Science.gov

Sample records for parametric image formation

  1. Formation of parametric images using mixed-effects models: a feasibility study.

    PubMed

    Huang, Husan-Ming; Shih, Yi-Yu; Lin, Chieh

    2016-03-01

    Mixed-effects models have been widely used in the analysis of longitudinal data. By presenting the parameters as a combination of fixed effects and random effects, mixed-effects models incorporating both within- and between-subject variations are capable of improving parameter estimation. In this work, we demonstrate the feasibility of using a non-linear mixed-effects (NLME) approach for generating parametric images from medical imaging data of a single study. By assuming that all voxels in the image are independent, we used simulation and animal data to evaluate whether NLME can improve the voxel-wise parameter estimation. For testing purposes, intravoxel incoherent motion (IVIM) diffusion parameters including perfusion fraction, pseudo-diffusion coefficient and true diffusion coefficient were estimated using diffusion-weighted MR images and NLME through fitting the IVIM model. The conventional method of non-linear least squares (NLLS) was used as the standard approach for comparison of the resulted parametric images. In the simulated data, NLME provides more accurate and precise estimates of diffusion parameters compared with NLLS. Similarly, we found that NLME has the ability to improve the signal-to-noise ratio of parametric images obtained from rat brain data. These data have shown that it is feasible to apply NLME in parametric image generation, and the parametric image quality can be accordingly improved with the use of NLME. With the flexibility to be adapted to other models or modalities, NLME may become a useful tool to improve the parametric image quality in the future. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26915793

  2. Calibrated parametric medical ultrasound imaging.

    PubMed

    Valckx, F M; Thijsse, J M; van Geemen, A J; Rotteveel, J J; Mullaart, R

    2000-01-01

    The goal of this study was to develop a calibrated on-line technique to extract as much diagnostically-relevant information as possible from conventional video-format echograms. The final aim is to improve the diagnostic potentials of medical ultrasound. Video-output images were acquired by a frame grabber board incorporated in a multiprocessor workstation. Calibration images were obtained from a stable tissue-mimicking phantom with known acoustic characteristics. Using these images as reference, depth dependence of the gray level could fairly be corrected for the transducer performance characteristics, for the observer-dependent equipment settings and for attenuation in the examined tissues. Second-order statistical parameters still displayed some nonconsistent depth dependencies. The results obtained with two echoscanners for the same phantom were different; hence, an a posteriori normalization of clinical data with the phantom data is indicated. Prior to processing of clinical echograms,. the anatomical reflections and echoless voids were removed automatically. The final step in the preprocessing concerned the compensation of the overall attenuation in the tissue. A 'sliding window' processing was then applied to a region of interest (ROI) in the 'back-scan converted' images. A number of first and second order statistical texture parameters and acoustical parameters were estimated in each window and assigned to the central pixel. This procedure results in a set of new 'parametric' images of the ROI, which can be inserted in the original echogram (gray value, color) or presented as a color overlay. A clinical example is presented for illustrating the potentials of the developed technique. Depending on the choice of the parameters, four full resolution calibrated parametric images can be calculated and simultaneously displayed within 5 to 20 seconds. In conclusion, an on-line technique has been developed to estimate acoustic and texture parameters with a reduced

  3. Terahertz parametric sources and imaging applications

    NASA Astrophysics Data System (ADS)

    Yamashita, M.; Ogawa, Y.; Otani, C.; Kawase, K.

    2005-12-01

    We have studied the generation of terahertz (THz) waves by optical parametric processes based on laser light scattering from the polariton mode of nonlinear crystals. Using parametric oscillation of LiNbO 3 or MgO-doped LiNbO 3 crystal pumped by a nano-second Q-switched Nd:YAG laser, we have realized a widely tunable coherent THz-wave sources with a simple configuration. We report the detailed characteristics of the oscillation and the radiation including tunability, spatial and temporal coherency, uni directivity, and efficiency. A Fourier transform limited THz-wave spectrum narrowing was achieved by introducing the injection seeding method. Further, we have developed a spectroscopic THz imaging system using a TPO, which allows detection and identification of drugs concealed in envelopes, by introducing the component spatial pattern analysis. Several images of the envelope are recorded at different THz frequencies and then processed. The final result is an image that reveals what substances are present in the envelope, in what quantity, and how they are distributed across the envelope area. The example presented here shows the identification of three drugs, two of which illegal, while one is an over-the-counter drug.

  4. Fast parametric beamformer for synthetic aperture imaging.

    PubMed

    Nikolov, Svetoslav Ivanov; Jensen, Jørgen Arendt; Tomov, Borislav Gueorguiev

    2008-08-01

    This paper describes the design and implementation of a real-time delay-and-sum synthetic aperture beamformer. The beamforming delays and apodization coefficients are described parametrically. The image is viewed as a set of independent lines that are defined in 3D by their origin, direction, and inter-sample distance. The delay calculation is recursive and inspired by the coordinate rotation digital computer (CORDIC) algorithm. Only 3 parameters per channel and line are needed for their generation. The calculation of apodization coefficients is based on a piece- wise linear approximation. The implementation of the beamformer is optimized with respect to the architecture of a novel synthetic aperture real-time ultrasound scanner (SARUS), in which 4 channels are processed by the same set of field-programmable gate arrays (FPGA). In synthetic transmit aperture imaging, low-resolution images are formed after every emission. Summing all low-resolution images produces a perfectly focused high-resolution image. The design of the beamformer is modular, and a single beamformation unit can produce 4600 low-resolution images per second, each consisting of 32 lines and 1024 complex samples per line. In its present incarnation, 3 such modules fit in a single device. The summation of low-resolution images is performed internally in the FPGA to reduce the required bandwidth. The delays are calculated with a precision of 1/16th of a sample, and the apodization coefficients with 7-bit precision. The accumulation of low-resolution images is performed with 24-bit precision. The level of the side- and grating lobes, introduced by the use of integer numbers in the calculations and truncation of intermediate results, is below -86 dB from the peak. PMID:18986919

  5. Direct Estimation of Kinetic Parametric Images for Dynamic PET

    PubMed Central

    Wang, Guobao; Qi, Jinyi

    2013-01-01

    Dynamic positron emission tomography (PET) can monitor spatiotemporal distribution of radiotracer in vivo. The spatiotemporal information can be used to estimate parametric images of radiotracer kinetics that are of physiological and biochemical interests. Direct estimation of parametric images from raw projection data allows accurate noise modeling and has been shown to offer better image quality than conventional indirect methods, which reconstruct a sequence of PET images first and then perform tracer kinetic modeling pixel-by-pixel. Direct reconstruction of parametric images has gained increasing interests with the advances in computing hardware. Many direct reconstruction algorithms have been developed for different kinetic models. In this paper we review the recent progress in the development of direct reconstruction algorithms for parametric image estimation. Algorithms for linear and nonlinear kinetic models are described and their properties are discussed. PMID:24396500

  6. Medical image file formats.

    PubMed

    Larobina, Michele; Murino, Loredana

    2014-04-01

    Image file format is often a confusing aspect for someone wishing to process medical images. This article presents a demystifying overview of the major file formats currently used in medical imaging: Analyze, Neuroimaging Informatics Technology Initiative (Nifti), Minc, and Digital Imaging and Communications in Medicine (Dicom). Concepts common to all file formats, such as pixel depth, photometric interpretation, metadata, and pixel data, are first presented. Then, the characteristics and strengths of the various formats are discussed. The review concludes with some predictive considerations about the future trends in medical image file formats. PMID:24338090

  7. Parametric perfusion imaging based on low-cost ultrasound platform.

    PubMed

    Gu, Xiaolin; Zhong, Hui; Wan, Mingxi; Hu, Xiaowen; Lv, Dan; Shen, Liang; Zhang, Xiaomei

    2010-01-01

    In this study, we attempted to implement parametric perfusion imaging to quantify blood perfusion based on modified low-cost ultrasound platform. A novel ultrasound contrast-specific imaging method called pulse-inversion harmonic sum-squared-differences (PIHSSD) was proposed for improving the sensitivity for detecting contrast agents and the accuracy of parametric perfusion imaging, which combined pulse-inversion harmonic (PIH) with pulse-inversion sum-squared-differences (PISSD) threshold-based decision. PIHSSD method just involved simple operations including addition and multiplication and was easy to realize. The sequences of contrast images without logarithmic compression were used to acquire time intensity curves (TICs) from numerous equal-sized regions-of-interest (ROI) covering the entire image plane. Parametric perfusion images were obtained based on the parameters extracted from the TICs, including peak value (PV), area under curve (AUC), mean transit time (MTT), peak value time (PVT), peak width (PW) and climbing rate (CR). Flow phantom was used for validation and the results suggested that PIHSSD method provided 9.6 to 20.3 dB higher contrast-to-tissue ratio (CTR) than PIH method. The results of the experiments of rabbit kidney also showed that the CTR of PIHSSD images was higher than that of PIH images, and the parametric perfusion images based on PIHSSD method provided more accurate quantification of blood perfusion compared with those based on PIH and PISSD methods. It demonstrated that the parametric perfusion imaging achieved good performance though implemented on low-cost ultrasound platform. (E-mail: mxwan@mail.xjtu.edu.cn). PMID:19931972

  8. THz-wave parametric sources and imaging applications

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo

    2004-12-01

    We have studied the generation of terahertz (THz) waves by optical parametric processes based on laser light scattering from the polariton mode of nonlinear crystals. Using parametric oscillation of MgO-doped LiNbO3 crystal pumped by a nano-second Q-switched Nd:YAG laser, we have realized a widely tunable coherent THz-wave sources with a simple configuration. We have also developed a novel basic technology for THz imaging, which allows detection and identification of chemicals by introducing the component spatial pattern analysis. The spatial distributions of the chemicals were obtained from terahertz multispectral trasillumination images, using absorption spectra previously measured with a widely tunable THz-wave parametric oscillator. Further we have applied this technique to the detection and identification of illicit drugs concealed in envelopes. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.

  9. FDG-PET Parametric Imaging by Total Variation Minimization

    PubMed Central

    Guo, Hongbin; Renaut, Rosemary A; Chen, Kewei; Reiman, Eric M

    2010-01-01

    Parametric imaging of the cerebral metabolic rate for glucose (CMRGlc) using [18F]-fluorodeoxyglucose positron emission tomography is considered. Traditional imaging is hindered due to low signal to noise ratios at individual voxels. We propose to minimize the total variation of the tracer uptake rates while requiring good fit of traditional Patlak equations. This minimization guarantees spatial homogeneity within brain regions and good distinction between brain regions. Brain phantom simulations demonstrate significant improvement in quality of images by the proposed method as compared to Patlak images with post-filtering using Gaussian or median filters. PMID:19261438

  10. Sparse Image Format

    Energy Science and Technology Software Center (ESTSC)

    2007-04-12

    The Sparse Image Format (SIF) is a file format for storing spare raster images. It works by breaking an image down into tiles. Space is savid by only storing non-uniform tiles, i.e. tiles with at least two different pixel values. If a tile is completely uniform, its common pixel value is stored instead of the complete tile raster. The software is a library in the C language used for manipulating files in SIF format. Itmore » supports large files (> 2GB) and is designed to build in Windows and Linux environments.« less

  11. Sparse Image Format

    SciTech Connect

    Eads, Damian Ryan

    2007-04-12

    The Sparse Image Format (SIF) is a file format for storing spare raster images. It works by breaking an image down into tiles. Space is savid by only storing non-uniform tiles, i.e. tiles with at least two different pixel values. If a tile is completely uniform, its common pixel value is stored instead of the complete tile raster. The software is a library in the C language used for manipulating files in SIF format. It supports large files (> 2GB) and is designed to build in Windows and Linux environments.

  12. Parametric dynamic F-18-FDG PET/CT breast imaging

    NASA Astrophysics Data System (ADS)

    Magri, Alphonso; Feiglin, David; Lipson, Edward; Mandel, James; McGraw, Wendy; Lee, Wei; Krol, Andrzej

    2008-03-01

    This study was undertaken to estimate metabolic tissue properties from dynamic breast F-18-FDG PET/CT image series and to display them as 3D parametric images. Each temporal PET series was obtained immediately after injection of 10 mCi of F-18-FDG and consisted of fifty 1- minute frames. Each consecutive frame was nonrigidly registered to the first frame using a finite element method (FEM) based model and fiducial skin markers. Nonlinear curve fitting of activity vs. time based on a realistic two-compartment model was performed for each voxel of the volume. Curve fitting was accomplished by application of the Levenburg-Marquardt algorithm (LMA) that minimized X2. We evaluated which parameters are most suitable to determine the spatial extent and malignancy in suspicious lesions. In addition, Patlak modeling was applied to the data. A mixture model was constructed and provided a classification system for the breast tissue. It produced unbiased estimation of the spatial extent of the lesions. We conclude that nonrigid registration followed by voxel-by-voxel based nonlinear fitting to a realistic two-compartment model yields better quality parametric images, as compared to unprocessed dynamic breast PET time series. By comparison with the mixture model, we established that the total cumulated activity and maximum activity parametric images provide the best delineation of suspicious breast tissue lesions and hyperactive subregions within the lesion that cannot be discerned in unprocessed images.

  13. THz-wave parametric source and its imaging applications

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo

    2004-08-01

    Widely tunable coherent terahertz (THz) wave generation has been demonstrated based on the parametric oscillation using MgO doped LiNbO3 crystal pumped by a Q-switched Nd:YAG laser. This method exhibits multiple advantages like wide tunability, coherency and compactness of its system. We have developed a novel basic technology for terahertz (THz) imaging, which allows detection and identification of chemicals by introducing the component spatial pattern analysis. The spatial distributions of the chemicals were obtained from terahertz multispectral transillumination images, using absorption spectra previously measured with a widely tunable THz-wave parametric oscillator. Further we have applied this technique to the detection and identification of illicit drugs concealed in envelopes. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.

  14. Parametric imaging of tumor perfusion and neovascular morphology using ultrasound

    NASA Astrophysics Data System (ADS)

    Hoyt, Kenneth

    2015-03-01

    A new image processing strategy is detailed for the simultaneous measurement of tumor perfusion and neovascular morphology parameters from a sequence of dynamic contrast-enhanced ultrasound (DCE-US) images. A technique for locally mapping tumor perfusion parameters using skeletonized neovascular data is also introduced. Simulated images were used to test the neovascular skeletonization technique and variance (error) of relevant parametric estimates. Preliminary DCE-US image datasets were collected in 6 female patients diagnosed with invasive breast cancer and using a Philips iU22 ultrasound system equipped with a L9-3 MHz transducer and Definity contrast agent. Simulation data demonstrates that neovascular morphology parametric estimation is reproducible albeit measurement error can occur at a lower signal-to-noise ratio (SNR). Experimental results indicate the feasibility of our approach to performing both tumor perfusion and neovascular morphology measurements from DCE-US images. Future work will expand on our initial clinical findings and also extent our image processing strategy to 3-dimensional space to allow whole tumor characterization.

  15. A parametric vocal fold model based on magnetic resonance imaging.

    PubMed

    Wu, Liang; Zhang, Zhaoyan

    2016-08-01

    This paper introduces a parametric three-dimensional body-cover vocal fold model based on magnetic resonance imaging (MRI) of the human larynx. Major geometric features that are observed in the MRI images but missing in current vocal fold models are discussed, and their influence on vocal fold vibration is evaluated using eigenmode analysis. Proper boundary conditions for the model are also discussed. Based on control parameters corresponding to anatomic landmarks that can be easily measured, this model can be adapted toward a subject-specific vocal fold model for voice production research and clinical applications. PMID:27586774

  16. Application of parametric statistical weights in CAD imaging systems

    NASA Astrophysics Data System (ADS)

    Galperin, Michael

    2005-04-01

    PURPOSE: To propose a method for Parametric Statistical Weights (PSW) estimations and analyze its statistical impact in Computer-Aided Diagnosis Imaging Systems based on a Relative Similarity (CADIRS) classification approach. MATERIALS AND METHODS: A Multifactor statistical method was developed and applied for Parametric Statistical Weights calculations in CADIRS. The implemented PSW method was used for statistical estimations of PSW impact when applied to a clinically validated breast ultrasound digital database of 332 patients' cases with biopsy proven findings. The method is based on the assumption that each parameter used in Relative Similarity (RS) classifier contributes to the deviation of the diagnostic prediction proportionally to the normalized value of its coefficient of multiple regression. The calculated by CADIRS Relative Similarity values with and without PSW were statistically estimated, compared and analyzed (on subset of cases) using classic Receiver Operator Characteristic (ROC) analysis methods. RESULTS: When CADIRS classification scheme was augmented with PSW the Relative Similarity the calculated values were 2-5% higher in average. Numeric estimations of PSW allowed decomposition of statistical significance for each component (factor) and its impact on similarity to the diagnostic results (biopsy proven). CONCLUSION: Parametric Statistical Weights in Computer-Aided Diagnosis Imaging Systems based on a Relative Similarity classification approach can be successfully applied in an effort to enhance overall classification (including scoring) outcomes. For the analyzed cohort of 332 cases the application of PSW increased Relative Similarity to the retrieved templates with known findings by 2-5% in average.

  17. Thermal parametric imaging in the evaluation of skin burn depth.

    PubMed

    Rumiński, Jacek; Kaczmarek, Mariusz; Renkielska, Alicja; Nowakowski, Antoni

    2007-02-01

    The aim of this paper is to determine the extent to which infrared (IR) thermal imaging may be used for skin burn depth evaluation. The analysis can be made on the basis of the development of a thermal model of the burned skin. Different methods such as the traditional clinical visual approach and the IR imaging modalities of static IR thermal imaging, active IR thermal imaging and active-dynamic IR thermal imaging (ADT) are analyzed from the point of view of skin burn depth diagnostics. In ADT, a new approach is proposed on the basis of parametric image synthesis. Calculation software is implemented for single-node and distributed systems. The properties of all the methods are verified in experiments using phantoms and subsequently in vivo with animals with a reference histopathological examination. The results indicate that it is possible to distinguish objectively and quantitatively burns which will heal spontaneously within three weeks of infliction and which should be treated conservatively from those which need surgery because they will not heal within this period. PMID:17278587

  18. Parametric myocardial perfusion PET imaging using physiological clustering

    NASA Astrophysics Data System (ADS)

    Mohy-ud-Din, Hassan; Karakatsanis, Nikolaos A.; Lodge, Martin A.; Tang, Jing; Rahmim, Arman

    2014-03-01

    We propose a novel framework of robust kinetic parameter estimation applied to absolute ow quanti cation in dynamic PET imaging. Kinetic parameter estimation is formulated as a nonlinear least squares with spatial constraints problem (NLLS-SC) where the spatial constraints are computed from a physiologically driven clustering of dynamic images, and used to reduce noise contamination. An ideal clustering of dynamic images depends on the underlying physiology of functional regions, and in turn, physiological processes are quanti ed by kinetic parameter estimation. Physiologically driven clustering of dynamic images is performed using a clustering algorithm (e.g. K-means, Spectral Clustering etc) with Kinetic modeling in an iterative handshaking fashion. This gives a map of labels where each functionally homogenous cluster is represented by mean kinetics (cluster centroid). Parametric images are acquired by solving the NLLS-SC problem for each voxel which penalizes spatial variations from its mean kinetics. This substantially reduces noise in the estimation process for each voxel by utilizing kinetic information from physiologically similar voxels (cluster members). Resolution degradation is also substantially minimized as no spatial smoothing between heterogeneous functional regions is performed. The proposed framework is shown to improve the quantitative accuracy of Myocardial Perfusion (MP) PET imaging, and in turn, has the long-term potential to enhance capabilities of MP PET in the detection, staging and management of coronary artery disease.

  19. A non-parametric segmentation methodology for oral videocapillaroscopic images.

    PubMed

    Bellavia, Fabio; Cacioppo, Antonino; Lupaşcu, Carmen Alina; Messina, Pietro; Scardina, Giuseppe; Tegolo, Domenico; Valenti, Cesare

    2014-05-01

    We aim to describe a new non-parametric methodology to support the clinician during the diagnostic process of oral videocapillaroscopy to evaluate peripheral microcirculation. Our methodology, mainly based on wavelet analysis and mathematical morphology to preprocess the images, segments them by minimizing the within-class luminosity variance of both capillaries and background. Experiments were carried out on a set of real microphotographs to validate this approach versus handmade segmentations provided by physicians. By using a leave-one-patient-out approach, we pointed out that our methodology is robust, according to precision-recall criteria (average precision and recall are equal to 0.924 and 0.923, respectively) and it acts as a physician in terms of the Jaccard index (mean and standard deviation equal to 0.858 and 0.064, respectively). PMID:24657094

  20. The Planet Formation Imager

    NASA Astrophysics Data System (ADS)

    Kraus, S.; Buscher, D. F.; Monnier, J. D.; PFI Science, the; Technical Working Group

    2014-04-01

    Among the most fascinating and hotly-debated areas in contemporary astrophysics are the means by which planetary systems are assembled from the large rotating disks of gas and dust which attend a stellar birth. Although important work is being done both in theory and observation, a full understanding of the physics of planet formation can only be achieved by opening observational windows able to directly witness the process in action. The key requirement is then to probe planet-forming systems at the natural spatial scales over which material is being assembled. By definition, this is the so-called Hill Sphere which delineates the region of influence of a gravitating body within its surrounding environment. The Planet Formation Imager project has crystallized around this challenging goal: to deliver resolved images of Hill-Sphere-sized structures within candidate planet-hosting disks in the nearest star-forming regions. In this contribution we outline the primary science case of PFI and discuss how PFI could significantly advance our understanding of the architecture and potential habitability of planetary systems. We present radiation-hydrodynamics simulations from which we derive preliminary specifications that guide the design of the facility. Finally, we give an overview about the interferometric and non-interferometric technologies that we are investigating in order to meet the specifications.

  1. Large Format Radiographic Imaging

    SciTech Connect

    J. S. Rohrer; Lacey Stewart; M. D. Wilke; N. S. King; S. A Baker; Wilfred Lewis

    1999-08-01

    Radiographic imaging continues to be a key diagnostic in many areas at Los Alamos National Laboratory (LANL). Radiographic recording systems have taken on many form, from high repetition-rate, gated systems to film recording and storage phosphors. Some systems are designed for synchronization to an accelerator while others may be single shot or may record a frame sequence in a dynamic radiography experiment. While film recording remains a reliable standby in the radiographic community, there is growing interest in investigating electronic recording for many applications. The advantages of real time access to remote data acquisition are highly attractive. Cooled CCD camera systems are capable of providing greater sensitivity with improved signal-to-noise ratio. This paper begins with a review of performance characteristics of the Bechtel Nevada large format imaging system, a gated system capable of viewing scintillators up to 300 mm in diameter. We then examine configuration alternatives in lens coupled and fiber optically coupled electro-optical recording systems. Areas of investigation include tradeoffs between fiber optic and lens coupling, methods of image magnification, and spectral matching from scintillator to CCD camera. Key performance features discussed include field of view, resolution, sensitivity, dynamic range, and system noise characteristics.

  2. Study of Vertical Sound Image Control Using Parametric Loudspeakers

    NASA Astrophysics Data System (ADS)

    Shimizu, Kazuhiro; Itou, Kouki; Aoki, Shigeaki

    A parametric loudspeaker is known as a super-directivity loudspeaker. So far, the applications have been limited monaural reproduction sound system. We had discussed characteristics of stereo reproduction with two parametric loudspeakers. In this paper, the sound localization in the vertical direction using the parametric loudspeakers was confirmed. The direction of sound localization was able to be controlled. The results were similar as in using ordinary loudspeakers. However, by setting the parametric loudspeaker 5 degrees rightward, the direction of sound localization moved about 20 degrees rightward. The measured ILD (Interaural Level Difference) using a dummy head were analyzed.

  3. Diffeomorphic demons: efficient non-parametric image registration.

    PubMed

    Vercauteren, Tom; Pennec, Xavier; Perchant, Aymeric; Ayache, Nicholas

    2009-03-01

    We propose an efficient non-parametric diffeomorphic image registration algorithm based on Thirion's demons algorithm. In the first part of this paper, we show that Thirion's demons algorithm can be seen as an optimization procedure on the entire space of displacement fields. We provide strong theoretical roots to the different variants of Thirion's demons algorithm. This analysis predicts a theoretical advantage for the symmetric forces variant of the demons algorithm. We show on controlled experiments that this advantage is confirmed in practice and yields a faster convergence. In the second part of this paper, we adapt the optimization procedure underlying the demons algorithm to a space of diffeomorphic transformations. In contrast to many diffeomorphic registration algorithms, our solution is computationally efficient since in practice it only replaces an addition of displacement fields by a few compositions. Our experiments show that in addition to being diffeomorphic, our algorithm provides results that are similar to the ones from the demons algorithm but with transformations that are much smoother and closer to the gold standard, available in controlled experiments, in terms of Jacobians. PMID:19041946

  4. Image-rotating, 4-mirror, ring optical parametric oscillator

    DOEpatents

    Smith, Arlee V.; Armstrong, Darrell J.

    2004-08-10

    A device for optical parametric amplification utilizing four mirrors oriented in a nonplanar configuration where the optical plane formed by two of the mirrors is orthogonal to the optical plane formed by the other two mirrors and with the ratio of lengths of the laser beam paths approximately constant regardless of the scale of the device. With a cavity length of less than approximately 110 mm, a conversion efficiency of greater than 45% can be achieved.

  5. Non-parametric PSF estimation from celestial transit solar images using blind deconvolution

    NASA Astrophysics Data System (ADS)

    González, Adriana; Delouille, Véronique; Jacques, Laurent

    2016-01-01

    Context: Characterization of instrumental effects in astronomical imaging is important in order to extract accurate physical information from the observations. The measured image in a real optical instrument is usually represented by the convolution of an ideal image with a Point Spread Function (PSF). Additionally, the image acquisition process is also contaminated by other sources of noise (read-out, photon-counting). The problem of estimating both the PSF and a denoised image is called blind deconvolution and is ill-posed. Aims: We propose a blind deconvolution scheme that relies on image regularization. Contrarily to most methods presented in the literature, our method does not assume a parametric model of the PSF and can thus be applied to any telescope. Methods: Our scheme uses a wavelet analysis prior model on the image and weak assumptions on the PSF. We use observations from a celestial transit, where the occulting body can be assumed to be a black disk. These constraints allow us to retain meaningful solutions for the filter and the image, eliminating trivial, translated, and interchanged solutions. Under an additive Gaussian noise assumption, they also enforce noise canceling and avoid reconstruction artifacts by promoting the whiteness of the residual between the blurred observations and the cleaned data. Results: Our method is applied to synthetic and experimental data. The PSF is estimated for the SECCHI/EUVI instrument using the 2007 Lunar transit, and for SDO/AIA using the 2012 Venus transit. Results show that the proposed non-parametric blind deconvolution method is able to estimate the core of the PSF with a similar quality to parametric methods proposed in the literature. We also show that, if these parametric estimations are incorporated in the acquisition model, the resulting PSF outperforms both the parametric and non-parametric methods.

  6. Hybrid MEG (Magnetoencephalography) source characterization by cortical remapping and imaging of parametric source models

    SciTech Connect

    Baillet, S.; Mosher, J. C.; Jerbi, K.; Leahy, R. M.

    2001-01-01

    Reliable estimation of the local spatial extent of neural activity is a key to the quantitative analysis of MEG sources across subjects and conditions. In association with an understanding of the temporal dynamics among multiple areas, this would represent a major advance in electrophysiological source imaging. Parametric current dipole approaches to MEG (and EEG) source localization can rapidly generate a physical model of neural current generators using a limited number of parameters. However, physiological interpretation of these models is often difficult, especially in terms of the spatial extent of the true cortical activity. In new approaches using multipolar source models [3, 5], similar problems remain in the analysis of the higher-order source moments as parameters of cortical extent. Image-based approaches to the inverse problem provide a direct estimate of cortical current generators, but computationally expensive nonlinear methods are required to produce focal sources [1,4]. Recent efforts describe how a cortical patch can be grown until a best fit to the data is reached in the least-squares sense [6], but computational considerations necessitate that the growth be seeded in predefined regions of interest. In a previous study [2], a source obtained using a parametric model was remapped onto the cortex by growing a patch of cortical dipoles in the vicinity of the parametric source until the forward MEG or EEG fields of the parametric and cortical sources matched. The source models were dipoles and first-order multipoles. We propose to combine the parametric and imaging methods for MEG source characterization to take advantage of (i) the parsimonious and computationally efficient nature of parametric source localization methods and (ii) the anatomical and physiological consistency of imaging techniques that use relevant a priori information. By performing the cortical remapping imaging step by matching the multipole expansions of the original parametric

  7. Theory of Remote Image Formation

    NASA Astrophysics Data System (ADS)

    Blahut, Richard E.

    2004-11-01

    In many applications, images, such as ultrasonic or X-ray signals, are recorded and then analyzed with digital or optical processors in order to extract information. Such processing requires the development of algorithms of great precision and sophistication. This book presents a unified treatment of the mathematical methods that underpin the various algorithms used in remote image formation. The author begins with a review of transform and filter theory. He then discusses two- and three-dimensional Fourier transform theory, the ambiguity function, image construction and reconstruction, tomography, baseband surveillance systems, and passive systems (where the signal source might be an earthquake or a galaxy). Information-theoretic methods in image formation are also covered, as are phase errors and phase noise. Throughout the book, practical applications illustrate theoretical concepts, and there are many homework problems. The book is aimed at graduate students of electrical engineering and computer science, and practitioners in industry. Presents a unified treatment of the mathematical methods that underpin the algorithms used in remote image formation Illustrates theoretical concepts with reference to practical applications Provides insights into the design parameters of real systems

  8. Multiresolution FOPEN SAR image formation

    NASA Astrophysics Data System (ADS)

    DiPietro, Robert C.; Fante, Ronald L.; Perry, Richard P.; Soumekh, Mehrdad; Tromp, Laurens D.

    1999-08-01

    This paper presents a new technique for FOPEN SAR (foliage penetration synthetic aperture radar) image formation of Ultra Wideband UHF radar data. Planar Subarray Processing (PSAP) has successfully demonstrated the capability of forming multi- resolution images for X and Ka band radar systems under MITRE IR&D and the DARPA IBC program. We have extended the PSAP algorithm to provide the capability to form strip map, multi- resolution images for Ultra Wideband UHF radar systems. The PSAP processing can accommodate very large SAR integration angles and the resulting very large range migration. It can also accommodate long coherent integration times and wide swath coverage. Major PSAP algorithm features include: multiple SAR sub-arrays providing different look angles at the same image area that can enable man-made target responses to be distinguished from other targets and clutter by their angle dependent specular characteristics, the capability to provide a full resolution image in these and other selected areas without the processing penalty of full resolution in non required areas, and the capability to include angle-dependent motion compensation within the image formation process.

  9. Sensitivity evaluation of DSA-based parametric imaging using Doppler ultrasound in neurovascular phantoms

    NASA Astrophysics Data System (ADS)

    Balasubramoniam, A.; Bednarek, D. R.; Rudin, S.; Ionita, C. N.

    2016-03-01

    An evaluation of the relation between parametric imaging results obtained from Digital Subtraction Angiography (DSA) images and blood-flow velocity measured using Doppler ultrasound in patient-specific neurovascular phantoms is provided. A silicone neurovascular phantom containing internal carotid artery, middle cerebral artery and anterior communicating artery was embedded in a tissue equivalent gel. The gel prevented movement of the vessels when blood mimicking fluid was pumped through it to obtain Colour Doppler images. The phantom was connected to a peristaltic pump, simulating physiological flow conditions. To obtain the parametric images, water was pumped through the phantom at various flow rates (100, 120 and 160 ml/min) and 10 ml contrast boluses were injected. DSA images were obtained at 10 frames/sec from the Toshiba C-arm and DSA image sequences were input into LabVIEW software to get parametric maps from time-density curves. The parametric maps were compared with velocities determined by Doppler ultrasound at the internal carotid artery. The velocities measured by the Doppler ultrasound were 38, 48 and 65 cm/s for flow rates of 100, 120 and 160 ml/min, respectively. For the 20% increase in flow rate, the percentage change of blood velocity measured by Doppler ultrasound was 26.3%. Correspondingly, there was a 20% decrease of Bolus Arrival Time (BAT) and 14.3% decrease of Mean Transit Time (MTT), showing strong inverse correlation with Doppler measured velocity. The parametric imaging parameters are quite sensitive to velocity changes and are well correlated to the velocities measured by Doppler ultrasound.

  10. Non-parametric star formation histories for four dwarf spheroidal galaxies of the Local Group

    NASA Astrophysics Data System (ADS)

    Hernandez, X.; Gilmore, Gerard; Valls-Gabaud, David

    2000-10-01

    We use recent Hubble Space Telescope colour-magnitude diagrams of the resolved stellar populations of a sample of local dSph galaxies (Carina, Leo I, Leo II and Ursa Minor) to infer the star formation histories of these systems, SFR(t). Applying a new variational calculus maximum likelihood method, which includes a full Bayesian analysis and allows a non-parametric estimate of the function one is solving for, we infer the star formation histories of the systems studied. This method has the advantage of yielding an objective answer, as one need not assume a priori the form of the function one is trying to recover. The results are checked independently using Saha's W statistic. The total luminosities of the systems are used to normalize the results into physical units and derive SN type II rates. We derive the luminosity-weighted mean star formation history of this sample of galaxies.

  11. Selecting a Separable Parametric Spatiotemporal Covariance Structure for Longitudinal Imaging Data

    PubMed Central

    George, Brandon; Aban, Inmaculada

    2014-01-01

    Longitudinal imaging studies allow great insight into how the structure and function of a subject’s internal anatomy changes over time. Unfortunately, the analysis of longitudinal imaging data is complicated by inherent spatial and temporal correlation: the temporal from the repeated measures, and the spatial from the outcomes of interest being observed at multiple points in a patients body. We propose the use of a linear model with a separable parametric spatiotemporal error structure for the analysis of repeated imaging data. The model makes use of spatial (exponential, spherical, and Matérn) and temporal (compound symmetric, autoregressive-1, Toeplitz, and unstructured) parametric correlation functions. A simulation study, inspired by a longitudinal cardiac imaging study on mitral regurgitation patients, compared different information criteria for selecting a particular separable parametric spatiotemporal correlation structure as well as the effects on Type I and II error rates for inference on fixed effects when the specified model is incorrect. Information criteria were found to be highly accurate at choosing between separable parametric spatiotemporal correlation structures. Misspecification of the covariance structure was found to have the ability to inflate the Type I error or have an overly conservative test size, which corresponded to decreased power. An example with clinical data is given illustrating how the covariance structure procedure can be done in practice, as well as how covariance structure choice can change inferences about fixed effects. PMID:25293361

  12. Fitting of Parametric Building Models to Oblique Aerial Images

    NASA Astrophysics Data System (ADS)

    Panday, U. S.; Gerke, M.

    2011-09-01

    In literature and in photogrammetric workstations many approaches and systems to automatically reconstruct buildings from remote sensing data are described and available. Those building models are being used for instance in city modeling or in cadastre context. If a roof overhang is present, the building walls cannot be estimated correctly from nadir-view aerial images or airborne laser scanning (ALS) data. This leads to inconsistent building outlines, which has a negative influence on visual impression, but more seriously also represents a wrong legal boundary in the cadaster. Oblique aerial images as opposed to nadir-view images reveal greater detail, enabling to see different views of an object taken from different directions. Building walls are visible from oblique images directly and those images are used for automated roof overhang estimation in this research. A fitting algorithm is employed to find roof parameters of simple buildings. It uses a least squares algorithm to fit projected wire frames to their corresponding edge lines extracted from the images. Self-occlusion is detected based on intersection result of viewing ray and the planes formed by the building whereas occlusion from other objects is detected using an ALS point cloud. Overhang and ground height are obtained by sweeping vertical and horizontal planes respectively. Experimental results are verified with high resolution ortho-images, field survey, and ALS data. Planimetric accuracy of 1cm mean and 5cm standard deviation was obtained, while buildings' orientation were accurate to mean of 0.23° and standard deviation of 0.96° with ortho-image. Overhang parameters were aligned to approximately 10cm with field survey. The ground and roof heights were accurate to mean of - 9cm and 8cm with standard deviations of 16cm and 8cm with ALS respectively. The developed approach reconstructs 3D building models well in cases of sufficient texture. More images should be acquired for completeness of

  13. Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Nicolas A.; Lodge, Martin A.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman

    2013-10-01

    In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (˜15-20 cm) of a single-bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole-body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate Ki and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final Ki parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion study

  14. Parametric imaging of viscoelasticity using optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Wijesinghe, Philip; McLaughlin, Robert A.; Sampson, David D.; Kennedy, Brendan F.

    2015-03-01

    We demonstrate imaging of soft tissue viscoelasticity using optical coherence elastography. Viscoelastic creep deformation is induced in tissue using step-like compressive loading and the resulting time-varying deformation is measured using phase-sensitive optical coherence tomography. From a series of co-located B-scans, we estimate the local strain rate as a function of time, and parameterize it using a four-parameter Kelvin-Voigt model of viscoelastic creep. The estimated viscoelastic strain and time constant are used to visualize viscoelastic creep in 2D, dual-parameter viscoelastograms. We demonstrate our technique on six silicone tissue-simulating phantoms spanning a range of viscoelastic parameters. As an example in soft tissue, we report viscoelastic contrast between muscle and connective tissue in fresh, ex vivo rat gastrocnemius muscle and mouse abdominal transection. Imaging viscoelastic creep deformation has the potential to provide complementary contrast to existing imaging modalities, and may provide greater insight into disease pathology.

  15. Imaging Fourier transform spectrometer (IFTS): parametric sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Keller, Robert A.; Lomheim, Terrence S.

    2005-06-01

    Imaging Fourier transform spectrometers (IFTS) allow for very high spectral resolution hyperspectral imaging while using moderate size 2D focal plane arrays in a staring mode. This is not the case for slit scanning dispersive imaging spectrometers where spectral sampling is related to the focal plane pixel count along the spectral dimension of the 2D focal plane used in such an instrument. This can become a major issue in the longwave infrared (LWIR) where the operability and yield of highly sensitivity arrays (i.e.HgCdTe) of large dimension are generally poor. However using an IFTS introduces its own unique set of issues and tradeoffs. In this paper we develop simplified equations for describing the sensitivity of an IFTS, including the effects of data windowing. These equations provide useful insights into the optical, focal plane and operational design trade space that must be considered when examining IFTS concepts aimed at a specific sensitivity and spectral resolution application. The approach is illustrated by computing the LWIR noise-equivalent spectral radiance (NESR) corresponding to the NASA Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) concept assuming a proven and reasonable noise-equivalent irradiance (NEI) capability for the focal plane.

  16. Using optical parametric oscillators (OPO) for wavelength shifting IR images to visible spectrum

    SciTech Connect

    McDonald, T.E. Jr.; Numkena, D.M.; Payton, J.; Yates, G.J.; Zagarino, P.

    1998-12-31

    The authors have carried out preliminary investigations into coherent imaging using Optical Parametric Oscillators (OPO) for wavelength conversion of near IR images to visible spectrum. A nonlinear crystal, second harmonic generator (SHG), was used for degenerate optical parametric up-conversion. A Potassium Titanyl Phosphate (KTP) doubling crystal was used to convert incident 1,540 nm flux to 772 nm. Experiments included investigation of spatial resolution and responsivity of the OPO. Spatial resolution of 1.3 1p/mm was attained in both horizontal and vertical axis. Measured responsivity for this OPO configuration compared well with that attained from image intensifier-based systems. Equipment used for this experiment included an ORION SB2-2R pulsed solid state laser used as a light source and a CCD camera and frame grabber to capture and record all data. The experiment and results are discussed.

  17. Hyperspectral imaging of gases with a continuous-wave pump-enhanced optical parametric oscillator.

    PubMed

    Stothard, David; Dunn, Malcolm; Rae, Cameron

    2004-03-01

    We demonstrate a system for the active real-time hyperspectral imaging of gases using a combination of a compact, pump-enhanced, continuous-wave optical parametric oscillator as an all-solid-state mid-infrared source of coherent radiation and an electro-mechanical polygonal imager. The wide spectral coverage and high spectral resolution characteristics of this source means that the system is capable of being selectively tuned into the absorption features of a wide variety of gaseous species. As an example we show how the largest absorption coefficient exhibited by methane at 3057.7cm(-1) can be accessed (amongst others) and gas plumes imaged in concentrations as low as 30ppm.m using a parametric oscillator based on periodically-poled RbTiOAsO(4) (PP-RTA). PMID:19474906

  18. Hyperspectral imaging of gases with a continuous-wave pump-enhanced optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Stothard, David J. M.; Dunn, Malcolm H.; Rae, Cameron F.

    2004-03-01

    We demonstrate a system for the active real-time hyperspectral imaging of gases using a combination of a compact, pump-enhanced, continuous-wave optical parametric oscillator as an all-solid-state mid-infrared source of coherent radiation and an electro-mechanical polygonal imager. The wide spectral coverage and high spectral resolution characteristics of this source means that the system is capable of being selectively tuned into the absorption features of a wide variety of gaseous species. As an example we show how the largest absorption coefficient exhibited by methane at 3057.7cm-1 can be accessed (amongst others) and gas plumes imaged in concentrations as low as 30ppm.m using a parametric oscillator based on periodically-poled RbTiOAsO4 (PP-RTA).

  19. Robust biological parametric mapping: an improved technique for multimodal brain image analysis

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Beason-Held, Lori; Resnick, Susan M.; Landman, Bennett A.

    2011-03-01

    Mapping the quantitative relationship between structure and function in the human brain is an important and challenging problem. Numerous volumetric, surface, region of interest and voxelwise image processing techniques have been developed to statistically assess potential correlations between imaging and non-imaging metrics. Recently, biological parametric mapping has extended the widely popular statistical parametric approach to enable application of the general linear model to multiple image modalities (both for regressors and regressands) along with scalar valued observations. This approach offers great promise for direct, voxelwise assessment of structural and functional relationships with multiple imaging modalities. However, as presented, the biological parametric mapping approach is not robust to outliers and may lead to invalid inferences (e.g., artifactual low p-values) due to slight mis-registration or variation in anatomy between subjects. To enable widespread application of this approach, we introduce robust regression and robust inference in the neuroimaging context of application of the general linear model. Through simulation and empirical studies, we demonstrate that our robust approach reduces sensitivity to outliers without substantial degradation in power. The robust approach and associated software package provides a reliable way to quantitatively assess voxelwise correlations between structural and functional neuroimaging modalities.

  20. Quantitative myocardial perfusion PET parametric imaging at the voxel-level.

    PubMed

    Mohy-Ud-Din, Hassan; Lodge, Martin A; Rahmim, Arman

    2015-08-01

    Quantitative myocardial perfusion (MP) PET has the potential to enhance detection of early stages of atherosclerosis or microvascular dysfunction, characterization of flow-limiting effects of coronary artery disease (CAD), and identification of balanced reduction of flow due to multivessel stenosis. We aim to enable quantitative MP-PET at the individual voxel level, which has the potential to allow enhanced visualization and quantification of myocardial blood flow (MBF) and flow reserve (MFR) as computed from uptake parametric images. This framework is especially challenging for the (82)Rb radiotracer. The short half-life enables fast serial imaging and high patient throughput; yet, the acquired dynamic PET images suffer from high noise-levels introducing large variability in uptake parametric images and, therefore, in the estimates of MBF and MFR. Robust estimation requires substantial post-smoothing of noisy data, degrading valuable functional information of physiological and pathological importance. We present a feasible and robust approach to generate parametric images at the voxel-level that substantially reduces noise without significant loss of spatial resolution. The proposed methodology, denoted physiological clustering, makes use of the functional similarity of voxels to penalize deviation of voxel kinetics from physiological partners. The results were validated using extensive simulations (with transmural and non-transmural perfusion defects) and clinical studies. Compared to post-smoothing, physiological clustering depicted enhanced quantitative noise versus bias performance as well as superior recovery of perfusion defects (as quantified by CNR) with minimal increase in bias. Overall, parametric images obtained from the proposed methodology were robust in the presence of high-noise levels as manifested in the voxel time-activity-curves. PMID:26216052

  1. Quantitative myocardial perfusion PET parametric imaging at the voxel-level

    NASA Astrophysics Data System (ADS)

    Mohy-ud-Din, Hassan; Lodge, Martin A.; Rahmim, Arman

    2015-08-01

    Quantitative myocardial perfusion (MP) PET has the potential to enhance detection of early stages of atherosclerosis or microvascular dysfunction, characterization of flow-limiting effects of coronary artery disease (CAD), and identification of balanced reduction of flow due to multivessel stenosis. We aim to enable quantitative MP-PET at the individual voxel level, which has the potential to allow enhanced visualization and quantification of myocardial blood flow (MBF) and flow reserve (MFR) as computed from uptake parametric images. This framework is especially challenging for the 82Rb radiotracer. The short half-life enables fast serial imaging and high patient throughput; yet, the acquired dynamic PET images suffer from high noise-levels introducing large variability in uptake parametric images and, therefore, in the estimates of MBF and MFR. Robust estimation requires substantial post-smoothing of noisy data, degrading valuable functional information of physiological and pathological importance. We present a feasible and robust approach to generate parametric images at the voxel-level that substantially reduces noise without significant loss of spatial resolution. The proposed methodology, denoted physiological clustering, makes use of the functional similarity of voxels to penalize deviation of voxel kinetics from physiological partners. The results were validated using extensive simulations (with transmural and non-transmural perfusion defects) and clinical studies. Compared to post-smoothing, physiological clustering depicted enhanced quantitative noise versus bias performance as well as superior recovery of perfusion defects (as quantified by CNR) with minimal increase in bias. Overall, parametric images obtained from the proposed methodology were robust in the presence of high-noise levels as manifested in the voxel time-activity-curves.

  2. A novel parametric method for non-rigid image registration.

    PubMed

    Cuzol, Anne; Hellier, Pierre; Mémin, Etienne

    2005-01-01

    This paper presents a novel non-rigid registration method. The main contribution of the method is the modeling of the vorticity (respectively divergence) of the deformation field using vortex (respectively sink and source) particles. Two parameters are associated with a particle: the vorticity (or divergence) strength and the influence domain. This leads to a very compact representation of vorticity and divergence fields. In addition, the optimal position of these particles is determined using a mean shift process. 2D experiments of this method are presented and demonstrate its ability to recover evolving phenomena (MS lesions) so as to register images from 20 patients. PMID:17354717

  3. Karman vortex street parametrization with image processing application

    NASA Astrophysics Data System (ADS)

    Pankanin, Grzegorz; Kulinczak, Artur; Berlinski, Jerzy

    2003-09-01

    The karman vortex street phenomenon is applied in the vortex flowmeter. Application of various methods of investigations is necessary in the course of getting increased knowledge of the phenomenon. Flow visualization being the leading method of aero- and hydrodynamic phenomena investigations enables qualitative evaluation in micro-scale. Due to the image processing application in analysis of flow visualization pictures, calculation of geometrical parameters of the Karman vortex street is feasible. So, the quantitative information is obtained. The worked out methodology of investigations as well as designed software for analysis of vortex street pictures are described in the paper. The results of the carried out laboratory tests are reported. Flow visualization has been carried out on the especially designed laboratory tests are reported. Flow visualization has been carried out on the especially designed laboratory stand. The visualized flow has been recorded on the magnetic tape and then processed into set of consecutive frames. Four groups of frames of similar vortex development phases have been put on the image processing procedure. Distances between adjoining vortices have been calculated. On the basis of obtained results it can be stated, that in spite of probabilistic nature of the investigated phenomenon strengthened by the applied research method (flow visualization), the proposed method enables quantitative determination of Karman vortex street parameters.

  4. Direct reconstruction of cardiac PET kinetic parametric images using a preconditioned conjugate gradient approach

    PubMed Central

    Rakvongthai, Yothin; Ouyang, Jinsong; Guerin, Bastien; Li, Quanzheng; Alpert, Nathaniel M.; El Fakhri, Georges

    2013-01-01

    Purpose: Our research goal is to develop an algorithm to reconstruct cardiac positron emission tomography (PET) kinetic parametric images directly from sinograms and compare its performance with the conventional indirect approach. Methods: Time activity curves of a NCAT phantom were computed according to a one-tissue compartmental kinetic model with realistic kinetic parameters. The sinograms at each time frame were simulated using the activity distribution for the time frame. The authors reconstructed the parametric images directly from the sinograms by optimizing a cost function, which included the Poisson log-likelihood and a spatial regularization terms, using the preconditioned conjugate gradient (PCG) algorithm with the proposed preconditioner. The proposed preconditioner is a diagonal matrix whose diagonal entries are the ratio of the parameter and the sensitivity of the radioactivity associated with parameter. The authors compared the reconstructed parametric images using the direct approach with those reconstructed using the conventional indirect approach. Results: At the same bias, the direct approach yielded significant relative reduction in standard deviation by 12%–29% and 32%–70% for 50 × 106 and 10 × 106 detected coincidences counts, respectively. Also, the PCG method effectively reached a constant value after only 10 iterations (with numerical convergence achieved after 40–50 iterations), while more than 500 iterations were needed for CG. Conclusions: The authors have developed a novel approach based on the PCG algorithm to directly reconstruct cardiac PET parametric images from sinograms, and yield better estimation of kinetic parameters than the conventional indirect approach, i.e., curve fitting of reconstructed images. The PCG method increases the convergence rate of reconstruction significantly as compared to the conventional CG method. PMID:24089922

  5. Submicrometer infrared surface imaging using a scanning-probe microscope and an optical parametric oscillator laser.

    PubMed

    Hill, Graeme A; Rice, James H; Meech, Stephen R; Craig, Duncan Q M; Kuo, Paulina; Vodopyanov, Konstantin; Reading, Michael

    2009-02-15

    Submicrometer IR surface imaging was performed with a resolution better than the diffraction limit. The apparatus was based on an IR optical parametric oscillator laser and a commercial atomic force microscope and used, as the detection mechanism, induced resonant oscillations in an atomic force microscopy (AFM) cantilever. For the first time to our knowledge this was achieved with top-down illumination and a benchtop IR source, thus extending the range of potential applications of this technique. IR absorption and AFM topography images of polystyrene beads were recorded simultaneously with an image resolution of 200 nm. PMID:19373331

  6. Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator

    PubMed Central

    Zhai, Yan-Hua; Goulart, Christiane; Sharping, Jay E.; Wei, Huifeng; Chen, Su; Tong, Weijun; Slipchenko, Mikhail N.; Zhang, Delong; Cheng, Ji-Xin

    2011-01-01

    We report on multimodal coherent anti-Stokes Raman scattering (CARS) imaging with a source composed of a femtosecond fiber laser and a photonic crystal fiber (PCF)-based optical parametric oscillator (FOPO). By switching between two PCFs with different zero dispersion wavelengths, a tunable signal beam from the FOPO covering the range from 840 to 930 nm was produced. By combining the femtosecond fiber laser and the FOPO output, simultaneous CARS imaging of a myelin sheath and two-photon excitation fluorescence imaging of a labeled axons in rat spinal cord have been demonstrated at the speed of 20 μs per pixel. PMID:21677908

  7. Functional assessment of glioma pathogenesis by in vivo multi-parametric magnetic resonance imaging and in vitro analyses

    PubMed Central

    Yao, Nai-Wei; Chang, Chen; Lin, Hsiu-Ting; Yen, Chen-Tung; Chen, Jeou-Yuan

    2016-01-01

    Gliomas are aggressive brain tumors with poor prognosis. In this study, we report a novel approach combining both in vivo multi-parametric MRI and in vitro cell culture assessments to evaluate the pathogenic development of gliomas. Osteopontin (OPN), a pleiotropic factor, has been implicated in the formation and progression of various human cancers, including gliomas, through its functions in regulating cell proliferation, survival, angiogenesis, and migration. Using rat C6 glioma model, the combined approach successfully monitors the acquisition and decrease of cancer hallmarks. We show that knockdown of the expression of OPN reduces C6 cell proliferation, survival, viability and clonogenicity in vitro, and reduces tumor burden and prolongs animal survival in syngeneic rats. OPN depletion is associated with reduced tumor growth, decreased angiogenesis, and an increase of tumor-associated metabolites, as revealed by T2-weighted images, diffusion-weighted images, Ktrans maps, and 1H-MRS, respectively. These strategies allow us to define an important role of OPN in conferring cancer hallmarks, which can be further applied to assess the functional roles of other candidate genes in glioma. In particular, the non-invasive multi-parametric MRI measurement of cancer hallmarks related to proliferation, angiogenesis and altered metabolism may serve as a useful tool for diagnosis and for patient management. PMID:27198662

  8. Functional assessment of glioma pathogenesis by in vivo multi-parametric magnetic resonance imaging and in vitro analyses.

    PubMed

    Yao, Nai-Wei; Chang, Chen; Lin, Hsiu-Ting; Yen, Chen-Tung; Chen, Jeou-Yuan

    2016-01-01

    Gliomas are aggressive brain tumors with poor prognosis. In this study, we report a novel approach combining both in vivo multi-parametric MRI and in vitro cell culture assessments to evaluate the pathogenic development of gliomas. Osteopontin (OPN), a pleiotropic factor, has been implicated in the formation and progression of various human cancers, including gliomas, through its functions in regulating cell proliferation, survival, angiogenesis, and migration. Using rat C6 glioma model, the combined approach successfully monitors the acquisition and decrease of cancer hallmarks. We show that knockdown of the expression of OPN reduces C6 cell proliferation, survival, viability and clonogenicity in vitro, and reduces tumor burden and prolongs animal survival in syngeneic rats. OPN depletion is associated with reduced tumor growth, decreased angiogenesis, and an increase of tumor-associated metabolites, as revealed by T2-weighted images, diffusion-weighted images, K(trans) maps, and 1H-MRS, respectively. These strategies allow us to define an important role of OPN in conferring cancer hallmarks, which can be further applied to assess the functional roles of other candidate genes in glioma. In particular, the non-invasive multi-parametric MRI measurement of cancer hallmarks related to proliferation, angiogenesis and altered metabolism may serve as a useful tool for diagnosis and for patient management. PMID:27198662

  9. Common Data Format (CDF) to store images

    NASA Technical Reports Server (NTRS)

    Shreve, Loy W., II

    1988-01-01

    The original goal of this study was to allow free interchange of images between the HGS and other analytical tools available to NASA. Originally conceived as a collection of individual computer programs that could individually convert any format image to any other format and transfer images via several routes, NASA elected to adopt a Common Data Format (CDF) to store images. This allowed the storage of all images in one format on the NASA EADS. Most of the individual programs were then combined and placed in a user friendly menu-driven system that allows free interchange of image formats within EADS (Sun Workstation), HGS, and Omnicon systems. Additional software and hardware was supplied that allows physical transfer of the formatted images throughout these systems and to external systems.

  10. Second-order self-imaging with parametric amplification four-wave mixing

    NASA Astrophysics Data System (ADS)

    Wen, Feng; Zhang, Zhaoyang; Ahmed, Irfan; Li, Zepei; Wang, Hongxing; Liu, Zongchen; Gao, Hong; Zhang, Yanpeng

    2016-07-01

    By modulating the emission characteristics of a twin-correlated bright beam in a parametric amplification of the four-wave mixing process, a nondestructive and lensless imaging scheme to image ultra-cold atoms or molecules is proposed. The optical lattice state, which is induced via the coupling between ultra-cold atoms and a standing wave, is used to effectively modulate the dressing-suppressed/enhanced nonlinear susceptibility, and an emission-intensity-modulated grating of a correlated bright beam is formed. The intensity fluctuations of the correlated bright beam are taken as the imaging light to implement second-order coincidence measurement. As an important complementary scheme to a previous self-imaging scheme with spontaneous parametric down-conversion, our scheme has the characteristic of an efficient generation and detection rate. In addition, the visibility of the imaging can be significantly improved by enhanced nonlinear susceptibility. Our work may offer a nondestructive and lensless way to image ultra-cold atoms or molecules.

  11. Synthetic aperture radar target detection, feature extraction, and image formation techniques

    NASA Technical Reports Server (NTRS)

    Li, Jian

    1994-01-01

    This report presents new algorithms for target detection, feature extraction, and image formation with the synthetic aperture radar (SAR) technology. For target detection, we consider target detection with SAR and coherent subtraction. We also study how the image false alarm rates are related to the target template false alarm rates when target templates are used for target detection. For feature extraction from SAR images, we present a computationally efficient eigenstructure-based 2D-MODE algorithm for two-dimensional frequency estimation. For SAR image formation, we present a robust parametric data model for estimating high resolution range signatures of radar targets and for forming high resolution SAR images.

  12. Empirical validation of statistical parametric mapping for group imaging of fast neural activity using electrical impedance tomography.

    PubMed

    Packham, B; Barnes, G; Dos Santos, G Sato; Aristovich, K; Gilad, O; Ghosh, A; Oh, T; Holder, D

    2016-06-01

    Electrical impedance tomography (EIT) allows for the reconstruction of internal conductivity from surface measurements. A change in conductivity occurs as ion channels open during neural activity, making EIT a potential tool for functional brain imaging. EIT images can have  >10 000 voxels, which means statistical analysis of such images presents a substantial multiple testing problem. One way to optimally correct for these issues and still maintain the flexibility of complicated experimental designs is to use random field theory. This parametric method estimates the distribution of peaks one would expect by chance in a smooth random field of a given size. Random field theory has been used in several other neuroimaging techniques but never validated for EIT images of fast neural activity, such validation can be achieved using non-parametric techniques. Both parametric and non-parametric techniques were used to analyze a set of 22 images collected from 8 rats. Significant group activations were detected using both techniques (corrected p  <  0.05). Both parametric and non-parametric analyses yielded similar results, although the latter was less conservative. These results demonstrate the first statistical analysis of such an image set and indicate that such an analysis is an approach for EIT images of neural activity. PMID:27203477

  13. Quantification of white matter and gray matter volumes from T1 parametric images using fuzzy classifiers.

    PubMed

    Herndon, R C; Lancaster, J L; Toga, A W; Fox, P T

    1996-01-01

    White matter (WM) and gray matter (GM) were accurately measured using a technique based on a single standardized fuzzy classifier (FC) for each tissue. Fuzzy classifier development was based on experts' visual assessments of WM and GM boundaries from a set of T1 parametric MR images. The fuzzy classifier method's accuracy was validated and optimized by a set of T1 phantom images that were based on hand-detailed human brain cryosection images. Nine sets of axial T1 images of varying thickness equally distributed throughout the brain were simulated. All T1 data sets were mapped to the standardized FCs and rapidly segmented into WM and GM voxel fraction images. Resulting volumes revealed that, in most cases, the difference between measured and actual volumes was less than 5%. This was consistent throughout most of the brain, and as expected, the accuracy improved to generally less than 2% for the 1-mm simulated brain slices. PMID:8724407

  14. Robust parametric estimation over optimal support of fluid flow structure in multispectral image sequences

    NASA Astrophysics Data System (ADS)

    Rougon, Nicolas F.; Brossard-Pailleux, M. A.; Preteux, Francoise J.

    2000-10-01

    This article presents a methodology for analyzing the Lagrangian structure of fluid flows generated by the evolution of cloud systems in meteorological multispectral image sequences. The correlation between the orientation of cloud texture and the underlying motion field Lagrangian component allows to adopt a static strategy. Following a scale-space approach, we therefore first construct a non-local robust estimator for the locally dominant orientation field in an image. This estimator, which is derived from the image structure tensor, is relevant in both mono- and multisprectral contexts. In a second step, the Lagrangian component of the flow is estimated over some bounded image region by robustly fitting a hierarchical vector parametric model to the dominant orientation field. Here, a recurrent problem deals with adaptating the geometry of the model support to obtain unbiased estimates. To tackle this classic issue, we introduce a novel variational, semi-parametric approach which allows the joint optimization of model parameters and support. This approach is generic and, in particular, can be readily applied to motion estimation yielding robust measurement of the Eulerian structure of the flow. Finally, a structural characterization of the reflecting vector field is derived by means of classic differential geometry techniques. This methodology is applied to the analysis of temperated latitude depressions in Meteosat images.

  15. Parametric Subharmonic Imaging Using a Commercial Intravascular Ultrasound Scanner An In Vivo Feasibility Study

    PubMed Central

    Eisenbrey, John R.; Sridharan, Anush; deMuinck, Ebo D.; Doyley, Marvin M.; Forsberg, Flemming

    2013-01-01

    Objectives The feasibility of visualizing atherosclerotic plaque using parametric subharmonic intravascular ultrasound (IVUS) was investigated in vivo. Methods Atherosclerosis was induced in the aorta of 2 rabbits. Following injection of Definity (Lantheus Medical Imaging, North Billerica, MA), radiofrequency IVUS signals were acquired at 40 MHz with a Galaxy IVUS scanner (Boston Scientific/Scimed, Natick, MA). Subharmonic imaging (SHI; receiving at 20 MHz) was performed offline by applying an 8-order equalization filter. Contrast-to-tissue ratios (CTRs) were computed for the vessel relative to the plaque area over 4 time points. Contrast-to-tissue ratios were also calculated for the plaque-tissue and vessel-tissue from 4 tissue regions of interest at 4 time points. Finally, parametric images showing the cumulative maximum intensity (CMI), time to peak, perfusion (PER), and time-integrated intensity (TII) were generated for the fundamental and subharmonic data sets, and CTR measurements were repeated. Results Injection of the contrast agent resulted in improved delineation between plaque and the vessel lumen. Subharmonic imaging resulted in noticeable tissue suppression, although the intensity from the contrast agent was reduced. No significant improvement in the plaque to vessel lumen CTR was observed between the subharmonic and fundamental IVUS (2.1 ± 3.64 versus 2.2 ± 4.20; P = .5). However, the CTR for plaque-tissue was improved (11.8 ± 7.32 versus 9.9 ± 7.06; P < .0001) for SHI relative to fundamental imaging. Cumulative-maximum-intensity and TII maps of both fundamental and subharmonic data provided increased CTRs relative to nonparametric data sets (P< .002). Additionally, the CMI, PER, and TII of SHI IVUS showed significantly improved vessel-plaque CTRs for SHI relative to the fundamental (P < .04). Conclusions Parametric SHI IVUS of atherosclerotic plaque is feasible and improves the visualization of the plaque. PMID:22368126

  16. Biological Parametric Mapping: A Statistical Toolbox for Multi-Modality Brain Image Analysis

    PubMed Central

    Casanova, Ramon; Ryali, Srikanth; Baer, Aaron; Laurienti, Paul J.; Burdette, Jonathan H.; Hayasaka, Satoru; Flowers, Lynn; Wood, Frank; Maldjian, Joseph A.

    2006-01-01

    In recent years multiple brain MR imaging modalities have emerged; however, analysis methodologies have mainly remained modality specific. In addition, when comparing across imaging modalities, most researchers have been forced to rely on simple region-of-interest type analyses, which do not allow the voxel-by-voxel comparisons necessary to answer more sophisticated neuroscience questions. To overcome these limitations, we developed a toolbox for multimodal image analysis called biological parametric mapping (BPM), based on a voxel-wise use of the general linear model. The BPM toolbox incorporates information obtained from other modalities as regressors in a voxel-wise analysis, thereby permitting investigation of more sophisticated hypotheses. The BPM toolbox has been developed in MATLAB with a user friendly interface for performing analyses, including voxel-wise multimodal correlation, ANCOVA, and multiple regression. It has a high degree of integration with the SPM (statistical parametric mapping) software relying on it for visualization and statistical inference. Furthermore, statistical inference for a correlation field, rather than a widely-used T-field, has been implemented in the correlation analysis for more accurate results. An example with in-vivo data is presented demonstrating the potential of the BPM methodology as a tool for multimodal image analysis. PMID:17070709

  17. Edge Sharpness Assessment by Parametric Modeling: Application to Magnetic Resonance Imaging

    PubMed Central

    Ahmad, R; Ding, Y; Simonetti, OP

    2015-01-01

    In biomedical imaging, edge sharpness is an important yet often overlooked image quality metric. In this work, a semi-automatic method to quantify edge sharpness in the presence of significant noise is presented with application to magnetic resonance imaging (MRI). The method is based on parametric modeling of image edges. First, an edge map is automatically generated and one or more edges-of-interest (EOI) are manually selected using graphical user interface. Multiple exclusion criteria are then enforced to eliminate edge pixels that are potentially not suitable for sharpness assessment. Second, at each pixel of the EOI, an image intensity profile is read along a small line segment that runs locally normal to the EOI. Third, the profiles corresponding to all EOI pixels are individually fitted with a sigmoid function characterized by four parameters, including one that represents edge sharpness. Last, the distribution of the sharpness parameter is used to quantify edge sharpness. For validation, the method is applied to simulated data as well as MRI data from both phantom imaging and cine imaging experiments. This method allows for fast, quantitative evaluation of edge sharpness even in images with poor signal-to-noise ratio. Although the utility of this method is demonstrated for MRI, it can be adapted for other medical imaging applications. PMID:26755895

  18. Multi-parametric monitoring of high intensity focused ultrasound (HIFU) treatment using harmonic motion imaging for focused ultrasound (HMIFU)

    NASA Astrophysics Data System (ADS)

    Hou, Gary Y.; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa

    2012-11-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and relative phase-shift during high energy HIFU where tissue boiling occurs. Forty three (n=18) thermal lesions were formed in ex vivo canine liver specimens. Two dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10-, 20-and 30-s HIFU durations at three different acoustic powers of 8, 10, and 11W. For the 10-, 20-, and 30-s treatment cases, a steady decrease in the displacement (-8.67±4.80, -14.44±7.77, 24.03±12.11μm), compressive strain -0.16±0.06, -0.71±0.30, -0.68±0.36 %, and phase shift +1.80±6.80, -15.80±9.44, -18.62±13.14 ° were obtained, respectively, indicating overall increase of relative stiffness and decrease of the viscosity-to-stiffness ratio during heating. After treatment, 2D HMI displacement images of the thermal lesions showed an increased lesion-to-background contrast of 1.34±0.19, 1.98±0.30, 2.26±0.80 and lesion size of 40.95±8.06, 47.6±4.87, and 52.23±2.19 mm2, respectively, which was validated again with pathology 25.17±6.99, 42.17±1.77, 47.17±3.10 mm2. Additionally, studies also investigated the performance of mutli-parametric monitoring under the influence of boiling and attenuation change due to tissue boiling, where discrepancies were found such as deteriorated displacement SNR and reversed lesion-to-background displacement contrast with indication on possible increase in attenuation and tissue gelatification or pulverization. Despite the challenge of the boiling mechanism, the relative phase shift served as consist biomechanical tissue

  19. NiftyFit: a Software Package for Multi-parametric Model-Fitting of 4D Magnetic Resonance Imaging Data.

    PubMed

    Melbourne, Andrew; Toussaint, Nicolas; Owen, David; Simpson, Ivor; Anthopoulos, Thanasis; De Vita, Enrico; Atkinson, David; Ourselin, Sebastien

    2016-07-01

    Multi-modal, multi-parametric Magnetic Resonance (MR) Imaging is becoming an increasingly sophisticated tool for neuroimaging. The relationships between parameters estimated from different individual MR modalities have the potential to transform our understanding of brain function, structure, development and disease. This article describes a new software package for such multi-contrast Magnetic Resonance Imaging that provides a unified model-fitting framework. We describe model-fitting functionality for Arterial Spin Labeled MRI, T1 Relaxometry, T2 relaxometry and Diffusion Weighted imaging, providing command line documentation to generate the figures in the manuscript. Software and data (using the nifti file format) used in this article are simultaneously provided for download. We also present some extended applications of the joint model fitting framework applied to diffusion weighted imaging and T2 relaxometry, in order to both improve parameter estimation in these models and generate new parameters that link different MR modalities. NiftyFit is intended as a clear and open-source educational release so that the user may adapt and develop their own functionality as they require. PMID:26972806

  20. Broadly tunable intracavity zinc germanium phosphate optical parametric oscillator for hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Robertson, Gordon; Maker, Gareth T.; Malcolm, Graeme P. A.

    2014-06-01

    We report, to our knowledge, the first operation of a singly-resonant intracavity optical parametric oscillator (OPO) using the nonlinear material zinc germanium phosphate. The broadly tunable OPO uses a 7-W cw thulium fiber laser pump source to produce >100 mW of tunable mid-infrared light at repetition rates up to 30 kHz. The measured tuning range is 5.5 to 10 μm. The compact, low threshold source was used to perform spectroscopy of various substances. In addition, hyperspectral images were taken by combining the system with a scanning mirror pair and infrared photodiode.

  1. A distribution-based parametrization for improved tomographic imaging of solute plumes

    USGS Publications Warehouse

    Pidlisecky, A.; Singha, K.; Day-Lewis, F. D.

    2011-01-01

    Difference geophysical tomography (e.g. radar, resistivity and seismic) is used increasingly for imaging fluid flow and mass transport associated with natural and engineered hydrologic phenomena, including tracer experiments, in situ remediation and aquifer storage and recovery. Tomographic data are collected over time, inverted and differenced against a background image to produce 'snapshots' revealing changes to the system; these snapshots readily provide qualitative information on the location and morphology of plumes of injected tracer, remedial amendment or stored water. In principle, geometric moments (i.e. total mass, centres of mass, spread, etc.) calculated from difference tomograms can provide further quantitative insight into the rates of advection, dispersion and mass transfer; however, recent work has shown that moments calculated from tomograms are commonly biased, as they are strongly affected by the subjective choice of regularization criteria. Conventional approaches to regularization (Tikhonov) and parametrization (image pixels) result in tomograms which are subject to artefacts such as smearing or pixel estimates taking on the sign opposite to that expected for the plume under study. Here, we demonstrate a novel parametrization for imaging plumes associated with hydrologic phenomena. Capitalizing on the mathematical analogy between moment-based descriptors of plumes and the moment-based parameters of probability distributions, we design an inverse problem that (1) is overdetermined and computationally efficient because the image is described by only a few parameters, (2) produces tomograms consistent with expected plume behaviour (e.g. changes of one sign relative to the background image), (3) yields parameter estimates that are readily interpreted for plume morphology and offer direct insight into hydrologic processes and (4) requires comparatively few data to achieve reasonable model estimates. We demonstrate the approach in a series of

  2. Multimode quantum properties of a self-imaging optical parametric oscillator: Squeezed vacuum and Einstein-Podolsky-Rosen-beams generation

    SciTech Connect

    Lopez, L.; Chalopin, B.; Riviere de la Souchere, A.; Fabre, C.; Treps, N.; Maitre, A.

    2009-10-15

    We investigate the spatial quantum properties of the light emitted by a perfectly spatially degenerate optical parametric oscillator (self-imaging optical parametric oscillator). We show that this device produces local squeezing for areas bigger than a coherence area that depends on the crystal length and pump width. Furthermore, it generates local EPR beams in the far field. We show, calculating the eigenmodes of the system, that it is highly multimode for realistic experimental parameters.

  3. Time resolved imaging using non-collinear parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Park, Jung-Rae

    In this thesis I present a method for measuring the time resolved spatial profile of a single laser pulse and its application to the semiconductor devices. In OMEGA laser system, spatial profile of a laser beam can change as a function of time due to spontaneous effects such as the B-integral or imposed effects such as smoothing by spectral dispersion. The method presented here uses a non-collinear parametric down-conversion process to multiply sample a single laser pulse. In the non-collinear parametric down-conversion process, an infrared laser beam at 1064 nm is mixed with an intense ultraviolet beam at 351 nm to generate the green signal beam at 524 nm. Calculations have been carried out to determine the threshold power of the infrared probe beam for generating a detectable signal beam. The generated green beam is captured by a cooled optical multichannel analyzer camera and the image of signal beam is analyzed. This temporal spatial measurement can also be applied to the dynamic image detection schemes of semiconductor devices.

