appear in commercial and industrial applications. Together with a description of the structural framework developed to generically describe robot mobility, this paper illustrates clearly the parts of any mobile robot navigation and guidance system and their interrelationships. Among other things, the importance of the richness of the reference map, and not necessarily the sensor map, is introduced, the benefits of dynamic path planners to alleviate the need for separate object avoidance, and the independence of the PM system to the type of sensor input is shown.

  6. Effect of influent aeration on removal of organic matter from coffee processing wastewater in constructed wetlands.

    PubMed

    Rossmann, Maike; Matos, Antonio Teixeira; Abreu, Edgar Carneiro; Silva, Fabyano Fonseca; Borges, Alisson Carraro

    2013-10-15

    The aim of the present study was to evaluate the influence of aeration and vegetation on the removal of organic matter in coffee processing wastewater (CPW) treated in 4 constructed wetlands (CWs), characterized as follows: (i) ryegrass (Lolium multiflorum) cultivated system operating with an aerated influent; (ii) non-cultivated system operating with an aerated influent, (iii) ryegrass cultivated system operating with a non-aerated influent; and (iv) non-cultivated system operating with a non-aerated influent. The lowest average chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of 87, 84 and 73%, respectively, were obtained in the ryegrass cultivated system operating with a non-aerated influent. However, ryegrass cultivation did not influence the removal efficiency of organic matter. Artificial aeration of the CPW, prior to its injection in the CW, did not improve the removal efficiencies of organic matter. On other hand it did contribute to increase the instantaneous rate at which the maximum COD removal efficiency was reached. Although aeration did not result in greater organic matter removal efficiencies, it is important to consider the benefits of aeration on the removal of the other compounds. PMID:23892132

  7. DATA BASE FOR INFLUENT HEAVY METALS IN PUBLICLY OWNED TREATMENT WORKS

    EPA Science Inventory

    Results are presented of a 2-year study involving the identification and assembly of a data base existing within the Publicly Owned Treatment Works (POTW) of the U.S. on influent heavy metals. The general character of the data base with respect to associated descriptors (among wh...

  8. Contaminant trends in reservoir sediment cores as records of influent stream quality

    USGS Publications Warehouse

    Van Metre, P.C.; Mahler, B.J.

    2004-01-01

    When reconstructing water-quality histories from lake and reservoir cores, it is sometimes assumed that the chemical signatures in the cores reflect historical water quality in the influent streams. To investigate this assumption, concentrations of metals, PAHs, and organochlorine compounds in sediment cores were compared to those associated with an influent-stream suspended sediment for three reservoirs in Fort Worth, TX, and two reservoirs in Boston, MA, U.S.A., and interpreted in light of land-use and regulation histories. In evaluating relations between suspended sediments and cores, three levels of preservation were indicated: (1) influent concentrations and historical trends are preserved in cores (metals at all sites; some organic contaminants at some sites); (2) some loss occurs during transport and initial deposition but relative historical trends are preserved in cores (some organic contaminants at some sites); and (3) neither stream concentrations nor relative historical trends are preserved (dieldrin and p,p???-DDT). The degree of preservation of influent concentration histories varied between lakes, particularly for PAHs. The results support the use of sediment cores to infer streamwater-quality histories for many contaminants but indicate that reservoir-bottom sediment samples might underestimate concentrations of organic contaminants in some streams.

  9. Generation of synthetic influent data to perform (micro)pollutant wastewater treatment modelling studies.

    PubMed

    Snip, L J P; Flores-Alsina, X; Aymerich, I; Rodríguez-Mozaz, S; Barceló, D; Plósz, B G; Corominas, Ll; Rodriguez-Roda, I; Jeppsson, U; Gernaey, K V

    2016-11-01

    The use of process models to simulate the fate of micropollutants in wastewater treatment plants is constantly growing. However, due to the high workload and cost of measuring campaigns, many simulation studies lack sufficiently long time series representing realistic wastewater influent dynamics. In this paper, the feasibility of the Benchmark Simulation Model No. 2 (BSM2) influent generator is tested to create realistic dynamic influent (micro)pollutant disturbance scenarios. The presented set of models is adjusted to describe the occurrence of three pharmaceutical compounds and one of each of its metabolites with samples taken every 2-4h: the anti-inflammatory drug ibuprofen (IBU), the antibiotic sulfamethoxazole (SMX) and the psychoactive carbamazepine (CMZ). Information about type of excretion and total consumption rates forms the basis for creating the data-defined profiles used to generate the dynamic time series. In addition, the traditional influent characteristics such as flow rate, ammonium, particulate chemical oxygen demand and temperature are also modelled using the same framework with high frequency data. The calibration is performed semi-automatically with two different methods depending on data availability. The 'traditional' variables are calibrated with the Bootstrap method while the pharmaceutical loads are estimated with a least squares approach. The simulation results demonstrate that the BSM2 influent generator can describe the dynamics of both traditional variables and pharmaceuticals. Lastly, the study is complemented with: 1) the generation of longer time series for IBU following the same catchment principles; 2) the study of the impact of in-sewer SMX biotransformation when estimating the average daily load; and, 3) a critical discussion of the results, and the future opportunities of the presented approach balancing model structure/calibration procedure complexity versus predictive capabilities. PMID:27343947

  10. Reliability analysis of nutrient removal from stormwater runoff with green sorption media under varying influent conditions.

    PubMed

    Jones, Jamie; Chang, Ni-Bin; Wanielista, Martin P

    2015-01-01

    To support nutrient removal, various stormwater treatment technologies have been developed via the use of green materials, such as sawdust, tire crumbs, sand, clay, sulfur, and limestone, as typical constituents of filter media mixes. These materials aid in the physiochemical sorption and precipitation of orthophosphates as well as in the biological transformation of ammonia, nitrates and nitrites. However, these processes are dependent upon influent conditions such as hydraulic residence time, influent orthophosphate concentrations, and other chemical species present in the inflow. This study aims to compare the physiochemical removal of orthophosphate by isotherm and column tests under differing influent conditions to realize the reliability of orthophosphate removal process with the aid of green sorption media. The green sorption media of interest in this study is composed of a 5:2:2:1 (by volume) mixture of cement sand, tire crumb, fine expanded clay, and limestone. Scenarios of manipulating the hydraulic residence time of the water from 18 min and 60 min, the influent dissolved phosphorus concentrations of 1.0 mg·L(-1) and 0.5 mg·L(-1), and influent water types of distilled and pond water, were all investigated in the column tests. Experimental data were compared with the outputs from the Thomas Model based on orthophosphate removal to shed light on the equilibrium condition versus kinetic situation. With ANOVA tests, significant differences were confirmed between the experimental data sets of the breakthrough curves in the column tests. SEM imaging analysis helps to deepen the understanding of pore structures and pore networks of meta-materials being used in the green sorption media. Life expectancy curves derived from the output of Thomas Model may be applicable for future system design of engineering processes. PMID:25278294

  11. Performance Characterization of Influent and Effluent Treatment Systems: A Case Study at Craig Brook National Fish Hatchery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study characterizes the performance of influent and effluent disinfection systems at Craig Brook National Fish Hatchery, a U.S. Fish and Wildlife Service (USFWS) Atlantic salmon (Salmo salar) restoration facility in East Orland, ME. Influent treatment of the hatchery’s water supply limits fish ...

  12. Factors Affecting Distribution of Estrogenicity in the Influents, Effluents, and Biosolids of Canadian Wastewater Treatment Plants.

    PubMed

    Shieh, Ben H H; Louie, Alvin; Law, Francis C P

    2016-05-01

    Canadian wastewater treatment plants (WWTPs) release significant amounts of estrogenic chemicals to nearby surface waters. Environmental estrogens have been implicated as the causative agents of many developmental and reproductive problems in animals, including fish. The goals of this study were to assess the estrogenic activity in the influents, effluents, and biosolids of thirteen Canadian WWTPs using the yeast estrogen screen (YES) bioassay and to investigate whether factors, such as wastewater treatment method, sample storage, extraction efficiency, population, and summer/winter temperature had any effects on the distribution of estrogenicity in the WWTPs. Results of the study showed that estrogenicity from the influent to the effluent decreased in seven WWTPs, increased in two WWTPs, and did not change in four WWTPs during the winter. Estrogenic concentrations generally decreased in the order of biosolids > influents > effluents and ranged from 1.57 to 24.6, 1.25E-02 to 3.84E-01, and 9.46E-03 to 3.90E-01 ng estradiol equivalents/g or ml, respectively. The estrogenicity in the final effluents, but not those in the influents and biosolids, was significantly higher in the summer than the winter. Among the WWTP treatment methods, advanced, biological nutrient removal appeared to be the most effective method to remove estrogenic chemicals from wastewaters in Canada. Our studies help to identify factors or mechanisms that affect the distribution of estrogenicity in WWTPs, providing a better understanding on the discharges of estrogenic chemicals from WWTPs. PMID:26433808

  13. Effects from influent boundary conditions on tracer migration and spatial variability features in intermediate-scale experiments

    SciTech Connect

    Fuentes, H.R.; Polzer, W.L.; Springer, E.P.

    1987-04-01

    In previous unsaturated transport studies at Los Alamos dispersion coefficients were estimated to be higher close to the tracer source than at greater distances from the source. Injection of tracers through discrete influent outlets could have accounted for those higher dispersions. Also, a lack of conservation of mass of the tracers was observed and suspected to be due to spatial variability in transport. In the present study experiments were performed under uniform influent (ponded) conditions in which breakthrough of tracers was monitored at four locations at each of four depths. All other conditions were similar to those of the unsaturated transport experiments. A comparison of results from these two sets of experiments indicates differences in the parameter estimates. Estimates were made for the dispersion coefficient and the retardation factor by the one-dimensional steady flow computer code, CFITIM. Estimates were also made for mass and for velocity and the dispersion coefficient by the method of moments. The dispersion coefficient decreased with depth under discrete influent application and increased with depth under ponded influent application. Retardation was predicted better under the discrete influent application than under ponded influent application. Differences in breakthroughs and in estimated parameters among locations at the same depth were observed under ponded influent application. Those differences indicate that there is a lack of conservation of mass as well as significant spatial variability across the experimental domain. 14 refs., 9 figs., 8 tabs.

  14. Parametric Cost Deployment

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1995-01-01

    Parametric cost analysis is a mathematical approach to estimating cost. Parametric cost analysis uses non-cost parameters, such as quality characteristics, to estimate the cost to bring forth, sustain, and retire a product. This paper reviews parametric cost analysis and shows how it can be used within the cost deployment process.

  15. Improved wet weather wastewater influent modelling at Viikinmäki WWTP by on-line weather radar information.

    PubMed

    Heinonen, M; Jokelainen, M; Fred, T; Koistinen, J; Hohti, H

    2013-01-01

    Municipal wastewater treatment plant (WWTP) influent is typically dependent on diurnal variation of urban production of liquid waste, infiltration of stormwater runoff and groundwater infiltration. During wet weather conditions the infiltration phenomenon typically increases the risk of overflows in the sewer system as well as the risk of having to bypass the WWTP. Combined sewer infrastructure multiplies the role of rainwater runoff in the total influent. Due to climate change, rain intensity and magnitude is tending to rise as well, which can already be observed in the normal operation of WWTPs. Bypass control can be improved if the WWTP is prepared for the increase of influent, especially if there is some storage capacity prior to the treatment plant. One option for this bypass control is utilisation of on-line weather-radar-based forecast data of rainfall as an input for the on-line influent model. This paper reports the Viikinmäki WWTP wet weather influent modelling project results where gridded exceedance probabilities of hourly rainfall accumulations for the next 3 h from the Finnish Meteorological Institute are utilised as on-line input data for the influent model. PMID:23925175

  16. Diversity and population structure of sewage derived microorganisms in wastewater treatment plant influent

    PubMed Central

    McLellan, S.L.; Huse, S.M.; Mueller-Spitz, S.R.; Andreishcheva, E.N.; Sogin, M.L.

    2009-01-01

    The release of untreated sewage introduces non-indigenous microbial populations of uncertain composition into surface waters. We used massively parallel 454 sequencing of hypervariable regions in rRNA genes to profile microbial communities from eight untreated sewage influent samples of two wastewater treatment plants (WWTP) in metropolitan Milwaukee. The sewage profiles included a discernable human fecal signature made up of several taxonomic groups including multiple Bifidobacteriaceae, Coriobacteriaceae, Bacteroidaceae, Lachnospiraceae, and Ruminococcaceae genera. The fecal signature made up a small fraction of the taxa present in sewage but the relative abundance of these sequence tags mirrored the population structures of human fecal samples. These genera were much more prevalent in the sewage influent than standard indicators species. High-abundance sequences from taxonomic groups within the Beta- and Gammaproteobacteria dominated the sewage samples but occurred at very low levels in fecal and surface water samples, suggesting that these organisms proliferate within the sewer system. Samples from Jones Island (JI – servicing residential plus a combined sewer system) and South Shore (SS – servicing a residential area) WWTPs had very consistent community profiles, with greater similarity between WWTPs on a given collection day than the same plant collected on different days. Rainfall increased influent flows at SS and JI WWTPs, and this corresponded to greater diversity in the community at both plants. Overall, the sewer system appears to be a defined environment with both infiltration of rainwater and stormwater inputs modulating community composition. Microbial sewage communities represent a combination of inputs from human fecal microbes and enrichment of specific microbes from the environment to form a unique population structure. PMID:19840106

  17. Urban Dissolved Silica: Quantifying the Role of Groundwater and Runoff in Wastewater Influent.

    PubMed

    Maguire, Timothy J; Fulweiler, Robinson W

    2016-01-01

    Human impacts on silicon (Si) cycling are just being explored. In particular, we know little about the role of urban environments in altering the flux of Si from land to sea. Here we describe the annual load of dissolved Si (DSi) in the influent of the second largest wastewater treatment plant (by volume) in the United States (Deer Island Wastewater Facility, Boston, MA). We partition the ∼69 500 kmol DSi year(-1) influent load between three sources: runoff (12%), groundwater infiltration (39%), and sewage (49%). Based on these results, we hypothesized that instead of being delivered to local rivers, DSi in groundwater and runoff is redirected to the combined stormwater-sewage overflow system. To test this hypothesis we compared long-term (2007-2012) observations of DSi flux from the three urban rivers surrounding Boston to modeled DSi fluxes based on land use and land cover. As predicted, the modeled fluxes were higher than the measured fluxes indicating that the sewage infrastructure of Boston diverts watershed DSi to the treatment plant. This research increases our understanding of human changes to the Si cycle, demonstrates the potential usefulness of DSi as a groundwater infiltration tracer within sewage treatment systems, and highlights the underappreciated interannual variability of riverine DSi fluxes. PMID:26618849

  18. Influent wastewater microbiota and temperature influence anaerobic membrane bioreactor microbial community.

    PubMed

    Seib, M D; Berg, K J; Zitomer, D H

    2016-09-01

    Sustainable municipal wastewater recovery scenarios highlight benefits of anaerobic membrane bioreactors (AnMBRs). However, influences of continuous seeding by influent wastewater and temperature on attached-growth AnMBRs are not well understood. In this study, four bench-scale AnMBR operated at 10 and 25°C were fed synthetic (SPE) and then real (PE) primary effluent municipal wastewater. Illumina sequencing revealed different bacterial communities in each AnMBR in response to temperature and bioreactor configuration, whereas differences were not observed in archaeal communities. Activity assays revealed hydrogenotrophic methanogenesis was the dominant methanogenic pathway at 10°C. The significant relative abundance of Methanosaeta at 10°C concomitant with low acetoclastic methanogenic activity may indicate possible Methanosaeta-Geobacter direct interspecies electron transfer. When AnMBR feed was changed to PE, continual seeding with wastewater microbiota caused AnMBR microbial communities to shift, becoming more similar to PE microbiota. Therefore, influent wastewater microbiota, temperature and reactor configuration influenced the AnMBR microbial community. PMID:27262719

  19. Occurrence and genetic diversity of human cosavirus in influent and effluent of wastewater treatment plants in Arizona, United States.

    PubMed

    Kitajima, Masaaki; Rachmadi, Andri T; Iker, Brandon C; Haramoto, Eiji; Pepper, Ian L; Gerba, Charles P

    2015-07-01

    Human cosavirus (HCoSV) is a novel member of the family Picornaviridae. We investigated the prevalence and genetic diversity of HCoSV in influent and effluent wastewater in Arizona over a 12-month period, from August 2011 to July 2012. HCoSV sequences were identified in six (25%) influent samples and one (4%) effluent sample, with the highest concentration of 3.24 × 10(5) and 1.54 × 10(3) copies/liter in influent and effluent, respectively. The strains were characterized based on their 5' untranslated region and classified into species A and D, demonstrating that genetically heterogeneous HCoSV were circulating with a clear temporal shift of predominant strains in the study area. PMID:25936956

  20. Assessment of in vivo estrogenic response and identification of environmental estrogens in influent and effluent from a sewage treatment plant.

    PubMed

    Song, Wenting; Wang, Zhijun; Lian, Chuanjie

    2013-09-01

    The in vivo estrogenic response and estrogenic contents of the influent and effluent collected from a sewage treatment plant located in Jiaozuo were assessed. The bioassay showed significant serum vitellogenin (VTG) induction in all the treated male goldfish (Carassius auratus) and significant gonad atrophies were only observed in the fish induced the most VTG expressions. Six target estrogens (estrone, 17β-estradiol, 17α-ethynylestradiol, 4-n-octylphenol, 4-n-nonylphenol and bisphenol A) were detected in different polar fractions, with the exception of the 25 % and 50 % methanol fractions extracted from the influent and the 25 %, 50 %, 95 % and 100 % methanol fractions extracted from the effluent. For both the influent and effluent, natural and synthetic steroidal estrogens were detected in those extracted fractions induced the most abundant VTG expressions. PMID:23877625

  1. The Effect of Hydraulic Loading Rate and Influent Source on the Binding Capacity of Phosphorus Filters

    PubMed Central

    Herrmann, Inga; Jourak, Amir; Hedström, Annelie; Lundström, T. Staffan; Viklander, Maria

    2013-01-01

    Sorption by active filter media can be a convenient option for phosphorus (P) removal and recovery from wastewater for on-site treatment systems. There is a need for a robust laboratory method for the investigation of filter materials to enable a reliable estimation of their longevity. The objectives of this study were to (1) investigate and (2) quantify the effect of hydraulic loading rate and influent source (secondary wastewater and synthetic phosphate solution) on P binding capacity determined in laboratory column tests and (3) to study how much time is needed for the P to react with the filter material (reaction time). To study the effects of these factors, a 22 factorial experiment with 11 filter columns was performed. The reaction time was studied in a batch experiment. Both factors significantly (α = 0.05) affected the P binding capacity negatively, but the interaction of the two factors was not significant. Increasing the loading rate from 100 to 1200 L m−2 d−1 decreased P binding capacity from 1.152 to 0.070 g kg−1 for wastewater filters and from 1.382 to 0.300 g kg−1 for phosphate solution filters. At a loading rate of 100 L m−2 d−1, the average P binding capacity of wastewater filters was 1.152 g kg−1 as opposed to 1.382 g kg−1 for phosphate solution filters. Therefore, influent source or hydraulic loading rate should be carefully controlled in the laboratory. When phosphate solution and wastewater were used, the reaction times for the filters to remove P were determined to be 5 and 15 minutes, respectively, suggesting that a short residence time is required. However, breakthrough in this study occurred unexpectedly quickly, implying that more time is needed for the P that has reacted to be physically retained in the filter. PMID:23936313

  2. Stress-related gene expression changes in rainbow trout hepatocytes exposed to various municipal wastewater treatment influents and effluents.

    PubMed

    Gagné, F; Smyth, S A; André, C; Douville, M; Gélinas, M; Barclay, K

    2013-03-01

    The present study sought to examine the performance of six different wastewater treatment processes from 12 wastewater treatment plants using a toxicogenomic approach in rainbow trout hepatocytes. Freshly prepared rainbow trout hepatocytes were exposed to increasing concentrations of influent (untreated wastewaters) and effluent (C(18)) extracts for 48 h at 15 °C. A test battery of eight genes was selected to track changes in xenobiotic biotransformation, estrogenicity, heavy metal detoxification, and oxidative stress. The wastewaters were processed by six different treatment systems: facultative and aerated lagoons, activated sludge, biological aerated filter, biological nutrient removal, chemically assisted primary treated, and trickling filter/solids contact. Based on the chemical characteristics of the effluents, the treatment plants were generally effective in removing total suspended solids and chemical oxygen demand, but less so for ammonia and alkalinity. The 12 influents differed markedly with each other, which makes the comparison among treatment processes difficult. For the influents, both population size and flow rate influenced the increase in the following mRNA levels in exposed hepatocytes: metallothionein (MT), cytochrome P4503A4 (CYP3A4), and vitellogenin (VTG). Gene expression of glutathione S-transferase (GST) and the estrogen receptor (ER), were influenced only by population size in exposed cells to the influent extracts. The remaining genes-superoxide dismutase (SOD) and multidrug resistance transporter (MDR)-were not influenced by either population size or flow rate in exposed cells. It is noteworthy that the changes in MT, ER, and VTG in cells exposed to the effluents were significantly affected by the influents across the 12 cities examined. However, SOD, CYP1A1, CYP3A4, GST, and MDR gene expression were the least influenced by the incoming influents. The data also suggest that wastewater treatments involving biological or aeration

  3. Impact of influent COD/N ratio on disintegration of aerobic granular sludge.

    PubMed

    Luo, Jinghai; Hao, Tianwei; Wei, Li; Mackey, Hamish R; Lin, Ziqiao; Chen, Guang-Hao

    2014-10-01

    Disintegration of aerobic granular sludge (AGS) is a challenging issue in the long-term operation of an AGS system. Chemical oxygen demand (COD)-to-nitrogen (N) ratio (COD/N), often variable in industrial wastewaters, could be a destabilizing factor causing granule disintegration. This study investigates the impact of this ratio on AGS disintegration and identifies the key causes, through close monitoring of AGS changes in its physical and chemical characteristics, microbial community and treatment performance. For specific comparison, two lab-scale air-lift type sequencing batch reactors, one for aerobic granular and the other for flocculent sludge, were operated in parallel with three COD/N ratios (4, 2, 1) applied in the influent of each reactor. The decreased COD/N ratios of 2 and 1 strongly influenced the stability of AGS with regard to physical properties and nitrification efficiency, leading to AGS disintegration when the ratio was decreased to 1. Comparatively the flocculent sludge maintained relatively stable structure and nitrification efficiency under all tested COD/N ratios. The lowest COD/N ratio resulted in a large microbial community shift and extracellular polymeric substances (EPS) reduction in both flocculent and granular sludges. The disintegration of AGS was associated with two possible causes: 1) reduction in net tyrosine production in the EPS and 2) a major microbial community shift including reduction in filamentous bacteria leading to the collapse of granule structure. PMID:24950459

  4. Impact of influent wastewater quality on nitrogen removal rates in multistage treatment wetlands.

    PubMed

    Gajewska, Magdalena; Jóźwiakowski, Krzysztof; Ghrabi, Ahmed; Masi, Fabio

    2015-09-01

    Nitrogen removal in treatment wetlands is influenced by many factors, and the presence of electron donors (biodegradable organic matter) and electron acceptors (nitrate ions) is the main limiting one; for obtaining these conditions, multistage treatment wetlands (MTWs) are required, where an extensive nitrification can be obtained in the first stages under aerobic conditions leaving then to the following anoxic/anaerobic stages the duty of the denitrification. Most of the biodegradable organic matter is however oxidised in the first stages, and therefore, the inlet to the denitrification beds is usually poor of easily degradable carbon sources. This study is comparing the long-term performances obtained at several MTWs operating in Europe (North and South) and North Africa in order to understand if there is a significant avail in making use of the influent chemical oxygen demand (COD)/N ratio during the design phase for ensuring proper performances in terms of N overall removal. The statistic analysis performed in this study have shown that MTWs are capable to ensure sufficient removal of both organic and nutrients even in unfavourable proportions of macronutrients (C and N). The usual assumptions for conventional biological treatment systems concerning adequate C/N ratios seem to be dubious in case of wastewater treatment in MTWs. PMID:25300181

  5. Influent concentrations and removal performances of metals through municipal wastewater treatment processes.

    PubMed

    Choubert, J M; Pomiès, M; Ruel, S Martin; Coquery, M

    2011-01-01

    This extensive study aimed at quantifying the concentrations and removal efficiency of 23 metals and metalloids in domestic wastewater passing through full-scale plants. Nine facilities were equipped with secondary biological treatment and three facilities were equipped with a tertiary treatment stage. The metals investigated were Li, B, Al, Ti, V, Cr, Fe, Ni, Co, Cu, Zn, As, Se, Rb, Mo, Ag, Cd, Sn, Sb, Ba, TI, Pb and U. Particulate and dissolved metals were measured using 24 h composite samples at each treatment stage. In influents, total concentrations of Cd, Sb, Co, Se, U, Ag, V were below a few microg/L, whereas at the other extremity Zn, B, Fe, Ti, Al were in the range of 0.1 to > 1 mg/L. It was demonstrated that secondary treatment stage (activated sludge, biodisc and membrane bioreactor) were efficient to remove most metals (removal rate > 70%), with the exception of B, Li, Rb, Mo, Co, As, Sb and V due to their low adsorption capacities. With the tested tertiary stages (polishing pond, rapid chemical settler, ozonation), a removal efficiency was obtained for Ti, Cr, Cd, Cu, Zn, Sn, Pb, Fe, Ag and Al, whereas a little removal (< 30%) was obtained for other metals. PMID:21902037

  6. DWPF welder parametric study

    SciTech Connect

    Eberhard, B.J.; Harbour, J.R.; Plodinec, M.J.

    1994-06-01

    As part of the DWPF Startup Test Program, a parametric study has been performed to determine a range of welder operating parameters which will produce acceptable final welds for canistered waste forms. The parametric window of acceptable welds defined by this study is 90,000 {plus_minus} 15,000 lb of force, 248,000 {plus_minus} 22,000 amps of current, and 95 {plus_minus} 15 cycles (@ 60 cops) for the time of application of the current.

  7. Parametric Rietveld refinement

    PubMed Central

    Stinton, Graham W.; Evans, John S. O.

    2007-01-01

    In this paper the method of parametric Rietveld refinement is described, in which an ensemble of diffraction data collected as a function of time, temperature, pressure or any other variable are fitted to a single evolving structural model. Parametric refinement offers a number of potential benefits over independent or sequential analysis. It can lead to higher precision of refined parameters, offers the possibility of applying physically realistic models during data analysis, allows the refinement of ‘non-crystallographic’ quantities such as temperature or rate constants directly from diffraction data, and can help avoid false minima. PMID:19461841

  8. DWPF Welder Parametric Study

    SciTech Connect

    Plodinec, M.J.

    1998-11-20

    After being filled with glass, DWPF canistered waste forms will be welded closed using an upset resistance welding process. This final closure weld must be leaktight, and must remain so during extended storage at SRS. As part of the DWPF Startup Test Program, a parametric study (DWPF-WP-24) has been performed to determine a range of welder operating parameters which will produce acceptable welds. The parametric window of acceptable welds defined by this study is 90,000 + 15,000 lb of force, 248,000 + 22,000 amps of current, and 95 + 15 cycles* for the time of application of the current.

  9. Parametric Differentiation and Integration

    ERIC Educational Resources Information Center

    Chen, Hongwei

    2009-01-01

    Parametric differentiation and integration under the integral sign constitutes a powerful technique for calculating integrals. However, this topic is generally not included in the undergraduate mathematics curriculum. In this note, we give a comprehensive review of this approach, and show how it can be systematically used to evaluate most of the…

  10. Semi-nitritation process producing optimum influent for anammox process in treatment of domestic wastewater.

    PubMed

    Tang, Xiaoxue; Yang, Qing; Li, Jianlin; Peng, Yongzhen; Xu, Zhubing; He, Jianzhong

    2016-06-01

    The process of anaerobic ammonium oxidation (Anammox) requires a proper ratio of NH4(+)-N and NO2(-)-N in the influent, which is difficult to control upon treating domestic wastewater. In this study, a control strategy of semi-nitritation (SN) process based on monitoring the pH profile and NH4(+)-N concentration in a sequencing batch reactor (SBR) was developed. The aeration time of each cycle in SN-SBR was calculated using the established equation tSN=tCOD+0.56αnS0/(S0-Sn). To verify the suitability of the control strategy, SN-SBR was operated continuously for 20 cycles, fed with real domestic wastewater with a fluctuating COD of 200-400 mg L(-1) and NH4(+)-N of 65-80 mg L(-1). The nitrogen removal performance of SN-anammox system using the developed control strategy was also monitored. Results showed that SN-SBR was able to generate a suitable ratio of NH4(+)-N to NO2(-)-N for the following anammox process, the TN removal rate of the SN-anammox system achieved 91.7 ± 0.4% and the average ammonium, nitrite and nitrate concentration of effluent was only 0.50 ± 0.24, 0.13 ± 0.09 and 4.9 ± 0.22 mg L(-1), respectively. This study has potential application in the treatment of domestic wastewater using combined SN-anammox process. PMID:26963236

  11. Percent recovery of low influent concentrations of microorganism surrogates in small sand columns

    NASA Astrophysics Data System (ADS)

    Stevenson, M. E.; Blaschke, A. P.

    2012-04-01

    In order to develop a dependable method to calculate the setback distance of a drinking water well from a potential point of microbiological contamination, surrogates are used to perform field tests to avoid using pathogenic micro-organisms. One such surrogate used to model the potential travel time of microbial contamination is synthetic microspheres. The goal of this study is to examine the effect of differing influent colloid concentrations on the percent recovery of microbial surrogates after passing through a soil column. Similar studies have been done to investigate blocking of ideal attachment sites using concentrations between 106 and 1010 particles ml-1. These high concentrations were necessary due to the detection limit of the measuring technique used; however, our measuring technique allows us to test input concentrations ranging from 101 to 106 particles ml-1. These low concentrations are more similar to the concentrations of pathogenic microorganisms present in nature. We have tested the enumeration of 0.5 μm microspheres using a solid-phase cytometer and evaluated their transport in small sand columns. Fluorescent microspheres were purchased for this study with carboxylated surfaces. The soil columns consist of Plexiglas tubes, 30 cm long and 7 cm in diameter, both filled with the same coarse sand. Bromide was used as a conservative tracer, to estimate pore-water velocity and dispersivity, and bromide concentrations were analysed using ion chromatography and bromide probes. Numerical modelling was done using CXTFIT and HYDRUS-1D software programs. The 0.5 μm beads were enumerated in different environmental waters using solid-phase cytometry and compared to counts in sterile water in order to confirm the accuracy of the method. The solid-phase cytometer was able to differentiate the 0.5 μm beads from naturally present autofluorescent particles and bacteria, and therefore, is an appropriate method to enumerate this surrogate.

  12. Occurrence of Cryptosporidium, Giardia, and Cyclospora in influent and effluent water at wastewater treatment plants in Arizona.

    PubMed

    Kitajima, Masaaki; Haramoto, Eiji; Iker, Brandon C; Gerba, Charles P

    2014-06-15

    We investigated the occurrence of Cryptosporidium, Giardia, and Cyclospora at two wastewater treatment plants (WWTPs) in Arizona over a 12-month period, from August 2011 to July 2012. Influent and effluent wastewater samples were collected monthly, and protozoan (oo)cysts were concentrated using an electronegative filter, followed by the detection of protozoa using fluorescent microscopy (Cryptosporidium oocysts and Giardia cysts) and PCR-based methods (Cryptosporidium spp., Giardia intestinalis, and Cyclospora cayetanensis). The concentration of Giardia cysts in the influent was always higher than that of Cryptosporidium oocysts (mean concentration of 4.8-6.4×10(3) versus 7.4×10(1)-1.0×10(2)(oo)cysts/l) with no clear seasonality, and log10 reduction of Giardia cysts was significantly higher than that of Cryptosporidium oocysts for both WWTPs (P<0.05). Log10 reduction of Giardia cysts at the WWTP utilizing activated sludge was significantly higher than the other WWTP using trickling filter (P=0.014), while no statistically significant difference between the two WWTPs was observed for the log10 reduction of Cryptosporidium oocysts (P=0.207). Phylogenetic analysis revealed that G. intestinalis strains identified in wastewater belonged to two assemblages, AII and B, which are potentially infectious to humans. C. cayetanensis was also detected from both influent and effluent using a newly developed quantitative PCR, with the highest influent concentration of 1.2×10(4)copies/l. Our results demonstrated that these protozoan pathogens are prevalent in the study area and that efficacy of the conventional wastewater treatment processes at physically removing (oo)cysts is limited. PMID:24695096

  13. Identification of antiyellowing agents as precursors of N-nitrosodimethylamine production on ozonation from sewage treatment plant influent.

    PubMed

    Kosaka, Koji; Asami, Mari; Konno, Yusuke; Oya, Masami; Kunikane, Shoichi

    2009-07-15

    In Japan, N-nitrosodimethylamine (NDMA) formation associated with ozonation at a relatively high concentration has been reported only at a small number of water treatment plants (WTPs) in the western part of Japan for which the source water is the Yodo River. In the present study, the formation of relatively high concentrations of NDMA was found upon ozonation of water samples taken from sewage treatment plants (STPs) located upstream of the water intake points of the WTPs in the Yodo River basin. NDMA concentrations before and after ozonation were 16-290 and 14-280 ng/L, respectively. At least some of the STPs investigated receive industrial effluents. At one STP in this area, an extremely high concentration of NDMA (10,000ng/L) was found in one influent water sample after ozonation. To identify potential NDMA precursors upon ozonation in the influent at this STP, the concentrated extracts of the influent were fractionated by high-performance liquid chromatography (HPLC). Ultraperformance liquid chromatography coupled with tandem mass spectrometry (UPLC/MS/MS) identified 4,4'-hexamethylenebis(1,1-dimethylsemicarbazide) (HDMS) and 1,1,1',1'-tetramethyl-4,4'-(methylene-di-p-phenylene)disemicarbazide (TMDS) as precursors of NDMA on ozonation of the influent. Both HDMS and TMDS are used as antiyellowing agents in polyurethane fibers and as light stabilizers in polyamide resins. Their contributions to NDMA production on ozonation of water samples at STPs were up to 17%. The remaining unidentified NDMA precursors may be hydrophilic compounds that were not trapped by the cartridges used for extraction of the water samples. HDMS and TMDS were frequently present in surface waters and STP effluents in the Yodo River basin and were also detected in surface waters from several other areas in Japan. PMID:19708347

  14. Behaviour of pharmaceuticals and personal care products in constructed wetland compartments: Influent, effluent, pore water, substrate and plant roots.

    PubMed

    Hijosa-Valsero, María; Reyes-Contreras, Carolina; Domínguez, Carmen; Bécares, Eloy; Bayona, Josep M

    2016-02-01

    Seven mesocosm-scale constructed wetlands (CWs) with different design configurations, dealing with primary-treated urban wastewater, were assessed for the concentration, distribution and fate of ten pharmaceutical and personal care products (PPCPs) [ibuprofen, ketoprofen, naproxen, diclofenac, salicylic acid, caffeine, carbamazepine, methyl dihydrojasmonate, galaxolide and tonalide] and eight of their transformation products (TPs). Apart from influent and effluent, various CW compartments were analysed, namely, substrate, plant roots and pore water. PPCP content in pore water depended on the specific CW configuration. Macrophytes can take up PPCPs through their roots. Ibuprofen, salicylic acid, caffeine, methyl dihydrojasmonate, galaxolide and tonalide were present on the root surface with a predominance of galaxolide and caffeine in all the planted systems. Naproxen, ibuprofen, salicylic acid, methyl dihydrojasmonate, galaxolide and tonalide were uptaken by the roots. In order to better understand the removal processes, biomass measurement and biodegradability studies through the characterization of internal-external isomeric linear alkylbenzenes present on the gravel bed were performed. Three TPs namely, ibuprofen-amide, 3-ethylbenzophenone and 4-hydroxy-diclofenac were identified for the first time in wetland pore water and effluent water, which suggests de novo formation (they were not present in the influent). Conversely, O-desmethyl-naproxen was degraded through the wetland passage since it was detected in the influent but not in the subsequent treatment stages. Biodegradation pathways are therefore suggested for most of the studied PPCPs in the assessed CWs. PMID:26702554

  15. A time series model for influent temperature estimation: application to dynamic temperature modelling of an aerated lagoon.

    PubMed

    Escalas-Cañellas, Antoni; Abrego-Góngora, Carlos J; Barajas-López, María Guadalupe; Houweling, Dwight; Comeau, Yves

    2008-05-01

    Thirty-nine linear regression and time series models were built and calibrated for influent temperature (Ti) estimation at the primary aerated facultative lagoon in a municipal wastewater treatment plant. The models were based on mean daily ambient air temperature (Ta) and/or daily rainfall (P), and-optionally-wastewater temperature autoregression. The best fits were achieved with some time series models involving Ta and P, and Ti autoregression. The best-fit model was able to estimate influent temperature with a root-mean-square-error of 0.5 degrees C, and an R2 of 0.925, for the calibration period of 10.5 months. In addition, a dynamic lagoon-temperature (Tw) model from the literature was modified in its terms of solar radiation and aeration latent heat, and applied to the primary lagoon. The model was fed with the estimated influent temperature, and five model parameters were identified by calibration against 10.5-month Tw data. Dynamic lagoon-temperature estimation results were comparable to or better than other results of long-term simulations found in the literature. Sensitivity analyses were run on both models. Further validation with independent sets of data is needed for verification of the predictive capability of the models. PMID:18342909

  16. Parametric Explosion Spectral Model

    SciTech Connect

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  17. Understanding the impact of influent nitrogen concentration on granule size and microbial community in a granule-based enhanced biological phosphorus removal system.

    PubMed

    Zou, Jinte; Li, Yongmei; Zhang, Lili; Wang, Ruyi; Sun, Jing

    2015-02-01

    To better understand the effect of influent nitrogen concentration on granule size and microbial community in a granule-based enhanced biological phosphorus removal system, three influent nitrogen concentrations were tested while carbon concentration was an unlimited factor. The results show that although ammonium and phosphate were well removed in the tested nitrogen concentration range (20-50 mg L(-1)), granule size, the amount of phosphate accumulating organisms (PAOs) and microbial activity were affected significantly. A possible mechanism for the effect of influent nitrogen concentration on granule size is proposed based on the experimental results. The increase in proteins/polysaccharides ratio caused by high influent nitrogen concentration plays a crucial role in granule breakage. The small granule size then weakens simultaneous nitrification-denitrification, which further causes higher nitrate concentration in the effluent and lower amount of PAOs in sludge. Consequently, phosphate concentration in the anaerobic phase decreases, which plays the secondary role in granule breakage. PMID:25496940

  18. Parametric Hazard Function Estimation.

    Energy Science and Technology Software Center (ESTSC)

    1999-09-13

    Version 00 Phaze performs statistical inference calculations on a hazard function (also called a failure rate or intensity function) based on reported failure times of components that are repaired and restored to service. Three parametric models are allowed: the exponential, linear, and Weibull hazard models. The inference includes estimation (maximum likelihood estimators and confidence regions) of the parameters and of the hazard function itself, testing of hypotheses such as increasing failure rate, and checking ofmore » the model assumptions.« less

  19. Parametric Trace Slicing

    NASA Technical Reports Server (NTRS)

    Rosu, Grigore (Inventor); Chen, Feng (Inventor); Chen, Guo-fang; Wu, Yamei; Meredith, Patrick O. (Inventor)

    2014-01-01

    A program trace is obtained and events of the program trace are traversed. For each event identified in traversing the program trace, a trace slice of which the identified event is a part is identified based on the parameter instance of the identified event. For each trace slice of which the identified event is a part, the identified event is added to an end of a record of the trace slice. These parametric trace slices can be used in a variety of different manners, such as for monitoring, mining, and predicting.

  20. Multipass optical parametric amplifier

    SciTech Connect

    Jeys, T.H.

    1996-08-01

    A compact, low-threshold, multipass optical parametric amplifier has been developed for the conversion of short-pulse (360-ps) 1064-nm Nd:YAG laser radiation into eye-safe 1572-nm radiation for laser ranging and radar applications. The amplifier had a threshold pump power of as low as 45{mu}J, and at three to four times this threshold pump power the amplifier converted 30{percent} of the input 1064-nm radiation into 1572-nm output radiation. {copyright} {ital 1996 Optical Society of America.}

  1. Progress in optical parametric oscillators

    NASA Technical Reports Server (NTRS)

    Fan, Y. X.; Byer, R. L.

    1984-01-01

    It is pointed out that tunable coherent sources are very useful for many applications, including spectroscopy, chemistry, combustion diagnostics, and remote sensing. Compared with other tunable sources, optical parametric oscillators (OPO) offer the potential advantage of a wide wavelength operating range, which extends from 0.2 micron to 25 microns. The current status of OPO is examined, taking into account mainly advances made during the last decade. Attention is given to early LiNbO3 parametric oscillators, problems which have prevented wide use of parametric oscillators, the demonstration of OPO's using urea and AgGaS2, progress related to picosecond OPO's, a breakthrough in nanosecond parametric oscillators, the first demonstration of a waveguide and fiber parametric amplification and generation, the importance of chalcopyrite crystals, and theoretical work performed with the aim to understand the factors affecting the parametric oscillator performance.

  2. A sensitive ferricyanide-mediated biochemical oxygen demand assay for analysis of wastewater treatment plant influents and treated effluents.

    PubMed

    Jordan, Mark A; Welsh, David T; John, Richard; Catterall, Kylie; Teasdale, Peter R

    2013-02-01

    Representative and fast monitoring of wastewater influent and effluent biochemical oxygen demand (BOD) is an elusive goal for the wastewater industry and regulatory bodies alike. The present study describes a suitable assay, which incorporates activated sludge as the biocatalyst and ferricyanide as the terminal electron acceptor for respiration. A number of different sludges and sludge treatments were investigated, primarily to improve the sensitivity of the assay. A limit of detection (LOD) (2.1 mg BOD₅ L⁻¹) very similar to that of the standard 5-day BOD₅ method was achieved in 4 h using raw influent sludge that had been cultured overnight as the biocatalyst. Reducing the microbial concentration was the most effective means to improve sensitivity and reduce the contribution of the sludge's endogenous respiration to total ferricyanide-mediated (FM) respiration. A strong and highly significant relationship was found (n = 33; R = 0.96; p < 0.001; slope = 0.94) between BOD₅ and FM-BOD equivalent values for a diverse range of samples including wastewater treatment plant (WWTP) influent and treated effluent, as well as several grey water samples. The activated sludge FM-BOD assay presented here is an exceptional surrogate method to the standard BOD₅ assay, providing representative, same-day BOD analysis of WWTP samples with a comparable detection limit, a 4-fold greater analytical range and much faster analysis time. The industry appeal of such an assay is tremendous given that ~90% of all BOD₅ analysis is dedicated to measurement of WWTP samples, for which this assay is specifically designed. PMID:23200506

  3. Synthesis of water suitable as the MEPC.174(58) G8 influent water for testing ballast water management systems.

    PubMed

    D'Agostino, Fabio; Del Core, Marianna; Cappello, Simone; Mazzola, Salvatore; Sprovieri, Mario

    2015-10-01

    Here, we describe the methodologies adopted to ensure that natural seawater, used as "influent water" for the land test, complies with the requirement that should be fulfilled to show the efficacy of the new ballast water treatment system (BWTS). The new BWTS was located on the coast of SW Sicily (Italy), and the sampled seawater showed that bacteria and plankton were two orders of magnitude lower than requested. Integrated approaches for preparation of massive cultures of bacteria (Alcanivorax borkumensis and Marinobacter hydrocarbonoclasticus), algae (Tetraselmis suecica), rotifers (Brachionus plicatilis), and crustaceans (Artemia salina) suitable to ensure that 200 m(3) of water fulfilled the international guidelines of MEPC.174(58)G8 are here described. These methodologies allowed us to prepare the "influent water" in good agreement with guidelines and without specific problems arising from natural conditions (seasons, weather, etc.) which significantly affect the concentrations of organisms at sea. This approach also offered the chance to reliably run land tests once every two weeks. PMID:26403705

  4. Process Performance and Bacterial Community Structure Under Increasing Influent Disturbances in a Membrane-Aerated Biofilm Reactor.

    PubMed

    Tian, Hailong; Yan, Yingchun; Chen, Yuewen; Wu, Xiaolei; Li, Baoan

    2016-02-01

    The membrane-aerated biofilm reactor (MABR) is a promising municipal wastewater treatment process. In this study, two cross-flow MABRs were constructed to explore the carbon and nitrogen removal performance and bacterial succession, along with changes of influent loading shock comprising flow velocity, COD, and NH4-N concentrations. Redundancy analysis revealed that the function of high flow velocity was mainly embodied in facilitating contaminants diffusion and biosorption rather than the success of overall bacterial populations (p > 0.05). In contrast, the influent NH4-N concentration contributed most to the variance of reactor efficiency and community structure (p < 0.05). Pyrosequencing results showed that Anaerolineae, and Beta- and Alphaproteobacteria were the dominant groups in biofilms for COD and NH4-N removal. Among the identified genera, Nitrosomonas and Nitrospira were the main nitrifiers, and Hyphomicrobium, Hydrogenophaga, and Rhodobacter were the key denitrifiers. Meanwhile, principal component analysis indicated that bacterial shift in MABR was probably the combination of stochastic and deterministic processes. PMID:26528534

  5. 17β-Estradiol influent and effluent concentrations in wastewater: demographic influences and the risk to environmental health.

    PubMed

    Heffron, K T; Gaines, K F; Novak, J M; Canam, T; Collard, D A

    2016-05-01

    The concentration of 17β-estradiol (E2) was measured through stages of wastewater treatment at a central Illinois wastewater treatment plant (WWTP). E2 concentration was quantified using a competitive enzyme-linked immunosorbent assay (ELISA). The concentration of E2 was compared with demographic effects of a university; physical parameters of the wastewater (dissolved oxygen, pH, and temperature); and daily influent and effluent flow rates. Effluent concentrations ranged from 0 to 25.3 ng L(-1) with an average discharge of 3.6 ng L(-1). E2 concentration was shown to increase at the start of each university semester; however, this trend was not observed in the summer sessions. Low influent and effluent flow rates, which correspond to increased water retention time at the WWTP, were correlated to increased removal efficiency of E2, where low flow was linked to 91 % removal efficiency and high flow with 58 % removal efficiency. This study concludes that E2 was being discharged at concentrations known to cause ecological risk, and that the demographic changes in a university student body had a significant effect on E2 concentration throughout the treatment process. PMID:27075313

  6. Configuration of biological wastewater treatment line and influent composition as the main factors driving bacterial community structure of activated sludge.

    PubMed

    Jaranowska, Paulina; Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena

    2013-07-01

    The structure of microbial consortia in wastewater treatment facilities is a resultant of environmental conditions created by the operational parameters of the purification process. In the research, activated sludge from nine Polish wastewater treatment plants (WWTPs) was investigated at a molecular level to determine the impact of the complexity of biological treatment line and the influent composition on the species structure and the diversity of bacterial consortia. The community fingerprints and technological data were subjected to the canonical correspondence and correlation analyses. The number of separated biological processes realized in the treatment line and the presence of industrial wastewater in the influent were the key factors determining the species structure of total and ammonia-oxidizing bacteria in biomass. The N2O-reducers community composition depended significantly on the design of the facility; the highest species richness of denitrifiers was noted in the WWTPs with separated denitrification tanks. The contribution of industrial streams to the inflow affected the diversity of total and denitrifying bacterial consortia and diminished the diversity of ammonia oxidizers. The obtained data are valuable for engineers since they revealed the main factors, including the design of wastewater treatment plant, influencing the microbial groups critical for the stability of purification processes. PMID:23397107

  7. Parametric energy converter

    SciTech Connect

    Johnson, R.N.

    1981-10-20

    A method and apparatus for converting thermal energy into mechanical energy by parametric pumping of rotary inertia. In a preferred embodiment, a modified tesla turbine rotor is positioned within a rotary boiler along its axis of rotation. An external heat source, such as solar radiation, is directed onto the outer casing of the boiler to convert the liquid to steam. As the steam spirals inwardly toward the discs of the rotor, the moment of inertia of the mass of steam is reduced to thereby substantially increase its kinetic energy. The laminar flow of steam between the discs of the rotor transfers the increased kinetic energy to the rotor which can be coupled out through an output shaft to perform mechanical work. A portion of the mechanical output can be fed back to maintain rotation of the boiler.

  8. Mechanical Parametric Oscillations and Waves

    ERIC Educational Resources Information Center

    Dittrich, William; Minkin, Leonid; Shapovalov, Alexander S.

    2013-01-01

    Usually parametric oscillations are not the topic of general physics courses. Probably it is because the mathematical theory of this phenomenon is relatively complicated, and until quite recently laboratory experiments for students were difficult to implement. However parametric oscillations are good illustrations of the laws of physics and can be…

  9. Parametric binary dissection

    NASA Technical Reports Server (NTRS)

    Bokhari, Shahid H.; Crockett, Thomas W.; Nicol, David M.

    1993-01-01

    Binary dissection is widely used to partition non-uniform domains over parallel computers. This algorithm does not consider the perimeter, surface area, or aspect ratio of the regions being generated and can yield decompositions that have poor communication to computation ratio. Parametric Binary Dissection (PBD) is a new algorithm in which each cut is chosen to minimize load + lambda x(shape). In a 2 (or 3) dimensional problem, load is the amount of computation to be performed in a subregion and shape could refer to the perimeter (respectively surface) of that subregion. Shape is a measure of communication overhead and the parameter permits us to trade off load imbalance against communication overhead. When A is zero, the algorithm reduces to plain binary dissection. This algorithm can be used to partition graphs embedded in 2 or 3-d. Load is the number of nodes in a subregion, shape the number of edges that leave that subregion, and lambda the ratio of time to communicate over an edge to the time to compute at a node. An algorithm is presented that finds the depth d parametric dissection of an embedded graph with n vertices and e edges in O(max(n log n, de)) time, which is an improvement over the O(dn log n) time of plain binary dissection. Parallel versions of this algorithm are also presented; the best of these requires O((n/p) log(sup 3)p) time on a p processor hypercube, assuming graphs of bounded degree. How PBD is applied to 3-d unstructured meshes and yields partitions that are better than those obtained by plain dissection is described. Its application to the color image quantization problem is also discussed, in which samples in a high-resolution color space are mapped onto a lower resolution space in a way that minimizes the color error.

  10. Phosphorus removal and N₂O production in anaerobic/anoxic denitrifying phosphorus removal process: long-term impact of influent phosphorus concentration.

    PubMed

    Wang, Zhen; Meng, Yuan; Fan, Ting; Du, Yuneng; Tang, Jie; Fan, Shisuo

    2015-03-01

    This study was conducted to investigate the long-term impact of influent phosphorus concentration on denitrifying phosphorus removal and N2O production during denitrifying phosphorous removal process. The results showed that, denitrifying phosphate accumulating organisms (DPAOs) could become dominant populations quickly in anaerobic/anoxic SBR by providing optimum cultivating conditions, and the reactor performed well for denitrifying phosphorus removal. The influent phosphorus concentration significantly affected anaerobic poly-β-hydroxyalkanoates (PHA) synthesis, denitrifying phosphorus removal, and N2O production during the denitrifying phosphorus removal process. As the influent phosphorus concentration was more than 20 mg L(-1), the activity of DPAOs began to be inhibited due to the transformation of the available carbon source type. Meanwhile, N2O production was inhibited with the mitigation of anoxic NO2(-)-N accumulation. Adoption of a modified feeding could enhance denitrifying phosphorus removal and inhibit N2O production during denitrifying phosphorous removal processes. PMID:25541320

  11. Parametric Mass Reliability Study

    NASA Technical Reports Server (NTRS)

    Holt, James P.

    2014-01-01

    The International Space Station (ISS) systems are designed based upon having redundant systems with replaceable orbital replacement units (ORUs). These ORUs are designed to be swapped out fairly quickly, but some are very large, and some are made up of many components. When an ORU fails, it is replaced on orbit with a spare; the failed unit is sometimes returned to Earth to be serviced and re-launched. Such a system is not feasible for a 500+ day long-duration mission beyond low Earth orbit. The components that make up these ORUs have mixed reliabilities. Components that make up the most mass-such as computer housings, pump casings, and the silicon board of PCBs-typically are the most reliable. Meanwhile components that tend to fail the earliest-such as seals or gaskets-typically have a small mass. To better understand the problem, my project is to create a parametric model that relates both the mass of ORUs to reliability, as well as the mass of ORU subcomponents to reliability.

  12. Parametric scramjet analysis

    NASA Astrophysics Data System (ADS)

    Choi, Jongseong

    The performance of a hypersonic flight vehicle will depend on existing materials and fuels; this work presents the performance of the ideal scramjet engine for three different combustion chamber materials and three different candidate fuels. Engine performance is explored by parametric cycle analysis for the ideal scramjet as a function of material maximum service temperature and the lower heating value of jet engine fuels. The thermodynamic analysis is based on the Brayton cycle as similarly employed in describing the performance of the ramjet, turbojet, and fanjet ideal engines. The objective of this work is to explore material operating temperatures and fuel possibilities for the combustion chamber of a scramjet propulsion system to show how they relate to scramjet performance and the seven scramjet engine parameters: specific thrust, fuel-to-air ratio, thrust-specific fuel consumption, thermal efficiency, propulsive efficiency, overall efficiency, and thrust flux. The information presented in this work has not been done by others in the scientific literature. This work yields simple algebraic equations for scramjet performance which are similar to that of the ideal ramjet, ideal turbojet and ideal turbofan engines.

  13. Biomethane production and microbial community response according to influent concentration of molasses wastewater in a UASB reactor.

    PubMed

    Yun, Jeonghee; Lee, Sang Don; Cho, Kyung-Suk

    2016-05-01

    This study aimed to investigate the interaction between methane production performance and active microbial community dynamics at different loading rates by increasing influent substrate concentration. The model system was an upflow anaerobic sludge blanket (UASB) reactor using molasses wastewater. The active microbial community was analyzed using a ribosomal RNA-based approach in order to reflect active members in the UASB system. The methane production rate (MPR) increased with an increase in organic loading rate (OLR) from 3.6 to 5.5 g COD·L(-1)·day(-1) and then it decreased with further OLR addition until 9.7 g COD·L(-1)·day(-1). The UASB reactor achieved a maximum methane production rate of 0.48 L·L(-1)·day(-1) with a chemical oxygen demand (COD) removal efficiency of 91.2 % at an influent molasses concentration of 16 g COD·L(-1) (OLR of 5.5 g COD·L(-1)·day(-1)). In the archaeal community, Methanosarcina was predominant irrespective of loading rate, and the relative abundance of Methanosaeta increased with loading rate. In the bacterial community, Firmicutes and Eubacteriaceae were relatively abundant in the loading conditions tested. The network analysis between operation parameters and microbial community indicated that MPR was positively associated with most methanogenic archaea, including the relatively abundant Methanosarcina and Methanosaeta, except Methanofollis. The most abundant Methanosarcina was negatively associated with Bifidobacterium and Methanosaeta, whereas Methanosaeta was positively associated with Bifidobacterium. PMID:26810080

  14. Parametric Equations, Maple, and Tubeplots.

    ERIC Educational Resources Information Center

    Feicht, Louis

    1997-01-01

    Presents an activity that establishes a graphical foundation for parametric equations by using a graphing output form called tubeplots from the computer program Maple. Provides a comprehensive review and exploration of many previously learned topics. (ASK)

  15. Parametric design using IGRIP

    SciTech Connect

    Baker, C.

    1994-10-01

    The Department of Energy`s (DOE) Hanford site near Richland, Washington is being cleaned up after 50 years of nuclear materials production. One of the most serious problems at the site is the waste stored in single-shell underground storage tanks. There are 149 of these tanks containing the spent fuel residue remaining after the fuel is dissolved in acid and the desired materials (primarily plutonium and uranium) are separated out. The tanks are upright cylinders 75 ft. in diameter with domed tops. They are made of reinforced concrete, have steel liners, and each tank is buried under 7--12 ft. of overburden. The tanks are up to 40-ft. high, and have capacities of 500,000, 750,000, or 1,000,000 gallons of waste. As many as one-third of these tanks are known or suspected to leak. The waste form contained in the tanks varies in consistency from liquid supernatant to peanut-butter-like gels and sludges to hard salt cake (perhaps as hard as low-grade concrete). The current waste retrieval plan is to insert a large long-reach manipulator through a hole cut in the top of the tank, and use a variety of end-effectors to mobilize the waste and remove it from the tank. PNL has, with the assistance of Deneb robotics employees, developed a means of using the IGRIP code to perform parametric design of mechanical systems. This method requires no modifications to the IGRIP code, and all design data are stored in the IGRIP workcell. The method is presented in the context of development of a passive articulated mechanism that is used to deliver down-arm services to a gantry robot. The method is completely general, however, and could be used to design a fully articulated manipulator. Briefly, the method involves using IGCALC expressions to control manipulator joint angles, and IGCALC variables to allow user control of link lengths and offsets. This paper presents the method in detail, with examples drawn from PNL`s experience with the gantry robot service-providing mechanism.

  16. Reproductive Responses of Common Carp Cyprinus carpio in Cages to Influent of the Las Vegas Wash in Lake Mead, Nevada, from late Winter to early Spring

    EPA Science Inventory

    To investigate the potential for contaminants in Las Vegas Wash (LW) influent to produce effects indicative of endocrine disruption in vivo, adult male and female common carp were exposed in cages for 42-48 d at four sites and two reference locations in Lake Mead.

  17. Monitoring for Harmful Algal Blooms in Influent Waters and Through Treatment on Lake Erie in the 2013 and 2014 Bloom Seasons 

    EPA Science Inventory

    Monitoring of Harmful Algal Blooms in Influent and Through Drinking Water Treatment Facilities Located on Lake Erie in the 2013 and 2014 Bloom SeasonsToby Sanan, Nicholas Dugan, Darren Lytle, Heath MashHarmful algal blooms (HABs) and their associated toxins are emerging as signif...

