Science.gov

Sample records for parathyroid hormone vitamin

  1. Parathyroid Hormone, Calcitonin, and Vitamin D

    NASA Technical Reports Server (NTRS)

    Potts, J. T.

    1972-01-01

    Analyses of secretion of parathyroid hormone during tests of stimulation and suppression of hormone-secretory activity using infusions of EDTA and calcium, respectively, have established that, in contrast to previous views, secretion of the hormone is not autonomous in many patients that have adenomatous hyperparathyroidism, but is responsive to changes in blood-calcium concentration. These findings have led to a new understanding of the pathophysiology of hormone production in hyperparathy-roidism. A related application of the diagnostic use of the radioimmunoassay is the preoperative localization of parathyroid tumors and the distinction between adenomas and chief-cell hyperplasia. Work involving catheterization and radioimmunoassay of blood samples obtained from the subclavin and innominate veins and the venae cavae, led to localization in a high percentage of patients. However, this procedure has been adopted recently to detect hormone concentration in the small veins directly draining the parathyroid glands.

  2. Vitamin D metabolites and bioactive parathyroid hormone levels during Spacelab 2

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily R.; Schnoes, Heinrich K.; Deluca, Hector F.; Phelps, Mary E.; Klein, Robert F.

    1988-01-01

    The effect of an 8-day space flight (Spacelab mission 2) on plasma levels of the vitamin D and parathyroid hormones is investigated experimentally in four crew members. The results are presented in tables and graphs and briefly characterized. Parathyroid hormone levels remained normal throughout the flight, whereas vitamin D hormone levels increased significantly on day 1 but returned to normal by day 7.

  3. The control of calcium metabolism by parathyroid hormone, calcitonin and vitamin D

    NASA Technical Reports Server (NTRS)

    Potts, J. T., Jr.

    1976-01-01

    Advances in analysis of chemistry and physiology of parathyroid hormone, calcitonin, and Vitamin D are described along with development of techniques in radioassay methods. Emphasis is placed on assessment of normal and abnormal patterns of secretion of these hormones in specific relation to the physiological adaptations of weightlessness and space flight. Related diseases that involve perturbations in normal skeletal and calcium homeostasis are also considered.

  4. Premenstrual Symptoms in Dysmenorrheic College Students: Prevalence and Relation to Vitamin D and Parathyroid Hormone Levels

    PubMed Central

    Obeidat, Bayan A.; Alchalabi, Haifa A.; Abdul-Razzak, Khalid K.; Al-Farras, Mudhaffar I.

    2012-01-01

    Objectives: To determine the prevalence of premenstrual symptoms (PMS) due to primary dysmenorrhea among a sample of university female students, and to explore possible association with vitamin D and parathyroid (PTH) levels, as well as frequency of consumption of dairy products. Design: A cross-sectional study. Setting: One Jordanian university. Subjects: A total of 177 female students aged between 18 and 24 years who experienced primary dysmenorrhea participated in the study and completed a self administered questionnaire to collect information concerning demographics, menstruation- related information, associated specified premenstrual symptoms, and consumption of dairy products. Plasma 25-hydroxyvitamin vitamin D level and intact parathyroid hormone level were measured. Results: Of the 177 participants 91.5% had two or more symptoms among which fatigue, mood swings, anxiety, abdominal bloating, and depression were the most prevalent symptoms. There was no evident association between presence of symptoms and vitamin D status, PTH level or dairy products consumption. Headaches and social withdrawal were significantly lower in those women who consumed high amounts of dairy products. Conclusion: Premenstrual symptoms are very common in young women with primary dysmenorrhea. PMS has no relation to levels of vitamin D, parathyroid hormone or dairy products consumption. Headache and social withdrawal may be affected by dairy product consumption. PMID:23202842

  5. Parathyroid hormone, calcitonin, and vitamin D 1974: Present status of physiological studies and analysis of calcium homeostasis

    NASA Technical Reports Server (NTRS)

    Potts, J. T., Jr.; Swenson, K. G.

    1975-01-01

    The role of parathyroid hormone, calcitonin, and vitamin D in the control of calcium and bone metabolism was studied. Particular emphasis was placed on the physiological adaptation to weightlessness and, as a potential model for this purpose, on the immobilization characteristic of space flight or prolonged bed rest. The biosynthesis, control of secretion, and metabolism of these hormonal agents is considered.

  6. Bisphosphonates, vitamin D, parathyroid hormone, and osteonecrosis of the jaw. Could there be a missing link?

    PubMed Central

    Leizaola-Cardesa, Ignacio-Osoitz; Aguilar-Salvatierra, Antonio; Gonzalez-Jaranay, Maximino; Moreu, Gerardo; Sala-Romero, María-José

    2016-01-01

    It is estimated that over 190 million bisphosphonates have been prescribed worldwide. But this drug can produce adverse effects, of which osteonecrosis of the jaw and severe hypocalcemia are the most serious. It is evident that bisphosphonate administration affects multiple and diverse biochemical mediators related to bone metabolism. This review of literature investigates four basic parameters in patients treated with bisphosphonates - parathyroid hormone (PTH), bisphosphonates, vitamin D, calcium, and jaw osteonecrosis - which are fundamental for assessing bone metabolism and so the efficacy and correct use of the drug. The imbalances generated by vitamin D and calcium deficiencies, together with their multiple systemic repercussions, have been widely researched but the outcomes of these imbalances in relation to bisphosphonate administration are not well known, and some research has indicated that they may be associated with osteonecrosis of the jaw (ONJ). The present review set out to explain the functioning of bone metabolism, the importance of different chemical mediators, the imbalances produced by incorrect use of this drug, in order to forewarn against the possible relation of these parameters with ONJ, whose physiopathology remains unknown. Medical and dental clinics should keep detailed anamneses of the use of vitamin D and calcium supplements, as it is of vital importance to maintain their correct levels in blood, given that these are related to ONJ as well as other adverse effects; this procedure is also necessary in order to ensure the correct use of the drug. Key words:Bisphosphonate-related osteonecrosis of the jaw, vitamin D, parathyroid hor PMID:26827062

  7. [Osteoporosis in Rheumatoid Arthritis: role of the vitamin D/parathyroid hormone system].

    PubMed

    Bellan, Mattia; Pirisi, Mario; Sainaghi, Pier Paolo

    2015-01-01

    Osteoporosis is a well-established extra-articular feature of Rheumatoid Arthritis (RA). Systemic inflammation seems to play a crucial role in causing an alteration of multiple homeostatic systems implied in bone health, such as the RANK/RANKL/Osteoprotegerin and Wnt/β catenin pathways; several other causal factors have been called into question, including the chronic use of corticosteroids. Since vitamin D exerts important immune-regulatory roles, it has been claimed that derangement of the vitamin D/parathyroid hormone (PTH) system, a well-known determinant of bone health, may play a pathogenic role in autoimmunity; animal models and clinical data support this hypothesis. Furthermore, RA patients seem to be relatively refractory to vitamin D-induced PTH suppression. Therefore, the link between RA and osteoporosis might in part be due to alterations in the vitamin D/PTH system. A better understanding of the pathophysiology of this system may be crucial to prevent and cure osteoporosis in patients with inflammatory/autoimmune diseases. A major clinical correlate of the strict cooperation and interdependence between vitamin D and PTH is that correction of the vitamin D deficiency, at least in autoimmune diseases, should be targeted to PTH suppression. PMID:25582993

  8. Vitamin D3 differentially regulates parathyroid hormone/parathyroid hormone-related peptide receptor expression in bone and cartilage

    PubMed Central

    Amizuka, Norio; Kwan, Mei Yee; Goltzman, David; Ozawa, Hidehiro; White, John H.

    1999-01-01

    Transcription of the mouse parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptor (PTHR) gene is controlled by promoters P1 and P2. We performed transcript-specific in situ hybridization and found that P2 is the predominant promoter controlling PTHR gene expression in bone and cartilage. Treatment with 1?,25-dihydroxyvitamin D3 (D3) in vivo specifically downregulated P2-specific transcripts in osteoblasts, but not in chondrocytes, under conditions where it enhanced bone resorption. Treatment of the osteoblastic cell line MC3T3-E1 with D3 in vitro reduced expression of both P2-specific transcripts and PTHR protein. This effect was not blocked by cycloheximide, indicating that D3 inhibits PTHR expression by downregulating transcription of the P2 promoter. A similar inhibitory effect of D3 was not observed in the chondrocytic cell line CFK2. Gene-transfer experiments showed that P2, but not P1, is active in both MC3T3-E1 and CFK2 cells, and that D3 specifically inhibited P2 promoter activity in MC3T3-E1, but not in CFK2 cells. Inhibition of P2 activity by D3 required promoter sequences lying more that 1.6 kb upstream of the P2 transcription start site. Thus, the P2 promoter controls PTHR gene expression in both osteoblasts and chondrocytes. D3 downregulates PTHR gene transcription in a cell-specific manner by inhibiting P2 promoter activity in osteoblasts, but not in chondrocytes. PMID:9927498

  9. Regulation of parathyroid hormone gene expression by hypocalcemia, hypercalcemia, and vitamin D in the rat.

    PubMed Central

    Naveh-Many, T; Silver, J

    1990-01-01

    In vivo in the rat 1,25(OH)2D3 decreases and a low calcium increases PTH mRNA levels. We now report the effect of 3 and 8 wk of changes in dietary vitamin D and calcium on PTH mRNA levels. PTH mRNA levels were increased by 3 wk of calcium deficiency (five times), a vitamin D-deficient diet (two times), and combined deficiency (10 times), but not changed by high calcium. Vitamin D-deficient-diet rats' PTH mRNA did not decrease after a single large dose of 1,25(OH)2D3, but did decrease partially after repeated daily doses of 1,25(OH)2D3. Rats after a vitamin D-, calcium-deficient (-D-Ca) diet did not respond to changes in serum calcium at 1 h. Flow cytometry of isolated cells from parathyroid-thyroid tissue separated the smaller parathyroid from the larger thyroid cells and allowed an analysis of parathyroid cell number. In normal vitamin D/normal calcium (NDNCa) rats the parathyroid cells were 24.7 +/- 3.4% (n = 6) of the total cell number, whereas in -D-Ca rats they were 41.8 +/- 6.6% (n = 6) (P less than 0.05). That is, -D-Ca rats had 1.7 times the number of cells, whereas they had 10 times the amount of PTH mRNA, indicating the major contribution (6 times) of increased PTH gene expression per cell. Moreover, a calcium-deficient, more so than a vitamin D-deficient diet, amplifies the expression of the PTH gene, and vitamin D is necessary for an intact response of PTH mRNA to 1,25(OH)2D3 or calcium. Images PMID:2212016

  10. Temporal Relationship between Vitamin D Status and Parathyroid Hormone in the United States

    PubMed Central

    Kroll, Martin H.; Bi, Caixia; Garber, Carl C.; Kaufman, Harvey W.; Liu, Dungang; Caston-Balderrama, Anne; Zhang, Ke; Clarke, Nigel; Xie, Minge; Reitz, Richard E.; Suffin, Stephen C.; Holick, Michael F.

    2015-01-01

    Background Interpretation of parathyroid hormone (iPTH) requires knowledge of vitamin D status that is influenced by season. Objective Characterize the temporal relationship between 25-hydroxyvitamin D3 levels [25(OH)D3] and intact iPTH for several seasons, by gender and latitude in the U.S. and relate 25-hydrovitamin D2 [25(OH)D2] levels with PTH levels and total 25(OH)D levels. Method We retrospectively determined population weekly-mean concentrations of unpaired [25(OH)D2 and 25(OH)D3] and iPTH using 3.8 million laboratory results of adults. The 25(OH)D3 and iPTH distributions were normalized and the means fit with a sinusoidal function for both gender and latitudes: North >40, Central 3240 and South <32 degrees. We analyzed PTH and total 25(OH)D separately in samples with detectable 25(OH)D2 (?4 ng/mL). Findings Seasonal variation was observed for all genders and latitudes. 25(OH)D3 peaks occurred in September and troughs in March. iPTH levels showed an inverted pattern of peaks and troughs relative to 25(OH)D3, with a delay of 4 weeks. Vitamin D deficiency and insufficiency was common (33% <20 ng/mL; 60% <30 ng/mL) as was elevated iPTH levels (33%>65 pg/mL). The percentage of patients deficient in 25(OH)D3 seasonally varied from 21% to 48% and the percentage with elevated iPTH reciprocally varied from 28% to 38%. Patients with detectable 25(OH)D2 had higher PTH levels and 57% of the samples with a total 25(OH)D > 50 ng/mL had detectable 25(OH)D2. Interpretation 25(OH)D3 and iPTH levels vary in a sinusoidal pattern throughout the year, even in vitamin D2 treated patients; 25(OH)D3, being higher in the summer and lower in the winter months, with iPTH showing the reverse pattern. A large percentage of the tested population showed vitamin D deficiency and secondary hyperparathyroidism. These observations held across three latitudinal regions, both genders, multiple-years, and in the presence or absence of detectable 25(OH)D2, and thus are applicable for patient care. PMID:25738588

  11. Evidence of associations between feto-maternal vitamin D status, cord parathyroid hormone and bone-specific alkaline phosphatase, and newborn whole body bone mineral content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In spite of a high prevalence of vitamin D inadequacy in pregnant women and neonates, relationships among vitamin D status [25(OH)D], parathyroid hormone (PTH), bone specific alkaline phosphatase (BALP), and whole body bone mineral content (WBBMC) in the newborn are poorly characterized. The purpose...

  12. Prospective associations of vitamin D status with ?-cell function, insulin sensitivity, and glycemia: the impact of parathyroid hormone status.

    PubMed

    Kramer, Caroline K; Swaminathan, Balakumar; Hanley, Anthony J; Connelly, Philip W; Sermer, Mathew; Zinman, Bernard; Retnakaran, Ravi

    2014-11-01

    Previous studies have yielded conflicting findings on the relationship between low vitamin D (25-OH-D) and impaired glucose homeostasis. In this context, we hypothesized that combined assessment of 25-OH-D with its regulator parathyroid hormone (PTH) may be required for optimal evaluation of the impact of vitamin D status on glucose metabolism. Thus, we evaluated the prospective associations of 25-OH-D and PTH at 3 months postpartum with ?-cell function (Insulin Secretion-Sensitivity Index-2 [ISSI-2]), insulin sensitivity (Matsuda index), and glycemia at 12 months postpartum in 494 women undergoing serial metabolic characterization. Notably, 32% of those with prediabetes/diabetes mellitus at 12 months postpartum had both vitamin D deficiency and PTH in the highest tertile at 3 months postpartum. On multiple-adjusted linear regression analyses, vitamin D deficiency/insufficiency with PTH in the highest tertile at 3 months independently predicted poorer ?-cell function (P = 0.03) and insulin sensitivity (P = 0.01) and increased fasting (P = 0.03) and 2-h glucose (P = 0.002) at 12 months postpartum. In contrast, vitamin D deficiency/insufficiency with lower PTH did not predict these outcomes. In conclusion, only vitamin D deficiency/insufficiency with increased PTH is an independent predictor of ?-cell dysfunction, insulin resistance, and glycemia, highlighting the need for consideration of the PTH/25-OH-D axis when studying the impact of vitamin D status on glucose homeostasis. PMID:24875346

  13. Aluminum, parathyroid hormone, and osteomalacia

    SciTech Connect

    Burnatowska-Hledin, M.A.; Kaiser, L.; Mayor, G.H.

    1983-01-01

    Aluminum exposure in man is unavoidable. The occurrence of dialysis dementia, vitamin D-resistant osteomalacia, and hypochromic microcytic anemia in dialysis patients underscores the potential for aluminum toxicity. Although exposure via dialysate and hyperalimentation leads to significant tissue aluminum accumulation, the ubiquitous occurrence of aluminum and the severe pathology associated with large aluminum burdens suggest that smaller exposures via the gastrointestinal tract and lungs could represent an important, though largely unrecognized, public health problem. It is clear that some aluminum absorption occurs with the ingestion of small amounts of aluminum in the diet and medicines, and even greater aluminum absorption is seen in individuals consuming large amounts of aluminum present in antacids. Aluminum absorption is enhanced in the presence of elevated circulating parathyroid hormone. In addition, elevated PTH leads to the preferential deposition of aluminum in brain and bone. Consequently, PTH is likely to be involved in the pathogenesis of toxicities in those organs. PTH excess also seems to lead to the deposition of aluminum in the parathyroid gland. The in vitro demonstration that aluminum inhibits parathyroid hormone release is consistent with the findings of a euparathyroid state in dialysis patients with aluminum related vitamin D-resistant osteomalacia. Nevertheless, it seems likely that hyperparathyroidism is at least initially involved in the pathogenesis of aluminum neurotoxicity and osteomalacia; the increases in tissue aluminum stores are followed by suppression of parathyroid hormone release, which is required for the evolution of osteomalacia. Impaired renal function is not a prerequisite for increased tissue aluminum burdens, nor for aluminum-related organ toxicity. Consequently, it is likely that these diseases will be observed in populations other than those with chronic renal disease.

  14. Vitamin D3 decreases parathyroid hormone in HIV-infected youth being treated with tenofovir: a randomized, placebo-controlled trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To determine the effect of vitamin D (VITD) supplementation on tubular reabsorption of phosphate (TRP), serum parathyroid hormone (PTH), bone alkaline phosphatase (BAP), and C telopeptide (CTX) in HIV-infected youth receiving and not receiving tenofovir-containing cART (TDF). Design: Ra...

  15. In serum, higher parathyroid hormone but not lower vitamin D is associated with oral squamous cell carcinoma

    PubMed Central

    Zhang, H.; Lu, H.; Shrestha, C.; Feng, Y.; Li, Y.; Peng, J.; Li, Y.; Xie, Z.

    2015-01-01

    Introduction Vitamin D and calcium are known to regulate differentiation and proliferation of keratinocytes; they might potentially have a role in suppressing carcinogenesis in squamous epithelium. Serum parathyroid hormone (pth) is a sensitive indicator of calcium and vitamin D deficiency, and 25-hydroxyvitamin D [25(OH)D] is an established marker of vitamin D status. Methods To determine whether levels of 25(OH)D, calcium, or pth in serum are associated with oral squamous cell carcinoma (oscc), we examined those parameters in serum collected from 70 patients with oscc and from an equal number of matched control subjects. Results The results showed that intact pth was significantly higher in serum from oscc patients than in serum from control subjects. However, we observed no significant differences in 25(OH)D or calcium in serum from oscc patients and from control subjects. Conclusions We conclude that higher serum pth, but not lower serum vitamin D or calcium, is associated with oscc. PMID:26300676

  16. Calcium, Parathyroid Hormone, and Vitamin D: Major Determinants of Chronic Pain in Hemodialysis Patients

    PubMed Central

    Haggiag, Isabelle; Os, Pnina; Bernheim, Jacques

    2009-01-01

    Background and objectives: Pain is a frequent complaint of hemodialysis (HD) patients, yet information regarding its causes and frequency is relatively scarce. The aim of this study was to evaluate the frequency and possible causes of chronic pain in patients who are on long-term HD. Design, setting, participants, & measurements: We prospectively enrolled 100 patients who were undergoing maintenance HD for at least 3 mo. Pain was evaluated using the Brief Pain Inventory. Data collected on each participant included age, gender, ethnic origin, body mass index, smoking habits, time on dialysis, type of blood access, comorbidities, and biochemical and hematologic parameters. Results: The average age was 64.5 yr; the average time on dialysis 40.4 mo. Forty-five patients were male. Thirty-one participants were of Arabic origin. Fifty-three patients had diabetes, 36 of whom had diabetic retinopathy. Although 51 patients experienced chronic pain, only 19.6% described the pain as severe. Musculoskeletal pain, neuropathic pain, and headache were the most prevalent forms of pain. The presence of diabetic retinopathy and neuropathy (but not diabetes per se) and levels of intact parathyroid hormone, calcium, and calcitriol (but not 25-hydroxyvitamin D3) differed significantly between those who experienced chronic pain and those who did not. On a logistic regression model, higher serum calcium levels and intact parathyroid hormone levels >250 pg/ml were independently associated with chronic pain, as well as the presence of diabetic retinopathy. Calcitriol had a marginal effect. Conclusions: Disturbed mineral metabolism is strongly associated with chronic pain in long-term HD patients, along with microangiopathy. PMID:19578003

  17. Determinants of parathyroid hormone response to vitamin D supplementation: a systematic review and meta-analysis of randomised controlled trials.

    PubMed

    Moslehi, Nazanin; Shab-Bidar, Sakineh; Mirmiran, Parvin; Hosseinpanah, Farhad; Azizi, Fereidoun

    2015-11-14

    This systematic review aimed to assess the determinants of the parathyroid hormone (PTH) level response to vitamin D supplementation. We searched Medline, Google Scholar and the reference lists of previous reviews. All randomised controlled trials (RCT) on vitamin D supplementation that involved apparently healthy human subjects with a report of PTH were selected. Potential studies were screened independently and in duplicate. Results are summarised as mean differences with 95% confidence intervals. Quality assessment, subgroup analysis, meta-analysis and meta-regression analysis were carried out. Thirty-three vitamin D supplementation RCT were included. Vitamin D supplementation significantly raised circulating 25-hydroxyvitamin D (25(OH)D) with significant heterogeneity among studies with a pooled mean difference (PMD) of 15.5 ng/ml (test for heterogeneity: P<0001 and I 2=973%). Vitamin D supplementation significantly reduced PTH level with PMD of -80 pg/ml, with significant heterogeneity ((test for heterogeneity: P<0001) and the I 2 value was 973%). In the subgroup analyses, the optimum treatment effect for PTH was observed with Ca doses of 600-1200 mg/d (-2248 pg/ml), after the duration of a >12-month trial (-1836 pg/ml), with low baseline 25(OH)D concentration of <20 ng/ml (-1670 pg/ml) and in those who were overweight and obese (-1811 pg/ml). Despite the present meta-analysis being hindered by some limitations, it provided some interesting evidence, suggesting that suppression of PTH level needs higher vitamin D intake (75 ?g/d) than the current recommendations and longer durations (12 months), which should be taken into account for nutritional recommendations. PMID:26337807

  18. The Vitamin D, Ionised Calcium and Parathyroid Hormone Axis of Cerebral Capillary Function: Therapeutic Considerations for Vascular-Based Neurodegenerative Disorders

    PubMed Central

    Lam, Virginie; Takechi, Ryusuke; Pallabage-Gamarallage, Menuka; Giles, Corey; Mamo, John C. L.

    2015-01-01

    Blood-brain barrier dysfunction characterised by brain parenchymal extravasation of plasma proteins may contribute to risk of neurodegenerative disorders, however the mechanisms for increased capillary permeability are not understood. Increasing evidence suggests vitamin D confers central nervous system benefits and there is increasing demand for vitamin D supplementation. Vitamin D may influence the CNS via modulation of capillary function, however such effects may be indirect as it has a central role in maintaining calcium homeostasis, in concert with calcium regulatory hormones. This study utilised an integrated approach and investigated the effects of vitamin D supplementation, parathyroid tissue ablation (PTX), or exogenous infusion of parathyroid hormone (PTH) on cerebral capillary integrity. Parenchymal extravasation of immunoglobulin G (IgG) was used as a marker of cerebral capillary permeability. In C57BL/6J mice and Sprague Dawley rats, dietary vitamin D was associated with exaggerated abundance of IgG within cerebral cortex (CTX) and hippocampal formation (HPF). Vitamin D was also associated with increased plasma ionised calcium (iCa) and decreased PTH. A response to dose was suggested and parenchymal effects persisted for up to 24 weeks. Ablation of parathyroid glands increased CTX- and HPF-IgG abundance concomitant with a reduction in plasma iCa. With the provision of PTH, iCa levels increased, however the PTH treated animals did not show increased cerebral permeability. Vitamin D supplemented groups and rats with PTH-tissue ablation showed modestly increased parenchymal abundance of glial-fibrillary acidic protein (GFAP), a marker of astroglial activation. PTH infusion attenuated GFAP abundance. The findings suggest that vitamin D can compromise capillary integrity via a mechanism that is independent of calcium homeostasis. The effects of exogenous vitamin D supplementation on capillary function and in the context of prevention of vascular neurodegenerative conditions should be considered in the context of synergistic effects with calcium modulating hormones. PMID:25874538

  19. Vitamin D, Parathyroid Hormone and Sudden Cardiac Death: Results from the Cardiovascular Health Study

    PubMed Central

    Deo, Rajat; Katz, Ronit; Shlipak, Michael G.; Sotoodehnia, Nona; Psaty, Bruce M.; Sarnak, Mark J.; Fried, Linda F.; Chonchol, Michel; de Boer, Ian H.; Enquobahrie, Daniel; Siscovick, David; Kestenbaum, Bryan

    2012-01-01

    Recent studies have demonstrated greater risks of cardiovascular events and mortality among persons who have lower 25-hydroxyvitamin D (25-OHD) and higher parathyroid hormone (PTH) levels. We sought to evaluate the association between markers of mineral metabolism and sudden cardiac death (SCD) among the 2,312 participants from the Cardiovascular Health Study who were free of clinical cardiovascular disease at baseline. We estimated associations of baseline 25-OHD and PTH concentrations individually and in combination with SCD using Cox proportional hazards models after adjustment for demographics, cardiovascular risk factors, and kidney function. During a median follow-up of 14 years, there were 73 adjudicated SCD events. The annual incidence of SCD was greater among subjects who had lower 25-OHD concentrations: 2 events per 10,000 for 25-OHD ? 20 ng/ml and 4 events per 10,000 for 25-OHD < 20 ng/ml. Similarly, SCD incidence was greater among subjects who had higher PTH concentrations: 2 events per 10,000 for PTH ? 65 pg/ml and 4 events per 10,000 for PTH > 65 pg/ml. Multivariate adjustment attenuated associations of 25-OHD and PTH with SCD. Finally, 267 participants (11.7% of the cohort) had high PTH and low 25-OHD concentrations. This combination was associated with a more than 2-fold risk of SCD after adjustment (hazard ratio 2.19, 95% confidence interval 1.17, 4.10, p=0.017) compared to participants with normal levels of PTH and 25-OHD. The combination of lower 25-OHD and higher PTH concentrations appears to be associated independently with SCD risk among older adults without cardiovascular disease. PMID:22068871

  20. 1,25(OH)2-vitamin D3 reduces spontaneous and hypocalcemia-stimulated pulsatile component of parathyroid hormone secretion.

    PubMed

    Schmitt, C P; Schaefer, F; Huber, D; Zahn, I; Veldhuis, J D; Ritz, E; Mehls, O

    1998-01-01

    To investigate the effects of 1,25(OH)2-vitamin D3 (1,25(OH)2D3) on pulsatile parathyroid hormone (PTH) release, minute-to-minute intact PTH secretion was examined in nine healthy adults under baseline conditions and during hypocalcemia (sodium citrate clamp) before and after 5 d of oral 1,25(OH)2D3 treatment (1 microgram/d). In addition, acute effects of 1,25(OH)2D3 were examined by a single intravenous bolus of 2 micrograms of 1,25(OH)2D3. Pulsatile and tonic PTH secretion rates were calculated by the multiparameter deconvolution technique. During baseline, 68% of circulating PTH was attributable to tonic, and 32% to pulsatile, secretion. During induction of hypocalcemia, a selective increase in pulsatile secretion (+1100%), mediated by a combined increase in burst frequency and burst mass, was observed. During the subsequent steady-state hypocalcemic period, burst frequency and mass decreased and tonic secretion increased to 3 times the baseline level. Intravenous 1,25(OH)2D3 did not affect the temporal pattern of PTH secretion. In contrast, oral 1,25(OH)2D3 decreased baseline plasma PTH by 30% without a detectable change in Ca2+. This suppression was accounted for mainly by a decrease in PTH burst frequency. During hypocalcemia induction, a significantly lower (30%) increase in burst mass occurred compared with the pretreatment study. During steady-state hypocalcemia, PTH burst mass (-45%) and pulsatile (-50%) and total (-35%) secretion rate were lower than before treatment. In conclusion, acute hypocalcemia selectively increases pulsatile PTH release by stimulating both burst frequency and mass via a Ca2+ rate-sensitive mechanism. Oral 1,25-(OH)2D3 suppresses pulsatile baseline PTH release and reduces the pulsatile secretory capacity of the parathyroids during a hypocalcemic stimulus. PMID:9440087

  1. The Ratio of Parathyroid Hormone to Vitamin D Is a Determinant of Cardiovascular Risk and Insulin Sensitivity in Adolescent Girls

    PubMed Central

    Stanley, Takara; Bredella, Miriam A.; Pierce, Lisa

    2013-01-01

    Abstract Background Vitamin D insufficiency and higher testosterone are common in obese girls and may adversely affect glucose homeostasis and cardiovascular risk. Data are conflicting regarding the impact of parathyroid hormone (PTH) on these factors. Our objective was to determine associations of 25-hydroxyvitamin D (25-OHD), PTH, and testosterone with measures of glucose homeostasis and cardiovascular risk in adolescent girls after controlling for regional adiposity, with the hypothesis that lower 25-OHD, a higher PTH or PTH/25-OHD ratio, and higher testosterone would be associated with lower insulin sensitivity and greater cardiovascular risk. Methods A total of 15 obese girls and 15 matched normal weight controls (1218 years) underwent fasting measurements of 25-OHD, PTH, testosterone, sex hormone-binding globulin (SHBG), high-sensitivity C-reactive protein (hsCRP), oral glucose tolerance testing, and quantification of visceral (VAT) and subcutaneous (SAT) fat by magnetic resonance imaging (MRI). Results There were no associations of 25-OHD with measures of glucose homeostasis or hsCRP. In contrast, PTH and PTH/25-OHD were associated negatively with homeostasis model assessment of insulin resistance (HOMA-IR) and positively with quantitative insulin sensitivity check index (QUICKI) in obese girls but not controls. These associations remained significant after controlling for body mass index standard deviation score (BMI-SDS), but not for VAT. On regression modeling, PTH/25-OHD was positively associated with hsCRP after controlling for BMI-SDS or VAT. Free testosterone positively predicted the corrected insulin response. Conclusions In obese girls, PTH/25-OHD is positively associated with measures of insulin sensitivity and hsCRP. Further studies are needed to investigate the relationship between PTH and glucose homeostasis in obesity. PMID:23130887

  2. Arterial Structure and Function in Mild Primary Hyperparathyroidism Is Not Directly Related to Parathyroid Hormone, Calcium, or Vitamin D

    PubMed Central

    Ring, Margareta; Farahnak, Parastou; Gustavsson, Tomas; Nilsson, Inga-Lena; Eriksson, Maria J.; Caidahl, Kenneth

    2012-01-01

    Objective Elevated levels of calcium and parathyroid hormone (PTH), characteristics of primary hyperparathyroidism (PHPT), may be associated with cardiovascular morbidity and mortality in the general population. We evaluated the possible vascular effects of these risk factors in patients with mild PHPT by using standard methods and new imaging techniques. Design A prospective case-control study. Subjects and Methods Forty-eight patients with mild PHPT without any known cardiovascular risk factors were studied at baseline and at one year after parathyroidectomy (PTX) in comparison with 48 healthy age- and gender-matched controls. We measured biochemical variables, augmentation index (AIx), aortic pulse wave velocity (PWVao), radial (IMTrad) and common carotid artery (IMTcca) intima media thicknesses, and the grayscale median (IM-GSM) of the latter. Results No significant differences were observed between PHPT patients and controls at baseline for AIx (28.612.2 vs. 27.712.8%), IMTrad (0.2710.060 vs. 0.2550.053 mm), IMTcca (0.6880.113 vs. 0.6800.135 mm), or IM-GSM (82.317.2 vs. 86.515.3), while PWVao was slightly higher in patients (8.681.50 vs. 8.131.55, p<0.05). Systolic blood pressure (SBP), calcium, and PTH were higher in patients compared with controls, and decreased after PTX, while vitamin D was lower in patients and increased after PTX. While AIx, PWVao, IMTrad, and IMTcca were related to SBP, neither correlated to vitamin D levels. Only PWVao correlated weakly to plasma PTH (r?=?0.29, p<0.01) and ionized calcium (r?=?0.22, p<0.05) but showed no relation when age and SBP were adjusted for. Conclusion We found normal arterial function despite high calcium, PTH, and low vitamin D levels, in patients with mild PHPT without cardiovascular risk factors. The cardiovascular risk associated with low vitamin D and/or high PTH and calcium levels may be explained by their coupling to blood pressure and other risk factors rather than direct effects on arterial structure. PMID:22815708

  3. Vitamin D Status among Thai School Children and the Association with 1,25-Dihydroxyvitamin D and Parathyroid Hormone Levels

    PubMed Central

    Houghton, Lisa A.; Gray, Andrew R.; Harper, Michelle J.; Winichagoon, Pattanee; Pongcharoen, Tippawan; Gowachirapant, Sueppong; Gibson, Rosalind S.

    2014-01-01

    In several low latitude countries, vitamin D deficiency is emerging as a public health issue. Adequate vitamin D is essential for bone health in rapidly growing children. In the Thai population, little is known about serum 25-hydroxyvitamin D [25(OH)D] status of infants and children. Moreover, the association between 25(OH)D and the biological active form of 1,25-dihydroxyvitamin D [1,25(OH)]2D is not clear. The specific aims of this study were to characterize circulating serum 25(OH)D, 1,25(OH)2D and their determinants including parathyroid hormone (PTH), age, sex, height and body mass index (BMI) in 529 school-aged Thai children aged 6–14 y. Adjusted linear regression analysis was performed to examine the impact of age and BMI, and its interaction with sex, on serum 25(OH)D concentrations and 1,25(OH)2D concentrations. Serum 25(OH)D, 1,25(OH)2D and PTH concentrations (geometric mean ± geometric SD) were 72.7±1.2 nmol/L, 199.1±1.3 pmol/L and 35.0±1.5 ng/L, respectively. Only 4% (21 of 529) participants had a serum 25(OH)D level below 50 nmol/L. There was statistically significant evidence for an interaction between sex and age with regard to 25(OH)D concentrations. Specifically, 25(OH)D concentrations were 19% higher in males. Moreover, females experienced a statistically significant 4% decline in serum 25(OH)D levels for each increasing year of age (P = 0.001); no decline was seen in male participants with increasing age (P = 0.93). When BMI, age, sex, height and serum 25(OH)D were individually regressed on 1,25(OH)2D, height and sex were associated with 1,25(OH)2D with females exhibiting statistically significantly higher serum 1,25(OH)2D levels compared with males (P<0.001). Serum 1,25(OH)2D among our sample of children exhibiting fairly sufficient vitamin D status were higher than previous reports suggesting an adaptive mechanism to maximize calcium absorption. PMID:25111832

  4. Considerations in parathyroid hormone testing.

    PubMed

    Cavalier, Etienne; Plebani, Mario; Delanaye, Pierre; Souberbielle, Jean-Claude

    2015-11-01

    Parathyroid hormone (PTH) is a major player in phosphocalcic metabolism and its measurement is very important for the correct diagnosis and treatment of several diseases. PTH determination represents the paradigm of quality in laboratory medicine as many variables in the pre-, intra-, and post-analytical phases strongly affect the value of the clinical information. Analytical determination of PTH has been rendered difficult by the presence, in the circulation, of truncated fragments that can cross-react with the antibodies used for its determination. In addition, pre-analytical phase is complicated by the lack of stability of the peptide and the best sample to use for its determination remains controversial, as well as sample handling and storage. PTH secretion is also affected by circadian and seasonal rhythms and by physical exercise. Finally, from the post-analytical perspective, establishment of reliable reference ranges requires further efforts as the selection criteria for reference subjects should take into consideration new variables such as gender, race and vitamin D levels. Finally, clinical guidelines have recently revised and improved the criteria for a correct interpretation of PTH values. PMID:26035114

  5. Relationships among vitamin D levels, parathyroid hormone, and calcium absorption in young adolescents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Evidence suggests that vitamin D status in adults, as assessed by serum 25-hydroxyvitamin D (25-OHD), is positively associated with calcium absorption fraction and inversely associated with serum PTH. Few comparable pediatric data exist. OBJECTIVES: The objective of this study was to ev...

  6. Assay for parathyroid hormone receptors

    SciTech Connect

    Nissenson, R.A.; Teitelbaum, A.P.; Arnaud, C.D.

    1985-01-01

    The paper presents methods used to identify and quantify parathyroid hormone (PTH) receptors in kidney and bone. Experimental details are provided for the preparation of radioiodinated PTH, purification of labeled PTH, and PTH binding assays using renal plasma membranes and cultured cells from embryonic chick bone cells.

  7. Parathyroid hormone - Secretion and metabolism in vivo.

    NASA Technical Reports Server (NTRS)

    Habener, J. F.; Powell, D.; Murray, T. M.; Mayer, G. P.; Potts, J. T., Jr.

    1971-01-01

    Gel filtration and radioimmunoassay were used to determine the molecular size and immunochemical reactivity of parathyroid hormone present in gland extracts, in the general peripheral circulation, and in parathyroid effluent blood from patients with hyperparathyroidism, as well as from calves and from cattle. It was found that parathyroid hormone secreted from the parathyroids in man and cattle is at least as large as the molecule extracted from normal bovine glands. However, once secreted into the circulation the hormone is cleaved, and one or more fragments, immunologically, dissimilar to the originally secreted hormone, constitute the dominant form of circulating immunoreactive hormone.

  8. Parathyroid Hormone Levels and Cognition

    NASA Technical Reports Server (NTRS)

    Burnett, J.; Smith, S.M.; Aung, K.; Dyer, C.

    2009-01-01

    Hyperparathyroidism is a well-recognized cause of impaired cognition due to hypercalcemia. However, recent studies have suggested that perhaps parathyroid hormone itself plays a role in cognition, especially executive dysfunction. The purpose of this study was to explore the relationship of parathyroid hormone levels in a study cohort of elders with impaied cognition. Methods: Sixty community-living adults, 65 years of age and older, reported to Adult Protective Services for self-neglect and 55 controls matched (on age, ethnicity, gender and socio-economic status) consented and participated in this study. The research team conducted in-home comprehensive geriatric assessments which included the Mini-mental state exam (MMSE), the 15-item geriatric depression scale (GDS) , the Wolf-Klein clock test and a comprehensive nutritional panel, which included parathyroid hormone and ionized calcium. Students t tests and linear regression analyses were performed to assess for bivariate associations. Results: Self-neglecters (M = 73.73, sd=48.4) had significantly higher PTH levels compared to controls (M =47.59, sd=28.7; t=3.59, df=98.94, p<.01). There was no significant group difference in ionized calcium levels. Overall, PTH was correlated with the MMSE (r=-.323, p=.001). Individual regression analyses revealed a statistically significant correlation between PTH and MMSE in the self-neglect group (r=-.298, p=.024) and this remained significant after controlling for ionized calcium levels in the regression. No significant associations were revealed in the control group or among any of the other cognitive measures. Conclusion: Parathyroid hormone may be associated with cognitive performance.

  9. [Parathyroid hormone and Wnt signaling].

    PubMed

    Tamura, Yukinori; Kaji, Hiroshi

    2013-06-01

    Parathyroid hormone (PTH) is clinically used as therapeutic agent for osteoporosis in Japan. However, the mechanisms for bone anabolic action of PTH are not fully understood. Recently, numerous studies suggest that PTH enhances bone formation through the suppression of sclerostin, DKK1 and sFRP1, inhibitors of Wnt-?-catenin signal. Moreover, we identified Tmem119 as new osteoblast differentiation factor, which is involved in an increase in?-catenin level by PTH in osteoblasts. Further understanding of Wnt-?-catenin signaling in the bone anabolic action by PTH may lead to the development of novel bone anabolic agent. PMID:23719497

  10. [Comparative study of parathyroid function by serum parathyroid hormone, total adenosine cyclic monophosphate in the urine and its nephrogenic fraction].

    PubMed

    Ivanov, I; Milkov, V

    1988-01-01

    The immune heterogeneity of the parathyroid hormone and the possibility of its peripheral activation by 1.25 (OH)2 vitamin D3 hinders the precise evaluation of the functional state of parathyroid glands by direct determination of the hormone in the serum and also the creation of a suppressive test similar to the suppressive tests applied in the study of other hormones. A study was carried out which proves that the indirect examination of the parathyroid function by determining the cyclic adenosine monophosphate in urine and its nephrogenic fraction (i.e. by the effects of the active parathyroid hormone) is of greater importance for clinical practice than the direct determination of the parathyroid hormone in peripheral blood. This is the method of choice in the diagnosis of the subclinical variant of primary normocalcemic hyperparathyroidism. PMID:2850656

  11. Alterations in vitamin D metabolite, parathyroid hormone and fibroblast growth factor-23 concentrations in sclerostin-deficient mice permit the maintenance of a high bone mass.

    PubMed

    Ryan, Zachary C; Craig, Theodore A; McGee-Lawrence, Meghan; Westendorf, Jennifer J; Kumar, Rajiv

    2015-04-01

    Humans with mutations of the sclerostin (SOST) gene, and knockout animals in which the Sost gene has been experimentally deleted, exhibit an increase in bone mass. We review the mechanisms by which Sost knockout mice are able to accrete increased amounts of calcium and phosphorus required for the maintenance of a high bone mass. Recently published information from our laboratory, shows that bone mass is increased in Sost-deficient mice through an increase in osteoblast and a decrease in osteoclast activity, which is mediated by activation of ?-catenin and an increase in prostacyclin synthesis in osteocytes and osteoblasts. The increases in calcium and phosphorus retention required for enhanced bone mineral accretion are brought about by changes in the vitamin D endocrine system, parathyroid hormone (PTH) and fibroblast growth factor-23 (FGF-23). Thus, in Sost knockout mice, concentrations of serum 1,25-dihydroxyvitamin D (1,25(OH)2D) are increased and concentrations of FGF-23 are decreased thereby allowing a positive calcium and phosphorus balance. Additionally, in the absence of Sost expression, urinary calcium is decreased, either through a direct effect of sclerostin on renal calcium handling, or through its effect on the synthesis of 1,25(OH)2D. Adaptations in vitamin D, PTH and FGF-23 physiology occur in the absence of sclerostin expression and mediate increased calcium and phosphorus retention required for the increase in bone mineralization. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. PMID:25446885

  12. 21 CFR 862.1545 - Parathyroid hormone test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Parathyroid hormone test system. 862.1545 Section... Systems § 862.1545 Parathyroid hormone test system. (a) Identification. A parathyroid hormone test system is a device intended to measure the levels of parathyroid hormone in serum and plasma....

  13. 21 CFR 862.1545 - Parathyroid hormone test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Parathyroid hormone test system. 862.1545 Section... Systems § 862.1545 Parathyroid hormone test system. (a) Identification. A parathyroid hormone test system is a device intended to measure the levels of parathyroid hormone in serum and plasma....

  14. 21 CFR 862.1545 - Parathyroid hormone test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Parathyroid hormone test system. 862.1545 Section... Systems § 862.1545 Parathyroid hormone test system. (a) Identification. A parathyroid hormone test system is a device intended to measure the levels of parathyroid hormone in serum and plasma....

  15. 21 CFR 862.1545 - Parathyroid hormone test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Parathyroid hormone test system. 862.1545 Section... Systems § 862.1545 Parathyroid hormone test system. (a) Identification. A parathyroid hormone test system is a device intended to measure the levels of parathyroid hormone in serum and plasma....

  16. 21 CFR 862.1545 - Parathyroid hormone test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Parathyroid hormone test system. 862.1545 Section... Systems § 862.1545 Parathyroid hormone test system. (a) Identification. A parathyroid hormone test system is a device intended to measure the levels of parathyroid hormone in serum and plasma....

  17. Hypoparathyroidism: Replacement Therapy with Parathyroid Hormone

    PubMed Central

    Underbjerg, Line; Sikjaer, Tanja

    2015-01-01

    Hypoparathyroidism (HypoPT) is characterized by low serum calcium levels caused by an insufficient secretion of parathyroid hormone (PTH). Despite normalization of serum calcium levels by treatment with activated vitamin D analogues and calcium supplementation, patients are suffering from impaired quality of life (QoL) and are at increased risk of a number of comorbidities. Thus, despite normalization of calcium levels in response to conventional therapy, this should only be considered as an apparent normalization, as patients are suffering from a number of complications and calcium-phosphate homeostasis is not normalized in a physiological manner. In a number of recent studies, replacement therapy with recombinant human PTH (rhPTH(1-84)) as well as therapy with the N-terminal PTH fragment (rhPTH(1-34)) have been investigated. Both drugs have been shown to normalize serum calcium while reducing needs for activated vitamin D and calcium supplements. However, once a day injections cause large fluctuations in serum calcium. Twice a day injections diminish fluctuations, but don't restore the normal physiology of calcium homeostasis. Recent studies using pump-delivery have shown promising results on maintaining normocalcemia with minimal fluctuations in calcium levels. Further studies are needed to determine whether this may improve QoL and lower risk of complications. Such data are needed before replacement with the missing hormone can be recommended as standard therapy. PMID:26394728

  18. Calcium and vitamin D supplementation maintains parathyroid hormone and improves bone density during initial military training: a randomized, double-blind, placebo controlled trial.

    PubMed

    Gaffney-Stomberg, Erin; Lutz, Laura J; Rood, Jennifer C; Cable, Sonya J; Pasiakos, Stefan M; Young, Andrew J; McClung, James P

    2014-11-01

    Calcium and vitamin D are essential nutrients for bone health. Periods of activity with repetitive mechanical loading, such as military training, may result in increases in parathyroid hormone (PTH), a key regulator of Ca metabolism, and may be linked to the development of stress fractures. Previous studies indicate that consumption of a Ca and vitamin D supplement may reduce stress fracture risk in female military personnel during initial military training, but circulating markers of Ca and bone metabolism and measures of bone density and strength have not been determined. This randomized, double-blind, placebo-controlled trial sought to determine the effects of providing supplemental Ca and vitamin D (Ca+Vit D, 2000mg and 1000IU/d, respectively), delivered as 2 snack bars per day throughout 9weeks of Army initial military training (or basic combat training, BCT) on PTH, vitamin D status, and measures of bone density and strength in personnel undergoing BCT, as well as independent effects of BCT on bone parameters. A total of 156 men and 87 women enrolled in Army BCT (Fort Sill, OK; 34.7N latitude) volunteered for this study. Anthropometric, biochemical, and dietary intake data were collected pre- and post-BCT. In addition, peripheral quantitative computed tomography was utilized to assess tibia bone density and strength in a subset of volunteers (n=46). Consumption of supplemental Ca+Vit D increased circulating ionized Ca (group-by-time, P=0.022), maintained PTH (group-by-time, P=0.032), and increased the osteoprotegerin:RANKL ratio (group-by-time, P=0.006). Consistent with the biochemical markers, Ca+Vit D improved vBMD (group-by-time, P=0.024) at the 4% site and cortical BMC (group-by-time, P=0.028) and thickness (group-by-time, P=0.013) at the 14% site compared to placebo. These data demonstrate the benefit of supplemental Ca and vitamin D for maintaining bone health during periods of elevated bone turnover, such as initial military training. This trial was registered with ClincialTrials.gov, NCT01617109. PMID:25118085

  19. 25-vitamin D, 1,25-vitamin D, parathyroid hormone, fibroblast growth factor-23 and cognitive function in men with advanced CKD:a veteran population

    PubMed Central

    Jovanovich, Anna J.; Chonchol, Michel; Brady, Christopher B.; Kaufman, James D.; Kendrick, Jessica; Cheung, Alfred K.; Jablonski, Kristen L.

    2014-01-01

    Abstract. Cognitive impairment is common in advanced chronic kidney disease (CKD), but little is known about its relation with abnormalities in mineral metabolism. Methods: The longitudinal association between plasma 25-hydroxyvitamin D (25(OH)D), 1,25-dihydroxyvitamin D (1,25(OH)2D), intact parathyroid hormone (iPTH), and fibroblast growth factor-23 (FGF-23) levels and cognitive function was assessed in 605 patients (67 12 years) with advanced CKD not requiring dialysis (n = 247) or end-stage renal disease (ESRD; n = 358) who participated in the Homocysteine Study Cognitive Function Substudy (HOSTCOG)). Cognitive function was assessed using the Telephone Interview for Cognitive Status-modified (TICSm; mean follow-up 3.1 years) and associated with baseline mineral metabolite levels using linear regression analyses. Results: In unadjusted analyses, increasing log 1,25(OH)2D and decreasing log iPTH and FGF-23 levels were associated with worse cognitive status (p < 0.05). In fully adjusted multivariate analyses, the associations were no longer significant. Log 25(OH)D levels were not associated with cognitive function in unadjusted or adjusted analyses. Results were similar when analyzed by tertile or separately within CKD and ESRD groups. Conclusions: These results suggest that mineral metabolism dysregulation does not mediate the impairment in cognitive function common in advanced CKD. PMID:25208315

  20. Xeno-Klotho Inhibits Parathyroid Hormone Signaling.

    PubMed

    Takenaka, Tsuneo; Inoue, Tsutomu; Miyazaki, Takashi; Hayashi, Matsuhiko; Suzuki, Hiromichi

    2016-02-01

    Although fibroblast growth factor (FGF) 23 was recently identified as a phosphatonin that influences vitamin D metabolism, the underlying signaling mechanisms remain unclear. FGF23 elevates the renal levels of membrane-associated klotho as well as soluble klotho. Klotho is expressed on distal tubules. Upon enzymatic cleavage, soluble klotho is released into the renal interstitial space and then into the systemic circulation. The expression of 25-hydroxyvitamin D3 1α-hydroxylase (1-OH) on proximal tubular cells is controlled by parathyroid hormone (PTH). Klotho binds to various membrane proteins to alter their function. Here, the interaction between the PTH receptor and klotho was studied using various approaches, including immunoprecipitation, in vitro cell culture, and in vivo animal experiments. Immunoprecipitation studies demonstrate, for the first time, that recombinant human klotho protein interacts with human PTH receptors to inhibit the binding of human PTH. Furthermore, when applied to human proximal tubular cells, recombinant human klotho suppresses PTH-stimulated generation of inositol trisphosphate in vitro. Moreover, PTH-induced increase of cyclic AMP secretion and 1α,25-dihydroxyvitamin D3 (1,25VD) was attenuated by recombinant human klotho in vivo. In addition, recombinant human klotho inhibits the expression of 1-OH by PTH both in vitro and in vivo. These results suggest that free klotho mediates the FGF23-induced inhibition of 1,25VD synthesis. © 2015 American Society for Bone and Mineral Research. PMID:26287968

  1. Parathyroid hormone binding to cultured avian osteoclasts

    SciTech Connect

    Teti, A.; Rizzoli, R.; Zambonin Zallone, A. )

    1991-02-14

    Parathyroid hormone (PTH) increases serum calcium concentration via a controversial cellular mechanism. We investigated whether PTH binds avian osteoclasts. Isolated hypocalcaemic hen osteoclasts were incubated with ({sup 125}I)--bovine PTH (1-84). Specific binding of the hormone to the cells, which reached the equilibrium within 60 min, was observed. Half maximal binding was reached by 10 min. Binding was competitively inhibited by increasing doses of unlabeled PTH, and was about 55% displaced by adding, at the equilibrium, 10(-6) M unlabeled PTH. Autoradiography demonstrated specific label on the osteoclast. The cellular mechanism activated by the hormone remains to be elucidated.

  2. Parathyroid hormone (PTH) blood test

    MedlinePLUS

    Bringhurst FR, Demay MB, Kronenberg HM. Hormones and disorders of mineral metabolism. In: Melmed S, Polonsky KS, Larsen PR, Kronenberg HM, eds. Williams Textbook of Endocrinology. 12th ed. Philadelphia, Pa: Elsevier Saunders; 2011:chap 28. ...

  3. No association between vitamin D deficiency and parathyroid hormone, bone density and bone turnover in a large cohort of HIV-infected men on tenofovir

    PubMed Central

    Samarawickrama, Amanda; Jose, Sophie; Sabin, Caroline; Walker-Bone, Karen; Fisher, Martin; Gilleece, Yvonne

    2014-01-01

    Introduction Combination antiretroviral therapy (cART) may affect vitamin D [25(OH)D], parathyroid hormone (PTH), bone mineral density (BMD) and bone turnover (BT). Reduced BMD and secondary hyperparathyroidism have been reported with tenofovir (TDF). We investigated the associations between TDF and bone markers, especially in 25(OH)D-deficient patients. Materials and Methods In a single-centre longitudinal study investigating BMD in HIV-positive men, serum 25(OH)D, calcium, phosphate, PTH and alkaline phosphatase (ALP) were measured. Lumbar spine, non-dominant total hip and non-dominant femoral neck BMD (g/cm2) were measured using dual-energy X-ray absorptiometry. BT was assessed by serum type 1 procollagen (P1NP) and carboxy-terminal collagen cross-links (CTX). MannWhitney U tests compared serum markers and BT, and t-tests compared BMD according to TDF in all and 25(OH)D-deficient patients. Results A total of 422 men were recruited: mean age 47 (SD 9.8) years, 94% white ethnicity, 93% MSM, diagnosed HIV positive for median 9.6 (IQR 5.0,15.5) years, median CD4 547 (IQR 411,696) cells/L, HIV RNA <40 copies/mL in 87% (96% of those on cART). 25(OH)D (nmol/L) was normal (>75), insufficient (5075), deficient (2550) and severely deficient (<25) in 14%, 29%, 50% and 7%, respectively. Of 381 men on cART, 77% were currently on TDF. TDF was not associated with median calcium (p=0.69) or phosphate (p=0.52), but patients had higher (but normal) median ALP [81 (IQR 69,103) vs. 73 (IQR 60,89) IU/L, p=0.005) compared to non-TDF cART. There was no difference in the association between vitamin D and PTH according to whether someone currently was (r=0.11, p=0.06, Figure 1) or was not using TDF (r=0.12, p=0.29, Figure 1). TDF was also not associated with PTH, BMD or BT in either all patients on cART (Table 1a) or in patients with 25(OH)D deficiency (Table 1b). Conclusions In this largely TDF-experienced cohort of HIV-positive men, there was no association between TDF and 25(OH)D deficiency, hyperparathyroidism, reduced BMD or increased BT, although patients on TDF had higher but normal ALP. We found no evidence to support additional monitoring of bone markers in patients on TDF regardless of 25(OH)D status. PMID:25394075

  4. Parathyroid Hormone and Parathyroid Hormone-related Protein Analogs as Therapies for Osteoporosis

    PubMed Central

    Augustine, Marilyn

    2013-01-01

    Osteoporotic fractures result in significant morbidity and mortality. Anabolic agents reverse the negative skeletal balance that characterizes osteoporosis by stimulating osteoblast-dependent bone formation to a greater degree than osteoclast-dependent bone resorption. Parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP) are peptide hormones which have anabolic actions when administered intermittently. The only FDA-approved anabolic bone treatment for treatment of osteoporosis in the United States is PTH 1-34, or teriparatide, administered by daily subcutaneous injections. However, PTH 1-84 is also available in Europe. Synthetic human PTHrP 1-36 and a PTHrP 1-34 analog, BA058, have also been shown to increase lumbar spine bone density. These agents and several other PTH and PTHrP analogs, including some which are not administered as injections, continue to be investigated as potential anabolic therapies for osteoporosis. PMID:24078470

  5. Immunoprecipitation of the parathyroid hormone receptor

    SciTech Connect

    Wright, B.S.; Tyler, G.A.; O'Brien, R.; Caporale, L.H.; Rosenblatt, M.

    1987-01-01

    An /sup 125/I-labeled synthetic analog of bovine parathyroid hormone, (8-norleucine,18-norleucine,34-tyrosine)PTH-(1-34) amide ((Nle)PTH-(1-34)-NH/sub 2/), purified by high-pressure liquid chromatography (HPLC), was employed to label the parathyroid hormone (PTH) receptor in cell lines derived from PTH target tissues: the ROS 17/2.8 rat osteosarcoma of bone and the CV1 and COS monkey kidney lines. After incubation of the radioligand with intact cultured cells, the hormone was covalently attached to receptors by using either a photoaffinity technique or chemical (affinity) crosslinking. In each case, covalent labeling was specific, as evidenced by a reduction of labeling when excess competing nonradioactive ligand was present. After covalent attachment of radioligand, membranes were prepared form the cells and solubilized in the nonionic detergent Nonidet P-40 or octyl glucoside. Analysis of the immunoprecipitate on NaDod-SO/sub 4//polyacrylamide gel electrophoresis followed by autoradiography revealed the presence of a doublet of apparent molecular mass 69-70 kDa. Specifically labeled bands of approximate molecular mass 95 and 28 kDa were also observed. The anti-PTH IgG was affinity purified by passage over a PTH-Sepharose column and used to made an immunoaffinity column. These studies suggest that the use of an anti-PTH antiserum that binds receptor-bound hormone is likely to be a useful step in the further physicochemical characterization and purification of the PTH receptor.

  6. Parathyroid hormone action in calcium transport in the distal nephron.

    PubMed

    Lau, K; Bourdeau, J E

    1995-01-01

    Urinary calcium excretion is regulated homeostatically. Regulation is achieved, in part, by the action of parathyroid hormone on Ca2+ absorption in the distal nephron. Parathyroid hormone increases Ca2+ absorption in the cortical portion of the thick ascending limb of Henle's loop in all species studied, in the murine distal convoluted tubule, and in the rabbit connecting tubule. All of these sites contain parathyroid hormone-stimulated adenylate cyclase. Both cellular and paracellular pathways of Ca2+ absorption are regulated by parathyroid hormone in the cortical portion of the thick ascending limb of Henle's loop. In both distal convoluted and connecting tubule cells, parathyroid hormone regulates transcellular Ca2+ absorption by controlling the insertion and open probability of luminal plasmalemmal Ca2+ ion channels. These channels are stimulated and inhibited by L-type calcium channel agonists and antagonists, respectively, but differ from similar channels in excitable cells in that membrane depolarization does not activate them. Parathyroid hormone also increases the driving force for diffusional Ca2+ ion entry from the luminal fluid into the cytosol by increasing the intracellular negative electrical potential (at least in murine distal convoluted tubule cells) by increasing the chloride ion conductance of the basolateral cell membrane. The effects of parathyroid hormone on the other components of cellular Ca2+ transport, via both protein kinases A and C and their interactions, remain to be examined. PMID:7743158

  7. Parathyroid hormone and parathyroid hormone type-1 receptor accelerate myocyte differentiation

    PubMed Central

    Kimura, Shigemi; Yoshioka, Kowasi

    2014-01-01

    The ZHTc6-MyoD embryonic stem cell line expresses the myogenic transcriptional factor MyoD under the control of a tetracycline-inducible promoter. Following induction, most of the ZHTc6-MyoD cells differentiate to myotubes. However, a small fraction does not differentiate, instead forming colonies that retain the potential for myocyte differentiation. In our current study, we found that parathyroid hormone type 1 receptor (PTH1R) expression in colony-forming cells at 13 days after differentiation was higher than that in the undifferentiated ZHTc6-MyoD cells. We also found that PTH1R expression was required for myocyte differentiation, and that parathyroid hormone accelerated the differentiation. Our analysis of human and mouse skeletal muscle tissues showed that most cells expressing PTH1R also expressed Pax7 and CD34, which are biomarkers of satellite cells. Furthermore, we found that parathyroid hormone treatment significantly improved muscle weakness in dystrophin-deficient mdx mice. This is the first report indicating that PTH1R and PTH accelerate myocyte differentiation. PMID:24919035

  8. Parathyroid hormone pulsatility: physiological and clinical aspects

    PubMed Central

    Chiavistelli, Silvia; Giustina, Andrea; Mazziotti, Gherardo

    2015-01-01

    Parathyroid hormone (PTH) secretion is characterized by an ultradian rhythm with tonic and pulsatile components. In healthy subjects, the majority of PTH is secreted in tonic fashion, whereas approximately 30% is secreted in low-amplitude and high-frequency bursts occurring every 1020 min, superimposed on tonic secretion. Changes in the ultradian PTH secretion were shown to occur in patients with primary and secondary osteoporosis, with skeletal effects depending on the reciprocal modifications of pulsatile and tonic components. Indeed, pathophysiology of spontaneous PTH secretion remains an area potentially suitable to be explored, particularly in those conditions such as secondary forms of osteoporosis, in which conventional biochemical and densitometric parameters may not always give reliable diagnostic and therapeutic indications. This review will highlight the literature data supporting the hypothesis that changes of ultradian PTH secretion may be correlated with skeletal fragility in primary and secondary osteoporosis. PMID:26273533

  9. Degradation of parathyroid hormone in macrophage endosomes

    SciTech Connect

    Diment, S.; Martin, K.J.; Stahl, P.D.

    1986-05-01

    Parathyroid hormone (PTH) is secreted as an 84 amino acid protein that is rapidly cleaved between amino acids 34 and 35 by Kupffer cells in liver. The resulting amino terminal peptide (1-34) is active at PTH target organs (kidney and bone). Cathepsin D can process PTH to 1-34 in vitro, and a cathepsin D-like protease, which may rapidly process proteins, is present in endosomes of alveolar macrophages. The authors set out to determine whether PTH is degraded to 1-34 in endosomes, and to elucidate the mechanism of hormone processing in vivo. Intracellular transport of /sup 125/I-PTH was assessed by binding to alveolar macrophages at 4/sup 0/C, followed by internalization at 37/sup 0/C. Distribution of PTH among plasma membranes, endosomes and lysosomes was determined by subcellular fractionation. Degradation of the ligand to TCA-soluble fragments in each compartment was assayed at neutral and acid pH. 1-34 in supernatants was separated from undergraded PTH by gel filtration and detected by bioassay on kidney membranes. The authors data suggest that: 1) macrophages rapidly degrade PTH to TCA-soluble fragments. 2) macrophages do not secrete proteases that degrade extracellular PTH. 3) PTH is internalized into endocytic vesicles after 5 mins, but not delivered to lysosomes within 30 mins. 4) A bioactive peptide is released into the extracellular medium after 20 mins. 5) PTH is degraded in endosomes at acid pH by a pepstatin-sensitive protease.

  10. Therapy of Hypoparathyroidism by Replacement with Parathyroid Hormone

    PubMed Central

    2014-01-01

    Hypoparathyroidism (HypoPT) is a state of hypocalcemia due to inappropriate low levels of parathyroid hormone (PTH). HypoPT is normally treated by calcium supplements and activated vitamin D analogues. Although plasma calcium is normalized in response to conventional therapy, quality of life (QoL) seems impaired and patients are at increased risk of renal complications. A number of studies have suggested subcutaneous injections with PTH as an alternative therapy. By replacement with the missing hormone, urinary calcium may be lowered and QoL may improve. PTH replacement therapy (PTH-RT) possesses, nevertheless, a number of challenges. If PTH is injected only once a day, fluctuations in calcium levels may occur resulting in hypercalcemia in the hours following an injection. Twice-a-day injections seem to cause less fluctuation in plasma calcium but do stimulate bone turnover to above normal. Most recently, continuous delivery of PTH by pump has appeared as a feasible alternative to injections. Plasma calcium levels do not fluctuate, urinary calcium is lowered, and bone turnover is only stimulated modestly (into the normal range). Further studies are needed to assess the long-term effects. If beneficial, it seems likely that standard treatment of HypoPT in the future will change into replacement therapy with the missing hormone. PMID:25101193

  11. Parathyroid Hormone Applications in the Craniofacial Skeleton

    PubMed Central

    Chan, H.L.; McCauley, L.K.