  4. Image Registration for Quantitative Parametric Response Mapping of Cancer Treatment Response1

    PubMed Central

    Boes, Jennifer L; Hoff, Benjamin A; Hylton, Nola; Pickles, Martin D; Turnbull, Lindsay W; Schott, Anne F; Rehemtulla, Alnawaz; Chamberlain, Ryan; Lemasson, Benjamin; Chenevert, Thomas L; Galbán, Craig J; Meyer, Charles R; Ross, Brian D

    2014-01-01

    Imaging biomarkers capable of early quantification of tumor response to therapy would provide an opportunity to individualize patient care. Image registration of longitudinal scans provides a method of detecting treatment associated changes within heterogeneous tumors by monitoring alterations in the quantitative value of individual voxels over time, which is unattainable by traditional volumetric-based histogram methods. The concepts involved in the use of image registration for tracking and quantifying breast cancer treatment response using parametric response mapping (PRM), a voxel-based analysis of diffusion-weighted magnetic resonance imaging (DW-MRI) scans, are presented. Application of PRM to breast tumor response detection is described, wherein robust registration solutions for tracking small changes in water diffusivity in breast tumors during therapy are required. Methodologies that employ simulations are presented for measuring expected statistical accuracy of PRM for response assessment. Test-retest clinical scans are used to yield estimates of system noise to indicate significant changes in voxel-based changes in water diffusivity. Overall, registration-based PRM image analysis provides significant opportunities for voxel-based image analysis to provide the required accuracy for early assessment of response to treatment in breast cancer patients receiving neoadjuvant chemotherapy. PMID:24772213

  5. Super-resolution image reconstruction using non-parametric Bayesian INLA approximation.

    PubMed

    Camponez, Marcelo Oliveira; Evandro, Ottoni Teatini Salles; Sarcinelli-Filho, Mário

    2012-08-01

    Superresolution are techniques to enhance the resolution of an image without changing the camera resolution, through using software algorithms. In this context, this paper proposes a fully automatic Superresolution algorithm, using a recent non-parametric Bayesian inference method based on numerical integration, known in the statistical literature as Integrated Nested Laplace Approximation. By applying such inference method to the Superresolution problem, this paper shows that all the equations needed to implement this technique can be written in closed form. Moreover, the results of several simulations (three of them are here presented) show that the proposed algorithm performs better than other Superresolution algorithms recently proposed. As far as the authors know, this is the first time that the Integrated Nested Laplace Approximation is used in the area of image processing, which is a meaningful contribution of this paper. PMID:22562764

  6. En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography.

    PubMed

    Chin, Lixin; Yang, Xiaojie; McLaughlin, Robert A; Noble, Peter B; Sampson, David D

    2013-06-01

    A technique for generating en face parametric images of tissue birefringence from scans acquired using a fiber-based polarization-sensitive optical coherence tomography (PS-OCT) system utilizing only a single-incident polarization state is presented. The value of birefringence is calculated for each A-scan in the PS-OCT volume using a quadrature demodulation and phase unwrapping algorithm. The algorithm additionally uses weighted spatial averaging and weighted least squares regression to account for the variation in phase accuracies due to varying OCT signal-to-noise-ratio. The utility of this technique is demonstrated using a model of thermally induced damage in porcine tendon and validated against histology. The resulting en face images of tissue birefringence are more useful than conventional PS-OCT B-scans in assessing the severity of tissue damage and in localizing the spatial extent of damage. PMID:23733021

  7. Label-free imaging of thick tissue at 1550 nm using a femtosecond optical parametric generator.

    PubMed

    Trägårdh, Johanna; Robb, Gillian; Gadalla, Kamal K E; Cobb, Stuart; Travis, Christopher; Oppo, Gian-Luca; McConnell, Gail

    2015-08-01

    We have developed a simple wavelength-tunable optical parametric generator (OPG), emitting broadband ultrashort pulses with peak wavelengths at 1530-1790 nm, for nonlinear label-free microscopy. The OPG consists of a periodically poled lithium niobate crystal, pumped at 1064 nm by a ultrafast Yb:fiber laser with high pulse energy. We demonstrate that this OPG can be used for label-free imaging, by third-harmonic generation, of nuclei of brain cells and blood vessels in a >150 μm thick brain tissue section, with very little decay of intensity with imaging depth and no visible damage to the tissue at an incident average power of 15 mW. PMID:26258338

  8. En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Chin, Lixin; Yang, Xiaojie; McLaughlin, Robert A.; Noble, Peter B.; Sampson, David D.

    2013-06-01

    A technique for generating en face parametric images of tissue birefringence from scans acquired using a fiber-based polarization-sensitive optical coherence tomography (PS-OCT) system utilizing only a single-incident polarization state is presented. The value of birefringence is calculated for each A-scan in the PS-OCT volume using a quadrature demodulation and phase unwrapping algorithm. The algorithm additionally uses weighted spatial averaging and weighted least squares regression to account for the variation in phase accuracies due to varying OCT signal-to-noise-ratio. The utility of this technique is demonstrated using a model of thermally induced damage in porcine tendon and validated against histology. The resulting en face images of tissue birefringence are more useful than conventional PS-OCT B-scans in assessing the severity of tissue damage and in localizing the spatial extent of damage.

  9. Gated frequency-resolved optical imaging with an optical parametric amplifier for medical applications

    SciTech Connect

    Cameron, S.M.; Bliss, D.E.

    1997-02-01

    Implementation of optical imagery in a diffuse inhomogeneous medium such as biological tissue requires an understanding of photon migration and multiple scattering processes which act to randomize pathlength and degrade image quality. The nature of transmitted light from soft tissue ranges from the quasi-coherent properties of the minimally scattered component to the random incoherent light of the diffuse component. Recent experimental approaches have emphasized dynamic path-sensitive imaging measurements with either ultrashort laser pulses (ballistic photons) or amplitude modulated laser light launched into tissue (photon density waves) to increase image resolution and transmissive penetration depth. Ballistic imaging seeks to compensate for these {open_quotes}fog-like{close_quotes} effects by temporally isolating the weak early-arriving image-bearing component from the diffusely scattered background using a subpicosecond optical gate superimposed on the transmitted photon time-of-flight distribution. The authors have developed a broadly wavelength tunable (470 nm -2.4 {mu}m), ultrashort amplifying optical gate for transillumination spectral imaging based on optical parametric amplification in a nonlinear crystal. The time-gated image amplification process exhibits low noise and high sensitivity, with gains greater than 104 achievable for low light levels. We report preliminary benchmark experiments in which this system was used to reconstruct, spectrally upcovert, and enhance near-infrared two-dimensional images with feature sizes of 65 {mu}m/mm{sup 2} in background optical attenuations exceeding 10{sup 12}. Phase images of test objects exhibiting both absorptive contrast and diffuse scatter were acquired using a self-referencing Shack-Hartmann wavefront sensor in combination with short-pulse quasi-ballistic gating. The sensor employed a lenslet array based on binary optics technology and was sensitive to optical path distortions approaching {lambda}/100.

  10. The Parametric Images of Microbubbles and Tissue Mimicking Phantoms Based on the Nakagami Parameters Map

    NASA Astrophysics Data System (ADS)

    Nardjess, Bahbah; Hakim, Djelouah; Bouakaz, A.

    The ultrasonic B-mode imaging is an important clinical tool used to examine internal structures of biological tissue and contrast microbubbles. To overcome the drawbacks of conventional B-scans which cannot fully reflect the nature of the tissue, other imaging methods based on stochastic models are proposed. Among these models, the Nakagami statistical model was chosen, because it is more general and simpler to apply than other statistical models (Rayleigh and K models), to generate parametric images based on the Nakagami parameters. Experiments were performed using a 2.5 MHz linear array connected to an open research platform. A commercially phantom was used to mimic tissue and microbubbles backscatters. For several regions of interest and for different microbubbles dilutions, the RF signals have been generated at 3 and 5 transmit cycles. The Nakagami image can be combined with the use of the B-mode image simultaneously to visualize the tissue and the contrast microbubbles structures for a better medical diagnosis.

  11. Multi-Parametric Representation of Voxel-Based Quantitative Magnetic Resonance Imaging

    PubMed Central

    Engström, Maria; Warntjes, Jan B. M.; Tisell, Anders; Landtblom, Anne-Marie; Lundberg, Peter

    2014-01-01

    The aim of the study was to explore the possibilities of multi-parametric representations of voxel-wise quantitative MRI data to objectively discriminate pathological cerebral tissue in patients with brain disorders. For this purpose, we recruited 19 patients with Multiple Sclerosis (MS) as benchmark samples and 19 age and gender matched healthy subjects as a reference group. The subjects were examined using quantitative Magnetic Resonance Imaging (MRI) measuring the tissue structure parameters: relaxation rates, R and R, and proton density. The resulting parameter images were normalized to a standard template. Tissue structure in MS patients was assessed by voxel-wise comparisons with the reference group and with correlation to a clinical measure, the Expanded Disability Status Scale (EDSS). The results were visualized by conventional geometric representations and also by multi-parametric representations. Data showed that MS patients had lower R and R, and higher proton density in periventricular white matter and in wide-spread areas encompassing central and sub-cortical white matter structures. MS-related tissue abnormality was highlighted in posterior white matter whereas EDSS correlation appeared especially in the frontal cortex. The multi-parameter representation highlighted disease-specific features. In conclusion, the proposed method has the potential to visualize both high-probability focal anomalies and diffuse tissue changes. Results from voxel-based statistical analysis, as exemplified in the present work, may guide radiologists where in the image to inspect for signs of disease. Future clinical studies must validate the usability of the method in clinical practice. PMID:25393722

  12. Pixel-based parametric source depth map for Cerenkov luminescence imaging

    NASA Astrophysics Data System (ADS)

    Altabella, L.; Boschi, F.; Spinelli, A. E.

    2016-01-01

    Optical tomography represents a challenging problem in optical imaging because of the intrinsically ill-posed inverse problem due to photon diffusion. Cerenkov luminescence tomography (CLT) for optical photons produced in tissues by several radionuclides (i.e.: 32P, 18F, 90Y), has been investigated using both 3D multispectral approach and multiviews methods. Difficult in convergence of 3D algorithms can discourage to use this technique to have information of depth and intensity of source. For these reasons, we developed a faster 2D corrected approach based on multispectral acquisitions, to obtain source depth and its intensity using a pixel-based fitting of source intensity. Monte Carlo simulations and experimental data were used to develop and validate the method to obtain the parametric map of source depth. With this approach we obtain parametric source depth maps with a precision between 3% and 7% for MC simulation and 5-6% for experimental data. Using this method we are able to obtain reliable information about the source depth of Cerenkov luminescence with a simple and flexible procedure.

  13. Observation of Geometric Parametric Instability Induced by the Periodic Spatial Self-Imaging of Multimode Waves

    NASA Astrophysics Data System (ADS)

    Krupa, Katarzyna; Tonello, Alessandro; Barthélémy, Alain; Couderc, Vincent; Shalaby, Badr Mohamed; Bendahmane, Abdelkrim; Millot, Guy; Wabnitz, Stefan

    2016-05-01

    Spatiotemporal mode coupling in highly multimode physical systems permits new routes for exploring complex instabilities and forming coherent wave structures. We present here the first experimental demonstration of multiple geometric parametric instability sidebands, generated in the frequency domain through resonant space-time coupling, owing to the natural periodic spatial self-imaging of a multimode quasi-continuous-wave beam in a standard graded-index multimode fiber. The input beam was launched in the fiber by means of an amplified microchip laser emitting sub-ns pulses at 1064 nm. The experimentally observed frequency spacing among sidebands agrees well with analytical predictions and numerical simulations. The first-order peaks are located at the considerably large detuning of 123.5 THz from the pump. These results open the remarkable possibility to convert a near-infrared laser directly into a broad spectral range spanning visible and infrared wavelengths, by means of a single resonant parametric nonlinear effect occurring in the normal dispersion regime. As further evidence of our strong space-time coupling regime, we observed the striking effect that all of the different sideband peaks were carried by a well-defined and stable bell-shaped spatial profile.

  14. Observation of Geometric Parametric Instability Induced by the Periodic Spatial Self-Imaging of Multimode Waves.

    PubMed

    Krupa, Katarzyna; Tonello, Alessandro; Barthélémy, Alain; Couderc, Vincent; Shalaby, Badr Mohamed; Bendahmane, Abdelkrim; Millot, Guy; Wabnitz, Stefan

    2016-05-01

    Spatiotemporal mode coupling in highly multimode physical systems permits new routes for exploring complex instabilities and forming coherent wave structures. We present here the first experimental demonstration of multiple geometric parametric instability sidebands, generated in the frequency domain through resonant space-time coupling, owing to the natural periodic spatial self-imaging of a multimode quasi-continuous-wave beam in a standard graded-index multimode fiber. The input beam was launched in the fiber by means of an amplified microchip laser emitting sub-ns pulses at 1064 nm. The experimentally observed frequency spacing among sidebands agrees well with analytical predictions and numerical simulations. The first-order peaks are located at the considerably large detuning of 123.5 THz from the pump. These results open the remarkable possibility to convert a near-infrared laser directly into a broad spectral range spanning visible and infrared wavelengths, by means of a single resonant parametric nonlinear effect occurring in the normal dispersion regime. As further evidence of our strong space-time coupling regime, we observed the striking effect that all of the different sideband peaks were carried by a well-defined and stable bell-shaped spatial profile. PMID:27203323

  15. Digital image quality measurements by objective and subjective methods from series of parametrically degraded images

    NASA Astrophysics Data System (ADS)

    Tachó, Aura; Mitjà, Carles; Martínez, Bea; Escofet, Jaume; Ralló, Miquel

    2013-11-01

    Many digital image applications like digitization of cultural heritage for preservation purposes operate with compressed files in one or more image observing steps. For this kind of applications JPEG compression is one of the most widely used. Compression level, final file size and quality loss are parameters that must be managed optimally. Although this loss can be monitored by means of objective image quality measurements, the real challenge is to know how it can be related with the perceived image quality by observers. A pictorial image has been degraded by two different procedures. The first, applying different levels of low pass filtering by convolving the image with progressively broad Gauss kernels. The second, saving the original file to a series of JPEG compression levels. In both cases, the objective image quality measurement is done by analysis of the image power spectrum. In order to obtain a measure of the perceived image quality, both series of degraded images are displayed on a computer screen organized in random pairs. The observers are compelled to choose the best image of each pair. Finally, a ranking is established applying Thurstone scaling method. Results obtained by both measurements are compared between them and with other objective measurement method as the Slanted Edge Test.

  16. Active infrared hyperspectral imaging system using a broadly tunable optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Malcolm, G. P. A.; Maker, G. T.; Robertson, G.; Dunn, M. H.; Stothard, D. J. M.

    2009-09-01

    The in situ identification and spatial location of gases, discrete liquid droplets and residues on surfaces is a technically challenging problem. Active Infrared (IR) hyperspectral imaging is a powerful technique that combines real-time imaging and optical spectroscopy for "standoff" detection of suspected chemical substances, including chemical warfare agents, toxic industrial chemicals, explosives and narcotics. An active IR hyperspectral imaging system requires a coherent, broadly tunable IR light source of high spectral purity, in order to detect a broad range of target substances. In this paper we outline a compact and power-efficient IR illumination source with high stability, efficiency, tuning range and spectral purity based upon an optical parametric oscillator (OPO). The fusion of established OPO technology with novel diode-pumped laser technology and electro-mechanical scanning has enabled a broadly applicable imaging system. This system is capable of hyperspectral imaging at both Near-IR (1.3 - 1.9 μm) and Mid-IR (2.3 - 4.6 μm) wavelengths simultaneously with a line width of < 3 cm-1. System size and complexity are minimised by using a dual InGaAs/InSb single element detector, and images are acquired by raster scanning the coaxial signal and idler beams simultaneously, at ranges up to 20 m. Reflection, absorption and scatter of incident radiation by chemical targets and their surroundings provide a method for spatial location, and characteristic spectra obtained from each sample can be used to identify targets uniquely. To date, we have recognized liquids in sample sizes as small 20 μl-and gases with sensitivity as high as 10ppm.m-at detection standoff distances > 10 m.

  17. SAR image formation toolbox for MATLAB

    NASA Astrophysics Data System (ADS)

    Gorham, LeRoy A.; Moore, Linda J.

    2010-04-01

    While many synthetic aperture radar (SAR) image formation techniques exist, two of the most intuitive methods for implementation by SAR novices are the matched filter and backprojection algorithms. The matched filter and (non-optimized) backprojection algorithms are undeniably computationally complex. However, the backprojection algorithm may be successfully employed for many SAR research endeavors not involving considerably large data sets and not requiring time-critical image formation. Execution of both image reconstruction algorithms in MATLAB is explicitly addressed. In particular, a manipulation of the backprojection imaging equations is supplied to show how common MATLAB functions, ifft and interp1, may be used for straight-forward SAR image formation. In addition, limits for scene size and pixel spacing are derived to aid in the selection of an appropriate imaging grid to avoid aliasing. Example SAR images generated though use of the backprojection algorithm are provided given four publicly available SAR datasets. Finally, MATLAB code for SAR image reconstruction using the matched filter and backprojection algorithms is provided.

  18. Preclinical evaluation of parametric image reconstruction of [18F]FMISO PET: correlation with ex vivo immunohistochemistry.

    PubMed

    Cheng, Xiaoyin; Bayer, Christine; Maftei, Constantin-Alin; Astner, Sabrina T; Vaupel, Peter; Ziegler, Sibylle I; Shi, Kuangyu

    2014-01-20

    Compared to indirect methods, direct parametric image reconstruction (PIR) has the advantage of high quality and low statistical errors. However, it is not yet clear if this improvement in quality is beneficial for physiological quantification. This study aimed to evaluate direct PIR for the quantification of tumor hypoxia using the hypoxic fraction (HF) assessed from immunohistological data as a physiological reference. Sixteen mice with xenografted human squamous cell carcinomas were scanned with dynamic [18F]FMISO PET. Afterward, tumors were sliced and stained with H&E and the hypoxia marker pimonidazole. The hypoxic signal was segmented using k-means clustering and HF was specified as the ratio of the hypoxic area over the viable tumor area. The parametric Patlak slope images were obtained by indirect voxel-wise modeling on reconstructed images using filtered back projection and ordered-subset expectation maximization (OSEM) and by direct PIR (e.g., parametric-OSEM, POSEM). The mean and maximum Patlak slopes of the tumor area were investigated and compared with HF. POSEM resulted in generally higher correlations between slope and HF among the investigated methods. A strategy for the delineation of the hypoxic tumor volume based on thresholding parametric images at half maximum of the slope is recommended based on the results of this study. PMID:24351879

  19. Preclinical evaluation of parametric image reconstruction of [18F]FMISO PET: correlation with ex vivo immunohistochemistry

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaoyin; Bayer, Christine; Maftei, Constantin-Alin; Astner, Sabrina T.; Vaupel, Peter; Ziegler, Sibylle I.; Shi, Kuangyu

    2014-01-01

    Compared to indirect methods, direct parametric image reconstruction (PIR) has the advantage of high quality and low statistical errors. However, it is not yet clear if this improvement in quality is beneficial for physiological quantification. This study aimed to evaluate direct PIR for the quantification of tumor hypoxia using the hypoxic fraction (HF) assessed from immunohistological data as a physiological reference. Sixteen mice with xenografted human squamous cell carcinomas were scanned with dynamic [18F]FMISO PET. Afterward, tumors were sliced and stained with H&E and the hypoxia marker pimonidazole. The hypoxic signal was segmented using k-means clustering and HF was specified as the ratio of the hypoxic area over the viable tumor area. The parametric Patlak slope images were obtained by indirect voxel-wise modeling on reconstructed images using filtered back projection and ordered-subset expectation maximization (OSEM) and by direct PIR (e.g., parametric-OSEM, POSEM). The mean and maximum Patlak slopes of the tumor area were investigated and compared with HF. POSEM resulted in generally higher correlations between slope and HF among the investigated methods. A strategy for the delineation of the hypoxic tumor volume based on thresholding parametric images at half maximum of the slope is recommended based on the results of this study.

  20. Cloud Optimized Image Format and Compression

    NASA Astrophysics Data System (ADS)

    Becker, P.; Plesea, L.; Maurer, T.

    2015-04-01

    Cloud based image storage and processing requires revaluation of formats and processing methods. For the true value of the massive volumes of earth observation data to be realized, the image data needs to be accessible from the cloud. Traditional file formats such as TIF and NITF were developed in the hay day of the desktop and assumed fast low latency file access. Other formats such as JPEG2000 provide for streaming protocols for pixel data, but still require a server to have file access. These concepts no longer truly hold in cloud based elastic storage and computation environments. This paper will provide details of a newly evolving image storage format (MRF) and compression that is optimized for cloud environments. Although the cost of storage continues to fall for large data volumes, there is still significant value in compression. For imagery data to be used in analysis and exploit the extended dynamic range of the new sensors, lossless or controlled lossy compression is of high value. Compression decreases the data volumes stored and reduces the data transferred, but the reduced data size must be balanced with the CPU required to decompress. The paper also outlines a new compression algorithm (LERC) for imagery and elevation data that optimizes this balance. Advantages of the compression include its simple to implement algorithm that enables it to be efficiently accessed using JavaScript. Combing this new cloud based image storage format and compression will help resolve some of the challenges of big image data on the internet.

  1. In vivo imaging of tau pathology using multi-parametric quantitative MRI

    PubMed Central

    Wells, J.A.; O'Callaghan, J.M.; Holmes, H.E.; Powell, N.M.; Johnson, R.A.; Siow, B.; Torrealdea, F.; Ismail, O.; Walker-Samuel, S.; Golay, X.; Rega, M.; Richardson, S.; Modat, M.; Cardoso, M.J.; Ourselin, S.; Schwarz, A.J.; Ahmed, Z.; Murray, T.K.; O'Neill, M.J.; Collins, E.C.; Colgan, N.; Lythgoe, M.F.

    2015-01-01

    As the number of people diagnosed with Alzheimer's disease (AD) reaches epidemic proportions, there is an urgent need to develop effective treatment strategies to tackle the social and economic costs of this fatal condition. Dozens of candidate therapeutics are currently being tested in clinical trials, and compounds targeting the aberrant accumulation of tau proteins into neurofibrillary tangles (NFTs) are the focus of substantial current interest. Reliable, translatable biomarkers sensitive to both tau pathology and its modulation by treatment along with animal models that faithfully reflect aspects of the human disease are urgently required. Magnetic resonance imaging (MRI) is well established as a valuable tool for monitoring the structural brain changes that accompany AD progression. However the descent into dementia is not defined by macroscopic brain matter loss alone: non-invasive imaging measurements sensitive to protein accumulation, white matter integrity and cerebral haemodynamics probe distinct aspects of AD pathophysiology and may serve as superior biomarkers for assessing drug efficacy. Here we employ a multi-parametric array of five translatable MRI techniques to characterise the in vivo pathophysiological phenotype of the rTg4510 mouse model of tauopathy (structural imaging, diffusion tensor imaging (DTI), arterial spin labelling (ASL), chemical exchange saturation transfer (CEST) and glucose CEST). Tau-induced pathological changes included grey matter atrophy, increased radial diffusivity in the white matter, decreased amide proton transfer and hyperperfusion. We demonstrate that the above markers unambiguously discriminate between the transgenic group and age-matched controls and provide a comprehensive profile of the multifaceted neuropathological processes underlying the rTg4510 model. Furthermore, we show that ASL and DTI techniques offer heightened sensitivity to processes believed to precede detectable structural changes and, as such

  2. Quantitative analysis of diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) for brain disorders

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Kwak, Byung-Joon

    2013-07-01

    This study aimed to quantitatively analyze data from diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) in patients with brain disorders and to assess its potential utility for analyzing brain function. DTI was obtained by performing 3.0-T magnetic resonance imaging for patients with Alzheimer's disease (AD) and vascular dementia (VD), and the data were analyzed using Matlab-based SPM software. The two-sample t-test was used for error analysis of the location of the activated pixels. We compared regions of white matter where the fractional anisotropy (FA) values were low and the apparent diffusion coefficients (ADCs) were increased. In the AD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right sub-lobar insula, and right occipital lingual gyrus whereas the ADCs were significantly increased in the right inferior frontal gyrus and right middle frontal gyrus. In the VD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right limbic cingulate gyrus, and right sub-lobar caudate tail whereas the ADCs were significantly increased in the left lateral globus pallidus and left medial globus pallidus. In conclusion by using DTI and SPM analysis, we were able to not only determine the structural state of the regions affected by brain disorders but also quantitatively analyze and assess brain function.

  3. The ellipsoid parametric description for the shape-based image reconstruction algorithm of diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Wu, Linhui; Jia, Mengyu; Liu, Lingling; Zhao, Huijuan; Gao, Feng

    2013-03-01

    As a new non-invasive medical imaging technology, diffuse optical tomography (DOT) has received considerable attention that can provide vast quantities of functional information of tissues. The reconstruction problem of DOT is highly ill-posed, meaning that a small error in the measurement data can bring about drastic errors of the reconstruction optical properties. In this paper, the shape-based image reconstruction algorithm of DOT is proposed for reducing the ill-poseness under the assumption that the optical properties of target region distribute uniformly. Since some human organs and tumors can be simplified as an ellipsoid, in this paper, the shape of the inhomogeneity is described as an ellipsoid. In the forward problem, the boundary element method (BEM) is implemented to solve the continuous wave diffusion equation (DE). By the use of the ellipsoid parametric method, the description of the shape, location and optical properties of the inhomogeneity, and the value of the background could be realized with only a small number of parameters. In the inverse calculation, a Levenberg-Marquardt algorithm with line searching is implemented to solve the underlying nonlinear least-squares problem. Simulation results show that the algorithm developed in this paper is effective in reducing the ill-poseness and robust to the noise.

  4. Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Nicolas A.; Lodge, Martin A.; Tahari, Abdel K.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman

    2013-10-01

    Static whole-body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single-bed-coverage limiting the axial field-of-view to ˜15-20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole-body PET acquisition protocol of ˜45 min total length is presented, composed of (i) an initial 6 min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (six passes × seven bed positions, each scanned for 45 s). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of ten different clinically

  5. A general method of Bayesian estimation for parametric imaging of the brain.

    PubMed

    Alpert, Nathaniel M; Yuan, Fang

    2009-05-01

    We report a general method of Bayesian estimation that uses prior measurements to improve the signal-to-noise ratio of parametric images computed from dynamic PET scanning. In our method, the ordinary weighted least squares cost function is augmented by a penalty term to yield Phi(K,S)=minK{(C-f(K))(T)Omega(C)(-1)(C-f(K))+SPhi(K,S=0)(K-K;)(T)Omega(K)(-1)(K-K;)}, where C is a PET concentration history and Omega(C) is its variance, f is the model of the concentration history, K=[k(1),k(2),...,k(m)](T) is the parameter vector, K; is the vector of population means for the model parameters, Omega(K) is its covariance, Phi(K)(K,S=0) is the conventional weighted sum of squares. S>0 is chosen to control the balance between the prior and new data. Data from a prior population of subjects are analyzed with standard methods to provide maps of the mean parameter values and their variances. As an example of this approach we used the dynamic image data of 10 normal subjects who had previously been studied with (11)C-raclopride to estimate the prior distribution. The dynamic data were transformed to stereotactic coordinates and analyzed by standard methods. The resulting parametric maps were used to compute the voxel-wise sample statistics. Then the cohort of priors was analyzed as a function of S, using nonlinear least squares estimation and the cost function shown above. As S is increased the standard error in estimating BP in single subjects was substantially reduced allowing measurement in BP in thalamus, cortex, brain stem, etc. Additional studies demonstrate that a range of S values exist for which the bias is not excessive, even when parameter values differ markedly from the sample mean. This method can be used with any kinetic model so long as it is possible to compute a map of a priori mean parameters and their variances. PMID:19349233

  6. Detection of temporal lobe epilepsy using support vector machines in multi-parametric quantitative MR imaging.

    PubMed

    Cantor-Rivera, Diego; Khan, Ali R; Goubran, Maged; Mirsattari, Seyed M; Peters, Terry M

    2015-04-01

    The detection of MRI abnormalities that can be associated to seizures in the study of temporal lobe epilepsy (TLE) is a challenging task. In many cases, patients with a record of epileptic activity do not present any discernible MRI findings. In this domain, we propose a method that combines quantitative relaxometry and diffusion tensor imaging (DTI) with support vector machines (SVM) aiming to improve TLE detection. The main contribution of this work is two-fold: on one hand, the feature selection process, principal component analysis (PCA) transformations of the feature space, and SVM parameterization are analyzed as factors constituting a classification model and influencing its quality. On the other hand, several of these classification models are studied to determine the optimal strategy for the identification of TLE patients using data collected from multi-parametric quantitative MRI. A total of 17 TLE patients and 19 control volunteers were analyzed. Four images were considered for each subject (T1 map, T2 map, fractional anisotropy, and mean diffusivity) generating 936 regions of interest per subject, then 8 different classification models were studied, each one comprised by a distinct set of factors. Subjects were correctly classified with an accuracy of 88.9%. Further analysis revealed that the heterogeneous nature of the disease impeded an optimal outcome. After dividing patients into cohesive groups (9 left-sided seizure onset, 8 right-sided seizure onset) perfect classification for the left group was achieved (100% accuracy) whereas the accuracy for the right group remained the same (88.9%). We conclude that a linear SVM combined with an ANOVA-based feature selection+PCA method is a good alternative in scenarios like ours where feature spaces are high dimensional, and the sample size is limited. The good accuracy results and the localization of the respective features in the temporal lobe suggest that a multi-parametric quantitative MRI, ROI-based, SVM

  7. A parametric analysis of lithospheric imaging by Full-Waveform Inversion of teleseismic body-waves

    NASA Astrophysics Data System (ADS)

    Beller, Stephen; Monteiller, Vadim; Operto, Stéphane; Nolet, Guust; Virieux, Jean

    2015-04-01

    With the deployment of dense seismic arrays and the continuous growth of computing facilities, full-waveform inversion (FWI) of teleseismic data has become a method of choice for 3D high-resolution lithospheric imaging. FWI is a local optimization problem that seeks to estimate Earth's elastic properties by iteratively minimizing the misfit function between observed and modeled seismograms. Recent investigations have shown the feasibility of such local inversions by injecting a pre-computed global wavefield at the edges of the lithospheric target. In this study, we present all the methodological ingredients needed for the application of FWI to lithospheric data. The global wavefield, which is computed in an axisymmetric global earth with AxiSEM, is injected in the lithospheric target by the so-called total-field/scattered-field method. The inversion, which is implemented with an adjoint formalism, is performed following a multiscale approach, proceeding hierarchically from low to high frequencies. We further perform a parametric analysis in a realistic model representative of the Western Alps. This analysis mainly focus on the FWI sensitivity to the source characteristics. One key issue is the estimation of the temporal source excitation, as there might be some trade-off between the source estimation and the subsurface update. We also investigate the imprint of the sources repartition on the spatial resolution of the imaging, the FWI sensitivity to the accuracy of the starting model and the effects of considering a complex topography. Seismic modeling in the FWI models allows us to assess which parts of the teleseismic wavefield significantly contribute to the imaging.

  8. Coherent aspect-dependent SAR image formation

    NASA Astrophysics Data System (ADS)

    Chaney, Ronald D.; Willsky, Alan S.; Novak, Leslie M.

    1994-06-01

    An adaptive image formation algorithm is proposed to exploit the aspect-angle dependence of man-made scatterers in foliage penetrating (FOPEN) synthetic aperture radar (SAR). Man-made scatterers often exhibit a strong dependence on the aspect angle between the orientation of the scatterer and the line of sight of the radar. More specifically, the return from a man-made target is greater when the target is oriented broadside with respect to the radar. Conventional SAR image formation processing assumes that backscatter is independent of the aspect angle; by relaxing this assumption, it is possible to reformulate the image formation process to improve the separability of man-made scatterers vs. natural clutter. We propose an image formation process that adapts the length and position of the aperture used during the cross-range compression stage. The algorithm identifies the locations that are likely to correspond to aspect- dependent scatterers. In the vicinity of such scatterers, the algorithm chooses the aperture to match the expected return from a man-made scatterer. Elsewhere, the algorithm uses the full aperture. The resulting imagery enhances man-made targets relative to the background clutter and facilitates improved detection performance.

  9. Gated frequency-resolved optical imaging with an optical parametric amplifier

    DOEpatents

    Cameron, Stewart M.; Bliss, David E.; Kimmel, Mark W.; Neal, Daniel R.

    1999-01-01

    A system for detecting objects in a turbid media utilizes an optical parametric amplifier as an amplifying gate for received light from the media. An optical gating pulse from a second parametric amplifier permits the system to respond to and amplify only ballistic photons from the object in the media.

  10. Gated frequency-resolved optical imaging with an optical parametric amplifier

    DOEpatents

    Cameron, S.M.; Bliss, D.E.; Kimmel, M.W.; Neal, D.R.

    1999-08-10

    A system for detecting objects in a turbid media utilizes an optical parametric amplifier as an amplifying gate for received light from the media. An optical gating pulse from a second parametric amplifier permits the system to respond to and amplify only ballistic photons from the object in the media. 13 figs.

  11. HOMOGENEOUS UGRIZ PHOTOMETRY FOR ACS VIRGO CLUSTER SURVEY GALAXIES: A NON-PARAMETRIC ANALYSIS FROM SDSS IMAGING

    SciTech Connect

    Chen, Chin-Wei; Cote, Patrick; Ferrarese, Laura; West, Andrew A.; Peng, Eric W.

    2010-11-15

    We present photometric and structural parameters for 100 ACS Virgo Cluster Survey (ACSVCS) galaxies based on homogeneous, multi-wavelength (ugriz), wide-field SDSS (DR5) imaging. These early-type galaxies, which trace out the red sequence in the Virgo Cluster, span a factor of nearly {approx}10{sup 3} in g-band luminosity. We describe an automated pipeline that generates background-subtracted mosaic images, masks field sources and measures mean shapes, total magnitudes, effective radii, and effective surface brightnesses using a model-independent approach. A parametric analysis of the surface brightness profiles is also carried out to obtain Sersic-based structural parameters and mean galaxy colors. We compare the galaxy parameters to those in the literature, including those from the ACSVCS, finding good agreement in most cases, although the sizes of the brightest, and most extended, galaxies are found to be most uncertain and model dependent. Our photometry provides an external measurement of the random errors on total magnitudes from the widely used Virgo Cluster Catalog, which we estimate to be {sigma}(B{sub T}){approx} 0.13 mag for the brightest galaxies, rising to {approx} 0.3 mag for galaxies at the faint end of our sample (B{sub T} {approx} 16). The distribution of axial ratios of low-mass ('dwarf') galaxies bears a strong resemblance to the one observed for the higher-mass ('giant') galaxies. The global structural parameters for the full galaxy sample-profile shape, effective radius, and mean surface brightness-are found to vary smoothly and systematically as a function of luminosity, with unmistakable evidence for changes in structural homology along the red sequence. As noted in previous studies, the ugriz galaxy colors show a nonlinear but smooth variation over a {approx}7 mag range in absolute magnitude, with an enhanced scatter for the faintest systems that is likely the signature of their more diverse star formation histories.

  12. Proton heating and beam formation via parametrically unstable Alfven-cyclotron waves

    NASA Astrophysics Data System (ADS)

    Marsch, Eckart; Araneda, Jaime; -Vinas, Adolfo F.

    Vlasov theory and one-dimensional hybrid simulations are used to study the effects that compressible fluctuations driven by parametric instabilities of Alfvén/cyclotron waves have on proe ton velocity distributions. Field-aligned proton beams are generated during the saturation phase of the wave-particle interaction, with a drift speed which is slightly greater than the Alfvén speed and is maintained until the end of the simulation. The main part of the dise tribution becomes anisotropic due to phase mixing as is typically observed in the velocity distributions measured in the fast solar wind. We identify the key instabilities and also find that even in the parameter regime, where fluid theory appears to be appropriate, strong kinetic effects still prevail.

  13. Bistatic SAR: Signal Processing and Image Formation.

    SciTech Connect

    Wahl, Daniel E.; Yocky, David A.

    2014-10-01

    This report describes the significant processing steps that were used to take the raw recorded digitized signals from the bistatic synthetic aperture RADAR (SAR) hardware built for the NCNS Bistatic SAR project to a final bistatic SAR image. In general, the process steps herein are applicable to bistatic SAR signals that include the direct-path signal and the reflected signal. The steps include preprocessing steps, data extraction to for a phase history, and finally, image format. Various plots and values will be shown at most steps to illustrate the processing for a bistatic COSMO SkyMed collection gathered on June 10, 2013 on Kirtland Air Force Base, New Mexico.

  14. Parametric fMRI of paced motor responses uncovers novel whole-brain imaging biomarkers in spinocerebellar ataxia type 3.

    PubMed

    Duarte, João Valente; Faustino, Ricardo; Lobo, Mercês; Cunha, Gil; Nunes, César; Ferreira, Carlos; Januário, Cristina; Castelo-Branco, Miguel

    2016-10-01

    Machado-Joseph Disease, inherited type 3 spinocerebellar ataxia (SCA3), is the most common form worldwide. Neuroimaging and neuropathology have consistently demonstrated cerebellar alterations. Here we aimed to discover whole-brain functional biomarkers, based on parametric performance-level-dependent signals. We assessed 13 patients with early SCA3 and 14 healthy participants. We used a combined parametric behavioral/functional neuroimaging design to investigate disease fingerprints, as a function of performance levels, coupled with structural MRI and voxel-based morphometry. Functional magnetic resonance imaging (fMRI) was designed to parametrically analyze behavior and neural responses to audio-paced bilateral thumb movements at temporal frequencies of 1, 3, and 5 Hz. Our performance-level-based design probing neuronal correlates of motor coordination enabled the discovery that neural activation and behavior show critical loss of parametric modulation specifically in SCA3, associated with frequency-dependent cortico/subcortical activation/deactivation patterns. Cerebellar/cortical rate-dependent dissociation patterns could clearly differentiate between groups irrespective of grey matter loss. Our findings suggest functional reorganization of the motor network and indicate a possible role of fMRI as a tool to monitor disease progression in SCA3. Accordingly, fMRI patterns proved to be potential biomarkers in early SCA3, as tested by receiver operating characteristic analysis of both behavior and neural activation at different frequencies. Discrimination analysis based on BOLD signal in response to the applied parametric finger-tapping task significantly often reached >80% sensitivity and specificity in single regions-of-interest.Functional fingerprints based on cerebellar and cortical BOLD performance dependent signal modulation can thus be combined as diagnostic and/or therapeutic targets in hereditary ataxia. Hum Brain Mapp 37:3656-3668, 2016. © 2016 Wiley

  15. Image Formation in Bio-optical Sensing

    NASA Astrophysics Data System (ADS)

    Miller, Eric

    2012-02-01

    Over the past two decades a number of optical sensing methods have emerged with potential to provide complementary information to traditional medical imaging modalities in application areas ranging from basic science to disease diagnosis and treatment monitoring. Though still largely in the research and development stage, modalities including diffuse optical tomography (DOT), fluorescence molecular tomography (FMT), photo-acoustic tomography (PAT), and bio-luminescence tomography (BLT) have excited much interest due to their natural functional imaging capability, their relatively low cost, and the fact that none required the use of ionizing radiation. These advantages however are tempered by a number of challenges associated with the processing of these data. Specifically, these data types all rely in one way or another on the interaction of light with tissue. The diffusive nature of this interaction inherently limits the spatial resolution of these modalities. As a result the process of forming an image is a far more delicate task than is the case with more standard imaging modalities such as X-ray computed tomography (CT). Two basic methods have been explored to address the ill-posedness of these problems in order to improve the information content in the resulting images. The optical data may be augmented either through the use of spectral diversity or by attempting to integrate optical data types with information from other modalities such as CT or MRI. Alternatively, a mathematical technique known as regularization can be used to impose physically-based constraints on the reconstruction. In this talk, I shall provide an overview of the work in my group in optical image formation within the contexts of DOT for breast cancer imaging and FMT for small animal imaging. The focus of the talk will be on methods that integrate data augmentation and mathematical regularization. In the case of FMT, we shall discuss our work in combining the optical data with information

  16. High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 μm

    NASA Astrophysics Data System (ADS)

    Piao, Zhonglie; Ma, Teng; Li, Jiawen; Wiedmann, Maximilian T.; Huang, Shenghai; Yu, Mingyue; Kirk Shung, K.; Zhou, Qifa; Kim, Chang-Seok; Chen, Zhongping

    2015-08-01

    Intravascular photoacoustic imaging at 1.7 μm spectral band has shown promising capabilities for lipid-rich vulnerable atherosclerotic plaque detection. In this work, we report a high speed catheter-based integrated intravascular photoacoustic/intravascular ultrasound (IVPA/IVUS) imaging system with a 500 Hz optical parametric oscillator laser at 1725 nm. A lipid-mimicking phantom and atherosclerotic rabbit abdominal aorta were imaged at 1 frame per second, which is two orders of magnitude faster than previously reported in IVPA imaging with the same wavelength. Clear photoacoustic signals by the absorption of lipid rich deposition demonstrated the ability of the system for high speed vulnerable atherosclerotic plaques detection.

  17. Synthetic Aperture Radar Image Formation in Reconfigurable Logic

    SciTech Connect

    DUDLEY,PETER A.

    2001-06-01

    This paper studies the implementation of polar format, synthetic aperture radar image formation in modern Field Programmable Gate Arrays (FPGA's). The polar format algorithm is described in rough terms and each of the processing steps is mapped to FPGA logic. This FPGA logic is analyzed with respect to throughput and circuit size for compatibility with airborne image formation.

  18. The Planet Formation Imager (PFI) Project

    NASA Astrophysics Data System (ADS)

    Aarnio, Alicia; Monnier, John; Kraus, Stefan; Ireland, Michael

    2016-07-01

    Among the most fascinating and hotly-debated areas in contemporary astrophysics are the means by which planetary systems are assembled from the large rotating disks of gas and dust which attend a stellar birth. Although important work is being done both in theory and observation, a full understanding of the physics of planet formation can only be achieved by opening observational windows able to directly witness the process in action. The key requirement is then to probe planet-forming systems at the natural spatial scales over which material is being assembled. By definition, this is the so-called Hill Sphere, which delineates the region of influence of a gravitating body within its surrounding environment. The Planet Formation Imager project has crystallized around this challenging goal: to deliver resolved images of Hill-Sphere-sized structures within candidate planet-hosting disks in the nearest star-forming regions. In this contribution I outline the primary science case of PFI and give an overview about the work of the PFI science and technical working group and present radiation-hydrodynamics simulations from which we derive preliminary specifications that guide the design of the facility. Finally, I give an overview about the technologies that we are investigating in order to meet the specifications.

  19. Featured Image: A Bubble Triggering Star Formation

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    This remarkable false-color, mid-infrared image (click for the full view!) was produced by the Wide-field Infrared Survey Explorer (WISE). It captures a tantalizing view of Sh 2-207 and Sh 2-208, the latter of which is one of the lowest-metallicity star-forming regions in the Galaxy. In a recent study led by Chikako Yasui (University of Tokyo and the Koyama Astronomical Observatory), a team of scientists has examined this region to better understand how star formation in low-metallicity environments differs from that in the solar neighborhood. The authors analysis suggests that sequential star formation is taking place in these low-metallicity regions, triggered by an expanding bubble (the large dashed oval indicated in the image) with a ~30 pc radius. You can find out more about their study by checking out the paper below!CitationChikako Yasui et al 2016 AJ 151 115. doi:10.3847/0004-6256/151/5/115

  20. Rate of Pu(IV) polymer formation in nitric acid solutions. A parametric study

    SciTech Connect

    Toth, L.M.; Osborne, M.M.

    1984-07-01

    The kinetics of Pu(IV) polymer formation has been examined with the intent of developing a simple mathematical equation that would predict the appearance of polymer. The fundamental polymerization rate has been found to be dependent on [Pu(IV)]{sup 1} {sup 2} and [HNO{sub 3}]{sup -6}. The activation energy for polymer formation is real temperature dependent, varying from 66.9 kJ/mol (16 kcal/mol) at 25{sup 0}C to 150.5 kJ/mol (36 kcal/mol) at 105{sup 0}C. These relationships have guided the developement of an empirical model that gives time to form 2% polymer in hours, t = [Pu/sub T/]/sup a/[HNO{sub 3}]/sup b/ Ae/sup c/T/, where a = -1.6, b = 4.6, c = 12.300 K, and A = 7.66 x 10{sup -16} h M{sup -3}; [Pu/sub T/] is the total plutonium concentration, mol/L; and [HNO{sub 3}] is the makeup nitric acid concentration, mol/L. 11 references, 26 figures, 1 table.

  1. Pulmonary Imaging Biomarkers of Gas Trapping and Emphysema in COPD: (3)He MR Imaging and CT Parametric Response Maps.

    PubMed

    Capaldi, Dante P I; Zha, Nanxi; Guo, Fumin; Pike, Damien; McCormack, David G; Kirby, Miranda; Parraga, Grace

    2016-05-01

    Purpose To directly compare magnetic resonance (MR) imaging and computed tomography (CT) parametric response map (PRM) measurements of gas trapping and emphysema in ex-smokers both with and without chronic obstructive pulmonary disease (COPD). Materials and Methods Participants provided written informed consent to a protocol that was approved by a local research ethics board and Health Canada and was compliant with the HIPAA (Institutional Review Board Reg. #00000940). The prospectively planned study was performed from March 2014 to December 2014 and included 58 ex-smokers (mean age, 73 years ± 9) with (n = 32; mean age, 74 years ± 7) and without (n = 26; mean age, 70 years ± 11) COPD. MR imaging (at functional residual capacity plus 1 L), CT (at full inspiration and expiration), and spirometry or plethysmography were performed during a 2-hour visit to generate ventilation defect percent (VDP), apparent diffusion coefficient (ADC), and PRM gas trapping and emphysema measurements. The relationships between pulmonary function and imaging measurements were determined with analysis of variance (ANOVA), Holm-Bonferroni corrected Pearson correlations, multivariate regression modeling, and the spatial overlap coefficient (SOC). Results VDP, ADC, and PRM gas trapping and emphysema (ANOVA, P < .001) measurements were significantly different in healthy ex-smokers than they were in ex-smokers with COPD. In all ex-smokers, VDP was correlated with PRM gas trapping (r = 0.58, P < .001) and with PRM emphysema (r = 0.68, P < .001). VDP was also significantly correlated with PRM in ex-smokers with COPD (gas trapping: r = 0.47 and P = .03; emphysema: r = 0.62 and P < .001) but not in healthy ex-smokers. In a multivariate model that predicted PRM gas trapping, the forced expiratory volume in 1 second normalized to the forced vital capacity (standardized coefficients [βS] = -0.69, P = .001) and airway wall area percent (βS = -0.22, P = .02) were significant predictors. PRM

  2. Parametric Experimental Study of the Formation of Glaze Ice Shapes on Swept Wings

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Reshotko, Eli

    1999-01-01

    An experiment was conducted to study the effect of velocity and sweep angle on the critical distance in ice accretion formation on swept wings at glaze ice conditions. The critical distance is defined as the distance from the attachment line to the beginning of the zone where roughness elements develop into glaze ice feathers. Icing runs were performed on a NACA 00 1 2 swept wing tip at velocities of 75, 100, 150, and 200 miles per hour. At each velocity and tunnel condition, the sweep angle was changed from 0 deg to 45 deg at 5 deg increments. Casting data, ice shape tracings, and close-up photographic data were obtained. The results showed that at given velocity and tunnel conditions, as the sweep angle is increased from 0 deg to 25 deg the critical distance slowly decreases. As the sweep angle is increased past 25 deg, the critical distance starts decreasing more rapidly. For 75 and 100 mph it reaches a value of 0 millimeters at 35 deg. For 150 and 200 mph it reaches a value of 0 millimeters at 40 deg. On the ice accretion, as the sweep angle is increased from 0 deg to 25 deg, the extent of the attachment line zone slowly decreases. In the glaze ice feathers zone, the angle that the preferred direction of growth of the feathers makes with respect to the attachment line direction increases. But overall, the ice accretions remain similar to the 0 deg sweep angle case. As the sweep angle is increased above 25 deg, the extent of the attachment line zone decreases rapidly and complete scallops form at 35 deg sweep angle for 75 and 100 mph, and at 40 deg for 150 and 200 mph.

  3. Imaging Septum Formation by Fluorescence Microscopy.

    PubMed

    Ribas, Juan Carlos; Cortés, Juan Carlos G

    2016-01-01

    Fungal cleavage furrow formation during cytokinesis relays in the coordinated contraction of an actomyosin-based ring and the centripetal synthesis of both new plasma membrane and a special wall structure named division septum. Through transmission electron microscopy, the septum exhibits a three-layered structure with a central primary septum, flanked at both sides by the secondary septum. In contrast to the chitinous primary septum present in most of fungi, the fission yeast Schizosaccharomyces pombe does not contain chitin, instead it divides through the formation of a linear β(1,3)glucan-rich primary septum, which has been shown to be specifically stained by the fluorochrome Calcofluor white. Recent findings in S. pombe have revealed the importance of septum synthesis for the steady contraction of the ring during cytokinesis. Therefore, to study the molecular mechanisms that connect the extracellular septum wall with the other components of the cytokinetic machinery located in the plasma membrane and cytoplasm, new experimental approaches are needed. Here we describe the methods developed to image the septum structure by fluorescence microscopy, with a special focus in the analysis of septum progression by the use of time-lapse microscopy. PMID:26519306

  4. Broadband fiber-optical parametric amplification for ultrafast time-stretch imaging at 1.0 μm.

    PubMed

    Wei, Xiaoming; Lau, Andy K S; Xu, Yiqing; Zhang, Chi; Mussot, Arnaud; Kudlinski, Alexandre; Tsia, Kevin K; Wong, Kenneth K Y

    2014-10-15

    We demonstrate a broadband all-fiber-optical parametric amplifier for ultrafast time-stretch imaging at 1.0 μm, featured by its compact design, alignment-free, high efficiency, and flexible gain spectrum through fiber nonlinearity- and dispersion-engineering: specifically on a dispersion-stabilized photonic-crystal fiber (PCF) to achieve a net gain over 20 THz (75 nm) and a highest gain of ~6000 (37.5 dB). Another unique feature of the parametric amplifier, over other optical amplifiers, is the coherent generation of a synchronized signal replica (called idler) that can be exploited to offer an extra 3-dB gain by optically superposing the signal and idler. It further enhances signal contrast and temporal stability. For proof-of-concept purpose, ultrahigh speed and diffraction-limited time-stretch microscopy is demonstrated with a single-shot line-scan rate of 13 MHz based on the dual-band (signal and idler) detection. Our scheme can be extended to other established bioimaging modalities, such as optical coherence tomography, near infrared fluorescence, and photoacoustic imaging, where weak signal detection at high speed is required. PMID:25361137

  5. Medusae Fossae Formation - High Resolution Image

    NASA Technical Reports Server (NTRS)

    1998-01-01

    An exotic terrain of wind-eroded ridges and residual smooth surfaces are seen in one of the highest resolution images ever taken of Mars from orbit. The Medusae Fossae formation is believed to be formed of the fragmental ejecta of huge explosive volcanic eruptions. When subjected to intense wind-blasting over hundreds of millions of years, this material erodes easily once the uppermost tougher crust is breached. The crust, or cap rock, can be seen in the upper right part of the picture. The finely-spaced ridges are similar to features on Earth called yardangs, which are formed by intense winds plucking individual grains from, and by wind-driven sand blasting particles off, sedimentary deposits.

    The image was taken on October 30, 1997 at 11:05 AM PST, shortly after the Mars Global Surveyor spacecraft's 31st closest approach to Mars. The image covers an area 3.6 X 21.5 km (2.2 X 13.4 miles) at 3.6 m (12 feet) per picture element--craters only 11 m (36 feet, about the size of a swimming pool) across can be seen. The best Viking view of the area (VO 1 387S34) has a resolution of 240 m/pixel, or 67 times lower resolution than the MOC frame.

    Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  6. SPARCO : a semi-parametric approach for image reconstruction of chromatic objects. Application to young stellar objects

    NASA Astrophysics Data System (ADS)

    Kluska, J.; Malbet, F.; Berger, J.-P.; Baron, F.; Lazareff, B.; Le Bouquin, J.-B.; Monnier, J. D.; Soulez, F.; Thiébaut, E.

    2014-04-01

    Context. The emergence of optical interferometers with three and more telescopes allows image reconstruction of astronomical objects at the milliarcsecond scale. However, some objects contain components with very different spectral energy distributions (SED; i.e. different temperatures), which produces strong chromatic effects on the interferograms that have to be managed with care by image reconstruction algorithms. For example, the gray approximation for the image reconstruction process results in a degraded image if the total (u,v)-coverage given by the spectral supersynthesis is used. Aims: The relative flux contribution of the central object and an extended structure changes with wavelength for different temperatures. For young stellar objects, the known characteristics of the central object (i.e., stellar SED), or even the fit of the spectral index and the relative flux ratio, can be used to model the central star while reconstructing the image of the extended structure separately. Methods: We present a new method, called SPARCO (semi-parametric algorithm for the image reconstruction of chromatic objects), which describes the spectral characteristics of both the central object and the extended structure to consider them properly when reconstructing the image of the surrounding environment. We adapted two image-reconstruction codes ( Macim , Squeeze , and MiRA ) to implement this new prescription. Results: SPARCO is applied using Macim , Squeeze , and MiRA on a young stellar object model and also on literature data on HR 5999 in the near-infrared with the VLTI. We obtain smoother images of the modeled circumstellar emission and improve the χ2 by a factor 9. Conclusions: This method paves the way to improved aperture-synthesis imaging of several young stellar objects with existing datasets. More generally, the approach can be used on astrophysical sources with similar features, such as active galactic nuclei, planetary nebulae, and asymptotic giant branch

  7. Image Formation in Lenses and Mirrors, a Complete Representation

    ERIC Educational Resources Information Center

    Bartlett, Albert A.

    1976-01-01

    Provides tables and graphs that give a complete and simple picture of the relationships of image distance, object distance, and magnification in all formations of images by simple lenses and mirrors. (CP)

  8. A beamforming algorithm for bistatic SAR image formation.

    SciTech Connect

    Yocky, David Alan; Wahl, Daniel Eugene; Jakowatz, Charles V., Jr.

    2010-03-01

    Beamforming is a methodology for collection-mode-independent SAR image formation. It is essentially equivalent to backprojection. The authors have in previous papers developed this idea and discussed the advantages and disadvantages of the approach to monostatic SAR image formation vis--vis the more standard and time-tested polar formatting algorithm (PFA). In this paper we show that beamforming for bistatic SAR imaging leads again to a very simple image formation algorithm that requires a minimal number of lines of code and that allows the image to be directly formed onto a three-dimensional surface model, thus automatically creating an orthorectified image. The same disadvantage of beamforming applied to monostatic SAR imaging applies to the bistatic case, however, in that the execution time for the beamforming algorithm is quite long compared to that of PFA. Fast versions of beamforming do exist to help alleviate this issue. Results of image reconstructions from phase history data are presented.

  9. Texture analysis on parametric maps derived from dynamic contrast-enhanced magnetic resonance imaging in head and neck cancer

    PubMed Central

    Jansen, Jacobus FA; Lu, Yonggang; Gupta, Gaorav; Lee, Nancy Y; Stambuk, Hilda E; Mazaheri, Yousef; Deasy, Joseph O; Shukla-Dave, Amita

    2016-01-01

    AIM: To investigate the merits of texture analysis on parametric maps derived from pharmacokinetic modeling with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) as imaging biomarkers for the prediction of treatment response in patients with head and neck squamous cell carcinoma (HNSCC). METHODS: In this retrospective study, 19 HNSCC patients underwent pre- and intra-treatment DCE-MRI scans at a 1.5T MRI scanner. All patients had chemo-radiation treatment. Pharmacokinetic modeling was performed on the acquired DCE-MRI images, generating maps of volume transfer rate (Ktrans) and volume fraction of the extravascular extracellular space (ve). Image texture analysis was then employed on maps of Ktrans and ve, generating two texture measures: Energy (E) and homogeneity. RESULTS: No significant changes were found for the mean and standard deviation for Ktrans and ve between pre- and intra-treatment (P > 0.09). Texture analysis revealed that the imaging biomarker E of ve was significantly higher in intra-treatment scans, relative to pretreatment scans (P < 0.04). CONCLUSION: Chemo-radiation treatment in HNSCC significantly reduces the heterogeneity of tumors. PMID:26834947

  10. An augmented parametric response map with consideration of image registration error: towards guidance of locally adaptive radiotherapy

    NASA Astrophysics Data System (ADS)

    Lausch, Anthony; Chen, Jeff; Ward, Aaron D.; Gaede, Stewart; Lee, Ting-Yim; Wong, Eugene

    2014-11-01

    Parametric response map (PRM) analysis is a voxel-wise technique for predicting overall treatment outcome, which shows promise as a tool for guiding personalized locally adaptive radiotherapy (RT). However, image registration error (IRE) introduces uncertainty into this analysis which may limit its use for guiding RT. Here we extend the PRM method to include an IRE-related PRM analysis confidence interval and also incorporate multiple graded classification thresholds to facilitate visualization. A Gaussian IRE model was used to compute an expected value and confidence interval for PRM analysis. The augmented PRM (A-PRM) was evaluated using CT-perfusion functional image data from patients treated with RT for glioma and hepatocellular carcinoma. Known rigid IREs were simulated by applying one thousand different rigid transformations to each image set. PRM and A-PRM analyses of the transformed images were then compared to analyses of the original images (ground truth) in order to investigate the two methods in the presence of controlled IRE. The A-PRM was shown to help visualize and quantify IRE-related analysis uncertainty. The use of multiple graded classification thresholds also provided additional contextual information which could be useful for visually identifying adaptive RT targets (e.g. sub-volume boosts). The A-PRM should facilitate reliable PRM guided adaptive RT by allowing the user to identify if a patient’s unique IRE-related PRM analysis uncertainty has the potential to influence target delineation.

  11. Multi-parametric monitoring and assessment of high-intensity focused ultrasound (HIFU) boiling by harmonic motion imaging for focused ultrasound (HMIFU): an ex vivo feasibility study

    NASA Astrophysics Data System (ADS)

    Hou, Gary Y.; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E.

    2014-03-01

    Harmonic motion imaging for focused ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and change in relative phase shift during high energy HIFU treatment with tissue boiling. Forty three (n = 43) thermal lesions were formed in ex vivo canine liver specimens (n = 28). Two-dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10 s, 20 s and 30 s HIFU durations at three different acoustic powers of 8, 10, and 11 W, which were selected and verified as treatment parameters capable of inducing boiling using both thermocouple and passive cavitation detection (PCD) measurements. Although a steady decrease in the displacement, compressive strain, and relative change in the focal phase shift (Δϕ) were obtained in numerous cases, indicating an overall increase in relative stiffness, the study outcomes also showed that during boiling, a reverse lesion-to-background displacement contrast was detected, indicating potential change in tissue absorption, geometrical change and/or, mechanical gelatification or pulverization. Following treatment, corresponding 2D HMI displacement images of the thermal lesions also mapped consistent discrepancy in the lesion-to-background displacement contrast. Despite the expectedly chaotic changes in acoustic properties with boiling, the relative change in phase shift showed a consistent decrease, indicating its robustness to monitor biomechanical properties independent of the acoustic property changes throughout the HIFU treatment. In addition, the 2D HMI displacement images confirmed and indicated the increase in the thermal lesion size with

  12. Ultrabroadband coherence-domain imaging using parametric downconversion and superconducting single-photon detectors at 1064 nm.

    PubMed

    Mohan, Nishant; Minaeva, Olga; Goltsman, Gregory N; Saleh, Mohammed F; Nasr, Magued B; Sergienko, Alexander V; Saleh, Bahaa E A; Teich, Malvin C

    2009-07-10

    Coherence-domain imaging systems can be operated in a single-photon-counting mode, offering low detector noise; this in turn leads to increased sensitivity for weak light sources and weakly reflecting samples. We have demonstrated that excellent axial resolution can be obtained in a photon-counting coherence-domain imaging (CDI) system that uses light generated via spontaneous parametric downconversion (SPDC) in a chirped periodically poled stoichiometric lithium tantalate (chirped-PPSLT) structure, in conjunction with a niobium nitride superconducting single-photon detector (SSPD). The bandwidth of the light generated via SPDC, as well as the bandwidth over which the SSPD is sensitive, can extend over a wavelength region that stretches from 700 to 1500 nm. This ultrabroad wavelength band offers a near-ideal combination of deep penetration and ultrahigh axial resolution for the imaging of biological tissue. The generation of SPDC light of adjustable bandwidth in the vicinity of 1064 nm, via the use of chirped-PPSLT structures, had not been previously achieved. To demonstrate the usefulness of this technique, we construct images for a hierarchy of samples of increasing complexity: a mirror, a nitrocellulose membrane, and a biological sample comprising onion-skin cells. PMID:19593355

  13. Medical imaging V: Image capture, formatting, and display

    SciTech Connect

    Kim, Y.

    1991-01-01

    This book is covered under the following topics: Digital image display I-V; Quality assurance I-V; Clinical image presentation I-V; Imaging systems; Image compression; Workstations; and Medical diagnostic imaging support system for military medicine and other federal agencies.

  14. Chemically Specific Cellular Imaging of Biofilm Formation

    SciTech Connect

    Herberg, J L; Schaldach, C; Horn, J; Gjersing, E; Maxwell, R

    2006-02-09

    organism, we needed to first turn our attention to a well understood organism. Pseudomonas aeruginosa (PA) is a well-studied organism and will be used to compare our results with others. Then, we will turn our attention to TD. It is expected that the research performed will provide key data to validate biochemical studies of TD and result in high profile publications in leading journals. For this project, our ultimate goal was to combine both Magnetic Resonance Imaging (MRI) and Nuclear Magnetic Resonance (NMR) experimental analysis with computer simulations to provide unique 3D molecular structural, dynamics, and functional information on the order of microns for this DOE mission relevant microorganism, T. denitrificans. For FY05, our goals were to: (1) Determine proper media for optimal growth of PA; growth rate measurements in that media and characterization of metabolite signatures during growth via {sup 1}H and {sup 13}C NMR, (2) Determine and build mineral, metal, and implant material surfaces to support growth of PA, (3) Implementing new MRI sequences to image biofilms more efficiently and increase resolution with new hardware design, (4) Develop further diffusion and flow MRI measurements of biofilms and biofilm formation with different MRI pulse sequences and different hardware design, and (5) Develop a zero dimension model of the rate of growth and the metabolite profiles of PA. Our major accomplishments are discussed in the following text. However, the bulk of this work is described in the attached manuscript entitled, ''NMR Metabolomics of Planktonic and Biofilm Modes of Growth in Pseudomonas aeruginosa''. This paper will be submitted to the Journal of Bacteriology in coming weeks. In addition, this one-year effort has lead to our incorporation into the Enhanced Surveillance Campaign during FY05 for some proof-of-principle MRI measurements on polymers. We are currently using similar methods to evaluate these polymers. In addition, this work on MRI measurements

  15. Improved estimation of parametric images of cerebral glucose metabolic rate from dynamic FDG-PET using volume-wise principle component analysis

    NASA Astrophysics Data System (ADS)

    Dai, Xiaoqian; Tian, Jie; Chen, Zhe

    2010-03-01

    Parametric images can represent both spatial distribution and quantification of the biological and physiological parameters of tracer kinetics. The linear least square (LLS) method is a well-estimated linear regression method for generating parametric images by fitting compartment models with good computational efficiency. However, bias exists in LLS-based parameter estimates, owing to the noise present in tissue time activity curves (TTACs) that propagates as correlated error in the LLS linearized equations. To address this problem, a volume-wise principal component analysis (PCA) based method is proposed. In this method, firstly dynamic PET data are properly pre-transformed to standardize noise variance as PCA is a data driven technique and can not itself separate signals from noise. Secondly, the volume-wise PCA is applied on PET data. The signals can be mostly represented by the first few principle components (PC) and the noise is left in the subsequent PCs. Then the noise-reduced data are obtained using the first few PCs by applying 'inverse PCA'. It should also be transformed back according to the pre-transformation method used in the first step to maintain the scale of the original data set. Finally, the obtained new data set is used to generate parametric images using the linear least squares (LLS) estimation method. Compared with other noise-removal method, the proposed method can achieve high statistical reliability in the generated parametric images. The effectiveness of the method is demonstrated both with computer simulation and with clinical dynamic FDG PET study.

  16. Single molecule image formation, reconstruction and processing: introduction.

    PubMed

    Ashok, Amit; Piestun, Rafael; Stallinga, Sjoerd

    2016-07-01

    The ability to image at the single molecule scale has revolutionized research in molecular biology. This feature issue presents a collection of articles that provides new insights into the fundamental limits of single molecule imaging and reports novel techniques for image formation and analysis. PMID:27409708

  17. Wavelet denoising in voxel-based parametric estimation of small animal PET images: a systematic evaluation of spatial constraints and noise reduction algorithms

    NASA Astrophysics Data System (ADS)

    Su, Yi; Shoghi, Kooresh I.

    2008-11-01

    Voxel-based estimation of PET images, generally referred to as parametric imaging, can provide invaluable information about the heterogeneity of an imaging agent in a given tissue. Due to high level of noise in dynamic images, however, the estimated parametric image is often noisy and unreliable. Several approaches have been developed to address this challenge, including spatial noise reduction techniques, cluster analysis and spatial constrained weighted nonlinear least-square (SCWNLS) methods. In this study, we develop and test several noise reduction techniques combined with SCWNLS using simulated dynamic PET images. Both spatial smoothing filters and wavelet-based noise reduction techniques are investigated. In addition, 12 different parametric imaging methods are compared using simulated data. With the combination of noise reduction techniques and SCWNLS methods, more accurate parameter estimation can be achieved than with either of the two techniques alone. A less than 10% relative root-mean-square error is achieved with the combined approach in the simulation study. The wavelet denoising based approach is less sensitive to noise and provides more accurate parameter estimation at higher noise levels. Further evaluation of the proposed methods is performed using actual small animal PET datasets. We expect that the proposed method would be useful for cardiac, neurological and oncologic applications.

  18. Impact of temporal, spatial and cascaded effects on the pulse formation in ultra-broadband parametric amplifiers.

    PubMed

    Lang, T; Harth, A; Matyschok, J; Binhammer, T; Schultze, M; Morgner, U

    2013-01-14

    A 2 + 1 dimensional nonlinear pulse propagation model is presented, illustrating the weighting of different effects for the parametric amplification of ultra-broadband spectra in different regimes of energy scaling. Typical features in the distribution of intensity and phase of state-of-the-art OPA-systems can be understood by cascaded spatial and temporal effects. PMID:23388988

  19. Non-destructive drug inspection in covering materials using a terahertz spectral imaging system with injection-seeded terahertz parametric generation and detection.

    PubMed

    Kato, Mikiya; Tripathi, Saroj R; Murate, Kosuke; Imayama, Kazuki; Kawase, Kodo

    2016-03-21

    In 2003, we reported the first-ever development of a spectral imaging system for illicit drugs detection using a terahertz (THz) wave parametric oscillator (TPO) [K. Kawase et al., Opt. Exp. 11(20), 2549 2003]. The system has a dynamic range below four orders of magnitude, which enables it to identify reagents only through thin envelopes using spectral imaging. Recently, we succeeded in developing a high power and high sensitivity THz wave spectral imaging system using injection-seeded THz parametric generation and detection. A dynamic range in excess of 80 dB has been obtained, which is much higher than that of the 2003 system. In this study, the new spectral imaging system successfully identified reagents through thicker material than the thin envelopes used previously. PMID:27136833

  20. Joint image formation and anisotropy characterization in wide-angle SAR

    NASA Astrophysics Data System (ADS)

    Varshney, Kush R.; Çetin, Müjdat; Fisher, John W., III; Willsky, Alan S.

    2006-05-01

    We consider the problem of jointly forming images and characterizing anisotropy from wide-angle synthetic aperture radar (SAR) measurements. Conventional SAR image formation techniques assume isotropic scattering, which is not valid with wide-angle apertures. We present a method based on a sparse representation of aspect-dependent scattering with an overcomplete basis composed of basis vectors with varying levels of angular persistence. Solved as an inverse problem, the result is a complex-valued, aspect-dependent response for each spatial location in a scene. Our non-parametric approach does not suffer from reduced cross-range resolution inherent in subaperture methods and considers all point scatterers in a scene jointly. The choice of the overcomplete basis set incorporates prior knowledge of aspect-dependent scattering, but the method is flexible enough to admit solutions that may not match a family of parametric functions. We enforce sparsity through regularization based on the l k-norm, k < 1. This formulation leads to an optimization problem that is solved through a robust quasi-Newton method. We also develop a graph-structured interpretation of the overcomplete basis leading towards approximate algorithms using guided depth-first search with appropriate stopping conditions and search heuristics. We present experimental results on synthetic scenes and the backhoe public release dataset.

  1. Non parametric denoising methods based on wavelets: Application to electron microscopy images in low exposure time

    NASA Astrophysics Data System (ADS)

    Soumia, Sid Ahmed; Messali, Zoubeida; Ouahabi, Abdeldjalil; Trepout, Sylvain; Messaoudi, Cedric; Marco, Sergio

    2015-01-01

    The 3D reconstruction of the Cryo-Transmission Electron Microscopy (Cryo-TEM) and Energy Filtering TEM images (EFTEM) hampered by the noisy nature of these images, so that their alignment becomes so difficult. This noise refers to the collision between the frozen hydrated biological samples and the electrons beam, where the specimen is exposed to the radiation with a high exposure time. This sensitivity to the electrons beam led specialists to obtain the specimen projection images at very low exposure time, which resulting the emergence of a new problem, an extremely low signal-to-noise ratio (SNR). This paper investigates the problem of TEM images denoising when they are acquired at very low exposure time. So, our main objective is to enhance the quality of TEM images to improve the alignment process which will in turn improve the three dimensional tomography reconstructions. We have done multiple tests on special TEM images acquired at different exposure time 0.5s, 0.2s, 0.1s and 1s (i.e. with different values of SNR)) and equipped by Golding beads for helping us in the assessment step. We herein, propose a structure to combine multiple noisy copies of the TEM images. The structure is based on four different denoising methods, to combine the multiple noisy TEM images copies. Namely, the four different methods are Soft, the Hard as Wavelet-Thresholding methods, Bilateral Filter as a non-linear technique able to maintain the edges neatly, and the Bayesian approach in the wavelet domain, in which context modeling is used to estimate the parameter for each coefficient. To ensure getting a high signal-to-noise ratio, we have guaranteed that we are using the appropriate wavelet family at the appropriate level. So we have chosen âĂIJsym8âĂİ wavelet at level 3 as the most appropriate parameter. Whereas, for the bilateral filtering many tests are done in order to determine the proper filter parameters represented by the size of the filter, the range parameter and the

  2. Non parametric denoising methods based on wavelets: Application to electron microscopy images in low exposure time

    SciTech Connect

    Soumia, Sid Ahmed; Messali, Zoubeida; Ouahabi, Abdeldjalil; Trepout, Sylvain E-mail: cedric.messaoudi@curie.fr Messaoudi, Cedric E-mail: cedric.messaoudi@curie.fr Marco, Sergio E-mail: cedric.messaoudi@curie.fr

    2015-01-13

    The 3D reconstruction of the Cryo-Transmission Electron Microscopy (Cryo-TEM) and Energy Filtering TEM images (EFTEM) hampered by the noisy nature of these images, so that their alignment becomes so difficult. This noise refers to the collision between the frozen hydrated biological samples and the electrons beam, where the specimen is exposed to the radiation with a high exposure time. This sensitivity to the electrons beam led specialists to obtain the specimen projection images at very low exposure time, which resulting the emergence of a new problem, an extremely low signal-to-noise ratio (SNR). This paper investigates the problem of TEM images denoising when they are acquired at very low exposure time. So, our main objective is to enhance the quality of TEM images to improve the alignment process which will in turn improve the three dimensional tomography reconstructions. We have done multiple tests on special TEM images acquired at different exposure time 0.5s, 0.2s, 0.1s and 1s (i.e. with different values of SNR)) and equipped by Golding beads for helping us in the assessment step. We herein, propose a structure to combine multiple noisy copies of the TEM images. The structure is based on four different denoising methods, to combine the multiple noisy TEM images copies. Namely, the four different methods are Soft, the Hard as Wavelet-Thresholding methods, Bilateral Filter as a non-linear technique able to maintain the edges neatly, and the Bayesian approach in the wavelet domain, in which context modeling is used to estimate the parameter for each coefficient. To ensure getting a high signal-to-noise ratio, we have guaranteed that we are using the appropriate wavelet family at the appropriate level. So we have chosen âĂIJsym8âĂİ wavelet at level 3 as the most appropriate parameter. Whereas, for the bilateral filtering many tests are done in order to determine the proper filter parameters represented by the size of the filter, the range parameter and the

  3. Whole-body direct 4D parametric PET imaging employing nested generalized Patlak expectation–maximization reconstruction

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Nicolas A.; Casey, Michael E.; Lodge, Martin A.; Rahmim, Arman; Zaidi, Habib

    2016-08-01

    Whole-body (WB) dynamic PET has recently demonstrated its potential in translating the quantitative benefits of parametric imaging to the clinic. Post-reconstruction standard Patlak (sPatlak) WB graphical analysis utilizes multi-bed multi-pass PET acquisition to produce quantitative WB images of the tracer influx rate K i as a complimentary metric to the semi-quantitative standardized uptake value (SUV). The resulting K i images may suffer from high noise due to the need for short acquisition frames. Meanwhile, a generalized Patlak (gPatlak) WB post-reconstruction method had been suggested to limit K i bias of sPatlak analysis at regions with non-negligible 18F-FDG uptake reversibility; however, gPatlak analysis is non-linear and thus can further amplify noise. In the present study, we implemented, within the open-source software for tomographic image reconstruction platform, a clinically adoptable 4D WB reconstruction framework enabling efficient estimation of sPatlak and gPatlak images directly from dynamic multi-bed PET raw data with substantial noise reduction. Furthermore, we employed the optimization transfer methodology to accelerate 4D expectation–maximization (EM) convergence by nesting the fast image-based estimation of Patlak parameters within each iteration cycle of the slower projection-based estimation of dynamic PET images. The novel gPatlak 4D method was initialized from an optimized set of sPatlak ML-EM iterations to facilitate EM convergence. Initially, realistic simulations were conducted utilizing published 18F-FDG kinetic parameters coupled with the XCAT phantom. Quantitative analyses illustrated enhanced K i target-to-background ratio (TBR) and especially contrast-to-noise ratio (CNR) performance for the 4D versus the indirect methods and static SUV. Furthermore, considerable convergence acceleration was observed for the nested algorithms involving 10–20 sub-iterations. Moreover, systematic reduction in K i % bias and improved TBR were

  4. Whole-body direct 4D parametric PET imaging employing nested generalized Patlak expectation-maximization reconstruction.