  18. Direct emissions of N2O, CO 2, and CH 4 from A/A/O bioreactor systems: impact of influent C/N ratio.

    PubMed

    Ren, Yangang; Wang, Jinhe; Xu, Li; Liu, Cui; Zong, Ruiqiang; Yu, Jianlin; Liang, Shuang

    2015-06-01

    Direct emissions of N2O, CO2, and CH4, three important greenhouse gases (GHGs), from biological sewage treatment process have attracted increasing attention worldwide, due to the increasing concern about climate change. Despite the tremendous efforts devoted to understanding GHG emission from biological sewage treatment process, the impact of influent C/N ratios, in terms of chemical oxygen demand (COD)/total nitrogen (TN), on an anaerobic/anoxic/oxic (A/A/O) bioreactor system has not been investigated. In this work, the direct GHG emission from A/A/O bioreactor systems fed with actual sewage was analyzed under different influent C/N ratios over a 6-month period. The results showed that the variation in influent carbon (160 to 500 mg/L) and nitrogen load (35 to 95 mg/L) dramatically influenced pollutant removal efficiency and GHG production from this process. In the A/A/O bioreactor systems, the GHG production increased from 26-39 to 112-173 g CO2-equivalent as influent C/N ratios decreased from 10.3/10.7 to 3.5/3.8. Taking consideration of pollutant removal efficiency and direct biogenic GHG (N2O, CO2, and CH4) production, the optimum influent C/N ratio was determined to be 7.1/7.5, at which a relatively high pollutant removal efficiency and meanwhile a low level of GHG production (30.4 g CO2-equivalent) can be achieved. Besides, mechanical aeration turned out to be the most significant factor influencing GHG emission from the A/A/O bioreactor systems. PMID:25850740

  19. Simultaneous determination of 15 top-prescribed pharmaceuticals and their metabolites in influent wastewater by reversed-phase liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Tarcomnicu, Isabela; van Nuijs, Alexander L N; Simons, Ward; Bervoets, Lieven; Blust, Ronny; Jorens, Philippe G; Neels, Hugo; Covaci, Adrian

    2011-01-15

    A fast and sensitive high performance reversed-phase liquid chromatography-tandem mass spectrometry method was developed and validated for the analysis of 15 prescription pharmaceuticals and four of their metabolites in influent wastewater. The selected pharmaceuticals belonged to various classes, such as angiotensin converting enzyme inhibitors, angiotensin receptor antagonists, calcium antagonists, β-blockers, antidepressants, analgetics, anticonvulsants, platelet antiaggregants, and cholesterol lowering agents. They were selected from the list of top-sold prescription pharmaceuticals in Belgium. The chromatographic separation was optimized in order to achieve suitable retention times, good resolution for analytes susceptible of mass spectrometric cross-talk and high sensitivity in one single run. All compounds eluted within 9 min on a Phenomenex Kinetex C18 column, based on a newly developed technology that allows a very narrow distribution of the core-shell particles, providing high separation efficiency. Sample preparation was executed with solid-phase extraction on Oasis MCX cartridges. The method was validated by assessing specificity, selectivity, lower limit of quantification (LLOQ), linearity, accuracy, precision, extraction recovery, and matrix effects following Food and Drug Administration guidelines. The method LLOQs ranged from 0.5 to 25 ng/L. Calibration curves and LLOQs were designed to provide a good analytical performance at concentrations expected in real influent wastewater samples for each target compound. Eight deuterated analogues were used as internal standards for quantification. The method was applied to influent wastewater samples collected from 17 different wastewater treatment plants throughout Belgium. Most of the analytes were measured in the samples at concentrations above LLOQ. Seven of the compounds were for the first time reported in influent wastewater. The newly developed analytical method is currently used to assess

  20. Parametric infrared tunable laser system

    NASA Technical Reports Server (NTRS)

    Garbuny, M.; Henningsen, T.; Sutter, J. R.

    1980-01-01

    A parametric tunable infrared laser system was built to serve as transmitter for the remote detection and density measurement of pollutant, poisonous, or trace gases in the atmosphere. The system operates with a YAG:Nd laser oscillator amplifier chain which pumps a parametric tunable frequency converter. The completed system produced pulse energies of up to 30 mJ. The output is tunable from 1.5 to 3.6 micrometers at linewidths of 0.2-0.5 /cm (FWHM), although the limits of the tuning range and the narrower line crystals presently in the parametric converter by samples of the higher quality already demonstrated is expected to improve the system performance further.

  1. Nitrogen removal performance in planted and unplanted horizontal subsurface flow constructed wetlands treating different influent COD/N ratios.

    PubMed

    Wang, Wei; Ding, Yi; Ullman, Jeffrey L; Ambrose, Richard F; Wang, Yuhui; Song, Xinshan; Zhao, Zhimiao

    2016-05-01

    Microcosm horizontal subsurface flow constructed wetlands (HSSFCWs) were used to examine the impacts of vegetation on nitrogen dynamics treating different influent COD/N ratios (1:1, 4:1, and 8:1). An increase in the COD/N ratio led to increased reductions in NO3 and total inorganic nitrogen (TIN) in planted and unplanted wetlands, but diminished removal of NH4. The HSSFCW planted with Canna indica L. exhibited a significant reduction in NH4 compared to the unplanted system, particularly in the active root zone where NH4 removal performance increased by up to 26 % at the COD/N ratio of 8:1. There was no significant difference in NO3 removal between the planted and unplanted wetlands. TIN removal efficiency in the planted wetland increased with COD/N ratios, which was likely influenced by plant uptake. NH4 reductions were greater in planted wetland at the 20- and 40-cm depths while NO3 reductions were uniformly greater with depth in all cases, but no statistical difference was impacted by depth on TIN removal. These findings show that planting a HSSFCW can provide some benefit in reducing nitrogen loads in effluents, but only when a sufficient carbon source is present. PMID:26822218

  2. BRST Cohomology in Beltrami Parametrization

    NASA Astrophysics Data System (ADS)

    Tătaru, Liviu; Vancea, Ion V.

    We study the BRST cohomology within a local conformal Lagrangian field theory model built on a two-dimensional Riemann surface with no boundary. We deal with the case of the complex structure parametrized by the Beltrami differential and the scalar matter fields. The computation of all elements of the BRST cohomology is given.

  3. Effect of influent COD/SO4(2-) ratios on UASB treatment of a synthetic sulfate-containing wastewater.

    PubMed

    Hu, Yong; Jing, Zhaoqian; Sudo, Yuta; Niu, Qigui; Du, Jingru; Wu, Jiang; Li, Yu-You

    2015-07-01

    The effect of the chemical oxygen demand/sulfate (COD/SO4(2-)) ratio on the anaerobic treatment of synthetic chemical wastewater containing acetate, ethanol, and sulfate, was investigated using a UASB reactor. The experimental results show that at a COD/SO4(2-) ratio of 20 and a COD loading rate of 25.2gCODL(-1)d(-1), a COD removal of as high as 87.8% was maintained. At a COD/SO4(2-) ratio of 0.5 (sulfate concentration 6000mgL(-1)), however, the COD removal was 79.2% and the methane yield was 0.20LCH4gCOD(-1). The conversion of influent COD to methane dropped from 80.5% to 54.4% as the COD/SO4(2-) ratio decreased from 20 to 0.5. At all the COD/SO4(2-) ratios applied, over 79.4% of the total electron flow was utilized by methane-producing archaea (MPA), indicating that methane fermentation was the predominant reaction. The majority of the methane was produced by acetoclastic MPA at high COD/SO4(2-) ratios and both acetoclastic and hydrogenthrophic MPA at low COD/SO4(2-) ratios. Only at low COD/SO4(2-) ratios were SRB species such as Desulfovibrio found to play a key role in ethanol degradation, whereas all the SRB species were found to be incomplete oxidizers at both high and low COD/SO4(2-) ratios. PMID:25747303

  4. Characterization of Pharmaceuticals and Personal Care products in hospital effluent and waste water influent/effluent by direct-injection LC-MS-MS.

    PubMed

    Oliveira, Tiago S; Murphy, Mark; Mendola, Nicholas; Wong, Virginia; Carlson, Doreen; Waring, Linda

    2015-06-15

    Two USEPA Regional Laboratories developed direct-injection LC/MS/MS methods to measure Pharmaceuticals and Personal Care Products (PPCPs) in water matrices. Combined, the laboratories were prepared to analyze 185 PPCPs (with 74 overlapping) belonging to more than 20 therapeutical categories with reporting limits at low part-per-trillion. In partnership with Suffolk County in NY, the laboratories conducted PPCP analysis on 72 samples belonging to 4 Water Systems (WS). Samples were collected at different stages of the WS (hospital effluents, WWTP influents/effluents) to assess PPCP relevance in hospital discharges, impact on WWTP performance and potential ecological risk posed by analytes not eliminated during treatment. Major findings include: a) acceptable accuracy between the two laboratories for most overlapping PPCPs with better agreement for higher concentrations; b) the measurement of PPCPs throughout all investigated WS with total PPCP concentrations ranging between 324 and 965 μg L(-1) for hospital effluent, 259 and 573 μg L(-1) for WWTP influent and 19 and 118 μg L(-1) for WWTP effluent; c) the variable contribution of hospital effluents to the PPCP loads into the WWTP influents (contribution ranging between 1% (WS-2) and 59% (WS-3); d) the PPCP load reduction after treatment for all WS reaching more than 95% for WS using activated sludge processes (WS-2 and WS-4), with inflow above 6500 m(3) d(-1), and having a lower percentage of hospital effluent in the WWTP influent; e) the relevance of four therapeutical categories for the PPCP load in WWTP effluents (analgesics, antidiabetics, antiepileptics and psychoanaleptics); and f) the risk quotients calculated using screening-level Predicted Non Effect Concentration indicate that WWTP effluents contain 33 PPCPs with potential medium to high ecological risk. To our knowledge no other monitoring investigation published in the scientific literature uses direct-injection methods to cover as many PPCPs and

  5. The impact of variations of influent loading on the efficacy of an advanced tertiary sewage treatment plant to remove endocrine disrupting chemicals.

    PubMed

    Hamilton, Lisa A; Tremblay, Louis A; Northcott, Grant L; Boake, Michael; Lim, Richard P

    2016-08-01

    The impact of changes in influent load on the removal of endocrine disrupting chemicals (EDCs) by sewage treatment has not been fully characterised. This study assessed the efficacy of an advanced tertiary sewage treatment plant (STP) to remove EDCs during normal and peak flow events of sewage influent using trace chemical analysis of selected EDCs and four estrogenic in vitro bioassays. During the summer holiday season, influent volume increased by 68%, nutrient concentrations by at least 26% and hydraulic retention time was reduced by 40% compared with base flow conditions. Despite these pressures on the treatment system the concentrations and mass loading of estrone, 17β-estradiol, estriol, Bisphenol A, 4-t-octylphenol and technical nonylphenol were not significantly higher (p>0.05) during the peak flow conditions compared with base flow conditions. Chemical analysis and in vitro bioassays showed that the efficacy of the STP in removing EDCs was not affected by the different loadings between baseline and peak flow regimes. This study demonstrates that large flow variations within the design capacity of advanced multi-stage STPs should not reduce the removal efficacy of EDCs. PMID:27096490

  6. Experience with parametric binary dissection

    NASA Technical Reports Server (NTRS)

    Bokhari, Shahid H.

    1993-01-01

    Parametric Binary Dissection (PBD) is a new algorithm that can be used for partitioning graphs embedded in 2- or 3-dimensional space. It partitions explicitly on the basis of nodes + (lambda)x(edges cut), where lambda is the ratio of time to communicate over an edge to the time to compute at a node. The new algorithm is faster than the original binary dissection algorithm and attempts to obtain better partitions than the older algorithm, which only takes nodes into account. The performance of parametric dissection with plain binary dissection on 3 large unstructured 3-d meshes obtained from computational fluid dynamics and on 2 random graphs were compared. It was showm that the new algorithm can usually yield partitions that are substantially superior, but that its performance is heavily dependent on the input data.

  7. Frequency domain optical parametric amplification

    PubMed Central

    Schmidt, Bruno E.; Thiré, Nicolas; Boivin, Maxime; Laramée, Antoine; Poitras, François; Lebrun, Guy; Ozaki, Tsuneyuki; Ibrahim, Heide; Légaré, François

    2014-01-01

    Today’s ultrafast lasers operate at the physical limits of optical materials to reach extreme performances. Amplification of single-cycle laser pulses with their corresponding octave-spanning spectra still remains a formidable challenge since the universal dilemma of gain narrowing sets limits for both real level pumped amplifiers as well as parametric amplifiers. We demonstrate that employing parametric amplification in the frequency domain rather than in time domain opens up new design opportunities for ultrafast laser science, with the potential to generate single-cycle multi-terawatt pulses. Fundamental restrictions arising from phase mismatch and damage threshold of nonlinear laser crystals are not only circumvented but also exploited to produce a synergy between increased seed spectrum and increased pump energy. This concept was successfully demonstrated by generating carrier envelope phase stable, 1.43 mJ two-cycle pulses at 1.8 μm wavelength. PMID:24805968

  8. Parametric Modeling for Fluid Systems

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Martinez, Jonathan

    2013-01-01

    Fluid Systems involves different projects that require parametric modeling, which is a model that maintains consistent relationships between elements as is manipulated. One of these projects is the Neo Liquid Propellant Testbed, which is part of Rocket U. As part of Rocket U (Rocket University), engineers at NASA's Kennedy Space Center in Florida have the opportunity to develop critical flight skills as they design, build and launch high-powered rockets. To build the Neo testbed; hardware from the Space Shuttle Program was repurposed. Modeling for Neo, included: fittings, valves, frames and tubing, between others. These models help in the review process, to make sure regulations are being followed. Another fluid systems project that required modeling is Plant Habitat's TCUI test project. Plant Habitat is a plan to develop a large growth chamber to learn the effects of long-duration microgravity exposure to plants in space. Work for this project included the design and modeling of a duct vent for flow test. Parametric Modeling for these projects was done using Creo Parametric 2.0.

  9. Plasma waves in parametric interactions

    NASA Astrophysics Data System (ADS)

    Yampolsky, Nikolai Andreevich

    The nonlinear laser-plasma interaction is widely discussed in the modern plasma literature with applications to inertial confinement fusion, generation of fast electrons, and amplification of high power radiation. Among nonlinear wave phenomena in plasma, the parametric wave coupling often plays the dominant role in laser-plasma interaction at moderate laser intensities since it is the lowest order nonlinear effect. The plasma wave can mediate the parametric laser coupling with high efficiency. We study the interplay of the parametric laser-plasma interaction and other physical effects which may affect this interaction. We study this interplay with an emphasis on the plasma-based backward Raman amplifier (BRA) based on the three-wave coupling. Three major types of physical effects in the parametric wave coupling are studied. In the first part of the thesis, we find the longitudinal profiles of the interacting waves in cases of interest for pulse compression. We find the solution for the output pulse in backward Raman amplification seeded by a laser pulse of finite duration. We also propose a new scheme for high-power amplification for pulses in the terahertz frequency range. For this scheme, based on the four-wave mixing in a capillary filled with plasma, we find the profile of the output pulse. The second part of this thesis is devoted to transverse effects, which may reduce the focusability of the output pulse in backward Raman amplification. We find that the transverse modulations of the pump can be averaged and do not reduce the amplified pulse focusability if the longitudinal length of these modulations is much smaller than the amplification length. In the third part, we study the kinetic effects. We propose a simplified fluid model for the nonlinear Landau damping of a parametrically driven plasma wave and study the effect of nonlinear Landau damping in backward Raman amplification. This simplified model can be useful not only for understanding complex

  10. Comparison of contaminants of emerging concern removal, discharge, and water quality hazards among centralized and on-site wastewater treatment system effluents receiving common wastewater influent.

    PubMed

    Du, Bowen; Price, Amy E; Scott, W Casan; Kristofco, Lauren A; Ramirez, Alejandro J; Chambliss, C Kevin; Yelderman, Joe C; Brooks, Bryan W

    2014-01-01

    A comparative understanding of effluent quality of decentralized on-site wastewater treatment systems, particularly for contaminants of emerging concern (CECs), remains less understood than effluent quality from centralized municipal wastewater treatment plants. Using a novel experimental facility with common influent wastewater, effluent water quality from a decentralized advanced aerobic treatment system (ATS) and a typical septic treatment system (STS) coupled to a subsurface flow constructed wetland (WET) were compared to effluent from a centralized municipal treatment plant (MTP). The STS did not include soil treatment, which may represent a system not functioning properly. Occurrence and discharge of a range of CECs were examined using isotope dilution liquid chromatography-tandem mass spectrometry during fall and winter seasons. Conventional parameters, including total suspended solids, carbonaceous biochemical oxygen demand and nutrients were also evaluated from each treatment system. Water quality of these effluents was further examined using a therapeutic hazard modeling approach. Of 19 CECs targeted for study, the benzodiazepine pharmaceutical diazepam was the only CEC not detected in all wastewater influent and effluent samples over two sampling seasons. Diphenhydramine, codeine, diltiazem, atenolol, and diclofenac exhibited significant (p<0.05) seasonal differences in wastewater influent concentrations. Removal of CECs by these wastewater treatment systems was generally not influenced by season. However, significant differences (p<0.05) for a range of water quality indicators were observed among the various treatment technologies. For example, removal of most CECs by ATS was generally comparable to MTP. Lowest removal of most CECs was observed for STS; however, removal was improved when coupling the STS to a WET. Across the treatment systems examined, the majority of pharmaceuticals observed in on-site and municipal effluent discharges were predicted

  11. Trace analysis and occurrence of anhydroerythromycin and tylosin in influent and effluent wastewater by liquid chromatography combined with electrospray tandem mass spectrometry.

    PubMed

    Yang, Shinwoo; Cha, Jongmun; Carlson, Kenneth

    2006-06-01

    Two wastewater treatment plants (WWTPs) of northern Colorado were monitored for anhydroerythromycin and tylosin. An analytical method has been developed and validated for the trace determination and confirmation of these compounds in the raw influent and final effluent water matrices. This method was used to evaluate the occurrence and fate of these compounds in WWTPs. The method uses solid-phase extraction and liquid chromatography-tandem mass spectrometry with positive electrospray ionization. Detection and quantification was performed using selected reaction monitoring, and a method detection limit of between 0.01 and 0.06 microg/L was obtained. Unequivocal confirmation analysis of analyte identity according to the criteria (based on the use of identification points) of the 2002/657/EC European Commission Decision was possible with satisfactory results. Average recoveries for the two compounds ranged from 89.2+/-9.7% for raw influent to 93.7+/-6.9% for effluent wastewaters. The within-run precision of the assay was found to be always less than 14.1% for the two analytes. The overall precision was always less than 13.7%. The relative uncertainty of the present assay was also evaluated and the combined relative uncertainty ranged from 6.4 to 15.5% over three days of the validation study. These compounds were partially removed in the WWTPs with a removal efficiency of >50%. The measured concentrations in raw influents and effluents ranged from 0.09-0.35 and 0.04-0.12 microg/L for anhydroerythromycin to 0.06-0.18 and ND-0.06 microg/L for tylosin, respectively. The results indicate that WWTP effluents are relevant point sources for residues of these compounds in the aquatic environment. These occurrence results were compared with those in WWTP wastewaters of other countries. PMID:16715282

  12. Analysis of parametric transformer with rectifier load

    SciTech Connect

    Ichinokura, O.; Jinzenji, T. ); Tajima, K. )

    1993-03-01

    This paper describes a push-pull parametric transformer constructed using a pair of orthogonal-cores. The operating characteristics of the parametric transformer with a rectifier load were analyzed based on SPICE simulations. The analysis results show good agreement with experiment. It was found that the input surge current of the full-wave rectifier circuit with a smoothing capacitor can be compensated by the parametric transformer. Use of the parametric transformer as a power stabilizer is anticipated owing to its various functions such as for voltage regulation and overload protection.

  13. Software for Managing Parametric Studies

    NASA Technical Reports Server (NTRS)

    Yarrow, Maurice; McCann, Karen M.; DeVivo, Adrian

    2003-01-01

    The Information Power Grid Virtual Laboratory (ILab) is a Practical Extraction and Reporting Language (PERL) graphical-user-interface computer program that generates shell scripts to facilitate parametric studies performed on the Grid. (The Grid denotes a worldwide network of supercomputers used for scientific and engineering computations involving data sets too large to fit on desktop computers.) Heretofore, parametric studies on the Grid have been impeded by the need to create control language scripts and edit input data files painstaking tasks that are necessary for managing multiple jobs on multiple computers. ILab reflects an object-oriented approach to automation of these tasks: All data and operations are organized into packages in order to accelerate development and debugging. A container or document object in ILab, called an experiment, contains all the information (data and file paths) necessary to define a complex series of repeated, sequenced, and/or branching processes. For convenience and to enable reuse, this object is serialized to and from disk storage. At run time, the current ILab experiment is used to generate required input files and shell scripts, create directories, copy data files, and then both initiate and monitor the execution of all computational processes.

  14. Parametric analysis of ATT configurations.

    NASA Technical Reports Server (NTRS)

    Lange, R. H.

    1972-01-01

    This paper describes the results of a Lockheed parametric analysis of the performance, environmental factors, and economics of an advanced commercial transport envisioned for operation in the post-1985 time period. The design parameters investigated include cruise speeds from Mach 0.85 to Mach 1.0, passenger capacities from 200 to 500, ranges of 2800 to 5500 nautical miles, and noise level criteria. NASA high performance configurations and alternate configurations are operated over domestic and international route structures. Indirect and direct costs and return on investment are determined for approximately 40 candidate aircraft configurations. The candidate configurations are input to an aircraft sizing and performance program which includes a subroutine for noise criteria. Comparisons are made between preferred configurations on the basis of maximum return on investment as a function of payload, range, and design cruise speed.

  15. A Comparison of Parametric versus Nonparametric Statistics.

    ERIC Educational Resources Information Center

    Royeen, Charlotte Brasic

    In order to examine the possible effects of violation of assumptions using parametric procedures, this study is an exploratory investigation into the use of parametric versus nonparametric procedures using a multiple case study design. The case study investigation guidelines outlined by Yin served as the methodology. The following univariate…

  16. Parametric Cost Models for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    A study is in-process to develop a multivariable parametric cost model for space telescopes. Cost and engineering parametric data has been collected on 30 different space telescopes. Statistical correlations have been developed between 19 variables of 59 variables sampled. Single Variable and Multi-Variable Cost Estimating Relationships have been developed. Results are being published.

  17. Effects of influent fractionation, kinetics, stoichiometry and mass transfer on CH4, H2 and CO2 production for (plant-wide) modeling of anaerobic digesters.

    PubMed

    Solon, Kimberly; Flores-Alsina, Xavier; Gernaey, Krist V; Jeppsson, Ulf

    2015-01-01

    This paper examines the importance of influent fractionation, kinetic, stoichiometric and mass transfer parameter uncertainties when modeling biogas production in wastewater treatment plants. The anaerobic digestion model no. 1 implemented in the plant-wide context provided by the benchmark simulation model no. 2 is used to quantify the generation of CH₄, H₂and CO₂. A comprehensive global sensitivity analysis based on (i) standardized regression coefficients (SRC) and (ii) Morris' screening's (MS's) elementary effects reveals the set of parameters that influence the biogas production uncertainty the most. This analysis is repeated for (i) different temperature regimes and (ii) different solids retention times (SRTs) in the anaerobic digester. Results show that both SRC and MS are good measures of sensitivity unless the anaerobic digester is operating at low SRT and mesophilic conditions. In the latter situation, and due to the intrinsic nonlinearities of the system, SRC fails in decomposing the variance of the model predictions (R² < 0.7) making MS a more reliable method. At high SRT, influent fractionations are the most influential parameters for predictions of CH₄and CO₂emissions. Nevertheless, when the anaerobic digester volume is decreased (for the same load), the role of acetate degraders gains more importance under mesophilic conditions, while lipids and fatty acid metabolism is more influential under thermophilic conditions. The paper ends with a critical discussion of the results and their implications during model calibration and validation exercises. PMID:25812096

  18. Effects of influent C/N ratios on CO2 and CH4 emissions from vertical subsurface flow constructed wetlands treating synthetic municipal wastewater.

    PubMed

    Yan, Cheng; Zhang, Hui; Li, Bo; Wang, Dong; Zhao, Yongjun; Zheng, Zheng

    2012-02-15

    Greenhouse gases (GHG) emissions from constructed wetlands (CWs) can mitigate the environmental benefits of nutrient removal because reduced water pollution could be replaced by emission of GHG. Therefore, the GHG (CO(2) and CH(4)) fluxes of vertical subsurface flow constructed wetlands (VSSF CWs) under different influent C/N ratios of synthetic municipal wastewater were analyzed directly by GHG flux measurements, and estimated by carbon mass balance (CMB) over a 12 month period. The VSSF CWs system achieved the highest biological nutrient removal (BNR) efficiency between C/N ratios of 5:1 and 10:1 across all kinds of pollutants. Variation in influent C/N ratios dramatically influenced GHG fluxes from the VSSF CWs system. The GHG flux measured in situ agreed with those predicted by the CMB model and represented relatively low GHG fluxes when C/N ratios were between 2.5:1 and 5:1. It was determined that the optimum C/N ratio is 5:1, at which VSSF CWs can achieve a relatively high BNR efficiency and a low level of GHG flux. PMID:22192587

  19. Detection of pharmaceuticals and phytochemicals together with their metabolites in hospital effluents in Japan, and their contribution to sewage treatment plant influents.

    PubMed

    Azuma, Takashi; Arima, Natsumi; Tsukada, Ai; Hirami, Satoru; Matsuoka, Rie; Moriwake, Ryogo; Ishiuchi, Hirotaka; Inoyama, Tomomi; Teranishi, Yusuke; Yamaoka, Misato; Mino, Yoshiki; Hayashi, Tetsuya; Fujita, Yoshikazu; Masada, Mikio

    2016-04-01

    The occurrence of 41 pharmaceuticals and phytochemicals (PPs) including their metabolites was surveyed in hospital effluent in an urban area of Japan. A detailed survey of sewage treatment plant (STP) influent and effluent, and river water was also conducted. Finally, mass balances with mass fluxes of the target PPs through the water flow were evaluated and the degree of contribution of hospital effluent to the environmental discharge was estimated. The results indicate that 38 compounds were detectable in hospital effluent over a wide concentration range from ng/L to μg/L, with a maximum of 92μg/L. The contributions of PPs in the hospital effluent to STP influent varied widely from <0.1% to 14.8%. Although almost all of the remaining components could be removed below 1.0ng/L at STPs by the addition of ozone treatment, a number of PPs still remained above 10ng/L in STP effluent. These findings suggest the importance of applying highly developed treatments to hospital effluents and at STPs in the future to reduce the environmental risks posed by PPs. To our knowledge, this is the first demonstration of the presence of two conjugated metabolites of acetaminophen, acetaminophen glucuronide and acetaminophen sulfate, as well as of loxoprofen and loxoprofen alcohol, in hospital effluent, STP, and river waters. PMID:26802347

  20. Calibrated parametric medical ultrasound imaging.

    PubMed

    Valckx, F M; Thijsse, J M; van Geemen, A J; Rotteveel, J J; Mullaart, R

    2000-01-01

    The goal of this study was to develop a calibrated on-line technique to extract as much diagnostically-relevant information as possible from conventional video-format echograms. The final aim is to improve the diagnostic potentials of medical ultrasound. Video-output images were acquired by a frame grabber board incorporated in a multiprocessor workstation. Calibration images were obtained from a stable tissue-mimicking phantom with known acoustic characteristics. Using these images as reference, depth dependence of the gray level could fairly be corrected for the transducer performance characteristics, for the observer-dependent equipment settings and for attenuation in the examined tissues. Second-order statistical parameters still displayed some nonconsistent depth dependencies. The results obtained with two echoscanners for the same phantom were different; hence, an a posteriori normalization of clinical data with the phantom data is indicated. Prior to processing of clinical echograms,. the anatomical reflections and echoless voids were removed automatically. The final step in the preprocessing concerned the compensation of the overall attenuation in the tissue. A 'sliding window' processing was then applied to a region of interest (ROI) in the 'back-scan converted' images. A number of first and second order statistical texture parameters and acoustical parameters were estimated in each window and assigned to the central pixel. This procedure results in a set of new 'parametric' images of the ROI, which can be inserted in the original echogram (gray value, color) or presented as a color overlay. A clinical example is presented for illustrating the potentials of the developed technique. Depending on the choice of the parameters, four full resolution calibrated parametric images can be calculated and simultaneously displayed within 5 to 20 seconds. In conclusion, an on-line technique has been developed to estimate acoustic and texture parameters with a reduced

  1. Optical filtering enabled by cascaded parametric amplification.

    PubMed

    McKinstrie, C J; Dailey, J M; Agarwal, A; Toliver, P

    2016-06-27

    A cascaded parametric amplifier consists of a first parametric amplifier, which amplifies an input signal and generates an idler, which is a copy of the signal, a signal processor, which controls the phases of the signal and idler, and a second parametric amplifier, which combines the signal and idler in a phase-sensitive manner. In this paper, cascaded parametric amplification is modeled and the conditions required to maximize the constructive-destructive extinction ratio are determined. The results show that a cascaded parametric amplifier can be operated as a filter: A desired signal-idler pair is amplified, whereas undesired signal-idler pairs are deamplified. For the desired signal and idler, the noise figures of the filtering process (input signal-to-noise ratio divided by the output ratios) are only slightly higher than those of the copying process: Signal-processing functionality can be achieved with only a minor degradation in signal quality. PMID:27410581

  2. Parametric and non-parametric modeling of short-term synaptic plasticity. Part I: computational study

    PubMed Central

    Marmarelis, Vasilis Z.; Berger, Theodore W.

    2009-01-01

    Parametric and non-parametric modeling methods are combined to study the short-term plasticity (STP) of synapses in the central nervous system (CNS). The nonlinear dynamics of STP are modeled by means: (1) previously proposed parametric models based on mechanistic hypotheses and/or specific dynamical processes, and (2) non-parametric models (in the form of Volterra kernels) that transforms the presynaptic signals into postsynaptic signals. In order to synergistically use the two approaches, we estimate the Volterra kernels of the parametric models of STP for four types of synapses using synthetic broadband input–output data. Results show that the non-parametric models accurately and efficiently replicate the input–output transformations of the parametric models. Volterra kernels provide a general and quantitative representation of the STP. PMID:18506609

  3. Characteristics of stereo reproduction with parametric loudspeakers

    NASA Astrophysics Data System (ADS)

    Aoki, Shigeaki; Toba, Masayoshi; Tsujita, Norihisa

    2012-05-01

    A parametric loudspeaker utilizes nonlinearity of a medium and is known as a super-directivity loudspeaker. The parametric loudspeaker is one of the prominent applications of nonlinear ultrasonics. So far, the applications have been limited monaural reproduction sound system for public address in museum, station and street etc. In this paper, we discussed characteristics of stereo reproduction with two parametric loudspeakers by comparing with those with two ordinary dynamic loudspeakers. In subjective tests, three typical listening positions were selected to investigate the possibility of correct sound localization in a wide listening area. The binaural information was ILD (Interaural Level Difference) or ITD (Interaural Time Delay). The parametric loudspeaker was an equilateral hexagon. The inner and outer diameters were 99 and 112 mm, respectively. Signals were 500 Hz, 1 kHz, 2 kHz and 4 kHz pure tones and pink noise. Three young males listened to test signals 10 times in each listening condition. Subjective test results showed that listeners at the three typical listening positions perceived correct sound localization of all signals using the parametric loudspeakers. It was almost similar to those using the ordinary dynamic loudspeakers, however, except for the case of sinusoidal waves with ITD. It was determined the parametric loudspeaker could exclude the contradiction between the binaural information ILD and ITD that occurred in stereo reproduction with ordinary dynamic loudspeakers because the super directivity of parametric loudspeaker suppressed the cross talk components.

  4. Ionization Cooling using Parametric Resonances

    SciTech Connect

    Johnson, Rolland P.

    2008-06-07

    Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been

  5. Self-seeding ring optical parametric oscillator

    DOEpatents

    Smith, Arlee V.; Armstrong, Darrell J.

    2005-12-27

    An optical parametric oscillator apparatus utilizing self-seeding with an external nanosecond-duration pump source to generate a seed pulse resulting in increased conversion efficiency. An optical parametric oscillator with a ring configuration are combined with a pump that injection seeds the optical parametric oscillator with a nanosecond duration, mJ pulse in the reverse direction as the main pulse. A retroreflecting means outside the cavity injects the seed pulse back into the cavity in the direction of the main pulse to seed the main pulse, resulting in higher conversion efficiency.

  6. Optimal Parametric Feedback Excitation of Nonlinear Oscillators

    NASA Astrophysics Data System (ADS)

    Braun, David J.

    2016-01-01

    An optimal parametric feedback excitation principle is sought, found, and investigated. The principle is shown to provide an adaptive resonance condition that enables unprecedentedly robust movement generation in a large class of oscillatory dynamical systems. Experimental demonstration of the theory is provided by a nonlinear electronic circuit that realizes self-adaptive parametric excitation without model information, signal processing, and control computation. The observed behavior dramatically differs from the one achievable using classical parametric modulation, which is fundamentally limited by uncertainties in model information and nonlinear effects inevitably present in real world applications.

  7. Optimal Parametric Feedback Excitation of Nonlinear Oscillators.

    PubMed

    Braun, David J

    2016-01-29

    An optimal parametric feedback excitation principle is sought, found, and investigated. The principle is shown to provide an adaptive resonance condition that enables unprecedentedly robust movement generation in a large class of oscillatory dynamical systems. Experimental demonstration of the theory is provided by a nonlinear electronic circuit that realizes self-adaptive parametric excitation without model information, signal processing, and control computation. The observed behavior dramatically differs from the one achievable using classical parametric modulation, which is fundamentally limited by uncertainties in model information and nonlinear effects inevitably present in real world applications. PMID:26871336

  8. Airy beam optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Aadhi, A.; Chaitanya, N. Apurv; Jabir, M. V.; Vaity, Pravin; Singh, R. P.; Samanta, G. K.

    2016-05-01

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51–1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond).

  9. Airy beam optical parametric oscillator.

    PubMed

    Aadhi, A; Chaitanya, N Apurv; Jabir, M V; Vaity, Pravin; Singh, R P; Samanta, G K

    2016-01-01

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51-1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond). PMID:27143582

  10. Airy beam optical parametric oscillator

    PubMed Central

    Aadhi, A.; Chaitanya, N. Apurv; Jabir, M. V.; Vaity, Pravin; Singh, R. P.; Samanta, G. K.

    2016-01-01

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51–1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond). PMID:27143582

  11. Parametric X-Ray Radiation

    NASA Astrophysics Data System (ADS)

    Shchagin, Alexander

    1997-10-01

    The main PXR properties [1,2] are considered in the paper: energy, width, smooth tuning of monochromatic PXR spectral line; fine structure and absolute differential yields of PXR in the vicinity of and at angular distances from Brag directions; angular spread of the PXR beam; the influence of incident electron energy and of the density effect on the PXR properties; linear polarization of PXR; background in PXR spectra. Experimental setups for linacs and the results of measurements are discussed. Experimental data are compared to theoretical calculations at PXR energies between 5 and 400 keV for incident electron energies ranging from 15 to 1200 MeV. Possible applications of PXR as a new source of a bright, tunable X-ray beam in science and industry are discussed. [1] A.V. Shchagin and N.A. Khizhnyak, NIM B119, 115-122 (1996). [2] A.V. Shchagin and X.K. Maruyama, "Parametric X-rays", a chapter in the book "Accelerator-based Atomic Physics Techniques and Applications", edited by S.M. Shafroth and J.C. Austin, AIP Press, 1997, pp 279-307.

  12. Reproductive responses of common carp (Cyprinus carpio) exposed in cages to influent of the Las Vegas Wash in Lake Mead, Nevada, from late winter to early spring.

    PubMed

    Snyder, Erin M; Snyder, Shane A; Kelly, Kevin L; Gross, Timothy S; Villeneuve, Daniel L; Fitzgerald, Scott D; Villalobos, Sergio A; Giesy, John P

    2004-12-01

    The Las Vegas Wash (LW) delivers tertiary-treated municipal wastewater effluent, nonpotable shallow groundwater seepage, and runoff from the urbanized Las Vegas Valley to Las Vegas Bay (LX) of Lake Mead. To investigate the potential for contaminants in LW influent to produce effects indicative of endocrine disruption in vivo, adult male and female common carp (Cyprinus carpio) were exposed in cages for 42-48 d at four sites in Lake Mead: LW, LX, and two reference locations in the lake. End points examined included gonadosomatic index; gonad histology; concentrations of plasma vitellogenin (VTG) and plasma sex steroids (17beta-estradiol (E2), testosterone (T), 11-ketotestosterone (11-KT)); plasma estrogen:androgen ratios (E2:T, E2:11-KT), in vitro production of T by gonad tissue, and hepatopancreas ethoxyresorufin O-deethylase activity. Few differences among fish caged at different sites were potentially attributable to exposure to contaminants PMID:15597896

  13. Analysis of Bio-Obtainable Endocrine Disrupting Metals in River Water and Sediment, Sewage Influent/Effluent, Sludge, Leachate, and Concentrated Leachate, in the Irish Midlands Shannon Catchment

    PubMed Central

    Reid, Antoinette M.; Brougham, Concepta A.; Fogarty, Andrew M.; Roche, James J.

    2009-01-01

    The application of an acid digestion and subsequent solid-phase extraction (SPE) procedure were implemented as preliminary treatments prior to quantifying the levels of potentially endocrine disrupting metals (EDMs) in a variety of solid and liquid matrices. These included (solid) river sediment, leachate sediment and sewage sludge and also (liquid) river water, landfill leachate, concentrated leachate, sewage influent, and sewage effluent, sampled in the Irish Midlands. The total concentrations of cobalt (Co), cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb), zinc (Zn), and manganese (Mn), after extraction and preconcentration, were determined by atomic absorption spectroscopy (AAS). Mercury (Hg) in sediment and sludge was determined using cold-vapour atomic fluorescence spectroscopy (AFS). For sewage sludge maximum values (mg/kgdw) of 4700 Ni, 1642 Mn, 100.0 Cd, 3400 Zn, 36.70 Co, 750.0 Pb, 485.8 Cr, and 1003 Cu were determined whilst in leachate sediment, maximum values (mg/kgdw) of 32.10 Ni, 815.0 Mn, 32.78 Cd, 230.3 Zn, 26.73 Co, 3525 Pb, 124.9 Cr, and 50.13 Cu were found. Over several months, the data showed elevated levels in sewage influents, effluents, and sludges compared to a battery of adjacent river water samples and corresponding sediments. There was a definite trend for target values for sediments to be exceeded, while intervention values were only exceeded for cadmium. Overall the pattern in terms of concentration was sewage > leachate > river matrices. A nonparametric assessment of the effect of sewage treatment method on median metal levels in sludge revealed statistically significant differences at the 95% level of confidence for Co, Cr, and Hg and at the 90% level of confidence for Cd. PMID:20150974

  14. Presence of illicit drugs and metabolites in influents and effluents of 25 sewage water treatment plants and map of drug consumption in France.

    PubMed

    Nefau, Thomas; Karolak, Sara; Castillo, Luis; Boireau, Véronique; Levi, Yves

    2013-09-01

    Consumption of illicit drugs is a new concern for water management that must be considered not only because of the social and public health aspects but also in an environmental context in relation with the contamination of surface waters. Indeed, sewage treatment plant (STP) effluents contain drug residues that have not been eliminated since STP treatments are not completely efficient in their removal. We developed and validated an HPLC-MS/MS analytical method to assess the concentrations of 17 illicit drugs and metabolites in raw urban wastewaters: cocaine and its metabolites, amphetamine and amphetamine-likes (methamphetamine, MDMA, MDEA, MDA), opiates and opiate substitutes (methadone and buprenorphine), and THC-COOH cannabis metabolite. This method has been applied to the analysis of influent and effluent samples from 25 STPs located in France all over the country. The results allowed evaluating the drug consumption in the areas connected to the STPs and the efficiency of the treatment technology implied. We selected STPs according to their volume capacity, their treatment technologies (biofilters, activated sludges, MBR) and their geographical location. In influents, the concentrations varied between 6 ng/L for EDDP (main metabolite of methadone) and 3050 ng/L for benzoylecgonine (cocaine metabolite). Consumption maps were drawn for cocaine, MDMA, opiates, cannabis and amphetamine-like compounds. Geographical significant differences were observed and highlighted the fact that drug consumption inside a country is not homogeneous. In parallel, comparisons between STP technology processes showed differences of efficiency. More, some compounds appear very resistant to STP processes leading to the contamination of receiving water. PMID:23770552

  15. Parametric models for samples of random functions

    SciTech Connect

    Grigoriu, M.

    2015-09-15

    A new class of parametric models, referred to as sample parametric models, is developed for random elements that match sample rather than the first two moments and/or other global properties of these elements. The models can be used to characterize, e.g., material properties at small scale in which case their samples represent microstructures of material specimens selected at random from a population. The samples of the proposed models are elements of finite-dimensional vector spaces spanned by samples, eigenfunctions of Karhunen–Loève (KL) representations, or modes of singular value decompositions (SVDs). The implementation of sample parametric models requires knowledge of the probability laws of target random elements. Numerical examples including stochastic processes and random fields are used to demonstrate the construction of sample parametric models, assess their accuracy, and illustrate how these models can be used to solve efficiently stochastic equations.

  16. A uniform parametrization of moment tensors

    NASA Astrophysics Data System (ADS)

    Tape, Walter; Tape, Carl

    2015-09-01

    A moment tensor is a 3 × 3 symmetric matrix that expresses an earthquake source. We construct a parametrization of the 5-D space of all moment tensors of unit norm. The coordinates associated with the parametrization are closely related to moment tensor orientations and source types. The parametrization is uniform, in the sense that equal volumes in the coordinate domain of the parametrization correspond to equal volumes of moment tensors. Uniformly distributed points in the coordinate domain therefore give uniformly distributed moment tensors. A cartesian grid in the coordinate domain can be used to search efficiently over moment tensors. We find that uniformly distributed moment tensors have uniformly distributed orientations (eigenframes), but that their source types (eigenvalue triples) are distributed so as to favour double couples.

  17. Engineering artificial Hamiltonians with parametric superconducting circuits

    NASA Astrophysics Data System (ADS)

    Lu, Yao; Chakram, Srivatsan; Leung, Nelson; Naik, Ravi; Earnest, Nathan; Groszkowski, Peter; Koch, Jens; Kapit, Eliot; Schuster, David

    One major challenge in building a large scale quantum computer is to generate and manipulate interactions between its many qubits. One promising approach is to use parametric flux or voltage modulation to realize effective interactions between different components of superconducting circuits, generating artificial Hamiltonians that are suitable for various quantum computation tasks, which might be difficult to achieve through other means. We propose a parametric superconducting circuit where transmon qubits and resonators are coupled to a flux-modulated parametric coupler. We show that with this device, arbitrary pairs of qubits or resonators in the circuit can be selectively and simultaneously brought into resonance with each other and swap excitations at a controllable rate. This allows for the creation of various artificial circuit Hamiltonians that are suitable for a number of applications such as single qubit state stablization, parametric qubit state readout, autonomous error correction and so on.

  18. Parametrically disciplined operation of a vibratory gyroscope

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill V. (Inventor); Hayworth, Ken J. (Inventor); Challoner, A. Dorian (Inventor); Peay, Chris S. (Inventor)

    2008-01-01

    Parametrically disciplined operation of a symmetric nearly degenerate mode vibratory gyroscope is disclosed. A parametrically-disciplined inertial wave gyroscope having a natural oscillation frequency in the neighborhood of a sub-harmonic of an external stable clock reference is produced by driving an electrostatic bias electrode at approximately twice this sub-harmonic frequency to achieve disciplined frequency and phase operation of the resonator. A nearly symmetric parametrically-disciplined inertial wave gyroscope that can oscillate in any transverse direction and has more than one bias electrostatic electrode that can be independently driven at twice its oscillation frequency at an amplitude and phase that disciplines its damping to zero in any vibration direction. In addition, operation of a parametrically-disciplined inertial wave gyroscope is taught in which the precession rate of the driven vibration pattern is digitally disciplined to a prescribed non-zero reference value.

  19. Observation of Parametric Instability in Advanced LIGO.

    PubMed

    Evans, Matthew; Gras, Slawek; Fritschel, Peter; Miller, John; Barsotti, Lisa; Martynov, Denis; Brooks, Aidan; Coyne, Dennis; Abbott, Rich; Adhikari, Rana X; Arai, Koji; Bork, Rolf; Kells, Bill; Rollins, Jameson; Smith-Lefebvre, Nicolas; Vajente, Gabriele; Yamamoto, Hiroaki; Adams, Carl; Aston, Stuart; Betzweiser, Joseph; Frolov, Valera; Mullavey, Adam; Pele, Arnaud; Romie, Janeen; Thomas, Michael; Thorne, Keith; Dwyer, Sheila; Izumi, Kiwamu; Kawabe, Keita; Sigg, Daniel; Derosa, Ryan; Effler, Anamaria; Kokeyama, Keiko; Ballmer, Stefan; Massinger, Thomas J; Staley, Alexa; Heinze, Matthew; Mueller, Chris; Grote, Hartmut; Ward, Robert; King, Eleanor; Blair, David; Ju, Li; Zhao, Chunnong

    2015-04-24

    Parametric instabilities have long been studied as a potentially limiting effect in high-power interferometric gravitational wave detectors. Until now, however, these instabilities have never been observed in a kilometer-scale interferometer. In this Letter, we describe the first observation of parametric instability in a gravitational wave detector, and the means by which it has been removed as a barrier to progress. PMID:25955042

  20. The Quantum Theory of Optical Parametric Amplification

    NASA Astrophysics Data System (ADS)

    Hussain, N. A.

    Available from UMI in association with The British Library. Requires signed TDF. The aim of this thesis is to investigate the effect of parametric amplification on various forms of light. In particular we shall consider number and coherent states, but many of the calculations hold for those states whose operators satisfy the properties, < {a}^+{a}^+ >=<{a}{a }> = < {a}^+>=<{a }>=0 e.g. chaotic light. The first chapter lays down the fundamental preliminaries necessary for our calculations and reviews linear amplifier theory. We consider the phase sensitive and insensitive forms of amplifiers modelling the former on the degenerate parametric amplifier and the latter on the non-degenerate and inverted population amplifiers. Chapter 2 deals with balanced homodyne detection of a narrow band coherent state before and after degenerate parametric amplification. In chapter 3 we consider a continuous mode number state produced by atomic emission and parametrically amplified using the formalism of Collett and Gardiner. We give general results for the output flux intensity and also consider the simpler case where the atomic decay rate is much smaller than the parametric cavity decay rate. Also we consider the degree of second order coherence using this simplified theory. Chapters 4 and 5 consider the double amplifier interferometer, using single and continuous mode theories, and enable us to determine the form of amplifier which produces the best visibility and hence lowest noise figures. The travelling-wave parametric amplifier is discussed in chapter 6 and is contrasted with the cavity parametric amplifier discussed in chapters 1 and 2. Finally we consider the much contemplated idea of using amplifiers to boost signals in fibre optic transmission lines using our model of the parametric amplifier and examining the degradation of the signal-to-noise ratio. We consider both coherent and squeezed inputs and our results hold for both cavity and travelling -wave amplifiers.

  1. Chaos control of parametric driven Duffing oscillators

    SciTech Connect

    Jin, Leisheng; Mei, Jie; Li, Lijie

    2014-03-31

    Duffing resonators are typical dynamic systems, which can exhibit chaotic oscillations, subject to certain driving conditions. Chaotic oscillations of resonating systems with negative and positive spring constants are identified to investigate in this paper. Parametric driver imposed on these two systems affects nonlinear behaviours, which has been theoretically analyzed with regard to variation of driving parameters (frequency, amplitude). Systematic calculations have been performed for these two systems driven by parametric pumps to unveil the controllability of chaos.

  2. Analytic parametrization for nuclear form factors

    SciTech Connect

    Atkin, G.; Dumbrajs, O.

    1982-08-01

    A new analytic parametrization of the nuclear form factor is developed using a factorization theorem. We show that the nuclear form factor can be represented in terms of its real zeros and its asymptotic behavior. The parametrization is applied to nuclear form factor data of /sup 3/He and /sup 4/He. Our results suggest that further diffraction minima can be expected at higher momentum transfer where experiments have not yet been made.

  3. Surface parametrization and shape description

    NASA Astrophysics Data System (ADS)

    Brechbuehler, Christian; Gerig, Guido; Kuebler, Olaf

    1992-09-01

    Procedures for the parameterization and description of the surface of simply connected 3-D objects are presented. Critical issues for shape-based categorization and comparison of 3-D objects are addressed, which are generality with respect to object complexity, invariance to standard transformations, and descriptive power in terms of object geometry. Starting from segmented volume data, a relational data structure describing the adjacency of local surface elements is generated. The representation is used to parametrize the surface by defining a continuous, one-to-one mapping from the surface of the original object to the surface of a unit sphere. The mapping is constrained by two requirements, minimization of distortions and preservation of area. The former is formulated as the goal function of a nonlinear optimization problem and the latter as its constraints. Practicable starting values are obtained by an initial mapping based on a heat conduction model. In contract to earlier approaches, the novel parameterization method provides a mapping of arbitrarily shaped simply connected objects, i.e., it performs an unfolding of convoluted surface structures. This global parameterization allows the systematical scanning of the object surface by the variation of two parameters. As one possible approach to shape analysis, it enables us to expand the object surface into a series of spherical harmonic functions, extending the concept of elliptical Fourier descriptors for 2-D closed curves. The novel parameterization overcomes the traditional limitations of expressing an object surface in polar coordinates, which restricts such descriptions to star-shaped objects. The numerical coefficients in the Fourier series form an object-centered, surface-oriented descriptor of the object''s form. Rotating the coefficients in parameter space and object space puts the object into a standard position and yields a spherical harmonic descriptor which is invariant to translations, rotations

  4. Parametric mapping of contrasted ovarian transvaginal sonography.

    PubMed

    Korhonen, Katrina; Moore, Ryan; Lyshchik, Andrej; Fleischer, Arthur C

    2015-06-01

    The purpose of this study was to assess the accuracy of parametric analysis of transvaginal contrast-enhanced ultrasound (TV-CEUS) for distinguishing benign versus malignant ovarian masses. A total of 48 ovarian masses (37 benign and 11 borderline/malignant) were examined with TV-CEUS (Definity; Lantheus, North Billerica, MA; Philips iU22; Philips Medical Systems, Bothell, WA). Parametric images were created offline with a quantification software (Bracco Suisse SA, Geneva, Switzerland) with map color scales adjusted such that abnormal hemodynamics were represented by the color red and the presence of any red color could be used to differentiate benign and malignant tumors. Using these map color scales, low values of the perfusion parameter were coded in blue, and intermediate values of the perfusion parameter were coded in yellow. Additionally, for each individual color (red, blue, or yellow), a darker shade of that color indicated a higher intensity value. Our study found that the parametric mapping method was considerably more sensitive than standard region of interest (ROI) analysis for the detection of malignant tumors but was also less specific than standard ROI analysis. Parametric mapping allows for stricter cutoff criteria, as hemodynamics are visualized on a finer scale than ROI analyses, and as such, parametric maps are a useful addition to TV-CEUS analysis by allowing ROIs to be limited to areas of the highest malignant potential. PMID:26002525

  5. Generalized parametrization dependence in quantum gravity

    NASA Astrophysics Data System (ADS)

    Gies, Holger; Knorr, Benjamin; Lippoldt, Stefan

    2015-10-01

    We critically examine the gauge and field-parametrization dependence of renormalization group flows in the vicinity of non-Gaußian fixed points in quantum gravity. While physical observables are independent of such calculational specifications, the construction of quantum gravity field theories typically relies on off-shell quantities such as β functions and generating functionals and thus face potential stability issues with regard to such generalized parametrizations. We analyze a two-parameter class of covariant gauge conditions, the role of momentum-dependent field rescalings and a class of field parametrizations. Using the product of Newton and cosmological constant as an indicator, the principle of minimum sensitivity identifies stationary points in this parametrization space which show a remarkable insensitivity to the parametrization. In the most insensitive cases, the quantized gravity system exhibits a non-Gaußian UV stable fixed point, lending further support to asymptotically safe quantum gravity. One of the stationary points facilitates an analytical determination of the quantum gravity phase diagram and features ultraviolet and infrared complete RG trajectories with a classical regime.

  6. Parametric excitation of magnetization by electric field

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Jin; Lee, Han Kyu; Verba, Roman; Katine, Jordan; Tiberkevich, Vasil; Slavin, Andrei; Barsukov, Igor; Krivorotov, Ilya

    Manipulation of magnetization by electric field is of primary importance for development of low-power spintronic devices. We present the first experimental demonstration of parametric generation of magnetic oscillations by electric field. We realize the parametric generation in CoFeB/MgO/SAF nanoscale magnetic tunnel junctions (MTJs). The magnetization of the free layer is perpendicular to the sample plane while the magnetizations of the synthetic antiferromagnet (SAF) lie in the plane. We apply microwave voltage to the MTJ at 2 f, where f is the ferromagnetic resonance frequency of the free layer. In this configuration, the oscillations can only be driven parametrically via voltage-controlled magnetic anisotropy (VCMA) whereby electric field across the MgO barrier modulates the free layer anisotropy. The parametrically driven oscillations are detected via microwave voltage from the MTJ near f and show resonant character, observed only in a narrow range of drive frequencies near 2 f. The excitation also exhibits a well-pronounced threshold drive voltage of approximately 0.1 Volts. Our work demonstrates a low threshold for parametric excitation of magnetization by VCMA that holds promise for the development of energy-efficient nanoscale spin wave devices.

  7. Optimization of noncollinear optical parametric amplification

    NASA Astrophysics Data System (ADS)

    Schimpf, D. N.; Rothardt, J.; Limpert, J.; Tünnermann, A.

    2007-02-01

    Noncollinearly phase-matched optical parametric amplifiers (NOPAs) - pumped with the green light of a frequency doubled Yb-doped fiber-amplifier system 1, 2 - permit convenient generation of ultrashort pulses in the visible (VIS) and near infrared (NIR) 3. The broad bandwidth of the parametric gain via the noncollinear pump configuration allows amplification of few-cycle optical pulses when seeded with a spectrally flat, re-compressible signal. The short pulses tunable over a wide region in the visible permit transcend of frontiers in physics and lifescience. For instance, the resulting high temporal resolution is of significance for many spectroscopic techniques. Furthermore, the high magnitudes of the peak-powers of the produced pulses allow research in high-field physics. To understand the demands of noncollinear optical parametric amplification using a fiber pump source, it is important to investigate this configuration in detail 4. An analysis provides not only insight into the parametric process but also determines an optimal choice of experimental parameters for the objective. Here, the intention is to design a configuration which yields the shortest possible temporal pulse. As a consequence of this analysis, the experimental setup could be optimized. A number of aspects of optical parametric amplifier performance have been treated analytically and computationally 5, but these do not fully cover the situation under consideration here.

  8. Parametric resonance in tunable superconducting cavities

    NASA Astrophysics Data System (ADS)

    Wustmann, Waltraut; Shumeiko, Vitaly

    2013-05-01

    We develop a theory of parametric resonance in tunable superconducting cavities. The nonlinearity introduced by the superconducting quantum interference device (SQUID) attached to the cavity and damping due to connection of the cavity to a transmission line are taken into consideration. We study in detail the nonlinear classical dynamics of the cavity field below and above the parametric threshold for the degenerate parametric resonance, featuring regimes of multistability and parametric radiation. We investigate the phase-sensitive amplification of external signals on resonance, as well as amplification of detuned signals, and relate the amplifier performance to that of linear parametric amplifiers. We also discuss applications of the device for dispersive qubit readout. Beyond the classical response of the cavity, we investigate small quantum fluctuations around the amplified classical signals. We evaluate the noise power spectrum both for the internal field in the cavity and the output field. Other quantum-statistical properties of the noise are addressed such as squeezing spectra, second-order coherence, and two-mode entanglement.

  9. Parametric instabilities in the LCGT arm cavity

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Uchiyama, T.; Miyoki, S.; Ohashi, M.; Kuroda, K.; Numata, K.

    2008-07-01

    We evaluated the parametric instabilities of LCGT (Japanese interferometric gravitational wave detector project) arm cavity. The number of unstable modes of LCGT is 10-times smaller than that of Advanced LIGO (USA). Since the strength of the instabilities of LCGT depends on the mirror curvature more weakly than that of Advanced LIGO, the requirement of the mirror curvature accuracy is easier to be achieved. The difference in the parametric instabilities between LCGT and Advanced LIGO is because of the thermal noise reduction methods (LCGT, cooling sapphire mirrors; Advanced LIGO, fused silica mirrors with larger laser beams), which are the main strategies of the projects. Elastic Q reduction by the barrel surface (0.2 mm thickness Ta2O5) coating is effective to suppress instabilities in the LCGT arm cavity. Therefore, the cryogenic interferometer is a smart solution for the parametric instabilities in addition to thermal noise and thermal lensing.

  10. Ku band low noise parametric amplifier

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A low noise, K sub u-band, parametric amplifier (paramp) was developed. The unit is a spacecraft-qualifiable, prototype, parametric amplifier for eventual application in the shuttle orbiter. The amplifier was required to have a noise temperature of less than 150 K. A noise temperature of less than 120 K at a gain level of 17 db was achieved. A 3-db bandwidth in excess of 350 MHz was attained, while deviation from phase linearity of about + or - 1 degree over 50 MHz was achieved. The paramp operates within specification over an ambient temperature range of -5 C to +50 C. The performance requirements and the operation of the K sub u-band parametric amplifier system are described. The final test results are also given.

  11. Modeling personnel turnover in the parametric organization

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1991-01-01

    A model is developed for simulating the dynamics of a newly formed organization, credible during all phases of organizational development. The model development process is broken down into the activities of determining the tasks required for parametric cost analysis (PCA), determining the skills required for each PCA task, determining the skills available in the applicant marketplace, determining the structure of the model, implementing the model, and testing it. The model, parameterized by the likelihood of job function transition, has demonstrated by the capability to represent the transition of personnel across functional boundaries within a parametric organization using a linear dynamical system, and the ability to predict required staffing profiles to meet functional needs at the desired time. The model can be extended by revisions of the state and transition structure to provide refinements in functional definition for the parametric and extended organization.

  12. Parametric resonance in nanoelectromechanical single electron transistors.

    PubMed

    Midtvedt, Daniel; Tarakanov, Yury; Kinaret, Jari

    2011-04-13

    We show that the coupling between single-electron charging and mechanical motion in a nanoelectromechanical single-electron transistor can be utilized in a novel parametric actuation scheme. This scheme, which relies on a periodic modulation of the mechanical resonance frequency through an alternating source-drain voltage, leads to a parametric instability and emergence of mechanical vibrations in a limited range of modulation amplitudes. Remarkably, the frequency range where instability occurs and the maximum oscillation amplitude, depend weakly on the damping in the system. We also show that a weak parametric modulation increases the effective quality factor and amplifies the system's response to the conventional actuation that exploits an AC gate signal. PMID:21375279

  13. Parametric analysis of ATM solar array.

    NASA Technical Reports Server (NTRS)

    Singh, B. K.; Adkisson, W. B.

    1973-01-01

    The paper discusses the methods used for the calculation of ATM solar array performance characteristics and provides the parametric analysis of solar panels used in SKYLAB. To predict the solar array performance under conditions other than test conditions, a mathematical model has been developed. Four computer programs have been used to convert the solar simulator test data to the parametric curves. The first performs module summations, the second determines average solar cell characteristics which will cause a mathematical model to generate a curve matching the test data, the third is a polynomial fit program which determines the polynomial equations for the solar cell characteristics versus temperature, and the fourth program uses the polynomial coefficients generated by the polynomial curve fit program to generate the parametric data.

  14. Parametric instabilities in helicon-produced plasmas

    SciTech Connect

    Aliev, Yu.M.; Kraemer, M.

    2005-07-15

    Parametric instabilities arising in the pump field of a helicon wave are analyzed for typical parameters of helicon-produced plasmas. The pump wavenumber parallel to the magnetic field is assumed to be finite according to recent experimental findings obtained on a high-density helicon discharge. The parametric decay of the helicon pump wave into ion-sound and Trivelpiece-Gould waves is investigated. The approach takes into account that the damping rate of the Trivelpiece-Gould wave is generally much higher than the ion-sound frequency. The theoretical results are in agreement with the growth rates and thresholds of this instability, as well as the dispersion properties of the decay waves observed in helicon experiments. Estimates of the level of the decay parametric turbulence turn out to be sufficiently high to account for the strong absorption observed in helicon-produced plasmas.