    2013-01-01

    Parathyroid hormone (PTH) is known for its ability to build bone, with research in this area centered on its use as an osteoporosis therapeutic. Recent interest has developed regarding its potential for regenerative applications such as fracture healing and osseous defects of the oral cavity. Many years of investigation using murine gene-targeted models substantiate a role for signaling at the PTH/PTH-related protein (PTHrP) receptor (PPR) in intramembranous bone formation in the craniofacial region as well as in tooth development. Pre-clinical studies clearly support a positive role of intermittent PTH administration in craniofacial bones and in fracture healing and implant integration. A few human clinical studies have shown favorable responses with teriparatide (the biologically active fragment of PTH) administration. Favorable outcomes have emerged with teriparatide administration in patients with osteonecrosis of the jaw (ONJ). New delivery strategies are in development to optimize targeted application of PTH and to help maximize local approaches. The promising host-modulating potential of PTH requires more information to further its effectiveness for craniofacial regeneration and osseous wound-healing, including a better delineation of cellular targets, temporal effects of PTH action, and improved approaches for local/targeted delivery of PTH. PMID:23071071

  12. The calcium-sensing receptor regulates parathyroid hormone gene expression in transfected HEK293 cells

    PubMed Central

    Galitzer, Hillel; Lavi-Moshayoff, Vardit; Nechama, Morris; Meir, Tomer; Silver, Justin; Naveh-Many, Tally

    2009-01-01

    Background The parathyroid calcium receptor determines parathyroid hormone secretion and the response of parathyroid hormone gene expression to serum Ca2+ in the parathyroid gland. Serum Ca2+ regulates parathyroid hormone gene expression in vivo post-transcriptionally affecting parathyroid hormone mRNA stability through the interaction of trans-acting proteins to a defined cis element in the parathyroid hormone mRNA 3'-untranslated region. These parathyroid hormone mRNA binding proteins include AUF1 which stabilizes and KSRP which destabilizes the parathyroid hormone mRNA. There is no parathyroid cell line; therefore, we developed a parathyroid engineered cell using expression vectors for the full-length human parathyroid hormone gene and the human calcium receptor. Results Co-transfection of the human calcium receptor and the human parathyroid hormone plasmid into HEK293 cells decreased parathyroid hormone mRNA levels and secreted parathyroid hormone compared with cells that do not express the calcium receptor. The decreased parathyroid hormone mRNA correlated with decreased parathyroid hormone mRNA stability in vitro, which was dependent upon the 3'-UTR cis element. Moreover, parathyroid hormone gene expression was regulated by Ca2+ and the calcimimetic R568, in cells co-transfected with the calcium receptor but not in cells without the calcium receptor. RNA immunoprecipitation analysis in calcium receptor-transfected cells showed increased KSRP-parathyroid hormone mRNA binding and decreased binding to AUF1. The calcium receptor led to post-translational modifications in AUF1 as occurs in the parathyroid in vivo after activation of the calcium receptor. Conclusion The expression of the calcium receptor is sufficient to confer the regulation of parathyroid hormone gene expression to these heterologous cells. The calcium receptor decreases parathyroid hormone gene expression in these engineered cells through the parathyroid hormone mRNA 3'-UTR cis element and the balanced interactions of the trans-acting factors KSRP and AUF1 with parathyroid hormone mRNA, as in vivo in the parathyroid. This is the first demonstration that the calcium receptor can regulate parathyroid hormone gene expression in heterologous cells. PMID:19397786

  13. Circulating parathyroid hormone and calcitonin in rats after spaceflight

    NASA Technical Reports Server (NTRS)

    Arnaud, Sara B.; Fung, Paul; Popova, Irina A.; Morey-Holton, Emily R.; Grindeland, Richard E.

    1992-01-01

    Parathyroid hormone and calcithonin, two major calcium-regulating hormones, were measured in the plasma of five experimental groups of rats to evaluate postflight calcium homeostasis after the 14-day Cosmos 2044 flight. Parathyroid hormone values were slightly higher in the flight animals (F) than in the appropriate cage and diet controls (S) (44 +/- 21 vs 21 +/- 4 pg/ml, P less than 0.05), but they were the same as in the vivarium controls (V), which had different housing and feeding schedules. The difference in F and V (22 +/- 11 vs 49 +/- 16 pg/ml, P less than 0.05) was most likely due to failure of circulating calcitonin in F to show the normal age-dependent increase which was demonstrated in age-matched controls in a separate experiment. Basal values for parathyroid hormone and calcitonin were unchanged after 2 wk of hindlimb suspension, a flight simulation model, in age-matched and younger rats. From a time course experiment serum calcium was higher and parathyroid hormone lower after 4 wk than in ambulatory controls. Postflight circulating levels of parathyroid hormone appear to reflect disturbances in calcium homeostasis from impaired renal function of undetermined cause, whereas levels of calcitonin reflect depression of a normal growth process.

  14. Negative regulation of parathyroid hormone-related protein expression by steroid hormones

    SciTech Connect

    Kajitani, Takashi; Tamamori-Adachi, Mimi; Okinaga, Hiroko; Chikamori, Minoru; Iizuka, Masayoshi; Okazaki, Tomoki

    2011-04-15

    Highlights: {yields} Steroid hormones repress expression of PTHrP in the cell lines where the corresponding nuclear receptors are expressed. {yields} Nuclear receptors are required for suppression of PTHrP expression by steroid hormones, except for androgen receptor. {yields} Androgen-induced suppression of PTHrP expression appears to be mediated by estrogen receptor. -- Abstract: Elevated parathyroid hormone-related protein (PTHrP) is responsible for humoral hypercalcemia of malignancy (HHM), which is of clinical significance in treatment of terminal patients with malignancies. Steroid hormones were known to cause suppression of PTHrP expression. However, detailed studies linking multiple steroid hormones to PTHrP expression are lacking. Here we studied PTHrP expression in response to steroid hormones in four cell lines with excessive PTHrP production. Our study established that steroid hormones negatively regulate PTHrP expression. Vitamin D receptor, estrogen receptor {alpha}, glucocorticoid receptor, and progesterone receptor, were required for repression of PTHrP expression by the cognate ligands. A notable exception was the androgen receptor, which was dispensable for suppression of PTHrP expression in androgen-treated cells. We propose a pathway(s) involving nuclear receptors to suppress PTHrP expression.

  15. Parathyroid hormone in sodium-dependent hypertension

    SciTech Connect

    Doris, P.A.; Harvey, S.; Pang, P.K.T.

    1987-09-14

    Plasma parathyroid hormone (pPTH) levels have been assessed in three separate radioimmunoassay systems in samples from Wistar-Kyoto rats. The animals were subjected to one of three dietary regimens throughout the study period: Group 1 animals consumed normal rat chow and drank tap water; Group 2 animals consumed normal rat chow and tap water was replaced with 0.05% saline solution; Group 3 animals consumed normal rat chow to which 2.5% CaCO/sub 3/ had been added and also drank 0.5% saline solution. Three assay systems were used to measure pPTH levels from trunk blood samples obtained by guillotine decapitation. One assay used an antiserum directed toward the vasoactive N terminal fragment 1-34 and produced pPTH measurements of 0.74 +/- 0.05 ng/ml in Gp 1 animals, 1.04 +/- 0.07 ng/ml in Gp 2 animals and 1.12 +/- 0.08 ng/ml in Gp 3 animals. This pattern was consistent with that obtained by another antiserum which had been raised against the intact 1-84 PTH molecule and produced values of 0.25 +/- 0.03 ng/ml in Gp 1 animals, 0.55 +/- 0.07 ng/ml in Gp 2 animals and 0.74 +/- 0.04 ng/ml in Gp 3 animals. Antiserum raised against the C-terminal did not show any difference in pPTH across groups. The authors conclude that saline consumption may increase some portions of circulating PTH. 26 references, 2 tables.

  16. Bone density parathyroid hormone and 25-hydroxyvitamin D concentrations in middle aged women.

    PubMed Central

    Khaw, K. T.; Sneyd, M. J.; Compston, J.

    1992-01-01

    OBJECTIVE--To examine the relation between bone density and indices of calcium metabolism including parathyroid hormone and 25-hydroxyvitamin D concentrations in middle aged women. DESIGN--A cross sectional study. SETTING AND SUBJECTS--138 women volunteers aged 45-65 with no known osteoporosis and unselected for disease status recruited for a dietary assessment study from the community using general practice registers. Volunteer rate was 20%. MAIN OUTCOME MEASURE--Bone mineral density measured with dual energy x ray absorptiometry. RESULTS--Bone density at the lumbar spine and neck and trochanteric regions of the femur was inversely related to serum intact parathyroid hormone concentrations and positively related to serum 25-hydroxyvitamin D concentrations. These associations were independent of possible confounding factors, including age, body mass index, cigarette smoking habit, menopausal status, and use of diuretics and postmenopausal hormone replacement therapy. These associations were apparent throughout the whole distribution of bone density and 25-hydroxyvitamin D and parathyroid hormone concentrations within the normal range, suggesting a physiological relation. CONCLUSIONS--The findings are consistent with the hypothesis that parathyroid hormone and 25-hydroxyvitamin D concentrations influence bone density in middle aged women. Findings from this study together with other work suggest that the role of vitamin D in osteoporosis should not be neglected. The associations with parathyroid hormone also indicate plausible biological mechanisms. The roughly 5-10% difference in bone density between top and bottom tertiles of serum 25-hydroxyvitamin D concentrations, though not large in magnitude, may have considerable public health implications in terms of prevention of osteoporosis and its sequelae, fractures. PMID:1392857

  17. Parathyroid hormone regulates fetal-placental mineral homeostasis.

    PubMed

    Simmonds, Charlene S; Karsenty, Gerard; Karaplis, Andrew C; Kovacs, Christopher S

    2010-03-01

    Parathyroid hormone (PTH) plays an essential role in regulating calcium and bone homeostasis in the adult, but whether PTH is required at all for regulating fetal-placental mineral homeostasis and skeletal development is uncertain. We hypothesized that despite its low circulating levels during fetal life, PTH plays a critical role in regulating these processes. To address this, we examined two different genetic models of PTH deficiency. Pth null mice have enlarged parathyroids that are incapable of making PTH, whereas Gcm2 null mice lack parathyroids but have PTH that arises from the thymus. Pth nulls served as a model of complete absence of PTH, whereas Gcm2 nulls were a model of severe hypoparathyroidism. We determined that PTH contributes importantly to fetal mineral homeostasis because in its absence a fetal hypoparathyroid phenotype results with hypocalcemia, hypomagnesemia, hyperphosphatemia, low amniotic fluid mineral content, and reduced skeletal mineral content. We also determined that PTH is expressed in the placenta, regulates the placental expression of genes involved in calcium and other solute transfer, and may directly stimulate placental calcium transfer. Although parathyroid hormone-related protein (PTHrP) acts in concert with PTH to regulate fetal mineral homeostasis and placental calcium transfer, unlike PTH, it does not upregulate in response to fetal hypocalcemia. PMID:19968565

  18. Inhibition of Parathyroid Hormone Secretion by Caffeine in Human Parathyroid Cells

    PubMed Central

    Farnebo, Lars-Ove; Brnstrm, Robert; Larsson, Catharina

    2013-01-01

    Context and Objective: Caffeine is a highly consumed psychoactive substance present in our daily drinks. Independent studies have reported associations between caffeine consumption, low bone mineral density, and urinary calcium loss, as well as impaired bone development in vitro and in vivo. Calcium (Ca2+), vitamin D, and PTH are critical regulators of bone remodeling. A possible association between caffeine and parathyroid gland function has been suggested in the literature. Design, Setting, and Patients: Effects of caffeine on PTH secretion and Ca2+ levels were determined by batch incubation and Fura-2, respectively, in pathological parathyroid cells. Protein expressions were studied by Western blot and immunohistochemistry in normal and parathyroid adenoma tissues. Alterations in gene expressions of adenosine receptor A1 (ADORA1) and A2 (ADORA2A) and PTH were quantified by PCR; intracellular cAMP levels and protein kinase A activity were analyzed by an antibody-based assay. Results: We studied physiological concentrations of caffeine ranging from 1 to 50 ?m and found that 50 ?m caffeine caused a significant decrease of PTH secretion and PTH gene expression. This decrease occurred in parallel with a decrease of the intracellular cAMP level, protein kinase A activity, and ADORA1 gene expression, indicating a possible causal relationship. The intracellular level of Ca2+ was unaffected even by high concentrations of caffeine. Protein expressions demonstrated two main targets for caffeineADORA1 and ADORA2A. Conclusion: A physiological high dose of caffeine inhibits PTH secretion in human parathyroid cells, possibly due to a decrease of the intracellular level of cAMP. The observation demonstrates a functional link between caffeine and parathyroid cell function. PMID:23788688

  19. Relationship between parathyroid hormone secretion and cytosolic calcium concentration in dispersed bovine parathyroid cells.

    PubMed Central

    Shoback, D M; Thatcher, J; Leombruno, R; Brown, E M

    1984-01-01

    The parathyroid cell is unusual among exocytotic systems in that low extracellular Ca2+ concentrations stimulate, while high Ca2+ concentrations inhibit, parathyroid hormone (PTH) release, suggesting that this cell might have unique secretory mechanisms. In the present studies, we used the Ca2+-sensitive fluorescent dye QUIN -2 to examine the relationship between cytosolic Ca2+ concentration and PTH release in dispersed bovine parathyroid cells. The secretagogue dopamine, which enhances PTH release 2- to 3-fold in association with 20- to 30-fold increases in cellular cAMP, had no effect on the cytosolic Ca2+ level (261 +/- 28 vs. 236 +/- 22 nM for control cells at 1 mM extracellular Ca2+; P greater than 0.05). Dibutyryl-cAMP, which produces a comparable stimulation of PTH release, likewise did not modify the level of cytosolic Ca2+. Removal of extracellular Ca2+ produced a further decrease of the cytosolic Ca2+ to 82 +/- 10 nM. However, PTH secretion persisted at a near maximal rate despite this decrease of extracellular and cytosolic Ca2+ and was 95 +/- 2.5% of the rate of hormonal release at 0.5 mM extracellular Ca2+. In contrast, addition of the divalent cation ionophore ionomycin to parathyroid cells at 1.0 mM extracellular Ca2+ inhibited PTH secretion in association with an increase in cytosolic Ca2+ from 230 +/- 13 nM to 570 +/- 50 nM. Moreover, the magnitude of the ionomycin-induced reduction in PTH secretion (64 +/- 4% relative to the secretory rate at 0.5 mM Ca2+) was equivalent to the inhibition of PTH release caused by 1.5 mM extracellular Ca2+ (64 +/- 6%), which increased the cytosolic Ca2+ to similar levels (450 +/- 48 nM). Thus, the parathyroid cell differs from secretory cells thought to operate by stimulus-secretion coupling in the following ways: changes in PTH release can occur without detectable alterations in the cytosolic Ca2+ concentration, maximal rates of PTH secretion occur at cytosolic Ca2+ concentrations that fail to support exocytosis in other cell types, and increases in the cytosolic Ca2+ concentration due to ionomycin inhibit rather than stimulate PTH release. Therefore, the control of PTH secretion by Ca2+ and other secretagogues may involve previously undefined mechanisms whereby hormonal release is relatively independent of the cytosolic Ca2+ at low levels of this parameter and is inversely related to cytosolic Ca2+ at higher levels of intracellular Ca2+. PMID:6328497

  20. Parathyroid hormone induces adipocyte lipolysis via PKA-mediated phosphorylation of hormone-sensitive lipase.

    PubMed

    Larsson, Sara; Jones, Helena A; Göransson, Olga; Degerman, Eva; Holm, Cecilia

    2016-03-01

    Parathyroid hormone (PTH) is secreted from the parathyroid glands in response to low plasma calcium levels. Besides its classical actions on bone and kidney, PTH may have other important effects, including metabolic effects, as suggested for instance by increased prevalence of insulin resistance and type 2 diabetes in patients with primary hyperparathyroidism. Moreover, secondary hyperparathyroidism may contribute to the metabolic derangements that characterize states of vitamin D deficiency. PTH has been shown to induce adipose tissue lipolysis, but the details of the lipolytic action of PTH have not been described. Here we used primary mouse adipocytes to show that intact PTH (1-84) as well as the N-terminal fragment (1-37) acutely stimulated lipolysis in a dose-dependent manner, whereas the C-terminal fragment (38-84) was without lipolytic effect. The lipolytic action of PTH was paralleled by phosphorylation of known protein kinase A (PKA) substrates, i.e. hormone-sensitive lipase (HSL) and perilipin. The phosphorylation of HSL in response to PTH occurred at the known PKA sites S563 and S660, but not at the non-PKA site S565. PTH-induced lipolysis, as well as phosphorylation of HSL at S563 and S660, was blocked by both the PKA-inhibitor H89 and the adenylate cyclase inhibitor MDL-12330A, whereas inhibitors of extracellular-regulated kinase (ERK), protein kinase B (PKB), AMP-activated protein kinase (AMPK) and Ca(2+)/calmodulin-dependent protein kinase (CaMK) had little or no effect. Inhibition of phosphodiesterase 4 (PDE4) strongly potentiated the lipolytic action of PTH, whereas inhibition of PDE3 had no effect. Our results show that the lipolytic action of PTH is mediated by the PKA signaling pathway with no or minor contribution of other signaling pathways and, furthermore, that the lipolytic action of PTH is limited by simultaneous activation of PDE4. Knowledge of the signaling pathways involved in the lipolytic action of PTH is important for our understanding of how metabolic derangements develop in states of hyperparathyroidism, including vitamin D deficiency. PMID:26724218

  1. Interspecies comparison of renal cortical receptors for parathyroid hormone and parathyroid hormone-related protein

    SciTech Connect

    Orloff, J.J.; Goumas, D.; Wu, T.L.; Stewart, A.F. )

    1991-03-01

    Parathyroid hormone (PTH) and PTH-related proteins (PTHrP) interact with a common receptor in rat bone cells and in canine renal membranes with similar affinity, but PTHrP are substantially less potent than PTH in stimulating adenylate cyclase in canine renal membranes; in contrast, PTH and PTHrP are equipotent in stimulating adenylate cyclase in rat bone cells. This discrepancy has been largely viewed as reflecting differences in the relative efficiency of signal transduction of PTHrP between bone and kidney assay systems. To test the alternative (but not mutually exclusive) hypothesis that these differences could reflect interspecies differences in PTH receptors, we have characterized the bioactivity of amino-terminal PTHrP and PTH in rat and human renal cortical membranes (RCM) and compared them to results we previously reported in canine RCM. The stability of PTH and PTHrP peptides under binding and adenylate cyclase assay conditions was greater than 80% for each species. Competitive inhibition of ({sup 125}I)(Tyr36)hPTHrP-(1-36)NH{sub 2} binding to rat RCM by bPTH-(1-34) and (Tyr36)hPTHrP-(1-36)NH{sub 2} yielded nearly identical binding dissociation constants (3.7 and 3.6 nM, respectively), and binding to human RCM demonstrated slightly greater potency for PTHrP (0.5 nM) than for PTH (0.9 nM). Similarly, adenylate cyclase stimulating activity was equivalent for the two peptides in rat RCM, but PTHrP was twofold more potent than PTH in human RCM. Covalent photoaffinity labeling of protease-protected rat RCM yielded an apparent 80 kD receptor protein, and cross-linking of human RCM labeled an 85 kD receptor, indistinguishable in size from the canine renal PTH receptor. We conclude that rat, canine, and human renal cortical PTH receptors exhibit species specificity.

  2. Structural Basis for Antibody Discrimination between Two Hormones That Recognize the Parathyroid Hormone Receptor

    SciTech Connect

    McKinstry, William J.; Polekhina, Galina; Diefenbach-Jagger, Hannelore; Ho, Patricia W.M.; Sato, Koh; Onuma, Etsuro; Gillespie, Matthew T.; Martin, T. John; Parker, Michael W.

    2009-08-18

    Parathyroid hormone-related protein (PTHrP) plays a vital role in the embryonic development of the skeleton and other tissues. When it is produced in excess by cancers it can cause hypercalcemia, and its local production by breast cancer cells has been implicated in the pathogenesis of bone metastasis formation in that disease. Antibodies have been developed that neutralize the action of PTHrP through its receptor, parathyroid hormone receptor 1, without influencing parathyroid hormone action through the same receptor. Such neutralizing antibodies against PTHrP are therapeutically effective in animal models of the humoral hypercalcemia of malignancy and of bone metastasis formation. We have determined the crystal structure of the complex between PTHrP (residues 1-108) and a neutralizing monoclonal anti-PTHrP antibody that reveals the only point of contact is an {alpha}-helical structure extending from residues 14-29. Another striking feature is that the same residues that interact with the antibody also interact with parathyroid hormone receptor 1, showing that the antibody and the receptor binding site on the hormone closely overlap. The structure explains how the antibody discriminates between the two hormones and provides information that could be used in the development of novel agonists and antagonists of their common receptor.

  3. Ultrasonographic evaluation of parathyroid hyperplasia in multiple endocrine neoplasia type 1: Positive correlation between parathyroid volume and circulating parathyroid hormone concentration.

    PubMed

    Tamiya, Hiroyuki; Miyakawa, Megumi; Takeshita, Akira; Miura, Daishu; Takeuchi, Yasuhiro

    2015-09-01

    There are few reports on parathyroid ultrasonography of multiple endocrine neoplasia type 1 (MEN1). This study investigated the ultrasonographic features of parathyroid glands in 10 patients with MEN1 who underwent preoperative neck ultrasonography and parathyroidectomy between 2006 and 2010 at Toranomon Hospital. We retrospectively analyzed clinical features, laboratory and ultrasonographic data, and pathological diagnosis. A total of 38 parathyroid glands were surgically removed (three to five glands from each patient). All removed parathyroids were pathologically diagnosed as hyperplasia. Seven cases (70.0%) had adenomatous thyroid nodules. Twenty-five enlarged parathyroid glands (65.8%) were detected by preoperative ultrasonography with a detection rate of 81.8% (9/11) and 59.3% (16/27) for patients without and with adenomatous nodules, respectively. Total parathyroid gland weight and potentially predictable total parathyroid volume by preoperative ultrasonography were significantly correlated with preoperative serum intact parathyroid hormone (iPTH) concentration (R=0.97, P<0.001 and R=0.96, P<0.001, respectively). The equation used for prediction of the total volume by ultrasonography was 15נiPTH (pg/ml)-1,000 and that for total weight was 20נiPTH (pg/ml)-1,400. Although adenomatous nodules often coexisted with MEN1 and made identification of enlarged parathyroid glands by ultrasonography difficult, the positive correlation between the predictable parathyroid volume by ultrasonography and serum iPTH suggests that their measurement is useful in the preoperative detection and localization of enlarged parathyroid glands in patients with MEN1. Furthermore, the presence of parathyroid glands that should be resected can be predicted before surgery using the equation proposed here. PMID:25227285

  4. Age-related increases in parathyroid hormone may be antecedent to both osteoporosis and dementia

    PubMed Central

    Braverman, Eric R; Chen, Thomas JH; Chen, Amanda LC; Arcuri, Vanessa; Kerner, Mallory M; Bajaj, Anish; Carbajal, Javier; Braverman, Dasha; Downs, B William; Blum, Kenneth

    2009-01-01

    Background Numerous studies have reported that age-induced increased parathyroid hormone plasma levels are associated with cognitive decline and dementia. Little is known about the correlation that may exist between neurological processing speed, cognition and bone density in cases of hyperparathyroidism. Thus, we decided to determine if parathyroid hormone levels correlate to processing speed and/or bone density. Methods The recruited subjects that met the inclusion criteria (n = 92, age-matched, age 18-90 years, mean = 58.85, SD = 15.47) were evaluated for plasma parathyroid hormone levels and these levels were statistically correlated with event-related P300 potentials. Groups were compared for age, bone density and P300 latency. One-tailed tests were used to ascertain the statistical significance of the correlations. The study groups were categorized and analyzed for differences of parathyroid hormone levels: parathyroid hormone levels <30 (n = 30, mean = 22.7 ± 5.6 SD) and PTH levels >30 (n = 62, mean = 62.4 ± 28.3 SD, p ≤ 02). Results Patients with parathyroid hormone levels <30 showed statistically significantly less P300 latency (P300 = 332.7 ± 4.8 SE) relative to those with parathyroid hormone levels >30, which demonstrated greater P300 latency (P300 = 345.7 ± 3.6 SE, p = .02). Participants with parathyroid hormone values <30 (n = 26) were found to have statistically significantly higher bone density (M = -1.25 ± .31 SE) than those with parathyroid hormone values >30 (n = 48, M = -1.85 ± .19 SE, p = .04). Conclusion Our findings of a statistically lower bone density and prolonged P300 in patients with high parathyroid hormone levels may suggest that increased parathyroid hormone levels coupled with prolonged P300 latency may become putative biological markers of both dementia and osteoporosis and warrant intensive investigation. PMID:19825157

  5. Calcitriol, calcidiol, parathyroid hormone, and fibroblast growth factor-23 interactions in chronic kidney disease

    PubMed Central

    Brito Galvao, Joao F; Nagode, Larry A; Schenck, Patricia A; Chew, Dennis J

    2013-01-01

    Objective To review the inter-relationships between calcium, phosphorus, parathyroid hormone (PTH), parent and activated vitamin D metabolites (vitamin D, 25(OH)-vitamin D, 1,25(OH)2-vitamin D, 24,25(OH)2-vitamin D), and fibroblast growth factor-23 (FGF-23) during chronic kidney disease (CKD) in dogs and cats. Data Sources Human and veterinary literature. Human Data Synthesis Beneficial effects of calcitriol treatment during CKD have traditionally been attributed to regulation of PTH but new perspectives emphasize direct renoprotective actions independent of PTH and calcium. It is now apparent that calcitriol exerts an important effect on renal tubular reclamation of filtered 25(OH)-vitamin D, which may be important in maintaining adequate circulating 25(OH)-vitamin D. This in turn may be vital for important pleiotropic actions in peripheral tissues through autocrine/paracrine mechanisms that impact the health of those local tissues. Veterinary Data Synthesis Limited information is available reporting the benefit of calcitriol treatment in dogs and cats with CKD. Conclusions A survival benefit has been shown for dogs with CKD treated with calcitriol compared to placebo. The concentrations of circulating 25(OH)-vitamin D have recently been shown to be low in people and dogs with CKD and are related to survival in people with CKD. Combination therapy for people with CKD using both parental and activated vitamin D compounds is common in human nephrology and there is a developing emphasis using combination treatment with activated vitamin D and renin-angiotensin-aldosterone-system (RAAS) inhibitors. PMID:23566108

  6. Heterogeneity of Parathyroid Hormone. CLINICAL AND PHYSIOLOGIC IMPLICATIONS

    PubMed Central

    Silverman, Robert; Yalow, Rosalyn S.

    1973-01-01

    When immunoreactive human parathyroid hormone (hPTH), extracted by three different solvents (20% acetone in 1% acetic acid, 8 M urea, or normal saline) from parathyroid glandular tissue was subjected to Sephadex G-100 gel filtration and immunoassay using two different antisera (273 and C-329), four distinct fractions were observed. The first (I), a void volume peak, was detected by both antisera with similar immunoreactivity, as was a second (II), which had the elution and sedimentation properties of highly purified bovine parathyroid hormone (bPTH); a third (III) eluted between [125I]growth hormone and [125I]insulin, sedimented with the velocity of a molecule of approximately 6,000 mol wt, and was detected primarily by antiserum 273; a final fraction (IV), detected primarily by C-329, eluted just prior to [125I]insulin. The elution profiles of the acetone-acetic acid and 8 M urea extracts were similar and contained fraction II as their major component. In saline extracts, however, fraction III predominated. Three fractions, having gel filtration and immunologic characteristics similar to fractions II, III, and IV, respectively, of saline glandular extracts, were detected in the plasma of patients with both primary (adenomatous or carcinomatous) and secondary hyperparathyroidism. The predominant component in every plasma was the intermediate fraction that, like III, was detected primarily by antiserum 273, while the least abundant form was consistently the final fraction, detected primarily by antiserum C-329. The first fraction, like II, was detected with about equal potency by both antisera and had an elution volume on Sephadex corresponding to that of intact bPTH. It bore a reciprocal relationship to serum calcium and disappeared from the plasma of a uremic patient during calcium infusion or following parathyroidectomy with a half-time of no more than 20 min. This component therefore probably represents biologically active hormone. The intermediate and final fractions had turnover times in the plasma of a uremic patient more than 100 times greater than the active form, remained elevated even in the presence of post-parathyroidectomy hypoparathyroidism in this patient and were presumed to be biologically inactive. The ratio of biologically inactive fragments to the active form was greater in secondary hyperparathyroidism. The evidence presented favors a glandular origin for the fragments. Comparison of hormonal assays with the two antisera reveals a striking advantage in the preoperative diagnosis of primary hyperparathyroidism with antiserum 273 that is due to the enhanced sensitivity occasioned by its detection of a biologically inactive as well as the biologically active hormonal form. Images PMID:4719672

  7. Molecular cloning of the gene encoding the mouse parathyroid hormone/parathyroid hormone-related peptide receptor.

    PubMed Central

    McCuaig, K A; Clarke, J C; White, J H

    1994-01-01

    The parathyroid hormone/parathyroid hormone-related peptide receptor (PTHR) is a G-protein-coupled receptor containing seven predicted transmembrane domains. We have isolated and characterized recombinant bacteriophage lambda EMBL3 genomic clones containing the mouse PTHR gene, including 10 kilobases of the promoter region. The gene spans > 32 kilobases and is divided into 15 exons, 8 of which contain the transmembrane domains. The PTHR exons containing the predicted membrane-spanning domains are heterogeneous in length and three of the exon-intron boundaries fall within putative transmembrane sequences, suggesting that the exons did not arise from duplication events. This arrangement is closely related to that of the growth hormone releasing factor receptor gene, particularly in the transmembrane region, providing strong evidence that the two genes evolved from a common precursor. Transcription is initiated principally at a series of sites over a 15-base-pair region. The proximal promoter region is highly (G+C)-rich and lacks an apparent TATA box or initiator element homologies but does contain CCGCCC motifs. The presumptive amino acid sequence of the encoded receptor is 99%, 91%, and 76% identical to those of the rat, human, and opossum receptors, respectively. There is no consensus polyadenylation signal in the 3' untranslated region. The poly(A) tail of the PTHR transcript begins 32 bases downstream of a 35-base-long A-rich sequence, suggesting that this region directs polyadenylylation. Images PMID:8197183

  8. Three-phase model harmonizes estimates of the maximal suppression of parathyroid hormone by 25-hydroxyvitamin D in persons 65 y of age and older

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The concentration or threshold of 25-Hydroxyvitamin D [25(OH)D] needed to maximally suppress intact serum parathyroid hormone (iPTH) has been suggested as a measure of optimal vitamin D status. Depending upon the definition of maximal suppression of iPTH and the two-phase regression approach used, ...

  9. Three-Phase Model Harmonizes Estimates of the Maximal Suppression of Parathyroid Hormone by 25-Hydroxyvitamin D in Persons 65 Years of Age and Older 13

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The concentration or threshold of 25-hydroxyvitamin D [25(OH)D] needed to maximally suppress intact serum parathyroid hormone (iPTH) has been suggested as a measure of optimal vitamin D status. Depending upon the definition of maximal suppression of iPTH and the 2-phase regression approach used, 2 d...

  10. Osteoblast hydraulic conductivity is regulated by calcitonin and parathyroid hormone

    NASA Technical Reports Server (NTRS)

    Hillsley, M. V.; Frangos, J. A.

    1996-01-01

    It is our hypothesis that osteoblasts play a major role in regulating bone (re)modeling by regulating interstitial fluid (ISF) flow through individual bone compartments. We hypothesize that osteoblasts of the blood-bone membrane lining the bone surfaces are capable of regulating transosseous fluid flow. This regulatory function of the osteoblasts was tested in vitro by culturing a layer of rat calvarial osteoblasts on porous membranes. Such a layer of osteoblasts subjected to 7.3 mm Hg of hydrostatic pressure posed a significant resistance to fluid flow across the cell layer similar in magnitude to the resistance posed by endothelial monolayers in vitro. The hydraulic conductivity, the volumetric fluid flux per unit pressure drop, of the osteoblast layer was altered in response to certain hormones. Hydraulic conductivity decreased approximately 40% in response to 33 nM parathyroid hormone, while it exhibited biphasic behavior in response to calcitonin: increased 40% in response to 100 nM calcitonin and decreased 40% in response to 1000 nM calcitonin. Further, activation of adenylate cyclase by forskolin dramatically increased the hydraulic conductivity, while elevation of intracellular calcium, [Ca2+]i, by the calcium ionophore A23187 initially decreased the hydraulic conductivity at 5 minutes before increasing conductivity by 30 minutes. These results suggest that cyclic adenosine monophosphate (cAMP) and [Ca2+]i may mediate changes in the osteoblast hydraulic conductivity. The increase in hydraulic conductivity in response to 100 nM calcitonin and the decrease in response to PTH suggest that the stimulatory and inhibitory effects on bone formation of calcitonin and parathyroid hormone, respectively, may be due in part to alterations in bone fluid flow.

  11. Intrathymic ectopic parathyroid adenoma caused primary hyperparathyroidism with vitamin D deficiency several years after bariatric surgery

    PubMed Central

    Sellitri, Francesco; Tamburrini, Alessandro; Tacconi, Federico; Bollero, Patrizio; Ortensi, Andrea; Mineo, Tommaso Claudio

    2015-01-01

    Up to 25% of patients with primary hyperparathyroidism have ectopic parathyroid adenoma. A 45-year-old formerly obese woman underwent extended thymectomy for a parathyroid adenoma located in hyperplastic thymic tissue, associated with primary hyperparathyroidism and severe vitamin D deficiency, but normal bone mineral density. At nine months follow-up, all laboratory test results were within normal limits and she presented no symptoms and no recurrence of disease. In this case, autonomous growth of a parathyroid adenoma was reasonably secondary to chronic calcium and vitamin D malabsorption, which often occurs after bariatric surgery for pathologic obesity. PMID:26273343

  12. The induction of C/EBP? contributes to vitamin D inhibition of ADAM17 expression and parathyroid hyperplasia in kidney disease

    PubMed Central

    Arcidiacono, Maria Vittoria; Yang, Jing; Fernandez, Elvira; Dusso, Adriana

    2015-01-01

    Background In secondary hyperparathyroidism (SHPT), enhanced parathyroid levels of transforming growth factor-? (TGF?) increase EGF receptor (EGFR) activation causing parathyroid hyperplasia, high parathyroid hormone (PTH) and also reductions in vitamin D receptor (VDR) that limit vitamin D suppression of SHPT. Since anti-EGFR therapy is not an option in human SHPT, we evaluated ADAM17 as a therapeutic target to suppress parathyroid hyperplasia because ADAM17 is required to release mature TGF?, the most potent EGFR-activating ligand. Methods Computer analysis of the ADAM17 promoter identified TGF? and C/EBP? as potential regulators of the ADAM17 gene. Their regulation of ADAM17 expression, TGF?/EGFR-driven growth and parathyroid gland (PTG) enlargement were assessed in promoterreporter assays in A431 cells and corroborated in rat and human SHPT, using erlotinib as anti-EGFR therapy to suppress TGF? signals, active vitamin D to induce C/EBP? or the combination. Results While TGF? induced ADAM17-promoter activity by 2.2-fold exacerbating TGF?/EGFR-driven growth, ectopic C/EBP? expression completely prevented this vicious synergy. Accordingly, in advanced human SHPT, parathyroid ADAM17 levels correlated directly with TGF? and inversely with C/EBP?. Furthermore, combined erlotinib + calcitriol treatment suppressed TGF?/EGFR-cell growth and PTG enlargement more potently than erlotinib in part through calcitriol induction of C/EBP? to inhibit ADAM17-promoter activity, mRNA and protein. Importantly, in rat SHPT, the correction of vitamin D deficiency effectively reversed the resistance to paricalcitol induction of C/EBP? to suppress ADAM17 expression and PTG enlargement, reducing PTH by 50%. Conclusion In SHPT, correction of vitamin D and calcitriol deficiency induces parathyroid C/EBP? to efficaciously attenuate the severe ADAM17/TGF? synergy, which drives PTG enlargement and high PTH. PMID:25294851

  13. Influence of parathyroid hormone on bone cell ultrastructure

    SciTech Connect

    Matthews, J.L.; Talmage, R.V.

    1981-05-01

    A study in rats demonstrated that morphologic changes in the bone osteocytes and osteoblasts are produced following parathyroid hormone (PTH) injection into thyroparathyroidectomized animals. It further showed that similar changes occur in normal rats as the result of extended fasting. The most significant morphologic alterations involved surface microvilli and blebs as determined by scanning electron microscopy. Transmission electron microscopy studies showed alterations in the cisternae of the rough endoplasmic reticulum. Additionally, cell shape varied markedly from the control cuboidal morphology. These morphologic changes occurred during peak periods of plasma calcium change and returned to control morphology as plasma calcium levels normalized. The study supports the concept that osteocytes and lining cells on the surface of bone play a role in maintenance of plasma calcium concentrations. (JMT)

  14. NHERF1 mutations and responsiveness of renal parathyroid hormone.

    PubMed

    Karim, Zoubida; Gérard, Bénédicte; Bakouh, Naziha; Alili, Rohia; Leroy, Christine; Beck, Laurent; Silve, Caroline; Planelles, Gabrielle; Urena-Torres, Pablo; Grandchamp, Bernard; Friedlander, Gérard; Prié, Dominique

    2008-09-11

    Impaired renal phosphate reabsorption, as measured by dividing the tubular maximal reabsorption of phosphate by the glomerular filtration rate (TmP/GFR), increases the risks of nephrolithiasis and bone demineralization. Data from animal models suggest that sodium-hydrogen exchanger regulatory factor 1 (NHERF1) controls renal phosphate transport. We sequenced the NHERF1 gene in 158 patients, 94 of whom had either nephrolithiasis or bone demineralization. We identified three distinct mutations in seven patients with a low TmP/GFR value. No patients with normal TmP/GFR values had mutations. The mutants expressed in cultured renal cells increased the generation of cyclic AMP (cAMP) by parathyroid hormone (PTH) and inhibited phosphate transport. These NHERF1 mutations suggest a previously unrecognized cause of renal phosphate loss in humans. PMID:18784102

  15. Current concepts of the metabolism and radioimmunoassay of parathyroid hormone

    SciTech Connect

    Slatopolsky, E.; Martin, K.; Morrissey, J.; Hruska, K.

    1982-03-01

    Two major hormonal system (PTH and vitamin D) and a minor system (calcitonin) are responsible for the regulation of calcium homeostasis. Serum ionized calcium is maintained within narrow limits by the intereactions of these hormonal systems and their effects on the intestine, the kidney, and the skeleton. The editorial describes in a succinct form, general aspects of PTH metabolism in view of recent information regarding the contributions of the liver, kidney, and bone to the degradation of PTH. On the basis of information accumulated concerning the peripheral metabolism of PTH, the different RIAs for PTH are also discussed.

  16. Parathyroid carcinoma survival: improvements in the era of intact parathyroid hormone monitoring?

    PubMed Central

    Allen, Miya E.; Semrad, Alison; Yang, Anthony D.; Martinez, Steve R.

    2013-01-01

    The intact parathyroid hormone (iPTH) assay is a critical test in the diagnosis and management of PTH-mediated hypercalcemia, including parathyroid carcinoma (PCa). We hypothesized that the survival of patients diagnosed with PCa has improved since adoption of the iPTH assay into clinical practice. We identified all confirmed cases of PCa within the Surveillance, Epidemiology and End Results database from 1973 to 2006. Patients were categorized into two eras based upon introduction of the iPTH assay: 1973 to 1997 (era I) and 1997 to 2006 (era II, when the iPTH assay was in standard use). We estimated overall survival (OS) and disease-specific survival (DSS) using the Kaplan-Meier method, with differences among survival curves assessed via log rank. Multivariate Cox proportional hazards models compared the survival rates between treatment eras while controlling for patient age, sex, race/ethnicity, tumor size, nodal status, extent of disease, and type of surgery. Multivariate models included patients undergoing potentially curative surgery and excluded those with distant metastases. Risks of overall and disease-specific mortality were reported as hazard ratios with 95% confidence intervals. Study criteria were met by 370 patients. Median survival was 15.6 years. Five-year rates of OS and DSS were 78% and 88% for era I and 82% and 96% for era II. On multivariate analysis, age, black race, and unknown extent of disease predicted an increased risk of death from any cause. Treatment era did not predict OS. No factor predicted PCa-specific mortality. In multivariate analysis, neither OS nor DSS have improved in the current era that utilizes iPTH for the detection and management of PCa. PMID:23772298

  17. Structure and functional expression of a complementary DNA for porcine parathyroid hormone/parathyroid hormone-related peptide receptor.

    PubMed

    Smith, D P; Zhang, X Y; Frolik, C A; Harvey, A; Chandrasekhar, S; Black, E C; Hsiung, H M

    1996-07-17

    A complementary DNA (cDNA) encoding the receptor for porcine parathyroid hormone/parathyroid hormone-related peptide (PTH/PTHrP) was isolated from a porcine kidney cDNA library. The porcine PTH/PTHrP receptor is a 585 amino acid protein containing seven putative membrane-spanning domains. The porcine PTH/PTHrP receptor has amino acid identity of 95.6%, 80.4%, and 88.7% with human, opossum, and rat PTH/PTHrP receptors, respectively and 53.4% identity to the recently cloned human PTH2 receptor. The receptor cDNA was subsequently cloned into a mammalian cell expression vector (pRC/CMV) which contains a human cytomegalovirus promoter. A human kidney cell line (293), stably transfected with this vector, expressed the receptor at a high level and, when challenged with human PTH(1-34), increased cytoplasmic cAMP and inositol triphosphate production. Radioligand binding studies revealed that the receptor bound both human PTH(1-34), and PTHrP(1-36). Scatchard analyses of three clones showed that the cells harbor a single class of high affinity receptor (Kd = 1-4 nM for human PTH(1-34)) but had varying receptor numbers (10(5)-10(6) receptors/cell). In contrast to PTH(1-34), the [Arg2]PTH(1-34) analog bound to the porcine PTH/PTHrP receptor with low affinity and was a weak agonist for cAMP stimulation with the cloned receptor. These response characteristics differentiate the porcine receptor from the previously cloned rat and opossum PTH/PTHrP receptors. PMID:8688470

  18. Desensitization of parathyroid hormone receptors on cultured bone cells

    SciTech Connect

    Pun, K.K.; Ho, P.W.; Nissenson, R.A.; Arnaud, C.D. )

    1990-12-01

    Administration of excessive amounts of parathyroid hormone (PTH) in the treatment of osteoporosis can reverse the beneficial effects of a low-dose, intermittent regime. To investigate the direct actions and the possible cellular mechanisms of PTH in inducing desensitization of PTH receptors, we studied the effects of desensitization on rat osteoblastic UMR-106 cells. When the osteoblasts were preincubated with bPTH-(1-34), complete refractoriness to a subsequent challenge with the hormone developed within 1 h and at hormone concentrations as low as 5 nM. When osteoblasts thus desensitized were incubated in hormone-free medium, recovery of the cAMP responses began within 2 h and reached maximum after 16 h. Cycloheximide did not affect the process of desensitization. (Nle8,Nle18,Tyr34)bPTH-(3-34)amide significantly impaired the desensitization process by PTH-(1-34) but did not have stimulatory effect on cAMP responses. No significant heterologous desensitization was obvious after preincubation with isoprenaline (50 microM), prostaglandin E1 (50 microM), or prostaglandin E2 (50 microM) for 2 h. Binding experiments with (125I)PLP-(1-36)amide after desensitization revealed that there was an approximate twofold decrease in receptor affinities as analyzed by Scatchard analysis, showing that the decrease in affinity was prominent in the process of desensitization. When the cells were treated with monensin during desensitization, PTH challenge after desensitization produced significantly lower cyclic AMP responses. Recovery after desensitization occurred over a period of 16 h. Inclusion of monensin, but not cycloheximide, impaired the recovery. The results show that homologous desensitization of rat osteoblasts to PTH is brought about by the occupancy of receptors by PTH-(1-34) but not by cAMP generation itself.

  19. The Neuroendocrine Functions of the Parathyroid Hormone 2 Receptor

    PubMed Central

    Dobolyi, Arpád; Dimitrov, Eugene; Palkovits, Miklós; Usdin, Ted B.

    2012-01-01

    The G-protein coupled parathyroid hormone 2 receptor (PTH2R) is concentrated in endocrine and limbic regions in the forebrain. Its endogenous ligand, tuberoinfundibular peptide of 39 residues (TIP39), is synthesized in only two brain regions, within the posterior thalamus and the lateral pons. TIP39-expressing neurons have a widespread projection pattern, which matches the PTH2R distribution in the brain. Neuroendocrine centers including the preoptic area, the periventricular, paraventricular, and arcuate nuclei contain the highest density of PTH2R-positive networks. The administration of TIP39 and an antagonist of the PTH2R as well as the investigation of mice that lack functional TIP39 and PTH2R revealed the involvement of the PTH2R in a variety of neural and neuroendocrine functions. TIP39 acting via the PTH2R modulates several aspects of the stress response. It evokes corticosterone release by activating corticotropin-releasing hormone-containing neurons in the hypothalamic paraventricular nucleus. Block of TIP39 signaling elevates the anxiety state of animals and their fear response, and increases stress-induced analgesia. TIP39 has also been suggested to affect the release of additional pituitary hormones including arginine-vasopressin and growth hormone. A role of the TIP39-PTH2R system in thermoregulation was also identified. TIP39 may play a role in maintaining body temperature in a cold environment via descending excitatory pathways from the preoptic area. Anatomical and functional studies also implicated the TIP39-PTH2R system in nociceptive information processing. Finally, TIP39 induced in postpartum dams may play a role in the release of prolactin during lactation. Potential mechanisms leading to the activation of TIP39 neurons and how they influence the neuroendocrine system are also described. The unique TIP39-PTH2R neuromodulator system provides the possibility for developing drugs with a novel mechanism of action to control neuroendocrine disorders. PMID:23060860

  20. Effects of parathyroid hormone on bone of thyroparathyroidectomized rats: an ultrastructural and enzymatic study.

    PubMed

    Weisbrode, S E; Capen, C C; Nagode, L A

    1974-06-01

    Osteoblasts and osteocytes in adult thyroparathyroidectomized (T(x)PT(x)) rats fed a low calcium vitamin D-free diet and given parathyroid (PTH) had ultrastructural evidence of increased activity compared to controls. Osteoblasts in PTH-treated rats had prominent rough endoplasmic reticulum and Golgi apparatuses and large mitochondria. The plasma membranes were extensively convoluted and associated with initial loci of mineralization in osteoid. Osteocytes contained increased rough endoplasmic reticulum, well-developed Golgi apparatuses and large mitochondria. Lacunar walls were roughened, but osteocytic osteolysis was not observed. Osteoclasts were encountered more frequently in PTH-treated rats, but their ultrastructural features were similar to those of controls. Osteoblasts and osteocytes in controls appeared to be inactive cells lining quiescent mineral surfaces. Parathyroid hormone treatment increased serum calcium levels and urinary hydroxyproline excretion, indicating enhanced resorption of bone mineral and matrix. Bone alkaline phosphatase and calcium-adenosine triphosphatase activities were elevated after PTH treatment and may be related to increased calcium transport by bone cells. These findings were interpreted to suggest that PTH mobilizes bone mineral by osteoclasis and increases metabolic activity of the osteocyte-osteoblast pump. PMID:4275712

  1. Expression of parathyroid hormone-related protein and the parathyroid hormone/parathyroid hormone-related protein receptor in rat thymic epithelial cells

    PubMed Central

    FUNK, JANET L.; JONES, GERAINT V.; BOTHAM, CATHERINE A.; MORGAN, GEOFFREY; WOODING, PETER; KENDALL, MARION D.

    1999-01-01

    Thymic epithelial cells are an important source of cytokines and other regulatory peptides which guide thymocyte proliferation and maturation. Parathyroid hormone-related protein (PTHrP), a cytokine-like peptide, has been reported to affect the proliferation of lymphocytes in vitro. The studies presented here were undertaken to test the hypotheses that PTHrP is produced locally within the thymus where it could influence thymocyte maturation and, more specifically, that thymic epithelial cells (TEC) could be the intrathymic source of PTHrP expression. To this end, immunohistochemical studies were performed to localise PTHrP and the PTH/PTHrP receptor within the adult rat thymus. Antibodies directed against 2 different PTHrP epitopes, PTHrP(1–34) and PTHrP(34–53), demonstrated prominent specific PTHrP immunoreactivity in both subcapsular and medullary TEC. In addition, faint but specific staining for PTHrP was seen in the cortex, interdigitating between cortical lymphocytes while sparing epithelial-free subcapsular areas, thus suggesting that cortical TEC could also be a source of PTHrP immunoreactivity. In contrast, PTH/PTHrP receptor immunoreactivity was only seen in medullary and occasional septal TEC; no evidence of cortical or lymphocytic PTH/PTHrP receptor immunoreactivity was detected. Immunohistochemical studies of cultured cytokeratin-positive rat TEC confirmed the results of these in situ studies as cultured TEC were immunoreactive both for PTHrP and the PTH/PTHrP receptor. Thus these results demonstrate that PTHrP is produced by the epithelial cells of the mature rat thymus. This suggests that PTHrP, a peptide with known cytokine, growth factor and neuroendocrine actions, could exert important intrathymic effects mediated by direct interactions with TEC, or indirect effects on PTH/PTHrP receptor-negative thymocytes. PMID:10337958

  2. Parathyroid Hormone, Cognitive Function and Dementia: A Systematic Review

    PubMed Central

    Lourida, Ilianna; Thompson-Coon, Jo; Dickens, Chris M.; Soni, Maya; Kuźma, Elżbieta; Kos, Katarina; Llewellyn, David J.

    2015-01-01

    Background Metabolic factors are increasingly recognized to play an important role in the pathogenesis of Alzheimer’s disease and dementia. Abnormal parathyroid hormone (PTH) levels play a role in neuronal calcium dysregulation, hypoperfusion and disrupted neuronal signaling. Some studies support a significant link between PTH levels and dementia whereas others do not. Methods We conducted a systematic review through January 2014 to evaluate the association between PTH and parathyroid conditions, cognitive function and dementia. Eleven electronic databases and citation indexes were searched including Medline, Embase and the Cochrane Library. Hand searches of selected journals, reference lists of primary studies and reviews were also conducted along with websites of key organizations. Two reviewers independently screened titles and abstracts of identified studies. Data extraction and study quality were performed by one and checked by a second reviewer using predefined criteria. A narrative synthesis was performed due to the heterogeneity of included studies. Results The twenty-seven studies identified were of low and moderate quality, and challenging to synthesize due to inadequate reporting. Findings from six observational studies were mixed but suggest a link between higher serum PTH levels and increased odds of poor cognition or dementia. Two case-control studies of hypoparathyroidism provide limited evidence for a link with poorer cognitive function. Thirteen pre-post surgery studies for primary hyperparathyroidism show mixed evidence for improvements in memory though limited agreement in other cognitive domains. There was some degree of cognitive impairment and improvement postoperatively in observational studies of secondary hyperparathyroidism but no evident pattern of associations with specific cognitive domains. Conclusions Mixed evidence offers weak support for a link between PTH, cognition and dementia due to the paucity of high quality research in this area. PMID:26010883

  3. Nmp4/CIZ Closes the Parathyroid Hormone Anabolic Window

    PubMed Central

    Bidwell, Joseph P.; Childress, Paul; Alvarez, Marta B.; Hood, Mark; He, Yongzheng; Pavalko, Fredrick M.; Kacena, Melissa A.; Yang, Feng-Chun

    2013-01-01

    Chronic degenerative diseases are increasing with the aging U.S. population. One consequence of this phenomenon is the need for long-term osteoporosis therapies. Parathyroid hormone (PTH), the only FDA-approved treatment that adds bone to the aged skeleton, loses its potency within two years of initial treatment but the mechanism regulating its limited anabolic window is unknown. We have discovered that disabling the nucleocytoplasmic shuttling transcription factor nuclear matrix protein 4/cas interacting zinc finger protein (Nmp4/CIZ) in mice extends the PTH bone-forming capacity. Nmp4 was discovered during our search for nuclear matrix transcription factors that couple this hormones impact on osteoblast cytoskeletal and nuclear organization with its anabolic capacity. CIZ was independently discovered as a protein that associates with the focal adhesion-associated mechanosensor p130Cas. The Nmp4/CIZ-knockout (KO) skeletal phenotype exhibits a modestly enhanced bone mineral density but manifests an exaggerated response to both PTH and to BMP2 and is resistant to disuse-induced bone loss. The cellular basis of the global Nmp4/CIZ-KO skeletal phenotype remains to be elucidated but may involve an expansion of the bone marrow osteoprogenitor population along with modestly enhanced osteoblast and osteoclast activities supporting anabolic bone turnover. As a shuttling Cys2His2 zinc finger protein, Nmp4/CIZ acts as a repressive transcription factor perhaps associated with epigenetic remodeling complexes, but the functional significance of its interaction with p130Cas is not known. Despite numerous remaining questions, Nmp4/CIZ provides insights into how the anabolic window is regulated, and itself may provide an adjuvant therapy target for the treatment of osteoporosis by extending PTH anabolic efficacy. PMID:23140162

  4. Parathyroid disorders.

    PubMed

    Michels, Thomas C; Kelly, Kevin M

    2013-08-15

    Disorders of the parathyroid glands most commonly present with abnormalities of serum calcium. Patients with primary hyperparathyroidism, the most common cause of hypercalcemia in outpatients, are often asymptomatic or may have bone disease, nephrolithiasis, or neuromuscular symptoms. Patients with chronic kidney disease may develop secondary hyperparathyroidism with resultant chronic kidney disease-mineral and bone disorder. Hypoparathyroidism most often occurs after neck surgery; it can also be caused by autoimmune destruction of the glands and other less common problems. Evaluation of patients with abnormal serum calcium levels includes a history and physical examination; repeat measurement of serum calcium level; and measurement of creatinine, magnesium, vitamin D, and parathyroid hormone levels. The treatment for symptomatic primary hyperparathyroidism is parathyroidectomy. Management of asymptomatic primary hyperparathyroidism includes monitoring symptoms; serum calcium and creatinine levels; and bone mineral density. Patients with hypoparathyroidism require close monitoring and vitamin D (e.g., calcitriol) replacement. PMID:23944728

  5. Parathyroid hormone gene with bone phenotypes in Chinese.

    PubMed

    Zhou, Xiao-Gang; Liu, Yao-Zhong; Li, Miao-Xin; Jian, Wei-Xia; Lei, Shu-Feng; Qin, Yue-Juan; Zhou, Qi; Deng, Hong-Wen

    2003-08-01

    Osteoporosis is a common disorder afflicting old people. The parathyroid hormone (PTH) gene is involved in bone remodeling and calcium homeostasis, and has been considered as an important candidate gene for osteoporosis. In this study, we simultaneously tested linkage and/or association of PTH gene with bone mineral density (BMD) and bone mineral content (BMC), two important risk factors for osteoporosis. A sample of 1263 subjects from 402 Chinese nuclear families was used. The families are composed of both parents and at least one healthy daughter aged from 20 to 45 years. All the subjects were genotyped at the polymorphic BstBI site inside the intron 2 of the PTH gene (a nucleotide substitution of G to A at the position +3244). BMD and BMC were measured at the lumbar spine and the hip region via dual-energy X-ray absorptiometry (DXA). Using QTDT (quantitative trait transmission disequilibrium test), we did not find significant results for association or linkage between the PTH gene and BMD or BMC variation at the spine or hip. Our data do not support the PTH gene as a quantitative trait locus (QTL) underlying the bone phenotypic variation in the Chinese population. PMID:12893275

  6. Parathyroid hormone impairs extrarenal potassium tolerance in the rat

    SciTech Connect

    Sugarman, A.; Kahn, T. City Univ. of New York, NY )

    1988-03-01

    The effect of parathyroid hormone (PTH) on the extrarenal disposition of an acute potassium load was examined in acutely nephrectomized rats infused with KCl alone or in combination with PTH, with serial monitoring of plasma potassium every 10 min. The rise in plasma potassium concentration ({Delta}PK) in the PTH group was higher than control. PTH was then administered along with KCl to two groups of nephrectomized and acutely thyroparathyroidectomized (TPTX) rats in doses of 1 and 0.25 U {center dot} kg{sup {minus}1} {center dot} min{sup {minus}1} for 90 min. {Delta}PK with PTH in both groups was higher than TPTX control. The two higher doses of PTH resulted in a decrease in mean arterial pressure from their respective controls. A similar reduction in arterial pressure in three groups of nephrectomized rats by administration of hydralazine or nitroprusside or by acute blood loss did not change {Delta}PK subsequent to potassium infusion from that in control rats. Furthermore, the lowest dose of PTH did not lower arterial pressure from its respective control. Therefore, hypotension is not a cause for the PTH-induced potassium intolerance. Serum levels of insulin, aldosterone, catecholamines, calcium, plasma HCO{sub 3} concentration, and pH were not different in PTH-infused vs. respective control rats. These data suggest that PTH impairs extrarenal potassium disposal in the rat. The effect of PTH may relate to enhanced calcium entry into cells.

  7. Pulsatile Release of Parathyroid Hormone from an Implantable Delivery System

    PubMed Central

    Liu, Xiaohua; Pettway, Glenda J.; McCauley, Laurie K.; Ma, Peter X.

    2007-01-01

    Intermittent (pulsatile) administration of parathyroid hormone (PTH) is known to improve bone micro-architecture, mineral density and strength. Therefore, daily injection of PTH has been clinically used for the treatment of osteoporosis. However, this regimen of administration is not convenient and is not a favorable choice of patients. In this study, an implantable delivery system has been developed to achieve pulsatile release of PTH. A well-defined cylindrical device was first fabricated with a biodegradable polymer, poly(lactic acid) (PLLA), using a reverse solid free form fabrication technique. Three-component polyanhydrides composed of sebacic acid, 1,3-bis(p-carboxyphenoxy) propane and poly(ethylene glycol) were synthesized and used as isolation layers. The polyanhydride isolation layers and PTH-loaded alginate layers were then stacked alternately within the delivery device. The gap between the stacked PTH-releasing core and the device frame was filled with PLLA to seal. Multi-pulse PTH release was achieved using the implantable device. The lag time between two adjacent pulses were modulated by the composition and the film thickness of the polyanhydride. The released PTH was demonstrated to be biologically active using an in vitro assay. Timed sequential release of multiple drugs has also been demonstrated. The implantable device holds promise for both systemic and local therapies. PMID:17576005

  8. Parathyroid hormone: anabolic and catabolic actions on the skeleton.

    PubMed

    Silva, Barbara C; Bilezikian, John P

    2015-06-01

    Parathyroid hormone (PTH) is essential for the maintenance of calcium homeostasis through, in part, its actions to regulate bone remodeling. While PTH stimulates both bone formation and bone resorption, the duration and periodicity of exposure to PTH governs the net effect on bone mass, that is whether it is catabolic or anabolic. PTH receptor signaling in osteoblasts and osteocytes can increase the RANKL/OPG ratio, increasing both osteoclast recruitment and osteoclast activity, and thereby stimulating bone resorption. In contrast, PTH-induced bone formation is explained, at least in part, by its ability to downregulate SOST/sclerostin expression in osteocytes, permitting the anabolic Wnt signaling pathway to proceed. The two modes of administration of PTH, that is, continuous vs. intermittent, can regulate, in bone cells, different sets of genes; alternatively, the same sets of genes exposed to PTH in sustained vs. transient way, will favor bone resorption or bone formation, respectively. This article reviews the effects of PTH on bone cells that lead to these dual catabolic and anabolic actions on the skeleton. PMID:25854704

  9. Parathyroid hormone is not an inhibitor of lipoprotein lipase activity.

    PubMed

    Arnadottir, M; Nilsson-Ehle, P

    1994-01-01

    The reduced lipoprotein lipase (LPL) activities in uraemia are reflected by increased serum triglyceride concentrations and reduced HDL cholesterol concentrations. Both hyperparathyroidism and circulating inhibitor(s) of LPL have been associated with the disturbances of lipid metabolism in uraemia. The aim of the present study was to investigate if parathyroid hormone (PTH) had an inhibitory effect on LPL activity. Plasma post-heparin LPL activities, plasma LPL inhibitory activities, serum PTHintact and serum PTHC-terminal concentrations were analysed in 20 patients on haemodialysis and 20 healthy controls. The effects of purified, human PTHintact and a carboxyterminal fragment of PTH (PTH39-84) on LPL activities in post-heparin plasma from healthy individuals and on the enzyme activity of purified, bovine milk LPL, activated with apolipoprotein CII, were studied. Patients had significantly higher plasma LPL inhibitory activities than controls, but there was no correlation between plasma LPL inhibitory activities and serum PTH concentrations. Neither PTHintact nor PTH39-84 had a significant effect on LPL activities in vitro. Thus there was no evidence of a direct inhibition of LPL activity by PTH under the present in-vivo or in-vitro conditions. PMID:7870347

  10. Catabolic and anabolic actions of parathyroid hormone on the skeleton

    PubMed Central

    Silva, B.C.; Costa, A.G.; Cusano, N.E.; Kousteni, S.; Bilezikian, J.P.

    2015-01-01

    PTH, an 84-amino acid peptide hormone synthesized by the parathyroid glands, is essential for the maintenance of calcium homeostasis. While in its traditional metabolic role, PTH helps to maintain the serum calcium concentration within narrow, normal limits and participates as a determinant of bone remodeling, more specific actions, described as catabolic and anabolic are also well known. Clinically, the catabolic effect of PTH is best represented by primary hyperparathyroidism (PHPT), while the osteoanabolic effect of PTH is best seen when PTH or its biological aminoterminal fragment [PTH(134)] is used as a therapy for osteoporosis. These dual functions of PTH are unmasked under very specific pathological (PHPT) or therapeutic conditions. At the cellular level, PTH favors bone resorption, mostly by affecting the receptor activator of nuclear factor ?-B (RANK) ligand (RANKL)-osteoprotegerin-RANK system, leading to an increase in osteoclast formation and activity. Increased bone formation due to PTH therapy is explained best by its ability to enhance osteoblastogenesis and/or osteoblast survival. The PTH-induced bone formation is mediated, in part, by a decrease in SOST/sclerostin expression in osteocytes. This review focuses on the dual anabolic and catabolic actions of PTH on bone, situations where one is enhanced over the other, and the cellular and molecular mechanisms by which these actions are mediated. PMID:21946081

  11. Kinetics of parathyroid hormone after parathyroidectomy in chronic hemodialysis patients.

    PubMed

    Skalli, Z; Elouazzani, H; Alhamany, Z; Mattous, M; Benamar, L; Bayahia, R; Belkouchi, M; El Malki, HadjOmar; Ouzeddoun, N

    2015-01-01

    Secondary hyperparathyroidism is a common complication in chronic renal failure. The treatment in some cases requires parathyroidectomy. The kinetics of the parathyroid hormone (PTH) levels after surgery helps to evaluate the efficacy of parathyroidectomy. Prospective analysis was made of the kinetics of intact PTH (iPTH) after parathyroidectomy in 10 chronic hemodialysis (HD) patients who had secondary hyperparathyroidism. We determined the levels of iPTH before surgery and its evolution after parathyroidectomy at regular intervals: Day 0, D7, D15, D30 and D90. The mean age of our patients was 40 13 years, with a sex ratio of 1. The mean duration on HD was 122 63 months. The duration of secondary hyperparathyroidism varied from one year to 12 years. All patients had received medical treatment for hyperparathyroidism. The indications for parathyroidectomy included resistance to medical treatment in seven cases, development of brown tumors in two cases and soft tissue calcifications in one case. All patients had radiographic evidence of hyperparathyroidism. The parathyroidectomy was sub-total in all patients, 6/8 in four cases and 7/8 in six cases. The mean iPTH level was 2341 1946 pg/mL before surgery. A sharp drop in this level was noticed on D0, with a median of 92 pg/mL and, thereafter, the levels were 79 pg/mL on D7, 25 pg/mL on D15 and 36 pg/mL after 1 month. At 3 months post-surgery, the mean iPTH level was 302 pg/mL. Histological examination of the resected gland showed parathyroid hyperplasia in all patients. In our series, the efficacy of sub-total parathyroidectomy was satisfactory with rapid normalization of PTH, which is consistent with the literature data. Sub-total parathyroidectomy still has a place in the treatment of secondary hyperparathyroidism in chronic renal failure. Its indications should be limited to cases resistant to medical treatment and, in particular, in cases with occurrence of complications. PMID:26586059

  12. Immunochemical Localization of Parathyroid Hormone in Cancer Tissue from Patients with Ectopic Hyperparathyroidism

    PubMed Central

    Palmieri, Genaro M. A.; Nordquist, Robert E.; Omenn, Gilbert S.