    PubMed

    Karakatsanis, Nicolas A; Casey, Michael E; Lodge, Martin A; Rahmim, Arman; Zaidi, Habib

    2016-08-01

    Whole-body (WB) dynamic PET has recently demonstrated its potential in translating the quantitative benefits of parametric imaging to the clinic. Post-reconstruction standard Patlak (sPatlak) WB graphical analysis utilizes multi-bed multi-pass PET acquisition to produce quantitative WB images of the tracer influx rate K i as a complimentary metric to the semi-quantitative standardized uptake value (SUV). The resulting K i images may suffer from high noise due to the need for short acquisition frames. Meanwhile, a generalized Patlak (gPatlak) WB post-reconstruction method had been suggested to limit K i bias of sPatlak analysis at regions with non-negligible (18)F-FDG uptake reversibility; however, gPatlak analysis is non-linear and thus can further amplify noise. In the present study, we implemented, within the open-source software for tomographic image reconstruction platform, a clinically adoptable 4D WB reconstruction framework enabling efficient estimation of sPatlak and gPatlak images directly from dynamic multi-bed PET raw data with substantial noise reduction. Furthermore, we employed the optimization transfer methodology to accelerate 4D expectation-maximization (EM) convergence by nesting the fast image-based estimation of Patlak parameters within each iteration cycle of the slower projection-based estimation of dynamic PET images. The novel gPatlak 4D method was initialized from an optimized set of sPatlak ML-EM iterations to facilitate EM convergence. Initially, realistic simulations were conducted utilizing published (18)F-FDG kinetic parameters coupled with the XCAT phantom. Quantitative analyses illustrated enhanced K i target-to-background ratio (TBR) and especially contrast-to-noise ratio (CNR) performance for the 4D versus the indirect methods and static SUV. Furthermore, considerable convergence acceleration was observed for the nested algorithms involving 10-20 sub-iterations. Moreover, systematic reduction in K i % bias and improved TBR were

  5. Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement.

    PubMed

    Nguyen, N; Milanfar, P; Golub, G

    2001-01-01

    In many image restoration/resolution enhancement applications, the blurring process, i.e., point spread function (PSF) of the imaging system, is not known or is known only to within a set of parameters. We estimate these PSF parameters for this ill-posed class of inverse problem from raw data, along with the regularization parameters required to stabilize the solution, using the generalized cross-validation method (GCV). We propose efficient approximation techniques based on the Lanczos algorithm and Gauss quadrature theory, reducing the computational complexity of the GCV. Data-driven PSF and regularization parameter estimation experiments with synthetic and real image sequences are presented to demonstrate the effectiveness and robustness of our method. PMID:18255545

  6. Parametric modelling and segmentation of vertebral bodies in 3D CT and MR spine images

    NASA Astrophysics Data System (ADS)

    Štern, Darko; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2011-12-01

    Accurate and objective evaluation of vertebral deformations is of significant importance in clinical diagnostics and therapy of pathological conditions affecting the spine. Although modern clinical practice is focused on three-dimensional (3D) computed tomography (CT) and magnetic resonance (MR) imaging techniques, the established methods for evaluation of vertebral deformations are limited to measuring deformations in two-dimensional (2D) x-ray images. In this paper, we propose a method for quantitative description of vertebral body deformations by efficient modelling and segmentation of vertebral bodies in 3D. The deformations are evaluated from the parameters of a 3D superquadric model, which is initialized as an elliptical cylinder and then gradually deformed by introducing transformations that yield a more detailed representation of the vertebral body shape. After modelling the vertebral body shape with 25 clinically meaningful parameters and the vertebral body pose with six rigid body parameters, the 3D model is aligned to the observed vertebral body in the 3D image. The performance of the method was evaluated on 75 vertebrae from CT and 75 vertebrae from T2-weighted MR spine images, extracted from the thoracolumbar part of normal and pathological spines. The results show that the proposed method can be used for 3D segmentation of vertebral bodies in CT and MR images, as the proposed 3D model is able to describe both normal and pathological vertebral body deformations. The method may therefore be used for initialization of whole vertebra segmentation or for quantitative measurement of vertebral body deformations.

  7. Effect of injection technique on temporal parametric imaging derived from digital subtraction angiography in patient specific phantoms

    NASA Astrophysics Data System (ADS)

    Ionita, Ciprian N.; Garcia, Victor L.; Bednarek, Daniel R.; Snyder, Kenneth V.; Siddiqui, Adnan H.; Levy, Elad I.; Rudin, Stephen

    2014-03-01

    Parametric imaging maps (PIM's) derived from digital subtraction angiography (DSA) for the cerebral arterial flow assessment in clinical settings have been proposed, but experiments have yet to determine the reliability of such studies. For this study, we have observed the effects of different injection techniques on PIM's. A flow circuit set to physiologic conditions was created using an internal carotid artery phantom. PIM's were derived for two catheter positions, two different contrast bolus injection volumes (5ml and 10 ml), and four injection rates (5, 10, 15 and 20 ml/s). Using a gamma variate fitting approach, we derived PIM's for mean-transit-time (MTT), time-to-peak (TTP) and bolus-arrivaltime (BAT). For the same injection rates, a larger bolus resulted in an increased MTT and TTP, while a faster injection rate resulted in a shorter MTT, TTP, and BAT. In addition, the position of the catheter tip within the vasculature directly affected the PIM. The experiment showed that the PIM is strongly correlated with the injection conditions, and, therefore, they have to be interpreted with caution. PIM images must be taken from the same patient to be able to be meaningfully compared. These comparisons can include pre- and post-treatment images taken immediately before and after an interventional procedure or simultaneous arterial flow comparisons through the left and right cerebral hemispheres. Due to the strong correlation between PIM and injection conditions, this study indicates that this assessment method should be used only to compare flow changes before and after treatment within the same patient using the same injection conditions.

  8. A non-parametric statistical test to compare clusters with applications in functional magnetic resonance imaging data.

    PubMed

    Fujita, André; Takahashi, Daniel Y; Patriota, Alexandre G; Sato, João R

    2014-12-10

    Statistical inference of functional magnetic resonance imaging (fMRI) data is an important tool in neuroscience investigation. One major hypothesis in neuroscience is that the presence or not of a psychiatric disorder can be explained by the differences in how neurons cluster in the brain. Therefore, it is of interest to verify whether the properties of the clusters change between groups of patients and controls. The usual method to show group differences in brain imaging is to carry out a voxel-wise univariate analysis for a difference between the mean group responses using an appropriate test and to assemble the resulting 'significantly different voxels' into clusters, testing again at cluster level. In this approach, of course, the primary voxel-level test is blind to any cluster structure. Direct assessments of differences between groups at the cluster level seem to be missing in brain imaging. For this reason, we introduce a novel non-parametric statistical test called analysis of cluster structure variability (ANOCVA), which statistically tests whether two or more populations are equally clustered. The proposed method allows us to compare the clustering structure of multiple groups simultaneously and also to identify features that contribute to the differential clustering. We illustrate the performance of ANOCVA through simulations and an application to an fMRI dataset composed of children with attention deficit hyperactivity disorder (ADHD) and controls. Results show that there are several differences in the clustering structure of the brain between them. Furthermore, we identify some brain regions previously not described to be involved in the ADHD pathophysiology, generating new hypotheses to be tested. The proposed method is general enough to be applied to other types of datasets, not limited to fMRI, where comparison of clustering structures is of interest. PMID:25185759

  9. Potential for Early Fracture Risk Assessment in Patients with Metastatic Bone Disease using Parametric Response Mapping of CT Images

    PubMed Central

    Hoff, Benjamin A.; Toole, Michael; Yablon, Corrie; Ross, Brian D.; Luker, Gary D.; VanPoznak, Catherine; Galbán, Craig J.

    2016-01-01

    Pathologic vertebral compression fractures (PVCF) cause significant morbidity in patients with bone metastases from breast cancer and other malignancies. Due to limitations of existing biochemical and imaging biomarkers, clinicians currently have no reliable metrics to identify patients with impending PVCF, impeding efforts to prevent this severe complication. To establish the feasibility of a new method for defining risk of PVCF, we retrospectively analyzed serial CT scans from five breast cancer patients using parametric response mapping (PRM) to quantify dynamic bone density changes that preceded an event. Vertebrae segmented from each scan were registered to vertebrae at the earliest time point (i.e. furthest from PVCF) and voxel classification accomplished using a predetermined threshold of change in HU values, resulting in relative volumes of increased (PRMHU+), decreased (PRMHU−), or unchanged (PRMHU0) attenuation. A total of seven PVCF were compared to un-diseased vertebrae in each patient serving as controls. Receiver operator curve (ROC) analysis identified optimal image acquisition and analysis times for group stratification. Bone density changes were visualized by an increasing trend in PRMHU+ as early as one year before fracture. PRMHU− demonstrated negligible changes over the course of the study. These observations were consistent with ROC results, showing poor performance of PRMHU− in stratifying PVCF versus control. As early as 6 months prior to PVCF, PRMHU+ was significantly larger (12.9 ± 11.6%) compared to control vertebrae (2.3 ± 2.5%), with an AUC of 0.918 from a receiver operator curve analysis. Mean HU changes were also significant between PVCF (+26.8 ± 26.9%) and control (−2.2 ± 22.0%) over the same period. PRM analysis of bone density changes using standard CT imaging was sensitive for spatially resolving bone remodeling which preceded structural failure in patients with breast cancer vertebral metastases. PMID:26771006

  10. Generalized whole-body Patlak parametric imaging for enhanced quantification in clinical PET

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Nicolas A.; Zhou, Yun; Lodge, Martin A.; Casey, Michael E.; Wahl, Richard L.; Zaidi, Habib; Rahmim, Arman

    2015-11-01

    We recently developed a dynamic multi-bed PET data acquisition framework to translate the quantitative benefits of Patlak voxel-wise analysis to the domain of routine clinical whole-body (WB) imaging. The standard Patlak (sPatlak) linear graphical analysis assumes irreversible PET tracer uptake, ignoring the effect of FDG dephosphorylation, which has been suggested by a number of PET studies. In this work: (i) a non-linear generalized Patlak (gPatlak) model is utilized, including a net efflux rate constant kloss, and (ii) a hybrid (s/g)Patlak (hPatlak) imaging technique is introduced to enhance contrast to noise ratios (CNRs) of uptake rate Ki images. Representative set of kinetic parameter values and the XCAT phantom were employed to generate realistic 4D simulation PET data, and the proposed methods were additionally evaluated on 11 WB dynamic PET patient studies. Quantitative analysis on the simulated Ki images over 2 groups of regions-of-interest (ROIs), with low (ROI A) or high (ROI B) true kloss relative to Ki, suggested superior accuracy for gPatlak. Bias of sPatlak was found to be 16-18% and 20-40% poorer than gPatlak for ROIs A and B, respectively. By contrast, gPatlak exhibited, on average, 10% higher noise than sPatlak. Meanwhile, the bias and noise levels for hPatlak always ranged between the other two methods. In general, hPatlak was seen to outperform all methods in terms of target-to-background ratio (TBR) and CNR for all ROIs. Validation on patient datasets demonstrated clinical feasibility for all Patlak methods, while TBR and CNR evaluations confirmed our simulation findings, and suggested presence of non-negligible kloss reversibility in clinical data. As such, we recommend gPatlak for highly quantitative imaging tasks, while, for tasks emphasizing lesion detectability (e.g. TBR, CNR) over quantification, or for high levels of noise, hPatlak is instead preferred. Finally, gPatlak and hPatlak CNR was systematically higher compared to routine SUV

  11. Generalized whole-body Patlak parametric imaging for enhanced quantification in clinical PET.

    PubMed

    Karakatsanis, Nicolas A; Zhou, Yun; Lodge, Martin A; Casey, Michael E; Wahl, Richard L; Zaidi, Habib; Rahmim, Arman

    2015-11-21

    We recently developed a dynamic multi-bed PET data acquisition framework to translate the quantitative benefits of Patlak voxel-wise analysis to the domain of routine clinical whole-body (WB) imaging. The standard Patlak (sPatlak) linear graphical analysis assumes irreversible PET tracer uptake, ignoring the effect of FDG dephosphorylation, which has been suggested by a number of PET studies. In this work: (i) a non-linear generalized Patlak (gPatlak) model is utilized, including a net efflux rate constant kloss, and (ii) a hybrid (s/g)Patlak (hPatlak) imaging technique is introduced to enhance contrast to noise ratios (CNRs) of uptake rate Ki images. Representative set of kinetic parameter values and the XCAT phantom were employed to generate realistic 4D simulation PET data, and the proposed methods were additionally evaluated on 11 WB dynamic PET patient studies. Quantitative analysis on the simulated Ki images over 2 groups of regions-of-interest (ROIs), with low (ROI A) or high (ROI B) true kloss relative to Ki, suggested superior accuracy for gPatlak. Bias of sPatlak was found to be 16-18% and 20-40% poorer than gPatlak for ROIs A and B, respectively. By contrast, gPatlak exhibited, on average, 10% higher noise than sPatlak. Meanwhile, the bias and noise levels for hPatlak always ranged between the other two methods. In general, hPatlak was seen to outperform all methods in terms of target-to-background ratio (TBR) and CNR for all ROIs. Validation on patient datasets demonstrated clinical feasibility for all Patlak methods, while TBR and CNR evaluations confirmed our simulation findings, and suggested presence of non-negligible kloss reversibility in clinical data. As such, we recommend gPatlak for highly quantitative imaging tasks, while, for tasks emphasizing lesion detectability (e.g. TBR, CNR) over quantification, or for high levels of noise, hPatlak is instead preferred. Finally, gPatlak and hPatlak CNR was systematically higher compared to routine SUV

  12. Geometric Constructions for Image Formation by a Converging Lens

    ERIC Educational Resources Information Center

    Zurcher, Ulrich

    2012-01-01

    Light rays emerge from an object in all directions. In introductory texts, three "special" rays are selected to draw the image produced by lenses and mirrors. This presentation may suggest to students that these three rays are necessary for the formation of an image. We discuss that the three rays attain their "special status" from the geometric…

  13. Formation of nonlinear holographic images in powerful laser systems.

    PubMed

    Bel'kov, Sergey A; Garanin, Sergey G; Epatko, Igor V; Serov, Rene V; Voronich, Ivan N

    2012-08-20

    The formation of nonlinear holographic images behind a multislab amplifier is studied. The analytical expressions describing magnitudes and locations of intensity maxima depending on the corresponding image number are derived. Comparison with numerical calculations results is given. On the basis of numerical modeling, analysis of gain saturation, slab thickness, and slab aberrations influence is carried out. PMID:22907023

  14. An evaluation of four parametric models of contrast enhancement for dynamic magnetic resonance imaging of the breast.

    PubMed

    Gal, Yaniv; Mehnert, Andrew; Bradley, Andrew; McMahon, Kerry; Crozier, Stuart

    2007-01-01

    This paper presents an empirical evaluation of the goodness-of-fit (GOF) of four parametric models of contrast enhancement for dynamic resonance imaging of the breast: the Tofts, Brix, and Hayton pharmacokinetic models, and a novel empiric model. The goodness-of-fit of each model was evaluated with respect to: (i) two model-fitting algorithms (Levenberg-Marquardt and Nelder-Mead) and two fitting tolerances; and (ii) temporal resolution. In the first case the GOF was measured using data from three dynamic contrast-enhanced (DCE) MRI data sets from routine clinical examinations: one case with benign enhancement, one with malignant enhancement, and one with normal findings. Results are presented for fits to both the whole breast volume and to a selected region of interest. In the second case the GOF was measured by first fitting the models to several temporally sub-sampled versions of a custom high temporal resolution data set (subset of the breast volume containing a malignant lesion), and then comparing the fitted results to the original full temporal resolution data. Our results demonstrate that under the various optimization conditions considered, in general, both the proposed empiric model and the Hayton model fit the data equally well and that both of these models fit the data better than the Tofts and Brix models. PMID:18001891

  15. Effects of registration error on parametric response map analysis: a simulation study using liver CT-perfusion images

    NASA Astrophysics Data System (ADS)

    Lausch, A.; Jensen, N. K. G.; Chen, J.; Lee, T. Y.; Lock, M.; Wong, E.

    2014-03-01

    Purpose: To investigate the effects of registration error (RE) on parametric response map (PRM) analysis of pre and post-radiotherapy (RT) functional images. Methods: Arterial blood flow maps (ABF) were generated from the CT-perfusion scans of 5 patients with hepatocellular carcinoma. ABF values within each patient map were modified to produce seven new ABF maps simulating 7 distinct post-RT functional change scenarios. Ground truth PRMs were generated for each patient by comparing the simulated and original ABF maps. Each simulated ABF map was then deformed by different magnitudes of realistic respiratory motion in order to simulate RE. PRMs were generated for each of the deformed maps and then compared to the ground truth PRMs to produce estimates of RE-induced misclassification. Main findings: The percentage of voxels misclassified as decreasing, no change, and increasing, increased with RE For all patients, increasing RE was observed to increase the number of high post-RT ABF voxels associated with low pre-RT ABF voxels and vice versa. 3 mm of average tumour RE resulted in 18-45% tumour voxel misclassification rates. Conclusions: RE induced misclassification posed challenges for PRM analysis in the liver where registration accuracy tends to be lower. Quantitative understanding of the sensitivity of the PRM method to registration error is required if PRMs are to be used to guide radiation therapy dose painting techniques.

  16. Parametric analysis of an imaging radar for use as an imaging radar for use as an independent landing monitor

    NASA Technical Reports Server (NTRS)

    Bundick, W. T.

    1974-01-01

    The capabilities are analyzed of a real aperture, forward-looking imaging radar for use as an independent landing monitor, which will provide the pilot with an independent means of assessing the progress of an automatic landing during Category 3 operations. The analysis shows that adequate ground resolution and signal-to-noise ratio can be obtained to image a runway with grassy surroundings using a radar operating at 35 GHz in good weather and in most fog but that performance is severely degraded in moderate to heavy rain and wet snow. Weather effects on a 10 GHz imager are not serious, with the possible exception of very heavy rain, but the azimuthal resolution at 10 GHz is inadequate with antennas up to 2 m long.

  17. Initialization of iterative parametric algorithms for blind deconvolution of motion-blurred images.

    PubMed

    Loyev, Vadim; Yitzhaky, Yitzhak

    2006-04-10

    Performances of iterative blind deconvolution methods for motion-blurred images are usually reduced depending on the accuracy of the required initial guess of the blur. We examine this dependency, and a two-stage restoration procedure is proposed: First we perform a direct technique with a single straight-forward process to produce a rough initial estimate of the blur, and then an iterative technique is employed to refine the blur estimate. Two common iterative techniques (the expectation-maximization and the Richardson-Lucy methods) are examined here and implemented in the combined direct-iterative modification for a variety of motion blur types. Results show that the combined method significantly improves the reliability of the deconvolution process. PMID:16623241

  18. Initialization of iterative parametric algorithms for blind deconvolution of motion-blurred images

    NASA Astrophysics Data System (ADS)

    Loyev, Vadim; Yitzhaky, Yitzhak

    2006-04-01

    Performances of iterative blind deconvolution methods for motion-blurred images are usually reduced depending on the accuracy of the required initial guess of the blur. We examine this dependency, and a two-stage restoration procedure is proposed: First we perform a direct technique with a single straightforward process to produce a rough initial estimate of the blur, and then an iterative technique is employed to refine the blur estimate. Two common iterative techniques (the expectation-maximization and the Richardson-Lucy methods) are examined here and implemented in the combined direct-iterative modification for a variety of motion blur types. Results show that the combined method significantly improves the reliability of the deconvolution process.

  19. Parametric techniques for characterizing myocardial tissue by magnetic resonance imaging (part 1): T1 mapping.

    PubMed

    Perea Palazón, R J; Ortiz Pérez, J T; Prat González, S; de Caralt Robira, T M; Cibeira López, M T; Solé Arqués, M

    2016-01-01

    The development of myocardial fibrosis is a common process in the appearance of ventricular dysfunction in many heart diseases. Magnetic resonance imaging makes it possible to accurately evaluate the structure and function of the heart, and its role in the macroscopic characterization of myocardial fibrosis by late enhancement techniques has been widely validated clinically. Recent studies have demonstrated that T1-mapping techniques can quantify diffuse myocardial fibrosis and the expansion of the myocardial extracellular space in absolute terms. However, further studies are necessary to validate the usefulness of this technique in the early detection of tissue remodeling at a time when implementing early treatment would improve a patient's prognosis. This article reviews the state of the art for T1 mapping of the myocardium, its clinical applications, and its limitations. PMID:26944850

  20. Parametric methods for characterizing myocardial tissue by magnetic resonance imaging (part 2): T2 mapping.

    PubMed

    Perea Palazón, R J; Solé Arqués, M; Prat González, S; de Caralt Robira, T M; Cibeira López, M T; Ortiz Pérez, J T

    2015-01-01

    Cardiac magnetic resonance imaging is considered the reference technique for characterizing myocardial tissue; for example, T2-weighted sequences make it possible to evaluate areas of edema or myocardial inflammation. However, traditional sequences have many limitations and provide only qualitative information. Moreover, traditional sequences depend on the reference to remote myocardium or skeletal muscle, which limits their ability to detect and quantify diffuse myocardial damage. Recently developed magnetic resonance myocardial mapping techniques enable quantitative assessment of parameters indicative of edema. These techniques have proven better than traditional sequences both in acute cardiomyopathy and in acute ischemic heart disease. This article synthesizes current developments in T2 mapping as well as their clinical applications and limitations. PMID:26315259

  1. A parametric analysis of two-dimensional elastic full waveform inversion of teleseismic data for lithospheric imaging

    NASA Astrophysics Data System (ADS)

    Pageot, Damien; Operto, Stéphane; Vallée, Martin; Brossier, Romain; Virieux, Jean

    2013-06-01

    The development of dense networks of broad-band seismographs makes teleseismic data amenable to full-waveform inversion (FWI) methods for high-resolution lithospheric imaging. Compared to scattered-field migration, FWI seeks to involve the full seismic wavefield in the inversion. We present a parametric analysis of 2-D frequency-domain FWI in the framework of lithospheric imaging from teleseismic data to identify the main factors that impact on the quality of the reconstructed compressional (P)-wave and shear (S)-wave speed models. Compared to controlled-source seismology, the main adaptation of FWI to teleseismic configuration consists of the implementation with a scattered-filed formulation of plane-wave sources that impinge on the base of the lithospheric target located below the receiver network at an arbitrary incidence angle. Seismic modelling is performed with a hp-adaptive discontinuous Galerkin method on unstructured triangular mesh. A quasi-Newton inversion algorithm provides an approximate accounting for the Hessian operator, which contributes to reduce the footprint of the coarse acquisition geometry in the imaging. A versatile algorithm to compute the gradient of the misfit function with the adjoint-state method allows for abstraction between the forward-problem operators and the meshes that are during seismic modelling and inversion, respectively. An approximate correction for obliquity is derived for future application to real teleseismic data under the two-dimension approximation. Comparisons between the characteristic scales involved in exploration geophysics and in teleseismic seismology suggest that the resolution gain provided by full waveform technologies should be of the same order of magnitude for both applications. We first show the importance of the surface-reflected wavefield to dramatically improve the resolving power of FWI by combining tomography-like and migration-like imaging through the incorporation of the forward-scattered and the

  2. Large format, high resolution images sensors

    NASA Technical Reports Server (NTRS)

    Blouke, Morley M.; Corrie, B.; Heidtmann, Denis L.; Yang, F. H.; Winzenread, M.; Lust, M. L.; Marsh, H. H.; Janesick, James R.

    1987-01-01

    The performance requirements for scientific-quality CCDs are discussed, focusing on the design of two devices, and the progress toward achieving the desired performance is discussed. These devices are intended for rear-illuminated applications and have 512 x 512 and 2048 x 2048 pixel formats. The thinned 10 to 20 micron thick Si membrane is fully supported by a unique glass ceramic substrate. Quantum efficiencies of greater than 70 percent at 700 nm and greater than 40 percent at wavelengths less than 400 nm have been measured on a test device. Dark currents as low as 6 pA/sq cm also have been measured recently.

  3. Multi-parametric imaging of cerebral hemodynamic and metabolic response followed by ischemic injury

    NASA Astrophysics Data System (ADS)

    Qin, Jia; Shi, Lei; Dziennis, Suzan; Wang, Ruikang K.

    2014-02-01

    We use rodent parietal cortex as a model system and utilize a synchronized dual wavelength laser speckle imaging (SDW-LSCI) technique to explore the hemodynamic response of infarct and penumbra to a brain injury (middle cerebral artery occlusion (MCAO) model). The SDW-LSCI system is able to take snapshots rapidly (maximum 500 Hz) over the entire brain surface, providing key information about the hemodynamic response, in terms of which it may be used to elucidate evolution of penumbra region from onsite to 90 min of MCAO. Changes in flow are quantified as to the flow experiencing physical occlusions of the MCA normalized to that of baseline. Furthermore, the system is capable of providing information as to the changes of the concentration of oxygenated, (HbO) deoxygenated (Hb), and total hemoglobin (HbT) in the cortex based on the spectral characteristics of HbO and Hb. We observe that the oxygenation variations in the four regions are detectable and distinct. Combining the useful information, four regions of interest (ROI), infarct, penumbra, reduced flow and contralateral portions in the brain upon ischemic injury may be differentiated. Implications of our results are discussed with respect to current understanding of the mechanisms underlying MCAO. We anticipate that SDW-LSCI holds promise for rapid and large field of view localization of ischemic injury.

  4. Parametric approaches to micro-scale characterization of tissue volumes in vivo and ex vivo: Imaging microvasculature, attenuation, birefringence, and stiffness (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sampson, David D.; Chin, Lixin; Gong, Peijun; Wijesinghe, Philip; Es'haghian, Shaghayegh; Allen, Wesley M.; Klyen, Blake R.; Kirk, Rodney W.; Kennedy, Brendan F.; McLaughlin, Robert A.

    2016-03-01

    INVITED TALK Advances in imaging tissue microstructure in living subjects, or in freshly excised tissue with minimum preparation and processing, are important for future diagnosis and surgical guidance in the clinical setting, particularly for application to cancer. Whilst microscopy methods continue to advance on the cellular scale and medical imaging is well established on the scale of the whole tumor or organ, it is attractive to consider imaging the tumor environment on the micro-scale, between that of cells and whole tissues. Such a scenario is ideally suited to optical coherence tomography (OCT), with the twin attractions of requiring little or no tissue preparation, and in vivo capability. OCT's intrinsic scattering contrast reveals many morphological features of tumors, but is frequently ineffective in revealing other important aspects, such as microvasculature, or in reliably distinguishing tumor from uninvolved stroma. To address these shortcomings, we are developing several advances on the basic OCT approach. We are exploring speckle fluctuations to image tissue microvasculature and we have been developing several parametric approaches to tissue micro-scale characterization. Our approaches extract, from a three-dimensional OCT data set, a two-dimensional image of an optical parameter, such as attenuation or birefringence, or a mechanical parameter, such as stiffness, that aids in characterizing the tissue. This latter method, termed optical coherence elastography, parallels developments in ultrasound and magnetic resonance imaging. Parametric imaging of birefringence and of stiffness both show promise in addressing the important issue of differentiating cancer from uninvolved stroma in breast tissue.

  5. Image formation using stimulated raman scattering gain

    NASA Astrophysics Data System (ADS)

    Bespalov, V. G.; Makarov, E. A.; Stasel'ko, D. I.

    2016-07-01

    Theoretical analysis of the spatial, noise, and energy characteristics of an amplifier has been performed in the mode of spectral and time selection using subnanosecond stimulated Raman Scattering gain of weak echo signals in crystalline active media that are known for high (up to 10-1 cm/MW) gain coefficients. The possibility to reach high gain values has been demonstrated for weak signals from objects at acceptable angular sizes of the field of vision of an amplifier. To provide a signal-to-noise ratio that exceeds unity over the entire field of vision, the number of photons at the input to an amplifier that is required has to exceed the number of its resolution elements. Accurate determination of the possibilities of recording of weak echo signals and quality of images of targets that are obtained using amplifiers under stimulated Raman Scattering requires additional special experiments.

  6. Virtual definition of neuronal tissue by cluster analysis of multi-parametric imaging (virtual-dot-com imaging).

    PubMed

    Yovel, Yossi; Assaf, Yaniv

    2007-03-01

    Individual mapping of cerebral, morphological, functionally related structures using MRI was carried out using a new multi-contrast acquisition and analysis framework, called virtual-dot-com imaging. So far, conventional anatomical MRI has been able to provide gross segmentation of gray/white matter boundaries and a few sub-cortical structures. By combining a handful of imaging contrasts mechanisms (T1, T2, magnetization transfer, T2* and proton density), we were able to further segment sub-cortical tissue to its sub-nuclei arrangement, a segmentation that is difficult based on conventional, single-contrast MRI. Using an automatic four-step image and signal processing algorithm, we segmented the thalamus to at least 7 sub-nuclei with high similarity across subjects and high statistical significance within subjects (p<0.0001). The identified sub-nuclei resembled the known anatomical arrangement of the thalamus given in various atlases. Each cluster was characterized by a unique MRI contrast fingerprint. With this procedure, the weighted proportions of the different cellular compartments could be estimated, a property available to date only by histological analysis. Each sub-nucleus could be characterized in terms of normalized MRI contrast and compared to other sub-nuclei. The different weights of the contrasts (T1/T2/T2*/PD/MT, etc.) for each sub-nuclei cluster might indicate the intra-cluster morphological arrangement of the tissue that it represents. The implications of this methodology are far-ranging, from non-invasive, in vivo, individual mapping of histologically distinct brain areas to automatic identification of pathological processes. PMID:17208461

  7. Diffused Matrix Format: A New Storage and Processing Format for Airborne Hyperspectral Sensor Images

    PubMed Central

    Martínez, Pablo; Cristo, Alejandro; Koch, Magaly; Pérez, Rosa Mª.; Schmid, Thomas; Hernández, Luz M.

    2010-01-01

    At present, hyperspectral images are mainly obtained with airborne sensors that are subject to turbulences while the spectrometer is acquiring the data. Therefore, geometric corrections are required to produce spatially correct images for visual interpretation and change detection analysis. This paper analyzes the data acquisition process of airborne sensors. The main objective is to propose a new data format called Diffused Matrix Format (DMF) adapted to the sensor's characteristics including its spectral and spatial information. The second objective is to compare the accuracy of the quantitative maps derived by using the DMF data structure with those obtained from raster images based on traditional data structures. Results show that DMF processing is more accurate and straightforward than conventional image processing of remotely sensed data with the advantage that the DMF file structure requires less storage space than other data formats. In addition the data processing time does not increase when DMF is used. PMID:22399919

  8. Effects of using inclined parametric echosounding on sub-bottom acoustic imaging and advances in buried object detection

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, Jens; Held, Philipp; Feldens, Peter; Wilken, Dennis

    2016-04-01

    This study reports an adaptation of a parametric echosounder system using 15 kHz as secondary frequency to investigate the angular response of sub-bottom backscatter strength of layered mud, providing a new method for enhanced acoustic detection of buried targets. Adaptions to achieve both vertical (0°) and non-vertical inclination (1-15°, 30°, 45° and 60°) comprise mechanical tilting of the acoustic transducer and electronic beam steering. Data were acquired at 18 m water depth at a study site characterized by a flat, muddy seafloor where a 0.1 m diameter power cable lies 1-2 m below the seafloor. Surveying the cable with vertical incidence revealed that the buried cable can hardly be discriminated against the backscatter strength of the layered mud. However, the backscatter strength of layered mud decreases strongly at >3±0.5° incidence and the layered mud echo pattern vanishes beyond 5°. As a consequence, the backscatter pattern of the buried cable is very pronounced in acoustic images gathered at 15°, 30°, 45° and 60° incidence. The size of the cable echo pattern increases linearly with incidence. These effects are attributed to reflection loss from layered mud at larger incidence and to the scattering of the 0.1 m diameter buried cable. Data analyses support the visual impression of superior detection of the cable with an up to 2.6-fold increase of the signal-to-noise ratio at 40° incidence compared to the vertical incidence case.

  9. Planet formation imager (PFI): introduction and technical considerations

    NASA Astrophysics Data System (ADS)

    Monnier, John D.; Kraus, Stefan; Buscher, David; Berger, J.-P.; Haniff, Christopher; Ireland, Michael; Labadie, Lucas; Lacour, Sylvestre; Le Coroller, Herve; Petrov, Romain G.; Pott, JoÌrg-Uwe; Ridgway, Stephen; Surdej, Jean; ten Brummelaar, Theo; Tuthill, Peter; van Belle, Gerard

    2014-07-01

    Complex non-linear and dynamic processes lie at the heart of the planet formation process. Through numerical simulation and basic observational constraints, the basics of planet formation are now coming into focus. High resolution imaging at a range of wavelengths will give us a glimpse into the past of our own solar system and enable a robust theoretical framework for predicting planetary system architectures around a range of stars surrounded by disks with a diversity of initial conditions. Only long-baseline interferometry can provide the needed angular resolution and wavelength coverage to reach these goals and from here we launch our planning efforts. The aim of the Planet Formation Imager" (PFI) project is to develop the roadmap for the construction of a new near-/mid-infrared interferometric facility that will be optimized to unmask all the major stages of planet formation, from initial dust coagulation, gap formation, evolution of transition disks, mass accretion onto planetary embryos, and eventual disk dispersal. PFI will be able to detect the emission of the cooling, newlyformed planets themselves over the first 100 Myrs, opening up both spectral investigations and also providing a vibrant look into the early dynamical histories of planetary architectures. Here we introduce the Planet Formation Imager (PFI) Project (www.planetformationimager.org) and give initial thoughts on possible facility architectures and technical advances that will be needed to meet the challenging top-level science requirements.

  10. Combination of an optical parametric oscillator and quantum-dots 655 to improve imaging depth of vasculature by intravital multicolor two-photon microscopy.

    PubMed

    Ricard, Clément; Lamasse, Lisa; Jaouen, Alexandre; Rougon, Geneviève; Debarbieux, Franck

    2016-06-01

    Simultaneous imaging of different cell types and structures in the mouse central nervous system (CNS) by intravital two-photon microscopy requires the characterization of fluorophores and advances in approaches to visualize them. We describe the use of a two-photon infrared illumination generated by an optical parametric oscillator (OPO) on quantum-dots 655 (QD655) nanocrystals to improve resolution of the vasculature deeper in the mouse brain both in healthy and pathological conditions. Moreover, QD655 signal can be unmixed from the DsRed2, CFP, EGFP and EYFP fluorescent proteins, which enhances the panel of multi-parametric correlative investigations both in the cortex and the spinal cord. PMID:27375951

  11. A non-parametric approach for co-analysis of multi-modal brain imaging data: Application to Alzheimer’s disease

    PubMed Central

    Hayasaka, Satoru; Du, An-Tao; Duarte, Audrey; Kornak, John; Jahng, Geon-Ho; Weiner, Michael W.; Schuff, Norbert

    2007-01-01

    We developed a new flexible approach for a co-analysis of multimodal brain imaging data using a non-parametric framework. In this approach, results from separate analyses on different modalities are combined using a combining function and assessed with a permutation test. This approach identifies several cross-modality relationships, such as concordance and dissociation, without explicitly modeling the correlation between modalities. We applied our approach to structural and perfusion MRI data from an Alzheimer’s disease (AD) study. Our approach identified areas of concordance, where both gray matter (GM) density and perfusion decreased together, and areas of dissociation, where GM density and perfusion did not decrease together. In conclusion, these results demonstrate the utility of this new non-parametric method to quantitatively assess the relationships between multiple modalities. PMID:16412666

  12. Combination of an optical parametric oscillator and quantum-dots 655 to improve imaging depth of vasculature by intravital multicolor two-photon microscopy

    PubMed Central

    Ricard, Clément; Lamasse, Lisa; Jaouen, Alexandre; Rougon, Geneviève; Debarbieux, Franck

    2016-01-01

    Simultaneous imaging of different cell types and structures in the mouse central nervous system (CNS) by intravital two-photon microscopy requires the characterization of fluorophores and advances in approaches to visualize them. We describe the use of a two-photon infrared illumination generated by an optical parametric oscillator (OPO) on quantum-dots 655 (QD655) nanocrystals to improve resolution of the vasculature deeper in the mouse brain both in healthy and pathological conditions. Moreover, QD655 signal can be unmixed from the DsRed2, CFP, EGFP and EYFP fluorescent proteins, which enhances the panel of multi-parametric correlative investigations both in the cortex and the spinal cord. PMID:27375951

  13. The format of children's mental images: Evidence from mental scanning.

    PubMed

    Wimmer, Marina C; Maras, Katie L; Robinson, Elizabeth J; Thomas, Charlotte

    2016-09-01

    This study examined the development and format of children's mental images. Children (4-, 5-, 6-7-, 8-9-, and 11-year-olds) and adults (N=282) viewed a map of a fictitious island containing various landmarks and two misleading signposts, indicating that some equidistant landmarks were different distances apart. Five-year-olds already revealed the linear time-distance scanning effect, previously shown in adults (Experiments 1 and 2): They took longer to mentally scan their image of the island with longer distances between corresponding landmarks, indicating the depictive format of children's mental images. Unlike adults, their scanning times were not affected by misleading top-down distance information on the signposts until age 8 (Experiment 1) unless they were prompted to the difference from the outset (Experiment 2). Findings provide novel insights into the format of children's mental images in a mental scanning paradigm and show that children's mental images can be susceptible to top-down influences as are adults'. PMID:27239749

  14. Transmission of digital images within the NTSC analog format

    DOEpatents

    Nickel, George H.

    2004-06-15

    HDTV and NTSC compatible image communication is done in a single NTSC channel bandwidth. Luminance and chrominance image data of a scene to be transmitted is obtained. The image data is quantized and digitally encoded to form digital image data in HDTV transmission format having low-resolution terms and high-resolution terms. The low-resolution digital image data terms are transformed to a voltage signal corresponding to NTSC color subcarrier modulation with retrace blanking and color bursts to form a NTSC video signal. The NTSC video signal and the high-resolution digital image data terms are then transmitted in a composite NTSC video transmission. In a NTSC receiver, the NTSC video signal is processed directly to display the scene. In a HDTV receiver, the NTSC video signal is processed to invert the color subcarrier modulation to recover the low-resolution terms, where the recovered low-resolution terms are combined with the high-resolution terms to reconstruct the scene in a high definition format.

  15. A comparison of spotlight synthetic aperture radar image formation techniques

    SciTech Connect

    Knittle, C.D.; Doren, N.E.; Jakowatz, C.V.

    1996-10-01

    Spotlight synthetic aperture radar images can be formed from the complex phase history data using two main techniques: (1) polar-to-cartesian interpolation followed by two-dimensional inverse Fourier transform (2DFFT), and (2) convolution backprojection (CBP). CBP has been widely used to reconstruct medical images in computer aided tomography, and only recently has been applied to form synthetic aperture radar imagery. It is alleged that CBP yields higher quality images because (1) all the Fourier data are used and (2) the polar formatted data is used directly to form a 2D Cartesian image and therefore 2D interpolation is not required. This report compares the quality of images formed by CBP and several modified versions of the 2DFFT method. We show from an image quality point of view that CBP is equivalent to first windowing the phase history data and then interpolating to an exscribed rectangle. From a mathematical perspective, we should expect this conclusion since the same Fourier data are used to form the SAR image. We next address the issue of parallel implementation of each algorithm. We dispute previous claims that CBP is more readily parallelizable than the 2DFFT method. Our conclusions are supported by comparing execution times between massively parallel implementations of both algorithms, showing that both experience similar decreases in computation time, but that CBP takes significantly longer to form an image.

  16. Radio astronomical image formation using constrained least squares and Krylov subspaces

    NASA Astrophysics Data System (ADS)

    Mouri Sardarabadi, Ahmad; Leshem, Amir; van der Veen, Alle-Jan

    2016-04-01

    Aims: Image formation for radio astronomy can be defined as estimating the spatial intensity distribution of celestial sources throughout the sky, given an array of antennas. One of the challenges with image formation is that the problem becomes ill-posed as the number of pixels becomes large. The introduction of constraints that incorporate a priori knowledge is crucial. Methods: In this paper we show that in addition to non-negativity, the magnitude of each pixel in an image is also bounded from above. Indeed, the classical "dirty image" is an upper bound, but a much tighter upper bound can be formed from the data using array processing techniques. This formulates image formation as a least squares optimization problem with inequality constraints. We propose to solve this constrained least squares problem using active set techniques, and the steps needed to implement it are described. It is shown that the least squares part of the problem can be efficiently implemented with Krylov-subspace-based techniques. We also propose a method for correcting for the possible mismatch between source positions and the pixel grid. This correction improves both the detection of sources and their estimated intensities. The performance of these algorithms is evaluated using simulations. Results: Based on parametric modeling of the astronomical data, a new imaging algorithm based on convex optimization, active sets, and Krylov-subspace-based solvers is presented. The relation between the proposed algorithm and sequential source removing techniques is explained, and it gives a better mathematical framework for analyzing existing algorithms. We show that by using the structure of the algorithm, an efficient implementation that allows massive parallelism and storage reduction is feasible. Simulations are used to compare the new algorithm to classical CLEAN. Results illustrate that for a discrete point model, the proposed algorithm is capable of detecting the correct number of sources

  17. Geometric constructions for image formation by a converging lens

    NASA Astrophysics Data System (ADS)

    Zürcher, Ulrich

    2012-09-01

    Light rays emerge from an object in all directions. In introductory texts, three ‘special’ rays are selected to draw the image produced by lenses and mirrors. This presentation may suggest to students that these three rays are necessary for the formation of an image. We discuss that the three rays attain their ‘special status’ from the geometric solution of the equation of a hyperbola x-1 + y-1 = c-1 (mirror/lens equation). The material is suitable for use in introductory courses for science majors.

  18. A new parametrization for ambient particle formation over coniferous forests and its potential implications for the future

    NASA Astrophysics Data System (ADS)

    Bonn, B.; Boy, M.; Kulmala, M.; Groth, A.; Trawny, K.; Borchert, S.; Jacobi, S.

    2009-10-01

    Atmospheric new particle formation is a general phenomenon observed over coniferous forests. So far nucleation is either parameterised as a function of gaseous sulphuric acid concentration only, which is unable to explain the observed seasonality of nucleation events at different measurement sites, or as a function of sulphuric acid and organic molecules. Here we introduce different nucleation parameters based on the interaction of sulphuric acid and terpene oxidation products and elucidate the individual importance. They include basic trace gas and meteorological measurements such as ozone and water vapour concentrations, temperature (for terpene emission) and UV B radiation as a proxy for OH radical formation. We apply these new parameters to field studies conducted at conducted at Finnish and German measurement sites and compare these to nucleation observations on a daily and annual scale. General agreement was found, although the specific compounds responsible for the nucleation process remain speculative. This can be interpreted as follows: During cooler seasons the emission of biogenic terpenes and the OH availability limits the new particle formation while towards warmer seasons the ratio of ozone and water vapour concentration seems to dominate the general behaviour. Therefore, organics seem to support ambient nucleation besides sulphuric acid or an OH-related compound. Using these nucleation parameters to extrapolate the current conditions to prognosed future concentrations of ozone, water vapour and organic concentrations leads to a significant potential increase in the nucleation event number.

  19. Near Infrared (NIR) Imaging Techniques Using Lasers and Nonlinear Crystal Optical Parametric Oscillator/Amplifier (OPO/OPA) Imaging and Transferred Electron (TE) Photocathode Image Intensifiers

    SciTech Connect

    YATES,GEORGE J.; MCDONALD,THOMAS E. JR.; BLISS,DAVID E.; CAMERON,STEWART M.; GREIVES,KENNETH H.; ZUTAVERN,FRED J.

    2000-12-20

    Laboratory experiments utilizing different near-infrared (NIR) sensitive imaging techniques for LADAR range gated imaging at eye-safe wavelengths are presented. An OPO/OPA configuration incorporating a nonlinear crystal for wavelength conversion of 1.56 micron probe or broadcast laser light to 807 nm light by utilizing a second pump laser at 532 nm for gating and gain, was evaluated for sensitivity, resolution, and general image quality. These data are presented with similar test results obtained from an image intensifier based upon a transferred electron (TE) photocathode with high quantum efficiency (QE) in the 1-2 micron range, with a P-20 phosphor output screen. Data presented include range-gated imaging performance in a cloud chamber with varying optical attenuation of laser reflectance images.

  20. SAR image formation with azimuth interpolation after azimuth transform

    SciTech Connect

    Doerry; Armin W. , Martin; Grant D. , Holzrichter; Michael W.

    2008-07-08

    Two-dimensional SAR data can be processed into a rectangular grid format by subjecting the SAR data to a Fourier transform operation, and thereafter to a corresponding interpolation operation. Because the interpolation operation follows the Fourier transform operation, the interpolation operation can be simplified, and the effect of interpolation errors can be diminished. This provides for the possibility of both reducing the re-grid processing time, and improving the image quality.

  1. Image formation in the eye: very specified complexity

    NASA Astrophysics Data System (ADS)

    Stoltzmann, David E.

    2005-08-01

    The formation of an image, and its correct interpretation by sighted living creatures, is a unique example of specified complexity unlike anything else in nature. While many of the functional aspects of living organisms are extremely complex, only an image requires a unique mapping process by the eye-brain system to be useful to the organism. The transfer of light from an object scene to a visual detection system (eye + brain) conveys an enormous amount of information. But unless that information is correctly organized into a useful image, the exchange of information is degraded and of questionable use. This paper examines the "connections" necessary for images to be interpreted correctly, as well as addressing the additional complexity requirement of dual-image mapping for stereovision capabilities. Statistics are presented for "simple eyes" consisting of a few pixels to illustrate the daunting task that random chance has to produce any form of a functional eye. For example, a 12-pixel eye (or camera) has 12! (479,001,600) possible pixel-to-brain (computer) wiring combinations, which can then be compared to the 126 million rods/cones of the actual human eye. If one tries to "connect the wires" (correctly interpret the information contained) in a 12-pixel image by random processes, by the time 6 pixels become correctly connected, over 99.9% of all the trials are incorrect, producing "noise" rather than a recognizable image. Higher numbers of pixels quickly make the problem astronomically worse for achieving any kind of useful image. This paper concludes that random-chance purposeless undirected processes cannot account for how images are perceived by living organisms.

  2. Image formation by and wave propagation in a photonic crystal

    NASA Astrophysics Data System (ADS)

    Parimi, Patanjali; Vodo, Plarenta; Wentao, Lu; di Gennaro, Emiliano; Sridhar, Srinivas

    2004-03-01

    Negative refraction and imaging by a flat slab of a material are two of the important consequences of lefthanded electromagnetism. In our recent work we have demonstrated negative refraction and imaging by photonic crystals in the microwave frequency range [1]. The details of image formation are intriguing and urge its investigation. We have carried out microwave measurements in a parallel plate waveguide made of a pair of metallic plates. The Photonic crystal is made of alumina rods arranged on a square lattice such that the electric field is parallel to the axis of the rods. The detector is a dipole antenna which is inserted into the waveguide from outside. HP 8510C network analyzer is used to measure the complex transmission coefficient . The intensity maps of vs. probe position are obtained by scanning the probe using an x-y robot, both inside and outside the crystal. The results suggest Bloch wave propagation inside the crystal and that the image formation requires a better understanding than a simple ray diagram following geometric optics. [1] P. V. Parimi et al., Nature, 426, 404 (2003).

  3. Incoherent image formation in the presence of scattering eye media.

    PubMed

    Wesemann, W

    1987-08-01

    Incoherent image formation in human eyes that have scattering eye media is investigated as a function of the particle size and the optical density of the scattering medium and for test targets that differ in form and size. For single scattering by large particles (much greater than lambda), a point-spread function and the associated modulation-transfer function of the scattered light are derived from diffraction theory. It is shown that object structures with low spatial frequencies are also imaged by the scattered light. Following single scattering by small particles and/or multiple scattering, the scattered light forms an approximately uniform background. Consequently, the retinal contrast is reduced regardless of spatial frequency. The image quality is, contrary to what is found in normal image formation, extremely sensitive to the form and size of the test target. It is shown that the optimal readability of white-on-black letters is obtained at intermediate spatial frequencies. For an extended layer of arbitrary optical density and particle size, the influence of multiple scattering is approximated by using Hartel's scattering theory. It is shown that wavelength has only a small influence on retinal contrast for scattering by particles greater than lambda. PMID:3625324

  4. Measuring image quality performance on image versions saved with different file format and compression ratio

    NASA Astrophysics Data System (ADS)

    Mitjà, Carles; Escofet, Jaume; Bover, Toni

    2012-06-01

    Digitization of existing documents containing images is an important body of work for many archives ranging from individuals to institutional organizations. The methods and file formats used in this digitization is usually a trade off between budget, file volume size and image quality, while not necessarily in this order. The use of most commons and standardized file formats, JPEG and TIFF, prompts the operator to decide the compression ratio that affects both the final file volume size and the quality of the resulting image version. The evaluation of the image quality achieved by a system can be done by means of several measures and methods, being the Modulation Transfer Function (MTF) one of most used. The methods employed by the compression algorithms affect in a different way the two basic features of the image contents, edges and textures. Those basic features are too differently affected by the amount of noise generated at the digitization stage. Therefore, the target used in the measurement should be related with the features usually presents in general imaging. This work presents a comparison between the results obtained by measuring the MTF of images taken with a professional camera system and saved in several file formats compression ratios. In order to accomplish with the needs early stated, the MTF measurement has been done by two separate methods using the slanted edge and dead leaves targets respectively. The measurement results are shown and compared related with the respective file volume size.

  5. High Speed Large Format Photon Counting Microchannel Plate Imaging Sensors

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Ertley, C.; Vallerga, J.

    The development of a new class of microchannel plate technology, using atomic layer deposition (ALD) techniques applied to a borosilicate microcapillary array is enabling the implementation of larger, more stable detectors for Astronomy and remote sensing. Sealed tubes with MCPs with SuperGenII, bialkali, GaAs and GaN photocathodes have been developed to cover a wide range of optical/UV sensing applications. Formats of 18mm and 25mm circular, and 50mm (Planacon) and 20cm square have been constructed for uses from night time remote reconnaissance and biological single-molecule fluorescence lifetime imaging microscopy, to large area focal plane imagers for Astronomy, neutron detection and ring imaging Cherenkov detection. The large focal plane areas were previously unattainable, but the new developments in construction of ALD microchannel plates allow implementation of formats of 20cm or more. Continuing developments in ALD microchannel plates offer improved overall sealed tube lifetime and gain stability, and furthermore show reduced levels of radiation induced background. High time resolution astronomical and remote sensing applications can be addressed with microchannel plate based imaging, photon time tagging detector sealed tube schemes. Photon counting imaging readouts for these devices vary from cross strip (XS), cross delay line (XDL), to stripline anodes, and pad arrays depending on the intended application. The XS and XDL readouts have been implemented in formats from 22mm, and 50mm to 20cm. Both use MCP charge signals detected on two orthogonal layers of conductive fingers to encode event X-Y positions. XDL readout uses signal propagation delay to encode positions while XS readout uses charge cloud centroiding. Spatial resolution readout of XS detectors can be better than 20 microns FWHM, with good image linearity while using low gain (<10^6), allowing high local counting rates and longer overall tube lifetime. XS tubes with electronics can encode event

  6. Computational image formation with photon sieves for milli-arcsecond solar imaging

    NASA Astrophysics Data System (ADS)

    Oktem, Figen S.; Kamalabadi, Farzad; Davila, Joseph

    2016-07-01

    A photon sieve is a modification of a Fresnel zone plate in which open zones are replaced by a large number of circular holes. This diffractive imaging element is specially suited to observations at UV and x-ray wavelengths where refractive lenses are not available due to strong absorption of materials, and reflective mirrors are difficult to manufacture with sufficient surface figure accuracy to achieve diffraction-limited resolution. On the other hand, photon sieves enable diffraction-limited imaging with much more relaxed tolerances than conventional imaging technology. In this presentation, we present the capabilities of an instrument concept that is based on computational image formation with photon sieves. The instrument enables high-resolution spectral imaging by distributing the imaging task between a photon sieve system and a computational method. A photon sieve coupled with a moving detector provides measurements from multiple planes. Then computational image formation, which involves deconvolution, is performed in a Bayesian estimation framework to reconstruct the multi-spectral images from these measurements. In addition to diffraction-limited high spatial resolution enabled by photon sieves, this instrument can also achieve higher spectral resolution than the conventional spectral imagers, since the technique offers the possibility of separating nearby spectral components that would not otherwise be possible using wavelength filters. Here, the promising capabilities and the imaging performance are shown for imaging the solar corona at EUV wavelengths. The effectiveness of various potential observing scenarios, the effects of interfering emission lines, and the appropriate form of the cost function for image deconvolution are examined.

  7. Proper use of common image file formats in handling radiological images.

    PubMed

    Faccioli, N; Perandini, S; Comai, A; D'Onofrio, M; Pozzi Mucelli, R

    2009-04-01

    This paper highlights the differences among the most common file formats used for storing digital radiological images. It promotes the proper use of these formats to guarantee easy manipulation in handling the most typical practical applications in daily radiological practice. The authors provide a simple yet exhaustive introduction to the concept of "file format" and describe the algorithms and main features of the most common formats (BMP, JPEG, GIF, DICOM, TIF, PNG) and Portable Network Graphics (PNG).The different formats are compared in terms of dimension, quality, portability and with reference to the following specific needs: electronic communications, publication on the World Wide Web, presentation of electronic posters, video presentations for teaching and manuscript publishing. We also illustrate how to handle the various formats with the programmes supplied with standard software installations.The large number of digital applications of image file formats calls for a simplification in daily radiological practice. We recommend the use of JPEG and PNG for electronic communications; PNG and GIF for publication on the worldwide web; JPEG and PNG for electronic poster presentations; DICOM, PNG and JPEG for teaching presentations; TIF and PNG for printing on paper. PMID:19330427

  8. Parametric mapping

    NASA Astrophysics Data System (ADS)

    Branch, Allan C.

    1998-01-01

    Parametric mapping (PM) lies midway between older and proven artificial landmark based guidance systems and yet to be realized vision based guidance systems. It is a simple yet effective natural landmark recognition system offering freedom from the need for enhancements to the environment. Development of PM systems can be inexpensive and rapid and they are starting to appear in commercial and industrial applications. Together with a description of the structural framework developed to generically describe robot mobility, this paper illustrates clearly the parts of any mobile robot navigation and guidance system and their interrelationships. Among other things, the importance of the richness of the reference map, and not necessarily the sensor map, is introduced, the benefits of dynamic path planners to alleviate the need for separate object avoidance, and the independence of the PM system to the type of sensor input is shown.

  9. The science case for the Planet Formation Imager (PFI)

    NASA Astrophysics Data System (ADS)

    Kraus, Stefan; Monnier, John; Harries, Tim; Dong, Ruobing; Bate, Matthew; Whitney, Barbara; Zhu, Zhaohuan; Buscher, David; Berger, Jean-Philippe; Haniff, Chris; Ireland, Mike; Labadie, Lucas; Lacour, Sylvestre; Petrov, Romain; Ridgway, Steve; Surdej, Jean; ten Brummelaar, Theo; Tuthill, Peter; van Belle, Gerard

    2014-07-01

    Among the most fascinating and hotly-debated areas in contemporary astrophysics are the means by which planetary systems are assembled from the large rotating disks of gas and dust which attend a stellar birth. Although important work has already been, and is still being done both in theory and observation, a full understanding of the physics of planet formation can only be achieved by opening observational windows able to directly witness the process in action. The key requirement is then to probe planet-forming systems at the natural spatial scales over which material is being assembled. By definition, this is the so-called Hill Sphere which delineates the region of influence of a gravitating body within its surrounding environment. The Planet Formation Imager project (PFI; http://www.planetformationimager.org) has crystallized around this challenging goal: to deliver resolved images of Hill-Sphere-sized structures within candidate planethosting disks in the nearest star-forming regions. In this contribution we outline the primary science case of PFI. For this purpose, we briefly review our knowledge about the planet-formation process and discuss recent observational results that have been obtained on the class of transition disks. Spectro-photometric and multi-wavelength interferometric studies of these systems revealed the presence of extended gaps and complex density inhomogeneities that might be triggered by orbiting planets. We present detailed 3-D radiation-hydrodynamic simulations of disks with single and multiple embedded planets, from which we compute synthetic images at near-infrared, mid-infrared, far-infrared, and sub-millimeter wavelengths, enabling a direct comparison of the signatures that are detectable with PFI and complementary facilities such as ALMA. From these simulations, we derive some preliminary specifications that will guide the array design and technology roadmap of the facility.

  10. Measuring Agarwood Formation Ratio Quantitatively by Fluorescence Spectral Imaging Technique.

    PubMed

    Huang, Botao; Nguyen, Duykien; Liu, Tianyi; Jiang, Kaibin; Tan, Jinfen; Liu, Chunxin; Zhao, Jing; Huang, Shaowei

    2015-01-01

    Agarwood is a kind of important and precious traditional Chinese medicine. With the decreasing of natural agarwood, artificial cultivation has become more and more important in recent years. Quantifying the formation of agarwood is an essential work which could provide information for guiding cultivation and controlling quality. But people only can judge the amount of agarwood qualitatively by experience before. Fluorescence multispectral imaging method is presented to measure the agarwood quantitatively in this paper. A spectral cube from 450 nm to 800 nm was captured under the 365 nm excitation sources. The nonagarwood, agarwood, and rotten wood in the same sample were distinguished based on analyzing the spectral cube. Then the area ratio of agarwood to the whole sample was worked out, which is the quantitative information of agarwood area percentage. To our knowledge, this is the first time that the formation of agarwood was quantified accurately and nondestructively. PMID:26089935

  11. Polar format algorithm for SAR imaging with Matlab

    NASA Astrophysics Data System (ADS)

    Deming, Ross; Best, Matthew; Farrell, Sean

    2014-06-01

    Due to its computational efficiency, the polar format algorithm (PFA) is considered by many to be the workhorse for airborne synthetic aperture radar (SAR) imaging. PFA is implemented in spatial Fourier space, also known as "K-space", which is a convenient domain for understanding SAR performance metrics, sampling requirements, etc. In this paper the mathematics behind PFA are explained and computed examples are presented, both using simulated data, and experimental airborne radar data from the Air Force Research Laboratory (AFRL) Gotcha Challenge collect. In addition, a simple graphical method is described that can be used to model and predict wavefront curvature artifacts in PFA imagery, which are due to the limited validity of the underlying far-field approximation. The appendix includes Matlab code for computing SAR images using PFA.

  12. Basics of Polar-Format algorithm for processing Synthetic Aperture Radar images.

    SciTech Connect

    Doerry, Armin Walter

    2012-05-01

    The purpose of this report is to provide a background to Synthetic Aperture Radar (SAR) image formation using the Polar Format (PFA) processing algorithm. This is meant to be an aid to those tasked to implement real-time image formation using the Polar Format processing algorithm.

  13. Impact of time-of-flight on indirect 3D and direct 4D parametric image reconstruction in the presence of inconsistent dynamic PET data.

    PubMed

    Kotasidis, F A; Mehranian, A; Zaidi, H

    2016-05-01

    Kinetic parameter estimation in dynamic PET suffers from reduced accuracy and precision when parametric maps are estimated using kinetic modelling following image reconstruction of the dynamic data. Direct approaches to parameter estimation attempt to directly estimate the kinetic parameters from the measured dynamic data within a unified framework. Such image reconstruction methods have been shown to generate parametric maps of improved precision and accuracy in dynamic PET. However, due to the interleaving between the tomographic and kinetic modelling steps, any tomographic or kinetic modelling errors in certain regions or frames, tend to spatially or temporally propagate. This results in biased kinetic parameters and thus limits the benefits of such direct methods. Kinetic modelling errors originate from the inability to construct a common single kinetic model for the entire field-of-view, and such errors in erroneously modelled regions could spatially propagate. Adaptive models have been used within 4D image reconstruction to mitigate the problem, though they are complex and difficult to optimize. Tomographic errors in dynamic imaging on the other hand, can originate from involuntary patient motion between dynamic frames, as well as from emission/transmission mismatch. Motion correction schemes can be used, however, if residual errors exist or motion correction is not included in the study protocol, errors in the affected dynamic frames could potentially propagate either temporally, to other frames during the kinetic modelling step or spatially, during the tomographic step. In this work, we demonstrate a new strategy to minimize such error propagation in direct 4D image reconstruction, focusing on the tomographic step rather than the kinetic modelling step, by incorporating time-of-flight (TOF) within a direct 4D reconstruction framework. Using ever improving TOF resolutions (580 ps, 440 ps, 300 ps and 160 ps), we demonstrate that direct 4D TOF image

  14. Impact of time-of-flight on indirect 3D and direct 4D parametric image reconstruction in the presence of inconsistent dynamic PET data

    NASA Astrophysics Data System (ADS)

    Kotasidis, F. A.; Mehranian, A.; Zaidi, H.

    2016-05-01

    Kinetic parameter estimation in dynamic PET suffers from reduced accuracy and precision when parametric maps are estimated using kinetic modelling following image reconstruction of the dynamic data. Direct approaches to parameter estimation attempt to directly estimate the kinetic parameters from the measured dynamic data within a unified framework. Such image reconstruction methods have been shown to generate parametric maps of improved precision and accuracy in dynamic PET. However, due to the interleaving between the tomographic and kinetic modelling steps, any tomographic or kinetic modelling errors in certain regions or frames, tend to spatially or temporally propagate. This results in biased kinetic parameters and thus limits the benefits of such direct methods. Kinetic modelling errors originate from the inability to construct a common single kinetic model for the entire field-of-view, and such errors in erroneously modelled regions could spatially propagate. Adaptive models have been used within 4D image reconstruction to mitigate the problem, though they are complex and difficult to optimize. Tomographic errors in dynamic imaging on the other hand, can originate from involuntary patient motion between dynamic frames, as well as from emission/transmission mismatch. Motion correction schemes can be used, however, if residual errors exist or motion correction is not included in the study protocol, errors in the affected dynamic frames could potentially propagate either temporally, to other frames during the kinetic modelling step or spatially, during the tomographic step. In this work, we demonstrate a new strategy to minimize such error propagation in direct 4D image reconstruction, focusing on the tomographic step rather than the kinetic modelling step, by incorporating time-of-flight (TOF) within a direct 4D reconstruction framework. Using ever improving TOF resolutions (580 ps, 440 ps, 300 ps and 160 ps), we demonstrate that direct 4D TOF image

  15. Four-dimensional computed tomography: image formation and clinical protocol.

    PubMed

    Rietzel, Eike; Pan, Tinsu; Chen, George T Y

    2005-04-01

    Respiratory motion can introduce significant errors in radiotherapy. Conventional CT scans as commonly used for treatment planning can include severe motion artifacts that result from interplay effects between the advancing scan plane and object motion. To explicitly include organ/target motion in treatment planning and delivery, time-resolved CT data acquisition (4D Computed Tomography) is needed. 4DCT can be accomplished by oversampled CT data acquisition at each slice. During several CT tube rotations projection data are collected in axial cine mode for the duration of the patient's respiratory cycle (plus the time needed for a full CT gantry rotation). Multiple images are then reconstructed per slice that are evenly distributed over the acquisition time. Each of these images represents a different anatomical state during a respiratory cycle. After data acquisition at one couch position is completed, x rays are turned off and the couch advances to begin data acquisition again until full coverage of the scan length has been obtained. Concurrent to CT data acquisition the patient's abdominal surface motion is recorded in precise temporal correlation. To obtain CT volumes at different respiratory states, reconstructed images are sorted into different spatio-temporally coherent volumes based on respiratory phase as obtained from the patient's surface motion. During binning, phase tolerances are chosen to obtain complete volumetric information since images at different couch positions are reconstructed at different respiratory phases. We describe 4DCT image formation and associated experiments that characterize the properties of 4DCT. Residual motion artifacts remain due to partial projection effects. Temporal coherence within resorted 4DCT volumes is dominated by the number of reconstructed images per slice. The more images are reconstructed, the smaller phase tolerances can be for retrospective sorting. From phantom studies a precision of about 2.5 mm for

  16. Four-dimensional computed tomography: Image formation and clinical protocol

    SciTech Connect

    Rietzel, Eike; Pan Tinsu; Chen, George T. Y.

    2005-04-01

    Respiratory motion can introduce significant errors in radiotherapy. Conventional CT scans as commonly used for treatment planning can include severe motion artifacts that result from interplay effects between the advancing scan plane and object motion. To explicitly include organ/target motion in treatment planning and delivery, time-resolved CT data acquisition (4D Computed Tomography) is needed. 4DCT can be accomplished by oversampled CT data acquisition at each slice. During several CT tube rotations projection data are collected in axial cine mode for the duration of the patient's respiratory cycle (plus the time needed for a full CT gantry rotation). Multiple images are then reconstructed per slice that are evenly distributed over the acquisition time. Each of these images represents a different anatomical state during a respiratory cycle. After data acquisition at one couch position is completed, x rays are turned off and the couch advances to begin data acquisition again until full coverage of the scan length has been obtained. Concurrent to CT data acquisition the patient's abdominal surface motion is recorded in precise temporal correlation. To obtain CT volumes at different respiratory states, reconstructed images are sorted into different spatio-temporally coherent volumes based on respiratory phase as obtained from the patient's surface motion. During binning, phase tolerances are chosen to obtain complete volumetric information since images at different couch positions are reconstructed at different respiratory phases. We describe 4DCT image formation and associated experiments that characterize the properties of 4DCT. Residual motion artifacts remain due to partial projection effects. Temporal coherence within resorted 4DCT volumes is dominated by the number of reconstructed images per slice. The more images are reconstructed, the smaller phase tolerances can be for retrospective sorting. From phantom studies a precision of about 2.5 mm for

  17. Effect of parametric resonance on the formation of waves with a broad multiharmonic spectrum during the development of two-stream instability

    SciTech Connect

    Kulish, V. V.; Lysenko, A. V.; Rombovsky, M. Yu.

    2010-07-15

    A cubically nonlinear multiharmonic theory of two-stream instability in a two-velocity relativistic electron beam is constructed with allowance for parametric resonance between harmonics of longitudinal waves of different types, as well as between wave harmonics of the same type. The effect of these two kinds of parametric resonance interaction on the development of two-stream instability is investigated. It is shown that parametric resonance between different types of longitudinal waves excited in a two-velocity beam can substantially affect the development of physical processes in the system under study. It is proposed to use parametric resonance between longitudinal waves of different types to form waves with a prescribed broad multiharmonic spectrum.

  18. 3D wavefront image formation for NIITEK GPR

    NASA Astrophysics Data System (ADS)

    Soumekh, Mehrdad; Ton, Tuan; Howard, Pete

    2009-05-01

    The U.S. Department of Defense Humanitarian Demining (HD) Research and Development Program focuses on developing, testing, demonstrating, and validating new technology for immediate use in humanitarian demining operations around the globe. Beginning in the late 1990's, the U.S. Army Countermine Division funded the development of the NIITEK ground penetrating radar (GPR) for detection of anti-tank (AT) landmines. This work is concerned with signal processing algorithms to suppress sources of artifacts in the NIITEK GPR, and formation of three-dimensional (3D) imagery from the resultant data. We first show that the NIITEK GPR data correspond to a 3D Synthetic Aperture Radar (SAR) database. An adaptive filtering method is utilized to suppress ground return and self-induced resonance (SIR) signals that are generated by the interaction of the radar-carrying platform and the transmitted radar signal. We examine signal processing methods to improve the fidelity of imagery for this 3D SAR system using pre-processing methods that suppress Doppler aliasing as well as other side lobe leakage artifacts that are introduced by the radar radiation pattern. The algorithm, known as digital spotlighting, imposes a filtering scheme on the azimuth-compressed SAR data, and manipulates the resultant spectral data to achieve a higher PRF to suppress the Doppler aliasing. We also present the 3D version of the Fourier-based wavefront reconstruction, a computationally-efficient and approximation-free SAR imaging method, for image formation with the NIITEK 3D SAR database.

  19. Multi-field-of-view strategy for image-based outcome prediction of multi-parametric estrogen receptor-positive breast cancer histopathology: Comparison to Oncotype DX.

    PubMed

    Basavanhally, Ajay; Feldman, Michael; Shih, Natalie; Mies, Carolyn; Tomaszewski, John; Ganesan, Shridar; Madabhushi, Anant

    2011-01-01

    In this paper, we attempt to quantify the prognostic information embedded in multi-parametric histologic biopsy images to predict disease aggressiveness in estrogen receptor-positive (ER+) breast cancers (BCa). The novel methodological contribution is in the use of a multi-field-of-view (multi-FOV) framework for integrating image-based information from differently stained histopathology slides. The multi-FOV approach involves a fixed image resolution while simultaneously integrating image descriptors from many FOVs corresponding to different sizes. For each study, the corresponding risk score (high scores reflecting aggressive disease and vice versa), predicted by a molecular assay (Oncotype DX), is available and serves as the surrogate ground truth for long-term patient outcome. Using the risk scores, a trained classifier is used to identify disease aggressiveness for each FOV size. The predictions for each FOV are then combined to yield the final prediction of disease aggressiveness (good, intermediate, or poor outcome). Independent multi-FOV classifiers are constructed for (1) 50 image features describing the spatial arrangement of cancer nuclei (via Voronoi diagram, Delaunay triangulation, and minimum spanning tree graphs) in H and E stained histopathology and (2) one image feature describing the vascular density in CD34 IHC stained histopathology. In a cohort of 29 patients, the multi-FOV classifiers obtained by combining information from the H and E and CD34 IHC stained channels were able to distinguish low- and high-risk patients with an accuracy of 0.91 ± 0.02 and a positive predictive value of 0.94 ± 0.10, suggesting that a purely image-based assay could potentially replace more expensive molecular assays for making disease prognostic predictions. PMID:22811953

  20. imzML: Imaging Mass Spectrometry Markup Language: A common data format for mass spectrometry imaging.

    PubMed

    Römpp, Andreas; Schramm, Thorsten; Hester, Alfons; Klinkert, Ivo; Both, Jean-Pierre; Heeren, Ron M A; Stöckli, Markus; Spengler, Bernhard

    2011-01-01

    Imaging mass spectrometry is the method of scanning a sample of interest and generating an "image" of the intensity distribution of a specific analyte. The data sets consist of a large number of mass spectra which are usually acquired with identical settings. Existing data formats are not sufficient to describe an MS imaging experiment completely. The data format imzML was developed to allow the flexible and efficient exchange of MS imaging data between different instruments and data analysis software.For this purpose, the MS imaging data is divided in two separate files. The mass spectral data is stored in a binary file to ensure efficient storage. All metadata (e.g., instrumental parameters, sample details) are stored in an XML file which is based on the standard data format mzML developed by HUPO-PSI. The original mzML controlled vocabulary was extended to include specific parameters of imaging mass spectrometry (such as x/y position and spatial resolution). The two files (XML and binary) are connected by offset values in the XML file and are unambiguously linked by a universally unique identifier. The resulting datasets are comparable in size to the raw data and the separate metadata file allows flexible handling of large datasets.Several imaging MS software tools already support imzML. This allows choosing from a (growing) number of processing tools. One is no longer limited to proprietary software, but is able to use the processing software which is best suited for a specific question or application. On the other hand, measurements from different instruments can be compared within one software application using identical settings for data processing. All necessary information for evaluating and implementing imzML can be found at http://www.imzML.org . PMID:21063949

  1. Strain and strain rate parametric imaging. A new method for post processing to 3-/4-dimensional images from three standard apical planes. Preliminary data on feasibility, artefact and regional dyssynergy visualisation

    PubMed Central

    Støylen, Asbjørn; Ingul, Charlotte B; Torp, Hans

    2003-01-01

    Background We describe a method for 3-/4D reconstruction of tissue Doppler data from three standard apical planes, post processing to derived data of strain rate / strain and parametric colour imaging of the data. The data can be displayed as M-mode arrays from all six walls, Bull's eye projection and a 3D surface figure that can be scrolled and rotated. Numerical data and waveforms can be re-extracted. Methods Feasibility was tested by Strain Rate Imaging in 6 normal subjects and 6 patients with acute myocardial infarction. Reverberation artefacts and dyssynergy was identified by colour images. End systolic strain, peak systolic and mid systolic strain rate were measured. Results Infarcts were visualised in all patients by colour imaging of mid systolic strain rate, end systolic strain and post systolic shortening by strain rate. Reverberation artefacts were visible in 3 of 6 normals, and 2 of 6 patients, and were identified both on bull's eye and M-mode display, but influenced quantitative measurement. Peak systolic strain rate was in controls minimum -1.11, maximum -0.89 and in patients minimum -1.66, maximum 0.02 (p = 0.04). Mid systolic strain rate and end systolic strain did not separate the groups significantly. Conclusion 3-/4D reconstruction and colour display is feasible, allowing quick visual identification of infarcts and artefacts, as well as extension of area of post systolic shortening. Strain rate is better suited to colour parametric display than strain. PMID:12956886

  2. High-pulse-energy mid-infrared fractional-image-rotation-enhancement ZnGeP2 optical parametric oscillator.

    PubMed

    Eichhorn, Marc; Schellhorn, Martin; Haakestad, Magnus W; Fonnum, Helge; Lippert, Espen

    2016-06-01

    A high-energy mid-infrared ZnGeP2 (ZGP) optical parametric oscillator (OPO) based on the nonplanar fractional-image-rotation enhancement resonator pumped by a 2.05 μm Ho3+:YLF laser is presented. Up to 120 mJ pulse energy in a rotationally symmetric beam is generated in the 3-5 μm wavelength range at 1 Hz repetition rate. Slope efficiencies of up to 78% are achieved with respect to the pump pulse energy incident onto the ZGP crystal. The OPO pulses have a duration close to 15 ns, corresponding to a maximum peak power of 8 MW. A measurement of M2 dependence on pump beam diameter is presented. PMID:27244423

  3. Mid-infrared rotated image singly resonant twisted rectangle optical parametric oscillator based on HgGa(2)S(4) pumped at 1064 nm.