  15. Qubit readout with a directional parametric amplifier

    NASA Astrophysics Data System (ADS)

    Sliwa, K. M.; Abdo, B.; Narla, A.; Shankar, S.; Hatridge, M.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2014-03-01

    Josephson junction based quantum limited parametric amplifiers play an essential role in superconducting qubit measurements. These measurements necessitate circulators and isolators between the amplifier and qubit to add directionality and/or isolation. Unfortunately, this extra hardware limits both quantum measurement efficiency and experimental scalability. Here we present a quantum-limited Josephson-junction-based directional amplifier (JDA) based on a novel coupling between two nominally identical Josephson parametric converters (JPCs). The device achieves a forward gain of 11 dB with a 15 MHz dynamical bandwidth, but higher gains are possible at the expense of bandwidth. We also present measurements of a transmon qubit made with the JDA, and show minimal measurement back-action despite the absence of any isolator or circulator before the amplifier. These results provide a first step toward realizing on-chip integration of qubits and parametric amplifiers. Work supported by: IARPA, ARO, and NSF.

  16. Parametric number covariance in quantum chaotic spectra

    NASA Astrophysics Data System (ADS)

    Vinayak, Kumar, Sandeep; Pandey, Akhilesh

    2016-03-01

    We study spectral parametric correlations in quantum chaotic systems and introduce the number covariance as a measure of such correlations. We derive analytic results for the classical random matrix ensembles using the binary correlation method and obtain compact expressions for the covariance. We illustrate the universality of this measure by presenting the spectral analysis of the quantum kicked rotors for the time-reversal invariant and time-reversal noninvariant cases. A local version of the parametric number variance introduced earlier is also investigated.

  17. Unifying parametrized VLSI Jacobi algorithms and architectures

    NASA Astrophysics Data System (ADS)

    Deprettere, Ed F. A.; Moonen, Marc

    1993-11-01

    Implementing Jacobi algorithms in parallel VLSI processor arrays is a non-trivial task, in particular when the algorithms are parametrized with respect to size and the architectures are parametrized with respect to space-time trade-offs. The paper is concerned with an approach to implement several time-adaptive Jacobi-type algorithms on a parallel processor array, using only Cordic arithmetic and asynchronous communications, such that any degree of parallelism, ranging from single-processor up to full-size array implementation, is supported by a `universal' processing unit. This result is attributed to a gracious interplay between algorithmic and architectural engineering.

  18. Hamiltonian dynamics of the parametrized electromagnetic field

    NASA Astrophysics Data System (ADS)

    Barbero G, J. Fernando; Margalef-Bentabol, Juan; Villaseñor, Eduardo J. S.

    2016-06-01

    We study the Hamiltonian formulation for a parametrized electromagnetic field with the purpose of clarifying the interplay between parametrization and gauge symmetries. We use a geometric approach which is tailor-made for theories where embeddings are part of the dynamical variables. Our point of view is global and coordinate free. The most important result of the paper is the identification of sectors in the primary constraint submanifold in the phase space of the model where the number of independent components of the Hamiltonian vector fields that define the dynamics changes. This explains the non-trivial behavior of the system and some of its pathologies.

  19. Parametrically driven surface waves on viscous ferrofluids

    NASA Astrophysics Data System (ADS)

    Müller, Hanns Walter

    1998-11-01

    Standing waves on the surface of a ferrofluid in a normal magnetic field can be excited by a vertical vibration of the container. A stability theory for the onset of these parametrically driven waves is developed, taking viscous dissipation and finite depth effects into account. It will be shown that a careful choice of the filling level permits the normal and anomalous dispersion branches to be measured. Furthermore it will be demonstrated that the parametric driving mechanism may lead to a delay of the Rosensweig instability. A bicritical situation can be achieved when Rosensweig and Faraday waves interact.

  20. Parametric number covariance in quantum chaotic spectra.

    PubMed

    Vinayak; Kumar, Sandeep; Pandey, Akhilesh

    2016-03-01

    We study spectral parametric correlations in quantum chaotic systems and introduce the number covariance as a measure of such correlations. We derive analytic results for the classical random matrix ensembles using the binary correlation method and obtain compact expressions for the covariance. We illustrate the universality of this measure by presenting the spectral analysis of the quantum kicked rotors for the time-reversal invariant and time-reversal noninvariant cases. A local version of the parametric number variance introduced earlier is also investigated. PMID:27078354

  1. Rapid quantification of bacteria and viruses in influent, settled water, activated sludge and effluent from a wastewater treatment plant using flow cytometry.

    PubMed

    Ma, Lili; Mao, Guannan; Liu, Jie; Yu, Hui; Gao, Guanghai; Wang, Yingying

    2013-01-01

    As microbiological parameters are important in monitoring the correct operation of wastewater treatment plants and controlling the microbiological quality of wastewater, the abundances of total bacteria (including intact and damaged bacterial cells) and total viruses in wastewater were investigated using a combination of ultrasonication and flow cytometry. The comparisons between flow cytometry (FCM) and other cultivation-independent methods (adenosine tri-phosphate (ATP) analysis for bacteria enumeration and epifluorescence microscopy (EFM) for virus enumeration) gave very similar patterns of microbial abundance changes, suggesting that FCM is suitable for targeting and obtaining reliable counts for bacteria and viruses in wastewater samples. The main experimental results obtained were: (1) effective removal of total bacteria in wastewater, with a decrease from an average concentration of 1.74 × 10(8)counts ml(-1) in raw wastewater to 3.91 × 10(6)counts ml(-1) in the effluent, (2) compared to influent raw wastewater, the average concentration of total viruses in the treated effluent (3.94 × 10(8)counts ml(-1)) exhibited no obvious changes, (3) the applied FCM approach is a rapid, easy, and convenient tool for understanding the microbial dynamics and monitoring microbiological quality in wastewater treatment processes. PMID:24185058

  2. Effect of influent COD/SO4(2-) ratios on biodegradation behaviors of starch wastewater in an upflow anaerobic sludge blanket (UASB) reactor.

    PubMed

    Lu, Xueqin; Zhen, Guangyin; Ni, Jialing; Hojo, Toshimasa; Kubota, Kengo; Li, Yu-You

    2016-08-01

    A lab-scale upflow anaerobic sludge blanket (UASB) has been run for 250days to investigate the influence of influent COD/SO4(2-) ratios on the biodegradation behavior of starch wastewater and process performance. Stepwise decreasing COD/SO4(2-) ratio enhanced sulfidogenesis, complicating starch degradation routes and improving process stability. The reactor exhibited satisfactory performance at a wide COD/SO4(2-) range ⩾2, attaining stable biogas production of 1.15-1.17LL(-1)d(-1) with efficient simultaneous removal of total COD (73.5-80.3%) and sulfate (82.6±6.4%). Adding sulfate favored sulfidogenesis process and diversified microbial community, invoking hydrolysis-acidification of starch and propionate degradation and subsequent acetoclastic methanogenesis; whereas excessively enhanced sulfidogenesis (COD/SO4(2-) ratios <2) would suppress methanogenesis through electrons competition and sulfide inhibition, deteriorating methane conversion. This research in-depth elucidated the role of sulfidogenesis in bioenergy recovery and sulfate removal, advancing the applications of UASB technology in water industry from basic science. PMID:27132225

  3. Robustness analysis for real parametric uncertainty

    NASA Technical Reports Server (NTRS)

    Sideris, Athanasios

    1989-01-01

    Some key results in the literature in the area of robustness analysis for linear feedback systems with structured model uncertainty are reviewed. Some new results are given. Model uncertainty is described as a combination of real uncertain parameters and norm bounded unmodeled dynamics. Here the focus is on the case of parametric uncertainty. An elementary and unified derivation of the celebrated theorem of Kharitonov and the Edge Theorem is presented. Next, an algorithmic approach for robustness analysis in the cases of multilinear and polynomic parametric uncertainty (i.e., the closed loop characteristic polynomial depends multilinearly and polynomially respectively on the parameters) is given. The latter cases are most important from practical considerations. Some novel modifications in this algorithm which result in a procedure of polynomial time behavior in the number of uncertain parameters is outlined. Finally, it is shown how the more general problem of robustness analysis for combined parametric and dynamic (i.e., unmodeled dynamics) uncertainty can be reduced to the case of polynomic parametric uncertainty, and thus be solved by means of the algorithm.

  4. Measurement selection for parametric IC fault diagnosis

    NASA Technical Reports Server (NTRS)

    Wu, A.; Meador, J.

    1991-01-01

    Experimental results obtained with the use of measurement reduction for statistical IC fault diagnosis are described. The reduction method used involves data pre-processing in a fashion consistent with a specific definition of parametric faults. The effects of this preprocessing are examined.

  5. New Logic Circuit with DC Parametric Excitation

    NASA Astrophysics Data System (ADS)

    Sugahara, Masanori; Kaneda, Hisayoshi

    1982-12-01

    It is shown that dc parametric excitation is possible in a circuit named JUDO, which is composed of two resistively-connected Josephson junctions. Simulation study proves that the circuit has large gain and properties suitable for the construction of small, high-speed logic circuits.

  6. Solitons versus parametric instabilities during ionospheric heating

    NASA Technical Reports Server (NTRS)

    Nicholson, D. R.; Payne, G. L.; Downie, R. M.; Sheerin, J. P.

    1984-01-01

    Various effects associated with ionospheric heating are investigated by numerically solving the modified Zakharov (1972) equations. It is shown that, for typical ionospheric parameters, the modulational instability is more important than the parametric decay instability in the spatial region of strongest heater electric field. It is concluded that the modulational instability leads to the formation of solitons, as originally predicted by Petviashvili (1976).

  7. Parametric acoustic arrays: A state of the art review

    NASA Technical Reports Server (NTRS)

    Fenlon, F. H.

    1976-01-01

    Following a brief introduction to the concept of parametric acoustic interactions, the basic properties of parametric transmitting and receiving arrays are considered in the light of conceptual advances resulting from experimental and theoretical investigations that have taken place since 1963.

  8. BRST Cohomology of the Superstring in Super-Beltrami Parametrization

    NASA Astrophysics Data System (ADS)

    Tătaru, Liviu; Vancea, Ion V.

    A method for calculating the BRST cohomology, recently developed for 2-D gravity theory and the bosonic string in Beltrami parametrization, is generalized to the superstring theories quantized in super-Beltrami parametrization.

  9. Concentrations of cyclic volatile methylsiloxanes in biosolid amended soil, influent, effluent, receiving water, and sediment of wastewater treatment plants in Canada.

    PubMed

    Wang, De-Gao; Steer, Helena; Tait, Tara; Williams, Zackery; Pacepavicius, Grazina; Young, Teresa; Ng, Timothy; Smyth, Shirley Anne; Kinsman, Laura; Alaee, Mehran

    2013-10-01

    A comprehensive surveillance program was conducted to determine the occurrence of three cyclic volatile methylsiloxanes (cVMS) octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) in environmental compartments impacted by wastewater effluent discharges. Eleven wastewater treatment plants (WWTPs), representative of those found in Southern Ontario and Southern Quebec, Canada, were investigated to determine levels of cVMS in their influents and effluents. In addition, receiving water and sediment impacted by WWTP effluents, and biosolid-amended soil from agricultural fields were also analyzed for a preliminary evaluation of the environmental exposure of cVMS in media impacted by wastewater effluent and solids. A newly-developed large volume injection (septumless head adapter and cooled injection system) gas chromatography - mass spectrometry method was used to avoid contamination originating from instrumental analysis. Concentrations of D4, D5, and D6 in influents to the 11 WWTPs were in the range 0.282-6.69μgL(-1), 7.75-135μgL(-1), and 1.53-26.9μgL(-1), respectively. In general, wastewater treatment showed cVMS removal rates of greater than 92%, regardless of treatment type. The D4, D5, and D6 concentration ranges in effluent were <0.009-0.045μgL(-1), <0.027-1.56μgL(-1), and <0.022-0.093μgL(-1), respectively. The concentrations in receiving water influenced by effluent, were lower compared to those in effluent in most cases, with the ranges <0.009-0.023μgL(-1), <0.027-1.48μgL(-1), and <0.022-0.151μgL(-1) for D4, D5, and D6, respectively. Sediment concentrations ranged from <0.003-0.049μgg(-1)dw, 0.011-5.84μgg(-1)dw, and 0.004-0.371μgg(-1)dw for D4, D5, and D6, respectively. The concentrations in biosolid-amended soil, having values of <0.008-0.017μgg(-1)dw, <0.007-0.221μgg(-1)dw, and <0.009-0.711μgg(-1)dw for D4, D5, and D6, respectively, were lower than those in sediment impacted by wastewater

  10. Occurrences and fate of selected human antibiotics in influents and effluents of sewage treatment plant and effluent-receiving river Yamuna in Delhi (India).

    PubMed

    Mutiyar, Pravin K; Mittal, Atul K

    2014-01-01

    Antibiotics consumption has increased worldwide, and their residues are frequently reported in aquatic environments. It is believed that antibiotics reach aquatic water bodies through sewage. Medicine consumed for healthcare practices are often released into sewage, and after sewage treatment plant, it reaches the receiving water bodies of lakes or rivers. In the present study, we determined the fate of some commonly used antibiotics in a sewage treatment plant (STP) located in Delhi and the environmental concentration of these antibiotics in the Yamuna River, which receives the sewage and industrial effluent of Delhi. There are many reports on antibiotics occurrences in STP and river water worldwide, but monitoring data from the Indian subcontinent is sparse. Samples were taken from a STP and from six sampling sites on the Yamuna River. Several antibiotics were tested for using offline solid-phase extraction followed by high-performance liquid chromatography equipped with photodiode array analysis. Recoveries varied from 25.5-108.8 %. Ampicillin had the maximum concentration in wastewater influents (104.2 ± 98.11 μg l(-1)) and effluents (12.68 ± 8.38 μg l(-1)). The fluoroquinolones and cephalosporins had the lower concentrations. Treatment efficiencies varied between 55 and 99 %. Significant amounts of antibiotics were discharged in effluents and were detected in the receiving water body. The concentration of antibiotics in the Yamuna River varied from not detected to 13.75 μg l(-1) (ampicillin) for the compounds investigated. PMID:24085621

  11. Achieving low effluent NO3-N and TN concentrations in low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio without using external carbon source

    NASA Astrophysics Data System (ADS)

    Cao, Jiashun; Oleyiblo, Oloche James; Xue, Zhaoxia; Otache, Y. Martins; Feng, Qian

    2015-07-01

    Two mathematical models were used to optimize the performance of a full-scale biological nutrient removal (BNR) activated treatment plant, a plug-flow bioreactors operated in a 3-stage phoredox process configuration, anaerobic anoxic oxic (A2/O). The ASM2d implemented on the platform of WEST2011 software and the BioWin activated sludge/anaerobic digestion (AS/AD) models were used in this study with the aim of consistently achieving the designed effluent criteria at a low operational cost. Four ASM2d parameters (the reduction factor for denitrification , the maximum growth rate of heterotrophs (µH), the rate constant for stored polyphosphates in PAOs ( q pp), and the hydrolysis rate constant ( k h)) were adjusted. Whereas three BioWin parameters (aerobic decay rate ( b H), heterotrophic dissolved oxygen (DO) half saturation ( K OA), and Y P/acetic) were adjusted. Calibration of the two models was successful; both models have average relative deviations (ARD) less than 10% for all the output variables. Low effluent concentrations of nitrate nitrogen (N-NO3), total nitrogen (TN), and total phosphorus (TP) were achieved in a full-scale BNR treatment plant having low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio (COD/TKN). The effluent total nitrogen and nitrate nitrogen concentrations were improved by 50% and energy consumption was reduced by approximately 25%, which was accomplished by converting the two-pass aerobic compartment of the plug-flow bioreactor to anoxic reactors and being operated in an alternating mode. Findings in this work are helpful in improving the operation of wastewater treatment plant while eliminating the cost of external carbon source and reducing energy consumption.

  12. Entanglement of Coupled Optomechanical Systems Improved by Optical Parametric Amplifiers

    NASA Astrophysics Data System (ADS)

    Pan, Guixia; Xiao, Ruijie; Zhou, Ling

    2016-04-01

    A scheme to generate the stationary entanglement of two distant coupled optical cavities placed optical parametric amplifiers is proposed. We study how the optical parametric amplifiers can affect the entanglement behaviors of the movable mirrors and the cavity fields. With the existence of optical parametric amplifiers, we show that larger stationary entanglement of optical and mechanical modes can be obtained and the entanglement increases with the increasing parametric gain. Especially, the degree of entanglement between the two cavity fields is more pronouncedly enhanced. Moreover, for a fixed parametric gain, the entanglement of distant cavity optomechanical systems increases as the input laser power is increased.

  13. Entanglement of Coupled Optomechanical Systems Improved by Optical Parametric Amplifiers

    NASA Astrophysics Data System (ADS)

    Pan, Guixia; Xiao, Ruijie; Zhou, Ling

    2016-08-01

    A scheme to generate the stationary entanglement of two distant coupled optical cavities placed optical parametric amplifiers is proposed. We study how the optical parametric amplifiers can affect the entanglement behaviors of the movable mirrors and the cavity fields. With the existence of optical parametric amplifiers, we show that larger stationary entanglement of optical and mechanical modes can be obtained and the entanglement increases with the increasing parametric gain. Especially, the degree of entanglement between the two cavity fields is more pronouncedly enhanced. Moreover, for a fixed parametric gain, the entanglement of distant cavity optomechanical systems increases as the input laser power is increased.

  14. Revisiting Parametric Types and Virtual Classes

    NASA Astrophysics Data System (ADS)

    Madsen, Anders Bach; Ernst, Erik

    This paper presents a conceptually oriented updated view on the relationship between parametric types and virtual classes. The traditional view is that parametric types excel at structurally oriented composition and decomposition, and virtual classes excel at specifying mutually recursive families of classes whose relationships are preserved in derived families. Conversely, while class families can be specified using a large number of F-bounded type parameters, this approach is complex and fragile; and it is difficult to use traditional virtual classes to specify object composition in a structural manner, because virtual classes are closely tied to nominal typing. This paper adds new insight about the dichotomy between these two approaches; it illustrates how virtual constraints and type refinements, as recently introduced in gbeta and Scala, enable structural treatment of virtual types; finally, it shows how a novel kind of dynamic type check can detect compatibility among entire families of classes.

  15. A multimode electromechanical parametric resonator array

    PubMed Central

    Mahboob, I.; Mounaix, M.; Nishiguchi, K.; Fujiwara, A.; Yamaguchi, H.

    2014-01-01

    Electromechanical resonators have emerged as a versatile platform in which detectors with unprecedented sensitivities and quantum mechanics in a macroscopic context can be developed. These schemes invariably utilise a single resonator but increasingly the concept of an array of electromechanical resonators is promising a wealth of new possibilities. In spite of this, experimental realisations of such arrays have remained scarce due to the formidable challenges involved in their fabrication. In a variation to this approach, we identify 75 harmonic vibration modes in a single electromechanical resonator of which 7 can also be parametrically excited. The parametrically resonating modes exhibit vibrations with only 2 oscillation phases which are used to build a binary information array. We exploit this array to execute a mechanical byte memory, a shift-register and a controlled-NOT gate thus vividly illustrating the availability and functionality of an electromechanical resonator array by simply utilising higher order vibration modes. PMID:24658349

  16. Pattern Generation by Dissipative Parametric Instability

    NASA Astrophysics Data System (ADS)

    Perego, A. M.; Tarasov, N.; Churkin, D. V.; Turitsyn, S. K.; Staliunas, K.

    2016-01-01

    Nonlinear instabilities are responsible for spontaneous pattern formation in a vast number of natural and engineered systems, ranging from biology to galaxy buildup. We propose a new instability mechanism leading to pattern formation in spatially extended nonlinear systems, which is based on a periodic antiphase modulation of spectrally dependent losses arranged in a zigzag way: an effective filtering is imposed at symmetrically located wave numbers k and -k in alternating order. The properties of the dissipative parametric instability differ from the features of both key classical concepts of modulation instabilities, i.e., the Benjamin-Feir instability and the Faraday instabiltyity. We demonstrate how the dissipative parametric instability can lead to the formation of stable patterns in one- and two-dimensional systems. The proposed instability mechanism is generic and can naturally occur or can be implemented in various physical systems.

  17. High dynamic range Josephson parametric amplifiers

    NASA Astrophysics Data System (ADS)

    Roch, Nicolas; Murch, Kater W.; Vijay, Rajamani

    Josephson parametric amplifiers (JPAs) have become the technology of choice to amplify small amplitude microwave signals since they show noise performances close to the quantum limit of amplification. An important challenge that faces this technology is the low dynamic range of current devices, which limits the number of measurements that can be performed concurrently and the rate of information acquisition for single measurements. We have fabricated and tested novel parametric amplifiers based on arrays of up to 100 SQUIDS. The amplifiers produce gain in excess of 20 dB over a large bandwidth and match the dynamic range achieved with traveling wave devices. Compared to the latter devices they are fabricated in a single lithography step and we will show that their bandwidth performance can be further extended using a recently developed impedance matching technique.

  18. Parametric amplification by coupled flux qubits

    SciTech Connect

    Rehák, M.; Neilinger, P.; Grajcar, M.; Oelsner, G.; Hübner, U.; Meyer, H.-G.; Il'ichev, E.

    2014-04-21

    We report parametric amplification of a microwave signal in a Kerr medium formed from superconducting qubits. Two mutually coupled flux qubits, embedded in the current antinode of a superconducting coplanar waveguide resonator, are used as a nonlinear element. Shared Josephson junctions provide the qubit-resonator coupling, resulting in a device with a tunable Kerr constant (up to 3 × 10{sup −3}) and a measured gain of about 20 dB. This arrangement represents a unit cell which can be straightforwardly extended to a quasi one-dimensional quantum metamaterial with large tunable Kerr nonlinearity, providing a basis for implementation of wide-band travelling wave parametric amplifiers.

  19. Rayleigh-type parametric chemical oscillation

    SciTech Connect

    Ghosh, Shyamolina; Ray, Deb Shankar

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  20. Intersection of parametric surfaces using lookup tables

    NASA Technical Reports Server (NTRS)

    Hanna, S. L.; Abel, J. F.; Greenberg, D. P.

    1984-01-01

    When primitive structures in the form of parametric surfaces are combined and modified interactively to form complex intersecting surfaces, it becomes important to find the curves of intersection. One must distinguish between finding the shape of the intersection curve, which may only be useful for display purposes, and finding an accurate mathematical representation of the curve, which is important for any meaningful geometric modeling, analysis, design, or manufacturing involving the intersection. The intersection curve between two or more parametric surfaces is important in a variety of computer-aided design and manufacture areas. A few examples are shape design, analysis of groins, design of fillets, and computation of numerically controlled tooling paths. The algorithm presented here provides a mathematical representation of the intersection curve to a specified accuracy. It also provides the database that can simplify operations such as hidden-surface removal, surface rendering, profile identification, and interference or clearance computations.

  1. Rayleigh-type parametric chemical oscillation

    NASA Astrophysics Data System (ADS)

    Ghosh, Shyamolina; Ray, Deb Shankar

    2015-09-01

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  2. Rayleigh-type parametric chemical oscillation.

    PubMed

    Ghosh, Shyamolina; Ray, Deb Shankar

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions. PMID:26429035

  3. Nondegenerate optical parametric chirped pulse amplifier

    DOEpatents

    Jovanovic, Igor; Ebbers, Christopher A.

    2005-03-22

    A system provides an input pump pulse and a signal pulse. A first dichroic beamsplitter is highly reflective for the input signal pulse and highly transmissive for the input pump pulse. A first optical parametric amplifier nonlinear crystal transfers part of the energy from the input pump pulse to the input signal pulse resulting in a first amplified signal pulse and a first depleted pump pulse. A second dichroic beamsplitter is highly reflective for the first amplified signal pulse and highly transmissive for the first depleted pump pulse. A second optical parametric amplifier nonlinear crystal transfers part of the energy from the first depleted pump pulse to the first amplified signal pulse resulting in a second amplified signal pulse and a second depleted pump pulse. A third dichroic beamsplitter receives the second amplified signal pulse and the second depleted pump pulse. The second depleted pump pulse is discarded.

  4. Pattern Generation by Dissipative Parametric Instability.

    PubMed

    Perego, A M; Tarasov, N; Churkin, D V; Turitsyn, S K; Staliunas, K

    2016-01-15

    Nonlinear instabilities are responsible for spontaneous pattern formation in a vast number of natural and engineered systems, ranging from biology to galaxy buildup. We propose a new instability mechanism leading to pattern formation in spatially extended nonlinear systems, which is based on a periodic antiphase modulation of spectrally dependent losses arranged in a zigzag way: an effective filtering is imposed at symmetrically located wave numbers k and -k in alternating order. The properties of the dissipative parametric instability differ from the features of both key classical concepts of modulation instabilities, i.e., the Benjamin-Feir instability and the Faraday instabiltyity. We demonstrate how the dissipative parametric instability can lead to the formation of stable patterns in one- and two-dimensional systems. The proposed instability mechanism is generic and can naturally occur or can be implemented in various physical systems. PMID:26824573

  5. Parametric Model of an Aerospike Rocket Engine

    NASA Technical Reports Server (NTRS)

    Korte, J. J.

    2000-01-01

    A suite of computer codes was assembled to simulate the performance of an aerospike engine and to generate the engine input for the Program to Optimize Simulated Trajectories. First an engine simulator module was developed that predicts the aerospike engine performance for a given mixture ratio, power level, thrust vectoring level, and altitude. This module was then used to rapidly generate the aerospike engine performance tables for axial thrust, normal thrust, pitching moment, and specific thrust. Parametric engine geometry was defined for use with the engine simulator module. The parametric model was also integrated into the iSIGHTI multidisciplinary framework so that alternate designs could be determined. The computer codes were used to support in-house conceptual studies of reusable launch vehicle designs.

  6. Parametric Model of an Aerospike Rocket Engine

    NASA Technical Reports Server (NTRS)

    Korte, J. J.

    2000-01-01

    A suite of computer codes was assembled to simulate the performance of an aerospike engine and to generate the engine input for the Program to Optimize Simulated Trajectories. First an engine simulator module was developed that predicts the aerospike engine performance for a given mixture ratio, power level, thrust vectoring level, and altitude. This module was then used to rapidly generate the aerospike engine performance tables for axial thrust, normal thrust, pitching moment, and specific thrust. Parametric engine geometry was defined for use with the engine simulator module. The parametric model was also integrated into the iSIGHT multidisciplinary framework so that alternate designs could be determined. The computer codes were used to support in-house conceptual studies of reusable launch vehicle designs.

  7. Diode-pumped optical parametric oscillator

    SciTech Connect

    Geiger, A.R.; Hemmati, H.; Farr, W.H.

    1996-02-01

    Diode-pumped optical parametric oscillation has been demonstrated for the first time to our knowledge in a single Nd:MgO:LiNbO{sub 3} nonlinear crystal. The crystal is pumped by a semiconductor diode laser array at 812 nm. The Nd{sup 3+} ions absorb the 812-nm radiation to generate 1084-nm laser oscillation. On internal {ital Q} switching the 1084-nm radiation pumps the LiNbO{sub 3} host crystal that is angle cut at 46.5{degree} and generates optical parametric oscillation. The oscillation threshold that is due to the 1084-nm laser pump with a pulse length of 80 ns in a 1-mm-diameter beam was measured to be {approx_equal}1 mJ and produced 0.5-mJ output at 3400-nm signal wavelength. {copyright} {ital 1996 Optical Society of America.}

  8. Parametric study of laser photovoltaic energy converters

    NASA Technical Reports Server (NTRS)

    Walker, G. H.; Heinbockel, J. H.

    1987-01-01

    Photovoltaic converters are of interest for converting laser power to electrical power in a space-based laser power system. This paper describes a model for photovoltaic laser converters and the application of this model to a neodymium laser silicon photovoltaic converter system. A parametric study which defines the sensitivity of the photovoltaic parameters is described. An optimized silicon photovoltaic converter has an efficiency greater than 50 percent for 1000 W/sq cm of neodymium laser radiation.

  9. SEC sensor parametric test and evaluation system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This system provides the necessary automated hardware required to carry out, in conjunction with the existing 70 mm SEC television camera, the sensor evaluation tests which are described in detail. The Parametric Test Set (PTS) was completed and is used in a semiautomatic data acquisition and control mode to test the development of the 70 mm SEC sensor, WX 32193. Data analysis of raw data is performed on the Princeton IBM 360-91 computer.

  10. Wavelength-doubling optical parametric oscillator

    DOEpatents

    Armstrong, Darrell J.; Smith, Arlee V.

    2007-07-24

    A wavelength-doubling optical parametric oscillator (OPO) comprising a type II nonlinear optical medium for generating a pair of degenerate waves at twice a pump wavelength and a plurality of mirrors for rotating the polarization of one wave by 90 degrees to produce a wavelength-doubled beam with an increased output energy by coupling both of the degenerate waves out of the OPO cavity through the same output coupler following polarization rotation of one of the degenerate waves.

  11. A variable parameter parametric snake method

    NASA Astrophysics Data System (ADS)

    Marouf, A.; Houacine, A.

    2015-12-01

    In this paper, we introduce a new approach to parametric snake method by using variable snake parameters. Adopting fixed parameter values for all points of the snake, as usual, constitutes by itself a limitation that leads to poor performances in terms of convergence and tracking properties. A more adapted choice should be the one that allows selection depending on the image region properties as on the contour shape and position. However, such variability is not an easy task in general and a precise method need to be defined to assure contour point dependent tuning at iterations. We were particularly interested in applying this idea to the recently presented parametric method [1]. In the work mentioned, an attraction term is used to improve the convergence of the standard parametric snake without a significant increase in computational load. We show here, that improved performances can ensue from applying variable parameter concepts. For this purpose, the method is first analyzed and then a procedure is developed to assure an automatic variable parameter tuning. The interest of our approach is illustrated through object segmentation results.

  12. Parametric Cost Models for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtney

    2010-01-01

    Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.

  13. Parametric cost analysis for advanced energy concepts

    SciTech Connect

    Not Available

    1983-10-01

    This report presents results of an exploratory study to develop parametric cost estimating relationships for advanced fossil-fuel energy systems. The first of two tasks was to develop a standard Cost Chart of Accounts to serve as a basic organizing framework for energy systems cost analysis. The second task included development of selected parametric cost estimating relationships (CERs) for individual elements (or subsystems) of a fossil fuel plant, nominally for the Solvent-Refined Coal (SRC) process. Parametric CERs are presented for the following elements: coal preparation, coal slurry preparation, dissolver (reactor); gasification; oxygen production; acid gas/CO/sub 2/ removal; shift conversion; cryogenic hydrogen recovery; and sulfur removal. While the nominal focus of the study was on the SRC process, each of these elements is found in other fossil fuel processes. Thus, the results of this effort have broader potential application. However, it should also be noted that the CERs presented in this report are based upon a limited data base. Thus, they are applicable over a limited range of values (of the independent variables) and for a limited set of specific technologies (e.g., the gasifier CER is for the multi-train, Koppers-Totzek process). Additional work is required to extend the range of these CERs. 16 figures, 13 tables.

  14. Exploring deep parametric embeddings for breast CADx

    NASA Astrophysics Data System (ADS)

    Jamieson, Andrew R.; Alam, Rabi; Giger, Maryellen L.

    2011-03-01

    Computer-aided diagnosis (CADx) involves training supervised classifiers using labeled ("truth-known") data. Often, training data consists of high-dimensional feature vectors extracted from medical images. Unfortunately, very large data sets may be required to train robust classifiers for high-dimensional inputs. To mitigate the risk of classifier over-fitting, CADx schemes may employ feature selection or dimension reduction (DR), for example, principal component analysis (PCA). Recently, a number of novel "structure-preserving" DR methods have been proposed1. Such methods are attractive for use in CADx schemes for two main reasons. First, by providing visualization of highdimensional data structure, and second, since DR can be unsupervised or semi-supervised, unlabeled ("truth-unknown") data may be incorporated2. However, the practical application of state-of-the-art DR techniques such as, t-SNE3, to breast CADx were inhibited by the inability to retain a parametric embedding function capable of mapping new input data to the reduced representation. Deep (more than one hidden layer) neural networks can be used to learn such parametric DR embeddings. We explored the feasibility of such methods for use in CADx by conducting a variety of experiments using simulated feature data, including models based on breast CADx features. Specifically, we investigated the unsupervised parametric t-SNE4 (pt-SNE), the supervised deep t-distributed MCML5 (dt-MCML), and hybrid semi-supervised modifications combining the two.

  15. The Representation and Parametrization of Orthogonal Matrices.

    PubMed

    Shepard, Ron; Brozell, Scott R; Gidofalvi, Gergely

    2015-07-16

    Four representations and parametrizations of orthogonal matrices Q ∈ R(m×n) in terms of the minimal number of essential parameters {φ} are discussed: the exponential representation, the Householder reflector representation, the Givens rotation representation, and the rational Cayley transform representation. Both square n = m and rectangular n < m situations are considered. Two separate kinds of parametrizations are considered: one in which the individual columns of Q are distinct, the Stiefel manifold, and the other in which only span(Q) is significant, the Grassmann manifold. The practical issues of numerical stability, continuity, and uniqueness are discussed. The computation of Q in terms of the essential parameters {φ}, and also the extraction of {φ} for a given Q are considered for all of the parametrizations. The transformation of gradient arrays between the Q and {φ} variables is discussed for all representations. It is our hope that developers of new methods will benefit from this comparative presentation of an important but rarely analyzed subject. PMID:25946418

  16. Colossal magnetoelectric effect induced by parametric amplification

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Onuta, Tiberiu-Dan; Long, Christian J.; Geng, Yunlong; Takeuchi, Ichiro

    2015-11-01

    We describe the use of parametric amplification to substantially increase the magnetoelectric (ME) coefficient of multiferroic cantilevers. Parametric amplification has been widely used in sensors and actuators based on optical, electronic, and mechanical resonators to increase transducer gain. In our system, a microfabricated mechanical cantilever with a magnetostrictive layer is driven at its fundamental resonance frequency by an AC magnetic field. The resulting actuation of the cantilever at the resonance frequency is detected by measuring the voltage across a piezoelectric layer in the same cantilever. Concurrently, the spring constant of the cantilever is modulated at twice the resonance frequency by applying an AC voltage across the piezoelectric layer. The spring constant modulation results in parametric amplification of the motion of the cantilever, yielding a gain in the ME coefficient. Using this method, the ME coefficient was amplified from 33 V/(cm Oe) to 2.0 MV/(cm Oe), an increase of over 4 orders of magnitude. This boost in the ME coefficient directly resulted in an enhancement of the magnetic field sensitivity of the device from 6.0 nT /√{Hz } to 1.0 nT /√{Hz } . The enhancement in the ME coefficient and magnetic field sensitivity demonstrated here may be beneficial for a variety actuators and sensors based on resonant multiferroic devices.

  17. An improvement of quantum parametric methods by using SGSA parameterization technique and new elementary parametric functionals

    NASA Astrophysics Data System (ADS)

    Sánchez, M.; Oldenhof, M.; Freitez, J. A.; Mundim, K. C.; Ruette, F.

    A systematic improvement of parametric quantum methods (PQM) is performed by considering: (a) a new application of parameterization procedure to PQMs and (b) novel parametric functionals based on properties of elementary parametric functionals (EPF) [Ruette et al., Int J Quantum Chem 2008, 108, 1831]. Parameterization was carried out by using the simplified generalized simulated annealing (SGSA) method in the CATIVIC program. This code has been parallelized and comparison with MOPAC/2007 (PM6) and MINDO/SR was performed for a set of molecules with C=C, C=H, and H=H bonds. Results showed better accuracy than MINDO/SR and MOPAC-2007 for a selected trial set of molecules.

  18. Tremor Detection Using Parametric and Non-Parametric Spectral Estimation Methods: A Comparison with Clinical Assessment

    PubMed Central

    Martinez Manzanera, Octavio; Elting, Jan Willem; van der Hoeven, Johannes H.; Maurits, Natasha M.

    2016-01-01

    In the clinic, tremor is diagnosed during a time-limited process in which patients are observed and the characteristics of tremor are visually assessed. For some tremor disorders, a more detailed analysis of these characteristics is needed. Accelerometry and electromyography can be used to obtain a better insight into tremor. Typically, routine clinical assessment of accelerometry and electromyography data involves visual inspection by clinicians and occasionally computational analysis to obtain objective characteristics of tremor. However, for some tremor disorders these characteristics may be different during daily activity. This variability in presentation between the clinic and daily life makes a differential diagnosis more difficult. A long-term recording of tremor by accelerometry and/or electromyography in the home environment could help to give a better insight into the tremor disorder. However, an evaluation of such recordings using routine clinical standards would take too much time. We evaluated a range of techniques that automatically detect tremor segments in accelerometer data, as accelerometer data is more easily obtained in the home environment than electromyography data. Time can be saved if clinicians only have to evaluate the tremor characteristics of segments that have been automatically detected in longer daily activity recordings. We tested four non-parametric methods and five parametric methods on clinical accelerometer data from 14 patients with different tremor disorders. The consensus between two clinicians regarding the presence or absence of tremor on 3943 segments of accelerometer data was employed as reference. The nine methods were tested against this reference to identify their optimal parameters. Non-parametric methods generally performed better than parametric methods on our dataset when optimal parameters were used. However, one parametric method, employing the high frequency content of the tremor bandwidth under consideration

  19. Ground-Based Telescope Parametric Cost Model

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Rowell, Ginger Holmes

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.

  20. Multicutter machining of compound parametric surfaces

    NASA Astrophysics Data System (ADS)

    Hatna, Abdelmadjid; Grieve, R. J.; Broomhead, P.

    2000-10-01

    Parametric free forms are used in industries as disparate as footwear, toys, sporting goods, ceramics, digital content creation, and conceptual design. Optimizing tool path patterns and minimizing the total machining time is a primordial issue in numerically controlled (NC) machining of free form surfaces. We demonstrate in the present work that multi-cutter machining can achieve as much as 60% reduction in total machining time for compound sculptured surfaces. The given approach is based upon the pre-processing as opposed to the usual post-processing of surfaces for the detection and removal of interference followed by precise tracking of unmachined areas.

  1. Lottery spending: a non-parametric analysis.

    PubMed

    Garibaldi, Skip; Frisoli, Kayla; Ke, Li; Lim, Melody

    2015-01-01

    We analyze the spending of individuals in the United States on lottery tickets in an average month, as reported in surveys. We view these surveys as sampling from an unknown distribution, and we use non-parametric methods to compare properties of this distribution for various demographic groups, as well as claims that some properties of this distribution are constant across surveys. We find that the observed higher spending by Hispanic lottery players can be attributed to differences in education levels, and we dispute previous claims that the top 10% of lottery players consistently account for 50% of lottery sales. PMID:25642699

  2. Spectral and parametric averaging for integrable systems

    NASA Astrophysics Data System (ADS)

    Ma, Tao; Serota, R. A.

    2015-05-01

    We analyze two theoretical approaches to ensemble averaging for integrable systems in quantum chaos, spectral averaging (SA) and parametric averaging (PA). For SA, we introduce a new procedure, namely, rescaled spectral averaging (RSA). Unlike traditional SA, it can describe the correlation function of spectral staircase (CFSS) and produce persistent oscillations of the interval level number variance (IV). PA while not as accurate as RSA for the CFSS and IV, can also produce persistent oscillations of the global level number variance (GV) and better describes saturation level rigidity as a function of the running energy. Overall, it is the most reliable method for a wide range of statistics.

  3. Parametric modulation of an atomic magnetometer

    PubMed Central

    Li, Zhimin; Wakai, Ronald T.; Walker, Thad G.

    2012-01-01

    The authors report on a rubidium atomic magnetometer designed for use in a shielded environment. Operating in the spin-exchange relaxation-free regime, the magnetometer utilizes parametric modulation of the z-magnetic field to suppress noise associated with airflow through the oven and to simultaneously detect x- and y-field components, using a single probe beam, with minimal loss of sensitivity and bandwidth. A white noise level of 60 fT/(Hz)1/2 was achieved. PMID:22942436

  4. Quantum finite time availability for parametric oscillators

    NASA Astrophysics Data System (ADS)

    Hoffmann, Karl Heinz; Schmidt, Kim; Salamon, Peter

    2015-06-01

    The availability of a thermodynamic system out of equilibrium with its environment describes its ability to perform work in a reversible process which brings it to equilibrium with this environment. Processes in finite time can usually not be performed reversibly thus leading to unavoidable losses. In order to account for these losses the concept of finite time availability was introduced. We here add a new feature through the introduction of quantum finite time availability for an ensemble of parametric oscillators. For such systems there exists a certain critical time, the FEAT time. Quantum finite time availability quantifies the available work from processes which are shorter than the FEAT time of the oscillator ensemble.

  5. Algorithm for parametric community detection in networks.

    PubMed

    Bettinelli, Andrea; Hansen, Pierre; Liberti, Leo

    2012-07-01

    Modularity maximization is extensively used to detect communities in complex networks. It has been shown, however, that this method suffers from a resolution limit: Small communities may be undetectable in the presence of larger ones even if they are very dense. To alleviate this defect, various modifications of the modularity function have been proposed as well as multiresolution methods. In this paper we systematically study a simple model (proposed by Pons and Latapy [Theor. Comput. Sci. 412, 892 (2011)] and similar to the parametric model of Reichardt and Bornholdt [Phys. Rev. E 74, 016110 (2006)]) with a single parameter α that balances the fraction of within community edges and the expected fraction of edges according to the configuration model. An exact algorithm is proposed to find optimal solutions for all values of α as well as the corresponding successive intervals of α values for which they are optimal. This algorithm relies upon a routine for exact modularity maximization and is limited to moderate size instances. An agglomerative hierarchical heuristic is therefore proposed to address parametric modularity detection in large networks. At each iteration the smallest value of α for which it is worthwhile to merge two communities of the current partition is found. Then merging is performed and the data are updated accordingly. An implementation is proposed with the same time and space complexity as the well-known Clauset-Newman-Moore (CNM) heuristic [Phys. Rev. E 70, 066111 (2004)]. Experimental results on artificial and real world problems show that (i) communities are detected by both exact and heuristic methods for all values of the parameter α; (ii) the dendrogram summarizing the results of the heuristic method provides a useful tool for substantive analysis, as illustrated particularly on a Les Misérables data set; (iii) the difference between the parametric modularity values given by the exact method and those given by the heuristic is

  6. Lottery Spending: A Non-Parametric Analysis

    PubMed Central

    Garibaldi, Skip; Frisoli, Kayla; Ke, Li; Lim, Melody

    2015-01-01

    We analyze the spending of individuals in the United States on lottery tickets in an average month, as reported in surveys. We view these surveys as sampling from an unknown distribution, and we use non-parametric methods to compare properties of this distribution for various demographic groups, as well as claims that some properties of this distribution are constant across surveys. We find that the observed higher spending by Hispanic lottery players can be attributed to differences in education levels, and we dispute previous claims that the top 10% of lottery players consistently account for 50% of lottery sales. PMID:25642699

  7. Detecting Atlantic herring by parametric sonar.

    PubMed

    Godo, Olav Rune; Foote, Kenneth G; Dybedal, Johnny; Tenningen, Eirik; Patel, Ruben

    2010-04-01

    The difference-frequency band of the Kongsberg TOPAS PS18 parametric sub-bottom profiling sonar, nominally 1-6 kHz, is being used to observe Atlantic herring. Representative TOPAS echograms of herring layers and schools observed in situ in December 2008 and November 2009 are presented. These agree well with echograms of volume backscattering strength derived simultaneously with the narrowband Simrad EK60/18- and 38-kHz scientific echo sounder, also giving insight into herring avoidance behavior in relation to survey vessel passage. Progress in rendering the TOPAS echograms quantitative is described. PMID:20369983

  8. Parametric study of modern airship productivity

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Flaig, K.

    1980-01-01

    A method for estimating the specific productivity of both hybrid and fully buoyant airships is developed. Various methods of estimating structural weight of deltoid hybrids are discussed and a derived weight estimating relationship is presented. Specific productivity is used as a figure of merit in a parametric study of fully buoyant ellipsoidal and deltoid hybrid semi-buoyant vehicles. The sensitivity of results as a function of assumptions is also determined. No airship configurations were found to have superior specific productivity to transport airplanes.

  9. Automatic Parametric Testing Of Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Jennings, Glenn A.; Pina, Cesar A.

    1989-01-01

    Computer program for parametric testing saves time and effort in research and development of integrated circuits. Software system automatically assembles various types of test structures and lays them out on silicon chip, generates sequency of test instructions, and interprets test data. Employs self-programming software; needs minimum of human intervention. Adapted to needs of different laboratories and readily accommodates new test structures. Program codes designed to be adaptable to most computers and test equipment now in use. Written in high-level languages to enhance transportability.

  10. Parametric modulation of an atomic magnetometer.

    PubMed

    Li, Zhimin; Wakai, Ronald T; Walker, Thad G

    2006-01-01

    The authors report on a rubidium atomic magnetometer designed for use in a shielded environment. Operating in the spin-exchange relaxation-free regime, the magnetometer utilizes parametric modulation of the z-magnetic field to suppress noise associated with airflow through the oven and to simultaneously detect x- and y-field components, using a single probe beam, with minimal loss of sensitivity and bandwidth. A white noise level of 60 fT/(Hz)(1/2) was achieved. PMID:22942436

  11. Parametric uncertain identification of a robotic system

    NASA Astrophysics Data System (ADS)

    Angel, L.; Viola, J.; Hernández, C.

    2016-07-01

    This paper presents the parametric uncertainties identification of a robotic system of one degree of freedom. A MSC-ADAMS / MATLAB co-simulation model was built to simulate the uncertainties that affect the robotic system. For a desired trajectory, a set of dynamic models of the system was identified in presence of variations in the mass, length and friction of the system employing least squares method. Using the input-output linearization technique a linearized model plant was defined. Finally, the maximum multiplicative uncertainty of the system was modelled giving the controller desired design conditions to achieve a robust stability and performance of the closed loop system.

  12. A Cartesian parametrization for the numerical analysis of material instability

    DOE PAGESBeta

    Mota, Alejandro; Chen, Qiushi; Foulk, III, James W.; Ostien, Jakob T.; Lai, Zhengshou

    2016-02-25

    We examine four parametrizations of the unit sphere in the context of material stability analysis by means of the singularity of the acoustic tensor. We then propose a Cartesian parametrization for vectors that lie a cube of side length two and use these vectors in lieu of unit normals to test for the loss of the ellipticity condition. This parametrization is then used to construct a tensor akin to the acoustic tensor. It is shown that both of these tensors become singular at the same time and in the same planes in the presence of a material instability. Furthermore, themore » performance of the Cartesian parametrization is compared against the other parametrizations, with the results of these comparisons showing that in general, the Cartesian parametrization is more robust and more numerically efficient than the others.« less

  13. Characterization of a multimode coplanar waveguide parametric amplifier

    SciTech Connect

    Simoen, M. Krantz, P.; Bylander, Jonas; Shumeiko, V.; Delsing, P.; Chang, C. W. S.; Wilson, C. M.; Wustmann, W.

    2015-10-21

    We characterize a Josephson parametric amplifier based on a flux-tunable quarter-wavelength resonator. The fundamental resonance frequency is ∼1 GHz, but we use higher modes of the resonator for our measurements. An on-chip tuning line allows for magnetic flux pumping of the amplifier. We investigate and compare degenerate parametric amplification, involving a single mode, and nondegenerate parametric amplification, using a pair of modes. We show that we reach quantum-limited noise performance in both cases.

  14. Cascade frequency generation regime in an optical parametric oscillator

    SciTech Connect

    Kolker, D B; Dmitriev, Aleksandr K; Gorelik, P; Vong, Franko; Zondy, J J

    2009-05-31

    In a parametric oscillator of a special two-sectional design based on a lithium niobate periodic structure, a cascade frequency generation regime was observed in which a signal wave pumped a secondary parametric oscillator, producing secondary signal and idler waves. The secondary parametric oscillator can be tuned in a broad range of {approx}200 nm with respect to a fixed wavelength of the primary idler wave. (nonlinear optical phenomena)

  15. Second order parametric processes in nonlinear silica microspheres.

    PubMed

    Xu, Yong; Han, Ming; Wang, Anbo; Liu, Zhiwen; Heflin, James R

    2008-04-25

    We analyze second order parametric processes in a silica microsphere coated with radially aligned nonlinear optical molecules. In a high-Q nonlinear microsphere, we discover that it is possible to achieve ultralow threshold parametric oscillation that obeys the rule of angular momentum conservation. Based on symmetry considerations, one can also implement parametric processes that naturally generate quantum entangled photon pairs. Practical issues regarding implementation of the nonlinear microsphere are also discussed. PMID:18518201

  16. Experimental demonstration of nanosecond optical parametric amplifier in YCOB

    NASA Astrophysics Data System (ADS)

    Li, Huanhuan; Li, Shiguang; Ma, Xiuhua; Zhu, Xiaolei; Tu, Xiaoniu; Zheng, Yanqing

    2013-05-01

    In this letter, we provide the experimental demonstration of nanosecond optical parametric amplification in YCOB centered at 1572 nm. The optical gain characterization of YCOB crystal was simulated and tested in this optical parametric conversion. A saturated OPA gain of 2.4 was obtained. The results confirm that YCOB crystal has the potential to be used in a high-energy cascade of MOPA parametric amplifiers at 1572 nm.

  17. Parametric robust control and system identification: Unified approach

    NASA Technical Reports Server (NTRS)

    Keel, Leehyun

    1994-01-01

    Despite significant advancement in the area of robust parametric control, the problem of synthesizing such a controller is still a wide open problem. Thus, we attempt to give a solution to this important problem. Our approach captures the parametric uncertainty as an H(sub infinity) unstructured uncertainty so that H(sub infinity) synthesis techniques are applicable. Although the techniques cannot cope with the exact parametric uncertainty, they give a reasonable guideline to model the unstructured uncertainty that contains the parametric uncertainty. An additional loop shaping technique is also introduced to relax its conservatism.

  18. Parametric resonance of intrinsic localized modes in coupled cantilever arrays

    NASA Astrophysics Data System (ADS)

    Kimura, Masayuki; Matsushita, Yasuo; Hikihara, Takashi

    2016-08-01

    In this study, the parametric resonances of pinned intrinsic localized modes (ILMs) were investigated by computing the unstable regions in parameter space consisting of parametric excitation amplitude and frequency. In the unstable regions, the pinned ILMs were observed to lose stability and begin to fluctuate. A nonlinear Klein-Gordon, Fermi-Pasta-Ulam-like, and mixed lattices were investigated. The pinned ILMs, particularly in the mixed lattice, were destabilized by parametric resonances, which were determined by comparing the shapes of the unstable regions with those in the Mathieu differential equation. In addition, traveling ILMs could be generated by parametric excitation.

  19. A new class of parametrization for dark energy without divergence

    SciTech Connect

    Feng, Chao-Jun; Shen, Xian-Yong; Li, Ping; Li, Xin-Zhou E-mail: 1000304237@smail.shnu.edu.cn E-mail: kychz@shnu.edu.cn

    2012-09-01

    A new class of parametrization of the equation of state of dark energy is proposed in this paper. In contrast with the famous CPL parametrization, the equation of state with this new kind of parametrization does not divergent during the evolution of the Universe even in the future. By using the Markov Chain Monte Carlo (MCMC) method, we perform an observational constraint on two simplest dark energy models belonging to this new class of parametrization with the combined latest observational data from the type Ia supernova compilations including Union2(557), cosmic microwave background, and baryon acoustic oscillation.

  20. Study of Vertical Sound Image Control Using Parametric Loudspeakers

    NASA Astrophysics Data System (ADS)

    Shimizu, Kazuhiro; Itou, Kouki; Aoki, Shigeaki

    A parametric loudspeaker is known as a super-directivity loudspeaker. So far, the applications have been limited monaural reproduction sound system. We had discussed characteristics of stereo reproduction with two parametric loudspeakers. In this paper, the sound localization in the vertical direction using the parametric loudspeakers was confirmed. The direction of sound localization was able to be controlled. The results were similar as in using ordinary loudspeakers. However, by setting the parametric loudspeaker 5 degrees rightward, the direction of sound localization moved about 20 degrees rightward. The measured ILD (Interaural Level Difference) using a dummy head were analyzed.

  1. Terahertz parametric sources and imaging applications

    NASA Astrophysics Data System (ADS)

    Yamashita, M.; Ogawa, Y.; Otani, C.; Kawase, K.

    2005-12-01

    We have studied the generation of terahertz (THz) waves by optical parametric processes based on laser light scattering from the polariton mode of nonlinear crystals. Using parametric oscillation of LiNbO 3 or MgO-doped LiNbO 3 crystal pumped by a nano-second Q-switched Nd:YAG laser, we have realized a widely tunable coherent THz-wave sources with a simple configuration. We report the detailed characteristics of the oscillation and the radiation including tunability, spatial and temporal coherency, uni directivity, and efficiency. A Fourier transform limited THz-wave spectrum narrowing was achieved by introducing the injection seeding method. Further, we have developed a spectroscopic THz imaging system using a TPO, which allows detection and identification of drugs concealed in envelopes, by introducing the component spatial pattern analysis. Several images of the envelope are recorded at different THz frequencies and then processed. The final result is an image that reveals what substances are present in the envelope, in what quantity, and how they are distributed across the envelope area. The example presented here shows the identification of three drugs, two of which illegal, while one is an over-the-counter drug.

  2. Quantum metrology with unitary parametrization processes

    PubMed Central

    Liu, Jing; Jing, Xiao-Xing; Wang, Xiaoguang

    2015-01-01

    Quantum Fisher information is a central quantity in quantum metrology. We discuss an alternative representation of quantum Fisher information for unitary parametrization processes. In this representation, all information of parametrization transformation, i.e., the entire dynamical information, is totally involved in a Hermitian operator . Utilizing this representation, quantum Fisher information is only determined by and the initial state. Furthermore, can be expressed in an expanded form. The highlights of this form is that it can bring great convenience during the calculation for the Hamiltonians owning recursive commutations with their partial derivative. We apply this representation in a collective spin system and show the specific expression of . For a simple case, a spin-half system, the quantum Fisher information is given and the optimal states to access maximum quantum Fisher information are found. Moreover, for an exponential form initial state, an analytical expression of quantum Fisher information by operator is provided. The multiparameter quantum metrology is also considered and discussed utilizing this representation. PMID:25708678

  3. Modeling Personnel Turnover in the Parametric Organization

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1991-01-01

    A primary issue in organizing a new parametric cost analysis function is to determine the skill mix and number of personnel required. The skill mix can be obtained by a functional decomposition of the tasks required within the organization and a matrixed correlation with educational or experience backgrounds. The number of personnel is a function of the skills required to cover all tasks, personnel skill background and cross training, the intensity of the workload for each task, migration through various tasks by personnel along a career path, personnel hiring limitations imposed by management and the applicant marketplace, personnel training limitations imposed by management and personnel capability, and the rate at which personnel leave the organization for whatever reason. Faced with the task of relating all of these organizational facets in order to grow a parametric cost analysis (PCA) organization from scratch, it was decided that a dynamic model was required in order to account for the obvious dynamics of the forming organization. The challenge was to create such a simple model which would be credible during all phases of organizational development. The model development process was broken down into the activities of determining the tasks required for PCA, determining the skills required for each PCA task, determining the skills available in the applicant marketplace, determining the structure of the dynamic model, implementing the dynamic model, and testing the dynamic model.

  4. Femtosecond fiber-feedback optical parametric oscillator.

    PubMed

    Südmeyer, T; Aus der Au, J; Paschotta, R; Keller, U; Smith, P G; Ross, G W; Hanna, D C

    2001-03-01

    We demonstrate what is to our knowledge the first synchronously pumped high-gain optical parametric oscillator (OPO) with feedback through a single-mode fiber. This device generates 2.3-2.7 W of signal power in 700-900-fs pulses tunable in a wavelength range from 1429 to 1473 nm. The necessary high gain was obtained from a periodically poled LiTaO(3) crystal pumped with as much as 8.2 W of power at 1030 nm from a passively mode-locked Yb:YAG laser with 600-fs pulse duration and a 35-MHz repetition rate. The fiber-feedback OPO setup is compact because most of the resonator feedback path consists of a standard telecom fiber. Because of the high parametric gain, the fiber-feedback OPO is highly insensitive to intracavity losses. For the same reason, the synchronization of the cavity with the pump laser is not critical, so active stabilization of the cavity length is not required. PMID:18040309

  5. Supramodal parametric working memory processing in humans.

    PubMed

    Spitzer, Bernhard; Blankenburg, Felix

    2012-03-01

    Previous studies of delayed-match-to-sample (DMTS) frequency discrimination in animals and humans have succeeded in delineating the neural signature of frequency processing in somatosensory working memory (WM). During retention of vibrotactile frequencies, stimulus-dependent single-cell and population activity in prefrontal cortex was found to reflect the task-relevant memory content, whereas increases in occipital alpha activity signaled the disengagement of areas not relevant for the tactile task. Here, we recorded EEG from human participants to determine the extent to which these mechanisms can be generalized to frequency retention in the visual and auditory domains. Subjects performed analogous variants of a DMTS frequency discrimination task, with the frequency information presented either visually, auditorily, or by vibrotactile stimulation. Examining oscillatory EEG activity during frequency retention, we found characteristic topographical distributions of alpha power over visual, auditory, and somatosensory cortices, indicating systematic patterns of inhibition and engagement of early sensory areas, depending on stimulus modality. The task-relevant frequency information, in contrast, was found to be represented in right prefrontal cortex, independent of presentation mode. In each of the three modality conditions, parametric modulations of prefrontal upper beta activity (20-30 Hz) emerged, in a very similar manner as recently found in vibrotactile tasks. Together, the findings corroborate a view of parametric WM as supramodal internal scaling of abstract quantity information and suggest strong relevance of previous evidence from vibrotactile work for a more general framework of quantity processing in human working memory. PMID:22399750

  6. Enhanced higher order parametric x radiation production

    NASA Astrophysics Data System (ADS)

    Dinova, Kay L.

    1992-12-01

    This thesis examines parametric x-radiation (PXR) which is the Bragg scattering of the virtual photons associated with the Coulomb field of relativistic charged particle from the atomic planes of a crystal. Higher order parametric x-radiation from the (002) planes of a thick mosaic graphite crystal have been observed. The raw PXR data was collected using a SiLi detector and a Pulse Height Analyzer (PHA) software program. The data was corrected for various effects including attenuation, detector drift, and efficiency. The absolute number of photons per electron was obtained by using the fluorescent x-ray yield from a tin foil backing on the graphite crystal to determine the LINAC current. The number of photons per electron observed greatly exceeds the expected values. Comparison of the ratio of intensity of a given order to the first order I(n)/I(I) to the theoretical ratio shows that the ratios increase with order. Not only is the absolute intensity greater than expected, but the higher orders (compared to the first order) are larger than expected. Lastly, the intensity for various crystal angle orientations and a fixed detector angle was measured.