    1974-01-01

    Immunoreactive parathyroid hormone (PTH) in nonparathyroid malignant tumors associated with hypercalcemia and hypophosphatemia in the absence of demonstrable bone metastases was determined by radioimmunoassay and immunofluorescent techniques. Six of seven tumors contained material with immunological cross-reactivity to bovine PTH by radioimmunoassay and immunofluorescence. The intensity of the immunofluorescent stain varied considerably in the different tumors. From 15 to 90% of neoplastic cells were stained specifically with fluorescein-labeled anti-PTH. In contrast, normal parathyroid glands and parathyroid adenomas showed uniform distribution of immunofluorescence in all parenchymal cells. In one malignant tumor, PTH was localized also by immunoautoradiography. In every case PTH was detected only in the cytoplasm of parenchymal cells. One patient lacked detectable PTH in his tumor, yet showed regression of the hypercalcemia to normal values after removal of large masses of neoplastic tissue and recurrence of hypercalcemia when new growth occurred. Dilutional radioimmunoassay curves of nonparathyroid malignant tumors were in most cases different from those obtained with extracts of normal parathyroid glands and parathyroid adenomas. Although both nonparathyroid neoplasmas and parathyroid extracts demonstrated immunoheterogeneity by gel filtration, greater heterogeneity was found in nonparathyroid malignant tumors. In those tumors in which immunological cross-reactivity to PTH was detected, the capability of secreting PTH may be restricted to derepressed cell clones amidst other neoplastic cells, whereas the greater heterogeneity of ectopic PTH may reflect hormone cleavage by proteolytic enzymes in the tumor that is less specific than the Pro-PTH cleaving enzyme in the parathyroids. Images PMID:4364410

  13. Vitamin D hormone: a multitude of actions potentially influencing the physical function decline in older persons.

    PubMed

    Cesari, Matteo; Incalzi, Raffaele Antonelli; Zamboni, Valentina; Pahor, Marco

    2011-04-01

    Vitamin D, a secosteroid (pro)-hormone, has been traditionally considered as a key regulator of bone metabolism, and calcium and phosphorous homeostasis through a negative feedback with the parathyroid hormone. However, during the last 20 years, the role played by vitamin D has been largely revised by recognizing its pleiotropic action on a wide spectrum of systems, apparatuses and tissues. Thus, vitamin D has growingly been involved as a primary determinant of biological modifications and specific clinical conditions. The effect of vitamin D on skeletal muscle and related outcomes (including physical function decline and disability) is surely one of the most relevant to study in the context of global aging. In the present review, the subclinical and clinical consequences of vitamin D deficiency/insufficiency, extremely frequent conditions in older age, are described. Special focus is given to skeletal muscle and physical function. Limitations of available scientific evidence on the topic are also discussed. PMID:21134097

  14. [Parathyroid hormone values in thyroid gland surgeries by harmonic scalpel and by conventional methods].

    PubMed

    Grabovac, Stjepan; Prgomet, Drago; Janjanin, Sasa; Hadzibegovi?, Ana Dani?

    2013-01-01

    We have examined if there are any differences in intraoperative and early postoperative concentrations of parathyroid hormone between the first group of patients, who had thyroidectomy surgery performed by harmonic scalpel, and the second group of patients operated on by standard techniqes with the use of electrocoagulation and ligature as primary hemostatic procedures. All the patients having total thyroidectomy had their blood taken in four measurement points; immediately after the induction anesthesia, 10 minutes after the first thyroid gland lobe removal, 10 minutes after total thyroid gland removal and 24 hours after the surgery. The blood samples were used to determine concentrations of the parathyroid hormone by an immunoradiometric test. The concentration comparison of parathyroid hormone between the first and the second group has not shown statistically significant difference for any of the four measurement points. The concentration comparison of parathyroid hormone within the same groups in relation to preoperational values (the first measurement point) has shown that in both groups the parathyroid hormone concentration, in all three post-incision measurement points, has been significantly lower in relation to the concentration measured before the surgery (p < 0.0005). PMID:24490330

  15. Relaxant mechanisms of parathyroid hormone in rat mesenteric artery.

    PubMed

    Ohta, Toshio; Okamoto, Eri; Shimoya, Machiko; Nakazato, Yoshikazu; Ito, Shigeo

    2002-10-01

    The effects of parathyroid hormone (PTH) on tension and intracellular Ca level ([Ca ] ) were examined in ring preparations of rat mesenteric artery using isometric tension recording and the fura-2 method, respectively. The PTH (30 n ) elicited relaxation in arterial rings precontracted by phenylephrine regardless of the presence or absence of endothelium. In the endothelium-denuded arterial rings precontracted by 3 micro M of phenylephrine or 60 m of potassium chloride (KCl), PTH-related protein and PTH produced concentration-dependent relaxation to the same extent, but inhibited contraction induced by phenylephrine more effectively than that induced by KCl. Phenylephrine-induced tonic contraction was changed to a phasic one with decreased peak tension in the presence of PTH. Similar changes were observed with extracellular Ca removal or methoxyverapamil plus SK&F96365, respective of voltage-gated and receptor-operated Ca channel inhibitors. Phenylephrine evoked a concentration-dependent contraction concomitant with an increase in [Ca ]. PTH reduced both responses to the same extent. In a Ca -free solution, PTH inhibited a phasic contraction and a transient increase in [Ca ] in response to phenylephrine but not caffeine. Reverse transcriptase-polymerase chain reaction showed that PTH and PTH receptors were expressed in the rat mesenteric artery. In this tissue, PTH increased cyclic adenosine monophosphate (cAMP) levels. These results suggest that the inhibitory effect of PTH on alpha -adrenoceptor-mediated contraction results from the inhibition of Ca influx through receptor-operated and voltage-gated Ca channels, and Ca release from Ca stores, probably via increased cAMP in the rat mesenteric artery. PMID:12352317

  16. Structural requirements for conserved arginine of parathyroid hormone.

    PubMed

    Barbier, J R; MacLean, S; Whitfield, J F; Morley, P; Willick, G E

    2001-07-31

    Arg-20 is one of two residues conserved in all peptides known to activate the parathyroid hormone (PTH) receptor. Previous studies have failed to find any naturally encoded analogues of residue 20 that had any adenylyl cyclase (AC) stimulating activity. In this work we have studied substitutions of Arg-20 with nonencoded amino acids and conformationally constrained analogues with side chains mimicking that of Arg. No analogue had more than 20% of the AC-stimulating ability of the natural Arg-20-bearing peptide. In descending order of activity, the most active analogues had (S)-4-piperidyl-(N-amidino)glycine (PipGly), norleucine (Nle), citrulline (Cit), or ornithine (Orn) at residue 20. Analogues with Arg-20 substituted with L-4-piperidyl-(N-amidino)alanine, Lys, Glu, Ala, Gln, (S)-2-amino-4-[(2-amino)pyrimidinyl]butanoic acid, or L-(4-guanidino)phenylalanine had very low or negligible activity. Low or negligible activities of Lys or Orn analogues suggested ionic interactions play a minor role in the Arg interaction with the receptor. The conformational constraints imposed by the PipGly ring had a negative effect on its ability to substitute for Arg. The side-chain H-bonding potential of the Cit ureimido group was likely an important factor in its mimicry of Arg. The increase in amphiphilicity, as demonstrated by its greater high-performance liquid chromatographic retention, and increased alpha-helix, as shown by circular dichroic spectroscopy, likely contributed to the activity of the Nle-20 analogue. The data demonstrated that specific H-bonding, hydrophobicity of the side chain, stabilization of alpha-helix, and possibly specific cation positioning were all important in the interaction of Arg-20 with receptor groups. PMID:11467957

  17. Comparison between whole and intact parathyroid hormone assays.

    PubMed

    Taniguchi, Masatomo; Tanaka, Motoko; Hamano, Takayuki; Nakanishi, Shohei; Fujii, Hideki; Kato, Hitoshi; Koiwa, Fumihiko; Ando, Ryoichi; Kimata, Naoki; Akiba, Takashi; Kono, Takashi; Yokoyama, Keitaro; Shigematsu, Takashi; Kakuta, Takatoshi; Kazama, Junichiro James; Tominaga, Yoshihiro; Fukagawa, Masafumi

    2011-06-01

    The standard measurement of parathyroid hormone (PTH) is the intact PTH (iPTH) assay, which is used for approximately 90% of Japanese dialysis patients. The iPTH assay reacts not only with 1-84?PTH, but also with large truncated fragments of non-1-84?PTH, including 7-84?PTH. On the other hand, the whole PTH assay is specific for 1-84?PTH. The aim of the current study was to define the validity of both whole and intact PTH assays. A total of 738 hemodialysis patients were enrolled from twelve dialysis services. The serum PTH level was evaluated by both intact and whole PTH assays simultaneously. Non-1-84?PTH was determined by subtracting the whole PTH value from that of the intact PTH assay. The median level of whole PTH was 121?pg/mL, and that of iPTH was 210?pg/mL. The whole PTH assay had a very high correlation with the iPTH assay (r?=?0.870, P?

  18. Significance of rebounding parathyroid hormone levels during parathyroidectomy

    PubMed Central

    Schneider, David F.; Ojomo, Kristin A.; Mazeh, Haggi; Oltmann, Sarah C.; Sippel, Rebecca S.; Chen, Herbert

    2013-01-01

    BACKGROUND Using minimally invasive parathyroidectomy (MIP), most surgeons require a 50% decline in intraoperative parathyroid hormone (IoPTH) to determine cure, but the significance of IoPTH kinetics occurring after this drop remains unknown. The aim of this study was to determine the impact of IoPTH levels that first meet criteria for cure, but then increase again, or rebound, between 10 and 15 minutes post-excision. METHODS We conducted a retrospective review of patients undergoing initial parathyroidectomy for primary hyperparathyroidism at our institution from 2001 2011. Rebound IoPTH was defined as an increase in PTH ? 5 pg/mL after achieving the 50% drop required for cure. Comparisons were evaluated with the student's t-test, Chi-squared test, or Fisher's exact test where appropriate. RESULTS Of the 1,386 patients who met selection criteria, 86 (6.2%) patients exhibited rebound IoPTH. The mean magnitude of rebound was 13.8 3.6 pg/mL. Compared to those not displaying rebound, more patients with rebound IoPTH were treated with open parathyroidectomy rather than MIP (10.8% vs. 4.5%, p<0.01). The recurrence rate among those with rebound IoPTH was more than double that of patients without rebound IoPTH (5.8% vs. 2.2%, p = 0.03). Magnitude of rebound, however, did not correlate with recurrence. The rate of persistent disease was not different between those with and without rebound IoPTH. Rebound was a much better indicator of recurrence than patients whose final IoPTH levels were not within the normal range. CONCLUSIONS Rebound IoPTH is more common in patients who develop recurrent hyperparathyroidism. Therefore, surgeons should closely monitor patients with rebound IoPTH for disease recurrence. PMID:23669749

  19. Two Years of Cinacalcet Hydrochloride Treatment Decreased Parathyroid Gland Volume and Serum Parathyroid Hormone Level in Hemodialysis Patients With Advanced Secondary Hyperparathyroidism.

    PubMed

    Yamada, Shunsuke; Tokumoto, Masanori; Taniguchi, Masatomo; Toyonaga, Jiro; Suehiro, Takaichi; Eriguchi, Rieko; Fujimi, Satoru; Ooboshi, Hiroaki; Kitazono, Takanari; Tsuruya, Kazuhiko

    2015-08-01

    The long-term effect of cinacalcet hydrochloride treatment on parathyroid gland (PTG) volume has been scarcely investigated in patients with moderate to advanced secondary hyperparathyroidism (SHPT). The present study was a prospective observational study to determine the effect of cinacalcet treatment on PTG volume and serum biochemical parameters in 60 patients with renal SHPT, already treated with intravenous vitamin D receptor activator (VDRA). Measurement of biochemical parameters and PTG volumes were performed periodically, which were analyzed by stratification into tertiles across the baseline parathyroid hormone (PTH) level or PTG volume. We also determined the factors that can estimate the changes in PTG volume and the achievement of the target PTH range by multivariable analyses. Two years of cinacalcet treatment significantly decreased the serum levels of PTH, calcium, and phosphate, followed by the improvement of achieving the target ranges for these parameters recommended by the Japanese Society for Dialysis Therapy. Cinacalcet decreased the maximal and total PTG volume by about 30%, and also decreased the serum PTH level independent of the baseline serum PTH level and PTG volume. Ten out of 60 patients showed 30% increase in maximal PTG after 2 years. Multivariable analysis showed that patients with nodular PTG at baseline and patients with higher serum calcium and PTH levels at 1 year were likely to exceed the target range of PTH at two years. In conclusion, cinacalcet treatment with intravenous VDRA therapy decreased both PTG volume and serum intact PTH level, irrespective of the pretreatment PTG status and past treatment history. PMID:25851690

  20. Parathyroid Hormone Therapy Mollifies Radiation-Induced Biomechanical Degradation in Murine Distraction Osteogenesis

    PubMed Central

    Deshpande, Sagar S.; Gallagher, Katherine K.; Donneys, Alexis; Tchanque-Fossuo, Catherine N.; Sarhaddi, Deniz; Nelson, Noah S.; Chepeha, Douglas B.; Buchman, Steven R.

    2015-01-01

    Objective Descriptions of mandibular distraction osteogenesis for tissue replacement after oncologic resection or for defects caused by osteoradionecrosis have been limited. Previous work demonstrated radiation decreases union formation, cellularity and mineral density in mandibular distraction osteogenesis. The authors posit that intermittent systemic administration of parathyroid hormone will serve as a stimulant to cellular function, reversing radiation-induced damage and enhancing bone regeneration. Methods Twenty male Lewis rats were randomly assigned to three groups: group 1 (radiation and distraction osteogenesis, n = 7) and group 2 (radiation, distraction osteogenesis, and parathyroid hormone, n = 5) received a human-equivalent dose of 35 Gy of radiation (human bioequivalent, 70 Gy) fractionated over 5 days. All groups, including group 3 (distraction osteogenesis, n = 8), underwent a left unilateral mandibular osteotomy with bilateral external fixator placement. Distraction osteogenesis was performed at a rate of 0.3 mm every 12 hours to reach a gap of 5.1 mm. Group 2 was injected with parathyroid hormone (60 ?g/kg) subcutaneously daily for 3 weeks after the start of distraction osteogenesis. On postoperative day 40, all left hemimandibles were harvested. Biomechanical response parameters were generated. Statistical significance was considered at p ? 0.05. Results Parathyroid hormonetreated mandibles had significantly higher failure load and higher yield than did untreated mandibles. However, these values were still significantly lower than those of nonirradiated mandibles. Conclusions The authors have successfully demonstrated the therapeutic efficacy of parathyroid hormone to stimulate and enhance bone regeneration in their irradiated murine mandibular model of distraction osteogenesis. Anabolic regimens of parathyroid hormone, a U.S. Food and Drug Administrationapproved drug on formulary, significantly improve outcomes in a model of postoncologic craniofacial reconstruction. PMID:23806959

  1. Increase in the serum parathyroid hormone level during a bisphosphonate drug holiday.

    PubMed

    Song, Yoon Kyung; Kim, Jeong Min; Park, Sun Jin; Lee, Seong-Kyu

    2014-08-01

    After discontinuation of bisphosphonate therapy, an antiresorptive effect and antifracture protection persist for an undefined period. Patients are encouraged to continue calcium and vitamin D supplementation, during a bisphosphonate drug holiday. However, assessment of adequate calcium intake during the bisphosphonate drug holiday is difficult. Therefore, we measured the serum intact parathyroid hormone (PTH) level as a surrogate marker. A premenopausal woman discontinued bisphosphonate therapy, after 7.5 years of treatment. Two months later, blood calcium and phosphorus levels were normal, serum 25-hydroxyvitamin D level was 31.3 ng/mL, but serum PTH level had increased to 94.9 pg/mL. The elemental calcium supplement dose was increased to 600 mg/day, with no change in the cholecalciferol dose (400 IU). Her serum PTH levels decreased to 49.1 after 4 months and 32.9 pg/mL after 5 months. The serum PTH level may be helpful in assessing adequate calcium intake during a bisphosphonate drug holiday. PMID:25247160

  2. Parathyroid hormone secretion by multiple distinct cell populations, a time dynamic mathematical model

    PubMed Central

    Pruett, William A.; Hester, Robert L.

    2014-01-01

    Abstract The acute response of parathyroid hormone to perturbations in serum ionized calcium ([Ca2+]) is physiologically complex, and poorly understood. The literature provides numerous observations of quantitative and qualitative descriptions of parathyroid hormone (PTH) dynamics. We present a physiologically based mathematical model of PTH secretion constructed from mechanisms suggested in the literature, and validated against complex [Ca2+] clamping protocols from human data. The model is based on two assumptions. The first is that secretion is a fraction of cellular reserves, with the fraction being determined by the kinetics of [Ca2+] with its receptor. The second is that there are multiple distinct populations of parathyroid cells, with different secretory parameters. The steady state and transient PTH secretion responses of the model are in agreement with human experimental PTH responses to different hypocalcemia and hypercalcemia stimuli. This mathematical model suggests that a population of secreting cells is responsible for the PTH secretory dynamics observed experimentally. PMID:24744900

  3. Serum parathyroid hormone-related protein concentration in a dog with a thymoma and persistent hypercalcemia.

    PubMed Central

    Foley, P; Shaw, D; Runyon, C; McConkey, S; Ikede, B

    2000-01-01

    A thymoma was tentatively diagnosed by radiographic and cytologic examination in a dog with hypercalcemia and elevated serum parathyroid hormone-related protein (PTHrP) concentration. Following surgical excision, the diagnosis of thymoma was confirmed via histopathologic examination, the hypercalcemia resolved, and the PTHrP concentration decreased to below detectable limits. Images Figure 1. Figure 2. PMID:11126493

  4. Parathyroid Hormone as a Novel Biomarker for Chronic Obstructive Pulmonary Disease: Korean National Health and Nutrition Examination Survey

    PubMed Central

    Park, Joo-Hyun; Park, Hye Kyeong; Jung, Hoon; Lee, Sung-Soon; Koo, Hyeon-Kyoung

    2015-01-01

    Objective To understand and predict chronic obstructive pulmonary disease (COPD), a biomarker that reflects disease severity is needed. Research Design and Methods Data from 10269 adults aged over 40 years of age were retrieved from the Korea National Health and Nutrition Examination Survey (KNHANES), and 1302 patients met the criteria for COPD. The association between values of vitamin D and parathyroid hormone (PTH), and COPD severity including lung function and quality of life, were analyzed. Results In COPD patients, lung function was inversely related to PTH values (P = 0.02 for FVC [% predicted]; P < 0.001 for FEV1 [% predicted]); however, the association of lung function with vitamin D levels was not statistically significant in a multivariable analysis. Value of PTH was independently associated with EQ5D-index (P = 0.04), but vitamin D level showed no significant relationship with EQ5D-index (P = 0.59) or EQ5D-VAS (P = 0.81). Conclusions Elevation of PTH, unlike vitamin D, is independently associated with COPD severity, and may be a better biomarker for COPD. PMID:26398210

  5. Influence of hypermagnesemia on serum calcium and parathyroid hormone levels in human subjects

    SciTech Connect

    Cholst, I.N.; Steinberg, S.F.; Tropper, P.J.; Fox, H.E.; Segre, G.V.; Bilezikian, J.P.

    1984-05-10

    Serum concentrations of calcium and parathyroid hormone were measured in seven pregnant women who were receiving intravenous magnesium sulfate for the suppression of premature labor. After administration of magnesium sulfate, the mean (+/- S.E.M.) serum magnesium level rose rapidly from the normal base-line level of 2.0 +/- 0.2 mg per deciliter to 6.1 +/- 0.4 mg per deciliter (0.8 +/- 0.1 to 2.5 +/- 0.2 mmol per liter) at 30 minutes and remained markedly elevated. Concentrations of total and ionized calcium fell gradually in all subjects from normal base-line concentrations, 8.6 +/- 0.2 and 4.4 +/- 0.1 mg per deciliter (2.2 +/- 0.1) and 1.1 +/- 0.03 mmol per liter), respectively, into the hypocalcemic range, reaching a nadir of 7.6 +/- 0.2 and 3.9 +/- 0.1 mg per deciliter (1.9 +/- 0.1 and 0.98 +/- 0.03 mmol per liter), respectively, at three hours. Parathyroid hormone levels fell rapidly in response to magnesium infusion, from 13.1 +/- 2.5 to 7.8 +/- 0.7 pg per milliliter at 30 minutes, and were significantly below base-line levels for two hours despite frank hypocalcemia. These results suggest that hypermagnesemia rapidly decreases the secretion of parathyroid hormone in vivo in human subjects and that parathyroid hormone levels remain depressed despite concomitant hypocalcemia. The results also suggest that the hypocalcemia associated with hypermagnesemia may be due in part to the suppressive effects of hypermagnesemia on parathyroid hormone secretion.

  6. Impact of calcium and vitamin D insufficiencies on serum parathyroid hormone and bone mineral density: analysis of the 4th & 5th Korean National Health and Nutrition Examination Survey

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The relative contributions of calcium and vitamin D to calcium metabolism and bone mineral density (BMD) have been examined previously, but not in a population with very low calcium intake. To determine the relative importance of dietary calcium intake and serum 25-hydroxyvitamin D [25(OH)D] concent...

  7. DLC1-dependent parathyroid hormone-like hormone inhibition suppresses breast cancer bone metastasis.

    PubMed

    Wang, Yufeng; Lei, Rong; Zhuang, Xueqian; Zhang, Ning; Pan, Hong; Li, Gang; Hu, Jing; Pan, Xiaoqi; Tao, Qian; Fu, Da; Xiao, Jianru; Chin, Y Eugene; Kang, Yibin; Yang, Qifeng; Hu, Guohong

    2014-04-01

    Bone metastasis is a frequent complication of breast cancer that is often accelerated by TGF-β signaling; however, little is known about how the TGF-β pathway is regulated during bone metastasis. Here we report that deleted in liver cancer 1 (DLC1) is an important regulator of TGF-β responses and osteolytic metastasis of breast cancer cells. In murine models, breast cancer cells lacking DLC1 expression exhibited enhanced capabilities of bone metastasis. Knockdown of DLC1 in cancer cells promoted bone metastasis, leading to manifested osteolysis and accelerated death in mice, while DLC1 overexpression suppressed bone metastasis. Activation of Rho-ROCK signaling in the absence of DLC1 mediated SMAD3 linker region phosphorylation and TGF-β-induced expression of parathyroid hormone-like hormone (PTHLH), leading to osteoclast maturation for osteolytic colonization. Furthermore, pharmacological inhibition of Rho-ROCK effectively reduced PTHLH production and breast cancer bone metastasis in vitro and in vivo. Evaluation of clinical breast tumor samples revealed that reduced DLC1 expression was linked to elevated PTHLH expression and organ-specific metastasis to bone. Overall, our findings define a stroma-dependent paradigm of Rho signaling in cancer and implicate Rho-TGF-β crosstalk in osteolytic bone metastasis. PMID:24590291

  8. Comparison of renal and osseous binding of parathyroid hormone and hormonal fragments

    SciTech Connect

    Demay, M.; Mitchell, J.; Goltzman, D.

    1985-11-01

    The authors compared receptor binding and adenylate cyclase stimulation of intact bovine parathyroid hormone (bPTH)-(1-84) and the synthetic amino-terminal fragments, bPTH-(1-34) and rat PTH (rPTH)-(1-34). In both canine renal membranes and cloned rat osteosarcoma cells the amino-terminal fragments bound to a single order of sites; the affinity of rPTH-(1-34) exceeded that of bPTH-(1-34), correlating with its higher potency in stimulating adenylate cyclase. In studies with oxidized bPTH-(1--84), the middle and carboxyl regions of intact PTH were found to bind to both tissues but with higher affinity to osteosarcoma cells than to renal membranes. Our results demonstrate that rPTH-(1--34) is the most favorable probe of amino-terminal PTH binding and the most potent of the PTH peptides in stimulating renal and osseous adenylate cyclase. The results also show that midregion and carboxyl determinants within intact PTH contribute to hormone binding, which does not correlate with adenylate cyclase activation and appears more significant for skeletal than for renal binding.

  9. Intraoperative Parathyroid Hormone Monitoring Corroborates the Success of Parathyroidectomy in Children

    PubMed Central

    elik, Ahmet; Divarc?, Emre; Dkmc, Zafer; Ergn, Orkan; zen, Samim; Gk?en, Damla; Darcan, ?kran; Ertan, Ye?im

    2014-01-01

    Objective: To assess the efficacy of intraoperative parathyroid hormone (PTH) monitoring in evaluating the outcome of parathyroidectomy in pediatric patients. Methods: Intraoperative PTH monitoring during parathyroidectomy was performed in five children (3M, 2F); three had parathyroid adenomas (single gland disease) and two had primary hyperplasia. One patient had undergone two previous surgical interventions to remove the parathyroid glands, but the PTH levels had remained high with persistence of symptoms. Immunoradiometric analysis was used for PTH measurements. Preoperative PTH values were obtained to monitor the baseline levels. Serum samples were collected 20 minutes after removal of the adenoma/parathyroid gland(s) and PTH levels were compared with preoperative values. Specimens were also confirmed by frozen sectional examination. Results: Mean age of the patients was 11 years (range: 3 months-16 years). Mean preoperative PTH values were 633.3579 pg/mL (range: 143-1300 pg/mL). Intraoperative values decreased to 18.75.5 pg/mL (range: 8-27 pg/mL) following removal of the gland(s). Normal calcium levels were achieved with adequate management following surgery. One patient (with multiple surgeries and found to have an ectopic parathyroid gland) had hungry bone syndrome after the operation and was treated successfully. There were no major complications. All patients maintained normal calcium/phosphorus levels in the follow-up period, ranging from 2 to 5 years. Conclusion: An ectopic parathyroid gland or another undetected adenoma can be overlooked during surgery. Owing to the short life of the hormone, intraoperative PTH monitoring to determine PTH clearance proved to be a feasible marker for adequacy and safety of surgery and cure. PMID:25241609

  10. THE VITAMIN D HORMONE: A MULTITUDE OF ACTIONS POTENTIALLY INFLUENCING THE PHYSICAL FUNCTION DECLINE IN OLDER PERSONS

    PubMed Central

    Cesari, Matteo; Incalzi, Raffaele Antonelli; Zamboni, Valentina; Pahor, Marco

    2015-01-01

    Vitamin D, a secosteroid (pro)-hormone, has been traditionally considered as a key regulator of bone metabolism, and calcium and phosphorous homeostasis through a negative feedback with the parathyroid hormone. However, during the last twenty years, the role played by vitamin D has been largely revised by recognizing it a pleiotropic action on a wide spectrum of systems, apparati, and tissues. Thus, vitamin D has growingly been involved as a primary determinant of biological modifications and specific clinical conditions. The effect of vitamin D on skeletal muscle and related outcomes (including physical function decline and disability) is surely one of the most relevant to study in the context of global aging. In the present review, the subclinical and clinical consequences of vitamin D deficiency/insufficiency, extremely frequent conditions in older age, are described. Special focus is given to skeletal muscle and physical function. Limitations of available scientific evidence on the topic are also discussed. PMID:21134097

  11. Parathyroid hormone ablation alters erythrocyte parameters that are rescued by calcium-sensing receptor gene deletion.

    PubMed

    Romero, Jose R; Youte, Rodeler; Brown, Edward M; Pollak, Martin R; Goltzman, David; Karaplis, Andrew; Pong, Lie-Chin; Chien, Lawrence; Chattopadhyay, Naibedya; Rivera, Alicia

    2013-07-01

    The mechanisms by which parathyroid hormone (PTH) produces anemia are unclear. Parathyroid hormone secretion is regulated by the extracellular Ca2+ -sensing receptor. We investigated the effects of ablating PTH on hematological indices and erythrocytes volume regulation in wild-type, PTH-null, and Ca2+ -sensing receptor-null/PTH-null mice. The erythrocyte parameters were measured in whole mouse blood, and volume regulatory systems were determined by plasma membrane K+ fluxes, and osmotic fragility was measured by hemoglobin determination at varying osmolarities. We observed that the absence of PTH significantly increases mean erythrocyte volume and reticulocyte counts, while decreasing erythrocyte counts, hemoglobin, hematocrit, and mean corpuscular hemoglobin concentration. These changes were accompanied by increases in erythrocyte cation content, a denser cell population, and increased K+ permeability, which were in part mediated by activation of the K+ /Cl- cotransporter and Gardos channel. In addition we observed that erythrocyte osmotic fragility in PTH-null compared with wild-type mice was enhanced. When Ca2+ -sensing receptor gene was deleted on the background of PTH-null mice, we observed that several of the alterations in erythrocyte parameters of PTH-null mice were largely rescued, particularly those related to erythrocyte volume, K+ fluxes and osmotic fragility, and became similar to those observed in wild-type mice. Our results demonstrate that Ca2+ -sensing receptor and parathyroid hormone are functionally coupled to maintain erythrocyte homeostasis. PMID:23528155

  12. Quantitation of PTH (parathyroid hormone) in biological fluids. Draft report

    SciTech Connect

    Hindman, B.E.; Halpern, E.P.; Schlaff, S.; Mason, R.

    1982-01-01

    Radioimmunoassay -- rather than immunoradiometry, bioassay or cytochemical assay -- is the PTH determination of the future. The commercially available radioimmunoassays have been developed with nonhuman reagents. Those using antisera that react with C-terminal circulating fragments distinguish normal from hyperparathyroid subjects better than those that recognize the intact PTH. The i-PTH has utility in selective venous catheterization for preoperative localization of hyperfunctioning parathyroid tissue. However, the ability of these antisera to detect human N- and C-terminal fragments has been determined by using bovine PTH fragments, since fragments of human PTH are not commercially available. The production of antibodies by humans or animals is dependent on the injected antigen causing the host to make antibodies. Antibody may not only differ from species to species but from individual to individual within the same species. Antibody differences can also be encountered from one immunization to another. These factors account for the nonspecificity and noncorrelation differences between assays, and do not reflect the true in vivo situation.

  13. Signal transduction pathways mediating parathyroid hormone regulation of osteoblastic gene expression

    NASA Technical Reports Server (NTRS)

    Partridge, N. C.; Bloch, S. R.; Pearman, A. T.

    1994-01-01

    Parathyroid hormone (PTH) plays a central role in regulation of calcium metabolism. For example, excessive or inappropriate production of PTH or the related hormone, parathyroid hormone related protein (PTHrP), accounts for the majority of the causes of hypercalcemia. Both hormones act through the same receptor on the osteoblast to elicit enhanced bone resorption by the osteoclast. Thus, the osteoblast mediates the effect of PTH in the resorption process. In this process, PTH causes a change in the function and phenotype of the osteoblast from a cell involved in bone formation to one directing the process of bone resorption. In response to PTH, the osteoblast decreases collagen, alkaline phosphatase, and osteopontin expression and increases production of osteocalcin, cytokines, and neutral proteases. Many of these changes have been shown to be due to effects on mRNA abundance through either transcriptional or post-transcriptional mechanisms. However, the signal transduction pathway for the hormone to cause these changes is not completely elucidated in any case. Binding of PTH and PTHrP to their common receptor has been shown to result in activation of protein kinases A and C and increases in intracellular calcium. The latter has not been implicated in any changes in mRNA of osteoblastic genes. On the other hand activation of PKA can mimic all the effects of PTH; protein kinase C may be involved in some responses. We will discuss possible mechanisms linking PKA and PKC activation to changes in gene expression, particularly at the nuclear level.

  14. Small Molecule Inhibited Parathyroid Hormone Mediated cAMP Response by N-Terminal Peptide Binding.

    PubMed

    Kumar, Amit; Baumann, Monika; Balbach, Jochen

    2016-01-01

    Ligand binding to certain classes of G protein coupled receptors (GPCRs) stimulates the rapid synthesis of cAMP through G protein. Human parathyroid hormone (PTH), a member of class B GPCRs, binds to its receptor via its N-terminal domain, thereby activating the pathway to this secondary messenger inside cells. Presently, GPCRs are the target of many pharmaceuticals however, these drugs target only a small fraction of structurally known GPCRs (about 10%). Coordination complexes are gaining interest due to their wide applications in the medicinal field. In the present studies we explored the potential of a coordination complex of Zn(II) and anthracenyl-terpyridine as a modulator of the parathyroid hormone response. Preferential interactions at the N-terminal domain of the peptide hormone were manifested by suppressed cAMP generation inside the cells. These observations contribute a regulatory component to the current GPCR-cAMP paradigm, where not the receptor itself, but the activating hormone is a target. To our knowledge, this is the first report about a coordination complex modulating GPCR activity at the level of deactivating its agonist. Developing such molecules might help in the control of pathogenic PTH function such as hyperparathyroidism, where control of excess hormonal activity is essentially required. PMID:26932583

  15. Small Molecule Inhibited Parathyroid Hormone Mediated cAMP Response by N–Terminal Peptide Binding

    PubMed Central

    Kumar, Amit; Baumann, Monika; Balbach, Jochen

    2016-01-01

    Ligand binding to certain classes of G protein coupled receptors (GPCRs) stimulates the rapid synthesis of cAMP through G protein. Human parathyroid hormone (PTH), a member of class B GPCRs, binds to its receptor via its N–terminal domain, thereby activating the pathway to this secondary messenger inside cells. Presently, GPCRs are the target of many pharmaceuticals however, these drugs target only a small fraction of structurally known GPCRs (about 10%). Coordination complexes are gaining interest due to their wide applications in the medicinal field. In the present studies we explored the potential of a coordination complex of Zn(II) and anthracenyl–terpyridine as a modulator of the parathyroid hormone response. Preferential interactions at the N–terminal domain of the peptide hormone were manifested by suppressed cAMP generation inside the cells. These observations contribute a regulatory component to the current GPCR–cAMP paradigm, where not the receptor itself, but the activating hormone is a target. To our knowledge, this is the first report about a coordination complex modulating GPCR activity at the level of deactivating its agonist. Developing such molecules might help in the control of pathogenic PTH function such as hyperparathyroidism, where control of excess hormonal activity is essentially required. PMID:26932583

  16. The secretory response of parathyroid hormone to acute hypocalcemia in vivo is independent of parathyroid glandular sodium/potassium-ATPase activity.

    PubMed

    Martuseviciene, Giedre; Hofman-Bang, Jacob; Clausen, Torben; Olgaard, Klaus; Lewin, Ewa

    2011-04-01

    The involvement of sodium/potassium-ATPase in regulating parathyroid hormone (PTH) secretion is inferred from in vitro studies. Recently, the ?-klotho-dependent rapid recruitment of this ATPase to the parathyroid cell plasma membrane in response to low extracellular calcium ion was suggested to be linked to increased hormone secretion. In this study, we used an in vivo rat model to determine the importance of sodium/potassium-ATPase in PTH secretion. Glands were exposed and treated in situ with vehicle or ouabain, a specific inhibitor of sodium/potassium-ATPase. PTH secretion was significantly increased in response to ethylene glycol tetraacetic acid-induced acute hypocalcemia and to the same extent in both vehicle and ouabain groups. The glands were removed, and inhibition of the ATPase was measured by (86)rubidium uptake, which was found to be significantly decreased in ouabain-treated parathyroid glands, indicating inhibition of the ATPase. As ouabain induced systemic hyperkalemia, the effect of high potassium on hormone secretion was also examined but was found to have no effect. Thus, inhibition of the parathyroid gland sodium/potassium-ATPase activity in vivo had no effect on the secretory response to acute hypocalcemia. Hence, the suggested importance of this ATPase in the regulation of PTH secretion could not be confirmed in this in vivo model. PMID:21209610

  17. Ultrasensitive Impedimetric Biosensor Fabricated by a New Immobilisation Technique for Parathyroid Hormone.

    PubMed

    Özcan, Hakkı Mevlüt; Yildiz, Kübra; Çakar, Cansu; Aydin, Tuba; Asav, Engin; Sağiroğlu, Ayten; Sezgintürk, Mustafa Kemal

    2015-07-01

    This paper presents a novel ultrasensitive and rapid impedimetric biosensor with new immobilisation materials for parathyroid hormone (PTH) with the aim to determine the PTH level in serum for the diagnosis and monitoring of parathyroid diseases such as hyperparathyroidism, adenoma, and thyroid cancer. The interaction between PTH and the biosensor was investigated with an electrochemical method. The biosensor was based on the gold electrode modified by mercaptohexanol (6-MHL). Anti-parathyroid hormone (anti-PTH) was covalently immobilised onto a self-assembled monolayer (SAM) by using epiclorhidrina (EPI) with ethanolamine (EA). The EPI-EA interaction represents the first use of these for the construction of biosensors in published reports. The immobilisation of the anti-PTH was monitored by electrochemical impedance spectroscopy, cyclic voltammetry and scanning electron microscopy (SEM) techniques. After the optimisation studies of immobilisation materials such as 6-MHL, EPI, EA and glutaraldehyde, linearity, repeatability and sensitivity of biosensor were evaluated as the performance of biosensor. PTH was detected within a linear range of 0.1-0.6 pg/ml, and the detection limit was 0.1 fg/ml. The specificity of the biosensor was also investigated. Finally, the described biosensor was used to detect the PTH levels in artificial serum samples. PMID:25935225

  18. Primary hyperparathyroidism from a probable ectopic parathyroid adenoma with severe skeletal disease and vitamin D deficiency

    PubMed Central

    Garingarao, Carlo Jan P; Paz-Pacheco, Elizabeth; Jimeno, Cecilia A

    2014-01-01

    Primary hyperparathyroidism (PHPT) may lead to skeletal deformities, fractures and renal failure in symptomatic patients if untreated. We present a case of a 30-year-old woman presented with muscle weakness, weight loss, hypercalcaemia and a pathological fracture, eventually with rapidly progressive musculoskeletal disease. Subsequent biochemical, radiographic and scintigraphy findings were consistent with PHPT from an ectopic mediastinal adenoma, and concomitant vitamin D deficiency. The severe hypercalcaemia was adequately temporised with hydration, forced diuresis and intravenous bisphosphonates. Removal of the adenoma by video-assisted thoracoscopic surgery was contemplated; however, consent was withdrawn precluding histological confirmation. A review of literature shows the changing profiles of patients with PHPT, the uncommon occurrence of parathyroid adenomas in ectopic locations and possible association between severity of PHPT and vitamin D status. PMID:24632909

  19. Use of pre-operative Tc99m-Sestamibi scintigraphy and intraoperative parathyroid hormone monitoring to eliminate neck exploration in mediastinal parathyroid adenocarcinoma.

    PubMed

    Damadi, Amir; Harkema, James; Kareti, Rao; Saxe, Andrew

    2007-01-01

    A 66-year-old white woman was found to have an elevated serum calcium and parathyroid hormone (PTH) on routine health evaluation. Physical examination was unremarkable as was ultrasonography of the neck. A sestamibi parathyroid scan revealed abnormal uptake in the anterior mediastinum. Computed tomography of the chest demonstrated an anterior mediastinal mass compatible with a parathyroid adenoma but no neck masses. The patient underwent mediastinoscopy that was converted to a median sternotomy to fully access the mass. The mass was completely resected with surrounding thymus gland. Frozen section confirmed that excised tissue was parathyroid gland in origin. An intraoperative PTH obtained 20 minutes after specimen removal showed a decrease of more than 50% from preoperative levels. The strategy for initial surgery for hyperparathyroidism when a sestamibi scan is "positive" in the mediastinum (only) is a point of some controversy. Traditional recommendations have been to "clear the neck" of abnormal parathyroid tissue before undertaking a more morbid sternotomy. Mediastinoscopy was attempted to remove the mediastinal lesion and to avoid a sternotomy. Preoperative Tc99m sestamibi scintigraphy, frozen section histology, and intraoperative PTH monitoring permitted the authors to conclude that neck exploration was unnecessary. PMID:17462212

  20. Nonlinear dynamics in pulsatile secretion of parathyroid hormone in normal human subjects

    NASA Astrophysics Data System (ADS)

    Prank, Klaus; Harms, Heio; Brabant, Georg; Hesch, Rolf-Dieter; Dämmig, Matthias; Mitschke, Fedor

    1995-03-01

    In many biological systems, information is transferred by hormonal ligands, and it is assumed that these hormonal signals encode developmental and regulatory programs in mammalian organisms. In contrast to the dogma of endocrine homeostasis, it could be shown that the biological information in hormonal networks is not only present as a constant hormone concentration in the circulation pool. Recently, it has become apparent that hormone pulses contribute to this hormonal pool, which modulates the responsiveness of receptors within the cell membrane by regulation of the receptor synthesis, movement within the membrane layer, coupling to signal transduction proteins and internalization. Phase space analysis of dynamic parathyroid hormone (PTH) secretion allowed the definition of a (in comparison to normal subjects) relatively quiet ``low dynamic'' secretory pattern in osteoporosis, and a ``high dynamic'' state in hyperparathyroidism. We now investigate whether this pulsatile secretion of PTH in healthy men exhibits characteristics of nonlinear determinism. Our findings suggest that this is conceivable, although on the basis of presently available data and techniques, no proof can be established. Nevertheless, pulsatile secretion of PTH might be a first example of nonlinear deterministic dynamics in an apparently irregular hormonal rhythm in human physiology.

  1. Dimeric Arrangement of the Parathyroid Hormone Receptor and a Structural Mechanism for Ligand-induced Dissociation

    SciTech Connect

    Pioszak, Augen A.; Harikumar, Kaleeckal G.; Parker, Naomi R.; Miller, Laurence J.; Xu, H. Eric

    2010-06-25

    The parathyroid hormone receptor (PTH1R) is a class B G protein-coupled receptor that is activated by parathyroid hormone (PTH) and PTH-related protein (PTHrP). Little is known about the oligomeric state of the receptor and its regulation by hormone. The crystal structure of the ligand-free PTH1R extracellular domain (ECD) reveals an unexpected dimer in which the C-terminal segment of both ECD protomers forms an {alpha}-helix that mimics PTH/PTHrP by occupying the peptide binding groove of the opposing protomer. ECD-mediated oligomerization of intact PTH1R was confirmed in living cells by bioluminescence and fluorescence resonance energy transfer experiments. As predicted by the structure, PTH binding disrupted receptor oligomerization. A receptor rendered monomeric by mutations in the ECD retained wild-type PTH binding and cAMP signaling ability. Our results are consistent with the hypothesis that PTH1R forms constitutive dimers that are dissociated by ligand binding and that monomeric PTH1R is capable of activating G protein.

  2. Changes in calcium phosphate on bone surfaces and in lining cells after the administration of parathyroid hormone or calcitonin

    SciTech Connect

    Norimatsu, H.; Yamamoto, T.; Ozawa, H.; Talmage, R.V.

    1982-04-01

    Small doses of parathyroid hormone and calcitonin were injected into thyroparathyroidectomized newborn rats to investigate the histological and chemical changes in bone surfaces and in mitochondrial granules of bone lining cells. Nondecalcified tissue specimens were observed under transmission electron microscope, electron probe X-ray microanalyzer, and microdiffraction after freeze substitution preparation of tibia shafts. Amorphous calcium phosphate, which appears as clusters and globules by this freeze substitution preparation, appears on the bone surfaces in a short time after the administration of a small dose of calcitonin. The Ca:PO4 ratio in the mitochondria of bone lining cells rises slightly with a small dose of parathyroid hormone and is reduced with a small dose of calcitonin. These data support the postulate that both parathyroid hormone and calcitonin act directly on bone lining cells in the process of influencing calcium concentrations of blood and temporarily storing calcium at bone surfaces.

  3. Minimally invasive parathyroidectomy without using intraoperative parathyroid hormone monitoring or gamma probe

    PubMed Central

    Soyder, Aykut; nbol, Mustafa; mrl, ?mran Kurt; Gney, Engin; zba?, Serdar

    2015-01-01

    Objective: Minimal invasive parathyroidectomy (MIP) is a common surgical technique for the treatment of primary hyperparathyroidism (PHPT) and is usually done in conjunction with positive imaging techniques. We aimed to assess the results of this technique, performed without the use of intraoperative tests, in cases with PHPT caused by a single parathyroid adenoma. Material and Methods: The data for patients who were diagnosed with PHPT were assessed retrospectively. Only those who had undergone a parathyroid adenoma localization study with ultrasonography (US) and parathyroid scintigraphy (PS) before the surgery, along with those patients for whom the MIP technique was routinely performed with frozen pathology, were included. Results: The study group was made up of 65 patients who had undergone the MIP technique. The mean age of the patients was 5614 (2081), with most being females [M/F: 19 (29.2%)/46 (70.8%)]. The mean calcium values before the operation were 11.241.26 mg/dL (815.5) (normal range: 8.410.2), and the parathyroid hormone (PTH) values were 388 pg/mL (249707.75). These same values, measured 24 hours after the operation, were determined as 9.041.04 mg/dL (6.813.9) and 27 pg/mL (686), respectively. The follow-up period for the patients was an average of 26.69.4 (376) months, and only 3 (4.6%) cases of persistent hyperparathyroidism were detected within this period. Conclusion: Our success rate with MIP in PHPT cases was determined to be 95.4%; therefore, this technique may be applied with a high success rate without any assistance from intraoperative tests, such as rapid serum PTH (rPTH) assays or gamma probes, in the presence of localization results of PS and US. PMID:25931949

  4. Molecular recognition of parathyroid hormone by its G protein-coupled receptor

    SciTech Connect

    Pioszak, Augen A.; Xu, H. Eric

    2008-08-07

    Parathyroid hormone (PTH) is central to calcium homeostasis and bone maintenance in vertebrates, and as such it has been used for treating osteoporosis. It acts primarily by binding to its receptor, PTH1R, a member of the class B G protein-coupled receptor (GPCR) family that also includes receptors for glucagon, calcitonin, and other therapeutically important peptide hormones. Despite considerable interest and much research, determining the structure of the receptor-hormone complex has been hindered by difficulties in purifying the receptor and obtaining diffraction-quality crystals. Here, we present a method for expression and purification of the extracellular domain (ECD) of human PTH1R engineered as a maltose-binding protein (MBP) fusion that readily crystallizes. The 1.95-{angstrom} structure of PTH bound to the MBP-PTH1R-ECD fusion reveals that PTH docks as an amphipathic helix into a central hydrophobic groove formed by a three-layer {alpha}-{beta}-{beta}{alpha} fold of the PTH1R ECD, resembling a hot dog in a bun. Conservation in the ECD scaffold and the helical structure of peptide hormones emphasizes this hot dog model as a general mechanism of hormone recognition common to class B GPCRs. Our findings reveal critical insights into PTH actions and provide a rational template for drug design that targets this hormone signaling pathway.

  5. Parathyroid Disorders

    MedlinePLUS

    ... PTH), which helps your body keep the right balance of calcium and phosphorous. If your parathyroid glands ... much or too little hormone, it disrupts this balance. If they secrete extra PTH, you have hyperparathyroidism, ...

  6. Levels of parathyroid hormone and calcitonin in serum among atomic bomb survivors

    SciTech Connect

    Fujiwara, Saeko; Yokoyama, Naokata; Sasaki, Hideo; Kodama, Kazunori; Sposto, R.; Shimaoka, Katsutaro; Shiraki, Mastaka

    1994-01-01

    To examines the potential causes of increased levels of calcium in serum with increasing dose of atomic bomb radiation, which was obtained from the previous preliminary analysis, levels of parathyroid hormone (PTH) and calcitonin in serum were examined among 1459 subjects in Hiroshima and Nagasaki. A significant effect of radiation on levels of calcium, PTH and calcitonin in serum was found, even after patients with hyperparathyroidism were excluded. The level of calcium in serum increased with radiation dose; this can be explained partly by the increase in the level of PTH with radiation dose. However, the dose effect on calcium remained even after adjustment for PTH, calcitonin and confounding factors such as renal function, serum albumin level and medication. Parathyroid hormone increased initially by 6.8% per gray, but the dose response leveled off after about 1 Gy. The level of calcitonin increased with radiation dose, probably in part due to feedback mechanisms stimulated by the increase in calcium. However, after adjustment for the level of calcium, the increase in the level of calcitonin with dose was still found. Although the etiological mechanisms of the effect of radiation on serum levels of calcium, PTH and calcitonin are unclear, radiation exposure may affect secretion of PTH and calcitonin and regulation of calcium a long time after atomic bomb exposure. 21 refs., 3 figs., 6 tabs.

  7. Characterization of the major parathyroid hormone target cell in the endosteal metaphysis of rat long bones

    SciTech Connect

    Rouleau, M.F.; Mitchell, J.; Goltzman, D. )

    1990-10-01

    The majority of in vivo competitive binding of parathyroid hormone (PTH) in the endosteal metaphysis of rat long bones was recently shown to be localized in the intertrabecular tissue to a cell that is distinct from a differentiated osteoblast. In the present report we have further characterized this cell, termed a parathyroid hormone target (PT) cell, by light and electron microscopy using radioautography and histochemical techniques. These studies demonstrate that the PT cell is a mononuclear cell with a large cell body located at times between clusters of differentiated osteoblasts, as well as in other regions of the intertrabecular tissue. Its long cytoplasmic processes extend from the bone matrix through the intertrabecular region toward vascular structures, interdigitating with various cells of the endosteum. A distinctive tubular structure originating in the Golgi system and often associated with long mitochondria and glycogen particles extends throughout the cytoplasmic processes of the PT cell. Based on its capacity to incorporate ({sup 3}H)thymidine, the PT cell appears to divide rather slowly. The identification of occasional hybrid cells with ultrastructural features of both the PT cell and the differentiated osteoblast and the presence of histochemical evidence for alkaline phosphatase activity suggest that the PT cell is of the osteoblast lineage. These studies therefore morphologically define a major osseous target cell for PTH that, although of the osteoblast lineage, is not a differentiated osteoblast and provide in vivo evidence that characteristics of the 'osteoblast phenotype' are not restricted to a sole osseous cell type.

  8. Effect of propranolol and metoprolol on parathyroid hormone and calcitonin secretions in uraemic patients.

    PubMed Central

    Coevoet, B; Desplan, C; Sebert, J L; Makdassi, R; Andrejak, M; Gheerbrant, J D; Tolani, M; Calmette, C; Moukhtar, M S; Fournier, A

    1980-01-01

    Nine uraemic patients not being treated by dialysis received intravenous propranolol 1 microgram/kg/min for 85 minutes after a priming dose of 1 mg. Fifteen days later, six of them received intravenous metoprolol 1.2 microgram/kg/min after a priming dose of 1.2 mg. Plasma concentrations of parathyroid hormone (PTH) and calcitonin fell significantly after propranolol but not after metoprolol, whereas no change in plasma concentrations of ionised calcium and phosphate occurred with either drug. Heart rate fell similarly with both drugs. The fact that propranolol acutely suppressed PTH and calcitonin secretion in uraemic patients indicates that further studies are warranted to assess the long-term effects of the drug on the secretion of these hormones and on renal osteodystrophy. The contrast between the responses to propranolol and metoprolol supports the concept that PTH and calcitonin secretion is modulated through specific beta 2-receptors. PMID:7388535

  9. Extremely high parathyroid hormone concentrations associated with pityriasis rubra pilaris and monoclonal gammopathy of unknown significance: a clinical dilemma.

    PubMed

    Tanriover, Mine Durusu; Portakal, Oytun; Hapa, Asli; Tekinel, Yasemin; Dagdelen, Selcuk; Buyukasik, Yahya; Arici, Mustafa

    2012-11-01

    We present a case with extremely high parathyroid hormone (PTH) concentrations in the order of hundred thousands accompanied by dermatological and hematological diseases. After several diagnostic interventions, no malignancy could be demonstrated except monoclonal gammopathy of unknown significance. The dermatological findings were taken to be manifestations of the hematological disease. Since the first serum intact PTH concentration of the patient was found to be higher than 2500 pg/ml, dilution study was performed and found to be 215,977 pg/ml. The high concentration of serum PTH was taken to be falsely high due to assay interference. This concentration was checked from three different paths; a test for linear dilution was performed, the test was repeated with another method and the sample was treated to remove or inhibit interfering substances. The results were compatible with endogenous antibody interference, presumed to be a result of monoclonal gammopathy. The extremely high PTH concentrations were not only due to assay interference, but also secondary hyperparathyroidism, which was evident by the decrease in PTH concentrations with calcium and vitamin D treatments. PMID:22906636

  10. ALX 111: ALX1-11, parathyroid hormone (1-84) - NPS Allelix, PREOS, PTH, recombinant human parathyroid hormone, rhPTH (1-84).

    PubMed

    2003-01-01

    ALX 111 [parathyroid hormone (1-84) - NPS Allelix, recombinant human parathyroid hormone, rhPTH (1-84), PREOS] is a full-length, recombinant human parathyroid hormone. It has potential as an anti-osteoporotic agent, due to its properties as a bone formation stimulant. This profile has been selected from R&D Insight, a pharmaceutical intelligence database produced by Adis International Ltd. It has been recommended that ALX 111 should be given for 1 to 2 years and may be given in combination with an antiresorptive agent, such as estrogen or a bisphosphonate. In December 1999, Allelix Biopharmaceuticals merged with NPS Pharmaceuticals. This combined company is operating as NPS Pharmaceuticals in the US and as NPS Allelix in Canada. The merger has enabled a phase III study of ALX 111 to begin in the US, Europe and South America. NPS harmaceuticals has signed an agreement with Bio-Imaging Technologies, which will provide all image handling and analysis for this trial. Until 1994, Allelix Biopharmaceuticals and Glaxo in Canada were involved in a joint venture to investigate the efficacy of ALX 111 in osteoporosis. Allelix was subsequently, until September 1998, collaborating with Astra of Sweden in developing ALX 111. Astra had acquired exclusive worldwide rights to ALX 111 and was responsible for development of the agent. However, Astra returned all rights to ALX 111 to Allelix as a result of its merger with Zeneca to form AstraZeneca. In December 1999, Allelix Biopharmaceuticals merged with NPS Pharmaceuticals. This combined company is operating as NPS Pharmaceuticals in the US and as NPS Allelix in Canada. The merger has enabled a phase III study of ALX 111 to begin in the US, Europe and South America. The phase III trial of ALX 111 for the treatment of osteoporosis has completed patient enrolment, and phase II trials have been completed in Canada and the Netherlands. The 18-month, phase III, multicentre, placebo-controlled trial (Treatment of Osteoporosis with Parathyroid Hormone; TOP) has been designed to assess the bone-building and fracture-reducing potential of the drug, and over 2600 postmenopausal women with osteoporosis who have not received previous drug therapy for osteoporosis have been enrolled. Treatment will be completed in September 2003, but more than 75% of patients enrolled in the TOP study have chosen to enrol in an Open Label Extension Study (OLES), which allows for a total treatment period of up to 24 months. NPS Pharmaceuticals has signed an agreement with Bio-Imaging Technologies, which will provide all image handling and analysis for this trial. In September 2002, NPS Pharmaceuticals announced that it has met its patient enrolment target (n > 150) for its POWER (PTH for Osteoporotic Women on Estrogen Replacement) study; a 24-month phase III trial initiated in Europe in November 2001. In this trial, women with osteoporosis receive SC injections of ALX 111 or placebo, in combination with their existing hormone replacement therapies, to test the bone building potential of the drug. In addition to the POWER study, a clinical trial sponsored by the National Institutes of Health (NIH) is being conducted to evaluate the potential of ALX 111 to build bone in combination with another osteoporosis medication. The 'PaTH' study (PTH/alendronate) is designed to assess the effect of various combinations and sequential uses of ALX 111 and Merck's Fosamax, a drug for slowing the loss of bone due to osteoporosis. The PaTH study, initiated in May 2000 and scheduled to conclude in September 2003, involved 238 patients with postmenopausal osteoporosis. It is thought that alendronic acid and ALX 111, when administered in combination, may act in an additive manner to treat osteoporosis because they act in different ways; alendronic acid acts to inhibit resorption and ALX 111 speeds up bone formation and resorption, with a net increase in formation. Results of this study are still being analysed but preliminary results appear to be positive. The effect of ALX 111 on bone cell cultures underare still being analysed but p

  11. Chronic hemodialysis patients without marked elevation of intact parathyroid hormone are also good candidates for early intervention with cinacalcet.