    PubMed

    Marchev, Georgi; Reza, Manuel; Badikov, Valeriy; Esteban-Martin, Adolfo; Stöppler, Georg; Starikova, Marina; Badikov, Dmitrii; Panyutin, Vladimir; Eichhorn, Marc; Shevyrdyaeva, Galina; Tyazhev, Aleksey; Sheina, Svetlana; Agnesi, Antonio; Fintisova, Anna; Petrov, Valentin

    2014-11-20

    We compare linear, planar ring, and rotated image singly resonant twisted rectangle (RISTRA) type nanosecond optical parametric oscillator cavities using HgGa2S4 nonlinear crystal pumped by 8 ns pulses at 1064 nm from a low beam quality pump source. The input-output characteristics and the output idler beam quality at 6300 nm are compared for two values of the pump beam diameter presenting different cavity Fresnel numbers and magnitudes of the spatial walk-off effect due to birefringence. The RISTRA cavity ensures in all cases a circular output beam profile but is advantageous in terms of beam quality with respect to the planar ring only at a large pump beam diameter. PMID:25607872

  4. Monitoring tumor response of prostate cancer to radiation therapy by multi-parametric 1H and hyperpolarized 13C magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Vickie Yi

    Radiation therapy is one of the most common curative therapies for patients with localized prostate cancer, but despite excellent success rates, a significant number of patients suffer post- treatment cancer recurrence. The accurate characterization of early tumor response remains a major challenge for the clinical management of these patients. Multi-parametric MRI/1H MR spectroscopy imaging (MRSI) has been shown to increase the diagnostic performance in evaluating the effectiveness of radiation therapy. 1H MRSI can detect altered metabolic profiles in cancerous tissue. In this project, the concentrations of prostate metabolites from snap-frozen biopsies of recurrent cancer after failed radiation therapy were correlated with histopathological findings to identify quantitative biomarkers that predict for residual aggressive versus indolent cancer. The total choline to creatine ratio was significantly higher in recurrent aggressive versus indolent cancer, suggesting that use of a higher threshold tCho/Cr ratio in future in vivo 1H MRSI studies could improve the selection and therapeutic planning for patients after failed radiation therapy. Varying radiation doses may cause a diverse effect on prostate cancer micro-environment and metabolism, which could hold the key to improving treatment protocols for individual patients. The recent development and clinical translation of hyperpolarized 13C MRI have provided the ability to monitor both changes in the tumor micro-environment and its metabolism using a multi-probe approach, [1-13C]pyruvate and 13C urea, combined with 1H Multi-parametric MRI. In this thesis, hyperpolarized 13C MRI, 1H dynamic contrast enhancement, and diffusion weighted imaging were used to identify early radiation dose response in a transgenic prostate cancer model. Hyperpolarized pyruvate to lactate metabolism significantly decreased in a dose dependent fashion by 1 day after radiation therapy, prior to any changes observed using 1H DCE and diffusion

  5. Large format imaging spectrometers for future hyperspectral Landsat mission

    NASA Astrophysics Data System (ADS)

    Silny, John F.; Chrien, Thomas G.

    2011-10-01

    This paper describes a design concept for a Landsat-class imaging spectrometer. The challenge is to match the Landsat data parameters, including a 185 Km swath and a 30 meter ground sample distance (GSD) from a 705 Km sun-synchronous orbit with a sensor that has contiguous spectral coverage of the solar reflected spectrum (400 to 2500 nm). The result is a remote sensing satellite that provides global access imaging spectrometer data at moderate spatial resolution. Key design trades exist for the spectrometer, focal plane array, dispersive element, and calibrator. Recent developments in large format imaging spectrometers at Raytheon are presented in support of a monolithic spectrometer approach. Features of the design include (1) high signal-to-noise ratio, (2) well-corrected spectral fidelity across a 6,000 pixel push-broom field-of-view, (3) straightforward calibration of the data to units of absolute spectral radiance, and (4) real-time simulation of Thematic Mapper bands, vegetation indices, and water vapor maps for direct continuous downlink.

  6. Image formation properties and inverse imaging problem in aperture based scanning near field optical microscopy.

    PubMed

    Schmidt, S; Klein, A E; Paul, T; Gross, H; Diziain, S; Steinert, M; Assafrao, A C; Pertsch, T; Urbach, H P; Rockstuhl, C

    2016-02-22

    Aperture based scanning near field optical microscopes are important instruments to study light at the nanoscale and to understand the optical functionality of photonic nanostructures. In general, a detected image is affected by both the transverse electric and magnetic field components of light. The discrimination of the individual field components is challenging as these four field components are contained within two signals in the case of a polarization resolved measurement. Here, we develop a methodology to solve the inverse imaging problem and to retrieve the vectorial field components from polarization and phase resolved measurements. Our methodology relies on the discussion of the image formation process in aperture based scanning near field optical microscopes. On this basis, we are also able to explain how the relative contributions of the electric and magnetic field components within detected images depend on the chosen probe. We can therefore also describe the influence of geometrical and material parameters of individual probes within the image formation process. This allows probes to be designed that are primarily sensitive either to the electric or magnetic field components of light. PMID:26907063

  7. Clues to (Radio) Galaxy Formation from Deep HST Images

    NASA Astrophysics Data System (ADS)

    Windhorst, Rogier A.

    We review recent clues from deep HST images on the formation and evolution of galaxies, and of μJy and mJy radio sources in particular. Constraints from the radio source counts over 7 dex in flux and 1 dex in frequency are discussed. We review recent results from deep HST primary and parallel surveys relevant to (radio) galaxy formation. The WFPC2 galaxy counts as a function of morphological type for B < ~ 27 mag show that E/S0's and Sabc's are only marginally above the non-evolving predictions. The faint blue galaxy counts are dominated by Sd/Irr's, and are explained by a combination of a moderately steep local luminosity function undergoing strong luminosity evolution plus low-luminosity lower-redshift dwarf galaxies. Deep WFPC2 images in the medium-band filter F410M yielded 18 faint, compact Lyα emitting candidates at z ≃ 2.4 surrounding the radio galaxy 53W002 at z𢐲.390, as well as 18 more z ≃ 2.4 candidates in three random parallel fields. These objects appear to be star-forming spheroids smaller (rhl ≍ 0''.1 or 0.5-1 kpc) and fainter (MV (z=0)=-17--> -21) than the bulges of typical galaxies seen today. They may the building blocks from which many of the luminous nearby galaxies were formed through repeated hierarchical mergers. HST/PC images in BV I - as well as in redshifted Lyα - of 53W002 show several morphological components: (1) a blue AGN with < ~ 20-25% of the total continuum light; (2) an r1/4-like light distribution with colors indicating a stellar population age ~0.4 Gyr; and (3) two small blue clouds roughly aligned with the radio axis and the main stellar population. We show that both reflected AGN light and jet-induced starformation likely play a role in explaining its "alignment effect". We discuss a possible formation and evolution scenario of 53W002 in context of its surrounding sub-galactic objects, and argue that it will end up like a giant elliptical today.

  8. [Evaluation of Sorafenib for Hepatocellular Carcinoma with Low α-Fetoprotein by Arrival Time Parametric Imaging Using Contrast-Enhanced Ultrasonography with Sonazoid].

    PubMed

    Shiozawa, Kazue; Watanabe, Manabu; Ikehara, Takashi; Matsukiyo, Yasushi; Kogame, Michio; Shinohara, Mie; Kikuchi, Yoshinori; Shinohara, Masao; Igarashi, Yoshinori; Sumino, Yasukiyo

    2016-02-01

    We aimed to determine the usefulness of arrival time parametric imaging (AtPI) using contrast-enhanced ultrasonography (CEUS)with Sonazoid in the evaluation of early response to sorafenib for hepatocellular carcinoma (HCC). Thirteen ad- vanced HCC patients with low a / -fetoprotein (AFP) level (≤35 ng/mL) who received sorafenib for at least 4 weeks were enrolled in this study. CEUS was performed before and after treatment (2 weeks), and the images of the target lesion in the arterial phase were analyzed by AtPI. In the color mapping images obtained by AtPI, the mean arrival time of the contrast agent in the target lesion from the starting point (mean time: MT) was calculated. In each patient, differences between MT before and MT 2 weeks after treatment were compared. MT (+) and MT(-) groups were designated as such if the difference was 0 or greater(blood flow velocity of the lesion was reduced)and less than 0 sec(blood flow velocity of the lesion was increased), respectively. The overall survival was evaluated between the 2 groups. In the MT (+) group (7 patients) and MT (-) group (6 patients), the median survival times were 307 and 208 days, respectively, which was statistically significant. We suggest AtPI is useful for evaluating early response to sorafenib in advanced HCC patients with low AFP level. PMID:27067685

  9. Digital image database processing to simulate image formation in ideal lighting conditions of the human eye

    NASA Astrophysics Data System (ADS)

    Castañeda-Santos, Jessica; Santiago-Alvarado, Agustin; Cruz-Félix, Angel S.; Hernández-Méndez, Arturo

    2015-09-01

    The pupil size of the human eye has a large effect in the image quality due to inherent aberrations. Several studies have been performed to calculate its size relative to the luminance as well as considering other factors, i.e., age, size of the adapting field and mono and binocular vision. Moreover, ideal lighting conditions are known, but software suited to our specific requirements, low cost and low computational consumption, in order to simulate radiation adaptation and image formation in the retina with ideal lighting conditions has not yet been developed. In this work, a database is created consisting of 70 photographs corresponding to the same scene with a fixed target at different times of the day. By using this database, characteristics of the photographs are obtained by measuring the luminance average initial threshold value of each photograph by means of an image histogram. Also, we present the implementation of a digital filter for both, image processing on the threshold values of our database and generating output images with the threshold values reported for the human eye in ideal cases. Some potential applications for this kind of filters may be used in artificial vision systems.

  10. Parametrization of textural patterns in {sup 123}I-ioflupane imaging for the automatic detection of Parkinsonism

    SciTech Connect

    Martinez-Murcia, F. J. Górriz, J. M.; Ramírez, J.; Moreno-Caballero, M.; Gómez-Río, M.

    2014-01-15

    Purpose: A novel approach to a computer aided diagnosis system for the Parkinson's disease is proposed. This tool is intended as a supporting tool for physicians, based on fully automated methods that lead to the classification of{sup 123}I-ioflupane SPECT images. Methods: {sup 123}I-ioflupane images from three different databases are used to train the system. The images are intensity and spatially normalized, then subimages are extracted and a 3D gray-level co-occurrence matrix is computed over these subimages, allowing the characterization of the texture using Haralick texture features. Finally, different discrimination estimation methods are used to select a feature vector that can be used to train and test the classifier. Results: Using the leave-one-out cross-validation technique over these three databases, the system achieves results up to a 97.4% of accuracy, and 99.1% of sensitivity, with positive likelihood ratios over 27. Conclusions: The system presents a robust feature extraction method that helps physicians in the diagnosis task by providing objective, operator-independent textural information about{sup 123}I-ioflupane images, commonly used in the diagnosis of the Parkinson's disease. Textural features computation has been optimized by using a subimage selection algorithm, and the discrimination estimation methods used here makes the system feature-independent, allowing us to extend it to other databases and diseases.

  11. Longitudinal Assessment of Amyloid Pathology in Transgenic ArcAβ Mice Using Multi-Parametric Magnetic Resonance Imaging

    PubMed Central

    Klohs, Jan; Politano, Igna Wojtyna; Deistung, Andreas; Grandjean, Joanes; Drewek, Anna; Dominietto, Marco; Keist, Ruth; Schweser, Ferdinand; Reichenbach, Jürgen R.; Nitsch, Roger M.; Knuesel, Irene; Rudin, Markus

    2013-01-01

    Magnetic resonance imaging (MRI) can be used to monitor pathological changes in Alzheimer's disease (AD). The objective of this longitudinal study was to assess the effects of progressive amyloid-related pathology on multiple MRI parameters in transgenic arcAβ mice, a mouse model of cerebral amyloidosis. Diffusion-weighted imaging (DWI), T1-mapping and quantitative susceptibility mapping (QSM), a novel MRI based technique, were applied to monitor structural alterations and changes in tissue composition imposed by the pathology over time. Vascular function and integrity was studied by assessing blood-brain barrier integrity with dynamic contrast-enhanced MRI and cerebral microbleed (CMB) load with susceptibility weighted imaging and QSM. A linear mixed effects model was built for each MRI parameter to incorporate effects within and between groups (i.e. genotype) and to account for changes unrelated to the disease pathology. Linear mixed effects modelling revealed a strong association of all investigated MRI parameters with age. DWI and QSM in addition revealed differences between arcAβ and wt mice over time. CMBs became apparent in arcAβ mice with 9 month of age; and the CMB load reflected disease stage. This study demonstrates the benefits of linear mixed effects modelling of longitudinal imaging data. Moreover, the diagnostic utility of QSM and assessment of CMB load should be exploited further in studies of AD. PMID:23840405

  12. Electroencephalograph (EEG) study on self-contemplating image formation

    NASA Astrophysics Data System (ADS)

    Meng, Qinglei; Hong, Elliot; Choa, Fow-Sen

    2016-05-01

    Electroencephalography (EEG) is one of the most widely used electrophysiological monitoring methods and plays a significant role in studies of human brain electrical activities. Default mode network (DMN), is a functional connection of brain regions that are activated while subjects are not in task positive state or not focused on the outside world. In this study, EEG was used for human brain signals recording while all subjects were asked to sit down quietly on a chair with eyes closed and thinking about some parts of their own body, such as left and right hands, left and right ears, lips, nose, and the images of faces that they were familiar with as well as doing some simple mathematical calculation. The time is marker when the image is formed in the subject's mind. By analyzing brain activity maps 300ms right before the time marked instant for each of the 4 wave bands, Delta, Theta, Alpha and Beta waves. We found that for most EEG datasets during this 300ms, Delta wave activity would mostly locate at the frontal lobe or the visual cortex, and the change and movement of activities are slow. Theta wave activity tended to rotate along the edge of cortex either clockwise or counterclockwise. Beta wave behaved like inquiry types of oscillations between any two regions spread over the cortex. Alpha wave activity looks like a mix of the Theta and Beta activities but more close to Theta activity. From the observation we feel that Beta and high Alpha are playing utility role for information inquiry. Theta and low Alpha are likely playing the role of binding and imagination formation in DMN operations.

  13. Range-Gated LADAR Coherent Imaging Using Parametric Up-Conversion of IR and NIR Light for Imaging with a Visible-Range Fast-Shuttered Intensified Digital CCD Camera

    SciTech Connect

    YATES,GEORGE J.; MCDONALD,THOMAS E. JR.; BLISS,DAVID E.; CAMERON,STEWART M.; ZUTAVERN,FRED J.

    2000-12-20

    Research is presented on infrared (IR) and near infrared (NIR) sensitive sensor technologies for use in a high speed shuttered/intensified digital video camera system for range-gated imaging at ''eye-safe'' wavelengths in the region of 1.5 microns. The study is based upon nonlinear crystals used for second harmonic generation (SHG) in optical parametric oscillators (OPOS) for conversion of NIR and IR laser light to visible range light for detection with generic S-20 photocathodes. The intensifiers are ''stripline'' geometry 18-mm diameter microchannel plate intensifiers (MCPIIS), designed by Los Alamos National Laboratory and manufactured by Philips Photonics. The MCPIIS are designed for fast optical shattering with exposures in the 100-200 ps range, and are coupled to a fast readout CCD camera. Conversion efficiency and resolution for the wavelength conversion process are reported. Experimental set-ups for the wavelength shifting and the optical configurations for producing and transporting laser reflectance images are discussed.

  14. Multi-parametric imaging of tumor spheroids with ultra-bright and tunable nanoparticle O2 probes

    NASA Astrophysics Data System (ADS)

    Dmitriev, Ruslan I.; Borisov, Sergey M.; Jenkins, James; Papkovsky, Dmitri B.

    2015-03-01

    Multi-modal probes allow for flexible choice of imaging equipment when performing quenched-phosphorescence O2 measurements: one- or two-photon, PLIM or intensity-based ratiometric read-outs. Spectral and temporal (e.g. FLIMPLIM) discrimination can be used to image O2 together with pH, Ca2+, mitochondrial membrane potential, cell death markers or cell/organelle specific markers. However, the main challenge of existing nanoparticle probes is their limited diffusion across thick (> 20-50 μm) 3D cell models such as tumor spheroids. Here, we present new class of polymeric nanoparticle probes having tunable size, charge, cell-penetrating ability, and reporter dyes. Being spectrally similar to the recently described MM2, PA2 and other O2 probes, they are 5-10 times brighter, demonstrate improved ratiometric response and their surface chemistry can be easily modified. With cultures of 2D and 3D cell models (fibroblasts, PC12 aggregates, HCT116 human colon cancer spheroids) we found cell-specific staining by these probes. However, the efficient staining of model of interest can be tuned by changing number of positive and negative surface groups at nanoparticle, to allow most efficient loading. We also demonstrate how real-time monitoring of oxygenation can be used to select optimal spheroid production with low variability in size and high cell viability.

  15. Quantitative evaluation of multi-parametric MR imaging marker changes post-laser interstitial ablation therapy (LITT) for epilepsy

    NASA Astrophysics Data System (ADS)

    Tiwari, Pallavi; Danish, Shabbar; Wong, Stephen; Madabhushi, Anant

    2013-03-01

    Laser-induced interstitial thermal therapy (LITT) has recently emerged as a new, less invasive alternative to craniotomy for treating epilepsy; which allows for focussed delivery of laser energy monitored in real time by MRI, for precise removal of the epileptogenic foci. Despite being minimally invasive, the effects of laser ablation on the epileptogenic foci (reflected by changes in MR imaging markers post-LITT) are currently unknown. In this work, we present a quantitative framework for evaluating LITT-related changes by quantifying per-voxel changes in MR imaging markers which may be more reflective of local treatment related changes (TRC) that occur post-LITT, as compared to the standard volumetric analysis which involves monitoring a more global volume change across pre-, and post-LITT MRI. Our framework focuses on three objectives: (a) development of temporal MRI signatures that characterize TRC corresponding to patients with seizure freedom by comparing differences in MR imaging markers and monitoring them over time, (b) identification of the optimal time point when early LITT induced effects (such as edema and mass effect) subside by monitoring TRC at subsequent time-points post-LITT, and (c) identification of contributions of individual MRI protocols towards characterizing LITT-TRC for epilepsy by identifying MR markers that change most dramatically over time and employ individual contributions to create a more optimal weighted MP-MRI temporal profile that can better characterize TRC compared to any individual imaging marker. A cohort of patients were monitored at different time points post-LITT via MP-MRI involving T1-w, T2-w, T2-GRE, T2-FLAIR, and apparent diffusion coefficient (ADC) protocols. Post affine registration of individual MRI protocols to a reference MRI protocol pre-LITT, differences in individual MR markers are computed on a per-voxel basis, at different time-points with respect to baseline (pre-LITT) MRI as well as across subsequent time

  16. Parametric Cost Deployment

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1995-01-01

    Parametric cost analysis is a mathematical approach to estimating cost. Parametric cost analysis uses non-cost parameters, such as quality characteristics, to estimate the cost to bring forth, sustain, and retire a product. This paper reviews parametric cost analysis and shows how it can be used within the cost deployment process.

  17. Wavefront curvature limitations and compensation to polar format processing for synthetic aperture radar images.

    SciTech Connect

    Doerry, Armin Walter

    2006-01-01

    Limitations on focused scene size for the Polar Format Algorithm (PFA) for Synthetic Aperture Radar (SAR) image formation are derived. A post processing filtering technique for compensating the spatially variant blurring in the image is examined. Modifications to this technique to enhance its robustness are proposed.

  18. Three-dimensional parametric mapping in quantitative micro-CT imaging of post-surgery femoral head-neck samples: preliminary results

    PubMed Central

    Giannotti, Stefano; Bottai, Vanna; Panetta, Daniele; De Paola, Gaia; Tripodi, Maria; Citarelli, Carmine; Dell’Osso, Giacomo; Lazzerini, Ilaria; Salvadori, Piero Antonio; Guido, Giulio

    2015-01-01

    Summary Osteoporosis and pathological increased occurrence of fractures are an important public health problem. They may affect patients’ quality of life and even increase mortality of osteoporotic patients, and consequently represent a heavy economic burden for national healthcare systems. The adoption of simple and inexpensive methods for mass screening of population at risk may be the key for an effective prevention. The current clinical standards of diagnosing osteoporosis and assessing the risk of an osteoporotic bone fracture include dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT) for the measurement of bone mineral density (BMD). Micro-computed tomography (micro-CT) is a tomographic imaging technique with very high resolution allowing direct quantification of cancellous bone microarchitecture. The Authors performed micro-CT analysis of the femoral heads harvested from 8 patients who have undergone surgery for hip replacement for primary and secondary degenerative disease to identify possible new morphometric parameters based on the analysis of the distribution of intra-subject microarchitectural parameters through the creation of parametric images. Our results show that the micro-architectural metrics commonly used may not be sufficient for the realistic assessment of bone microarchitecture of the femoral head in patients with hip osteoarthritis. The innovative micro-CT approach considers the entire femoral head in its physiological shape with all its components like cartilage, cortical layer and trabecular region. The future use of these methods for a more detailed study of the reaction of trabecular bone for the internal fixation or prostheses would be desirable. PMID:26811703

  19. On the importance of image formation optics in the design of infrared spectroscopic imaging systems

    PubMed Central

    Mayerich, David; van Dijk, Thomas; Walsh, Michael; Schulmerich, Matthew; Carney, P. Scott

    2014-01-01

    Infrared spectroscopic imaging provides micron-scale spatial resolution with molecular contrast. While recent work demonstrates that sample morphology affects the recorded spectrum, considerably less attention has been focused on the effects of the optics, including the condenser and objective. This analysis is extremely important, since it will be possible to understand effects on recorded data and provides insight for reducing optical effects through rigorous microscope design. Here, we present a theoretical description and experimental results that demonstrate the effects of commonly-employed cassegranian optics on recorded spectra. We first combine an explicit model of image formation and a method for quantifying and visualizing the deviations in recorded spectra as a function of microscope optics. We then verify these simulations with measurements obtained from spatially heterogeneous samples. The deviation of the computed spectrum from the ideal case is quantified via a map which we call a deviation map. The deviation map is obtained as a function of optical elements by systematic simulations. Examination of deviation maps demonstrates that the optimal optical configuration for minimal deviation is contrary to prevailing practice in which throughput is maximized for an instrument without a sample. This report should be helpful for understanding recorded spectra as a function of the optics, the analytical limits of recorded data determined by the optical design, and potential routes for optimization of imaging systems. PMID:24936526

  20. Monitoring tumour response during chemo-radiotherapy: a parametric method using FDG-PET/CT images in patients with oesophageal cancer

    PubMed Central

    2014-01-01

    Background The objective of this study is to investigate the feasibility and the additional interest of a parametric imaging (PI) method to monitor the early tumour metabolic response in a prospective series of oesophageal cancer patients who underwent positron emission tomography with fluoro-2-deoxy-d-glucose (FDG-PET/CT) before and during curative-intent chemo-radiotherapy. Methods Fifty-seven patients with squamous cell carcinoma (SCC) of the oesophagus prospectively underwent FDG-PET/CT before chemo-radiotherapy (CRT) (PET1) and at 21 ± 3 days after the beginning of CRT (PET2). The outcome was assessed at 3 months and 1 year after the completion of CRT (clinical examination, CT scan or FDG-PET/CT, biopsy). For each patient, PET1 and PET2 were registered using CT images. The 2 PET image sets were subtracted, so the voxels with significant changes in FDG uptake were identified. A model-based analysis of this graph was used to identify the tumour voxels in which significant changes occurred between the two scans and yielded indices characterising these changes (green and red clusters). Quantitative parameters were compared with clinical outcome at 3 months and at 1 year. Results The baseline tumour FDG uptake decreased significantly at PET2 (p < 0.0001). The tumour volume significantly decreased between PET1 and PET2 (p < 0.02). The initial functional volume of the lesion (TV1) was significantly lower (p < 0.02) in patients in clinical response (CR) at 3 months and 1 year. The volume of the lesion during the treatment (TV2) was significantly lower in patients identified as in CR at 3 months (p < 0.03), but did not predict the outcome at 1 year. Multivariate analyses of outcome at 3 months showed that the risk of failure/death increased with younger age (p = 0.001), larger metabolic volume on PET1 (p = 0.009) and larger volume with decreased FDG uptake (p = 0.047). As for outcome at 1 year, the risk of failure

  1. A high-resolution, four-band SAR testbed with real-time image formation

    SciTech Connect

    Walker, B.; Sander, G.; Thompson, M.; Burns, B.; Fellerhoff, R.; Dubbert, D.

    1996-03-01

    This paper describes the Twin-Otter SAR Testbed developed at Sandia National Laboratories. This SAR is a flexible, adaptable testbed capable of operation on four frequency bands: Ka, Ku, X, and VHF/UHF bands. The SAR features real-time image formation at fine resolution in spotlight and stripmap modes. High-quality images are formed in real time using the overlapped subaperture (OSA) image-formation and phase gradient autofocus (PGA) algorithms.

  2. Digital interpolators for polar format processing. [of synthetic aperture radar images

    NASA Technical Reports Server (NTRS)

    Adams, John W.; Hudson, Ralph E.; Bayma, Robert W.; Nelson, Jeffrey E.

    1989-01-01

    The polar format approach to SAR image formation requires data to be interpolated from a warped grid onto a Cartesian lattice. In general, this requires that data be interpolated between varying sampling rates. In this paper, frequency-domain optimality criteria for polar format interpolators are defined and justified, and an approach to designing the corresponding digital filters is described.

  3. Role of multiple scattering in formation of OCT skin images

    SciTech Connect

    Kirillin, M Yu; Priezzhev, A V; Myllylae, R

    2008-06-30

    Optical coherence tomography (OCT) images of model human skin samples are obtained by using Monte Carlo simulations. The contributions of least and multiple scattering, diffusion and nondiffusion components and of separate scattering orders are studied by using a multilayer skin model based on experimental images. The model images are obtained by neglecting speckles or taking them into account. It is shown that least scattering forms the image of the upper skin layers, while the contribution of multiple scattering can be characterised as a blurred full image with a lower contrast. Repeated scattering mainly contributes to the OCT image at depths up to 1 mm. The diffusion component contributes to the image beginning from the epidermal basal layer. The partial image produced by this component is more blurred compared to the partial image produced by to multiple scattering. The nondiffusion component forms the OCT skin image at depths up to {approx}1.3 mm. (special issue devoted to application of laser technologies in biophotonics and biomedical studies)

  4. ISIS : a formation flying ionospheric seismic imaging experiment

    NASA Astrophysics Data System (ADS)

    Mimoun, D.; Lognonné, Ph; Garcia, R.; Occhipinti, G.; Abbondanza, S.

    Today, available techniques for the lithosphere tomography are limited by the number of seismic stations that we can deploy : it is sometimes difficult to access to some remote regions, but foremost the number of stations that are deployable over the oceans is strongly reduced. If we can dispose of some sites on islands (which are all characterized by a strong background noise), and on the measurements on coastal areas borders, it is therefore difficult to inverse the fine structure of the oceanic lithosphere. A promising idea is to use a long known idea, that earthquakes have a measurable impact on the ionosphere. As a matter of fact, the decrease of the atmosphere density with respect to altitude implies an amplification of the Rayleigh waves in the atmosphere, up to a maximum at about 250 km. This effect has been quantified for the Denali earthquake (Ducic et al, 2003) though its impact on the TEC content on the ionosphere. We therefore propose to detect this effect from space, thanks to a spaceborne multistatic SAR. Our concept includes 3 satellites in formation (along the same orbit) in a MEO orbit (about 19000 km). The master satellite payload is a slightly modified SAR, which operates around two main frequencies, in order to allow the computation of the delay induced by ionospheric fluctuations. The two other satellites have a passive payload which is time-synchronized with the master SAR: the use of their crossing rays will allow a 3D reconstruction of the ionosphere. A preliminary design of the space segment proposes an implementation on a MEO-orbit compatible bus, with high peak power capabilities. In order to allow the compatibility of the payload concept with the on-board available power, we have assumed that the satellite will enter in its alert mode on ground request. When an earthquake occurs, we dispose of a ten minutes delay to "wake-up" the satellite. When not in alert mode, its nominal imaging frequency will be reduced to allow the detection of

  5. Some features of photolithography image formation in partially coherent light

    SciTech Connect

    Kitsak, M A; Kitsak, A I

    2010-12-09

    The coherent-noise level in projection images of an opaque-screen sharp edge, formed in the model scheme of photolithography system at different degrees of spatial coherence of screen-illuminating light is studied experimentally. The spatial coherence of laser radiation was reduced by applying a specially developed device, used as a separate functional unit in the system model. The smoothing of the spatial fluctuations of radiation intensity caused by the random spatial inhomogeneity of the initial beam intensity in the obtained images is shown to be highly efficient. (imaging and image processing. holography)

  6. Direct 4D PET MLEM reconstruction of parametric images using the simplified reference tissue model with the basis function method for [¹¹C]raclopride.

    PubMed

    Gravel, Paul; Reader, Andrew J

    2015-06-01

    This work assesses the one-step late maximum likelihood expectation maximization (OSL-MLEM) 4D PET reconstruction algorithm for direct estimation of parametric images from raw PET data when using the simplified reference tissue model with the basis function method (SRTM-BFM) for the kinetic analysis. To date, the OSL-MLEM method has been evaluated using kinetic models based on two-tissue compartments with an irreversible component. We extend the evaluation of this method for two-tissue compartments with a reversible component, using SRTM-BFM on simulated 3D + time data sets (with use of [(11)C]raclopride time-activity curves from real data) and on real data sets acquired with the high resolution research tomograph. The performance of the proposed method is evaluated by comparing voxel-level binding potential (BPND) estimates with those obtained from conventional post-reconstruction kinetic parameter estimation. For the commonly chosen number of iterations used in practice, our results show that for the 3D + time simulation, the direct method delivers results with lower (%)RMSE at the normal count level (decreases of 9-10 percentage points, corresponding to a 38-44% reduction), and also at low count levels (decreases of 17-21 percentage points, corresponding to a 26-36% reduction). As for the real 3D data set, the results obtained follow a similar trend, with the direct reconstruction method offering a 21% decrease in (%)CV compared to the post reconstruction method at low count levels. Thus, based on the results presented herein, using the SRTM-BFM kinetic model in conjunction with the OSL-MLEM direct 4D PET MLEM reconstruction method offers an improvement in performance when compared to conventional post reconstruction methods. PMID:25992999

  7. Methodology for Localized and Accessible Image Formation and Elucidation

    ERIC Educational Resources Information Center

    Patil, Sandeep R.; Katiyar, Manish

    2009-01-01

    Accessibility is one of the key checkpoints in all software products, applications, and Web sites. Accessibility with digital images has always been a major challenge for the industry. Images form an integral part of certain type of documents and most Web 2.0-compliant Web sites. Individuals challenged with blindness and many dyslexics only make…

  8. Parametric binary dissection

    NASA Technical Reports Server (NTRS)

    Bokhari, Shahid H.; Crockett, Thomas W.; Nicol, David M.

    1993-01-01

    Binary dissection is widely used to partition non-uniform domains over parallel computers. This algorithm does not consider the perimeter, surface area, or aspect ratio of the regions being generated and can yield decompositions that have poor communication to computation ratio. Parametric Binary Dissection (PBD) is a new algorithm in which each cut is chosen to minimize load + lambda x(shape). In a 2 (or 3) dimensional problem, load is the amount of computation to be performed in a subregion and shape could refer to the perimeter (respectively surface) of that subregion. Shape is a measure of communication overhead and the parameter permits us to trade off load imbalance against communication overhead. When A is zero, the algorithm reduces to plain binary dissection. This algorithm can be used to partition graphs embedded in 2 or 3-d. Load is the number of nodes in a subregion, shape the number of edges that leave that subregion, and lambda the ratio of time to communicate over an edge to the time to compute at a node. An algorithm is presented that finds the depth d parametric dissection of an embedded graph with n vertices and e edges in O(max(n log n, de)) time, which is an improvement over the O(dn log n) time of plain binary dissection. Parallel versions of this algorithm are also presented; the best of these requires O((n/p) log(sup 3)p) time on a p processor hypercube, assuming graphs of bounded degree. How PBD is applied to 3-d unstructured meshes and yields partitions that are better than those obtained by plain dissection is described. Its application to the color image quantization problem is also discussed, in which samples in a high-resolution color space are mapped onto a lower resolution space in a way that minimizes the color error.

  9. Parametric Response Mapping of Apparent Diffusion Coefficient (ADC) as an Imaging Biomarker to Distinguish Pseudoprogression from True Tumor Progression In Peptide-Based Vaccine Therapy for Pediatric Diffuse Instrinsic Pontine Glioma

    PubMed Central

    Ceschin, Rafael; Kurland, Brenda F.; Abberbock, Shira R.; Ellingson, Benjamin M.; Okada, Hideho; Jakacki, Regina I.; Pollack, Ian F.; Panigrahy, Ashok

    2015-01-01

    Background and Purpose Immune response to cancer therapy may result in pseudoprogression, which can only be identified retrospectively and which may disrupt an effective therapy. This study assesses whether serial parametric response mapping (PRM, a voxel-by-voxel method of image analysis also known as functional diffusion mapping) analysis of ADC measurements following peptide-based vaccination may help prospectively distinguish progression from pseudoprogression in pediatric patients with diffuse intrinsic pontine gliomas. Materials and Methods From 2009–2012, 21 children age 4–18 with diffuse intrinsic pontine gliomas were enrolled in a serial peptide-based vaccination protocol following radiotherapy. DWI was acquired before immunotherapy and at six week intervals during vaccine treatment. Pseudoprogression was identified retrospectively based on clinical and radiographic findings, excluding DWI. Parametric response mapping was used to analyze 96 scans, comparing ADC measures at multiple time points (from first vaccine to up to 12 weeks after the vaccine was halted) to pre-vaccine baseline values. Log-transformed fractional increased ADC (fiADC), fractional decreased ADC (fdADC), and parametric response mapping ratio (fiADC/fdADC) were compared between patients with and without pseudoprogression, using generalized estimating equations with inverse weighting by cluster size. Results Median survival was 13.1 months from diagnosis (range 6.4–24.9 months). Four of 21 children (19%) were assessed as experiencing pseudoprogression. Patients with pseudoprogression had higher fitted average log-transformed parametric response mapping ratios (p=0.01) and fiADCs (p=0.0004), compared to patients without pseudoprogression. Conclusion Serial parametric response mapping of ADC, performed at multiple time points of therapy, may distinguish pseudoprogression from true progression in patients with diffuse intrinsic pontine gliomas treated with peptide-based vaccination

  10. Development of a scalable image formation pipeline for multiscale gigapixel photography.

    PubMed

    Golish, D R; Vera, E M; Kelly, K J; Gong, Q; Jansen, P A; Hughes, J M; Kittle, D S; Brady, D J; Gehm, M E

    2012-09-24

    We report on the image formation pipeline developed to efficiently form gigapixel-scale imagery generated by the AWARE-2 multiscale camera. The AWARE-2 camera consists of 98 "microcameras" imaging through a shared spherical objective, covering a 120° x 50° field of view with approximately 40 microradian instantaneous field of view (the angular extent of a pixel). The pipeline is scalable, capable of producing imagery ranging in scope from "live" one megapixel views to full resolution gigapixel images. Architectural choices that enable trivially parallelizable algorithms for rapid image formation and on-the-fly microcamera alignment compensation are discussed. PMID:23037355

  11. Using Gif (Graphics Interchange Format) Images In Physics Education

    NASA Astrophysics Data System (ADS)

    Bulbul, M. Sahin

    2007-04-01

    In Computer Based Physics Education, Java and Flash programs are used. However learning how to use them is rather difficult and their preparation takes a long time. Although the usage and preparation of GIF images are easy they are largely neglected in Physics Education. This study suggests that they can be used effectively in Physics Education. In order to prove this a number of methods were used. Twenty students were selected and they taught how to prepare GIF images. Then, they were given certain topics with which they were not familiar and were asked to prepare one GIF image. After this, they were also asked to asses this learning process. The images were exhibited in a class and participants' views were recorded. The data collected for this study indicates that by using this method students can learn more effectively certain topics.

  12. 3-D SAR image formation from sparse aperture data using 3-D target grids

    NASA Astrophysics Data System (ADS)

    Bhalla, Rajan; Li, Junfei; Ling, Hao

    2005-05-01

    The performance of ATR systems can potentially be improved by using three-dimensional (3-D) SAR images instead of the traditional two-dimensional SAR images or one-dimensional range profiles. 3-D SAR image formation of targets from radar backscattered data collected on wide angle, sparse apertures has been identified by AFRL as fundamental to building an object detection and recognition capability. A set of data has been released as a challenge problem. This paper describes a technique based on the concept of 3-D target grids aimed at the formation of 3-D SAR images of targets from sparse aperture data. The 3-D target grids capture the 3-D spatial and angular scattering properties of the target and serve as matched filters for SAR formation. The results of 3-D SAR formation using the backhoe public release data are presented.

  13. An automated normative-based fluorodeoxyglucose positron emission tomography image-analysis procedure to aid Alzheimer disease diagnosis using statistical parametric mapping and interactive image display

    NASA Astrophysics Data System (ADS)

    Chen, Kewei; Ge, Xiaolin; Yao, Li; Bandy, Dan; Alexander, Gene E.; Prouty, Anita; Burns, Christine; Zhao, Xiaojie; Wen, Xiaotong; Korn, Ronald; Lawson, Michael; Reiman, Eric M.

    2006-03-01

    Having approved fluorodeoxyglucose positron emission tomography (FDG PET) for the diagnosis of Alzheimer's disease (AD) in some patients, the Centers for Medicare and Medicaid Services suggested the need to develop and test analysis techniques to optimize diagnostic accuracy. We developed an automated computer package comparing an individual's FDG PET image to those of a group of normal volunteers. The normal control group includes FDG-PET images from 82 cognitively normal subjects, 61.89+/-5.67 years of age, who were characterized demographically, clinically, neuropsychologically, and by their apolipoprotein E genotype (known to be associated with a differential risk for AD). In addition, AD-affected brain regions functionally defined as based on a previous study (Alexander, et al, Am J Psychiatr, 2002) were also incorporated. Our computer package permits the user to optionally select control subjects, matching the individual patient for gender, age, and educational level. It is fully streamlined to require minimal user intervention. With one mouse click, the program runs automatically, normalizing the individual patient image, setting up a design matrix for comparing the single subject to a group of normal controls, performing the statistics, calculating the glucose reduction overlap index of the patient with the AD-affected brain regions, and displaying the findings in reference to the AD regions. In conclusion, the package automatically contrasts a single patient to a normal subject database using sound statistical procedures. With further validation, this computer package could be a valuable tool to assist physicians in decision making and communicating findings with patients and patient families.

  14. Beamforming and holography image formation methods: an analytic study.

    PubMed

    Solimene, Raffaele; Cuccaro, Antonio; Ruvio, Giuseppe; Tapia, Daniel Flores; O'Halloran, Martin

    2016-04-18

    Beamforming and holographic imaging procedures are widely used in many applications such as radar sensing, sonar, and in the area of microwave medical imaging. Nevertheless, an analytical comparison of the methods has not been done. In this paper, the Point Spread Functions pertaining to the two methods are analytically determined. This allows a formal comparison of the two techniques, and to easily highlight how the performance depends on the configuration parameters, including frequency range, number of scatterers, and data discretization. It is demonstrated that the beamforming and holography basically achieve the same resolution but beamforming requires a cheaper (less sensors) configuration.. PMID:27137336

  15. Visual Formative Assessments: The Use of Images to Quickly Assess and Record Student Learning

    ERIC Educational Resources Information Center

    Aylward, Gary

    2010-01-01

    Visual formative assessments (VFAs) allow more free more time for direct instruction. VFA's guide students in using simple images to demonstrate the essential learnings within a unit to themselves and the teacher. VFAs are powerful because they engage students to coalesce their understanding into a concise visual image. (Contains 2 figures.)

  16. Geobase Information System Impacts on Space Image Formats

    NASA Technical Reports Server (NTRS)

    Simonett, D. S. (Editor); Smith, T. R. (Editor); Tobler, W. (Editor); Marks, D. G. (Editor); Frew, J. E. (Editor); Dozier, J. C. (Editor)

    1978-01-01

    As Geobase Information Systems increase in number, size and complexity, the format compatability of satellite remote sensing data becomes increasingly more important. Because of the vast and continually increasing quantity of data available from remote sensing systems the utility of these data is increasingly dependent on the degree to which their formats facilitate, or hinder, their incorporation into Geobase Information Systems. To merge satellite data into a geobase system requires that they both have a compatible geographic referencing system. Greater acceptance of satellite data by the user community will be facilitated if the data are in a form which most readily corresponds to existing geobase data structures. The conference addressed a number of specific topics and made recommendations.

  17. A survey of SAR image-formation processing for earth resources applications

    NASA Technical Reports Server (NTRS)

    Bayma, R. W.; Jordan, R. L.; Manning, B. N.

    1977-01-01

    Currently there is considerable interest in active microwave sensors for earth resources applications, such as the SEASAT-A radar. However, to obtain spatial resolutions comparable to optical sensors at radar frequencies, sophisticated image formation processing techniques must be applied to the raw data. Processing requirements for non-coherent optical and coherent radar imaging systems are compared. The image formation processing requirements for synthetic aperture radar (SAR) systems are discussed. Both optical and digital techniques are addressed, and examples of hardware and imagery for each processing technique are presented.

  18. A survey of SAR image-formation processing for earth resources applications

    NASA Technical Reports Server (NTRS)

    Bayma, R. W.; Jordan, R. L.; Manning, B. N.

    1977-01-01

    Currently there is considerable interest in active microwave sensors for earth resources applications. A particular example is the Seasat-A radar. However, to obtain spatial resolutions comparable to optical sensors at radar frequencies, sophisticated image formation processing techniques must be applied to the raw data. This paper briefly compares processing requirements for non-coherent optical and coherent radar imaging systems, and then discusses the image formation processing requirements for synthetic aperture radar (SAR) systems. Both optical and digital techniques are addressed, and examples of hardware and imagery for each processing technique are presented.

  19. A novel polar format algorithm for SAR images utilizing post azimuth transform interpolation.

    SciTech Connect

    Holzrichter, Michael Warren; Martin, Grant D.; Doerry, Armin Walter

    2005-09-01

    SAR phase history data represents a polar array in the Fourier space of a scene being imaged. Polar Format processing is about reformatting the collected SAR data to a Cartesian data location array for efficient processing and image formation. In a real-time system, this reformatting or ''re-gridding'' operation is the most processing intensive, consuming the majority of the processing time; it also is a source of error in the final image. Therefore, any effort to reduce processing time while not degrading image quality is valued. What is proposed in this document is a new way of implementing real-time polar-format processing through a variation on the traditional interpolation/2-D Fast Fourier Transform (FFT) algorithm. The proposed change is based upon the frequency scaling property of the Fourier Transform, which allows a post azimuth FFT interpolation. A post azimuth processing interpolation provides overall benefits to image quality and potentially more efficient implementation of the polar format image formation process.

  20. An adjustable frame-straddling image formation system for PIV application

    NASA Astrophysics Data System (ADS)

    Zhang, Bing; Ouyang, Zhenxing; Yang, Hua

    2015-12-01

    As an important measuring method in velocity measuring field, Particle Image Velocimetry(PIV), which follows the principle of dividing the maximum displacement of tracer particles by the corresponding time, is applied more and more widely in various subjects, and the accuracy of which is influenced by the choice of the time delay to some extent. The existing PIV system usually chooses a fixed time delay, which could not meet the need of the application in measuring the vector of time varying flow field with a relatively high measuring accuracy. Considering the weakness of this, we introduce a new kind of adjustable frame-straddling image formation system for PIV application to improve the accuracy in this paper. The image formation system is implemented mainly because of two parts: a dual CCD camera system which is carefully designed to capture the frame-straddling image pairs of the flow field with an adjustable time delay controlled by the externally trigger signals, and an effective subpixel image registration algorithm, which is used to calculate vector of the time varying flow field on the hardware platform, which generates the two channels of trigger signals with the adjustable time delay according to the instantaneous calculating vector of flow field. Experiments were performed for several time varying flows to verify the effectiveness of the image formation system and the results shows that the accuracy was improved in calculating the vector of the flow field based on such image formation system to some extent.

  1. Image Formation by Incoherent and Coherent Transition Radiation from Flat and Rough Surfaces

    SciTech Connect

    Stupakov, Gennady; /SLAC

    2012-03-01

    In this paper we derive equations for the image formation of transverse profile of a relativistic beam obtained by means of optical transition radiation (OTR) from flat and rough metal surfaces. The motivation behind this study lies in the desire to suppress coherent transition radiation (COTR) observed in experiments at modern free electron lasers. The physical mechanism behind the problem of COTR is that the OTR is predominantly radiated at small angles of order of 1/{gamma} where {gamma} is the relativistic factor of the beam. This means that the transverse formation size of the image is of order of {bar {lambda}}{gamma} where {bar {lambda}} = {lambda}/2{pi} with {lambda} the radiation wavelength. For relativistic beams this can be comparable or even exceed the transverse size of the beam, which would mean that the image of the beam has very little to do with its transverse profile. It is fortuitous, however, that the incoherent image is formed by adding radiation energy of electrons and results in the transverse formation size being of order of {bar {lambda}}/{theta}{sub a}, with {theta}{sub a} is the aperture angle of the optical system. The COTR image, in contrast, is formed by adding electromagnetic field of electrons, and leads to the formation size {bar {lambda}}{gamma}. In situations when the COTR intensity exceeds that of OTR the COTR imaging makes the diagnostic incapable of measuring the beam profile.

  2. Extended adaptive filtering for wide-angle SAR image formation

    NASA Astrophysics Data System (ADS)

    Wang, Yanwei; Roberts, William; Li, Jian

    2005-05-01

    For two-dimensional (2-D) spectral analysis, the adaptive filtering based technologies, such as CAPON and APES (Amplitude and Phase EStimation), are developed under the implicit assumption that the data sets are rectangular. However, in real SAR applications, especially for the wide-angle cases, the collected data sets are always non-rectangular. This raises the problem of how to extend the original adaptive filtering based algorithms for such kind of scenarios. In this paper, we propose an extended adaptive filtering (EAF) approach, which includes Extended APES (E-APES) and Extended CAPON (E-CAPON), for arbitrarily shaped 2-D data. The EAF algorithms adopt a missing-data approach where the unavailable data samples close to the collected data set are assumed missing. Using a group of filter-banks with varying sizes, these algorithms are non-iterative and do not require the estimation of the unavailable samples. The improved imaging results of the proposed algorithms are demonstrated by applying them to two different SAR data sets.

  3. Solid Hydrogen Experiments for Atomic Propellants: Particle Formation, Imaging, Observations, and Analyses

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2005-01-01

    This report presents particle formation observations and detailed analyses of the images from experiments that were conducted on the formation of solid hydrogen particles in liquid helium. Hydrogen was frozen into particles in liquid helium, and observed with a video camera. The solid hydrogen particle sizes and the total mass of hydrogen particles were estimated. These newly analyzed data are from the test series held on February 28, 2001. Particle sizes from previous testing in 1999 and the testing in 2001 were similar. Though the 2001 testing created similar particles sizes, many new particle formation phenomena were observed: microparticles and delayed particle formation. These experiment image analyses are some of the first steps toward visually characterizing these particles, and they allow designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.

  4. Solid Hydrogen Experiments for Atomic Propellants: Particle Formation Energy and Imaging Analyses

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2002-01-01

    This paper presents particle formation energy balances and detailed analyses of the images from experiments that were conducted on the formation of solid hydrogen particles in liquid helium during the Phase II testing in 2001. Solid particles of hydrogen were frozen in liquid helium and observed with a video camera. The solid hydrogen particle sizes and the total mass of hydrogen particles were estimated. The particle formation efficiency is also estimated. Particle sizes from the Phase I testing in 1999 and the Phase II testing in 2001 were similar. Though the 2001 testing created similar particles sizes, many new particle formation phenomena were observed. These experiment image analyses are one of the first steps toward visually characterizing these particles and it allows designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.

  5. Hyper-parameter selection in non-quadratic regularization-based radar image formation

    NASA Astrophysics Data System (ADS)

    Batu, Özge; Çetin, Müjdat

    2008-04-01

    We consider the problem of automatic parameter selection in regularization-based radar image formation techniques. It has previously been shown that non-quadratic regularization produces feature-enhanced radar images; can yield superresolution; is robust to uncertain or limited data; and can generate enhanced images in non-conventional data collection scenarios such as sparse aperture imaging. However, this regularized imaging framework involves some hyper-parameters, whose choice is crucial because that directly affects the characteristics of the reconstruction. Hence there is interest in developing methods for automatic parameter choice. We investigate Stein's unbiased risk estimator (SURE) and generalized cross-validation (GCV) for automatic selection of hyper-parameters in regularized radar imaging. We present experimental results based on the Air Force Research Laboratory (AFRL) "Backhoe Data Dome," to demonstrate and discuss the effectiveness of these methods.

  6. Solitons versus parametric instabilities during ionospheric heating

    NASA Technical Reports Server (NTRS)

    Nicholson, D. R.; Payne, G. L.; Downie, R. M.; Sheerin, J. P.

    1984-01-01

    Various effects associated with ionospheric heating are investigated by numerically solving the modified Zakharov (1972) equations. It is shown that, for typical ionospheric parameters, the modulational instability is more important than the parametric decay instability in the spatial region of strongest heater electric field. It is concluded that the modulational instability leads to the formation of solitons, as originally predicted by Petviashvili (1976).

  7. Passive synthetic aperture hitchhiker imaging of ground moving targets--Part 1: image formation and velocity estimation.

    PubMed

    Wacks, Steven; Yazici, Birsen

    2014-06-01

    In the Part 1 of this two-part study, we present a method of imaging and velocity estimation of ground moving targets using passive synthetic aperture radar. Such a system uses a network of small, mobile receivers that collect scattered waves due to transmitters of opportunity, such as commercial television, radio, and cell phone towers. Therefore, passive imaging systems have significant cost, manufacturing, and stealth advantages over active systems. We describe a novel generalized Radon transform-type forward model and a corresponding filtered-backprojection-type image formation and velocity estimation method. We form a stack of position images over a range of hypothesized velocities, and show that the targets can be reconstructed at the correct position whenever the hypothesized velocity is equal to the true velocity of targets. We then use entropy to determine the most accurate velocity and image pair for each moving target. We present extensive numerical simulations to verify the reconstruction method. Our method does not require a priori knowledge of transmitter locations and transmitted waveforms. It can determine the location and velocity of multiple targets moving at different velocities. Furthermore, it can accommodate arbitrary imaging geometries. In Part 2, we present the resolution analysis and analysis of positioning errors in passive SAR images due to erroneous velocity estimation. PMID:24815619

  8. A design approach to real-time formatting of high speed multispectral image data

    NASA Technical Reports Server (NTRS)

    Meredith, B. D.; Kelly, W. L., IV

    1981-01-01

    A design approach to formatting multispectral image data in real time at very high data rates is presented for future onboard processing applications. The approach employs a microprocessor-based alternating buffer memory configuration whose formatting function is completely programmable. Data are read from an output buffer in the desired format by applying the proper sequence of addresses to the buffer via a lookup table memory. Sensor data can be processed using this approach at rates limited by the buffer memory access time and the buffer switching process delay time. This design offers flexible high speed data processing and benefits from continuing increases in the performance of digital memories.

  9. Laser scattered images observed from carbon plasma stagnation and following molecular formation

    SciTech Connect

    Nishimura, K.; Shibata, R.; Yabuuchi, T.; Tanaka, K. A.; Sunahara, A.

    2014-06-16

    Two carbon targets were irradiated to create plasma plumes to collide at right angle with two UV laser pulses each other at 10 J/cm{sup 2}/pulse. The collision results in carbon plasma stagnation. Laser scattered imaging indicates that the carbon large molecular formation takes place much later in time after the laser irradiation and stagnation. Compared with the temporal history of electron density (n{sub e}), ion density (n{sub i}), and plasma self-emission dominated by carbon Swan band, it is estimated that the carbon large molecular formation has been initiated with the ion collision followed by the C{sub 2} formation.

  10. Image encryption schemes for joint photographic experts group and graphics interchange format formats based on three-dimensional baker with compound chaotic sequence generator

    NASA Astrophysics Data System (ADS)

    Ji, Shiyu; Tong, Xiaojun; Zhang, Miao

    2013-01-01

    We propose several methods to transplant the compound chaotic image encryption scheme with permutation based on three-dimensional (3-D) baker onto image formats such as the joint photographic experts group (JPEG) and graphics interchange format (GIF). The new methods avert the discrete cosine transform and quantization, which result in floating point precision loss, and succeed to encrypt and decrypt JPEG images lossless. The ciphered JPEG images generated by our solution own much better randomness than most other existing schemes. Our proposed method for GIF keeps the property of animation successfully. The security test results indicate the proposed methods have high security, and the speed of our algorithm is faster than classical solutions. Since JPEG and GIF image formats are popular contemporarily, we show that the prospect of chaotic image encryption is promising.

  11. Image formation in vibro-acoustography with depth-of-field effects.

    PubMed

    Silva, Glauber T; Frery, Alejandro C; Fatemi, Mostafa

    2006-07-01

    We study the image formation of vibro-acoustography systems based on a concave sector array transducer taking into account depth-of-field effects. The system point-spread function (PSF) is defined in terms of the acoustic emission of a point-target in response to the dynamic radiation stress of ultrasound. The PSF on the focal plane and the axis of the transducer are presented. To extend the obtained PSF to the 3D-space, we assume it is a separable function in the axial direction and the focal plane of the transducer. In this model, an image is formed through the 3D convolution of the PSF with an object function. Experimental vibro-acoustography images of a breast phantom with lesion-like inclusions were compared with simulated images. Results show that the experimental images are in good agreement with the proposed model. PMID:16949793

  12. Using Image Processing Techniques for Cluster Analysis, and Droplet Formation in Phase Separating Fluids

    NASA Astrophysics Data System (ADS)

    Smith, Gregory; Oprisan, Ana; Hegseth, John; Oprisan, Sorinel; Lecoutre, Carole; Garrabos, Yves; Beysens, Daniel

    2009-03-01

    A series of experiments were performed using the Alice II apparatus in microgravity to study phase separation near critical temperature. Using image analysis techniques, we were able to obtain quantitative information regarding the morphology of gas-liquid interface near critical point of pure SF6 fluid in microgravity. Growth laws for liquid and gas clusters were extracted based on image segmentation both with thresholding and k-means clustering. By measuring the image features we analyzed the formation of spherical droplets during late stage of phase separation for a series of full view images. The growth of a wetting layer around the border of the cell containing the fluid was also investigated using image processing techniques.

  13. The Effects of Images on Multiple-Choice Questions in Computer-Based Formative Assessment

    ERIC Educational Resources Information Center

    Martín-SanJosé, Juan Fernando; Juan, M.-Carmen; Vivó, Roberto; Abad, Francisco

    2015-01-01

    Current learning and assessment are evolving into digital systems that can be used, stored, and processed online. In this paper, three different types of questionnaires for assessment are presented. All the questionnaires were filled out online on a web-based format. A study was carried out to determine whether the use of images related to each…

  14. Predictors of indocyanine green visualization during fluorescence imaging for segmental plane formation in thoracoscopic anatomical segmentectomy

    PubMed Central

    Iizuka, Shuhei; Kuroda, Hiroaki; Yoshimura, Kenichi; Dejima, Hitoshi; Seto, Katsutoshi; Naomi, Akira; Mizuno, Tetsuya; Sakakura, Noriaki

    2016-01-01

    Background To determine factors predicting indocyanine green (ICG) visualization during fluorescence imaging for segmental plane formation in thoracoscopic anatomical segmentectomy. Methods Intraoperatively, the intravenous ICG fluorescence imaging system during thoracoscopic anatomical segmentectomy obtained fluorescence emitted images of its surfaces during lung segmental plane formation after the administration of 5 mg/body weight of ICG. The subtraction of regularization scale for calculating the exciting peaks of ICG between the planned segments to resect and to remain was defined as ΔIntensity (ΔI). Variables such as the ratio of forced expiratory volume in 1 s to forced vital capacity (%FEV1.0), smoking index (SI), body mass index (BMI), and low attenuation area (LAA) on computed tomography (CT) took a leading part. Results The formation of the segmental plane was successfully accomplished in 98.6% segments and/or subsegments. SI and LAA significantly affected ΔI levels. The area under the receiver operating characteristic curve for the %FEV1.0, SI, and LAA was 0.56, 0.70, and 0.74, respectively. SI >800 and LAA >1.0% were strong predictors of unfavorable ICG visibility (P=0.04 and 0.01, respectively). Conclusions Fluorescence imaging with ICG was a safe and effective method for segmental plane formation during thoracoscopic anatomical segmentectomy. In spite of its high success rate, unfavorable visibility may potentially occur in patients who are heavy smokers or those with a LAA (>1.0%) on CT. PMID:27162675

  15. The Effects of Prior Knowledge and Instruction on Understanding Image Formation.

    ERIC Educational Resources Information Center

    Galili, Igal; And Others

    1993-01-01

    Reports a study (n=27) concerning the knowledge about image formation exhibited by students following instruction in geometrical optics in an activity-based college physics course for prospective elementary teachers. Student diagrams and verbal comments indicate their knowledge can be described as an intermediate state: a hybridization of…

  16. Evaluation of raster image compression in the context of large-format document processing

    NASA Astrophysics Data System (ADS)

    Sibade, Cedric; Barizien, Stephane; Akil, Mohamed; Perroton, Laurent

    2003-12-01

    We investigate the task of wide format still image manipulation and compression, within the framework of a document printing and copying data path. A typical document processing chain can benefit from the use of data compression, especially when it manages wide format color documents. In order to develop a new approach to use data compression for wide format printing systems, we expose in this article the benchmarking process of compression applied to large documents. Standard algorithms, from the imaging and document processing industry have been chosen for the compression of wide format color raster images. A database of image files has been created and classified for this purpose. The goal is to evaluate the performance in terms of data-flow reduction, along with quality losses in case of lossy compression. For the sake of a precise evaluation of performance of these compression algorithms, we include time measurements of the sole compression and decompression processes. A comparison of the memory footprint of each compression and decompression algorithms helps also to appreciate their resource consumptions.

  17. Readjusting image sharpness by numerical parametric lenses in Forbes-representation and Halton sampling for selective refocusing in digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Stuerwald, S.; Schmitt, R.

    2010-08-01

    Digital holographic microscopy (DHM) is utilized for quantitative phase contrast microscopy in optical testing of reflective or transparent specimens and allows altering the focus numerically by propagating the complex wave. Especially for compensation of deformations or displacements and for long-term investigations of living cells, a reliable region selective numerical readjustment of the focus is of particular interest in digital holographic microscopy. Since this method is time consuming, a Halton point set with low discrepancy has been chosen. By this, the effective axial resolution can be enhanced numerically by post processing of complex wave fronts without narrowing the field of view leading to a loss of information around the focus plane by blurring. The concept of numerical parametric lenses is another key feature in DHM and used to correct aberrations in the reconstructed wave front caused by the setup. To reduce the number of parameters for parametric lenses, the polynomial basis by Forbes is applied for the needs of DHM. Both numerical approaches have been characterized and adapted to the requirements of DHM. The applicability is demonstrated by results of investigations of engineered surfaces and biological cells.

  18. Floating volumetric image formation using a dihedral corner reflector array device.

    PubMed

    Miyazaki, Daisuke; Hirano, Noboru; Maeda, Yuki; Yamamoto, Siori; Mukai, Takaaki; Maekawa, Satoshi

    2013-01-01

    A volumetric display system using an optical imaging device consisting of numerous dihedral corner reflectors placed perpendicular to the surface of a metal plate is proposed. Image formation by the dihedral corner reflector array (DCRA) is free from distortion and focal length. In the proposed volumetric display system, a two-dimensional real image is moved by a mirror scanner to scan a three-dimensional (3D) space. Cross-sectional images of a 3D object are displayed in accordance with the position of the image plane. A volumetric image is observed as a stack of the cross-sectional images. The use of the DCRA brings compact system configuration and volumetric real image generation with very low distortion. An experimental volumetric display system including a DCRA, a galvanometer mirror, and a digital micro-mirror device was constructed to verify the proposed method. A volumetric image consisting of 1024×768×400 voxels was formed by the experimental system. PMID:23292404

  19. Side-looking image formation with a maneuvering vehicle-mounted antenna array

    NASA Astrophysics Data System (ADS)

    Ranney, Kenneth; Nguyen, Lam; Koenig, Francois; Kirose, Getachew; Martone, Anthony; Mazzaro, Gregory; Sherbondy, Kelly; Tran, Chi; Kappra, Karl

    2011-06-01

    Researchers at the U.S. Army Research Laboratory (ARL) designed and fabricated the Synchronous Impulse REconstruction (SIRE) radar system in an effort to address fundamental questions about the utilization of low frequency, ultrawideband (UWB) radar. The SIRE system includes a receive array comprising 16 receive channels, and it is capable of operating in either a forward-looking or a side-looking mode. When operated in side-looking mode, it is capable of producing high-resolution Synthetic Aperture Radar (SAR) data. The SAR imaging algorithms, however, initially operated under the assumption that the vehicle followed a nearly linear trajectory throughout the data collection. Under this assumption, the introduction of vehicle path nonlinearities distorted the processed SAR imagery. In an effort to mitigate these effects, we first incorporated segmentation routines to eliminate highly non-linear portions of the path. We then enhanced the image formation algorithm, enabling it to process data collected from a non-linear vehicle trajectory. We describe the incorporated segmentation approaches and compare the imagery created before and after their incorporation. Next, we describe the modified image formation algorithm and present examples of output imagery produced by it. Finally, we compare imagery produced by the initial segmentation algorithm to imagery produced by the modified image-formation algorithm, highlighting the effects of segmentation parameter variation on the final SAR image.

  20. An image formation algorithm for missile-borne circular-scanning SAR

    NASA Astrophysics Data System (ADS)

    Gao, Yesheng; Wang, Kaizhi; Liu, Xingzhao

    2013-12-01

    Circular-scanning SAR is an imaging mode with its antenna beam rotating continuously with respect to the vertical axis. An image formation algorithm for the missile-borne circular-scanning SAR is proposed in this article. Based on the principle of the polar format algorithm, the focus algorithm is generalized to form each subimage when the antenna beam scans at an arbitrary position. By calculating the 2-D position of each calibration point between the scatterers and the subimages, a method is presented to correct the geometric distortion of each subimage. This method is able to correct the geometric distortion even in the case of high maneuvering. These subimages are then mosaicked together to form a circular image. The simulation results under three different maneuvering trajectories are given, the subimages are formed by the focusing algorithm, and then the final circular image can be formed by mosaicking 71 subimages, each of which is after geometric distortion correction. The simulations validate the proposed image formation algorithm, and the results satisfy system design requirements.

  1. Patterns beyond Faraday waves: observation of parametric crossover from Faraday instabilities to the formation of vortex lattices in open dual fluid strata

    NASA Astrophysics Data System (ADS)

    Ohlin, Kjell; Berggren, Karl Fredrik

    2016-07-01

    Faraday first characterised the behaviour of a fluid in a container subjected to vertical periodic oscillations. His study pertaining to hydrodynamic instability, the ‘Faraday instability’, has catalysed a myriad of experimental, theoretical, and numerical studies shedding light on the mechanisms responsible for the transition of a system at rest to a new state of well-ordered vibrational patterns at fixed frequencies. Here we study dual strata in a shallow vessel containing distilled water and high-viscosity lubrication oil on top of it. At elevated driving power, beyond the Faraday instability, the top stratum is found to ‘freeze’ into a rigid pattern with maxima and minima. At the same time there is a dynamic crossover into a new state in the form of a lattice of recirculating vortices in the lower layer containing the water. Instrumentation and the physics behind are analysed in a phenomenological way together with a basic heuristic modelling of the wave field. The study, which is based on relatively low-budget equipment, stems from related art projects that have evolved over the years. The study is of value within basic research as well as in education, especially as more advanced collective project work in e.g. engineering physics, where it invites further studies of pattern formation, the emergence of vortex lattices and complexity.

  2. Quantifying fiber formation in meat analogs under high moisture extrusion using image processing

    NASA Astrophysics Data System (ADS)

    Ranasinghesagara, J.; Hsieh, F.; Yao, G.

    2005-11-01

    High moisture extrusion using twin-screw extruders shows great promise of producing meat analog products with vegetable proteins. The resulting products have well defined fiber formations; resemble real meat in both visual appearance and taste sensation. Developing reliable non-destructive techniques to quantify the textural properties of extrudates is important for quality control in the manufacturing process. In this study, we developed an image processing technique to automatically characterize sample fiber formation using digital imaging. The algorithm is based on statistical analysis of Hough transform. This objective method can be used as a standard method for evaluating other non-invasive methods. We have compared the fiber formation indices measured using this technique and a non-invasive fluorescence polarization method and obtained a high correlation.

  3. Rigorous simulation of OCT image formation using Maxwell's equations in three dimensions (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Munro, Peter R. T.; Curatolo, Andrea; Sampson, David D.

    2016-03-01

    Existing models of image formation in optical coherence tomography are based upon the extended Huygens-Fresnel formalism. These models all, to varying degrees, rely on scatterer ensemble averages, rather than deterministic scattering distributions. Whilst the former is sometimes preferable, there are a growing number of applications where the ability to predict image formation based upon deterministic refractive index distributions is of great interest, including, for example, image formation in turbid tissue. A rigorous model based upon three-dimensional solutions of Maxwell's equations offers a number of tantalising opportunities. For example, shedding light on features near or below the resolution of an OCT system and on the impact of phenomena usually described as diffraction, interference and scattering, but which more generally result from light scattering satisfying Maxwell's equations. A rigorous model allows inverse scattering methods to be developed not requiring the first-order Born approximation. Finally, a rigorous model can provide gold standard verification of myriad quantitative techniques currently being developed throughout the field. We have developed the first such model of image formation based upon three-dimensional solutions of Maxwell's equations, which has vastly different properties to models based on two-dimensional solutions. Although we present simulated B-scans, this model is equally applicable to C-scans. This has been made possible by advances in computational techniques and in computational resources routinely available. We will present the main features of our model, comparisons of measured and simulated image formation for phantoms and discuss the future of rigorous modelling in optical coherence tomography research and application.

  4. DWPF welder parametric study

    SciTech Connect

    Eberhard, B.J.; Harbour, J.R.; Plodinec, M.J.

    1994-06-01

    As part of the DWPF Startup Test Program, a parametric study has been performed to determine a range of welder operating parameters which will produce acceptable final welds for canistered waste forms. The parametric window of acceptable welds defined by this study is 90,000 {plus_minus} 15,000 lb of force, 248,000 {plus_minus} 22,000 amps of current, and 95 {plus_minus} 15 cycles (@ 60 cops) for the time of application of the current.

  5. Parametric Rietveld refinement

    PubMed Central

    Stinton, Graham W.; Evans, John S. O.

    2007-01-01

    In this paper the method of parametric Rietveld refinement is described, in which an ensemble of diffraction data collected as a function of time, temperature, pressure or any other variable are fitted to a single evolving structural model. Parametric refinement offers a number of potential benefits over independent or sequential analysis. It can lead to higher precision of refined parameters, offers the possibility of applying physically realistic models during data analysis, allows the refinement of ‘non-crystallographic’ quantities such as temperature or rate constants directly from diffraction data, and can help avoid false minima. PMID:19461841

  6. DWPF Welder Parametric Study

    SciTech Connect

    Plodinec, M.J.

    1998-11-20

    After being filled with glass, DWPF canistered waste forms will be welded closed using an upset resistance welding process. This final closure weld must be leaktight, and must remain so during extended storage at SRS. As part of the DWPF Startup Test Program, a parametric study (DWPF-WP-24) has been performed to determine a range of welder operating parameters which will produce acceptable welds. The parametric window of acceptable welds defined by this study is 90,000 + 15,000 lb of force, 248,000 + 22,000 amps of current, and 95 + 15 cycles* for the time of application of the current.

  7. Fast processing of digital imaging and communications in medicine (DICOM) metadata using multiseries DICOM format

    PubMed Central

    Ismail, Mahmoud; Philbin, James

    2015-01-01

    Abstract. The digital imaging and communications in medicine (DICOM) information model combines pixel data and its metadata in a single object. There are user scenarios that only need metadata manipulation, such as deidentification and study migration. Most picture archiving and communication system use a database to store and update the metadata rather than updating the raw DICOM files themselves. The multiseries DICOM (MSD) format separates metadata from pixel data and eliminates duplicate attributes. This work promotes storing DICOM studies in MSD format to reduce the metadata processing time. A set of experiments are performed that update the metadata of a set of DICOM studies for deidentification and migration. The studies are stored in both the traditional single frame DICOM (SFD) format and the MSD format. The results show that it is faster to update studies’ metadata in MSD format than in SFD format because the bulk data is separated in MSD and is not retrieved from the storage system. In addition, it is space efficient to store the deidentified studies in MSD format as it shares the same bulk data object with the original study. In summary, separation of metadata from pixel data using the MSD format provides fast metadata access and speeds up applications that process only the metadata. PMID:26158117

  8. Fast processing of digital imaging and communications in medicine (DICOM) metadata using multiseries DICOM format.

    PubMed

    Ismail, Mahmoud; Philbin, James

    2015-04-01

    The digital imaging and communications in medicine (DICOM) information model combines pixel data and its metadata in a single object. There are user scenarios that only need metadata manipulation, such as deidentification and study migration. Most picture archiving and communication system use a database to store and update the metadata rather than updating the raw DICOM files themselves. The multiseries DICOM (MSD) format separates metadata from pixel data and eliminates duplicate attributes. This work promotes storing DICOM studies in MSD format to reduce the metadata processing time. A set of experiments are performed that update the metadata of a set of DICOM studies for deidentification and migration. The studies are stored in both the traditional single frame DICOM (SFD) format and the MSD format. The results show that it is faster to update studies' metadata in MSD format than in SFD format because the bulk data is separated in MSD and is not retrieved from the storage system. In addition, it is space efficient to store the deidentified studies in MSD format as it shares the same bulk data object with the original study. In summary, separation of metadata from pixel data using the MSD format provides fast metadata access and speeds up applications that process only the metadata. PMID:26158117

  9. Formation of ghost images due to metal objects on the surface of the patient's face: A pictorial essay.

    PubMed

    Ramos, Bárbara Couto; da Silva Izar, Bruna Raquel; Pereira, Jéssica Lourdes Costa; Souza, Priscilla Sena; Valerio, Claudia Scigliano; Tuji, Fabrício Mesquita; Manzi, Flávio Ricardo

    2016-03-01

    Panoramic radiographs are a relatively simple technique that is commonly used in all dental specialties. In panoramic radiographs, in addition to the formation of real images of metal objects, ghost images may also form, and these ghost images can hinder an accurate diagnosis and interfere with the accuracy of radiology reports. Dentists must understand the formation of these images in order to avoid making incorrect radiographic diagnoses. Therefore, the present study sought to present a study of the formation of panoramic radiograph ghost images caused by metal objects in the head and neck region of a dry skull, as well as to report a clinical case n order to warn dentists about ghost images and to raise awareness thereof. An understanding of the principles of the formation of ghost images in panoramic radiographs helps prevent incorrect diagnoses. PMID:27051642

  10. Formation of ghost images due to metal objects on the surface of the patient's face: A pictorial essay

    PubMed Central

    Ramos, Bárbara Couto; da Silva Izar, Bruna Raquel; Pereira, Jéssica Lourdes Costa; Souza, Priscilla Sena; Valerio, Claudia Scigliano; Tuji, Fabrício Mesquita

    2016-01-01

    Panoramic radiographs are a relatively simple technique that is commonly used in all dental specialties. In panoramic radiographs, in addition to the formation of real images of metal objects, ghost images may also form, and these ghost images can hinder an accurate diagnosis and interfere with the accuracy of radiology reports. Dentists must understand the formation of these images in order to avoid making incorrect radiographic diagnoses. Therefore, the present study sought to present a study of the formation of panoramic radiograph ghost images caused by metal objects in the head and neck region of a dry skull, as well as to report a clinical case n order to warn dentists about ghost images and to raise awareness thereof. An understanding of the principles of the formation of ghost images in panoramic radiographs helps prevent incorrect diagnoses. PMID:27051642

  11. Diesel combustion and emissions formation using multiple 2-D imaging diagnostics

    SciTech Connect

    Dec, J.E.