  7. Degenerate parametric oscillation in quantum membrane optomechanics

    NASA Astrophysics Data System (ADS)

    Benito, Mónica; Sánchez Muñoz, Carlos; Navarrete-Benlloch, Carlos

    2016-02-01

    The promise of innovative applications has triggered the development of many modern technologies capable of exploiting quantum effects. But in addition to future applications, such quantum technologies have already provided us with the possibility of accessing quantum-mechanical scenarios that seemed unreachable just a few decades ago. With this spirit, in this work we show that modern optomechanical setups are mature enough to implement one of the most elusive models in the field of open system dynamics: degenerate parametric oscillation. Introduced in the eighties and motivated by its alleged implementability in nonlinear optical resonators, it rapidly became a paradigm for the study of dissipative phase transitions whose corresponding spontaneously broken symmetry is discrete. However, it was found that the intrinsic multimode nature of optical cavities makes it impossible to experimentally study the model all the way through its phase transition. In contrast, here we show that this long-awaited model can be implemented in the motion of a mechanical object dispersively coupled to the light contained in a cavity, when the latter is properly driven with multichromatic laser light. We focus on membranes as the mechanical element, showing that the main signatures of the degenerate parametric oscillation model can be studied in state-of-the-art setups, thus opening the possibility of analyzing spontaneous symmetry breaking and enhanced metrology in one of the cleanest dissipative phase transitions. In addition, the ideas put forward in this work would allow for the dissipative preparation of squeezed mechanical states.

  8. Occurrence and potential transport of selected pharmaceuticals and other organic wastewater compounds from wastewater-treatment plant influent and effluent to groundwater and canal systems in Miami-Dade County, Florida

    USGS Publications Warehouse

    Foster, Adam L.; Katz, Brian G.; Meyer, Michael T.

    2012-01-01

    An increased demand for fresh groundwater resources in South Florida has prompted Miami-Dade County to expand its water reclamation program and actively pursue reuse plans for aquifer recharge, irrigation, and wetland rehydration. The U.S. Geological Survey, in cooperation with the Miami-Dade Water and Sewer Department (WASD) and the Miami-Dade Department of Environmental Resources Management (DERM), initiated a study in 2008 to assess the presence of selected pharmaceuticals and other organic wastewater compounds in the influent and effluent at three regional wastewater-treatment plants (WWTPs) operated by the WASD and at one WWTP operated by the City of Homestead, Florida (HSWWTP).

  9. Bifurcations and sensitivity in parametric nonlinear programming

    NASA Technical Reports Server (NTRS)

    Lundberg, Bruce N.; Poore, Aubrey B.

    1990-01-01

    The parametric nonlinear programming problem is that of determining the behavior of solution(s) as a parameter or vector of parameters alpha belonging to R(sup r) varies over a region of interest for the problem: Minimize over x the set f(x, alpha):h(x, alpha) = 0, g(x, alpha) is greater than or equal to 0, where f:R(sup (n+r)) approaches R, h:R(sup (n+r)) approaches R(sup q) and g:R(sup (n+r)) approaches R(sup p) are assumed to be at least twice continuously differentiable. Some of these parameters may be fixed but not known precisely and others may be varied to enhance the performance of the system. In both cases a fundamentally important problem in the investigation of global sensitivity of the system is to determine the stability boundaries of the regions in parameter space which define regions of qualitatively similar solutions. The objective is to explain how numerical continuation and bifurcation techniques can be used to investigate the parametric nonlinear programming problem in a global sense. Thus, first the problem is converted to a closed system of parameterized nonlinear equations whose solution set contains all local minimizers of the original problem. This system, which will be represented as F(z,alpha) = O, will include all Karush-Kuhn-Tucker and Fritz John points, both feasible and infeasible solutions, and relative minima, maxima, and saddle points of the problem. The local existence and uniqueness of a solution path (z(alpha), alpha) of this system as well as the solution type persist as long as a singularity in the Jacobian D(sub z)F(z,alpha) is not encountered. Thus the nonsingularity of this Jacobian is characterized in terms of conditions on the problem itself. Then, a class of efficient predictor-corrector continuation procedures for tracing solution paths of the system F(z,alpha) = O which are tailored specifically to the parametric programming problem are described. Finally, these procedures and the obtained information are illustrated

  10. Parametric thermal evaluations of waste package emplacement

    SciTech Connect

    Bahney, R.H. III; Doering, T.W.

    1996-02-01

    Parametric thermal evaluations of spent nuclear fuel (SNF) waste packages (WPs) emplaced in the potential repository were performed to determine the impact of thermal loading, WP spacing, drift diameter, SNF aging, backfill, and relocation on the design of the Engineered Barrier System. Temperatures in the WP and near-field host rock are key to radionuclide containment, as they directly affect oxidation rates of the metal barriers and the ability of the rock to impede particle movement which must be demonstrated for a safe and licensable repository. Maximum allowable temperatures are based on material performance criteria and are specified as the following design goals for the WP/EBS design: SNF cladding 350{degrees}C, drift wall 200{degrees}C, and TSw3 rock 115{degrees}C.

  11. Parametric systems analysis for tandem mirror hybrids

    SciTech Connect

    Lee, J.D.; Chapin, D.L.; Chi, J.W.H.

    1980-09-01

    Fusion fission systems, consisting of fissile producing fusion hybrids combining a tandem mirror fusion driver with various blanket types and net fissile consuming LWR's, have been modeled and analyzed parametrically. Analysis to date indicates that hybrids can be competitive with mined uranium when U/sub 3/O/sub 8/ cost is about 100 $/lb., adding less than 25% to present day cost of power from LWR's. Of the three blanket types considered, uranium fast fission (UFF), thorium fast fission (ThFF), and thorium fission supressed (ThFS), the ThFS blanket has a modest economic advantage under most conditions but has higher support ratios and potential safety advantages under all conditions.

  12. Quantum Cylindrical Waves and Parametrized Field Theory

    NASA Astrophysics Data System (ADS)

    Varadarajan, Madhavan

    In this article, we review some illustrative results in the study of two related toy models for quantum gravity, namely cylindrical waves (which are cylindrically symmetric gravitational fields)and parametrized field theory (which is just free scalar field theory on a flat space-time in generally covariant disguise). In the former, we focus on the phenomenon of unexpected large quantum gravity effects in regions of weak classical gravitational fields and on an analysis of causality in a quantum geometry. In the latter, we focus on Dirac quantization, argue that this is related to the unitary implementability of free scalar field evolution along curved foliations of the flat space-time and review the relevant results for unitary implementability.

  13. Ultrafast Airy beam optical parametric oscillator.

    PubMed

    Apurv Chaitanya, N; Kumar, S Chaitanya; Aadhi, A; Samanta, G K; Ebrahim-Zadeh, M

    2016-01-01

    We report on the first realization of an ultrafast Airy beam optical parametric oscillator (OPO). By introducing intracavity cubic phase modulation to the resonant Gaussian signal in a synchronously-pumped singly-resonant OPO cavity and its subsequent Fourier transformation, we have generated 2-dimensional Airy beam in the output signal across a 250 nm tuning range in the near-infrared. The generated Airy beam can be tuned continuously from 1477 to 1727 nm, providing an average power of as much as 306 mW at 1632 nm in pulses of ~23 ps duration with a spectral bandwidth of 1.7 nm. PMID:27476910

  14. Parametric constraints in multi-beam interference

    NASA Astrophysics Data System (ADS)

    Burrow, Guy M.; Gaylord, Thomas K.

    2012-10-01

    Multi-beam interference (MBI) represents a method of producing one-, two-, and three-dimensional submicron periodic optical-intensity distributions for applications including micro- and nano-electronics, photonic crystals, metamaterial, biomedical structures, optical trapping, and numerous other subwavelength structures. Accordingly, numerous optical configurations have been developed to implement MBI. However, these configurations typically provide limited ability to condition the key parameters of each interfering beam. Constraints on individual beam amplitudes and polarizations are systematically considered to understand their effects on lithographically useful MBI periodic patterning possibilities. A method for analyzing parametric constraints is presented and used to compare the optimized optical-intensity distributions for representative constrained systems. Case studies are presented for both square and hexagonal-lattices produced via three-beam interference. Results demonstrate that constraints on individual-beam polarizations significantly impact patterning possibilities and must be included in the systematic design of an MBI system.

  15. Simplifying the circuit of Josephson parametric converters

    NASA Astrophysics Data System (ADS)

    Abdo, Baleegh; Brink, Markus; Chavez-Garcia, Jose; Keefe, George

    Josephson parametric converters (JPCs) are quantum-limited three-wave mixing devices that can play various important roles in quantum information processing in the microwave domain, including amplification of quantum signals, transduction of quantum information, remote entanglement of qubits, nonreciprocal amplification, and circulation of signals. However, the input-output and biasing circuit of a state-of-the-art JPC consists of bulky components, i.e. two commercial off-chip broadband 180-degree hybrids, four phase-matched short coax cables, and one superconducting magnetic coil. Such bulky hardware significantly hinders the integration of JPCs in scalable quantum computing architectures. In my talk, I will present ideas on how to simplify the JPC circuit and show preliminary experimental results

  16. Parametric resonance and cosmological gravitational waves

    SciTech Connect

    Sa, Paulo M.; Henriques, Alfredo B.

    2008-03-15

    We investigate the production of gravitational waves due to quantum fluctuations of the vacuum during the transition from the inflationary to the radiation-dominated eras of the universe, assuming this transition to be dominated by the phenomenon of parametric resonance. The energy spectrum of the gravitational waves is calculated using the method of continuous Bogoliubov coefficients, which avoids the problem of overproduction of gravitons at large frequencies. We found, on the sole basis of the mechanism of quantum fluctuations, that the resonance field leaves no explicit and distinctive imprint on the gravitational-wave energy spectrum, apart from an overall upward or downward translation. Therefore, the main features in the spectrum are due to the inflaton field, which leaves a characteristic imprint at frequencies of the order of MHz/GHz.

  17. Ultrafast Airy beam optical parametric oscillator

    PubMed Central

    Apurv Chaitanya, N.; Kumar, S. Chaitanya; Aadhi, A.; Samanta, G. K.; Ebrahim-Zadeh, M.

    2016-01-01

    We report on the first realization of an ultrafast Airy beam optical parametric oscillator (OPO). By introducing intracavity cubic phase modulation to the resonant Gaussian signal in a synchronously-pumped singly-resonant OPO cavity and its subsequent Fourier transformation, we have generated 2-dimensional Airy beam in the output signal across a 250 nm tuning range in the near-infrared. The generated Airy beam can be tuned continuously from 1477 to 1727 nm, providing an average power of as much as 306 mW at 1632 nm in pulses of ~23 ps duration with a spectral bandwidth of 1.7 nm. PMID:27476910

  18. Parametric study of double cellular detonation structure

    NASA Astrophysics Data System (ADS)

    Khasainov, B.; Virot, F.; Presles, H.-N.; Desbordes, D.

    2013-05-01

    A parametric numerical study is performed of a detonation cellular structure in a model gaseous explosive mixture whose decomposition occurs in two successive exothermic reaction steps with markedly different characteristic times. Kinetic and energetic parameters of both reactions are varied in a wide range in the case of one-dimensional steady and two-dimensional (2D) quasi-steady self-supported detonations. The range of governing parameters of both exothermic steps is defined where a "marked" double cellular structure exists. It is shown that the two-level cellular structure is completely governed by the kinetic parameters and the local overdrive ratio of the detonation front propagating inside large cells. Furthermore, since it is quite cumbersome to use detailed chemical kinetics in unsteady 2D case, the proposed work should help to identify the mixtures and the domain of their equivalence ratio where double detonation structure could be observed.

  19. Parametric phase diffusion analysis of irregular oscillations

    NASA Astrophysics Data System (ADS)

    Schwabedal, Justus T. C.

    2014-09-01

    Parametric phase diffusion analysis (ΦDA), a method to determine variability of irregular oscillations, is presented. ΦDA is formulated as an analysis technique for sequences of Poincaré return times found in numerous applications. The method is unbiased by the arbitrary choice of Poincaré section, i.e. isophase, which causes a spurious component in the Poincaré return times. Other return-time variability measures can be biased drastically by these spurious return times, as shown for the Fano factor of chaotic oscillations in the Rössler system. The empirical use of ΦDA is demonstrated in an application to heart rate data from the Fantasia Database, for which ΦDA parameters successfully classify heart rate variability into groups of age and gender.

  20. Multidimensional Scaling Visualization Using Parametric Entropy

    NASA Astrophysics Data System (ADS)

    Lopes, António M.; Tenreiro Machado, J. A.; Galhano, Alexandra M.

    2015-12-01

    This paper studies complex systems using a generalized multidimensional scaling (MDS) technique. Complex systems are characterized by time-series responses, interpreted as a manifestation of their dynamics. Two types of time-series are analyzed, namely 18 stock markets and the gross domestic product per capita of 18 countries. For constructing the MDS charts, indices based on parametric entropies are adopted. Multiparameter entropies allow the variation of the parameters leading to alternative sets of charts. The final MDS maps are then assembled by means of Procrustes’ method that maximizes the fit between the individual charts. Therefore, the proposed method can be interpreted as a generalization to higher dimensions of the standard technique that represents (and discretizes) items by means of single “points” (i.e. zero-dimensional “objects”). The MDS plots, involving one-, two- and three-dimensional “objects”, reveal a good performance in capturing the correlations between data.

  1. Power-law parametrized quintessence model

    SciTech Connect

    Rahvar, Sohrab; Movahed, M. Sadegh

    2007-01-15

    We propose a simple power-law parametrized quintessence model with time-varying equation of state and obtain corresponding quintessence potential of this model. This model is compared with Supernova Type Ia (SNIa) Gold sample data, size of baryonic acoustic peak from Sloan Digital Sky Survey (SDSS), the position of the acoustic peak from the CMB observations and structure formation from the 2dFGRS survey and put constrain on the parameters of model. The parameters from the best fit indicates that the equation of state of this model at the present time is w{sub 0}=-1.40{sub -0.65}{sup +0.40} at 1{sigma} confidence level. Finally we calculate the age of universe in this model and compare it with the age of old cosmological objects.

  2. Normal dispersion femtosecond fiber optical parametric oscillator.

    PubMed

    Nguyen, T N; Kieu, K; Maslov, A V; Miyawaki, M; Peyghambarian, N

    2013-09-15

    We propose and demonstrate a synchronously pumped fiber optical parametric oscillator (FOPO) operating in the normal dispersion regime. The FOPO generates chirped pulses at the output, allowing significant pulse energy scaling potential without pulse breaking. The output average power of the FOPO at 1600 nm was ∼60  mW (corresponding to 1.45 nJ pulse energy and ∼55% slope power conversion efficiency). The output pulses directly from the FOPO were highly chirped (∼3  ps duration), and they could be compressed outside of the cavity to 180 fs by using a standard optical fiber compressor. Detailed numerical simulation was also performed to understand the pulse evolution dynamics around the laser cavity. We believe that the proposed design concept is useful for scaling up the pulse energy in the FOPO using different pumping wavelengths. PMID:24104828

  3. Stellar parametrization from Gaia RVS spectra

    NASA Astrophysics Data System (ADS)

    Recio-Blanco, A.; de Laverny, P.; Allende Prieto, C.; Fustes, D.; Manteiga, M.; Arcay, B.; Bijaoui, A.; Dafonte, C.; Ordenovic, C.; Ordoñez Blanco, D.

    2016-01-01

    Context. Among the myriad of data collected by the ESA Gaia satellite, about 150 million spectra will be delivered by the Radial Velocity Spectrometer (RVS) for stars as faint as GRVS~ 16. A specific stellar parametrization will be performed on most of these RVS spectra, i.e. those with enough high signal-to-noise ratio (S/N), which should correspond to single stars that have a magnitude in the RVS band brighter than ~14.5. Some individual chemical abundances will also be estimated for the brightest targets. Aims: We describe the different parametrization codes that have been specifically developed or adapted for RVS spectra within the GSP-Spec working group of the analysis consortium. The tested codes are based on optimisation (FERRE and GAUGUIN), projection (MATISSE), or pattern-recognition methods (Artificial Neural Networks). We present and discuss each of their expected performances in the recovered stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity) for B- to K-type stars. The performances for determining of [α/Fe] ratios are also presented for cool stars. Methods: Each code has been homogeneously tested with a large grid of RVS simulated synthetic spectra of BAFGK-spectral types (dwarfs and giants), with metallicities varying from 10-2.5 to 10+ 0.5 the solar metallicity, and taking variations of ±0.4 dex in the composition of the α-elements into consideration. The tests were performed for S/N ranging from ten to 350. Results: For all the stellar types we considered, stars brighter than GRVS~ 12.5 are very efficiently parametrized by the GSP-Spec pipeline, including reliable estimations of [α/Fe]. Typical internal errors for FGK metal-rich and metal-intermediate stars are around 40 K in Teff, 0.10 dex in log(g), 0.04 dex in [M/H], and 0.03 dex in [α/Fe] at GRVS = 10.3. They degrade to 155 K in Teff, 0.15 dex in log(g), 0.10 dex in [M/H], and 0.1 dex in [α/Fe] at GRVS~ 12. Similar accuracies in Teff and [M/H] are

  4. uvmcmcfit: Parametric models to interferometric data fitter

    NASA Astrophysics Data System (ADS)

    Bussmann, Shane; Leung, Tsz Kuk (Daisy); Conley, Alexander

    2016-06-01

    Uvmcmcfit fits parametric models to interferometric data. It is ideally suited to extract the maximum amount of information from marginally resolved observations with interferometers like the Atacama Large Millimeter Array (ALMA), Submillimeter Array (SMA), and Plateau de Bure Interferometer (PdBI). uvmcmcfit uses emcee (ascl:1303.002) to do Markov Chain Monte Carlo (MCMC) and can measure the goodness of fit from visibilities rather than deconvolved images, an advantage when there is strong gravitational lensing and in other situations. uvmcmcfit includes a pure-Python adaptation of Miriad’s (ascl:1106.007) uvmodel task to generate simulated visibilities given observed visibilities and a model image and a simple ray-tracing routine that allows it to account for both strongly lensed systems (where multiple images of the lensed galaxy are detected) and weakly lensed systems (where only a single image of the lensed galaxy is detected).

  5. A parametric evaluation of railgun augmentation

    NASA Astrophysics Data System (ADS)

    Kotas, J. F.; Guderjahn, C. A.; Littman, F. D.

    1986-11-01

    A general dynamic system model of an augmented electromagnetic launch (EML) system was developed. This model was used to characterize the augmentation effect on EML system performance by a direct comparison to a nonaugmented or simple railgun system. The results of these calculations indicate that increasing rail augmentation increases both Joule heating losses and total EML system inductance. These losses and the larger system inductance were shown to decrease system efficiency despite the lower peak rail current required to induce the same Lorentz force on the projectile in the simple EML system. The Joule heating loss was shown to be reduced by decreasing the initial augmentor rail temperature or by increasing the augmentor rail area. This paper discusses the augmented EML system model and reports the results of the parametric calculations.

  6. Ultrafast Airy beam optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Apurv Chaitanya, N.; Kumar, S. Chaitanya; Aadhi, A.; Samanta, G. K.; Ebrahim-Zadeh, M.

    2016-08-01

    We report on the first realization of an ultrafast Airy beam optical parametric oscillator (OPO). By introducing intracavity cubic phase modulation to the resonant Gaussian signal in a synchronously-pumped singly-resonant OPO cavity and its subsequent Fourier transformation, we have generated 2-dimensional Airy beam in the output signal across a 250 nm tuning range in the near-infrared. The generated Airy beam can be tuned continuously from 1477 to 1727 nm, providing an average power of as much as 306 mW at 1632 nm in pulses of ~23 ps duration with a spectral bandwidth of 1.7 nm.

  7. Compact, flexible, frequency agile parametric wavelength converter

    DOEpatents

    Velsko, Stephan P.; Yang, Steven T.

    2002-01-01

    This improved Frequency Agile Optical Parametric Oscillator provides near on-axis pumping of a single QPMC with a tilted periodically poled grating to overcome the necessity to find a particular crystal that will permit collinear birefringence in order to obtain a desired tuning range. A tilted grating design and the elongation of the transverse profile of the pump beam in the angle tuning plane of the FA-OPO reduces the rate of change of the overlap between the pumped volume in the crystal and the resonated and non-resonated wave mode volumes as the pump beam angle is changed. A folded mirror set relays the pivot point for beam steering from a beam deflector to the center of the FA-OPO crystal. This reduces the footprint of the device by as much as a factor of two over that obtained when using the refractive telescope design.

  8. Parametric design and gridding through relational geometry

    NASA Technical Reports Server (NTRS)

    Letcher, John S., Jr.; Shook, D. Michael

    1995-01-01

    Relational Geometric Synthesis (RGS) is a new logical framework for building up precise definitions of complex geometric models from points, curves, surfaces and solids. RGS achieves unprecedented design flexibility by supporting a rich variety of useful curve and surface entities. During the design process, many qualitative and quantitative relationships between elementary objects may be captured and retained in a data structure equivalent to a directed graph, such that they can be utilized for automatically updating the complete model geometry following changes in the shape or location of an underlying object. Capture of relationships enables many new possibilities for parametric variations and optimization. Examples are given of panelization applications for submarines, sailing yachts, offshore structures, and propellers.

  9. Parametric separation of symmetric pure quantum states

    NASA Astrophysics Data System (ADS)

    Solís-Prosser, M. A.; Delgado, A.; Jiménez, O.; Neves, L.

    2016-01-01

    Quantum state separation is a probabilistic map that transforms a given set of pure states into another set of more distinguishable ones. Here we investigate such a map acting onto uniparametric families of symmetric linearly dependent or independent quantum states. We obtained analytical solutions for the success probability of the maps—which is shown to be optimal—as well as explicit constructions in terms of positive operator valued measures. Our results can be used for state discrimination strategies interpolating continuously between minimum-error and unambiguous (or maximum-confidence) discrimination, which, in turn, have many applications in quantum information protocols. As an example, we show that quantum teleportation through a nonmaximally entangled quantum channel can be accomplished with higher probability than the one provided by unambiguous (or maximum-confidence) discrimination and with higher fidelity than the one achievable by minimum-error discrimination. Finally, an optical network is proposed for implementing parametric state separation.

  10. PARSEC: PARametrized Simulation Engine for Cosmic rays

    NASA Astrophysics Data System (ADS)

    Bretz, Hans-Peter; Erdmann, Martin; Schiffer, Peter; Walz, David; Winchen, Tobias

    2015-02-01

    PARSEC (PARametrized Simulation Engine for Cosmic rays) is a simulation engine for fast generation of ultra-high energy cosmic ray data based on parameterizations of common assumptions of UHECR origin and propagation. Implemented are deflections in unstructured turbulent extragalactic fields, energy losses for protons due to photo-pion production and electron-pair production, as well as effects from the expansion of the universe. Additionally, a simple model to estimate propagation effects from iron nuclei is included. Deflections in the Galactic magnetic field are included using a matrix approach with precalculated lenses generated from backtracked cosmic rays. The PARSEC program is based on object oriented programming paradigms enabling users to extend the implemented models and is steerable with a graphical user interface.

  11. Parametric amplification of soliton steering in optical lattices.

    PubMed

    Kartashov, Yaroslav V; Torner, Lluis; Vysloukh, Victor A

    2004-05-15

    We report on the effect of parametric amplification of spatial soliton swinging in Kerr-type nonlinear media with longitudinal and transverse periodic modulation of the linear refractive index. The parameter areas are found where the soliton center motion is analogous to the motion of a parametrically driven pendulum. This effect has potential applications for controllable soliton steering. PMID:15181999

  12. Injection-seeded optical parametric oscillator and system

    DOEpatents

    Lucht, Robert P.; Kulatilaka, Waruna D.; Anderson, Thomas N.; Bougher, Thomas L.

    2007-10-09

    Optical parametric oscillators (OPO) and systems are provided. The OPO has a non-linear optical material located between two optical elements where the product of the reflection coefficients of the optical elements are higher at the output wavelength than at either the pump or idler wavelength. The OPO output may be amplified using an additional optical parametric amplifier (OPA) stage.

  13. Using a Parametric Solid Modeler as an Instructional Tool

    ERIC Educational Resources Information Center

    Devine, Kevin L.

    2008-01-01

    This paper presents the results of a quasi-experimental study that brought 3D constraint-based parametric solid modeling technology into the high school mathematics classroom. This study used two intact groups; a control group and an experimental group, to measure the extent to which using a parametric solid modeler during instruction affects…

  14. Parametric cost estimation for space science missions

    NASA Astrophysics Data System (ADS)

    Lillie, Charles F.; Thompson, Bruce E.

    2008-07-01

    Cost estimation for space science missions is critically important in budgeting for successful missions. The process requires consideration of a number of parameters, where many of the values are only known to a limited accuracy. The results of cost estimation are not perfect, but must be calculated and compared with the estimates that the government uses for budgeting purposes. Uncertainties in the input parameters result from evolving requirements for missions that are typically the "first of a kind" with "state-of-the-art" instruments and new spacecraft and payload technologies that make it difficult to base estimates on the cost histories of previous missions. Even the cost of heritage avionics is uncertain due to parts obsolescence and the resulting redesign work. Through experience and use of industry best practices developed in participation with the Aerospace Industries Association (AIA), Northrop Grumman has developed a parametric modeling approach that can provide a reasonably accurate cost range and most probable cost for future space missions. During the initial mission phases, the approach uses mass- and powerbased cost estimating relationships (CER)'s developed with historical data from previous missions. In later mission phases, when the mission requirements are better defined, these estimates are updated with vendor's bids and "bottoms- up", "grass-roots" material and labor cost estimates based on detailed schedules and assigned tasks. In this paper we describe how we develop our CER's for parametric cost estimation and how they can be applied to estimate the costs for future space science missions like those presented to the Astronomy & Astrophysics Decadal Survey Study Committees.

  15. Evaluation of Two Energy Balance Closure Parametrizations

    NASA Astrophysics Data System (ADS)

    Eder, Fabian; De Roo, Frederik; Kohnert, Katrin; Desjardins, Raymond L.; Schmid, Hans Peter; Mauder, Matthias

    2014-05-01

    A general lack of energy balance closure indicates that tower-based eddy-covariance (EC) measurements underestimate turbulent heat fluxes, which calls for robust correction schemes. Two parametrization approaches that can be found in the literature were tested using data from the Canadian Twin Otter research aircraft and from tower-based measurements of the German Terrestrial Environmental Observatories (TERENO) programme. Our analysis shows that the approach of Huang et al. (Boundary-Layer Meteorol 127:273-292, 2008), based on large-eddy simulation, is not applicable to typical near-surface flux measurements because it was developed for heights above the surface layer and over homogeneous terrain. The biggest shortcoming of this parametrization is that the grid resolution of the model was too coarse so that the surface layer, where EC measurements are usually made, is not properly resolved. The empirical approach of Panin and Bernhofer (Izvestiya Atmos Oceanic Phys 44:701-716, 2008) considers landscape-level roughness heterogeneities that induce secondary circulations and at least gives a qualitative estimate of the energy balance closure. However, it does not consider any feature of landscape-scale heterogeneity other than surface roughness, such as surface temperature, surface moisture or topography. The failures of both approaches might indicate that the influence of mesoscale structures is not a sufficient explanation for the energy balance closure problem. However, our analysis of different wind-direction sectors shows that the upwind landscape-scale heterogeneity indeed influences the energy balance closure determined from tower flux data. We also analyzed the aircraft measurements with respect to the partitioning of the "missing energy" between sensible and latent heat fluxes and we could confirm the assumption of scalar similarity only for Bowen ratios 1.

  16. Extended parametric representation of compressor fans and turbines. Volume 2: Part user's manual (parametric turbine)

    NASA Technical Reports Server (NTRS)

    Coverse, G. L.

    1984-01-01

    A turbine modeling technique has been developed which will enable the user to obtain consistent and rapid off-design performance from design point input. This technique is applicable to both axial and radial flow turbine with flow sizes ranging from about one pound per second to several hundred pounds per second. The axial flow turbines may or may not include variable geometry in the first stage nozzle. A user-specified option will also permit the calculation of design point cooling flow levels and corresponding changes in efficiency for the axial flow turbines. The modeling technique has been incorporated into a time-sharing program in order to facilitate its use. Because this report contains a description of the input output data, values of typical inputs, and example cases, it is suitable as a user's manual. This report is the second of a three volume set. The titles of the three volumes are as follows: (1) Volume 1 CMGEN USER's Manual (Parametric Compressor Generator); (2) Volume 2 PART USER's Manual (Parametric Turbine); (3) Volume 3 MODFAN USER's Manual (Parametric Modulation Flow Fan).

  17. Comparisons of parametric and non-parametric classification rules for e-nose and e-tongue

    NASA Astrophysics Data System (ADS)

    Mahat, Nor Idayu; Zakaria, Ammar; Shakaff, Ali Yeon Md

    2015-12-01

    This paper evaluates the performance of parametric and non-parametric classification rules in sensor technology. The growing of sensor technologies, e-nose and e-tongue, has urged engineers to equip themselves with the utmost recent and advanced statistical approaches. As data collected from e-nose and e-tongue face some complexities, often data pre-processing and transformation are performed prior to the classification. This paper discusses the comparisons made on some known parametric and non-parametric classification rules in the application for classifying data of e-nose and e-tongue. The comparisons which based on leave-one-out accuracy, sensitivity and specificity shows that non-parametric approaches especially k-nearest neighbour does not much distorted with changes of distribution, but Naïve Bayes is greatly influenced by the structure of the data.

  18. Parametric generation of quadrature squeezing of mirrors in cavity optomechanics

    SciTech Connect

    Liao, Jie-Qiao; Law, C. K.

    2011-03-15

    We propose a method to generate quadrature-squeezed states of a moving mirror in a Fabry-Perot cavity. This is achieved by exploiting the fact that when the cavity is driven by an external field with a large detuning, the moving mirror behaves as a parametric oscillator. We show that parametric resonance can be reached approximately by modulating the driving field amplitude at a frequency matching the frequency shift of the mirror. The parametric resonance leads to an efficient generation of squeezing, which is limited by the thermal noise of the environment.

  19. Nonlinear cross-talk mitigation in polychromatic parametric sampling gate.

    PubMed

    Ataie, Vahid; Wiberg, Andreas O J; Alic, Nikola; Radic, Stojan

    2013-02-25

    New technique for cancellation of nonlinear cross-talk in polychromatic parametric sampling gate is described and quantified. The method relies on a newly derived look-up table method that achieves equalization and suppresses nonlinear response associated with parametric sampling operation. The new cancellation scheme is implemented in a framework of a specific parametric photonics assisted analog-to-digital conversion (ADC) copy-and-sample-all (CaSA) architecture. A 20 dB improvement in total harmonic distortion is demonstrated experimentally. PMID:23481948

  20. Parametric instabilities in picosecond time scales

    SciTech Connect

    Baldis, H.A.; Rozmus, W.; Labaune, C.; Mounaix, Ph.; Pesme, D.; Baton, S.; Tikhonchuk, V.T.

    1993-03-01

    The coupling of intense laser light with plasmas is a rich field of plasma physics, with many applications. Among these are inertial confinement fusion (ICF), x-ray lasers, particle acceleration, and x-ray sources. Parametric instabilities have been studied for many years because of their importance to ICF; with laser pulses with duration of approximately a nanosecond, and laser intensities in the range 10{sup 14}--10{sup 15}W/cm{sup 2} these instabilities are of crucial concern because of a number of detrimental effects. Although the laser pulse duration of interest for these studies are relatively long, it has been evident in the past years that to reach an understanding of these instabilities requires their characterization and analysis in picosecond time scales. At the laser intensities of interest, the growth rate for stimulated Brillouin scattering (SBS) is of the order of picoseconds, and of an order of magnitude shorter for stimulated Raman scattering (SRS). In this paper the authors discuss SBS and SRS in the context of their evolution in picosecond time scales. They describe the fundamental concepts associated with their growth and saturation, and recent work on the nonlinear treatment required for the modeling of these instabilities at high laser intensities.

  1. Improvement of Statistical Decisions under Parametric Uncertainty

    NASA Astrophysics Data System (ADS)

    Nechval, Nicholas A.; Nechval, Konstantin N.; Purgailis, Maris; Berzins, Gundars; Rozevskis, Uldis

    2011-10-01

    A large number of problems in production planning and scheduling, location, transportation, finance, and engineering design require that decisions be made in the presence of uncertainty. Decision-making under uncertainty is a central problem in statistical inference, and has been formally studied in virtually all approaches to inference. The aim of the present paper is to show how the invariant embedding technique, the idea of which belongs to the authors, may be employed in the particular case of finding the improved statistical decisions under parametric uncertainty. This technique represents a simple and computationally attractive statistical method based on the constructive use of the invariance principle in mathematical statistics. Unlike the Bayesian approach, an invariant embedding technique is independent of the choice of priors. It allows one to eliminate unknown parameters from the problem and to find the best invariant decision rule, which has smaller risk than any of the well-known decision rules. To illustrate the proposed technique, application examples are given.

  2. Parametric optimization of inverse trapezoid oleophobic surfaces.

    PubMed

    Cavalli, Andrea; Bøggild, Peter; Okkels, Fridolin

    2012-12-18

    In this paper, we introduce a comprehensive and versatile approach to the parametric shape optimization of oleophobic surfaces. We evaluate the performance of inverse trapezoid microstructures in terms of three objective parameters: apparent contact angle, maximum sustainable hydrostatic pressure, and mechanical robustness (Im, M.; Im, H:; Lee, J.H.; Yoon, J.B.; Choi, Y.K. A robust superhydrophobic and superoleophobic surface with inverse-trapezoidal microstructures on a large transparent flexible substrate. Soft Matter 2010, 6, 1401-1404; Im, M.; Im, H:; Lee, J.H.; Yoon, J.B.; Choi, Y.K. Analytical Modeling and Thermodynamic Analysis of Robust Superhydrophobic Surfaces with Inverse-Trapezoidal Microstructures. Langmuir 2010, 26, 17389-17397). We find that each of these parameters, if considered alone, would give trivial optima, while their interplay provides a well-defined optimal shape and aspect ratio. The inclusion of mechanical robustness in combination with conventional performance characteristics favors solutions relevant for practical applications, as mechanical stability is a critical issue not often addressed in idealized models. PMID:23078017

  3. Parametric Decay During HHFW on NSTX

    SciTech Connect

    Wilson, J.R.; Bernabei, S.; Biewer, T.; Diem, S.; Hosea, J.; LeBlanc, B.; Phillips, C.K.; Ryan, P.; Swain, D.W.

    2005-09-26

    High Harmonic Fast Wave (HHFW) heating experiments on NSTX have been observed to be accompanied by significant edge ion heating (Ti >> Te). This heating is found to be anisotropic with T perpendicular > T parallel. Simultaneously, coherent oscillations have been detected with an edge Langmuir probe. The oscillations are consistent with parametric decay of the incident fast wave ({omega} > 13{omega}c) into ion Bernstein waves and an unobserved ion-cyclotron quasi-mode. The observation of anisotropic heating is consistent with Bernstein wave damping and the Bernstein waves should completely damp in the plasma periphery as they propagate toward a cyclotron harmonic resonance. The number of daughter waves is found to increase with rf power and to increase as the incident wave's toroidal wavelength increases. The frequencies of the daughter wave are separated by the edge ion cyclotron frequency. Theoretical calculations of the threshold for this decay in uniform plasma indicate an extremely small value of incident power should be required to drive the instability. While such decays are commonly observed at lower harmonics in conventional ICRF heating scenarios they usually do not involve the loss of significant wave power from the pump wave. On NSTX an estimate of the power loss can be found by calculating the minimum power required to support the edge ion heating (presumed to come from the decay Bernstein wave). This calculation indicates at least 20-30% of the incident rf power ends up as decay waves.

  4. Parametric Study of Variable Emissivity Radiator Surfaces

    NASA Technical Reports Server (NTRS)

    Grob, Lisa M.; Swanson, Theodore D.

    2000-01-01

    The goal of spacecraft thermal design is to accommodate a high function satellite in a low weight and real estate package. The extreme environments that the satellite is exposed during its orbit are handled using passive and active control techniques. Heritage passive heat rejection designs are sized for the hot conditions and augmented for the cold end with heaters. The active heat rejection designs to date are heavy, expensive and/or complex. Incorporating an active radiator into the design that is lighter, cheaper and more simplistic will allow designers to meet the previously stated goal of thermal spacecraft design Varying the radiator's surface properties without changing the radiating area (as with VCHP), or changing the radiators' views (traditional louvers) is the objective of the variable emissivity (vary-e) radiator technologies. A parametric evaluation of the thermal performance of three such technologies is documented in this paper. Comparisons of the Micro-Electromechanical Systems (MEMS), Electrochromics, and Electrophoretics radiators to conventional radiators, both passive and active are quantified herein. With some noted limitations, the vary-e radiator surfaces provide significant advantages over traditional radiators and a promising alternative design technique for future spacecraft thermal systems.

  5. Parametric probability distributions for anomalous change detection

    SciTech Connect

    Theiler, James P; Foy, Bernard R; Wohlberg, Brendt E; Scovel, James C

    2010-01-01

    The problem of anomalous change detection arises when two (or possibly more) images are taken of the same scene, but at different times. The aim is to discount the 'pervasive differences' that occur thoughout the imagery, due to the inevitably different conditions under which the images were taken (caused, for instance, by differences in illumination, atmospheric conditions, sensor calibration, or misregistration), and to focus instead on the 'anomalous changes' that actually take place in the scene. In general, anomalous change detection algorithms attempt to model these normal or pervasive differences, based on data taken directly from the imagery, and then identify as anomalous those pixels for which the model does not hold. For many algorithms, these models are expressed in terms of probability distributions, and there is a class of such algorithms that assume the distributions are Gaussian. By considering a broader class of distributions, however, a new class of anomalous change detection algorithms can be developed. We consider several parametric families of such distributions, derive the associated change detection algorithms, and compare the performance with standard algorithms that are based on Gaussian distributions. We find that it is often possible to significantly outperform these standard algorithms, even using relatively simple non-Gaussian models.

  6. Recursive delay calculation unit for parametric beamformer

    NASA Astrophysics Data System (ADS)

    Nikolov, Svetoslav I.; Jensen, Jørgen A.; Tomov, Borislav

    2006-03-01

    This paper presents a recursive approach for parametric delay calculations for a beamformer. The suggested calculation procedure is capable of calculating the delays for any image line defined by an origin and arbitrary direction. It involves only add and shift operations making it suitable for hardware implementation. One delaycalculation unit (DCU) needs 4 parameters, and all operations can be implemented using fixed-point arithmetics. An N-channel system needs N+ 1 DCUs per line - one for the distance from the transmit origin to the image point and N for the distances from the image point to each of the receivers. Each DCU recursively calculates the square of the distance between a transducer element and a point on the beamformed line. Then it finds the approximate square root. The distance to point i is used as an initial guess for point i + 1. Using fixed-point calculations with 36-bit precision gives an error in the delay calculations on the order of 1/64 samples, at a sampling frequency of f s = 40 MHz. The circuit has been synthesized for a Virtex II Pro device speed grade 6 in two versions - a pipelined and a non-pipelined producing 150 and 30 million delays per second, respectively. The non-pipelined circuit occupies about 0.5 % of the FPGA resources and the pipelined one about 1 %. When the square root is found with a pipelined CORDIC processor, 2 % of the FPGA slices are used to deliver 150 million delays per second.

  7. Parametric Cost Analysis: A Design Function

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1989-01-01

    Parametric cost analysis uses equations to map measurable system attributes into cost. The measures of the system attributes are called metrics. The equations are called cost estimating relationships (CER's), and are obtained by the analysis of cost and technical metric data of products analogous to those to be estimated. Examples of system metrics include mass, power, failure_rate, mean_time_to_repair, energy _consumed, payload_to_orbit, pointing_accuracy, manufacturing_complexity, number_of_fasteners, and percent_of_electronics_weight. The basic assumption is that a measurable relationship exists between system attributes and the cost of the system. If a function exists, the attributes are cost drivers. Candidates for metrics include system requirement metrics and engineering process metrics. Requirements are constraints on the engineering process. From optimization theory we know that any active constraint generates cost by not permitting full optimization of the objective. Thus, requirements are cost drivers. Engineering processes reflect a projection of the requirements onto the corporate culture, engineering technology, and system technology. Engineering processes are an indirect measure of the requirements and, hence, are cost drivers.

  8. Parametric Decay during HHFW on NSTX

    SciTech Connect

    J.R. Wilson; S. Bernabei; T. Biewer; S. Diem; J. Hosea; B. LeBlanc; C.K. Phillips; P. Ryan; D.W. Swain

    2005-05-13

    High Harmonic Fast Wave (HHFW) heating experiments on NSTX have been observed to be accompanied by significant edge ion heating (T{sub i} >> T{sub e}). This heating is found to be anisotropic with T{sub perp} > T{sub par}. Simultaneously, coherent oscillations have been detected with an edge Langmuir probe. The oscillations are consistent with parametric decay of the incident fast wave ({omega} > 13{omega}{sub ci}) into ion Bernstein waves and an unobserved ion-cyclotron quasi-mode. The observation of anisotropic heating is consistent with Bernstein wave damping, and the Bernstein waves should completely damp in the plasma periphery as they propagate toward a cyclotron harmonic resonance. The number of daughter waves is found to increase with rf power, and to increase as the incident wave's toroidal wavelength increases. The frequencies of the daughter wave are separated by the edge ion cyclotron frequency. Theoretical calculations of the threshold for this decay in uniform plasma indicate an extremely small value of incident power should be required to drive the instability. While such decays are commonly observed at lower harmonics in conventional ICRF heating scenarios, they usually do not involve the loss of significant wave power from the pump wave. On NSTX an estimate of the power loss can be found by calculating the minimum power required to support the edge ion heating (presumed to come from the decay Bernstein wave). This calculation indicates at least 20-30% of the incident rf power ends up as decay waves.

  9. Selected Parametric Effects on Materials Flammability Limits

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.; Juarez, Alfredo; Peyton, Gary J.; Harper, Susana A.; Olson, Sandra L.

    2011-01-01

    NASA-STD-(I)-6001B Test 1 is currently used to evaluate the flammability of materials intended for use in habitable environments of U.S. spacecraft. The method is a pass/fail upward flame propagation test conducted in the worst case configuration, which is defined as a combination of a material s thickness, test pressure, oxygen concentration, and temperature that make the material most flammable. Although simple parametric effects may be intuitive (such as increasing oxygen concentrations resulting in increased flammability), combinations of multi-parameter effects could be more complex. In addition, there are a variety of material configurations used in spacecraft. Such configurations could include, for example, exposed free edges where fire propagation may be different when compared to configurations commonly employed in standard testing. Studies involving combined oxygen concentration, pressure, and temperature on flammability limits have been conducted and are summarized in this paper. Additional effects on flammability limits of a material s thickness, mode of ignition, burn-length criteria, and exposed edges are presented. The information obtained will allow proper selection of ground flammability test conditions, support further studies comparing flammability in 1-g with microgravity and reduced gravity environments, and contribute to persuasive scientific cases for rigorous space system fire risk assessments.

  10. Parametric analysis of a magnetized cylindrical plasma

    SciTech Connect

    Ahedo, Eduardo

    2009-11-15

    The relevant macroscopic model, the spatial structure, and the parametric regimes of a low-pressure plasma confined by a cylinder and an axial magnetic field is discussed for the small-Debye length limit, making use of asymptotic techniques. The plasma response is fully characterized by three-dimensionless parameters, related to the electron gyroradius, and the electron and ion collision mean-free-paths. There are the unmagnetized regime, the main magnetized regime, and, for a low electron-collisionality plasma, an intermediate-magnetization regime. In the magnetized regimes, electron azimuthal inertia is shown to be a dominant phenomenon in part of the quasineutral plasma region and to set up before ion radial inertia. In the main magnetized regime, the plasma structure consists of a bulk diffusive region, a thin layer governed by electron inertia, a thinner sublayer controlled by ion inertia, and the non-neutral Debye sheath. The solution of the main inertial layer yields that the electron azimuthal energy near the wall is larger than the electron thermal energy, making electron resistivity effects non-negligible. The electron Boltzmann relation is satisfied only in the very vicinity of the Debye sheath edge. Ion collisionality effects are irrelevant in the magnetized regime. Simple scaling laws for plasma production and particle and energy fluxes to the wall are derived.

  11. A Parametric Study of Spur Gear Dynamics

    NASA Technical Reports Server (NTRS)

    Lin, Hsiang Hsi; Liou, Chuen-Huei

    1998-01-01

    A parametric study of a spur gear system was performed through a numerical analysis approach. This study used the gear dynamic program DANST, a computer simulator, to determine the dynamic behavior of a spur gear system. The analytical results have taken the deflection of shafts and bearings into consideration for static analysis, and the influence of these deflections on gear dynamics was investigated. Damping in the gear system usually is an unknown quantity, but it has an important effect in resonance vibration. Typical values as reported in the literature were used in the present analysis. The dynamic response due to different damping factors was evaluated and compared. The effect of the contact ratio on spur gear dynamic load and dynamic stress was investigated through a parameter study. The contact ratio was varied over the range of 1.26 to 2.46 by adjusting the tooth addendum. Gears with contact ratio near 2.0 were found to have the most favorable dynamic performance.

  12. Non-parametric estimation of morphological lopsidedness

    NASA Astrophysics Data System (ADS)

    Giese, Nadine; van der Hulst, Thijs; Serra, Paolo; Oosterloo, Tom

    2016-09-01

    Asymmetries in the neutral hydrogen gas distribution and kinematics of galaxies are thought to be indicators for both gas accretion and gas removal processes. These are of fundamental importance for galaxy formation and evolution. Upcoming large blind H I surveys will provide tens of thousands of galaxies for a study of these asymmetries in a proper statistical way. Due to the large number of expected sources and the limited resolution of the majority of objects, detailed modelling is not feasible for most detections. We need fast, automatic and sensitive methods to classify these objects in an objective way. Existing non-parametric methods suffer from effects like the dependence on signal to noise, resolution and inclination. Here we show how to correctly take these effects into account and show ways to estimate the precision of the methods. We will use existing and modelled data to give an outlook on the performance expected for galaxies observed in the various sky surveys planned for e.g. WSRT/APERTIF and ASKAP.

  13. Program Predicts Performance of Optical Parametric Oscillators

    NASA Technical Reports Server (NTRS)

    Cross, Patricia L.; Bowers, Mark

    2006-01-01

    A computer program predicts the performances of solid-state lasers that operate at wavelengths from ultraviolet through mid-infrared and that comprise various combinations of stable and unstable resonators, optical parametric oscillators (OPOs), and sum-frequency generators (SFGs), including second-harmonic generators (SHGs). The input to the program describes the signal, idler, and pump beams; the SFG and OPO crystals; and the laser geometry. The program calculates the electric fields of the idler, pump, and output beams at three locations (inside the laser resonator, just outside the input mirror, and just outside the output mirror) as functions of time for the duration of the pump beam. For each beam, the electric field is used to calculate the fluence at the output mirror, plus summary parameters that include the centroid location, the radius of curvature of the wavefront leaving through the output mirror, the location and size of the beam waist, and a quantity known, variously, as a propagation constant or beam-quality factor. The program provides a typical Windows interface for entering data and selecting files. The program can include as many as six plot windows, each containing four graphs.

  14. Visual to Parametric Interaction (V2PI)

    PubMed Central

    Maiti, Dipayan; Endert, Alex; North, Chris

    2013-01-01

    Typical data visualizations result from linear pipelines that start by characterizing data using a model or algorithm to reduce the dimension and summarize structure, and end by displaying the data in a reduced dimensional form. Sensemaking may take place at the end of the pipeline when users have an opportunity to observe, digest, and internalize any information displayed. However, some visualizations mask meaningful data structures when model or algorithm constraints (e.g., parameter specifications) contradict information in the data. Yet, due to the linearity of the pipeline, users do not have a natural means to adjust the displays. In this paper, we present a framework for creating dynamic data displays that rely on both mechanistic data summaries and expert judgement. The key is that we develop both the theory and methods of a new human-data interaction to which we refer as “ Visual to Parametric Interaction” (V2PI). With V2PI, the pipeline becomes bi-directional in that users are embedded in the pipeline; users learn from visualizations and the visualizations adjust to expert judgement. We demonstrate the utility of V2PI and a bi-directional pipeline with two examples. PMID:23555552

  15. Optical parametric osicllators with improved beam quality

    DOEpatents

    Smith, Arlee V.; Alford, William J.

    2003-11-11

    An optical parametric oscillator (OPO) having an optical pump, which generates a pump beam at a pump frequency greater than a desired signal frequency, a nonlinear optical medium oriented so that a signal wave at the desired signal frequency and a corresponding idler wave are produced when the pump beam (wave) propagates through the nonlinear optical medium, resulting in beam walk off of the signal and idler waves, and an optical cavity which directs the signal wave to repeatedly pass through the nonlinear optical medium, said optical cavity comprising an equivalently even number of non-planar mirrors that produce image rotation on each pass through the nonlinear optical medium. Utilizing beam walk off where the signal wave and said idler wave have nonparallel Poynting vectors in the nonlinear medium and image rotation, a correlation zone of distance equal to approximately .rho.L.sub.crystal is created which, through multiple passes through the nonlinear medium, improves the beam quality of the OPO output.

  16. Parametric Testing of Launch Vehicle FDDR Models

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Bajwa, Anupa; Berg, Peter; Thirumalainambi, Rajkumar

    2011-01-01

    For the safe operation of a complex system like a (manned) launch vehicle, real-time information about the state of the system and potential faults is extremely important. The on-board FDDR (Failure Detection, Diagnostics, and Response) system is a software system to detect and identify failures, provide real-time diagnostics, and to initiate fault recovery and mitigation. The ERIS (Evaluation of Rocket Integrated Subsystems) failure simulation is a unified Matlab/Simulink model of the Ares I Launch Vehicle with modular, hierarchical subsystems and components. With this model, the nominal flight performance characteristics can be studied. Additionally, failures can be injected to see their effects on vehicle state and on vehicle behavior. A comprehensive test and analysis of such a complicated model is virtually impossible. In this paper, we will describe, how parametric testing (PT) can be used to support testing and analysis of the ERIS failure simulation. PT uses a combination of Monte Carlo techniques with n-factor combinatorial exploration to generate a small, yet comprehensive set of parameters for the test runs. For the analysis of the high-dimensional simulation data, we are using multivariate clustering to automatically find structure in this high-dimensional data space. Our tools can generate detailed HTML reports that facilitate the analysis.

  17. Optical parametric oscillators for medical applications

    NASA Astrophysics Data System (ADS)

    Gloster, Lawrie A. W.; Golding, Paul S.; King, Terence A.

    1996-04-01

    In recent years optical parametric oscillators (OPOs) have undergone a renaissance largely due to the discovery of new nonlinear materials capable of wide continuous tuning ranges spanning from the UV to the near-infrared spectral regions. To date, however, OPOs have not been exploited in the medical field despite their advantages over the dye laser in terms of tuning range and solid state structure. We consider the development of an OPO based on barium borate (BBO) which can be tailored to suit applications in medicine. Converting the maximum number of pump photons to tunable signal and idler photons is of great importance to secure high-fluence radiation necessary for many treatments. With this in mind, we report on an all- solid-state system using BBO which has been optimized by computer modeling with the potential of delivering amplification factors of typically up to 20 over a continuous tuning range of 700 nm to 1000 nm. As an example of its biomedical application, we describe the selective excitation of biomolecules and chromophores for cell destruction using malachite green isothiocyanate labelled bacteria. The potential for development is reviewed towards other medical applications such as diagnostic sensing and phototherapy.

  18. Parametric and Non-Parametric Vibration-Based Structural Identification Under Earthquake Excitation

    NASA Astrophysics Data System (ADS)

    Pentaris, Fragkiskos P.; Fouskitakis, George N.

    2014-05-01

    The problem of modal identification in civil structures is of crucial importance, and thus has been receiving increasing attention in recent years. Vibration-based methods are quite promising as they are capable of identifying the structure's global characteristics, they are relatively easy to implement and they tend to be time effective and less expensive than most alternatives [1]. This paper focuses on the off-line structural/modal identification of civil (concrete) structures subjected to low-level earthquake excitations, under which, they remain within their linear operating regime. Earthquakes and their details are recorded and provided by the seismological network of Crete [2], which 'monitors' the broad region of south Hellenic arc, an active seismic region which functions as a natural laboratory for earthquake engineering of this kind. A sufficient number of seismic events are analyzed in order to reveal the modal characteristics of the structures under study, that consist of the two concrete buildings of the School of Applied Sciences, Technological Education Institute of Crete, located in Chania, Crete, Hellas. Both buildings are equipped with high-sensitivity and accuracy seismographs - providing acceleration measurements - established at the basement (structure's foundation) presently considered as the ground's acceleration (excitation) and at all levels (ground floor, 1st floor, 2nd floor and terrace). Further details regarding the instrumentation setup and data acquisition may be found in [3]. The present study invokes stochastic, both non-parametric (frequency-based) and parametric methods for structural/modal identification (natural frequencies and/or damping ratios). Non-parametric methods include Welch-based spectrum and Frequency response Function (FrF) estimation, while parametric methods, include AutoRegressive (AR), AutoRegressive with eXogeneous input (ARX) and Autoregressive Moving-Average with eXogeneous input (ARMAX) models[4, 5

  19. Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods - A comparison

    NASA Astrophysics Data System (ADS)

    Verrelst, Jochem; Rivera, Juan Pablo; Veroustraete, Frank; Muñoz-Marí, Jordi; Clevers, Jan G. P. W.; Camps-Valls, Gustau; Moreno, José

    2015-10-01

    Given the forthcoming availability of Sentinel-2 (S2) images, this paper provides a systematic comparison of retrieval accuracy and processing speed of a multitude of parametric, non-parametric and physically-based retrieval methods using simulated S2 data. An experimental field dataset (SPARC), collected at the agricultural site of Barrax (Spain), was used to evaluate different retrieval methods on their ability to estimate leaf area index (LAI). With regard to parametric methods, all possible band combinations for several two-band and three-band index formulations and a linear regression fitting function have been evaluated. From a set of over ten thousand indices evaluated, the best performing one was an optimized three-band combination according to (ρ560 -ρ1610 -ρ2190) / (ρ560 +ρ1610 +ρ2190) with a 10-fold cross-validation RCV2 of 0.82 (RMSECV : 0.62). This family of methods excel for their fast processing speed, e.g., 0.05 s to calibrate and validate the regression function, and 3.8 s to map a simulated S2 image. With regard to non-parametric methods, 11 machine learning regression algorithms (MLRAs) have been evaluated. This methodological family has the advantage of making use of the full optical spectrum as well as flexible, nonlinear fitting. Particularly kernel-based MLRAs lead to excellent results, with variational heteroscedastic (VH) Gaussian Processes regression (GPR) as the best performing method, with a RCV2 of 0.90 (RMSECV : 0.44). Additionally, the model is trained and validated relatively fast (1.70 s) and the processed image (taking 73.88 s) includes associated uncertainty estimates. More challenging is the inversion of a PROSAIL based radiative transfer model (RTM). After the generation of a look-up table (LUT), a multitude of cost functions and regularization options were evaluated. The best performing cost function is Pearson's χ -square. It led to a R2 of 0.74 (RMSE: 0.80) against the validation dataset. While its validation went fast

  20. Explicit Closed Forms for Parametric Integrals. Classroom Notes

    ERIC Educational Resources Information Center

    Dana-Picard, Thierry

    2004-01-01

    Closed forms are computed for parametric integrals, generally using induction formulas. It is shown that these integrals can be core activities, mixing hand-work, computations with a computer algebra system and experimental mathematics with an interactive website.

  1. Unitary Parametrization of Perturbations to Tribimaximal Neutrino Mixing

    SciTech Connect

    Pakvasa, Sandip; Rodejohann, Werner; Weiler, Thomas J.

    2008-03-21

    Current experimental data on neutrino mixing are very well described by tribimaximal mixing. Accordingly, any phenomenological parametrization of the Maki-Nakagawa-Sakata-Pontecorvo matrix must build upon tribimaximal mixing. We propose one particularly natural parametrization, which we call 'triminimal'. The three small deviations of the Particle Data Group angles from their tribimaximal values, and the PDG phase, parametrize the triminimal mixing matrix. As an important example of the utility of this new parametrization, we present the simple resulting expressions for the flavor-mixing probabilities of atmospheric and astrophysical neutrinos. As no foreseeable experiment will be sensitive to more than second order in the small parameters, we expand these flavor probabilities to second order.

  2. Unitary Parametrization of Perturbations to Tribimaximal Neutrino Mixing

    NASA Astrophysics Data System (ADS)

    Pakvasa, Sandip; Rodejohann, Werner; Weiler, Thomas J.

    2008-03-01

    Current experimental data on neutrino mixing are very well described by tribimaximal mixing. Accordingly, any phenomenological parametrization of the Maki-Nakagawa-Sakata-Pontecorvo matrix must build upon tribimaximal mixing. We propose one particularly natural parametrization, which we call “triminimal.” The three small deviations of the Particle Data Group angles from their tribimaximal values, and the PDG phase, parametrize the triminimal mixing matrix. As an important example of the utility of this new parametrization, we present the simple resulting expressions for the flavor-mixing probabilities of atmospheric and astrophysical neutrinos. As no foreseeable experiment will be sensitive to more than second order in the small parameters, we expand these flavor probabilities to second order.

  3. Direct Estimation of Kinetic Parametric Images for Dynamic PET

    PubMed Central

    Wang, Guobao; Qi, Jinyi

    2013-01-01

    Dynamic positron emission tomography (PET) can monitor spatiotemporal distribution of radiotracer in vivo. The spatiotemporal information can be used to estimate parametric images of radiotracer kinetics that are of physiological and biochemical interests. Direct estimation of parametric images from raw projection data allows accurate noise modeling and has been shown to offer better image quality than conventional indirect methods, which reconstruct a sequence of PET images first and then perform tracer kinetic modeling pixel-by-pixel. Direct reconstruction of parametric images has gained increasing interests with the advances in computing hardware. Many direct reconstruction algorithms have been developed for different kinetic models. In this paper we review the recent progress in the development of direct reconstruction algorithms for parametric image estimation. Algorithms for linear and nonlinear kinetic models are described and their properties are discussed. PMID:24396500

  4. Threshold Analysis of a THz-Wave Parametric Oscillator

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Yang; Yao, Jian-Quan; Zhu, Neng-Nian; Wang, Yu-Ye; Xu, De-Gang

    2010-06-01

    The parametric gain of a terahertz wave parametric oscillator (TPO) is analyzed. Meanwhile the expression of TPO threshold pump intensity is derived and theoretically analyzed with different factors. The effective interaction length between the pump wave and Stokes wave is calculated, and particular attention is paid to the coupling efficiency of the pump wave and Stokes wave. Such an analysis is useful for the experiments of TPO.

  5. Finding Rational Parametric Curves of Relative Degree One or Two

    ERIC Educational Resources Information Center

    Boyles, Dave

    2010-01-01

    A plane algebraic curve, the complete set of solutions to a polynomial equation: f(x, y) = 0, can in many cases be drawn using parametric equations: x = x(t), y = y(t). Using algebra, attempting to parametrize by means of rational functions of t, one discovers quickly that it is not the degree of f but the "relative degree," that describes how…

  6. CFD Parametric Study of Consortium Impeller

    NASA Technical Reports Server (NTRS)

    Cheng, Gary C.; Chen, Y. S.; Garcia, Roberto; Williams, Robert W.