    PubMed

    Nishida, Hayato; Masakane, Ikuto; Kudo, Kenichi; Ito, Minoru; Tanida, Hideki; Koshika, Masataka; Nishida, Wakako; Tomita, Yoshihiko

    2013-06-01

    Management of calcium (Ca) and phosphorus (P) metabolism is crucial in chronic hemodialysis (HD) patients. Cinacalcet is usually used for chronic kidney disease-mineral and bone disorders (CKD-MBD) patients with elevated intact parathyroid hormone (iPTH) levels. However, a certain number of CKD-MBD patients have normal iPTH levels and are not subjected to cinacalcet therapy. Here, we evaluated the efficacy of a new treatment algorithm of early initiation of cinacalcet therapy in this subgroup of patients, mainly for correcting Ca and P metabolism. Seventy-one HD patients, including 44 patients without marked elevation of iPTH (102?vitamin D sterols were compared between pre- and post-cinacalcet administration retrospectively. Sixty-four of 71 patients did not require discontinuation of cinacalcet. In these 64 patients, serum Ca (P?=?0.0003), P (P?=?0.0153), and iPTH (P?vitamin D sterols was unchanged (P?=?0.5930) but the proportion of patients who received maxacalcitol was significantly reduced after cinacalcet administration (P?=?0.0108). The new treatment algorithm of early initiation of cinacalcet is considered to be well tolerated and effective for controlling hypercalcemia, and/or hyperphosphatemia and/or increased iPTH of CKD-MBD patients. PMID:23735149

  12. Parathyroid diseases and animal models.

    PubMed

    Imanishi, Yasuo; Nagata, Yuki; Inaba, Masaaki

    2012-01-01

    CIRCULATING CALCIUM AND PHOSPHATE ARE TIGHTLY REGULATED BY THREE HORMONES: the active form of vitamin D (1,25-dihydroxyvitamin D), fibroblast growth factor (FGF)-23, and parathyroid hormone (PTH). PTH acts to stimulate a rapid increment in serum calcium and has a crucial role in calcium homeostasis. Major target organs of PTH are kidney and bone. The oversecretion of the hormone results in hypercalcemia, caused by increased intestinal calcium absorption, reduced renal calcium clearance, and mobilization of calcium from bone in primary hyperparathyroidism. In chronic kidney disease, secondary hyperparathyroidism of uremia is observed in its early stages, and this finally develops into the autonomous secretion of PTH during maintenance hemodialysis. Receptors in parathyroid cells, such as the calcium-sensing receptor, vitamin D receptor, and FGF receptor (FGFR)-Klotho complex have crucial roles in the regulation of PTH secretion. Genes such as Cyclin D1, RET, MEN1, HRPT2, and CDKN1B have been identified in parathyroid diseases. Genetically engineered animals with these receptors and the associated genes have provided us with valuable information on the patho-physiology of parathyroid diseases. The application of these animal models is significant for the development of new therapies. PMID:22754549

  13. Bovine parathyroid hormone enhances osteoclast bone resorption by modulating V-ATPase through PTH1R

    PubMed Central

    LIU, SHUANGXIN; ZHU, WEIPING; LI, SIJIA; MA, JIANCHAO; ZHANG, HUITAO; LI, ZHONGHE; ZHANG, LI; ZHANG, BIN; LI, ZHUO; LIANG, XINLING; SHI, WEI

    2016-01-01

    The vacuolar-type H+ adenosine triphosphatase (V-ATPase) plays an important role in cellular acidification and bone resorption by osteoclasts. However, the direct effect of bovine parathyroid hormone (bPTH) on V-ATPase has not yet been elucidated. The aim of the present study was to assess the effects of bPTH on V-ATPase and osteoclasts. Osteoclasts from bone marrow (BM)-derived monocytes of C57BL/6 mice were cultured with or without bPTH. The mRNA and protein expression levels of the V-ATPase a3-subunit and d2-subunit (by RT-qPCR and western blot analysis), V-ATPase activity (using the V type ATPase Activity Assay kit) and the bone resorption function of osteoclasts (by bone resorption assay) were examined following treatment with various concentrations of bPTH (0.1, 1.0, 10 and 100 ng/ml) alone or with bPTH and its inhibitor, bafilomycin A1. Furthermore, the expression of parathyroid hormone (PTH) receptors in osteoclasts was also detected. The results revealed that the mRNA and protein expression levels of V-ATPase a3-subunit and d2-subunit increased in a dose-dependent manner, paralleling the level of bPTH present. In addition, an increase in the concentration of bPTH was accompanied by the increased resorption capability of osteoclasts, whereas bone resorption was inhibited in the presence of bafilomycin A1. In addition, we confirmed the existence of parathyroid hormone 1 receptor (PTH1R) in osteoclasts using three different methods (RT-qPCR, western blot analysis and immunofluorescence staining). We found that bPTH enhanced the bone resorption capability of osteoclasts by modulating the expression of V-ATPase subunits, intracellular acidification and V-ATPase activity. Thus, we propose that PTH has a direct effect on osteoblasts and osteoclasts, and that this effect is mediated through PTH1R, thus contributing to bone remodeling. PMID:26647715

  14. Bovine parathyroid hormone enhances osteoclast bone resorption by modulating V-ATPase through PTH1R.

    PubMed

    Liu, Shuangxin; Zhu, Weiping; Li, Sijia; Ma, Jianchao; Zhang, Huitao; Li, Zhonghe; Zhang, Li; Zhang, Bin; Li, Zhuo; Liang, Xinling; Shi, Wei

    2016-02-01

    The vacuolar-type H+ adenosine triphosphatase(V-ATPase) plays an important role in cellular acidification and bone resorption by osteoclasts. However, the direct effect of bovine parathyroid hormone(bPTH) on V-ATPase has not yet been elucidated. The aim of the present study was to assess the effects of bPTH on V-ATPase and osteoclasts. Osteoclasts from bone marrow(BM)-derived monocytes of C57BL/6 mice were cultured with or without bPTH. The mRNA and protein expression levels of the V-ATPase a3-subunit and d2-subunit(by RT-qPCR and western blot analysis), V-ATPase activity(using the Vtype ATPase Activity Assay kit) and the bone resorption function of osteoclasts(by bone resorption assay) were examined following treatment with various concentrations of bPTH (0.1, 1.0, 10 and100ng/ml) alone or with bPTH and its inhibitor, bafilomycinA1. Furthermore, the expression of parathyroid hormone(PTH) receptors in osteoclasts was also detected. The results revealed that the mRNA and protein expression levels of V-ATPase a3-subunit and d2-subunit increased in a dose?dependent manner, paralleling the level of bPTH present. In addition, an increase in the concentration of bPTH was accompanied by the increased resorption capability of osteoclasts, whereas bone resorption was inhibited in the presence of bafilomycinA1. In addition, we confirmed the existence of parathyroid hormone1 receptor(PTH1R) in osteoclasts using three different methods(RT-qPCR, western blot analysis and immunofluorescence staining). We found that bPTH enhanced the bone resorption capability of osteoclasts by modulating the expression of V-ATPase subunits, intracellular acidification and V-ATPase activity. Thus, we propose that PTH has a direct effect on osteoblasts and osteoclasts, and that this effect is mediated through PTH1R, thus contributing to bone remodeling. PMID:26647715

  15. Parathyroid hormone and its receptor gene polymorphisms: implications in osteoporosis and in fracture healing.

    PubMed

    Noordin, Shahryar; Glowacki, Julie

    2016-01-01

    Parathyroid glands secrete parathyroid hormone (PTH) which plays multiple roles in calcium homeostasis and in bone remodeling. Secretion of PTH is regulated by extracellular calcium levels and other humoral factors including 1α,25(OH)2D3. PTH regulates gene expression and induces biological effects directly and indirectly. The human gene encoding PTH is located on chromosome 11. In this review, we study the diverse PTH along with its receptor gene polymorphisms and their association with osteoporosis and fracture healing. Genetic factors are associated with osteoporosis by influencing bone mineral density (BMD), bone turnover, calcium homeostasis, and susceptibility to osteoporotic fractures. Polymorphisms in genes encoding PTH may contribute to genetic regulation of BMD and thus susceptibility to fracture risk. PTH stimulates the proliferation of osteoprogenitor cells, production of alkaline phosphatise, and bone matrix proteins that contribute to hard callus formation and increases strength at the site of fractured bone. During remodeling, PTH promotes osteoclastogenesis restoring the original shape, structure, and mechanical strength of the bone. Some PTH polymorphisms have shown an association with fracture risk. Further research is needed to elucidate the relative importance of PTH genetics and the mechanisms of genetic contributions to gene-gene interactions in the pathogenesis of osteoporosis and in fracture healing. PMID:26194148

  16. Intraoperative parathyroid hormone assay during focused parathyroidectomy: the importance of 20 minutes measurement

    PubMed Central

    2013-01-01

    Background Parathyroid hormone (PTH) monitoring during the surgical procedure can confirm the removal of all hyperfunctioning parathyroid tissue, as the half-life of PTH is approximately 5 min. The commonly applied Irvin criterion is reported to correctly predict post-operative calcium levels in 96-98% of patients. However, the PTH baseline reference concentration is markedly influenced by surgical manipulations during preparation of the affected glands, interindividual variability of the PTH half-life and modifications in the physiological state of the patient during surgery. The aim of this study was to evaluate the possible impact of the measurement of intraoperative PTH 20 minutes after surgery. Methods Between 2003 and 2012, 188 patients underwent a focused parathyroidectomy associated to rapid intraoperative PTH assay monitoring. Blood samples were collected: 1) at pre-incision time, 2) at 10 min after gland excision and 3) at 20 min after excision, if a sufficient reduction of PTH value was not observed. On the bases of the Irvin criterion, an intra-operative PTH drop>50% from the highest either pre-incision or pre-excision level after parathyroid excision was considered a surgical success. Results A >50% decrease of PTH after gland excision compared to the highest pre-excision value occurred in 156/188 patients (83%) within 10 min and in further 12/188 after 20 minutes (6.4%). In the remaining 20 patients (10.6%) values of PTH remained substantially unchanged or decreased less than 50% and for this reason bilateral neck exploration was performed. An additional pathologic parathyroid was removed in 9 cases, a third in one. In the other 10 cases further neck exploration by a standard cervical approach was negative and in four of these persistent postoperative hypercalcemia was demonstrated. The overall operative success was 97.3%. Intraoperative PTH monitoring was accurate in predicting operative success or failure in 96.3% of patients. Conclusions The 20 minutes PTH measurement appears very useful, avoiding unnecessary bilateral exploration and the related risk of complications with only a slight increase of the duration of surgery and of the costs. PTH values decreasing appeared to be influenced by surgical manipulations during minimally invasive parathyroidectomy. PMID:24044556

  17. Parathyroid-specific epidermal growth factor-receptor inactivation prevents uremia-induced parathyroid hyperplasia in mice

    PubMed Central

    Arcidiacono, Maria Vittoria; Yang, Jing; Fernandez, Elvira; Dusso, Adriana

    2015-01-01

    Background In chronic kidney disease (CKD), parathyroid hyperplasia contributes to high serum parathyroid hormone (PTH) and also to an impaired suppression of secondary hyperparathyroidism by calcium, vitamin D and fibroblast growth factor 23 (FGF23). In rats, systemic inhibition of epidermal growth factor receptor (EGFR) activation markedly attenuated uremia-induced parathyroid hyperplasia and vitamin D receptor (VDR) loss, hence restoring the response to vitamin D. Therefore, we propose that parathyroid-specific EGFR inactivation should prevent CKD-induced parathyroid hyperplasia. Methods A dominant-negative human EGFR mutant, which forms non-functional heterodimers with full-length endogenous EGFR, was successfully targeted to the parathyroid glands (PTGs) of FVB/N mice, using the 5? regulatory sequence of the PTH promoter. The parathyroid phenotype and serum chemistries of wild-type (WT) and transgenic mice were examined after 14 weeks of either sham operation or 75% renal mass reduction (NX). Results Both genotypes had similar morphology and body weight, and NX-induction enhanced similarly serum blood urea nitrogen compared with sham-operated controls. However, despite similar serum calcium, phosphate and FGF23 levels in NX mice of both genotypes, parathyroid EGFR inactivation sufficed to completely prevent the marked increases in PTG enlargement, serum PTH and in parathyroid levels of transforming growth factor-?, a powerful EGFR-activator, and the VDR reductions observed in WT mice. Conclusion In CKD, parathyroid EGFR activation is essential for parathyroid hyperplasia and VDR loss, rendering this transgenic mouse a unique tool to scrutinize the pathogenesis of parathyroid and multiple organ dysfunction of CKD progression unrelated to parathyroid hyperplasia. PMID:25324357

  18. Development of monoclonal antibodies against parathyroid hormone: genetic control of the immune response to human PTH

    SciTech Connect

    Nussbaum, S.R.; Lin, C.S.; Potts, J.T. Jr.; Rosenthal, A.S.; Rosenblatt, M.

    1985-01-01

    Seventeen monocloanl antibodies against the aminoterminal portion of parathyroid hormone (PTH) were generated by using BALB/c mouse for immunization fully biologically active synthetic human PTH-(1-34) and bovine PTH-(1-84) as immunogens, monoclonal antibody methods, and a solid-phase screening assay. Isotypic analysis of these monoclonal antibodies was performed using affinity purified goat antimouse immunoglobulins specific for IgG heavy chains and ..mu..(IgM). All antibodies were IgM as evidenced by 40 times greater than background activity when 25,000 cpm of /sup 125/I-labelled goat anti-mouse IgM was used as second antibody in a radioimmunoassay.

  19. Evolution of Parathyroid Hormone Receptor Family and Their Ligands in Vertebrate

    PubMed Central

    On, Jason S. W.; Chow, Billy K. C.; Lee, Leo T. O.

    2015-01-01

    The presence of the parathyroid hormones in vertebrates, including PTH, PTH-related peptide (PTHrP), and tuberoinfundibular peptide of 39 residues (TIP39), has been proposed to be the result of two rounds of whole genome duplication in the beginning of vertebrate diversification. Bioinformatics analyses, in particular chromosomal synteny study and the characterization of the PTH ligands and their receptors from various vertebrate species, provide evidence that strongly supports this hypothesis. In this mini-review, we summarize recent advances in studies regarding the molecular evolution and physiology of the PTH ligands and their receptors, with particular focus on non-mammalian vertebrates. In summary, the PTH family of peptides probably predates early vertebrate evolution, indicating a more ancient existence as well as a function of these peptides in invertebrates. PMID:25806022

  20. Differential effects of intermittent and continuous administration of parathyroid hormone on bone histomorphometry and gene expression

    NASA Technical Reports Server (NTRS)

    Lotinun, Sutada; Sibonga, Jean D.; Turner, Russell T.

    2002-01-01

    A mechanism explaining the differential skeletal effects of intermittent and continuous elevation of serum parathyroid hormone (PTH) remains elusive. Intermittent PTH increases bone formation and bone mass and is being investigated as a therapy for osteoporosis. By contrast, chronic hyperparathyroidism results in the metabolic bone disease osteitis fibrosa characterized by osteomalacia, focal bone resorption, and peritrabecular bone marrow fibrosis. Intermittent and continuous PTH have similar effects on the number of osteoblasts and bone-forming activity. Many of the beneficial as well as detrimental effects of the hormone appear to be mediated by osteoblast-derived growth factors. This hypothesis was tested using cDNA microgene arrays to compare gene expression in tibia of rats treated with continuous and pulsatile administration of PTH. These treatments result in differential expression of many genes, including growth factors. One of the genes whose steady-state mRNA levels was increased by continuous but not pulsatile administration was platelet-derived growth factor-A (PDGF-A). Administration of a PDGF-A antagonist greatly reduced bone resorption, osteomalacia, and bone marrow fibrosis in a rat model for hyperparathyroidism, suggesting that PDGF-A is a causative agent for this disease. These findings suggest that profiling changes in gene expression can help identify the metabolic pathways responsible for the skeletal responses to the hormone.

  1. Serum 25(OH)D Level and Parathyroid Hormone in Chinese Adult Population: A Cross-Sectional Study in Guiyang Urban Community from Southeast of China.

    PubMed

    Qiao, Zhang; Li-Xing, Shi; Nian-Chun, Peng; Shu-Jing, Xu; Miao, Zhang; Hong, Li; Hui-Jun, Zhuang; Ming-Xian, Gong; Song, Zhang; Rui, Wang; Ying, Hu; Jing-Lu, Zhang; Shuang, Chen

    2013-01-01

    Objective. To evaluate vitamin D status and serum parathyroid hormone (IPTH) of healthy adults living in Guiyang. Design and Participants. We conducted a cross-sectional evaluation in the General Community in Guiyang by cluster sampling method. The data was a part of 1510 participants (634 men, 876 women) aged 20-79 years median 45.2 years from November 2009 to February 2010 in Guiyang Health Measures Survey. Measurements. Aradioimmunoassay was used to measure the level of 25-hydroxyvitamin D [25(OH)D] and intact parathyroid hormone (iPTH). Results.The mean serum 25(OH)D level was (20.4 9.0)?ng/mL and the highest level among participants aged 40-59 years (22.8?ng/mL). The mean serum PTH level was (32.1 13.7)?pg/mL and the lowest level among participants aged 40-50 years (30.8?ng/mL). Serum 25(OH)D was below 50?nmol/liter in 52.3%, below 75?nmol/liter in 84.6%, and above 75?nmol/liter in 15.4% of the respondents. Secondary hyperparathyroidism was 5.4% (5.4% among men and 4.6% among women). The prevalence of secondary hyperparathyroidism increased (5.8%, 6.5%, and 7.1%, resp.) with decreasing serum 25(OH)D levels among subjects who were 30 to 20, 19.9 to 10, and <10?ng/mL, respectively. Serum 25(OH)D was inversely associated with serum PTH. Conclusions. Vitamin D insufficiency and its complication of secondary hyperparathyroidism are common. PMID:24065989

  2. Structural Basis for Parathyroid Hormone-related Protein Binding to the Parathyroid Hormone Receptor and Design of Conformation-selective Peptides

    SciTech Connect

    Pioszak, Augen A.; Parker, Naomi R.; Gardella, Thomas J.; Xu, H. Eric

    2009-12-01

    Parathyroid hormone (PTH) and PTH-related protein (PTHrP) are two related peptides that control calcium/phosphate homeostasis and bone development, respectively, through activation of the PTH/PTHrP receptor (PTH1R), a class B G protein-coupled receptor. Both peptides hold clinical interest for their capacities to stimulate bone formation. PTH and PTHrP display different selectivity for two distinct PTH1R conformations, but how their binding to the receptor differs is unclear. The high resolution crystal structure of PTHrP bound to the extracellular domain (ECD) of PTH1R reveals that PTHrP binds as an amphipathic {alpha}-helix to the same hydrophobic groove in the ECD as occupied by PTH, but in contrast to a straight, continuous PTH helix, the PTHrP helix is gently curved and C-terminally 'unwound.' The receptor accommodates the altered binding modes by shifting the side chain conformations of two residues within the binding groove: Leu-41 and Ile-115, the former acting as a rotamer toggle switch to accommodate PTH/PTHrP sequence divergence, and the latter adapting to the PTHrP curvature. Binding studies performed with PTH/PTHrP hybrid ligands having reciprocal exchanges of residues involved in different contacts confirmed functional consequences for the altered interactions and enabled the design of altered PTH and PTHrP peptides that adopt the ECD-binding mode of the opposite peptide. Hybrid peptides that bound the ECD poorly were selective for the G protein-coupled PTH1R conformation. These results establish a molecular model for better understanding of how two biologically distinct ligands can act through a single receptor and provide a template for designing better PTH/PTHrP therapeutics.

  3. Parathyroid cancer

    PubMed Central

    McClenaghan, Fiona

    2015-01-01

    Parathyroid carcinoma is an exceedingly rare endocrine malignancy first described in 1933. It accounts for between 0.5% and 5% of all cases of primary hyperparathyroidism. Parathyroid carcinoma is unusual among endocrine malignancies, being more hormonally active than its benign counterpart. Parathyroid carcinoma poses a diagnostic challenge both clinically and histologically due to the lack of features which can definitively distinguish malignant from benign disease early in its clinical course. Here, we describe the clinical features of the disease, and present the current opinion on optimal management. Further, we analyse the most recent histological advances made to aid in the diagnosis and management of this rare, but potentially devastating, disease. PMID:26312219

  4. Parathyroid hormone depresses cytosolic pH and DNA synthesis in osteoblast-like cells

    SciTech Connect

    Reid, I.R.; Civitelli, R.; Avioli, L.V.; Hruska, K.A. )

    1988-07-01

    It has recently become apparent that a number of hormones and growth factors modulate cytosolic pH (pH{sub i}) and there is some evidence that this in turn may influence cell growth. The authors have examined the effects of parathyroid hormone (PTH) on both these parameters in an osteoblast-like cell line, UMR 106. Preliminary studies, using the pH-sensitive fluorescent probe 2{prime},7{prime}-bis(2-carboxyethyl)-5,(6)-carboxyfluorescein indicated that these cells regulate pH{sub i} by means of an amiloride-inhibitable Na{sup +}-H{sup +} exchanger. Rat PTH-(1-34) (rPTH) caused a progressive dose-related decrease in pH{sub i} with a half-maximal effect at 10{sup {minus}11} M. The diacylglycerol analogue, phorbol 12-myristate 13-acetate, increased both pH{sub i} and ({sup 3}H)thymidine incorporation, and amiloride reduced both indexes. However, rPTH remained a potent inhibitor of ({sup 3}H)thymidine incorporation in the presence of amiloride, even though it did not affect pH{sub i} in these circumstances. It is concluded that PTH decreases pH{sub i} and growth in UMR 106 cells but that these changes can be dissociated. Depression of pH{sub i} may have other important effects on bone metabolism, such as reducing cell-cell communication, and may be associated with alkalinization of the bone fluid compartment.

  5. Quantitation of Parathyroid Hormone in Serum or Plasma by Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Ketha, Hemamalini; Singh, Ravinder J

    2016-01-01

    Parathyroid hormone (PTH), an 84 amino acid peptide hormone, is an important regulator of calcium homeostasis. Quantitation of PTH in serum is useful for the diagnosis of primary hyperparathyroidism, hypoparathyroidism, and for monitoring osteodystrophy in patients with renal failure. The biological activity of PTH arises from binding of PTH (N terminus) to its target receptor (D'Amour et al., Kidney Int 68: 998-1007, 2005). Several C-terminal and N-terminal fragments circulate in normal subjects. Recent studies have demonstrated that accurate quantitation of PTH fragments may be of clinical value. In this chapter a mass spectrometry based method for quantitation of PTH(1-84) is described. This method involves immunoaffinity capture of PTH followed by trypsinization and quantitation of PTH-specific tryptic peptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The N-terminal tryptic peptide, PTH(1-13) as surrogate of 1-84 PTH, is used for quantitation. PMID:26602132

  6. Effect of parathyroid hormone on transport by toad and turtle bladder

    SciTech Connect

    Sabatini, S.; Kurtzman, N.A.

    1987-01-01

    The authors recently demonstrated that parathyroid hormone (PTH) inhibited both vasopressin- and cyclic AMP-stimulated water transport in the toad bladder. This was associated with an increase in calcium uptake by isolated epithelial cells. They postulated that PTH exerts its action on H/sub 2/O transport by directly stimulating calcium uptake. The current study was designed to compare the effects of PTH and the calcium ionophore, A23187, on H/sub 2/O and Na transport and H..mu.. secretion in toad and turtle bladders. In toad bladder, PTH and A23187 decreased arginine vasopressin (AVP)-stimulated H/sub 2/O flow and short-circuit current (SCC) after 60 min serosal incubation. In turtle bladder A23187 decreased SCC to 79.3 +/- 3.6% of base line (P < 0.05), and significantly decreased RSCC as well. PTH had no effect on SCC or H/sup +/ secretion in turtle bladders. Both PTH and A23187 increased /sup 45/Ca uptake in toad bladder epithelial cells; only A23187 increased /sup 45/Ca uptake in the turtle bladder. The different action of PTH in these two membranes, compared with that of the calcium ionophore, illustrates the selectivity of PTH on membrane transport. PTH increases calcium uptake and decreases transport only in a hormone-sensitive epithelium, whereas the ionophore works in virtually all living membranes. The mode of action of these two agents to increase calcium uptake is, therefore likely different.

  7. FGF23 Fails to Inhibit Uremic Parathyroid Glands

    PubMed Central

    Canalejo, Rocío; Canalejo, Antonio; Martinez-Moreno, Julio Manuel; Rodriguez-Ortiz, M. Encarnacion; Estepa, Jose C.; Mendoza, Francisco Javier; Munoz-Castaneda, Juan Rafael; Shalhoub, Victoria; Rodriguez, Mariano

    2010-01-01

    Fibroblast growth factor 23 (FGF23) modulates mineral metabolism by promoting phosphaturia and decreasing the production of 1,25-dihydroxyvitamin D3. FGF23 decreases parathyroid hormone (PTH) mRNA and secretion, but despite a marked elevation in FGF23 in uremia, PTH production increases. Here, we investigated the effect of FGF23 on parathyroid function in normal and uremic hyperplastic parathyroid glands in rats. In normal parathyroid glands, FGF23 decreased PTH production, increased expression of both the parathyroid calcium-sensing receptor and the vitamin D receptor, and reduced cell proliferation. Furthermore, FGF23 induced phosphorylation of extracellular signal–regulated kinase 1/2, which mediates the action of FGF23. In contrast, in hyperplastic parathyroid glands, FGF23 did not reduce PTH production, did not affect expression of the calcium-sensing receptor or vitamin D receptor, and did not affect cell proliferation. In addition, FGF23 failed to activate the extracellular signal–regulated kinase 1/2–mitogen-activated protein kinase pathway in hyperplastic parathyroid glands. We observed very low expression of the FGF23 receptor 1 and the co-receptor Klotho in uremic hyperplastic parathyroid glands, which may explain the lack of response to FGF23 in this tissue. In conclusion, in hyperparathyroidism secondary to renal failure, the parathyroid cells resist the inhibitory effects of FGF23, perhaps as a result of the low expression of FGF23 receptor 1 and Klotho in this condition. PMID:20431039

  8. Observations on the effect of parathyroid hormone on environmental blood lead concentrations in humans

    SciTech Connect

    Osterloh, J.D. )

    1991-02-01

    The effect of parathyroid hormone (PTH) on blood lead (Pb) concentrations was observed preliminarily in three different situations. Of 342 healthy bus drivers with no unusual exposure to Pb, 25 drivers with the highest and 25 with the lowest blood Pb were compared for serum PTH concentrations. There was no association between blood Pb and serum PTH concentrations. Eight women with postmenopausal osteoporosis enrolled in an experimental protocol to increase bone mass received daily PTH (1-34 fragment) for 1 week, calcitonin for the next 2 weeks, and oral calcium for the subsequent 10 weeks. This cycle was repeated four times during the year. Initial blood Pb concentrations averaged 6.0 micrograms/dl (range 2.1-8.9). Mean blood Pb concentrations decreased by 1.7 micrograms/dl over 1 year of therapy. The confidence interval for this change excluded zero, the mean change was significantly different from the mean change for comparative population (P less than 0.050), and paired changes were statistically significant (P = 0.045). Lastly, a single subject with hyperparathyroid disease and no unusual exposures to lead demonstrated stabilized blood Pb concentrations that were 50% lower after removal of his hyperplastic parathyroid glands. These observations suggest that the effect of PTH on increasing bone turnover and releasing Pb into blood is not easily detected at low physiologic amounts of PTH, but that with pathologic increases of PTH in hyperparathyroid disease, elevation of blood Pb from bone or increased gastrointestinal absorption may be possible. Likewise, either bone building therapies (PTH + calcitonin + calcium) may move Pb from blood into bone or supplemental calcium may decrease Pb gastrointestinal absorption, thereby explaining the observed lower blood Pb concentrations.

  9. Factors that influence parathyroid hormone half-life: Are new intraoperative criteria needed?

    PubMed Central

    Leiker, Andrew J.; Yen, Tina W. F.; Eastwood, Dan C.; Doffek, Kara M.; Szabo, Aniko; Evans, Douglas B.; Wang, Tracy S.

    2015-01-01

    Hypothesis Patient characteristics, such as age, gender, race, body mass index (BMI), and renal function may affect existing criteria for intraoperative parathyroid hormone (IOPTH) during minimally invasive parathyroidectomy. Design Retrospective review of a prospectively-collected parathyroid database. Setting Academic medical center. Patients 306 patients with sporadic primary hyperparathyroidism (pHPT) who underwent initial parathyroidectomy between August 2005 and April 2011. Interventions All patients underwent MIP with complete IOPTH information. Outcome measures Individual IOPTH kinetic profiles were fitted with an exponential decay curve and individual IOPTH half-lives were determined. Univariate and multivariate analyses were performed to determine the association between patient demographics or laboratory data and IOPTH half-life. Results Mean age of the cohort was 60 years, 78% were female, 90% were White, and median BMI was 28.3 kg/m2. Overall, median IOPTH half-life was 3 minutes, 9 seconds. On univariate analysis, there was no association between IOPTH half-life and patient age, renal function, preoperative serum calcium or PTH levels. Age, BMI, and age-BMI interaction were included in the final multivariate median regression analysis; race, gender, and GFR were not predictors of IOPTH half-life. IOPTH half-life increased with increasing BMI, an effect that diminished with increasing age and was negligible after age 55 (p=0.0014). Conclusion BMI, especially in younger patients, may have a role in the IOPTH half-life of patients undergoing parathyroidectomy. However, the differences in half-life are relatively small and the clinical implication are likely not significant. Current IOPTH criteria can continue to be applied to all patients undergoing parathyroidectomy for sporadic primary hyperparathyroidism. PMID:23677330

  10. The effects of parathyroid hormone and estradiol on cadmium accumulation by Madin-Darby canine kidney cells

    SciTech Connect

    Flanagan, J.L.

    1990-01-01

    Chronic exposure to the toxic metal cadmium causes osteomalacia, osteoporosis, increased serum parathyroid hormone, renal stone formation, hypercalciuria and renal tubular dysfunction, reflecting one or more disturbances of calcium homeostasis. Since renal cadmium (Cd[sup 2+]) transport proceeds in both proximal and distal tubules and parathyroid hormone (PTH) regulates calcium reabsorption at distal nephron sites, it was postulated that PTH may also stimulate Cd[sup 2+] transport in distal tubules. Madin-Darby canine kidney (MDCK) cells, which express a distal phenotype including PTH-sensitive adenylate cyclase and calcium transport, were used as the cell model for the present study. Cadmium uptake was measured using [[sup 109]Cd[sup 2+

  11. Parathyroid hormone measurement in chronic kidney disease--an evolving issue for the nephrologist and the clinical laboratorist: minireview.

    PubMed

    Correale, Mario

    2012-08-01

    Parathyroid hormone (PTH) is the polypeptide hormone produced by the parathyroid glands, which plays a central role in calcium homeostasis. Circulating PTH must be measured regularly in patients with chronic kidney disease (CKD)--mineral and bone disorders (MBD) to monitor and to adapt treatment with the aim of maintaining PTH levels within a defined narrow range of optimal values for each stage of CKD. Often, for the nephrologists, it is not easy to determine what PTH levels are clinically appropriate. Moreover, the PTH determination also shows many criticisms from the laboratory point of view and there is a clear need to standardize PTH measurements in every phase of the process: pre-analytical, analytical and post-analytical. In this review, all these aspects are summarized with particular reference to the most recent opportunities to improve PTH assays quality on the whole. To this aim, a closer cooperation between nephrologists and clinical laboratories is undoubtedly necessary. PMID:22208997

  12. Peripheral metabolism of PTH (parathyroid hormone): Fate of biologically active amino terminus in vivo

    SciTech Connect

    Bringhurst, R.R.; Stern, A.M.; Yotts, M.; Mizrahi, N.; Segre, G.V.; Potts, J.T. Jr. )

    1988-12-01

    Clearance of intact parathyroid hormone (PTH) from blood is associated with rapid uptake by liver and kidney, limited proteolysis by tissue endopeptidases and, within minutes, appearance of circulating carboxyl-(COOH)-terminal PTH fragments. The fate of the corresponding amino(NH{sub 2})-terminal portion of the hormone during this peripheral metabolism is still unknown, however. To determine this, the authors have employed ({sup 35}S)bovine PTH (bPTH) labeled to high specific activity at NH{sub 2}-terminal methionines, which permits direct monitoring of the fate of the PTH NH{sub 2}-terminus during metabolism in vivo. The ({sup 35}S)PTH was administered by bolus or continuous intravenous infusion to anesthetized normal rats, to rats subjected to acute ablation of the liver, the kidneys, or both, and to rats receiving co-infusions of excess synthetic bPTH(1-34) NH{sub 2}-terminal fragments. Analysis by high-resolution chromatographic techniques sensitive to 10{sup {minus}13} M ({sup 35}S)PTH peptides in plasma yields no evidence that peripheral metabolism of PTH generates circulating NH{sub 2}-terminal fragments, even when special measures are taken to block clearance of such putative fragments from blood. They find that the NH{sub 2}-terminus of PTH is rapidly degraded in situ by the liver but that both liver and especially kidney nevertheless contain low levels of NH{sub 2}-terminal PTH fragments that, although not released into the blood, are large enough to be potentially active. Thus the peripheral metabolism of PTH in normal animals does not normally lead to the formation of circulating amino terminal fragments of the hormone that might act independently of intact PTH on peripheral target tissues.

  13. Effects of intermittent versus continuous parathyroid hormone administration on condylar chondrocyte proliferation and differentiation

    SciTech Connect

    Liu, Qi; Wan, Qilong; Yang, Rongtao; Zhou, Haihua; Li, Zubing; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer Different PTH administration exerts different effects on condylar chondrocyte. Black-Right-Pointing-Pointer Intermittent PTH administration suppresses condylar chondrocyte proliferation. Black-Right-Pointing-Pointer Continuous PTH administration maintains condylar chondrocyte proliferating. Black-Right-Pointing-Pointer Intermittent PTH administration enhances condylar chondrocyte differentiation. -- Abstract: Endochondral ossification is a complex process involving chondrogenesis and osteogenesis regulated by many hormones and growth factors. Parathyroid hormone (PTH), one of the key hormones regulating bone metabolism, promotes osteoblast differentiation and osteogenesis by intermittent administration, whereas continuous PTH administration inhibits bone formation. However, the effects of PTH on chondrocyte proliferation and differentiation are still unclear. In this study, intermittent PTH administration presented enhanced effects on condylar chondrocyte differentiation and bone formation, as demonstrated by increased mineral nodule formation and alkaline phosphatase (ALP) activity, up-regulated runt-related transcription factor 2 (RUNX2), ALP, collagen type X (COL10a1), collagen type I (COL1a1), osteocalcin (OCN), bone sialoprotein (BSP), bone morphogenetic protein 2 (BMP2) and osterix (OSX) mRNA and/or protein expression. On the contrary, continuous PTH administration promoted condylar chondrocyte proliferation and suppressed its differentiation, as demonstrated by up-regulated collagen type II (COL2a1) mRNA expression, reduced mineral nodule formation and down-regulated expression of the mRNAs and/or proteins mentioned above. Our data suggest that PTH can regulate condylar chondrocyte proliferation and differentiation, depending on the type of PTH administration. These results provide new insight into the effects of PTH on condylar chondrocytes and new evidence for using local PTH administration to cure mandibular asymmetry.

  14. Summer/winter differences in the serum 25-hydroxyvitamin D3 and parathyroid hormone levels of Japanese women

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Nashimoto, Mitsue; Yamamoto, Masaharu

    Serum 25-hydroxyvitamin D3 [25(OH)D3] is produced in the skin in response to exposure to ultraviolet radiation, and is a good indicator of vitamin D nutritional status. The aim of this study was to determine summer/winter differences in serum 25(OH)D3 and parathyroid hormone (PTH) in Japanese women and how the summer and winter values are related. The subjects were 122 healthy Japanese women aged 45-81 years (average age: 65.7 years). They were medically examined twice, in September 1997 and February 1999. Serum 25(OH)D3 and intact PTH were determined by high-performance liquid chromatography and a two-site immunoradiometric assay respectively. Lifestyle information was obtained through an interview. The seasonal differences (winter minus summer) in 25(OH)D3 [Δ25(OH)D3] and intact PTH concentrations were -18.8 nmol/l (SD 19.2, P<0.0001) and 0.98pmol/l (SD 1.02, P<0.0001) respectively. The correlation coefficient between summer (x) and winter (y) 25(OH)D3 levels was 0.462 (P<0.0001), with a linearly fitted line of y=0.42x+26.4. This relationship was interpreted as subjects with higher summer 25(OH)D3 values having greater reductions in winter 25(OH)D3 concentrations. There were inter-individual differences in Δ25(OH)D3, although the summer and winter 25(OH)D3 concentrations were well-correlated. Since Δ25(OH)D3 was not associated with any of the lifestyle factors, seasonal differences in the 25(OH)D3 concentrations of an individual appeared to reflect her ability to produce 25(OH)D3 photochemically in the skin. Sun bathing would be a less effective means of attaining adequate vitamin D nutritional status in a person with a small seasonal difference in 25(OH)D3, i.e., one with a low 25(OH)D3 level.

  15. Impact of parathyroid hormone on bone marrow-derived stem cell mobilization and migration

    PubMed Central

    Huber, Bruno C; Grabmaier, Ulrich; Brunner, Stefan

    2014-01-01

    Parathyroid hormone (PTH) is well-known as the principal regulator of calcium homeostasis in the human body and controls bone metabolism via actions on the survival and activation of osteoblasts. The intermittent administration of PTH has been shown to stimulate bone production in mice and men and therefore PTH administration has been recently approved for the treatment of osteoporosis. Besides to its physiological role in bone remodelling PTH has been demonstrated to influence and expand the bone marrow stem cell niche where hematopoietic stem cells, capable of both self-renewal and differentiation, reside. Moreover, intermittent PTH treatment is capable to induce mobilization of progenitor cells from the bone marrow into the bloodstream. This novel function of PTH on modulating the activity of the stem cell niche in the bone marrow as well as on mobilization and regeneration of bone marrow-derived stem cells offers new therapeutic options in bone marrow and stem cell transplantation as well as in the field of ischemic disorders. PMID:25426261

  16. Role of Parathyroid Hormone-Related Protein Signaling in Chronic Pancreatitis.

    PubMed

    Falzon, Miriam; Bhatia, Vandanajay

    2015-01-01

    Chronic pancreatitis (CP), a progressive inflammatory disease where acini are destroyed and replaced by fibrous tissue, increases the risk for pancreatic cancer. Risk factors include alcohol, smoking, and obesity. The effects of these risk factors are exacerbated in patients with mutations in genes that predispose to CP. The different environmental and genetic factors produce the same clinical phenotype; once CP develops, disease course is the same regardless of etiology. Critical questions still need to be answered to understand what modifies predisposition to develop CP in persons exposed to risk factors. We postulate that risk factors modulate endogenous pathways, with parathyroid hormone-related protein (PTHrP) signaling being one such pathway. In support, PTHrP levels are elevated in mice treated with alcohol, and in mouse models of cerulein- and pancreatic duct ligation-induced CP. Disrupting the Pthrp gene in acinar cells exerts protective effects (decreased edema, histological damage, amylase and cytokine release, and fibrosis) in these CP models. PTHrP levels are elevated in human CP. Currently, CP care lacks specific pharmacological interventions. Targeting PTHrP signaling may present a novel therapeutic strategy that inhibits pancreatic inflammation and fibrosis, especially since the risk of developing pancreatic cancer is strongly associated with duration of chronic inflammation. PMID:26095761

  17. Influence of Parathyroid Hormone-Loaded PLGA Nanoparticles in Porous Scaffolds for Bone Regeneration

    PubMed Central

    Gentile, Piergiorgio; Nandagiri, Vijay Kumar; Pabari, Ritesh; Daly, Jacqueline; Tonda-Turo, Chiara; Ciardelli, Gianluca; Ramtoola, Zebunnissa

    2015-01-01

    Biodegradable poly(lactide-co-glycolide) (PLGA) nanoparticles, containing human parathyroid hormone (PTH (1–34)), prepared by a modified double emulsion-solvent diffusion-evaporation method, were incorporated in porous freeze-dried chitosan-gelatin (CH-G) scaffolds. The PTH-loaded nanoparticles (NPTH) were characterised in terms of morphology, size, protein loading, release kinetics and in vitro assessment of biological activity of released PTH and cytocompatibility studies against clonal human osteoblast (hFOB) cells. Structural integrity of incorporated and released PTH from nanoparticles was found to be intact by using Tris-tricine SDS-PAGE. In vitro PTH release kinetics from PLGA nanoparticles were characterised by a burst release followed by a slow release phase for 3–4 weeks. The released PTH was biologically active as evidenced by the stimulated release of cyclic AMP from hFOB cells as well as increased mineralisation studies. Both in vitro and cell studies demonstrated that the PTH bioactivity was maintained during the fabrication of PLGA nanoparticles and upon release. Finally, a content of 33.3% w/w NPTHs was incorporated in CH-G scaffolds, showing an intermittent release during the first 10 days and, followed by a controlled release over 28 days of observation time. The increased expression of Alkaline Phosphatase levels on hFOB cells further confirmed the activity of intermittently released PTH from scaffolds. PMID:26343649

  18. Canine renal parathyroid hormone receptor is a glycoprotein: characterization and partial purification

    SciTech Connect

    Karpf, D.B.; Arnaud, C.D.; King, K.; Bambino, T.; Winer, J.; Nyiredy, K.; Nissenson, R.A.

    1987-12-01

    Covalent labeling of the canine renal parathyroid hormone receptor with (/sup 125/I)bPTH(1-34) reveals several major binding components that display characteristic consistent with a physiologically relevant adenylate cyclase linked receptor. Through the use of the specific glycosidases neuraminidase and endoglycosidase F and affinity chromatography on lectin-agarose gels, we show here that the receptor is a glycoprotein that contains several complex N-linked carbohydrate chains consisting of terminal sialic acid and penultimate galactose in a ..beta..1,4 linkage to N-acetyl-D-glucosamine. No high mannose chains or O-linked glycans appear to be present. The peptide molecular weight of the deglycosylated labeled receptor is 62,000 (or 58,000 if the mass of bPTH(1-34) is excluded). The binding of (/sup 125/I)bPTH(1-34) to the receptor is inhibited in a dose-dependent fashion by wheat-germ agglutinin, but not by either succinylated wheat-germ agglutinin or Ricinus communis lectin, suggesting that terminal sialic acid may be involved in agonist binding. A combination of lectin affinity chromatography and immunoaffinity chromatography affords a 200-fold purification of the covalently labeled receptor.

  19. High Parathyroid Hormone Level and Osteoporosis Predict Progression of Coronary Artery Calcification in Patients on Dialysis.

    PubMed

    Malluche, Hartmut H; Blomquist, Gustav; Monier-Faugere, Marie-Claude; Cantor, Thomas L; Davenport, Daniel L

    2015-10-01

    Coronary artery calcifications (CACs) are observed in most patients with CKD on dialysis (CKD-5D). CACs frequently progress and are associated with increased risk for cardiovascular events, the major cause of death in these patients. A link between bone and vascular calcification has been shown. This prospective study was designed to identify noninvasive tests for predicting CAC progression, including measurements of bone mineral density (BMD) and novel bone markers in adult patients with CKD-5D. At baseline and after 1 year, patients underwent routine blood tests and measurement of CAC, BMD, and novel serum bone markers. A total of 213 patients received baseline measurements, of whom about 80% had measurable CAC and almost 50% had CAC Agatston scores>400, conferring high risk for cardiovascular events. Independent positive predictors of baseline CAC included coronary artery disease, diabetes, dialysis vintage, fibroblast growth factor-23 concentration, and age, whereas BMD of the spine measured by quantitative computed tomography was an inverse predictor. Hypertension, HDL level, and smoking were not baseline predictors in these patients. Three quarters of 122 patients completing the study had CAC increases at 1 year. Independent risk factors for CAC progression were age, baseline total or whole parathyroid hormone level greater than nine times the normal value, and osteoporosis by t scores. Our results confirm a role for bone in CKD-associated CAC prevalence and progression. PMID:25838468

  20. Role of Parathyroid Hormone-Related Protein Signaling in Chronic Pancreatitis

    PubMed Central

    Falzon, Miriam; Bhatia, Vandanajay

    2015-01-01

    Chronic pancreatitis (CP), a progressive inflammatory disease where acini are destroyed and replaced by fibrous tissue, increases the risk for pancreatic cancer. Risk factors include alcohol, smoking, and obesity. The effects of these risk factors are exacerbated in patients with mutations in genes that predispose to CP. The different environmental and genetic factors produce the same clinical phenotype; once CP develops, disease course is the same regardless of etiology. Critical questions still need to be answered to understand what modifies predisposition to develop CP in persons exposed to risk factors. We postulate that risk factors modulate endogenous pathways, with parathyroid hormone-related protein (PTHrP) signaling being one such pathway. In support, PTHrP levels are elevated in mice treated with alcohol, and in mouse models of cerulein- and pancreatic duct ligation-induced CP. Disrupting the Pthrp gene in acinar cells exerts protective effects (decreased edema, histological damage, amylase and cytokine release, and fibrosis) in these CP models. PTHrP levels are elevated in human CP. Currently, CP care lacks specific pharmacological interventions. Targeting PTHrP signaling may present a novel therapeutic strategy that inhibits pancreatic inflammation and fibrosis, especially since the risk of developing pancreatic cancer is strongly associated with duration of chronic inflammation. PMID:26095761

  1. Parathyroid hormone regulation of hypoxia-inducible factor signaling in osteoblastic cells.

    PubMed

    Wong, Alice; Loots, Gabriela G; Yellowley, Clare E; Dos, Andra C; Genetos, Damian C

    2015-12-01

    Osteoblasts perceive and respond to changes in their pericellular environment, including biophysical signals and oxygen availability, to elicit an anabolic or catabolic response. Parathyroid hormone (PTH) affects each arm of skeletal remodeling, with net anabolic or catabolic effects dependent upon duration of exposure. Similarly, the capacity of osteoblastic cells to perceive pericellular oxygen has a profound effect on skeletal mass and architecture, as mice expressing stable hypoxia-inducible factor (HIF)-1? and -2? demonstrate age-dependent increases in bone volume per tissue volume and osteoblast number. Further, HIF levels and signaling can be influenced in an oxygen-independent manner. Because the cellular mechanisms involved in PTH regulation of the skeleton remain vague, we sought whether PTH could influence HIF-1? expression and HIF-?-driven luciferase activity independently of altered oxygen availability. Using UMR106.01 mature osteoblasts, we observed that 100nM hPTH(1-34) decreased HIF-1? and HIF-responsive luciferase activity in a process involving heat shock protein 90 (Hsp90) and cyclic AMP but not intracellular calcium. Altering activity of the small GTPase RhoA and its effector kinase ROCK altered HIF-?-driven luciferase activity in the absence and presence of PTH. Taken together, these data introduce PTH as a regulator of oxygen-independent HIF-1? levels through a mechanism involving cyclic AMP, Hsp90, and the cytoskeleton. PMID:26151122

  2. Effects of Nigella sativa and human parathyroid hormone on bone mass and strength in diabetic rats.

    PubMed

    Altan, Mehmet Fatih

    2007-06-01

    Osteoporosis is a major complication in patients with diabetes mellitus (DM), particularly in those with insulin dependency. Recently, many therapeutic effects of Nigella sativa L. (NS) extracts have been exhibited such as anti-inflammatory, antitumor, and antidiabetic with clinical and experimental studies. Mechanical strength in the femur and vertebrae increases with human parathyroid hormone (hPTH) treatment. The aim of the present study was to test the hypothesis that combined treatment with NS and hPTH is more effective than treatment with NS or hPTH alone in improving bone mass, connectivity, and biomechanical behavior using the finite element method (FEM) in insulin-dependent diabetic rats. In the mechanical analysis, five rat bones (control, diabetic diabetic NS treated, diabetic hPTH treated, and diabetic NS + hPTH treated) have been studied for bending analysis using the finite element analysis program ANSYS. Combined treatment of NS and hPTH was more effective on bone histomorphometry and mechanical strength than treatment with NS or hPTH alone for streptozotocin-induced diabetic osteopenia, which notably decreased bone volume. PMID:17709912

  3. [Design and activity verification of human parathyroid hormone (1-34) mutant protein].

    PubMed

    Qiu, Shuang; Jiang, Yue-Shui; Li, Zhi-Qin; Lei, Jian-Yong; Chen, Yun; Jin, Jian

    2012-07-01

    Through protein-protein BLAST of homologous sequences in different species in NCBI database and preliminary simulating molecular docking and molecular dynamics by computer software discovery studio 3.1, three amino acids R25K26K27 of natural human parathyroid hormone (1-34) with Q25E26L27 were mutated and the biological activity of the mutant peptide was evaluated. Result showed that: root mean superposition deviation RMSD value between PTH (1-34)-(RKK-QEL) and PTH (1-34) peptide main chain was 2.509 3, indicating that the differences between the two main chain structural conformation was relatively small; the interaction energy between PTH (1-34)-(RKK-QEL) and its receptor protein PTH1R had been enhanced by 7.5% compared to nature PTH (1-34), from -554.083 kcal x mol(-1) to -599.253 kcal x mol(-1); the number of hydrogen bonds was increased from 32 to 38; PTH (1-34)-(RKK-QEL) can significantly stimulate the RANKL gene expression (P < 0.01) while inhibiting the OPG gene expression (P < 0.01) in UAMS-32P cells; in the co-culture system of UAMS-32P cells and mouse primary femur bone marrow cells, PTH (1-34)-(RKK-QEL) stimulated the formation of osteoclasts (P < 0.01) and had a higher biological activity than PTH (1-34) standard reagents. PMID:22993856

  4. Parathyroid hormone levels in long-term renal transplant children and adolescents.

    PubMed

    Guzzo, Isabella; Di Zazzo, Giacomo; Laurenzi, Chiara; Rav, Lucilla; Giannone, Germana; Picca, Stefano; Dello Strologo, Luca

    2011-11-01

    Secondary hyperparathyroidism is a common complication of chronic renal failure. Kidney transplantation corrects renal insufficiency and most metabolic abnormalities but hyperparathyroidism persists in 50% of children after transplantation. The aim of this study was to investigate parathyroid hormone (PTH) course and potential risk factors for hyperparathyroidism in children after renal transplant. We collected data from 145 transplanted children (mean follow-up 4.7 years). Intact PTH level (iPTH) rapidly decreased in the first 6 months post-transplant and continued to decline in the following years. iPTH was above the normal range in 69.1% of the patients at the time of transplant and in 47% 1 year later, this improvement continuing thereafter. Hypercalcemia was present in 20.3% of the patients before transplant and in 6.3 and 4.1% of patients 6 months and 1 year after transplant, respectively. Hypophosphatemia was present in 5.5% of the patients at 6 months, and 45.5% of the patients needed phosphorus supplements during the first 6 months after transplant. Multivariate analysis indicated pre-transplant hyperparathyroidism, dialysis duration, creatinine clearance and hypophosphatemia as predictors of persistent hyperparathyroidism. In kidney transplanted children, serum iPTH normalized in the long term in the majority of cases. Thus, parathyroidectomy should be reserved for selected patients. PMID:21556715

  5. Combined hepatocellular-cholangiocarcinoma producing parathyroid hormone-related protein: report of a case.

    PubMed

    Matsumoto, Michinori; Wakiyama, Shigeki; Shiba, Hiroaki; Gocho, Takeshi; Misawa, Takeyuki; Ishida, Yuichi; Itsubo, Mariko; Suzuki, Masafumi; Yanaga, Katsuhiko

    2014-08-01

    Combined hepatocellular-cholangiocarcinoma (CHCC) is an uncommon form of primary liver cancer. A 57-year-old man was readmitted to our hospital for treatment of recurrent CHCC, 12months after central bisegmentectomy and 4months after limited hepatic resection. Magnetic resonance imaging (MRI) revealed multiple hepatic nodules. Laboratory data showed increased serum levels of ?-fetoprotein (AFP), calcium, and parathyroid hormone-related protein (PTH-rP), to 5,571ng/mL, 17.0mg/dL, and 16.1pmol/L, respectively. Palliative mass reduction surgery was indicated by the fact that the hypercalcemia was difficult to manage medically. Thus, we performed lateral segmentectomy with partial resection of segment 7 and the caudate lobe, and microwave coagulation therapy for multiple recurrent CHCC. Thereafter, the serum PTH-rP and AFP levels decreased remarkably and the hypercalcemia was controlled for the next 3months. He died of disease progression 9months after the last hepatic surgery. To our knowledge, this is only the second reported case of CHCC producing PTH-rP in the English-language literature. PMID:24013836

  6. Mechanical stretch increases secretion of parathyroid hormone-related protein by cultured bladder smooth muscle cells.

    PubMed

    Steers, W D; Broder, S R; Persson, K; Bruns, D E; Ferguson, J E; Bruns, M E; Tuttle, J B

    1998-09-01

    Parathyroid hormone-related protein (PTHrP) immunoreactivity has been detected in the bladder and increases in response to dilatation secondary to obstruction. The hypothesis that PTHrP could be increased solely by stretch rather than other possible in vivo variables was tested by stretching cultured bladder smooth muscle cells and analyzing the culture medium for this protein. In response to mechanical stretch, PTHrP was increased in smooth muscle cell cultures. Immunoradiometric assay revealed maximal rates of secretion for the first eight hours. Comparison of percent change in PTHrP secretion of flexed cells for the various flex parameters revealed a difference (p = .006) when the degree of stretch (i.e. percent elongation) was altered. The protein synthesis inhibitor cycloheximide inhibited basal and stretch-induced PTHrP secretion. PTHrP (1-100 nM) relaxed carbachol-contracted bladder body and base by 15% and 45% respectively. PTHrP did not affect bladder contractions induced by potassium (124 mM) or alpha-beta MeATP (10 microM). Increased PTHrP secretion in response to stretch of smooth muscle raises the possibility of an autocrine action to relax the bladder during filling. PTHrP may also exert a paracrine action on vessels regulating blood flow during bladder filling or it may modulate neural activity. PMID:9720586

  7. Critical Role of Activating Transcription Factor 4 in the Anabolic Actions of Parathyroid Hormone in Bone

    PubMed Central

    Yu, Shibing; Franceschi, Renny T.; Luo, Min; Fan, Jie; Jiang, Di; Cao, Huiling; Kwon, Tae-Geon; Lai, Yumei; Zhang, Jian; Patrene, Kenneth; Hankenson, Kurt; Roodman, G. David; Xiao, Guozhi

    2009-01-01

    Parathyroid hormone (PTH) is a potent anabolic agent for the treatment of osteoporosis. However, its mechanism of action in osteoblast and bone is not well understood. In this study, we show that the anabolic actions of PTH in bone are severely impaired in both growing and adult ovariectomized mice lacking bone-related activating transcription factor 4 (ATF4). Our study demonstrates that ATF4 deficiency suppresses PTH-stimulated osteoblast proliferation and survival and abolishes PTH-induced osteoblast differentiation, which, together, compromise the anabolic response. We further demonstrate that the PTH-dependent increase in osteoblast differentiation is correlated with ATF4-dependent up-regulation of Osterix. This regulation involves interactions of ATF4 with a specific enhancer sequence in the Osterix promoter. Furthermore, actions of PTH on Osterix require this same element and are associated with increased binding of ATF4 to chromatin. Taken together these experiments establish a fundamental role for ATF4 in the anabolic actions of PTH on the skeleton. PMID:19851510

  8. Regional responsiveness of the tibia to intermittent administration of parathyroid hormone as affected by skeletal unloading

    NASA Technical Reports Server (NTRS)

    Halloran, B. P.; Bikle, D. D.; Harris, J.; Tanner, S.; Curren, T.; Morey-Holton, E.

    1997-01-01

    To determine whether the acute inhibition of bone formation and deficit in bone mineral induced by skeletal unloading can be prevented, we studied the effects of intermittent parathyroid hormone (PTH) administration (8 micrograms/100 g/day) on growing rats submitted to 8 days of skeletal unloading. Loss of weight bearing decreased periosteal bone formation by 34 and 51% at the tibiofibular junction and tibial midshaft, respectively, and reduced the normal gain in tibial mass by 35%. Treatment with PTH of normally loaded and unloaded animals increased mRNA for osteocalcin (+58 and +148%, respectively), cancellous bone volume in the proximal tibia (+41 and +42%, respectively), and bone formation at the tibiofibular junction (+27 and +27%, respectively). Formation was also stimulated at the midshaft in unloaded (+47%, p < 0.05), but not loaded animals (-3%, NS). Although cancellous bone volume was preserved in PTH-treated, unloaded animals, PTH did not restore periosteal bone formation to normal nor prevent the deficit in overall tibial mass induced by unloading. We conclude that the effects of PTH on bone formation are region specific and load dependent. PTH can prevent the decrease in cancellous bone volume and reduce the decrement in cortical bone formation induced by loss of weight bearing.

  9. Parathyroid hormone modulates the response of osteoblast-like cells to mechanical stimulation

    NASA Technical Reports Server (NTRS)

    Ryder, K. D.; Duncan, R. L.

    2000-01-01

    Mechanical loading stimulates many responses in bone and osteoblasts associated with osteogenesis. Since loading and parathyroid hormone (PTH) activate similar signaling pathways in osteoblasts, we postulate that PTH can potentiate the effects of mechanical stimulation. Using an in vitro four-point bending device, we found that expression of COX-2, the inducible isoform of cyclooxygenase, was dependent on fluid forces generated across the culture plate, but not physiologic levels of strain in MC3T3-E1 osteoblast-like cells. Addition of 50 nM PTH during loading increased COX-2 expression at both subthreshold and threshold levels of fluid forces compared with either stimuli alone. We also demonstrated that application of fluid shear to MC3T3-E1 cells induced a rapid increase in [Ca(2+)](i). Although PTH did not significantly change [Ca(2+)](i) levels, flow and PTH did produce a significantly greater [Ca(2+)](i) response and increased the number of responding cells than is found in fluid shear alone. The [Ca(2+)](i) response to these stimuli was significantly decreased when the mechanosensitive channel inhibitor, gadolinium, was present. These studies indicate that PTH increases the cellular responses of osteoblasts to mechanical loading. Furthermore, this response may be mediated by alterations in [Ca(2+)](i) by modulating the mechanosensitive channel.

  10. Association between Parathyroid Hormone Levels and Inflammatory Markers among US Adults

    PubMed Central

    Cheng, Shih-Ping; Liu, Chien-Liang; Liu, Tsang-Pai; Hsu, Yi-Chiung; Lee, Jie-Jen

    2014-01-01

    Background and Aims. High levels of parathyroid hormone (PTH) appear to be associated with an increased mortality. Previous studies concerning the relationship of inflammatory markers with hyperparathyroidism have yielded inconsistent results. This study investigated whether serum PTH concentrations were independently associated with several inflammatory markers among the US adults. Materials and Methods. Using data from the National Health and Nutrition Examination Survey, we examined the relation between serum PTH and C-reactive protein (CRP), red cell distribution width (RDW), and platelet-to-lymphocyte ratio (PLR) levels with weighted linear regression. Additionally, we examined the relation with increased modified Glasgow Prognostic Score (mGPS) by using weighted logistic regression. Results. CRP, RDW, and PLR values increased with increasing serum PTH concentration. After extensively adjusting for covariates, CRP and RDW increased linearly and across PTH categories (all P < 0.001), while PLR marginally increased (P = 0.190 and P = 0.095 using PTH as a categorical and continuous variable, resp.). The odds ratio of increased mGPS was 1.11 and 1.31 across PTH categories and with increasing PTH levels continuously. Conclusion. These nationally representative data indicate that serum PTH levels are independently associated with several inflammatory markers in the US population. The casual relationship between PTH levels and inflammation remains to be elucidated. PMID:24782595

  11. The parathyroid hormone, its fragments and analogues--potent bone-builders for treating osteoporosis.

    PubMed

    Whitfield, J; Morley, P; Willick, G

    2000-06-01

    As populations age a rising number of men and women, but especially women during the first decade after menopause, become victims of a severe, accelerated loss of bone with crippling fractures known as osteoporosis. This often results in costly, prolonged hospitalisation and perhaps indirectly, death. Osteoporosis in women is caused by the menopausal oestrogen decline, which removes several key restraints on the generation, longevity and activity of bone-resorbing osteoclasts. Although there are many antiresorptive drugs on or coming onto the market (calcitonin, bisphosphonates, oestrogen and SERMS) that can slow or stop further bone loss, there are none that can restore lost bone mechanical strength by directly stimulating osteoblast activity and bone growth. However, there is a family of potent bone-building peptides, namely the 84 amino acid parathyroid hormone (PTH). Its 31 to 38 amino acid N-terminal fragments are currently in or about to enter clinical trials. We can predict that these peptides will be effective therapeutics for osteoporosis especially when supplemented with bisphosphonates or SERMs to protect the new bone from osteoclasts. These peptides should also accelerate the healing of fractures in persons of all ages and restore lost bone mass and mechanical strength to astronauts following their return to earth after long voyages in space. PMID:11060744

  12. Influence of Parathyroid Hormone-Loaded PLGA Nanoparticles in Porous Scaffolds for Bone Regeneration.

    PubMed

    Gentile, Piergiorgio; Nandagiri, Vijay Kumar; Pabari, Ritesh; Daly, Jacqueline; Tonda-Turo, Chiara; Ciardelli, Gianluca; Ramtoola, Zebunnissa

    2015-01-01

    Biodegradable poly(lactide-co-glycolide) (PLGA) nanoparticles, containing human parathyroid hormone (PTH (1-34)), prepared by a modified double emulsion-solvent diffusion-evaporation method, were incorporated in porous freeze-dried chitosan-gelatin (CH-G) scaffolds. The PTH-loaded nanoparticles (NPTH) were characterised in terms of morphology, size, protein loading, release kinetics and in vitro assessment of biological activity of released PTH and cytocompatibility studies against clonal human osteoblast (hFOB) cells. Structural integrity of incorporated and released PTH from nanoparticles was found to be intact by using Tris-tricine SDS-PAGE. In vitro PTH release kinetics from PLGA nanoparticles were characterised by a burst release followed by a slow release phase for 3-4 weeks. The released PTH was biologically active as evidenced by the stimulated release of cyclic AMP from hFOB cells as well as increased mineralisation studies. in vitro and cell studies demonstrated that the PTH bioactivity was maintained during the fabrication of PLGA nanoparticles and upon release. Finally, a content of 33.3% w/w NPTHs was incorporated in CH-G scaffolds, showing an intermittent release during the first 10 days and, followed by a controlled release over 28 days of observation time. The increased expression of Alkaline Phosphatase levels on hFOB cells further confirmed the activity of intermittently released PTH from scaffolds. PMID:26343649

  13. Impact of intraoperative parathyroid hormone levels on surgical results in patients with renal hyperparathyroidism.

    PubMed

    Weber, Theresia; Zeier, Martin; Hinz, Ulf; Schilling, Tobias; Bchler, Markus W

    2005-09-01

    The aim of our study was to evaluate the impact of intraoperative parathyroid hormone (PTH) measurement on surgical results in patients with renal hyperparathyroidism (HPT). From December 1999 to February 2004, a series of 95 consecutive patients underwent total parathyroidectomy and intraoperative PTH measurement for renal HPT. Intraoperative PTH was measured before and 15 minutes after parathyroidectomy with the Immulite DPC assay for intact PTH. The median PTH levels before surgery were 133.0 pmol/L, which declined to 5.9 pmol/L at the end of the operation. At follow-up, 91 of 95 (96%) patients presented with normal calcium levels. Persistent renal HPT was seen in three patients, and recurrent HPT was diagnosed in another. In 99% of the patients the intraoperative PTH levels declined more than 50% and in 73% the PTH decay was more than 90%. In 64% of the patients PTH levels dropped into the normal range (< 7.6 pmol/L). Altogether, 97% of the patients with an intraoperative PTH decrease of more than 90% presented with normal PTH levels postoperatively (p = 0.0237), as did all of the patients whose intraoperative PTH dropped into the normal range (p = 0.0432). Intraoperative PTH measurement with a decrease in intraoperative PTH of at least 90% is highly predictive of successful parathyroidectomy and normalization of postoperative calcium and PTH levels. PMID:16132402

  14. Regional responsiveness of the tibia to intermittent administration of parathyroid hormone as affected by skeletal unloading.

    PubMed

    Halloran, B P; Bikle, D D; Harris, J; Tanner, S; Curren, T; Morey-Holton, E

    1997-07-01

    To determine whether the acute inhibition of bone formation and deficit in bone mineral induced by skeletal unloading can be prevented, we studied the effects of intermittent parathyroid hormone (PTH) administration (8 micrograms/100 g/day) on growing rats submitted to 8 days of skeletal unloading. Loss of weight bearing decreased periosteal bone formation by 34 and 51% at the tibiofibular junction and tibial midshaft, respectively, and reduced the normal gain in tibial mass by 35%. Treatment with PTH of normally loaded and unloaded animals increased mRNA for osteocalcin (+58 and +148%, respectively), cancellous bone volume in the proximal tibia (+41 and +42%, respectively), and bone formation at the tibiofibular junction (+27 and +27%, respectively). Formation was also stimulated at the midshaft in unloaded (+47%, p < 0.05), but not loaded animals (-3%, NS). Although cancellous bone volume was preserved in PTH-treated, unloaded animals, PTH did not restore periosteal bone formation to normal nor prevent the deficit in overall tibial mass induced by unloading. We conclude that the effects of PTH on bone formation are region specific and load dependent. PTH can prevent the decrease in cancellous bone volume and reduce the decrement in cortical bone formation induced by loss of weight bearing. PMID:9200006

  15. Individual and combined effects of noise-like whole-body vibration and parathyroid hormone treatment on bone defect repair in ovariectomized mice.

    PubMed

    Matsumoto, Takeshi; Sato, Daisuke; Hashimoto, Yoshihiro

    2016-01-01

    The effectiveness of intermittent administration of parathyroid hormone and exposure to whole-body vibration on osteoporotic fracture healing has been previously investigated, but data on their concurrent use are lacking. Thus, we evaluated the effects of intermittent administration of parathyroid hormone, whole-body vibration, and their combination on bone repair in osteoporotic mice. Noise-like whole-body vibration with a broad frequency range was used instead of conventional sine-wave whole-body vibration at a specific frequency. Mice were ovariectomized at 9?weeks of age and subjected to drill-hole surgery in the right tibial diaphysis at 11?weeks. The animals were divided into four groups (n?=?12 each): a control group, and groups treated with intermittent administration of parathyroid hormone, noise-like whole-body vibration, and both. From postoperative day 2, the groups treated with intermittent administration of parathyroid hormone and groups treated with both intermittent administration of parathyroid hormone and noise-like whole-body vibration were subcutaneously administered parathyroid hormone at a dose of 30?g/kg/day. The groups treated with noise-like whole-body vibration and groups treated with both intermittent administration of parathyroid hormone and noise-like whole-body vibration were exposed to noise-like whole-body vibration at a root mean squared acceleration of 0.3g and frequency components of 45-100?Hz for 20?min/day. Following 18?days of interventions, the right tibiae were harvested, and the regenerated bone was analyzed by micro-computed tomography and nanoindentation testing. Compared with the control group, callus volume fraction was 40% higher in groups treated with intermittent administration of parathyroid hormone and 73% higher in groups treated with both intermittent administration of parathyroid hormone and noise-like whole-body vibration, and callus thickness was 35% wider in groups treated with both intermittent administration of parathyroid hormone and noise-like whole-body vibration. Indentation modulus was 46% higher in groups treated with noise-like whole-body vibration and 43% higher in groups treated with both intermittent administration of parathyroid hormone and noise-like whole-body vibration, and hardness was 31% higher in groups treated with both intermittent administration of parathyroid hormone and noise-like whole-body vibration compared with the control group. There was no interaction between the two treatments for both structure and mechanical indexes. The main effects of intermittent administration of parathyroid hormone and noise-like whole-body vibration on bone repair included increased bone formation and enhanced mechanical function of regenerated bone, respectively. The combined treatment resulted in further regeneration of bone with high indentation modulus and hardness, suggesting the therapeutic potential of the combined use of noise-like whole-body vibration and intermittent administration of parathyroid hormone for enhancing osteoporotic bone healing. PMID:26586525

  16. International Union of Basic and Clinical Pharmacology. XCIII. The Parathyroid Hormone Receptors—Family B G Protein–Coupled Receptors

    PubMed Central

    Vilardaga, Jean-Pierre

    2015-01-01

    The type-1 parathyroid hormone receptor (PTHR1) is a family B G protein–coupled receptor (GPCR) that mediates the actions of two polypeptide ligands; parathyroid hormone (PTH), an endocrine hormone that regulates the levels of calcium and inorganic phosphate in the blood by acting on bone and kidney, and PTH-related protein (PTHrP), a paracrine-factor that regulates cell differentiation and proliferation programs in developing bone and other tissues. The type-2 parathyroid hormone receptor (PTHR2) binds a peptide ligand, called tuberoinfundibular peptide-39 (TIP39), and while the biologic role of the PTHR2/TIP39 system is not as defined as that of the PTHR1, it likely plays a role in the central nervous system as well as in spermatogenesis. Mechanisms of action at these receptors have been explored through a variety of pharmacological and biochemical approaches, and the data obtained support a basic “two-site” mode of ligand binding now thought to be used by each of the family B peptide hormone GPCRs. Recent crystallographic studies on the family B GPCRs are providing new insights that help to further refine the specifics of the overall receptor architecture and modes of ligand docking. One intriguing pharmacological finding for the PTHR1 is that it can form surprisingly stable complexes with certain PTH/PTHrP ligand analogs and thereby mediate markedly prolonged cell signaling responses that persist even when the bulk of the complexes are found in internalized vesicles. The PTHR1 thus appears to be able to activate the Gαs/cAMP pathway not only from the plasma membrane but also from the endosomal domain. The cumulative findings could have an impact on efforts to develop new drug therapies for the PTH receptors. PMID:25713287

  17. Circulating parathyroid hormone activity: familial hypocalciuric hypercalcemia versus typical primary hyperparathyroidism.