    1997-12-31

    Understanding how emissions are formed during diesel combustion is central to developing new engines that can comply with increasingly stringent emission standards while maintaining or improving performance levels. Laser-based planar imaging diagnostics are uniquely capable of providing the temporally and spatially resolved information required for this understanding. Using an optically accessible research engine, a variety of two-dimensional (2-D) imaging diagnostics have been applied to investigators of direct-injection (DI) diesel combustion and emissions formation. These optical measurements have included the following laser-sheet imaging data: Mie scattering to determine liquid-phase fuel distributions, Rayleigh scattering for quantitative vapor-phase-fuel/air mixture images, laser induced incandescence (LII) for relative soot concentrations, simultaneous LII and Rayleigh scattering for relative soot particle-size distributions, planar laser-induced fluorescence (PLIF) to obtain early PAH (polyaromatic hydrocarbon) distributions, PLIF images of the OH radical that show the diffusion flame structure, and PLIF images of the NO radical showing the onset of NO{sub x} production. In addition, natural-emission chemiluminescence images were obtained to investigate autoignition. The experimental setup is described, and the image data showing the most relevant results are presented. Then the conceptual model of diesel combustion is summarized in a series of idealized schematics depicting the temporal and spatial evolution of a reacting diesel fuel jet during the time period investigated. Finally, recent PLIF images of the NO distribution are presented and shown to support the timing and location of NO formation hypothesized from the conceptual model.

  12. Generation of parametric images during routine Tc-99m PYP inhalation/Tc-99m MAA perfusion lung scintigraphy. Technical note.

    PubMed

    Miron, S D; Wiesen, E J; Feiglin, D H; Cohen, A M; Bellon, E M

    1991-07-01

    A simple technique is described for generating ventilation/perfusion ratio and perfusion/ventilation ratio images from the posterior Tc-99m PYP aerosol inhalation and Tc-99m MAA perfusion images obtained during routine lung scintigraphy. These images highlight areas of ventilation/perfusion incongruence--mismatch or reverse mismatch--that may sometimes be difficult to detect on conventional images. PMID:1834387

  13. Impact of Internet Images: Impression-Formation Effects of University Web Site Images

    ERIC Educational Resources Information Center

    Ramasubramanian, Srividya; Gyure, James F.; Mursi, Nasreen M.

    2002-01-01

    Institutions of higher education are increasingly becoming dependent on Web-based marketing to reach out to their target audiences. The current empirical study examines the types of impressions formed by prospective students based on exposure to different university Web site images. A between-subjects experiment was conducted using four identical…

  14. Parametric mapping of contrasted ovarian transvaginal sonography.

    PubMed

    Korhonen, Katrina; Moore, Ryan; Lyshchik, Andrej; Fleischer, Arthur C

    2015-06-01

    The purpose of this study was to assess the accuracy of parametric analysis of transvaginal contrast-enhanced ultrasound (TV-CEUS) for distinguishing benign versus malignant ovarian masses. A total of 48 ovarian masses (37 benign and 11 borderline/malignant) were examined with TV-CEUS (Definity; Lantheus, North Billerica, MA; Philips iU22; Philips Medical Systems, Bothell, WA). Parametric images were created offline with a quantification software (Bracco Suisse SA, Geneva, Switzerland) with map color scales adjusted such that abnormal hemodynamics were represented by the color red and the presence of any red color could be used to differentiate benign and malignant tumors. Using these map color scales, low values of the perfusion parameter were coded in blue, and intermediate values of the perfusion parameter were coded in yellow. Additionally, for each individual color (red, blue, or yellow), a darker shade of that color indicated a higher intensity value. Our study found that the parametric mapping method was considerably more sensitive than standard region of interest (ROI) analysis for the detection of malignant tumors but was also less specific than standard ROI analysis. Parametric mapping allows for stricter cutoff criteria, as hemodynamics are visualized on a finer scale than ROI analyses, and as such, parametric maps are a useful addition to TV-CEUS analysis by allowing ROIs to be limited to areas of the highest malignant potential. PMID:26002525

  15. Pattern Generation by Dissipative Parametric Instability

    NASA Astrophysics Data System (ADS)

    Perego, A. M.; Tarasov, N.; Churkin, D. V.; Turitsyn, S. K.; Staliunas, K.

    2016-01-01

    Nonlinear instabilities are responsible for spontaneous pattern formation in a vast number of natural and engineered systems, ranging from biology to galaxy buildup. We propose a new instability mechanism leading to pattern formation in spatially extended nonlinear systems, which is based on a periodic antiphase modulation of spectrally dependent losses arranged in a zigzag way: an effective filtering is imposed at symmetrically located wave numbers k and -k in alternating order. The properties of the dissipative parametric instability differ from the features of both key classical concepts of modulation instabilities, i.e., the Benjamin-Feir instability and the Faraday instabiltyity. We demonstrate how the dissipative parametric instability can lead to the formation of stable patterns in one- and two-dimensional systems. The proposed instability mechanism is generic and can naturally occur or can be implemented in various physical systems.

  16. Pattern Generation by Dissipative Parametric Instability.

    PubMed

    Perego, A M; Tarasov, N; Churkin, D V; Turitsyn, S K; Staliunas, K

    2016-01-15

    Nonlinear instabilities are responsible for spontaneous pattern formation in a vast number of natural and engineered systems, ranging from biology to galaxy buildup. We propose a new instability mechanism leading to pattern formation in spatially extended nonlinear systems, which is based on a periodic antiphase modulation of spectrally dependent losses arranged in a zigzag way: an effective filtering is imposed at symmetrically located wave numbers k and -k in alternating order. The properties of the dissipative parametric instability differ from the features of both key classical concepts of modulation instabilities, i.e., the Benjamin-Feir instability and the Faraday instabiltyity. We demonstrate how the dissipative parametric instability can lead to the formation of stable patterns in one- and two-dimensional systems. The proposed instability mechanism is generic and can naturally occur or can be implemented in various physical systems. PMID:26824573

  17. Parametric Differentiation and Integration

    ERIC Educational Resources Information Center

    Chen, Hongwei

    2009-01-01

    Parametric differentiation and integration under the integral sign constitutes a powerful technique for calculating integrals. However, this topic is generally not included in the undergraduate mathematics curriculum. In this note, we give a comprehensive review of this approach, and show how it can be systematically used to evaluate most of the…

  18. PROMIS — Prostate MR imaging study: A paired validating cohort study evaluating the role of multi-parametric MRI in men with clinical suspicion of prostate cancer☆

    PubMed Central

    El-Shater Bosaily, A.; Parker, C.; Brown, L.C.; Gabe, R.; Hindley, R.G.; Kaplan, R.; Emberton, M.; Ahmed, H.U.

    2015-01-01

    Background Transrectal ultrasound-guided prostate biopsies are prone to detection errors. Multi-parametric MRI (MP-MRI) may improve the diagnostic pathway. Methods PROMIS is a prospective validating paired-cohort study that meets criteria for level 1 evidence in diagnostic test evaluation. PROMIS will investigate whether multi-parametric (MP)-MRI can discriminate between men with and without clinically-significant prostate cancer who are at risk prior to first biopsy. Up to 714 men will have MP-MRI (index), 10–12 core TRUS-biopsy (standard) and 5 mm transperineal template mapping (TPM) biopsies (reference). The conduct and reporting of each test will be blinded to the others. Results PROMIS will measure and compare sensitivity, specificity, and positive and negative predictive values of both MP-MRI and TRUS-biopsy against TPM biopsies. The MP-MRI results will be used to determine the proportion of men who could safely avoid biopsy without compromising detection of clinically-significant cancers. For the primary outcome, significant cancer on TPM is defined as Gleason grade >/= 4 + 3 and/or maximum cancer core length of ≥ 6 mm. PROMIS will also assess inter-observer variability among radiologists among other secondary outcomes. Cost-effectiveness of MP-MRI prior to biopsy will also be evaluated. Conclusions PROMIS will determine whether MP-MRI of the prostate prior to first biopsy improves the detection accuracy of clinically-significant cancer. PMID:25749312

  19. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments.

    PubMed

    Gorgolewski, Krzysztof J; Auer, Tibor; Calhoun, Vince D; Craddock, R Cameron; Das, Samir; Duff, Eugene P; Flandin, Guillaume; Ghosh, Satrajit S; Glatard, Tristan; Halchenko, Yaroslav O; Handwerker, Daniel A; Hanke, Michael; Keator, David; Li, Xiangrui; Michael, Zachary; Maumet, Camille; Nichols, B Nolan; Nichols, Thomas E; Pellman, John; Poline, Jean-Baptiste; Rokem, Ariel; Schaefer, Gunnar; Sochat, Vanessa; Triplett, William; Turner, Jessica A; Varoquaux, Gaël; Poldrack, Russell A

    2016-01-01

    The development of magnetic resonance imaging (MRI) techniques has defined modern neuroimaging. Since its inception, tens of thousands of studies using techniques such as functional MRI and diffusion weighted imaging have allowed for the non-invasive study of the brain. Despite the fact that MRI is routinely used to obtain data for neuroscience research, there has been no widely adopted standard for organizing and describing the data collected in an imaging experiment. This renders sharing and reusing data (within or between labs) difficult if not impossible and unnecessarily complicates the application of automatic pipelines and quality assurance protocols. To solve this problem, we have developed the Brain Imaging Data Structure (BIDS), a standard for organizing and describing MRI datasets. The BIDS standard uses file formats compatible with existing software, unifies the majority of practices already common in the field, and captures the metadata necessary for most common data processing operations. PMID:27326542

  20. BOREAS Level-2 MAS Surface Reflectance and Temperature Images in BSQ Format

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Newcomer, Jeffrey (Editor); Lobitz, Brad; Spanner, Michael; Strub, Richard; Lobitz, Brad

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study (BOREAS) Staff Science Aircraft Data Acquisition Program focused on providing the research teams with the remotely sensed aircraft data products they needed to compare and spatially extend point results. The MODIS Airborne Simulator (MAS) images, along with other remotely sensed data, were collected to provide spatially extensive information over the primary study areas. This information includes biophysical parameter maps such as surface reflectance and temperature. Collection of the MAS images occurred over the study areas during the 1994 field campaigns. The level-2 MAS data cover the dates of 21-Jul-1994, 24-Jul-1994, 04-Aug-1994, and 08-Aug-1994. The data are not geographically/geometrically corrected; however, files of relative X and Y coordinates for each image pixel were derived by using the C130 navigation data in a MAS scan model. The data are provided in binary image format files.

  1. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments

    PubMed Central

    Gorgolewski, Krzysztof J.; Auer, Tibor; Calhoun, Vince D.; Craddock, R. Cameron; Das, Samir; Duff, Eugene P.; Flandin, Guillaume; Ghosh, Satrajit S.; Glatard, Tristan; Halchenko, Yaroslav O.; Handwerker, Daniel A.; Hanke, Michael; Keator, David; Li, Xiangrui; Michael, Zachary; Maumet, Camille; Nichols, B. Nolan; Nichols, Thomas E.; Pellman, John; Poline, Jean-Baptiste; Rokem, Ariel; Schaefer, Gunnar; Sochat, Vanessa; Triplett, William; Turner, Jessica A.; Varoquaux, Gaël; Poldrack, Russell A.

    2016-01-01

    The development of magnetic resonance imaging (MRI) techniques has defined modern neuroimaging. Since its inception, tens of thousands of studies using techniques such as functional MRI and diffusion weighted imaging have allowed for the non-invasive study of the brain. Despite the fact that MRI is routinely used to obtain data for neuroscience research, there has been no widely adopted standard for organizing and describing the data collected in an imaging experiment. This renders sharing and reusing data (within or between labs) difficult if not impossible and unnecessarily complicates the application of automatic pipelines and quality assurance protocols. To solve this problem, we have developed the Brain Imaging Data Structure (BIDS), a standard for organizing and describing MRI datasets. The BIDS standard uses file formats compatible with existing software, unifies the majority of practices already common in the field, and captures the metadata necessary for most common data processing operations. PMID:27326542

  2. Oil Spill Detection by SAR Images: Dark Formation Detection, Feature Extraction and Classification Algorithms

    PubMed Central

    Topouzelis, Konstantinos N.

    2008-01-01

    This paper provides a comprehensive review of the use of Synthetic Aperture Radar images (SAR) for detection of illegal discharges from ships. It summarizes the current state of the art, covering operational and research aspects of the application. Oil spills are seriously affecting the marine ecosystem and cause political and scientific concern since they seriously effect fragile marine and coastal ecosystem. The amount of pollutant discharges and associated effects on the marine environment are important parameters in evaluating sea water quality. Satellite images can improve the possibilities for the detection of oil spills as they cover large areas and offer an economical and easier way of continuous coast areas patrolling. SAR images have been widely used for oil spill detection. The present paper gives an overview of the methodologies used to detect oil spills on the radar images. In particular we concentrate on the use of the manual and automatic approaches to distinguish oil spills from other natural phenomena. We discuss the most common techniques to detect dark formations on the SAR images, the features which are extracted from the detected dark formations and the most used classifiers. Finally we conclude with discussion of suggestions for further research. The references throughout the review can serve as starting point for more intensive studies on the subject.

  3. Lossless data compression of grid-based digital elevation models: A png image format evaluation

    NASA Astrophysics Data System (ADS)

    Scarmana, G.

    2014-05-01

    At present, computers, lasers, radars, planes and satellite technologies make possible very fast and accurate topographic data acquisition for the production of maps. However, the problem of managing and manipulating this data efficiently remains. One particular type of map is the elevation map. When stored on a computer, it is often referred to as a Digital Elevation Model (DEM). A DEM is usually a square matrix of elevations. It is like an image, except that it contains a single channel of information (that is, elevation) and can be compressed in a lossy or lossless manner by way of existing image compression protocols. Compression has the effect of reducing memory requirements and speed of transmission over digital links, while maintaining the integrity of data as required. In this context, this paper investigates the effects of the PNG (Portable Network Graphics) lossless image compression protocol on floating-point elevation values for 16-bit DEMs of dissimilar terrain characteristics. The PNG is a robust, universally supported, extensible, lossless, general-purpose and patent-free image format. Tests demonstrate that the compression ratios and run decompression times achieved with the PNG lossless compression protocol can be comparable to, or better than, proprietary lossless JPEG variants, other image formats and available lossless compression algorithms.

  4. The formation of quantum images and their transformation and super-resolution reading

    NASA Astrophysics Data System (ADS)

    Balakin, D. A.; Belinsky, A. V.

    2016-05-01

    Images formed by light with suppressed photon fluctuations are interesting objects for studies with the aim of increasing their limiting information capacity and quality. This light in the sub-Poisson state can be prepared in a resonator filled with a medium with Kerr nonlinearity, in which self-phase modulation takes place. Spatially and temporally multimode light beams are studied and the production of spatial frequency spectra of suppressed photon fluctuations is described. The efficient operation regimes of the system are found. A particular schematic solution is described, which allows one to realize the potential possibilities laid in the formation of the squeezed states of light to a maximum degree during self-phase modulation in a resonator for the maximal suppression of amplitude quantum noises upon two-dimensional imaging. The efficiency of using light with suppressed quantum fluctuations for computer image processing is studied. An algorithm is described for interpreting measurements for increasing the resolution with respect to the geometrical resolution. A mathematical model that characterizes the measurement scheme is constructed and the problem of the image reconstruction is solved. The algorithm for the interpretation of images is verified. Conditions are found for the efficient application of sub-Poisson light for super-resolution imaging. It is found that the image should have a low contrast and be maximally transparent.

  5. IFP V4.0:a polar-reformatting image formation processor for synthetic aperture radar.

    SciTech Connect

    Eichel, Paul H.

    2005-09-01

    IFP V4.0 is the fourth generation of an extraordinarily powerful and flexible image formation processor for spotlight mode synthetic aperture radar. It has been successfully utilized in processing phase histories from numerous radars and has been instrumental in the development of many new capabilities for spotlight mode SAR. This document provides a brief history of the development of IFP, a full exposition of the signal processing steps involved, and a short user's manual for the software implementing this latest iteration.

  6. Effect of Satellite Formations and Imaging Modes on Global Albedo Estimation

    NASA Technical Reports Server (NTRS)

    Nag, Sreeja; Gatebe, Charles K.; Miller, David W.; de Weck, Olivier L.

    2016-01-01

    We confirm the applicability of using small satellite formation flight for multi-angular earth observation to retrieve global, narrow band, narrow field-of-view albedo. The value of formation flight is assessed using a coupled systems engineering and science evaluation model, driven by Model Based Systems Engineering and Observing System Simulation Experiments. Albedo errors are calculated against bi-directional reflectance data obtained from NASA airborne campaigns made by the Cloud Absorption Radiometer for the seven major surface types, binned using MODIS' land cover map - water, forest, cropland, grassland, snow, desert and cities. A full tradespace of architectures with three to eight satellites, maintainable orbits and imaging modes (collective payload pointing strategies) are assessed. For an arbitrary 4-sat formation, changing the reference, nadir-pointing satellite dynamically reduces the average albedo error to 0.003, from 0.006 found in the static reference case. Tracking pre-selected waypoints with all the satellites reduces the average error further to 0.001, allows better polar imaging and continued operations even with a broken formation. An albedo error of 0.001 translates to 1.36 W/sq m or 0.4% in Earth's outgoing radiation error. Estimation errors are found to be independent of the satellites' altitude and inclination, if the nadir-looking is changed dynamically. The formation satellites are restricted to differ in only right ascension of planes and mean anomalies within slotted bounds. Three satellites in some specific formations show average albedo errors of less than 2% with respect to airborne, ground data and seven satellites in any slotted formation outperform the monolithic error of 3.6%. In fact, the maximum possible albedo error, purely based on angular sampling, of 12% for monoliths is outperformed by a five-satellite formation in any slotted arrangement and an eight satellite formation can bring that error down four fold to 3%. More

  7. Effect of satellite formations and imaging modes on global albedo estimation

    NASA Astrophysics Data System (ADS)

    Nag, Sreeja; Gatebe, Charles K.; Miller, David W.; de Weck, Olivier L.

    2016-05-01

    We confirm the applicability of using small satellite formation flight for multi-angular earth observation to retrieve global, narrow band, narrow field-of-view albedo. The value of formation flight is assessed using a coupled systems engineering and science evaluation model, driven by Model Based Systems Engineering and Observing System Simulation Experiments. Albedo errors are calculated against bi-directional reflectance data obtained from NASA airborne campaigns made by the Cloud Absorption Radiometer for the seven major surface types, binned using MODIS' land cover map - water, forest, cropland, grassland, snow, desert and cities. A full tradespace of architectures with three to eight satellites, maintainable orbits and imaging modes (collective payload pointing strategies) are assessed. For an arbitrary 4-sat formation, changing the reference, nadir-pointing satellite dynamically reduces the average albedo error to 0.003, from 0.006 found in the static referencecase. Tracking pre-selected waypoints with all the satellites reduces the average error further to 0.001, allows better polar imaging and continued operations even with a broken formation. An albedo error of 0.001 translates to 1.36 W/m2 or 0.4% in Earth's outgoing radiation error. Estimation errors are found to be independent of the satellites' altitude and inclination, if the nadir-looking is changed dynamically. The formation satellites are restricted to differ in only right ascension of planes and mean anomalies within slotted bounds. Three satellites in some specific formations show average albedo errors of less than 2% with respect to airborne, ground data and seven satellites in any slotted formation outperform the monolithic error of 3.6%. In fact, the maximum possible albedo error, purely based on angular sampling, of 12% for monoliths is outperformed by a five-satellite formation in any slotted arrangement and an eight satellite formation can bring that error down four fold to 3%. More than

  8. Parametric Explosion Spectral Model

    SciTech Connect

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  9. Image formation, resolution, and height measurement in scanning ion conductance microscopy

    SciTech Connect

    Rheinlaender, Johannes; Schaeffer, Tilman E.

    2009-05-01

    Scanning ion conductance microscopy (SICM) is an emerging tool for the noncontact investigation of biological samples such as live cells. It uses an ion current through the opening of a tapered nanopipette filled with an electrolyte for topography measurements. Despite its successful application to numerous systems no systematic investigation of the image formation process has yet been performed. Here, we use finite element modeling to investigate how the scanning ion conductance microscope images small particles on a planar surface, providing a fundamental characterization of the imaging process. We find that a small particle appears with a height that is only a fraction of its actual height. This has significant consequences for the quantitative interpretation of SICM images. Furthermore, small and low particles are imaged as rings in certain cases. This can cause small, closely spaced particles to appear with a lateral orientation that is rotated by 90 deg. Considering both real space and spatial frequency space we find that a reasonable and useful definition of lateral resolution of SICM is the smallest distance at which two small particles can clearly be resolved from each other in an image. We find that this resolution is approximately equal to three times the inner radius of the pipette tip opening.

  10. The role of language in children's formation and retention of mental images

    NASA Astrophysics Data System (ADS)

    Howe, Ann C.; Vasu, Ellen S.

    Two studies were conducted to determine the effect of verbalization on the formation and retention of mental images in children in kindergarten, first, and fifth grades. In the first study 51 children were presented a series of tasks designed to determine their ability to represent mental images of cross sections of familiar fruits and to test the hypothesis that self-generated verbalization would aid in image formation. The hypothesis was not confirmed and no significant differences were found to be associated with gender or ability level. Individuals varied widely in the image produced. In the second study 32 subjects from first grade and fifth grade took part. Two treatment groups were formed. One group listened to a verbal description of an unfamiliar fruit, drew a cross section, and gave a description. The other group observed the fruit, then drew it from memory and described it. Both groups were brought back two weeks later and instructed to draw and describe the fruit. Children who had observed the fruit scored higher on drawings immediately and after two weeks; there were no differences between groups on scores of the verbal descriptions. Implications for science teaching are discussed.

  11. A correlative imaging based methodology for accurate quantitative assessment of bone formation in additive manufactured implants.

    PubMed

    Geng, Hua; Todd, Naomi M; Devlin-Mullin, Aine; Poologasundarampillai, Gowsihan; Kim, Taek Bo; Madi, Kamel; Cartmell, Sarah; Mitchell, Christopher A; Jones, Julian R; Lee, Peter D

    2016-06-01

    A correlative imaging methodology was developed to accurately quantify bone formation in the complex lattice structure of additive manufactured implants. Micro computed tomography (μCT) and histomorphometry were combined, integrating the best features from both, while demonstrating the limitations of each imaging modality. This semi-automatic methodology registered each modality using a coarse graining technique to speed the registration of 2D histology sections to high resolution 3D μCT datasets. Once registered, histomorphometric qualitative and quantitative bone descriptors were directly correlated to 3D quantitative bone descriptors, such as bone ingrowth and bone contact. The correlative imaging allowed the significant volumetric shrinkage of histology sections to be quantified for the first time (~15 %). This technique demonstrated the importance of location of the histological section, demonstrating that up to a 30 % offset can be introduced. The results were used to quantitatively demonstrate the effectiveness of 3D printed titanium lattice implants. PMID:27153828

  12. Two matrix approaches for aerial image formation obtained by extending and modifying the transmission cross coefficients.

    PubMed

    Yamazoe, Kenji

    2010-06-01

    This paper physically compares two different matrix representations of partially coherent imaging with the introduction of matrices E and Z, containing the source, object, and pupil. The matrix E is obtained by extending the Hopkins transmission cross coefficient (TCC) approach such that the pupil function is shifted while the matrix Z is obtained by shifting the object spectrum. The aerial image I can be written as a convex quadratic form I = = , where |phi> is a column vector representing plane waves. It is shown that rank(Z) < or = rank(E) = rank(T) = N, where T is the TCC matrix and N is the number of the point sources for a given unpolarized illumination. Therefore, the matrix Z requires fewer than N eigenfunctions for a complete aerial image formation, while the matrix E or T always requires N eigenfunctions. More importantly, rank(Z) varies depending on the degree of coherence determined by the von Neumann entropy, which is shown to relate to the mutual intensity. For an ideal pinhole as an object, emitting spatially coherent light, only one eigenfunction--i.e., the pupil function--is enough to describe the coherent imaging. In this case, we obtain rank(Z) = 1 and the pupil function as the only eigenfunction regardless of the illumination. However, rank(E) = rank(T) = N even when the object is an ideal pinhole. In this sense, aerial image formation with the matrix Z is physically more meaningful than with the matrix E. The matrix Z is decomposed as B(dagger)B, where B is a singular matrix, suggesting that the matrix B as well as Z is a principal operator characterizing the degree of coherence of the partially coherent imaging. PMID:20508699

  13. Deep Hubble Space Telescope Imaging of Sextans A. I. The Spatially Resolved Recent Star Formation History

    NASA Astrophysics Data System (ADS)

    Dohm-Palmer, Robbie C.; Skillman, Evan D.; Mateo, Mario; Saha, Abi; Dolphin, Andrew; Tolstoy, Eline; Gallagher, Jay S.; Cole, Andrew A.

    2002-02-01

    We have measured stellar photometry from deep Cycle 7 Hubble Space Telescope/WFPC2 imaging of the dwarf irregular galaxy Sextans A. The imaging was taken in three filters: F555W (V; eight orbits), F814W (I; 16 orbits), and F656N (Hα one orbit). Combining these data with Cycle 5 WFPC2 observations provides nearly complete coverage of the optically visible portion of the galaxy. The Cycle 7 observations are nearly 2 mag more sensitive than the Cycle 5 observations, which provides unambiguous separation of the faint blue helium-burning stars (BHeB stars) from contaminant populations. The depth of the photometry allows us to compare recent star formation histories recovered from both the main-sequence stars and the BHeB stars for the last 300 Myr. The excellent agreement between these independent star formation rate (SFR) calculations is a resounding confirmation for the legitimacy of using the BHeB stars to calculate the recent SFR. Using the BHeB stars we have calculated the global star formation history over the past 700 Myr. The history calculated from the Cycle 7 data is remarkably identical to that calculated from the Cycle 5 data, implying that both halves of the galaxy formed stars in concert. We have also calculated the spatially resolved star formation history, combining the fields from the Cycle 5 and Cycle 7 data. The star-forming regions are found in three major zones of the galaxy. One of these zones is extremely young, consisting of only a single star-forming region that is less than 20 Myr old. Two of these zones are associated with high column density neutral gas, while the third, and oldest, is not. Our interpretation of this pattern of star formation is that it is an orderly stochastic process. Star formation begins on the edge of a gas structure and progressively eats away at the cloud, breaking it up and inducing further star formation. A more quantitative analysis of the star formation process must await a larger sample of galaxies with spatially

  14. Understanding Galaxy Formation from Deep Hubble Images: The Forward-Modeling Approach

    NASA Astrophysics Data System (ADS)

    Fall, Michael

    2015-08-01

    We present a new approach to comparing models of galaxy formation with deep images taken with the Hubble Space Telescope (HST). In particular, we generate simulated HST images by projecting the galaxy formation models all the way into observational domain, adding cosmological and instrumental effects, and we analyze these images in the same way as real HST images ("forward modeling"). This is a powerful method for testing the models, since it allows us to make unbiased comparisons between predictions and observations, while automatically taking into account all relevant selection effects. We model the evolving galaxy population by semi-empirical techniques based on cosmological simulations of dark matter halos, in which the baryonic evolution of galaxies follows closely that of their dark halos, as specified by a constant or evolving stellar mass-halo mass (SMHM) relation. We introduce a novel method to ensure that the star formation history in each simulated galaxy complies with the input SMHM relation. We compute the radiative spectra of simulated galaxies from stellar population synthesis models, taking into account absorption by gas and dust in the interstellar medium and by gas in the intergalactic medium. The appearance of our simulated galaxies is based on cutout images of real galaxies in the SDSS, but with luminosities and sizes rescaled to match those computed by our semi-empirical models. To determine which models are acceptable, we derive the distributions of luminosities, sizes, and surface brightnesses of galaxies in the simulated images (using SExtractor and other standard analysis tools) and compare these with the corresponding distributions derived from real HST images. We find remarkably good agreement between these distributions for reasonable values of the relatively few adjustable parameters in our models. As a byproduct of this analysis, we also quantify the potential biases and selection effects in the observations. The methods presented here

  15. New insights on the formation and assembly of M83 from deep near-infrared imaging

    SciTech Connect

    Barnes, Kate L.; Van Zee, Liese; Dale, Daniel A.; Staudaher, Shawn; Bullock, James S.; Calzetti, Daniela; Chandar, Rupali; Dalcanton, Julianne J.

    2014-07-10

    We present results from new near-infrared (NIR) imaging from the Spitzer Space Telescope that trace the low surface brightness features of the outer disk and stellar stream in the nearby spiral galaxy, M83. Previous observations have shown that M83 hosts a faint stellar stream to the northwest and a star-forming disk that extends to ∼3 times the optical radius (R{sub 25}). By combining the NIR imaging with archival far-ultraviolet (FUV) and H I imaging, we study the star formation history of the system. The NIR surface brightness profile has a break at ∼5.'8 (equivalent to 8.1 kpc and 0.9 R{sub 25}) with a shallower slope beyond this radius, which may result from the recent accretion of gas onto the outer disk and subsequent star formation. Additionally, the ratio of FUV to NIR flux increases with increasing radius in several arms throughout the extended star forming disk, indicating an increase in the ratio of the present to past star formation rate with increasing radius. This sort of inside-out disk formation is consistent with observations of gas infall onto the outer disk of M83. Finally, the flux, size, and shape of the stellar stream are measured and the origin of the stream is explored. The stream has a total NIR flux of 11.6 mJy, which implies a stellar mass of 1 × 10{sup 8} M{sub ☉} in an area subtending ∼80°. No FUV emission is detected in the stream at a level greater than the noise, confirming an intermediate-age or old stellar population in the stream.

  16. H-type Dimer Formation of Fluorophores: A Mechanism for Activatable, in vivo Optical Molecular Imaging

    PubMed Central

    Ogawa, Mikako; Kosaka, Nobuyuki; Choyke, Peter L; Kobayashi, Hisataka

    2009-01-01

    In vivo molecular imaging with target-specific activatable “smart” probes, which only yield fluorescence at the intended target, enables sensitive and specific cancer detection because of high target to background ratios (TBR). Dimerization and fluorescence quenching has been shown to occur in concentrated aqueous solutions of various fluorophores. Here, we hypothesized that fluorophore dimerization and quenching after conjugation to targeting proteins can occur at low concentration, which is reasonable for in vivo imaging probes, because protein molecules can stabilize the fluorophore dimers based on physico-chemical interactions. This dimerization can be exploited as a mechanism for fluorescence activation. Rhodamine derivatives were conjugated to the cancer targeting molecules, avidin and trastuzumab, which target D-galactose receptor and HER2/neu antigen, respectively. After conjugation, a large proportion of R6G and TAMRA formed H-type dimers, even at low concentrations, but could be fully dequenched upon dissociation of the dimers to monomers. Lipophilicity was a potential factor in promoting H-dimer formation. To demonstrate the fluorescence activation effect during in vivo fluorescence endoscopic molecular imaging, a highly quenched probe, avidin-TAMRA or a minimally quenched probe, avidin-Alexa488 was administered into mice with ovarian metastases to the peritoneum. The tumors were clearly visualized with avidin-TAMRA, with low background fluorescence; in contrast, the background fluorescence was high for avidin-Alexa488. Thus, H-dimer formation as a mechanism of fluorescence quenching could be used to develop fluorescence activatable probes for in vivo molecular imaging. Effective activatable optical probes can be designed by focusing on the H-dimer formation of fluorophores. PMID:19480464

  17. Assessment of MR Compatibility of a PET Insert Developed for Simultaneous Multi-parametric PET/MR Imaging on an Animal System Operating at 7 T

    PubMed Central

    Wehrl, Hans F.; Judenhofer, Martin S.; Thielscher, Axel; Martirosian, Petros; Schick, Fritz; Pichler, Bernd J.

    2010-01-01

    The combination of PET and MR in one system is currently emerging and opens up new domains in the functional examinations of living systems. This paper reports on relevant influences of a PET insert on MR imaging. The basic conditions of main magnetic field and RF field homogeneity were measured as well as image quality and signal-to-noise ratio when applying the usual MR sequence types including echo-planar techniques. Moreover, the influence of the PET insert on the RF noise level and on RF interferences was measured by comparing results achieved with and without the PET insert. The temporal stability of EPI imaging with and without the PET insert was assessed. Small but significant decreases in the signal-to-noise ratio were revealed when the PET insert was present, whereas B0 and B1 homogeneity as well as RF noise level were not adversely affected. A higher signal intensity drift was found for EPI imaging studies; however, this can be compensated by post processing. In summary, this study shows that PET inserts can be designed for and used within an MR system practically, without substantially affecting the MR image quality. PMID:20806353

  18. Imaging symptomatic bone morphogenetic protein-2-induced heterotopic bone formation within the spinal canal: case report.

    PubMed

    Chryssikos, Timothy; Crandall, Kenneth M; Sansur, Charles A

    2016-05-01

    Heterotopic bone formation within the spinal canal is a known complication of bone morphogenetic protein-2 (BMP-2) and presents a clinical and surgical challenge. Imaging modalities are routinely used for operative planning in this setting. Here, the authors present the case of a 59-year-old woman with cauda equina syndrome following intraoperative BMP-2 administration. Plain film myelographic studies showed a region of severe stenosis that was underappreciated on CT myelography due to a heterotopic bony lesion mimicking the dorsal aspect of a circumferentially patent thecal sac. When evaluating spinal stenosis under these circumstances, it is important to carefully consider plain myelographic images in addition to postmyelography CT images as the latter may underestimate the true degree of stenosis due to the potentially similar radiographic appearances of evolving BMP-2-induced heterotopic bone and intrathecal contrast. Alternatively, comparison of sequentially acquired noncontrast CT scans with CT myelographic images may also assist in distinguishing BMP-2-induced heterotopic bony lesions from the thecal sac. Further studies are needed to elucidate the roles of the available imaging techniques in this setting and to characterize the connection between the radiographic and histological appearances of BMP-2-induced heterotopic bone. PMID:26824586

  19. Image-based characterization of thrombus formation in time-lapse DIC microscopy

    PubMed Central

    Brieu, Nicolas; Navab, Nassir; Serbanovic-Canic, Jovana; Ouwehand, Willem H.; Stemple, Derek L.; Cvejic, Ana; Groher, Martin

    2012-01-01

    The characterization of thrombus formation in time-lapse DIC microscopy is of increased interest for identifying genes which account for atherothrombosis and coronary artery diseases (CADs). In particular, we are interested in large-scale studies on zebrafish, which result in large amount of data, and require automatic processing. In this work, we present an image-based solution for the automatized extraction of parameters quantifying the temporal development of thrombotic plugs. Our system is based on the joint segmentation of thrombotic and aortic regions over time. This task is made difficult by the low contrast and the high dynamic conditions observed in vivo DIC microscopic scenes. Our key idea is to perform this segmentation by distinguishing the different motion patterns in image time series rather than by solving standard image segmentation tasks in each image frame. Thus, we are able to compensate for the poor imaging conditions. We model motion patterns by energies based on the idea of dynamic textures, and regularize the model by two prior energies on the shape of the aortic region and on the topological relationship between the thrombus and the aorta. We demonstrate the performance of our segmentation algorithm by qualitative and quantitative experiments on synthetic examples as well as on real in vivo microscopic sequences. PMID:22482997

  20. A format standard for efficient interchange of high-contrast direct imaging science products

    NASA Astrophysics Data System (ADS)

    Choquet, Élodie; Vigan, Arthur; Soummer, Rémi; Chauvin, Gaël.; Pueyo, Laurent; Perrin, Marshall D.; Hines, Dean C.

    2014-07-01

    The present and next few years will see the arrival of several new coronagraphic instruments dedicated to the detection and characterization of planetary systems. These ground- and space-based instruments (Gemini/GPI, VLT/SPHERE, Subaru/ CHARIS, JWST NIRCam and MIRI coronagraphs among others), will provide a large number of new candidates, through multiple nearby-star surveys and will complete and extend those acquired with current generation instruments (Palomar P1640, VLT/NACO, Keck, HST). To optimize the use of the wealth of data, including non-detection results, the science products of these instruments will require to be shared among the community. In the long term such data exchange will significantly ease companion confirmations, planet characterization via different type of instruments (integral field spectrographs, polarimetric imagers, etc.), and Monte-Carlo population studies from detection and non-detection results. In this context, we initiated a collaborative effort between the teams developing the data reduction pipelines for SPHERE, GPI, and the JWST coronagraphs, and the ALICE (Archival Legacy Investigations of Circumstellar Environment) collaboration, which is currently reprocessing all the HST/NICMOS coronagraphic surveys. We are developing a standard format for the science products generated by high-contrast direct imaging instruments (reduced image, sensitivity limits, noise image, candidate list, etc.), that is directly usable for astrophysical investigations. In this paper, we present first results of this work and propose a preliminary format adopted for the science product. We call for discussions in the high-contrast direct imaging community to develop this effort, reach a consensus and finalize this standard. This action will be critical to enable data interchange and combination in a consistent way between several instruments and to stiffen the scientific production in the community.

  1. Monitoring hydrate formation and dissociation in sandstone and bulk with magnetic resonance imaging.

    PubMed

    Baldwin, B A; Moradi-Araghi, A; Stevens, J C

    2003-11-01

    Magnetic resonance imaging (MRI) has been shown to be a very effective tool for monitoring the formation and dissociation of hydrates because of the large intensity contrast between the images of the liquid components and the solid hydrate. Tetrahydrofuran/water hydrate was used because the two liquid components are miscible and form hydrate at ambient pressure. These properties made this feasibility study proceed much faster than using methane/water, which requires high pressure to form the hydrate. The formation and dissociation was monitored first in a THF/water-saturated Berea sandstone plug and second in the bulk. In both cases it appeared that nucleation was needed to begin the formation process, i.e., the presence of surfaces in the sandstone and shaking of the bulk solution. Dissociation appeared to be dominated by the rate of thermal energy transfer. The dissociation temperature of hydrate formed in the sandstone plug was not significantly different from the dissociation temperature in bulk. PMID:14684213

  2. Star formation properties of Hickson Compact Groups based on deep Hα imaging

    NASA Astrophysics Data System (ADS)

    Eigenthaler, Paul; Ploeckinger, Sylvia; Verdugo, Miguel; Ziegler, Bodo

    2015-08-01

    We present deep Hα imaging of seven Hickson Compact Groups (HCGs) using the 4.1-m Southern Astrophysics Research (SOAR) Telescope. The high spatial resolution of the observations allows us to study both the integrated star formation properties of the main galaxies as well as the 2D distribution of star-forming knots in the faint tidal arms that form during interactions between the individual galaxies. We derive star formation rates and stellar masses for group members and discuss their position relative to the main sequence of star-forming galaxies. Despite the existence of tidal features within the galaxy groups, we do not find any indication for enhanced star formation in the selected sample of HCGs. We study azimuthally averaged Hα profiles of the galaxy discs and compare them with the g' and r' surface brightness profiles. We do not find any truncated galaxy discs but reveal that more massive galaxies show a higher light concentration in Hα than less massive ones. We also see that galaxies that show a high light concentration in r', show a systematic higher light concentration in Hα. Tidal dwarf galaxy (TDG) candidates have been previously detected in R-band images for two groups in our sample but we find that most of them are likely background objects as they do not show any emission in Hα. We present a new TDG candidate at the tip of the tidal tail in HCG 91.

  3. The Monterey Formation of the Santa Ynez Unit, Part II: Fractures, borehole images, and production

    SciTech Connect

    Lockman, D.F.; Schwalbach, J.R. )

    1996-01-01

    The Santa Ynez Unit (SYU), operated by Exxon, USA, comprises sixteen Federal OCS leases in the western portion of the Santa Barbara Channel, offshore California. The three accumulations, Hondo, Pescado, and Sacate Fields, are trapped in a large complex of east-west trending anticlines. The Hondo and Harmony platforms produce from the Hondo structure, and the Heritage platform produces from the Pescado structure. Hondo platform production began in 1981, and approximately 130 MBO and 200 BCF have been produced. Drilling began from Harmony and Heritage platforms in 1993. The primary reservoir is the Miocene Monterey Formation, consisting of very thin interbeds of fine-grained siliceous mudstones, charts, porcelanites, and carbonate rocks. The majority of the recoverable reserves are contained in and produced from the extensive, high-permeability fracture network. Part of our formation evaluation program emphasizes fracture characterization and quantification by integrating a number of new technologies. We have calibrated borehole images to approximately 1000 feet of continuous cores from the main producing zones. This enables us to quantify levels of fracturing in wells without core, and to develop strategies for selective perforation of the most highly-productive intervals. Production logs and wireline formation tests provide valuable information about the relation between fluid entry to the well bore and fracture distribution. Borehole images also provide valuable information about fracture orientations, bed orientations, locally-developed chert folds, and lithofacies.

  4. The Monterey Formation of the Santa Ynez Unit, Part II: Fractures, borehole images, and production

    SciTech Connect

    Lockman, D.F.; Schwalbach, J.R.

    1996-12-31

    The Santa Ynez Unit (SYU), operated by Exxon, USA, comprises sixteen Federal OCS leases in the western portion of the Santa Barbara Channel, offshore California. The three accumulations, Hondo, Pescado, and Sacate Fields, are trapped in a large complex of east-west trending anticlines. The Hondo and Harmony platforms produce from the Hondo structure, and the Heritage platform produces from the Pescado structure. Hondo platform production began in 1981, and approximately 130 MBO and 200 BCF have been produced. Drilling began from Harmony and Heritage platforms in 1993. The primary reservoir is the Miocene Monterey Formation, consisting of very thin interbeds of fine-grained siliceous mudstones, charts, porcelanites, and carbonate rocks. The majority of the recoverable reserves are contained in and produced from the extensive, high-permeability fracture network. Part of our formation evaluation program emphasizes fracture characterization and quantification by integrating a number of new technologies. We have calibrated borehole images to approximately 1000 feet of continuous cores from the main producing zones. This enables us to quantify levels of fracturing in wells without core, and to develop strategies for selective perforation of the most highly-productive intervals. Production logs and wireline formation tests provide valuable information about the relation between fluid entry to the well bore and fracture distribution. Borehole images also provide valuable information about fracture orientations, bed orientations, locally-developed chert folds, and lithofacies.

  5. MINC 2.0: A Flexible Format for Multi-Modal Images.

    PubMed

    Vincent, Robert D; Neelin, Peter; Khalili-Mahani, Najmeh; Janke, Andrew L; Fonov, Vladimir S; Robbins, Steven M; Baghdadi, Leila; Lerch, Jason; Sled, John G; Adalat, Reza; MacDonald, David; Zijdenbos, Alex P; Collins, D Louis; Evans, Alan C

    2016-01-01

    It is often useful that an imaging data format can afford rich metadata, be flexible, scale to very large file sizes, support multi-modal data, and have strong inbuilt mechanisms for data provenance. Beginning in 1992, MINC was developed as a system for flexible, self-documenting representation of neuroscientific imaging data with arbitrary orientation and dimensionality. The MINC system incorporates three broad components: a file format specification, a programming library, and a growing set of tools. In the early 2000's the MINC developers created MINC 2.0, which added support for 64-bit file sizes, internal compression, and a number of other modern features. Because of its extensible design, it has been easy to incorporate details of provenance in the header metadata, including an explicit processing history, unique identifiers, and vendor-specific scanner settings. This makes MINC ideal for use in large scale imaging studies and databases. It also makes it easy to adapt to new scanning sequences and modalities. PMID:27563289

  6. MINC 2.0: A Flexible Format for Multi-Modal Images

    PubMed Central

    Vincent, Robert D.; Neelin, Peter; Khalili-Mahani, Najmeh; Janke, Andrew L.; Fonov, Vladimir S.; Robbins, Steven M.; Baghdadi, Leila; Lerch, Jason; Sled, John G.; Adalat, Reza; MacDonald, David; Zijdenbos, Alex P.; Collins, D. Louis; Evans, Alan C.

    2016-01-01

    It is often useful that an imaging data format can afford rich metadata, be flexible, scale to very large file sizes, support multi-modal data, and have strong inbuilt mechanisms for data provenance. Beginning in 1992, MINC was developed as a system for flexible, self-documenting representation of neuroscientific imaging data with arbitrary orientation and dimensionality. The MINC system incorporates three broad components: a file format specification, a programming library, and a growing set of tools. In the early 2000's the MINC developers created MINC 2.0, which added support for 64-bit file sizes, internal compression, and a number of other modern features. Because of its extensible design, it has been easy to incorporate details of provenance in the header metadata, including an explicit processing history, unique identifiers, and vendor-specific scanner settings. This makes MINC ideal for use in large scale imaging studies and databases. It also makes it easy to adapt to new scanning sequences and modalities. PMID:27563289

  7. Parametric Hazard Function Estimation.

    Energy Science and Technology Software Center (ESTSC)

    1999-09-13

    Version 00 Phaze performs statistical inference calculations on a hazard function (also called a failure rate or intensity function) based on reported failure times of components that are repaired and restored to service. Three parametric models are allowed: the exponential, linear, and Weibull hazard models. The inference includes estimation (maximum likelihood estimators and confidence regions) of the parameters and of the hazard function itself, testing of hypotheses such as increasing failure rate, and checking ofmore » the model assumptions.« less

  8. Parametric Trace Slicing

    NASA Technical Reports Server (NTRS)

    Rosu, Grigore (Inventor); Chen, Feng (Inventor); Chen, Guo-fang; Wu, Yamei; Meredith, Patrick O. (Inventor)

    2014-01-01

    A program trace is obtained and events of the program trace are traversed. For each event identified in traversing the program trace, a trace slice of which the identified event is a part is identified based on the parameter instance of the identified event. For each trace slice of which the identified event is a part, the identified event is added to an end of a record of the trace slice. These parametric trace slices can be used in a variety of different manners, such as for monitoring, mining, and predicting.

  9. Multipass optical parametric amplifier

    SciTech Connect

    Jeys, T.H.

    1996-08-01

    A compact, low-threshold, multipass optical parametric amplifier has been developed for the conversion of short-pulse (360-ps) 1064-nm Nd:YAG laser radiation into eye-safe 1572-nm radiation for laser ranging and radar applications. The amplifier had a threshold pump power of as low as 45{mu}J, and at three to four times this threshold pump power the amplifier converted 30{percent} of the input 1064-nm radiation into 1572-nm output radiation. {copyright} {ital 1996 Optical Society of America.}

  10. Progress in optical parametric oscillators

    NASA Technical Reports Server (NTRS)

    Fan, Y. X.; Byer, R. L.

    1984-01-01

    It is pointed out that tunable coherent sources are very useful for many applications, including spectroscopy, chemistry, combustion diagnostics, and remote sensing. Compared with other tunable sources, optical parametric oscillators (OPO) offer the potential advantage of a wide wavelength operating range, which extends from 0.2 micron to 25 microns. The current status of OPO is examined, taking into account mainly advances made during the last decade. Attention is given to early LiNbO3 parametric oscillators, problems which have prevented wide use of parametric oscillators, the demonstration of OPO's using urea and AgGaS2, progress related to picosecond OPO's, a breakthrough in nanosecond parametric oscillators, the first demonstration of a waveguide and fiber parametric amplification and generation, the importance of chalcopyrite crystals, and theoretical work performed with the aim to understand the factors affecting the parametric oscillator performance.

  11. Statistical synthesis of radiometric imaging formation in scanning radiometers with signal weight processing by Kravchenko windows

    NASA Astrophysics Data System (ADS)

    Volosyuk, V. K.; Kravchenko, V. F.; Pavlikov, V. V.; Pustovoit, V. I.

    2014-05-01

    Statistical optimization of the radiometric images (RMIs) algorithms formation in scanning radiometers with weight correction of the antenna amplitude-phase distribution and synchronous sliding strobing of the received noise-like signal by a function describing the antenna pattern corrected by temporal Kravchenko windows is performed for the first time. The ambiguity function (AF) of the scanning radiometer, which determines the RMI quality, is found. It is established that the AF shape substantially depends on the amplitude field distribution (AFD) in the antenna. It is shown that the use of the AFD in the antenna in the form of weight functions (classic and Kravchenko) makes it possible to correct the AF shape and to increase the RMI quality. A simulation of the RMI formation algorithm is performed. It follows from the analysis of simulation data that the use of the weight Kravchenko functions provides higher accuracy of the RMI restoration compared with classic weight functions.

  12. Preferential Isomer Formation Observed in H3+ + CO by Crossed Beam Imaging

    PubMed Central

    2016-01-01

    The proton transfer reaction H3+ + CO is one of the cornerstone chemical processes in the interstellar medium. Here, the dynamics of this reaction have been investigated using crossed beam velocity map imaging. Formyl product cations are found to be predominantly scattered into the forward direction irrespective of the collision energy. In this process, a high amount of energy is transferred to internal product excitation. By fitting a sum of two distribution functions to the measured internal energy distributions, the product isomer ratio is extracted. A small HOC+ fraction is obtained at a collision energy of 1.8 eV, characterized by an upper limit of 24% with a confidence level of 84%. At lower collision energies, the data indicate purely HCO+ formation. Such low values are unexpected given the previously predicted efficient formation of both HCO+ and HOC+ isomers for thermal conditions. This is discussed in light of the direct reaction dynamics that are observed. PMID:27352138

  13. Infrared and optical imaging of IRAS sources with CO outflow - A snapshot of early star formation

    NASA Technical Reports Server (NTRS)

    Chen, H.; Tokunaga, A. T.; Strom, K. M.; Hodapp, K.-W.

    1993-01-01

    We present multiband imaging of three IRAS sources associated with CO molecular outflows. We find stellar density enhancements around all three IRAS sources. Optical and near-IR photometry indicates that at least 60 percent of the near-IR sources in the vicinity of the IRAS sources are pre-main-sequence stars. Using the photometric data at nbL and M, we are able to identify candidates for the near-IR counterparts of the IRAS sources. We also find that (1) the spectral energy distribution of the deeply embedded sources could be complicated by source confusion and scattered light from the young stellar objects; (2) star formation in the vicinity of the IRAS sources is a continuous process with an age span of 0.5-3 Myr; and (3) stellar density enhancement is probably a phenomenon found at the earliest stage of star formation.

  14. Terrain matching image pre-process and its format transform in autonomous underwater navigation

    NASA Astrophysics Data System (ADS)

    Cao, Xuejun; Zhang, Feizhou; Yang, Dongkai; Yang, Bogang

    2007-06-01

    matching precision directly influences the final precision of integrated navigation system. Image matching assistant navigation is spatially matching and aiming at two underwater scenery images coming from two different sensors matriculating of the same scenery in order to confirm the relative displacement of the two images. In this way, we can obtain the vehicle's location in fiducial image known geographical relation, and the precise location information given from image matching location is transmitted to INS to eliminate its location error and greatly enhance the navigation precision of vehicle. Digital image data analysis and processing of image matching in underwater passive navigation is important. In regard to underwater geographic data analysis, we focus on the acquirement, disposal, analysis, expression and measurement of database information. These analysis items structure one of the important contents of underwater terrain matching and are propitious to know the seabed terrain configuration of navigation areas so that the best advantageous seabed terrain district and dependable navigation algorithm can be selected. In this way, we can improve the precision and reliability of terrain assistant navigation system. The pre-process and format transformation of digital image during underwater image matching are expatiated in this paper. The information of the terrain status in navigation areas need further study to provide the reliable data terrain characteristic and underwater overcast for navigation. Through realizing the choice of sea route, danger district prediction and navigating algorithm analysis, TAN can obtain more high location precision and probability, hence provide technological support for image matching of underwater passive navigation.

  15. Practical synthetic aperture radar image formation based on realistic spaceborne synthetic aperture radar modeling and simulation

    NASA Astrophysics Data System (ADS)

    Shim, Sang Heun; Ro, Yong Man

    2013-01-01

    This paper presents the practical spaceborne synthetic aperture radar (SAR) data focusing method based on the realistic end-to-end spaceborne SAR simulation. Our simulation reflects main factors of the satellite SAR that induce errors to degrade the focused image severely, which are related to the sensor hardware, the antenna beam pointing, the effective velocity, and the Doppler frequency. To minimize errors due to them in the spaceborne SAR image formation, we suggest and utilize the preprocessing as the internal calibration, the analysis of orbital data of an SAR satellite, the calculation of an effective velocity and the Doppler frequency utilizing the two-way slant range equation, and the usage of the phase gradient algorithm combined with the extended chirp scaling algorithm based on the azimuth signal deramping. The processing results for realistic simulated raw data of a spaceborne SAR are presented to validate the proposed methods.

  16. Near-infrared image formation and processing for the extraction of hand veins

    NASA Astrophysics Data System (ADS)

    Bouzida, Nabila; Hakim Bendada, Abdel; Maldague, Xavier P.

    2010-10-01

    The main objective of this work is to extract the hand vein network using a non-invasive technique in the near-infrared region (NIR). The visualization of the veins is based on a relevant feature of the blood in relation with certain wavelengths of the electromagnetic spectrum. In the present paper, we first introduce the image formation in the NIR spectral band. Then, the acquisition system will be presented as well as the method used for the image processing in order to extract the vein signature. Extractions of this pattern on the finger, on the wrist and on the dorsal hand are achieved after exposing the hand to an optical stimulation by reflection or transmission of light. We present meaningful results of the extracted vein pattern demonstrating the utility of the method for a clinical application like the diagnosis of vein disease, of primitive varicose vein and also for applications in vein biometrics.

  17. Effects of magnetic resonance imaging (MRI) on the formation of mouse dentin and bone

    SciTech Connect

    Kwong-Hing, A.; Sandhu, H.S.; Prato, F.S.; Frappier, J.R.; Kavaliers, M. )

    1989-10-01

    The effects of magnetic resonance imaging (MRI) on dentin and bone formation in mice were examined using standard autoradiographic and liquid scintillation procedures. It was observed that exposure to a standard 23.2 min clinical multislice MRI (0.15T) procedure caused a significant increase in the synthesis of the collagenous matrix of dentin in the incisors of mice. There were no significant effects on alveolar and tibial bone matrix synthesis. These results suggest that the magnetic fields associated with MRI can affect the activity of cells and/or tissues that are involved in rapid synthetic activity.

  18. Large-format electrographic and array detectors for a space Schmidt imaging telescope

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.; Fischer, Jacqueline; Wray, James D.; Lowrance, John L.

    1990-01-01

    Possible optical designs of imaging detectors for the spaceborne Schmidt telescope proposed by Carruthers et al. (1990) are discussed, surveying the currently or potentially available technology. Consideration is given to FUV electrographic detectors of large format (e.g., 120 mm with 10-micron resolution) using CsI photocathodes, the possible extension of the same technology to the mid-UV using Cs2Te instead of CsI, large CCD arrays for the visible and NIR, electron-bombarded CCDs for the FUV and mid-UV, and the data handling and processing requirements of these detectors.

  19. Imaging the Lipid-Phase-Dependent Pore Formation of Equinatoxin II in Droplet Interface Bilayers

    PubMed Central

    Rojko, N.; Cronin, B.; Danial, J.S.H.; Baker, M.A.B.; Anderluh, G.; Wallace, M.I.

    2014-01-01

    Using phase-separated droplet interface bilayers, we observe membrane binding and pore formation of a eukaryotic cytolysin, Equinatoxin II (EqtII). EqtII activity is known to depend on the presence of sphingomyelin in the target membrane and is enhanced by lipid phase separation. By imaging the ionic flux through individual pores in vitro, we observe that EqtII pores form predominantly within the liquid-disordered phase. We observe preferential binding of labeled EqtII at liquid-ordered/liquid-disordered domain boundaries before it accumulates in the liquid-disordered phase. PMID:24739162

  20. Evaluation of a large format image tube camera for the shuttle sortie mission

    NASA Technical Reports Server (NTRS)

    Tifft, W. C.

    1976-01-01

    A large format image tube camera of a type under consideration for use on the Space Shuttle Sortie Missions is evaluated. The evaluation covers the following subjects: (1) resolving power of the system (2) geometrical characteristics of the system (distortion etc.) (3) shear characteristics of the fiber optic coupling (4) background effects in the tube (5) uniformity of response of the tube (as a function of wavelength) (6) detective quantum efficiency of the system (7) astronomical applications of the system. It must be noted that many of these characteristics are quantitatively unique to the particular tube under discussion and serve primarily to suggest what is possible with this type of tube.

  1. imaging survey of Wolf-Rayet galaxies: morphologies and star formation rates

    NASA Astrophysics Data System (ADS)

    Jaiswal, S.; Omar, A.

    2016-06-01

    The Hα and optical broadband images of 25 nearby Wolf-Rayet (WR) galaxies are presented. The WR galaxies are known to have the presence of a recent (≤10 Myr) and massive star formation episode. The photometric Hα fluxes are estimated, and corrected for extinction and line contamination in the filter pass-bands. The star formation rates (SFRs) are estimated using Hα images and from the archival data in the far-ultraviolet (FUV), far-infrared (FIR) and 1.4 GHz radio continuum wave-bands. A comparison of SFRs estimated from different wavebands is made after including similar data available in literature for other WR galaxies. The Hα based SFRs are found to be tightly correlated with SFRs estimated from the FUV data. The correlations also exist with SFRs estimates based on the radio and FIR data. The WR galaxies also follow the radio-FIR correlation known for normal star forming galaxies, although it is seen here that majority of dwarf WR galaxies have radio deficiency. An analysis using ratio of non-thermal to thermal radio continuum and ratio of FUV to Hα SFR indicates that WR galaxies have lesser non-thermal radio emission compared to normal galaxies, most likely due to lack of supernova from the very young star formation episode in the WR galaxies. The morphologies of 16 galaxies in our sample are highly suggestive of an ongoing tidal interaction or a past merger in these galaxies. This survey strengthens the conclusions obtained from previous similar studies indicating the importance of tidal interactions in triggering star-formation in WR galaxies.

  2. Logical implementation of the Automatic Target Recognition Working Group (ATRWG) 9-track tape format image storage format

    NASA Astrophysics Data System (ADS)

    Kolodzy, P. J.; Baum, J. E.

    1991-04-01

    Over the past two years, the Opto-Radar Systems Group has spearheaded the effort to select and incorporate a standard file format for raw sensor imagery. The goal is to use only one format for the multiple computing facilities and thus eliminate the problem of individual users creating custom software. Such a format must include all the header information that existed on the original data tapes, so all the available sensor information is retained. The format selected, called the NATO format within the Opto-Radar Systems Group, is a subset of the NATO data format developed by the Automatic Target Recognition Working Group (ATRWG). This format is apparently widely used in the ATR community. Thus, an additional benefit to such a format is the ability to transport data to and from other ATR facilities.

  3. Intra-vital microscopy of lung tissue: A simulation based analysis of the image formation

    NASA Astrophysics Data System (ADS)

    Gaertner, Maria; Schirrmann, Kerstin; Schnabel, Christian; Meissner, Sven; Kertzscher, Ulrich; Kirsten, Lars; Koch, Edmund

    2013-06-01

    In the course of pulmonary research, understanding alveolar tissue dynamics plays a critical role in the treatment of patients suffering from acute lung diseases. As a gold standard technique for monitoring micro scale changes of lung tissue, real-time intra-vital microscopy (IVM) has been established to evaluate the behavior of the alveolar tissue. To allow profound qualitative and quantitative conclusions, characteristic features of the obtained images have to be thoroughly understood. These factors are strongly influenced by the imaging setup and physiological condition of the lung. To circumvent misinterpretations, a ray-tracing approach has been applied in this study using an idealized geometry of the mouse lung parenchyma deduced from optical coherence tomography (OCT) as a complementary imaging technique. Basic features of IVM images are double ring structures and disappearing of alveoli related to liquid infiltration. Ray propagation analysis reveals the formation of these features by two major reflection processes: partial reflection and total internal reflection. The results give rise to quantification errors of the alveolar area related to reflexes misinterpreted as alveolar borders and should further be used to yield a correction factor for future IVM lung tissue studies.

  4. MTRC compensation in high-resolution ISAR imaging via improved polar format algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Hao; Li, Na; Xu, Shiyou; Chen, Zengping

    2014-10-01

    Migration through resolution cells (MTRC) is generated in high-resolution inverse synthetic aperture radar (ISAR) imaging. A MTRC compensation algorithm for high-resolution ISAR imaging based on improved polar format algorithm (PFA) is proposed in this paper. Firstly, in the situation that a rigid-body target stably flies, the initial value of the rotation angle and center of the target is obtained from the rotation of radar line of sight (RLOS) and high range resolution profile (HRRP). Then, the PFA is iteratively applied to the echo data to search the optimization solution based on minimum entropy criterion. The procedure starts with the estimated initial rotation angle and center, and terminated when the entropy of the compensated ISAR image is minimized. To reduce the computational load, the 2-D iterative search is divided into two 1-D search. One is carried along the rotation angle and the other one is carried along rotation center. Each of the 1-D searches is realized by using of the golden section search method. The accurate rotation angle and center can be obtained when the iterative search terminates. Finally, apply the PFA to compensate the MTRC by the use of the obtained optimized rotation angle and center. After MTRC compensation, the ISAR image can be best focused. Simulated and real data demonstrate the effectiveness and robustness of the proposed algorithm.

  5. Formation of image-potential states at the graphene/metal interface

    NASA Astrophysics Data System (ADS)

    Armbrust, N.; Güdde, J.; Höfer, U.

    2015-10-01

    The formation of image-potential states at the interface between a graphene layer and a metal surface is studied by means of model calculations. An analytical one-dimensional model-potential for the combined system is constructed and used to calculate energies and wave functions of the image-potential states at the \\bar{{{Γ }}}-point as a function of the graphene-metal distance. It is demonstrated how the double series of image-potential states of freestanding graphene evolves into interfacial states that interact with both surfaces at intermediate distances, and finally into a single series of states resembling those of a clean metal surface covered by a monoatomic spacer layer. The model quantitatively reproduces experimental data available for graphene/Ir(111) and graphene/Ru(0001), systems which strongly differ in interaction strength and therefore adsorption distance. Moreover, it provides a clear physical explanation for the different binding energies and lifetimes of the first (n = 1) image-potential state in the valley and hill areas of the strongly corrugated moiré superlattice of graphene/Ru(0001).

  6. Histotripsy Lesion Formation using an Ultrasound Imaging Probe Enabled by a Low-Frequency Pump Transducer

    PubMed Central

    Lin, Kuang-Wei; Hall, Timothy L.; Xu, Zhen; Cain, Charles A.

    2015-01-01

    When applying histotripsy pulses shorter than 2 cycles, the formation of a dense bubble cloud only relies on the applied peak negative pressure (p-) exceeding the “intrinsic threshold” of the medium (absolute value of 26 – 30 MPa in most soft tissue). A previous study conducted by our research group showed that a sub-threshold high-frequency probe pulse (3 MHz) can be enabled by a sub-threshold low-frequency pump pulse (500 kHz) where the sum exceeds the intrinsic threshold, thus generating lesion-producing dense bubble clouds (“dual-beam histotripsy”). This paper investigates the feasibility of using an imaging transducer to provide the high-frequency probe pulse in the dual-beam histotripsy approach. More specifically, an ATL L7–4 imaging transducer, pulsed by a Verasonics V-1 Data Acquisition System, was used to generate the high-frequency probe pulses. The low-frequency pump pulses were generated by a 20-element 345 kHz array transducer, driven by a custom high voltage pulser. These dual-beam histotripsy pulses were applied to red-blood-cell (RBC) tissue-mimicking phantoms at a pulse repetition frequency of 1 Hz, and optical imaging was used to visualize bubble clouds and lesions generated in the RBC phantoms. The results showed that dense bubble clouds (and resulting lesions) were generated when the p- of the sub-threshold pump and probe pulses combined constructively to exceed the intrinsic threshold. The average size of the smallest reproducible lesions using the imaging probe pulse enabled by the sub-threshold pump pulse was 0.7 × 1.7 mm while that using the supra-threshold pump pulse alone was 1.4 × 3.7 mm. When the imaging transducer was steered laterally, bubble clouds and lesions were steered correspondingly until the combined p- no longer exceeded the intrinsic threshold. These results were also validated with ex vivo porcine liver experiments. Using an imaging transducer for dual-beam histotripsy can have two advantages, 1) lesion

  7. Histotripsy Lesion Formation Using an Ultrasound Imaging Probe Enabled by a Low-Frequency Pump Transducer.

    PubMed

    Lin, Kuang-Wei; Hall, Timothy L; Xu, Zhen; Cain, Charles A

    2015-08-01

    When histotripsy pulses shorter than 2 cycles are applied, the formation of a dense bubble cloud relies only on the applied peak negative pressure (p-) exceeding the "intrinsic threshold" of the medium (absolute value of 26-30 MPa in most soft tissues). It has been found that a sub-threshold high-frequency probe pulse (3 MHz) can be enabled by a sub-threshold low-frequency pump pulse (500 kHz) where the sum exceeds the intrinsic threshold, thus generating lesion-producing dense bubble clouds ("dual-beam histotripsy"). Here, the feasibility of using an imaging transducer to provide the high-frequency probe pulse in the dual-beam histotripsy approach is investigated. More specifically, an ATL L7-4 imaging transducer (Philips Healthcare, Andover, MA, USA), pulsed by a V-1 Data Acquisition System (Verasonics, Redmond, WA, USA), was used to generate the high-frequency probe pulses. The low-frequency pump pulses were generated by a 20-element 345-kHz array transducer, driven by a custom high-voltage pulser. These dual-beam histotripsy pulses were applied to red blood cell tissue-mimicking phantoms at a pulse repetition frequency of 1 Hz, and optical imaging was used to visualize bubble clouds and lesions generated in the red blood cell phantoms. The results indicated that dense bubble clouds (and resulting lesions) were generated when the p- of the sub-threshold pump and probe pulses combined constructively to exceed the intrinsic threshold. The average size of the smallest reproducible lesions using the imaging probe pulse enabled by the sub-threshold pump pulse was 0.7 × 1.7 mm, whereas that using the supra-threshold pump pulse alone was 1.4 × 3.7 mm. When the imaging transducer was steered laterally, bubble clouds and lesions were steered correspondingly until the combined p- no longer exceeded the intrinsic threshold. These results were also validated with ex vivo porcine liver experiments. Using an imaging transducer for dual-beam histotripsy can have two

  8. Multi-parametric MRI Characterization of Healthy Human Thigh Muscles at 3.0T - Relaxation, Magnetization Transfer, Fat/Water, and Diffusion Tensor Imaging

    PubMed Central

    Li, Ke; Dortch, Richard D.; Welch, E. Brian; Bryant, Nathan D.; Buck, Amanda K.W.; Towse, Theodore F.; Gochberg, Daniel F.; Does, Mark D.; Damon, Bruce M.; Park, Jane H.

    2014-01-01

    Muscle diseases commonly have clinical presentations of inflammation, fat infiltration, fibrosis, and atrophy. However, the results of existing laboratory tests and clinical presentations are not well correlated. Advanced quantitative MRI techniques may allow the assessment of myo-pathological changes in a sensitive and objective manner. To progress towards this goal, an array of quantitative MRI protocols was implemented for human thigh muscles, their reproducibility was assessed, and the statistical relationships among parameters were determined. These quantitative methods included fat/water imaging, multiple spin-echo T2 imaging (with and without fat signal suppression, FS), selective inversion recovery for T1 and quantitative magnetization transfer (qMT) imaging (with and without FS), and diffusion tensor imaging. Data were acquired at 3.0 T from nine healthy subjects. To assess the repeatability of each method, the subjects were re-imaged on an average of 35 days later. Pre-testing lifestyle restrictions were applied to standardize physiological conditions across scans. Strong between-day intra-class correlations were observed in all quantitative indices except for the macromolecular-to-free water pool size ratio (PSR) with FS, a metric derived from qMT data. Two-way analysis of variance revealed no significant between-day differences in the mean values for any parameter estimate. The repeatability was further assessed with Bland-Altman plots, and low repeatability coefficients were obtained for all parameters. Among-muscle differences in the quantitative MRI indices and inter-class correlations among the parameters were identified. There were inverse relationships between fractional anisotropy (FA) and the 2nd eigenvalue, the 3rd eigenvalue, and the standard deviation of first eigenvector. The FA was positively related to the PSR, while the other diffusion indices were inversely related to the PSR. These findings support the use of these T1, T2, fat

  9. Evaluation of PpIX formation in Cervical Intraepithelial Neoplasia I (CIN) using widefield fluorescence images

    NASA Astrophysics Data System (ADS)

    Carbinatto, Fernanda M.; Inada, Natalia M.; Fortunato, Thereza C.; Lombardi, Welington; da Silva, Eduardo V.; Vollet Filho, José D.; Kurachi, Cristina; Pratavieira, Sebastião.; Bagnato, Vanderlei S.

    2016-03-01

    Optical techniques has been described as auxiliary technology for screening of neoplasia because shows the potential for tissues differentiation in real-time and it is a noninvasive detection and safe. However, only endogenous fluorophores presents the lesion may be insufficient and needed of the administration of the fluorophores synthesized, such as, precursor molecule of protoporphyrin IX (PpIX) induced by 5- aminolevulinic acid and your derivatives. Topical application of methylaminolevulinate (MAL), induces formation of the endogenous photosensitizer, PpIX in tissues where carcinogenesis has begun. The PpIX tend to accumulate in premalignant and malignant tissues and the illumination with light with appropriate wavelength beginning to excitation of PpIX fluorescence, which helps to localize PpIX-rich areas and identify potentially malignant tissues. The aim of the study is to evaluate the production of PpIX in the cervix with CIN I through of the fluorescence images captured after 1 hour of cream application. It was possible to visualize PpIX fluorescence in cervix and it was possible to observe the selectivity in fluorescence in squamous-columnar junction, which a pre-cancerous condition (CIN) and usually is localized. Through the image processing it was possible to quantify the increase of red fluorescence. For the CIN I the increase of red fluorescence was approximately of 4 times indicating a good PpIX formation.

  10. The effects of prior knowledge and instruction on understanding image formation

    NASA Astrophysics Data System (ADS)

    Galili, Igal; Bendall, Sharon; Goldberg, Fred

    This paper reports on a study that was designed to investigate the knowledge about image formation exhibited by students following instruction in geometrical optics in an activity-based college physics course for prospective elementary teachers. Students were interviewed individually, using several tasks involving simple apparatus (plane and curved mirrors, lenses, and prisms). The diagrams drawn by the students and the verbal comments they made provide evidence that their knowledge can be described as an intermediate state, a hybridization of preinstruction knowledge (which is dominated by a holistic conceptualization) and formal physics knowledge. We infer from our data the core concepts and main ideas of the postinstruction students' hybrid knowledge. Finally, by comparing preinstruction and formal physics conceptualizations of image formation we argue that a strong type of knowledge restructuring (in the sense of Carey, S., 1986: American Psychologist, 41, 1123-1130; Vosianou, S., & Brewer, W.F., 1987: Review of Educational Research, 57, 51-67) is required for students to acquire the latter.

  11. Parametric energy converter

    SciTech Connect

    Johnson, R.N.

    1981-10-20

    A method and apparatus for converting thermal energy into mechanical energy by parametric pumping of rotary inertia. In a preferred embodiment, a modified tesla turbine rotor is positioned within a rotary boiler along its axis of rotation. An external heat source, such as solar radiation, is directed onto the outer casing of the boiler to convert the liquid to steam. As the steam spirals inwardly toward the discs of the rotor, the moment of inertia of the mass of steam is reduced to thereby substantially increase its kinetic energy. The laminar flow of steam between the discs of the rotor transfers the increased kinetic energy to the rotor which can be coupled out through an output shaft to perform mechanical work. A portion of the mechanical output can be fed back to maintain rotation of the boiler.