    1993-01-01

    Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design impact in a productive manner. The main goal of this study is to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A Finite Difference Navier-Stokes flow solver, FDNS, which includes the extended k-epsilon turbulence model and appropriate moving interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. A second-order central difference scheme plus adaptive dissipation terms was employed in the FDNS code, along with a predictor plus multi-corrector pressure-based solution procedure. The multi-zone, multi-block capability allows the FDNS code to efficiently solve flow fields with complicated geometry. The FDNS code has been benchmarked by analyzing the pump consortium inducer, and it provided satisfactory results. In the present study, a CFD parametric study of the pump consortium impeller was conducted using the FDNS code. The pump consortium impeller, with partial blades, is a new design concept of the advanced rocket engines. The parametric study was to analyze the baseline design of the consortium impeller and its modification which utilizes TANDEM blades. In the present study, the TANDEM blade configuration of the consortium impeller considers cut full blades for about one quarter chord length from the leading edge and clocks the leading edge portion with an angle of 7.5 or 22.5 degrees. The purpose of the present study is to investigate the effect and trend of the TANDEM blade modification and provide the result as a design guideline. A 3-D flow analysis, with a 103 x 23 x 30 mesh grid system and with the inlet flow conditions measured by Rocketdyne, was performed for the baseline consortium impeller. The numerical result shows that the mass flow rate splits through various blade passages are relatively uniform

  7. CFD parametric study of consortium impeller

    NASA Astrophysics Data System (ADS)

    Cheng, Gary C.; Chen, Y. S.; Garcia, Roberto; Williams, Robert W.

    1993-07-01

    Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design impact in a productive manner. The main goal of this study is to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A Finite Difference Navier-Stokes flow solver, FDNS, which includes the extended k-epsilon turbulence model and appropriate moving interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. A second-order central difference scheme plus adaptive dissipation terms was employed in the FDNS code, along with a predictor plus multi-corrector pressure-based solution procedure. The multi-zone, multi-block capability allows the FDNS code to efficiently solve flow fields with complicated geometry. The FDNS code has been benchmarked by analyzing the pump consortium inducer, and it provided satisfactory results. In the present study, a CFD parametric study of the pump consortium impeller was conducted using the FDNS code. The pump consortium impeller, with partial blades, is a new design concept of the advanced rocket engines. The parametric study was to analyze the baseline design of the consortium impeller and its modification which utilizes TANDEM blades. In the present study, the TANDEM blade configuration of the consortium impeller considers cut full blades for about one quarter chord length from the leading edge and clocks the leading edge portion with an angle of 7.5 or 22.5 degrees. The purpose of the present study is to investigate the effect and trend of the TANDEM blade modification and provide the result as a design guideline. A 3-D flow analysis, with a 103 x 23 x 30 mesh grid system and with the inlet flow conditions measured by Rocketdyne, was performed for the baseline consortium impeller. The numerical result shows that the mass flow rate splits through various blade passages are relatively uniform

  8. Hamiltonian constraint in polymer parametrized field theory

    SciTech Connect

    Laddha, Alok; Varadarajan, Madhavan

    2011-01-15

    Recently, a generally covariant reformulation of two-dimensional flat spacetime free scalar field theory known as parametrized field theory was quantized using loop quantum gravity (LQG) type ''polymer'' representations. Physical states were constructed, without intermediate regularization structures, by averaging over the group of gauge transformations generated by the constraints, the constraint algebra being a Lie algebra. We consider classically equivalent combinations of these constraints corresponding to a diffeomorphism and a Hamiltonian constraint, which, as in gravity, define a Dirac algebra. Our treatment of the quantum constraints parallels that of LQG and obtains the following results, expected to be of use in the construction of the quantum dynamics of LQG: (i) the (triangulated) Hamiltonian constraint acts only on vertices, its construction involves some of the same ambiguities as in LQG and its action on diffeomorphism invariant states admits a continuum limit, (ii) if the regulating holonomies are in representations tailored to the edge labels of the state, all previously obtained physical states lie in the kernel of the Hamiltonian constraint, (iii) the commutator of two (density weight 1) Hamiltonian constraints as well as the operator correspondent of their classical Poisson bracket converge to zero in the continuum limit defined by diffeomorphism invariant states, and vanish on the Lewandowski-Marolf habitat, (iv) the rescaled density 2 Hamiltonian constraints and their commutator are ill-defined on the Lewandowski-Marolf habitat despite the well-definedness of the operator correspondent of their classical Poisson bracket there, (v) there is a new habitat which supports a nontrivial representation of the Poisson-Lie algebra of density 2 constraints.

  9. Fast parametric beamformer for synthetic aperture imaging.

    PubMed

    Nikolov, Svetoslav Ivanov; Jensen, Jørgen Arendt; Tomov, Borislav Gueorguiev

    2008-08-01

    This paper describes the design and implementation of a real-time delay-and-sum synthetic aperture beamformer. The beamforming delays and apodization coefficients are described parametrically. The image is viewed as a set of independent lines that are defined in 3D by their origin, direction, and inter-sample distance. The delay calculation is recursive and inspired by the coordinate rotation digital computer (CORDIC) algorithm. Only 3 parameters per channel and line are needed for their generation. The calculation of apodization coefficients is based on a piece- wise linear approximation. The implementation of the beamformer is optimized with respect to the architecture of a novel synthetic aperture real-time ultrasound scanner (SARUS), in which 4 channels are processed by the same set of field-programmable gate arrays (FPGA). In synthetic transmit aperture imaging, low-resolution images are formed after every emission. Summing all low-resolution images produces a perfectly focused high-resolution image. The design of the beamformer is modular, and a single beamformation unit can produce 4600 low-resolution images per second, each consisting of 32 lines and 1024 complex samples per line. In its present incarnation, 3 such modules fit in a single device. The summation of low-resolution images is performed internally in the FPGA to reduce the required bandwidth. The delays are calculated with a precision of 1/16th of a sample, and the apodization coefficients with 7-bit precision. The accumulation of low-resolution images is performed with 24-bit precision. The level of the side- and grating lobes, introduced by the use of integer numbers in the calculations and truncation of intermediate results, is below -86 dB from the peak. PMID:18986919

  10. Interacting parametrized post-Friedmann method

    NASA Astrophysics Data System (ADS)

    Richarte, Martín G.; Xu, Lixin

    2016-04-01

    We apply the interacting parametrized post-Friedmann (IPPF) method to coupled dark energy models where the interaction is proportional to dark matter density at background level. In the first case, the dark components are treated as fluids and the growth of dark matter perturbations only feel the interaction via the modification of background quantities provided dark matter follows geodesic. We also perform a Markov Chain Monte-Carlo analysis which combines several cosmological probes including the cosmic microwave background (WMAP9+Planck) data, baryon acoustic oscillation (BAO) measurements, JLA sample of supernovae, Hubble constant (HST), and redshift-space distortion (RSD) measurements through the fσ 8(z) data points. The joint observational analysis of Planck+WP+JLA+BAO+HST+ RSD data leads to a coupling parameter, ξ c=0.00140_{-0.00080}^{+0.00079} at 1σ level for vanishing momentum transfer potential. On the other hand, we deal with a coupled quintessence model which exhibits a violation of the equivalence principle coming form a coupling term in the modified Euler equation; as a result of that the local Hubble expansion rate and the effective gravitational coupling are both enhanced. Provided that the interaction is parallel to scalar field velocity the momentum transfer potential is switched on, leading to a lower interaction coupling ξ c=0.00136_{-0.00073}^{+0.00080} at 1σ level when Planck+WP+JLA+BAO+HST+RSD data are combined. Besides, the CMB power spectrum shows up a correlation between the coupling parameter ξ c and the position of acoustic peaks or their amplitudes. The first peak's height increases when ξ c takes larger values and its position is shifted. We also obtain the matter power spectrum may be affected by the strength of interaction coupling over scales bigger than 10^{-2} h Mpc^{-1}, reducing its amplitude in relation to the vanilla model.

  11. Optical Parametric Technology for Methane Measurements

    NASA Technical Reports Server (NTRS)

    Dawsey, Martha; Numata, Kenji; Wu, Stewart; Riris, Haris

    2015-01-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas, with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. Yet, lack of understanding of the processes that control CH4 sources and sinks and its potential release from stored carbon reservoirs contributes significant uncertainty to our knowledge of the interaction between carbon cycle and climate change. At Goddard Space Flight Center (GSFC) we have been developing the technology needed to remotely measure CH4 from orbit. Our concept for a CH4 lidar is a nadir viewing instrument that uses the strong laser echoes from the Earth's surface to measure CH4. The instrument uses a tunable, narrow-frequency light source and photon-sensitive detector to make continuous measurements from orbit, in sunlight and darkness, at all latitudes and can be relatively immune to errors introduced by scattering from clouds and aerosols. Our measurement technique uses Integrated Path Differential Absorption (IPDA), which measures the absorption of laser pulses by a trace gas when tuned to a wavelength coincident with an absorption line. We have already demonstrated ground-based and airborne CH4 detection using Optical Parametric Amplifiers (OPA) at 1651 nm using a laser with approximately 10 microJ/pulse at 5kHz with a narrow linewidth. Next, we will upgrade our OPO system to add several more wavelengths in preparation for our September 2015 airborne campaign, and expect that these upgrades will enable CH4 measurements with 1% precision (10-20 ppb).

  12. Optical parametric technology for methane measurements

    NASA Astrophysics Data System (ADS)

    Dawsey, Martha; Numata, Kenji; Wu, Stewart; Riris, Haris

    2015-09-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas, with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. Yet, lack of understanding of the processes that control CH4 sources and sinks and its potential release from stored carbon reservoirs contributes significant uncertainty to our knowledge of the interaction between carbon cycle and climate change. At Goddard Space Flight Center (GSFC) we have been developing the technology needed to remotely measure CH4 from orbit. Our concept for a CH4 lidar is a nadir viewing instrument that uses the strong laser echoes from the Earth's surface to measure CH4. The instrument uses a tunable, narrow-frequency light source and photon-sensitive detector to make continuous measurements from orbit, in sunlight and darkness, at all latitudes and can be relatively immune to errors introduced by scattering from clouds and aerosols. Our measurement technique uses Integrated Path Differential Absorption (IPDA), which measures the absorption of laser pulses by a trace gas when tuned to a wavelength coincident with an absorption line. We have already demonstrated ground-based and airborne CH4 detection using Optical Parametric Amplifiers (OPA) at 1651 nm using a laser with approximately 10 μJ/pulse at 5kHz with a narrow linewidth. Next, we will upgrade our OPO system to add several more wavelengths in preparation for our September 2015 airborne campaign, and expect that these upgrades will enable CH4 measurements with 1% precision (10-20 ppb).

  13. IMM filtering on parametric data for multi-sensor fusion

    NASA Astrophysics Data System (ADS)

    Shafer, Scott; Owen, Mark W.

    2014-06-01

    In tracking, many types of sensor data can be obtained and utilized to distinguish a particular target. Commonly, kinematic information is used for tracking, but this can be combined with identification attributes and parametric information passively collected from the targets emitters. Along with the standard tracking process (predict, associate, score, update, and initiate) that operates in all kinematic trackers, parametric data can also be utilized to perform these steps and provide a means for feature fusion. Feature fusion, utilizing parametrics from multiple sources, yields a rich data set providing many degrees of freedom to separate and correlate data into appropriate tracks. Parametric radar data can take on many dynamics to include: stable, agile, jitter, and others. By utilizing a running sample mean and sample variance a good estimate of radar parametrics is achieved. However, when dynamics are involved, a severe lag can occur and a non-optimal estimate is achieved. This estimate can yield incorrect associations in feature space and cause track fragmentation or miscorrelation. In this paper we investigate the accuracy of the interacting multiple model (IMM) filter at estimating the first and second moments of radar parametrics. The algorithm is assessed by Monte Carlo simulation and compared against a running sample mean/variance technique. We find that the IMM approach yields a better result due to its ability to quickly adapt to dynamical systems with the proper model and tuning.

  14. Extended parametric representation of compressor fans and turbines. Volume 3: MODFAN user's manual (parametric modulating flow fan)

    NASA Technical Reports Server (NTRS)

    Converse, G. L.

    1984-01-01

    A modeling technique for single stage flow modulating fans or centrifugal compressors has been developed which will enable the user to obtain consistent and rapid off-design performnce from design point input. The fan flow modulation may be obtained by either a VIGV (variable inlet guide vane) or a VPF (variable pitch rotor) option. Only the VIGV option is available for the centrifugal compressor. The modeling technique has been incorporated into a time-sharing program to facilitate its use. Because this report contains a description of the input output data, values of typical inputs, and examples cases, it is suitable as a user's manual. This report is the last of a three volume set describing the parametric representation of compressor fans, and turbines. The titles of the three volumes are as follows: (1) Volume 1 CMGEN USER's Manual (Parametric Compressor Generator); (2) Volume 2 PART USER's Manual (Parametric Turbine); (3) Volume 3 MODFAN USER's Manual (Parametric Modulating Flow Fan).

  15. Parametric and non-parametric species delimitation methods result in the recognition of two new Neotropical woody bamboo species.

    PubMed

    Ruiz-Sanchez, Eduardo

    2015-12-01

    The Neotropical woody bamboo genus Otatea is one of five genera in the subtribe Guaduinae. Of the eight described Otatea species, seven are endemic to Mexico and one is also distributed in Central and South America. Otatea acuminata has the widest geographical distribution of the eight species, and two of its recently collected populations do not match the known species morphologically. Parametric and non-parametric methods were used to delimit the species in Otatea using five chloroplast markers, one nuclear marker, and morphological characters. The parametric coalescent method and the non-parametric analysis supported the recognition of two distinct evolutionary lineages. Molecular clock estimates were used to estimate divergence times in Otatea. The results for divergence time in Otatea estimated the origin of the speciation events from the Late Miocene to Late Pleistocene. The species delimitation analyses (parametric and non-parametric) identified that the two populations of O. acuminata from Chiapas and Hidalgo are from two separate evolutionary lineages and these new species have morphological characters that separate them from O. acuminata s.s. The geological activity of the Trans-Mexican Volcanic Belt and the Isthmus of Tehuantepec may have isolated populations and limited the gene flow between Otatea species, driving speciation. Based on the results found here, I describe Otatea rzedowskiorum and Otatea victoriae as two new species, morphologically different from O. acuminata. PMID:26265258

  16. Mixing parametrizations for ocean climate modelling

    NASA Astrophysics Data System (ADS)

    Gusev, Anatoly; Moshonkin, Sergey; Diansky, Nikolay; Zalesny, Vladimir

    2016-04-01

    The algorithm is presented of splitting the total evolutionary equations for the turbulence kinetic energy (TKE) and turbulence dissipation frequency (TDF), which is used to parameterize the viscosity and diffusion coefficients in ocean circulation models. The turbulence model equations are split into the stages of transport-diffusion and generation-dissipation. For the generation-dissipation stage, the following schemes are implemented: the explicit-implicit numerical scheme, analytical solution and the asymptotic behavior of the analytical solutions. The experiments were performed with different mixing parameterizations for the modelling of Arctic and the Atlantic climate decadal variability with the eddy-permitting circulation model INMOM (Institute of Numerical Mathematics Ocean Model) using vertical grid refinement in the zone of fully developed turbulence. The proposed model with the split equations for turbulence characteristics is similar to the contemporary differential turbulence models, concerning the physical formulations. At the same time, its algorithm has high enough computational efficiency. Parameterizations with using the split turbulence model make it possible to obtain more adequate structure of temperature and salinity at decadal timescales, compared to the simpler Pacanowski-Philander (PP) turbulence parameterization. Parameterizations with using analytical solution or numerical scheme at the generation-dissipation step of the turbulence model leads to better representation of ocean climate than the faster parameterization using the asymptotic behavior of the analytical solution. At the same time, the computational efficiency left almost unchanged relative to the simple PP parameterization. Usage of PP parametrization in the circulation model leads to realistic simulation of density and circulation with violation of T,S-relationships. This error is majorly avoided with using the proposed parameterizations containing the split turbulence model

  17. Group Parametrized Tunneling and Local Symmetry Conditions

    NASA Astrophysics Data System (ADS)

    Harter, William; Mitchell, Justin

    2010-06-01

    Recently, Hougen showed an ad hoc symmetry-based parameterization scheme for analyzing tunneling dynamics and high resolution spectra of fluxional molecular structure similar to S-parameter analysis of superfine structure in SF_6 or NH_3 maser inversion dynamics by Feynman et.al. The problem is that ad hoc parametrization, like path integration in general, can lead to logjams of parameters or ``paths'' with no way to pick out the relevant ones. We show a way to identify and use relevant parameters for a tunneling Hamiltonian H having global G-symmetry-defined bases by first expressing H as a linear combination bar γ ^i {bar g}_i of operators in dual symmetry group bar G. The coefficients bar γ ^i are parameters that define a complete set of allowed paths for any H with G-symmetry and are related thru spectral decomposition of G to eigensolutions of H. Quantum G vs.bar G duality generalizes lab -vs. -body and state -vs. -particle. The number of relevant bar γ ^i-parameters is reduced if a system tends to stick in states of a local symmetry subgroup LsubsetG so the H spectrum forms level clusters labeled by induced representations d(ℓ)(L)\\uparrowG. A cluster-(ℓ) has one E(epsilon)-level labeled by G species (epsilon) for each L species (ℓ) in Depsilon(G)downarrowL by Frobenius reciprocity. Then we apply local symmetry conditions to each irrep Depsilon(bar γ ^i {bar g}_i) that has already been reduced with respect to local symmetry L. This amounts to setting each off-diagonal component Dj,kepsilon(H) to zero. Local symmetry conditions may tell which bar γ ^i-parameters are redundant or zero and directly determine d(ℓ)\\uparrowG tunneling matrix eigenvalues that give E(epsilon)-levels as well as eigenvectors. Otherwise one may need to choose a particular localizing subgroup chain LsubsetL_1subsetL_2...G and further reduce the number of path parameters to facilitate spectral fitting. J.T. Hougen, 2009 MSS RJ01, {J Mol Spect 123, 197 (1987) W.G. Harter and

  18. Comparison of thawing and freezing dark energy parametrizations

    NASA Astrophysics Data System (ADS)

    Pantazis, G.; Nesseris, S.; Perivolaropoulos, L.

    2016-05-01

    Dark energy equation of state w (z ) parametrizations with two parameters and given monotonicity are generically either convex or concave functions. This makes them suitable for fitting either freezing or thawing quintessence models but not both simultaneously. Fitting a data set based on a freezing model with an unsuitable (concave when increasing) w (z ) parametrization [like Chevallier-Polarski-Linder (CPL)] can lead to significant misleading features like crossing of the phantom divide line, incorrect w (z =0 ), incorrect slope, etc., that are not present in the underlying cosmological model. To demonstrate this fact we generate scattered cosmological data at both the level of w (z ) and the luminosity distance DL(z ) based on either thawing or freezing quintessence models and fit them using parametrizations of convex and of concave type. We then compare statistically significant features of the best fit w (z ) with actual features of the underlying model. We thus verify that the use of unsuitable parametrizations can lead to misleading conclusions. In order to avoid these problems it is important to either use both convex and concave parametrizations and select the one with the best χ2 or use principal component analysis thus splitting the redshift range into independent bins. In the latter case, however, significant information about the slope of w (z ) at high redshifts is lost. Finally, we propose a new family of parametrizations w (z )=w0+wa(z/1 +z )n which generalizes the CPL and interpolates between thawing and freezing parametrizations as the parameter n increases to values larger than 1.

  19. Parametric vs. non-parametric daily weather generator: validation and comparison

    NASA Astrophysics Data System (ADS)

    Dubrovsky, Martin

    2016-04-01

    As the climate models (GCMs and RCMs) fail to satisfactorily reproduce the real-world surface weather regime, various statistical methods are applied to downscale GCM/RCM outputs into site-specific weather series. The stochastic weather generators are among the most favourite downscaling methods capable to produce realistic (observed like) meteorological inputs for agrological, hydrological and other impact models used in assessing sensitivity of various ecosystems to climate change/variability. To name their advantages, the generators may (i) produce arbitrarily long multi-variate synthetic weather series representing both present and changed climates (in the latter case, the generators are commonly modified by GCM/RCM-based climate change scenarios), (ii) be run in various time steps and for multiple weather variables (the generators reproduce the correlations among variables), (iii) be interpolated (and run also for sites where no weather data are available to calibrate the generator). This contribution will compare two stochastic daily weather generators in terms of their ability to reproduce various features of the daily weather series. M&Rfi is a parametric generator: Markov chain model is used to model precipitation occurrence, precipitation amount is modelled by the Gamma distribution, and the 1st order autoregressive model is used to generate non-precipitation surface weather variables. The non-parametric GoMeZ generator is based on the nearest neighbours resampling technique making no assumption on the distribution of the variables being generated. Various settings of both weather generators will be assumed in the present validation tests. The generators will be validated in terms of (a) extreme temperature and precipitation characteristics (annual and 30 years extremes and maxima of duration of hot/cold/dry/wet spells); (b) selected validation statistics developed within the frame of VALUE project. The tests will be based on observational weather series

  20. Assessment of water quality trends in the Minnesota River using non-parametric and parametric methods

    USGS Publications Warehouse

    Johnson, H.O.; Gupta, S.C.; Vecchia, A.V.; Zvomuya, F.

    2009-01-01

    Excessive loading of sediment and nutrients to rivers is a major problem in many parts of the United States. In this study, we tested the non-parametric Seasonal Kendall (SEAKEN) trend model and the parametric USGS Quality of Water trend program (QWTREND) to quantify trends in water quality of the Minnesota River at Fort Snelling from 1976 to 2003. Both methods indicated decreasing trends in flow-adjusted concentrations of total suspended solids (TSS), total phosphorus (TP), and orthophosphorus (OP) and a generally increasing trend in flow-adjusted nitrate plus nitrite-nitrogen (NO3-N) concentration. The SEAKEN results were strongly influenced by the length of the record as well as extreme years (dry or wet) earlier in the record. The QWTREND results, though influenced somewhat by the same factors, were more stable. The magnitudes of trends between the two methods were somewhat different and appeared to be associated with conceptual differences between the flow-adjustment processes used and with data processing methods. The decreasing trends in TSS, TP, and OP concentrations are likely related to conservation measures implemented in the basin. However, dilution effects from wet climate or additional tile drainage cannot be ruled out. The increasing trend in NO3-N concentrations was likely due to increased drainage in the basin. Since the Minnesota River is the main source of sediments to the Mississippi River, this study also addressed the rapid filling of Lake Pepin on the Mississippi River and found the likely cause to be increased flow due to recent wet climate in the region. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  1. Multimode Entanglement Generation in a Parametric Superconducting Cavity

    NASA Astrophysics Data System (ADS)

    Chang, C. W. S.; Simoen, M.; Vadiraj, A. M.; Delsing, P.; Wilson, C. M.

    Parametric microwave resonators implemented with superconducting circuits have become increasingly important in various application within quantum information processing. For example, quantum-limited parametric amplifiers based on these devices have now become commonplace as first-stage amplifiers for qubit experiments. Here we study the generation of multimode entangled states of propagating microwave photons, which can be used a resource in quantum computing and communication applications. We use a CPW resonator with a low fundamental resonance frequency that than has a number of modes in the common frequency band of 4-12 GHz. These modes are all parametrically coupled by a single SQUID that terminates the resonator. When parametrically pumping the system at the sum of two mode frequencies, we observe parametric downconversion and two-mode squeezing. By pumping at the difference frequency, we observe a beamsplitter-like mode conversion. By using multiple pump tones that combine these different processes, theory predicts we can construct multimode entangled states with a well-controlled entanglement structure, e.g., cluster states. Preliminary measurements will be presented.

  2. Parametric Amplifier and Oscillator Based on Josephson Junction Circuitry

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Koshino, K.; Nakamura, Y.

    While the demand for low-noise amplification is ubiquitous, applications where the quantum-limited noise performance is indispensable are not very common. Microwave parametric amplifiers with near quantum-limited noise performance were first demonstrated more than 20 years ago. However, there had been little effort until recently to improve the performance or the ease of use of these amplifiers, partly because of a lack of any urgent motivation. The emergence of the field of quantum information processing in superconducting systems has changed this situation dramatically. The need to reliably read out the state of a given qubit using a very weak microwave probe within a very short time has led to renewed interest in these quantum-limited microwave amplifiers, which are already widely used as tools in this field. Here, we describe the quantum mechanical theory for one particular parametric amplifier design, called the flux-driven Josephson parametric amplifier, which we developed in 2008. The theory predicts the performance of this parametric amplifier, including its gain, bandwidth, and noise temperature. We also present the phase detection capability of this amplifier when it is operated with a pump power that is above the threshold, i.e., as a parametric phase-locked oscillator or parametron.

  3. Towards an Empirically Based Parametric Explosion Spectral Model

    SciTech Connect

    Ford, S R; Walter, W R; Ruppert, S; Matzel, E; Hauk, T; Gok, R

    2009-08-31

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before been tested. The focus of our work is on the local and regional distances (< 2000 km) and phases (Pn, Pg, Sn, Lg) necessary to see small explosions. We are developing a parametric model of the nuclear explosion seismic source spectrum that is compatible with the earthquake-based geometrical spreading and attenuation models developed using the Magnitude Distance Amplitude Correction (MDAC) techniques (Walter and Taylor, 2002). The explosion parametric model will be particularly important in regions without any prior explosion data for calibration. The model is being developed using the available body of seismic data at local and regional distances for past nuclear explosions at foreign and domestic test sites. Parametric modeling is a simple and practical approach for widespread monitoring applications, prior to the capability to carry out fully deterministic modeling. The achievable goal of our parametric model development is to be able to predict observed local and regional distance seismic amplitudes for event identification and yield determination in regions with incomplete or no prior history of underground nuclear testing. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  4. Incorporating parametric uncertainty into population viability analysis models

    USGS Publications Warehouse

    McGowan, Conor P.; Runge, Michael C.; Larson, Michael A.

    2011-01-01

    Uncertainty in parameter estimates from sampling variation or expert judgment can introduce substantial uncertainty into ecological predictions based on those estimates. However, in standard population viability analyses, one of the most widely used tools for managing plant, fish and wildlife populations, parametric uncertainty is often ignored in or discarded from model projections. We present a method for explicitly incorporating this source of uncertainty into population models to fully account for risk in management and decision contexts. Our method involves a two-step simulation process where parametric uncertainty is incorporated into the replication loop of the model and temporal variance is incorporated into the loop for time steps in the model. Using the piping plover, a federally threatened shorebird in the USA and Canada, as an example, we compare abundance projections and extinction probabilities from simulations that exclude and include parametric uncertainty. Although final abundance was very low for all sets of simulations, estimated extinction risk was much greater for the simulation that incorporated parametric uncertainty in the replication loop. Decisions about species conservation (e.g., listing, delisting, and jeopardy) might differ greatly depending on the treatment of parametric uncertainty in population models.

  5. Impacts of advanced manufacturing technology on parametric estimating

    NASA Astrophysics Data System (ADS)

    Hough, Paul G.

    1989-12-01

    The introduction of advanced manufacturing technology in the aerospace industry poses serious challenges for government cost analysts. Traditionally, the analysts have relied on parametric estimating techniques for both planning and budgeting. Despite its problems, this approach has proven to be a remarkably useful and robust tool for estimating new weapon system costs. However, rapid improvements in both product and process technology could exacerbate current difficulties, and diminish the utility of the parametric approach. This paper reviews some weakness associated with parametrics, then proceeds to examine how specific aspects of the factory of the future may further impact parametric estimating, and suggests avenues of research for their resolution. This paper is an extended version of Cost Estimating for the Factory of the Future. Parametric estimating is a method by which aggregated costs are derived as a function of high-level product characteristics or parameters. The resulting equations are known as cost estimating relationships (CERs). Such equations are particularly useful when detailed technical specifications are not available.

  6. Marginally specified priors for non-parametric Bayesian estimation

    PubMed Central

    Kessler, David C.; Hoff, Peter D.; Dunson, David B.

    2014-01-01

    Summary Prior specification for non-parametric Bayesian inference involves the difficult task of quantifying prior knowledge about a parameter of high, often infinite, dimension. A statistician is unlikely to have informed opinions about all aspects of such a parameter but will have real information about functionals of the parameter, such as the population mean or variance. The paper proposes a new framework for non-parametric Bayes inference in which the prior distribution for a possibly infinite dimensional parameter is decomposed into two parts: an informative prior on a finite set of functionals, and a non-parametric conditional prior for the parameter given the functionals. Such priors can be easily constructed from standard non-parametric prior distributions in common use and inherit the large support of the standard priors on which they are based. Additionally, posterior approximations under these informative priors can generally be made via minor adjustments to existing Markov chain approximation algorithms for standard non-parametric prior distributions. We illustrate the use of such priors in the context of multivariate density estimation using Dirichlet process mixture models, and in the modelling of high dimensional sparse contingency tables. PMID:25663813

  7. Elliptic Volume Grid Generation for Viscous CFD Parametric Design Studies

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.; Cheatwood, F. McNeil

    1996-01-01

    This paper presents a robust method for the generation of zonal volume grids of design parametrics for aerodynamic configurations. The process utilizes simple algebraic techniques with parametric splines coupled with elliptic volume grid generation to generate isolated zonal grids for changes in body configuration needed to perform parametric design studies. Speed of the algorithm is maximized through the algebraic methods and reduced number of grid points to be regenerated for each design parametric without sacrificing grid quality and continuity within the volume domain. The method is directly applicable to grid reusability, because it modifies existing ow adapted volume grids and enables the user to restart the CFD solution process with an established flow field. Use of this zonal approach reduces computer usage time to create new volume grids for design parametric studies by an order of magnitude, as compared to current methods which require the regeneration of an entire volume grid. A sample configuration of a proposed Single Stage-to-Orbit Vehicle is used to illustrate an application of this method.

  8. Global Nonlinear Parametric Modeling with Application to F-16 Aerodynamics

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1997-01-01

    A global nonlinear parametric modeling technique is described and demonstrated. The technique uses multivariate orthogonal modeling functions generated from the data to determine nonlinear model structure, then expands each retained modeling function into an ordinary multivariate polynomial. The final model form is a finite multivariate power series expansion for the dependent variable in terms of the independent variables. Partial derivatives of the identified models can be used to assemble globally valid linear parameter varying models. The technique is demonstrated by identifying global nonlinear parametric models for nondimensional aerodynamic force and moment coefficients from a subsonic wind tunnel database for the F-16 fighter aircraft. Results show less than 10% difference between wind tunnel aerodynamic data and the nonlinear parameterized model for a simulated doublet maneuver at moderate angle of attack. Analysis indicated that the global nonlinear parametric models adequately captured the multivariate nonlinear aerodynamic functional dependence.

  9. Global Nonlinear Parametric Modeling with Application to F-16 Aerodynamics

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1998-01-01

    A global nonlinear parametric modeling technique is described and demonstrated. The technique uses multivariate orthogonal modeling functions generated from the data to determine nonlinear model structure, then expands each retained modeling function into an ordinary multivariate polynomial. The final model form is a finite multivariate power series expansion for the dependent variable in terms of the independent variables. Partial derivatives of the identified models can be used to assemble globally valid linear parameter varying models. The technique is demonstrated by identifying global nonlinear parametric models for nondimensional aerodynamic force and moment coefficients from a subsonic wind tunnel database for the F-16 fighter aircraft. Results show less than 10% difference between wind tunnel aerodynamic data and the nonlinear parameterized model for a simulated doublet maneuver at moderate angle of attack. Analysis indicated that the global nonlinear parametric models adequately captured the multivariate nonlinear aerodynamic functional dependence.

  10. Coalescence cascade of dissipative solitons in parametrically driven systems.

    PubMed

    Clerc, M G; Coulibaly, S; Gordillo, L; Mujica, N; Navarro, R

    2011-09-01

    Parametrically driven spatially extended systems exhibit uniform oscillations which are modulationally unstable. The resulting periodic state evolves to the creation of a gas of dissipative solitons. Driven by the interaction of dissipative solitons, the multisoliton state undergoes a cascade of coalescence processes, where the average soliton separation distance obeys a temporal self-similar law. Starting from the soliton pair interaction law, we have derived analytically and characterized the law of this multisoliton coarsening process. A comparison of numerical results obtained with different models such as the parametrically driven damped nonlinear Schrödinger equation, a vertically driven chain of pendula, and a parametrically forced magnetic wire, shows remarkable agreement. Both phenomena, the pair interaction law and the coarsening process, are also observed experimentally in a quasi-one-dimensional layer of Newtonian fluid which is oscillated vertically. PMID:22060473

  11. Coupled parametric design of flow control and duct shape

    NASA Technical Reports Server (NTRS)

    Florea, Razvan (Inventor); Bertuccioli, Luca (Inventor)

    2009-01-01

    A method for designing gas turbine engine components using a coupled parametric analysis of part geometry and flow control is disclosed. Included are the steps of parametrically defining the geometry of the duct wall shape, parametrically defining one or more flow control actuators in the duct wall, measuring a plurality of performance parameters or metrics (e.g., flow characteristics) of the duct and comparing the results of the measurement with desired or target parameters, and selecting the optimal duct geometry and flow control for at least a portion of the duct, the selection process including evaluating the plurality of performance metrics in a pareto analysis. The use of this method in the design of inter-turbine transition ducts, serpentine ducts, inlets, diffusers, and similar components provides a design which reduces pressure losses and flow profile distortions.

  12. Noise-enhanced Parametric Resonance in Perturbed Galaxies

    NASA Astrophysics Data System (ADS)

    Sideris, Ioannis V.; Kandrup, Henry E.

    2004-02-01

    This paper describes how parametric resonances associated with a galactic potential subjected to relatively low-amplitude, strictly periodic time-dependent perturbations can be impacted by pseudo-random variations in the pulsation frequency, modeled as colored noise. One aim thereby is to allow for the effects of a changing oscillation frequency as the density distribution associated with a galaxy evolves during violent relaxation. Another is to mimic the possible effects of internal substructures, satellite galaxies, and/or a high-density environment. The principal conclusions are that allowing for a variable frequency does not vitiate the effects of parametric resonance, and that, in at least some cases, such variations can increase the overall importance of parametric resonance associated with systematic pulsations. In memory of Professor H. E. Kandrup, a brilliant scientist, excellent teacher, and good friend. His genius and sense of humor will be greatly missed.

  13. Terahertz-wave parametric gain of stimulated polariton scattering

    NASA Astrophysics Data System (ADS)

    Takida, Yuma; Shikata, Jun-ichi; Nawata, Kouji; Tokizane, Yu; Han, Zhengli; Koyama, Mio; Notake, Takashi; Hayashi, Shin'ichiro; Minamide, Hiroaki

    2016-04-01

    We have experimentally determined the terahertz- (THz-) wave parametric gain of stimulated Raman scattering (SRS) by phonon-polaritons in LiNb O3 . Our approach is based on ultrabright THz-wave generation from SRS under stimulated Brillouin scattering suppression with subnanosecond pump pulses. To obtain the frequency dependence of the parametric gain, we measured the crystal-length dependence of the THz-wave output directly using a surface-coupling configuration. We found that the product of the parametric gain and the threshold crystal length is constant throughout the tuning range. Our result provides a physical basis for the design and performance enhancement of SRS-based ultrabright tabletop THz-wave sources for various applications.

  14. THz-wave parametric sources and imaging applications

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo

    2004-12-01

    We have studied the generation of terahertz (THz) waves by optical parametric processes based on laser light scattering from the polariton mode of nonlinear crystals. Using parametric oscillation of MgO-doped LiNbO3 crystal pumped by a nano-second Q-switched Nd:YAG laser, we have realized a widely tunable coherent THz-wave sources with a simple configuration. We have also developed a novel basic technology for THz imaging, which allows detection and identification of chemicals by introducing the component spatial pattern analysis. The spatial distributions of the chemicals were obtained from terahertz multispectral trasillumination images, using absorption spectra previously measured with a widely tunable THz-wave parametric oscillator. Further we have applied this technique to the detection and identification of illicit drugs concealed in envelopes. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.

  15. Epicyclic helical channels for parametric resonance ionization cooling

    SciTech Connect

    Johson, Rolland Paul; Derbenev, Yaroslav

    2015-08-23

    Proposed next-generation muon colliders will require major technical advances to achieve rapid muon beam cooling requirements. Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. In PIC, a half-integer parametric resonance causes strong focusing of a muon beam at appropriately placed energy absorbers while ionization cooling limits the beam’s angular spread. Combining muon ionization cooling with parametric resonant dynamics in this way should then allow much smaller final transverse muon beam sizes than conventional ionization cooling alone. One of the PIC challenges is compensation of beam aberrations over a sufficiently wide parameter range while maintaining the dynamical stability with correlated behavior of the horizontal and vertical betatron motion and dispersion. We explore use of a coupling resonance to reduce the dimensionality of the problem and to shift the dynamics away from non-linear resonances. PIC simulations are presented.

  16. Ultrasensitive hysteretic force sensing with parametric nonlinear oscillators

    NASA Astrophysics Data System (ADS)

    Papariello, Luca; Zilberberg, Oded; Eichler, Alexander; Chitra, R.

    2016-08-01

    We propose a method for linear detection of weak forces using parametrically driven nonlinear resonators. The method is based on a peculiar feature in the response of the resonator to a near resonant periodic external force. This feature stems from a complex interplay among the parametric drive, external force, and nonlinearities. For weak parametric drive, the response exhibits the standard Duffing-like single jump hysteresis. For stronger drive amplitudes, we find a qualitatively new double jump hysteresis which arises from stable solutions generated by the cubic Duffing nonlinearity. The additional jump exists only if the external force is present and the frequency at which it occurs depends linearly on the amplitude of the external force, permitting a straightforward ultrasensitive detection of weak forces. With state-of-the-art nanomechanical resonators, our scheme should permit force detection in the attonewton range.

  17. Feedback-Enhanced Parametric Squeezing of Mechanical Motion

    NASA Astrophysics Data System (ADS)

    Vinante, A.; Falferi, P.

    2013-11-01

    We present a single-quadrature feedback scheme able to overcome the conventional 3 dB limit on parametric squeezing. The method is experimentally demonstrated in a micromechanical system based on a cantilever with a magnetic tip. The cantilever is detected at low temperature by a SQUID susceptometer, while parametric pumping is obtained by modulating the magnetic field gradient at twice the cantilever frequency. A maximum squeezing of 11.5 dB and 11.3 dB is observed, respectively, in the response to a sinusoidal test signal and in the thermomechanical noise. So far, the maximum squeezing factor is limited only by the maximum achievable parametric modulation. The proposed technique might be used to squeeze one quadrature of a mechanical resonator below the quantum noise level, even without the need for a quantum limited detector.

  18. Correlation-enhanced Metrology with Mechanical Parametric Amplifiers

    NASA Astrophysics Data System (ADS)

    Cheung, Hil Fung Harry; Chang, Laura; Patil, Yogesh Sharad; Chakram, Srivatsan; Vengalattore, Mukund

    2015-05-01

    Quantum correlations between the two arms of a mechanical parametric amplifier can be used to realize sensing beyond the standard quantum limit. We use nondegenerate mechanical parametric oscillators made of silicon nitride membrane resonators to demonstrate mechanical amplitude squeezing. This is the acoustic equivalent of intensity difference squeezing observed in optical parametric oscillators. We use the strong correlations between the nondegenerate modes to realize sub-thermal force sensitivities through noise cancellation and signal enhancement schemes. Our classical realization of enhanced metrology in a platform amenable to quantum optomechanics and nonclassical state preparation paves the way for quantum nonlinear sensing. This work is supported by the DARPA QuASAR program through a grant from the ARO and an NSF INSPIRE award.

  19. Cosmic slowing down of acceleration for several dark energy parametrizations

    SciTech Connect

    Magaña, Juan; Cárdenas, Víctor H.; Motta, Verónica E-mail: victor.cardenas@uv.cl

    2014-10-01

    We further investigate slowing down of acceleration of the universe scenario for five parametrizations of the equation of state of dark energy using four sets of Type Ia supernovae data. In a maximal probability analysis we also use the baryon acoustic oscillation and cosmic microwave background observations. We found the low redshift transition of the deceleration parameter appears, independently of the parametrization, using supernovae data alone except for the Union 2.1 sample. This feature disappears once we combine the Type Ia supernovae data with high redshift data. We conclude that the rapid variation of the deceleration parameter is independent of the parametrization. We also found more evidence for a tension among the supernovae samples, as well as for the low and high redshift data.

  20. Cascade of parametric resonances in coupled Josephson junctions

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.; Azemtsa-Donfack, H.; Rahmonov, I. R.; Botha, A. E.

    2016-06-01

    We found that the coupled system of Josephson junctions under external electromagnetic radiation demonstrates a cascade of parametric instabilities. These instabilities appear along the IV characteristics within bias current intervals corresponding to Shapiro step subharmonics and lead to charging in the superconducting layers. The amplitudes of the charge oscillations increase with increasing external radiation power. We demonstrate the existence of longitudinal plasma waves at the corresponding bias current values. An essential advantage of the parametric instabilities in the case of subharmonics is the lower amplitude of radiation that is needed for the creation of the longitudinal plasma wave. This fact gives a unique possibility to create and control longitudinal plasma waves in layered superconductors. We propose a novel experiment for studying parametric instabilities and the charging of superconducting layers based on the simultaneous variation of the bias current and radiation amplitude.

  1. Subthreshold optical parametric oscillator with nonorthogonal polarization eigenmodes

    SciTech Connect

    Aiello, A.; Nienhuis, G.; Woerdman, J.P.

    2003-04-01

    We study the behavior of a type-II degenerate parametric amplifier in a cavity with nonorthogonal polarization eigenmodes. The mode nonorthogonality is achieved by introducing circular birefringence and linear dichroism. We use a scattering matrix formalism to investigate the role of excess quantum noise in such a device. Since only two modes are involved we are able to derive an analytical expression for the twin-photon generation rate measured outside the cavity as a function of the degree of mode nonorthogonality. Contrary to recent claims we conclude that there is no evidence of excess quantum noise for a parametric amplifier working so far below threshold that spontaneous processes dominate. Using the same scattering matrix formalism we also investigate the output spectrum of the amplifier near the threshold of parametric oscillation. We find optical band structures very similar to those known for passive ring cavities. These optical band structures are studied as a function of mode nonorthogonality and mirror reflectivity.

  2. The impact of parametrized convection on cloud feedback

    PubMed Central

    Webb, Mark J.; Lock, Adrian P.; Bretherton, Christopher S.; Bony, Sandrine; Cole, Jason N. S.; Idelkadi, Abderrahmane; Kang, Sarah M.; Koshiro, Tsuyoshi; Kawai, Hideaki; Ogura, Tomoo; Roehrig, Romain; Shin, Yechul; Mauritsen, Thorsten; Sherwood, Steven C.; Vial, Jessica; Watanabe, Masahiro; Woelfle, Matthew D.; Zhao, Ming

    2015-01-01

    We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that ‘ConvOff’ models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud

  3. Extreme prepulse contrast utilizing cascaded-optical parametric amplification

    SciTech Connect

    Jovanovic, I; Haefner, C; Wattellier, B; Barty, C J

    2006-06-15

    It has been shown recently that an optical parametric chirped-pulse amplifier can be easily reconfigured into a cascaded-optical parametric amplifier (COPA), enabling complete prepulse removal and optical switching with a window defined by the pump pulse duration. We have demonstrated instrument-limited measurement of the COPA prepulse contrast >1.4 x 10{sup 11} using 30-mJ pulses. The COPA technique is applicable to all energy ranges and pulse durations. A convenient millijoule-scale implementation of this technique is presented using a single, large-aspect-ratio quasi-phase-matched nonlinear crystal.

  4. The semi-parametric case-only estimator

    PubMed Central

    Tchetgen Tchetgen, Eric J.; Robins, James

    2010-01-01

    We propose a semi-parametric case-only estimator of multiplicative gene-environment or gene-gene interactions, under the assumption of conditional independence of the two factors given a vector of potential confounding variables. Our estimator yields valid inferences on the interaction function if either but not necessarily both of two unknown baseline functions of the confounders is correctly modeled. Furthermore, when both models are correct, our estimator has the smallest possible asymptotic variance for estimating the interaction parameter in a semi-parametric model that assumes that at least one but not necessarily both baseline models are correct. PMID:20337632

  5. Spin effect on parametric interactions of waves in magnetoplasmas

    SciTech Connect

    Shahid, M.; Melrose, D. B.; Jamil, M.; Murtaza, G.

    2012-11-15

    The parametric decay instability of upper hybrid wave into low-frequency electromagnetic Shear Alfven wave and Ordinary mode radiation (O-mode) has been investigated in an electron-ion plasma immersed in the uniform external magnetic field. Incorporating quantum effect due to electron spin, the fluid model has been used to investigate the linear and nonlinear response of the plasma species for three-wave coupling in a magnetoplasma. It is shown that the spin of electrons has considerable effect on the parametric decay of upper hybrid wave into Ordinary mode radiation (O-mode) and Shear Alfven wave even in classical regime.

  6. Ultra-broad bandwidth parametric amplification at degeneracy.

    PubMed

    Limpert, J; Aguergaray, C; Montant, S; Manek-Hönninger, I; Petit, S; Descamps, D; Cormier, E; Salin, F

    2005-09-19

    We report on a novel approach of ultra-broad bandwidth parametric amplification around degeneracy. A bandwidth of up to 400 nm centered around 800 nm is amplified in a BBO crystal by using chirped pump pulses with a bandwitdth as broad as 10 nm. A supercontinuum signal is generated in a microstructured fiber, having to first order a quadratic chirp, which is necessary to ensure temporal overlap of the interacting waves over this broad bandwidth. Furthermore, we discuss the potential of this approach for an octave-spanning parametric amplification. PMID:19498762

  7. Note on a new parametrization for testing the Kerr metric

    NASA Astrophysics Data System (ADS)

    Ghasemi-Nodehi, M.; Bambi, Cosimo

    2016-05-01

    We propose a new parametrization for testing the Kerr nature of astrophysical black hole candidates. The common approaches focus on the attempt to constrain possible deviations from the Kerr solution described by new terms in the metric. Here we adopt a different perspective. The mass and the spin of a black hole make the spacetime curved and we want to check whether they do it with the strength predicted by general relativity. As an example, we apply our parametrization to the black hole shadow, an observation that may be possible in a not too distant future.

  8. Parametric-Resonance Ionization Cooling in Twin-Helix.

    SciTech Connect

    V.S. Morozov, Ya.S. Derbenev, A. Afanasev, R.P. Johnson, Erdelyi. B., J.A. Maloney

    2011-09-01

    Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a highluminosity muon collider. For the implementation of PIC, we developed an epicyclic twin-helix channel with correlated optics. Wedge-shaped absorbers immediately followed by short rf cavities are placed into the twin-helix channel. Parametric resonances are induced in both planes using helical quadrupole harmonics. We demonstrate resonant dynamics and cooling with stochastic effects off using GEANT4/G4beamline. We illustrate compensation of spherical aberrations and benchmark COSY Infinity, a powerful tool for aberration analysis and compensation.

  9. Electro-optically spectrum tailorable intracavity optical parametric oscillator.

    PubMed

    Chung, H P; Chang, W K; Tseng, C H; Geiss, R; Pertsch, T; Chen, Y H

    2015-11-15

    We report a unique, pulsed intracavity optical parametric oscillator (IOPO) whose output spectrum is electro-optically (EO) tailorable based on an aperiodically poled lithium niobate (APPLN) working simultaneously as an optical parametric gain medium and an active gain spectrum filter in the system. We have successfully obtained from the IOPO the emission of single to multiple narrow-line signal spectral peaks in a near-infrared (1531 nm) band simply by electro-optic control. The power spectral density of the EO tailored signal can be enhanced by up to 10 times over the original (nontailored) signal. PMID:26565817

  10. Generalized parametric down conversion, many particle interferometry, and Bell's theorem

    NASA Technical Reports Server (NTRS)

    Choi, Hyung Sup

    1992-01-01

    A new field of multi-particle interferometry is introduced using a nonlinear optical spontaneous parametric down conversion (SPDC) of a photon into more than two photons. The study of SPDC using a realistic Hamiltonian in a multi-mode shows that at least a low conversion rate limit is possible. The down converted field exhibits many stronger nonclassical phenomena than the usual two photon parametric down conversion. Application of the multi-particle interferometry to a recently proposed many particle Bell's theorem on the Einstein-Podolsky-Rosen problem is given.

  11. Dispersion-Engineered Traveling Wave Kinetic Inductance Parametric Amplifier

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, Jonas (Inventor); Day, Peter K. (Inventor)

    2014-01-01

    A traveling wave kinetic inductance parametric amplifier comprises a superconducting transmission line and a dispersion control element. The transmission line can include periodic variations of its dimension along its length. The superconducting material can include a high normal state resistivity material. In some instances the high normal state resistivity material includes nitrogen and a metal selected from the group consisting of titanium, niobium and vanadium. The traveling wave kinetic inductance parametric amplifier is expected to exhibit a noise temperature below 100 mK/GHz.

  12. Epicyclic Helical Channels for Parametric Resonance Ionization Cooling

    SciTech Connect

    Andrei Afanaciev, Alex Bogacz, Yaroslav Derbenev, Kevin Beard, Valentin Ivanov, Rolland Johnson, Guimei Wang, Katsuya Yonehara

    2009-05-01

    In order to achieve cooling of muons in addition to 6D helical cooling channel (HCC) [1], we develop a technique based on a parametric resonance. The use of parametric resonances requires alternating dispersion, minimized at locations of thin absorbers, but maximized in between in order to compensate for chromatic aberrations [2]. These solutions can be combined in an Epicyclic Helical Cooling Channel (EHCC) that meets requirements of alternating dispersion of beam periodic orbit with best conditions for maintenance of stable beam transport in a continuous solenoid-type field [3]. We discuss here basic features and new simulation results for EHCC.

  13. Parametric study of prospective early commercial OCMHD power plants /PSPEC/

    NASA Technical Reports Server (NTRS)

    Marston, C. H.; Bender, D. J.; Hnat, J. G.; Dellinger, T. C.

    1980-01-01

    The paper presents a parametric study conducted to obtain the performance, economics, natural resource requirements, and environmental impact of moderate technology MHD/steam power plants that do not require development of direct-fired high-temperature air heaters. The study was divided into three base cases, each with a reference case and parametric variations. The case using recuperative air preheat in the range of 1000 F to 1300 F, combined with O2 enrichment to 42% by volume has been selected for conceptual design.

  14. Photon number amplification/duplication through parametric conversion

    NASA Technical Reports Server (NTRS)

    Dariano, G. M.; Macchiavello, C.; Paris, M.

    1993-01-01

    The performance of parametric conversion in achieving number amplification and duplication is analyzed. It is shown that the effective maximum gains G(sub *) remain well below their integer ideal values, even for large signals. Correspondingly, one has output Fano factors F(sub *) which are increasing functions of the input photon number. On the other hand, in the inverse (deamplifier/recombiner) operating mode quasi-ideal gains G(sub *) and small factors F(sub *) approximately equal to 10 percent are obtained. Output noise and non-ideal gains are ascribed to spontaneous parametric emission.

  15. Parametric models of reflectance spectra for dyed fabrics

    NASA Astrophysics Data System (ADS)

    Aiken, Daniel C.; Ramsey, Scott; Mayo, Troy; Lambrakos, Samuel G.; Peak, Joseph

    2016-05-01

    This study examines parametric modeling of NIR reflectivity spectra for dyed fabrics, which provides for both their inverse and direct modeling. The dye considered for prototype analysis is triarylamine dye. The fabrics considered are camouflage textiles characterized by color variations. The results of this study provide validation of the constructed parametric models, within reasonable error tolerances for practical applications, including NIR spectral characteristics in camouflage textiles, for purposes of simulating NIR spectra corresponding to various dye concentrations in host fabrics, and potentially to mixtures of dyes.

  16. Parametric seeding of a microresonator optical frequency comb.

    PubMed

    Papp, Scott B; Del'Haye, Pascal; Diddams, Scott A

    2013-07-29

    We have investigated parametric seeding of a microresonator frequency comb (microcomb) by way of a pump laser with two electro-optic-modulation sidebands. We show that the pump-sideband spacing is precisely replicated throughout the microcomb's optical spectrum, and we demonstrate a record absolute line-spacing stability for microcombs of 1.6 × 10(-13) at 1 s. The spectrum of a microcomb is complex, and often non-equidistant subcombs are observed. Our results demonstrate that parametric seeding can not only control the subcombs, but can lead to the generation of a strictly equidistant microcomb spectrum. PMID:23938634

  17. Microwave design optimization for broadband Josephson parametric amplifiers

    NASA Astrophysics Data System (ADS)

    Reagor, Matthew; Sete, Eyob; Thompson, Dane; Ranadive, Arpit; Vijay, R.; Rigetti, Chad

    Broadband Josephson parametric amplifiers are crucial components of a scalable superconducting quantum computing architecture. Recently, the bandwidth of a resonator-based Josephson parametric amplifier was significantly enhanced by introducing a controlled reactance in the signal chain. The design was based on a λ/2 section fabricated on an RF circuit board. We present the design of an on-chip version that will improve robustness and minimize performance variability from one device to another. Further, we will discuss microwave design optimization for flux pumping mechanism to minimize cross-talk between different input-output ports of the device. Finally, we will discuss design goals for further improvement of amplifier performance.

  18. Neuroimaging of Semantic Processing in Schizophrenia: A Parametric Priming Approach

    PubMed Central

    Han, S. Duke; Wible, Cynthia G.

    2009-01-01

    The use of fMRI and other neuroimaging techniques in the study of cognitive language processes in psychiatric and non-psychiatric conditions has led at times to discrepant findings. Many issues complicate the study of language, especially in psychiatric populations. For example, the use of subtractive designs can produce misleading results. We propose and advocate for a semantic priming parametric approach to the study of semantic processing using fMRI methodology. Implications of this parametric approach are discussed in view of current functional neuroimaging research investigating the semantic processing disturbance of schizophrenia. PMID:19765623

  19. Validation of two (parametric vs non-parametric) daily weather generators

    NASA Astrophysics Data System (ADS)

    Dubrovsky, M.; Skalak, P.

    2015-12-01

    As the climate models (GCMs and RCMs) fail to satisfactorily reproduce the real-world surface weather regime, various statistical methods are applied to downscale GCM/RCM outputs into site-specific weather series. The stochastic weather generators are among the most favourite downscaling methods capable to produce realistic (observed-like) meteorological inputs for agrological, hydrological and other impact models used in assessing sensitivity of various ecosystems to climate change/variability. To name their advantages, the generators may (i) produce arbitrarily long multi-variate synthetic weather series representing both present and changed climates (in the latter case, the generators are commonly modified by GCM/RCM-based climate change scenarios), (ii) be run in various time steps and for multiple weather variables (the generators reproduce the correlations among variables), (iii) be interpolated (and run also for sites where no weather data are available to calibrate the generator). This contribution will compare two stochastic daily weather generators in terms of their ability to reproduce various features of the daily weather series. M&Rfi is a parametric generator: Markov chain model is used to model precipitation occurrence, precipitation amount is modelled by the Gamma distribution, and the 1st order autoregressive model is used to generate non-precipitation surface weather variables. The non-parametric GoMeZ generator is based on the nearest neighbours resampling technique making no assumption on the distribution of the variables being generated. Various settings of both weather generators will be assumed in the present validation tests. The generators will be validated in terms of (a) extreme temperature and precipitation characteristics (annual and 30-years extremes and maxima of duration of hot/cold/dry/wet spells); (b) selected validation statistics developed within the frame of VALUE project. The tests will be based on observational weather series

  20. Long-term performance evaluation of EBPR process in tropical climate: start-up, process stability, and the effect of operational pH and influent C:P ratio.

    PubMed

    Ong, Y H; Chua, A S M; Lee, B P; Ngoh, G C

    2013-01-01

    To date, little information is known about the operation of the enhanced biological phosphorus removal (EBPR) process in tropical climates. Along with the global concerns on nutrient pollution and the increasing array of local regulatory requirements, the applicability and compliance accountability of the EBPR process for sewage treatment in tropical climates is being evaluated. A sequencing batch reactor (SBR) inoculated with seed sludge from a conventional activated sludge (CAS) process was successfully acclimatized to EBPR conditions at 28 °C after 13 days' operation. Enrichment of Candidatus Accumulibacter phosphatis in the SBR was confirmed through fluorescence in situ hybridization (FISH). The effects of operational pH and influent C:P ratio on EBPR were then investigated. At pH 7 or pH 8, phosphorus removal rates of the EBPR processes were relatively higher when operated at C:P ratio of 3 than C:P ratio of 10, with 0.019-0.020 and 0.011-0.012 g-P/g-MLVSS•day respectively. One-year operation of the 28 °C EBPR process at C:P ratio of 3 and pH 8 demonstrated stable phosphorus removal rate of 0.020 ± 0.003 g-P/g-MLVSS•day, corresponding to effluent with phosphorus concentration <0.5 mg/L. This study provides the first evidence on good EBPR activity at relatively high temperature, indicating its applicability in a tropical climate. PMID:23168633

  1. AgGaS2 infrared parametric oscillator

    NASA Technical Reports Server (NTRS)

    Fan, Y. X.; Eckardt, R. C.; Byer, R. L.; Route, R. K.; Feigelson, R. S.

    1984-01-01

    A report is presented of the first operation of an optical parametric oscillator in a chalcopyrite crystal, AgGaS2. Tuning from 1.4 to 4.0 microns is demonstrated for 1.06-micron Nd:yttrium aluminum garnet pumping. The potential tuning range extends to the 12-micron transparency limit of the crystal.

  2. Model Comparison of Bayesian Semiparametric and Parametric Structural Equation Models

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Xia, Ye-Mao; Pan, Jun-Hao; Lee, Sik-Yum

    2011-01-01

    Structural equation models have wide applications. One of the most important issues in analyzing structural equation models is model comparison. This article proposes a Bayesian model comparison statistic, namely the "L[subscript nu]"-measure for both semiparametric and parametric structural equation models. For illustration purposes, we consider…

  3. GCG parametrization for growth function and current constraints

    SciTech Connect

    Gupta, Gaveshna; Sen, Somasri; Sen, Anjan A. E-mail: ssen@jmi.ac.in

    2012-04-01

    We study the linear growth function f for large scale structures in a cosmological scenario where Generalised Chaplygin Gas (GCG) serves as dark energy candidate. We parametrize the growth index parameter as a function of redshift and do a comparative study between the theoretical growth rate and the proposed parametrization. Moreover, we demonstrate that growth rates for a wide range of dark energy models can be modeled accurately by our proposed parametrization. Finally, we compile a data set consisting of 28 data points within redshift range (0.15,3.8) to constrain the growth rate. It includes direct growth data from various projects/surveys including the latest data from the Wiggle-Z measurements. It also includes data constraining growth indirectly through the rms mass fluctuation σ{sub 8}(z) inferred from Ly-α measurements at various redshifts. By fitting our proposed parametrization for f to these data, we show that growth history of large scale structures of the universe although allows a transient acceleration, one cannot distinguish it at present with an eternally accelerating universe.