    PubMed

    Marx, S J; Spiegel, A M; Brown, E M; Windeck, R; Gardner, D G; Downs, R W; Attie, M; Aurbach, G D

    1978-12-01

    Three indices of circulating parathyroid hormone (PTH) activity were compared between two groups: the first a group of 23 patients from three large kindreds with autosomal dominant hypercalcemia without hypercalciuria [familial hypocalciuric hypercalcemia (FHH)] and the second a group of 64 patients with typical primary hyperparathyroidism (1HPT) manifesting comparable hypercalcemia. The group with 1HPT differed from normal with respect to plasma PTH 1HPT concentration (normal, less 0.2 ng/ml), urinary cAMP excretion per 100 ml glomerular filtrate (U cAMP/GF) (normal, 2.3 x/divided by 0.6 nmol/100 ml glomerular filtrate; mean, x/divided 1 SD), and renal tubular maximum of phosphate transport corrected for glomerular filtration rate (TMP/GFR; normal, 3.4 +/- 0.4 mg/dl; mean, +/- 1 SD). The group with 1HPT also diverged significantly from the group with FHH for all three indices: for PTH, 0.37 x/divided by .48 vs. 0.25 x/divided .46 (P less than 0.05); for UcAMP/GF, 4.3 x/divided by .53 vs. 2.6 x/divided .60 (P less than 0.0005); and for TMP/GFR, 2.0 +/- 0.6 vs. 2.6 +/- 0.7 (P less than 0.01). The between-group differences for all three indices were also significant after adjustment for their variation with serum calcium. However, only the difference in TMP/GFR remained significant after adjustment for covariance attributable to serum calcium concentration, age, and creatinine clearance. The group with FHH differed from normal for TMP/GFR but not for UcAMP/GF. However, analysis of changes in UcAMP/GF and serum calcium concentration around the time of parathyroidectomy in three patients with FHH suggested that the parathyroid glands contributed to the abnormalities of mineral homeostasis in at least one. It was concluded that higher serum concentrations of PTH do not account for the lower renal clearance of calcium and magnesium in FHH calcium concentration, the group with FHH showed indices suggesting lower circulating PTH activity than the group with 1HPT. PMID:233692

  18. Bovine parathyroid hormone-(41-84), a hormone fragment with desirable properties for use as radioligand

    SciTech Connect

    Mallette, L.E.; Bradley, W.A.

    1981-12-01

    Radioiodinated bPTH has been widely used as the labeled ligand in the radioimmunoassay of PTH. We now report the properties of a carboxyterminal fragment of bPTH that has several favorable characteristics when used as radioligand. This peptide, the chief component of a commercial preparation of bPTH, was isolated by gel filtration, where it migrated more slowly than did authentic bPTH-(1-84). It yielded lower nonspecific binding values and more sensitive hPTH assays than were seen with the intact hormone. By immunological criteria this peptide lacked the aminoterminal region of PTH, since hPTH-(1-34) did not inhibit its binding to any of 11 different antisera with known ability to recognize the aminoterminal region of PTH. The peptide did not contain most or all of the carboxyterminal region, however, since its binding to anti-PTH sera was inhibited by hPTH-(44-68) or hPTH-(53-84). Sequential Edman degradation of the iodinated peptide released iodotyrosine at the third cycle, suggesting the structure, bPTH-(41-84). The lower nonspecific binding and enhanced assay sensitivity provided by this peptide suggest that the use of other natural or synthetic fragments of PTH as radioligands might enhance the performance of PTH assays.

  19. A Retrospective Study of the Impact of Intraoperative Intact Parathyroid Hormone Monitoring During Total Parathyroidectomy for Secondary Hyperparathyroidism: STARD Study.

    PubMed

    Hiramitsu, Takahisa; Tominaga, Yoshihiro; Okada, Manabu; Yamamoto, Takayuki; Kobayashi, Takaaki

    2015-07-01

    The study aimed to evaluate the diagnostic accuracy of intraoperative intact parathyroid hormone (IO-iPTH) in patients with secondary hyperparathyroidism (HPT). The cut-off for IO-iPTH monitoring remains unknown. This was a single-center retrospective review of 226 consecutive patients (107 males and 119 females) who underwent parathyroidectomy for secondary HPT between May 2010 and March 2014. The predetermined cut-off for IO-iPTH was a 70% IO-iPTH drop from baseline 10 minutes after total parathyroidectomy and thymectomy. We used <60 pg/mL iPTH value on postoperative day 1 (POD1) as an indicator of successful removal of parathyroid glands and reviewed the frequency of reoperation other than in autografted sites during the observation period. This study was based on the Standards for the Reporting of Diagnostic accuracy compliant. The reoperation rate in patients with >60 pg/mL iPTH value (POD1) was significantly higher than that in patients with <60 pg/mL iPTH value (POD1), (13.0% versus 0.5% P = 0.003). Sensitivity, specificity, and accuracy of >70% IO-iPTH drop were 97.5%, 52.2%, and 92.9%, respectively, this criterion was demonstrated to be beneficial in 26 patients. In 5 patients, <70% IO-iPTH drop was observed and further exploration enabled sufficient removal of parathyroid glands. In 21 patients, although fewer than 4 parathyroid glands were removed after enough explorations, >70% IO-iPTH drop enabled termination of operations and iPTH value (POD1) was <60 pg/mL.An iPTH value of <60 pg/mL (POD1) was a good predictor for successful parathyroidectomy. A 70% IO-iPTH drop from the baseline was appropriate to determine sufficient parathyroid gland removal during parathyroidectomy for patients with secondary HPT. [Corrected] PMID:26200645

  20. A Retrospective Study of the Impact of Intraoperative Intact Parathyroid Hormone Monitoring During Total Parathyroidectomy for Secondary Hyperparathyroidism

    PubMed Central

    Hiramitsu, Takahisa; Tominaga, Yoshihiro; Okada, Manabu; Yamamoto, Takayuki; Kobayashi, Takaaki

    2015-01-01

    Abstract The study aimed to evaluate the diagnostic accuracy of intraoperative intact parathyroid hormone (IO-iPTH) in patients with secondary hyperparathyroidism (HPT). The cut-off for IO-iPTH monitoring remains unknown. This was a single-center retrospective review of 226 consecutive patients (107 males and 119 females) who underwent parathyroidectomy data for secondary HPT between May 2010 and March 2014. The predetermined cut-off for IO-iPTH was a 70% IO-iPTH drop from baseline 10?minutes after total parathyroidectomy and thymectomy. We used <60?pg/mL iPTH value on postoperative day 1 (POD1) as an indicator of successful removal of parathyroid glands and reviewed the frequency of reoperation other than in autografted sites during the observation period. This study was based on the Standards for the Reporting of Diagnositic accuracy compliant. The reoperation rate in patients with >60?pg/mL iPTH value (POD1) was significantly higher than that in patients with <60?pg/mL iPTH value (POD1), (13.0% versus 0.5% P?=?0.003). Sensitivity, specificity, and accuracy of >70% IO-iPTH drop were 97.5%, 52.2%, and 92.9%, respectively, this criterion was demonstrated to be beneficial in 26 patients. In 5 patients, <70% IO-iPTH drop was observed and further exploration enabled sufficient removal of parathyroid glands. In 21 patients, although fewer than 4 parathyroid glands were removed after enough explorations, >70% IO-iPTH drop enabled termination of operations and iPTH value (POD1) was <60?pg/mL. An iPTH value of <60?pg/mL (POD1) was a good predictor for successful parathyroidectomy. A 70% IO-iPTH drop from the baseline was appropriate to determine sufficient parathyroid gland removal during parathyroidectomy for patients with secondary HPT. PMID:26200645

  1. Parathyroid hormone-dependent signaling pathways regulating genes in bone cells

    NASA Technical Reports Server (NTRS)

    Swarthout, John T.; D'Alonzo, Richard C.; Selvamurugan, Nagarajan; Partridge, Nicola C.

    2002-01-01

    Parathyroid hormone (PTH) is an 84-amino-acid polypeptide hormone functioning as a major mediator of bone remodeling and as an essential regulator of calcium homeostasis. PTH and PTH-related protein (PTHrP) indirectly activate osteoclasts resulting in increased bone resorption. During this process, PTH changes the phenotype of the osteoblast from a cell involved in bone formation to one directing bone resorption. In addition to these catabolic effects, PTH has been demonstrated to be an anabolic factor in skeletal tissue and in vitro. As a result, PTH has potential medical application to the treatment of osteoporosis, since intermittent administration of PTH stimulates bone formation. Activation of osteoblasts by PTH results in expression of genes important for the degradation of the extracellular matrix, production of growth factors, and stimulation and recruitment of osteoclasts. The ability of PTH to drive changes in gene expression is dependent upon activation of transcription factors such as the activator protein-1 family, RUNX2, and cAMP response element binding protein (CREB). Much of the regulation of these processes by PTH is protein kinase A (PKA)-dependent. However, while PKA is linked to many of the changes in gene expression directed by PTH, PKA activation has been shown to inhibit mitogen-activated protein kinase (MAPK) and proliferation of osteoblasts. It is now known that stimulation of MAPK and proliferation by PTH at low concentrations is protein kinase C (PKC)-dependent in both osteoblastic and kidney cells. Furthermore, PTH has been demonstrated to regulate components of the cell cycle. However, whether this regulation requires PKC and/or extracellular signal-regulated kinases or whether PTH is able to stimulate other components of the cell cycle is unknown. It is possible that stimulation of this signaling pathway by PTH mediates a unique pattern of gene expression resulting in proliferation in osteoblastic and kidney cells; however, specific examples of this are still unknown. This review will focus on what is known about PTH-mediated cell signaling, and discuss the established or putative PTH-regulated pattern of gene expression in osteoblastic cells following treatment with catabolic (high) or anabolic (low) concentrations of the hormone.

  2. The Association of 25 Hydroxyvitamin D and Parathyroid Hormone with Metabolic Syndrome in Two Ethnic Groups in South Africa

    PubMed Central

    George, Jaya A.; Norris, Shane A.; van Deventer, Hendrik Emmanuel; Crowther, Nigel J.

    2013-01-01

    Introduction Though inconsistent, a number of studies have shown an association between vitamin D (25(OH)D) status, parathyroid hormone (PTH) and the metabolic syndrome (Met S). These have largely been carried out in Caucasians or black subjects living in high income countries. There no data on the relationship of 25(OH)D and PTH status with Met S in populations resident in Africa. The aims of this study were to evaluate if there was an association of 25(OH)D or PTH with Met S in non-Caucasian populations in South Africa, and whether these molecules explained ethnic differences in the prevalence of Met S and its individual components. Methods We measured anthropometry, serum 25(OH)D and PTH levels and the components of Met S, plus related metabolic variables, in 374 African and 350 Asian Indian healthy adults from the greater Johannesburg metropolitan area. Results Met S was diagnosed in 29% of the African and 46% of the Asian Indian subjects (p<0.0001). Subjects with Met S had higher PTH than those without Met S, (p<0.0001), whilst 25(OH)D levels were not significantly different (p = 0.50). In multivariate analysis, 25(OH)D was not associated with any components of the Met S however PTH was shown to be positively associated with systolic (p = 0.018) and diastolic (p = 0.005) blood pressures and waist circumference (p<0.0001) and negatively associated with HOMA (p = 0.0008) levels. Logistic regression analysis showed that Asian Indian ethnicity (OR 2.24; 95% CIs 1.57, 3.18; p<0.0001) and raised PTH (OR 2.48; 95% CIs 1.01, 6.08; p = 0.04; adjusted for 25(OH)D) produced an increased risk of Met S but 25(OH)D did not (OR 1.25; 95% CI 0.67, 2.24; p = 0.48). Conclusions Plasma PTH but not 25(OH)D is an independent predictor of the Met S in African and Asian Indians in South Africa. PMID:23596520

  3. Recombinant human parathyroid hormone 1-34: pharmacokinetics, tissue distribution and excretion in rats.

    TOXLINE Toxicology Bibliographic Information

    Hu Z; Niu H; Yang X; Li H; Sang G; Li B

    2006-07-24

    The objective of this work was to characterize the preclinical pharmacokinetics, tissue distribution, and excretion profiles of recombinant human parathyroid hormone (1-34) [rhPTH (1-34)] in healthy rats. Pharmacokinetic properties of (125)I-rhPTH (1-34) were examined after a single subcutaneous (s.c.) and intravenous (i.v.) bolus injection, respectively. Tissue distribution and urinary, fecal, and biliary excretion patterns of (125)I-rhPTH (1-34) were also investigated following a single s.c. injection. Our results suggested that rhPTH (1-34) was rapidly distributed and cleared in a bi-exponential manner after a single i.v. bolus injection. Following a single s.c. administration, rhPTH (1-34) exhibited rapid and considerable absorption and declined in a mono-exponential manner, with the absolute bioavailability and elimination half-life of 65% and 3.4-4.1h, respectively. The TCA-precipitated radioactivity was widely distributed and rapidly diminished in most tissues/organs. Approximately 91% and 2% of the total radioactivity was recovered in urine and feces by 72h postdosing, respectively; whereas 6% excreted into bile up to 24h postdosing. These findings indicated high absolute bioavailability, rapid absorption and disposition of rhPTH (1-34) following a single s.c. administration in healthy rats. The accumulation of rhPTH (1-34) in tissues/organs examined appeared to be low. The major elimination route was urinary excretion.

  4. Radioimmunoassay for amino- and carboxyl terminal parathyroid hormone: Its clinical application

    SciTech Connect

    Fukunaga, M.; Otsuka, N.; Sone, T.; Muranake, A.; Yanagimoto, S.; Tomomitsu, T.; Morita, R.; Yamamoto, I.; Torizuka, K.; Dokoh, S.

    1985-05-01

    It has been well known that the circulating parathyroid hormones are immunochemically heterogenous. The authors have employed the region-specific radioimmunoassays directed against N-PTH using (1-34) human PTH and C-PTH using (65-84) human PTH to evaluate its clinical usefulness. Serum N-PTH and C-PTH levels were measured in 50 normal subjects, 17 primary hyperparathyroidism (1/sup 0/ HPT), 14 hypercalcemia associated with cancer and 30 chronic renal failure (CRF) on dialysis. In 1/sup 0/ HPT, higher N-PTH levels were observed in 6, while higher C-PTH levels in 13. Among 1/sup 0/ HPT, patients with bone type (osteitis fibrosa), compared with stone or chemical type, showed significantly higher N-PTH and C-PTH levels (bone type vs. stone and chemical type; p<0.001 for N-PTH and p<0.01 for C-PTH). Neither N-PTH nor C-PTH assay could be differentiated 1/sup 0/ HPT from hypercalcemia associated with cancer. In CRF, the increased N-PTH levels were observed in 6, while the increased C-PTH levels in 30. Among CRF, patients with osteitis fibrosa showed significantly higher N-PTH and C-PTH (with vs. without osteitis fibrosa; p<0.001 for N-PTH and p<0.025 for C-PTH). In conclusion, each assay has its own value in clinical settings, with the N-PTH assay being used in evaluation of the biological effect of PTH (eg. the recognition of the existence of osteitis fibrosa in 1/sup 0/ HPT and CRF) and the C-PTH assay primarily serving the differential diagnosis of 1/sup 0/ HPT from normal subjects.

  5. Parathyroid hormone induces the Nrna family of nuclear orphan receptors in vivo

    SciTech Connect

    Pirih, Flavia Q. . E-mail: fqpirih@ucla.edu; Aghaloo, Tara L. . E-mail: taghaloo@ucla.edu; Bezouglaia, Olga . E-mail: obezougl@ucla.edu; Nervina, Jeanne M. . E-mail: jnervina@ucla.edu; Tetradis, Sotirios; E-mail: sotirist@dent.ucla.edu

    2005-07-01

    Parathyroid hormone (PTH) has both anabolic and catabolic effects on bone metabolism, although the molecular mechanisms mediating these effects are largely unknown. Among the transcription factors induced by Pth in osteoblasts are the nerve growth factor-inducible factor B (NR4A; NGFI-B) family of orphan nuclear receptors: Nurr1, Nur77, and NOR-1. PTH induces NR4A members through the cAMP-protein kinase A (PKA) pathway in vitro. We report here that PTH rapidly and transiently induced expression of all three NR4A genes in PTH-target tissues in vivo. In calvaria, long bones, and kidneys, NR4A induction was maximal 0.5-1 h after a single intraperitoneal (i.p.) injection of 80 {mu}g/kg PTH. Nur77 demonstrated the highest expression, followed, in order, by Nurr1 and NOR-1. In calvaria and long bone, PTH-induced expression of each NR4A gene was detectable at 10 {mu}g/kg i.p. with maximum induction at 40-80 {mu}g/kg. PTH (3-34) did not induce NR4A mRNA levels in calvaria, long bone, and kidney in vivo, confirming our in vitro results that NR4A genes are induced primarily through the cAMP-PKA pathway. The magnitude of PTH-induced NR4A expression was comparable in vivo and in vitro. However, NR4A mRNA levels peaked and returned to baseline faster in vivo. Both in vivo and in vitro, PTH induced NR4A pre-mRNA levels suggesting that induction of these genes is, at least in part, through activation of mRNA synthesis. The in vivo induction of the NR4A family members by PTH suggests their involvement in, at least some, PTH-induced changes in bone metabolism.

  6. Genetic Evidence that Parathyroid Hormone-related Protein Regulates Articular Chondrocyte Maintenance

    PubMed Central

    Macica, Carolyn; Liang, Guoying; Nasiri, Ali; Broadus, Arthur E.

    2011-01-01

    Objective Parathyroid hormone-related protein (PTHrP) regulates the rate of differentiation of growth chondrocytes and is also expressed in articular chondrocytes. It is our working hypothesis here that PTHrP might have a regulatory role in articular chondrocyte maintenance. Methods We used growth and differentiation factor 5 control sequences to delete PTHrP in mid-region articular chondrocytes. Conditionally deleted (KO) and littermate control (CT) mice were evaluated with a time-course design as well as via the destabilization of the medial meniscus (DMM) technique. Results A time-course study revealed degenerative changes in only a minority of the KO mice. We therefore studied KO and CT mice using the destabilization of the medial meniscus (DMM) model. Male KO mice were highly susceptible to DMM-induced degenerative changes (total score 45 2.7 in KO VS 23 1.4 in CT mice, mean SEM, p<0.0001 by Mann-Whitney test). There was virtually no overlap between these two groups. PTHrP normally functions in a feedback loop with Indian hedgehog (Ihh) in which a reduction in one signaling partner induces a compensatory increase in the other. We therefore considered that the Ihh-PTHrP axis might have been capable of compensating in response to a partial Cre-driven PTHrP deletion, and this was documented in KO mice via a number of markers. This may explain the need to challenge the mice in order to elicit frankly degenerative findings. Conclusion We conclude that PTHrP may regulate articular chondrocyte maintenance in mice. PMID:21702022

  7. Parathyroid hormone reverses radiation induced hypovascularity in a murine model of distraction osteogenesis

    PubMed Central

    Kang, Stephen Y.; Deshpande, Sagar S.; Donneys, Alexis; Rodriguez, Joey J.; Nelson, Noah S.; Felice, Peter A.; Chepeha, Douglas B.; Buchman, Steven R.

    2013-01-01

    Background Radiation treatment results in a severe diminution of osseous vascularity. Intermittent parathyroid hormone (PTH) has been shown to have an anabolic effect on osteogenesis, though its impact on angiogenesis remains unknown. In this murine model of distraction osteogenesis, we hypothesize that radiation treatment will result in a diminution of vascularity in the distracted regenerate and that delivery of intermittent systemic PTH will promote angiogenesis and reverse radiation induced hypovascularity. Materials and methods Nineteen Lewis rats were divided into three groups. All groups underwent distraction of the left mandible. Two groups received radiation treatment to the left mandible prior to distraction, and one of these groups was treated with intermittent subcutaneous PTH (60 ?g/kg, once daily) beginning on the first day of distraction for a total duration of 21 days. One group underwent mandibular distraction alone, without radiation. After consolidation, the rats were perfused and imaged with micro-CT angiography and quantitative vascular analysis was performed. Results Radiation treatment resulted in a severe diminution of osseous vascularity in the distracted regenerate. In irradiated mandibles undergoing distraction osteogenesis, treatment with intermittent PTH resulted in significant increases in vessel volume fraction, vessel thickness, vessel number, degree of anisotropy, and a significant decrease in vessel separation (p < 0.05). No significant difference in quantitative vascularity existed between the group that was irradiated, distracted and treated with PTH and the group that underwent distraction osteogenesis without radiation treatment. Conclusions We quantitatively demonstrate that radiation treatment results in a significant depletion of osseous vascularity, and that intermittent administration of PTH reverses radiation induced hypovascularity in the murine mandible undergoing distraction osteogenesis. While the precise mechanism of PTH-induced angiogenesis remains to be elucidated, this report adds a key component to the pleotropic effect of intermittent PTH on bone formation and further supports the potential use of PTH to enhance osseous regeneration in the irradiated mandible. PMID:23643680

  8. Exogenous Parathyroid Hormone-Related Peptide Promotes Fracture Healing in Lepr(-/-) Mice.

    PubMed

    Liu, Anlong; Li, Yishan; Wang, Yinhe; Liu, Li; Shi, Hongfei; Qiu, Yong

    2015-12-01

    Diabetic osteoporosis continues to surge worldwide, increasing the risk of fracture. We have previously demonstrated that haploinsufficiency of endogenous parathyroid hormone-related peptide (PTHrP) impairs fracture healing. However, whether an exogenous supply of PTHrP can repair bone damage and accelerate fracture healing remains unclear. This study aimed to assess the efficacy and safety of PTHrP in healing fractures. Standardized mid-diaphyseal femur fractures were generated in 12-week-old wild-type and leptin receptor null Lepr(-/-) mice. After administration of PTHrP for 2 weeks, callus tissue properties were analyzed by radiography, micro-computed tomography, histology, histochemistry, immunohistochemistry, and molecular biology techniques. At 2 weeks post-fracture, cartilaginous callus areas were reduced, while total callus and bony callus areas were increased in PTHrP-treated Lepr(-/-) animals and control wild-type mice, compared with vehicle-treated Lepr(-/-) mice. The following parameters were enhanced both in Lepr(-/-) mice after treatment with PTHrP and vehicle-treated wild-type animals, compared with vehicle-treated Lepr(-/-) mice: osteoblast numbers; tissue alkaline phosphatase (ALP) and Type I collagen immunopositive areas; mRNA levels of ALP, Type I collagen, osteoprotegerin, and receptor activator for nuclear factor-? B ligand; protein levels of Runt-related transcription factor 2 and insulin-like growth factor-1; and the number and surface of osteoclasts. In conclusion, exogenous PTHrP by subcutaneous injection promotes fracture repair in Lepr(-/-) mice by increasing callus formation and accelerating cell transformation: upregulated osteoblastic gene and protein expression, increased endochondral bone formation, osteoblastic bone formation, and osteoclastic bone resorption. However, complete repair was not obtained in PTHrP-treated Lepr(-/-) mice as in control wild-type animals. PMID:26314884

  9. Parathyroid hormone-related protein (pthrp) is a gravisensor for lung and bone.

    NASA Astrophysics Data System (ADS)

    Torday, J.

    Parathyroid Hormone-related Protein (PTHrP) and its receptor represent a stretch- sensitive paracrine signaling mechanism (Torday, 1999) that may sense gravity. PTHrP has been shown to be essential for the development and homeostatic regulation of lung (Rubin et al, 2000) and bone (Kronenberg et al, 1994). Since both lung and bone structure and function are affected by microgravity, we hypothesized that microgravity down-regulates PTHrP signaling. To test this hypothesis, we suspended lung and bone cells in the microgravity environment of a rotating wall vessel apparatus, which simulates microgravity, for up to 72 hours. During the first 6-8 hours, PTHrP expression fell precipitously, decreasing by 80-90%; during the subsequent 64-66 hours, PTHrP expression remained at this newly established level. PTHrP production decreased from 5 pmol/ml/3hours to undetectable levels in culture medium from microgravity-exposed cells. The cells were then put back in culture at unit gravity for 24hours, and PTHrP expression and production returned to normal levels. Based on these findings, we have obtained bones from rats flown in space for 2 weeks (mission SLS-2, provided courtesy of the Biospecimen Facility, Ames Research Center, NASA, as a result of a peer-reviewed proposal). Analysis of PTHrP expression by femurs and tibias from these animals (n=5) revealed that PTHrP expression was 60% lower than in bones from ground-based rats. Interestingly, there were no differences in PTHrP exp ression by parietal bones, indicating that the effect of weightlessness on PTHrP expression is due to the unweighting of weight-bearing bones. This finding is consistent with other studies of microgravity-induced osteoporosis. The loss of the PTHrP signaling mechanism may be corrected using chemical agents that up-regulate this pathway.

  10. Heparin-insensitive calcium release from intracellular stores triggered by the recombinant human parathyroid hormone receptor.

    PubMed Central

    Seuwen, K; Boddeke, H G

    1995-01-01

    1. In the present study we have characterized the parathyroid hormone (PTH)-induced calcium signalling in 293 cells stably transfected with the human PTH receptor cDNA. In these cells, human PTH-1(1-38) strongly stimulates adenosine 3':5'-cyclic monophosphate (cyclic AMP) formation (EC50 = 0.39 nM) but fails to activate phosphoinositide (PI) turnover. The latter pathway is strongly activated, however, by carbachol (CCh) acting through endogenous M3-muscarinic receptors. 2. Despite the lack of detectable inositol phosphate (IP) formation, hPTH-(1-38) elicited calcium transients (EC50 = 11.2 nM) which were comparable to the signals evoked by CCh. These signals are independent of cyclic AMP generation as cyclic AMP elevating agents did not mimic or modify the PTH response. 3. The PTH-stimulated calcium signal still occurred in calcium-free medium but was absent in cells pretreated with thapsigargin, an inhibitor of the calcium pump of the endoplasmic reticulum (ER). hPTH-(1-38) did not accelerate Mn(2+)-influx through the plasma membrane. These data indicate that PTH releases calcium from intracellular stores. 4. Using heparin, an inhibitor of the IP3-activated calcium release channel of the ER, we tested whether the formation of a low amount of IP3, escaping detection by our biochemical assay, might be the origin of the PTH-induced calcium response. However, intracellular infusion of heparin through patch pipettes in voltage clamp experiments failed to block hPTH-(1-38)-induced calcium signals, whereas it abolished the CCh response.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1 PMID:7599930

  11. Serum Parathyroid Hormone Levels and Renal Handling of Phosphorus in Patients with Chronic Renal Disease

    PubMed Central

    Popovtzer, Mordecai M.; Pinggera, Wulf F.; Hutt, Martin P.; Robinette, John; Halgrimson, Charles G.; Starzl, Thomas E.

    2010-01-01

    In eight patients with advanced renal insufficiency (inulin clearance 1.49.1 ml/min), concentrations of serum calcium (S[Ca]) and phosphorus (S[P]) were maintained normal (S[Ca] > 9.0 mg/100 ml, (S[P] < 3.5 mg/100 ml) for at least 20 consecutive days with phosphate binding antacids and oral calcium carbonate. The initial serum levels of immunoreactive parathyroid hormone (S-PTH) were elevated in three (4269230 pg/ml), normal in four (one after subtotal parathyroidectomy), and not available in one. The initial fractional excretion of filtered phosphorus (CpCIN) was high in all and ranged from 0.451.05. Following sustained normo-calcemia and normo-phosphatemia, S-PTH was reduced below control levels in all patients; being normal in six and elevated in two. CpCIN decreased below control levels in all patients; it remained high in six (of which five had normal S-PTH) and was normal (CpCIN=0.01) in two (of which one had elevated S-PTH). The observed relationship between S-PTH and CpCIN could either reflect the inability of the radioimmunoassay for PTH employed to measure a circulating molecular species of PTH which was present in which case the actual levels of S-PTH were higher than those measured, and/or it could be indicative of the presence of additional important factor(s) (other than S-PTH) which inhibit tubular reabsorption of phosphorus in advanced chronic renal failure. PMID:4672382

  12. A Microperfusion Study of Phsophate Reabsorption by the Rat Proximal Renal Tubule EFFECT OF PARATHYROID HORMONE

    PubMed Central

    Bank, Norman; Aynedjian, Hagop S.; Weinstein, Stephen W.

    1974-01-01

    To study the mechanism of phsophate reabsorption by the proximal tubule and the effect of parathyroid hormone (PTH), microperfusion experiments were carried out in rats. Segments of proximal tubule isolated by oil blocks were perfused in vivo with one of three solutions, each containing 152 meq/liter Na+ and 2 mmol/liter phosphate, but otherwise differing in composition. The pH of solution 1 was 6.05-6.63, indicating that 60-85% of the phosphate was in the form of H2PO4-. The pH of solution 2 was 7.56-7.85, and 85-92% of the phosphate was in the form of HPO4=. Solution 3 contained HCO3- and glucose and had a pH of 7.50-7.65. When the proximal tubules were perfused with solution 1, the 32P concentration in the collected perfusate was found to be consistently lower than in the initial perfusion solution. In sharp contrast, when the tubules were perfused with solutions 2 or 3, 32P concentration usually rose above that in the initial solution. Water (and persumably Na+) reabsorption, as measured with [3H]inulin, was the same with the acid and alkaline solutions. Administration of partially purified PTH clearly prevented the fall in phosphate concentration with the acid solution, but had a less discernible effect on phosphate reabsorption with the two alkaline solutions. Measurements of pH within the perfused segments with antimony microelectrodes demonstrated that PTH enhanced alkalinization of the acid perfusion solution. The findings are consistent with the view that H2PO4- is reabsorbed preferentially over HPO4=. This can be attributed to either an active transport mechanism for H2PO4- or selective membrane permeability to this anion. PTH appears to either inhibit an active transport process for H2PO4-, or to interfere with passive diffusion of phosphate by alkalinizing the tubular lumen. PMID:4418449

  13. Acute parathyroid hormone differentially regulates renal brush border membrane phosphate cotransporters.

    PubMed

    Picard, Nicolas; Capuano, Paola; Stange, Gerti; Mihailova, Marija; Kaissling, Brigitte; Murer, Heini; Biber, Jrg; Wagner, Carsten A

    2010-08-01

    Renal phosphate reabsorption across the brush border membrane (BBM) in the proximal tubule is mediated by at least three transporters, NaPi-IIa (SLC34A1), NaPi-IIc (SLC34A3), and Pit-2 (SLC20A2). Parathyroid hormone (PTH) is a potent phosphaturic factor exerting an acute and chronic reduction in proximal tubule phosphate reabsorption. PTH acutely induces NaPi-IIa internalization from the BBM and lysosomal degradation, but its effects on NaPi-IIc and Pit-2 are unknown. In rats adapted to low phosphate diet, acute (30 and 60 min) application of PTH decreased BBM phosphate transport rates both in the absence and the presence of phosphonoformic acid, an inhibitor of SLC34 but not SLC20 transporters. Immunohistochemistry showed NaPi-IIa expression in the S1 to the S3 segment of superficial and juxtamedullary nephrons; NaPi-IIc was only detectable in S1 segments and Pit-2 in S1 and weakly in S2 segments of superficial and juxtamedullary nephrons. PTH reduced NaPi-IIa staining in the BBM with increased intracellular and lysosomal appearance. NaPi-IIa internalization was most prominent in S1 segments of superficial nephrons. We did not detect changes in NaPi-IIc and Pit-2 staining over this time period. Blockade of lysosomal protein degradation with leupeptin revealed NaPi-IIa accumulation in lysosomes, but no lysosomal staining for NaPi-IIc or Pit-2 could be detected. Immunoblotting of BBM confirmed the reduction in NaPi-IIa abundance and the absence of any effect on NaPi-IIc expression. Pit-2 protein abundance was also significantly reduced by PTH. Thus, function and expression of BBM phosphate cotransporters are differentially regulated allowing for fine-tuning of renal phosphate reabsorption. PMID:20526720

  14. PTH (parathyroid hormone) elevates inositol polyphosphates and diacylglycerol in a rat osteoblast-like cell line

    SciTech Connect

    Civitelli, R.; Reid, I.R.; Westbrook, S.; Avioli, L.V.; Hruska, K.A. )

    1988-11-01

    Parathyroid hormone (PTH)-stimulated signal transduction through mechanisms alternate to adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) production were studied in UMR 106-01 cells, a cell line with an osteoblastic phenotype. PTH produced transient, dose-related increases in cytosolic calcium ((Ca{sup 2+}){sub i}), inositol trisphosphates, and diacylglycerol (DAG). Both inositol 1,4,5-trisphosphate (Ins-1,4,5P{sub 3}) and inositol 1,3,4-trisphosphate (Ins-1,3,4P{sub 3}) production were rapidly stimulated by PTH. Consistent with the production of Ins-1,3,4P{sub 3}, rapid stimulation of late eluting inositol tetrakisphosphate was observed. The effects on the inositol phosphates were induced rapidly, consistent with roles as signals for changes in (Ca{sup 2+}){sub i}. In saponin-permeabilized UMR 106-01 cells, Ins-1,4,5P{sub 3} stimulated {sup 45}Ca release from a nonmitochondrial intracellular pool. Thus the hypothesis that PTH-stimulated Ins-1,4,5P{sub 3} production initiates Ca{sup 2+} release and contributes to transient elevations of (Ca{sup 2+}){sub i} is supported. These data suggest that stimulation of cAMP production during PTH stimulation may negatively affect production of rises in (Ca{sup 2+}){sub i} during PTH stimulation. The inactivation of the inhibitory G protein of adenylate cyclase by pertussis toxin could explain its action similar to cAMP analogues. Cyclci nucleotides diminish the effects of PTH on (Ca{sup 2+}){sub i}, probably interacting on a biochemical step subsequent to or independent of Ins-1,4,5P{sub 3} release.

  15. Minimally invasive parathyroidectomy with or without intraoperative parathyroid hormone for primary hyperparathyroidism

    PubMed Central

    Kim, Hyun Gu; Kim, Woo Young; Woo, Sang Uk; Lee, Jae Bok

    2015-01-01

    Purpose The improvement of intraoperative parathyroid hormone (IOPTH) assay and localization studies has enabled a minimally invasive parathyroidectomy (MIP) in primary hyperparathyroidism (pHPT). The aim of this study is to analyze the demographics, clinical presentations, and surgical outcomes of the pHPT patients who received surgical management with versus without IOPTH. Methods Analysis of a database was performed on 53 patients who underwent parathyroidectomy for pHPT from 2004 to 2013. Preoperative localization was done by both sestamibi scan and ultrasonography. We divided the patients into two groups (without IOPTH versus with IOPTH) and analyzed the surgical outcomes statistically between two groups. Results The concordance rate of Technetium 99m sestamibi scan and ultrasonography was 73.6% and 90.6%, respectively. The overall cure rate of group 1 (without IOPTH) was 94.9% and that of group 2 (with IOPTH) was 100%. The decline of PTH at postoperative 5 minutes and 10 minutes was 75.2% ± 14.9% and 84.9% ± 8.6% in cured patients. On the other hand, that of noncured patients at 5 minutes and 10 minutes was 17.2% ± 9.7% and 8.2% ± 2.2%. There was a significant difference in the drop rate of IOPTH between cured and persistent patients (P < 0.01). Pathological examination showed adenoma in 41 of 53 patients (77.4%) and hyperplasia in 10 of 53 patients (18.9%). Conclusion Even though the localization studies were successful, IOPTH monitoring is essential to avoid a surgical failure in MIP. PMID:26366379

  16. Parathyroid hormone-related protein regulates tumor-relevant genes in breast cancer cells.

    PubMed

    Dittmer, Angela; Vetter, Martina; Schunke, Dario; Span, Paul N; Sweep, Fred; Thomssen, Christoph; Dittmer, Jrgen

    2006-05-26

    The effect of endogenous parathyroid hormone-related protein (PTHrP) on gene expression in breast cancer cells was studied. We suppressed PTHrP expression in MDA-MB-231 cells by RNA interference and analyzed changes in gene expression by microarray analysis. More than 200 genes showed altered expression in response to a PTHrP-specific small interfering (si) RNA (siPTHrP). Cell cycle-regulating gene CDC2 and genes (CDC25B and Tome-1) that control CDC2 activity showed increased expression in the presence of siPTHrP. CDC2 activity was also found to be higher in siPTHrP-treated cells. Studies with PTHrP peptides 1-34 and 67-86, forskolin, and a PTH1 receptor (PTH1R)-specific siRNA showed that PTHrP regulates CDC2 and CDC25B, at least in part, via PTH1R in a cAMP-independent manner. Other siPTHrP-responsive genes included integrin alpha6 (ITGA6), KISS-1, and PAI-1. When combined, siRNAs against ITGA6, PAI-1, and KISS-1 could mimic the negative effect of siPTHrP on migration, whereas siKISS-1 and siPTHrP similarly reduced the proliferative activity of the cells. Comparative expression analyses with 50 primary breast carcinomas revealed that the RNA level of ITGA6 correlates with that of PTHrP, and higher CDC2 and CDC25B values are found at low PTHrP expression. Our data suggest that PTHrP has a profound effect on gene expression in breast cancer cells and, as a consequence, contributes to the regulation of important cellular activities, such as migration and proliferation. PMID:16551631

  17. Parathyroid hormone related-protein promotes epithelial-to-mesenchymal transition in prostate cancer.

    PubMed

    Ongkeko, Weg M; Burton, Doug; Kiang, Alan; Abhold, Eric; Kuo, Selena Z; Rahimy, Elham; Yang, Meng; Hoffman, Robert M; Wang-Rodriguez, Jessica; Deftos, Leonard J

    2014-01-01

    Parathyroid hormone-related protein (PTHrP) possesses a variety of physiological and developmental functions and is also known to facilitate the progression of many common cancers, notably their skeletal invasion, primarily by increasing bone resorption. The purpose of this study was to determine whether PTHrP could promote epithelial-to-mesenchymal transition (EMT), a process implicated in cancer stem cells that is critically involved in cancer invasion and metastasis. EMT was observed in DU 145 prostate cancer cells stably overexpressing either the 1-141 or 1-173 isoform of PTHrP, where there was upregulation of Snail and vimentin and downregulation of E-cadherin relative to parental DU 145. By contrast, the opposite effect was observed in PC-3 prostate cancer cells where high levels of PTHrP were knocked-down via lentiviral siRNA transduction. Increased tumor progression was observed in PTHrP-overexpressing DU 145 cells while decreased progression was observed in PTHrP-knockdown PC-3 cells. PTHrP-overexpressing DU 145 formed larger tumors when implanted orthoptopically into nude mice and in one case resulted in spinal metastasis, an effect not observed among mice injected with parental DU 145 cells. PTHrP-overexpressing DU 145 cells also caused significant bone destruction when injected into the tibiae of nude mice, while parental DU 145 cells caused little to no destruction of bone. Together, these results suggest that PTHrP may work through EMT to promote an aggressive and metastatic phenotype in prostate cancer, a pathway of importance in cancer stem cells. Thus, continued efforts to elucidate the pathways involved in PTHrP-induced EMT as well as to develop ways to specifically target PTHrP signaling may lead to more effective therapies for prostate cancer. PMID:24465715

  18. Parathyroid Hormone Responses to Catecholamines and to Changes of Extracellular Calcium in Cows

    PubMed Central

    Blum, Juerg W.; Fischer, Jan A.; Hunziker, Willi H.; Binswanger, U.; Picotti, Giovanni B.; Da Prada, Mos; Guillebeau, Albin

    1978-01-01

    Modifications of the plasma level of immunoreactive parathyroid hormone (PTH) in cattle were induced by changes of the plasma concentrations of epinephrine, isoproterenol, or calcium. During abrupt hypocalcemia, PTH, obtained by infusions with ethylene glycol-bis (?-aminoethylether) N, N?-tetraacetate (EGTA), increased during the first 4-8 min. After a transient decline, the hormone levels rose again and remained elevated. Infusions of calcium suppressed the hypocalcemia-induced augmentation of PTH levels within a few minutes. Prolonged epinephrine (and isoproterenol) infusions also rapidly increased PTH levels, however, in this case, they returned to basal concentrations after 50-60 min. Additional epinephrine infusions could not further raise PTH values. Moreover, three short-lasting infusions of epinephrine (7 min each), given at 30-min intervals, increased PTH levels to the same extent, whereas additional infusions were much less effective. The PTH response to epinephrine was completely restored, when the interval after a prolonged epinephrine infusion had been prolonged to > 100 min. During moderate hypocalcemia, occurring at the end of EGTA infusions and lasting for 90 min, the PTH response to a short-lasting epinephrine infusion (7 min) was more pronounced than in normocalcemic animals. During severe hypocalcemia, in which superimposed short-lasting infusions of EGTA (7 min) led to an additional abrupt fall of plasma calcium concentrations but not to a corresponding additional rise of the PTH levels, epinephrine rapidly and further increased PTH concentrations. On the other hand, at the end of prolonged infusions of epinephrine, when additional infusions of epinephrine were ineffective in raising PTH levels, EGTA-induced hypocalcemia consistently increased PTH concentrations. The EGTA-induced augmentation of PTH levels was enhanced by epinephrine and isoproterenol but not by propranolol. The present findings indicate, that variations of the extracellular calcium concentrations and ?-adrenergic agonists modify PTH levels by two different and independent mechanisms. On the other hand, it appears that the magnitude of change of the PTH levels to either stimulus is partially modulated by exposure to the other. PMID:96135

  19. Parathyroid hormone suppression by intravenous 1,25-dihydroxyvitamin D. A role for increased sensitivity to calcium.

    PubMed Central

    Delmez, J A; Tindira, C; Grooms, P; Dusso, A; Windus, D W; Slatopolsky, E

    1989-01-01

    Numerous in vitro studies in experimental animals have demonstrated a direct suppressive effect of 1,25-dihydroxyvitamin D (1,25(OH)2D) on parathyroid hormone (PTH) synthesis. We therefore sought to determine whether such an effect could be demonstrated in uremic patients undergoing maneuvers designed to avoid changes in serum calcium concentrations. In addition, the response of the parathyroid gland in patients undergoing hypercalcemic suppression (protocol I) and hypocalcemic stimulation (protocol II) before and after 2 wk of intravenous 1,25(OH)2D was evaluated. In those enlisted in protocol I, PTH values fell from 375 +/- 66 to 294 +/- 50 pg (P less than 0.01) after 1,25(OH)2D administration. During hypercalcemic suppression, the "set point" (PTH max + PTH min/2) for PTH suppression by calcium fell from 5.24 +/- 0.14 to 5.06 +/- 0.15 mg/dl (P less than 0.05) with 1,25(OH)2D. A similar decline in PTH levels after giving intravenous 1,25(OH)2D was noted in protocol II patients. During hypocalcemic stimulation, the parathyroid response was attenuated by 1,25(OH)2D. We conclude that intravenous 1,25(OH)2D directly suppresses PTH secretion in uremic patients. This suppression, in part, appears to be due to increased sensitivity of the gland to ambient calcium levels. PMID:2703535

  20. Cloning of a parathyroid hormone/parathyroid hormone-related peptide receptor (PTHR) cDNA from a rat osteosarcoma (UMR 106) cell line: Chromosomal assignment of the gene in the human, mouse, and rat genomes

    SciTech Connect

    Pausova, Z.; Bourdon, J.; Clayton, D.; Janicic, N.; Goltzman, D.; Hendy, G.N. ); Mattei, M.G. ); Seldin, M.F. ); Riviere, M.; Szpirer, J. )

    1994-03-01

    Complementary DNAs spanning the entire coding region of the rat parathyroid hormone/parathyroid hormone-related peptide receptor (PTHR) were isolated from a rat osteosarcoma (UMR 106) cell-line cDNA library. The longest of these clones (rPTHrec4) was used to chromosomally assign the PTHR gene in the human, rat, and mouse genomes. By somatic cell hybrid analysis, the gene was localized to human chromosome 3 and rat chromosome 8; by in situ hybridization, the gene was mapped to human chromosome 3p21.1-p22 and to mouse chromosome 9 band F; and by interspecific backcross analysis, the Pthr gene segregated with the transferrin (Trf) gene in chromosome 9 band F. Mouse chromosome 9 and rat chromosome 8 are known to be highly homologous and to also show synteny conservation with human chromosome 3. These three chromosomes share the transferrin gene (TF), the myosin light polypeptide 3 gene (MYL3), and the acelpeptide hydrolase gene (APEH). These results add a fourth gene, the PTHR gene, to the synteny group conserved in these chromosomes. 34 refs., 7 figs. 1 tab.

  1. The Efficacy of Parathyroid Hormone Analogues in Combination With Bisphosphonates for the Treatment of Osteoporosis

    PubMed Central

    Li, Wan; Chen, Wenjian; Lin, Yang

    2015-01-01

    Abstract Parathyroid hormone (PTH) analogues increase bone strength primarily by stimulating bone formation, whereas antiresorptive drugs (bisphosphonates) reduce bone resorption. Therefore, some studies have been designed to test the hypothesis that the concurrent administration of the 2 agents would increase bone density more than the use of either one alone. This meta-analysis aimed to determine whether combining PTH analogues with bisphosphonates would be superior to PTH alone. Electronic databases were searched to identify relevant publications up to March, 2014. Randomized controlled trials (RCTs) comparing PTH analogues combined bisphosphonates with PTH for osteoporosis were analyzed. According to the Cochrane Handbook for systematic Reviews of Interventions 5.2, we identified eligible studies, evaluated the methodological quality, and abstracted relevant data. Totally 7 studies involving 641 patients were included for meta-analysis. The pooled data showed that there were no significant differences in the percent change of spine BMD (MD1-year?=??0.97, 95% CI ?2.81 to 0.86, P?=?0.30; MD2-year?=????0.57, 95% CI ?5.01 to 6.14, P?=?0.84), femoral neck BMD (MD1-year?=?0.60, 95% CI ?0.91 to 2.10, P?=?0.44; MD2-year?=??0.73, 95% CI ?4.97 to 3.51, P?=?0.74), the risk of vertebral fracture (risk ratio [RR]?=?1.27; 95% CI 0.295.57; P?=?0.75), and the risk of nonvertebral fracture (RR?=?0.97; 95% CI 0.402.35; P?=?0.95) between the 2 groups, whereas combination group improves the percent change of hip BMD at 1 year (MD?=?1.16, 95% CI 0.561.76; P?

  2. Role of paraoxonase-1 in bone anabolic effects of parathyroid hormone in hyperlipidemic mice

    SciTech Connect

    Lu, Jinxiu; Cheng, Henry; Atti, Elisa; Shih, Diana M.; Demer, Linda L.; Department of Medicine, University of California, Los Angeles; Department of Bioengineering, University of California, Los Angeles ; Tintut, Yin

    2013-02-01

    Highlights: ► Anabolic effects of PTH were tested in hyperlipidemic mice overexpressing PON1. ► Expression of antioxidant regulatory genes was induced in PON1 overexpression. ► Bone resorptive activity was reduced in PON1 overexpressing hyperlipidemic mice. ► PON1 restored responsiveness to intermittent PTH in bones of hyperlipidemic mice. -- Abstract: Hyperlipidemia blunts anabolic effects of intermittent parathyroid hormone (PTH) on cortical bone, and the responsiveness to PTH are restored in part by oral administration of the antioxidant ApoA-I mimetic peptide, D-4F. To evaluate the mechanism of this rescue, hyperlipidemic mice overexpressing the high-density lipoprotein-associated antioxidant enzyme, paraoxonase 1 (Ldlr{sup −/−}PON1{sup tg}) were generated, and daily PTH injections were administered to Ldlr{sup −/−}PON1{sup tg} and to littermate Ldlr{sup −/−} mice. Expression of bone regulatory genes was determined by realtime RT-qPCR, and cortical bone parameters of the femoral bones by micro-computed tomographic analyses. PTH-treated Ldlr{sup −/−}PON1{sup tg} mice had significantly greater expression of PTH receptor (PTH1R), activating transcription factor-4 (ATF4), and osteoprotegerin (OPG) in femoral cortical bone, as well as significantly greater cortical bone mineral content, thickness, and area in femoral diaphyses compared with untreated Ldlr{sup −/−}PON1{sup tg} mice. In contrast, in control mice (Ldlr{sup −/−}) without PON1 overexpression, PTH treatment did not induce these markers. Calvarial bone of PTH-treated Ldlr{sup −/−}PON1{sup tg} mice also had significantly greater expression of osteoblastic differentiation marker genes as well as BMP-2-target and Wnt-target genes. Untreated Ldlr{sup −/−}PON1{sup tg} mice had significantly greater expression of PTHR1 than untreated Ldlr{sup −/−} mice, whereas sclerostin expression was reduced. In femoral cortical bones, expression levels of transcription factors, FoxO1 and ATF4, were also elevated in the untreated, control Ldlr{sup −/−}PON1{sup tg} mice, suggesting enhancement of cellular protection against oxidants. These findings suggest that PON1 restores responsiveness to PTH through effects on oxidant stress, PTH receptor expression, and/or Wnt signaling.

  3. Effect of ethane-1-hydroxy-1,1-diphosphonate (EHDP) on the ultrastructure of parathyroid glands and plasma immunoreactive parathyroid hormone in pregnant cows fed a low calcium diet.

    PubMed

    Yarrington, J T; Capen, C C; Black, H E; Re, R; Potts, J T; Geho, W B

    1977-04-01

    The long term (70 days) effects of administering ethane-1-hydroxy-1,1-diphosphonate (EHDP) (4 mg. per kg. per day) on parathyroid function was investigated in pregnant cows fed a low calcium diet. Serum calcium and phosphorus were significantly lower at parturition and postpartum in EHDP-treated cows compared to pregnant control cows fed the low calcium diet. Plasma immunoreactive parathyroid hormone levels were similar prepartum, at parturition, and postpartum in cows administered EHDP and control cows. Immediately available calcium reserves were greater preparation in control cows than in cows receiving EHDP as indicated by a more rapid rate of return of serum calcium toward normal levels following ethylenediaminetetraacetic acid (EDTA)-induced hypocalcemia approximately 10 days prepartum. EHDP-treated cows responded to the hypocalcemic challenge with similar changes in plasma immunoreactive parathyroid hormone levels as in control cows; however, urinary hydroxyproline excretion increased at certain intervals only in control cows. Ultrastructurally, chief cells in parathyroid glands of both groups of cows were in an active stage of the secretory cycle with well developed organelles concerned with hormonela synthesis. Chief cells in cows administered EHDP were degranulated and contained fewer secretory granules in response to the hypocalcemia than those in control cows. Chief cells in EHDP-treated cows often had prominent perinuclear accumulations of microfilaments, scattered vacuolated mitochondria, and lysosomal bodies in the cytoplasm. Thyroid C-cells were densely granulated and thyroid calcitonin content was similar in both groups of cows. The principal defect in calcium homeostasis of EHDP-treated cows appeared to be an impairment both in bone calcium mobilization and bone matrix catabolism in response to the secretion of parathyroid hormone. In vitro uptake of 45Ca by duodenal mucosa and urinary excretion of cyclic adenosine monophosphate were similar in both groups of cows. The ability of the parathyroid glands to synthesize and secrete parathyroid hormone in response to hypocalcemia induced either by EDTA or associated with parturition was not impaired by the administration of EHDP. PMID:191694

  4. Fibroblast growth factor 23 and parathyroid hormone predict extent of aortic valve calcifications in patients with mild to moderate chronic kidney disease

    PubMed Central

    Di Lullo, Luca; Gorini, Antonio; Bellasi, Antonio; Morrone, Luigi F.; Rivera, Rodolfo; Russo, Luigi; Santoboni, Alberto; Russo, Domenico

    2015-01-01

    Background Cardiac valve calcifications are present in dialysis patients and regarded as dependent on a deranged mineral metabolism. Few data are available for patients with chronic kidney disease (CKD) not on dialysis. This study evaluates the potential association between the extent of cardiac valve calcification and levels of intact parathyroid hormone (i-PTH), phosphorus, calcium, 25-OH vitamin D, fibroblast growth factor 23 (FGF-23), Klotho and C-reactive protein (CRP) simultaneously measured in patients with mild to moderate CKD. Methods Consecutive non-hospitalized patients referring to five nephrology units were evaluated. Inclusion criteria were age >18 years, CKD Stages 34, and the presence of aortic and/or mitral valve calcification assessed by echocardiography as routinely clinical evaluation. Patients underwent clinical examination and routine biochemistry. Baseline i-PTH, phosphorus, calcium, 25-OH vitamin D, FGF-23, Klotho and CRP were simultaneously ascertained. Results Extent of aortic valve calcification (n = 100 patients) was moderate in 68 patients and mild in the remaining patients. Mitral valve calcification (n = 96 patients) score was 1, 2 and 3 in 61, 34 and 1 patients, respectively. In univariate analysis, no association was found between extent of mitral valve calcification and markers of mineral metabolism and CRP; aortic valve extent of calcification was positively associated with i-PTH (r2 = 0.212; P = 0.03) and FGF-23 (r2 = 0.272; P = 0.01), and negatively with Klotho (r2 = ?0.208; P = 0.04). In multivariable analysis, extent of aortic valve calcification was associated with FGF-23 (P = 0.01) and PTH (P = 0.01) levels. Conclusions Extent of aortic valve calcification is associated to FGF-23 and PTH in nave CKD patients with mild to moderate CKD. Further studies should examine whether FGF-23 assay should be included in routine clinical evaluation of CKD as part of cardiovascular risk stratification. PMID:26613033

  5. Associations between Sympathetic Activity, Plasma Concentrations of Renin, Aldosterone, and Parathyroid Hormone, and the Degree of Intractability of Blood Pressure Control in Hemodialysis Patients

    PubMed Central

    Hong, Zoong-Rock; Yang, Jong-Oh; Lee, Eun-Young; Ahn, Jae-Ouk; Hong, Sae-Yong

    2007-01-01

    This study was designed to examine how such factors as hemodialysis parameters, body mass index, renin and aldosterone concentrations, sympathetic nervous activity, and parathyroid hormone concentrations are associated with the control of hypertension in hemodialysis patients. Hemodialysis patients (n=114) were grouped into four categories. Group 1 had normal BP without antihypertensive medication. Group 2 needed one antihypertensive drug, Group 3 needed combination of two or three categories of antihypertensive drugs without minoxidil. Group 4 needed more than three categories of antihypertensive drugs including minoxidil. Parathyroid hormone, ?2-microglobulin, renin and aldosterone, epinephrine, norepinephrine, and hemodialysis parameters were measured. The fractional clearance of urea as Kt/V urea was significantly lower in Group 3 and Group 4 than in Group 2 (p<0.01). Concentrations of parathyroid hormone were significantly higher in Group 4 than the other groups (p<0.01). Pre-hemodialysis norepinephrine concentrations were significantly higher in Group 4 than the other groups (p<0.05). Traditional factors associated with hypertension did not seem to be relevant to the degree of hypertension in hemodialysis patients in the present study. In conclusion, poor Kt/V urea, elevated parathyroid hormone concentrations, and elevated concentrations of plasma norepinephrine seemed to be the factors that might be associated with control of hypertension in hemodialysis patients. PMID:17728496

  6. Role of parathyroid hormone in the glucose intolerance of chronic renal failure.

    PubMed Central

    Akmal, M; Massry, S G; Goldstein, D A; Fanti, P; Weisz, A; DeFronzo, R A

    1985-01-01

    Evidence has accumulated suggesting that the state of secondary hyperparathyroidism and the elevated blood levels of parathyroid hormone (PTH) in uremia participate in the genesis of many uremic manifestations. The present study examined the role of PTH in glucose intolerance of chronic renal failure (CRF). Intravenous glucose tolerance tests (IVGTT) and euglycemic and hyperglycemic clamp studies were performed in dogs with CRF with (NPX) and without parathyroid glands (NPX-PTX). There were no significant differences among the plasma concentrations of electrolytes, degree of CRF, and its duration. The serum levels of PTH were elevated in NPX and undetectable in NPX-PTX. The NPX dogs displayed glucose intolerance after CRF and blood glucose concentrations during IVGTT were significantly (P less than 0.01) higher than corresponding values before CRF. In contrast, blood glucose levels after IVGTT in NPX-PTX before and after CRF were not different. K-g rate fell after CRF from 2.86 +/- 0.48 to 1.23 +/- 0.18%/min (P less than 0.01) in NPX but remained unchanged in NPX-PTX (from 2.41 +/- 0.43 to 2.86 +/- 0.86%/min) dogs. Blood insulin levels after IVGTT in NPX-PTX were more than twice higher than in NPX animals (P less than 0.01) and for any given level of blood glucose concentration, the insulin levels were higher in NPX-PTX than NPX dogs. Clamp studies showed that the total amount of glucose utilized was significantly lower (P less than 0.025) in NPX (6.64 +/- 1.13 mg/kg X min) than in NPX-PTX (10.74 +/- 1.1 mg/kg X min) dogs. The early, late, and total insulin responses were significantly (P less than 0.025) greater in the NPX-PTX than NPX animals. The values for the total response were 143 +/- 28 vs. 71 +/- 10 microU/ml, P less than 0.01. There was no significant difference in the ratio of glucose metabolized to the total insulin response, a measure of tissue sensitivity to insulin, between the two groups. The glucose metabolized to total insulin response ratio in NPX (5.12 +/- 0.76 mg/kg X min per microU/ml) and NPX-PTX (5.18 +/- 0.57 mg/kg X min per microU/ml) dogs was not different but significantly (P less than 0.01) lower than in normal animals (9.98 +/- 1.26 mg/kg X min per microU/ml). The metabolic clearance rate of insulin was significantly (P less than 0.02) reduced in both NPX (12.1 +/- 0.7 ml/kg X min) and NPX-PTX (12.1 +/- 0.9 ml/kg X min) dogs, as compared with normal animals (17.4 +/- 1.8 ml/kg X min). The basal hepatic glucose production was similar in both groups of animals and nor different from normal dogs; both the time course and the magnitude of suppression of hepatic glucose production by insulin were similar in both in groups. There were no differences in the binding affinity, binding sites concentration, and binding capacity of monocytes to insulin among NPX, NPX-PTX, and normal dogs. The data show that (a) glucose intolerance does not develop with CRF in the absence of PTH, (b) PTH does not affect metabolic clearance of insulin or tissue resistance to insulin in CRF, and (c) the normalization of metabolism in CRF in the absence of PTH is due to increased insulin secretion. The results indicate that excess PTH in CRF interferes with the ability of the beta-cells to augment insulin secretion appropriately in response to the insulin-resistant state. Images PMID:3884663

  7. Mechanisms of Enhancer-mediated Hormonal Control of Vitamin D Receptor Gene Expression in Target Cells.

    PubMed

    Lee, Seong Min; Meyer, Mark B; Benkusky, Nancy A; O'Brien, Charles A; Pike, J Wesley

    2015-12-18

    The biological actions of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) are mediated by the vitamin D receptor (VDR), whose expression in bone cells is regulated positively by 1,25(OH)2D3, retinoic acid, and parathyroid hormone through both intergenic and intronic enhancers. In this report, we used ChIP-sequencing analysis to confirm the presence of these Vdr gene enhancers in mesenchyme-derived bone cells and to describe the epigenetic histone landscape that spans the Vdr locus. Using bacterial artificial chromosome-minigene stable cell lines, CRISPR/Cas9 enhancer-deleted daughter cell lines, transient transfection/mutagenesis analyses, and transgenic mice, we confirmed the functionality of these bone cell enhancers in vivo as well as in vitro. We also identified VDR-binding sites across the Vdr gene locus in kidney and intestine using ChIP-sequencing analysis, revealing that only one of the bone cell-type enhancers bound VDR in kidney tissue, and none were occupied by the VDR in the intestine, consistent with weak or absent regulation by the 1,25(OH)2D3 hormone in these tissues, respectively. However, a number of additional sites of VDR binding unique to either kidney or intestine were present further upstream of the Vdr gene, suggesting the potential for alternative regulatory loci. Importantly, virtually all of these regions retained histone signatures consistent with those of enhancers and exhibited unique DNase I hypersensitivity profiles that reflected the potential for chromatin access. These studies define mechanisms associated with hormonal regulation of the Vdr and hint at the differential nature of VDR binding activity at the Vdr gene in different primary target tissues in vivo. PMID:26504088

  8. Parathyroid hormone plus alendronate in osteoporosis: a meta-analysis of randomized controlled trials

    PubMed Central

    Zhang, Qinggang; Qian, Jing; Zhu, Yuchang

    2015-01-01

    Background: Parathyroid hormone (PTH) increases both bone formation (BMD) and bone resorption, whereas alendronate reduces bone resorption. It is possible that the combination therapy of PTH with alendronate will enhance their effects on BMD. Therefore, we conducted this meta-analysis to evaluate the efficacy of the combination therapy of PTH with alendronate in the treatment of patients with osteoporosis. Methods: A comprehensive literature search of PubMed, Embase, and Web of Science was conducted to identify relative studies. Eligible studies were randomized controlled trials (RCT), which assessed the efficacy of combination therapy in patients with osteoporosis. The outcomes included the mean percent increases in BMD of lumbar spine, femoral neck, total hip, and distal radius. Weighted mean difference (WMD) with 95% confidence intervals (CIs) were calculated using of random-effects or fixed-effects model, depending on the heterogeneity between the included studies. Results: Six RCTs with a total number of 833 patients were included in this meta-analysis. The pooled estimates showed that, the combination therapy of PTH with alendronate resulted in a higher mean percent change of increased BMD in distal radius (WMD = 2.45, 95% CI: 1.58, 3.31; P = 0.000), but not in lumbar spine (WMD = -0.83, 95% CI: -3.48, 1.81; P = 0.538), femoral neck (WMD = -0.99, 95% CI: -2.04, 0.07; P = 0.068), and total hip (WMD = -0.06, 95% CI: -0.93, 0.81; P = 0.892). The subgroup analysis based on the dosage and schedule of PTH, study duration, gender of patients, and anabolic agents, were conducted. And results revealed that among the patients in the combination therapy group, greater increases in the spine BMD were observed when the PTH was administered with a dosage of 20 ?g (WMD = 2.33, 95% CI: 1.24, 3.43; P = 0.000), or the treatment duration lasted more than 12 months (WMD = 2.23, 95% CI: 1.00, 3.47; P = 0.000), or the combination therapy was used in osteoporosis women (WMD = 1.58, 95% CI: 0.63, 2.53; P = 0.001). However, the combination of PTH of 40 ?g with alendronate produced a decrease in the BMD at spine (WMD = -4.56, 95% CI: -7.56, -1.56; P = 0.003) and femoral neck (WMD = -5.82, 95% CI: -9.91, -1.72; P = 0.005). Conclusion: Our findings indicated that the addition of alendronate to PTH in the treatment of osteoporosis, reduced the ability of PTH therapy to increase the BMD at the lumbar spine, femoral neck, and total hip. PMID:26064224

  9. Parathyroid carcinoma and oxyphil parathyroid adenoma: an uncommon case of misinterpretation in clinical practice.

    PubMed

    Dytz, Mrcio Garrison; Souza, Rodrigo Gomes; Lzaro, Ana Paula Pires; Gonalves, Manuel Domingos da Cruz; Vidal, Ana Paula Aguiar; dos Santos Teixeira, Patrcia de Ftima; Fleiuss Farias, Maria Lucia

    2013-01-01

    A 46 year-old male presented with persistently high level of serum parathyroid hormone (PTH), despite successful resection of an oxyphilic cell parathyroid adenoma of the left lower gland. Renal function and serum calcium were normal, leading to vitamin D deficiency being considered. Tc99m-sestamibi parathyroid scintigraphy showed no capitation, but a cervical ultrasound demonstrated an increase in the lower parathyroids. Surgery confirmed that the right gland was normal but the left corresponded to parathyroid carcinoma. The patient developed severe hypocalcemia, with PTH values being consistent with hypoparathyroidism for a few months. However, a progressive increase in calcium and PTH serum levels indicated recurrence of disease. Tc99m-sestamibi scintigraphy demonstrated hyperfixation in topography of the left inferior parathyroid and the patient was subjected to a third and more extensive surgery, with removal of lymph nodes and adjacent thyroid tissue. Serum calcium and PTH remained elevated, requiring loop diuretics and intravenous bisphosphonates to control hypercalcemia. Cervical radiotherapy was implemented as adjuvant therapy. After two months the patient complained of dyspnea, and a CT scan of the chest demonstrated areas of parenchymal condensation, suggestive of actinic pneumonitis. At the 2-year follow-up no major issues were evident. PMID:23268928

  10. Effects of maintenance lithium treatment on serum parathyroid hormone and calcium levels: a retrospective longitudinal naturalistic study

    PubMed Central

    Albert, Umberto; De Cori, David; Aguglia, Andrea; Barbaro, Francesca; Lanfranco, Fabio; Bogetto, Filippo; Maina, Giuseppe

    2015-01-01

    Objective The aim of this retrospective longitudinal naturalistic study was to evaluate the effects of maintenance lithium treatment on parathyroid hormone (PTH) and calcium levels. Methods A retrospective longitudinal naturalistic study design was used. Data were collected from the database of a tertiary psychiatric center covering the years 20102014. Included were bipolar patients who had never been exposed to lithium and had lithium started, and who had PTH, and total and ionized calcium levels available before and during lithium treatment. Paired t-tests were used to analyze changes in PTH and calcium levels. Linear regressions were performed, with mean lithium level and duration of lithium exposure as independent variables and change in PTH levels as dependent variable. Results A total 31 patients were included. The mean duration of lithium treatment was 18.611.4 months. PTH levels significantly increased during lithium treatment (+13.5514.20 pg/mL); the rate of hyperparathyroidism was 12.9%. Neither total nor ionized calcium increased from baseline to follow-up; none of our patients developed hypercalcemia. Linear regressions analyses did not show an effect of duration of lithium exposure or mean lithium level on PTH levels. Conclusion Lithium-associated stimulation of parathyroid function is more common than assumed to date. Among parameters to be evaluated prior to lithium implementation, calcium and PTH should be added. PMID:26229473

  11. Novel electrochemiluminescence immunoassay exclusively for full-length parathyroid hormone during treatment with cinacalcet for secondary hyperparathyroidism.