  12. Mechanical Parametric Oscillations and Waves

    ERIC Educational Resources Information Center

    Dittrich, William; Minkin, Leonid; Shapovalov, Alexander S.

    2013-01-01

    Usually parametric oscillations are not the topic of general physics courses. Probably it is because the mathematical theory of this phenomenon is relatively complicated, and until quite recently laboratory experiments for students were difficult to implement. However parametric oscillations are good illustrations of the laws of physics and can be…

  13. Feasibility of the optical imaging of thrombus formation in a rotary blood pump by near-infrared light.

    PubMed

    Sakota, Daisuke; Murashige, Tomotaka; Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu

    2014-09-01

    Blood coagulation is one of the primary concerns when using mechanical circulatory support devices such as blood pumps. Noninvasive detection and imaging of thrombus formation is useful not only for the development of more hemocompatible devices but also for the management of blood coagulation to avoid risk of infarction. The objective of this study is to investigate the use of near-infrared light for imaging of thrombus formation in a rotary blood pump. The optical properties of a thrombus at wavelengths ranging from 600 to 750 nm were analyzed using a hyperspectral imaging (HSI) system. A specially designed hydrodynamically levitated centrifugal blood pump with a visible bottom area was used. In vitro antithrombogenic testing was conducted five times with the pump using bovine whole blood in which the activated blood clotting time was adjusted to 200 s prior to the experiment. Two halogen lights were used for the light sources. The forward scattering through the pump and backward scattering on the pump bottom area were imaged using the HSI system. HSI showed an increase in forward scattering at wavelengths ranging from 670 to 750 nm in the location of thrombus formation. The time at which the thrombus began to form in the impeller rotating at 2780 rpm could be detected. The spectral difference between the whole blood and the thrombus was utilized to image thrombus formation. The results indicate the feasibility of dynamically detecting and imaging thrombus formation in a rotary blood pump. PMID:25234757

  14. GAPS IN THE HD 169142 PROTOPLANETARY DISK REVEALED BY POLARIMETRIC IMAGING: SIGNS OF ONGOING PLANET FORMATION?

    SciTech Connect

    Quanz, Sascha P.; Avenhaus, Henning; Garufi, Antonio; Schmid, Hans Martin; Buenzli, Esther; Wolf, Sebastian

    2013-03-20

    We present H-band Very Large Telescope/NACO polarized light images of the Herbig Ae/Be star HD 169142 probing its protoplanetary disk as close as {approx}0.''1 to the star. Our images trace the face-on disk out to {approx}1.''7 ({approx}250 AU) and reveal distinct substructures for the first time: (1) the inner disk ({approx}<20 AU) appears to be depleted in scattering dust grains; (2) an unresolved disk rim is imaged at {approx}25 AU; (3) an annular gap extends from {approx}40 to 70 AU; (4) local brightness asymmetries are found on opposite sides of the annular gap. We discuss different explanations for the observed morphology among which ongoing planet formation is a tempting, but yet to be proven, one. Outside of {approx}85 AU the surface brightness drops off roughly {proportional_to}r {sup -3.3}, but describing the disk regions between 85-120 AU and 120-250 AU separately with power laws {proportional_to}r {sup -2.6} and {proportional_to}r {sup -3.9} provides a better fit hinting toward another discontinuity in the disk surface. The flux ratio between the disk-integrated polarized light and the central star is {approx}4.1 Multiplication-Sign 10{sup -3}. Finally, combining our results with those from the literature, {approx}40% of the scattered light in the H band appears to be polarized. Our results emphasize that HD 169142 is an interesting system for future planet formation or disk evolution studies.

  15. Laser image measurement of twin bubbles formation in shear-thinning fluids

    NASA Astrophysics Data System (ADS)

    Fan, Wenyuan; Yin, Xiaohong

    2012-09-01

    A laser image system for investigating twin bubbles formation in shear-thinning fluid was established. The process of twin-bubble formation could be directly visualized and real-time recorded through computer by means of He-Ne laser as light source using the beam expanding and light amplification technology. The shape and size of bubbles generating in carboxymethylcellulose (CMC) aqueous solutions were studied experimentally at orifice diameter 1 mm, 1.6 mm and 2.4 mm, the orifices interval 1Do, 2Do and 3Do (Do: orifice diameter) and the gas flow rate from 0.1 to 1.0 ml/s, respectively. The effects of solution mass concentration, orifice diameter and orifice interval on bubble detachment volume were investigated. The results reveals that twin bubbles gradually touch each other and then deviate from the vertical axis crossing the middle point of the line joining the two orifice during the formation process. However compared with the perfect teardrop terminal shapes in glycerol solution, the bubbles formed in CMC solutions are stretched vertically due to the shear-thinning effect of fluids. The bubble detachment volume increases with the solution mass concentration, whereas decreases with orifice diameter. The detachment volume generated at twin orifices is less affected by orifices interval, but still smaller than that at single orifice.

  16. Cosmic Star-Formation History and Deep ALMA imaging of the Hubble Ultra Deep Field

    NASA Astrophysics Data System (ADS)

    Dunlop, James

    2015-08-01

    I will give an overview of how recent work at UV, optical, infrared, mm and radio wavelengths have impacted on our current understanding of the cosmic evolution of co-moving star-formation rate density. I will review recent progress at redshifts z ~ 2 - 3, corresponding to the putative peak of star-formation activity. However, I will focus primarily on new results at the very highest redshifts, within 1 Gyr of the Big Bang, where dramatic recent observational progress with Hubble, Spitzer, Vista, and spectrographs on 8-m telescopes has enabled us to chart the rise of the early galaxy population back to redshifts z ~ 10, and to deduce the basic physical properties of galaxies at these early times. We have also been able to estimate the contribution of young galaxies to the reionization of the Universe, and I will show that the inferred progress of reionization is now in excellent agreement with new measurements of the Thomson scattering optical depth from microwave background observations with Planck. I will conclude with a discussion of how new results from deep ALMA imaging have the potential to clarify and complete our understanding of cosmic star-formation history.

  17. Reducing the formation of image artifacts during spectroscopic micro-CT acquisitions

    NASA Astrophysics Data System (ADS)

    Zuber, Marcus; Koenig, Thomas; Hussain, Rubaiya; Hamann, Elias; Ballabriga, Rafael; Campbell, Michael; Fauler, Alex; Fiederle, Michael; Baumbach, Tilo

    2015-03-01

    Spectroscopic micro-computed tomography using photon counting detectors is a technology that promises to deliver material-specific images in pre-clinical research. Inherent to such applications is the need for a high spatial resolution, which can only be achieved with small focal spot sizes in the micrometer range. This limits the achievable x-ray fluxes and implies long acquisitions easily exceeding one hour, during which it is paramount to maintain a constant detector response. Given that photon-counting detectors are delicate systems, with each pixel hosting advanced analog and digital circuitry, this can represent a challenging task. In this contribution, we illustrate our findings on how to reduce image artifacts in computed tomography reconstructions under these conditions, using a Medipix3RX detector featuring a cadmium telluride sensor. We find that maintaining a constant temperature is a prerequisite to guarantee energy threshold stability. More importantly, we identify varying sensor leakage currents as a significant source to artifact formation. We show that these leakage currents can render the corresponding images unusable if the ambient temperature fluctuates, as caused by an air conditioning, for example. We conclude with demonstrating the necessity of an adjustable leakage current compensation.

  18. uvmcmcfit: Parametric models to interferometric data fitter

    NASA Astrophysics Data System (ADS)

    Bussmann, Shane; Leung, Tsz Kuk (Daisy); Conley, Alexander

    2016-06-01

    Uvmcmcfit fits parametric models to interferometric data. It is ideally suited to extract the maximum amount of information from marginally resolved observations with interferometers like the Atacama Large Millimeter Array (ALMA), Submillimeter Array (SMA), and Plateau de Bure Interferometer (PdBI). uvmcmcfit uses emcee (ascl:1303.002) to do Markov Chain Monte Carlo (MCMC) and can measure the goodness of fit from visibilities rather than deconvolved images, an advantage when there is strong gravitational lensing and in other situations. uvmcmcfit includes a pure-Python adaptation of Miriad’s (ascl:1106.007) uvmodel task to generate simulated visibilities given observed visibilities and a model image and a simple ray-tracing routine that allows it to account for both strongly lensed systems (where multiple images of the lensed galaxy are detected) and weakly lensed systems (where only a single image of the lensed galaxy is detected).

  19. Tract-specific and age-related variations of the spinal cord microstructure: a multi-parametric MRI study using diffusion tensor imaging (DTI) and inhomogeneous magnetization transfer (ihMT).

    PubMed

    Taso, Manuel; Girard, Olivier M; Duhamel, Guillaume; Le Troter, Arnaud; Feiweier, Thorsten; Guye, Maxime; Ranjeva, Jean-Philippe; Callot, Virginie

    2016-06-01

    Being able to finely characterize the spinal cord (SC) microstructure and its alterations is a key point when investigating neural damage mechanisms encountered in different central nervous system (CNS) pathologies, such as multiple sclerosis, amyotrophic lateral sclerosis or myelopathy. Based on novel methods, including inhomogeneous magnetization transfer (ihMT) and dedicated SC probabilistic atlas post-processing, the present study focuses on the in vivo characterization of the healthy SC tissue in terms of regional microstructure differences between (i) upper and lower cervical vertebral levels and (ii) sensory and motor tracts, as well as differences attributed to normal aging. Forty-eight healthy volunteers aged from 20 to 70 years old were included in the study and scanned at 3 T using axial high-resolution T2 *-w imaging, diffusion tensor imaging (DTI) and ihMT, at two vertebral levels (C2 and C5). A processing pipeline with minimal user intervention, SC segmentation and spatial normalization into a reference space was implemented in order to assess quantitative morphological and structural parameters (cross-sectional areas, scalar DTI and MT/ihMT metrics) in specific white and gray matter regions of interest. The multi-parametric MRI metrics collected allowed upper and lower cervical levels to be distinguished, with higher ihMT ratio (ihMTR), higher axial diffusivity (λ∥ ) and lower radial diffusivity (λ⊥ ) at C2 compared with C5. Significant differences were also observed between white matter fascicles, with higher ihMTR and lower λ∥ in motor tracts compared with posterior sensory tracts. Finally, aging was found to be associated with significant metric alterations (decreased ihMTR and λ∥ ). The methodology proposed here, which can be easily transferred to the clinic, provides new insights for SC characterization. It bears great potential to study focal and diffuse SC damage in neurodegenerative and demyelinating diseases. Copyright

  20. THE STAR FORMATION HISTORY OF LEO T FROM HUBBLE SPACE TELESCOPE IMAGING

    SciTech Connect

    Weisz, Daniel R.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Williams, Benjamin F.; Zucker, Daniel B.; Dolphin, Andrew E.; Martin, Nicolas F.; De Jong, Jelte T. A.; Holtzman, Jon A.; Bell, Eric F.; Belokurov, Vasily; Evans, N. Wyn

    2012-04-01

    We present the star formation history (SFH) of the faintest known star-forming galaxy, Leo T, based on deep imaging taken with the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC2). The HST/WFPC2 color-magnitude diagram (CMD) of Leo T is exquisitely deep, extending {approx}2 mag below the oldest main-sequence turnoff, permitting excellent constraints on star formation at all ages. We use a maximum likelihood CMD fitting technique to measure the SFH of Leo T assuming three different sets of stellar evolution models: Padova (solar-scaled metallicity) and BaSTI (both solar-scaled and {alpha}-enhanced metallicities). The resulting SFHs are remarkably consistent at all ages, indicating that our derived SFH is robust to the choice of stellar evolution model. From the lifetime SFH of Leo T, we find that 50% of the total stellar mass formed prior to z {approx} 1 (7.6 Gyr ago). Subsequent to this epoch, the SFH of Leo T is roughly constant until the most recent {approx}25 Myr, where the SFH shows an abrupt drop. This decrease could be due to a cessation of star formation or stellar initial mass function sampling effects, but we are unable to distinguish between the two scenarios. Overall, our measured SFH is consistent with previously derived SFHs of Leo T. However, the HST-based solution provides improved age resolution and reduced uncertainties at all epochs. The SFH, baryonic gas fraction, and location of Leo T are unlike any of the other recently discovered faint dwarf galaxies in the Local Group, and instead bear strong resemblance to gas-rich dwarf galaxies (irregular or transition), suggesting that gas-rich dwarf galaxies may share common modes of star formation over a large range of stellar mass ({approx}10{sup 5}-10{sup 9} M{sub Sun }).

  1. Proposed Standard For Variable Format Picture Processing And A Codec Approach To Match Diverse Imaging Devices

    NASA Astrophysics Data System (ADS)

    Wendler, Th.; Meyer-Ebrecht, D.

    1982-01-01

    Picture archiving and communication systems, especially those for medical applications, will offer the potential to integrate the various image sources of different nature. A major problem, however, is the incompatibility of the different matrix sizes and data formats. This may be overcome by a novel hierarchical coding process, which could lead to a unified picture format standard. A picture coding scheme is described, which decomposites a given (2n)2 picture matrix into a basic (2m)2 coarse information matrix (representing lower spatial frequencies) and a set of n-m detail matrices, containing information of increasing spatial resolution. Thus, the picture is described by an ordered set of data blocks rather than by a full resolution matrix of pixels. The blocks of data are transferred and stored using data formats, which have to be standardized throughout the system. Picture sources, which produce pictures of different resolution, will provide the coarse-matrix datablock and additionally only those detail matrices that correspond to their required resolution. Correspondingly, only those detail-matrix blocks need to be retrieved from the picture base, that are actually required for softcopy or hardcopy output. Thus, picture sources and retrieval terminals of diverse nature and retrieval processes for diverse purposes are easily made compatible. Furthermore this approach will yield an economic use of storage space and transmission capacity: In contrast to fixed formats, redundand data blocks are always skipped. The user will get a coarse representation even of a high-resolution picture almost instantaneously with gradually added details, and may abort transmission at any desired detail level. The coding scheme applies the S-transform, which is a simple add/substract algorithm basically derived from the Hadamard Transform. Thus, an additional data compression can easily be achieved especially for high-resolution pictures by applying appropriate non-linear and

  2. SAR image formation using phase-history data from nonuniform aperture

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam; Sichina, Jeffrey

    2007-04-01

    Synthetic aperture radar (SAR) imagery is formed using radar data collected from a moving platform (aircraft, vehicle, human, etc.). The radar transmits and receives backscatter signals in the down-range direction at a fixed pulse repetition interval (PRI) while the platform moves along the cross-range direction (called along-track) to generate a synthetic aperture. In the ideal situation, the platform moves at a constant speed and as a result, the radar will collect the phase-history data that are uniformly sampled along the aperture. However, in many situations the radar platform cannot be kept at a constant speed, e.g. a helicopter maneuvering over an imaging area for surveillance. The problem is even worse in the case of urban warfare with human-borne radar. A soldier moves at his own speed and creates erratic aperture sections with phase-history data that are either sparse or dense. The collected SAR data in such situation will result in SAR imagery with severe artifacts that might prevent us from detecting targets of interest. In this paper, we will present the SAR imagery of non-uniform aperture data formed using the backprojection image formation algorithm. Although the backprojection image former is well suited to an arbitrary radar aperture, the SAR image artifacts are obvious from the nonuniform aperture. Using the nonuniform aperture phase-history data, we interpolate the data using a uniform grid along the aperture. We will show the resulting imagery with reduced artifacts. We use both simulated data and the Army Research Lab BoomSAR data to illustrate the artifacts generated by nonuniform sampling and the improvement using this interpolation technique.

  3. A study on statistically reliable and computationally efficient algorithms for generating local cerebral blood flow parametric images with positron emission tomography

    SciTech Connect

    Feng, Dagan; Wang, Zhizhong . Basser Dept. of Computer Science); Huang, Sung Cheng . Dept. of Radiological Sciences)

    1993-06-01

    With the advent of positron emission tomography (PET), a variety of techniques have been developed to measure local cerebral blood flow (LCBF) noninvasively in humans. It is essential that the techniques developed should be statistically reliable and computationally efficient. A potential class of techniques, which includes linear least squares (LS), linear weighted least squares (WLS), linear generalized least squares (GLS), and linear generalized weighted least squares (GWLS), is proposed. The statistical characteristics of the new methods were examined by computer simulation. The authors present a comparison of these four methods with two other rapid estimation techniques developed by Huang et al. and Alpert, and two classical methods, the unweighted and weighted nonlinear least squares regression which are supposed to have optimal statistical properties. The results show that the new methods can take full advantage of the contribution from the fine temporal sampling data of modern tomographs, and thus provide statistically reliable estimates that are comparable to those obtained from nonlinear least squares regression. The new methods also have high computational efficiency, and the parameters can be estimated directly from operational equations in one single step. Therefore, they can potentially be used in image-wide estimation of local cerebral blood flow and distribution volume with positron emission tomography.

  4. Delayed Methylene Blue Improves Lesion Volume, Multi-Parametric Quantitative Magnetic Resonance Imaging Measurements, and Behavioral Outcome after Traumatic Brain Injury.

    PubMed

    Talley Watts, Lora; Long, Justin Alexander; Boggs, Robert Cole; Manga, Hemanth; Huang, Shiliang; Shen, Qiang; Duong, Timothy Q

    2016-01-15

    Traumatic brain injury (TBI) remains a primary cause of death and disability in both civilian and military populations worldwide. There is a critical need for the development of neuroprotective agents that can circumvent damage and provide functional recovery. We previously showed that methylene blue (MB), a U.S. Food and Drug Administration-grandfathered drug with energy-enhancing and antioxidant properties, given 1 and 3 h post-TBI, had neuroprotective effects in rats. This study aimed to further investigate the neuroprotection of delayed MB treatment (24 h postinjury) post-TBI as measured by lesion volume and functional outcomes. Comparisons were made with vehicle and acute MB treatment. Multi-modal magnetic resonance imaging and behavioral studies were performed at 1 and 3 h and 2, 7, and 14 days after an impact to the primary forelimb somatosensory cortex. We found that delaying MB treatment 24 h postinjury still minimized lesion volume and functional deficits, compared to vehicle-treated animals. The data further support the potential for MB as a neuroprotective treatment, especially when medical teatment is not readily available. MB has an excellent safety profile and is clinically approved for other indications. MB clinical trials on TBI can thus be readily explored. PMID:25961471

  5. A Novel General Imaging Formation Algorithm for GNSS-Based Bistatic SAR

    PubMed Central

    Zeng, Hong-Cheng; Wang, Peng-Bo; Chen, Jie; Liu, Wei; Ge, LinLin; Yang, Wei

    2016-01-01

    Global Navigation Satellite System (GNSS)-based bistatic Synthetic Aperture Radar (SAR) recently plays a more and more significant role in remote sensing applications for its low-cost and real-time global coverage capability. In this paper, a general imaging formation algorithm was proposed for accurately and efficiently focusing GNSS-based bistatic SAR data, which avoids the interpolation processing in traditional back projection algorithms (BPAs). A two-dimensional point target spectrum model was firstly presented, and the bulk range cell migration correction (RCMC) was consequently derived for reducing range cell migration (RCM) and coarse focusing. As the bulk RCMC seriously changes the range history of the radar signal, a modified and much more efficient hybrid correlation operation was introduced for compensating residual phase errors. Simulation results were presented based on a general geometric topology with non-parallel trajectories and unequal velocities for both transmitter and receiver platforms, showing a satisfactory performance by the proposed method. PMID:26927117

  6. Monitoring process of human keloid formation based on second harmonic generation imaging

    NASA Astrophysics Data System (ADS)

    Jiang, X. S.; Chen, S.; Chen, J. X.; Zhu, X. Q.; Zheng, L. Q.; Zhuo, S. M.; Wang, D. J.

    2011-09-01

    In this paper, the morphological variation of collagen among the whole dermis from keloid tissue was investigated using second harmonic generation (SHG) microscopy. In the deep dermis of keloids, collagen bundles show apparently regular gap. In the middle dermis, the collagen bundles are randomly oriented and loosely arranged in the pattern of fine mesh while the collagen bundles are organized in a parallel manner in the superficial dermis near the epidermis. The developed parameters COI and BD can be used to further quantitatively describe these changes. Our results demonstrate the potential of SHG microscopy to understand the formation process of human keloid scar at the cellular level through imaging collagen variations in different depth of dermis.

  7. A Novel General Imaging Formation Algorithm for GNSS-Based Bistatic SAR.

    PubMed

    Zeng, Hong-Cheng; Wang, Peng-Bo; Chen, Jie; Liu, Wei; Ge, LinLin; Yang, Wei

    2016-01-01

    Global Navigation Satellite System (GNSS)-based bistatic Synthetic Aperture Radar (SAR) recently plays a more and more significant role in remote sensing applications for its low-cost and real-time global coverage capability. In this paper, a general imaging formation algorithm was proposed for accurately and efficiently focusing GNSS-based bistatic SAR data, which avoids the interpolation processing in traditional back projection algorithms (BPAs). A two-dimensional point target spectrum model was firstly presented, and the bulk range cell migration correction (RCMC) was consequently derived for reducing range cell migration (RCM) and coarse focusing. As the bulk RCMC seriously changes the range history of the radar signal, a modified and much more efficient hybrid correlation operation was introduced for compensating residual phase errors. Simulation results were presented based on a general geometric topology with non-parallel trajectories and unequal velocities for both transmitter and receiver platforms, showing a satisfactory performance by the proposed method. PMID:26927117

  8. Analysis of image formation in optical coherence elastography using a multiphysics approach

    PubMed Central

    Chin, Lixin; Curatolo, Andrea; Kennedy, Brendan F.; Doyle, Barry J.; Munro, Peter R. T.; McLaughlin, Robert A.; Sampson, David D.

    2014-01-01

    Image formation in optical coherence elastography (OCE) results from a combination of two processes: the mechanical deformation imparted to the sample and the detection of the resulting displacement using optical coherence tomography (OCT). We present a multiphysics model of these processes, validated by simulating strain elastograms acquired using phase-sensitive compression OCE, and demonstrating close correspondence with experimental results. Using the model, we present evidence that the approximation commonly used to infer sample displacement in phase-sensitive OCE is invalidated for smaller deformations than has been previously considered, significantly affecting the measurement precision, as quantified by the displacement sensitivity and the elastogram signal-to-noise ratio. We show how the precision of OCE is affected not only by OCT shot-noise, as is usually considered, but additionally by phase decorrelation due to the sample deformation. This multiphysics model provides a general framework that could be used to compare and contrast different OCE techniques. PMID:25401007

  9. A variable parameter parametric snake method

    NASA Astrophysics Data System (ADS)

    Marouf, A.; Houacine, A.

    2015-12-01

    In this paper, we introduce a new approach to parametric snake method by using variable snake parameters. Adopting fixed parameter values for all points of the snake, as usual, constitutes by itself a limitation that leads to poor performances in terms of convergence and tracking properties. A more adapted choice should be the one that allows selection depending on the image region properties as on the contour shape and position. However, such variability is not an easy task in general and a precise method need to be defined to assure contour point dependent tuning at iterations. We were particularly interested in applying this idea to the recently presented parametric method [1]. In the work mentioned, an attraction term is used to improve the convergence of the standard parametric snake without a significant increase in computational load. We show here, that improved performances can ensue from applying variable parameter concepts. For this purpose, the method is first analyzed and then a procedure is developed to assure an automatic variable parameter tuning. The interest of our approach is illustrated through object segmentation results.

  10. Exploring deep parametric embeddings for breast CADx

    NASA Astrophysics Data System (ADS)

    Jamieson, Andrew R.; Alam, Rabi; Giger, Maryellen L.

    2011-03-01

    Computer-aided diagnosis (CADx) involves training supervised classifiers using labeled ("truth-known") data. Often, training data consists of high-dimensional feature vectors extracted from medical images. Unfortunately, very large data sets may be required to train robust classifiers for high-dimensional inputs. To mitigate the risk of classifier over-fitting, CADx schemes may employ feature selection or dimension reduction (DR), for example, principal component analysis (PCA). Recently, a number of novel "structure-preserving" DR methods have been proposed1. Such methods are attractive for use in CADx schemes for two main reasons. First, by providing visualization of highdimensional data structure, and second, since DR can be unsupervised or semi-supervised, unlabeled ("truth-unknown") data may be incorporated2. However, the practical application of state-of-the-art DR techniques such as, t-SNE3, to breast CADx were inhibited by the inability to retain a parametric embedding function capable of mapping new input data to the reduced representation. Deep (more than one hidden layer) neural networks can be used to learn such parametric DR embeddings. We explored the feasibility of such methods for use in CADx by conducting a variety of experiments using simulated feature data, including models based on breast CADx features. Specifically, we investigated the unsupervised parametric t-SNE4 (pt-SNE), the supervised deep t-distributed MCML5 (dt-MCML), and hybrid semi-supervised modifications combining the two.

  11. Parametric Mass Reliability Study

    NASA Technical Reports Server (NTRS)

    Holt, James P.

    2014-01-01

    The International Space Station (ISS) systems are designed based upon having redundant systems with replaceable orbital replacement units (ORUs). These ORUs are designed to be swapped out fairly quickly, but some are very large, and some are made up of many components. When an ORU fails, it is replaced on orbit with a spare; the failed unit is sometimes returned to Earth to be serviced and re-launched. Such a system is not feasible for a 500+ day long-duration mission beyond low Earth orbit. The components that make up these ORUs have mixed reliabilities. Components that make up the most mass-such as computer housings, pump casings, and the silicon board of PCBs-typically are the most reliable. Meanwhile components that tend to fail the earliest-such as seals or gaskets-typically have a small mass. To better understand the problem, my project is to create a parametric model that relates both the mass of ORUs to reliability, as well as the mass of ORU subcomponents to reliability.

  12. Parametric scramjet analysis

    NASA Astrophysics Data System (ADS)

    Choi, Jongseong

    The performance of a hypersonic flight vehicle will depend on existing materials and fuels; this work presents the performance of the ideal scramjet engine for three different combustion chamber materials and three different candidate fuels. Engine performance is explored by parametric cycle analysis for the ideal scramjet as a function of material maximum service temperature and the lower heating value of jet engine fuels. The thermodynamic analysis is based on the Brayton cycle as similarly employed in describing the performance of the ramjet, turbojet, and fanjet ideal engines. The objective of this work is to explore material operating temperatures and fuel possibilities for the combustion chamber of a scramjet propulsion system to show how they relate to scramjet performance and the seven scramjet engine parameters: specific thrust, fuel-to-air ratio, thrust-specific fuel consumption, thermal efficiency, propulsive efficiency, overall efficiency, and thrust flux. The information presented in this work has not been done by others in the scientific literature. This work yields simple algebraic equations for scramjet performance which are similar to that of the ideal ramjet, ideal turbojet and ideal turbofan engines.

  13. Arrival time parametric imaging of the hemodynamic balance changes between the hepatic artery and the portal vein during deep inspiration, using Sonazoid-enhanced ultrasonography: A case of Budd-Chiari syndrome.

    PubMed

    Wakui, Noritaka; Takayama, Ryuji; Matsukiyo, Yasushi; Kamiyama, Naohisa; Kobayashi, Kojiro; Mukozu, Takanori; Nakano, Shigeru; Ikehara, Takashi; Nagai, Hidenari; Igarashi, Yoshinori; Sumino, Yasukiyo

    2013-07-01

    This case report concerns a 40-year-old male who had previously been treated for an esophageal varix rupture, at the age of 30 years. The medical examination at that time revealed occlusion of the inferior vena cava in the proximity of the liver, leading to the diagnosis of the patient with Budd-Chiari syndrome. The progress of the patient was therefore monitored in an outpatient clinic. The patient had no history of drinking or smoking, but had suffered an epileptic seizure in 2004. The patient's family history revealed nothing of note. In February 2012, color Doppler ultrasonography (US) revealed a change in the blood flow in the right portal vein branch, from hepatopetal to hepatofugal, during deep inspiration. Arrival time parametric imaging (At-PI), using Sonazoid-enhanced US, was subsequently performed to examine the deep respiration-induced changes observed in the hepatic parenchymal perfusion. US images captured during deep inspiration demonstrated hepatic parenchymal perfusion predominantly in red, indicating that the major blood supply was the hepatic artery. During deep expiration, the portal venous blood flow remained hepatopetal, and hepatic parenchymal perfusion was displayed predominantly in yellow, indicating that the portal vein was the major source of the blood flow. The original diagnostic imaging results were reproduced one month subsequently by an identical procedure. At-PI enabled an investigation into the changes that were induced in the hepatic parenchymal perfusion by a compensatory mechanism involving the hepatic artery. These changes occurred in response to a reduction in the portal venous blood flow, as is observed in the arterialization of hepatic blood flow that is correlated with the progression of chronic hepatitis C. It has been established that the peribiliary capillary plexus is important in the regulation of hepatic arterial blood flow. However, this case demonstrated that the peribiliary capillary plexus also regulates acute

  14. F-Formation Detection: Individuating Free-Standing Conversational Groups in Images

    PubMed Central

    Setti, Francesco; Russell, Chris; Bassetti, Chiara; Cristani, Marco

    2015-01-01

    Detection of groups of interacting people is a very interesting and useful task in many modern technologies, with application fields spanning from video-surveillance to social robotics. In this paper we first furnish a rigorous definition of group considering the background of the social sciences: this allows us to specify many kinds of group, so far neglected in the Computer Vision literature. On top of this taxonomy we present a detailed state of the art on the group detection algorithms. Then, as a main contribution, we present a brand new method for the automatic detection of groups in still images, which is based on a graph-cuts framework for clustering individuals; in particular, we are able to codify in a computational sense the sociological definition of F-formation, that is very useful to encode a group having only proxemic information: position and orientation of people. We call the proposed method Graph-Cuts for F-formation (GCFF). We show how GCFF definitely outperforms all the state of the art methods in terms of different accuracy measures (some of them are brand new), demonstrating also a strong robustness to noise and versatility in recognizing groups of various cardinality. PMID:25996922

  15. F-formation detection: individuating free-standing conversational groups in images.

    PubMed

    Setti, Francesco; Russell, Chris; Bassetti, Chiara; Cristani, Marco

    2015-01-01

    Detection of groups of interacting people is a very interesting and useful task in many modern technologies, with application fields spanning from video-surveillance to social robotics. In this paper we first furnish a rigorous definition of group considering the background of the social sciences: this allows us to specify many kinds of group, so far neglected in the Computer Vision literature. On top of this taxonomy we present a detailed state of the art on the group detection algorithms. Then, as a main contribution, we present a brand new method for the automatic detection of groups in still images, which is based on a graph-cuts framework for clustering individuals; in particular, we are able to codify in a computational sense the sociological definition of F-formation, that is very useful to encode a group having only proxemic information: position and orientation of people. We call the proposed method Graph-Cuts for F-formation (GCFF). We show how GCFF definitely outperforms all the state of the art methods in terms of different accuracy measures (some of them are brand new), demonstrating also a strong robustness to noise and versatility in recognizing groups of various cardinality. PMID:25996922

  16. Dynamical stability of imaged planetary systems in formation: Application to HL Tau

    NASA Astrophysics Data System (ADS)

    Tamayo, Daniel; Triaud, Amaury H. M. J.; Menou, Kristen; Rein, Hanno

    2015-08-01

    A recent ALMA image revealed several concentric gaps in the protoplanetary disk surrounding the young star HL Tau. We consider the hypothesis that these gaps are carved by planets, and present a general framework for understanding the dynamical stability of such systems over typical disk lifetimes, providing estimates for the maximum planetary masses.We argue that the locations of resonances should be significantly shifted in massive disks like HL Tau, and that theoretical uncertainties in the exact offset, together with observational errors, imply a large uncertainty in the dynamical state and stability in such disks. This may present an important barrier to using systems like HL Tau as a proxy for the initial conditions following planet formation. An important observational avenue to breaking this degeneracy is to search for eccentric gaps, which could implicate resonantly interacting planets. Unfortunately, a massive disk would also induce swift pericenter precession that would smear out any such eccentric features of planetary origin. This motivates pushing toward more typical, less massive disks.For a nominal non-resonant model of the HL Tau system with five planets, we find a maximum mass for the outer three bodies of approximately 2 Neptune masses. In a resonant configuration, these planets can reach at least the mass of Saturn. The inner two planets' masses are unconstrained by dynamical stability arguments. We will consider the implications for the HL Tau system, and discuss the exciting future of the planetary formation studies in the ALMA era.

  17. Approximation and bounding of distortion errors in polar format SAR imaging for squinted geometries

    NASA Astrophysics Data System (ADS)

    Horvath, Matt S.; Rigling, Brian D.

    2012-05-01

    Synthetic aperture radar (SAR) imaging is a powerful tool that can be utilized where other conventional surveillance methods fail. It has a variety of applications including reconnaissance and surveillance for defense purposes, natural resource exploration, and environmental monitoring, among others. SAR systems generally create large datasets that need to be processed to form a final image. Processing this data can be computationally intensive, and applications may demand algorithms that can form images quickly. The goal and motivation of this research is to analyze algorithms that permit a large SAR dataset to be efficiently processed into a high-resolution image of a large scene. The backprojection algorithm (BPA)1 can serve as a baseline for performance relative to other SAR imaging algorithms. It results in accurately formed images for a vast variety of imaging scenarios. The tradeoff comes in its computational complexity which is O(N3) for an N × N pixel image. The polar format algorithm (PFA)2 is a long-standing and popular alternative to the BPA. The PFA allows the use of fast Fourier Transforms (FFTs), leading to a computational complexity of O(N2 logN) for an N × N pixel image. However, the PFA relies on a far-field approximation, wherein the curved wavefront of the transmitted pulses is approximated as a planar wavefront, thereby introducing spatially variant phase errors and hence distortion and defocus in the PFA formed image. The defocus and distortion errors can be corrected, but this is a non-trivial process.3 It can be shown that first-order Taylor expansion of a differential range expression yields the assumed received signal phase used to generate images from SAR phase history data with the PFA.4 This work focuses on error terms introduced by the PFA assumption that introduce geometric distortion in the resulting image. This distortion causes a point scatterer located at a true (x, y) coordinate to appear at some (x, y) in the formed image, i

  18. Analysis of autophagosome formation using lentiviral biosensors for live fluorescent cellular imaging.

    PubMed

    Long, Kevin; Mohan, Chandra; Anderl, Janet; Huryn-Selvar, Karyn; Liu, Haizhen; Su, Kevin; Santos, Mark; Hsu, Matthew; Armstrong, Lucas; Ma, Jun

    2015-01-01

    Autophagy, a highly regulated homeostatic degradative process, allows cells to reallocate nutrients from less important to more essential processes under extreme conditions of starvation. Autophagy also prevents the buildup of damaged proteins and organelles that cause chronic tissue damage and disease. Although a topic of great interest with involvement of multiple signaling pathways, there are limitations in real-time detection of the autophagic process. EMD Millipore has developed technologies where prepackaged, ready-to-use, high-titer lentiviral particles, "lentiviral biosensors," encoding GFP- or RFP-tagged proteins provide a convenient and robust solution for fluorescent imaging of cells undergoing autophagy. Compared to nonviral transfection methods, lentiviral transduction, in many cases, offers higher transfection efficiency and more homogeneous protein expression, particularly for traditionally hard-to-transfect primary cell types. Lentiviral biosensors are ideal for use with fixed and live cell fluorescent microscopy, and are nondisruptive towards cellular function. GFP- or RFP-protein localization matches well with antibody-based immunostaining and demonstrates altered patterns of expression upon treatment with modulators of cell function and phenotype. Lentiviral biosensors provide a broadly effective, convenient method for visualization of cell behavior under a variety of physiological and pathological treatment conditions, in both endpoint and real-time imaging modalities. In this study, we focus on lentiviral biosensors containing GFP-LC3 and RFP-LC3 to study the formation of autophagosomes. PMID:25308268

  19. FTIR spectro-imaging of collagen scaffold formation during glioma tumor development.

    PubMed

    Noreen, Razia; Chien, Chia-Chi; Chen, Hsiang-Hsin; Bobroff, Vladimir; Moenner, Michel; Javerzat, Sophie; Hwu, Yeukuang; Petibois, Cyril

    2013-11-01

    Evidence has recently emerged that solid and diffuse tumors produce a specific extracellular matrix (ECM) for division and diffusion, also developing a specific interface with microvasculature. This ECM is mainly composed of collagens and their scaffolding appears to drive tumor growth. Although collagens are not easily analyzable by UV-fluorescence means, FTIR imaging has appeared as a valuable tool to characterize collagen contents in tissues, specially the brain, where ECM is normally devoid of collagen proteins. Here, we used FTIR imaging to characterize collagen content changes in growing glioma tumors. We could determine that C6-derived solid tumors presented high content of triple helix after 8-11 days of growth (typical of collagen fibrils formation; 8/8 tumor samples; 91 % of total variance), and further turned to larger α-helix (days 12-15; 9/10 of tumors; 94 % of variance) and β-turns (day 18-21; 7/8 tumors; 97 % of variance) contents, which suggest the incorporation of non-fibrillar collagen types in ECM, a sign of more and more organized collagen scaffold along tumor progression. The growth of tumors was also associated to the level of collagen produced (P < 0.05). This study thus confirms that collagen scaffolding is a major event accompanying the angiogenic shift and faster tumor growth in solid glioma phenotypes. PMID:24068168

  20. Pallasite formation after a non-destructive impact. An experimental- and image analyses-based study

    NASA Astrophysics Data System (ADS)

    Solferino, Giulio; Golabek, Gregor J.; Nimmo, Francis; Schmidt, Max W.

    2015-04-01

    The formation conditions of pallasite meteorites in the interior of terrestrial planetesimals have been matter of debate over the last 40 years. Among other characteristics, the simple mineralogical composition (i.e., olivine, FeNi, FeS +/- pyroxene) and the dualism between fragmental and rounded olivine-bearing pallasites must be successfully reproduced by a potential formation scenario. This study incorporates a series of annealing experiments with olivine plus Fe-S, and digital image analyses of slabs from Brenham, Brahin, Seymchan, and Springwater pallasites. Additionally a 1D finite-difference numerical model was employed to show that a non-destructive collision followed by mixing of the impactor's core with the target body silicate mantle could lead to the formation of both fragmental and rounded pallasite types. Specifically, an impact occurring right after the accomplishment of the target body differentiation and up to several millions of years afterwards allows for (i) average grain sizes consistent with the observed rounded olivine-bearing pallasites, (ii) a remnant magnetization of Fe-Ni olivine inclusions as measured in natural pallasites and (iii) for the metallographic cooling rates derived from Fe-Ni in pallasites. An important result of this investigation is the definition of the grain growth rate of olivine in molten Fe-S as follows: dn - d0n = k0 exp(-Ea/RT) t, where, d0 is the starting grain size, d the grain size at time t, n = 2.42(46) the growth exponent, k0 = 9.43•E06 μm n s-1 a characteristic constant, Ea = 289 kJ/mol the activation energy for a specific growth process, R the gas constant, and T the absolute temperature. The computed olivine coarsening rate is markedly faster than in olivine-FeNi and olivine-Ni systems.

  1. X-ray Fluorescence Imaging of the Hippocampal Formation After Manganese Exposure†

    PubMed Central

    Robison, Gregory; Zakharova, Taisiya; Fu, Sherleen; Jiang, Wendy; Fulper, Rachael; Barrea, Raul; Zheng, Wei; Pushkar, Yulia

    2013-01-01

    Manganese (Mn) intoxication results in neurological conditions similar, but not identical, to idiopathic Parkinson’s disease. While the mechanism(s) by which Mn exposure leads to neurotoxic effects remains unclear, studies by magnetic resonance imaging demonstrate a high Mn accumulation in the hippocampal formation (HPCf) of the brain. Metal quantification using this method is not possible. Using x-ray fluorescence imaging, we measured the distribution of Mn in the HPCf for a rodent model of chronic Mn exposure and quantitatively compared it with distributions of other biologically relevant metals. We found considerable increases in average Mn concentrations in all analyzed areas and we identified the dentate gyrus (DG) and the cornus ammonis 3 (CA3) layer as areas accumulating the highest Mn content (~1.2 µg Mn/g tissue). The DG is significantly enriched with iron (Fe), while the CA3 layer has high zinc (Zn) content. Additionally, significant spatial correlations were found for Mn/Zn concentrations across the identified substructures of the HPCf and for Mn/Fe concentrations in the DG. Combined results support that at least two mechanisms may be responsible for Mn transport and/or storage in the brain, associated with either Fe or Zn. Subcellular resolution images of metal distribution in cells of the CA3 show diffuse Mn distributions consistent with Mn localization in both the cytoplasm and nucleus. Mn was not increased in localized intracellular Fe or copper accumulations. A consistent Mn/Zn correlation both at the tissue (40 µm × 40 µm) and cellular (0.3 µm × 0.3 µm) levels suggests that a Zn transport/storage mechanism in the HPCf is likely associated with Mn accumulation. PMID:23999853

  2. SPATIALLY RESOLVED STAR FORMATION IMAGE AND THE ULTRALUMINOUS X-RAY SOURCE POPULATION IN NGC 2207/IC 2163

    SciTech Connect

    Mineo, S.; Rappaport, S.; Steinhorn, B.; Levine, A.; Gilfanov, M.; Pooley, D. E-mail: sar@mit.edu E-mail: bsteinho@mit.edu E-mail: gilfanov@mpa-garching.mpg.de

    2013-07-10

    The colliding galaxy pair NGC 2207/IC 2163, at a distance of {approx}39 Mpc, was observed with Chandra, and an analysis reveals 28 well resolved X-ray sources, including 21 ultraluminous X-ray sources (ULXs) with L{sub X} {approx}> 10{sup 39} erg s{sup -1}, as well as the nucleus of NGC 2207. The number of ULXs is comparable with the largest numbers of ULXs per unit mass in any galaxy yet reported. In this paper we report on these sources, and quantify how their locations correlate with the local star formation rates seen in spatially resolved star formation rate density images that we have constructed using combinations of GALEX FUV and Spitzer 24 {mu}m images. We show that the numbers of ULXs are strongly correlated with the local star formation rate densities surrounding the sources, but that the luminosities of these sources are not strongly correlated with star formation rate density.

  3. Image formation of holographic three-dimensional display based on spatial light modulator in paraxial optical systems

    NASA Astrophysics Data System (ADS)

    Li, Junchang; Lin, Yu-Chih; Tu, Han-Yen; Gui, Jinbin; Li, Chongguang; Lou, Yuli; Cheng, Chau-Jern

    2015-10-01

    This work describes the image formation and properties of holographic three-dimensional (3-D) display based on spatial light modulators (SLMs) combined with optical imaging systems. Existing pixelated SLMs with periodic mesh structures affect the holographic reconstruction and display properties. According to a holographic 3-D display architecture based on SLM in paraxial optical systems, this study applied the ray matrix optics and scalar diffraction theory to regard the light wave emitting from the holographic plane to the image plane as an optical system composed of four matrix elements. The image quality and depth of field (DOF) of the holographic 3-D display system are investigated, and the relationship between the impulse response and the matrix elements of the holographic imaging system is derived. In addition, the imaging properties and DOF are explored and verified through optical experimentation.

  4. An Acoustic Charge Transport Imager for High Definition Television Applications: Reliability Modeling and Parametric Yield Prediction of GaAs Multiple Quantum Well Avalanche Photodiodes. Degree awarded Oct. 1997

    NASA Technical Reports Server (NTRS)

    Hunt, W. D.; Brennan, K. F.; Summers, C. J.; Yun, Ilgu

    1994-01-01

    Reliability modeling and parametric yield prediction of GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiodes (APDs), which are of interest as an ultra-low noise image capture mechanism for high definition systems, have been investigated. First, the effect of various doping methods on the reliability of GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiode (APD) structures fabricated by molecular beam epitaxy is investigated. Reliability is examined by accelerated life tests by monitoring dark current and breakdown voltage. Median device lifetime and the activation energy of the degradation mechanism are computed for undoped, doped-barrier, and doped-well APD structures. Lifetimes for each device structure are examined via a statistically designed experiment. Analysis of variance shows that dark-current is affected primarily by device diameter, temperature and stressing time, and breakdown voltage depends on the diameter, stressing time and APD type. It is concluded that the undoped APD has the highest reliability, followed by the doped well and doped barrier devices, respectively. To determine the source of the degradation mechanism for each device structure, failure analysis using the electron-beam induced current method is performed. This analysis reveals some degree of device degradation caused by ionic impurities in the passivation layer, and energy-dispersive spectrometry subsequently verified the presence of ionic sodium as the primary contaminant. However, since all device structures are similarly passivated, sodium contamination alone does not account for the observed variation between the differently doped APDs. This effect is explained by the dopant migration during stressing, which is verified by free carrier concentration measurements using the capacitance-voltage technique.

  5. Insights Into Sill Formation Processes From Particle Image Velocimetry (PIV) Analysis of Layered Elastic Media Experiments

    NASA Astrophysics Data System (ADS)

    Kavanagh, J. L.; Boutelier, D. A.; Cruden, A. R.

    2012-12-01

    A key issue in magma intrusion mechanics is constraining the conditions required to initiate sill formation from feeder dykes. To investigate these processes, we present a series of layered gelatine analogue experiments monitored with a Particle Image Velocimetry (PIV) system to document the fluid dynamics in the magma and small-scale deformation processes in the host material as a sill is formed along a weak contact beneath a more rigid layer. Gelatine is a good crustal analogue material to study the dynamics of dyke and sill propagation in the crust. Although gelatine is viscoelastic, tests carried out using a rheometer show that at experimental conditions the gelatine behaves as an almost ideal elastic material at 5-10 °C. Forty litres of hot liquid gelatine is poured into a clear-perspex tank and left to solidify in a fridge at ~5 °C. Experiments are prepared comprising multiple layers, with small strength contrasts (comparable to those between crustal strata) created by varying the gelatine concentration and allowing sufficient time for it to reach the plateau Young's modulus. Both strong and weak interface strengths are investigated by varying the extent of welding between the layers. Injection of dyed water (the magma analogue) into the solid gelatine from below causes a penny-shaped experimental dyke to form. With a constant driving pressure, the propagating experimental dyke becomes arrested beneath a more rigid layer if the Young's modulus contrast is greater than 12%. In the case of a weak interface, a sill is formed by intrusion along the contact between the layers; if the interface is strong a blade-like dyke forms. To monitor displacements within the gelatine using the PIV technique, neutrally buoyant polyamide reflective particles are added to the gelatine during experiment preparation. Two high-speed cameras are positioned outside the tank in a plane perpendicular to the strike of the experimental feeder dyke, and parallel to a high-power laser

  6. Real-time Live Imaging of T-cell Signaling Complex Formation

    PubMed Central

    Barda-Saad, Mira

    2013-01-01

    real-time imaging of live cells allows both the spatial tracking of proteins and the ability to temporally distinguish between signaling events, thus shedding light on the dynamics of the process 9,10. We present a method of real-time imaging of signaling-complex formation during T-cell activation. Primary T-cells or T-cell lines, such as Jurkat, are transfected with plasmids encoding for proteins of interest fused to monomeric fluorescent proteins, preventing non-physiological oligomerization 11. Live T cells are dropped over a coverslip pre-coated with T-cell activating antibody 8,9, which binds to the CD3/TCR complex, inducing T-cell activation while overcoming the need for specific activating antigens. Activated cells are constantly imaged with the use of confocal microscopy. Imaging data are analyzed to yield quantitative results, such as the colocalization coefficient of the signaling proteins. PMID:23851483

  7. Parametric Equations, Maple, and Tubeplots.

    ERIC Educational Resources Information Center

    Feicht, Louis

    1997-01-01

    Presents an activity that establishes a graphical foundation for parametric equations by using a graphing output form called tubeplots from the computer program Maple. Provides a comprehensive review and exploration of many previously learned topics. (ASK)

  8. Entangled-photon compressive ghost imaging

    SciTech Connect

    Zerom, Petros; Chan, Kam Wai Clifford; Howell, John C.; Boyd, Robert W.

    2011-12-15

    We have experimentally demonstrated high-resolution compressive ghost imaging at the single-photon level using entangled photons produced by a spontaneous parametric down-conversion source and using single-pixel detectors. For a given mean-squared error, the number of photons needed to reconstruct a two-dimensional image is found to be much smaller than that in quantum ghost imaging experiments employing a raster scan. This procedure not only shortens the data acquisition time, but also suggests a more economical use of photons for low-light-level and quantum image formation.

  9. Synthetic aperture radar imaging algorithm customized for programmable optronic processor in the application of full-scene synthetic aperture radar image formation

    NASA Astrophysics Data System (ADS)

    Sheng, Hui; Gao, Yesheng; Zhu, Bingqi; Wang, Kaizhi; Liu, Xingzhao

    2015-01-01

    With the high programmability of a spatial light modulator (SLM), a newly developed synthetic aperture radar (SAR) optronic processor is capable of focusing SAR data with different parameters. The embedded SLM, encoding SAR data into light signal in the processor, has a limited loading resolution of 1920×1080. When the dimension of processed SAR data increases to tens of thousands in either range or azimuth direction, SAR data should be input and focused block by block. And then, part of the imaging results is mosaicked to offer a full-scene SAR image. In squint mode, however, Doppler centroid will shift signal spectrum in the azimuth direction and make phase filters, loaded by another SLM, unable to cover the entire signal spectrum. It brings about a poor imaging result. Meanwhile, the imaging result, shifted away from the center of light output, will cause difficulties in subsequent image mosaic. We present an SAR image formation algorithm designed to solve these problems when processing SAR data of a large volume in low-squint case. It could not only obtain high-quality imaging results, but also optimize the subsequent process of image mosaic with optimal system cost and efficiency. Experimental results validate the performance of this proposed algorithm in optical full-scene SAR imaging.

  10. Deep Hubble Space Telescope Imaging of IC 1613. II. The Star Formation History

    NASA Astrophysics Data System (ADS)

    Skillman, Evan D.; Tolstoy, Eline; Cole, Andrew A.; Dolphin, Andrew E.; Saha, Abhijit; Gallagher, J. S.; Dohm-Palmer, R. C.; Mateo, Mario

    2003-10-01

    We have taken deep images of an outlying field in the Local Group dwarf irregular galaxy IC 1613 with the WFPC2 aboard the Hubble Space Telescope in the standard broadband F555W (V, 8 orbits) and F814W (I, 16 orbits) filters. The photometry reaches to V=27.7 (MV=+3.4) and I=27.1 (MI=+2.8) at the 50% completeness level, the deepest to date for an isolated dwarf irregular galaxy. We analyze the resulting color-magnitude diagram (CMD) and compare it with CMDs created from theoretical stellar models using three different methods to derive a star formation history (SFH) as well as constrain the chemical evolution for IC 1613. All three methods find an enhanced star formation rate (SFR), at roughly the same magnitude (factor of 3), over roughly the same period (from 3 to 6 Gyr ago). Additionally, all three methods were driven to similar age-metallicity relationships (AMR) that show an increase from [Fe/H]~-1.3 at earliest times to [Fe/H]~-0.7 at present. Good agreement is found between the AMR which is derived from the CMD analysis and that which can be inferred from the derived SFH at all but the earliest ages. The agreement between the three models and the self-consistency of the derived chemical enrichment history support the reality of the derived SFH of IC 1613 and, more generally, are supportive of the practice of constructing galaxy SFHs from CMDs. A comparison of the newly observed outer field with an earlier studied central field of IC 1613 shows that the SFR in the outer field has been significantly depressed during the last Gyr. This implies that the optical scale length of the galaxy has been decreasing with time and that comparison of galaxies at intermediate redshift with present-day galaxies should take this effect into account. Comparing the CMD of the outer field of IC 1613 with CMDs of Milky Way dSph companions, we find strong similarities between IC 1613 and the more distant dSph companions (Carina, Fornax, Leo I, and Leo II) in that all are dominated

  11. Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters

    SciTech Connect

    Sacci, Robert L; Black, Jennifer M.; Wisinger, Nina; Dudney, Nancy J.; More, Karren Leslie; Unocic, Raymond R.

    2015-02-23

    The performance characteristics of Li-ion batteries are intrinsically linked to evolving nanoscale interfacial electrochemical reactions. To probe the mechanisms of solid electrolyte interphase formation and Li electrodeposition from a standard battery electrolyte, we use in situ electrochemical scanning transmission electron microscopy for controlled potential sweep-hold electrochemical measurements with simultaneous BF and ADF STEM image acquisition. Through a combined quantitative electrochemical measurement and quantitative STEM imaging approach, based upon electron scattering theory, we show that chemically sensitive ADF STEM imaging can be used to estimate the density of evolving SEI constituents and distinguish contrast mechanisms of Li-bearing components in the liquid cell.

  12. Monitoring the lesion formation during histotripsy treatment using shear wave imaging

    NASA Astrophysics Data System (ADS)

    Arnal, Bastien; Lee, Wei-Ning; Pernot, Mathieu; Fink, Mathias; Tanter, Mickael

    2012-11-01

    Monitoring the lesion formation induced by histotripsy has mainly relied on the quantitative change in backscatter intensity using ultrasound B-mode imaging. However, how the mechanical properties of the histotripsy-treated tissue region alter during the procedure is yet to be fully investigated. We thus proposed here to monitor such a therapeutic process based on shear modulus estimated by shear wave imaging (SWI). In the therapeutic procedure, a single-element piezo-composite focused transducer (Imasonic, Besançon, France) with a center frequency of 660 kHz, a focal length of 45 mm, and an fnumber of 1 was driven by a function generator (AFG 3101, Tektronix, Beaverton, OR) and a gated RF power amplifier (GA-2500A, RITEC Inc., USA) to generate ultrasound histotripsy pulses. Histotripsy pulses were delivered for 20 seconds and then followed by a 30-second pause and a rapid monitoring step. Such a treatment and monitoring scheme was repeated for 10 mins. Both the reference measurement and monitoring were realized by SWI, where plane shear waves were generated by an 8 MHz linear array probe connected to a prototype ultrasound scanner, and acquired at a frame rate of 10000 Hz. Shear modulus was estimated and mapped in 2D through a time-of-flight algorithm. Gelatin (8%)-agar (2%) phantoms and ex-vivo porcine liver samples were tested. Regions of interests (ROI's) of 2 mm-by-2 mm in both untreated and treated regions were selected to compute the contrast-to-noise ratio (CNR). In all three scenarios where different PD's and PRF's were implemented, during the first 100 seconds of the treatment, 50% decrease in the shear modulus within the histotripsy-targeted zone was already observed, and the CNR of the shear modulus increased by 18 dB. In contrast, the backscatter intensity began to reduce and the corresponding CNR was found to increase by 6 dB only after 120 seconds of treatment. The results demonstrated that SWI can map quantitatively the change of mechanical

  13. Biomimetic Strategies Employed in the Formation of Biotargeted Metal Nanoparticles for Optical Imaging and Photothermal Therapy

    NASA Astrophysics Data System (ADS)

    Black, Kvar Carl Lee, IV

    Diseases resistant to current treatment protocols like chemo resistant cancers and antibiotic resistant bacterial infections require treatments with novel mechanisms of action. Metal nanoparticles (NPs) have unique dielectric properties that give rise to the surface plasmon resonance (SPR), which causes these materials to interact strongly with light. With multifunctional surface modifications, metal NPs have the potential to diagnose and treat diseases like cancer and bacterial infections with optical imaging techniques and light-activated photothermal therapy. With the ability to interact strongly with metals and organics, versatile catecholamine molecules inspired by marine mussels can be used to synthesize metal NPs and functionalize them with a variety of molecules. With this biomimetic tool, these metal NPs can be formed and stabilized in physiological environments and functionalized to specifically target diseased cell surfaces. Herein, molecules containing catechols and amines are used to form gold and silver NPs and tune their SPR optical properties throughout the visible and near-infrared (NIR) region of the electromagnetic spectrum with shape and compositional control. A variety of chemical mechanisms including catechol redox activity are employed in the metal NP formation and functionalization to engineer robust metal-organic interfaces for biomedical applications. Antibodies are functionalized onto metal NPs to provide specific targeting to cancer and bacterial cell surfaces. For cancer, the epidermal growth factor receptor, overexpressed in a variety of cancers, is targeted in oral and breast cancer cells. For bacteria, NPs are targeted to endotoxins on gram-negative escherichia coli membranes and lipoteichoic acids in gram-positive staphylococcus epidermidis cell walls. Optical techniques including optical coherence tomography (OCT) and bright field microscopy are used to identify NPs on cells, and photothermal therapy is successfully demonstrated

  14. Parametric design using IGRIP

    SciTech Connect

    Baker, C.

    1994-10-01

    The Department of Energy`s (DOE) Hanford site near Richland, Washington is being cleaned up after 50 years of nuclear materials production. One of the most serious problems at the site is the waste stored in single-shell underground storage tanks. There are 149 of these tanks containing the spent fuel residue remaining after the fuel is dissolved in acid and the desired materials (primarily plutonium and uranium) are separated out. The tanks are upright cylinders 75 ft. in diameter with domed tops. They are made of reinforced concrete, have steel liners, and each tank is buried under 7--12 ft. of overburden. The tanks are up to 40-ft. high, and have capacities of 500,000, 750,000, or 1,000,000 gallons of waste. As many as one-third of these tanks are known or suspected to leak. The waste form contained in the tanks varies in consistency from liquid supernatant to peanut-butter-like gels and sludges to hard salt cake (perhaps as hard as low-grade concrete). The current waste retrieval plan is to insert a large long-reach manipulator through a hole cut in the top of the tank, and use a variety of end-effectors to mobilize the waste and remove it from the tank. PNL has, with the assistance of Deneb robotics employees, developed a means of using the IGRIP code to perform parametric design of mechanical systems. This method requires no modifications to the IGRIP code, and all design data are stored in the IGRIP workcell. The method is presented in the context of development of a passive articulated mechanism that is used to deliver down-arm services to a gantry robot. The method is completely general, however, and could be used to design a fully articulated manipulator. Briefly, the method involves using IGCALC expressions to control manipulator joint angles, and IGCALC variables to allow user control of link lengths and offsets. This paper presents the method in detail, with examples drawn from PNL`s experience with the gantry robot service-providing mechanism.

  15. The formation of IRIS diagnostics. III. Near-ultraviolet spectra and images

    SciTech Connect

    Pereira, T. M. D.; Leenaarts, J.; De Pontieu, B.; Carlsson, M.; Uitenbroek, H. E-mail: jorritl@astro.uio.no E-mail: mats.carlsson@astro.uio.no

    2013-12-01

    The Mg II h and k lines are the prime chromospheric diagnostics of NASA's Interface Region Imaging Spectrograph (IRIS). In the previous papers of this series, we used a realistic three-dimensional radiative magnetohydrodynamics model to calculate the h and k lines in detail and investigated how their spectral features relate to the underlying atmosphere. In this work, we employ the same approach to investigate how the h and k diagnostics fare when taking into account the finite resolution of IRIS and different noise levels. In addition, we investigate the diagnostic potential of several other photospheric lines and near-continuum regions present in the near-ultraviolet (NUV) window of IRIS and study the formation of the NUV slit-jaw images. We find that the instrumental resolution of IRIS has a small effect on the quality of the h and k diagnostics; the relations between the spectral features and atmospheric properties are mostly unchanged. The peak separation is the most affected diagnostic, but mainly due to limitations of the simulation. The effects of noise start to be noticeable at a signal-to-noise ratio (S/N) of 20, but we show that with noise filtering one can obtain reliable diagnostics at least down to a S/N of 5. The many photospheric lines present in the NUV window provide velocity information for at least eight distinct photospheric heights. Using line-free regions in the h and k far wings, we derive good estimates of photospheric temperature for at least three heights. Both of these diagnostics, in particular the latter, can be obtained even at S/Ns as low as 5.

  16. The Formation of IRIS Diagnostics. III. Near-ultraviolet Spectra and Images

    NASA Astrophysics Data System (ADS)

    Pereira, T. M. D.; Leenaarts, J.; De Pontieu, B.; Carlsson, M.; Uitenbroek, H.

    2013-12-01

    The Mg II h&k lines are the prime chromospheric diagnostics of NASA's Interface Region Imaging Spectrograph (IRIS). In the previous papers of this series, we used a realistic three-dimensional radiative magnetohydrodynamics model to calculate the h&k lines in detail and investigated how their spectral features relate to the underlying atmosphere. In this work, we employ the same approach to investigate how the h&k diagnostics fare when taking into account the finite resolution of IRIS and different noise levels. In addition, we investigate the diagnostic potential of several other photospheric lines and near-continuum regions present in the near-ultraviolet (NUV) window of IRIS and study the formation of the NUV slit-jaw images. We find that the instrumental resolution of IRIS has a small effect on the quality of the h&k diagnostics; the relations between the spectral features and atmospheric properties are mostly unchanged. The peak separation is the most affected diagnostic, but mainly due to limitations of the simulation. The effects of noise start to be noticeable at a signal-to-noise ratio (S/N) of 20, but we show that with noise filtering one can obtain reliable diagnostics at least down to a S/N of 5. The many photospheric lines present in the NUV window provide velocity information for at least eight distinct photospheric heights. Using line-free regions in the h&k far wings, we derive good estimates of photospheric temperature for at least three heights. Both of these diagnostics, in particular the latter, can be obtained even at S/Ns as low as 5.

  17. Teaching Image Formation by Extended Light Sources: The Use of a Model Derived from the History of Science

    ERIC Educational Resources Information Center

    Dedes, Christos; Ravanis, Konstantinos

    2009-01-01

    This research, carried out in Greece on pupils aged 12-16, focuses on the transformation of their representations concerning light emission and image formation by extended light sources. The instructive process was carried out in two stages, each one having a different, distinct target set. During the first stage, the appropriate conflict…

  18. Formation of toxic iodinated disinfection by-products from compounds used in medical imaging.

    PubMed

    Duirk, Stephen E; Lindell, Cristal; Cornelison, Christopher C; Kormos, Jennifer; Ternes, Thomas A; Attene-Ramos, Matias; Osiol, Jennifer; Wagner, Elizabeth D; Plewa, Michael J; Richardson, Susan D

    2011-08-15

    Iodinated X-ray contrast media (ICM) were investigated as a source of iodine in the formation of iodo-trihalomethane (iodo-THM) and iodo-acid disinfection byproducts (DBPs), both of which are highly genotoxic and/or cytotoxic in mammalian cells. ICM are widely used at medical centers to enable imaging of soft tissues (e.g., organs, veins, blood vessels) and are designed to be inert substances, with 95% eliminated in urine and feces unmetabolized within 24 h. ICM are not well removed in wastewater treatment plants, such that they have been found at elevated concentrations in rivers and streams (up to 100 μg/L). Naturally occurring iodide in source waters is believed to be a primary source of iodine in the formation of iodo-DBPs, but a previous 23-city iodo-DBP occurrence study also revealed appreciable levels of iodo-DBPs in some drinking waters that had very low or no detectable iodide in their source waters. When 10 of the original 23 cities' source waters were resampled, four ICM were found--iopamidol, iopromide, iohexol, and diatrizoate--with iopamidol most frequently detected, in 6 of the 10 plants sampled, with concentrations up to 2700 ng/L. Subsequent controlled laboratory reactions of iopamidol with aqueous chlorine and monochloramine in the absence of natural organic matter (NOM) produced only trace levels of iodo-DBPs; however, when reacted in real source waters (containing NOM), chlorine and monochloramine produced significant levels of iodo-THMs and iodo-acids, up to 212 nM for dichloroiodomethane and 3.0 nM for iodoacetic acid, respectively, for chlorination. The pH behavior was different for chlorine and monochloramine, such that iodo-DBP concentrations maximized at higher pH (8.5) for chlorine, but at lower pH (6.5) for monochloramine. Extracts from chloraminated source waters with and without iopamidol, as well as from chlorinated source waters with iopamidol, were the most cytotoxic samples in mammalian cells. Source waters with iopamidol but no

  19. The influence of stimulus format on drawing—a functional imaging study of decision making in portrait drawing

    PubMed Central

    Miall, R.C.; Nam, Se-Ho; Tchalenko, J.

    2014-01-01

    To copy a natural visual image as a line drawing, visual identification and extraction of features in the image must be guided by top-down decisions, and is usually influenced by prior knowledge. In parallel with other behavioral studies testing the relationship between eye and hand movements when drawing, we report here a functional brain imaging study in which we compared drawing of faces and abstract objects: the former can be strongly guided by prior knowledge, the latter less so. To manipulate the difficulty in extracting features to be drawn, each original image was presented in four formats including high contrast line drawings and silhouettes, and as high and low contrast photographic images. We confirmed the detailed eye–hand interaction measures reported in our other behavioral studies by using in-scanner eye-tracking and recording of pen movements with a touch screen. We also show that the brain activation pattern reflects the changes in presentation formats. In particular, by identifying the ventral and lateral occipital areas that were more highly activated during drawing of faces than abstract objects, we found a systematic increase in differential activation for the face-drawing condition, as the presentation format made the decisions more challenging. This study therefore supports theoretical models of how prior knowledge may influence perception in untrained participants, and lead to experience-driven perceptual modulation by trained artists. PMID:25128710

  20. Effect of Cu pad morphology on direct-Cu pillar formation in CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Choi, Eunmi; Kim, Areum; Cui, Eunwha; Lee, Ukjae; Son, Hyung Bin; Hahn, Sang June; Pyo, Sung Gyu

    2014-09-01

    We report the feasibility of forming Ni bumps directly on Cu pads in CMOS image sensor (CIS) logic elements formed by Cu wires with diameters of less than 65 nm. The direct Ni bump process proposed in this study simplifies the fabrication process and reduces costs by eliminating the need for Al pad process. In addition, this process can secure the margin of the final layer, enabling the realization of thin camera modules. In this study, we evaluated the effect of pad annealing on the direct formation of Ni bumps over Cu pads. The results suggest that the morphology of the Cu pad varies depending on the annealing sequence, and post-passivation annealing resulted in fewer defects than pad etch annealing. The shear stress of the Ni bumps was 57.77 mgf/m2, which is six times greater than the corresponding reference value. Furthermore, we evaluated the reliability of a chip with an anisotropic conductive film (ACF) and a non-conducting paste (NCP) by using high-temperature storage (HTS), thermal cycling (TC), and wet high-temperature storage (WHTS) reliability tests. The evaluation results suggest the absence of abnormalities in all samples. [Figure not available: see fulltext.

  1. Parametric infrared tunable laser system

    NASA Technical Reports Server (NTRS)

    Garbuny, M.; Henningsen, T.; Sutter, J. R.

    1980-01-01

    A parametric tunable infrared laser system was built to serve as transmitter for the remote detection and density measurement of pollutant, poisonous, or trace gases in the atmosphere. The system operates with a YAG:Nd laser oscillator amplifier chain which pumps a parametric tunable frequency converter. The completed system produced pulse energies of up to 30 mJ. The output is tunable from 1.5 to 3.6 micrometers at linewidths of 0.2-0.5 /cm (FWHM), although the limits of the tuning range and the narrower line crystals presently in the parametric converter by samples of the higher quality already demonstrated is expected to improve the system performance further.

  2. Evidence from SOFIA Imaging of Polycyclic Aromatic Hydrocarbon Formation along a Recent Outflow in NGC 7027

    NASA Astrophysics Data System (ADS)

    Lau, Ryan M.; Werner, Michael W.; Sahai, Raghvendra; Ressler, Michael E.

    2016-06-01

    We report spatially resolved (FWHM ~ 3.8 - 4.6'') mid-IR imaging observations of the planetary nebula (PN) NGC 7027 taken with the 2.5-m telescope aboard the Stratospheric Observatory for Infrared Astronomy (SOFIA). Images of NGC 7027 were acquired at 6.3, 6.6, 11.1, 19.7, 24.2, 33.6, and 37.1 μm using the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST). The observations reveal emission from Polycyclic Aromatic Hydrocarbon (PAH) and warm dust (TD ~ 90 K) from the ionized inner edge of the molecular envelope surrounding the central star of the planetary nebula (CSPN). The DustEM code was used to fit the spectral energy distribution of fluxes obtained by FORCAST and the archival infrared spectrum of NGC 7027 acquired by the Short Wavelength Spectrometer (SWS) on the Infrared Space Observatory (ISO). Best-fit dust models reveal a total dust mass of ~6 × 10-3 M⊙, where carbonaceous large (a = 1.5 μm) and very small (a ~ 12 Å) grains, and PAHs (3.1 Å < a <12 Å) compose 96.5, 2.2, and 1.3% of the dust by mass, respectively. The 37 μm optical depth map reveals minima in the dust column density at regions in the envelope that are coincident with a previously identified highly collimated outflow from the CSPN. The column density minima are also spatially coincident with enhancements in the 6.2 μm PAH feature, which is derived from the 6.3 and 6.6 μm maps. We interpret the spatial anti-correlation of the dust column density and PAH 6.2 μm feature strength and their alignment with the outflow from the CSPN as evidence of dust processing and rapid PAH formation via grain-grain collisions in the post-shock environment of the dense photo-dissociation region (PDR) and molecular envelope.

  3. Coronagraphic imaging of pre-main-sequence stars: Remnant evvelopes of star formation seen in reflection

    NASA Technical Reports Server (NTRS)

    Nakajima, Tadashi; Golimowski, David A.

    1995-01-01

    We have obtained R- and I-band coronagraphic images of the vicinities of 11 pre-main sequence (PMS) stars to search for faint, small-scale reflection nebulae. The inner radius of the search and the field of view are 1.9 arcsec and 1x1 arcmin, respectively. Reflection nebulae were imaged around RY Tau, T Tau,DG Tau, SU Aur, AB Aur, FU Ori, and Z CMa. No nebulae were detected around HBC 347, GG Tau, V773 Tau, and V830 Tau. Categorically speaking, most of the classical T Tauri program stars and all the FU Orionis-type program stars are associated with the reflection nebulae, while none of the weak-line T Tauri program stars are associated with nebulae. The detected nebulae range in size from 250 to 37 000 AU. From the brightness ratios of the stars and nebulae, we obtain a lower limit to the visual extinction of PMS star light through the nebulae of (A(sub V))(sub neb) = 0.1. The lower limits of masses and volume densities of the nebulae associated with the classical T Tauri stars are 10(exp-6) Solar mass and N(sub H) = 10(exp 5)/cu cm, respectively. Lower limits for the nebulae around FU Orionis stars are 10(exp -5) Solar mass and n(sub H) = 10 (exp 5)/cu cm, respectively. Some reflection nebulae may trace the illuminated surfaces of the optically thick dust nebulae, so these mass estimates are not stringent. All the PMS stars with associated nebulae are strong far-infrared emitters. Both the far-infrared emission and the reflection nebulae appear to originate from the remnant envelopes of star formation. The 100 micrometers emitting regions of SU Aur and FU Ori are likely to be cospatial with the reflection nebulae. A spatial discontinuity between FU Ori and its reflection nebula may explain the dip in the far-infrared spectral energy distribution at 60 micrometers. The warped, disk-like nebulae around T Tau and Z CMa are aligned with and embrace the inner star/circumstellar disk systems. The arc-shaped nebula around DG Tau may be in contact with the coaligned inner

  4. Multipixel spectral imaging of green fluorescent protein (GFP) in COS-7 cells: folding kinetics and chromophore formation

    NASA Astrophysics Data System (ADS)

    Greenbaum, Lior; Rothmann, Chana; Hanania, Judith; Malik, Zvi

    2000-12-01

    Spectrally resolved imaging of Green fluorescent protein (GFP) expressed in living COS-7 kidney cells distinguished the subcellular localization and demarcated the processes of protein folding and chromophore formation. COS-7 kidney cells were transfected by a plasmid pEGFP-N1 plasmid followed by incubation for 15 hours for gen expression. At different intervals the cells were examined by fluorescence microscopy and analyzed by a spectral imaging system. After 7 hours, GFP was detected in the cytoplasm, concentrated in a localized form. Spectra of the initial GFP evinced several components that belong both tot he typical fluorescent signal as well as to unspecific fingerprints. At 10 and 15 hours, GFP was seen spread in the cytoplasm as well as in the nucleus, and the specific spectra of the GFP were dominant at the later time. The typical GFP spectral fingerprint is the result of protein folding and chromophore formation following internal oxidation reactions. This folding and chromophore formation process, up to final conformation, was detected by spectral imaging as localized in the nucleus rather than in the cytosol. Thus, the method of fluorescence microscopy combined with multiplex spectral imaging demonstrates distinct biochemical pathways leading to GFP conformation.