  4. Tunable terahertz generation via a cascaded optical parametric device

    NASA Astrophysics Data System (ADS)

    Huang, Nan; Liu, Hongjun; Sun, Qibing; Wang, Zhaolu; Li, Shaopeng; Han, Jing

    2016-05-01

    A compact cascaded optical parametric device generating a coherent pulse terahertz (THz) wave is demonstrated. The terahertz parametric oscillator (TPO) and the difference frequency generation (DFG) are designed for cascaded operation use with two outputs producing tunable THz wavelengths. From the first optical parametric device, a TPO with a MgO: LiNbO3 crystal pumped by a Q switch laser of 1.064 μm, 1.8 mJ idler pulse and 5.5 mJ residual pump pulse is obtained. Both of the two beams are employed as the pump and signal beams in the second optical parametric device DFG with a GaSe crystal. More than 0.6 μJ and about 2.1 ns THz pulse at 183 μm is achieved from the DFG. A tunable THz source in the range 104–226 μm via tuning the external phase matching (PM) angles of the TPO and the DFG flexibly under room temperature is obtained. The observed tunable THz wavelengths from the DFG are the same as those from the TPO.

  5. Dark energy parametrization motivated by scalar field dynamics

    NASA Astrophysics Data System (ADS)

    de la Macorra, Axel

    2016-05-01

    We propose a new dark energy (DE) parametrization motivated by the dynamics of a scalar field ϕ. We use an equation of state w parametrized in terms of two functions L and y, closely related to the dynamics of scalar fields, which is exact and has no approximation. By choosing an appropriate ansatz for L we obtain a wide class of behavior for the evolution of DE without the need to specify the scalar potential V. We parametrize L and y in terms of only four parameters, giving w a rich structure and allowing for a wide class of DE dynamics. Our w can either grow and later decrease, or it can happen the other way around; the steepness of the transition is not fixed and it contains the ansatz w={w}o+{w}a(1-a). Our parametrization follows closely the dynamics of a scalar field, and the function L allows us to connect it with the scalar potential V(φ ). While the Universe is accelerating and the slow roll approximation is valid, we get L≃ {({V}\\prime /V)}2. To determine the dynamics of DE we also calculate the background evolution and its perturbations, since they are important to discriminate between different DE models.

  6. An Optical Parametric Amplifier for Profiling Gases of Atmospheric Interest

    NASA Technical Reports Server (NTRS)

    Heaps, William (Technical Monitor); Burris, John; Richter, Dale

    2004-01-01

    This paper describes the development of a lidar transmitter using an optical parametric amplifier. It is designed for profiling gases of atmospheric interest at high spatial and temporal precision in the near-IR. Discussions on desirable characteristics for such a transmitter with specific reference to the case of CO, are made.

  7. Update on Parametric Cost Models for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl. H. Philip; Henrichs, Todd; Luedtke, Alexander; West, Miranda

    2011-01-01

    Since the June 2010 Astronomy Conference, an independent review of our cost data base discovered some inaccuracies and inconsistencies which can modify our previously reported results. This paper will review changes to the data base, our confidence in those changes and their effect on various parametric cost models

  8. Acoustic attenuation design requirements established through EPNL parametric trades

    NASA Technical Reports Server (NTRS)

    Veldman, H. F.

    1972-01-01

    An optimization procedure for the provision of an acoustic lining configuration that is balanced with respect to engine performance losses and lining attenuation characteristics was established using a method which determined acoustic attenuation design requirements through parametric trade studies using the subjective noise unit of effective perceived noise level (EPNL).

  9. Spacelab mission dependent training parametric resource requirements study

    NASA Technical Reports Server (NTRS)

    Ogden, D. H.; Watters, H.; Steadman, J.; Conrad, L.

    1976-01-01

    Training flows were developed for typical missions, resource relationships analyzed, and scheduling optimization algorithms defined. Parametric analyses were performed to study the effect of potential changes in mission model, mission complexity and training time required on the resource quantities required to support training of payload or mission specialists. Typical results of these analyses are presented both in graphic and tabular form.

  10. Raman-Enhanced Phase-Sensitive Fibre Optical Parametric Amplifier

    NASA Astrophysics Data System (ADS)

    Fu, Xuelei; Guo, Xiaojie; Shu, Chester

    2016-02-01

    Phase-sensitive amplification is of great research interest owing to its potential in noiseless amplification. One key feature in a phase-sensitive amplifier is the gain extinction ratio defined as the ratio of the maximum to the minimum gains. It quantifies the capability of the amplifier in performing low-noise amplification for high phase-sensitive gain. Considering a phase-sensitive fibre optical parametric amplifier for linear amplification, the gain extinction ratio increases with the phase-insensitive parametric gain achieved from the same pump. In this work, we use backward Raman amplification to increase the phase-insensitive parametric gain, which in turn improves the phase-sensitive operation. Using a 955 mW Raman pump, the gain extinction ratio is increased by 9.2 dB. The improvement in the maximum phase-sensitive gain is 18.7 dB. This scheme can significantly boost the performance of phase-sensitive amplification in a spectral range where the parametric pump is not sufficiently strong but broadband Raman amplification is available.

  11. The Dynamics of a Parametrically Driven Damped Pendulum

    NASA Astrophysics Data System (ADS)

    Das, A.; Kumar, K.

    2015-05-01

    Ordered and chaotic states of a parametrically driven planar pendulum with viscous damping are numerically investigated. The damping makes the number of chaotic windows fewer but with larger width. Stroboscopic maps of the chaotic motion of the pendulum, driven either subharmonically or harmonically, show strange attractors with inversion symmetry in the phase plane.

  12. A Parametric Approach to Numerical Modeling of TKR Contact Forces

    PubMed Central

    Lundberg, Hannah J.; Foucher, Kharma C.; Wimmer, Markus A.

    2009-01-01

    In vivo knee contact forces are difficult to determine using numerical methods because there are more unknown forces than equilibrium equations available. We developed parametric methods for computing contact forces across the knee joint during the stance phase of level walking. Three-dimensional contact forces were calculated at two points of contact between the tibia and the femur, one on the lateral aspect of the tibial plateau, and one on the medial side. Muscle activations were parametrically varied over their physiologic range resulting in a solution space of contact forces. The obtained solution space was reasonably small and the resulting force pattern compared well to a previous model from the literature for kinematics and external kinetics from the same patient. Peak forces of the parametric model and the previous model were similar for the first half of the stance phase, but differed for the second half. The previous model did not take into account the transverse external moment about the knee and could not calculate muscle activation levels. Ultimately, the parametric model will result in more accurate contact force inputs for total knee simulators, as current inputs are not generally based on kinematics and kinetics inputs from TKR patients. PMID:19155015

  13. Surface and Volume Grid Generation in Parametric Form

    NASA Technical Reports Server (NTRS)

    Yu, Tzuyi; Soni, Bharat K.; Benjamin, Ted; Williams, Robert

    1996-01-01

    The algorithm for surface modeling and volume grid generation using parametric Non-Uniform Rational B-splines (NURBS) geometric representation are presented. The enhanced re-parameterization algorithm which can yield a desired physical distribution on the curve, surface, and volume is also presented. This approach bridges the gap between computer aided design surface/volume definition and surface/volume grid generation.

  14. Soil Analysis using the semi-parametric NAA technique

    SciTech Connect

    Zamboni, C. B.; Silveira, M. A. G.; Medina, N. H.

    2007-10-26

    The semi-parametric Neutron Activation Analysis technique, using Au as a flux monitor, was applied to measure element concentrations of Br, Ca, Cl, K, Mn and Na for soil characterization. The results were compared with those using the Instrumental Neutron Activation Analysis technique and they found to be compatible. The viability, advantages, and limitations of using these two analytic methodologies are discussed.

  15. Tuning curve of type-0 spontaneous parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Lerch, Stefan; Bessire, Bänz; Bernhard, Christof; Feurer, Thomas; Stefanov, André

    2013-04-01

    We study the tuning curve of entangled photons generated by type-0 spontaneous parametric down-conversion in a periodically poled KTP crystal. We demonstrate the X-shaped spatiotemporal structure of the spectrum by means of measurements and numerical simulations. Experiments for different pump waists, crystal temperatures, and crystal lengths are in good agreement with numerical simulations.

  16. A new parametric approach for wind profiling with Doppler Radar

    NASA Astrophysics Data System (ADS)

    Le Foll, GwenaëLle; Larzabal, Pascal; Clergeot, Henri; Petitdidier, Monique

    1997-07-01

    In this paper, we propose a new approach for wind profile extraction with Doppler radar. To perform this, we first focus on the analysis and modeling of VHF or UHF waves backscattered by clear-air turbulence. A physical description of the backscattered wave is given. This description involves a spectral model that includes a parametric profile of the Doppler spectrum. A parametric approach of the wind profile can be easily generated. The sounding volume is divided into slabs whose thickness is consistent with that of the expected homogeneous turbulent layer. The echo spectrum of each slab is supposed Gaussian. Thus, for the range gate, the backscattered spectrum is a priori non-Gaussian, since it is weighted by a nonconstant reflectivity. This represents a more realistic assumption than the classical ones. The realistic temporal model thereby obtained can be used in simulation, which provides a valable tool for testing the extraction algorithm. An original recursive fitting, in terms of maximum likelihood, between the experimentally recorded spectrum and the parametric candidate spectrum is described and implemented as a second-order, steepest-descent algorithm. This optimization problem is solved in a weighted fashion on the entire gate simultaneously. The regularized parametric method, described in this paper, is a way to minimize some of the drawbacks encountered with traditional methods. Simulations reveal good statistical performance compared with traditional methods. The algorithm is then tested on real data. To achieve this, original methods are proposed for noise suppression and clutter removal.

  17. Universal parametrization of thermal photon rates in hadronic matter

    NASA Astrophysics Data System (ADS)

    Heffernan, Matthew; Hohler, Paul; Rapp, Ralf

    2015-02-01

    Electromagnetic (EM) radiation off strongly interacting matter created in high-energy heavy-ion collisions (HICs) encodes information on the high-temperature phases of nuclear matter. Microscopic calculations of thermal EM emission rates are usually rather involved and not readily accessible to broad applications in models of the fireball evolution which are required to compare with experimental data. An accurate and universal parametrization of the microscopic calculations is thus key to honing the theory behind the EM spectra. Here we provide such a parametrization for photon emission rates from hadronic matter, including the contributions from in-medium ρ mesons (which incorporate effects from baryons and antibaryons), as well as bremsstrahlung from π π scattering. Individual parametrizations for each contribution are numerically determined through nested fitting functions for photon energies from 0.2 to 5 GeV in chemically equilibrated matter of temperatures 100-180 MeV and baryon chemical potentials 0-400 MeV. Special care is taken to extent the parametrizations to chemical off-equilibrium as encountered in HICs after chemical freeze-out. This provides a functional description of thermal photon rates within a 20% variation of the microscopically calculated values.

  18. Parametric resonance induced chaos in magnetic damped driven pendulum

    NASA Astrophysics Data System (ADS)

    Khomeriki, Giorgi

    2016-07-01

    A damped driven pendulum with a magnetic driving force, appearing from a solenoid, where ac current flows is considered. The solenoid acts on the magnet, which is located at a free end of the pendulum. In this system the existence and interrelation of chaos and parametric resonance is theoretically examined. Derived analytical results are supported by numerical simulations and conducted experiments.

  19. Steady States of the Parametric Rotator and Pendulum

    ERIC Educational Resources Information Center

    Bouzas, Antonio O.

    2010-01-01

    We discuss several steady-state rotation and oscillation modes of the planar parametric rotator and pendulum with damping. We consider a general elliptic trajectory of the suspension point for both rotator and pendulum, for the latter at an arbitrary angle with gravity, with linear and circular trajectories as particular cases. We treat the…

  20. Dichroism for orbital angular momentum using parametric amplification

    NASA Astrophysics Data System (ADS)

    Lowney, J.; Roger, T.; Faccio, D.; Wright, E. M.

    2014-11-01

    We theoretically analyze parametric amplification as a means to produce dichroism based on the orbital angular momentum (OAM) of an incident signal field. The nonlinear interaction is shown to provide differential gain between signal states of differing OAM, the peak gain occurring at half the OAM of the pump field.

  1. Parametric R-norm directed-divergence convex function

    NASA Astrophysics Data System (ADS)

    Garg, Dhanesh; Kumar, Satish

    2016-06-01

    In this paper, we define parametric R-norm directed-divergence convex function and discuss their special cases and prove some properties similar to Kullback-Leibler information measure. From R-norm divergence measure new information measures have also been derived and their relations with different measures of entropy have been obtained and give its application in industrial engineering.

  2. Results on Levy stable parametrizations of Bose-Einstein Correlations

    SciTech Connect

    Novak, Tamas

    2006-04-11

    Bose-Einstein correlations of identical charged-pion pairs produced in hadronic Z decays are analyzed in terms of various parametrizations. A good description is achieved using Levy stable distributions. The source function is reconstructed with the help of the {tau}-model.

  3. PARAMETRIC DISTANCE WEIGHTING OF LANDSCAPE INFLUENCE ON STREAMS

    EPA Science Inventory

    We present a parametric model for estimating the areas within watersheds whose land use best predicts indicators of stream ecological condition. We regress a stream response variable on the distance-weighted proportion of watershed area that has a specific land use, such as agric...

  4. Raman-Enhanced Phase-Sensitive Fibre Optical Parametric Amplifier

    PubMed Central

    Fu, Xuelei; Guo, Xiaojie; Shu, Chester

    2016-01-01

    Phase-sensitive amplification is of great research interest owing to its potential in noiseless amplification. One key feature in a phase-sensitive amplifier is the gain extinction ratio defined as the ratio of the maximum to the minimum gains. It quantifies the capability of the amplifier in performing low-noise amplification for high phase-sensitive gain. Considering a phase-sensitive fibre optical parametric amplifier for linear amplification, the gain extinction ratio increases with the phase-insensitive parametric gain achieved from the same pump. In this work, we use backward Raman amplification to increase the phase-insensitive parametric gain, which in turn improves the phase-sensitive operation. Using a 955 mW Raman pump, the gain extinction ratio is increased by 9.2 dB. The improvement in the maximum phase-sensitive gain is 18.7 dB. This scheme can significantly boost the performance of phase-sensitive amplification in a spectral range where the parametric pump is not sufficiently strong but broadband Raman amplification is available. PMID:26830136

  5. Infra-red parametric generation: Phase mismatch condition

    SciTech Connect

    Ghosh, S.; Dubey, Swati; Jain, Kamal

    2015-07-31

    An analytical investigation is made for the Infrared parametric generation in doped semiconductor plasma under phase mismatch condition. Theoretical formulations are undertaken to determine induced polarization and threshold pump field for the onset of parametric generation in semiconductor plasma medium. The origin of this nonlinear interaction lies in the second order optical susceptibility arising due to the induced nonlinear current density in piezoelectric medium. Numerical estimations are made for n- type InSb at 77 K duly irradiated by a pulsed 10.6µm CO{sub 2} laser. It is very difficult to attain exact phase matching in experimental frame so we have considered a tolerable small phase mismatch in order to attain a new result. Its effect on the Infrared parametric generation in compound semiconductor is examined through induced polarization. Transmitted intensity is determined to have an idea about conversion efficiency of the said process. Phase mismatch tends to raise the required pump field to stimulate the parametric generation. Transmitted intensity is found to decrease with coherence length lc and increase carrier concentration n{sub 0}, which is favorable for improved conversion efficiency.

  6. Developing Parametric Building Models - the Gandis Use Case

    NASA Astrophysics Data System (ADS)

    Thaller, W.; Krispel, U.; Havemann, S.; Redi, I.; Redi, A.; Fellner, D. W.

    2011-09-01

    In the course of a project related to green building design, we have created a group of eight parametric building models that can be manipulated interactively with respect to dimensions, number of floors, and a few other parameters. We report on the commonalities and differences between the models and the abstractions that we were able to identify.

  7. Generation of ultra-low-noise optical parametric combs

    NASA Astrophysics Data System (ADS)

    Kuo, Ping P.; Radic, Stojan

    2016-03-01

    Generation of wideband optical frequency combs requires precise balance between nonlinear photon interaction and parasitic effects. While near-octave combs can be generated in both silica and silicon waveguides, it is not always possible to suppress the noise across the operational bandwidth. Principles and challenges of noiseinhibited, tunable frequency comb generation in cavity-free parametric mixers are described and discussed.

  8. Parametric Design Studies on a Direct Liquid Feed Fuel Cell

    NASA Technical Reports Server (NTRS)

    Frank, H. A.; Narayanan, S. R.; Nakamura, B.; Surampudi, S.; Halpert, G.

    1995-01-01

    Parametric design studies were carried out on a direct methanol liquid feed fuel cell employing 1 M MeOH fuel, air and oxygen as oxidant in a 2 inch x 2 inch cell employing polymeric electrolyte membranes. Measurements include voltage-current output parameters, methanol crossover rate, and impedance as a function of several design and operational variables. Design variables are described.

  9. Multi-level approach for parametric roll analysis

    NASA Astrophysics Data System (ADS)

    Kim, Taeyoung; Kim, Yonghwan

    2011-03-01

    The present study considers multi-level approach for the analysis of parametric roll phenomena. Three kinds of computation method, GM variation, impulse response function (IRF), and Rankine panel method, are applied for the multi-level approach. IRF and Rankine panel method are based on the weakly nonlinear formulation which includes nonlinear Froude- Krylov and restoring forces. In the computation result of parametric roll occurrence test in regular waves, IRF and Rankine panel method show similar tendency. Although the GM variation approach predicts the occurrence of parametric roll at twice roll natural frequency, its frequency criteria shows a little difference. Nonlinear roll motion in bichromatic wave is also considered in this study. To prove the unstable roll motion in bichromatic waves, theoretical and numerical approaches are applied. The occurrence of parametric roll is theoretically examined by introducing the quasi-periodic Mathieu equation. Instability criteria are well predicted from stability analysis in theoretical approach. From the Fourier analysis, it has been verified that difference-frequency effects create the unstable roll motion. The occurrence of unstable roll motion in bichromatic wave is also observed in the experiment.

  10. Aircraft conceptual design - an adaptable parametric sizing methodology

    NASA Astrophysics Data System (ADS)

    Coleman, Gary John, Jr.

    Aerospace is a maturing industry with successful and refined baselines which work well for traditional baseline missions, markets and technologies. However, when new markets (space tourism) or new constrains (environmental) or new technologies (composite, natural laminar flow) emerge, the conventional solution is not necessarily best for the new situation. Which begs the question "how does a design team quickly screen and compare novel solutions to conventional solutions for new aerospace challenges?" The answer is rapid and flexible conceptual design Parametric Sizing. In the product design life-cycle, parametric sizing is the first step in screening the total vehicle in terms of mission, configuration and technology to quickly assess first order design and mission sensitivities. During this phase, various missions and technologies are assessed. During this phase, the designer is identifying design solutions of concepts and configurations to meet combinations of mission and technology. This research undertaking contributes the state-of-the-art in aircraft parametric sizing through (1) development of a dedicated conceptual design process and disciplinary methods library, (2) development of a novel and robust parametric sizing process based on 'best-practice' approaches found in the process and disciplinary methods library, and (3) application of the parametric sizing process to a variety of design missions (transonic, supersonic and hypersonic transports), different configurations (tail-aft, blended wing body, strut-braced wing, hypersonic blended bodies, etc.), and different technologies (composite, natural laminar flow, thrust vectored control, etc.), in order to demonstrate the robustness of the methodology and unearth first-order design sensitivities to current and future aerospace design problems. This research undertaking demonstrates the importance of this early design step in selecting the correct combination of mission, technologies and configuration to

  11. Parametric perfusion imaging based on low-cost ultrasound platform.

    PubMed

    Gu, Xiaolin; Zhong, Hui; Wan, Mingxi; Hu, Xiaowen; Lv, Dan; Shen, Liang; Zhang, Xiaomei

    2010-01-01

    In this study, we attempted to implement parametric perfusion imaging to quantify blood perfusion based on modified low-cost ultrasound platform. A novel ultrasound contrast-specific imaging method called pulse-inversion harmonic sum-squared-differences (PIHSSD) was proposed for improving the sensitivity for detecting contrast agents and the accuracy of parametric perfusion imaging, which combined pulse-inversion harmonic (PIH) with pulse-inversion sum-squared-differences (PISSD) threshold-based decision. PIHSSD method just involved simple operations including addition and multiplication and was easy to realize. The sequences of contrast images without logarithmic compression were used to acquire time intensity curves (TICs) from numerous equal-sized regions-of-interest (ROI) covering the entire image plane. Parametric perfusion images were obtained based on the parameters extracted from the TICs, including peak value (PV), area under curve (AUC), mean transit time (MTT), peak value time (PVT), peak width (PW) and climbing rate (CR). Flow phantom was used for validation and the results suggested that PIHSSD method provided 9.6 to 20.3 dB higher contrast-to-tissue ratio (CTR) than PIH method. The results of the experiments of rabbit kidney also showed that the CTR of PIHSSD images was higher than that of PIH images, and the parametric perfusion images based on PIHSSD method provided more accurate quantification of blood perfusion compared with those based on PIH and PISSD methods. It demonstrated that the parametric perfusion imaging achieved good performance though implemented on low-cost ultrasound platform. (E-mail: mxwan@mail.xjtu.edu.cn). PMID:19931972

  12. Further Empirical Results on Parametric Versus Non-Parametric IRT Modeling of Likert-Type Personality Data

    ERIC Educational Resources Information Center

    Maydeu-Olivares, Albert

    2005-01-01

    Chernyshenko, Stark, Chan, Drasgow, and Williams (2001) investigated the fit of Samejima's logistic graded model and Levine's non-parametric MFS model to the scales of two personality questionnaires and found that the graded model did not fit well. We attribute the poor fit of the graded model to small amounts of multidimensionality present in…

  13. Real time air quality forecasting using integrated parametric and non-parametric regression techniques

    NASA Astrophysics Data System (ADS)

    Donnelly, Aoife; Misstear, Bruce; Broderick, Brian

    2015-02-01

    This paper presents a model for producing real time air quality forecasts with both high accuracy and high computational efficiency. Temporal variations in nitrogen dioxide (NO2) levels and historical correlations between meteorology and NO2 levels are used to estimate air quality 48 h in advance. Non-parametric kernel regression is used to produce linearized factors describing variations in concentrations with wind speed and direction and, furthermore, to produce seasonal and diurnal factors. The basis for the model is a multiple linear regression which uses these factors together with meteorological parameters and persistence as predictors. The model was calibrated at three urban sites and one rural site and the final fitted model achieved R values of between 0.62 and 0.79 for hourly forecasts and between 0.67 and 0.84 for daily maximum forecasts. Model validation using four model evaluation parameters, an index of agreement (IA), the correlation coefficient (R), the fraction of values within a factor of 2 (FAC2) and the fractional bias (FB), yielded good results. The IA for 24 hr forecasts of hourly NO2 was between 0.77 and 0.90 at urban sites and 0.74 at the rural site, while for daily maximum forecasts it was between 0.89 and 0.94 for urban sites and 0.78 for the rural site. R values of up to 0.79 and 0.81 and FAC2 values of 0.84 and 0.96 were observed for hourly and daily maximum predictions, respectively. The model requires only simple input data and very low computational resources. It found to be an accurate and efficient means of producing real time air quality forecasts.

  14. Problems of the design of low-noise input devices. [parametric amplifiers

    NASA Technical Reports Server (NTRS)

    Manokhin, V. M.; Nemlikher, Y. A.; Strukov, I. A.; Sharfov, Y. A.

    1974-01-01

    An analysis is given of the requirements placed on the elements of parametric centimeter waveband amplifiers for achievement of minimal noise temperatures. A low-noise semiconductor parametric amplifier using germanium parametric diodes for a receiver operating in the 4 GHz band was developed and tested confirming the possibility of satisfying all requirements.

  15. Few-Cycle and Cavity-Enhanced Optical Parametric Amplification

    NASA Astrophysics Data System (ADS)

    Siddiqui, Aleem Mohammad

    Optical parametric amplifiers have emerged as important optical sources by extending the properties of few-cycle laser sources, which exist only in materials with sufficiently large gain bandwidths, to wide array of spectral ranges. The work reported in this thesis relates to two areas for the continued development of optical parametric amplification based sources. First, we present a white light seeded, carrier-envelope stable, degenerately pumped OPA producing near tranform-limited sub 7 fs, 3 microJ pulses at the driver wavelength from a long pulse, non-CEP stable Ti:sapphire regenerative amplifier. Problems to the spectral phase jump at the driver wavelength, 800 nm, were avoided by using a near infrared OPA to produce white light continuum down to 800 nm where the spectral phase is smooth. Secondly, enhancement cavities are used in conjunction with parametric amplifiers resulting in a new technique entitled, cavity-enhanced optical parametric chirped-pulse amplification (C-OPCPA). C-OPCPA increases the capabilities of nonlinear crystals and can allow continued scaling of parametric amplifier systems to high repetition rate. This work contains the first theoretical and experimental investigation of C-OPCPA. Numerically, passive pump pulse shaping of the intracavity pump power is shown to enable octave spanning gain. Experimentally, a first proof-of-principle experiment demonstrates a 78 MHz C-OPCPA with more than 50% conversion with under 1 W of incident pump power. A comparison to a single pass system shows improvements in the C-OPCPA of orders of magnitude in conversion efficiency and 3 fold increase in phase matching bandwidth in 10 and 20 mm periodically poled lithium niobate phase matched for parametric amplification with 1030 nm pump wavelength and a 1550 nm signal wavelength. A Yb-fiber laser based CPA system producing up to 5 W of 500 fs pulses comprises the pump source, and a Er-fiber laser the signal. (Copies available exclusively from MIT Libraries

  16. Universal Parametrization of Thermal Photon Production in Hadronic Matter

    NASA Astrophysics Data System (ADS)

    Heffernan, Matthew; Hohler, Paul; Rapp, Ralf

    2014-09-01

    As the production of photons and dileptons from high-energy collisions is able to provide information on the high temperature and high density phases of nuclear matter, an improved and universal parametrization of the rather involved microscopic calculations is key to honing the theory behind this production. We focus on photon emission rates from hadronic many-body calculations of the in-medium rho spectral function, which includes the effects of baryons and antibaryons. Across a range of temperatures from 0.1 to 0.18 GeV and baryon chemical potentials from 0 to 0.4 GeV, a parametrization of thermal photon rates for energies from 0.2 to 5 GeV is numerically determined through the use of nested fitting methods. This provides a fully functional description of thermal photon production largely within an unprecedented 20% of the calculated values from the spectral function, a significant reduction in error from available parametrizations. The contribution of photons and dileptons from pion-pion bremsstrahlung is evaluated for the importance of its contribution. The functional form, coupled with the comparison to the bremsstrahlung production of thermal photons, will provide a baseline for guiding future studies. As the production of photons and dileptons from high-energy collisions is able to provide information on the high temperature and high density phases of nuclear matter, an improved and universal parametrization of the rather involved microscopic calculations is key to honing the theory behind this production. We focus on photon emission rates from hadronic many-body calculations of the in-medium rho spectral function, which includes the effects of baryons and antibaryons. Across a range of temperatures from 0.1 to 0.18 GeV and baryon chemical potentials from 0 to 0.4 GeV, a parametrization of thermal photon rates for energies from 0.2 to 5 GeV is numerically determined through the use of nested fitting methods. This provides a fully functional description of

  17. Creating Efficient Instrumentation Networks to Support Parametric Risk Transfer

    NASA Astrophysics Data System (ADS)

    Rockett, P.

    2009-04-01

    The development and institutionalisation of Catastrophe modelling during the 1990s opened the way for Catastrophe risk securitization transactions in which catastrophe risk held by insurers is transferred to the capital markets in the form of a bond. Cat Bonds have been one of the few areas of the capital markets in which the risk modelling has remained secure and the returns on the bonds have held up well through the 2008 Credit Crunch. There are three ways of structuring the loss triggers on bonds: ‘indemnity triggers' - reflecting the actual losses to the issuers; ‘index triggers' reflecting the losses to some index such as reported insurance industry loss and ‘parametric triggers' reflecting the parameters of the underlying catastrophe event itself. Indemnity triggers require that the investors trust that the insurer is reporting all their underlying exposures, while both indemnity and index losses may take 1-2 years to settle before all the claims are reported and resolved. Therefore parametric structures have many advantages, in particular in that the bond can be settled rapidly after an event. The challenge is to create parametric indices that closely reflect the actual losses to the insurer - ie that minimise ‘basis risk'. First generation parametric indices had high basis risk as they were crudely based on the magnitude of an earthquake occurring within some defined geographical box, or the intensity of a hurricane relative to the distance of the storm from some location. Second generation triggers involve taking measurements of ground motion or windspeed or flood depths at many locations and weighting each value so that the overall index closely mimics insurance loss. Cat bonds with second generation parametric triggers have been successfully issued for European Windstorm, UK Flood and California and Japan Earthquake. However the spread of second generation parametric structures is limited by the availability of suitable networks of

  18. Parametrized dielectric functions of amorphous GeSn alloys

    NASA Astrophysics Data System (ADS)

    D'Costa, Vijay Richard; Wang, Wei; Schmidt, Daniel; Yeo, Yee-Chia

    2015-09-01

    We obtained the complex dielectric function of amorphous Ge1-xSnx (0 ≤ x ≤ 0.07) alloys using spectroscopic ellipsometry from 0.4 to 4.5 eV. Amorphous GeSn films were formed by room-temperature implantation of phosphorus into crystalline GeSn alloys grown by molecular beam epitaxy. The optical response of amorphous GeSn alloys is similar to amorphous Ge and can be parametrized using a Kramers-Kronig consistent Cody-Lorentz dispersion model. The parametric model was extended to account for the dielectric functions of amorphous Ge0.75Sn0.25 and Ge0.50Sn0.50 alloys from literature. The compositional dependence of band gap energy Eg and parameters associated with the Lorentzian oscillator have been determined. The behavior of these parameters with varying x can be understood in terms of the alloying effect of Sn on Ge.

  19. Ultrabroadband noncollinear optical parametric amplification with LBO crystal.

    PubMed

    Zhao, Baozhen; Jiang, Yongliang; Sueda, Keiich; Miyanaga, Noriaki; Kobayashi, Takayoshi

    2008-11-10

    Ultrabroadband visible noncollinear optical parametric amplification (NOPA) was achieved in an LBO crystal, with a continuum seed pulse generated from a sapphire plate. The spectral bandwidth of the amplified visible pulse was about 200 nm, which can support sub-5 fs pulse amplification. An amplified output of 0.21 microJ with an average gain of about 210 was achieved. This provides, to the best of our knowledge, the first-time demonstration of such broadband amplification with a biaxial nonlinear optical crystal. Both the simulation and experimental results indicate that the LBO has a great potential as nonlinear medium in power amplifier for TW to PW noncollinear optical parametric chirped pulse amplification (NOPCPA) systems. PMID:19581976

  20. Entangled Parametric Hierarchies: Problems for an Overspecified Universal Grammar

    PubMed Central

    Boeckx, Cedric; Leivada, Evelina

    2013-01-01

    This study addresses the feasibility of the classical notion of parameter in linguistic theory from the perspective of parametric hierarchies. A novel program-based analysis is implemented in order to show certain empirical problems related to these hierarchies. The program was developed on the basis of an enriched data base spanning 23 contemporary and 5 ancient languages. The empirical issues uncovered cast doubt on classical parametric models of language acquisition as well as on the conceptualization of an overspecified Universal Grammar that has parameters among its primitives. Pinpointing these issues leads to the proposal that (i) the (bio)logical problem of language acquisition does not amount to a process of triggering innately pre-wired values of parameters and (ii) it paves the way for viewing language, epigenetic (‘parametric’) variation as an externalization-related epiphenomenon, whose learning component may be more important than what sometimes is assumed. PMID:24019867

  1. Testing composite parametrical hypotheses without applying the reduction

    NASA Astrophysics Data System (ADS)

    Vlasov, V.; Vlasova, S.; Tolokonsky, A.

    2016-01-01

    Usually when the parametrical hypotheses are being tested the Wald reduction from composite hypothesis to the simple one is used. However, in order to apply the reduction method it is needed to know the distribution law of unknown parameter. Practically such a law cannot be determined precisely using the experimental data. First of all, it requires long supervision over the controlled stationary process to provide an inalterability of probability characteristics of the process. In practice the modifications in technological process could be made, and therefore the probability characteristics of the process can also change. Using the example of exponential distribution the algorithm of testing composite parametrical hypothesis about the distribution parameter which does not exceed the declared threshold value without use of reduction is considered in article. Such approach is based on the fact that the partition boundary of the sample space depends monotonously on unknown value of the interest parameter.

  2. Higher-order nonlinear effects in a Josephson parametric amplifier

    NASA Astrophysics Data System (ADS)

    Kochetov, Bogdan A.; Fedorov, Arkady

    2015-12-01

    Nonlinearity of the current-phase relationship of a Josephson junction is the key resource for a Josephson parametric amplifier (JPA) as well as for a Josephson traveling-wave parametric amplifier, the only devices in which the quantum limit for added noise has so far been approached at microwave frequencies. A standard approach to describe JPA takes into account only the lowest order (cubic) nonlinearity resulting in a Duffing-like oscillator equation of motion or in a Kerr-type nonlinearity term in the Hamiltonian. In this paper we derive the quantum expression for the gain of JPA including all orders of the Josephson junction nonlinearity in the linear response regime. We then analyze gain saturation effect for stronger signals within a semiclassical approach. Our results reveal nonlinear effects of higher orders and their implications for operation of a JPA.

  3. New approach in bats' sonar signals parametrization and modelling

    NASA Astrophysics Data System (ADS)

    Herman, Krzysztof; Gudra, Tadeusz

    2010-01-01

    Parameterization of bats' echolocation signal is essentially based on determination of spectral power density by means of the classic Fourier transform FFT. This study presents an alternative solution in this area of research, that is parametric and non-parametric modelling of short-time signals. The above mentioned methods are based on modelling of white noise with the use of digital filters the transmission of which was set in a way that allows the output signal to be as close to the modelled signal as possible. Proper selection of parameterization method - MA (Moving Average), AR (Autoregressive), ARMA (Autoregressive Moving Average), in respect of the character of signal spectrum (line spectrum, noise) maximally reduces the number of filter coefficients and improves the accuracy of bat's signal modelling. The work also presents the possibility of using the suggested parameterization methods in automatic species identification.

  4. A parametric study of alum recovery from water treatment sludge.

    PubMed

    Ayoub, Mohamed; Abdelfattah, Abdallah

    2016-01-01

    Alum recovery from water treatment sludge is a promising technique applied to decrease usage of fresh coagulants in the water treatment industry. In addition, alum recovery reduces sludge volume for easy handling. The undertaken work investigated the parametric conditions for alum recovery procedure by acidification. The results show that alum recovery reaches up to 69.03%, and the reduction of sludge volume reaches its highest level at 90%. Moreover, results of the parametric investigation reveal that the mixing time of 60 minutes and mixing intensity of 150 rpm are the optimum conditions of mixing for alum recovery from water treatment sludge. The optimum pH level is 1.50 for alum recovery as indicated by maximum aluminum releasing, maximum reduction of sludge volume, and reasonable dosages of added sulfuric acid. PMID:27438258

  5. THz-wave parametric source and its imaging applications

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo

    2004-08-01

    Widely tunable coherent terahertz (THz) wave generation has been demonstrated based on the parametric oscillation using MgO doped LiNbO3 crystal pumped by a Q-switched Nd:YAG laser. This method exhibits multiple advantages like wide tunability, coherency and compactness of its system. We have developed a novel basic technology for terahertz (THz) imaging, which allows detection and identification of chemicals by introducing the component spatial pattern analysis. The spatial distributions of the chemicals were obtained from terahertz multispectral transillumination images, using absorption spectra previously measured with a widely tunable THz-wave parametric oscillator. Further we have applied this technique to the detection and identification of illicit drugs concealed in envelopes. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.

  6. Excitation of parametric instabilities by radio waves in the ionosphere.

    NASA Technical Reports Server (NTRS)

    Fejer, J. A.; Leer, E.

    1972-01-01

    The excitation of parametric instabilities by radio waves in a magnetoplasma is discussed. A uniform medium is assumed and linear approximations are used. Excitation by a pump wave of ordinary polarization is hardly affected by the magnetic field. Low or zero frequency ion waves and high frequency Langmuir waves are excited simultaneously. For an extraordinary pump wave, the excited high frequency electrostatic waves are in the Bernstein mode. The threshold is slightly higher and excitation can occur only within certain 'allowed' frequency bands. A new type of parametric instability in which the excited waves are electromagnetic in nature and which is more strongly affected by the inhomogeneous nature of the medium is discussed qualitatively.

  7. Strong coupling and parametric amplification in mechanical modes of graphene

    NASA Astrophysics Data System (ADS)

    Mathew, John; Patel, Raj; Borah, Abhinandan; Vijayaraghavan, Rajamani; Deshmukh, Mandar

    We demonstrate strong dynamical coupling and parametric amplification in mechanical modes of a graphene drum using an all electrical configuration. Low tension in the system allows large electrostatic tunability of the modes thus enabling dynamic pumping experiments. In the strong coupling regime a red detuned pump gives rise to new eigenmodes having highly tunable mode splitting (cooperativity ~60) with coherent energy transfer. The coupling is also used to amplify the modes under the action of a blue detuned pump. In addition, self-oscillations and parametric amplification of the fundamental vibrational mode is demonstrated with a gain of nearly 3. The low mass and high frequency of these atomically thin resonators could prove useful for studying mode coupling in the quantum regime.

  8. Spectral finite-element methods for parametric constrained optimization problems.

    SciTech Connect

    Anitescu, M.; Mathematics and Computer Science

    2009-01-01

    We present a method to approximate the solution mapping of parametric constrained optimization problems. The approximation, which is of the spectral finite element type, is represented as a linear combination of orthogonal polynomials. Its coefficients are determined by solving an appropriate finite-dimensional constrained optimization problem. We show that, under certain conditions, the latter problem is solvable because it is feasible for a sufficiently large degree of the polynomial approximation and has an objective function with bounded level sets. In addition, the solutions of the finite-dimensional problems converge for an increasing degree of the polynomials considered, provided that the solutions exhibit a sufficiently large and uniform degree of smoothness. Our approach solves, in the case of optimization problems with uncertain parameters, the most computationally intensive part of stochastic finite-element approaches. We demonstrate that our framework is applicable to parametric eigenvalue problems.

  9. May chaos always be suppressed by parametric perturbations?

    PubMed

    Schwalger, Tilo; Dzhanoev, Arsen; Loskutov, Alexander

    2006-06-01

    The problem of chaos suppression by parametric perturbations is considered. Despite the widespread opinion that chaotic behavior may be stabilized by perturbations of any system parameter, we construct a counterexample showing that this is not necessarily the case. In general, chaos suppression means that parametric perturbations should be applied within a set of parameters at which the system has a positive maximal Lyapunov exponent. Analyzing the known Duffing-Holmes model by a Melnikov method, we showed that chaotic dynamics cannot be suppressed by harmonic perturbations of a certain parameter, independently from the other parameter values. Thus, to stabilize the behavior of chaotic systems, the perturbation and parameters should be carefully chosen. PMID:16822012

  10. Parametric study of pounding tuned mass damper for subsea jumpers

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Li, L.; Patil, D.; Singla, M.; Li, H.-N.; Mo, Y. L.; Song, G.

    2016-01-01

    In previous study, a pounding tuned mass damper (PTMD) was proposed to reduce the undesired vibration of a subsea jumper. Both experimental and numerical results verified the effectiveness of the PTMD. This paper aims to enhance the understanding of the PTMD through a parametric study. The jumper is subjected to sinusoidal forces of different frequencies. The reduction ratio is defined for evaluation of the mitigation performance. Three parameters are considered in this study: the pounding stiffness, the gap between the delimiter and the mass block, and the mass ratio. The parametric studies show that the PTMD system is not so sensitive to the small variations of the pounding stiffness and the gap. The reduction ratio is significantly increased with the mass ratio increased up to 2%. Afterwards, it is not so economic or practically feasible to enlarge the mass ratio.

  11. Automated parametrical antenna modelling for ambient assisted living applications

    NASA Astrophysics Data System (ADS)

    Kazemzadeh, R.; John, W.; Mathis, W.

    2012-09-01

    In this paper a parametric modeling technique for a fast polynomial extraction of the physically relevant parameters of inductively coupled RFID/NFC (radio frequency identification/near field communication) antennas is presented. The polynomial model equations are obtained by means of a three-step procedure: first, full Partial Element Equivalent Circuit (PEEC) antenna models are determined by means of a number of parametric simulations within the input parameter range of a certain antenna class. Based on these models, the RLC antenna parameters are extracted in a subsequent model reduction step. Employing these parameters, polynomial equations describing the antenna parameter with respect to (w.r.t.) the overall antenna input parameter range are extracted by means of polynomial interpolation and approximation of the change of the polynomials' coefficients. The described approach is compared to the results of a reference PEEC solver with regard to accuracy and computation effort.

  12. Point matching based on non-parametric model

    NASA Astrophysics Data System (ADS)

    Liu, Renfeng; Zhang, Cong; Tian, Jinwen

    2015-12-01

    Establishing reliable feature correspondence between two images is a fundamental problem in vision analysis and it is a critical prerequisite in a wide range of applications including structure-from-motion, 3D reconstruction, tracking, image retrieval, registration, and object recognition. The feature could be point, line, curve or surface, among which the point feature is primary and is the foundation of all features. Numerous techniques related to point matching have been proposed within a rich and extensive literature, which are typically studied under rigid/affine or non-rigid motion, corresponding to parametric and non-parametric models for the underlying image relations. In this paper, we provide a review of our previous work on point matching, focusing on nonparametric models. We also make an experimental comparison of the introduced methods, and discuss their advantages and disadvantages as well.

  13. Parametric spatiotemporal oscillation in reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Ghosh, Shyamolina; Ray, Deb Shankar

    2016-03-01

    We consider a reaction-diffusion system in a homogeneous stable steady state. On perturbation by a time-dependent sinusoidal forcing of a suitable scaling parameter the system exhibits parametric spatiotemporal instability beyond a critical threshold frequency. We have formulated a general scheme to calculate the threshold condition for oscillation and the range of unstable spatial modes lying within a V-shaped region reminiscent of Arnold's tongue. Full numerical simulations show that depending on the specificity of nonlinearity of the models, the instability may result in time-periodic stationary patterns in the form of standing clusters or spatially localized breathing patterns with characteristic wavelengths. Our theoretical analysis of the parametric oscillation in reaction-diffusion system is corroborated by full numerical simulation of two well-known chemical dynamical models: chlorite-iodine-malonic acid and Briggs-Rauscher reactions.

  14. PARAMETRIC INSTABILITY OF WHISTLER WAVES IN THE ELECTRON MAGNETOHYDRODYNAMICS

    SciTech Connect

    Zhao, J. S.; Wu, D. J.; Lu, J. Y. E-mail: djwu@pmo.ac.c

    2010-05-01

    Using an electron magnetohydrodynamic model, we investigate the parametric decay among three whistler waves. A nonlinear equation to describe both linear and nonlinear properties of whistler waves is derived. Then we discuss the growth rate of the parametric decay of whistler waves in the long-wavelength region and show that the growth rate for two reverse decay waves is larger than that for two decay waves in the same direction. The nonlinear interaction among the long-wavelength and short-wavelength waves is also studied in this paper. This wave-wave interaction implies that long-wavelength waves can be decayed to short-wavelength waves and then dissipate their energy in the short-wavelength region. The possibility of applying our results to account for the generation of sunward propagating whistler waves is also discussed.

  15. Thermal effects in high average power optical parametric amplifiers.

    PubMed

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given. PMID:23455291

  16. Parametric spatiotemporal oscillation in reaction-diffusion systems.

    PubMed

    Ghosh, Shyamolina; Ray, Deb Shankar

    2016-03-01

    We consider a reaction-diffusion system in a homogeneous stable steady state. On perturbation by a time-dependent sinusoidal forcing of a suitable scaling parameter the system exhibits parametric spatiotemporal instability beyond a critical threshold frequency. We have formulated a general scheme to calculate the threshold condition for oscillation and the range of unstable spatial modes lying within a V-shaped region reminiscent of Arnold's tongue. Full numerical simulations show that depending on the specificity of nonlinearity of the models, the instability may result in time-periodic stationary patterns in the form of standing clusters or spatially localized breathing patterns with characteristic wavelengths. Our theoretical analysis of the parametric oscillation in reaction-diffusion system is corroborated by full numerical simulation of two well-known chemical dynamical models: chlorite-iodine-malonic acid and Briggs-Rauscher reactions. PMID:27078346

  17. Parametric strong mode-coupling in carbon nanotube mechanical resonators.

    PubMed

    Li, Shu-Xiao; Zhu, Dong; Wang, Xin-He; Wang, Jiang-Tao; Deng, Guang-Wei; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping

    2016-08-21

    Carbon nanotubes (CNTs) have attracted much attention for use in nanomechanical devices because of their exceptional properties, such as large resonant frequencies, low mass, and high quality factors. Here, we report the first experimental realization of parametric strong coupling between two mechanical modes on a single CNT nanomechanical resonator, by applying an extra microwave pump. This parametric pump method can be used to couple mechanical modes with arbitrary frequency differences. The properties of the mechanical resonator are detected by single-electron tunneling at low temperature, which is found to be strongly coupled to both modes. The coupling strength between the two modes can be tuned by the pump power, setting the coupling regime from weak to strong. This tunability may be useful in further phonon manipulations in carbon nanotubes. PMID:27447924

  18. Raman-Suppressing Coupling for Optical Parametric Oscillator

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Rubiola, Enrico

    2007-01-01

    A Raman-scattering-suppressing input/ output coupling scheme has been devised for a whispering-gallery-mode optical resonator that is used as a four-wave-mixing device to effect an all-optical parametric oscillator. Raman scattering is undesired in such a device because (1) it is a nonlinear process that competes with the desired nonlinear four-wave conversion process involved in optical parametric oscillation and (2) as such, it reduces the power of the desired oscillation and contributes to output noise. The essence of the present input/output coupling scheme is to reduce output loading of the desired resonator modes while increasing output loading of the undesired ones.

  19. Josephson traveling-wave parametric amplifier for superconducting qubit readout

    NASA Astrophysics Data System (ADS)

    Macklin, Chris; Slichter, D. H.; Yaakobi, O.; Friedland, L.; Bolkhovsky, V.; Braje, D. A.; Fitch, G.; Oliver, W. D.; Siddiqi, I.

    2014-03-01

    Superconducting parametric amplifiers (paramps) have successfully demonstrated near quantum limited sensitivity, enabling single-shot qubit readout, feedback, and state tracking. However, these amplifiers are commonly limited to narrow bandwidth and modest dynamic range, and most require microwave circulators to separate input and output modes. These limitations stem from the use of a resonant non-linearity to achieve mixing between a signal and pump mode. Our traveling-wave parametric amplifier (TWPA) is based on a superconducting nonlinear Josephson junction transmission line, thereby inherently sidestepping the limitations associated with a cavity structure. We present theoretical predictions and experimental results, including improved gain and noise performance. We discuss transmon qubit readout in the circuit QED architecture using a TWPA. We also comment on promising architectures for chip-level integration and multiplexing. Work supported by IARPA.

  20. Single Photon Interference with Spontaneous Parametric Downconversion Source

    NASA Astrophysics Data System (ADS)

    Alexander, Preston; Baldwin, Scott; McCracken, S. Blane; Smith, R. Seth

    2015-04-01

    During the past two years, a Quantum Optics Laboratory was constructed and tested at Francis Marion University. A spontaneous parametric downconversion source was used to create pairs of correlated photons for use in single photon tests of quantum mechanics. In this experiment, single photon interference was demonstrated by using a spontaneous parametric downconversion source. The two beams emanating from the downconversion crystal are referred to as the signal and idler beams. Detector A was placed in front the idler beam. The signal beam was sent to a polarization interferometer that was followed by a 50/50 beam splitter. The reflected and transmitted beams were incident on Detectors B and B'. By observing the presence or absence of coincidences, it was possible to demonstrate both particle and wave behaviors for light. In particular, if individual photons are passed through a polarization interferometer, it was shown that they will interfere with themselves. The details of the experimental setup and the results will be presented.

  1. Parametrization of optimum filter passbands for rotational Raman temperature measurements.

    PubMed

    Hammann, Eva; Behrendt, Andreas

    2015-11-30

    We revisit the methodology of rotational Raman temperature measurements covering both lidar and non-range-resolved measurements, e.g., for aircraft control. The results of detailed optimization calculations are presented for the commonly used extraction of signals from the anti-Stokes branch. Different background conditions and realistic shapes of the filter transmission curves are taken into account. Practical uncertainties of the central passbands and widths are discussed. We found a simple parametrization for the optimum filter passband shifts depending on the atmospheric temperature range of interest and the background. The approximation errors of this parametrization are smaller than 2% for temperatures between 200 and 300 K and smaller than 4% between 180 and 200 K. PMID:26698709

  2. Pitch and Timbre Interfere When Both Are Parametrically Varied

    PubMed Central

    Caruso, Valeria C.; Balaban, Evan

    2014-01-01

    Pitch and timbre perception are both based on the frequency content of sound, but previous perceptual experiments have disagreed about whether these two dimensions are processed independently from each other. We tested the interaction of pitch and timbre variations using sequential comparisons of sound pairs. Listeners judged whether two sequential sounds were identical along the dimension of either pitch or timbre, while the perceptual distances along both dimensions were parametrically manipulated. Pitch and timbre variations perceptually interfered with each other and the degree of interference was modulated by the magnitude of changes along the un-attended dimension. These results show that pitch and timbre are not orthogonal to each other when both are assessed with parametrically controlled variations. PMID:24466328

  3. Parametric and Non-parametric methods for the periodogram analysis: Interrelations and properties of the test functions

    NASA Astrophysics Data System (ADS)

    Andronov, I. L.; Chinarova, L. L.

    Numerical comparison of the methods for periodogram analysis is carried out for the parametric modifications of the Fourier transform by Deeming T.J. (1975, Ap. Space Sci., 36, 137); Lomb N.R. (1976, Ap. Space Sci., 39, 447); Andronov I.L. (1994, Odessa Astron. Publ., 7, 49); parametric modifications based on the spline approximations of different order k and defect k by Jurkevich I. (1971, Ap. Space Sci., 13, 154; n = 0, k = 1); Marraco H.G., Muzzio J.C. (1980, P.A.S.P., 92, 700; n = 1, k = 2); Andronov I.L. (1987, Contrib. Astron. Inst. Czechoslovak. 20, 161; n = 3, k = 1); non-parametric modifications by Lafler J. and Kinman T.D. (1965, Ap.J.Suppl., 11, 216), Burke E.W., Rolland W.W. and Boy W.R. (1970, J.R.A.S.Canada, 64, 353), Deeming T.J. (1970, M.N.R.A.S., 147, 365), Renson P. (1978, As. Ap., 63, 125) and Dworetsky M.M. (1983, M.N.R.A.S., 203, 917). For some numerical models the values of the mean, variance, asymmetry and excess of the test-functions are determined, the correlations between them are discussed. Analytic estimates of the mathematical expectation of the test function for different methods and of the dispersion of the test function by Lafler and Kinman (1965) and of the parametric functions are determined. The statistical distribution of the test functions computed for fixed data and various frequencies is significantly different from that computed for various data realizations. The histogram for the non-parametric test functions is nearly symmetric for normally distributed uncorrelated data and is characterized by a distinctly negative asymmetry for noisy data with periodic components. The non-parametric test-functions may be subdivided into two groups - similar to that by Lafler and Kinman (1965) and to that by Deeming (1970). The correlation coefficients for the test-functions within each group are close to unity for large number of data. Conditions for significant influence of the phase difference between the data onto the test functions are

  4. Variational formulation of high performance finite elements: Parametrized variational principles

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.; Militello, Carmello

    1991-01-01

    High performance elements are simple finite elements constructed to deliver engineering accuracy with coarse arbitrary grids. This is part of a series on the variational basis of high-performance elements, with emphasis on those constructed with the free formulation (FF) and assumed natural strain (ANS) methods. Parametrized variational principles that provide a foundation for the FF and ANS methods, as well as for a combination of both are presented.

  5. Parametric excitation of a micro Coriolis mass flow sensor

    NASA Astrophysics Data System (ADS)

    Droogendijk, H.; Groenesteijn, J.; Haneveld, J.; Sanders, R. G. P.; Wiegerink, R. J.; Lammerink, T. S. J.; Lötters, J. C.; Krijnen, G. J. M.

    2012-11-01

    We demonstrate that a micro Coriolis mass flow sensor can be excited in its torsional movement by applying parametric excitation. Using AC-bias voltages for periodic electrostatic spring softening, the flow-filled tube exhibits a steady vibration at suitable voltage settings. Measurements show that the sensor for this type of excitation can be used to measure water flow rates within a range of 0 ± 500 μl/h with an accuracy of 1% full scale error.

  6. Orbital angular momentum exchange in an optical parametric oscillator

    SciTech Connect

    Martinelli, M.; Nussenzveig, P.; Huguenin, J. A.O.; Khoury, A.Z.

    2004-07-01

    We present a study of orbital angular momentum transfer from pump to down-converted beams in a type-II optical parametric oscillator. Cavity and anisotropy effects are investigated and demonstrated to play a central role in the transverse mode dynamics. While the idler beam can oscillate in a Laguerre-Gauss mode, the crystal birefringence induces an astigmatic effect in the signal beam that prevents the resonance of such a mode.

  7. Practical quantum repeaters with parametric down-conversion sources

    NASA Astrophysics Data System (ADS)

    Krovi, Hari; Guha, Saikat; Dutton, Zachary; Slater, Joshua A.; Simon, Christoph; Tittel, Wolfgang

    2016-03-01

    Conventional wisdom suggests that realistic quantum repeaters will require quasi-deterministic sources of entangled photon pairs. In contrast, we here study a quantum repeater architecture that uses simple parametric down-conversion sources, as well as frequency-multiplexed multimode quantum memories and photon-number-resolving detectors. We show that this approach can significantly extend quantum communication distances compared to direct transmission. This shows that important trade-offs are possible between the different components of quantum repeater architectures.

  8. Recent advances in ultrafast optical parametric oscillator frequency combs

    NASA Astrophysics Data System (ADS)

    McCracken, Richard A.; Zhang, Zhaowei; Reid, Derryck T.

    2014-12-01

    We discuss recent advances in the stabilization and application of femtosecond frequency combs based on optical parametric oscillators (OPOs) pumped by femtosecond lasers at 800 and 1060 nm. A method for locking to zero the carrier-envelope-offset of a Ti:sapphire-pumped OPO comb is described. The application of Yb:KYW-laser-pumped dual-combs for mid-infrared spectroscopy is detailed, specifically methane spectroscopy at approximately a 0.7% concentration at 1 atm.

  9. Thermal noise for SBS suppression in fiber optical parametric amplifiers

    NASA Astrophysics Data System (ADS)

    Mussot, Arnaud; Le Parquier, Marc; Szriftgiser, Pascal

    2010-06-01

    We demonstrate a new and simple solution to suppress stimulated Brillouin scattering in fiber optical parametric amplifiers. Cumbersome PRBS or sinusoidal generators used to broaden the pump spectrum are replaced by a filtered microwave noise source. Stimulated Brillouin scattering threshold can be increased up to large values still keeping an excellent quality of amplification of nonreturn to zero signals. The simplicity and the performances of this setup open the way for a wide variety of applications for FOPAs.

  10. Parametric Study Of A Ceramic-Fiber/Metal-Matrix Composite

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Hopkins, D. A.; Chamis, C. C.

    1992-01-01

    Report describes computer-model parametric study of effects of degradation of constituent materials upon mechanical properties of ceramic-fiber/metal-matrix composite material. Contributes to understanding of weakening effects of large changes in temperature and mechanical stresses in fabrication and use. Concerned mainly with influences of in situ fiber and matrix properties upon behavior of composite. Particular attention given to influence of in situ matrix strength and influence of interphase degradation.

  11. A travelling-wave parametric amplifier utilizing Josephson junctions

    SciTech Connect

    Sweeny, M.; Mahler, R.

    1985-03-01

    Josephson junction parametric amplifiers of travelling-wave design have been designed for use as low-noise millimeter wave amplifiers. These devices have non-reciprocal gain, very wide bandwidths, power dissipations of a few tens of nanowatts, and an input impedance that can be as high as 50 ohms. The design is described and performance estimates, based on a small-signal model, are summarized.

  12. Ultrashort-pulse laser machining system employing a parametric amplifier

    DOEpatents

    Perry, Michael D.

    2004-04-27

    A method and apparatus are provided for increasing the energy of chirped laser pulses to an output in the range 0.001 to over 10 millijoules at a repetition rate 0.010 to 100 kHz by using a two stage optical parametric amplifier utilizing a bulk nonlinear crystal wherein the pump and signal beam size can be independently adjusted in each stage.

  13. Ultra-Broad-Band Optical Parametric Amplifier or Oscillator

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatolly; Maleki, Lute

    2009-01-01

    A concept for an ultra-broad-band optical parametric amplifier or oscillator has emerged as a by-product of a theoretical study in fundamental quantum optics. The study was originally intended to address the question of whether the two-photon temporal correlation function of light [in particular, light produced by spontaneous parametric down conversion (SPDC)] can be considerably narrower than the inverse of the spectral width (bandwidth) of the light. The answer to the question was found to be negative. More specifically, on the basis of the universal integral relations between the quantum two-photon temporal correlation and the classical spectrum of light, it was found that the lower limit of two-photon correlation time is set approximately by the inverse of the bandwidth. The mathematical solution for the minimum two-photon correlation time also provides the minimum relative frequency dispersion of the down-converted light components; in turn, the minimum relative frequency dispersion translates to the maximum bandwidth, which is important for the design of an ultra-broad-band optical parametric oscillator or amplifier. In the study, results of an analysis of the general integral relations were applied in the case of an optically nonlinear, frequency-dispersive crystal in which SPDC produces collinear photons. Equations were found for the crystal orientation and pump wavelength, specific for each parametric-down-converting crystal, that eliminate the relative frequency dispersion of collinear degenerate (equal-frequency) signal and idler components up to the fourth order in the frequency-detuning parameter

  14. Ground and Airborne Methane Measurements with an Optical Parametric Amplifier

    NASA Technical Reports Server (NTRS)

    Numata, Kenji

    2012-01-01

    We report on ground and airborne atmospheric methane measurements with a differential absorption lidar using an optical parametric amplifier (OPA). Methane is a strong greenhouse gas on Earth and its accurate global mapping is urgently needed to understand climate change. We are developing a nanosecond-pulsed OPA for remote measurements of methane from an Earth-orbiting satellite. We have successfully demonstrated the detection of methane on the ground and from an airplane at approximately 11-km altitude.

  15. Parametric amplification in AgGaSe2

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; Gettemy, Donald J.; Hietanen, Jack R.; Iannini, Rebecca A.

    1989-01-01

    AgGaSe2 has been grown, annealed, and characterized for the mid-IR. Characterization includes measurement of the average power-limiting factors including absorption and the variation of the refractive indices with temperature. Using specially annealed crystals 20 mm long and a Ho:YAG pump, parametric amplification at 3.39 microns has achieved a gain of 2.9 with a peak power input of only 8 MW/sq cm.

  16. Parametrically amplified radiation in a cavity with an oscillating wall.

    NASA Astrophysics Data System (ADS)

    Ji, J.-Y.; Soh, K.-S.

    1998-12-01

    The authors introduce a time-dependent perturbation method to calculate the number of created particles in a 1D cavity with an oscillating wall of the frequency Ω. This method makes it easy to find the dominant part of the solution which results from the parametric resonance. The maximal number of particles are created at the mode frequency Ω/2. Using the Floquet theory, they discuss the long-time behavior of the particle creation.