    PubMed

    Tanaka, Hisae; Komaba, Hirotaka; Koizumi, Masahiro; Kakuta, Takatoshi; Fukagawa, Masafumi

    2011-06-01

    A novel, electrochemiluminescence immunoassay that exclusively measures full-length parathyroid hormone (PTH), called Elecsys PTH (1-84) assay, is currently under development for clinical use. We measured serum PTH levels using this novel assay, as well as the Elecsys Intact PTH assay and the Whole PTH immunoradiometric assay, in 53 hemodialysis patients who participated in a 52-week clinical trial of cinacalcet. At baseline, serum PTH (1-84) levels measured with the Elecsys PTH (1-84) assay and those with the Whole PTH assay were comparable, and both values were significantly lower than Elecsys Intact PTH levels. After 52 weeks of cinacalcet treatment, Elecsys PTH (1-84) levels and Whole PTH levels decreased significantly by 56% and 60% from baseline, respectively. These results indicate that the Elecsys PTH (1-84) assay provides comparable data to the Whole PTH assay for monitoring parathyroid function in patients receiving hemodialysis. Introduction of this novel automated immunoassay would provide more widespread measurements of full-length PTH (1-84) in clinical practice. PMID:21595854

  12. Inhibition of parathyroid hormone release by maitotoxin, a calcium channel activator

    SciTech Connect

    Fitzpatrick, L.A.; Yasumoto, T.; Aurbach, G.D.

    1989-01-01

    Maitotoxin, a toxin derived from a marine dinoflagellate, is a potent activator of voltage-sensitive calcium channels. To further test the hypothesis that inhibition of PTH secretion by calcium is mediated via a calcium channel we studied the effect of maitotoxin on dispersed bovine parathyroid cells. Maitotoxin inhibited PTH release in a dose-dependent fashion, and inhibition was maximal at 1 ng/ml. Chelation of extracellular calcium by EGTA blocked the inhibition of PTH by maitotoxin. Maitotoxin enhanced the effects of the dihydropyridine calcium channel agonist (+)202-791 and increased the rate of radiocalcium uptake in parathyroid cells. Pertussis toxin, which ADP-ribosylates and inactivates a guanine nucleotide regulatory protein that interacts with calcium channels in the parathyroid cell, did not affect the inhibition of PTH secretion by maitotoxin. Maitotoxin, by its action on calcium channels allows entry of extracellular calcium and inhibits PTH release. Our results suggest that calcium channels are involved in the release of PTH. Inhibition of PTH release by maitotoxin is not sensitive to pertussis toxin, suggesting that maitotoxin may act distal to the site interacting with a guanine nucleotide regulatory protein, or maitotoxin could interact with other ions or second messengers to inhibit PTH release.

  13. [Parathyroid Hormone-related Peptide (PTHrP) Producing Lung Cancer Presenting Hypercalcemia; Report of a Case].

    PubMed

    Okagawa, Takehiko; Hiramatsu, Yoshinori

    2015-03-01

    An 82-year-old man was admitted to our hospital with hemoptysis and weight loss. Chest computed tomography(CT) showed a 90 mm mass with cavity formation in the right lower lobe adjacent to chest wall. Laboratory data revealed hypercalcemia and elevation of parathyroid hormone-related protein C (PTHrP). He was diagnosed as squamous cell carcinoma of lung by transbronchial lung biopsy (TBLB) [cT3aN1M0]. Nausea and anorexia due to hypercalcemia became worse and a right middle and lower lobectomy was performed because of difficult control of symptoms by medicine and worsening of his general condition. His symptoms were improved immediately after surgery. PMID:25743561

  14. Parathyroid hormone 1 receptor is essential to induce FGF23 production and maintain systemic mineral ion homeostasis.

    PubMed

    Fan, Yi; Bi, Ruiye; Densmore, Michael J; Sato, Tadatoshi; Kobayashi, Tatsuya; Yuan, Quan; Zhou, Xuedong; Erben, Reinhold G; Lanske, Beate

    2016-01-01

    Parathyroid-hormone-type 1 receptor (PTH1R) is extensively expressed in key regulatory organs for systemic mineral ion homeostasis, including kidney and bone. We investigated the bone-specific functions of PTH1R in modulating mineral ion homeostasis by generating a novel mouse model in which PTH1R is ablated in the limb mesenchyme using Prx1Cre transgenic mice. Such ablation decreased FGF23 protein and serum levels by 50%, despite normal Fgf23 mRNA levels in long bones. Circulating calcium and PTH levels were unchanged, but inorganic phosphate and 1,25(OH)2D3 levels were significantly decreased and accompanied by elevated urinary calcium and phosphate wasting. Key renal genes for balancing mineral ion homeostasis, calbindinD28k, Klotho, and Napi2a were suppressed by 30-40%. Intermittent hPTH(1-34) injections increased Fgf23 mRNA (7.3-fold), Nurr1 mRNA (3.1-fold), and serum intact-FGF23 (1.6-fold) in controls, but failed to induce Fgf23, Nurr1 mRNA, or intact FGF23 production in mutants. Moreover, a significant elevation in serum C-terminal-FGF23 levels (4-fold) was detected in both genotypes. PTH markedly downregulated Galnt3 expression (2.7-fold) in controls but not in mutants. These results demonstrate the pivotal role of PTH1R in long bones to regulate systemic mineral ion homeostasis and the direct induction of FGF23 by PTH1R signaling.-Fan, Y., Bi, R., Densmore, M. J., Sato, T., Kobayashi, T., Yuan, Q., Zhou, X., Erben, R. G., Lanske, B. Parathyroid hormone 1 receptor is essential to induce FGF23 production and maintain systemic mineral ion homeostasis. PMID:26428657

  15. Impact of race on intraoperative parathyroid hormone kinetics: an analysis of 910 patients undergoing parathyroidectomy for primary hyperparathyroidism.

    PubMed

    Cisco, Robin M; Kuo, Jennifer H; Ogawa, Lauren; Scholten, Anouk; Tsinberg, Michael; Duh, Quan-Yang; Clark, Orlo H; Gosnell, Jessica E; Shen, Wen T

    2012-11-01

    HYPOTHESIS African American patients exhibit different intraoperative parathyroid hormone (IOPTH) profiles than non-African American patients. DESIGN Retrospective review. SETTING University medical center. PATIENTS Nine hundred ten patients who underwent parathyroidectomy for primary hyperparathyroidism between July 2005 and August 2010. INTERVENTIONS All patients underwent preoperative imaging with ultrasonography and sestamibi; operative exploration; and IOPTH measurement at 2 points preexcision and 5 and 10 minutes postexcision. MAIN OUTCOME MEASURES Preexcision and postexcision IOPTH measurements. RESULTS Of the 910 patients, 734 self-reported their race as white (81%); 91, Latino/other (10%); 56, Asian (6%); and 28, African American (3%). African American patients had significantly higher initial preexcision IOPTH levels compared with white patients (348 vs 202 pg/mL; P=.048) and significantly higher 5-minute postexcision IOPTH levels (151 vs 80 pg/mL; P=.01). The 10-minute postexcision IOPTH levels were similar between the 2 groups (52 vs 50 pg/mL). A similar percentage of white and African American patients had a 50% drop in IOPTH level at 10 minutes postexcision. No differences in IOPTH kinetics were observed in the other racial groups examined. CONCLUSIONS African American patients with primary hyperparathyroidism exhibit significantly higher preincision and 5-minute postexcision IOPTH values when compared with white patients. The 10-minute postexcision IOPTH values did not differ between races. The altered IOPTH kinetics identified in African American patients may reflect the severity of biochemical disease but may also be related to genetically predetermined differences in parathyroid hormone metabolism. PMID:22801754

  16. Treatment for chemotherapy-induced alopecia in mice using parathyroid hormone agonists and antagonists linked to a collagen binding domain

    PubMed Central

    Katikaneni, Ranjitha; Ponnapakkam, Tulasi; Suda, Hirofumi; Miyata, Shigeru; Sakon, Joshua; Matsushita, Osamu; Gensure, Robert C.

    2013-01-01

    Parathyroid hormone (PTH) agonists and antagonists have been shown to improve hair growth after chemotherapy; however, rapid clearance and systemic side-effects complicate their usage. To facilitate delivery and retention to skin, we fused PTH agonists and antagonists to the collagen binding domain (CBD) of Clostridium histolyticum collagenase. in-vitro studies showed that the agonist fusion protein, PTH-CBD, bound collagen and activated the PTH/parathyroid hormone-related peptide receptor in SaOS-2 cells. The antagonist fusion proteins, PTH(7–33)-CBD and PTH([−1]–33)-CBD, also bound collagen and antagonized PTH(1–34) effect in SaOS-2 cells; however, PTH(7–33)-CBD had lower intrinsic activity. Distribution studies confirmed uptake of PTH-CBD to the skin at 1 and 12 hr after subcutaneous injection. We assessed in vivo efficacy of PTH-CBD and PTH(7–33)-CBD in C57BL/6J mice. Animals were depilated to synchronize the hair follicles; treated on Day 7 with agonist, antagonist, or vehicle; treated on Day 9 with cyclophosphamide (150 mg/kg i.p.) or vehicle; and sacrificed on Day 39. Normal mice (no chemo and no treatment) showed rapid regrowth of hair and normal histology. Chemo + Vehicle mice showed reduced hair regrowth and decreased pigmentation; histology revealed reduced number and dystrophic anagen/catagen follicles. Chemo + Antagonist mice were grossly and histologically indistinguishable from Chemo + Vehicle mice. Chemo + Agonist mice showed more rapid regrowth and repigmentation of hair; histologically, there was a normal number of hair follicles, most of which were in the anagen phase. Overall, the agonist PTH-CBD had prominent effects in reducing chemotherapy-induced damage of hair follicles and may show promise as a therapy for chemotherapy-induced alopecia. PMID:22130912

  17. Treatment for chemotherapy-induced alopecia in mice using parathyroid hormone agonists and antagonists linked to a collagen binding domain.

    PubMed

    Katikaneni, Ranjitha; Ponnapakkam, Tulasi; Suda, Hirofumi; Miyata, Shigeru; Sakon, Joshua; Matsushita, Osamu; Gensure, Robert C

    2012-09-01

    Parathyroid hormone (PTH) agonists and antagonists have been shown to improve hair growth after chemotherapy; however, rapid clearance and systemic side-effects complicate their usage. To facilitate delivery and retention to skin, we fused PTH agonists and antagonists to the collagen binding domain (CBD) of Clostridium histolyticum collagenase. in-vitro studies showed that the agonist fusion protein, PTH-CBD, bound collagen and activated the PTH/parathyroid hormone-related peptide receptor in SaOS-2 cells. The antagonist fusion proteins, PTH(7-33)-CBD and PTH([-1]-33)-CBD, also bound collagen and antagonized PTH(1-34) effect in SaOS-2 cells; however, PTH(7-33)-CBD had lower intrinsic activity. Distribution studies confirmed uptake of PTH-CBD to the skin at 1 and 12 hr after subcutaneous injection. We assessed in vivo efficacy of PTH-CBD and PTH(7-33)-CBD in C57BL/6J mice. Animals were depilated to synchronize the hair follicles; treated on Day 7 with agonist, antagonist, or vehicle; treated on Day 9 with cyclophosphamide (150 mg/kg i.p.) or vehicle; and sacrificed on Day 39. Normal mice (no chemo and no treatment) showed rapid regrowth of hair and normal histology. Chemo+Vehicle mice showed reduced hair regrowth and decreased pigmentation; histology revealed reduced number and dystrophic anagen/catagen follicles. Chemo+Antagonist mice were grossly and histologically indistinguishable from Chemo+Vehicle mice. Chemo+Agonist mice showed more rapid regrowth and repigmentation of hair; histologically, there was a normal number of hair follicles, most of which were in the anagen phase. Overall, the agonist PTH-CBD had prominent effects in reducing chemotherapy-induced damage of hair follicles and may show promise as a therapy for chemotherapy-induced alopecia. PMID:22130912

  18. Treatment for chemotherapy-induced alopecia in mice using parathyroid hormone agonists and antagonists linked to a collagen binding domain.

    TOXLINE Toxicology Bibliographic Information

    Katikaneni R; Ponnapakkam T; Suda H; Miyata S; Sakon J; Matsushita O; Gensure RC

    2012-09-01

    Parathyroid hormone (PTH) agonists and antagonists have been shown to improve hair growth after chemotherapy; however, rapid clearance and systemic side-effects complicate their usage. To facilitate delivery and retention to skin, we fused PTH agonists and antagonists to the collagen binding domain (CBD) of Clostridium histolyticum collagenase. in-vitro studies showed that the agonist fusion protein, PTH-CBD, bound collagen and activated the PTH/parathyroid hormone-related peptide receptor in SaOS-2 cells. The antagonist fusion proteins, PTH(7-33)-CBD and PTH([-1]-33)-CBD, also bound collagen and antagonized PTH(1-34) effect in SaOS-2 cells; however, PTH(7-33)-CBD had lower intrinsic activity. Distribution studies confirmed uptake of PTH-CBD to the skin at 1 and 12 hr after subcutaneous injection. We assessed in vivo efficacy of PTH-CBD and PTH(7-33)-CBD in C57BL/6J mice. Animals were depilated to synchronize the hair follicles; treated on Day 7 with agonist, antagonist, or vehicle; treated on Day 9 with cyclophosphamide (150 mg/kg i.p.) or vehicle; and sacrificed on Day 39. Normal mice (no chemo and no treatment) showed rapid regrowth of hair and normal histology. Chemo+Vehicle mice showed reduced hair regrowth and decreased pigmentation; histology revealed reduced number and dystrophic anagen/catagen follicles. Chemo+Antagonist mice were grossly and histologically indistinguishable from Chemo+Vehicle mice. Chemo+Agonist mice showed more rapid regrowth and repigmentation of hair; histologically, there was a normal number of hair follicles, most of which were in the anagen phase. Overall, the agonist PTH-CBD had prominent effects in reducing chemotherapy-induced damage of hair follicles and may show promise as a therapy for chemotherapy-induced alopecia.

  19. Desensitization to parathyroid hormone in renal cells from aged rats is associated with alterations in G-protein activity.

    PubMed Central

    Hanai, H; Liang, C T; Cheng, L; Sacktor, B

    1989-01-01

    Parathyroid hormone (PTH)-stimulated Na+/Ca2+ exchange activity, but not forskolin-sensitive Na+-dependent Ca2+ efflux, was blunted in renal cortical cells from aged rats. PTH-sensitive adenylate cyclase activity in renal membranes from senescent rats also declined, but forskolin-stimulated activity did not change. In addition, cholera toxin- and pertussis toxin-stimulated Na+-dependent Ca2+ efflux and cAMP formation were blunted in cells from aged animals. Further, cells from aged rats had decreased Gs-alpha and Gi-alpha proteins, as detected by ADP-ribosylation. These findings would be consistent with the proposal of an age-associated heterologous desensitization that involved the G-proteins. Serum concentrations of iPTH were increased in the old rat, suggesting that the desensitization to PTH in the aging rat represented an adaptive response to prolonged stimulation by the hormone. This hypothesis was supported by the findings that the attenuated PTH-sensitive Na+/Ca2+ exchange activity, cAMP formation, and adenylate cyclase activity in cells from old rats could be reversed by parathyroidectomy. The decreased label in cholera toxin-catalyzed ADP-ribosylated Gs-alpha and pertussis toxin catalyzed ADP-ribosylated Gi-alpha found in cells from aged rats was also largely negated by the surgery. In conclusion, the results suggest that the age-related blunting in the responses of renal cells to PTH was associated with a deficit in G-protein function and that this alteration could be reversed by removal of the parathyroid gland. Images PMID:2492037

  20. Abundant expression of parathyroid hormone-related protein in primary rat aortic smooth muscle cells accompanies serum-induced proliferation.

    PubMed Central

    Hongo, T; Kupfer, J; Enomoto, H; Sharifi, B; Giannella-Neto, D; Forrester, J S; Singer, F R; Goltzman, D; Hendy, G N; Pirola, C

    1991-01-01

    Parathyroid hormone-related protein (PTHrP), which is responsible for producing hypercalcemia in patients with humoral hypercalcemia of malignancy, has recently been identified in several normal tissues. Because PTHrP, like parathyroid hormone (PTH), is known to exhibit vasodilatory properties, we investigated the expression and regulation of PTHrP mRNA in cultured rat aortic smooth muscle cells (SMC). We report here that PTHrP mRNA is expressed in SMC and is markedly induced by serum in a time- and concentration-dependent fashion. Addition of 10% fetal calf serum to serum-deprived, confluent cells, resulted in a marked induction of PTHrP mRNA by 2 h with a peak at 4-6 h. PTHrP was detected in SMC by immunocytochemistry and radioimmunoassay of conditioned medium, and was shown to be up-regulated within 24 h after the addition of serum. The serum induction of PTHrP mRNA was blocked by actinomycin D and by cycloheximide indicating the need for protein synthesis to evoke the serum effect on PTHrP gene transcription. In addition, treatment with dexamethasone, which has been previously shown to reduce the constitutive expression of PTHrP in human cancer cells, also blunted the serum induction of PTHrP mRNA in SMC. Treatment of quiescent cells with the serum mitogens platelet-derived growth factor or insulin-like growth factor-I had no effect on PTHrP, whereas the vasoactive peptides endothelin, norepinephrine and thrombin stimulated PTHrP expression. Exogenous addition of recombinant PTHrP-(1-141) had no significant effect on SMC DNA synthesis as measured by [3H]thymidine incorporation. In summary, the abundance of PTHrP mRNA and the characteristics of its regulation in SMC suggest a major role for PTHrP as a local modulator in vascular smooth muscle. Images PMID:1752945

  1. CYP2D6, GST-M1 and GST-T1 enzymes: expression in parathyroid gland and association with the parathyroid hormone concentration during early renal replacement therapy

    PubMed Central

    Yan, Feng-Xiang; Langub, M Chris; Ihnen, Mark A; Hornung, Carlton; Juronen, Erkki; Rayens, Mary K; Cai, Wei-Min; Wedlund, Peter J; Fanti, Paolo

    2003-01-01

    Aims The purpose of this research was to characterize CYP2D6, GST-M1 and GST-T1 enzyme expression in human parathyroid tissue, and to determine whether or not there is any association between deficiencies in these enzymes and serum parathyroid hormone concentrations in patients with end-stage renal disease. Methods Surgical human parathyroid tissue was obtained and evaluated by immunohistochemistry for cellular localization of CYP2D6, GST-M1 and GST-T1 and colocalization of CYP2D6 with parathyroid hormone. Blood samples were collected from 328 Caucasian patients with end-stage renal disease for genetic testing of CYP2D6*3, *4, *5, *6, *7 and GST-M1*0 and GST-T1*0 alleles. Clinical chemistry data and serum intact parathyroid hormone (iPTH) concentrations were obtained from patient medical records. In 277 of the patients, the same laboratory performed all clinical tests. Results CYP2D6, GST-M1 and GST-T1 were present in human parathyroid tissue. CYP2D6 was colocalized with parathyroid hormone in parathyroid chief cells. Within the end-stage renal disease population, a nonfunctional CYP2D6 genotype was present in 18.2%[95% confidence interval (CI) 8.0, 28.4] of patients in the 1st iPTH concentration quintile (iPTH < 64 pg mL−1), in 0% (95% CI 0, 7.5) of those in the 2nd quintile, in 1.8% (95% CI 0, 9.3) of those in the 3rd quintile, in 9.1% (95% CI 1.5, 16.7) of those in the 4th quintile, and in 16.7% (95% CI 6.8, 26.5) of those in the 5th quintile (iPTH > 347 pg mL−1) (P = 0.001). Out of 12 CYP2D6-deficient females, seven were in the 1st iPTH concentration quintile and the remaining five were in the 5th quintile. Patients deficient in the GST-M1 and GST-T1 enzymes displayed a far more uniform frequency distribution relative to serum iPTH concentrations. Conclusions The presence of CYP2D6, GST-M1 and GST-T1 in parathyroid cells was observed. An association is reported between a lack of CYP2D6 and iPTH concentrations in newly diagnosed end-stage renal disease patients. Gender and concomitant deficiency in GST-M1 and/or GST-T1 appear to define this association further. It remains to be established whether these associations reflect a cause-effect relationship between deficient expression of metabolizing enzymes and severity of secondary manifestation of renal failure. PMID:12848777

  2. Parathyroid cell proliferation in normal and chronic renal failure rats. The effects of calcium, phosphate, and vitamin D.

    PubMed Central

    Naveh-Many, T; Rahamimov, R; Livni, N; Silver, J

    1995-01-01

    Secondary hyperparathyroidism is characterized by an increase in parathyroid (PT) cell number, and parathyroid hormone (PTH) synthesis and secretion. It is still unknown as to what stimuli regulate PT cell proliferation and how they do this. We have studied rats with dietary-induced secondary hyper- and hypoparathyroidism, rats given 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and rats after 5/6 nephrectomy for the presence of PT cell proliferation and apoptosis. PT cell proliferation has been measured by staining for proliferating cell nuclear antigen (PCNA) and apoptosis by in situ detection of nuclear DNA fragmentation and correlated with serum biochemistry and PTH mRNA levels. A low calcium diet led to increased levels of PTH mRNA and a 10-fold increase in PT cell proliferation. A low phosphate diet led to decreased levels of PTH mRNA and the complete absence of PT cell proliferation. 1,25 (OH)2D3 (25 pmol/d x 3) led to a decrease in PTH mRNA levels and unlike the hypophosphatemic rats there was no decrease in cell proliferation. There were no cells undergoing apoptosis in any of the experimental conditions. The secondary hyperparathyroidism of 5/6 nephrectomized rats was characterized by an increase in PTH mRNA levels and PT cell proliferation which were both markedly decreased by a low phosphate diet. The number of PCNA positive cells was increased by a high phosphate diet. Therefore hypocalcemia, hyperphosphatemia and uremia lead to PT cell proliferation, and hypophosphatemia completely abolishes this effect. Injected 1,25 (OH)2D3 had no effect. These findings emphasize the importance of a normal phosphate and calcium in the prevention of PT cell hyperplasia. Images PMID:7560070

  3. The parathyroid is a target organ for FGF23 in rats

    PubMed Central

    Ben-Dov, Iddo Z.; Galitzer, Hillel; Lavi-Moshayoff, Vardit; Goetz, Regina; Kuro-o, Makoto; Mohammadi, Moosa; Sirkis, Roy; Naveh-Many, Tally; Silver, Justin

    2007-01-01

    Phosphate homeostasis is maintained by a counterbalance between efflux from the kidney and influx from intestine and bone. FGF23 is a bone-derived phosphaturic hormone that acts on the kidney to increase phosphate excretion and suppress biosynthesis of vitamin D. FGF23 signals with highest efficacy through several FGF receptors (FGFRs) bound by the transmembrane protein Klotho as a coreceptor. Since most tissues express FGFR, expression of Klotho determines FGF23 target organs. Here we identify the parathyroid as a target organ for FGF23 in rats. We show that the parathyroid gland expressed Klotho and 2 FGFRs. The administration of recombinant FGF23 led to an increase in parathyroid Klotho levels. In addition, FGF23 activated the MAPK pathway in the parathyroid through ERK1/2 phosphorylation and increased early growth response 1 mRNA levels. Using both rats and in vitro rat parathyroid cultures, we show that FGF23 suppressed both parathyroid hormone (PTH) secretion and PTH gene expression. The FGF23-induced decrease in PTH secretion was prevented by a MAPK inhibitor. These data indicate that FGF23 acts directly on the parathyroid through the MAPK pathway to decrease serum PTH. This bone-parathyroid endocrine axis adds a new dimension to the understanding of mineral homeostasis. PMID:17992255

  4. The parathyroid is a target organ for FGF23 in rats.

    PubMed

    Ben-Dov, Iddo Z; Galitzer, Hillel; Lavi-Moshayoff, Vardit; Goetz, Regina; Kuro-o, Makoto; Mohammadi, Moosa; Sirkis, Roy; Naveh-Many, Tally; Silver, Justin

    2007-12-01

    Phosphate homeostasis is maintained by a counterbalance between efflux from the kidney and influx from intestine and bone. FGF23 is a bone-derived phosphaturic hormone that acts on the kidney to increase phosphate excretion and suppress biosynthesis of vitamin D. FGF23 signals with highest efficacy through several FGF receptors (FGFRs) bound by the transmembrane protein Klotho as a coreceptor. Since most tissues express FGFR, expression of Klotho determines FGF23 target organs. Here we identify the parathyroid as a target organ for FGF23 in rats. We show that the parathyroid gland expressed Klotho and 2 FGFRs. The administration of recombinant FGF23 led to an increase in parathyroid Klotho levels. In addition, FGF23 activated the MAPK pathway in the parathyroid through ERK1/2 phosphorylation and increased early growth response 1 mRNA levels. Using both rats and in vitro rat parathyroid cultures, we show that FGF23 suppressed both parathyroid hormone (PTH) secretion and PTH gene expression. The FGF23-induced decrease in PTH secretion was prevented by a MAPK inhibitor. These data indicate that FGF23 acts directly on the parathyroid through the MAPK pathway to decrease serum PTH. This bone-parathyroid endocrine axis adds a new dimension to the understanding of mineral homeostasis. PMID:17992255

  5. Pre-diagnostic Circulating Parathyroid Hormone Concentration and Colorectal Cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort

    PubMed Central

    Fedirko, Veronika; Riboli, Elio; Bueno-de-Mesquita, H. Bas; Rinaldi, Sabina; Pischon, Tobias; Norat, Teresa; Jansen, Eugne H.J.M.; van Duijnhoven, Frnzel J.B.; Tjnneland, Anne; Olsen, Anja; Overvad, Kim; Boutron-Ruault, Marie-Christine; Clavel-Chapelon, Franoise; Engel, Pierre; Kaaks, Rudolf; Teucher, Birgit; Boeing, Heiner; Buijsse, Brian; Trichopoulou, Antonia; Trichopoulos, Dimitrios; Lagiou, Pagona; Sieri, Sabina; Vineis, Paolo; Panico, Salvatore; Palli, Domenico; Tumino, Rosario; van Gils, Carla H; Peeters, Petra HM; Chirlaque, Maria-Dolores; Gurrea, Aurelio Barricarte; Rodrguez, Laudina; Molina-Montes, Esther; Dorronsoro, Miren; Bonet, Catalina; Palmqvist, Richard; Hallmans, Gran; Key, Timothy J.; Tsilidis, Konstantinos K; Khaw, Kay-Tee; Romieu, Isabelle; Straif, Kurt; Wark, Petra A.; Romaguera, Dora; Jenab, Mazda

    2011-01-01

    Background Parathyroid hormone (PTH) has been proposed to play a promoting role in carcinogenesis. However, no epidemiologic studies have yet directly investigated its role in colorectal cancer (CRC). Methods A case-control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort was conducted with 1,214 incident, sporadic CRC cases matched to 1,214 controls. Circulating pre-diagnostic PTH and 25-hydroxy vitamin D [25(OH)D] concentrations were measured by enzyme-linked immunosorbent assays. Detailed dietary and lifestyle questionnaire data were collected at baseline. Multivariable conditional logistic regression was used to estimate the incidence rate ratio (RR) with 95% confidence intervals (95%CI) for the association between circulating PTH and CRC risk. Results In multivariate analyses (including adjustment for 25(OH)D concentration) with a priori defined cut-points, high levels of serum PTH (?65ng/L) compared to medium PTH levels of 3065 ng/L were associated with increased CRC risk (RR=1.41, 95%CI: 1.03-1.93). In analyses by sex, the CRC risk was 1.77 (95%CI: 1.14-2.75) and 1.15 (95%CI: 0.73-1.84) in men and women, respectively (Pheterogeneity=0.01). In sub-group analyses by anatomical sub-site, the risk for colon cancer was RR=1.56, 95%CI:1.03-2.34, and for rectal cancer RR=1.20, 95%CI:0.72-2.01 (Pheterogeneity=0.21). Effect modification by various risk factors was examined. Conclusions The results of this study suggest that high serum PTH levels may be associated with incident, sporadic CRC in Western European populations, and in particular among men. Impact To our knowledge, this is the first study on PTH and CRC. The role of PTH in carcinogenesis needs to be further investigated. PMID:21378267

  6. Serum concentrations of 25-hydroxyvitamin D and its association with bone mineral density and serum parathyroid hormone levels during winter in urban males from Guiyang, Southwest China.

    PubMed

    Zhang, Qiao; Shi, Lixin; Peng, Nianchun; Xu, Shujing; Zhang, Miao; Zhang, Song; Li, Hong; Zhuang, Huijun; Gong, Mingxian; Wu, Danrong; Wang, Rui

    2016-03-01

    Serum vitamin D (25-hydroxyvitamin D (25OHD)) may influence serum parathyroid hormone (PTH) levels and bone mineral density (BMD). In the present study, we assessed serum 25OHD concentration and its association with PTH and BMD in urban males from Guiyang (N26.57), the capital city of Guizhou province, Southwest China. We recruited 634 males aged >20 years from the Guiyang Health Measures Survey, and stratified them into three groups according to age: young (20-39 years), middle aged (40-59 years) and older (60-79 years). We measured serum concentrations of 25OHD, PTH levels and BMD of the lumbar spine (L1-L4), femoral neck and total hip. In addition, we also explored the relationship between 25OHD and lifestyle, socio-economic characteristics and medical history by applying covariance analysis and locally weighted regression plots. The results showed that serum 25OHD was 75 nmol/l in 126 % of the subjects. Higher level of serum PTH was detected in relation to lower concentrations of serum 25OHD up to 50 nmol/l. A negative correlation between serum 25OHD and PTH concentrations was observed (r -0207, P=0003). Mean concentration of serum PTH increased gradually and plateaued while concentrations of serum 25OHD decreased to 50 nmol/l. Gradual increase in serum PTH was observed as 25OHD concentration was <25 nmol/l (P=0004). BMD values at all sites were greater in the higher serum 25OHD concentration group. This study shows that low concentrations of serum 25OHD were common in males, and bone health was likely to be improved when serum 25OHD values were between 30 and 50 nmol/l. PMID:26843386

  7. Targets for parathyroid hormone in secondary hyperparathyroidism: is a “one-size-fits-all” approach appropriate? A prospective incident cohort study

    PubMed Central

    2014-01-01

    Background Recommendations for secondary hyperparathyroidism (SHPT) consider that a “one-size-fits-all” target enables efficacy of care. In routine clinical practice, SHPT continues to pose diagnosis and treatment challenges. One hypothesis that could explain these difficulties is that dialysis population with SHPT is not homogeneous. Methods EPHEYL is a prospective, multicenter, pharmacoepidemiological study including chronic dialysis patients (≥3 months) with newly SHPT diagnosis, i.e. parathyroid hormone (PTH) ≥500 ng/L for the first time, or initiation of cinacalcet, or parathyroidectomy. Multiple correspondence analysis and ascendant hierarchical clustering on clinico-biological (symptoms, PTH, plasma phosphorus and alkaline phosphatase) and treatment of SHPT (cinacalcet, vitamin D, calcium, or calcium-free calcic phosphate binder) were performed to identify distinct phenotypes. Results 305 patients (261 with incident PTH ≥ 500 ng/L; 44 with cinacalcet initiation) were included. Their mean age was 67 ± 15 years, and 60% were men, 92% on hemodialysis and 8% on peritoneal dialysis. Four subgroups of SHPT patients were identified: 1/ “intermediate” phenotype with hyperphosphatemia without hypocalcemia (n = 113); 2/ younger patients with severe comorbidities, hyperphosphatemia and hypocalcemia, despite SHPT multiple medical treatments, suggesting poor adherence (n = 73); 3/ elderly patients with few cardiovascular comorbidities, controlled phospho-calcium balance, higher PTH, and few treatments (n = 75); 4/ patients who initiated cinacalcet (n = 43). The quality criterion of the model had a cut-off of 14 (>2), suggesting a relevant classification. Conclusion In real life, dialysis patients with newly diagnosed SHPT constitute a very heterogeneous population. A “one-size-fits-all” target approach is probably not appropriate. Therapeutic management needs to be adjusted to the 4 different phenotypes. PMID:25123022

  8. The G protein α-subunit variant XLαs promotes Gq/11-dependent signaling and mediates the renal actions of parathyroid hormone in vivo*

    PubMed Central

    He, Qing; Zhu, Yan; Corbin, Braden A.; Plagge, Antonius; Bastepe, Murat

    2015-01-01

    GNAS, which encodes the stimulatory G protein α subunit (Gαs), also encodes a large variant of Gαs termed XLαs, and alterations in XLαs abundance or activity are implicated in various human disorders. Although XLαs, like Gαs, stimulates generation of the second messenger cAMP, evidence suggests that XLαs and Gαs have opposing effects in vivo. We investigated the role of XLαs in mediating signaling by parathyroid hormone (PTH), which activates a GPCR that stimulates both Gαs and Gαq/11 in renal proximal tubules to maintain phosphate and vitamin D homeostasis. At postnatal day 2 (P2), XLαs-knockout (XLKO) mice exhibited hyperphosphatemia, hypocalcemia, and increased serum concentrations of PTH and 1,25-dihydroxyvitamin D, indicative of compromised PTH responsiveness. The ability of PTH to reduce serum phosphate concentrations was impaired and the abundance of the sodium-phosphate cotransporter Npt2a in renal brush-border membranes was reduced in XLKO mice, whereas PTH-induced cAMP excretion in the urine was modestly increased. Basal and PTH-stimulated production of inositol trisphosphate (IP3), which is the second messenger produced by Gαq/11 signaling, were repressed in renal proximal tubules from XLKO mice. Crossing of XLKO mice with mice overexpressing XLαs specifically in renal proximal tubules rescued the phenotype of the XLKO mice. Overexpression of XLαs in HEK 293 cells enhanced Gq/11-dependent signaling in unstimulated cells and in cells stimulated with PTH or thrombin, which is a Gq/11-coupled receptor. Together, our findings suggest that XLαs enhances Gq/11 signaling to mediate the renal actions of PTH during early postnatal development. PMID:26307011

  9. An Extrarenal Role for Parathyroid Hormone in the Disposal of Acute Acid Loads in Rats and Dogs

    PubMed Central

    Fraley, Donald S.; Adler, Sheldon

    1979-01-01

    Acid infusion studies were performed in nephrectomized rats and dogs with either intact parathyroid glands (intact) or after thyroparathyroidectomy (thyroparathyroidectomized [TPTX]) to determine the role of parathyroid hormone (PTH) in extrarenal disposal and buffering of acutely administered acid. 29 intact rats given 5 mM/kg HCl and 6 intact dogs given 7 mM/kg HCl developed severe metabolic acidosis but all survived. However, each of 12 TPTX rats and 4 TPTX dogs given the same acid loads died. Intact rats and dogs buffered 39 and 50% of administered acid extracellularly, respectively, whereas extracellular buffering of administered acid was 97 and 78% in TPTX rats and dogs, respectively. 17 TPTX rats and 6 TPTX dogs given synthetic PTH 2 h before acid infusion survived. The blood bicarbonate and extracellular buffering in these animals, measured 2 h after acid infusion, was similar to intact animals. Changes in liver, heart, and skeletal muscle pH determined from [14C]5,5-dimethyl-2,4 oxazolidinedione distribution seemed insufficient to account for the increased cell buffering of PTH-replaced animals. Indeed, muscle pH in TPTX dogs given PTH and acid was only 0.06 pH units lower than in control dogs given no acid, suggesting that another tissue, presumably bone, was the target for PTH-mediated increased cell buffering. This conclusion was supported by the observation that PTH did not alter the pH of intact rat diaphragms in vitro. These results indicate that PTH is necessary for the optimal buffering of large, acute acid loads presumably by increasing bone buffering. PMID:36406

  10. The release of parathyroid hormone and the exocytosis of a proteoglycan are modulated by extracellular Ca2+ in a similar manner.

    PubMed Central

    Muresan, Z; MacGregor, R R

    1994-01-01

    Secretion of parathyroid hormone (PTH) is regulated in part by a classical "stimulus-secretion" pathway responsive to catecholamines. The primary physiological modulator of PTH exocytosis in parathyroid cells, however, is extracellular free Ca2+. Ca(2+)-modulated PTH release exhibits several characteristics suggestive of constitutive secretion. The aim of this work was to obtain further information about the possible intracellular origins of Ca(2+)-modulated exocytosis in parathyroid cells. Freshly dissociated bovine parathyroid cells labeled with [35S]sulfate synthesized a soluble chondroitin/dermatan sulfate proteoglycan (M(r) approximately 90-150 K) that was secreted into the medium. The export of [35S]sulfated proteoglycan satisfied several criteria that generally define constitutive release: 1) export is detected in the medium shortly (7-15 min) after a 5-min pulse, 2) there is minimal intracellular storage after equilibrium labeling (because of combined processes of rapid release and intracellular degradation), and 3) there is insensitivity to stimulation with isoproterenol, a known secretagogue in parathyroid cells. Nevertheless, the increase in extracellular Ca2+ from 0.5 to 2.0 mM reduced the export of the [35S]sulfated proteoglycan from 60% of total labeled to 30%. In addition, a secreted pool of immunoreactive PTH and [35S]sulfated proteoglycan was modulated by external Ca2+ to the same degree and sensitivity, although isoproterenol was more effective in stimulating the release of PTH than that of proteoglycan. Together, our experimental results show that in the parathyroid cell extracellular Ca2+ modulates negatively the export of both PTH and proteoglycan, a putative marker for constitutive secretion. We further suggest that a portion of newly synthesized PTH also enters this pathway, whereas another portion proceeds to an isoproterenol-releasable compartment from which the proteoglycan is largely excluded. Images PMID:7812042

  11. Serum parathyroid hormone (PTH) in pregnant women determined by an immunoradiometric assay for intact PTH

    SciTech Connect

    Davis, O.K.; Hawkins, D.S.; Rubin, L.P.; Posillico, J.T.; Brown, E.M.; Schiff, I.

    1988-10-01

    Most studies of circulating PTH levels using traditional RIAs have supported the concept of physiological hyperparathyroidism of pregnancy, with pregnant women having serum immunoreactive PTH levels significantly higher than those in nonpregnant subjects. However, such RIAs are insensitive and often detect inactive PTH fragments, so that the correlation between PTH immunoreactivity and bioactivity is poor. Employing a new intact PTH immunoradiometric assay (Allegro-Nichols), we reassessed the effects of pregnancy on parathyroid function. The mean serum PTH level in 81 pregnant women was 14.4 +/- 6.3 (+/- SD) compared to 24.8 +/- 9.0 ng/L in 11 normally cycling nonpregnant women (P less than 0.001). The mean serum total and ionized calcium levels in the 2 groups were similar. In 5 of the pregnant women, serum bioactive PTH, determined by cytochemical bioassay, was slightly lower (7.7 +/- 3.4 ng/L) than in normal individuals (11.1 +/- 1.9 ng/L). Our findings suggest, in contrast with the results of most previous studies, that serum intact PTH may decline during pregnancy.

  12. Parathyroid hormone levels 1 hour after thyroidectomy: an early predictor of postoperative hypocalcemia

    PubMed Central

    AlQahtani, Awad; Parsyan, Armen; Payne, Richard; Tabah, Roger

    2014-01-01

    Background Parathyroid dysfunction leading to symptomatic hypocalcemia is not uncommon following a total or completion thyroidectomy and is often associated with significant patient morbidity and a prolonged hospital stay. A simple, reliable indicator to identify patients at risk would permit earlier pharmacologic prophylaxis to avoid these adverse outcomes. We examined the role of intact parathormone (PTH) levels 1 hour after surgery as a predictor of post-thyroidectomy hypocalcemia. Methods We prospectively reviewed the cases of consecutive patients undergoing total or completion thyroidectomy. Ionized calcium (Ca2+) and intact PTH levels were measured preoperatively and at 1-, 6- and 24-hour intervals postoperatively. The specificity, sensitivity, negative and positive predictive values of the 1-hour PTH serum levels (PTH-1) in predicting 24-hour post-thyroidectomy hypocalcemia and eucalcemia were determined. Results We reviewed the cases of 149 patients. Biochemical hypocalcaemia (Ca2+ < 1.1 mmol/L) developed in 38 of 149 (25.7%) patients 24 hours after thyroidectomy. The sensitivity, specificity, positive and negative predictive values of a low PTH-1 were 89%, 100%, 97% and 100%, respectively. Conclusion We found that PTH-1 levels were predictive of symptomatic hypocalcemia 24 hours after thyroidectomy. Routine use of this assay should be considered, as it could prompt the early administration of calcitriol in patients at risk of hypocalcemia and allow for the safe and timely discharge of patients expected to remain eucalcemic. PMID:25078927

  13. A rare case of double parathyroid lipoadenoma with hyperparathyroidism.

    PubMed

    Ogrin, Cristina

    2013-11-01

    A rare case of double lipoadenomas of parathyroid glands with hyperparathyroidism is described. A 56-year-old woman was referred for management of diabetes. Work up revealed: serum Calcium (Ca) =11.9 mg/dl, glomerular filtration rate (GFR) = 103 ml/min/m2, parathyroid hormone (PTH) = 60 pg/ml, Phosphorus = 3.0 mg/dl, 25 hydroxy vitamin D (25 OH D) =16.5 ng/ml, 24 h urine Calcium =179 mg/day. Parathyroid sestamibi scan showed increased activity in the left thyroid and right thyroid lobe. Single photon emission computed tomography demonstrated uptake in inferior left and right thyroid lobes. Her serum calcium following successful bilateral parathyroidectomy was 9.3 mg/dl. Pathology showed double parathyroid lipoadenomas. After surgery, her serum Calcium and PTH normalized to 9.8 mg/dl and 32 pg/ml respectively. Lipoadenoma has been described as a very rare lesion of the parathyroid gland and is most commonly non-functional. PubMed search failed to reveal any case of hyperparathyroidism due to double parathyroid lipoadenomas. PMID:24157966

  14. The calcium-sensing receptor complements parathyroid hormone-induced bone turnover in discrete skeletal compartments in mice

    PubMed Central

    Xue, Yingben; Xiao, Yongjun; Liu, Jingning; Karaplis, Andrew C.; Pollak, Martin R.; Brown, Edward M.; Miao, Dengshun

    2012-01-01

    Although the calcium-sensing receptor (CaSR) and parathyroid hormone (PTH) may each exert skeletal effects, it is uncertain how CaSR and PTH interact at the level of bone in primary hyperparathyroidism (PHPT). Therefore, we simulated PHPT with 2 wk of continuous PTH infusion in adult mice with deletion of the PTH gene (Pth?/? mice) and with deletion of both PTH and CaSR genes (Pth?/?-Casr ?/? mice) and compared skeletal phenotypes. PTH infusion in Pth?/? mice increased cortical bone turnover, augmented cortical porosity, and reduced cortical bone volume, femoral bone mineral density (BMD), and bone mineral content (BMC); these effects were markedly attenuated in PTH-infused Pth?/?-Casr?/? mice. In the absence of CaSR, the PTH-stimulated expression of receptor activator of nuclear factor-?B ligand and tartrate-resistant acid phosphatase and PTH-stimulated osteoclastogenesis was also reduced. In trabecular bone, PTH-induced increases in bone turnover, trabecular bone volume, and trabecular number were lower in Pth?/?-Casr?/? mice than in Pth?/? mice. PTH-stimulated genetic markers of osteoblast activity were also lower. These results are consistent with a role for CaSR in modulating both PTH-induced bone resorption and PTH-induced bone formation in discrete skeletal compartments. PMID:22275754

  15. Cross-sectional study of serum parathyroid hormone level in high-risk pregnancies as compared to nonpregnant control

    PubMed Central

    Sharma, J. B.; Sharma, Subhadra; Usha, B. R.; Yadav, Manisha; Kumar, Sunesh; Mukhopadhyay, A. K.

    2016-01-01

    Objectives: To note the value of serum parathyroid hormone (PTH) levels in normal and high-risk pregnancies (HRP) in patients attending antenatal visits at All India Institute of Medical Sciences (AIIMS). Materials and Methods: This is a cross-sectional study where a total of 282 patients attending Gynecology Outpatient Department at AIIMS, New Delhi were recruited. Among the 282 subjects, 251 were pregnant, and 31 were controls. The serum was tested for serum PTH levels using Beckman coulter access 2 immunoassay. Results: The median value of PTH level in pregnant women was 31.6 pg/ml with range being 0.8505.5 pg/ml in contrast to 45.9 pg/ml with range being 19102.7 pg/ml in nonpregnant female. This difference was statistically significant (P = 0.0012). There was no significant difference in median level of PTH in different age group. Although the median PTH levels were lower in second trimester (25.25 pg/ml) than in first trimester (35.5 pg/ml) and in third trimester (32.4 pg/ml), the difference was not statistically significant. There was no significant difference in PTH level in HRP (median value 31.6 pg/ml) as compared to low-risk pregnancies (31.5 pg/ml). Conclusion: Serum PTH levels are significantly lower during pregnancy as compared to nonpregnant state. However, age, parity, and HRP did not alter PTH level during pregnancy.

  16. The Proteasome Inhibitor Carfilzomib Suppresses Parathyroid Hormone-induced Osteoclastogenesis through a RANKL-mediated Signaling Pathway.

    PubMed

    Yang, Yanmei; Blair, Harry C; Shapiro, Irving M; Wang, Bin

    2015-07-01

    Parathyroid hormone (PTH) induces osteoclast formation and activity by increasing the ratio of RANKL/OPG in osteoblasts. The proteasome inhibitor carfilzomib (CFZ) has been used as an effective therapy for multiple myeloma via the inhibition of pathologic bone destruction. However, the effect of combination of PTH and CFZ on osteoclastogenesis is unknown. We now report that CFZ inhibits PTH-induced RANKL expression and secretion without affecting PTH inhibition of OPG expression, and it does so by blocking HDAC4 proteasomal degradation in osteoblasts. Furthermore, we used different types of culture systems, including co-culture, indirect co-culture, and transactivation, to assess the effect of CFZ on PTH action to induce osteoclastogenesis. Our results demonstrated that CFZ blocks PTH-induced osteoclast formation and bone resorption by its additional effect to inhibit RANKL-mediated I?B degradation and NF-?B activation in osteoclasts. This study showed for the first time that CFZ targets both osteoblasts and osteoclasts to suppress PTH-induced osteoclast differentiation and bone resorption. These findings warrant further investigation of this novel combination in animal models of osteoporosis and in patients. PMID:25979341

  17. A Transgenic Mouse Model for Studying the Role of the Parathyroid Hormone-Related Protein System in Renal Injury

    PubMed Central

    Bosch, Ricardo J.; Ortega, Arantxa; Izquierdo, Adriana; Arribas, Ignacio; Bover, Jordi; Esbrit, Pedro

    2011-01-01

    Parathyroid hormone- (PTH-) related protein (PTHrP) and its receptor, the PTH1 receptor (PTH1R), are widely expressed in the kidney, where PTHrP exerts a modulatory action on renal function. PTHrP is known to be upregulated in several experimental nephropathies such as acute renal failure (ARF), obstructive nephropathy (ON) as well as diabetic nephropathy (DN). In this paper, we will discuss the functional consequences of chronic PTHrP overexpression in the damaged kidney using a transgenic mouse strain overexpressing PTHrP in the renal proximal tubule. In both ARF and ON, PTHrP displays proinflammatory and profibrogenic actions including the induction of epithelia to mesenquima transition. Moreover, PTHrP participates in the mechanisms of renal hypertrophy as well as proteinuria in experimental DN. Angiotensin II (Ang II), a critical factor in the progression of renal injury, appears to be, at least in part, responsible for endogenous PTHrP upregulation in these pathophysiological settings. These findings provide novel insights into the well-known protective effects of Ang II antagonists in renal diseases, paving the way for new therapeutic approaches. PMID:21052497

  18. Calcium Dependent Ligand Binding and G-protein Signaling of Family B GPCR Parathyroid Hormone 1 Receptor Purified in Nanodiscs

    PubMed Central

    Mitra, Nivedita; Liu, Yuting; Liu, Jian; Serebryany, Eugene; Mooney, Victoria; DeVree, Brian T.; Sunahara, Roger K.; Yan, Elsa C. Y.

    2014-01-01

    GPCRs mediate intracellular signaling upon external stimuli, making them ideal drug targets. However, little is known about their activation mechanisms due to the difficulty in purification. Here, we introduce a method to purify GPCRs in nanodiscs, which incorporates GPCRs into lipid bilayers immediately after membrane solubilization, followed by single-step purification. Using this approach, we purified a family B GPCR, parathyroid hormone 1 receptor (PTH1R), which regulates calcium and phosphate homeostasis and is a drug target for osteoporosis. We demonstrated that the purified PTH1R in nanodiscs can bind to PTH(1-34) and activate G protein. We also observed that Ca2+ is a weak agonist of PTH1R and Ca2+ in millimolar concentration can switch PTH(1-34) from an inverse agonist to an agonist. Hence, our results show that nanodiscs are a viable vehicle for GPCR purification, enabling studies of GPCRs under precise experimental conditions without interference from other cellular or membrane components. PMID:23237450

  19. Pharmacokinetics in rats of a long-acting human parathyroid hormone-collagen binding domain peptide construct.

    PubMed

    Stratford, Robert; Vu, Christopher; Sakon, Joshua; Katikaneni, Ranjitha; Gensure, Robert; Ponnapakkam, Tulasi

    2014-02-01

    The pharmacokinetics of a hybrid peptide consisting of the N-terminal biologically active region of human parathyroid hormone (PTH) linked to a collagen-binding domain (CBD) were evaluated in female Sprague-Dawley rats. The peptide, PTH-CBD, consists of the first 33 amino acids of PTH linked as an extension of the amino acid chain to the CBD peptide derived from ColH collagenase of Clostridium histolyticum. Serum concentrations arising from single dose administration by the subcutaneous and intravenous routes were compared with those measured following route-specific mole equivalent doses of PTH(1-34). Population-based modeling demonstrated similar systemic absorption kinetics and bioavailability for both peptides. Exposure to PTH-CBD was sixfold higher because of a systemic clearance of approximately 20% relative to PTH(1-34); however, these kinetics were consistent with more than 95% of a dose being eliminated from serum within 24 h. Results obtained support continued investigation of PTH-CBD as a bone-targeted anabolic agent for the treatment of postmenopausal osteoporosis. PMID:24399637

  20. Combined application of high resolution and tandem mass spectrometers to characterize methionine oxidation in a parathyroid hormone formulation.

    PubMed

    Pan, Changkang; Valente, Joseph J; LoBrutto, Rosario; Pickett, Jennifer S; Motto, Michael

    2010-03-01

    Identification and monitoring of degradation products is a critical aspect of drug product stability programs. This process can present unique challenges when working with complex biopharmaceutical formulations that do not readily lend themselves to straightforward HPLC analysis. The therapeutic 34 amino acid parathyroid hormone fragment (PTH1-34) contains methionine (Met) residues at positions 8 and 18. Oxidation of these Met residues results in reduced biological activity and thus efficacy of the potential drug product. Here, we present an effective approach for the identification of PTH1-34 oxidation products in a drug product formulation in which the stability indicating method used non-MS compatible HPLC conditions to separate excipients, drug substance and degradation products. High resolution and tandem mass spectrometers were used in conjunction with cyanogen bromide (CNBr) mediated digestion to accurately identify the oxidation products observed in an alternative MS compatible HPLC method used for drug substance analysis. All anticipated CNBr digested peptide fragments, including both oxidized and nonoxidized peptide fragments, were positively identified using TOF MS without the need for additional enzymatic digestion. Once identified, the oxidation products generated were injected onto the original non-MS compatible HPLC drug product stability indicating method and the respective retention times were confirmed. This allowed the oxidative stability of different formulations to be effectively monitored during the solid state stability program and during variant selection. PMID:19711445

  1. Therapy for alopecia areata in mice using parathyroid hormone agonists and antagonists, linked to a collagen-binding domain.

    PubMed

    Katikaneni, Ranjitha; Gulati, Rohan; Suh, Daniel; Sakon, Joshua; Seymour, Andrew; Ponnapakkam, Tulasi; Gensure, Robert

    2013-12-01

    Alopecia areata is a common form of hair loss in which autoimmune-mediated destruction of hair follicles causes patchy hair loss, for which there is no adequate therapy. Parathyroid hormone (PTH) induces the hair cycle and promotes hair growth. PTH-CBD is a fusion protein of PTH and a bacterial collagen-binding domain (CBD), leading to targeted delivery to and retention in the skin collagen. We tested the effects of a single dose of PTH-CBD (low or high dose) on an animal model for alopecia areata, the C3H/HeJ engrafted mouse. In all the treated animals, there was a rapid (1-4 days) increase in hair growth, with sustained effects observed over a 2-month period (7/10 total treated mice<40% hair loss based on gray scale analysis, vs. 2/5 in vehicle control animals). Histological examination revealed massive stimulation of anagen VI hair follicles in treated animals despite an ongoing immune response. PTH-CBD thus shows promise as a therapy for alopecia areata, likely in conjunction with a mild immune suppressant, such as hydrocortisone cream. PMID:24326563

  2. Second generation sequencing of microRNA in Human Bone Cells treated with Parathyroid Hormone or Dexamethasone.

    PubMed

    Laxman, Navya; Rubin, Carl-Johan; Mallmin, Hans; Nilsson, Olle; Tellgren-Roth, Christian; Kindmark, Andreas

    2016-03-01

    We investigated the impact of treatment with parathyroid hormone (PTH) and dexamethasone (DEX) for 2 and 24h by RNA sequencing of miRNAs in primary human bone (HOB) cells. A total of 207 million reads were obtained, and normalized absolute expression retrieved for 373 most abundant miRNAs. In nave control cells, 7 miRNAs were differentially expressed (FDR<0.05) between the two time points. Ten miRNAs exhibited differential expression (FDR <0.05) across two time points and treatments after adjusting for expression in controls and were selected for downstream analyses. Results show significant effects on miRNA expression when comparing PTH with DEX at 2h with even more pronounced effects at 24h. Interestingly, several miRNAs exhibiting differences in expression are predicted to target genes involved in bone metabolism e.g. miR-30c2, miR-203 and miR-205 targeting RUNX2, and miR-320 targeting ?-catenin (CTNNB1) mRNA expression. CTNNB1and RUNX2 levels were decreased after DEX treatment and increased after PTH treatment. Our analysis also identified 2 putative novel miRNAs in PTH and DEX treated cells at 24h. RNA sequencing showed that PTH and DEX treatment affect miRNA expression in HOB cells and that regulated miRNAs in turn are correlated with expression levels of key genes involved in bone metabolism. PMID:26748295

  3. The peptidyl-prolyl isomerase Pin1 determines parathyroid hormone mRNA levels and stability in rat models of secondary hyperparathyroidism

    PubMed Central

    Nechama, Morris; Uchida, Takafumi; Mor Yosef-Levi, Irit; Silver, Justin; Naveh-Many, Tally

    2009-01-01

    Secondary hyperparathyroidism is a major complication of chronic kidney disease (CKD). In experimental models of secondary hyperparathyroidism induced by hypocalcemia or CKD, parathyroid hormone (PTH) mRNA levels increase due to increased PTH mRNA stability. K-homology splicing regulator protein (KSRP) decreases the stability of PTH mRNA upon binding a cis-acting element in the PTH mRNA 3? UTR region. As the peptidyl-prolyl isomerase (PPIase) Pin1 has recently been shown to regulate the turnover of multiple cytokine mRNAs, we investigated the role of Pin1 in regulating PTH mRNA stability in rat parathyroids and transfected cells. The data generated were consistent with Pin1 being a PTH mRNA destabilizing protein. Initial analysis indicated that Pin1 activity was decreased in parathyroid protein extracts from both hypocalcemic and CKD rats and that pharmacologic inhibition of Pin1 increased PTH mRNA levels posttranscriptionally in rat parathyroid and in transfected cells. Pin1 mediated its effects via interaction with KSRP, which led to KSRP dephosphorylation and activation. In the rat parathyroid, Pin1 inhibition decreased KSRPPTH mRNA interactions, increasing PTH mRNA levels. Furthermore, Pin1/ mice displayed increased serum PTH and PTH mRNA levels, suggesting that Pin1 determines basal PTH expression in vivo. These results demonstrate that Pin1 is a key mediator of PTH mRNA stability and indicate a role for Pin1 in the pathogenesis of secondary hyperparathyroidism in individuals with CKD. PMID:19770516

  4. Parathyroid Hormone-Related Peptide-Linked Hypercalcemia in a Melanoma Patient Treated With Ipilimumab: Hormone Source and Clinical and Metabolic Correlates.

    PubMed

    Mills, Teresa Anne; Orloff, Marlana; Domingo-Vidal, Marina; Cotzia, Paolo; Birbe, Ruth C; Draganova-Tacheva, Rossitza; Martinez Cantarin, Maria P; Tuluc, Madalina; Martinez-Outschoorn, Ubaldo

    2015-12-01

    A patient diagnosed with metastatic melanoma developed the paraneoplastic syndrome of humoral hypercalcemia of malignancy and cachexia after receiving ipilumumab. The cause of the hypercalcemia was thought to be secondary to parathyroid hormone-related peptide (PTHrP) as plasma levels were found to be elevated. The patient underwent two tumor biopsies: at diagnosis (when calcium levels were normal) and upon development of hypercalcemia and cachexia. PTHrP expression was higher in melanoma cells when hypercalcemia had occurred than prior to its onset. Metabolic characterization of melanoma cells revealed that, with development of hypercalcemia, there was high expression of monocarboxylate transporter 1 (MCT1), which is the main importer of lactate and ketone bodies into cells. MCT1 is associated with high mitochondrial metabolism. Beta-galactosidase (β-GAL), a marker of senescence, had reduced expression in melanoma cells upon development of hypercalcemia compared to pre-hypercalcemia. In conclusion, PTHrP expression in melanoma is associated with cachexia, increased cancer cell lactate and ketone body import, high mitochondrial metabolism, and reduced senescence. Further studies are required to determine if PTHrP regulates cachexia, lactate and ketone body import, mitochondrial metabolism, and senescence in cancer cells. PMID:26615135

  5. Parathyroid Hormone Levels May Predict Nonalcoholic Steatohepatitis in Morbidly Obese Patients

    PubMed Central

    Ghoghaei, Morteza; Taghdiri, Foad; Khajeh, Elias; Azmoudeh Ardalan, Farid; Sedaghat, Mojtaba; Hosseini Shirvani, Sepideh; Zarei, Shadi; Toolabi, Karamollah

    2015-01-01

    Background: Obesity as a worldwide health problem is associated with nonalcoholic steatohepatitis (NASH). Since severe liver injury may be present in asymptomatic obese patients and a definite diagnosis of nonalcoholic steatohepatitis can only be made after an invasive procedure of liver biopsy, there is a need for noninvasive methods to predict the probability of NASH. Objectives: To investigate the role of vitamin D endocrine system in predicting the probability of presence of NASH in asymptomatic morbidly obese candidates of bariatric surgery. Patients and Methods: From December 09 to March 11, every patient undergoing bariatric surgery had a liver biopsy. Nonalcoholic steatohepatitis was diagnosed using the Lees criteria, the baseline labs obtained and the association between laboratory data and presence of NASH assessed. Results: Forty-six patients (34 women, aged 36.5 10.6 years) were analyzed. The mean levels of liver enzymes were significantly higher in the group with NASH (P value < 0.01). In an unadjusted logistic model, PTH was the only variable in vitamin D endocrine system which was significantly associated with NASH (odds ratio (OR): 1.04, 95%CI: 1.01 - 1.07). After adjustment for possible confounding factors, age (OR: 1.22, 95%CI: 1.00 - 1.50) and PTH (OR: 1.08, 95%CI: 1.01 - 1.16) were predictive factors for NASH (P value < 0.05). Conclusions: Elevated serum PTH level was the predictive factor for NASH in morbidly obese patients. Also, we reported elevated serum liver enzymes, high serum PTH levels and older age as predictors of NASH in patients seeking obesity surgical treatments. PMID:26300934

  6. Covalent labeling of a high-affinity, guanyl nucleotide sensitive parathyroid hormone receptor in canine renal cortex

    SciTech Connect

    Nissenson, R.A.; Karpf, D.; Bambino, T.; Winer, J.; Canga, M.; Nyiredy, K.; Arnaud, C.D.