  5. Surface parametrization and shape description

    NASA Astrophysics Data System (ADS)

    Brechbuehler, Christian; Gerig, Guido; Kuebler, Olaf

    1992-09-01

    Procedures for the parameterization and description of the surface of simply connected 3-D objects are presented. Critical issues for shape-based categorization and comparison of 3-D objects are addressed, which are generality with respect to object complexity, invariance to standard transformations, and descriptive power in terms of object geometry. Starting from segmented volume data, a relational data structure describing the adjacency of local surface elements is generated. The representation is used to parametrize the surface by defining a continuous, one-to-one mapping from the surface of the original object to the surface of a unit sphere. The mapping is constrained by two requirements, minimization of distortions and preservation of area. The former is formulated as the goal function of a nonlinear optimization problem and the latter as its constraints. Practicable starting values are obtained by an initial mapping based on a heat conduction model. In contract to earlier approaches, the novel parameterization method provides a mapping of arbitrarily shaped simply connected objects, i.e., it performs an unfolding of convoluted surface structures. This global parameterization allows the systematical scanning of the object surface by the variation of two parameters. As one possible approach to shape analysis, it enables us to expand the object surface into a series of spherical harmonic functions, extending the concept of elliptical Fourier descriptors for 2-D closed curves. The novel parameterization overcomes the traditional limitations of expressing an object surface in polar coordinates, which restricts such descriptions to star-shaped objects. The numerical coefficients in the Fourier series form an object-centered, surface-oriented descriptor of the object''s form. Rotating the coefficients in parameter space and object space puts the object into a standard position and yields a spherical harmonic descriptor which is invariant to translations, rotations

  6. SMA Imaging of Massive Star Formation in NGC6334I and I(N)

    NASA Astrophysics Data System (ADS)

    Hunter, T. R.; Megeath, S. T.; Beuther, H.; Zhang, Q.; Brogan, C. L.; Menten, K. M.; Thorwirth, S.

    We present high-resolution observations (1.3" x 2.3") of the massive star-formation regions NGC 6334 I and I(N) in the 230 GHz band (1.3 millimeters). Data were obtained with the Submillimeter Array (SMA) interferometer, a joint venture of the Smithsonian Astrophysical Observatory (SAO) and the Academica Sinica Institute of Astronomy and Astrophysics. Various pieces of past evidence, including a molecular line survey by Thorwirth et al. (2003), have suggested that these two fields exist in different evolutionary stages, with field I(N) being younger. Our new observations help to explore this hypothesis. In both fields, we have resolved the strong continuum emission into multiple sources. Most of the continuum arises from dust grains. In source I, there are four major components, the third brightest of which coincides with the compact HII region. In source I(N), we have resolved at least seven sources. One of the fainter ones is associated with a weak 3.5 cm source while the others have no centimeter continuum counterpart. In addition to the millimeter continuum emission, we have detected and imaged a number of molecular lines that trace the outflow activity and the location of dense gas in both fields. So far, our results suggest that both fields contain protostellar clusters, each with at least one line-rich core and a number of other (perhaps younger) cores that exhibit no known compact phenomena at centimeter wavelengths. These observations demonstrate the power and promise of high-resolution submillimeter observations.

  7. Imaging Proton Transfer and Dihalide Formation Pathways in Reactions of F– + CH3I

    PubMed Central

    2016-01-01

    Ion–molecule reactions of the type X– + CH3Y are commonly assumed to produce Y– through bimolecular nucleophilic substitution (SN2). Beyond this reaction, additional reaction products have been observed throughout the last decades and have been ascribed to different entrance channel geometries differing from the commonly assumed collinear approach. We have performed a crossed beam velocity map imaging experiment on the F– + CH3I reaction at different relative collision energies between 0.4 and 2.9 eV. We find three additional channels competing with nucleophilic substitution at high energies. Experimental branching ratios and angle- and energy differential cross sections are presented for each product channel. The proton transfer product CH2I– is the main reaction channel, which competes with nucleophilic substitution up to 2.9 eV relative collision energy. At this level, the second additional channel, the formation of IF– via halogen abstraction, becomes more efficient. In addition, we present the first evidence for an [FHI]− product ion. This [FHI]− product ion is present only for a narrow range of collision energies, indicating possible dissociation at high energies. All three products show a similar trend with respect to their velocity- and scattering angle distributions, with isotropic scattering and forward scattering of the product ions occurring at low and high energies, respectively. Reactions leading to all three reaction channels present a considerable amount of energy partitioning in product internal excitation. The internally excited fraction shows a collision energy dependence only for CH2I–. A similar trend is observed for the isoelectronic OH– + CH3I system. The comparison of our experimental data at 1.55 eV collision energy with a recent theoretical calculation for the same system shows a slightly higher fraction of internal excitation than predicted, which is, however, compatible within the experimental accuracy. PMID:26799548

  8. Imaging Proton Transfer and Dihalide Formation Pathways in Reactions of F(-) + CH3I.

    PubMed

    Carrascosa, Eduardo; Michaelsen, Tim; Stei, Martin; Bastian, Björn; Meyer, Jennifer; Mikosch, Jochen; Wester, Roland

    2016-07-14

    Ion-molecule reactions of the type X(-) + CH3Y are commonly assumed to produce Y(-) through bimolecular nucleophilic substitution (SN2). Beyond this reaction, additional reaction products have been observed throughout the last decades and have been ascribed to different entrance channel geometries differing from the commonly assumed collinear approach. We have performed a crossed beam velocity map imaging experiment on the F(-) + CH3I reaction at different relative collision energies between 0.4 and 2.9 eV. We find three additional channels competing with nucleophilic substitution at high energies. Experimental branching ratios and angle- and energy differential cross sections are presented for each product channel. The proton transfer product CH2I(-) is the main reaction channel, which competes with nucleophilic substitution up to 2.9 eV relative collision energy. At this level, the second additional channel, the formation of IF(-) via halogen abstraction, becomes more efficient. In addition, we present the first evidence for an [FHI](-) product ion. This [FHI](-) product ion is present only for a narrow range of collision energies, indicating possible dissociation at high energies. All three products show a similar trend with respect to their velocity- and scattering angle distributions, with isotropic scattering and forward scattering of the product ions occurring at low and high energies, respectively. Reactions leading to all three reaction channels present a considerable amount of energy partitioning in product internal excitation. The internally excited fraction shows a collision energy dependence only for CH2I(-). A similar trend is observed for the isoelectronic OH(-) + CH3I system. The comparison of our experimental data at 1.55 eV collision energy with a recent theoretical calculation for the same system shows a slightly higher fraction of internal excitation than predicted, which is, however, compatible within the experimental accuracy. PMID:26799548

  9. Dynamical Stability of Imaged Planetary Systems in Formation: Application to HL Tau

    NASA Astrophysics Data System (ADS)

    Tamayo, D.; Triaud, A. H. M. J.; Menou, K.; Rein, H.

    2015-06-01

    A recent Atacama Large Millimeter/Submillimeter Array image revealed several concentric gaps in the protoplanetary disk surrounding the young star HL Tau. We consider the hypothesis that these gaps are carved by planets, and present a general framework for understanding the dynamical stability of such systems over typical disk lifetimes, providing estimates for the maximum planetary masses. We collect these easily evaluated constraints into a workflow that can help guide the design and interpretation of new observational campaigns and numerical simulations of gap opening in such systems. We argue that the locations of resonances should be significantly shifted in massive disks like HL Tau, and that theoretical uncertainties in the exact offset, together with observational errors, imply a large uncertainty in the dynamical state and stability in such disks. This presents an important barrier to using systems like HL Tau as a proxy for the initial conditions following planet formation. An important observational avenue to breaking this degeneracy is to search for eccentric gaps, which could implicate resonantly interacting planets. Unfortunately, massive disks like HL Tau should induce swift pericenter precession that would smear out any such eccentric features of planetary origin. This motivates pushing toward more typical, less massive disks. For a nominal non-resonant model of the HL Tau system with five planets, we find a maximum mass for the outer three bodies of approximately 2 Neptune masses. In a resonant configuration, these planets can reach at least the mass of Saturn. The inner two planets’ masses are unconstrained by dynamical stability arguments.

  10. BRST Cohomology in Beltrami Parametrization

    NASA Astrophysics Data System (ADS)

    Tătaru, Liviu; Vancea, Ion V.

    We study the BRST cohomology within a local conformal Lagrangian field theory model built on a two-dimensional Riemann surface with no boundary. We deal with the case of the complex structure parametrized by the Beltrami differential and the scalar matter fields. The computation of all elements of the BRST cohomology is given.

  11. Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods - A comparison

    NASA Astrophysics Data System (ADS)

    Verrelst, Jochem; Rivera, Juan Pablo; Veroustraete, Frank; Muñoz-Marí, Jordi; Clevers, Jan G. P. W.; Camps-Valls, Gustau; Moreno, José

    2015-10-01

    Given the forthcoming availability of Sentinel-2 (S2) images, this paper provides a systematic comparison of retrieval accuracy and processing speed of a multitude of parametric, non-parametric and physically-based retrieval methods using simulated S2 data. An experimental field dataset (SPARC), collected at the agricultural site of Barrax (Spain), was used to evaluate different retrieval methods on their ability to estimate leaf area index (LAI). With regard to parametric methods, all possible band combinations for several two-band and three-band index formulations and a linear regression fitting function have been evaluated. From a set of over ten thousand indices evaluated, the best performing one was an optimized three-band combination according to (ρ560 -ρ1610 -ρ2190) / (ρ560 +ρ1610 +ρ2190) with a 10-fold cross-validation RCV2 of 0.82 (RMSECV : 0.62). This family of methods excel for their fast processing speed, e.g., 0.05 s to calibrate and validate the regression function, and 3.8 s to map a simulated S2 image. With regard to non-parametric methods, 11 machine learning regression algorithms (MLRAs) have been evaluated. This methodological family has the advantage of making use of the full optical spectrum as well as flexible, nonlinear fitting. Particularly kernel-based MLRAs lead to excellent results, with variational heteroscedastic (VH) Gaussian Processes regression (GPR) as the best performing method, with a RCV2 of 0.90 (RMSECV : 0.44). Additionally, the model is trained and validated relatively fast (1.70 s) and the processed image (taking 73.88 s) includes associated uncertainty estimates. More challenging is the inversion of a PROSAIL based radiative transfer model (RTM). After the generation of a look-up table (LUT), a multitude of cost functions and regularization options were evaluated. The best performing cost function is Pearson's χ -square. It led to a R2 of 0.74 (RMSE: 0.80) against the validation dataset. While its validation went fast

  12. Point matching based on non-parametric model

    NASA Astrophysics Data System (ADS)

    Liu, Renfeng; Zhang, Cong; Tian, Jinwen

    2015-12-01

    Establishing reliable feature correspondence between two images is a fundamental problem in vision analysis and it is a critical prerequisite in a wide range of applications including structure-from-motion, 3D reconstruction, tracking, image retrieval, registration, and object recognition. The feature could be point, line, curve or surface, among which the point feature is primary and is the foundation of all features. Numerous techniques related to point matching have been proposed within a rich and extensive literature, which are typically studied under rigid/affine or non-rigid motion, corresponding to parametric and non-parametric models for the underlying image relations. In this paper, we provide a review of our previous work on point matching, focusing on nonparametric models. We also make an experimental comparison of the introduced methods, and discuss their advantages and disadvantages as well.

  13. Adaptive panoramic tomography with a circular rotational movement for the formation of multifocal image layers

    NASA Astrophysics Data System (ADS)

    Kim, D. S.; Cho, H. S.; Park, Y. O.; Je, U. K.; Hong, D. K.; Choi, S. I.; Koo, Y. S.

    2012-02-01

    Panoramic radiography with which only structures within a certain image layer are in focus and others out of focus on the panoramic image has become a popular imaging technique especially in dentistry. However, the major drawback to the technique is a mismatch between the structures to be focused and the predefined image layer mainly due to the various shapes and sizes of dental arches and/or to malpositioning of the patient. These result in image quality typically inferior to that obtained using intraoral radiographic techniques. In this paper, to overcome these difficulties, we suggest a new panoramic reconstruction algorithm, the so-called adaptive panoramic tomography ( APT), capable of reconstructing multifocal image layers with no additional exposure. In order to verify the effectiveness of the proposed algorithm, we performed systematic simulation studies with a circular rotational movement and investigated the image performance.

  14. In-situ visual observation for the formation and dissociation of methane hydrates in porous media by magnetic resonance imaging.

    PubMed

    Zhao, Jiafei; Lv, Qin; Li, Yanghui; Yang, Mingjun; Liu, Weiguo; Yao, Lei; Wang, Shenglong; Zhang, Yi; Song, Yongchen

    2015-05-01

    In this work, magnetic resonance imaging (MRI) was employed to observe the in-situ formation and dissociation of methane hydrates in porous media. Methane hydrate was formed in a high-pressure cell with controlled temperature, and then the hydrate was dissociated by thermal injection. The process was photographed by the MRI, and the pressure was recorded. The images confirmed that the direct visual observation was achieved; these were then employed to provide detailed information of the nucleation, growth, and decomposition of the hydrate. Moreover, the saturation of methane hydrate during the dissociation was obtained from the MRI intensity data. Our results showed that the hydrate saturation initially decreased rapidly, and then slowed down; this finding is in line with predictions based only on pressure. The study clearly showed that MRI is a useful technique to investigate the process of methane hydrate formation and dissociation in porous media. PMID:25523610

  15. Power-law parametrized quintessence model

    SciTech Connect

    Rahvar, Sohrab; Movahed, M. Sadegh

    2007-01-15

    We propose a simple power-law parametrized quintessence model with time-varying equation of state and obtain corresponding quintessence potential of this model. This model is compared with Supernova Type Ia (SNIa) Gold sample data, size of baryonic acoustic peak from Sloan Digital Sky Survey (SDSS), the position of the acoustic peak from the CMB observations and structure formation from the 2dFGRS survey and put constrain on the parameters of model. The parameters from the best fit indicates that the equation of state of this model at the present time is w{sub 0}=-1.40{sub -0.65}{sup +0.40} at 1{sigma} confidence level. Finally we calculate the age of universe in this model and compare it with the age of old cosmological objects.

  16. Statistical analysis of granular gases, pattern formation, and crumpling through real space imaging

    NASA Astrophysics Data System (ADS)

    Blair, Daniel L.

    The statistical properties of driven dissipative systems is investigated experimentally with the use of high speed, and high resolution imaging. A variety of experiments that range from idealized granular gases to systems with anisotropic interactions and pattern formation is explored. These experiments can be divided into three classes: granular gases, granular fluids with anisotropic interactions, and pattern formation. The statistical properties of spherical particles that are excited into a dilute gas state are investigated. The particles are constrained to roll on an inclined plane, which reduces the effects of gravity, allowing real space particle tracking with high precision. Energy is given to the particles through a single vibrating boundary. If the driving is at a high frequency and amplitude, the particles resemble molecules of equilibrium liquids or gases. I will demonstrate that a number of fundamental statistical measures of equilibrium fluids, such as distribution of velocities and path lengths are not consistent with those of inelastic gases. However, the particle motion remains diffusive and the velocity autocorrelation functions decays exponentially. Recent theoretical approaches to granular hydrodynamics also are discussed. In the case where the driving frequency and amplitude are sufficiently low, the particles undergo a spontaneous transition from a quiescent to patterned state. The patterns formed are similar to those found in three-dimensional granular fluids. By introducing a temporally dependent measure of the spatial correlation of the velocities, an accurate determination of the wavelength and onset of patterns is determined. The phase averaged temperature is measured to show that patterns arise when the temperature of the layer is at minimum. These results could be used to develop a linear stability analysis of granular fluids. A quasi-two-dimensional granular system of particles with embedded dipole moments is investigated, and it is

  17. Brine and gas recovery from geopressured systems. I. Parametric calculations

    SciTech Connect

    Garg, S.K.; Riney, T.D.

    1984-02-01

    A series of parametric calculations was run with the S-CUBED geopressured-geothermal simulator MUSHRM to assess the effects of important formation, fluid and well parameters on brine and gas recovery from geopressured reservoir systems. The specific parameters considered are formation permeability, pore-fluid salinity, temperature and gas content, well radius and location with respect to reservoir boundaries, desired flow rate, and possible shale recharge. It was found that the total brine and gas recovered (as a fraction of the resource in situ) were most sensitive to formation permeability, pore-fluid gas content, and shale recharge.

  18. Narrow-band Imaging of Massive Star-Forming Regions: Tracing Outflows and the Rate of Star-Formation

    NASA Astrophysics Data System (ADS)

    Hall, Kendall; Willis, Sarah; Hora, Joseph L.

    2016-01-01

    Narrowband images targeting ionized hydrogen (Brackett gamma, 2.17 microns) and molecular hydrogen (2.12 microns) were obtained for six massive star-forming regions within the Milky Way, NGC 6334, G305, G3333, G3264, G3266, and G351. These regions are within 1-4 kpc from our solar system. The narrowband flux in Brackett gamma was used as a star-formation tracer to calculate a star-formation rate for each region. This is compared with other star-formation rates found using other methods such as the count of young stars and YSOs, and rates calculated from using other tracers (e.g. 70 micron monochromatic luminosity). The molecular hydrogen narrowband images were manually searched to locate outflows from young stars. Once these outflows are identified, it may help to get a better survey of the young stellar population. A better understanding of the stellar population distribution can lead to more accurate star-formation rates to compare to those calculated from star-formation tracers. We found the regions NGC 6334 and G3266 to have the highest levels of ongoing star formation activity as indicated by the number of molecular hydrogen objects (MHOs) detected. There are a total of 279 cataloged MHOs in 181 categorized systems for the six regions. There are a total of 150 identified potential driving sources.This work was supported in part by the NSF REU and DoD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  19. Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters

    DOE PAGESBeta

    Sacci, Robert L; Black, Jennifer M.; Wisinger, Nina; Dudney, Nancy J.; More, Karren Leslie; Unocic, Raymond R.

    2015-02-23

    The performance characteristics of Li-ion batteries are intrinsically linked to evolving nanoscale interfacial electrochemical reactions. To probe the mechanisms of solid electrolyte interphase formation and Li electrodeposition from a standard battery electrolyte, we use in situ electrochemical scanning transmission electron microscopy for controlled potential sweep-hold electrochemical measurements with simultaneous BF and ADF STEM image acquisition. Through a combined quantitative electrochemical measurement and quantitative STEM imaging approach, based upon electron scattering theory, we show that chemically sensitive ADF STEM imaging can be used to estimate the density of evolving SEI constituents and distinguish contrast mechanisms of Li-bearing components in the liquidmore » cell.« less

  20. A Bayesian non-parametric Potts model with application to pre-surgical FMRI data.

    PubMed

    Johnson, Timothy D; Liu, Zhuqing; Bartsch, Andreas J; Nichols, Thomas E

    2013-08-01

    The Potts model has enjoyed much success as a prior model for image segmentation. Given the individual classes in the model, the data are typically modeled as Gaussian random variates or as random variates from some other parametric distribution. In this article, we present a non-parametric Potts model and apply it to a functional magnetic resonance imaging study for the pre-surgical assessment of peritumoral brain activation. In our model, we assume that the Z-score image from a patient can be segmented into activated, deactivated, and null classes, or states. Conditional on the class, or state, the Z-scores are assumed to come from some generic distribution which we model non-parametrically using a mixture of Dirichlet process priors within the Bayesian framework. The posterior distribution of the model parameters is estimated with a Markov chain Monte Carlo algorithm, and Bayesian decision theory is used to make the final classifications. Our Potts prior model includes two parameters, the standard spatial regularization parameter and a parameter that can be interpreted as the a priori probability that each voxel belongs to the null, or background state, conditional on the lack of spatial regularization. We assume that both of these parameters are unknown, and jointly estimate them along with other model parameters. We show through simulation studies that our model performs on par, in terms of posterior expected loss, with parametric Potts models when the parametric model is correctly specified and outperforms parametric models when the parametric model in misspecified. PMID:22627277

  1. Factors Affecting University Image Formation among Prospective Higher Education Students: The Case of International Branch Campuses

    ERIC Educational Resources Information Center

    Wilkins, Stephen; Huisman, Jeroen

    2015-01-01

    Previous research has found that the images of universities formed by prospective students greatly influence their choices. With the advent of international branch campuses in several higher education hubs worldwide, many international students now attempt to construct images of these institutions when deciding where to study. The aim of this…

  2. Experience with parametric binary dissection

    NASA Technical Reports Server (NTRS)

    Bokhari, Shahid H.

    1993-01-01

    Parametric Binary Dissection (PBD) is a new algorithm that can be used for partitioning graphs embedded in 2- or 3-dimensional space. It partitions explicitly on the basis of nodes + (lambda)x(edges cut), where lambda is the ratio of time to communicate over an edge to the time to compute at a node. The new algorithm is faster than the original binary dissection algorithm and attempts to obtain better partitions than the older algorithm, which only takes nodes into account. The performance of parametric dissection with plain binary dissection on 3 large unstructured 3-d meshes obtained from computational fluid dynamics and on 2 random graphs were compared. It was showm that the new algorithm can usually yield partitions that are substantially superior, but that its performance is heavily dependent on the input data.

  3. Frequency domain optical parametric amplification

    PubMed Central

    Schmidt, Bruno E.; Thiré, Nicolas; Boivin, Maxime; Laramée, Antoine; Poitras, François; Lebrun, Guy; Ozaki, Tsuneyuki; Ibrahim, Heide; Légaré, François

    2014-01-01

    Today’s ultrafast lasers operate at the physical limits of optical materials to reach extreme performances. Amplification of single-cycle laser pulses with their corresponding octave-spanning spectra still remains a formidable challenge since the universal dilemma of gain narrowing sets limits for both real level pumped amplifiers as well as parametric amplifiers. We demonstrate that employing parametric amplification in the frequency domain rather than in time domain opens up new design opportunities for ultrafast laser science, with the potential to generate single-cycle multi-terawatt pulses. Fundamental restrictions arising from phase mismatch and damage threshold of nonlinear laser crystals are not only circumvented but also exploited to produce a synergy between increased seed spectrum and increased pump energy. This concept was successfully demonstrated by generating carrier envelope phase stable, 1.43 mJ two-cycle pulses at 1.8 μm wavelength. PMID:24805968

  4. Parametric Modeling for Fluid Systems

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Martinez, Jonathan

    2013-01-01

    Fluid Systems involves different projects that require parametric modeling, which is a model that maintains consistent relationships between elements as is manipulated. One of these projects is the Neo Liquid Propellant Testbed, which is part of Rocket U. As part of Rocket U (Rocket University), engineers at NASA's Kennedy Space Center in Florida have the opportunity to develop critical flight skills as they design, build and launch high-powered rockets. To build the Neo testbed; hardware from the Space Shuttle Program was repurposed. Modeling for Neo, included: fittings, valves, frames and tubing, between others. These models help in the review process, to make sure regulations are being followed. Another fluid systems project that required modeling is Plant Habitat's TCUI test project. Plant Habitat is a plan to develop a large growth chamber to learn the effects of long-duration microgravity exposure to plants in space. Work for this project included the design and modeling of a duct vent for flow test. Parametric Modeling for these projects was done using Creo Parametric 2.0.

  5. Recursive delay calculation unit for parametric beamformer

    NASA Astrophysics Data System (ADS)

    Nikolov, Svetoslav I.; Jensen, Jørgen A.; Tomov, Borislav

    2006-03-01

    This paper presents a recursive approach for parametric delay calculations for a beamformer. The suggested calculation procedure is capable of calculating the delays for any image line defined by an origin and arbitrary direction. It involves only add and shift operations making it suitable for hardware implementation. One delaycalculation unit (DCU) needs 4 parameters, and all operations can be implemented using fixed-point arithmetics. An N-channel system needs N+ 1 DCUs per line - one for the distance from the transmit origin to the image point and N for the distances from the image point to each of the receivers. Each DCU recursively calculates the square of the distance between a transducer element and a point on the beamformed line. Then it finds the approximate square root. The distance to point i is used as an initial guess for point i + 1. Using fixed-point calculations with 36-bit precision gives an error in the delay calculations on the order of 1/64 samples, at a sampling frequency of f s = 40 MHz. The circuit has been synthesized for a Virtex II Pro device speed grade 6 in two versions - a pipelined and a non-pipelined producing 150 and 30 million delays per second, respectively. The non-pipelined circuit occupies about 0.5 % of the FPGA resources and the pipelined one about 1 %. When the square root is found with a pipelined CORDIC processor, 2 % of the FPGA slices are used to deliver 150 million delays per second.

  6. The formation of chlorine-induced alterations in daguerreotype image particles: a high resolution SEM-EDS study

    NASA Astrophysics Data System (ADS)

    Centeno, Silvia A.; Schulte, Franziska; Kennedy, Nora W.; Schrott, Alejandro G.

    2011-10-01

    The daguerreotype image, composed of nanosized silver-mercury or silver-mercury-gold amalgam particles formed on a polished silver substrate, is particularly sensitive to deterioration by chlorine-containing compounds resulting in the formation of AgCl that generates redeposited silver upon exposure to UV and visible lights. In the present study, alterations caused by chlorides on daguerreotype test samples prepared following 19th century recipes were studied. The dependence of variations in the production steps of daguerreotypes, such as multiple sensitization and gilding, on the impact of the exposure to chlorine were analyzed by scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS) and atomic force microscopy (AFM), complemented by X-ray fluorescence (XRF) and Raman spectroscopy. It was observed that AgCl nucleates on the image particles and in the substrate defects, regardless of the particle density or the sensitization process. In gilded samples, Au was observed over the image particles and the polished silver substrate as a tightly packed grainy layer, which conformably follows the polishing irregularities. For the first time it is shown that Au preferentially accumulates on top of the image particles. This gold layer does not protect the image from chlorine-induced deterioration.

  7. Plasma waves in parametric interactions

    NASA Astrophysics Data System (ADS)

    Yampolsky, Nikolai Andreevich

    The nonlinear laser-plasma interaction is widely discussed in the modern plasma literature with applications to inertial confinement fusion, generation of fast electrons, and amplification of high power radiation. Among nonlinear wave phenomena in plasma, the parametric wave coupling often plays the dominant role in laser-plasma interaction at moderate laser intensities since it is the lowest order nonlinear effect. The plasma wave can mediate the parametric laser coupling with high efficiency. We study the interplay of the parametric laser-plasma interaction and other physical effects which may affect this interaction. We study this interplay with an emphasis on the plasma-based backward Raman amplifier (BRA) based on the three-wave coupling. Three major types of physical effects in the parametric wave coupling are studied. In the first part of the thesis, we find the longitudinal profiles of the interacting waves in cases of interest for pulse compression. We find the solution for the output pulse in backward Raman amplification seeded by a laser pulse of finite duration. We also propose a new scheme for high-power amplification for pulses in the terahertz frequency range. For this scheme, based on the four-wave mixing in a capillary filled with plasma, we find the profile of the output pulse. The second part of this thesis is devoted to transverse effects, which may reduce the focusability of the output pulse in backward Raman amplification. We find that the transverse modulations of the pump can be averaged and do not reduce the amplified pulse focusability if the longitudinal length of these modulations is much smaller than the amplification length. In the third part, we study the kinetic effects. We propose a simplified fluid model for the nonlinear Landau damping of a parametrically driven plasma wave and study the effect of nonlinear Landau damping in backward Raman amplification. This simplified model can be useful not only for understanding complex

  8. Analyzing the effect of absorption and refractive index on image formation in high numerical aperture transmission microscopy of single cells

    NASA Astrophysics Data System (ADS)

    Coe, Ryan L.; Seibel, Eric J.

    2013-02-01

    Transmission bright-field microscopy is the clinical mainstay for disease diagnosis where image contrast is provided by absorptive and refractive index differences between tissue and the surrounding media. Different microscopy techniques often assume one of the two contrast mechanisms is negligible as a means to better understand the tissue scattering processes. This particular work provides better understanding of the role of refractive index and absorption within Optical Projection Tomographic Microscopy (OPTM) through the development of a generalized computational model based upon the Finite-Difference Time-Domain method. The model mimics OPTM by simulating axial scanning of the objective focal plane through the cell to produce projection images. These projection images, acquired from circumferential positions around the cell, are reconstructed into isometric three-dimensional images using the filtered backprojection normally employed in Computed Tomography (CT). The model provides a platform to analyze all aspects of bright-field microscopes, such as the degree of refractive index matching and the numerical aperture, which can be varied from air-immersion to high NA oil-immersion. In this preliminary work, the model is used to understand the effects of absorption and refraction on image formation using micro-shells and idealized nuclei. Analysis of absorption and refractive index separately provides the opportunity to better assess their role together as a complex refractive index for improved interpretation of bright-field scattering, essential for OPTM image reconstruction. This simulation, as well as ones in the future looking at other effects, will be used to optimize OPTM imaging parameters and triage efforts to further improve the overall system design.

  9. BOREAS RSS-2 Level-1B ASAS Image Data: At-Sensor Radiance in BSQ Format

    NASA Technical Reports Server (NTRS)

    Russell, C.; Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Dabney, P. W.; Kovalick, W.; Graham, D.; Bur, Michael; Irons, James R.; Tierney, M.

    2000-01-01

    The BOREAS RSS-2 team used the ASAS instrument, mounted on the NASA C-130 aircraft, to create at-sensor radiance images of various sites as a function of spectral wavelength, view geometry (combinations of view zenith angle, view azimuth angle, solar zenith angle, and solar azimuth angle), and altitude. The level-1b ASAS images of the BOREAS study areas were collected from April to September 1994 and March to July 1996.

  10. In-Vivo Imaging of the Drosophila Wing Imaginal Disc over Time: Novel Insights on Growth and Boundary Formation

    PubMed Central

    Nienhaus, Ulrike; Aegerter-Wilmsen, Tinri; Aegerter, Christof M.

    2012-01-01

    In developmental biology, the sequence of gene induction and pattern formation is best studied over time as an organism develops. However, in the model system of Drosophila larvae this oftentimes proves difficult due to limitations in imaging capabilities. Using the larval wing imaginal disc, we show that both overall growth, as well as the creation of patterns such as the distinction between the anterior(A) and posterior(P) compartments and the dorsal(D) and ventral(V) compartments can be studied directly by imaging the wing disc as it develops inside a larva. Imaged larvae develop normally, as can be seen by the overall growth curve of the wing disc. Yet, the fact that we can follow the development of individual discs through time provides the opportunity to simultaneously assess individual variability. We for instance find that growth rates can vary greatly over time. In addition, we observe that mechanical forces act on the wing disc within the larva at times when there is an increase in growth rates. Moreover, we observe that A/P boundary formation follows the established sequence and a smooth boundary is present from the first larval instar on. The division of the wing disc into a dorsal and a ventral compartment, on the other hand, develops quite differently. Contrary to expectation, the specification of the dorsal compartment starts with only one or two cells in the second larval instar and a smooth boundary is not formed until the third larval instar. PMID:23091633

  11. Laser beam homogenization, splitting and three spot image formation: system design, analysis and testing

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd; Dickey, Fred; Brown, Dan

    2010-08-01

    Beam shaping technology can greatly improve laser process efficiency by enabling parallel processes and increasing precision, quality and process stability. This paper outlines a system design, optical code analysis and the bench testing of a patented [1,2] laser beam homogenization and imaging system using prism beam splitting to produce a three spot array. The system uses a beam integrator to produce a rectangular spot that is split into three beams by two prisms. A second set of prisms directs the two outer beams onto an imaging lens and sets the pitch of the virtual spots. These beams, with the central beam, are imaged to form three spots with the required pitch. A prototype system design was developed for two approaches based on the first principles. The prototype system parameters were adjusted to minimize the requirements of the elements such as the imaging lens and prisms. Since the two systems require a relatively fast imaging lens, and there are aberrations associated with the prisms, a detailed optical design was conducted to determine the performance of the two approaches and to assess the complexity of the imaging lens. This paper will present the various positive and negative attributes of the two beam shaper designs within an optical system and how the best design was selected for prototyping and bench testing. Various data will be presented at each stage of design evaluation to the final bench test.

  12. A genome-wide imaging-based screening to identify genes involved in synphilin-1 inclusion formation in Saccharomyces cerevisiae

    PubMed Central

    Zhao, Lei; Yang, Qian; Zheng, Ju; Zhu, Xuefeng; Hao, Xinxin; Song, Jia; Lebacq, Tom; Franssens, Vanessa; Winderickx, Joris; Nystrom, Thomas; Liu, Beidong

    2016-01-01

    Synphilin-1 is a major component of Parkinson’s disease (PD) inclusion bodies implicated in PD pathogenesis. However, the machinery controlling synphilin-1 inclusion formation remains unclear. Here, we investigated synphilin-1 inclusion formation using a systematic genome-wide, high-content imaging based screening approach (HCI) in the yeast Saccharomyces cerevisiae. By combining with a secondary screening for mutants showing significant changes on fluorescence signal intensity, we filtered out hits that significantly decreased the expression level of synphilin-1. We found 133 yeast genes that didn’t affect synphilin-1 expression but that were required for the formation of synphilin-1 inclusions. Functional enrichment and physical interaction network analysis revealed these genes to encode for functions involved in cytoskeleton organization, histone modification, sister chromatid segregation, glycolipid biosynthetic process, DNA repair and replication. All hits were confirmed by conventional microscopy. Complementation assays were performed with a selected group of mutants, results indicated that the observed phenotypic changes in synphilin-1 inclusion formation were directly caused by the loss of corresponding genes of the deletion mutants. Further growth assays of these mutants showed a significant synthetic sick effect upon synphilin-1 expression, which supports the hypothesis that matured inclusions represent an end stage of several events meant to protect cells against the synphilin-1 cytotoxicity. PMID:27440388

  13. The high precision control of the satellites formation for diffraction imaging

    NASA Astrophysics Data System (ADS)

    Yang, Guang; He, Liang; Song, Ting; Sun, Binglei; Hao, Tianwei

    2016-01-01

    To satisfy need of high resolution observation from space. This article elaborates a method of high precision spacecraft formation control based on file diffraction theory. Improving the spacecraft control accuracy to millimeter is a challenge. With the method in this article this challenge can be solved. The algorithm in this article concerning the vibration of spacecraft and based on dynamic modeling of even relative quaternion theory deduced a method of attitude and orbit integrated control. Using this control algorithm to simulation can get the result that it can make the spacecraft integrate formation control as the technical basis of space high resolution observation.

  14. Adaptive Speckle Imaging Interferometry: a new technique for the analysis of microstructure dynamics, drying processes and coating formation.

    PubMed

    Brunel, L; Brun, A; Snabre, P; Cipelletti, L

    2007-11-12

    We describe an extension of multi-speckle diffusing wave spectroscopy adapted to follow the non-stationary microscopic dynamics in drying films and coatings in a very reactive way and with a high dynamic range. We call this technique "Adaptive Speckle Imaging Interferometry". We introduce an efficient tool, the inter-image distance, to evaluate the speckle dynamics, and the concept of "speckle rate" (SR, in Hz) to quantify this dynamics. The adaptive algorithm plots a simple kinetics, the time evolution of the SR, providing a non-invasive characterization of drying phenomena. A new commercial instrument, called HORUS(R), based on ASII and specialized in the analysis of film formation and drying processes is presented. PMID:19550809

  15. The CHROMA focal plane array: a large-format, low-noise detector optimized for imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Demers, Richard T.; Bailey, Robert; Beletic, James W.; Bernd, Steve; Bhargava, Sidharth; Herring, Jason; Kobrin, Paul; Lee, Donald; Pan, Jianmei; Petersen, Anders; Piquette, Eric; Starr, Brian; Yamamoto, Matthew; Zandian, Majid

    2013-09-01

    The CHROMA (Configurable Hyperspectral Readout for Multiple Applications) is an advanced Focal Plane Array (FPA) designed for visible-infrared imaging spectroscopy. Using Teledyne's latest substrateremoved HgCdTe detector, the CHROMA FPA has very low dark current, low readout noise and high, stable quantum efficiency from the deep blue (390nm) to the cutoff wavelength. CHROMA has a pixel pitch of 30 microns and is available in array formats ranging from 320×480 to 1600×480 pixels. Users generally disperse spectra over the 480 pixel-length columns and image spatially over the n×160 pixellength rows, where n=2, 4, 8, 10. The CHROMA Readout Integrated Circuit (ROIC) has Correlated Double Sampling (CDS) in pixel and generates its own internal bias signals and clocks. This paper presents the measured performance of the CHROMA FPA with 2.5 micron cutoff wavelength including the characterization of noise versus pixel gain, power dissipation and quantum efficiency.

  16. WTe 2 surfaces in UHV-STM image formation and analysis of point defect structures

    NASA Astrophysics Data System (ADS)

    Crossley, J. A. A.; Sofield, C. J.; Myhra, S.

    1997-05-01

    The layered semi-metallic T d phase of WTe 2 has been examined by STM in UHV. The effects of transient transfer of tip apex atom from/to the surface (W ↔ Te exchange) on the imaging conditions have been observed; the effects demonstrate the inadequacy of the Tersoff-Hamann approximation to the description of the tunnelling process. Two distinctly different point-defect configurations have been observed, assigned tentatively to vacancies in either "top" or "bottom" Te sites. Anomalous image conditions were observed frequently; these have been ascribed to delamination of the structure, and consequential transfer of the tunnelling to a delocalised internal gap, with the image representing the averaged tunnel current during relative displacements of two neighbouring Te planes.

  17. Statistical analysis of polarizing maps of blood plasma laser images for the diagnostics of malignant formations

    NASA Astrophysics Data System (ADS)

    Ungurian, V. P.; Ivashchuk, O. I.; Ushenko, V. O.

    2012-01-01

    This work is aimed at searching the interconnections between the statistic structure of blood plasma microscopic images and manifestations of optical anisotropy of liquid crystal protein network. The model of linear birefringence of albumin and globulin crystals underlies in the ground of this work. The results of investigating the interrelation between statistical moments of the 1st-4th order are presented that characterize the coordinate distributions of polarization ellipticity of laser images of blood plasma smears and pathological changes in human organism. The diagnostic criteria of breast cancer nascency and its severity degree differentiation are determined.

  18. Statistical analysis of polarizing maps of blood plasma laser images for the diagnostics of malignant formations

    NASA Astrophysics Data System (ADS)

    Ungurian, V. P.; Ivashchuk, O. I.; Ushenko, V. O.

    2011-09-01

    This work is aimed at searching the interconnections between the statistic structure of blood plasma microscopic images and manifestations of optical anisotropy of liquid crystal protein network. The model of linear birefringence of albumin and globulin crystals underlies in the ground of this work. The results of investigating the interrelation between statistical moments of the 1st-4th order are presented that characterize the coordinate distributions of polarization ellipticity of laser images of blood plasma smears and pathological changes in human organism. The diagnostic criteria of breast cancer nascency and its severity degree differentiation are determined.

  19. Formation of Toxic Iodinated Disinfection By-Products from Compounds Used in Medical Imaging

    EPA Science Inventory

    Iodinated X-ray contrast media (ICM) were investigated as a source of iodine in the formation of iodo-trihalomethane (iodo-THM) and iodo-acid disinfection byproducts (DBPs), both of which are highly genotoxic and/or cytotoxic in mammalian cells. ICM are widely used at medical cen...

  20. Imaging Polarized Dust Emission in Star Formation Regions with the OVRO MM Array

    NASA Technical Reports Server (NTRS)

    Akeson, Rachel; Carlstrom, John

    1996-01-01

    We present OVRO interferometric observations of linearly polarized emission from magnetically aligned dust grains which allow the magnetic field geometry in nearby star formation regions to be probed on scales ranging from 100 to 3000 AU. Current results include observations of the young stellar objects NGC1333/IRAS 4A, IRAS 16293-2422 and Orion IRc2-KL.

  1. Deep Hubble Space Telescope Imaging of Sextans A. III. The Star Formation History

    NASA Astrophysics Data System (ADS)

    Dolphin, Andrew E.; Saha, A.; Skillman, Evan D.; Dohm-Palmer, R. C.; Tolstoy, Eline; Cole, A. A.; Gallagher, J. S.; Hoessel, J. G.; Mateo, Mario

    2003-07-01

    We present a measurement of the star formation history of Sextans A, based on WFPC2 photometry that is 50% complete to V=27.5 (MV~+1.9) and I=27.0. The star formation history and chemical enrichment history have been measured through modeling of the color-magnitude diagram (CMD). We find evidence for increased reddening in the youngest stellar populations and an intrinsic metallicity spread at all ages. Sextans A has been actively forming stars at a high rate for ~2.5 Gyr ago, with an increased rate beginning ~0.1 Gyr ago. We find a nonzero number of stars older than 2.5 Gyr, but because of the limited depth of the photometry, a detailed star formation history at intermediate and older ages has considerable uncertainties. The mean metallicity was found to be [M/H]~-1.4 over the measured history of the galaxy, with most of the enrichment happening at ages of at least 10 Gyr. We also find that an rms metallicity spread of 0.15 dex at all ages allows the best fits to the observed CMD. We revisit our determination of the recent star formation history (age<=0.7 Gyr) using blue helium-burning (BHeB) stars and find good agreement for all but the last 25 Myr, a discrepancy resulting primarily from different distances used in the two analyses and the differential extinction in the youngest populations. This indicates that star formation histories determined solely from BHeB stars should be confined to CMD regions where no contamination from reddened main-sequence stars is present. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with proposal ID 7496.

  2. Parametric probability distributions for anomalous change detection

    SciTech Connect

    Theiler, James P; Foy, Bernard R; Wohlberg, Brendt E; Scovel, James C

    2010-01-01

    The problem of anomalous change detection arises when two (or possibly more) images are taken of the same scene, but at different times. The aim is to discount the 'pervasive differences' that occur thoughout the imagery, due to the inevitably different conditions under which the images were taken (caused, for instance, by differences in illumination, atmospheric conditions, sensor calibration, or misregistration), and to focus instead on the 'anomalous changes' that actually take place in the scene. In general, anomalous change detection algorithms attempt to model these normal or pervasive differences, based on data taken directly from the imagery, and then identify as anomalous those pixels for which the model does not hold. For many algorithms, these models are expressed in terms of probability distributions, and there is a class of such algorithms that assume the distributions are Gaussian. By considering a broader class of distributions, however, a new class of anomalous change detection algorithms can be developed. We consider several parametric families of such distributions, derive the associated change detection algorithms, and compare the performance with standard algorithms that are based on Gaussian distributions. We find that it is often possible to significantly outperform these standard algorithms, even using relatively simple non-Gaussian models.

  3. Optical parametric osicllators with improved beam quality

    DOEpatents

    Smith, Arlee V.; Alford, William J.

    2003-11-11

    An optical parametric oscillator (OPO) having an optical pump, which generates a pump beam at a pump frequency greater than a desired signal frequency, a nonlinear optical medium oriented so that a signal wave at the desired signal frequency and a corresponding idler wave are produced when the pump beam (wave) propagates through the nonlinear optical medium, resulting in beam walk off of the signal and idler waves, and an optical cavity which directs the signal wave to repeatedly pass through the nonlinear optical medium, said optical cavity comprising an equivalently even number of non-planar mirrors that produce image rotation on each pass through the nonlinear optical medium. Utilizing beam walk off where the signal wave and said idler wave have nonparallel Poynting vectors in the nonlinear medium and image rotation, a correlation zone of distance equal to approximately .rho.L.sub.crystal is created which, through multiple passes through the nonlinear medium, improves the beam quality of the OPO output.

  4. Image formation mechanism on the Shroud of Turin: a solar reflex radiation model (the optical aspect).

    PubMed

    Mouraviev, S N

    1997-12-01

    Unprejudiced logical analysis of the main available data, in the first instance, those collected in 1978 by the American interdisciplinary team known as STURP, suggests that the image of the dead man on the Shroud of Turin resulted from (a) the reflection by the anointed body of transmitted solar rays and their projection onto the inner side of the cloth and (b) the chemical registration of this reflex image by the topmost fibers of the linen, probably with a water or oil solution of aloes and myrrh acting as a catalyzer. This reflex radiation model requires the following: (1) action at the shortest possible distance (i.e., a maximum clinging of the Shroud to the body except for a narrow intervening liquid film), which explains the high resolution and the absence of serious distortions, and (2) double exposure-of both the face and the back-of the enveloped corpse to the sun, which accounts for the presence and optical symmetry of both the frontal and the dorsal images. An attempt is also made to reinterpret the so-called three-dimensional information encoded in the image. Although some chemical issues are also mentioned and a historical reconstruction of the burial procedure is suggested, first and foremost the optical aspect of this mechanism is addressed here. PMID:18264452

  5. Three-dimensional imaging system for analyses of dynamic droplet impaction and deposition formation on leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A system was developed to assess the dynamic processes of droplet impact, rebound and retention on leaf surfaces with three-dimensional (3-D) images. The system components consisted of a uniform-size droplet generator, two high speed digital video cameras, a constant speed track, a leaf holder, and ...

  6. Analysis of parametric transformer with rectifier load

    SciTech Connect

    Ichinokura, O.; Jinzenji, T. ); Tajima, K. )

    1993-03-01

    This paper describes a push-pull parametric transformer constructed using a pair of orthogonal-cores. The operating characteristics of the parametric transformer with a rectifier load were analyzed based on SPICE simulations. The analysis results show good agreement with experiment. It was found that the input surge current of the full-wave rectifier circuit with a smoothing capacitor can be compensated by the parametric transformer. Use of the parametric transformer as a power stabilizer is anticipated owing to its various functions such as for voltage regulation and overload protection.

  7. Software for Managing Parametric Studies

    NASA Technical Reports Server (NTRS)

    Yarrow, Maurice; McCann, Karen M.; DeVivo, Adrian

    2003-01-01

    The Information Power Grid Virtual Laboratory (ILab) is a Practical Extraction and Reporting Language (PERL) graphical-user-interface computer program that generates shell scripts to facilitate parametric studies performed on the Grid. (The Grid denotes a worldwide network of supercomputers used for scientific and engineering computations involving data sets too large to fit on desktop computers.) Heretofore, parametric studies on the Grid have been impeded by the need to create control language scripts and edit input data files painstaking tasks that are necessary for managing multiple jobs on multiple computers. ILab reflects an object-oriented approach to automation of these tasks: All data and operations are organized into packages in order to accelerate development and debugging. A container or document object in ILab, called an experiment, contains all the information (data and file paths) necessary to define a complex series of repeated, sequenced, and/or branching processes. For convenience and to enable reuse, this object is serialized to and from disk storage. At run time, the current ILab experiment is used to generate required input files and shell scripts, create directories, copy data files, and then both initiate and monitor the execution of all computational processes.

  8. Digital Image Correlation Strain Analysis for the Study of Wrinkle Formation on Facial Skin

    NASA Astrophysics Data System (ADS)

    Miura, Nagisa; Arikawa, Shuichi; Yoneyama, Satoru; Koike, Miyako; Murakami, Motoko; Tanno, Osamu

    Strain measurements around the eye during the blink are performed for four human subjects in order to investigate the relationship between the wrinkle formation with aging and the strains by daily motion. In addition to the strain measurement, the moisture content, the flexibility and the elasticity of the skin surface are measured for investigating the skin condition. For observing the wrinkle formed on the facial skin, the replicas of the skin surfaces are also collected. Results show that the relationship between the wrinkle and the strain distribution at the inner corner of the eye is different from that at the corner of the eye. The results indicate that different methods for the corner of the eye and the inner corner of the eye are required for avoiding the wrinkle formation.

  9. The Role Of Silver Halide Materials In The Formation Of Holographic Images

    NASA Astrophysics Data System (ADS)

    Phillips, Nicholas J.

    1985-08-01

    This paper discusses current knowledge of the behaviour of silver halide materials as recording media for holographic images. The work is structured so as to crystallise the contribution of certain key workers in the field. It is shown that despite early pessimism about the performance capability of the silver halide, experimental achievement is of a high order of finesse with only minor advances to be expected overall in the use of such media to achieve high diffraction efficiency. The approach of Soviet scientists to the problem of image modulation has led to an essential dichotomy of technique between East and West; the 'brown' and 'black' silver technologies. These differences are highlighted and important areas demanding further progress are outlined.

  10. An application of backprojection for video SAR image formation exploiting a subaperature circular shift register

    NASA Astrophysics Data System (ADS)

    Miller, J.; Bishop, E.; Doerry, A.

    2013-05-01

    This paper details a Video SAR (Synthetic Aperture Radar) mode that provides a persistent view of a scene centered at the Motion Compensation Point (MCP). The radar platform follows a circular flight path. An objective is to form a sequence of SAR images while observing dynamic scene changes at a selectable video frame rate. A formulation of backprojection meets this objective. Modified backprojection equations take into account changes in the grazing angle or squint angle that result from non-ideal flight paths. The algorithm forms a new video frame relying upon much of the signal processing performed in prior frames. The method described applies an appropriate azimuth window to each video frame for window sidelobe rejection. A Cardinal Direction Up (CDU) coordinate frame forms images with the top of the image oriented along a given cardinal direction for all video frames. Using this coordinate frame helps characterize a moving target's target response. Generation of synthetic targets with linear motion including both constant velocity and constant acceleration is described. The synthetic target video imagery demonstrates dynamic SAR imagery with expected moving target responses. The paper presents 2011 flight data collected by General Atomics Aeronautical Systems, Inc. (GA-ASI) implementing the video SAR mode. The flight data demonstrates good video quality showing moving vehicles. The flight imagery demonstrates the real-time capability of the video SAR mode. The video SAR mode uses a circular shift register of subapertures. The radar employs a Graphics Processing Unit (GPU) in order to implement this algorithm.

  11. Image formation by the crystalline lens and eye of the rainbow trout.

    PubMed

    Jagger, W S

    1996-09-01

    The image of a distant unresolved point (point image or PI) and modulation transfer function (MTF) of the eye and lens of the trout were recorded with high spatial (0.3 micron) and dynamic (4096 grey levels) resolution for various entrance aperture sizes and focal positions in monochromatic light, and in broadband light simulating sunlight absorbed by a retinal cone pigment. The PI is irregular, with streaks, wisps and speckle, as a result of lens structural irregularity and diffraction of light scattered within the lens and cornea. Maximum diameter of a diffraction-limited aperture area of the eye is about 0.3 mm. Axially spaced multiple foci are caused by irregular and discontinuous zonal spherical aberration. Lens substance dispersion causes strong longitudinal chromatic aberration, resulting in a broadband PI with concentric coloured haloes. Incident linearly polarized light is slightly depolarized in the PI. The nature of the image is discussed relative to lens and cornea structure, optical modelling and vision. Human subjective entoptic phenomena analogous to those observed objectively in the trout are described. PMID:8917751

  12. Imaging the spontaneous formation of vortex-antivortex pairs in planar superconductor/ferromagnet hybrid structures.

    SciTech Connect

    Iavarone, M.; Scarfato, A.; Bobba, F.; Longobardi, M.; Karapetrov, G.; Novosad, V.; Yefremenko, V.; Giubileo, F.; Cucolo, A. M.

    2011-07-07

    Low-temperature magnetic force microscopy has been used to visualize spontaneous formation of vortex-antivortex pairs in hybrid ferromagnet/superconductor systems. Vortex-antivortex pairs are induced by the periodic stray field of the ferromagnet. We find general equilibrium conditions for which spontaneous vortex-antivortex pairs are formed during zero-field cooling of the hybrid ferromagnet/superconductor bilayers. Vortices can be generated by the ferromagnet domains in the absence of an external field and they are thermodynamically stable for values of the stray field and the period of the stripe magnetic domains that exceed a certain threshold.

  13. Large-Format AlGaN PIN Photodiode Arrays for UV Images

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid; Franz, David

    2010-01-01

    A large-format hybridized AlGaN photodiode array with an adjustable bandwidth features stray-light control, ultralow dark-current noise to reduce cooling requirements, and much higher radiation tolerance than previous technologies. This technology reduces the size, mass, power, and cost of future ultraviolet (UV) detection instruments by using lightweight, low-voltage AlGaN detectors in a hybrid detector/multiplexer configuration. The solar-blind feature eliminates the need for additional visible light rejection and reduces the sensitivity of the system to stray light that can contaminate observations.

  14. Sensitivity enhancement in swept-source optical coherence tomography by parametric balanced detector and amplifier

    PubMed Central

    Kang, Jiqiang; Wei, Xiaoming; Li, Bowen; Wang, Xie; Yu, Luoqin; Tan, Sisi; Jinata, Chandra; Wong, Kenneth K. Y.

    2016-01-01

    We proposed a sensitivity enhancement method of the interference-based signal detection approach and applied it on a swept-source optical coherence tomography (SS-OCT) system through all-fiber optical parametric amplifier (FOPA) and parametric balanced detector (BD). The parametric BD was realized by combining the signal and phase conjugated idler band that was newly-generated through FOPA, and specifically by superimposing these two bands at a photodetector. The sensitivity enhancement by FOPA and parametric BD in SS-OCT were demonstrated experimentally. The results show that SS-OCT with FOPA and SS-OCT with parametric BD can provide more than 9 dB and 12 dB sensitivity improvement, respectively, when compared with the conventional SS-OCT in a spectral bandwidth spanning over 76 nm. To further verify and elaborate their sensitivity enhancement, a bio-sample imaging experiment was conducted on loach eyes by conventional SS-OCT setup, SS-OCT with FOPA and parametric BD at different illumination power levels. All these results proved that using FOPA and parametric BD could improve the sensitivity significantly in SS-OCT systems. PMID:27446655

  15. Sensitivity enhancement in swept-source optical coherence tomography by parametric balanced detector and amplifier.

    PubMed

    Kang, Jiqiang; Wei, Xiaoming; Li, Bowen; Wang, Xie; Yu, Luoqin; Tan, Sisi; Jinata, Chandra; Wong, Kenneth K Y

    2016-04-01

    We proposed a sensitivity enhancement method of the interference-based signal detection approach and applied it on a swept-source optical coherence tomography (SS-OCT) system through all-fiber optical parametric amplifier (FOPA) and parametric balanced detector (BD). The parametric BD was realized by combining the signal and phase conjugated idler band that was newly-generated through FOPA, and specifically by superimposing these two bands at a photodetector. The sensitivity enhancement by FOPA and parametric BD in SS-OCT were demonstrated experimentally. The results show that SS-OCT with FOPA and SS-OCT with parametric BD can provide more than 9 dB and 12 dB sensitivity improvement, respectively, when compared with the conventional SS-OCT in a spectral bandwidth spanning over 76 nm. To further verify and elaborate their sensitivity enhancement, a bio-sample imaging experiment was conducted on loach eyes by conventional SS-OCT setup, SS-OCT with FOPA and parametric BD at different illumination power levels. All these results proved that using FOPA and parametric BD could improve the sensitivity significantly in SS-OCT systems. PMID:27446655

  16. Laser imaging of chemistry-flowfield interactions: Enhanced soot formation in time-varying diffusion flames

    SciTech Connect

    Harrington, J.E.; Shaddix, C.R.; Smyth, K.C.

    1994-12-31

    Models of detailed flame chemistry and soot formation are based upon experimental results obtained in steady, laminar flames. For successful application of these descriptions to turbulent combustion, it is instructive to test predictions against measurements in time-varying flowfields. This paper reports the use of optical methods to examine soot production and oxidation processes in a co-flowing, axisymmetric CH{sub 4}/air diffusion flame in which the fuel flow rate is acoustically forced to create a time-varying flowfield. For a particular forcing condition in which tip clipping occurs (0.75 V loudspeaker excitation), elastic scattering of vertically polarized light from the soot particles increases by nearly an order of magnitude with respect to that observed for a steady flame with the same mean fuel flow rate. The visible flame luminosity and laser-induced fluorescence attributed to polycyclic aromatic hydrocarbons (PAH) are also enhanced. Peak soot volume fractions, as measured by time-resolved laser extinction/tomography at 632.8 and 454.5 nm and calibrated laser-induced incandescence (LII), show a factor of 4--5 enhancement in this flickering flame. The LII method is found to track the soot volume fraction closely and to give better signal-to-noise than the extinction measurements in both the steady and time-varying flowfields. A Mie analysis suggests that most of the enhanced soot production results from the formation of larger particles in the time-varying flowfield.

  17. Image formation and system analysis of a scanning tomographic acoustic microscope

    NASA Astrophysics Data System (ADS)

    Kent, Samuel Davis, III

    This dissertation focuses on research that has been conducted to implement an automated Scanning Tomographic Acoustic Microscope (STAM), and research that has been performed to increase the understanding of the performance characteristics of the STAM. STAM technology permits high resolution microscopy which yields important information on the internal structure and acoustic properties of thick specimens, provided that technology is utilized in a cohesive manner. Prior to the research conducted for this dissertation, only a proof-of-concept STAM had been developed; actual STAM imaging was difficult and impractical. This dissertation describes the hardware and software development that has led to the first automated STAM. It focuses on significant problems that were encountered and their solutions. Specifically, accurate data acquisition necessitated the development of special-purpose data acquisition hardware, rotational controls, frequency controls, and automation controls. Inaccuracies in the laser scanning hardware were identified as a significant source of reconstruction error. This error was removed by estimation and correction algorithms. Rotation of the specimen for multiple-angle tomography required the development of a noise-tolerant projection-pose estimation algorithm. An iterative technique for image enhancement is also presented. The resulting STAM system is evaluated to determine its performance characteristics. A component-wise resolution analysis is presented that specifies the resolution-limit in both range and cross-range. The dependency of reconstruction quality on accurate representation of the magnitude and phase of the detected wave fields is also provided.

  18. Parametric analysis of ATT configurations.

    NASA Technical Reports Server (NTRS)

    Lange, R. H.

    1972-01-01

    This paper describes the results of a Lockheed parametric analysis of the performance, environmental factors, and economics of an advanced commercial transport envisioned for operation in the post-1985 time period. The design parameters investigated include cruise speeds from Mach 0.85 to Mach 1.0, passenger capacities from 200 to 500, ranges of 2800 to 5500 nautical miles, and noise level criteria. NASA high performance configurations and alternate configurations are operated over domestic and international route structures. Indirect and direct costs and return on investment are determined for approximately 40 candidate aircraft configurations. The candidate configurations are input to an aircraft sizing and performance program which includes a subroutine for noise criteria. Comparisons are made between preferred configurations on the basis of maximum return on investment as a function of payload, range, and design cruise speed.

  19. A Comparison of Parametric versus Nonparametric Statistics.

    ERIC Educational Resources Information Center

    Royeen, Charlotte Brasic

    In order to examine the possible effects of violation of assumptions using parametric procedures, this study is an exploratory investigation into the use of parametric versus nonparametric procedures using a multiple case study design. The case study investigation guidelines outlined by Yin served as the methodology. The following univariate…

  20. Parametric Cost Models for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    A study is in-process to develop a multivariable parametric cost model for space telescopes. Cost and engineering parametric data has been collected on 30 different space telescopes. Statistical correlations have been developed between 19 variables of 59 variables sampled. Single Variable and Multi-Variable Cost Estimating Relationships have been developed. Results are being published.

  1. Optical filtering enabled by cascaded parametric amplification.

    PubMed

    McKinstrie, C J; Dailey, J M; Agarwal, A; Toliver, P

    2016-06-27

    A cascaded parametric amplifier consists of a first parametric amplifier, which amplifies an input signal and generates an idler, which is a copy of the signal, a signal processor, which controls the phases of the signal and idler, and a second parametric amplifier, which combines the signal and idler in a phase-sensitive manner. In this paper, cascaded parametric amplification is modeled and the conditions required to maximize the constructive-destructive extinction ratio are determined. The results show that a cascaded parametric amplifier can be operated as a filter: A desired signal-idler pair is amplified, whereas undesired signal-idler pairs are deamplified. For the desired signal and idler, the noise figures of the filtering process (input signal-to-noise ratio divided by the output ratios) are only slightly higher than those of the copying process: Signal-processing functionality can be achieved with only a minor degradation in signal quality. PMID:27410581

  2. Pattern formation and control in polymeric systems: From Minkowski measures to in situ AFM imaging

    NASA Astrophysics Data System (ADS)

    Jacobs, Karin

    2014-03-01

    Thin liquid polymer films are not only of great technical importance, they also exhibit a variety of dynamical instabilities. Some of them may be desired, some rather not. To analyze and finally control pattern formation, modern thin film theories are as vital as techniques to characterize the morphologies and structures in and on the films. Examples for the latter are atomic force microscopy (AFM) as well as scattering techniques. The talk will introduce into the practical applications of Minkowski measures to characterize patterns and explain what thin film properties (e.g. capillary number, solid/liquid boundary condition, glass transition temperature, chain mobility) can further be extracted including new technical possibilities by AFM and scattering techniques.

  3. Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature.

    PubMed

    Kolaczkowska, Elzbieta; Jenne, Craig N; Surewaard, Bas G J; Thanabalasuriar, Ajitha; Lee, Woo-Yong; Sanz, Maria-Jesus; Mowen, Kerri; Opdenakker, Ghislain; Kubes, Paul

    2015-01-01

    Neutrophil extracellular traps (NETs) composed of DNA decorated with histones and proteases trap and kill bacteria but also injure host tissue. Here we show that during a bloodstream infection with methicillin-resistant Staphylococcus aureus, the majority of bacteria are sequestered immediately by hepatic Kupffer cells, resulting in transient increases in liver enzymes, focal ischaemic areas and a robust neutrophil infiltration into the liver. The neutrophils release NETs into the liver vasculature, which remain anchored to the vascular wall via von Willebrand factor and reveal significant neutrophil elastase (NE) proteolytic activity. Importantly, DNase although very effective at DNA removal, and somewhat effective at inhibiting NE proteolytic activity, fails to remove the majority of histones from the vessel wall and only partly reduces injury. By contrast, inhibition of NET production as modelled by PAD4-deficiency, or prevention of NET formation and proteolytic activity as modelled in NE(-/-) mice prevent collateral host tissue damage. PMID:25809117

  4. Stitched large format CMOS image sensors for dental x-ray digital radiography

    NASA Astrophysics Data System (ADS)

    Liu, Xinqiao (Chiao); Fowler, Boyd; Do, Hung; Jaffe, Mark; Rassel, Richard; Leidy, Bob

    2012-10-01

    In this paper, we present a family of large format CIS's designed for dental x-ray applications. The CIS areas vary from small 31.5mm x 20.1mm, to medium 34.1mm x 26.3mm, to large 37.1mm x 26.3mm. Pixel size is 19.5um x 19.5um. The sensor family was fabricated in a 0.18um CIS process. Stitching is used in the CIS fabrication for the medium and large size sensors. We present the CIS and detector system design that includes pixel circuitry, readout circuitry, x-ray trigger mechanism, scintillator, and the camera electronics. We also present characterization results including the detector performances under both visible light and x-ray radiation.

  5. Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature

    PubMed Central

    Kolaczkowska, Elzbieta; Jenne, Craig N.; Surewaard, Bas G. J.; Thanabalasuriar, Ajitha; Lee, Woo-Yong; Sanz, Maria-Jesus; Mowen, Kerri; Opdenakker, Ghislain; Kubes, Paul

    2015-01-01

    Neutrophil extracellular traps (NETs) composed of DNA decorated with histones and proteases trap and kill bacteria but also injure host tissue. Here we show that during a bloodstream infection with methicillin-resistant Staphylococcus aureus, the majority of bacteria are sequestered immediately by hepatic Kupffer cells, resulting in transient increases in liver enzymes, focal ischaemic areas and a robust neutrophil infiltration into the liver. The neutrophils release NETs into the liver vasculature, which remain anchored to the vascular wall via von Willebrand factor and reveal significant neutrophil elastase (NE) proteolytic activity. Importantly, DNase although very effective at DNA removal, and somewhat effective at inhibiting NE proteolytic activity, fails to remove the majority of histones from the vessel wall and only partly reduces injury. By contrast, inhibition of NET production as modelled by PAD4-deficiency, or prevention of NET formation and proteolytic activity as modelled in NE−/− mice prevent collateral host tissue damage. PMID:25809117

  6. Fitting C2 Continuous Parametric Surfaces to Frontiers Delimiting Physiologic Structures

    PubMed Central

    Bayer, Jason D.

    2014-01-01

    We present a technique to fit C2 continuous parametric surfaces to scattered geometric data points forming frontiers delimiting physiologic structures in segmented images. Such mathematical representation is interesting because it facilitates a large number of operations in modeling. While the fitting of C2 continuous parametric curves to scattered geometric data points is quite trivial, the fitting of C2 continuous parametric surfaces is not. The difficulty comes from the fact that each scattered data point should be assigned a unique parametric coordinate, and the fit is quite sensitive to their distribution on the parametric plane. We present a new approach where a polygonal (quadrilateral or triangular) surface is extracted from the segmented image. This surface is subsequently projected onto a parametric plane in a manner to ensure a one-to-one mapping. The resulting polygonal mesh is then regularized for area and edge length. Finally, from this point, surface fitting is relatively trivial. The novelty of our approach lies in the regularization of the polygonal mesh. Process performance is assessed with the reconstruction of a geometric model of mouse heart ventricles from a computerized tomography scan. Our results show an excellent reproduction of the geometric data with surfaces that are C2 continuous. PMID:24782911

  7. An ALMA Imaging Study of Methyl Formate (HCOOCH3) in Torsionally Excited States toward Orion KL

    NASA Astrophysics Data System (ADS)

    Sakai, Yusuke; Kobayashi, Kaori; Hirota, Tomoya

    2015-04-01

    We recently reported the first identification of rotational transitions of methyl formate (HCOOCH3) in the second torsionally excited state toward Orion Kleinmann-Low (KL), observed with the Nobeyama 45 m telescope. In combination with the identified transitions of methyl formate in the ground state and the first torsional excited state, it was found that there is a difference in rotational temperature and vibrational temperature, where the latter is higher. In this study, high spatial resolution analysis by using Atacama Large Millimeter/Submillimeter Array (ALMA) science verification data was carried out to verify and understand this difference. Toward the Compact Ridge, two different velocity components at 7.3 and 9.1 km s-1 were confirmed, while a single component at 7.3 km s-1 was identified toward the Hot Core. The intensity maps in the ground, first, and second torsional excited states have quite similar distributions. Using extensive ALMA data, we determined the rotational and vibrational temperatures for the Compact Ridge and Hot Core by the conventional rotation diagram method. The rotational temperature and vibrational temperatures agree for the Hot Core and for one component of the Compact Ridge. At the 7.3 km s-1 velocity component for the Compact Ridge, the rotational temperature was found to be higher than the vibrational temperature. This is different from what we obtained from the results by using the single-dish observation. The difference might be explained by the beam dilution effect of the single-dish data and/or the smaller number of observed transitions within the limited range of energy levels (≤30 K) of Eu in the previous study.

  8. Non-parametric estimation of morphological lopsidedness

    NASA Astrophysics Data System (ADS)

    Giese, Nadine; van der Hulst, Thijs; Serra, Paolo; Oosterloo, Tom

    2016-09-01

    Asymmetries in the neutral hydrogen gas distribution and kinematics of galaxies are thought to be indicators for both gas accretion and gas removal processes. These are of fundamental importance for galaxy formation and evolution. Upcoming large blind H I surveys will provide tens of thousands of galaxies for a study of these asymmetries in a proper statistical way. Due to the large number of expected sources and the limited resolution of the majority of objects, detailed modelling is not feasible for most detections. We need fast, automatic and sensitive methods to classify these objects in an objective way. Existing non-parametric methods suffer from effects like the dependence on signal to noise, resolution and inclination. Here we show how to correctly take these effects into account and show ways to estimate the precision of the methods. We will use existing and modelled data to give an outlook on the performance expected for galaxies observed in the various sky surveys planned for e.g. WSRT/APERTIF and ASKAP.

  9. Application of Imaging-Based Assays in Microplate Formats for High-Content Screening.

    PubMed

    Fogel, Adam I; Martin, Scott E; Hasson, Samuel A

    2016-01-01

    The use of multiparametric microscopy-based screens with automated analysis has enabled the large-scale study of biological phenomena that are currently not measurable by any other method. Collectively referred to as high-content screening (HCS), or high-content analysis (HCA), these methods rely on an expanding array of imaging hardware and software automation. Coupled with an ever-growing amount of diverse chemical matter and functional genomic tools, HCS has helped open the door to a new frontier of understanding cell biology through phenotype-driven screening. With the ability to interrogate biology on a cell-by-cell basis in highly parallel microplate-based platforms, the utility of HCS continues to grow as advancements are made in acquisition speed, model system complexity, data management, and analysis systems. This chapter uses an example of screening for genetic factors regulating mitochondrial quality control to exemplify the practical considerations in developing and executing high-content campaigns. PMID:27317002

  10. Imaging the Formation of High-Energy Dispersion Anomalies in the Actinide UCoGa5

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Durakiewicz, Tomasz; Zhu, Jian-Xin; Joyce, John J.; Sarrao, John L.; Graf, Matthias J.

    2012-10-01

    We use angle-resolved photoemission spectroscopy to image the emergence of substantial dispersion and spectral-weight anomalies in the electronic renormalization of the actinide compound UCoGa5 that was presumed to belong to a conventional Fermi-liquid family. Kinks or abrupt breaks in the slope of the quasiparticle dispersion are detected both at low (approximately 130 meV) and high (approximately 1 eV) binding energies below the Fermi energy, ruling out any significant contribution of phonons. We perform numerical calculations to demonstrate that the anomalies are adequately described by coupling between itinerant fermions and spin fluctuations arising from the particle-hole continuum of the spin-orbit-split 5f states of uranium. These anomalies resemble the “waterfall” phenomenon of the high-temperature copper-oxide superconductors, suggesting that spin fluctuations are a generic route toward multiform electronic phases in correlated materials as different as high-temperature superconductors and actinides.

  11. Parametric and non-parametric modeling of short-term synaptic plasticity. Part I: computational study

    PubMed Central

    Marmarelis, Vasilis Z.; Berger, Theodore W.

    2009-01-01

    Parametric and non-parametric modeling methods are combined to study the short-term plasticity (STP) of synapses in the central nervous system (CNS). The nonlinear dynamics of STP are modeled by means: (1) previously proposed parametric models based on mechanistic hypotheses and/or specific dynamical processes, and (2) non-parametric models (in the form of Volterra kernels) that transforms the presynaptic signals into postsynaptic signals. In order to synergistically use the two approaches, we estimate the Volterra kernels of the parametric models of STP for four types of synapses using synthetic broadband input–output data. Results show that the non-parametric models accurately and efficiently replicate the input–output transformations of the parametric models. Volterra kernels provide a general and quantitative representation of the STP. PMID:18506609

  12. Induction of segmentation in polyps of Aurelia aurita (Scyphozoa, Cnidaria) into medusae and formation of mirror-image medusa anlagen.

    PubMed

    Kroiher, M; Siefker, B; Berking, S

    2000-08-01

    Polyps of Aurelia aurita can transform into several medusae (jellyfish) in a process of sequential subdivision. During this transformation, two processes take place which are well known to play a key role in the formation of various higher metazoa: segmentation and metamorphosis. In order to compare these processes in bilaterians and cnidarians we studied the control and the kinetics of these processes in Aurelia aurita. Segmentation and metamorphosis visibly start at the polyp's head and proceed down the body column but do not reach the basal disc. The small piece of polyp which remains will develop into a new polyp. The commitment to the medusa stage moves down the body column and precedes the visible onset of segmentation by about one day. Segmentation and metamorphosis can start at the cut surface of transversely cut body columns, leading to a mirror-image pattern of sequentially developing medusae. PMID:11032183

  13. A generalized Benford's law for JPEG coefficients and its applications in image forensics

    NASA Astrophysics Data System (ADS)

    Fu, Dongdong; Shi, Yun Q.; Su, Wei

    2007-02-01

    In this paper, a novel statistical model based on Benford's law for the probability distributions of the first digits of the block-DCT and quantized JPEG coefficients is presented. A parametric logarithmic law, i.e., the generalized Benford's law, is formulated. Furthermore, some potential applications of this model in image forensics are discussed in this paper, which include the detection of JPEG compression for images in bitmap format, the estimation of JPEG compression Qfactor for JPEG compressed bitmap image, and the detection of double compressed JPEG image. The results of our extensive experiments demonstrate the effectiveness of the proposed statistical model.

  14. Formation of mesoscopic metallic filaments in manganite thin films imaged by microwave impedance microscopy

    NASA Astrophysics Data System (ADS)

    Kundhikanjana, Worasom; Lai, Keji; Yang, Yongliang; Ma, Yue; Kelly, Michael; Shen, Zhi-Xun; Nakamura, Masao; Sheng, Zhigao; Kawasaki, Masashi; Tokura, Yoshi

    2012-02-01

    We study the ferromagnetic metallic domains from the charge-order insulating background at mesoscopic length scale in a Pr0.55Ca0.75Sr0.25MnO3 thin film using a variable temperature microwave impedance microscope (MIM). The metallic state in this compound can be easily induced at a moderate magnetic field as low as 2 T observed by both the transport and MIM. The temperature dependent transport under 1.2 T shows a large hysteresis loop. MIM allows us to observe the formation and melting of metallic domains at different temperatures during the cooling and warming processes. At higher temperatures, the metallic domains first emerge in small isolated filaments along certain crystal axes of the LSAT(110) substrate, suggesting that the local strain plays an important role. Surprisingly, small insulating islands remain in the metallic ground state and persist up to very high magnetic fields, indicating strong pining sites. Lastly, the sizes of the insulating islands at the ground state increase when the film is field cooled at lower speeds, suggesting s glassy order in this compound.