  17. Bright tripartite entanglement in triply concurrent parametric oscillation

    SciTech Connect

    Bradley, A. S.; Olsen, M. K.; Pfister, O.; Pooser, R. C.

    2005-11-15

    We show that an optical parametric oscillator based on three concurrent {chi}{sup (2)} nonlinearities can produce, above threshold, bright output beams of macroscopic intensities which exhibit strong tripartite continuous-variable entanglement. We also show that there are two ways that the system can exhibit a three-mode form of the Einstein-Podolsky-Rosen paradox, and calculate the extracavity fluctuation spectra that may be measured to verify our predictions.

  18. Observations of parametric instabilities in long-scalelength plasmas

    SciTech Connect

    Campbell, E.M.; Max, C.E.; Phillion, D.W.; Turner, R.E.; Estabrooke, K.; Laskinski, B.; Kruer, W.L.; Mead, W.C.

    1983-03-22

    This paper is organized in the following manner. In the second section we discussed absorption; the dependence of scattered light signatures of parametric instabilities occurring at n/sub e/ less than or equal to n/sub c//4 on corona size is shown in section three; and evidence for suprathermal electron production in these long-scale length plasmas is presented in section four. The results and conclusions are finally summarized in section five.

  19. Image-rotating, 4-mirror, ring optical parametric oscillator

    DOEpatents

    Smith, Arlee V.; Armstrong, Darrell J.

    2004-08-10

    A device for optical parametric amplification utilizing four mirrors oriented in a nonplanar configuration where the optical plane formed by two of the mirrors is orthogonal to the optical plane formed by the other two mirrors and with the ratio of lengths of the laser beam paths approximately constant regardless of the scale of the device. With a cavity length of less than approximately 110 mm, a conversion efficiency of greater than 45% can be achieved.

  20. Quantum noise in parametric amplification under phase-mismatched conditions

    NASA Astrophysics Data System (ADS)

    Inoue, K.

    2016-05-01

    This paper studies quantum noise in parametric amplification under phase-mismatched conditions. The equations of motion of the quantum-mechanical field operators, which include phase mismatch under unsaturated conditions are first derived from the Heisenberg equation. Next, the noise figure is evaluated using the solutions of the derived equations. The results indicate that phase mismatch scarcely affects noise property in phase-insensitive amplification while it has a notable effect in case of phase-sensitive amplification.

  1. Parametric investigation of Radome analysis methods. Volume 4: Experimental results

    NASA Astrophysics Data System (ADS)

    Bassett, H. L.; Newton, J. M.; Adams, W.; Ussailis, J. S.; Hadsell, M. J.; Huddleston, G. K.

    1981-02-01

    This Volume 4 of four volumes presents 140 measured far-field patterns and boresight error data for eight combinations of three monopulse antennas and five tangent ogive Rexolite radomes at 35 GHz. The antennas and radomes, all of different sizes, were selected to provide a range of parameters as found in the applications. The measured data serve as true data in the parametric investigation of radome analysis methods to determine the accuracies and ranges of validity of selected methods of analysis.

  2. Necessary conditions for mode interactions in parametrically excited waves.

    PubMed

    Epstein, T; Fineberg, J

    2008-04-01

    We study the spatial and temporal structure of nonlinear states formed by parametrically excited waves on a fluid surface (Faraday instability), in a highly dissipative regime. Short-time dynamics reveal that 3-wave interactions between different spatial modes are only observed when the modes' peak values occur simultaneously. The temporal structure of each mode is functionally described by the Hill's equation and is unaffected by which nonlinear interaction is dominant. PMID:18517955

  3. Broadband picosecond radiation source based on noncollinear optical parametric amplifier

    SciTech Connect

    Arakcheev, V G; Morozov, V B; Vereshchagin, A K; Vereshchagin, K A; Tunkin, V G; Yakovlev, D V

    2014-04-28

    Amplification of broadband radiation of modeless dye laser by a noncollinear optical parametric amplifier based on a KTP crystal has been implemented upon pumping by 63-ps second-harmonic pulses of a Nd : YAG laser. Pulses with a bandwidth of 21 nm, a duration of 26 ps and an energy of 1.2 mJ have been obtained at the centre wavelength of 685 nm. (nonlinear optical phenomena)

  4. High gain preamplifier based on optical parametric amplification

    DOEpatents

    Jovanovic, Igor; Bonner, Randal A.

    2004-08-10

    A high-gain preamplifier based on optical parametric amplification. A first nonlinear crystal is operatively connected to a second nonlinear crystal. A first beam relay telescope is operatively connected to a second beam relay telescope, to the first nonlinear crystal, and to the second nonlinear crystal. A first harmonic beamsplitter is operatively connected to a second harmonic beamsplitter, to the first nonlinear crystal, to the second nonlinear crystal, to the first beam relay telescope, and to the second beam relay telescope.

  5. Parametric strong mode-coupling in carbon nanotube mechanical resonators

    NASA Astrophysics Data System (ADS)

    Li, Shu-Xiao; Zhu, Dong; Wang, Xin-He; Wang, Jiang-Tao; Deng, Guang-Wei; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping

    2016-08-01

    Carbon nanotubes (CNTs) have attracted much attention for use in nanomechanical devices because of their exceptional properties, such as large resonant frequencies, low mass, and high quality factors. Here, we report the first experimental realization of parametric strong coupling between two mechanical modes on a single CNT nanomechanical resonator, by applying an extra microwave pump. This parametric pump method can be used to couple mechanical modes with arbitrary frequency differences. The properties of the mechanical resonator are detected by single-electron tunneling at low temperature, which is found to be strongly coupled to both modes. The coupling strength between the two modes can be tuned by the pump power, setting the coupling regime from weak to strong. This tunability may be useful in further phonon manipulations in carbon nanotubes.Carbon nanotubes (CNTs) have attracted much attention for use in nanomechanical devices because of their exceptional properties, such as large resonant frequencies, low mass, and high quality factors. Here, we report the first experimental realization of parametric strong coupling between two mechanical modes on a single CNT nanomechanical resonator, by applying an extra microwave pump. This parametric pump method can be used to couple mechanical modes with arbitrary frequency differences. The properties of the mechanical resonator are detected by single-electron tunneling at low temperature, which is found to be strongly coupled to both modes. The coupling strength between the two modes can be tuned by the pump power, setting the coupling regime from weak to strong. This tunability may be useful in further phonon manipulations in carbon nanotubes. Electronic supplementary information (ESI) available: Fit of the quality factor and similar results in more devices. See DOI: 10.1039/c6nr02853e

  6. Optical parametric amplification with a bandwidth exceeding an octave

    SciTech Connect

    Orlov, Sergei N; Polivanov, Yurii N; Pestryakov, Efim V

    2004-05-31

    The possibility of using various schemes of broadband optical parametric amplifiers (OPAs) for amplifying a supercontinuum with the spectral bandwidth exceeding an octave is analysed. Spectral gain profiles are calculated for some specific OPAs employing promising and available nonlinear optical crystals. The realisation of OPAs with spectral bandwidths exceeding an octave in the spectral region from the near-UV to the mid-IR is demonstrated by specific examples. (nonlinear optical phenomena)

  7. Static stability and control effectiveness of a parametric launch vehicle

    NASA Technical Reports Server (NTRS)

    Ellis, R. R.; Gamble, M.

    1972-01-01

    An investigation is reported to determine the static aerodynamic characteristics of a space shuttle parametric launch configuration. The orbiter control surfaces were deflected to obtain the control effectiveness for use in launch vehicle control studies. Experimental data were obtained for Mach number from 0.6 to 4.96, angles of attack from minus 10 to plus 10 degrees and angles of sideslip from minus six to six degrees at zero degrees angle of attack.

  8. Electron acceleration by parametrically excited Langmuir waves. [in ionospheric modification

    NASA Technical Reports Server (NTRS)

    Fejer, J. A.; Graham, K. N.

    1974-01-01

    Simple physical arguments are used to estimate the downward-going energetic electron flux due to parametrically excited Langmuir waves in ionospheric modification experiments. The acceleration mechanism is a single velocity reversal as seen in the frame of the Langmuir wave. The flux is sufficient to produce the observed ionospheric airglow if focusing-type instabilities are invoked to produce moderate local enhancements of the pump field.

  9. On generic parametrizations of spinning black-hole geometries

    NASA Astrophysics Data System (ADS)

    Cardoso, Vitor; Pani, Paolo; Rico, João

    2014-03-01

    The construction of a generic parametrization of spinning geometries that can be matched continuously to the Kerr metric is an important open problem in general relativity. Its resolution is of more than academic interest, as it allows us to parametrize and quantify possible deviations from the no-hair theorem. Various approaches to the problem have been proposed, all with their own (severe) limitations. Here we discuss the metric recently proposed by Johannsen and Psaltis, showing that (i) the original metric describes only corrections that preserve the horizon area-mass relation of nonspinning geometries, (ii) this unnecessary restriction can be relaxed by introducing a new parameter that in fact dominates in both the weak-field and strong-field regimes, (iii) within this framework, we construct the most generic spinning black-hole geometry that contains twice as many (infinite) parameters as the original metric, and (iv) in the strong-field regime, all parameters are (roughly) equally important. This fact introduces a severe degeneracy problem in the case of highly spinning black holes. Our results suggest that using parametrizations that affect only the quadrupole moment of the Kerr geometry is problematic, because higher-order multipoles can be equally relevant for highly spinning objects. Finally, we prove that even our generalization fails to describe the few known spinning black-hole metrics in modified gravity.

  10. Bayesian non-parametrics and the probabilistic approach to modelling

    PubMed Central

    Ghahramani, Zoubin

    2013-01-01

    Modelling is fundamental to many fields of science and engineering. A model can be thought of as a representation of possible data one could predict from a system. The probabilistic approach to modelling uses probability theory to express all aspects of uncertainty in the model. The probabilistic approach is synonymous with Bayesian modelling, which simply uses the rules of probability theory in order to make predictions, compare alternative models, and learn model parameters and structure from data. This simple and elegant framework is most powerful when coupled with flexible probabilistic models. Flexibility is achieved through the use of Bayesian non-parametrics. This article provides an overview of probabilistic modelling and an accessible survey of some of the main tools in Bayesian non-parametrics. The survey covers the use of Bayesian non-parametrics for modelling unknown functions, density estimation, clustering, time-series modelling, and representing sparsity, hierarchies, and covariance structure. More specifically, it gives brief non-technical overviews of Gaussian processes, Dirichlet processes, infinite hidden Markov models, Indian buffet processes, Kingman’s coalescent, Dirichlet diffusion trees and Wishart processes. PMID:23277609

  11. Calibration sphere for low-frequency parametric sonars.

    PubMed

    Foote, Kenneth G; Francis, David T I; Atkins, Philip R

    2007-03-01

    The problem of calibrating parametric sonar systems at low difference frequencies used in backscattering applications is addressed. A particular parametric sonar is considered: the Simrad TOPAS PS18 Parametric Sub-bottom Profiler. This generates difference-frequency signals in the band 0.5-6 kHz. A standard target is specified according to optimization conditions based on maximizing the target strength consistent with the target strength being independent of orientation and the target being physically manageable. The second condition is expressed as the target having an immersion weight less than 200 N. The result is a 280-mm-diam sphere of aluminum. Its target strength varies from -43.4 dB at 0.5 kHz to -20.2 dB at 6 kHz. Maximum excursions in target strength over the frequency band due to uncertainty in material properties of the sphere are of order +/-0.1 dB. Maximum excursions in target strength due to variations in mass density and sound speed of the immersion medium are larger, but can be eliminated by attention to the hydrographic conditions. The results are also applicable to the standard-target calibration of conventional sonars operating at low-kilohertz frequencies. PMID:17407885

  12. Parametrization of flavor mixing in the standard model

    SciTech Connect

    Fritzsch, H. |; Xing, Z.

    1998-01-01

    It is shown that there exist nine different ways to describe the flavor mixing, in terms of three rotation angles and one CP-violating phase, within the standard electroweak theory of six quarks. For the assignment of the complex phase there essentially exists a continuum of possibilities, if one allows the phase to appear in more than four elements of the mixing matrix. If the phase is restricted to four elements, the phase assignment is uniquely defined. If one imposes the constraint that the phase disappears in a natural way in the chiral limit in which the masses of the u and d quarks are turned off, only three of the nine parametrizations are acceptable. In particular the {open_quotes}standard{close_quotes} parametrization advocated by the Particle Data Group is not permitted. One parametrization, in which the CP-violating phase is restricted to the light quark sector, stands up as the most favorable description of the flavor mixing. {copyright} {ital 1997} {ital The American Physical Society}

  13. Critical fluctuations and entanglement in the nondegenerate parametric oscillator

    SciTech Connect

    Dechoum, K.; Drummond, P.D.; Reid, M.D.; Chaturvedi, S.

    2004-11-01

    We present a fully quantum mechanical treatment of the nondegenerate optical parametric oscillator both below and near threshold. This is a nonequilibrium quantum system with a critical point phase transition, that is also known to exhibit strong yet easily observed squeezing and quantum entanglement. Our treatment makes use of the positive P representation and goes beyond the usual linearized theory. We compare our analytical results with numerical simulations and find excellent agreement. We also carry out a detailed comparison of our results with those obtained from stochastic electrodynamics, a theory obtained by truncating the equation of motion for the Wigner function, with a view to locating regions of agreement and disagreement between the two. We calculate commonly used measures of quantum behavior including entanglement, squeezing, and Einstein-Podolsky-Rosen (EPR) correlations as well as higher order tripartite correlations, and show how these are modified as the critical point is approached. These results are compared with those obtained using two degenerate parametric oscillators, and we find that in the near-critical region the nondegenerate oscillator has stronger EPR correlations. In general, the critical fluctuations represent an ultimate limit to the possible entanglement that can be achieved in a nondegenerate parametric oscillator.

  14. Changing space and sound: Parametric design and variable acoustics

    NASA Astrophysics Data System (ADS)

    Norton, Christopher William

    This thesis examines the potential for parametric design software to create performance based design using acoustic metrics as the design criteria. A former soundstage at the University of Southern California used by the Thornton School of Music is used as a case study for a multiuse space for orchestral, percussion, master class and recital use. The criteria used for each programmatic use include reverberation time, bass ratio, and the early energy ratios of the clarity index and objective support. Using a panelized ceiling as a design element to vary the parameters of volume, panel orientation and type of absorptive material, the relationships between these parameters and the design criteria are explored. These relationships and subsequently derived equations are applied to Grasshopper parametric modeling software for Rhino 3D (a NURBS modeling software). Using the target reverberation time and bass ratio for each programmatic use as input for the parametric model, the genomic optimization function of Grasshopper - Galapagos - is run to identify the optimum ceiling geometry and material distribution.

  15. Parametric Modeling of the Mouse Left Ventricular Myocardial Fiber Structure.

    PubMed

    Merchant, Samer S; Gomez, Arnold David; Morgan, James L; Hsu, Edward W

    2016-09-01

    Magnetic resonance diffusion tensor imaging (DTI) has greatly facilitated detailed quantifications of myocardial structures. However, structural patterns, such as the distinctive transmural rotation of the fibers, remain incompletely described. To investigate the validity and practicality of pattern-based analysis, 3D DTI was performed on 13 fixed mouse hearts and fiber angles in the left ventricle were transformed and fitted to parametric expressions constructed from elementary functions of the prolate spheroidal spatial variables. It was found that, on average, the myocardial fiber helix angle could be represented to 6.5° accuracy by the equivalence of a product of 10th-order polynomials of the radial and longitudinal variables, and 17th-order Fourier series of the circumferential variable. Similarly, the fiber imbrication angle could be described by 10th-order polynomials and 24th-order Fourier series, to 5.6° accuracy. The representations, while relatively concise, did not adversely affect the information commonly derived from DTI datasets including the whole-ventricle mean fiber helix angle transmural span and atlases constructed for the group. The unique ability of parametric models for predicting the 3D myocardial fiber structure from finite number of 2D slices was also demonstrated. These findings strongly support the principle of parametric modeling for characterizing myocardial structures in the mouse and beyond. PMID:26942586

  16. Direct fluorescence characterisation of a picosecond seeded optical parametric amplifier

    NASA Astrophysics Data System (ADS)

    Stuart, N. H.; Bigourd, D.; Hill, R. W.; Robinson, T. S.; Mecseki, K.; Patankar, S.; New, G. H. C.; Smith, R. A.

    2015-02-01

    The temporal intensity contrast of high-power lasers based on optical parametric amplification (OPA) can be limited by parametric fluorescence from the non-linear gain stages. Here we present a spectroscopic method for direct measurement of unwanted parametric fluorescence widely applicable from unseeded to fully seeded and saturated OPA operation. Our technique employs simultaneous spectroscopy of fluorescence photons slightly outside the seed bandwidth and strongly attenuated light at the seed central wavelength. To demonstrate its applicability we have characterised the performance of a two-stage picosecond OPA pre-amplifier with 2.8×105 gain, delivering 335 μJ pulses at 1054 nm. We show that fluorescence from a strongly seeded OPA is reduced by ~500× from the undepleted to full pump depletion regimes. We also determine the vacuum fluctuation driven noise term seeding this OPA fluorescence to be 0.7±0.4 photons ps-1 nm-1 bandwidth. The resulting shot-to-shot statistics highlights a 1.5% probability of a five-fold and 0.3% probability of a ten-fold increase of fluorescence above the average value. Finally, we show that OPA fluorescence can be limited to a few-ps pedestal with 3×10-9 temporal intensity contrast 1.3 ps ahead of an intense laser pulse, a level highly attractive for large scale chirped-pulse OPA laser systems.

  17. Progress on muon parametric-resonance ionization cooling channel development

    SciTech Connect

    V.S. Morozov, Ya.S. Derbenev, A. Afanasev, K.B. Beard, R.P. Johnson, B. Erdelyi, J.A. Maloney

    2012-07-01

    Parametric-resonance Ionization Cooling (PIC) is intended as the final 6D cooling stage of a high-luminosity muon collider. To implement PIC, a continuous-field twin-helix magnetic channel was developed. A 6D cooling with stochastic effects off is demonstrated in a GEANT4/G4beamline model of a system where wedge-shaped Be absorbers are placed at the appropriate dispersion points in the twin-helix channel and are followed by short rf cavities. To proceed to cooling simulations with stochastics on, compensation of the beam aberrations from one absorber to another is required. Initial results on aberration compensation using a set of various-order continuous multipole fields are presented. As another avenue to mitigate the aberration effect, we optimize the cooling channel's period length. We observe a parasitic parametric resonance naturally occurring in the channel's horizontal plane due to the periodic beam energy modulation caused by the absorbers and rf. We discuss options for compensating this resonance and/or properly combining it with the induced half-integer parametric resonance needed for PIC.

  18. Parametric analysis of closed cycle magnetohydrodynamic (MHD) power plants

    NASA Technical Reports Server (NTRS)

    Owens, W.; Berg, R.; Murthy, R.; Patten, J.

    1981-01-01

    A parametric analysis of closed cycle MHD power plants was performed which studied the technical feasibility, associated capital cost, and cost of electricity for the direct combustion of coal or coal derived fuel. Three reference plants, differing primarily in the method of coal conversion utilized, were defined. Reference Plant 1 used direct coal fired combustion while Reference Plants 2 and 3 employed on site integrated gasifiers. Reference Plant 2 used a pressurized gasifier while Reference Plant 3 used a ""state of the art' atmospheric gasifier. Thirty plant configurations were considered by using parametric variations from the Reference Plants. Parametric variations include the type of coal (Montana Rosebud or Illinois No. 6), clean up systems (hot or cold gas clean up), on or two stage atmospheric or pressurized direct fired coal combustors, and six different gasifier systems. Plant sizes ranged from 100 to 1000 MWe. Overall plant performance was calculated using two methodologies. In one task, the channel performance was assumed and the MHD topping cycle efficiencies were based on the assumed values. A second task involved rigorous calculations of channel performance (enthalpy extraction, isentropic efficiency and generator output) that verified the original (task one) assumptions. Closed cycle MHD capital costs were estimated for the task one plants; task two cost estimates were made for the channel and magnet only.

  19. Parametric dynamic F-18-FDG PET/CT breast imaging

    NASA Astrophysics Data System (ADS)

    Magri, Alphonso; Feiglin, David; Lipson, Edward; Mandel, James; McGraw, Wendy; Lee, Wei; Krol, Andrzej

    2008-03-01

    This study was undertaken to estimate metabolic tissue properties from dynamic breast F-18-FDG PET/CT image series and to display them as 3D parametric images. Each temporal PET series was obtained immediately after injection of 10 mCi of F-18-FDG and consisted of fifty 1- minute frames. Each consecutive frame was nonrigidly registered to the first frame using a finite element method (FEM) based model and fiducial skin markers. Nonlinear curve fitting of activity vs. time based on a realistic two-compartment model was performed for each voxel of the volume. Curve fitting was accomplished by application of the Levenburg-Marquardt algorithm (LMA) that minimized X2. We evaluated which parameters are most suitable to determine the spatial extent and malignancy in suspicious lesions. In addition, Patlak modeling was applied to the data. A mixture model was constructed and provided a classification system for the breast tissue. It produced unbiased estimation of the spatial extent of the lesions. We conclude that nonrigid registration followed by voxel-by-voxel based nonlinear fitting to a realistic two-compartment model yields better quality parametric images, as compared to unprocessed dynamic breast PET time series. By comparison with the mixture model, we established that the total cumulated activity and maximum activity parametric images provide the best delineation of suspicious breast tissue lesions and hyperactive subregions within the lesion that cannot be discerned in unprocessed images.

  20. Application of parametric statistical weights in CAD imaging systems

    NASA Astrophysics Data System (ADS)

    Galperin, Michael

    2005-04-01

    PURPOSE: To propose a method for Parametric Statistical Weights (PSW) estimations and analyze its statistical impact in Computer-Aided Diagnosis Imaging Systems based on a Relative Similarity (CADIRS) classification approach. MATERIALS AND METHODS: A Multifactor statistical method was developed and applied for Parametric Statistical Weights calculations in CADIRS. The implemented PSW method was used for statistical estimations of PSW impact when applied to a clinically validated breast ultrasound digital database of 332 patients' cases with biopsy proven findings. The method is based on the assumption that each parameter used in Relative Similarity (RS) classifier contributes to the deviation of the diagnostic prediction proportionally to the normalized value of its coefficient of multiple regression. The calculated by CADIRS Relative Similarity values with and without PSW were statistically estimated, compared and analyzed (on subset of cases) using classic Receiver Operator Characteristic (ROC) analysis methods. RESULTS: When CADIRS classification scheme was augmented with PSW the Relative Similarity the calculated values were 2-5% higher in average. Numeric estimations of PSW allowed decomposition of statistical significance for each component (factor) and its impact on similarity to the diagnostic results (biopsy proven). CONCLUSION: Parametric Statistical Weights in Computer-Aided Diagnosis Imaging Systems based on a Relative Similarity classification approach can be successfully applied in an effort to enhance overall classification (including scoring) outcomes. For the analyzed cohort of 332 cases the application of PSW increased Relative Similarity to the retrieved templates with known findings by 2-5% in average.

  1. Transition redshift: new constraints from parametric and nonparametric methods

    NASA Astrophysics Data System (ADS)

    Rani, Nisha; Jain, Deepak; Mahajan, Shobhit; Mukherjee, Amitabha; Pires, Nilza

    2015-12-01

    In this paper, we use the cosmokinematics approach to study the accelerated expansion of the Universe. This is a model independent approach and depends only on the assumption that the Universe is homogeneous and isotropic and is described by the FRW metric. We parametrize the deceleration parameter, q(z), to constrain the transition redshift (zt) at which the expansion of the Universe goes from a decelerating to an accelerating phase. We use three different parametrizations of q(z) namely, qI(z)=q1+q2z, qII (z) = q3 + q4 ln (1 + z) and qIII (z)=½+q5/(1+z)2. A joint analysis of the age of galaxies, strong lensing and supernovae Ia data indicates that the transition redshift is less than unity i.e. zt < 1. We also use a nonparametric approach (LOESS+SIMEX) to constrain zt. This too gives zt < 1 which is consistent with the value obtained by the parametric approach.

  2. Phase correction in two-crystal optical parametric oscillators

    SciTech Connect

    Armstron, D.J.; Alford, W.J.; Raymond, T.D.; Smith, A.V.

    1995-02-01

    The effect of the pump, signal, and idler wave phases on three-wave nonlinear parametric mixing is investigated in a series of single-pass-gain experiments. Measurements are made with two angle-tuned KTP crystals in a 532 nm pumped, walkoff-compensated, optical parametric amplifier that is seeded by an 800 nm cw diode laser. In one of the measurements the second crystal is orientated to have its effective nonlinearity d{sub eff.} of opposite sign to that of the first crystal, so that all mixing that occurred in the first crystal is cancelled by the second when the phase mismatch {Delta}k{sub crystal 1} = {Delta}k{sub crystal 2} = 0. Efficient two-crystal amplification is subsequently restored by selecting the correct phase relationship for the three waves entering the crystal by inserting a dispersive plate between the crystals. The experimental results are explained in a straightforward manner with diagrams involving the three input wave polarizations. These results demonstrate that walkoff-compensated geometries require phase correction to achieve efficient mixing in the second crystal whenever the nonlinear interaction involves two extraordinary waves (e-waves). One practical application of this work may be lower oscillation thresholds and enhanced performance in walkoff-compensated optical parametric oscillators which use two e-waves.

  3. Parametric effects on glass reaction in the unsaturated test method

    SciTech Connect

    Woodland, A.B.; Bates, J.K.; Gerding, T.J.

    1991-12-01

    The Unsaturated Test Method has been applied to study glass reaction under conditions that may be present at the potential Yucca Mountain site, currently under evaluation for storage of reprocessed high-level nuclear waste. The results from five separate sets of parametric experiments are presented wherein test parameters ranging from water contact volume to sensitization of metal in contact with the glass were examined. The most significant effect was observed when the volume of water, as controlled by the water inject volume and interval period, was such to allow exfoliation of reacted glass to occur. The extent of reaction was also influenced to a lesser extent by the degree of sensitization of the 304L stainless steel. For each experiment, the release of cations from the glass and alteration of the glass were examined. The major alteration product is a smectite clay that forms both from precipitation from solution and from in-situ alteration of the glass itself. It is this clay that undergoes exfoliation as water drips from the glass. A comparison is made between the results of the parametric experiments with those of static leach tests. In the static tests the rates of release become progressively reduced through 39 weeks while, in contrast, they remain relatively constant in the parametric experiments for at least 300 weeks. This differing behavior may be attributable to the dripping water environment where fresh water is periodically added and where evaporation can occur.

  4. Optimizing bandwidth and dynamic range of lumped Josephson parametric amplifiers

    NASA Astrophysics Data System (ADS)

    Eddins, A.; Vijay, R.; Macklin, C.; Minev, Z.; Siddiqi, I.

    2013-03-01

    Superconducting parametric amplifiers have revolutionized the field of quantum measurement by providing high gain, ultra-low noise amplification. They have been used successfully for high-fidelity qubit state measurements, probing nano-mechanical resonators, quantum feedback, and for microwave quantum optics experiments. Though several designs exist, a simple and robust architecture is the Lumped Josephson Parametric Amplifier (LJPA). This device consists of a capacitively shunted SQUID directly coupled to a transmission line to form a low quality factor (Q) nonlinear resonator. We discuss amplifiers which can be tuned over the full 4-8 GHz band with 20-25 dB of gain and 10 - 50 MHz of signal bandwidth. However, similar to other parametric amplifiers employing a resonant circuit, the LJPA suffers from low dynamic range and has a -1 dB gain compression point of order -130 dBm. We explore new designs comprised of an array of SQUIDs to improve the dynamic range. We will present the results of numerical simulations and preliminary experiments. We will also briefly discuss improvements obtained from different biasing methods and packaging. This research was supported by the Army Research Office under a QCT grant.

  5. Optical Parametric Amplification for High Peak and Average Power

    SciTech Connect

    Jovanovic, I

    2001-11-26

    Optical parametric amplification is an established broadband amplification technology based on a second-order nonlinear process of difference-frequency generation (DFG). When used in chirped pulse amplification (CPA), the technology has been termed optical parametric chirped pulse amplification (OPCPA). OPCPA holds a potential for producing unprecedented levels of peak and average power in optical pulses through its scalable ultrashort pulse amplification capability and the absence of quantum defect, respectively. The theory of three-wave parametric interactions is presented, followed by a description of the numerical model developed for nanosecond pulses. Spectral, temperature and angular characteristics of OPCPA are calculated, with an estimate of pulse contrast. An OPCPA system centered at 1054 nm, based on a commercial tabletop Q-switched pump laser, was developed as the front end for a large Nd-glass petawatt-class short-pulse laser. The system does not utilize electro-optic modulators or multi-pass amplification. The obtained overall 6% efficiency is the highest to date in OPCPA that uses a tabletop commercial pump laser. The first compression of pulses amplified in highly nondegenerate OPCPA is reported, with the obtained pulse width of 60 fs. This represents the shortest pulse to date produced in OPCPA. Optical parametric amplification in {beta}-barium borate was combined with laser amplification in Ti:sapphire to produce the first hybrid CPA system, with an overall conversion efficiency of 15%. Hybrid CPA combines the benefits of high gain in OPCPA with high conversion efficiency in Ti:sapphire to allow significant simplification of future tabletop multi-terawatt sources. Preliminary modeling of average power limits in OPCPA and pump laser design are presented, and an approach based on cascaded DFG is proposed to increase the average power beyond the single-crystal limit. Angular and beam quality effects in optical parametric amplification are modeled

  6. Scaling of preferential flow in biopores by parametric or non parametric transfer functions

    NASA Astrophysics Data System (ADS)

    Zehe, E.; Hartmann, N.; Klaus, J.; Palm, J.; Schroeder, B.

    2009-04-01

    finally assign the measured hydraulic capacities to these pores. By combining this population of macropores with observed data on soil hydraulic properties we obtain a virtual reality. Flow and transport is simulated for different rainfall forcings comparing two models, Hydrus 3d and Catflow. The simulated cumulative travel depths distributions for different forcings will be linked to the cumulative depth distribution of connected flow paths. The latter describes the fraction of connected paths - where flow resistance is always below a selected threshold that links the surface to a certain critical depth. Systematic variation of the average number of macropores and their depth distributions will show whether a clear link between the simulated travel depths distributions and the depth distribution of connected paths may be identified. The third essential step is to derive a non parametric transfer function that predicts travel depth distributions of tracers and on the long term pesticides based on easy-to-assess subsurface characteristics (mainly density and depth distribution of worm burrows, soil matrix properties), initial conditions and rainfall forcing. Such a transfer function is independent of scale ? as long as we stay in the same ensemble i.e. worm population and soil properties stay the same. Shipitalo, M.J. and Butt, K.R. (1999): Occupancy and geometrical properties of Lumbricus terrestris L. burrows affecting infiltration. Pedobiologia 43:782-794 Zehe E, and Fluehler H. (2001b): Slope scale distribution of flow patterns in soil profiles. J. Hydrol. 247: 116-132.

  7. Spatiotemporal variations in estrogenicity, hormones, and endocrine-disrupting compounds in influents and effluents of selected wastewater-treatment plants and receiving streams in New York, 2008-09

    USGS Publications Warehouse

    Baldigo, Barry P.; Phillips, Patrick J.; Ernst, Anne G.; Gray, James L.; Hemming, Jocelyn D.C.

    2014-01-01

    Endocrine-disrupting compounds (EDCs) in wastewater effluents have been linked to changes in sex ratios, intersex (in males), behavioral modifications, and developmental abnormalities in aquatic organisms. Yet efforts to identify and regulate specific EDCs in complex mixtures are problematic because little is known about the estrogen activity (estrogenicity) levels of many common and emerging contaminants. The potential effects of EDCs on the water quality and health of biota in streams of the New York City water supply is especially worrisome because more than 150 wastewater-treatment plants (WWTPs) are permitted to discharge effluents into surface waters and groundwaters of watersheds that provide potable water to more than 9 million people. In 2008, the U.S. Geological Survey (USGS), the New York State Department of Environmental Conservation (NYSDEC), New York State Department of Health (NYSDOH), and New York City Department of Environmental Protection (NYCDEP) began a pilot study to increase the understanding of estrogenicity and EDCs in effluents and receiving streams mainly in southeastern New York. The primary goals of this study were to document and assess the spatial and temporal variability of estrogenicity levels; the effectiveness of various treatment-plant types to remove estrogenicity; the concentrations of hormones, EDCs, and pharmaceuticals, personal care products (PPCPs); and the relations between estrogenicity and concentrations of hormones, EDCs, and PPCPs. The levels of estrogenicity and selected hormones, non-hormone EDCs, and PPCPs were characterized in samples collected seasonally in effluents from 7 WWTPs, once or twice in effluents from 34 WWTPs, and once in influents to 6 WWTPs. Estrogenicity was quantified, as estradiol equivalents, using both the biological e-screen assay and a chemical model. Results generally show that (1) estrogenicity levels in effluents varied spatially and seasonally, (2) a wide range of known and unknown EDCs

  8. Minimization of Basis Risk in Parametric Earthquake Cat Bonds

    NASA Astrophysics Data System (ADS)

    Franco, G.

    2009-12-01

    A catastrophe -cat- bond is an instrument used by insurance and reinsurance companies, by governments or by groups of nations to cede catastrophic risk to the financial markets, which are capable of supplying cover for highly destructive events, surpassing the typical capacity of traditional reinsurance contracts. Parametric cat bonds, a specific type of cat bonds, use trigger mechanisms or indices that depend on physical event parameters published by respected third parties in order to determine whether a part or the entire bond principal is to be paid for a certain event. First generation cat bonds, or cat-in-a-box bonds, display a trigger mechanism that consists of a set of geographic zones in which certain conditions need to be met by an earthquake’s magnitude and depth in order to trigger payment of the bond principal. Second generation cat bonds use an index formulation that typically consists of a sum of products of a set of weights by a polynomial function of the ground motion variables reported by a geographically distributed seismic network. These instruments are especially appealing to developing countries with incipient insurance industries wishing to cede catastrophic losses to the financial markets because the payment trigger mechanism is transparent and does not involve the parties ceding or accepting the risk, significantly reducing moral hazard. In order to be successful in the market, however, parametric cat bonds have typically been required to specify relatively simple trigger conditions. The consequence of such simplifications is the increase of basis risk. This risk represents the possibility that the trigger mechanism fails to accurately capture the actual losses of a catastrophic event, namely that it does not trigger for a highly destructive event or vice versa, that a payment of the bond principal is caused by an event that produced insignificant losses. The first case disfavors the sponsor who was seeking cover for its losses while the

  9. The Knowledge Base Interface for Parametric Grid Information

    SciTech Connect

    Hipp, James R.; Simons, Randall W.; Young, Chris J.

    1999-08-03

    The parametric grid capability of the Knowledge Base (KBase) provides an efficient robust way to store and access interpolatable information that is needed to monitor the Comprehensive Nuclear Test Ban Treaty. To meet both the accuracy and performance requirements of operational monitoring systems, we use an approach which combines the error estimation of kriging with the speed and robustness of Natural Neighbor Interpolation. The method involves three basic steps: data preparation, data storage, and data access. In past presentations we have discussed in detail the first step. In this paper we focus on the latter two, describing in detail the type of information which must be stored and the interface used to retrieve parametric grid data from the Knowledge Base. Once data have been properly prepared, the information (tessellation and associated value surfaces) needed to support the interface functionality, can be entered into the KBase. The primary types of parametric grid data that must be stored include (1) generic header information; (2) base model, station, and phase names and associated ID's used to construct surface identifiers; (3) surface accounting information; (4) tessellation accounting information; (5) mesh data for each tessellation; (6) correction data defined for each surface at each node of the surfaces owning tessellation (7) mesh refinement calculation set-up and flag information; and (8) kriging calculation set-up and flag information. The eight data components not only represent the results of the data preparation process but also include all required input information for several population tools that would enable the complete regeneration of the data results if that should be necessary.

  10. Noncommutative fluid dynamics in the Kähler parametrization

    NASA Astrophysics Data System (ADS)

    Holender, L.; Santos, M. A.; Orlando, M. T. D.; Vancea, I. V.

    2011-11-01

    In this paper, we propose a first-order action functional for a large class of systems that generalize the relativistic perfect fluids in the Kähler parametrization to noncommutative spacetimes. The noncommutative action is parametrized by two arbitrary functions K(z,z¯) and f(-j2) that depend on the fluid potentials and represent the generalization of the Kähler potential of the complex surface parametrized by z and z¯, respectively, and the characteristic function of each model. We calculate the equations of motion for the fluid potentials and the energy-momentum tensor in the first order in the noncommutative parameter. The density current does not receive any noncommutative corrections and it is conserved under the action of the commutative generators Pμ but the energy-momentum tensor is not. Therefore, we determine the set of constraints under which the energy-momentum tensor is divergenceless. Another set of constraints on the fluid potentials is obtained from the requirement of the invariance of the action under the generalization of the volume preserving transformations of the noncommutative spacetime. We show that the proposed action describes noncommutative fluid models by casting the energy-momentum tensor in the familiar fluid form and identifying the corresponding energy and momentum densities. In the commutative limit, they are identical to the corresponding quantities of the relativistic perfect fluids. The energy-momentum tensor contains a dissipative term that is due to the noncommutative spacetime and vanishes in the commutative limit. Finally, we particularize the theory to the case when the complex fluid potentials are characterized by a function K(z,z¯) that is a deformation of the complex plane and show that this model has important common features with the commutative fluid such as infinitely many conserved currents and a conserved axial current that in the commutative case is associated to the topologically conserved linking number.

  11. Parametrization of Chain Molecules in Dissipative Particle Dynamics.

    PubMed

    Lee, Ming-Tsung; Mao, Runfang; Vishnyakov, Aleksey; Neimark, Alexander V

    2016-06-01

    This paper presents a consistent strategy for parametrization of coarse-grained models of chain molecules in dissipative particle dynamics (DPD), where the soft-core DPD interaction parameters are fitted to the activities in solutions of reference compounds that represent different fragments of target molecules. The intercomponent parameters are matched either to the infinite dilution activity coefficients in binary solutions or to the solvent activity in polymer solutions. The respective calibration relationships between activity and intercomponent interaction parameter are constructed from the results of Monte Carlo simulation of the coarse-grained solutions of reference compounds. The chain conformation is controlled by the near neighbor and second neighbor bond potentials, which are parametrized by fitting the intramolecular radial distribution functions of the coarse-grained chains to the respective atomistic molecular dynamics simulations. The consistency, accuracy, and transferability of the proposed parametrization strategy is demonstrated drawing on the example of nonionic surfactants of the poly(ethylene oxide) alkyl ether (CnEm) family. The lengths of tail and head sequences are varied (n = 8-12 and m = 3-9), so that the critical micelle concentration ranges from 10 to 0.1 mM. The surfactants are modeled at different coarse-graining levels using DPD beads of different diameters. We found consistent agreement with experimental data for the critical micelle concentration and aggregation number, especially for surfactants with relatively long hydrophilic segments. Depending on the system, we observed surfactant aggregation into spheroidal, elongated, or core-shell micelles, as well as into irregular agglomerates. Using the models at different coarse-graining levels for the same molecules, we found that the smaller the bead size the better is agreement with experimental data. PMID:27167160

  12. Parametrization of Pmns Matrix Based on Dodeca Symmetry

    NASA Astrophysics Data System (ADS)

    Kim, Jihn E.; Seo, Min-Seok

    The dodeca symmetry is designed to obtain the Cabibbo angle θ C CKM approximately 15° and the (11) element of VPMNS as cos30°, leading to θ 1 PMNS + θ C CKM˜= 45o. This leading order dodeca symmetric VPMNS is corrected by small parameters, especially as an expansion in terms of a small parameter β. Neglecting two Majorana phases, the expression of VPMNS contains four parameters: a small β, and three { O}(1) parameters A, B and δ. From the neutrino oscillation data, we present two parametrizations and estimate their β's.

  13. Importance of parametrizing constraints in quantum-mechanical variational calculations

    NASA Technical Reports Server (NTRS)

    Chung, Kwong T.; Bhatia, A. K.

    1992-01-01

    In variational calculations of quantum mechanics, constraints are sometimes imposed explicitly on the wave function. These constraints, which are deduced by physical arguments, are often not uniquely defined. In this work, the advantage of parametrizing constraints and letting the variational principle determine the best possible constraint for the problem is pointed out. Examples are carried out to show the surprising effectiveness of the variational method if constraints are parameterized. It is also shown that misleading results may be obtained if a constraint is not parameterized.

  14. Collapse Arrest in Instantaneous Kerr Media via Parametric Interactions

    NASA Astrophysics Data System (ADS)

    Pasquazi, Alessia; Peccianti, Marco; Clerici, Matteo; Conti, Claudio; Morandotti, Roberto

    2014-09-01

    We demonstrate, theoretically and experimentally, that a four-wave mixing parametric interaction is able to arrest the collapse of a two-dimensional multicolor beam in an instantaneous Kerr medium. We consider two weak idlers interacting via a third order nonlinearity with two pump beams and we show that a class of collapse-free quasisolitary solutions can be experimentally observed in a normal dispersion Kerr glass. This observation is sustained by rigorous theoretical analysis demonstrating the stability of the observed self-trapped beams.

  15. Multivariable Parametric Cost Model for Ground Optical: Telescope Assembly

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature were examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter were derived.

  16. Multivariable Parametric Cost Model for Ground Optical Telescope Assembly

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia

    2005-01-01

    A parametric cost model for ground-based telescopes is developed using multivariable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction-limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature are examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e., multi-telescope phased-array systems). Additionally, single variable models Based on aperture diameter are derived.

  17. Strong environmental coupling in a Josephson parametric amplifier

    SciTech Connect

    Mutus, J. Y.; White, T. C.; Barends, R.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Neill, C.; O'Malley, P. J. J.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; Cleland, A. N.; Martinis, John M.; Megrant, A.; Sundqvist, K. M.

    2014-06-30

    We present a lumped-element Josephson parametric amplifier designed to operate with strong coupling to the environment. In this regime, we observe broadband frequency dependent amplification with multi-peaked gain profiles. We account for this behavior using the “pumpistor” model which allows for frequency dependent variation of the external impedance. Using this understanding, we demonstrate control over the complexity of gain profiles through added variation in the environment impedance at a given frequency. With strong coupling to a suitable external impedance, we observe a significant increase in dynamic range, and large amplification bandwidth up to 700 MHz giving near quantum-limited performance.

  18. Parametric-squeezing amplification of Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Jäger, Georg; Berrada, Tarik; Schmiedmayer, Jörg; Schumm, Thorsten; Hohenester, Ulrich

    2015-11-01

    We theoretically investigate the creation of squeezed states of a Bose-Einstein condensate (BEC) trapped in a magnetic double-well potential. The number or phase squeezed states are created by modulating the tunnel coupling between the two wells periodically with twice the Josephson frequency, i.e., through parametric amplification. Simulations are performed with the multiconfigurational time-dependent Hartree method for bosons. We employ optimal control theory to bring the condensate to a complete halt at a final time, thus creating a highly squeezed state (squeezing factor of 0.12, ξS2=-18 dB) suitable for atom interferometry.

  19. Parametric System Model for a Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.

    2014-01-01

    A Parametric System Model (PSM) was created in order to explore conceptual designs, the impact of component changes and power level on the performance of Stirling Radioisotope Generator (SRG). Using the General Purpose Heat Source (GPHS approximately 250 watt thermal) modules as the thermal building block around which a SRG is conceptualized, trade studies are performed to understand the importance of individual component scaling on isotope usage. Mathematical relationships based on heat and power throughput, temperature, mass and volume were developed for each of the required subsystems. The PSM uses these relationships to perform component and system level trades.

  20. Quantum fluids in the Kähler parametrization

    NASA Astrophysics Data System (ADS)

    Holender, L.; Santos, M. A.; Vancea, I. V.

    2012-03-01

    In this Letter we address the problem of the quantization of the perfect relativistic fluids formulated in terms of the Kähler parametrization. This fluid model describes a large set of interesting systems such as the power law energy density fluids, Chaplygin gas, etc. In order to maintain the generality of the model, we apply the BRST method in the reduced phase space in which the fluid degrees of freedom are just the fluid potentials and the fluid current is classically resolved in terms of them. We determine the physical states in this setting, the time evolution and the path integral formulation.

  1. Separation of simple sugars by selectivity inverted parametric pumping

    SciTech Connect

    Sheng, P.; Costa, C.A.V.

    1998-12-01

    An alternative process to separate the isomeric mixture of fructose and glucose is presented. A laboratory study of a two-column, selectivity inverted, direct-mode parametric pump is reported. An anionic resin in carbonate form and a cationic resin in calcium form are used as adsorbents for the columns. The experimental results show that it is possible to simultaneously obtain separation and concentration with this system. A kinetic model assuming linear equilibrium, intraparticle pore diffusion, and axial dispersion is proposed and solved. The model solutions are compared with experimental results, and the comparisons indicate good prediction capabilities.

  2. Polarized fiber optical parametric amplification in randomly birefringent fibers.

    PubMed

    Wang, S H; Xu, Xinchuan; Wai, P K A

    2015-12-14

    A comprehensive theoretical model to investigate phase matching in degenerate polarized fiber optical parametric amplifiers (FOPAs) in randomly birefringent fibers is developed. We show that in the small signal region, simulation results from the proposed model agree well with the experimental results. It was also shown that four waves mixing (FWM) effect could compensate polarization mode dispersion (PMD) induced phase mismatch. Similar to counter-propagating fiber Raman amplifiers (FRAs), the degree of polarization of FOPAs approaches unity exponentially with the gain but at a larger rate 1/Γ. Thus larger polarization-pulling can be achieved in FOPAs than the counter-propagating FRAs for the same gain. PMID:26699064

  3. Self-induced parametric resonance in collective neutrino oscillations

    SciTech Connect

    Raffelt, Georg G.

    2008-12-15

    We identify a generic new form of collective flavor oscillations in dense neutrino gases that amounts to a self-induced parametric resonance. It occurs in a homogeneous and isotropic ensemble when a range of neutrino modes is prepared in a different flavor than the neighboring modes with lower and higher energies. The flavor content of the intermediate spectral part librates relative to the other parts with a frequency corresponding to a typical {delta}m{sup 2}/2E. This libration persists in the limit of an arbitrarily large neutrino density where one would have expected synchronized flavor oscillations.

  4. Cosmic censorship and parametrized spinning black-hole geometries

    NASA Astrophysics Data System (ADS)

    Cardoso, Vitor; Queimada, Leonel

    2015-12-01

    The "cosmic censorship conjecture" asserts that all singularities arising from gravitational collapse are hidden within black holes. We investigate this conjecture in a setup of interest for tests of general relativity: black hole solutions which are parametrically small deviations away from the Kerr solution. These solutions have an upper bound on rotation, beyond which a naked singularity is visible to outside observers. We study whether these (generic) spacetimes can be spun-up past extremality with point particles or accretion disks. Our results show that cosmic censorship is preserved for generic parameterizations. We also present examples of special geometries which can be spun-up past extremality.

  5. A Parametric Approach To Mirror Natural Frequency Calculations

    NASA Astrophysics Data System (ADS)

    Nowak, William J.

    1984-01-01

    A hybrid analytical/graphical method is presented to calculate the fundamental natural frequency of rectangular mirrors mounted at 3 points. A NASTRAN assisted parametric approach was used to calculate the characteristic roots of the plate vibration equation for mirrors with aspect ratios ranging from 1.0 x 1.0 to 10.0 x 1.0. Also considered were simply supported boundary conditions at three mirror corner points or at two corner points on one edge and one point along the opposite edge. Experimental varification within 6.0% was achieved for the extreme case tested with approximately a +2.0% average experimental error overall.

  6. On fast radial propagation of parametrically excited geodesic acoustic mode

    SciTech Connect

    Qiu, Z.; Chen, L.; Zonca, F.

    2015-04-15

    The spatial and temporal evolution of parametrically excited geodesic acoustic mode (GAM) initial pulse is investigated both analytically and numerically. Our results show that the nonlinearly excited GAM propagates at a group velocity which is, typically, much larger than that due to finite ion Larmor radius as predicted by the linear theory. The nonlinear dispersion relation of GAM driven by a finite amplitude drift wave pump is also derived, showing a nonlinear frequency increment of GAM. Further implications of these findings for interpreting experimental observations are also discussed.

  7. Polarization pulling in Raman assisted fiber optical parametric amplifiers.

    PubMed

    Wang, S H; Xu, Xinchuan; Wai, P K A

    2016-04-01

    We proposed a theoretical model to investigate the polarization pulling effect in bi-directionally pumped degenerate Raman assisted fiber optical parameter amplifiers (RA-FOPAs) using randomly birefringent fibers. The contributions of chromatic dispersion, polarization mode dispersion (PMD), Raman gain, and nonlinear effects to the phase matching in RA-FOPAs are investigated. We characterize four different states of polarization pulling in RA-FOPAs. We found that broadband polarization attraction can be obtained in the optimum phase-matching state of the bi-directionally pumped RA-FOPAs when the parametric pump power is chosen to avoid deep saturation of the Raman gain. PMID:27136985

  8. Parametric resonances: from the Mathieu equation to QASER

    NASA Astrophysics Data System (ADS)

    Chen, Goong; Tian, Jing; Bin-Mohsin, Bandar; Nessler, Reed; Svidzinsky, Anatoly; Scully, Marlan O.

    2016-07-01

    Combination resonances produced by periodic modulation of parameters can generate substantial gains in new light amplifiers, acronymed QASER (quantum amplification by superradiant emission of radiation). Here we study such gains and investigate their parametric resonance spectral patterns. We use the Floquet theory and develop a projection method that can properly capture gains near the primary resonance and subharmonic frequencies for the Mathieu equation and QASER. We dedicate this paper to the memory of Richard Lewis Arnowitt a pioneer of many-body theory, a pathfinder at the interface of gravity and quantum mechanics, and a true leader in quantum field theory.

  9. Parametric System Model for a Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.

    2015-01-01

    A Parametric System Model (PSM) was created in order to explore conceptual designs, the impact of component changes and power level on the performance of the Stirling Radioisotope Generator (SRG). Using the General Purpose Heat Source (GPHS approximately 250 Wth) modules as the thermal building block from which a SRG is conceptualized, trade studies are performed to understand the importance of individual component scaling on isotope usage. Mathematical relationships based on heat and power throughput, temperature, mass, and volume were developed for each of the required subsystems. The PSM uses these relationships to perform component- and system-level trades.

  10. Parametrically excited sectorial oscillation of liquid drops floating in ultrasound

    NASA Astrophysics Data System (ADS)

    Shen, C. L.; Xie, W. J.; Wei, B.

    2010-04-01

    We report experiments in which the nonaxisymmetric sectorial oscillations of water drops have been excited using acoustic levitation and an active modulation method. The observed stable sectorial oscillations are up to the seventh mode. These oscillations are excited by parametric resonance. The oblate initial shape of the water drops is essential to this kind of excitations. The oscillation frequency increases with mode number but decreases with equatorial radius for each mode number. The data can be well described by a modified Rayleigh equation, without the use of additional parameters.

  11. Nonseparable Werner states in spontaneous parametric down-conversion

    SciTech Connect

    Caminati, Marco; De Martini, Francesco; Perris, Riccardo; Secondi, Veronica; Sciarrino, Fabio

    2006-03-15

    The multiphoton states generated by high-gain spontaneous parametric down-conversion (SPDC) in the presence of large losses are investigated theoretically and experimentally. The explicit form for the two-photon output state has been found to exhibit a Werner structure very resilient to losses for any value of the nonlinear gain parameter g. The theoretical results are found to be in agreement with experimental data obtained by 'entanglement witness' methods and by the quantum tomography of the state generated by a high-g SPDC.

  12. A parametric study of harmonic rotor hub loads

    NASA Technical Reports Server (NTRS)

    He, Chengjian

    1993-01-01

    A parametric study of vibratory rotor hub loads in a nonrotating system is presented. The study is based on a CAMRAD/JA model constructed for the GBH (Growth Version of Blackhawk Helicopter) Mach-scaled wind tunnel rotor model with high blade twist (-16 deg). The theoretical hub load predictions are validated by correlation with available measured data. Effects of various blade aeroelastic design changes on the harmonic nonrotating frame hub loads at both low and high forward flight speeds are investigated. The study aims to illustrate some of the physical mechanisms for change in the harmonic rotor hub loads due to blade design variations.

  13. Parametric resonance of entropy perturbations in massless preheating

    NASA Astrophysics Data System (ADS)

    Moghaddam, Hossein Bazrafshan; Brandenberger, Robert H.; Cai, Yi-Fu; Ferreira, Elisa G. M.

    2015-07-01

    In this paper, we revisit the question of possible preheating of entropy modes in a two-field model with a massless inflaton coupled to a matter scalar field. Using a perturbative approximation to the covariant method we demonstrate that there is indeed a parametric instability of the entropy mode which then at second-order leads to exponential growth of the curvature fluctuation on super-Hubble scale. Back-reaction effects shut off the induced curvature fluctuations, but possibly not early enough to prevent phenomenological problems. This confirms previous results obtained using different methods and resolves a controversy in the literature.

  14. Parametric design of tri-axial nested Helmholtz coils

    SciTech Connect

    Abbott, Jake J.

    2015-05-15

    This paper provides an optimal parametric design for tri-axial nested Helmholtz coils, which are used to generate a uniform magnetic field with controllable magnitude and direction. Circular and square coils, both with square cross section, are considered. Practical considerations such as wire selection, wire-wrapping efficiency, wire bending radius, choice of power supply, and inductance and time response are included. Using the equations provided, a designer can quickly create an optimal set of custom coils to generate a specified field magnitude in the uniform-field region while maintaining specified accessibility to the central workspace. An example case study is included.

  15. A parametric vocal fold model based on magnetic resonance imaging.

    PubMed

    Wu, Liang; Zhang, Zhaoyan

    2016-08-01

    This paper introduces a parametric three-dimensional body-cover vocal fold model based on magnetic resonance imaging (MRI) of the human larynx. Major geometric features that are observed in the MRI images but missing in current vocal fold models are discussed, and their influence on vocal fold vibration is evaluated using eigenmode analysis. Proper boundary conditions for the model are also discussed. Based on control parameters corresponding to anatomic landmarks that can be easily measured, this model can be adapted toward a subject-specific vocal fold model for voice production research and clinical applications. PMID:27586774

  16. Simple heterogeneity parametrization for sea surface temperature and chlorophyll

    NASA Astrophysics Data System (ADS)

    Skákala, Jozef; Smyth, Timothy J.

    2016-06-01

    Using satellite maps this paper offers a complex analysis of chlorophyll & SST heterogeneity in the shelf seas around the southwest of the UK. The heterogeneity scaling follows a simple power law and is consequently parametrized by two parameters. It is shown that in most cases these two parameters vary only relatively little with time. The paper offers a detailed comparison of field heterogeneity between different regions. How much heterogeneity is in each region preserved in the annual median data is also determined. The paper explicitly demonstrates how one can use these results to calculate representative measurement area for in situ networks.

  17. Adaptive time-frequency parametrization of epileptic spikes

    NASA Astrophysics Data System (ADS)

    Durka, Piotr J.

    2004-05-01

    Adaptive time-frequency approximations of signals have proven to be a valuable tool in electroencephalogram (EEG) analysis and research, where it is believed that oscillatory phenomena play a crucial role in the brain’s information processing. This paper extends this paradigm to the nonoscillating structures such as the epileptic EEG spikes, and presents the advantages of their parametrization in general terms such as amplitude and half-width. A simple detector of epileptic spikes in the space of these parameters, tested on a limited data set, gives very promising results. It also provides a direct distinction between randomly occurring spikes or spike/wave complexes and rhythmic discharges.

  18. Brine and gas recovery from geopressured systems. I. Parametric calculations

    SciTech Connect

    Garg, S.K.; Riney, T.D.

    1984-02-01

    A series of parametric calculations was run with the S-CUBED geopressured-geothermal simulator MUSHRM to assess the effects of important formation, fluid and well parameters on brine and gas recovery from geopressured reservoir systems. The specific parameters considered are formation permeability, pore-fluid salinity, temperature and gas content, well radius and location with respect to reservoir boundaries, desired flow rate, and possible shale recharge. It was found that the total brine and gas recovered (as a fraction of the resource in situ) were most sensitive to formation permeability, pore-fluid gas content, and shale recharge.

  19. Interval Prediction of Molecular Properties in Parametrized Quantum Chemistry

    NASA Astrophysics Data System (ADS)

    Edwards, David E.; Zubarev, Dmitry Yu.; Packard, Andrew; Lester, William A.; Frenklach, Michael

    2014-06-01

    The accurate evaluation of molecular properties lies at the core of predictive physical models. Most reliable quantum-chemical calculations are limited to smaller molecular systems while purely empirical approaches are limited in accuracy and reliability. A promising approach is to employ a quantum-mechanical formalism with simplifications and to compensate for the latter with parametrization. We propose a strategy of directly predicting the uncertainty interval for a property of interest, based on training-data uncertainties, which sidesteps the need for an optimum set of parameters.

  20. Parametric pumping of precession modes in ferromagnetic nanodisks

    NASA Astrophysics Data System (ADS)

    Guo, Feng; Belova, L. M.; McMichael, R. D.

    2014-03-01

    We report on the parametric excitation of magnetic precession modes in nanodisks using a parallel pumping configuration. The excitations are detected using a ferromagnetic resonance force microscopy method, and the parallel-pumped spectra reveal nonlinear characteristics including instability thresholds and multiple, narrow, sawtooth-shaped resonances. These characteristics are in accord with analytical theory and micromagnetic modeling results. Modeled mode profiles of the excitations show that higher-order standing spin-wave modes with both even and odd symmetries are excited under parallel pumping.

  1. Parametric analysis of a thermionic space nuclear power system

    NASA Technical Reports Server (NTRS)

    Strohmayer, W. H.; Van Hagan, T. H.

    1987-01-01

    Key parameters in the design of a thermionic space nuclear power system are identified and analysed in various system tradeoffs. The results are referenced to the thermionic system currently being studied for the SP-100 program. The SP-100 requirements provide definitive guidelines with respect to system optimization, the primary ones being the system mass limit of 3000 kg, the system volume constrraint of one-third of the Space Shuttle cargo bay, and the system lifetime of seven years. Many parametric influences are described and the methods used to optimize system design, in the context of the requirements, are indicated. Considerable design flexiblity is demonstrated.

  2. The dispersion of parametrically excited surface waves in viscous ferrofluids

    NASA Astrophysics Data System (ADS)

    Müller, Hanns Walter

    1999-07-01

    Surface waves on a ferrofluid, which is exposed to a normal magnetic field, may exhibit a non-monotonous behavior. Stationary standing waves can be excited mechanically by a vertical vibration of the vessel, or magnetically by a modulation of the applied field. A linear stability analysis for the onset of these parametrically excited waves is presented. It will be shown that a careful choice of the filling depth allows for a detection of the anomalous dispersion branch. Furthermore, a theoretical confirmation is provided for the synchronous wave response, recently observed in a magnetic Faraday experiment.

  3. Parametric studies of electric propulsion systems for orbit transfer vehicles

    NASA Technical Reports Server (NTRS)

    Manvi, R.; Fujita, T.