    1987-04-07

    Putative parathyroid hormone (PTH) receptors in canine renal membranes were affinity labeled with /sup 125/I-bPTH(1-34) using the heterobifunctional cross-linking reagent N-hydroxysuccinimidyl 4-azido-benzoate. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of a major 85,000 molecular weight (M/sub r/) PTH binding component, the labeling of which was inhibited by nanomolar concentrations of unlabeled PTH and by micromolar concentrations of 5'-guanylyl imidodiphosphate (Gpp-(NH)p). Labeling was not influenced by the unrelated peptides insulin and arginine vasopressin. Minor PTH binding components of M/sub r/ 55,000 and 130,000 were also seen, and labeling of these was likewise sensitive to unlabeled PTH and to Gpp(NH)p. Omission of protease inhibitors during the isolation of plasma membranes resulted in the loss of the M/sub r/ 85,000 PTH binding species and the appearance of an M/sub r/ 70,000 form. Several minor PTH binding components also were observed. Equilibrium binding studies showed that such membranes had an affinity for PTH indistinguishable from that in membranes isolated with protease inhibitors and displaying a major M/sub r/ 85,000 PTH binding species. The authors conclude that the major form of the adenylate cyclase coupled PTH receptor in canine renal membranes is an M/sub r/ 85,000 protein. An endogenous enzyme, probably a lysosomal cathepsin, can cleave this form to produce an M/sub r/ 70,000 receptor that retains full functional activity with respect to high-affinity, guanyl nucleotide sensitive PTH binding. The ability to covalently label the PTH receptor in high yield represents a major step toward the structural characterization of this important detector molecule.

  7. Parathyroid hormone promotes the disassembly of cytoskeletal actin and myosin in cultured osteoblastic cells: Mediation by cyclic AMP

    SciTech Connect

    Egan, J.J.; Gronowicz, G.; Rodan, G.A. )

    1991-01-01

    Parathyroid hormone (PTH) alters the shape of osteoblastic cells both in vivo and in vitro. In this study, we examined the effect of PTH on cytoskeletal actin and myosin, estimated by polyacrylamide gel electrophoresis of Triton X-100 (1%) nonextractable proteins. After 2-5 minutes, PTH caused a rapid and transient decrease of 50-60% in polymerized actin and myosin associated with the Triton X-100 nonextractable cytoskeleton. Polymerized actin returned to control levels by 30 min. The PTH effect was dose-dependent with an IC50 of about 1 nM, and was partially inhibited by the (3-34) PTH antagonist. PTH caused a rapid transient rise in cyclic AMP (cAMP) in these cells that peaked at 4 min, while the nadir in cytoskeletal actin and myosin was recorded around 5 min. The intracellular calcium chelator Quin-2/AM (10 microM) also decreased cytoskeletal actin and myosin, to the same extent as did PTH (100 nM). To distinguish between cAMP elevation and Ca++ reduction as mediators of PTH action, we measured the phosphorylation of the 20 kD (PI 4.9) myosin light chain in cells preincubated with (32P)-orthophosphate. The phosphorylation of this protein decreased within 2-3 min after PTH addition and returned to control levels after 5 min. The calcium ionophore A-23187 did not antagonize this PTH effect. Visualization of microfilaments with rhodamine-conjugated phalloidin showed that PTH altered the cytoskeleton by decreasing the number of stress fibers. These changes in the cytoskeleton paralleled changes in the shape of the cells from a spread configuration to a stellate form with retracting processes. The above findings indicate that the alteration in osteoblast shape produced by PTH involve relatively rapid and transient changes in cytoskeletal organization that appear to be mediated by cAMP.

  8. Effect of parathyroid hormone on serum magnesium levels: the neglected relationship in hemodialysis patients with secondary hyperparathyroidism.

    PubMed

    Fang, Li; Tang, Bing; Hou, Dawei; Meng, Meijuan; Xiong, Mingxia; Yang, Junwei

    2016-02-01

    Chronic kidney disease-mineral and bone disorder (CKD-MBD) is an important complication in patients with end-stage renal disease. Since recent studies have shown that magnesium (Mg) disturbance plays an important role in CKD-MBD and cardiovascular mortality, the interest on magnesium has grown recently. Although much concern focused on the effect of Mg on parathyroid hormone (PTH) levels, however, the influence of PTH on serum Mg levels is nearly unexplored. To evaluate the effect of PTH on serum Mg levels, we first described the relationship between serum Mg and PTH in secondary hyperparathyroidism. Besides, we also monitored the changes of serum Mg concentration after parathyroidectomy (PTX) in 23 patients. In our study, we found that hypermagnesemia (>2.5?mg/dL) occurred in up to 44% of cases and hypomagnesemia did not present. No statistically signi?cant correlations were found between serum Mg levels and PTH (r?=?-0.143, p?=?0.134). Correlation analysis and regression analysis suggested that the derangement of magnesium homeostasis was consistent with the derangement of calcium/phosphorus homeostasis. However, after PTX, serum magnesium levels dropped immediately after the surgery, minimally at the first day and gradually restored from the third day. The changes of serum Mg after surgery was positive correlated with the changes of serum phosphate (r?=?0.558, p?=?0.003). Taken altogether, our data suggested that the therapeutic strategies to achieve optimum serum magnesium levels in CKD-MBD should take into account the varying stages of disease development since PTH could also influence magnesium metabolism and this problem might be important in severe secondary hyperparathyroidism. PMID:26671274

  9. Recombinant Human Parathyroid Hormone Related Protein 1-34 and 1-84 and Their Roles in Osteoporosis Treatment

    PubMed Central

    Wang, Hua; Liu, Jingning; Yin, Ying; Wu, Jun; Wang, Zilu; Miao, Dengshun; Sun, Wen

    2014-01-01

    Osteoporosis is a common disorder characterized by compromised bone strength that predisposes patients to increased fracture risk. Parathyroid hormone related protein (PTHrP) is one of the candidates for clinical osteoporosis treatment. In this study, GST Gene Fusion System was used to express recombinant human PTHrP (hPTHrP) 1-34 and 1-84. To determine whether the recombinant hPTHrP1-34 and 1-84 can enhance renal calcium reabsorption and promote bone formation, we examined effects of recombinant hPTHrP1-34 and 1-84 on osteogenic lineage commitment in a primary bone marrow cell culture system and on osteoporosis treatment. Results revealed that both of recombinant hPTHrP1-34 and 1-84 increased colony formation and osteogenic cell differentiation and mineralization in vitro; however, the effect of recombinant hPTHrP1-84 is a little stronger than that of hPTHrP1-34. Next, ovariectomy was used to construct osteoporosis animal model (OVX) to test activities of these two recombinants in vivo. HPTHrP1-84 administration elevated serum calcium by up-regulating the expression of renal calcium transporters, which resulted in stimulation of osteoblastic bone formation. These factors contributed to augmented bone mass in hPTHrP1-84 treated OVX mice but did not affect bone resorption. There was no obvious bone mass alteration in hPTHrP1-34 treated OVX mice, which may be, at least partly, associated with shorter half-life of hPTHrP1-34 compared to hPTHrP1-84 in vivo. This study implies that recombinant hPTHrP1-84 is more effective than hPTHrP1-34 to enhance renal calcium reabsorption and to stimulate bone formation in vivo. PMID:24516619

  10. An Essential Role for Parathyroid Hormone in Gill Formation and Differentiation of Ion-Transporting Cells in Developing Zebrafish.

    PubMed

    Kwong, Raymond W M; Perry, Steve F

    2015-07-01

    In vertebrates, parathyroid hormone (PTH) is important for skeletogenesis and Ca(2+) homeostasis. However, little is known about the molecular mechanisms by which PTH regulates skeleton formation and Ca(2+) balance during early development. Using larval zebrafish as an in vivo model system, we determined that PTH1 regulates the differentiation of epithelial cells and the development of craniofacial cartilage. We demonstrated that translational gene knockdown of PTH1 decreased Ca(2+) uptake at 4 days after fertilization. We also observed that PTH1-deficient fish exhibited reduced numbers of epithelial Ca(2+) channel (ecac)-expressing cells, Na(+)/K(+)-ATPase-rich cells, and H(+)-ATPase-rich cells. Additionally, the density of epidermal stem cells was decreased substantially in the fish experiencing PTH1 knockdown. Knockdown of PTH1 caused a shortening of the jaw and impeded the development of branchial arches. Results from in situ hybridization suggested that the expression of collagen 2a1a (marker for proliferating chondrocytes) was substantially reduced in the cartilage that forms the jaw and branchial aches. Disorganization of chondrocytes in craniofacial cartilage also was observed in PTH1-deficient fish. The results of real-time PCR demonstrated that PTH1 morphants failed to express the transcription factor glial cell missing 2 (gcm2). Coinjection of PTH1 morpholino with gcm2 capped RNA rescued the phenotypes observed in the PTH1 morphants, suggesting that the defects in PTH1-deficient fish were caused, at least in part, by the suppression of gcm2. Taken together, the results of the present study reveal critical roles for PTH1 in promoting the differentiation of epidermal stem cells into mature ionocytes and cartilage formation during development. PMID:25872007

  11. Enhanced expression of parathyroid hormone-related protein in prostate cancer as compared with benign prostatic hyperplasia.

    PubMed

    Asadi, F; Farraj, M; Sharifi, R; Malakouti, S; Antar, S; Kukreja, S

    1996-12-01

    Parathyroid hormone-related protein (PTHrP) has been shown to be the primary factor responsible for humoral hypercalcemia of malignancy. Recently PTHrP has been shown to be an early-response gene that may be involved in cellular proliferation or differentiation. In addition, PTHrP has been implicated in the pathogenesis of bone metastases. Bone metastases are a significant complication in patients with prostate cancer. We compared the expression of PTHrP by immunohistochemical staining using a monoclonal antibody directed against epitope between amino acids [53-64] in benign prostatic hyperplasia (BPH) with that in various stages of prostate cancer. Tissue sections were obtained on formalin-fixed paraffin-embedded blocks from BPH, well-differentiated prostate cancer, poorly differentiated prostate cancer, lymph node metastases (n = 15 each), and normal prostate (n = 2). In the normal prostate tissue there was no staining observed. In BPH, 13 of 15 tissue samples were positive for PTHrP immunoreactivity. An average of 33% of the cells stained positive with 1+ intensity. All samples from prostate cancer stained positive for PTHrP. In the samples from well-differentiated prostate cancer, an average of 87% of cells stained positive for PTHrP, whereas 100% of cells were positive in poorly differentiated and metastatic tumors. The intensity of staining was 3+ in well-differentiated tumors and 4+ in poorly differentiated tumors. Therefore, the expression of PTHrP is enhanced in prostate cancer as compared with BPH and is greater in poorly differentiated carcinoma as compared with the well-differentiated tumors. The role of PTHrP in the pathogenesis of prostate cancer deserves further study. PMID:8958305

  12. Mitogen-activated protein kinase phosphatase 1 regulates bone mass, osteoblast gene expression, and responsiveness to parathyroid hormone

    PubMed Central

    Mahalingam, Chandrika D; Datta, Tanuka; Patil, Rashmi V; Kreider, Jaclynn; Bonfil, R Daniel; Kirkwood, Keith L; Goldstein, Steven A; Abou-Samra, Abdul B; Datta, Nabanita S

    2013-01-01

    Parathyroid hormone (PTH) signaling via PTH 1 receptor (PTH1R) involves mitogen-activated protein kinase (MAPK) pathways. MAPK phosphatase 1 (MKP1) dephosphorylates and inactivates MAPKs in osteoblasts, the bone-forming cells. We previously showed that PTH1R activation in differentiated osteoblasts upregulates MKP1 and downregulates pERK1/2MAPK and cyclin D1. In this study, we evaluated the skeletal phenotype of Mkp1 knockout (KO) mice and the effects of PTH in vivo and in vitro. Microcomputed tomography analysis of proximal tibiae and distal femora from 12-week-old Mkp1 KO female mice revealed osteopenic phenotype with significant reduction (846%) in bone parameters compared with wild-type (WT) controls. Histomorphometric analysis showed decreased trabecular bone area in KO females. Levels of serum osteocalcin (OCN) were lower and serum tartrate-resistant acid phosphatase 5b (TRAP5b) was higher in KO animals. Treatment of neonatal mice with hPTH (134) for 3 weeks showed attenuated anabolic responses in the distal femora of KO mice compared with WT mice. Primary osteoblasts derived from KO mice displayed delayed differentiation determined by alkaline phosphatase activity, and reduced expressions of Ocn and Runx2 genes associated with osteoblast maturation and function. Cells from KO females exhibited attenuated PTH response in mineralized nodule formation in vitro. Remarkably, this observation was correlated with decreased PTH response of matrix Gla protein expression. Expressions of pERK1/2 and cyclin D1 were inhibited dramatically by PTH in differentiated osteoblasts from WT mice but much less in osteoblasts from Mkp1 KO mice. In conclusion, MKP1 is important for bone homeostasis, osteoblast differentiation and skeletal responsiveness to PTH. PMID:21852324

  13. Role of Gap Junction, Hemichannels, and Connexin 43 in Mineralizing in Response to Intermittent and Continuous Application of Parathyroid Hormone

    PubMed Central

    JIANG, JEAN X.

    2016-01-01

    Intermittent administration stimulates bone formation, whereas sustained elevation of parathyroid hormone (PTH) as in hyperparathyroidism stimulates bone resorption. Even though PTH(1-34) is the only anabolic agent clinically approved for the treatment of osteoporosis, the molecular mechanism whereby PTH mediates these opposing effects depending on timing of administration is not well understood. In this study, we sought to determine the involvement of gap junctions and hemichannels, and the protein that forms them, connexin 43 (Cx43), in the effect of PTH(1-34) on osteoblast mineralization. The osteoblast-like cell line MLO-A5 that rapidly mineralizes in culture was used. Intermittent PTH enhances mineralization, whereas continuous PTH inhibits this process. The mineralization was significantly inhibited by 18 β-glycyrrhetinic acid, an inhibitor known to block gap junctions and hemichannels. When the cells were treated with PTH(1-34), gap junctional coupling was increased; however, the degree of stimulation was similar between intermittent and continuous treatment. The permeabilization to dye was not detected under various intermittent or continuous PTH treatments. On the other hand, the overall level of Cx43 protein increased in response to continuous PTH treatment. In contrast, when the cells were subjected to intermittent treatment overall level of Cx43 was unchanged, but there was an increase of connexons associated with an increase in Cx43 expression on the cell surface. Our results suggest that Cx43 overall expression, connexon formation and cell surface expression are differentially regulated by intermittent and continuous PTH(1-34), implying the involvement of Cx43 and Cx43-forming channels in mediating the effects of PTH on bone formation. PMID:18649177

  14. Parathyroid hormone inhibition of Na(+)/H(+) exchanger 3 transcription: Intracellular signaling pathways and transcription factor expression.

    PubMed

    Neri, Elida Adalgisa; Bezerra, Camila Nogueira Alves; Queiroz-Leite, Gabriella Duarte; Polidoro, Juliano Zequini; Rebouças, Nancy Amaral

    2015-06-12

    The main transport mechanism of reabsorption of sodium bicarbonate and fluid in the renal proximal tubules involves Na(+)/H(+) exchanger 3 (NHE3), which is acutely and chronically downregulated by parathyroid hormone (PTH). Although PTH is known to exert an inhibitory effect on NHE3 expression and transcription, the molecular mechanisms involved remain unclear. Here, we demonstrated that, in opossum kidney proximal tubule (OKP) cells, PTH-induced inhibition of Nhe3 gene promoter occurs even in the core promoter that controls expression of the reporter gene. We found that inhibition of the protein kinase A (PKA) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways transformed PTH from an inhibitor of promoter activity into an activator of that same activity, as did point mutations in the EGR1, Sp1, and Sp3 binding consensus elements in the promoter. In nuclear extracts of PTH-treated OKP cells, we also observed increased expression of EGR1 mRNA and of some Sp3 isoforms. Electrophoretic mobility shift assay showed a supershift of the -61 to -42-bp probe with an anti-EGR1 antibody in PTH-treated cells, suggesting that EGR1 binding is relevant for the inhibitory activity of PTH. We conclude that PTH-induced inhibition of NHE3 transcription is related to higher EGR1 expression; to EGR1 binding to the proximal and core promoters; and to PKA and JAK/STAT pathway activation. This mechanism might be responsible, at least in part, for lower NHE3 expression and sodium reabsorption in renal proximal tubules in the presence of high PTH levels. PMID:25888790

  15. Roles of parathyroid hormone (PTH) receptor and reactive oxygen species in hyperlipidemia-induced PTH resistance in preosteoblasts.

    PubMed

    Li, Xin; Garcia, Jamie; Lu, Jinxiu; Iriana, Sidney; Kalajzic, Ivo; Rowe, David; Demer, Linda L; Tintut, Yin

    2014-01-01

    Bioactive lipids initiate inflammatory reactions leading to pathogenesis of atherosclerosis. Evidence shows that they also contribute to bone loss by inhibiting parathyroid hormone receptor (PTH1R) expression and differentiation of osteoblasts. We previously demonstrated that bone anabolic effects of PTH(1-34) are blunted in hyperlipidemic mice and that these PTH effects are restored by antioxidants. However, it is not clear which osteoblastic cell developmental stage is targeted by bioactive lipids. To investigate the effects of hyperlipidemia at the cellular level, hyperlipidemic Ldlr(-/-) mice were bred with Col3.6GFPtpz mice, in which preosteoblasts/osteoblasts carry a topaz fluorescent label, and with Col2.3GFPcyan mice, in which more mature osteoblasts/osteocytes carry a cyan fluorescent label. Histological analyses of trabecular bone surfaces in femoral as well as calvarial bones showed that intermittent PTH(1-34) increased fluorescence intensity in WT-Tpz mice, but not in Tpz-Ldlr(-/-) mice. In contrast, PTH(1-34) did not alter fluorescence intensity in femoral cortical envelopes of either WT-Cyan or Ldlr(-/-)-Cyan mice. To test the mechanism of PTH1R downregulation, preosteoblastic MC3T3-E1 cells were treated with bioactive lipids and the antioxidant Trolox. Results showed that inhibitory effects of PTH1R levels by bioactive lipids were rescued by pretreatment with Trolox. The inhibitory effects on expression of PTH1R as well as on PTH-induced osteoblastic genes were mimicked by xanthine/xanthine oxidase, a known generator of reactive oxygen species. These findings suggest an important role of the preosteoblastic development stage as the target and downregulation of PTH receptor expression mediated by intracellular oxidant stress as a mechanism in hyperlipidemia-induced PTH resistance. PMID:24038594

  16. Fibroblast growth factor 23, but not parathyroid hormone, is associated with urinary phosphate regulation in patients on peritoneal dialysis.

    PubMed

    Yamada, Shunsuke; Tsuruya, Kazuhiko; Tokumoto, Masanori; Yoshida, Hisako; Hasegawa, Shoko; Tanaka, Shigeru; Eriguchi, Masahiro; Nakano, Toshiaki; Masutani, Kosuke; Ooboshi, Hiroaki; Kitazono, Takanari

    2015-02-01

    Fibroblast growth factor (FGF) 23 plays an important role in regulation of renal phosphate excretion in patients with chronic kidney disease. However, it remains undetermined whether FGF23 is closely linked to renal phosphate handling in patients with low glomerular filtration rate (GFR). The present cross-sectional study included 52 outpatients undergoing peritoneal dialysis with urine volume???100?mL/day. The primary outcome was level of urinary phosphate excretion, and the secondary outcomes were tubular maximal reabsorption of phosphate normalized to GFR (TmP/GFR), an index of the renal threshold for phosphate excretion, and level of peritoneal phosphate excretion. Variates of interest were serum FGF23 and parathyroid hormone (PTH) levels. The median and interquartile range of serum FGF23 level, TmP/GFR, and total urinary and peritoneal phosphate excretion were 5610 (1493-11?430) ng/mL, 1.30 (0.44-1.86) mg/dL, 117 (40-234) mg/day, and 208 (156-250) mg/day, respectively. Multivariate linear regression analysis revealed that serum FGF23 level was significantly (P?

  17. Endotoxin increases parathyroid hormone-related protein mRNA levels in mouse spleen. Mediation by tumor necrosis factor.

    PubMed Central

    Funk, J L; Krul, E J; Moser, A H; Shigenaga, J K; Strewler, G J; Grunfeld, C; Feingold, K R

    1993-01-01

    Parathyroid hormone-related protein (PTHrP) causes hypercalcemia in malignancy. However, the role and regulation of PTHrP in normal physiology is just beginning to be explored. PTHrP is found in the spleen and has several other features common to cytokines. Since endotoxin (LPS) causes many of its effects indirectly by inducing cytokines, studies were undertaken to determine whether LPS might also induce splenic PTHrP expression. LPS (100 ng/mouse) increased splenic PTHrP mRNA levels 3.6-fold in C3H/OuJ mice. This effect was maximal at 2 h and returned to baseline by 4 h. PTHrP peptide levels also increased 3.3-fold in splenic extracts in response to LPS (1 microgram/mouse). Murine TNF-alpha and human IL-1 beta, cytokines that mediate many of the effects of LPS, also increased splenic PTHrP mRNA levels. LPS-resistant C3H/HeJ mice, which produce minimal amounts of TNF and IL-1 in response to LPS, were resistant to LPS induction of splenic PTHrP mRNA, while TNF-alpha and IL-1 beta readily increased PTHrP mRNA levels in C3H/HeJ mice. Anti-TNF antibody blocked LPS induction of splenic PTHrP mRNA in C3H/OuJ mice by 68%, indicating that TNF is a mediator of the LPS induction of PTHrP levels. In contrast, an IL-1 receptor antagonist (IL-1ra) was ineffective. The increase in PTHrP in the spleen during the immune response suggests that PTHrP may play an important role in immune modulation, perhaps by mediating changes in lymphocyte proliferation and/or function. Images PMID:8227368

  18. Insulin-like growth factor I is required for the anabolic actions of parathyroid hormone on mouse bone

    NASA Technical Reports Server (NTRS)

    Bikle, Daniel D.; Sakata, Takeshi; Leary, Colin; Elalieh, Hashem; Ginzinger, David; Rosen, Clifford J.; Beamer, Wesley; Majumdar, Sharmila; Halloran, Bernard P.

    2002-01-01

    Parathyroid hormone (PTH) is a potent anabolic agent for bone, but the mechanism(s) by which it works remains imperfectly understood. Previous studies have indicated that PTH stimulates insulin-like growth factor (IGF) I production, but it remains uncertain whether IGF-I mediates some or all of the skeletal actions of PTH. To address this question, we examined the skeletal response to PTH in IGF-I-deficient (knockout [k/o]) mice. These mice and their normal littermates (NLMs) were given daily injections of PTH (80 microg/kg) or vehicle for 2 weeks after which their tibias were examined for fat-free weight (FFW), bone mineral content, bone structure, and bone formation rate (BFR), and their femurs were assessed for mRNA levels of osteoblast differentiation markers. In wild-type mice, PTH increased FFW, periosteal BFR, and cortical thickness (C.Th) of the proximal tibia while reducing trabecular bone volume (BV); these responses were not seen in the k/o mice. The k/o mice had normal mRNA levels of the PTH receptor and increased mRNA levels of the IGF-I receptor but markedly reduced basal mRNA levels of the osteoblast markers. Surprisingly, these mRNAs in the k/o bones increased several-fold more in response to PTH than the mRNAs in the bones from their wild-type littermates. These results indicate that IGF-I is required for the anabolic actions of PTH on bone formation, but the defect lies distal to the initial response of the osteoblast to PTH.

  19. Intermittent Administration of Parathyroid Hormone [1–34] Prevents Particle-Induced Periprosthetic Osteolysis in a Rat Model

    PubMed Central

    Bi, Fanggang; Shi, Zhongli; Zhou, Chenhe; Liu, An; Shen, Yue; Yan, Shigui

    2015-01-01

    We examined whether intermittent administration of parathyroid hormone [1–34] (PTH[1–34]; 60 μg/kg/day) can prevent the negative effects of titanium (Ti) particles on implant fixation and periprosthetic osteolysis in a rat model. Eighteen adult male rats (12 weeks old, bones still growing) received intramedullary Ti implants in their bilateral femurs; 6 rats from the blank group received vehicle injections, and 12 rats from the control group and PTH treatment group received Ti particle injections at the time of operation and intra-articular injections 2 and 4 weeks postoperatively. Six of the rats that received Ti particles from the PTH group also received PTH[1–34] treatment. Six weeks postoperatively, all specimens were collected for assessment by X-ray, micro-CT, biomechanical, scanning electron microscopy (SEM), and dynamic histomorphometry. A lower BMD, BV/TV, Tb.N, maximal fixation strength, and mineral apposition rate were observed in the control group compared to the blank group, demonstrating that a periprosthetic osteolysis model had been successfully established. Administration of PTH[1–34] significantly increased the bone mineral density of the distal femur, BV/TV, Tb.N, Tb.Th, Tb.Sp, Con.D, SMI, and maximal fixation strength in the PTH group compared to that in the control group. SEM revealed higher bone–implant contact, thicker lamellar bone, and larger trabecular bone area in the PTH group than in the control group. A higher mineral apposition rate was observed in the PTH group compared to both the blank and control groups. These findings imply that intermittent administration of PTH[1–34] prevents periprosthetic osteolysis by promoting bone formation. The effects of PTH[1–34] were evaluated at a suprapharmacological dosage to the human equivalent in rats; therefore, additional studies are required to demonstrate its therapeutic potential in periprosthetic osteolysis. PMID:26441073

  20. Differential modulation of the molecular dynamics of the type IIa and IIc sodium phosphate cotransporters by parathyroid hormone

    PubMed Central

    Lanzano, Luca; Lei, Tim; Okamura, Kayo; Giral, Hector; Caldas, Yupanqui; Masihzadeh, Omid; Gratton, Enrico; Levi, Moshe

    2011-01-01

    The kidney is a key regulator of phosphate homeostasis. There are two predominant renal sodium phosphate cotransporters, NaPi2a and NaPi2c. Both are regulated by parathyroid hormone (PTH), which decreases the abundance of the NaPi cotransporters in the apical membrane of renal proximal tubule cells. The time course of PTH-induced removal of the two cotransporters from the apical membrane, however, is markedly different for NaPi2a compared with NaPi2c. In animals and in cell culture, PTH treatment results in almost complete removal of NaPi2a from the brush border (BB) within 1 h whereas for NaPi2c this process in not complete until 4 to 8 h after PTH treatment. The reason for this is poorly understood. We have previously shown that the unconventional myosin motor myosin VI is required for PTH-induced removal of NaPi2a from the proximal tubule BB. Here we demonstrate that myosin VI is also necessary for PTH-induced removal of NaPi2c from the apical membrane. In addition, we show that, while at baseline the two cotransporters have similar diffusion coefficients within the membrane, after PTH addition the diffusion coefficient for NaPi2a initially exceeds that for NaPi2c. Thus NaPi2c appears to remain tethered in the apical membrane for longer periods of time after PTH treatment, accounting, at least in part, for the difference in response times to PTH of NaPi2a versus NaPi2c. PMID:21593452

  1. Serum Amyloid A3 Secreted by Preosteoclasts Inhibits Parathyroid Hormone-stimulated cAMP Signaling in Murine Osteoblasts.

    PubMed

    Choudhary, Shilpa; Goetjen, Alexandra; Estus, Thomas; Jacome-Galarza, Christian E; Aguila, Hector L; Lorenzo, Joseph; Pilbeam, Carol

    2016-02-19

    Continuous parathyroid hormone (PTH) blocks its own osteogenic actions in marrow stromal cell cultures by inducing Cox2 and receptor activator of nuclear factor ?B ligand (RANKL) in the osteoblastic lineage cells, which then cause the hematopoietic lineage cells to secrete an inhibitor of PTH-stimulated osteoblast differentiation. To identify this inhibitor, we used bone marrow macrophages (BMMs) and primary osteoblasts (POBs) from WT and Cox2 knock-out (KO) mice. Conditioned medium (CM) from RANKL-treated WT, but not KO, BMMs blocked PTH-stimulated cAMP production in POBs. Inhibition was reversed by pertussis toxin (PTX), which blocks G?i/o activation. Saa3 was the most highly differentially expressed gene in a microarray comparison of RANKL-treated WT versus Cox2 KO BMMs, and RANKL induced Saa3 protein secretion only from WT BMMs. CM from RANKL-stimulated BMMs with Saa3 knockdown did not inhibit PTH-stimulated responses in POBs. SAA added to POBs inhibited PTH-stimulated cAMP responses, which was reversed by PTX. Selective agonists and antagonists of formyl peptide receptor 2 (Fpr2) suggested that Fpr2 mediated the inhibitory actions of Saa3 on osteoblasts. In BMMs committed to become osteoclasts by RANKL treatment, Saa3 expression peaked prior to appearance of multinucleated cells. Flow sorting of WT marrow revealed that Saa3 was secreted only from the RANKL-stimulated B220(-) CD3(-)CD11b(-/low) CD115(+) preosteoclast population. We conclude that Saa3 secretion from preosteoclasts, induced by RANKL in a Cox2-dependent manner, inhibits PTH-stimulated cAMP signaling and osteoblast differentiation via G?i/o signaling. The induction of Saa3 by PTH may explain the suppression of bone formation when PTH is applied continuously and may be a new therapeutic target for osteoporosis. PMID:26703472

  2. Low parathyroid hormone status induced by high dialysate calcium is an independent risk factor for cardiovascular death in hemodialysis patients.

    PubMed

    Merle, Emilie; Roth, Hubert; London, Grard M; Jean, Guillaume; Hannedouche, Thierry; Bouchet, Jean-Louis; Dreke, Tilman; Fouque, Denis; Daugas, Eric

    2016-03-01

    Here we studied a possible association between low parathyroid hormone (PTH) status and mortality in incident patients undergoing hemodialysis . A total of 1983 patients were included at baseline and prospectively followed for 24months. Patients were classified according to their Kidney Disease: Improving Global Outcomes PTH status at baseline and at 12 months, and mortality evaluated at 12 to 24 months using adjusted Cox analysis. Factors potentially involved in PTH status variability between baseline and 12months were analyzed. A decrease in serum PTH from normal or high to low values between baseline and 12months was associated with significantly increased cardiovascular mortality at 12 to 24 months (hazard ratio, 2.03; 95% confidence interval, 1.22-3.36). For patients with high or normal baseline PTH levels, the main independent factor at 6 months for a decrease to low PTH levels at 12months was high dialysate calcium (1.75 mmol/L), whereas prescription of non-calcium-based phosphate binders was associated with a lower risk of PTH decrease. Inthe high cardiovascular (CV) mortality risk subgroup of patients who acquired a low PTH status at 12 months, the main independent factor at 12 months associated with significant 12- to 24-month CV mortality was high dialysate calcium (odds ratio, 5.44; 95% CI, 2.52-11.75). Thus, patients with a serum PTH decrease to low values after 1year of hemodialysis treatment are at high risk of short-term CV death. High dialysate calcium was an important contributor to PTH oversuppression, and continued use was associated with increased CV mortality. PMID:26880460

  3. Skeletal unloading causes resistance of osteoprogenitor cells to parathyroid hormone and to insulin-like growth factor-I

    NASA Technical Reports Server (NTRS)

    Kostenuik, P. J.; Harris, J.; Halloran, B. P.; Turner, R. T.; Morey-Holton, E. R.; Bikle, D. D.

    1999-01-01

    Skeletal unloading decreases bone formation and osteoblast number in vivo and decreases the number and proliferation of bone marrow osteoprogenitor (BMOp) cells in vitro. We tested the ability of parathyroid hormone (PTH) to stimulate BMOp cells in vivo by treating Sprague Dawley rats (n = 32) with intermittent PTH(1-34) (1 h/day at 8 microg/100 g of body weight), or with vehicle via osmotic minipumps during 7 days of normal weight bearing or hind limb unloading. Marrow cells were flushed from the femur and cultured at the same initial density for up to 21 days. PTH treatment of normally loaded rats caused a 2.5-fold increase in the number of BMOp cells, with similar increases in alkaline phosphatase (ALP) activity and mineralization, compared with cultures from vehicle-treated rats. PTH treatment of hind limb unloaded rats failed to stimulate BMOp cell number, ALP activity, or mineralization. Hind limb unloading had no significant effect on PTH receptor mRNA or protein levels in the tibia. Direct in vitro PTH challenge of BMOp cells isolated from normally loaded bone failed to stimulate their proliferation and inhibited their differentiation, suggesting that the in vivo anabolic effect of intermittent PTH on BMOp cells was mediated indirectly by a PTH-induced factor. We hypothesize that this factor is insulin-like growth factor-I (IGF-I), which stimulated the in vitro proliferation and differentiation of BMOp cells isolated from normally loaded bone, but not from unloaded bone. These results suggest that IGF-I mediates the ability of PTH to stimulate BMOp cell proliferation in normally loaded bone, and that BMOp cells in unloaded bone are resistant to the anabolic effect of intermittent PTH therapy due to their resistance to IGF-I.

  4. Disruption of β-catenin binding to parathyroid hormone (PTH) receptor inhibits PTH-stimulated ERK1/2 activation.

    PubMed

    Yang, Yanmei; Wang, Bin

    2015-08-14

    The type I parathyroid hormone receptor (PTH1R) mediates PTH and PTH-related protein (PTHrP) actions on extracellular mineral ion homeostasis and bone remodeling. These effects depend in part on the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). Sequences located within or at the carboxyl-terminus of PTH1R control its activation and trafficking. β-catenin regulates PTH1R signaling and promotes chondrocyte hypertrophy through binding to the intracellular carboxyl-terminal region of the receptor. How the interaction of PTH1R with β-catenin affects PTH-stimulated ERK1/2 is unknown. In the present study, human embryonic kidney 293 (HEK293) cells, which do not express the PTH1R, were used to investigate whether the disruption of β-catenin binding to PTH1R affects PTH-stimulated ERK1/2 activation. We demonstrated that β-catenin interacted with wild-type PTH1R but this interaction was markedly reduced with mutant PTH1R (L584A/L585A). PTH stimulated less cAMP formation and increased more intracellular calcium in HEK293 cells transfected with wild-type PTH1R compared with mutant PTH1R, indicating β-catenin switches PTH1R signaling from Gαs activation to Gαq signaling. In addition, ERK1/2 activation in HEK293 cells transfected with PTH1R exhibited time and concentration dependence. PTH-stimulated ERK1/2 activation was mostly mediated through Gαq/PLC signaling pathway. Importantly, transfection of mutant PTH1R decreased PTH-induced ERK1/2 activation by inhibiting Gαq-mediated signaling. This study shows for the first time that the interference of β-catenin binding to PTH1R inhibits PTH-stimulated ERK1/2 phosphorylation. PMID:26047699

  5. The Effect of Bovine Parathyroid Hormone Withdrawal on MC3T3-E1 Cell Proliferation and Phosphorus Metabolism

    PubMed Central

    Li, Sijia; Cui, Tongxia; Li, Zhonghe; Zhang, Bin; Li, Zhuo; Wu, Jianxiong; Liang, Xinling; Lin, Zheng; Shi, Wei

    2015-01-01

    Hypocalcemia and hypophosphatemia are common complications after parathyroidectomy (PTX). Sudden removal of high circulating levels of parathyroid hormone (PTH) causes decreased osteoclastic resorption resulting in a decreased bone remodeling space. These phenomena are likely due to an increased influx of calcium and phosphorus into bone. However, there are currently no data to support this hypothesis. In this study, we found that PTX significantly reduced levels of PTH, calcium and phosphate. Compared with preoperative levels, after 1 year, postoperative PTH, calcium and phosphate levels were 295.6 173.7 pg/mL (P < 0.05), 86.62 15.98 mg/dL (P < 0.05) and 5.56 2.03 mg/dL (P < 0.05), respectively. We investigated continuous bovine PTH administration as well as withdrawal of bovine PTH stimulation in the mouse osteoblast precursor cell line MC3T3-E1. MC3T3-E1 cells were cultured with continuous bovine PTH treatment for 20 days or with transient bovine PTH treatment for 10 days. High doses of continuous bovine PTH exposure strongly reduced cell proliferation, alkaline phosphatase activity and the number of mineralized calcium nodules. However, withdrawal of bovine PTH (100 ng/mL) significantly increased the number of mineralized calcium nodules and caused a rapid decline in calcium and phosphorus content of culture medium. In conclusion, continuous exposure to bovine PTH inhibited osteoblast differentiation and reduced the formation of mineralized nodules. However, this inhibition was removed and mineralized nodule formation resumed with withdrawal of bovine PTH. According to the results of our clinical examinations and in vitro experiments, we hypothesize that the sudden removal of high levels of PTH may cause an increased influx of calcium and phosphorus into bone after PTX. PMID:25775025

  6. Enhanced Bone Morphogenetic Protein-2-Induced Ectopic and Orthotopic Bone Formation by Intermittent Parathyroid Hormone (1–34) Administration

    PubMed Central

    Kempen, Diederik H.R.; Hefferan, Theresa E.; Creemers, Laura B.; Heijink, Andras; Maran, Avudaiappan; Dhert, Wouter J.A.; Yaszemski, Michael J.

    2010-01-01

    Bone morphogenetic proteins (BMPs) play a central role in local bone regeneration strategies, whereas the anabolic features of parathyroid hormone (PTH) are particularly appealing for the systemic treatment of generalized bone loss. The aim of the current study was to investigate whether local BMP-2-induced bone regeneration could be enhanced by systemic administration of PTH (1–34). Empty or BMP-2-loaded poly(lactic-co glycolic acid)/poly(propylene fumarate)/gelatin composites were implanted subcutaneously and in femoral defects in rats (n = 9). For the orthotopic site, empty defects were also tested. Each of the conditions was investigated in combination with daily administered subcutaneous PTH (1–34) injections in the neck. After 8 weeks of implantation, bone mineral density (BMD) and bone volume were analyzed using microcomputed tomography and histology. Ectopic bone formation and almost complete healing of the femoral defect were only seen in rats that received BMP-2-loaded composites. Additional treatment of the rats with PTH (1–34) resulted in significantly (p < 0.05) enhanced BMD and bone volume in the BMP-2 composites at both implantation sites. Despite its effect on BMD in the humerus and vertebra, PTH (1–34) treatment had no significant effect on BMD and bone volume in the empty femoral defects and the ectopically or orthotopically implanted empty composites. Histological analysis showed that the newly formed bone had a normal woven and trabecular appearance. Overall, this study suggests that intermittent administration of a low PTH dose alone has limited potential to enhance local bone regeneration in a critical-sized defect in rats. However, when combined with local BMP-2-releasing scaffolds, PTH administration significantly enhanced osteogenesis in both ectopic and orthotopic sites. PMID:20666615

  7. Vitamin D, secondary hyperparathyroidism, and preeclampsia123

    PubMed Central

    Scholl, Theresa O; Chen, Xinhua; Stein, T Peter

    2013-01-01

    Background: Secondary hyperparathyroidism, which is defined by a high concentration of intact parathyroid hormone when circulating 25-hydroxyvitamin D [25(OH)D] is low, is a functional indicator of vitamin D insufficiency and a sign of impaired calcium metabolism. Two large randomized controlled trials examined effects of calcium supplementation on preeclampsia but did not consider the vitamin D status of mothers. Objective: We examined the association of secondary hyperparathyroidism with risk of preeclampsia. Design: Circulating maternal 25-hydroxyvitamin D [25(OH)D] and intact parathyroid hormone were measured at entry to care (mean SD: 13.7 5.7 wk) using prospective data from a cohort of 1141 low-income and minority gravidae. Results: Secondary hyperparathyroidism occurred in 6.3% of the cohort and 18.4% of women whose 25(OH)D concentrations were <20 ng/mL. Risk of preeclampsia was increased 2.86-fold (95% CI: 1.28-, 6.41-fold) early in gestation in these women. Gravidae with 25(OH)D concentrations <20 ng/mL who did not also have high parathyroid hormone and women with high parathyroid hormone whose 25(OH)D concentrations were >20 ng/mL were not at increased risk. Intact parathyroid hormone was related to higher systolic and diastolic blood pressures and arterial pressure at week 20 before clinical recognition of preeclampsia. Energy-adjusted intakes of total calcium and lactose and circulating 25(OH)D were correlated inversely with systolic blood pressure or arterial pressure and with parathyroid hormone. Conclusion: Some women who are vitamin D insufficient develop secondary hyperparathyroidism, which is associated with increased risk of preeclampsia. PMID:23885046

  8. Cardiovascular risk in adult hypopituitaric patients with growth hormone deficiency: is there a role for vitamin D?

    PubMed

    Savanelli, Maria Cristina; Scarano, Elisabetta; Muscogiuri, Giovanna; Barrea, Luigi; Vuolo, Laura; Rubino, Manila; Savastano, Silvia; Colao, Annamaria; Di Somma, Carolina

    2016-04-01

    Hypovitaminosis D represent an environmental risk factors for cardiovascular (CV) disease. To investigate the prevalence of hypovitaminosis D and the correlation between GH/IGF-I deficiency and hypovitaminosis D with CV risk in GH deficiency (GHD) patients. A link between these hormones has been shown. Forty-one hypopituitaric patients with GHD (22 males, age 18-84 years) and 41 controls were enrolled in the study. Anthropometric parameters, blood pressure, glucose and lipid profile, parathyroid hormone (PTH), 25(OH) vitamin D (vitamin D), metabolic syndrome (MS), GH peak after GHRH + ARG, IGF-I, and standard deviation score (SDS) of IGF-I (zIGF-I) were assessed. Vitamin D levels were lower in patients than in controls (21.3 ± 12.3 vs. 28.2 ± 9.4, p = 0.006). Deficiency was found in 51 % of patients versus 14.6 % of controls (p < 0.01), insufficiency in 26.8 versus 41.4 % (p = 0.269) and normal vitamin D levels in 21.9 versus 43.9 % (p = 0.060). The prevalence of dyslipidemia was 51.2 % in patients versus 12.1 % in controls (p < 0.001), type 2 diabetes mellitus (DM) was 7.3 versus 17 % (p = 0.292), hypertension was 44 versus 22 % (p = 0.060), and MS was 17 versus 14.6 % (p = 0.957). In patients, an association was found between the presence of hypovitaminosis D and the prevalence of dyslipidemia, hypertension and MS and between zIGF-I and the prevalence of hypertension. Hypovitaminosis D was the most powerful predictor of the prevalence of dyslipidemia and hypertension. GHD patients have an increased prevalence of hypovitaminosis D compared with controls. The presence of hypovitaminosis D was the most powerful predictor of the prevalence of dyslipidemia and hypertension in GHD patients, suggesting the involvement of both factors in the CV risk in these patients. PMID:26511949

  9. Study on preparation and activity of a novel recombinant human parathyroid hormone(1-34) analog with N-terminal Pro-Pro extension.

    PubMed

    Chunxiao, Wang; Jingjing, Liu; Yire, Xiao; Min, Ding; Zhaohui, Wang; Gaofu, Qi; Xiangchun, Shen; Xuejun, Wang; Jie, Wu; Taiming, Li

    2007-06-01

    A recombinant human parathyroid hormone fragment, Pro-Pro-hPTH(1-34), with molecular weight of 4311.46 was acquired through gene engineering. It was then isolated and purified. The homogeneity of this fragment was characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), high performance liquid chromatography(HPLC), isoelectronic focusing (IEF) electrophoresis and mass spectrometry(MS) methods. Its isoelectric point is 8.0 which was determined by IEF. It was found that the hormone fragment significantly induced calcium increment as compared to the control group (P<0.001) in Parsons's Chicken Assay, an established bioassay for the evaluation of the PTH effect. After the 3-month-old ovariectomized (OVXed) rats, the OVXed rat is one of the two models required by the U.S. Food and Drug Administration for the preclinical assessment of drugs for treating osteoporosis [DeLuca PP, Dani BA. Skeletal effects of parathyroid hormone (1-34) in ovariectomized rats with or without concurrent administration of salmon calcitonin. Am Assoc Pharm Sci 2001;3(4):E27 [1

  10. Parathyroid biopsy

    MedlinePLUS

    ... may be due to: Parathyroid adenoma or carcinoma (rare) Parathyroid hyperplasia Multiple endocrine neoplasia I (MEN I) ... pressure over the windpipe (trachea). This complication is rare. In rare cases, some people develop temporary hoarseness ...

  11. Vitamin D and the Immune System from the Nephrologist's Viewpoint

    PubMed Central

    Wang, Min-Hui; Chiang, Chih-Kang; Lu, Kuo-Cheng

    2014-01-01

    Vitamin D and its analogues are widely used as treatments by clinical nephrologists, especially when treating chronic kidney disease (CKD) patients with secondary hyperparathyroidism. As CKD progresses, the ability to compensate for elevations in parathyroid hormone (PTH) and fibroblast growth factor-23 and for decreases in 1,25(OH)2D3 becomes inadequate, which results in hyperphosphatemia, abnormal bone disorders, and extra-skeletal calcification. In addition to its calciotropic effect on the regulation of calcium, phosphate, and parathyroid hormone, vitamin D has many other noncalciotropic effects, including controlling cell differentiation/proliferation and having immunomodulatory effects. There are several immune dysregulations that can be noted when renal function declines. Physicians need to know well both the classical and nonclassical functions of vitamin D. This review is an analysis from the nephrologist's viewpoint and focuses on the relationship between the vitamin D and the immune system, together with vitamin's clinical use to treat kidney diseases. PMID:24587915

  12. Human parathyroid hormone-(1-38) restores cancellous bone to the immobilized, osteopenic proximal tibial metaphysis in rats

    NASA Technical Reports Server (NTRS)

    Ma, Y. F.; Jee, W. S. S.; Ke, H. Z.; Lin, B. Y.; Liang, X. G.; Li, M.; Yamamoto, N.

    1994-01-01

    The purpose of this study was to determine if human parathyroid hormone-(1-38) (PTH) can restore cancellous bone mass to the established osteopenic, immobilized proximal tibial metaphyses (PTM) of female rats. The right hindlimbs of six-month-old female Sprague-Dawley rats were immobilized by bandaging the right hindlimbs to the abdomen. After 30 days of right hindlimb immobilization (RHLI), the rats were subcutaneously injected with 200 microgram hPTH(1-38)/kg/day for 15 (short-term) or 75 (longer-term) days. Static bone histomorphometry was performed on the primary spongiosa, while both static and dynamic histomorphometry were performed on the secondary spongiosa of the right PTM. Immobilization for 30 days without treatment decreased trabecular bone area, number and thickness in both primary and secondary spongiosa, and induced an increase in eroded perimeter and a decrease in tissue referent-bone formation rate (BFR/TV) in the secondary spongios. These changes reached a new steady state thereafter. Treatment with 200 microgram hPTH(1-38)/kg/day for 15 days, beginning at 30 days post immobilization (IM), significantly increased trabecular bone area, thickness and number in both primary and secondary spongiosa despite continuous IM when compared to the age-related and IM controls. The short-term (15 days) PTH treatment significantly increased labeling perimeter, mineral apposition rate and BFR/TV in the secondary spongiosa and stimulated longitudinal bone growth as compared to the age-related and IM controls. PTH treatment for longer-term (75 days) further increased trabecular bone area, thickness and number as compared to aging and IM controls and short-term (15 days) PTH treated groups. The bone formation indices in the secondary spongiosa of these longer-term treated rats were lower than that of short-term (15 days) PTH treated group, but they were still higher than those of IM and age-related controls. Our findings indicate that PTH treatment stimulates cancellous bone formation, restores and adds extra cancellous bone to the established, disuse-osteopenic proximal tibial metaphysis of continuously RHLI female rats. These results suggest that PTH may be a useful agent in treatment disuse-induced osteoporosis in humans.

  13. Parathyroid hormone is a plausible mediator for the metabolic syndrome in the morbidly obese: a cross-sectional study

    PubMed Central

    2011-01-01

    Background The biological mechanisms in the association between the metabolic syndrome (MS) and various biomarkers, such as 25-hydroxyvitamin D (vit D) and magnesium, are not fully understood. Several of the proposed predictors of MS are also possible predictors of parathyroid hormone (PTH). We aimed to explore whether PTH is a possible mediator between MS and various possible explanatory variables in morbidly obese patients. Methods Fasting serum levels of PTH, vit D and magnesium were assessed in a cross-sectional study of 1,017 consecutive morbidly obese patients (68% women). Dependencies between MS and a total of seven possible explanatory variables as suggested in the literature, including PTH, vit D and magnesium, were specified in a path diagram, including both direct and indirect effects. Possible gender differences were also included. Effects were estimated using Bayesian path analysis, a multivariable regression technique, and expressed using standardized regression coefficients. Results Sixty-eight percent of the patients had MS. In addition to type 2 diabetes and age, both PTH and serum phosphate had significant direct effects on MS; 0.36 (95% Credibility Interval (CrI) [0.15, 0.57]) and 0.28 (95% CrI [0.10,0.47]), respectively. However, due to significant gender differences, an increase in either PTH or phosphate corresponded to an increased OR for MS in women only. All proposed predictors of MS had significant direct effects on PTH, with vit D and phosphate the strongest; -0.27 (95% CrI [-0.33,-0.21]) and -0.26 (95% CrI [-0.32,-0.20]), respectively. Though neither vit D nor magnesium had significant direct effects on MS, for women they both affected MS indirectly, due to the strong direct effect of PTH on MS. For phosphate, the indirect effect on MS, mediated through serum calcium and PTH, had opposite sign than the direct effect, resulting in the total effect on MS being somewhat attenuated compared to the direct effect only. Conclusion Our results indicate that for women PTH is a plausible mediator in the association between MS and a range of explanatory variables, including vit D, magnesium and phosphate. PMID:21306649

  14. Human parathyroid hormone-(1-38) restores cancellous bone to the immobilized, osteopenic proximal tibial metaphysis in rats

    NASA Technical Reports Server (NTRS)

    Ma, Y. F.; Jee, W. S.; Ke, H. Z.; Lin, B. Y.; Liang, X. G.; Li, M.; Yamamoto, N.

    1995-01-01

    The purpose of this study was to determine if human parathyroid hormone-(1-38) (hPTH(1-38)) can restore cancellous bone mass to the established osteopenic, immobilized proximal tibial metaphyses of female rats. The right hindlimbs of 6-month-old female Sprague-Dawley rats were immobilized by bandaging the right hindlimbs to the abdomen. After 30 days of right hindlimb immobilization, the rats were subcutaneously injected with 200 micrograms hPTH(1-38)/kg/day for 15 days (short-term treatment) or 75 days (longer-term treatment). Static bone histomorphometry was performed on the primary spongiosa, and both static and dynamic histomorphometry were performed on the secondary spongiosa of the right proximal tibial metaphyses. Immobilization for 30 days without treatment decreased trabecular bone area, number, and thickness in both primary and secondary spongiosa, and induced an increase in eroded perimeter and a decrease in tissue referent-bone formation rate in the secondary spongiosa. These changes reached a new steady state thereafter. Treatment with 200 micrograms hPTH(1-38)/kg/day for 15 days, beginning 30 days after immobilization, significantly increased trabecular bone area, thickness, and number in both primary and secondary spongiosa despite continuous immobilization when compared with controls. The short-term PTH treatment (15 days) significantly increased labeling perimeter, mineral apposition rate, and tissue referent-bone formation rate in the secondary spongiosa and stimulated longitudinal bone growth as compared with the controls. Longer PTH treatment (75 days) further increased trabecular bone area, thickness, and number as compared with controls and groups given short-term PTH treatment (15 days). The bone formation indices in the secondary spongiosa of the longer-term treated rats were lower than those of the short-term treated group, but they were still higher than those of controls. Our findings indicate that PTH treatment stimulates cancellous bone formation, and restores and adds extra cancellous bone to the established, disuse-osteopenic proximal tibial metaphysis of female rats with continuously immobilized right hindlimbs. These results suggest that PTH may be useful in treating disuse-induced osteoporosis in humans.

  15. Reversal of nicotine-induced alveolar lipofibroblast-to-myofibroblast transdifferentiation by stimulants of parathyroid hormone-related protein signaling.

    PubMed

    Rehan, Virender K; Sakurai, Reiko; Wang, Ying; Santos, Jamie; Huynh, Kyle; Torday, John S

    2007-01-01

    Nicotine exposure disrupts the parathyroid hormone-related protein (PTHrP)-driven alveolar epithelial-mesenchymal paracrine-signaling pathway, resulting in the transdifferentiation of pulmonary lipofibroblasts (LIFs) to myofibroblasts (MYFs), which seems to be central to altered pulmonary development and function in infants born to mothers who smoke during pregnancy. Modulation of PTHrP-driven signaling can almost completely prevent nicotine-induced LIF-to-MYF transdifferentiation. However, once this process has occurred, whether it can be reversed is not known. Our objective was to determine if nicotine-induced LIF-to-MYF transdifferentiation could be reversed by specifically targeting the PTHrP-mediated alveolar epithelial-mesenchymal paracrine signaling. WI38 cells, a human embryonic pulmonary fibroblast cell line, were initially treated with nicotine for 7 days and LIF-to-MYF transdifferentiation was confirmed by determining the downregulation of the key lipogenic marker, peroxisome proliferator-activated receptor gamma (PPARgamma) and upregulation of the key myogenic marker, alpha-smooth muscle actin (alphaSMA). Because downregulation of the PPARgamma signaling pathway is the key determinant of LIF-to-MYF transdifferentiation, cells were treated with three agonists of this pathway, PTHrP, dibutryl cAMP (DBcAMP), or rosiglitazone (RGZ) for 7 days, and the expression of the PTHrP receptor, PPARgamma, alphaSMA, and calponin was determined by Western analysis and immunohistochemistry. Simultaneously, fibroblast function was characterized by measuring their capacity to take up triglycerides. Nicotine-induced LIF-to-MYF transdifferentiation was almost completely reversed by treatment with RGZ, PTHrP, or DBcAMP, as determined by protein and functional assays. Using a specific molecular approach and targeting specific molecular intermediates in the PTHrP signaling pathway, to our knowledge, this for the first time, demonstrates the reversibility of nicotine-induced LIF-to-MYF transdifferentiation, suggesting not only the possibility of prevention but also the potential for reversal of nicotine-induced lung injury. PMID:17401602

  16. Intermittent administration of human parathyroid hormone (1-34) increases fixation of strontium-doped hydroxyapatite coating titanium implants via electrochemical deposition in ovariectomized rat femur.

    PubMed

    Tao, Zhou-Shan; Zhou, Wan-Shu; Qiang, Zhou; Tu, Kai-Kai; Huang, Zheng-Liang; Xu, Hong-Ming; Sun, Tao; Lv, Yang-Xun; Cui, Wei; Yang, Lei

    2016-02-01

    Previous studies have demonstrated the effect of human parathyroid hormone (1-34) (PTH) or strontium-doped hydroxyapatite coating (Sr-HA) on osteoporotic bone implantation. However, reports about effects of PTH plus Sr-HA on bone osseointegration of titanium implants in a state of osteoporosis were limited. This study was designed to investigate the effects of intermittent administration of human parathyroid hormone (1-34) on strontium-doped hydroxyapatite coating (Sr-HA) implant fixation in ovariectomized (OVX) rats. Twelve weeks after bilateral ovariectomy, all animals were randomly divided into four groups including control group, Sr group, PTH group and PTH+Sr group. Forty OVX rats accepted implant insertion in the distal femurs, control group, and PTH group with HA implants and the Sr group and PTH+Sr group with Sr-HA implants. Animals from PTH group and PTH+Sr group then randomly received PTH (60?g/kg, 3 times a week) until death at 12 weeks. After 12-week healing period, implants from group PTH+Sr revealed improved osseointegration compared with other treatment groups, which is manifested by the exceeding increase of bone area ratio and bone-to-implant contact, the trabecular microarchitecture and the maximal push-out force displayed by tests like histomorphometry, micro-CT, and biomechanics evaluation. These results demonstrated that PTH+ Sr-HA coatings could enhance implant osseointegration in OVX rats, and suggested the feasibility of using this method to improve implant fixation in osteoporotic bone. PMID:26482573

  17. The single dose pharmacokinetic profile of a novel oral human parathyroid hormone formulation in healthy postmenopausal women.

    PubMed

    Hmmerle, Sibylle P; Mindeholm, Linda; Launonen, Aino; Kiese, Beate; Loeffler, Rolf; Harfst, Evita; Azria, Moise; Arnold, Michel; John, Markus R

    2012-04-01

    Parathyroid hormone (PTH), currently the only marketed anabolic treatment for osteoporosis, is available as the full-length hormone, human PTH1-84, or as the human PTH1-34 fragment (teriparatide). Both must be administered as a daily subcutaneous (sc) injection. A new oral formulation of human PTH1-34 (PTH134) is being developed as a more convenient option for patients. In this single-center, partially-blinded, incomplete cross-over study, the safety, tolerability, and exposure of oral PTH134 (teriparatide combined with 2 different quantities of the absorption enhancer 5-CNAC) were assessed in 32 healthy postmenopausal women. 16 subjects were randomized to receive 4 single doses out of 6 different treatments: placebo, teriparatide 20 ?g sc, or 1, 2.5, 5 or 10 mg of oral PTH134 formulated with 200 mg 5-CNAC. Subsequently, another 16 subjects were randomized to receive 4 out of 6 different treatments: placebo, teriparatide 20 ?g sc, or 2.5 or 5 mg of oral PTH134 formulated with either 100 or 200 mg 5-CNAC. Doses were given ?6 days apart. All doses of PTH134 were rapidly absorbed, and showed robust blood concentrations in a dose-dependent manner. Interestingly, PTH1-34 disappeared from blood faster after oral than after sc administration. Specifically, 2.5 and 5 mg PTH134 (containing 200 mg 5-CNAC) demonstrated Cmax and AUC0-last values closest to those of sc teriparatide 20 ?g (Forsteo). Mean+/-SD hPTH134 Cmax values were, respectively, 74+/-59, 138+/-101, 717+/-496, and 1624+/-1579 pg/mL for 1, 2.5, 5, and 10 mg doses of this peptide administered with 200 mg 5-CNAC; while mean+/-SD AUC (0-last) values were, respectively, 30+/-40, 62+/-69, 320+/-269, and 627+/-633 h*pg/mL. The corresponding estimates for teriparatide 20 ?g sc were 149+/-35 for Cmax and 236+/-58 for AUC (0-last) Ionized calcium remained within normal limits in all treatment groups except for 3 isolated events. Nine subjects withdrew due to treatment-related AEs. Of those, seven were taking PTH134 2.5 or 5 mg: three withdrew for symptomatic hypotension (two of whom were in the 200 mg 5-CNAC group), three because of delayed vomiting (two from the 200 mg 5-CNAC group), one was proactively withdrawn by the investigator for symptomatic hypercalcemia (receiving 2.5 mg/100 mg 5-CNAC) at slightly supra-normal total calcium but normal ionized serum calcium levels. One subject receiving teriparatide and one receiving placebo withdrew for symptomatic hypotension. No serious AEs were reported. In conclusion, the study demonstrated potential therapeutically relevant PTH1-34 systemic exposure levels after oral administration of PTH1-34 formulated with the absorption enhancer 5-CNAC. Doses of 2.5 and 5 mg of oral PTH134 achieved exposure levels closest to those of teriparatide 20 ?g sc, with a comparable incidence of AEs in healthy postmenopausal women. PMID:22289659

  18. Undescended parathyroid adenoma.

    PubMed

    Kanack, Melissa D; Maawy, Ali A; Oh, Deborah K; Bouvet, Michael

    2015-01-01

    Undescended parathyroid adenomas are rare, representing 0.08% of all parathyroid adenomas; however, they make up 7% of the underlying cause of failed cervical exploration in patients with persistent primary hyperparathyroidism. A 43-year-old woman with no significant medical or family history presented with fatigue and was diagnosed with primary hyperparathyroidism; however, preoperative imaging including sestamibi scan and ultrasound was unable to identify the hyperfunctioning gland. She underwent a neck exploration and hemithyroidectomy and partial parathyroidectomy with failure of resolution of her disease. Subsequent work up including a CT of the neck demonstrated a 1.9 cm mass adjacent to the left submandibular gland. This was removed with postoperative normalisation of the patient's serum calcium and parathyroid hormone levels. PMID:25737222

  19. Association of 25-hydroxy-vitamin D levels with semen and hormonal parameters

    PubMed Central

    Hammoud, Ahmad O; Wayne Meikle, A; Matthew Peterson, C; Stanford, Joseph; Gibson, Mark; Carrell, Douglas T

    2012-01-01

    Vitamin D levels have been linked to various health outcomes including reproductive disorders. The purpose of this study was to explore the association between serum vitamin D level (25-hydroxy-vitamin D, or 25OHD) and semen and hormonal parameters. This is a cross-sectional study that included 170 healthy men recruited for the study of spermatogenesis from the general population. Men completed general and reproductive health questionnaires, and donated blood and semen samples. The main measures were hormonal (total and free testosterone, sex hormone-binding globulin, estradiol, follicle-stimulating hormone and luteinizing hormone) and semen parameters, adjusted (n=147) for age, body mass index (BMI), season, alcohol intake and smoking, in relation to categories of vitamin D levels, determined a priori. The mean age of the study population was 29.08.5 years and mean BMI was 24.33.2kg m?2. The mean 25OHD was 34.115.06ng ml?1. BMI showed a negative association with 25OHD. Sperm concentration, sperm progressive motility, sperm morphology, and total progressively motile sperm count were lower in men with 25OHD?50ng ml?1' when compared to men with 20 ng ml?1?25OHD<50ng ml?1'. Total sperm count and total progressive motile sperm count were lower in men with 25OHD<20ng ml?1' when compared to men with 20 ng ml?1?25OHD<50ng ml?1'. The adjusted means of various hormonal parameters did not show statistical difference in the different categories of 25OHD. In conclusion, serum vitamin D levels at high and low levels can be negatively associated with semen parameters. PMID:23042450

  20. Vitamin D -- the sun hormone. Life in environmental mismatch.

    PubMed

    Gring, H; Koshuchowa, S

    2015-01-01

    While some representatives of the animal kingdom were improving their biological mechanisms and properties for adapting to ever-changing life conditions, the genus Homo was developing backward: human individuals were losing their adaptation to life areas conquered earlier. Losing step-by-step their useful traits including the body hair cover, the primitive genus Homo retained his viability only under very favorable conditions of the equatorial Africa. Protection from UV radiation danger was provided only by pigmentation of skin, hair, and eyes. However, "impoverished" individuals of this genus gained the ability to walk upright. Their hands became free from participation in movement and became fine tools for producing useful instruments, from the stone knife to the computer. The major consequence of upright movement and hand development became the powerful development of the brain. A modern human, Homo sapiens, appeared capable of conquering very diverse new habitats. The human's expansion on the Earth occurred somewhat limited by his dependence on vitamin D. His expansion into new areas with lower Sun activity was partially associated with the loss of skin pigmentation. But there is an open question, whether under these new conditions he is satisfactorily provided with vitamin D. This paper discusses the following problems: how can we ensure a sufficient intake of vitamin D, how much does an individual require for his existence and optimal life, what will be consequences of vitamin D deficiency, and what are the prospects for better provision with vitamin D? PMID:25754035

  1. Crystallization of the receptor-binding domain of parathyroid hormone-related protein in complex with a neutralizing monoclonal antibody Fab fragment

    SciTech Connect

    McKinstry, William J.; Polekhina, Galina; Diefenbach-Jagger, Hannelore; Sato, Koh; Onuma, Etsuro; Gillespie, Matthew T.; Martin, Thomas J.; Parker, Michael W.

    2009-04-01

    Parathyroid hormone-related protein (PTHrP) plays an important role in regulating embryonic skeletal development and is abnormally regulated in the pathogenesis of skeletal complications observed with many cancers and osteoporosis. It exerts its action through binding to a G-protein-coupled seven-transmembrane cell-surface receptor (GPCR). Structurally, GPCRs are very difficult to study by X-ray crystallography. In this study, a monoclonal antibody Fab fragment which recognizes the same region of PTHrP as its receptor, PTH1R, was used to aid in the crystallization of PTHrP. The resultant protein complex was crystallized using the hanging-drop vapour-diffusion method with polyethylene glycol as a precipitant. The crystals belonged to the orthorhombic space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 72.6, b = 96.3, c = 88.5 {angstrom}, and diffracted to 2.0 {angstrom} resolution using synchrotron radiation. The crystal structure will shed light on the nature of the key residues of PTHrP that interact with the antibody and will provide insights into how the antibody is able to discriminate between PTHrP and the related molecule parathyroid homone.