  15. Image encryption using P-Fibonacci transform and decomposition

    NASA Astrophysics Data System (ADS)

    Zhou, Yicong; Panetta, Karen; Agaian, Sos; Chen, C. L. Philip

    2012-03-01

    Image encryption is an effective method to protect images or videos by transferring them into unrecognizable formats for different security purposes. To improve the security level of bit-plane decomposition based encryption approaches, this paper introduces a new image encryption algorithm by using a combination of parametric bit-plane decomposition along with bit-plane shuffling and resizing, pixel scrambling and data mapping. The algorithm utilizes the Fibonacci P-code for image bit-plane decomposition and the 2D P-Fibonacci transform for image encryption because they are parameter dependent. Any new or existing method can be used for shuffling the order of the bit-planes. Simulation analysis and comparisons are provided to demonstrate the algorithm's performance for image encryption. Security analysis shows the algorithm's ability against several common attacks. The algorithm can be used to encrypt images, biometrics and videos.

  16. Measuring Ca²+ changes in multiwell format using the Fluorometric Imaging Plate Reader.

    PubMed

    Marshall, Ian C B; Owen, Davina E; McNulty, Shaun

    2005-01-01

    The Fluorometric Imaging Plate Reader (FLIPR®; Molecular Devices, Sunnyvale, CA) has made a significant contribution to drug discovery programs in the pharmaceutical industry since the first commercial instruments were introduced 9 yr ago. The key advantage of FLIPR over conventional plate readers is its ability to measure fluorescence emission from multiple wells (96- or 384-well) simultaneously and with high temporal resolution. Consequently, FLIPR has been used extensively to record dynamic intracellular processes such as changes in intracellular Ca(2+) ion concentration, membrane potential, and pH. Since FLIPR is used to measure a functional response in cells, it is rapidly able to distinguish full agonists, partial agonists, and antagonists at a target of interest, making the system a valuable screening tool for interrogation of compound libraries. Typically, FLIPR can be used to screen more than 150 compound plates per day in a high-throughput screening environment equating to more than 50,000 compounds at a single concentration in a 384-well system. PMID:21341095

  17. Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ

    PubMed Central

    Pertsinidis, Alexandros; Mukherjee, Konark; Sharma, Manu; Pang, Zhiping P.; Park, Sang Ryul; Zhang, Yunxiang; Brunger, Axel T.; Südhof, Thomas C.; Chu, Steven

    2013-01-01

    Membrane fusion is mediated by complexes formed by SNAP-receptor (SNARE) and Secretory 1 (Sec1)/mammalian uncoordinated-18 (Munc18)-like (SM) proteins, but it is unclear when and how these complexes assemble. Here we describe an improved two-color fluorescence nanoscopy technique that can achieve effective resolutions of up to 7.5-nm full width at half maximum (3.2-nm localization precision), limited only by stochastic photon emission from single molecules. We use this technique to dissect the spatial relationships between the neuronal SM protein Munc18-1 and SNARE proteins syntaxin-1 and SNAP-25 (25 kDa synaptosome-associated protein). Strikingly, we observed nanoscale clusters consisting of syntaxin-1 and SNAP-25 that contained associated Munc18-1. Rescue experiments with syntaxin-1 mutants revealed that Munc18-1 recruitment to the plasma membrane depends on the Munc18-1 binding to the N-terminal peptide of syntaxin-1. Our results suggest that in a primary neuron, SNARE/SM protein complexes containing syntaxin-1, SNAP-25, and Munc18-1 are preassembled in microdomains on the presynaptic plasma membrane. Our superresolution imaging method provides a framework for investigating interactions between the synaptic vesicle fusion machinery and other subcellular systems in situ. PMID:23821748

  18. Dynamical stability of imaged planetary systems in formation: Application to HL Tau

    NASA Astrophysics Data System (ADS)

    Tamayo, Daniel; Triaud, Amaury H. M. J.; Menou, Kristen; Rein, Hanno

    2015-05-01

    A recent ALMA image revealed several concentric gaps in the protoplanetary disk surrounding the young star HL Tau. We consider the hypothesis that these gaps are carved by planets, and present a general framework for understanding the dynamical stability of such systems over typical disk lifetimes, providing estimates for the maximum planetary masses. We argue that the locations of resonances should be significantly shifted in disks as massive as estimated for HL Tau, and that theoretical uncertainties in the exact offset, together with observational errors, imply a large uncertainty in the dynamical state and stability in such disks. An important observational avenue to breaking this degeneracy is to search for eccentric gaps, which could implicate resonantly interacting planets. Unfortunately, massive disks should also induce swift pericenter precession that would smear out any such eccentric features of planetary origin. This motivates pushing toward more typical, less massive disks. For a nominal non-resonant model of the HL Tau system with five planets, we find a maximum mass for the outer three bodies of approximately 2 Neptune masses. In a resonant configuration, these planets can reach at least the mass of Saturn. The inner two planets' masses are unconstrained by dynamical stability arguments.

  19. Atomic force microscopy imaging reveals the formation of ASIC/ENaC cross-clade ion channels

    SciTech Connect

    Jeggle, Pia; Smith, Ewan St. J.; Stewart, Andrew P.; Haerteis, Silke; Korbmacher, Christoph; Edwardson, J. Michael

    2015-08-14

    ASIC and ENaC are co-expressed in various cell types, and there is evidence for a close association between them. Here, we used atomic force microscopy (AFM) to determine whether ASIC1a and ENaC subunits are able to form cross-clade hybrid ion channels. ASIC1a and ENaC could be co-isolated from detergent extracts of tsA 201 cells co-expressing the two subunits. Isolated proteins were incubated with antibodies against ENaC and Fab fragments against ASIC1a. AFM imaging revealed proteins that were decorated by both an antibody and a Fab fragment with an angle of ∼120° between them, indicating the formation of ASIC1a/ENaC heterotrimers. - Highlights: • There is evidence for a close association between ASIC and ENaC. • We used AFM to test whether ASIC1a and ENaC subunits form cross-clade ion channels. • Isolated proteins were incubated with subunit-specific antibodies and Fab fragments. • Some proteins were doubly decorated at ∼120° by an antibody and a Fab fragment. • Our results indicate the formation of ASIC1a/ENaC heterotrimers.

  20. A Developmental Framework for Complex Plasmodesmata Formation Revealed by Large-Scale Imaging of the Arabidopsis Leaf Epidermis[W

    PubMed Central

    Fitzgibbon, Jessica; Beck, Martina; Zhou, Ji; Faulkner, Christine; Robatzek, Silke; Oparka, Karl

    2013-01-01

    Plasmodesmata (PD) form tubular connections that function as intercellular communication channels. They are essential for transporting nutrients and for coordinating development. During cytokinesis, simple PDs are inserted into the developing cell plate, while during wall extension, more complex (branched) forms of PD are laid down. We show that complex PDs are derived from existing simple PDs in a pattern that is accelerated when leaves undergo the sink–source transition. Complex PDs are inserted initially at the three-way junctions between epidermal cells but develop most rapidly in the anisocytic complexes around stomata. For a quantitative analysis of complex PD formation, we established a high-throughput imaging platform and constructed PDQUANT, a custom algorithm that detected cell boundaries and PD numbers in different wall faces. For anticlinal walls, the number of complex PDs increased with increasing cell size, while for periclinal walls, the number of PDs decreased. Complex PD insertion was accelerated by up to threefold in response to salicylic acid treatment and challenges with mannitol. In a single 30-min run, we could derive data for up to 11k PDs from 3k epidermal cells. This facile approach opens the door to a large-scale analysis of the endogenous and exogenous factors that influence PD formation. PMID:23371949

  1. Segregation in horizontal rotating cylinders: radial and axial band formation, band traveling and merging studied by Magnetic Resonance Imaging.

    NASA Astrophysics Data System (ADS)

    Nguyen, Thoa; Sederman, Andrew; Gladden, Lynn

    2007-03-01

    Radial and axial segregations are investigated by Magnetic Resonance Imaging (MRI). For the first time, full 3D structures and real-time 2D MRI movies showing the progress of segregation over many hours are reported. Data were acquired with high temporal (74 ms) and in-plane spatial resolutions (1 mm x 1 mm), giving new insights into the underlying mechanisms. The mixture composition can be quantified throughout segregation. The cylinder to be considered is 48 mm in diameter, up to 50 cm long and filled to 50 -- 82% by volume with millet and poppy seeds at a 3:1 ratio. In particular, the effects of filling fraction, cylinder length and rotational speed on segregation are addressed. Radial segregation is found to be driven by both core diffusion and the free surface. The former is dominant in the cylindrical core buried under the avalanche layer in systems over 75% full while the latter is significant at lower filling levels. Axial segregation is characterized by band formation, traveling, and merging. In all cases studied, the formation of poppy-rich bands is observed, after which individual bands start to travel at ˜3 μm s-1 until they are within ˜3 cm of a stationary band. Adjacent bands then merge into a single, enlarged poppy band as millet seeds move out of the merging region.

  2. 3-D laser images of splash-form tektites and their use in aerodynamic numerical simulations of tektite formation

    NASA Astrophysics Data System (ADS)

    Samson, C.; Butler, S.; Fry, C.; McCausland, P. J. A.; Herd, R. K.; Sharomi, O.; Spiteri, R. J.; Ralchenko, M.

    2014-05-01

    Ten splash-form tektites from the Australasian strewn field, with masses ranging from 21.20 to 175.00 g and exhibiting a variety of shapes (teardrop, ellipsoid, dumbbell, disk), have been imaged using a high-resolution laser digitizer. Despite challenges due to the samples' rounded shapes and pitted surfaces, the images were combined to create 3-D tektite models, which captured surface features with a high fidelity (≈30 voxel mm-2) and from which volume could be measured noninvasively. The laser-derived density for the tektites averaged 2.41 ± 0.11 g cm-3. Corresponding densities obtained via the Archimedean bead method averaged 2.36 ± 0.05 g cm-3. In addition to their curational value, the 3-D models can be used to calculate the tektites' moments of inertia and rotation periods while in flight, as a probe of their formation environment. Typical tektite rotation periods are estimated to be on the order of 1 s. Numerical simulations of air flow around the models at Reynolds numbers ranging from 1 to 106 suggest that the relative velocity of the tektites with respect to the air must have been <10 m s-1 during viscous deformation. This low relative velocity is consistent with tektite material being carried along by expanding gases in the early time following the impact.

  3. Investigating flow properties of partially cemented fractures in Travis Peak Formation using image-based pore-scale modeling

    NASA Astrophysics Data System (ADS)

    Tokan-Lawal, Adenike; Prodanović, Maša.; Eichhubl, Peter

    2015-08-01

    Natural fractures can provide preferred flow pathways in otherwise low-permeability reservoirs. In deep subsurface reservoirs including tight oil and gas reservoirs, as well as in hydrothermal systems, fractures are frequently lined or completely filled with mineral cement that reduces or occludes fracture porosity and permeability. Fracture cement linings potentially reduce flow connectivity between the fracture and host rock and increase fracture wall roughness, which constricts flow. We combined image-based fracture space characterization, mercury injection capillary pressure and permeability experiments, and numerical simulations to evaluate the influence of fracture-lining cement on single-phase and multiphase flows along a natural fracture from the Travis Peak Formation, a tight gas reservoir sandstone in East Texas. Using X-ray computed microtomographic image analysis, we characterized fracture geometry and the connectivity and geometric tortuosity of the fracture pore space. Combining level set method-based progressive quasistatic and lattice Boltzmann simulations, we assessed the capillary-dominated displacement properties and the (relative) permeability of a cement-lined fracture. Published empirical correlations between aperture and permeability for barren fractures provide permeability estimates that vary among each other, and differ from our results, vary by several orders of magnitude. Compared to barren fractures, cement increases the geometric tortuosity, aperture variation of the pore space, and capillary pressure while reducing the single-phase permeability by up to 2 orders of magnitude. For multiphase displacement, relative permeability and fluid entrapment geometry resemble those of porous media and differ from those characteristic of barren fractures.

  4. Applying Chemical Imaging Analysis to Improve Our Understanding of Cold Cloud Formation

    NASA Astrophysics Data System (ADS)

    Laskin, A.; Knopf, D. A.; Wang, B.; Alpert, P. A.; Roedel, T.; Gilles, M. K.; Moffet, R.; Tivanski, A.

    2012-12-01

    The impact that atmospheric ice nucleation has on the global radiation budget is one of the least understood problems in atmospheric sciences. This is in part due to the incomplete understanding of various ice nucleation pathways that lead to ice crystal formation from pre-existing aerosol particles. Studies investigating the ice nucleation propensity of laboratory generated particles indicate that individual particle types are highly selective in their ice nucleating efficiency. This description of heterogeneous ice nucleation would present a challenge when applying to the atmosphere which contains a complex mixture of particles. Here, we employ a combination of micro-spectroscopic and optical single particle analytical methods to relate particle physical and chemical properties with observed water uptake and ice nucleation. Field-collected particles from urban environments impacted by anthropogenic and marine emissions and aging processes are investigated. Single particle characterization is provided by computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). A particle-on-substrate approach coupled to a vapor controlled cooling-stage and a microscope system is applied to determine the onsets of water uptake and ice nucleation including immersion freezing and deposition ice nucleation as a function of temperature (T) as low as 200 K and relative humidity (RH) up to water saturation. We observe for urban aerosol particles that for T > 230 K the oxidation level affects initial water uptake and that subsequent immersion freezing depends on particle mixing state, e.g. by the presence of insoluble particles. For T < 230 K the particles initiate deposition ice nucleation well below the homogeneous freezing limit. Particles collected throughout one day for similar meteorological conditions show very similar

  5. Next-Generation Microshutter Arrays for Large-Format Imaging and Spectroscopy

    NASA Technical Reports Server (NTRS)

    Moseley, Samuel; Kutyrev, Alexander; Brown, Ari; Li, Mary

    2012-01-01

    A next-generation microshutter array, LArge Microshutter Array (LAMA), was developed as a multi-object field selector. LAMA consists of small-scaled microshutter arrays that can be combined to form large-scale microshutter array mosaics. Microshutter actuation is accomplished via electrostatic attraction between the shutter and a counter electrode, and 2D addressing can be accomplished by applying an electrostatic potential between a row of shutters and a column, orthogonal to the row, of counter electrodes. Microelectromechanical system (MEMS) technology is used to fabricate the microshutter arrays. The main feature of the microshutter device is to use a set of standard surface micromachining processes for device fabrication. Electrostatic actuation is used to eliminate the need for macromechanical magnet actuating components. A simplified electrostatic actuation with no macro components (e.g. moving magnets) required for actuation and latching of the shutters will make the microshutter arrays robust and less prone to mechanical failure. Smaller-size individual arrays will help to increase the yield and thus reduce the cost and improve robustness of the fabrication process. Reducing the size of the individual shutter array to about one square inch and building the large-scale mosaics by tiling these smaller-size arrays would further help to reduce the cost of the device due to the higher yield of smaller devices. The LAMA development is based on prior experience acquired while developing microshutter arrays for the James Webb Space Telescope (JWST), but it will have different features. The LAMA modular design permits large-format mosaicking to cover a field of view at least 50 times larger than JWST MSA. The LAMA electrostatic, instead of magnetic, actuation enables operation cycles at least 100 times faster and a mass significantly smaller compared to JWST MSA. Also, standard surface micromachining technology will simplify the fabrication process, increasing

  6. Characteristics of stereo reproduction with parametric loudspeakers

    NASA Astrophysics Data System (ADS)

    Aoki, Shigeaki; Toba, Masayoshi; Tsujita, Norihisa

    2012-05-01

    A parametric loudspeaker utilizes nonlinearity of a medium and is known as a super-directivity loudspeaker. The parametric loudspeaker is one of the prominent applications of nonlinear ultrasonics. So far, the applications have been limited monaural reproduction sound system for public address in museum, station and street etc. In this paper, we discussed characteristics of stereo reproduction with two parametric loudspeakers by comparing with those with two ordinary dynamic loudspeakers. In subjective tests, three typical listening positions were selected to investigate the possibility of correct sound localization in a wide listening area. The binaural information was ILD (Interaural Level Difference) or ITD (Interaural Time Delay). The parametric loudspeaker was an equilateral hexagon. The inner and outer diameters were 99 and 112 mm, respectively. Signals were 500 Hz, 1 kHz, 2 kHz and 4 kHz pure tones and pink noise. Three young males listened to test signals 10 times in each listening condition. Subjective test results showed that listeners at the three typical listening positions perceived correct sound localization of all signals using the parametric loudspeakers. It was almost similar to those using the ordinary dynamic loudspeakers, however, except for the case of sinusoidal waves with ITD. It was determined the parametric loudspeaker could exclude the contradiction between the binaural information ILD and ITD that occurred in stereo reproduction with ordinary dynamic loudspeakers because the super directivity of parametric loudspeaker suppressed the cross talk components.

  7. Ionization Cooling using Parametric Resonances

    SciTech Connect

    Johnson, Rolland P.

    2008-06-07

    Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been

  8. Brain electrical activity evoked by mental formation of auditory expectations and images.

    PubMed

    Janata, P

    2001-01-01

    Evidence for the brain's derivation of explicit expectancies in an ongoing sensory context has been well established by studies of the P300 and processing negativity (PN) components of the event-related potential (ERP). "Emitted potentials" generated in the absence of sensory input by unexpected stimulus omissions also exhibit a P300 component and provide another perspective on patterns of brain activity related to the processing of expectancies. The studies described herein extend earlier emitted potential findings in several aspects. First, high-density (128-channel) EEG recordings are used for topographical mapping of emitted potentials. Second, the primary focus is on emitted potential components preceding the P300, i.e. those components that are more likely to resemble ERP components associated with sensory processing. Third, the dependence of emitted potentials on attention is assessed. Fourth, subjects' knowledge of the structure of an auditory stimulus sequence is modulated so that emitted potentials can be compared between conditions that are identical in physical aspects but differ in terms of subjects' expectations regarding the sequence structure. Finally, a novel task is used to elicit emitted potentials, in which subjects explicitly imagine the continuations of simple melodies. In this task, subjects mentally complete melodic fragments in the appropriate tempo, even though they know with absolute certainty that no sensory stimulus will occur. Emitted potentials were elicited only when subjects actively formed expectations or images. The topographies of the initial portion of the emitted potentials were significantly correlated with the N100 topography elicited by corresponding acoustic stimuli, but uncorrelated with the topographies of corresponding silence control periods. PMID:11302397

  9. Target recognition using HRR profile-based incoherent SAR (InSAR) image formation

    NASA Astrophysics Data System (ADS)

    O'Donoughue, Nicholas A.; Kuklinski, Walter S.; Arabadjis, Constantine

    2008-04-01

    Feature-aided target verification is a challenging field of research, with the potential to yield significant increases in the confidence of re-established target tracks after kinematic confusion events. Using appropriate control algorithms airborne multi-mode radars can acquire a library of HRR (High Range Resolution) profiles for targets as they are tracked. When a kinematic confusion event occurs, such as a vehicle dropping below MDV (Minimum Detectable Velocity) for some period of time, or two target tracks crossing, it is necessary to utilize feature-aided tracking methods to correctly associate post-confusion tracks with pre-confusion tracks. Many current HRR profile target recognition methods focus on statistical characteristics of either individual profiles or sets of profiles taken over limited viewing angles. These methods have not proven to be very effective when the pre- and post- confusion libraries do not overlap in azimuth angle. To address this issue we propose a new approach to target recognition from HRR profiles. We present an algorithm that generates 2-D imagery of targets from the pre- and post-confusion libraries. These images are subsequently used as the input to a target recognition/classifier process. Since, center-aligned HRR Profiles, while ideal for processing, are not easily computed in field systems, as they require the airborne platform's center of rotation to line up with the geometric center of the moving target (this is impossible when multiple targets are being tracked), our algorithm is designed to work with HRR profiles that are aligned to the leading edge (the first detection above a threshold, commonly referred to as Edge-Aligned HRR profiles). Our simulated results demonstrate the effectiveness of this method for classifying target vehicles based on simulations using both overlapping and non-overlapping HRR profile sets. The algorithm was tested on several test cases using an input set of .28 m resolution XPATCH generated HRR

  10. Parametric Modeling of the Mouse Left Ventricular Myocardial Fiber Structure.

    PubMed

    Merchant, Samer S; Gomez, Arnold David; Morgan, James L; Hsu, Edward W

    2016-09-01

    Magnetic resonance diffusion tensor imaging (DTI) has greatly facilitated detailed quantifications of myocardial structures. However, structural patterns, such as the distinctive transmural rotation of the fibers, remain incompletely described. To investigate the validity and practicality of pattern-based analysis, 3D DTI was performed on 13 fixed mouse hearts and fiber angles in the left ventricle were transformed and fitted to parametric expressions constructed from elementary functions of the prolate spheroidal spatial variables. It was found that, on average, the myocardial fiber helix angle could be represented to 6.5° accuracy by the equivalence of a product of 10th-order polynomials of the radial and longitudinal variables, and 17th-order Fourier series of the circumferential variable. Similarly, the fiber imbrication angle could be described by 10th-order polynomials and 24th-order Fourier series, to 5.6° accuracy. The representations, while relatively concise, did not adversely affect the information commonly derived from DTI datasets including the whole-ventricle mean fiber helix angle transmural span and atlases constructed for the group. The unique ability of parametric models for predicting the 3D myocardial fiber structure from finite number of 2D slices was also demonstrated. These findings strongly support the principle of parametric modeling for characterizing myocardial structures in the mouse and beyond. PMID:26942586

  11. Real-time monitoring of cardiac radio-frequency ablation lesion formation using an optical coherence tomography forward-imaging catheter

    PubMed Central

    Fleming, Christine P.; Wang, Hui; Quan, Kara J.; Rollins, Andrew M.

    2010-01-01

    Radio-frequency ablation (rfa) is the standard of care for the treatment of cardiac arrhythmias; however, there are no direct measures of the successful delivery of ablation lesions. Optical coherence tomography (OCT) imaging has the potential to provide real-time monitoring of cardiac rfa therapy, visualizing lesion formation and assessing tissue contact in the presence of blood. A rfa-compatible forward-imaging conical scanning probe is prototyped to meet this need. The forward-imaging probe provides circular scanning, with a 2-mm scan diameter and 30-μm spot size. During the application of rf energy, dynamics are recorded at 20 frames per second with a 40-kHz A-line rate. Real-time monitoring of cardiac rfa lesion formation and imaging in the presence of blood is demonstrated ex vivo in a swine left ventricle with a forward, flexible, circular scanning OCT catheter. PMID:20614999

  12. Assessing Formation Scenarios for the Double Nucleus of M31 Using Two-Dimensional Image Decomposition

    NASA Astrophysics Data System (ADS)

    Peng, Chien Y.

    2002-07-01

    The double nucleus geometry of M31 is currently best explained by the eccentric disk hypothesis of Tremaine, but whether the eccentric disk resulted from the tidal disruption of an inbounding star cluster, from a nuclear black hole, or from an m=1 perturbation of a native nuclear disk remains debatable. I perform detailed two-dimensional decomposition of the M31 double nucleus in the Hubble Space Telescope V-band to study the bulge structure and to address competing formation scenarios of the eccentric disk. I deblend the double nucleus (P1 and P2) and the bulge simultaneously using five Sérsic and one Nuker components. P1 and P2 appear to be embedded inside an intermediate component (re=3.2") that is nearly spherical (q=0.97+/-0.02), while the main galaxy bulge is more elliptical (q=0.81+/-0.01). The spherical bulge mass (2.8×107 Msolar), being coincident with the supermassive black hole mass (3×107 Msolar), conjoined with a shallow bulge cusp, is consistent with the scenario that the bulge was scoured by spiraling binary supermassive black holes. In the two-dimensional decomposition the bulge is consistent with being centered near the UV peak of P2, but the exact position is difficult to pinpoint because of dust in the bulge. P1 and P2 are comparable in mass. Within a radius r=1" of P2, the relative mass fraction of the nuclear components is M•:Mbulge:P1:P2=4.3:1.2:1:0.7, assuming the luminous components have a common mass-to-light ratio of 5.7. The eccentric disk as a whole (P1+P2) is massive, M~2.1×107 Msolar, comparable to the black hole and the local bulge mass. As such, the eccentric disk could not have been formed entirely out of stars that were stripped from an inbounding star cluster. Hence, the more favored scenario is that of a disk formed in situ by an m=1 perturbation caused possibly by the passing of a giant molecular cloud or the passing/accretion of a small globular cluster. Based on observations with the NASA/ESA Hubble Space Telescope

  13. Self-seeding ring optical parametric oscillator

    DOEpatents

    Smith, Arlee V.; Armstrong, Darrell J.

    2005-12-27

    An optical parametric oscillator apparatus utilizing self-seeding with an external nanosecond-duration pump source to generate a seed pulse resulting in increased conversion efficiency. An optical parametric oscillator with a ring configuration are combined with a pump that injection seeds the optical parametric oscillator with a nanosecond duration, mJ pulse in the reverse direction as the main pulse. A retroreflecting means outside the cavity injects the seed pulse back into the cavity in the direction of the main pulse to seed the main pulse, resulting in higher conversion efficiency.

  14. Optimal Parametric Feedback Excitation of Nonlinear Oscillators

    NASA Astrophysics Data System (ADS)

    Braun, David J.

    2016-01-01

    An optimal parametric feedback excitation principle is sought, found, and investigated. The principle is shown to provide an adaptive resonance condition that enables unprecedentedly robust movement generation in a large class of oscillatory dynamical systems. Experimental demonstration of the theory is provided by a nonlinear electronic circuit that realizes self-adaptive parametric excitation without model information, signal processing, and control computation. The observed behavior dramatically differs from the one achievable using classical parametric modulation, which is fundamentally limited by uncertainties in model information and nonlinear effects inevitably present in real world applications.

  15. Optimal Parametric Feedback Excitation of Nonlinear Oscillators.

    PubMed

    Braun, David J

    2016-01-29

    An optimal parametric feedback excitation principle is sought, found, and investigated. The principle is shown to provide an adaptive resonance condition that enables unprecedentedly robust movement generation in a large class of oscillatory dynamical systems. Experimental demonstration of the theory is provided by a nonlinear electronic circuit that realizes self-adaptive parametric excitation without model information, signal processing, and control computation. The observed behavior dramatically differs from the one achievable using classical parametric modulation, which is fundamentally limited by uncertainties in model information and nonlinear effects inevitably present in real world applications. PMID:26871336

  16. Pre-Launch Algorithm and Data Format for the Level 1 Calibration Products for the EOS AM-1 Moderate Resolution Imaging Spectroradiometer (MODIS)

    NASA Technical Reports Server (NTRS)

    Guenther, Bruce W.; Godden, Gerald D.; Xiong, Xiao-Xiong; Knight, Edward J.; Qiu, Shi-Yue; Montgomery, Harry; Hopkins, M. M.; Khayat, Mohammad G.; Hao, Zhi-Dong; Smith, David E. (Technical Monitor)

    2000-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) radiometric calibration product is described for the thermal emissive and the reflective solar bands. Specific sensor design characteristics are identified to assist in understanding how the calibration algorithm software product is designed. The reflected solar band software products of radiance and reflectance factor both are described. The product file format is summarized and the MODIS Characterization Support Team (MCST) Homepage location for the current file format is provided.

  17. Monochromatic waves induced by large-scale parametric forcing.

    PubMed

    Nepomnyashchy, A; Abarzhi, S I

    2010-03-01

    We study the formation and stability of monochromatic waves induced by large-scale modulations in the framework of the complex Ginzburg-Landau equation with parametric nonresonant forcing dependent on the spatial coordinate. In the limiting case of forcing with very large characteristic length scale, analytical solutions for the equation are found and conditions of their existence are outlined. Stability analysis indicates that the interval of existence of a monochromatic wave can contain a subinterval where the wave is stable. We discuss potential applications of the model in rheology, fluid dynamics, and optics. PMID:20365907

  18. Airy beam optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Aadhi, A.; Chaitanya, N. Apurv; Jabir, M. V.; Vaity, Pravin; Singh, R. P.; Samanta, G. K.

    2016-05-01

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51–1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond).

  19. Airy beam optical parametric oscillator.

    PubMed

    Aadhi, A; Chaitanya, N Apurv; Jabir, M V; Vaity, Pravin; Singh, R P; Samanta, G K

    2016-01-01

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51-1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond). PMID:27143582

  20. Airy beam optical parametric oscillator

    PubMed Central

    Aadhi, A.; Chaitanya, N. Apurv; Jabir, M. V.; Vaity, Pravin; Singh, R. P.; Samanta, G. K.

    2016-01-01

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51–1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond). PMID:27143582

  1. Parametric X-Ray Radiation

    NASA Astrophysics Data System (ADS)

    Shchagin, Alexander

    1997-10-01

    The main PXR properties [1,2] are considered in the paper: energy, width, smooth tuning of monochromatic PXR spectral line; fine structure and absolute differential yields of PXR in the vicinity of and at angular distances from Brag directions; angular spread of the PXR beam; the influence of incident electron energy and of the density effect on the PXR properties; linear polarization of PXR; background in PXR spectra. Experimental setups for linacs and the results of measurements are discussed. Experimental data are compared to theoretical calculations at PXR energies between 5 and 400 keV for incident electron energies ranging from 15 to 1200 MeV. Possible applications of PXR as a new source of a bright, tunable X-ray beam in science and industry are discussed. [1] A.V. Shchagin and N.A. Khizhnyak, NIM B119, 115-122 (1996). [2] A.V. Shchagin and X.K. Maruyama, "Parametric X-rays", a chapter in the book "Accelerator-based Atomic Physics Techniques and Applications", edited by S.M. Shafroth and J.C. Austin, AIP Press, 1997, pp 279-307.

  2. Multi-Parametric Neuroimaging Reproducibility: A 3T Resource Study

    PubMed Central

    Landman, Bennett A.; Huang, Alan J.; Gifford, Aliya; Vikram, Deepti S.; Lim, Issel Anne L.; Farrell, Jonathan A.D.; Bogovic, John A.; Hua, Jun; Chen, Min; Jarso, Samson; Smith, Seth A.; Joel, Suresh; Mori, Susumu; Pekar, James J.; Barker, Peter B.; Prince, Jerry L.; van Zijl, Peter C.M.

    2010-01-01

    Modern MRI image processing methods have yielded quantitative, morphometric, functional, and structural assessments of the human brain. These analyses typically exploit carefully optimized protocols for specific imaging targets. Algorithm investigators have several excellent public data resources to use to test, develop, and optimize their methods. Recently, there has been an increasing focus on combining MRI protocols in multi-parametric studies. Notably, these have included innovative approaches for fusing connectivity inferences with functional and/or anatomical characterizations. Yet, validation of the reproducibility of these interesting and novel methods has been severely hampered by the limited availability of appropriate multi-parametric data. We present an imaging protocol optimized to include state-of-the-art assessment of brain function, structure, micro-architecture, and quantitative parameters within a clinically feasible 60 minute protocol on a 3T MRI scanner. We present scan-rescan reproducibility of these imaging contrasts based on 21 healthy volunteers (11 M/10 F, 22–61 y/o). The cortical gray matter, cortical white matter, ventricular cerebrospinal fluid, thalamus, putamen, caudate, cerebellar gray matter, cerebellar white matter, and brainstem were identified with mean volume-wise reproducibility of 3.5%. We tabulate the mean intensity, variability and reproducibility of each contrast in a region of interest approach, which is essential for prospective study planning and retrospective power analysis considerations. Anatomy was highly consistent on structural acquisition (~1–5% variability), while variation on diffusion and several other quantitative scans was higher (~<10%). Some sequences are particularly variable in specific structures (ASL exhibited variation of 28% in the cerebral white matter) or in thin structures (quantitative T2 varied by up to 73% in the caudate) due, in large part, to variability in automated ROI placement. The

  3. Parametric models for samples of random functions

    SciTech Connect

    Grigoriu, M.

    2015-09-15

    A new class of parametric models, referred to as sample parametric models, is developed for random elements that match sample rather than the first two moments and/or other global properties of these elements. The models can be used to characterize, e.g., material properties at small scale in which case their samples represent microstructures of material specimens selected at random from a population. The samples of the proposed models are elements of finite-dimensional vector spaces spanned by samples, eigenfunctions of Karhunen–Loève (KL) representations, or modes of singular value decompositions (SVDs). The implementation of sample parametric models requires knowledge of the probability laws of target random elements. Numerical examples including stochastic processes and random fields are used to demonstrate the construction of sample parametric models, assess their accuracy, and illustrate how these models can be used to solve efficiently stochastic equations.

  4. A uniform parametrization of moment tensors

    NASA Astrophysics Data System (ADS)

    Tape, Walter; Tape, Carl

    2015-09-01

    A moment tensor is a 3 × 3 symmetric matrix that expresses an earthquake source. We construct a parametrization of the 5-D space of all moment tensors of unit norm. The coordinates associated with the parametrization are closely related to moment tensor orientations and source types. The parametrization is uniform, in the sense that equal volumes in the coordinate domain of the parametrization correspond to equal volumes of moment tensors. Uniformly distributed points in the coordinate domain therefore give uniformly distributed moment tensors. A cartesian grid in the coordinate domain can be used to search efficiently over moment tensors. We find that uniformly distributed moment tensors have uniformly distributed orientations (eigenframes), but that their source types (eigenvalue triples) are distributed so as to favour double couples.

  5. Engineering artificial Hamiltonians with parametric superconducting circuits

    NASA Astrophysics Data System (ADS)

    Lu, Yao; Chakram, Srivatsan; Leung, Nelson; Naik, Ravi; Earnest, Nathan; Groszkowski, Peter; Koch, Jens; Kapit, Eliot; Schuster, David

    One major challenge in building a large scale quantum computer is to generate and manipulate interactions between its many qubits. One promising approach is to use parametric flux or voltage modulation to realize effective interactions between different components of superconducting circuits, generating artificial Hamiltonians that are suitable for various quantum computation tasks, which might be difficult to achieve through other means. We propose a parametric superconducting circuit where transmon qubits and resonators are coupled to a flux-modulated parametric coupler. We show that with this device, arbitrary pairs of qubits or resonators in the circuit can be selectively and simultaneously brought into resonance with each other and swap excitations at a controllable rate. This allows for the creation of various artificial circuit Hamiltonians that are suitable for a number of applications such as single qubit state stablization, parametric qubit state readout, autonomous error correction and so on.

  6. Parametrically disciplined operation of a vibratory gyroscope

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill V. (Inventor); Hayworth, Ken J. (Inventor); Challoner, A. Dorian (Inventor); Peay, Chris S. (Inventor)

    2008-01-01

    Parametrically disciplined operation of a symmetric nearly degenerate mode vibratory gyroscope is disclosed. A parametrically-disciplined inertial wave gyroscope having a natural oscillation frequency in the neighborhood of a sub-harmonic of an external stable clock reference is produced by driving an electrostatic bias electrode at approximately twice this sub-harmonic frequency to achieve disciplined frequency and phase operation of the resonator. A nearly symmetric parametrically-disciplined inertial wave gyroscope that can oscillate in any transverse direction and has more than one bias electrostatic electrode that can be independently driven at twice its oscillation frequency at an amplitude and phase that disciplines its damping to zero in any vibration direction. In addition, operation of a parametrically-disciplined inertial wave gyroscope is taught in which the precession rate of the driven vibration pattern is digitally disciplined to a prescribed non-zero reference value.

  7. Observation of Parametric Instability in Advanced LIGO.

    PubMed

    Evans, Matthew; Gras, Slawek; Fritschel, Peter; Miller, John; Barsotti, Lisa; Martynov, Denis; Brooks, Aidan; Coyne, Dennis; Abbott, Rich; Adhikari, Rana X; Arai, Koji; Bork, Rolf; Kells, Bill; Rollins, Jameson; Smith-Lefebvre, Nicolas; Vajente, Gabriele; Yamamoto, Hiroaki; Adams, Carl; Aston, Stuart; Betzweiser, Joseph; Frolov, Valera; Mullavey, Adam; Pele, Arnaud; Romie, Janeen; Thomas, Michael; Thorne, Keith; Dwyer, Sheila; Izumi, Kiwamu; Kawabe, Keita; Sigg, Daniel; Derosa, Ryan; Effler, Anamaria; Kokeyama, Keiko; Ballmer, Stefan; Massinger, Thomas J; Staley, Alexa; Heinze, Matthew; Mueller, Chris; Grote, Hartmut; Ward, Robert; King, Eleanor; Blair, David; Ju, Li; Zhao, Chunnong

    2015-04-24

    Parametric instabilities have long been studied as a potentially limiting effect in high-power interferometric gravitational wave detectors. Until now, however, these instabilities have never been observed in a kilometer-scale interferometer. In this Letter, we describe the first observation of parametric instability in a gravitational wave detector, and the means by which it has been removed as a barrier to progress. PMID:25955042

  8. The Quantum Theory of Optical Parametric Amplification

    NASA Astrophysics Data System (ADS)

    Hussain, N. A.

    Available from UMI in association with The British Library. Requires signed TDF. The aim of this thesis is to investigate the effect of parametric amplification on various forms of light. In particular we shall consider number and coherent states, but many of the calculations hold for those states whose operators satisfy the properties, < {a}^+{a}^+ >=<{a}{a }> = < {a}^+>=<{a }>=0 e.g. chaotic light. The first chapter lays down the fundamental preliminaries necessary for our calculations and reviews linear amplifier theory. We consider the phase sensitive and insensitive forms of amplifiers modelling the former on the degenerate parametric amplifier and the latter on the non-degenerate and inverted population amplifiers. Chapter 2 deals with balanced homodyne detection of a narrow band coherent state before and after degenerate parametric amplification. In chapter 3 we consider a continuous mode number state produced by atomic emission and parametrically amplified using the formalism of Collett and Gardiner. We give general results for the output flux intensity and also consider the simpler case where the atomic decay rate is much smaller than the parametric cavity decay rate. Also we consider the degree of second order coherence using this simplified theory. Chapters 4 and 5 consider the double amplifier interferometer, using single and continuous mode theories, and enable us to determine the form of amplifier which produces the best visibility and hence lowest noise figures. The travelling-wave parametric amplifier is discussed in chapter 6 and is contrasted with the cavity parametric amplifier discussed in chapters 1 and 2. Finally we consider the much contemplated idea of using amplifiers to boost signals in fibre optic transmission lines using our model of the parametric amplifier and examining the degradation of the signal-to-noise ratio. We consider both coherent and squeezed inputs and our results hold for both cavity and travelling -wave amplifiers.

  9. Chaos control of parametric driven Duffing oscillators

    SciTech Connect

    Jin, Leisheng; Mei, Jie; Li, Lijie

    2014-03-31

    Duffing resonators are typical dynamic systems, which can exhibit chaotic oscillations, subject to certain driving conditions. Chaotic oscillations of resonating systems with negative and positive spring constants are identified to investigate in this paper. Parametric driver imposed on these two systems affects nonlinear behaviours, which has been theoretically analyzed with regard to variation of driving parameters (frequency, amplitude). Systematic calculations have been performed for these two systems driven by parametric pumps to unveil the controllability of chaos.

  10. Analytic parametrization for nuclear form factors

    SciTech Connect

    Atkin, G.; Dumbrajs, O.

    1982-08-01

    A new analytic parametrization of the nuclear form factor is developed using a factorization theorem. We show that the nuclear form factor can be represented in terms of its real zeros and its asymptotic behavior. The parametrization is applied to nuclear form factor data of /sup 3/He and /sup 4/He. Our results suggest that further diffraction minima can be expected at higher momentum transfer where experiments have not yet been made.

  11. Beam Halo formation and loss induced by image-charge effects in a small-aperture alternating-gradient focusing system

    SciTech Connect

    Zhou, J.; Qian, B.L.; Chen, C.; Henestroza, E.; Eylon, S.; Yu S.

    2003-05-01

    Effects of image charges on beam halo formation and beam loss in small-aperture alternating-gradient focusing systems are studied analytically, computationally, and experimentally. Nonlinear image-charge fields result in chaotic particle motion and the ejection of particles from the beam core into a halo. Detailed chaotic particle motion and structure of the particle phase space is studied, and the beam loss rate is computed for a long transport channel. Image-charge effects are also studied for a short transport channel, and compared with the Neutralized Transport Experiment (NTX) at LBNL.

  12. Obscured Star-Formation in Merging Galaxies: High Resolution Radio Imaging of a Time-Ordered Sequence

    NASA Technical Reports Server (NTRS)

    Neff, S. G.; Campion, S. D.; Ulvestad, J. S.

    2003-01-01

    We present new, deep, high resolution 6cm and 4cm radio continuum images of the central regions of a time-ordered sequence of seven large galaxy mergers. The radio observations are able to detect star-forming re- gions that are completely obscured at optical wavelengths. In all systems, we detect numerous compact radio sources embedded in more diffuse ra- dio emission, with limiting luminosities of approx. 1-5 x 10(exp l8) W Hz or approx. 1-5 times the luminosity of Cas A. Many of the compact radio sources are loosely associated with active starforming regions but not with specific optical or W emission sources. Several of the compact radio sources are coincident with Ultra-luminous X-ray objects (ULX's). In most systems, we are able to measure reliable spectral indices for the stronger sources. We find that the fraction of compact radio cources with nominally flat radio spectral indices (indicating they ae dominated by thermal radio emission from HII regions) decreases with merger age, while the fraction of sources with nonimally steep spectral indices (indicating they are dominated by nonthermal emission from supernova remnants) increases. For the flat-spectrum sources, we estimate the numbers of young massive stars, associated ionized gas masses, we estimate supernova rates and required star-formation rates, We compare these results with those from other well-studied merging galaxy systems and from other determinations of star-formation rates. We gratefully acknowledge use of the NRAO Very Large Array (VLA) and the VLA Archive. NRAO is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  13. Direct Imaging of the Water Snow Line at the Time of Planet Formation using Two ALMA Continuum Bands

    NASA Astrophysics Data System (ADS)

    Banzatti, A.; Pinilla, P.; Ricci, L.; Pontoppidan, K. M.; Birnstiel, T.; Ciesla, F.

    2015-12-01

    Molecular snow lines in protoplanetary disks have been studied theoretically for decades because of their importance in shaping planetary architectures and compositions. The water snow line lies in the planet formation region at ≲10 AU, and so far its location has been estimated only indirectly from spatially unresolved spectroscopy. This work presents a proof-of-concept method to directly image the water snow line in protoplanetary disks through its physical and chemical imprint on the local dust properties. We adopt a physical disk model that includes dust coagulation, fragmentation, drift, and a change in fragmentation velocities of a factor of 10 between dry silicates and icy grains as found by laboratory work. We find that the presence of a water snow line leads to a sharp discontinuity in the radial profile of the dust emission spectral index αmm due to replenishment of small grains through fragmentation. We use the ALMA simulator to demonstrate that this effect can be observed in protoplanetary disks using spatially resolved ALMA images in two continuum bands. We explore the model dependence on the disk viscosity and find that the spectral index reveals the water snow line for a wide range of conditions, with opposite trends when the emission is optically thin rather than thick. If the disk viscosity is low (αvisc < 10-3), the snow line produces a ringlike structure with a minimum at αmm ˜ 2 in the optically thick regime, possibly similar to what has been measured with ALMA in the innermost region of the HL Tau disk.

  14. Direct Imaging of the Water Snow Line at the Time of Planet Formation using Two ALMA Continuum Bands

    NASA Astrophysics Data System (ADS)

    Banzatti, A.; Pinilla, P.; Ricci, L.; Pontoppidan, K. M.; Birnstiel, T.; Ciesla, F.

    2015-12-01

    Molecular snow lines in protoplanetary disks have been studied theoretically for decades because of their importance in shaping planetary architectures and compositions. The water snow line lies in the planet formation region at ≲10 AU, and so far its location has been estimated only indirectly from spatially unresolved spectroscopy. This work presents a proof-of-concept method to directly image the water snow line in protoplanetary disks through its physical and chemical imprint on the local dust properties. We adopt a physical disk model that includes dust coagulation, fragmentation, drift, and a change in fragmentation velocities of a factor of 10 between dry silicates and icy grains as found by laboratory work. We find that the presence of a water snow line leads to a sharp discontinuity in the radial profile of the dust emission spectral index αmm due to replenishment of small grains through fragmentation. We use the ALMA simulator to demonstrate that this effect can be observed in protoplanetary disks using spatially resolved ALMA images in two continuum bands. We explore the model dependence on the disk viscosity and find that the spectral index reveals the water snow line for a wide range of conditions, with opposite trends when the emission is optically thin rather than thick. If the disk viscosity is low (αvisc < 10‑3), the snow line produces a ringlike structure with a minimum at αmm ∼ 2 in the optically thick regime, possibly similar to what has been measured with ALMA in the innermost region of the HL Tau disk.

  15. Features of the behavior of solutions to a nonlinear dynamical system in the case of two-frequency parametric resonance

    NASA Astrophysics Data System (ADS)

    Koverga, A. Yu.; Kubyshkin, E. P.

    2013-05-01

    Two-frequency parametric resonance in nonlinear dynamical systems is studied by analyzing a delay differential equation with the delay obeying a two-frequency law, which arises in the mathematical simulation of some physical processes. It is shown that the system can exhibit chaotic oscillations (strange attractors) when the parametric excitation frequencies are both close to the doubled eigenfrequency of the system (degenerate case). The formation mechanisms of chaotic attractors are discussed, and the Lyapunov exponents and the Lyapunov dimension are calculated for them. If only one of the parametric excitation frequencies is close to the double eigenfrequency, a two-frequency regime occurs in the system.

  16. 3D magnetic resonance imaging as a non-invasive tool for investigating water-filled karst formations

    NASA Astrophysics Data System (ADS)

    Legchenko, A.; Ezersky, M.; Boucher, M.; Chevalier, A.; Vouillamoz, J.-M.

    2012-04-01

    Magnetic Resonance Sounding (MRS) is a geophysical technique developed for groundwater exploration. MRS can be used for reliable identification of karst aquifers because of the relaxation time of the magnetic resonance signal (T1) is longer for bulk water in karst caverns and channels (about 2 s) than for water in porous rock (few tens of ms). MRS is sensitive primary to groundwater volume but electrically conductive layers modify electromagnetic fields in the subsurface and thus may have an effect on MRS performance. Generally, the study of a karst requires a 3D field set-up and we developed a measuring procedure and interpretation software that makes it possible to image heterogeneous water-bearing geological formations down to about 80 m (3D-SNMR method). Numerical modeling results show that limited resolution of the method allows only identification of large karst formations. For example detectable karst should be larger than a few hundred cubic meters when karst is located close to the surface and a few thousand cubic meters when it is located at 60 m. Time Domain Electromagnetic method (TDEM) is known as an efficient tool for investigating electrical conductivity of rocks. TDEM results allow more accurate computing of the EM field in the subsurface and thus contribute for improving accuracy of MRS results. TDEM and 3D-SNMR methods were applied jointly in the Dead Sea coast of Israel (Nahal Hever South). The subsurface in this area is heterogeneous and composed of intercalated sand and clay layers over a salt rock, which is partly karstified. Groundwater is very saline, with a chloride concentration of 100-225 g/l thus rendering the resistivity of geological formations less than 1 ohm-m. We have shown numerically that under Dead Sea coast conditions, 3D-SNMR is able to detect and to locate the target within an error of a few tens of meters. In the investigated area (500×500 m2) our results reveal a very heterogeneous shallow aquifer that could be divided into

  17. Parametric Analysis of the Factors Controlling the Costs of Sedimentary Geothermal Systems - Preliminary Results (Poster)

    SciTech Connect

    Augustine, C.

    2013-10-01

    Parametric analysis of the factors controlling the costs of sedimentary geothermal systems was carried out using a modified version of the Geothermal Electricity Technology Evaluation Model (GETEM). The sedimentary system modeled assumed production from and injection into a single sedimentary formation.

  18. NEAR-INFRARED ADAPTIVE OPTICS IMAGING OF INFRARED LUMINOUS GALAXIES: THE BRIGHTEST CLUSTER MAGNITUDE-STAR FORMATION RATE RELATION

    SciTech Connect

    Randriamanakoto, Z.; Väisänen, P.; Escala, A.; Kankare, E.; Kotilainen, J.; Mattila, S.; Ryder, S.

    2013-10-01

    We have established a relation between the brightest super star cluster (SSC) magnitude in a galaxy and the host star formation rate (SFR) for the first time in the near-infrared (NIR). The data come from a statistical sample of ∼40 luminous IR galaxies (LIRGs) and starbursts utilizing K-band adaptive optics imaging. While expanding the observed relation to longer wavelengths, less affected by extinction effects, it also pushes to higher SFRs. The relation we find, M{sub K} ∼ –2.6log SFR, is similar to that derived previously in the optical and at lower SFRs. It does not, however, fit the optical relation with a single optical to NIR color conversion, suggesting systematic extinction and/or age effects. While the relation is broadly consistent with a size-of-sample explanation, we argue physical reasons for the relation are likely as well. In particular, the scatter in the relation is smaller than expected from pure random sampling strongly suggesting physical constraints. We also derive a quantifiable relation tying together cluster-internal effects and host SFR properties to possibly explain the observed brightest SSC magnitude versus SFR dependency.

  19. Teaching Image Formation by Extended Light Sources: The Use of a Model Derived from the History of Science

    NASA Astrophysics Data System (ADS)

    Dedes, Christos; Ravanis, Konstantinos

    2009-01-01

    This research, carried out in Greece on pupils aged 12-16, focuses on the transformation of their representations concerning light emission and image formation by extended light sources. The instructive process was carried out in two stages, each one having a different, distinct target set. During the first stage, the appropriate conflict conditions were created by contrasting the subjects’ predictions with the results of experimental situations inspired by the History of Science, with a view to destabilizing the pupils’ alternative representations. During the second stage, the experimental teaching intervention was carried out; it was based on the geometrical optics model and its parameters were derived from Kepler’s relevant historic experiment. For the duration of this process and within the framework of didactical interactions, an effort was made to reorganize initial limited representations and restructure them at the level of the accepted scientific model. The effectiveness of the intervention was evaluated two weeks later, using experimental tasks which had the same cognitive yet different empirical content with respect to the tasks conducted during the intervention. The results of the study showed that the majority of the subjects accepted the model of geometrical optics, that is, the pupils were able to correctly predict and adequately justify the experimental results based on the principle of punctiform light emission. Educational and research implications are discussed.

  20. Dirigent Protein-Mediated Lignan and Cyanogenic Glucoside Formation in Flax Seed: Integrated Omics and MALDI Mass Spectrometry Imaging.

    PubMed

    Dalisay, Doralyn S; Kim, Kye Won; Lee, Choonseok; Yang, Hong; Rübel, Oliver; Bowen, Benjamin P; Davin, Laurence B; Lewis, Norman G

    2015-06-26

    An integrated omics approach using genomics, transcriptomics, metabolomics (MALDI mass spectrometry imaging, MSI), and bioinformatics was employed to study spatiotemporal formation and deposition of health-protecting polymeric lignans and plant defense cyanogenic glucosides. Intact flax (Linum usitatissimum) capsules and seed tissues at different development stages were analyzed. Transcriptome analyses indicated distinct expression patterns of dirigent protein (DP) gene family members encoding (-)- and (+)-pinoresinol-forming DPs and their associated downstream metabolic processes, respectively, with the former expressed at early seed coat development stages. Genes encoding (+)-pinoresinol-forming DPs were, in contrast, expressed at later development stages. Recombinant DP expression and DP assays also unequivocally established their distinct stereoselective biochemical functions. Using MALDI MSI and ion mobility separation analyses, the pinoresinol downstream derivatives, secoisolariciresinol diglucoside (SDG) and SDG hydroxymethylglutaryl ester, were localized and detectable only in early seed coat development stages. SDG derivatives were then converted into higher molecular weight phenolics during seed coat maturation. By contrast, the plant defense cyanogenic glucosides, the monoglucosides linamarin/lotaustralin, were detected throughout the flax capsule, whereas diglucosides linustatin/neolinustatin only accumulated in endosperm and embryo tissues. A putative biosynthetic pathway to the cyanogens is proposed on the basis of transcriptome coexpression data. Localization of all metabolites was at ca. 20 μm resolution, with the web based tool OpenMSI enabling not only resolution enhancement but also an interactive system for real-time searching for any ion in the tissue under analysis. PMID:25981198

  1. 880 {mu}m IMAGING OF A TRANSITIONAL DISK IN UPPER SCORPIUS: HOLDOVER FROM THE ERA OF GIANT PLANET FORMATION?

    SciTech Connect

    Mathews, Geoffrey S.; Williams, Jonathan P.; Menard, Francois

    2012-07-01

    We present 880 {mu}m images of the transition disk around the star [PZ99] J160421.7-213028, a solar mass star in the nearby Upper Scorpius association. With a resolution down to 0.''34, we resolve the inner hole in this disk, and via model fitting to the visibilities and spectral energy distribution we determine both the structure of the outer region and the presence of sparse dust within the cavity. The disk contains {approx}0.1 M{sub Jup} of millimeter-emitting grains, with an inner disk edge of about 70 AU. The inner cavity contains a small amount of dust with a depleted surface density in a region extending from about 20 to 70 AU. Taking into account prior observations indicating little to no stellar accretion, the lack of a binary companion, and the presence of dust near {approx}0.1 AU, we determine that the most likely mechanism for the formation of this inner hole is the presence of one or more giant planets.

  2. Auditory scene analysis and sonified visual images. Does consonance negatively impact on object formation when using complex sonified stimuli?

    PubMed Central

    Brown, David J.; Simpson, Andrew J. R.; Proulx, Michael J.

    2015-01-01

    A critical task for the brain is the sensory representation and identification of perceptual objects in the world. When the visual sense is impaired, hearing and touch must take primary roles and in recent times compensatory techniques have been developed that employ the tactile or auditory system as a substitute for the visual system. Visual-to-auditory sonifications provide a complex, feature-based auditory representation that must be decoded and integrated into an object-based representation by the listener. However, we don’t yet know what role the auditory system plays in the object integration stage and whether the principles of auditory scene analysis apply. Here we used coarse sonified images in a two-tone discrimination task to test whether auditory feature-based representations of visual objects would be confounded when their features conflicted with the principles of auditory consonance. We found that listeners (N = 36) performed worse in an object recognition task when the auditory feature-based representation was harmonically consonant. We also found that this conflict was not negated with the provision of congruent audio–visual information. The findings suggest that early auditory processes of harmonic grouping dominate the object formation process and that the complexity of the signal, and additional sensory information have limited effect on this. PMID:26528202

  3. Auditory scene analysis and sonified visual images. Does consonance negatively impact on object formation when using complex sonified stimuli?

    PubMed

    Brown, David J; Simpson, Andrew J R; Proulx, Michael J

    2015-01-01

    A critical task for the brain is the sensory representation and identification of perceptual objects in the world. When the visual sense is impaired, hearing and touch must take primary roles and in recent times compensatory techniques have been developed that employ the tactile or auditory system as a substitute for the visual system. Visual-to-auditory sonifications provide a complex, feature-based auditory representation that must be decoded and integrated into an object-based representation by the listener. However, we don't yet know what role the auditory system plays in the object integration stage and whether the principles of auditory scene analysis apply. Here we used coarse sonified images in a two-tone discrimination task to test whether auditory feature-based representations of visual objects would be confounded when their features conflicted with the principles of auditory consonance. We found that listeners (N = 36) performed worse in an object recognition task when the auditory feature-based representation was harmonically consonant. We also found that this conflict was not negated with the provision of congruent audio-visual information. The findings suggest that early auditory processes of harmonic grouping dominate the object formation process and that the complexity of the signal, and additional sensory information have limited effect on this. PMID:26528202

  4. Understanding the formation of self-organized micro/nanostructures on metal surfaces from femtosecond laser ablation using stop-motion SEM imaging

    NASA Astrophysics Data System (ADS)

    Zuhlke, Craig A.; Anderson, Troy P.; Alexander, Dennis R.

    2014-03-01

    There are a growing number of unique self-organized micro/nanostructures created using femtosecond laser surface processing that have been demonstrated. Although researchers have provided insight into the formation processes for distinctive morphologies on specific materials, there is a need for a broader understanding of the physics behind the formation of a wide range of morphologies and what parameters affect their formation. In this work, the formation processes for mound structures on 316 stainless steel (SS) with growth above the original sample surface are studied. The formation process for the structures on 316 SS is compared to similar structures formed on nickel using the same technique. The structures are formed using 800 nm, 50 fs laser pulses, and are self-organized, meaning the structure dimensions are much smaller than the spot size of the pulses used to create them. The formation dynamics were studied using a stop-motion scanning electron microscope (SEM) technique, where the same location of an irradiated sample was imaged in the SEM at various pulse counts. The result is a series of images showing the developmental progress with increasing pulse counts. The structures form through a combination of fluid flow of the surface melt that results after irradiation, preferential ablation of the center of the pits between structures, and material/nanoparticle redeposition.

  5. High-performance fiber parametric oscillator for coherent Raman microscopy

    NASA Astrophysics Data System (ADS)

    Lamb, Erin S.; Lefrancois, Simon; Ji, Minbiao; Wadsworth, William J.; Xie, X. Sunney; Wise, Frank W.

    2014-02-01

    A compact, alignment-free, and inexpensive fiber source for coherent Raman spectroscopy would benefit the field considerably. We present a fiber optical parametric oscillator offering the best performance from a fiber-source to date. Pumping the oscillator with amplified pulses from a 1 μm fiber laser, we achieve widely spaced, narrowband pulses suitable for coherent anti-Stokes Raman scattering microscopy. The nearly transform limited, 2 ps signal pulses are generated through the use of normal dispersion four wave mixing in photonic crystal fiber, and can be tuned from 779-808 nm, limited by the tuning range of the seed laser. The average signal power can reach 180 mW (pulse energies up to 4 nJ). The long-wavelength idler field is resonant in the oscillator, and the use of a narrow bandpass filter in the feedback loop is critical for stable operation, as seen in both simulation and experiment. Due to the self-consistent nature of the oscillator, this source provides lower relative intensity noise on its output pulses than parametric amplifiers based on the same frequency conversion process. We present high quality images of mouse tissues taken with this source that exhibit an outstanding signal to noise ratio at top imaging speeds.

  6. Parametric eigenspace representation for visual learning and recognition

    NASA Astrophysics Data System (ADS)

    Murase, H.; Nayar, Shree K.

    1993-06-01

    We address the problem of automatically learning object models for recognition and pose estimation. In contrast to the traditional approach, we formulate the recognition problem as one of matching visual appearance rather than shape. The appearance of an object in a two- dimensional image depends on its shape, reflectance properties, pose in the scene, and the illumination conditions. While shape and reflectance are intrinsic properties of an object and are constant, pose and illumination vary from scene to scene. We present a new compact representation of object appearance that is parametrized by pose and illumination. For each object of interest, a large set of images is obtained by automatically varying pose and illumination. This large image set is compressed to obtain a low-dimensional subspace, called the eigenspace, in which the object is represented as a hypersurface. Given an unknown input image, the recognition system projects the image onto the eigenspace. The object is recognized based on the hypersurface it lies on. The exact position of the projection on the hypersurface determines the object's pose in the image. We have conducted experiments using several objects with complex appearance characteristics. We conclude with a discussion on various issues related to the learning and recognition techniques proposed in the paper.

  7. Multi-parametric studies of electrically-driven flyer plates

    NASA Astrophysics Data System (ADS)

    Neal, William; Bowden, Michael; Explosive Trains; Devices Collaboration

    2015-06-01

    Exploding foil initiator (EFI) detonators function by the acceleration of a flyer plate, by the electrical explosion of a metallic bridge, into an explosive pellet. The length, and therefore time, scales of this shock initation process is dominated by the magnitude and duration of the imparted shock pulse. To predict the dynamics of this initiation, it is critical to further understand the velocity, shape and thickness of this flyer plate. This study uses multi-parametric diagnostics to investigate the geometry and velocity of the flyer plate upon impact including the imparted electrical energy: photon Doppler velocimetry (PDV), dual axis imaging, time-resolved impact imaging, voltage and current. The investigation challenges the validity of traditional assumptions about the state of the flyer plate at impact and discusses the improved understanding of the process.

  8. Generalized parametrization dependence in quantum gravity

    NASA Astrophysics Data System (ADS)

    Gies, Holger; Knorr, Benjamin; Lippoldt, Stefan

    2015-10-01

    We critically examine the gauge and field-parametrization dependence of renormalization group flows in the vicinity of non-Gaußian fixed points in quantum gravity. While physical observables are independent of such calculational specifications, the construction of quantum gravity field theories typically relies on off-shell quantities such as β functions and generating functionals and thus face potential stability issues with regard to such generalized parametrizations. We analyze a two-parameter class of covariant gauge conditions, the role of momentum-dependent field rescalings and a class of field parametrizations. Using the product of Newton and cosmological constant as an indicator, the principle of minimum sensitivity identifies stationary points in this parametrization space which show a remarkable insensitivity to the parametrization. In the most insensitive cases, the quantized gravity system exhibits a non-Gaußian UV stable fixed point, lending further support to asymptotically safe quantum gravity. One of the stationary points facilitates an analytical determination of the quantum gravity phase diagram and features ultraviolet and infrared complete RG trajectories with a classical regime.

  9. Parametric excitation of magnetization by electric field

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Jin; Lee, Han Kyu; Verba, Roman; Katine, Jordan; Tiberkevich, Vasil; Slavin, Andrei; Barsukov, Igor; Krivorotov, Ilya

    Manipulation of magnetization by electric field is of primary importance for development of low-power spintronic devices. We present the first experimental demonstration of parametric generation of magnetic oscillations by electric field. We realize the parametric generation in CoFeB/MgO/SAF nanoscale magnetic tunnel junctions (MTJs). The magnetization of the free layer is perpendicular to the sample plane while the magnetizations of the synthetic antiferromagnet (SAF) lie in the plane. We apply microwave voltage to the MTJ at 2 f, where f is the ferromagnetic resonance frequency of the free layer. In this configuration, the oscillations can only be driven parametrically via voltage-controlled magnetic anisotropy (VCMA) whereby electric field across the MgO barrier modulates the free layer anisotropy. The parametrically driven oscillations are detected via microwave voltage from the MTJ near f and show resonant character, observed only in a narrow range of drive frequencies near 2 f. The excitation also exhibits a well-pronounced threshold drive voltage of approximately 0.1 Volts. Our work demonstrates a low threshold for parametric excitation of magnetization by VCMA that holds promise for the development of energy-efficient nanoscale spin wave devices.

  10. Optimization of noncollinear optical parametric amplification

    NASA Astrophysics Data System (ADS)

    Schimpf, D. N.; Rothardt, J.; Limpert, J.; Tünnermann, A.

    2007-02-01

    Noncollinearly phase-matched optical parametric amplifiers (NOPAs) - pumped with the green light of a frequency doubled Yb-doped fiber-amplifier system 1, 2 - permit convenient generation of ultrashort pulses in the visible (VIS) and near infrared (NIR) 3. The broad bandwidth of the parametric gain via the noncollinear pump configuration allows amplification of few-cycle optical pulses when seeded with a spectrally flat, re-compressible signal. The short pulses tunable over a wide region in the visible permit transcend of frontiers in physics and lifescience. For instance, the resulting high temporal resolution is of significance for many spectroscopic techniques. Furthermore, the high magnitudes of the peak-powers of the produced pulses allow research in high-field physics. To understand the demands of noncollinear optical parametric amplification using a fiber pump source, it is important to investigate this configuration in detail 4. An analysis provides not only insight into the parametric process but also determines an optimal choice of experimental parameters for the objective. Here, the intention is to design a configuration which yields the shortest possible temporal pulse. As a consequence of this analysis, the experimental setup could be optimized. A number of aspects of optical parametric amplifier performance have been treated analytically and computationally 5, but these do not fully cover the situation under consideration here.

  11. Parametric resonance in tunable superconducting cavities

    NASA Astrophysics Data System (ADS)

    Wustmann, Waltraut; Shumeiko, Vitaly

    2013-05-01

    We develop a theory of parametric resonance in tunable superconducting cavities. The nonlinearity introduced by the superconducting quantum interference device (SQUID) attached to the cavity and damping due to connection of the cavity to a transmission line are taken into consideration. We study in detail the nonlinear classical dynamics of the cavity field below and above the parametric threshold for the degenerate parametric resonance, featuring regimes of multistability and parametric radiation. We investigate the phase-sensitive amplification of external signals on resonance, as well as amplification of detuned signals, and relate the amplifier performance to that of linear parametric amplifiers. We also discuss applications of the device for dispersive qubit readout. Beyond the classical response of the cavity, we investigate small quantum fluctuations around the amplified classical signals. We evaluate the noise power spectrum both for the internal field in the cavity and the output field. Other quantum-statistical properties of the noise are addressed such as squeezing spectra, second-order coherence, and two-mode entanglement.

  12. Parametric instabilities in the LCGT arm cavity

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Uchiyama, T.; Miyoki, S.; Ohashi, M.; Kuroda, K.; Numata, K.

    2008-07-01

    We evaluated the parametric instabilities of LCGT (Japanese interferometric gravitational wave detector project) arm cavity. The number of unstable modes of LCGT is 10-times smaller than that of Advanced LIGO (USA). Since the strength of the instabilities of LCGT depends on the mirror curvature more weakly than that of Advanced LIGO, the requirement of the mirror curvature accuracy is easier to be achieved. The difference in the parametric instabilities between LCGT and Advanced LIGO is because of the thermal noise reduction methods (LCGT, cooling sapphire mirrors; Advanced LIGO, fused silica mirrors with larger laser beams), which are the main strategies of the projects. Elastic Q reduction by the barrel surface (0.2 mm thickness Ta2O5) coating is effective to suppress instabilities in the LCGT arm cavity. Therefore, the cryogenic interferometer is a smart solution for the parametric instabilities in addition to thermal noise and thermal lensing.

  13. Ku band low noise parametric amplifier

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A low noise, K sub u-band, parametric amplifier (paramp) was developed. The unit is a spacecraft-qualifiable, prototype, parametric amplifier for eventual application in the shuttle orbiter. The amplifier was required to have a noise temperature of less than 150 K. A noise temperature of less than 120 K at a gain level of 17 db was achieved. A 3-db bandwidth in excess of 350 MHz was attained, while deviation from phase linearity of about + or - 1 degree over 50 MHz was achieved. The paramp operates within specification over an ambient temperature range of -5 C to +50 C. The performance requirements and the operation of the K sub u-band parametric amplifier system are described. The final test results are also given.

  14. Modeling personnel turnover in the parametric organization

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1991-01-01

    A model is developed for simulating the dynamics of a newly formed organization, credible during all phases of organizational development. The model development process is broken down into the activities of determining the tasks required for parametric cost analysis (PCA), determining the skills required for each PCA task, determining the skills available in the applicant marketplace, determining the structure of the model, implementing the model, and testing it. The model, parameterized by the likelihood of job function transition, has demonstrated by the capability to represent the transition of personnel across functional boundaries within a parametric organization using a linear dynamical system, and the ability to predict required staffing profiles to meet functional needs at the desired time. The model can be extended by revisions of the state and transition structure to provide refinements in functional definition for the parametric and extended organization.

  15. Parametric resonance in nanoelectromechanical single electron transistors.

    PubMed

    Midtvedt, Daniel; Tarakanov, Yury; Kinaret, Jari

    2011-04-13

    We show that the coupling between single-electron charging and mechanical motion in a nanoelectromechanical single-electron transistor can be utilized in a novel parametric actuation scheme. This scheme, which relies on a periodic modulation of the mechanical resonance frequency through an alternating source-drain voltage, leads to a parametric instability and emergence of mechanical vibrations in a limited range of modulation amplitudes. Remarkably, the frequency range where instability occurs and the maximum oscillation amplitude, depend weakly on the damping in the system. We also show that a weak parametric modulation increases the effective quality factor and amplifies the system's response to the conventional actuation that exploits an AC gate signal. PMID:21375279

  16. Parametric analysis of ATM solar array.

    NASA Technical Reports Server (NTRS)

    Singh, B. K.; Adkisson, W. B.

    1973-01-01

    The paper discusses the methods used for the calculation of ATM solar array performance characteristics and provides the parametric analysis of solar panels used in SKYLAB. To predict the solar array performance under conditions other than test conditions, a mathematical model has been developed. Four computer programs have been used to convert the solar simulator test data to the parametric curves. The first performs module summations, the second determines average solar cell characteristics which will cause a mathematical model to generate a curve matching the test data, the third is a polynomial fit program which determines the polynomial equations for the solar cell characteristics versus temperature, and the fourth program uses the polynomial coefficients generated by the polynomial curve fit program to generate the parametric data.

  17. Parametric instabilities in helicon-produced plasmas

    SciTech Connect

    Aliev, Yu.M.; Kraemer, M.

    2005-07-15

    Parametric instabilities arising in the pump field of a helicon wave are analyzed for typical parameters of helicon-produced plasmas. The pump wavenumber parallel to the magnetic field is assumed to be finite according to recent experimental findings obtained on a high-density helicon discharge. The parametric decay of the helicon pump wave into ion-sound and Trivelpiece-Gould waves is investigated. The approach takes into account that the damping rate of the Trivelpiece-Gould wave is generally much higher than the ion-sound frequency. The theoretical results are in agreement with the growth rates and thresholds of this instability, as well as the dispersion properties of the decay waves observed in helicon experiments. Estimates of the level of the decay parametric turbulence turn out to be sufficiently high to account for the strong absorption observed in helicon-produced plasmas.

  18. Qubit readout with a directional parametric amplifier

    NASA Astrophysics Data System (ADS)

    Sliwa, K. M.; Abdo, B.; Narla, A.; Shankar, S.; Hatridge, M.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2014-03-01

    Josephson junction based quantum limited parametric amplifiers play an essential role in superconducting qubit measurements. These measurements necessitate circulators and isolators between the amplifier and qubit to add directionality and/or isolation. Unfortunately, this extra hardware limits both quantum measurement efficiency and experimental scalability. Here we present a quantum-limited Josephson-junction-based directional amplifier (JDA) based on a novel coupling between two nominally identical Josephson parametric converters (JPCs). The device achieves a forward gain of 11 dB with a 15 MHz dynamical bandwidth, but higher gains are possible at the expense of bandwidth. We also present measurements of a transmon qubit made with the JDA, and show minimal measurement back-action despite the absence of any isolator or circulator before the amplifier. These results provide a first step toward realizing on-chip integration of qubits and parametric amplifiers. Work supported by: IARPA, ARO, and NSF.

  19. Quantitative evaluation of PET image using event information bootstrap

    NASA Astrophysics Data System (ADS)

    Song, Hankyeol; Kwak, Shin Hye; Kim, Kyeong Min; Kang, Joo Hyun; Chung, Yong Hyun; Woo, Sang-Keun

    2016-04-01

    The purpose of this study was to enhance the effect in the PET image quality according to event bootstrap of small animal PET data. In order to investigate the time difference condition, realigned sinograms were generated from randomly sampled data set using bootstrap. List-mode data was obtained from small animal PET scanner for Ge-68 30 sec, Y-90 20 min and Y-90 60 min. PET image was reconstructed by Ordered Subset Expectation Maximization(OSEM) 2D with the list-mode format. Image analysis was investigated by Signal to Noise Ratio(SNR) of Ge-68 and Y-90 image. Non-parametric resampled PET image SNR percent change for the Ge-68 30 sec, Y-90 60 min, and Y-90 20 min was 1.69 %, 7.03 %, and 4.78 %, respectively. SNR percent change of non-parametric resampled PET image with time difference condition was 1.08 % for the Ge-68 30 sec, 6.74 % for the Y-90 60 min and 10.94 % for the Y-90 29 min. The result indicated that the bootstrap with time difference condition had a potential to improve a noisy Y-90 PET image quality. This method should be expected to reduce Y-90 PET measurement time and to enhance its accuracy.

  20. General formulation for wavefront curvature correction in polar-formatted spotlight-mode SAR images using space-variant post-filtering

    SciTech Connect

    Doren, N.E.; Jakowatz, C.V. Jr.; Wahl, D.E.; Thompson, P.A.

    1997-10-01

    In this paper, the authors introduce a general formulation for wavefront curvature correction in spotlight-mode SAR images formed using the polar-formatting algorithm (PFA). This correction is achieved through the use of an efficient, image domain space-variant filter which is applied as a post-processing step to PFA. Wavefront curvature defocus effects occur in certain SAR collection modes that include imaging at close range, using low center frequency, and/or imaging very large scenes. The formulation is general in that it corrects for wavefront curvature in roadside as well as squinted collection modes, with no computational penalty for correcting squint-mode images. Algorithms such as the range migration technique (also known as seismic migration), and a recent enhancement known as frequency domain replication, FReD, have been developed to accommodate these wavefront curvature effects. However, they exhibit no clear computational advantage over space-variant post-filtering in conjunction with polar formatting (PF2). This paper will present the basic concepts of the formulation, and will provide computer results demonstrating the capabilities of space-variant post-filtering.