    1988-01-01

    The present parametric tradeoff study for OTV electric propulsion systems encompasses ammonia and hydrogen arcjets as well as Xe-ion propulsion systems with performance characteristics currently being projected for 1993 operation. In all cases, the power source is a nuclear-electric system with 30 kg/kW(e) specific mass, and the mission involves the movement of payloads from lower orbits to GEO. Attention is given to payload capabilities and associated propellant requirements. Mission trip time is identified as the key parameter for selection; while arcjets are preferable for shorter trip times, ion propulsion is more advantageous for longer trip times due to reduced propellant mass fraction.

  4. Speech Emotion Recognition Based on Parametric Filter and Fractal Dimension

    NASA Astrophysics Data System (ADS)

    Mao, Xia; Chen, Lijiang

    In this paper, we propose a new method that employs two novel features, correlation density (Cd) and fractal dimension (Fd), to recognize emotional states contained in speech. The former feature obtained by a list of parametric filters reflects the broad frequency components and the fine structure of lower frequency components, contributed by unvoiced phones and voiced phones, respectively; the latter feature indicates the non-linearity and self-similarity of a speech signal. Comparative experiments based on Hidden Markov Model and K Nearest Neighbor methods are carried out. The results show that Cd and Fd are much more closely related with emotional expression than the features commonly used.

  5. FDG-PET Parametric Imaging by Total Variation Minimization

    PubMed Central

    Guo, Hongbin; Renaut, Rosemary A; Chen, Kewei; Reiman, Eric M

    2010-01-01

    Parametric imaging of the cerebral metabolic rate for glucose (CMRGlc) using [18F]-fluorodeoxyglucose positron emission tomography is considered. Traditional imaging is hindered due to low signal to noise ratios at individual voxels. We propose to minimize the total variation of the tracer uptake rates while requiring good fit of traditional Patlak equations. This minimization guarantees spatial homogeneity within brain regions and good distinction between brain regions. Brain phantom simulations demonstrate significant improvement in quality of images by the proposed method as compared to Patlak images with post-filtering using Gaussian or median filters. PMID:19261438

  6. Resonant phase matching of Josephson junction traveling wave parametric amplifiers.

    PubMed

    O'Brien, Kevin; Macklin, Chris; Siddiqi, Irfan; Zhang, Xiang

    2014-10-10

    We propose a technique to overcome phase mismatch in Josephson-junction traveling wave parametric amplifiers in order to achieve high gain over a broad bandwidth. Using "resonant phase matching," we design a compact superconducting device consisting of a transmission line with subwavelength resonant inclusions that simultaneously achieves a gain of 20 dB, an instantaneous bandwidth of 3 GHz, and a saturation power of -98 dBm. Such an amplifier is well suited to cryogenic broadband microwave measurements such as the multiplexed readout of quantum coherent circuits based on superconducting, semiconducting, or nanomechanical elements, as well as traditional astronomical detectors. PMID:25375734

  7. Resonant Phase Matching of Josephson Junction Traveling Wave Parametric Amplifiers

    NASA Astrophysics Data System (ADS)

    O'Brien, Kevin; Macklin, Chris; Siddiqi, Irfan; Zhang, Xiang

    2014-10-01

    We propose a technique to overcome phase mismatch in Josephson-junction traveling wave parametric amplifiers in order to achieve high gain over a broad bandwidth. Using "resonant phase matching," we design a compact superconducting device consisting of a transmission line with subwavelength resonant inclusions that simultaneously achieves a gain of 20 dB, an instantaneous bandwidth of 3 GHz, and a saturation power of -98 dBm. Such an amplifier is well suited to cryogenic broadband microwave measurements such as the multiplexed readout of quantum coherent circuits based on superconducting, semiconducting, or nanomechanical elements, as well as traditional astronomical detectors.

  8. Parametrically excited water surface ripples as ensembles of oscillons.

    PubMed

    Shats, M; Xia, H; Punzmann, H

    2012-01-20

    We show that ripples on the surface of deep water which are driven parametrically by monochromatic vertical vibration represent ensembles of oscillating solitons, or quasiparticles, rather than waves. The horizontal mobility of oscillons determines the broadening of spectral lines and transitions from chaos to regular patterns. It is found that microscopic additions of proteins to water dramatically affect the oscillon mobility and drive transitions from chaos to order. The shape of the oscillons in physical space determines the shape of the frequency spectra of the surface ripple. PMID:22400746

  9. Octave-band tunable optical vortex parametric oscillator.

    PubMed

    Abulikemu, Aizitiaili; Yusufu, Taximaiti; Mamuti, Roukuya; Araki, Shungo; Miyamoto, Katsuhiko; Omatsu, Takashige

    2016-07-11

    We developed an octave-band tunable optical vortex laser based on a 532 nm optical vortex pumped optical parametric oscillator with a simple linear-cavity configuration by employing cascaded non-critical phase-matching LiB3O5 crystals. The optical vortex output was tunable from 735 to 1903 nm. For a pump energy of 9 mJ, an optical vortex pulse energy of 0.24-2.36 mJ was obtained, corresponding to an optical-optical efficiency of 0.3-26%. PMID:27410798

  10. Monochromatic waves induced by large-scale parametric forcing.

    PubMed

    Nepomnyashchy, A; Abarzhi, S I

    2010-03-01

    We study the formation and stability of monochromatic waves induced by large-scale modulations in the framework of the complex Ginzburg-Landau equation with parametric nonresonant forcing dependent on the spatial coordinate. In the limiting case of forcing with very large characteristic length scale, analytical solutions for the equation are found and conditions of their existence are outlined. Stability analysis indicates that the interval of existence of a monochromatic wave can contain a subinterval where the wave is stable. We discuss potential applications of the model in rheology, fluid dynamics, and optics. PMID:20365907

  11. Blue-pumped whispering gallery optical parametric oscillator.

    PubMed

    Werner, Christoph Sebastian; Beckmann, Tobias; Buse, Karsten; Breunig, Ingo

    2012-10-15

    We demonstrate a whispering gallery optical parametric oscillator pumped at 488 nm wavelength. This millimeter-sized device has a pump threshold of 160 μW. The signal field is tunable between 707 and 865 nm wavelength and the idler field between 1120 and 1575 nm through temperature variation. Although the conversion efficiency is fundamentally limited to several percent because of absorption loss for the pump wave, the results provide evidence that such oscillators will be able to cover finally the entire visible range. PMID:23073418

  12. Parametrically excited sectorial oscillation of liquid drops floating in ultrasound.

    PubMed

    Shen, C L; Xie, W J; Wei, B

    2010-04-01

    We report experiments in which the nonaxisymmetric sectorial oscillations of water drops have been excited using acoustic levitation and an active modulation method. The observed stable sectorial oscillations are up to the seventh mode. These oscillations are excited by parametric resonance. The oblate initial shape of the water drops is essential to this kind of excitations. The oscillation frequency increases with mode number but decreases with equatorial radius for each mode number. The data can be well described by a modified Rayleigh equation, without the use of additional parameters. PMID:20481825

  13. Extended parametric gain range in photonic crystal fibers with strongly frequency-dependent field distributions.

    PubMed

    Petersen, Sidsel R; Alkeskjold, Thomas T; Olausson, Christina B; Lægsgaard, Jesper

    2014-08-15

    The parametric gain range of a degenerate four-wave mixing process is determined in the undepleted pump regime. The gain range is considered with and without taking the mode field distributions of the four-wave mixing components into account. It is found that the mode field distributions have to be included to evaluate the parametric gain correctly in dispersion-tailored speciality fibers and that mode profile engineering can provide a way to increase the parametric gain range. PMID:25121901

  14. Zero- vs. one-dimensional, parametric vs. non-parametric, and confidence interval vs. hypothesis testing procedures in one-dimensional biomechanical trajectory analysis.

    PubMed

    Pataky, Todd C; Vanrenterghem, Jos; Robinson, Mark A

    2015-05-01

    Biomechanical processes are often manifested as one-dimensional (1D) trajectories. It has been shown that 1D confidence intervals (CIs) are biased when based on 0D statistical procedures, and the non-parametric 1D bootstrap CI has emerged in the Biomechanics literature as a viable solution. The primary purpose of this paper was to clarify that, for 1D biomechanics datasets, the distinction between 0D and 1D methods is much more important than the distinction between parametric and non-parametric procedures. A secondary purpose was to demonstrate that a parametric equivalent to the 1D bootstrap exists in the form of a random field theory (RFT) correction for multiple comparisons. To emphasize these points we analyzed six datasets consisting of force and kinematic trajectories in one-sample, paired, two-sample and regression designs. Results showed, first, that the 1D bootstrap and other 1D non-parametric CIs were qualitatively identical to RFT CIs, and all were very different from 0D CIs. Second, 1D parametric and 1D non-parametric hypothesis testing results were qualitatively identical for all six datasets. Last, we highlight the limitations of 1D CIs by demonstrating that they are complex, design-dependent, and thus non-generalizable. These results suggest that (i) analyses of 1D data based on 0D models of randomness are generally biased unless one explicitly identifies 0D variables before the experiment, and (ii) parametric and non-parametric 1D hypothesis testing provide an unambiguous framework for analysis when one׳s hypothesis explicitly or implicitly pertains to whole 1D trajectories. PMID:25817475

  15. Parametric excitation in a magnetic tunnel junction-based spin torque oscillator

    SciTech Connect

    Dürrenfeld, P.; Iacocca, E.; Åkerman, J.; Muduli, P. K.

    2014-02-03

    Using microwave current injection at room temperature, we demonstrate parametric excitation of a magnetic tunnel junction (MTJ)-based spin-torque oscillator (STO). Parametric excitation is observed for currents below the auto-oscillation threshold, when the microwave current frequency f{sub e} is twice the STO free-running frequency f{sub 0}. Above threshold, the MTJ becomes parametrically synchronized. In the synchronized state, the STO exhibits an integrated power up to 5 times higher and a linewidth reduction of two orders of magnitude, compared to free-running conditions. We also show that the parametric synchronization favors single mode oscillations in the case of multimode excitation.

  16. Parametric instabilities of rotor-support systems with application to industrial ventilators

    NASA Technical Reports Server (NTRS)

    Parszewski, Z.; Krodkiemski, T.; Marynowski, K.

    1980-01-01

    Rotor support systems interaction with parametric excitation is considered for both unequal principal shaft stiffness (generators) and offset disc rotors (ventilators). Instability regions and types of instability are computed in the first case, and parametric resonances in the second case. Computed and experimental results are compared for laboratory machine models. A field case study of parametric vibrations in industrial ventilators is reported. Computed parametric resonances are confirmed in field measurements, and some industrial failures are explained. Also the dynamic influence and gyroscopic effect of supporting structures are shown and computed.

  17. Enhancement of spin-torque diode sensitivity in a magnetic tunnel junction by parametric synchronization

    NASA Astrophysics Data System (ADS)

    Tiwari, Dhananjay; Sisodia, Naveen; Sharma, Raghav; Dürrenfeld, P.; Åkerman, J.; Muduli, P. K.

    2016-02-01

    We demonstrate enhanced radio frequency (RF) detection sensitivity in a magnetic tunnel junction based spin torque oscillator (STO) using parametric synchronization. The parametric synchronization is observed above the auto-oscillation threshold of the STO and enhances the RF sensitivity at 2f0, where f0 is the auto-oscillation frequency. The maximum RF sensitivity for parametric synchronization at 2 f0≃9 GHz is 16 mV/mW, while the maximum RF sensitivity at f0≃4.5 GHz without parametric synchronization is 12 mV/mW. Macrospin simulations corroborate the experimental results.

  18. Parametric Quantum Search Algorithm as Quantum Walk: A Quantum Simulation

    NASA Astrophysics Data System (ADS)

    Ellinas, Demosthenes; Konstandakis, Christos

    2016-02-01

    Parametric quantum search algorithm (PQSA) is a form of quantum search that results by relaxing the unitarity of the original algorithm. PQSA can naturally be cast in the form of quantum walk, by means of the formalism of oracle algebra. This is due to the fact that the completely positive trace preserving search map used by PQSA, admits a unitarization (unitary dilation) a la quantum walk, at the expense of introducing auxiliary quantum coin-qubit space. The ensuing QW describes a process of spiral motion, chosen to be driven by two unitary Kraus generators, generating planar rotations of Bloch vector around an axis. The quadratic acceleration of quantum search translates into an equivalent quadratic saving of the number of coin qubits in the QW analogue. The associated to QW model Hamiltonian operator is obtained and is shown to represent a multi-particle long-range interacting quantum system that simulates parametric search. Finally, the relation of PQSA-QW simulator to the QW search algorithm is elucidated.

  19. Multi-parametric prediction for cardiovascular risk assessment.

    PubMed

    Henriques, Jorge; de Carvalho, Paulo; Rocha, Teresa; Paredes, Simão; Morais, João

    2016-01-01

    The employment of personal health systems (pHealth) is a valuable concept in the management of chronic diseases, particularly in the context of cardiovascular diseases. By means of a continuous monitoring of the patient it is possible to seamless access multiple sources of data, including physiological signals, providing professionals with a global and reliable view of the patient's status. In practice, it is possible the prompt diagnosis of events, the early prediction of critical events and the implementation of personalized therapies. Furthermore, the information collected during long periods creates new opportunities in the diagnosis of a disease, in its evolution, and in the prediction of possible complications. The focus of this work is the research and implementation of multi-parametric algorithms for data analysis in pHealth context, including data mining techniques as well as physiological signal modelling and processing. In particular, fusion strategies for cardiovascular status evaluation (namely cardiovascular risk assessment and cardiac function estimation) and multi-parametric prediction algorithms for the early detection of cardiovascular events (such as hypertension, syncope and heart failure decompensation) will be addressed. PMID:27225547

  20. Multicomponent polariton superfluidity in the optical parametric oscillator regime

    NASA Astrophysics Data System (ADS)

    Berceanu, A. C.; Dominici, L.; Carusotto, I.; Ballarini, D.; Cancellieri, E.; Gigli, G.; Szymańska, M. H.; Sanvitto, D.; Marchetti, F. M.

    2015-07-01

    Superfluidity, which is the ability of a liquid or gas to flow with zero viscosity, is one of the most remarkable implications of collective quantum coherence. In equilibrium systems such as liquid 4He and ultracold atomic gases, superfluid behavior conjugates diverse yet related phenomena, such as a persistent metastable flow in multiply connected geometries and the existence of a critical velocity for frictionless flow when hitting a static defect. The link between these different aspects of superfluid behavior is far less clear in driven-dissipative systems displaying collective coherence, such as microcavity polaritons, which raises important questions about their concurrency. With a joint theoretical and experimental study, we show that the scenario is particularly rich for polaritons driven in a three-fluid collective coherent regime, i.e., a so-called optical parametric oscillator. On the one hand, the spontaneous macroscopic coherence following the phase locking of the signal and idler fluids has been shown to be responsible for their simultaneous quantized flow metastability. On the other hand, we show here that the pump, signal, and idler have distinct responses when hitting a static defect; while the signal displays modulations that are barely perceptible, the ones appearing in the pump and idler are determined by their mutual coupling due to nonlinear and parametric processes.

  1. Parametric study of wheel transitions at railway crossings

    NASA Astrophysics Data System (ADS)

    Wan, C.; Markine, V. L.

    2015-12-01

    Vehicle-track interaction at railway crossings is complex due to the discontinuity of the crossings. In this study, the effect of the local crossing geometry, the track alignment, and the wheel profiles on the wheel transition behaviour is investigated using the multi-body system software package VI-Rail. The transition behaviour is evaluated based on the location of the transition point along the crossing (and the location of impact), the contact pressure and the energy dissipation during the wheel-rail contact. A detailed parametric study of the crossing geometry has been performed, through which the most effective parameters for defining the crossing geometry are identified. These parameters are the cross-sectional shape of the nose rail, which can be tuned by one variable, and the vertical distance between the top of the wing rail and the nose rail. Additionally, a parametric study on the interaction influence of the crossing geometry, the track alignment and the wheel profile is performed using the design of experiments method with a two-level full factorial design. The longitudinal height profile of the crossing and the wheel profile are the most significant factors.

  2. Parametrizing linear generalized Langevin dynamics from explicit molecular dynamics simulations

    SciTech Connect

    Gottwald, Fabian; Karsten, Sven; Ivanov, Sergei D. Kühn, Oliver

    2015-06-28

    Fundamental understanding of complex dynamics in many-particle systems on the atomistic level is of utmost importance. Often the systems of interest are of macroscopic size but can be partitioned into a few important degrees of freedom which are treated most accurately and others which constitute a thermal bath. Particular attention in this respect attracts the linear generalized Langevin equation, which can be rigorously derived by means of a linear projection technique. Within this framework, a complicated interaction with the bath can be reduced to a single memory kernel. This memory kernel in turn is parametrized for a particular system studied, usually by means of time-domain methods based on explicit molecular dynamics data. Here, we discuss that this task is more naturally achieved in frequency domain and develop a Fourier-based parametrization method that outperforms its time-domain analogues. Very surprisingly, the widely used rigid bond method turns out to be inappropriate in general. Importantly, we show that the rigid bond approach leads to a systematic overestimation of relaxation times, unless the system under study consists of a harmonic bath bi-linearly coupled to the relevant degrees of freedom.

  3. Nonlinearities and Parametric Amplification of Superconducting Coplanar Waveguide Resonators

    NASA Astrophysics Data System (ADS)

    Haviland, David; Tholén, Erik; Ergul, Adem

    2008-03-01

    We have experimentally studied the nonlinear properties of superconducting coplanar stripline resonators fabricated from Al and Nb films with small transverse dimensions (gap size 1μm). Magnetic field penetration into the superconductor causes a current-dependant kinetic inductance, which gives an ideal Kerr nonlinearity. When the nonlinear oscillator is pumped very near its dynamic instability, it can be used to realize parametric amplification. We have achieved a gain of +22.4dB in a 5.8 GHz resonator cooled to 450 mK [E. Thol'en et. al. Appl. Phys. Lett. 90, 253509 (2007)]. Parametric deamplification or squeezing of a signal has also been verified with squeezing of 30 dB. The later effect is interesting because it can be used to generate squeezed vacuum states of the electromagnetic field. We have modeled the data using a theory developed by Yurke and Buks [J. Lightwave Technol. 24, 5054 (2006)]. Excellent fit of the model to the measured data can be achieved over a wide range of pump power, and the strength of the nonlinear terms can be obtained with high accuracy.

  4. High-performance fiber parametric oscillator for coherent Raman microscopy

    NASA Astrophysics Data System (ADS)

    Lamb, Erin S.; Lefrancois, Simon; Ji, Minbiao; Wadsworth, William J.; Xie, X. Sunney; Wise, Frank W.

    2014-02-01

    A compact, alignment-free, and inexpensive fiber source for coherent Raman spectroscopy would benefit the field considerably. We present a fiber optical parametric oscillator offering the best performance from a fiber-source to date. Pumping the oscillator with amplified pulses from a 1 μm fiber laser, we achieve widely spaced, narrowband pulses suitable for coherent anti-Stokes Raman scattering microscopy. The nearly transform limited, 2 ps signal pulses are generated through the use of normal dispersion four wave mixing in photonic crystal fiber, and can be tuned from 779-808 nm, limited by the tuning range of the seed laser. The average signal power can reach 180 mW (pulse energies up to 4 nJ). The long-wavelength idler field is resonant in the oscillator, and the use of a narrow bandpass filter in the feedback loop is critical for stable operation, as seen in both simulation and experiment. Due to the self-consistent nature of the oscillator, this source provides lower relative intensity noise on its output pulses than parametric amplifiers based on the same frequency conversion process. We present high quality images of mouse tissues taken with this source that exhibit an outstanding signal to noise ratio at top imaging speeds.

  5. DPpackage: Bayesian Non- and Semi-parametric Modelling in R.

    PubMed

    Jara, Alejandro; Hanson, Timothy E; Quintana, Fernando A; Müller, Peter; Rosner, Gary L

    2011-04-01

    Data analysis sometimes requires the relaxation of parametric assumptions in order to gain modeling flexibility and robustness against mis-specification of the probability model. In the Bayesian context, this is accomplished by placing a prior distribution on a function space, such as the space of all probability distributions or the space of all regression functions. Unfortunately, posterior distributions ranging over function spaces are highly complex and hence sampling methods play a key role. This paper provides an introduction to a simple, yet comprehensive, set of programs for the implementation of some Bayesian non- and semi-parametric models in R, DPpackage. Currently DPpackage includes models for marginal and conditional density estimation, ROC curve analysis, interval-censored data, binary regression data, item response data, longitudinal and clustered data using generalized linear mixed models, and regression data using generalized additive models. The package also contains functions to compute pseudo-Bayes factors for model comparison, and for eliciting the precision parameter of the Dirichlet process prior. To maximize computational efficiency, the actual sampling for each model is carried out using compiled FORTRAN. PMID:21796263

  6. Automated, Parametric Geometry Modeling and Grid Generation for Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    Harrand, Vincent J.; Uchitel, Vadim G.; Whitmire, John B.

    2000-01-01

    The objective of this Phase I project is to develop a highly automated software system for rapid geometry modeling and grid generation for turbomachinery applications. The proposed system features a graphical user interface for interactive control, a direct interface to commercial CAD/PDM systems, support for IGES geometry output, and a scripting capability for obtaining a high level of automation and end-user customization of the tool. The developed system is fully parametric and highly automated, and, therefore, significantly reduces the turnaround time for 3D geometry modeling, grid generation and model setup. This facilitates design environments in which a large number of cases need to be generated, such as for parametric analysis and design optimization of turbomachinery equipment. In Phase I we have successfully demonstrated the feasibility of the approach. The system has been tested on a wide variety of turbomachinery geometries, including several impellers and a multi stage rotor-stator combination. In Phase II, we plan to integrate the developed system with turbomachinery design software and with commercial CAD/PDM software.

  7. Cascaded parametric amplification for highly efficient terahertz generation.

    PubMed

    Ravi, Koustuban; Hemmer, Michael; Cirmi, Giovanni; Reichert, Fabian; Schimpf, Damian N; Mücke, Oliver D; Kärtner, Franz X

    2016-08-15

    A highly efficient, practical approach to high-energy multi-cycle terahertz (THz) generation based on spectrally cascaded optical parametric amplification (THz-COPA) is introduced. Feasible designs are presented that enable the THz wave, initially generated by difference frequency generation between a narrowband optical pump and optical seed (0.1-10% of pump energy), to self-start a cascaded (or repeated) energy downconversion of pump photons in a single pass through a single crystal. In cryogenically cooled, periodically poled lithium niobate, unprecedented energy conversion efficiencies >8% achievable with existing pump laser technology are predicted using realistic simulations. The calculations account for cascading effects, absorption, dispersion, and laser-induced damage. Due to the simultaneous, coupled nonlinear evolution of multiple phase-matched three-wave mixing processes, THz-COPA exhibits physics distinctly different from conventional three-wave mixing parametric amplifiers. This, in turn, governs optimal phase-matching conditions, evolution of optical spectra, and limitations of the nonlinear process. Circumventing these limitations is shown to yield conversion efficiencies ≫10%. PMID:27519094

  8. Some parametric flow analyses of a particle bed fuel element

    SciTech Connect

    Dobranich, D.

    1993-05-01

    Parametric calculations are performed, using the SAFSIM computer program, to investigate the fluid mechanics and heat transfer performance of a particle bed fuel element. Both steady-state and transient calculations are included, addressing such issues as flow stability, reduced thrust operation, transpiration drag, coolant conductivity enhancement, flow maldistributions, decay heat removal, flow perturbations, and pulse cooling. The calculations demonstrate the dependence of the predicted results on the modeling assumptions and thus provide guidance as to where further experimental and computational investigations are needed. The calculations also demonstrate that both flow instability and flow maldistribution in the fuel element are important phenomena. Furthermore, results are encouraging that geometric design changes to the element can significantly reduce problems related to these phenomena, allowing improved performance over a wide range of element power densities and flow rates. Such design changes will help to maximize the operational efficiency of space propulsion reactors employing particle bed fuel element technology. Finally, the results demonstrate that SAFSIM is a valuable engineering tool for performing quick and inexpensive parametric simulations addressing complex flow problems.

  9. Parametric initial conditions for core-collapse supernova simulations

    NASA Astrophysics Data System (ADS)

    Suwa, Yudai; Müller, Ewald

    2016-08-01

    We investigate a method to construct parametrized progenitor models for core-collapse supernova simulations. Different from all modern core-collapse supernova studies, which rely on progenitor models from stellar evolution calculations, we follow the methodology of Baron & Cooperstein to construct initial models. Choosing parametrized spatial distributions of entropy and electron fraction as a function of mass coordinate and solving the equation of hydrostatic equilibrium, we obtain the initial density structures of our progenitor models. First, we calculate structures with parameters fitting broadly the evolutionary model s11.2 of Woosley et al. (2002). We then demonstrate the reliability of our method by performing general relativistic hydrodynamic simulations in spherical symmetry with the isotropic diffusion source approximation to solve the neutrino transport. Our comprehensive parameter study shows that initial models with a small central entropy (≲0.4 kB nucleon-1) can explode even in spherically symmetric simulations. Models with a large entropy (≳6 kB nucleon-1) in the Si/O layer have a rather large explosion energy (˜4 × 1050 erg) at the end of the simulations, which is still rapidly increasing.

  10. Incident Duration Modeling Using Flexible Parametric Hazard-Based Models

    PubMed Central

    2014-01-01

    Assessing and prioritizing the duration time and effects of traffic incidents on major roads present significant challenges for road network managers. This study examines the effect of numerous factors associated with various types of incidents on their duration and proposes an incident duration prediction model. Several parametric accelerated failure time hazard-based models were examined, including Weibull, log-logistic, log-normal, and generalized gamma, as well as all models with gamma heterogeneity and flexible parametric hazard-based models with freedom ranging from one to ten, by analyzing a traffic incident dataset obtained from the Incident Reporting and Dispatching System in Beijing in 2008. Results show that different factors significantly affect different incident time phases, whose best distributions were diverse. Given the best hazard-based models of each incident time phase, the prediction result can be reasonable for most incidents. The results of this study can aid traffic incident management agencies not only in implementing strategies that would reduce incident duration, and thus reduce congestion, secondary incidents, and the associated human and economic losses, but also in effectively predicting incident duration time. PMID:25530753

  11. Facial Performance Transfer via Deformable Models and Parametric Correspondence.

    PubMed

    Asthana, Akshay; de la Hunty, Miles; Dhall, Abhinav; Goecke, Roland

    2012-09-01

    The issue of transferring facial performance from one person's face to another's has been an area of interest for the movie industry and the computer graphics community for quite some time. In recent years, deformable face models, such as the Active Appearance Model (AAM), have made it possible to track and synthesize faces in real time. Not surprisingly, deformable face model-based approaches for facial performance transfer have gained tremendous interest in the computer vision and graphics community. In this paper, we focus on the problem of real-time facial performance transfer using the AAM framework. We propose a novel approach of learning the mapping between the parameters of two completely independent AAMs, using them to facilitate the facial performance transfer in a more realistic manner than previous approaches. The main advantage of modeling this parametric correspondence is that it allows a "meaningful" transfer of both the nonrigid shape and texture across faces irrespective of the speakers' gender, shape, and size of the faces, and illumination conditions. We explore linear and nonlinear methods for modeling the parametric correspondence between the AAMs and show that the sparse linear regression method performs the best. Moreover, we show the utility of the proposed framework for a cross-language facial performance transfer that is an area of interest for the movie dubbing industry. PMID:21931176

  12. Non-Parametric Collision Probability for Low-Velocity Encounters

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell

    2007-01-01

    An implicit, but not necessarily obvious, assumption in all of the current techniques for assessing satellite collision probability is that the relative position uncertainty is perfectly correlated in time. If there is any mis-modeling of the dynamics in the propagation of the relative position error covariance matrix, time-wise de-correlation of the uncertainty will increase the probability of collision over a given time interval. The paper gives some examples that illustrate this point. This paper argues that, for the present, Monte Carlo analysis is the best available tool for handling low-velocity encounters, and suggests some techniques for addressing the issues just described. One proposal is for the use of a non-parametric technique that is widely used in actuarial and medical studies. The other suggestion is that accurate process noise models be used in the Monte Carlo trials to which the non-parametric estimate is applied. A further contribution of this paper is a description of how the time-wise decorrelation of uncertainty increases the probability of collision.

  13. Parametric initial conditions for core-collapse supernova simulations

    NASA Astrophysics Data System (ADS)

    Suwa, Yudai; Müller, Ewald

    2016-08-01

    We investigate a method to construct parametrized progenitor models for core-collapse supernova simulations. Different from all modern core-collapse supernova studies, which rely on progenitor models from stellar evolution calculations, we follow the methodology of Baron & Cooperstein (1990) to construct initial models. Choosing parametrized spatial distributions of entropy and electron fraction as a function of mass coordinate and solving the equation of hydrostatic equilibrium, we obtain the initial density structures of our progenitor models. First, we calculate structures with parameters fitting broadly the evolutionary model s11.2 of Woosley et al. (2002). We then demonstrate the reliability of our method by performing general relativistic hydrodynamic simulations in spherical symmetry with the isotropic diffusion source approximation to solve the neutrino transport. Our comprehensive parameter study shows that initial models with a small central entropy ($\\lesssim 0.4\\,k_B$ nucleon$^{-1}$) can explode even in spherically symmetric simulations. Models with a large entropy ($\\gtrsim 6\\,k_B$ nucleon$^{-1}$) in the Si/O layer have a rather large explosion energy ($\\sim 4\\times 10^{50}$ erg) at the end of the simulations, which is still rapidly increasing.

  14. Weakly Nonlinear Description of Parametric Instabilities in Vibrating Flows

    NASA Technical Reports Server (NTRS)

    Knobloch, E.; Vega, J. M.

    1999-01-01

    This project focuses on the effects of weak dissipation on vibrational flows in microgravity and in particular on (a) the generation of mean flows through viscous effects and their reaction on the flows themselves, and (b) the effects of finite group velocity and dispersion on the resulting dynamics in large domains. The basic mechanism responsible for the generation of such flows is nonlinear and was identified by Schlichting [21] and Longuet-Higgins. However, only recently has it become possible to describe such flows self-consistently in terms of amplitude equations for the parametrically excited waves coupled to a mean flow equation. The derivation of these equations is nontrivial because the limit of zero viscosity is singular. This project focuses on various aspects of this singular problem (i.e., the limit C equivalent to (nu)((g)(h(exp 3)))exp -1/2 << 1,where nu is the kinematic viscosity and h is the liquid depth) in the weakly nonlinear regime. A number of distinct cases is identified depending on the values of the Bond number, the size of the nonlinear terms, distance above threshold and the length scales of interest. The theory provides a quantitative explanation of a number of experiments on the vibration modes of liquid bridges and related experiments on parametric excitation of capillary waves in containers of both small and large aspect ratio. The following is a summary of results obtained thus far.

  15. Parametric imaging of tumor perfusion and neovascular morphology using ultrasound

    NASA Astrophysics Data System (ADS)

    Hoyt, Kenneth

    2015-03-01

    A new image processing strategy is detailed for the simultaneous measurement of tumor perfusion and neovascular morphology parameters from a sequence of dynamic contrast-enhanced ultrasound (DCE-US) images. A technique for locally mapping tumor perfusion parameters using skeletonized neovascular data is also introduced. Simulated images were used to test the neovascular skeletonization technique and variance (error) of relevant parametric estimates. Preliminary DCE-US image datasets were collected in 6 female patients diagnosed with invasive breast cancer and using a Philips iU22 ultrasound system equipped with a L9-3 MHz transducer and Definity contrast agent. Simulation data demonstrates that neovascular morphology parametric estimation is reproducible albeit measurement error can occur at a lower signal-to-noise ratio (SNR). Experimental results indicate the feasibility of our approach to performing both tumor perfusion and neovascular morphology measurements from DCE-US images. Future work will expand on our initial clinical findings and also extent our image processing strategy to 3-dimensional space to allow whole tumor characterization.

  16. Parametric distributions of regional lake chemistry: Fitted and derived

    SciTech Connect

    Small, M.J.; Sutton, M.C.; Milke, M.W. )

    1988-02-01

    Parametric probability distribution functions are determined for regional lake chemistry in four subregions of the Eastern Lake Survey (ELS) of the US EPA National Surface Water Survey. The subregions are the Adirondacks, northeastern Minnesota, northcentral Wisconsin, and the Southern Blue Ridge Province. ANC data are fit with a three-parameter lognormal distribution, and the distributions of pH and total base cations are derived from physically based relationships estimated for each region. The parametric distribution functions provide very good representations of observed data in each area, with the exception of northcentral Wisconsin, where bimodal ANC and base cation distributions are observed, suggesting the need for a mixture of distributions. The derived distributions of pH allow for interregional comparison, with unimodal pH distributions in unacidified areas and bimodal pH distributions in regions impacted by acid deposition. Future research of regional variations in water chemistry is proposed in the context of the correlation structure of large-scale spatial variations of soil and geologic properties.

  17. Model reduction for parametric instability analysis in shells conveying fluid

    NASA Astrophysics Data System (ADS)

    Kochupillai, Jayaraj; Ganesan, N.; Padmanabhan, Chandramouli

    2003-05-01

    Flexible pipes conveying fluid are often subjected to parametric excitation due to time-periodic flow fluctuations. Such systems are known to exhibit complex instability phenomena such as divergence and coupled-mode flutter. Investigators have typically used weighted residual techniques, to reduce the continuous system model into a discrete model, based on approximation functions with global support, for carrying out stability analysis. While this approach is useful for straight pipes, modelling based on FEM is needed for the study of complicated piping systems, where the approximation functions used are local in support. However, the size of the problem is now significantly larger and for computationally efficient stability analysis, model reduction is necessary. In this paper, model reduction techniques are developed for the analysis of parametric instability in flexible pipes conveying fluids under a mean pressure. It is shown that only those linear transformations which leave the original eigenvalues of the linear time invariant system unchanged are admissible. The numerical technique developed by Friedmann and Hammond (Int. J. Numer. Methods Eng. Efficient 11 (1997) 1117) is used for the stability analysis. One of the key research issues is to establish criteria for deciding the basis vectors essential for an accurate stability analysis. This paper examines this issue in detail and proposes new guidelines for their selection.

  18. Parametric Studies of Square Solar Sails Using Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Sleight, David W.; Muheim, Danniella M.

    2004-01-01

    Parametric studies are performed on two generic square solar sail designs to identify parameters of interest. The studies are performed on systems-level models of full-scale solar sails, and include geometric nonlinearity and inertia relief, and use a Newton-Raphson scheme to apply sail pre-tensioning and solar pressure. Computational strategies and difficulties encountered during the analyses are also addressed. The purpose of this paper is not to compare the benefits of one sail design over the other. Instead, the results of the parametric studies may be used to identify general response trends, and areas of potential nonlinear structural interactions for future studies. The effects of sail size, sail membrane pre-stress, sail membrane thickness, and boom stiffness on the sail membrane and boom deformations, boom loads, and vibration frequencies are studied. Over the range of parameters studied, the maximum sail deflection and boom deformations are a nonlinear function of the sail properties. In general, the vibration frequencies and modes are closely spaced. For some vibration mode shapes, local deformation patterns that dominate the response are identified. These localized patterns are attributed to the presence of negative stresses in the sail membrane that are artifacts of the assumption of ignoring the effects of wrinkling in the modeling process, and are not believed to be physically meaningful. Over the range of parameters studied, several regions of potential nonlinear modal interaction are identified.

  19. Second-order parametrized-post-Newtonian Lagrangian

    SciTech Connect

    Benacquista, M.J. )

    1992-02-15

    A many-body Lagrangian to second post-Newtonian order using an extension of the parametrized-post-Newtonian (PPN) formalism is introduced and the properties of new parameters are explored. A parametrized gauge transformation is developed to permit comparison with theories of gravity in a variety of different coordinate systems. A procedure to impose Lorentz invariance on a general second-order post-Newtonian Lagrangian is developed. The Lagrangian is then constrained to possess Lorentz invariance and a Lorentz-invariant'' gauge is introduced. The constrained Lagrangian is found to be described by ten new second-order PPN parameters. When the Lagrangian is further constrained to describe theories of gravity for which test particles move along geodesics, one of the ten new parameters is given entirely in terms of first-order PPN parameters, leaving only nine PPN parameters to describe the second-order gravitational interaction. A metric'' gauge is introduced which allows the metric to be easily found from the Lagrangian and is shown to reduce to the gauge associated with the canonical formalism of Arnowitt, Deser, and Misner when the general-relativity values of the PPN parameters are used.

  20. High-temperature ultrafast polariton parametric amplification in semiconductor microcavities.

    PubMed

    Saba, M; Ciuti, C; Bloch, J; Thierry-Mieg, V; André, R; Dang, le S; Kundermann, S; Mura, A; Bongiovanni, G; Staehli, J L; Deveaud, B

    2001-12-13

    Cavity polaritons, the elementary optical excitations of semiconductor microcavities, may be understood as a superposition of excitons and cavity photons. Owing to their composite nature, these bosonic particles have a distinct optical response, at the same time very fast and highly nonlinear. Very efficient light amplification due to polariton-polariton parametric scattering has recently been reported in semiconductor microcavities at liquid-helium temperatures. Here we demonstrate polariton parametric amplification up to 120 K in GaAlAs-based microcavities and up to 220 K in CdTe-based microcavities. We show that the cut-off temperature for the amplification is ultimately determined by the binding energy of the exciton. A 5-micrometer-thick planar microcavity can amplify a weak light pulse more than 5,000 times. The effective gain coefficient of an equivalent homogeneous medium would be 107 cm-1. The subpicosecond duration and high efficiency of the amplification could be exploited for high-repetition all-optical microscopic switches and amplifiers. 105 polaritons occupy the same quantum state during the amplification, realizing a dynamical condensate of strongly interacting bosons which can be studied at high temperature. PMID:11742394

  1. High-temperature ultrafast polariton parametric amplification in semiconductor microcavities

    NASA Astrophysics Data System (ADS)

    Saba, M.; Ciuti, C.; Bloch, J.; Thierry-Mieg, V.; André, R.; Dang, Le Si; Kundermann, S.; Mura, A.; Bongiovanni, G.; Staehli, J. L.; Deveaud, B.

    2001-12-01

    Cavity polaritons, the elementary optical excitations of semiconductor microcavities, may be understood as a superposition of excitons and cavity photons. Owing to their composite nature, these bosonic particles have a distinct optical response, at the same time very fast and highly nonlinear. Very efficient light amplification due to polariton-polariton parametric scattering has recently been reported in semiconductor microcavities at liquid-helium temperatures. Here we demonstrate polariton parametric amplification up to 120K in GaAlAs-based microcavities and up to 220K in CdTe-based microcavities. We show that the cut-off temperature for the amplification is ultimately determined by the binding energy of the exciton. A 5-µm-thick planar microcavity can amplify a weak light pulse more than 5,000 times. The effective gain coefficient of an equivalent homogeneous medium would be 107cm-1. The subpicosecond duration and high efficiency of the amplification could be exploited for high-repetition all-optical microscopic switches and amplifiers. 105 polaritons occupy the same quantum state during the amplification, realizing a dynamical condensate of strongly interacting bosons which can be studied at high temperature.

  2. Nonlinear parametric amplification in a triport nanoelectromechanical device

    NASA Astrophysics Data System (ADS)

    Collin, E.; Moutonet, T.; Heron, J.-S.; Bourgeois, O.; Bunkov, Yu. M.; Godfrin, H.

    2011-08-01

    We report on measurements performed at low temperatures on a nanoelectromechanical system (NEMS) under (capacitive) parametric pumping. The excitations and detection schemes are purely electrical and, in the present experiment, enable the straightforward measurement of forces down to about a femtonewton, for displacements of an angström, using standard room-temperature electronics. We demonstrate that a small (linear) force applied on the device can be amplified up to more than a 100 times, while the system is truly moving. We explore the dynamics up to about 50-nm deflections for cantilevers about 200 nm thick and 3 μm long, oscillating at a frequency of 7 MHz. We present a generic modeling of nonlinear parametric amplification and give analytic theoretical solutions enabling the fit of experimental results. We finally discuss the practical limits of the technique, with a particular application: the measurement of anelastic damping in the metallic coating of the device, with an exceptional resolution of about 0.5%.

  3. Numerical Models of Broad-Bandwidth Nanosecond Optical Parametric Oscillators

    SciTech Connect

    Bowers, M.S.; Gehr. R.J.; Smith, A.V.

    1998-10-22

    We present three new methods for modeling broad-bandwidth, nanosecond optitcal parametric oscillators in the plane-wave approximation. Each accounts for the group-velocity differences that determine the operating linewidth of unseeded optical parametric oscillators, and each allows the signal and idler waves to develop from quantum noise. The first two methods are based on split-step integration methods in which nonlinear mixing and propagation are calculated separately on alternate steps. One method relies on Fourier transforming handle propagation, wiih mixing integrated over a the fields between t and u to Az step: the other transforms between z and k= in the propagation step, with mixing integrated over At. The third method is based on expansion of the three optical fields in terms of their respective longitudinal empty cavity modes, taking into account the cavity boundary condi- tions. Equations describing the time development of the mode amplitudes are solved to yield the time dependence of the three output fields. These plane-wave models exclude diffractive effects, but can be readily extended to include them.

  4. Twisted geometries: A geometric parametrization of SU(2) phase space

    SciTech Connect

    Freidel, Laurent; Speziale, Simone

    2010-10-15

    A cornerstone of the loop quantum gravity program is the fact that the phase space of general relativity on a fixed graph can be described by a product of SU(2) cotangent bundles per edge. In this paper we show how to parametrize this phase space in terms of quantities describing the intrinsic and extrinsic geometry of the triangulation dual to the graph. These are defined by the assignment to each face of its area, the two unit normals as seen from the two polyhedra sharing it, and an additional angle related to the extrinsic curvature. These quantities do not define a Regge geometry, since they include extrinsic data, but a looser notion of discrete geometry which is twisted in the sense that it is locally well-defined, but the local patches lack a consistent gluing among each other. We give the Poisson brackets among the new variables, and exhibit a symplectomorphism which maps them into the Poisson brackets of loop gravity. The new parametrization has the advantage of a simple description of the gauge-invariant reduced phase space, which is given by a product of phase spaces associated to edges and vertices, and it also provides an Abelianization of the SU(2) connection. The results are relevant for the construction of coherent states and, as a byproduct, contribute to clarify the connection between loop gravity and its subset corresponding to Regge geometries.

  5. A novel SURE-based criterion for parametric PSF estimation.

    PubMed

    Xue, Feng; Blu, Thierry

    2015-02-01

    We propose an unbiased estimate of a filtered version of the mean squared error--the blur-SURE (Stein's unbiased risk estimate)--as a novel criterion for estimating an unknown point spread function (PSF) from the degraded image only. The PSF is obtained by minimizing this new objective functional over a family of Wiener processings. Based on this estimated blur kernel, we then perform nonblind deconvolution using our recently developed algorithm. The SURE-based framework is exemplified with a number of parametric PSF, involving a scaling factor that controls the blur size. A typical example of such parametrization is the Gaussian kernel. The experimental results demonstrate that minimizing the blur-SURE yields highly accurate estimates of the PSF parameters, which also result in a restoration quality that is very similar to the one obtained with the exact PSF, when plugged into our recent multi-Wiener SURE-LET deconvolution algorithm. The highly competitive results obtained outline the great potential of developing more powerful blind deconvolution algorithms based on SURE-like estimates. PMID:25531950

  6. A heat engine based moist convection parametrization for Jupiter

    NASA Astrophysics Data System (ADS)

    Zuchowski, L. C.; Read, P. L.; Yamazaki, Y. H.; Renno, N. O.

    2009-11-01

    We have developed a parametrization of Jovian moist convection based on a heat engine model of moist convection. In comparison to other moist convection schemes, this framework allows the computation of the total available convective energy TCAPE and the corresponding mass flux M as dynamic variables from the mean atmospheric state. The effects of this parametrization have been investigated both analytically and numerically. In agreement with previous numerical experiments and observations, the inclusion of moist convection leads to heat and water vapor transport from the water condensation level into higher altitudes. The time development of the modeled convective events was found to be strongly influenced by a rapid reduction of kinetic energy and a subsequent lowering of the cumulus tower's top in response to convective heating. We have tested the sensitivity of the scheme to different variations in the fractional cloud coverage and under the inclusion of external radiative forcing towards a stable/unstable temperature profile. While the time development of convective events differs in response to these variations, the general moist convective heating and moistening of the upper troposphere was a robust feature observed in all experiments.

  7. Vertebroplasty: Patient and treatment variations studied through parametric computational models☆

    PubMed Central

    Wijayathunga, Vithanage N.; Oakland, Robert J.; Jones, Alison C.; Hall, Richard M.; Wilcox, Ruth K.

    2013-01-01

    Background Vertebroplasty is increasingly used in the treatment of vertebral compression fractures. However there are concerns that this intervention may lead to further fractures in the adjacent vertebral segments. This study was designed to parametrically assess the influence of both treatment factors (cement volume and number of augmentations), and patient factors (bone and disc quality) on the biomechanical effects of vertebroplasty. Methods Specimen-specific finite element models of two experimentally-tested human three-vertebral-segments were developed from CT-scan data. Cement augmentation at one and two levels was represented in the respective models and good agreement in the predicted stiffness was found compared to the corresponding experimental specimens. Parametric variations of key variables associated with the procedure were then studied. Findings The segmental stiffness increased with disc degeneration, with increasing bone quality and to a lesser extent with increasing cement volume. Cement modulus did not have a great influence on the overall segmental stiffness and on the change in the elemental stress in the adjoining vertebrae. However, following augmentation, the stress distribution in the adjacent vertebra changed, indicating possible load redistribution effects of vertebroplasty. Interpretation This study demonstrates the importance of patient factors in the outcomes of vertebroplasty and suggests that these may be one reason for the variation in clinical results. PMID:23953004

  8. Parametrized dielectric functions of amorphous GeSn alloys

    SciTech Connect

    D'Costa, Vijay Richard Wang, Wei; Yeo, Yee-Chia; Schmidt, Daniel

    2015-09-28

    We obtained the complex dielectric function of amorphous Ge{sub 1−x}Sn{sub x} (0 ≤ x ≤ 0.07) alloys using spectroscopic ellipsometry from 0.4 to 4.5 eV. Amorphous GeSn films were formed by room-temperature implantation of phosphorus into crystalline GeSn alloys grown by molecular beam epitaxy. The optical response of amorphous GeSn alloys is similar to amorphous Ge and can be parametrized using a Kramers-Kronig consistent Cody-Lorentz dispersion model. The parametric model was extended to account for the dielectric functions of amorphous Ge{sub 0.75}Sn{sub 0.25} and Ge{sub 0.50}Sn{sub 0.50} alloys from literature. The compositional dependence of band gap energy E{sub g} and parameters associated with the Lorentzian oscillator have been determined. The behavior of these parameters with varying x can be understood in terms of the alloying effect of Sn on Ge.

  9. Parametric Thermal Soak Model for Earth Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Samareh, Jamshid; Doan, Quy D.

    2013-01-01

    The analysis and design of an Earth Entry Vehicle (EEV) is multidisciplinary in nature, requiring the application many disciplines. An integrated tool called Multi Mission System Analysis for Planetary Entry Descent and Landing or M-SAPE is being developed as part of Entry Vehicle Technology project under In-Space Technology program. Integration of a multidisciplinary problem is a challenging task. Automation of the execution process and data transfer among disciplines can be accomplished to provide significant benefits. Thermal soak analysis and temperature predictions of various interior components of entry vehicle, including the impact foam and payload container are part of the solution that M-SAPE will offer to spacecraft designers. The present paper focuses on the thermal soak analysis of an entry vehicle design based on the Mars Sample Return entry vehicle geometry and discusses a technical approach to develop parametric models for thermal soak analysis that will be integrated into M-SAPE. One of the main objectives is to be able to identify the important parameters and to develop correlation coefficients so that, for a given trajectory, can estimate the peak payload temperature based on relevant trajectory parameters and vehicle geometry. The models are being developed for two primary thermal protection (TPS) materials: 1) carbon phenolic that was used for Galileo and Pioneer Venus probes and, 2) Phenolic Impregnated Carbon Ablator (PICA), TPS material for Mars Science Lab mission. Several representative trajectories were selected from a very large trade space to include in the thermal analysis in order to develop an effective parametric thermal soak model. The selected trajectories covered a wide range of heatload and heatflux combinations. Non-linear, fully transient, thermal finite element simulations were performed for the selected trajectories to generate the temperature histories at the interior of the vehicle. Figure 1 shows the finite element model

  10. Multi-Parametric Neuroimaging Reproducibility: A 3T Resource Study

    PubMed Central

    Landman, Bennett A.; Huang, Alan J.; Gifford, Aliya; Vikram, Deepti S.; Lim, Issel Anne L.; Farrell, Jonathan A.D.; Bogovic, John A.; Hua, Jun; Chen, Min; Jarso, Samson; Smith, Seth A.; Joel, Suresh; Mori, Susumu; Pekar, James J.; Barker, Peter B.; Prince, Jerry L.; van Zijl, Peter C.M.

    2010-01-01

    Modern MRI image processing methods have yielded quantitative, morphometric, functional, and structural assessments of the human brain. These analyses typically exploit carefully optimized protocols for specific imaging targets. Algorithm investigators have several excellent public data resources to use to test, develop, and optimize their methods. Recently, there has been an increasing focus on combining MRI protocols in multi-parametric studies. Notably, these have included innovative approaches for fusing connectivity inferences with functional and/or anatomical characterizations. Yet, validation of the reproducibility of these interesting and novel methods has been severely hampered by the limited availability of appropriate multi-parametric data. We present an imaging protocol optimized to include state-of-the-art assessment of brain function, structure, micro-architecture, and quantitative parameters within a clinically feasible 60 minute protocol on a 3T MRI scanner. We present scan-rescan reproducibility of these imaging contrasts based on 21 healthy volunteers (11 M/10 F, 22–61 y/o). The cortical gray matter, cortical white matter, ventricular cerebrospinal fluid, thalamus, putamen, caudate, cerebellar gray matter, cerebellar white matter, and brainstem were identified with mean volume-wise reproducibility of 3.5%. We tabulate the mean intensity, variability and reproducibility of each contrast in a region of interest approach, which is essential for prospective study planning and retrospective power analysis considerations. Anatomy was highly consistent on structural acquisition (~1–5% variability), while variation on diffusion and several other quantitative scans was higher (~<10%). Some sequences are particularly variable in specific structures (ASL exhibited variation of 28% in the cerebral white matter) or in thin structures (quantitative T2 varied by up to 73% in the caudate) due, in large part, to variability in automated ROI placement. The

  11. Parametric instabilities during electron cyclotron heating of tandem mirrors

    NASA Technical Reports Server (NTRS)

    Nicholson, D. R.

    1984-01-01

    Electron cyclotron resonance heating is one of the most commonly used methods of heating electrons in the plugs and in the thermal barriers of tandem mirrors. The intense coherent electromagnetic waves used for such heating are susceptible to parametric decay into other modes. Significant growth rates are found for the decay of either ordinary or extraordinary waves into two magnetized electron plasma waves. This and related effects may result in electron heating mechanisms rather different than those assumed in linear ray-tracing calculations. These results may help explain the unusual effects observed during heating of the Phaedrus tandem mirror device. In the general case, these instabilities may be strongly inhibited by density gradients.

  12. Transient tumbling chaos and damping identification for parametric pendulum.

    PubMed

    Horton, Bryan; Wiercigroch, Marian; Xu, Xu

    2008-03-13

    The aim of this study is to provide a simple, yet effective and generally applicable technique for determining damping for parametric pendula. The proposed model is more representative of system dynamics because the numerical results describe the qualitative features of experimentally exhibited transient tumbling chaotic motions well. The assumption made is that the system is accurately modelled by a combination of viscous and Coulomb dampings; a parameter identification procedure is developed from this basis. The results of numerical and experimental time histories of free oscillations are compared with the model produced from the parameters identified by the classic logarithmic decrement technique. The merits of the present method are discussed before the model is verified against experimental results. Finally, emphasis is placed on a close corroboration between the experimental and theoretical transient tumbling chaotic trajectories. PMID:17947205

  13. Experimental control for initiating and maintaining rotation of parametric pendulum

    NASA Astrophysics Data System (ADS)

    Vaziri, V.; Najdecka, A.; Wiercigroch, M.

    2014-04-01

    In this paper, the authors have studied experimentally the control methods of a parametric pendulum excited harmonically to initiate and maintain a period one rotation - the most superior response for energy harvesting. For initiating the period one rotation inherent in the system, first the bang-bang method is applied. Then a new method where velocity is monitored is proposed and applied and finally the time-delayed feedback method with multi-switching is considered. Ultimately the problem of maintaining the rotation of the pendulum is addressed. For first time, robustness and sensitivity of the latter method to change of frequency and amplitude of excitation and added noise are studied. Finally, it has been demonstrated how the delayed feedback method can be applied in a system of two pendula to ensure synchronized rotation.

  14. Rotating solutions and stability of parametric pendulum by perturbation method

    NASA Astrophysics Data System (ADS)

    Lenci, S.; Pavlovskaia, E.; Rega, G.; Wiercigroch, M.

    2008-02-01

    Rotating solutions of a parametrically driven pendulum are studied via a perturbation method by assuming the undamped unforced Hamiltonian case as basic solution, and damping and excitation as small perturbations. The existence and stability of the harmonic solution are determined analytically. First-order terms are mainly considered, but the extensions to higher-order terms, as well as to subharmonic rotations, are straightforward. Setting up the analysis in the phase space instead of in the physical space has facilitated development of simple but comprehensive formulas. Comparison with numerical simulations shows that the analytical results are very effective in accurate predictions, even for fairly large amplitudes, and in detecting the saddle-node bifurcation where the rotating solution is born. A limited accuracy is observed, to first order, in detecting the period-doubling bifurcation where it loses stability, and an explanation is proposed.

  15. Rocket injector anomalies study. Volume 2: Results of parametric studies

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Singhal, A. K.; Tam, L. T.

    1984-01-01

    The employment of a existing computer program to simulate three dimensional two phase gas spray flows in liquid propellant rocket engines. This was accomplished by modification of an existing three dimensional computer program (REFLAN3D) with Euler/Lagrange approach for simulating two phase spray flow, evaporation and combustion. The modified code is referred to as REFLAN3D-SPRAY. Computational studies of the model rocket engine combustion chamber are presented. The parametric studies of the two phase flow and combustion shows qualitatively correct response for variations in geometrical and physical parameters. The injection nonuniformity test with blocked central fuel injector holes shows significant changes in the central flame core and minor influence on the wall heat transfer fluxes.

  16. Nonreciprocal Radio Frequency Transduction in a Parametric Mechanical Artificial Lattice.

    PubMed

    Huang, Pu; Zhang, Liang; Zhou, Jingwei; Tian, Tian; Yin, Peiran; Duan, Changkui; Du, Jiangfeng

    2016-07-01

    Generating nonreciprocal radio frequency transduction plays important roles in a wide range of research and applications, and an aspiration is to integrate this functionality into microcircuits without introducing a magnetic field, which, however, remains challenging. By designing a 1D artificial lattice structure with a neighbor interaction engineered parametrically, we predicted a nonreciprocity transduction with a large unidirectionality. We then experimentally demonstrated the phenomenon on a nanoelectromechanical chip fabricated by conventional complementary metal-silicon processing. A unidirectionality with isolation as high as 24 dB is achieved, and several different transduction schemes are realized by programing the control voltage topology. Apart from being used as a radio frequency isolator, the system provides a way to build a practical on-chip programmable device for broad research and applications in the radio frequency domain. PMID:27419591

  17. Seesaw parametrization for n right-handed neutrinos

    NASA Astrophysics Data System (ADS)

    Heeck, Julian

    2012-11-01

    Introducing n right-handed neutrinos to the Standard Model yields, in general, massive active neutrinos. We give explicit parametrizations for the involved mixing and coupling matrices in terms of physical parameters for both the top-down and the bottom-up approach for arbitrary n. Bounds on the complex mixing angles in the bottom-up approach from perturbativity of the Yukawa couplings to charged lepton flavor violation are discussed. As a novel illustration of possible effects from n≠3, we extend the neutrino anarchy framework to arbitrary n; we show that while the anarchic mixing angles are insensitive to the number of singlets, the observed ratios of neutrino masses prefer small n for the simplest linear measure.

  18. Parametric study of cantilever walls subjected to seismic loading

    SciTech Connect

    Comina, Cesare; Foti, Sebastiano; Lancellotta, Renato; Leuzzi, Francesco; Pettiti, Alberto; Corigliano, Mirko; Lai, Carlo G.; Nicosia, Giovanni Li Destri; Psarropoulos, Prodromos N.; Paolucci, Roberto; Zanoli, Omar

    2008-07-08

    The design of flexible earth retaining structures under seismic loading is a challenging geotechnical problem, the dynamic soil-structure interaction being of paramount importance for this kind of structures. Pseudo-static approaches are often adopted but do not allow a realistic assessment of the performance of the structure subjected to the seismic motions. The present paper illustrates a numerical parametric study aimed at estimating the influence of the dynamic soil-structure interaction in the design. A series of flexible earth retaining walls have been preliminary designed according to the requirements of Eurocode 7 and Eurocode 8--Part 5; their dynamic behaviour has been then evaluated by means of dynamic numerical simulations in terms of bending moments, accelerations and stress state. The results obtained from dynamic analyses have then been compared with those determined using the pseudo-static approach.

  19. Synchronously pumped femtosecond optical parametric oscillator with broadband chirped mirrors

    NASA Astrophysics Data System (ADS)

    Stankevičiūte, Karolina; Melnikas, Simas; Kičas, Simonas; Trišauskas, Lukas; Vengelis, Julius; Grigonis, Rimantas; Vengris, Mikas; Sirutkaitis, Valdas

    2015-05-01

    We present results obtained during investigation of synchronously pumped optical parametric oscillator (SPOPO) with broadband complementary chirped mirror pairs (CMP). The SPOPO based on β-BBO nonlinear crystal is pumped by second harmonic of femtosecond Yb:KGW laser and provides signal pulses tunable over spectral range from 625 to 980 nm. More than 500 mW are generated in the signal beam, giving up to 27 % pump power to signal power conversion efficiency. The plane SPOPO cavity mirror pairs were specially designed to provide 99 % reflection in broad spectral range corresponding to signal wavelength tuning (630-1030 nm) and to suppress group delay dispersion (GDD) oscillations down to +/-10 fs2. Dispersion properties of designed mirrors were tested with white light interferometer (WLI) and attributed to the SPOPO tuning behaviour.

  20. Nonreciprocal Radio Frequency Transduction in a Parametric Mechanical Artificial Lattice

    NASA Astrophysics Data System (ADS)

    Huang, Pu; Zhang, Liang; Zhou, Jingwei; Tian, Tian; Yin, Peiran; Duan, Changkui; Du, Jiangfeng

    2016-07-01

    Generating nonreciprocal radio frequency transduction plays important roles in a wide range of research and applications, and an aspiration is to integrate this functionality into microcircuits without introducing a magnetic field, which, however, remains challenging. By designing a 1D artificial lattice structure with a neighbor interaction engineered parametrically, we predicted a nonreciprocity transduction with a large unidirectionality. We then experimentally demonstrated the phenomenon on a nanoelectromechanical chip fabricated by conventional complementary metal-silicon processing. A unidirectionality with isolation as high as 24 dB is achieved, and several different transduction schemes are realized by programing the control voltage topology. Apart from being used as a radio frequency isolator, the system provides a way to build a practical on-chip programmable device for broad research and applications in the radio frequency domain.