  2. Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism.

    PubMed

    Patrick, Rhonda P; Ames, Bruce N

    2014-06-01

    Serotonin and vitamin D have been proposed to play a role in autism; however, no causal mechanism has been established. Here, we present evidence that vitamin D hormone (calcitriol) activates the transcription of the serotonin-synthesizing gene tryptophan hydroxylase 2 (TPH2) in the brain at a vitamin D response element (VDRE) and represses the transcription of TPH1 in tissues outside the blood-brain barrier at a distinct VDRE. The proposed mechanism explains 4 major characteristics associated with autism: the low concentrations of serotonin in the brain and its elevated concentrations in tissues outside the blood-brain barrier; the low concentrations of the vitamin D hormone precursor 25-hydroxyvitamin D [25(OH)D3]; the high male prevalence of autism; and the presence of maternal antibodies against fetal brain tissue. Two peptide hormones, oxytocin and vasopressin, are also associated with autism and genes encoding the oxytocin-neurophysin I preproprotein, the oxytocin receptor, and the arginine vasopressin receptor contain VDREs for activation. Supplementation with vitamin D and tryptophan is a practical and affordable solution to help prevent autism and possibly ameliorate some symptoms of the disorder. PMID:24558199

  3. A new immunoenzymometric assay for bioactive N-terminal human parathyroid hormone fragments and its application in pharmacokinetic studies in dogs.

    PubMed

    Mägerlein, M; Hock, D; Adermann, K; Müller-Beckmann, B; Neidlein, R; Forssmann, W G; Stein, K

    1998-02-01

    Advances in the treatment of clinical disorders of mineral in homeostatis and metabolic bone disease with intact parathyroid hormone 1-84 or one of the biologically active N-terminal fragments require a precise and sensitive measurement in serum. Therefore, a two-site immunoenzymometric assay for the quantitative determination of bioactive hPTH-1-37 (human parathyroid hormone) at picomolar concentrations was developed. Monoclonal antibodies (mAB) against hPTH-1-37 were raised by hybridoma cells in serum-free cell culture. Furthermore, sequence-specific polyclonal antibodies were obtained by immunisation of rabbits using multiple antigenic peptides (MAP) representing the conspicuous regions of the primary structure of hPTH-1-37. The polyclonal and monoclonal antibodies were characterised by epitope mapping. The combination of a monoclonal antibody (13C63/5) recognising hPTH fragment 16-24 with a polyclonal antibody (k2) showing a predominant binding sequence at hPTH-1-5 led to a sandwich assay specific for N-terminally intact and therefore biologically active hPTH. The validated assay ranging from 4 to 1000 pmol/l was applied to pharmacokinetic studies of hPTH-1-37. After s.c. administration of 30 mu g/kg in 5 beagles, the maximum serum concentrations of hPTH-1-37 ranging at 2139 +/- 857 pmol/l were observed 45 min after the injection. Clearance of the peptide calculated from the exponential disappearance curve was 32.0 +/- 9.1 ml/min/kg with a mean t1/2 of 37 +/- 10 min. PMID:9541733

  4. Switching of G-protein usage by the calcium-sensing receptor reverses its effect on parathyroid hormone-related protein secretion in normal versus malignant breast cells.

    PubMed

    Mamillapalli, Ramanaiah; VanHouten, Joshua; Zawalich, Walter; Wysolmerski, John

    2008-09-01

    The calcium-sensing receptor (CaR) is a G-protein-coupled receptor that signals in response to extracellular calcium and regulates parathyroid hormone secretion. The CaR is also expressed on normal mammary epithelial cells (MMECs), where it has been shown to inhibit secretion of parathyroid hormone-related protein (PTHrP) and participate in the regulation of calcium and bone metabolism during lactation. In contrast to normal breast cells, the CaR has been reported to stimulate PTHrP production by breast cancer cells. In this study, we confirmed that the CaR inhibits PTHrP production by MMECs but stimulates PTHrP production by Comma-D cells (immortalized murine mammary cells) and MCF-7 human breast cancer cells. We found that changes in intracellular cAMP, but not phospholipase C or MAPK signaling, correlated with the opposing effects of the CaR on PTHrP production. Pharmacologic stimulation of cAMP accumulation increased PTHrP production by normal and transformed breast cells. Inhibition of protein kinase A activity mimicked the effects of CaR activation on inhibiting PTHrP secretion by MMECs and blocked the effects of the CaR on stimulating PTHrP production in Comma-D and MCF-7 cells. We found that the CaR coupled to Galphai in MMECs but coupled to Galphas in Comma-D and MCF-7 cells. Thus, the opposing effects of the CaR on PTHrP production are because of alternate G-protein coupling of the receptor in normal versus transformed breast cells. Because PTHrP contributes to hypercalcemia and bone metastases, switching of G-protein usage by the CaR may contribute to the pathogenesis of breast cancer. PMID:18621740

  5. Vitamin D: a rapid review.

    PubMed

    Moyad, Mark A

    2008-10-01

    Interest in all aspects of vitamin D seems to be surging due to perhaps the increased number of diverse positive studies suggesting it could prevent a variety of chronic diseases. However, before patients and health care professionals are educated on the preventive aspects of this vitamin that acts more like a hormone, a basic rapid review of vitamin D is needed. There are multiple reasons for the high rate of vitamin D deficiency around the world, including an aging population, obesity, protective skin care measures, skin pigmentation, increased awareness, more utilized diagnostic assays, and perhaps even the lack of natural and fortified food and beverage sources. Various benefits and limitations of vitamin D2 and vitamin D3 supplementation are discussed. The proper use of the vitamin D blood test, also known as "25-OH vitamin D," is important, and changing the normal range of this test may allow for a slightly higher cutoff value based on parathyroid hormone reductions and experience from clinical trials of osteoporosis prevention. The vitamin D doses needed to adequately increase blood levels are provided. Finally, increasing the recommended daily allowance of this vitamin to 800 to 1,000 IU per day may be beneficial for most age groups. PMID:18980100

  6. The development of a bone- and parathyroid-specific analog of vitamin D: 2-methylene-19-Nor-(20S)-1?,25-dihydroxyvitamin D3

    PubMed Central

    DeLuca, Hector F

    2014-01-01

    The goal of synthetic chemists in the vitamin D field has been to produce an analog(s) of 1?,25-dihydroxyvitamin D3 (1,25-(OH)2D3) that is selective for a specific function. The accumulation of structure/function information has led to the synthesis of two analogs that are both selective and more potent than 1,25-(OH)2D3, that is, 2-methylene-19-nor-(20S)-1?,25-dihydroxyvitamin D3 (2MD) and 2?-methyl-19-nor-(20S)-1?,25-dihydroxyvitamin D3 (2AMD). In vivo, the efficacy of 2MD is approximately equal to that of 1,25-(OH)2D3 in intestinal calcium transport but is 30- to 100-fold more active in bone mobilization. In vitro, 2MD supports new bone synthesis at 10?12?M, whereas 1,25-(OH)2D3 is active at 10?8?M. Similarly, 2MD is two orders of magnitude more potent than 1,25-(OH)2D3 in stimulating osteoclastogenesis and osteoclastic bone resorption. 2MD also markedly increases bone mass and bone strength of ovariectomized female rats. In postmenopausal women, 2MD significantly increases markers of both bone formation and resorption but has minimal effect on bone mass. Thus, in patients who are undergoing primarily remodeling rather than modeling (rat), the increased resorption largely counteracts the increased bone formation. So far, 2MD has not been tested for reduction of fractures in this population. However, its selectivity includes the parathyroid gland. Thus in the 5/6-nephrectomy model of chronic renal failure, 2MD is much more potent than currently available vitamin D compounds used to suppress secondary hyperparathyroidism of renal failure without causing hypercalcemia. It is currently in phase 2B trials in patients on dialysis. PMID:24818006

  7. The Relationship between Serum 25-Hydroxyvitamin D, Parathyroid Hormone and the Glomerular Filtration Rate in Korean Adults: The Korea National Health and Nutrition Examination Survey between 2009 and 2011

    PubMed Central

    Han, Sung-Woo; Kim, Sung-Jin; Lee, Duck-Joo; Kim, Kwang-Min

    2014-01-01

    Background The glomerular filtration rate (GFR) decreases with age, while parathyroid hormone (PTH) increases. There are a few reports only on the relationship between GFR and PTH under the category of serum 25-hydroxyvitamin D (25[OH]D) concentration. Methods Using the Korea National Health and Nutrition Examination Survey (KNHANES) data, a cross-sectional study was conducted on the association between serum 25(OH)D concentration, GFR and PTH in Korean adults aged 50 years or older. Serum PTH concentration was compared to the tertiles of GFR after adjustment for relevant variables. In addition, the serum PTH concentration was compared with the GFR under the category of serum 25(OH) D concentration (<20, 20-30, >30 ng/mL). Results The mean estimated GFR (eGFR) was 74.8 mL/min in men and 73.1 mL/min in women. The mean PTH and 25(OH) D was 66.8 pg/mL, 20.5 ng/mL in men and 69.0 pg/mL, 18.2 ng/mL in women. The serum PTH concentration showed a significant negative correlation with the serum 25(OH) D and eGFR in both genders. The serum PTH concentration significantly increased at the lower tertile of eGFR in male adults In addition, a decrease of serum PTH concentration was marked in the vitamin D sufficient male adults (>30 ng/mL). Conclusion This present study demonstrated that serum PTH concentration showed negative correlation with eGFR, however, serum PTH increase may be minimized by maintaining proper serum 25(OH)D concentrations under similar eGFR status in Korean adults aged 50 and above. PMID:24724005

  8. Effects of parathyroid hormone-related protein and macrophage inflammatory protein-1α in Jurkat T-cells on tumor formation in vivo and expression of apoptosis regulatory genes in vitro

    PubMed Central

    Shu, Sherry T.; Dirksen, Wessel P.; Lanigan, Lisa G.; Martin, Chelsea K.; Thudi, Nanda K.; Werbeck, Jillian L.; Fernandez, Soledad A.; Hildreth, Blake E.; Rosol, Thomas J.

    2012-01-01

    Parathyroid hormone-related protein (PTHrP) and macrophage inflammatory protein-1α (MIP-1α) have been implicated in the pathogenesis of adult T-cell leukemia/lymphoma, but their effects on T-cells have not been well studied. Here we analyzed the functions of PTHrP and MIP-1α on T-cell growth and death both in vitro and in vivo by overexpressing either factor in human Jurkat T-cells. PTHrP or MIP-1α did not affect Jurkat cell growth in vitro, but PTHrP increased their sensitivity to apoptosis. Importantly, PTHrP and MIP-1α decreased both tumor incidence and growth in vivo. To investigate possible mechanisms, polymerase chain reaction (PCR) arrays and real-time reverse transcription (RT)-PCR assays were performed. Both PTHrP and MIP-1α increased the expression of several factors including signal transducer and activator of transcription 4, tumor necrosis factor α, receptor activator of nuclear factor κB ligand and death-associated protein kinase 1, and decreased the expression of inhibitor of DNA binding 1, interferon γ and CD40 ligand in Jurkat cells. In addition, MIP-1α also increased the expression of transcription factor AP-2α and PTHrP increased expression of the vitamin D3 receptor. These data demonstrate that PTHrP and MIP-1α exert a profound antitumor effect presumably by increasing the sensitivity to apoptotic signals through modulation of transcription and apoptosis factors in T-cells. PMID:21942940

  9. Expression of osteoclastogenic factor transcripts in osteoblast-like UMR-106 cells after exposure to FGF-23 or FGF-23 combined with parathyroid hormone.

    PubMed

    Teerapornpuntakit, Jarinthorn; Wongdee, Kannikar; Krishnamra, Nateetip; Charoenphandhu, Narattaphol

    2016-03-01

    As a bone-derived hormone, fibroblast growth factor-23 (FGF-23) negatively regulates phosphate and calcium metabolism, while retaining growth-promoting action for mesenchymal cell differentiation. Elevated FGF-23 levels, together with hyperparathyroidism, are often observed in chronic kidney disease, which is associated with impaired bone mineralization and enhanced bone resorption. Although overexpression of osteoblast-derived osteoclastogenic cytokines might contribute to this metabolic bone disease, whether FGF-23 alone and FGF-23 plus parathyroid hormone (PTH) directly modulated the expression of osteoblast-derived osteoclastogenic genes remained elusive. Herein, we demonstrated the direct effects of FGF-23 on proliferation and mRNA expression of osteoblast-specific differentiation and osteoclastogenic markers in rat osteoblast-like UMR-106 cells in the presence or absence of PTH. FGF-23 was found to suppress UMR-106 cell proliferation, while increasing FGF-23 expression, the latter of which suggested the presence of positive feedback regulation of FGF-23 expression in osteoblasts. FGF-23 also upregulated the mRNA expression of osteoblast differentiation markers (e.g., Runx2, osterix, AJ18, Dlx5, alkaline phosphatase, and osteopontin), osteoclastogenic factors (e.g., MCSF, MCP-1, IL-6, and TNF-α), and bone resorption regulators (RANKL and osteoprotegerin). However, combined PTH and FGF-23 exposure did not alter the levels of FGF-23-induced transcripts, suggesting that both hormones had no additive effect. In conclusion, FGF-23 directly suppressed osteoblast proliferation, while inducing osteoclastogenic gene expression in UMR-106 cells, and the FGF-23-induced transcripts were not altered by long-standing PTH exposure. PMID:26694880

  10. Structure-function relationships of the vitamin D hormone receptor

    SciTech Connect

    Allegretto, E.A.

    1987-01-01

    Avian intestinal cytosoluble receptors for 1,25-dihydroxyvitamin D/sub 3/ (1,25(OH)/sub 2/D/sub 3/) were subjected to limited trypsin digestion, endogenous proteolytic action, as well as carboxypeptidase treatment, and the physical and functional properties of the resulting discrete polypeptide fragments were identified and contrasted with the native 1,25(OH)/sub 2/D/sub 3/ receptor. Resultant fragments were followed by tracing either radioactive 1,25(OH)/sub 2/D/sub 3/ or by probing with anti-receptor monoclonal antibodies. Two differentially trypsin-sensitive effects on the 1,25(OH)/sub 2/D/sub 3/ receptor were noted when fragments were detected by their ability to bind 1,25(OH)/sub 2/(/sup 3/H)D/sub 3/. Two hormone-bound fragments of 40 and 30 kDa were formed; neither bound to DNA-cellulose nor anti-receptor monoclonal antibodies. Immunoblot technology was used to show the disappearance of the 60 kDA receptor with increasing trypsin concentrations, paralleling the appearance of an immunoreactive 20 kDA fragment. The 20 kDA fragment did not bind hormone but was capable of interacting with DNA-cellulose in a fashion identical to that of the 60 kDA receptor. In contrast to the exogeneous effect of trypsin, incubation of chick intestinal cytosol resulted in the time-dependent formation of an endogenous protease-derived fragment of 45 kDa.

  11. Amphibian parathyroids: morphological and functional aspects.

    PubMed

    Srivastav, A K; Das, V K; Das, S; Sasayama, Y; Suzuki, N

    1995-10-01

    Amphibians living partially or totally in a terrestrial environment are the first tetrapods to possess parathyroid glands. Purely aquatic amphibians and amphibian larvae lack these endocrine glands. The parathyroids develop at the time of metamorphosis. The parathyroid glands in caecilians consist of a single cell type, that of urodeles may be composed of basal (supporting) cells and suprabasal (chief) cells, and that of anurans of small and large chief cells. Parathyroid glands of caecilians and anurans lack connective tissue, blood vessels, and nerves. The parathyroid cells become activated in response to decreased blood calcium concentration and undergo changes indicating increased parathyroid hormone secretion. Increased blood calcium concentration suppresses secretory activity. Usually, parathyroidectomy elicits hypocalcemia in most amphibians. Such operations have no effect in lower urodeles. Parathyroid hormone administration provokes hypercalcemia in most amphibians. The parathyroids of caecilians have not been studied in detail. The urodeles and anurans exhibit seasonal changes in the parathyroid glands. These changes may be initiated by environmental stimuli such as light, temperature, or alterations in blood calcium levels caused by natural hibernation. PMID:8580512

  12. Vitamins

    MedlinePLUS

    ... are 13 vitamins your body needs. They are Vitamin A B vitamins (thiamine, riboflavin, niacin, pantothenic acid, biotin, ... anemic. Some vitamins may help prevent medical problems. Vitamin A prevents night blindness. The best way to get ...

  13. Loss of Gs? in the Postnatal Skeleton Leads to Low Bone Mass and a Blunted Response to Anabolic Parathyroid Hormone Therapy.

    PubMed

    Sinha, Partha; Aarnisalo, Piia; Chubb, Rhiannon; Poulton, Ingrid J; Guo, Jun; Nachtrab, Gregory; Kimura, Takaharu; Swami, Srilatha; Saeed, Hamid; Chen, Min; Weinstein, Lee S; Schipani, Ernestina; Sims, Natalie A; Kronenberg, Henry M; Wu, Joy Y

    2016-01-22

    Parathyroid hormone (PTH) is an important regulator of osteoblast function and is the only anabolic therapy currently approved for treatment of osteoporosis. The PTH receptor (PTH1R) is a G protein-coupled receptor that signals via multiple G proteins including Gs?. Mice expressing a constitutively active mutant PTH1R exhibited a dramatic increase in trabecular bone that was dependent upon expression of Gs? in the osteoblast lineage. Postnatal removal of Gs? in the osteoblast lineage (P-Gs?(OsxKO) mice) yielded markedly reduced trabecular and cortical bone mass. Treatment with anabolic PTH(1-34) (80 ?g/kg/day) for 4 weeks failed to increase trabecular bone volume or cortical thickness in male and female P-Gs?(OsxKO) mice. Surprisingly, in both male and female mice, PTH administration significantly increased osteoblast numbers and bone formation rate in both control and P-Gs?(OsxKO) mice. In mice that express a mutated PTH1R that activates adenylyl cyclase and protein kinase A (PKA) via Gs? but not phospholipase C via Gq/11 (D/D mice), PTH significantly enhanced bone formation, indicating that phospholipase C activation is not required for increased bone turnover in response to PTH. Therefore, although the anabolic effect of intermittent PTH treatment on trabecular bone volume is blunted by deletion of Gs? in osteoblasts, PTH can stimulate osteoblast differentiation and bone formation. Together these findings suggest that alternative signaling pathways beyond Gs? and Gq/11 act downstream of PTH on osteoblast differentiation. PMID:26598522

  14. Parathyroid hormone and lipopolysaccharide induce murine osteoblast-like cells to secrete a cytokine indistinguishable from granulocyte-macrophage colony-stimulating factor.

    PubMed Central

    Horowitz, M C; Coleman, D L; Flood, P M; Kupper, T S; Jilka, R L

    1989-01-01

    Osteoblasts are the cells responsible for the secretion of collagen and ultimately the formation of new bone. These cells have also been shown to regulate osteoclast activity by the secretion of cytokines, which remain to be defined. In an attempt to identify these unknown cytokines, we have induced primary murine osteoblasts with two bone active agents, parathyroid hormone (PTH) and lipopolysaccharide (LPS) and analyzed the conditioned media (CM) for the presence of specific cytokines. Analysis of the CM was accomplished by functional, biochemical, and serological techniques. The data indicate that both PTH and LPS are capable of inducing the osteoblasts to secrete a cytokine, which by all of the techniques used, is indistinguishable from granulocyte-macrophage colony-stimulating factor (GM-CSF). Secretion of GM-CSF is not constitutive and requires active induction. Production of the cytokine is dependent on the dose of PTH or LPS added. It has been demonstrated that the addition of GM-CSF to bone marrow cultures results in the formation of increased numbers of osteoclasts. Therefore, these data suggest that osteoblasts not only participate in bone remodeling by formation of new matrix but may regulate osteoclast activity indirectly by their ability to regulate hematopoiesis. Images PMID:2642917

  15. A new immobilization procedure for development of an electrochemical immunosensor for parathyroid hormone detection based on gold electrodes modified with 6-mercaptohexanol and silane.

    PubMed

    Say?kl? ?im?ek, i?dem; Nur Sonu Karabo?a, Mnteha; Sezgintrk, Mustafa Kemal

    2015-11-01

    Fabrication of a new electrochemical impedance-based biosensor for the analysis of parathyroid hormone (PTH), using self-assembled monolayers (SAMs) of mercaptohexanol and (3-Aminopropyl) triethoxysilane on gold electrodes, was investigated for the first time in the field. Anti-PTH was used as a biorecognition element. To monitor immobilization processes in the biosensor fabrication, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) techniques were successfully operated. CV and EIS techniques were also used in quantification of PTH. Energy-dispersive X-ray analysis (EDAX) was also applied to identify surface modifications. Fabrication and working parameters of the biosensor were optimized. Moreover, Kramers-Kronig transformations were performed for validation of obtained EIS data in all steps of biosensor fabrication. The linear PTH detection range of the presented biosensor was 10-50 pg/mL PTH. The chrono-impedance technique for real-time monitoring of PTH binding was also implemented. The biosensor has exhibited good repeatability (with a correlation) and reproducibility. Finally, artificial serum samples spiked with known concentrations of PTH were analyzed by the proposed biosensor. To demonstrate the feasibility of the biosensor in practical analysis, real human serum samples and the artificial serum samples were analyzed. PMID:26452812

  16. AU-RICH ELEMENTS IN THE 3?-UTR REGULATE THE STABILITY OF THE 141 AMINO ACID ISOFORM OF PARATHYROID HORMONE-RELATED PROTEIN mRNA

    PubMed Central

    Luchin, Alexander I.; Nadella, Murali V.P.; Thudi, Nanda K.; Dirksen, Wessel P.; Gulati, Parul; Fernandez, Soledad A.; Rosol, Thomas J.

    2012-01-01

    We demonstrated previously that parathyroid hormone-related protein (PTHrP) 1-141 mRNA is the least stable of three isoforms and is the only isoform that is stabilized by TGF-?. In order to understand how PTHrP mRNA is stabilized by TGF-?, we first sought to elucidate the mechanism(s) that are responsible for the instability of PTHrP isoform 1-141 mRNA. The 3?-UTR of isoform 1-141 contains four AU-rich elements (AREs), which are known to mediate mRNA degradation. We utilized a luciferase reporter system to test whether these four AREs are responsible for the short half-life of PTHrP 1-141 mRNA. Our results demonstrated that ARE elements in the 3?-UTR of PTHrP 1-141 mRNA play a significant role in regulation of the stability of the mRNA. It is known that AREs mediate their effects on mRNA stability through a number of ARE-binding proteins that recruit the exosome, a complex of exonucleases that degrades the mRNA. We identified tristetraproline (TTP) as an RNA-binding protein that may be involved in ARE-mediated degradation of PTHrP 1-141 mRNA. PMID:22960231

  17. Parathyroid hormone blocks the stimulatory effect of insulin-like growth factor-I on collagen synthesis in cultured 21-day fetal rat calvariae

    SciTech Connect

    Kream, B.E.; Petersen, D.N.; Raisz, L.G. )

    1990-01-01

    We examined the interaction of parathyroid hormone (PTH) and recombinant human insulin-like growth factor I (IGF-I) on collagen synthesis in 21-day fetal rat calvariae as assessed by measuring the incorporation of ({sup 3}H)proline into collagenase-digestible protein. After 96 hours of culture, 10 nM PTH antagonized the stimulation of collagen synthesis and partially blocked the increase in dry weight produced by 10 nM IGF-I. The effect of PTH to block IGF-I stimulated collagen synthesis was observed in the central bone of calvariae and was mimicked by forskolin and phorbol 12-myristate 13-acetate, but not by 1,25-dihydroxyvitamin D3, transforming growth factor-alpha or dexamethasone. Our data are consistent with the concept that the direct effect of PTH is to inhibit basal CDP labeling and fully oppose IGF-I stimulated CDP labeling. The finding that this effect of PTH is mimicked by forskolin and PMA suggests that this block in IGF-I stimulation of CDP labeling involves both cAMP and protein kinase C mediated pathways.

  18. Epidermal Growth Factor and Parathyroid Hormone-related Peptide mRNA in the Mammary Gland and their Concentrations in Milk

    PubMed Central

    Bruder, E. D.; Van Hoof, J.; Young, J. B.; Raff, H.

    2008-01-01

    The physiological adaptations of the neonatal rat to hypoxia from birth include changes in gastrointestinal function and intermediary metabolism. We hypothesized that the hypoxic lactating dam would exhibit alterations in mammary gland function leading to changes in the concentration of milk peptides that are important in neonatal gastrointestinal development. The present study assessed the effects of chronic hypoxia on peptides produced by the mammary glands and present in milk. Chronic hypoxia decreased the concentration of epidermal growth factor (EGF) in expressed milk and pup stomach contents and decreased maternal mammary gland Egf mRNA. The concentration of parathyroid hormone-related protein (PTHrp) was unchanged in milk and decreased in pup stomach contents; however, mammary Pthlh mRNA was increased by hypoxia. There was a significant increase in adiponectin concentrations in milk from hypoxic dams. Chronic hypoxia decreased maternal body weight, and pair feeding normoxic dams an amount of food equivalent to hypoxic dam food intake decreased body weight to an equivalent degree. Decreased food intake did not affect the expression of Egf, Pthlh, or Lep mRNA in mammary tissue. The results indicated that chronic hypoxia modulated mammary function independently of hypoxia-induced decreases in maternal food intake. Decreased EGF and increased adiponectin concentrations in milk from hypoxic dams likely affect the development of neonatal intestinal function. PMID:18401831

  19. Nucleotide sequence analysis of CDR3 elements of a panel of anti-peptide monoclonal antibodies recognizing parathyroid hormone-related protein.

    PubMed Central

    Rapley, R; Flora, P S; Walsh, D J; Walker, M R

    1993-01-01

    Nucleotide sequences of heavy (VH) and light (VL) chain variable region complementarity determining regions have been determined from in vitro amplified mRNA isolated from a panel of monoclonal antibodies (mAb) raised to a synthetic 34mer peptide representing the N-terminal portion of human parathyroid hormone-related protein (PTHrP or parathyrin) reported to contain an immunodominant epitope. These mAb vary in affinity for the synthetic peptide and native PTHrP (Ka between 5.9 x 10(8) and 1.9 x 10(11)l/M). All 10 mAb studied were found were found to utilized restricted VH2, V kappa 2, JH4 and J kappa 1 family genes. Significant differences in the length and sequence of D elements were found; however 9/10 mAb utilize members of the DSP2 family. Significantly, two broad ranges of affinity could be determined based on the presence of Asp or Ala at residue 101 in JH. Images Figure 2 PMID:8478021

  20. Treatment study of distal femur for parathyroid hormone (1-34) and ?-tricalcium phosphate on bone formation in critical-sized defects in osteopenic rats.

    PubMed

    Tao, Zhou-Shan; Zhou, Wan-Shu; Tu, Kai-Kai; Huang, Zheng-Liang; Zhou, Qiang; Sun, Tao; Lv, Yang-Xun; Cui, Wei; Yang, Lei

    2015-12-01

    The objective of this study was to evaluate the effect of following combined treatment with parathyroid hormone (1-34) (PTH) and ?-tricalcium phosphate (?-TCP) on local bone formation in a rat 3-mm critical-sized defect at the distal femur. Fourteen weeks were allowed to pass before defect surgery for the establishment of osteopenic animal models chronically fed a low-protein diet. All animals were randomly divided into four groups: group PTH; group ?-TCP, group PTH+?-TCP, and a control group. All rats then underwent a surgical procedure to create bone defects in the bilateral distal femurs, and ?-TCP was implanted into critical-sized defects for the groups designated as ?-TCP and group PTH+?-TCP. After the defect operation, all animals from group PTH and group PTH+?-TCP received following subcutaneous injections with PTH (60?g/kg, three times per week) until euthanasia at 4 and 8 weeks. The distal femurs and blood were collected for evaluation. The results of study showed the strongest effect on accelerating the local bone formation with treatment ?-TCP and PTH at 4 weeks and 8 weeks. The results from our study demonstrate that a combination of PTH and ?-TCP had an additive effect on local bone formation in osteopenic rats chronically fed a low-protein diet. PMID:26507646

  1. Novel Role of Parathyroid Hormone-Related Protein in the Pathophysiology of the Diabetic Kidney: Evidence from Experimental and Human Diabetic Nephropathy

    PubMed Central

    Romero, Montserrat; Ortega, Arantxa; Olea, Nuria; Arenas, María Isabel; Izquierdo, Adriana; Bover, Jordi; Esbrit, Pedro

    2013-01-01

    Parathyroid hormone-related protein (PTHrP) and its receptor type 1 (PTH1R) are extensively expressed in the kidney, where they are able to modulate renal function. Renal PTHrP is known to be overexpressed in acute renal injury. Recently, we hypothesized that PTHrP involvement in the mechanisms of renal injury might not be limited to conditions with predominant damage of the renal tubulointerstitium and might be extended to glomerular diseases, such as diabetic nephropathy (DN). In experimental DN, the overexpression of both PTHrP and the PTH1R contributes to the development of renal hypertrophy as well as proteinuria. More recent data have shown, for the first time, that PTHrP is upregulated in the kidney from patients with DN. Collectively, animal and human studies have shown that PTHrP acts as an important mediator of diabetic renal cell hypertrophy by a mechanism which involves the modulation of cell cycle regulatory proteins and TGF-β1. Furthermore, angiotensin II (Ang II), a critical factor in the progression of renal injury, appears to be responsible for PTHrP upregulation in these conditions. These findings provide novel insights into the well-known protective effects of Ang II antagonists in renal diseases, paving the way for new therapeutic approaches. PMID:23984429

  2. Parathyroid hormone increases the concentration of insulin-like growth factor-I and transforming growth factor beta 1 in rat bone.

    PubMed Central

    Pfeilschifter, J; Laukhuf, F; Mller-Beckmann, B; Blum, W F; Pfister, T; Ziegler, R

    1995-01-01

    Intermittent treatment with parathyroid hormone (PTH) increases bone mass in experimental animals and humans. In vitro studies have suggested that the anabolic effect of PTH may be mediated by local growth factors. However, the relevance of these findings to in vivo situations remains unclear. In this study, we examined a time course of daily s.c. injections of hPTH (1-34) on the skeletal concentration of insulin-like growth factor (IGF)-I, IGF-II, and transforming growth factor beta (TGF-beta) in the proximal tail vertebrae of male rats. PTH caused a time and dose-dependent increase in the bone mineral density of the lumbar spine. This anabolic effect on bone mass was accompanied by progressive increases in bone matrix-associated IGF-I and TGF-beta 1. Increases in IGF-I and TGF-beta 1 became apparent after four and eight weeks of PTH treatment respectively and persisted through week 12. PTH had no effect on circulating IGF-I, suggesting that the increase of bone matrix IGF-I was due to the local effect of PTH on bone tissue directly rather than to an increase of circulating IGF-I. These data are consistent with the hypothesis that IGF-I and TGF-beta 1 may play a role as local mediators of the anabolic effects of PTH on bone metabolism. PMID:7635970

  3. Dynamic modeling of bone metastasis, microenvironment and therapy: Integrating parathyroid hormone (PTH) effect, anti-resorptive and anti-cancer therapy.

    PubMed

    Coelho, Rui Moura; Lemos, Joo Miranda; Alho, Irina; Valrio, Duarte; Ferreira, Arlindo R; Costa, Lus; Vinga, Susana

    2016-02-21

    Bone is a common site for the development of metastasis, as its microenvironment provides the necessary conditions for the growth and proliferation of cancer cells. Several mathematical models to describe the bone remodeling process and how osteoclasts and osteoblasts coupled action ensures bone homeostasis have been proposed and further extended to include the effect of cancer cells. The model proposed here includes the influence of the parathyroid hormone (PTH) as capable of triggering and regulating the bone remodeling cycle. It also considers the secretion of PTH-related protein (PTHrP) by cancer cells, which stimulates the production of receptor activator of nuclear factor kappa-B ligand (RANKL) by osteoblasts that activates osteoclasts, increasing bone resorption and the subsequent release of growth factors entrapped in the bone matrix, which induce tumor growth, giving rise to a self-perpetuating cycle known as the vicious cycle of bone metastases. The model additionally describes how the presence of metastases contributes to the decoupling between bone resorption and formation. Moreover, the effects of anti-cancer and anti-resorptive treatments, through chemotherapy and the administration of bisphosphonates or denosumab, are also included, along with their corresponding pharmacokinetics (PK) and pharmacodynamics (PD). The simulated models, available at http://sels.tecnico.ulisboa.pt/software/, are able to describe bone remodeling cycles, the growth of bone metastases and how treatment can effectively reduce tumor burden on bone and prevent loss of bone strength. PMID:26657065

  4. Defining a noncarcinogenic dose of recombinant human parathyroid hormone 1-84 in a 2-year study in Fischer 344 rats.

    PubMed

    Jolette, Jacquelin; Wilker, Clynn E; Smith, Susan Y; Doyle, Nancy; Hardisty, Jerry F; Metcalfe, Anna J; Marriott, Thomas B; Fox, John; Wells, David S

    2006-01-01

    The carcinogenic potential of human parathyroid hormone 1-84 (PTH) was assessed by daily subcutaneous injection (0, 10, 50, 150 microg/kg/day) for 2 years in Fischer 344 rats. Histopathological analyses were conducted on the standard set of soft tissues, tissues with macroscopic abnormalities, selected bones, and bones with abnormalities identified radiographically. All PTH doses caused widespread osteosclerosis and significant, dose-dependent increases in femoral and vertebral bone mineral content and density. In the mid-and high-dose groups, proliferative changes in bone increased with dose. Osteosarcoma was the most common change, followed by focal osteoblast hyperplasia, osteoblastoma, osteoma and skeletal fibrosarcoma. The incidence of bone neoplasms was comparable in control and low-dose groups providing a noncarcinogenic dose for PTH of 10 microg/kg/day at a systemic exposure to PTH that is 4.6-fold higher than for a 100 microg dose in humans. The ability of PTH to interact with and balance the effects of both the PTH-1 receptor and the putative C-terminal PTH receptor, may lead to the lower carcinogenic potential observed with PTH than reported previously for teriparatide. PMID:17178693

  5. The effects of combined human parathyroid hormone (1-34) and simvastatin treatment on the interface of hydroxyapatite-coated titanium rods implanted into osteopenic rats femurs.

    PubMed

    Tao, Zhou-Shan; Zhou, Wan-Shu; Bai, Bing-Li; Cui, Wei; Lv, Yang-Xun; Yu, Xian-Bin; Huang, Zheng-Liang; Tu, Kai-Kai; Zhou, Qiang; Sun, Tao; Li, Hang; Yang, Lei

    2016-03-01

    The effect of human parathyroid hormone 1-34 (PTH) and simvastatin (SIM) alone could promote bone healing in osteoporotic implant fixation, but there are no reports about the combined use of PTH and SIM for promotion of bone healing around implant in osteoporotic settings. This study aims to investigate effects of PTH+SIM on implant stabilization in osteopenic rats. Fourteen weeks after chronically fed a low protein diet, osteopenic rats randomly received implants. Subsequently, the animals were randomly divided into four groups: Control, SIM, PTH and PTH+SIM. Then all rats from groups PTH, SIM and PTH+SIM received PTH (40?g/kg, three times a week), SIM (25mg/kg, daily), or both for 12weeks. The results of our study indicated that all treatments promoted bone healing around implant compared to Control, but PTH+SIM treatment showed significantly stronger effects than PTH or SIM alone in histological, micro-CT, and biomechanical tests. The results indicated additive effects of PTH and SIM on implant fixation in osteoporotic rats. PMID:26758890

  6. Value of intraoperative parathyroid hormone monitoring in papillary thyroid cancer surgery: can it be used to guide the choice of operation methods?

    PubMed Central

    Wang, Jiafeng; Gu, Jialei; Han, Qianbo; Wang, Wendong; Shang, Jinbiao

    2015-01-01

    Background: To assess the diagnostic value of decreased parathyroid hormone (PTH) in hypoparathyroidism after unilateral operation. Methods: A study was conducted on patients with PTC undergoing total or near-total thyroidectomy plus central neck dissection (CND). Results: Postoperative hypocalcemia was found in 42 patients (51.2%). For patients undergoing bilateral CND, those whose tumor invasion proceeded beyond the thyroid capsule have a higher rate of postoperative hypoparathyroidism (P<0.05). PTH level of hypoparathyroidism patients was lower than that of non-hypoparathyroidism patients from surgery to 6 months later (P<0.05). When unilateral thyroidectomy and central region dissection were completed, PTH level decreased by 47.06% in hypoparathyroidism patients, which was significantly higher than non-hypoparathyroidism patients (28.35%) (P<0.001). PTH level (AUC 0.806) and its decreasing degree (AUC 0.736) played predicting roles in assessing postoperative hypoparathyroidism (P<0.001). Conclusions: For PTC surgery, PTH level and its decreasing degree played predicting roles in assessing postoperative hypoparathyroidism. PMID:26221329

  7. Surgery for Primary Hyperparathyroidism in Patients with Preoperatively Negative Sestamibi Scan and Discordant Imaging Studies: The Usefulness of Intraoperative Parathyroid Hormone Monitoring

    PubMed Central

    Cal, Pietro Giorgio; Pisano, Giuseppe; Loi, Giulia; Medas, Fabio; Tatti, Alberto; Piras, Stefano; Nicolosi, Angelo

    2013-01-01

    The aim of this study was to evaluate the impact of intraoperative parathyroid hormone (PTH) monitoring on surgical strategy, intraoperative findings, and outcome in patients with negative sestamibi scintigraphy and with discordant imaging studies. We divided our 175 patients into 3 groups: group A was methoxyisobutylisonitrile (MIBI)-positive and ultrasonography positive and was concordant (114 patients), group B was MIBI-positive and ultrasonography-negative (50 patients), and group C was MIBIand ultrasonography-negative (11 patients). The overall operative success was 99.12% in group A, 98% in group B, and 90.91% in group C, with an incidence of multiglandular disease of 3.5% in group A, 12% in group B, and 9.09% in group C. Intraoperative PTH monitoring changed the operative management in 2.63% of patients in group A and 14% in group B. The use of intraoperative PTH achieves to obtain excellent results in the treatment of primary hyperparathyroidism in high-volume centers, even in the most difficult cases, during MIBI-negative and discordant preoperative imaging studies. PMID:24250241

  8. Parathyroid hormone PTH(134) increases the volume, mineral content, and mechanical properties of regenerated mineralizing tissue after distraction osteogenesis in rabbits

    PubMed Central

    2009-01-01

    Background and purpose Parathyroid hormone (PTH) has attracted considerable interest as a bone anabolic agent. Recently, it has been suggested that PTH can also enhance bone repair after fracture and distraction osteogenesis. We analyzed bone density and strength of the newly regenerated mineralized tissue after intermittent treatment with PTH in rabbits, which undergo Haversian bone remodeling similar to that in humans. Methods 72 New Zealand White rabbits underwent tibial mid-diaphyseal osteotomy and the callus was distracted 1 mm/day for 10 days. The rabbits were divided into 3 groups, which received injections of PTH 25 g/kg/day for 30 days, saline for 10 days and PTH 25 g/kg/day for 20 days, or saline for 30 days. At the end of the study, the rabbits were killed and the bone density was evaluated with DEXA. The mechanical bone strength was determined by use of a 3-point bending test. Results In the 2 PTH-treated groups the regenerate callus ultimate load was 33% and 30% higher, absorbed energy was 100% and 65% higher, BMC was 61% and 60% higher, and callus tissue volume was 179% and 197% higher than for the control group. Interpretation We found that treatment with PTH during distraction osteogenesis resulted in substantially higher mineralized tissue volume, mineral content, and bending strength. This suggests that treatment with PTH may benefit new bone formation during distraction osteogenesis and could form a basis for clinical application of this therapy in humans. PMID:19995322

  9. Postnatal establishment of allelic G?s silencing as a plausible explanation for delayed onset of parathyroid hormone-resistance due to heterozygous G?s disruption

    PubMed Central

    Turan, Serap; Fernandez-Rebollo, Eduardo; Aydin, Cumhur; Zoto, Teuta; Reyes, Monica; Bounoutas, George; Chen, Min; Weinstein, Lee S.; Erben, Reinhold G.; Marshansky, Vladimir; Bastepe, Murat

    2013-01-01

    Pseudohypoparathyroidism type-Ia (PHP-Ia), characterized by renal proximal tubular resistance to parathyroid hormone (PTH), results from maternal mutations of GNAS that lead to loss of G?s activity. G?s expression is paternally silenced in the renal proximal tubule, and this genomic event is critical for the development of PTH-resistance, as patients display impaired hormone action only if the mutation is inherited maternally. The primary clinical finding of PHP-Ia is hypocalcemia, which can lead to various neuromuscular defects including seizures. PHP-Ia patients frequently do not present with hypocalcemia until after infancy, but it has remained uncertain whether PTH-resistance occurs in a delayed fashion. Analyzing reported cases of PHP-Ia with documented GNAS mutations and mice heterozygous for disruption of Gnas, we herein determined that the manifestation of PTH-resistance caused by the maternal loss of G?s, i.e. hypocalcemia and elevated serum PTH, occurs after early postnatal life. To investigate whether this delay could reflect gradual development of paternal G?s silencing, we then analyzed renal proximal tubules isolated by laser capture microdissection from mice with either maternal or paternal disruption of Gnas. Our results revealed that, whereas expression of G?s mRNA in this tissue is predominantly from the maternal Gnas allele at weaning (three-weeks postnatal) and in adulthood, the contributions of the maternal and paternal Gnas alleles to G?s mRNA expression are equal at postnatal day 3. In contrast, we found that paternal G?s expression is already markedly repressed in brown adipose tissue at birth. Thus, the mechanisms silencing the paternal G?s allele in renal proximal tubules are not operational during early postnatal development, and this finding correlates well with the latency of PTH-resistance in patients with PHP-Ia. PMID:23956044

  10. Parathyroid scanning

    SciTech Connect

    Ratliff, B.; Soon, P.; MacFarlane, S.; Hanelin, L.

    1986-03-01

    This is the first in a series of four Continuing Education articles on imaging techniques. After studying this article, the reader should be able to: 1) understand the clinical important, the procedures, and technical pitfalls of parathyroid imaging; and 2) discuss computer manipulations such as subtraction techniques.

  11. Parathyroid hormone-related protein and its receptors: nuclear functions and roles in the renal and cardiovascular systems, the placental trophoblasts and the pancreatic islets

    PubMed Central

    Clemens, Thomas L; Cormier, Sarah; Eichinger, Anne; Endlich, Karlhans; Fiaschi-Taesch, Nathalie; Fischer, Evelyne; Friedman, Peter A; Karaplis, Andrew C; Massfelder, Thierry; Rossert, Jérôme; Schlüter, Klaus-Dieter; Silve, Caroline; Stewart, Andrew F; Takane, Karen; Helwig, Jean-Jacques

    2001-01-01

    The cloning of the so-called ‘parathyroid hormone-related protein' (PTHrP) in 1987 was the result of a long quest for the factor which, by mimicking the actions of PTH in bone and kidney, is responsible for the hypercalcemic paraneoplastic syndrome, humoral calcemia of malignancy. PTHrP is distinct from PTH in a number of ways. First, PTHrP is the product of a separate gene. Second, with the exception of a short N-terminal region, the structure of PTHrP is not closely related to that of PTH. Third, in contrast to PTH, PTHrP is a paracrine factor expressed throughout the body. Finally, most of the functions of PTHrP have nothing in common with those of PTH. PTHrP is a poly-hormone which comprises a family of distinct peptide hormones arising from post-translational endoproteolytic cleavage of the initial PTHrP translation products. Mature N-terminal, mid-region and C-terminal secretory forms of PTHrP are thus generated, each of them having their own physiologic functions and probably their own receptors. The type 1 PTHrP receptor, binding both PTH(1-34) and PTHrP(1-36), is the only cloned receptor so far. PTHrP is a PTH-like calciotropic hormone, a myorelaxant, a growth factor and a developmental regulatory molecule. The present review reports recent aspects of PTHrP pharmacology and physiology, including: (a) the identification of new peptides and receptors of the PTH/PTHrP system; (b) the recently discovered nuclear functions of PTHrP and the role of PTHrP as an intracrine regulator of cell growth and cell death; (c) the physiological and developmental actions of PTHrP in the cardiovascular and the renal glomerulo-vascular systems; (d) the role of PTHrP as a regulator of pancreatic beta cell growth and functions, and, (e) the interactions of PTHrP and calcium-sensing receptors for the control of the growth of placental trophoblasts. These new advances have contributed to a better understanding of the pathophysiological role of PTHrP, and will help to identify its therapeutic potential in a number of diseases. PMID:11704631

  12. AXT914 a novel, orally-active parathyroid hormone-releasing drug in two early studies of healthy volunteers and postmenopausal women.

    PubMed

    John, Markus R; Harfst, Evita; Loeffler, Juergen; Belleli, Rossella; Mason, June; Bruin, Gerard J M; Seuwen, Klaus; Klickstein, Lloyd B; Mindeholm, Linda; Widler, Leo; Kneissel, Michaela

    2014-07-01

    Antagonism of the calcium-sensing receptor in the parathyroid gland leads to parathyroid hormone (PTH) release. Calcilytics are a new class of molecules designed to exploit this mechanism. In order to mimic the known bone-anabolic pharmacokinetic (PK) profile of s.c. administered PTH, such molecules must trigger sharp, transient and robust release of PTH. The results of two early clinical studies with the orally-active calcilytic AXT914, a quinazolin-2ne derivative are reported. These were GCP-compliant, single and multiple dose studies of PK/PD and tolerability in healthy volunteers and postmenopausal women. The first study, examined single ascending doses (4 to 120 mg) and limited multiple doses (60 or 120 mgq.d. for 12 days) of AXT914. The second study was a randomized, double-blind, active- and placebo-controlled, 4-week repeat-dose parallel group study of healthy postmenopausal women (45 and 60 mg AXT914, placebo, 20 ?g Forteo/teriparatide/PTH(1-34) fragment). AXT914 was well tolerated at all doses and reproducibly induced the desired PTH-release profiles. Yet, 4 weeks of 45 or 60 mg AXT914 did not result in the expected changes in circulating bone biomarkers seen with teriparatide. However total serum calcium levels increased above baseline in the 45 and 60 mg AXT914 treatment groups (8.0% and 10.7%, respectively), compared to that in the teriparatide and placebo groups (1.3% and 1.0%, respectively). Thus the trial was terminated after a planned interim analysis due to lack of effect on bone formation biomarkers and dose-limiting effects on serum calcium. In conclusion, AXT914 was well tolerated but the observed transient and reproducible PTH-release after repeat oral administration of AXT914 which showed an exposure profile close to that of s c. PTH, did not translate into a bone anabolic response and was associated with a persistent dose-related increase in serum calcium concentrations. PMID:24769332

  13. Vitamin D Status in Children and Young Adults With Inflammatory Bowel Disease

    PubMed Central

    Pappa, Helen M.; Gordon, Catherine M.; Saslowsky, Tracee M.; Zholudev, Anna; Horr, Brian; Shih, Mei-Chiung; Grand, Richard J.

    2011-01-01

    OBJECTIVES Previous studies of vitamin D status in pediatric patients with inflammatory bowel disease have revealed conflicting results. We sought to report (1) the prevalence of vitamin D deficiency (serum 25-hydroxy-vitamin D concentration ≤15 ng/mL) in a large population with inflammatory bowel disease, (2) factors predisposing to this problem, and (3) its relationship to bone health and serum parathyroid hormone concentration. PATIENTS AND METHODS A total of 130 patients (8–22 years of age) with inflammatory bowel disease, 94 with Crohn disease and 36 with ulcerative colitis, had serum 25-hydroxy-vitamin D, intact parathyroid hormone, and lumbar spine bone mineral density (using dual-energy x-ray absorptiometry) measured at Children’s Hospital Boston. RESULTS The prevalence of vitamin D deficiency was 34.6%. Mean serum 25-hydroxy-vitamin D concentration was similar in patients with Crohn disease and ulcerative colitis, 52.6% lower among patients with dark skin complexion, 33.4% lower during the winter months (December 22 to March 21), and 31.5% higher among patients who were taking vitamin D supplements. Serum 25-hydroxy-vitamin D concentration was positively correlated with weight and BMI z score, disease duration, and serum albumin concentration and negatively correlated with erythrocyte sedimentation rate. Patients with Crohn disease and upper gastrointestinal tract involvement were more likely to be vitamin D deficient than those without it. Serum 25-hydroxy-vitamin concentration was not associated with lumbar spine bone mineral density z score or serum parathyroid hormone concentration. CONCLUSIONS Vitamin D deficiency is highly prevalent among pediatric patients with inflammatory bowel disease. Factors predisposing to the problem include having a dark-skin complexion, winter season, lack of vitamin D supplementation, early stage of disease, more severe disease, and upper gastrointestinal tract involvement in patients with Crohn disease. The long-term significance of hypovitaminosis D for this population is unknown at present and merits additional study. PMID:17079566

  14. PROGESTERONE AND VITAMIN D HORMONE FOR TREATMENT OF TRAUMATIC BRAIN INJURY IN THE AGED1

    PubMed Central

    Stein, Donald G.; Cekic, Milos M.

    2013-01-01

    There is growing recognition that traumatic brain injury (TBI) is a highly variable and complex systemic disorder that is refractory to therapies that target individual mechanisms. It is even more complex in the elderly, in whom frailty, prior comorbidities, altered metabolism, and a long history of medication use are likely to complicate the secondary effects of brain trauma. Progesterone, one of the few neuroprotective agents that has shown promise for the treatment of acute brain injury, is now in national and international Phase III multi-center trial. New findings show that vitamin D hormone (VDH) and vitamin D deficiency in aging (and across the developmental spectrum) may interact with progesterone and TBI treatment. This paper reviews the use of progesterone and VDH as biologics based therapies and recent studies showing that the combination of progesterone and VDH may promote better functional outcomes than either treatment independently. PMID:21703565

  15. Theophylline, a methylxanthine drug induces osteopenia and alters calciotropic hormones, and prophylactic vitamin D treatment protects against these changes in rats.

    PubMed

    Pal, Subhashis; Khan, Kainat; China, Shyamsundar Pal; Mittal, Monika; Porwal, Konica; Shrivastava, Richa; Taneja, Isha; Hossain, Zakir; Mandalapu, Dhanaraju; Gayen, Jiaur R; Wahajuddin, Muhammad; Sharma, Vishnu Lal; Trivedi, Arun K; Sanyal, Sabyasachi; Bhadauria, Smrati; Godbole, Madan M; Gupta, Sushil K; Chattopadhyay, Naibedya

    2016-03-15

    The drug, theophylline is frequently used as an additive to medications for people suffering from chronic obstructive pulmonary diseases (COPD). We studied the effect of theophylline in bone cells, skeleton and parameters related to systemic calcium homeostasis. Theophylline induced osteoblast apoptosis by increasing reactive oxygen species production that was caused by increased cAMP production. Bone marrow levels of theophylline were higher than its serum levels, indicating skeletal accumulation of this drug. When adult Sprague-Dawley rats were treated with theophylline, bone regeneration at fracture site was diminished compared with control. Theophylline treatment resulted in a time-dependent (at 4- and 8weeks) bone loss. At 8weeks, a significant loss of bone mass and deterioration of microarchitecture occurred and the severity was comparable to methylprednisone. Theophylline caused formation of hypomineralized osteoid and increased osteoclast number and surface. Serum bone resorption and formation marker were respectively higher and lower in the theophylline group compared with control. Bone strength was reduced by theophylline treatment. After 8weeks, serum 25-D3 and liver 25-hydroxylases were decreased in theophylline group than control. Further, theophylline treatment reduced serum 1, 25-(OH)2 vitamin D3 (1,25-D3), and increased parathyroid hormone and fibroblast growth factor-23. Theophylline treated rats had normal serum calcium and phosphate but displayed calciuria and phosphaturia. Co-administration of 25-D3 with theophylline completely abrogated theophylline-induced osteopenia and alterations in calcium homeostasis. In addition, 1,25-D3 protected osteoblasts from theophylline-induced apoptosis and the attendant oxidative stress. We conclude that theophylline has detrimental effects in bone and prophylactic vitamin D supplementation to subjects taking theophylline could be osteoprotective. PMID:26851681

  16. Spectrum of single photon emission computed tomography/computed tomography findings in patients with parathyroid adenomas

    PubMed Central

    Chakraborty, Dhritiman; Mittal, Bhagwant Rai; Harisankar, Chidambaram Natrajan Balasubramanian; Bhattacharya, Anish; Bhadada, Sanjay

    2011-01-01

    Primary hyperparathyroidism results from excessive parathyroid hormone secretion. Approximately 85% of all cases of primary hyperparathyroidism are caused by a single parathyroid adenoma; 1015% of the cases are caused by parathyroid hyperplasia. Parathyroid carcinoma accounts for approximately 34% of cases of primary disease. Technetium-99m-sestamibi (MIBI), the current scintigraphic procedure of choice for preoperative parathyroid localization, can be performed in various ways. The single-isotope, double-phase technique is based on the fact that MIBI washes out more rapidly from the thyroid than from abnormal parathyroid tissue. However, not all parathyroid lesions retain MIBI and not all thyroid tissue washes out quickly, and subtraction imaging is helpful. Single photon emission computed tomography (SPECT) provides information for localizing parathyroid lesions, differentiating thyroid from parathyroid lesions, and detecting and localizing ectopic parathyroid lesions. Addition of CT with SPECT improves the sensitivity. This pictorial assay demonstrates various SPECT/CT patterns observed in parathyroid scintigraphy. PMID:21969785

  17. Minimally invasive parathyroid surgery

    PubMed Central

    Noureldine, Salem I.; Gooi, Zhen

    2015-01-01

    Traditionally, bilateral cervical exploration for localization of all four parathyroid glands and removal of any that are grossly enlarged has been the standard surgical treatment for primary hyperparathyroidism (PHPT). With the advances in preoperative localization studies and greater public demand for less invasive procedures, novel targeted, minimally invasive techniques to the parathyroid glands have been described and practiced over the past 2 decades. Minimally invasive parathyroidectomy (MIP) can be done either through the standard Kocher incision, a smaller midline incision, with video assistance (purely endoscopic and video-assisted techniques), or through an ectopically placed, extracervical, incision. In current practice, once PHPT is diagnosed, preoperative evaluation using high-resolution radiographic imaging to localize the offending parathyroid gland is essential if MIP is to be considered. The imaging study results suggest where the surgeon should begin the focused procedure and serve as a road map to allow tailoring of an efficient, imaging-guided dissection while eliminating the unnecessary dissection of multiple glands or a bilateral exploration. Intraoperative parathyroid hormone (IOPTH) levels may be measured during the procedure, or a gamma probe used during radioguided parathyroidectomy, to ascertain that the correct gland has been excised and that no other hyperfunctional tissue is present. MIP has many advantages over the traditional bilateral, four-gland exploration. MIP can be performed using local anesthesia, requires less operative time, results in fewer complications, and offers an improved cosmetic result and greater patient satisfaction. Additional advantages of MIP are earlier hospital discharge and decreased overall associated costs. This article aims to address the considerations for accomplishing MIP, including the role of preoperative imaging studies, intraoperative adjuncts, and surgical techniques. PMID:26425454

  18. Effects of Pump versus Twice-Daily Injection Delivery of Synthetic Parathyroid Hormone 1-34 in Children with Severe Congenital Hypoparathyroidism

    PubMed Central

    Winer, Karen K.; Fulton, Kara; Albert, Paul; Cutler, Gordon B.

    2014-01-01

    Objective To compare the response with synthetic human parathyroid hormone (PTH) 1-34 delivery via twice-daily injection vs insulin pump in children with severe congenital hypoparathyroidism due to calcium receptor mutation or autoimmune polyglandular syndrome type 1. Study design Children and young adults aged 7-20 years with congenital hypoparathyroidism (N = 12) were randomized to receive PTH 1-34, delivered either via twice-daily subcutaneous injection or insulin pump for 13 weeks, followed by crossover to the opposite delivery method. The principal outcome measures were serum and urine calcium levels. Secondary outcomes included serum and urine magnesium and phosphate levels and bone turnover markers. Results PTH 1-34 delivered via pump produced near normalization of mean serum calcium (2.02 0.05 [pump] vs 1.88 0.03 [injection] mmol/L, P < .05, normal 2.05-2.5 mmol/L), normalized mean urine calcium excretion (5.17 1.10 [pump] vs 6.67 0.76 mmol/24 h/1.73 m2, P = .3), and significantly reduced markers of bone turnover (P < .02). Serum and urine calcium and magnesium showed a biphasic pattern during twice-daily injection vs minimal fluctuation during pump delivery. The PTH 1-34 dosage was markedly reduced during pump delivery (0.32 0.04 vs 0.85 0.11 ?g/kg/d, P < .001), and magnesium supplements were also reduced (P < .001). Conclusion Compared with twice-daily delivery, pump delivery of PTH 1-34 provides more physiologic calcium homeostasis and bone turnover in children with severe congenital hypoparathyroidism. PMID:24948345

  19. Effect of Human Parathyroid Hormone on Hematopoietic Progenitor Cells in NOD/SCID Mice Co-Transplanted with Human Cord Blood Mononuclear Cells and Mesenchymal Stem Cells

    PubMed Central

    Lim, Yeon-Jung; Hwang, Kyoujung; Kim, Miyeon; Cho, Youl-Hee; Lee, Jong-Hwa

    2013-01-01

    Purpose We evaluated the effect of human parathyroid hormone (hPTH) on the engraftment and/or in vivo expansion of hematopoietic stem cells in an umbilical cord blood (UCB)-xenotransplantation model. In addition, we assessed its effect on the expression of cell adhesion molecules. Materials and Methods Female NOD/SCID mice received sublethal total body irradiation with a single dose of 250 cGy. Eighteen to 24 hours after irradiation, 1107 human UCB-derived mononuclear cells (MNCs) and 5106 human UCB-derived mesenchymal stem cells (MSCs) were infused via the tail vein. Mice were randomly divided into three groups: Group 1 mice received MNCs only, Group 2 received MNCs only and were then treated with hPTH, Group 3 mice received MNCs and MSCs, and were treated with hPTH. Results Engraftment was achieved in all the mice. Bone marrow cellularity was approximately 20% in Group 1, but 70-80% in the hPTH treated groups. Transplantation of MNCs together with MSCs had no additional effect on bone marrow cellularity. However, the proportion of human CD13 and CD33 myeloid progenitor cells was higher in Group 3, while the proportion of human CD34 did not differ significantly between the three groups. The proportion of CXCR4 cells in Group 3 was larger than in Groups 1 and 2 but without statistical significance. Conclusion We have demonstrated a positive effect of hPTH on stem cell proliferation and a possible synergistic effect of MSCs and hPTH on the proportion of human hematopoietic progenitor cells, in a xenotransplantation model. Clinical trials of the use of hPTH after stem cell transplantation should be considered. PMID:23225826

  20. Human renal carcinoma expresses two messages encoding a parathyroid hormone-like peptide: Evidence for the alternative splicing of a single-copy gene

    SciTech Connect

    Thiede, M.A.; Strewler, G.J.; Nissenson, R.A.; Rosenblatt, M.; Rodan, G.A. )

    1988-07-01

    A peptide secreted by tumors associated with the clinical syndrome of humoral hypercalcemia of malignancy was recently purified from human renal carcinoma cell line 786-0. The N-terminal amino acid sequence of this peptide has considerable similarity with those of parathyroid hormone (PTH) and of peptides isolated from human breast and lung carcinoma (cell line BEN). In this study the authors obtained the nucleotide sequence of a 1595-base cDNA complementary to mRNA encoding the PTH-like peptide produced by 786-0 cells. The cDNA contains an open reading frame encoding a leader sequence of 36 amino acids and a 139-residue peptide, in which 8 of the first 13 residues are identical to the N terminus of PTH. Through the first 828 bases the sequence of this cDNA is identical with one recently isolated from a BEN cell cDNA library; however, beginning with base 829 the sequences diverge, shortening the open reading frame by 2 amino acids. Differential RNA blot analysis revealed that 786-0 cells express two major PTH-like peptide mRNAs with different 3{prime} untranslated sequences, one of which hybridizes with the presently described sequence and the other one with that reported for the BEN cell PTH-like peptide cDNA. Primer-extension analysis of 786-0 poly(A){sup +} RNA together with Southern blot analysis of human DNA confirmed the presence of a single-copy gene coding for multiple mRNAs through alternate splicing. In addition, the 3{prime} untranslated sequence of the cDNA described here has significant similarity to the c-myc protooncogene.

  1. Effects of flavonoid on calcium content in femoral tissue culture and parathyroid hormone-stimulated osteoclastogenesis in bone marrow culture in vitro.

    PubMed

    Yamaguchi, Masayoshi; Hamamoto, Reiko; Uchiyama, Satoshi; Ishiyama, Kaori

    2007-09-01

    The effect of various flavonoids, which are present in food and plants, on bone calcium content and osteoclastogenesis were investigated to compare action of flavonoid on bone formation and bone resorption in vitro. Rat femoral-diaphyseal (cortical bone) and -metaphyseal (trabecular bone) tissues were cultured for 48 h in Dulbecco's modified Eagle's medium (high glucose) supplemented with antibiotics and bovine serum albumin. Amoung quercetin, myricetin, kaempferol, isorhamnetin, curcumin, hesperidin, or astaxanthin in the range of 10(-7)-10(-5)M, culture with quercetin (10(-6) or 10(-5)M) caused a significant increase in diaphyseal calcium content. Such an effect was not seen in other compounds. Mouse bone marrow cells were cultured for 7 days in the presence of parathyroid hormone (PTH; 10(-7)M), a bone-resorbing factor, in vitro. Culture with PTH caused a significant increase in osteoclast-like cell formation. This increase was significantly inhibited in the presence of quercetin, myricetin, kaempferol, isorhamnetin, or curcumin in the range of 10(-8)-10(-6)M. Such an effect was not seen in the case of hesperidin or astaxanthin. In addition, culture with PTH (10(-7)M) caused a significant decrease in diaphyseal calcium content. This decrease was completely prevented in the presence of quercetin, myricetin, kaempferal, or isorhamnetin of 10(-6)M. This study demonstrates that various flavonoids have a potent inhibitory effect on osteoclastogenesis and bone resorption rather than bone formation in vitro. Among various flavonoids, quercetin had a stimulatory effect on bone formation and an inhibitory effect on bone resorption in vitro. PMID:17541507

  2. Role of parathyroid hormone-related protein in the pro-inflammatory and pro-fibrogenic response associated with acute pancreatitis.

    PubMed

    Bhatia, Vandanajay; Kim, Sung O K; Aronson, Judith F; Chao, Celia; Hellmich, Mark R; Falzon, Miriam

    2012-04-10

    Pancreatitis is a common and potentially lethal necro-inflammatory disease with both acute and chronic manifestations. Current evidence suggests that the accumulated damage incurred during repeated bouts of acute pancreatitis (AP) can lead to chronic disease, which is associated with an increased risk of pancreatic cancer. While parathyroid hormone-related protein (PTHrP) exerts multiple effects in normal physiology and disease states, its function in pancreatitis has not been previously addressed. Here we show that PTHrP levels are transiently elevated in a mouse model of cerulein-induced AP. Treatment with alcohol, a risk factor for both AP and chronic pancreatitis (CP), also increases PTHrP levels. These effects of cerulein and ethanol are evident in isolated primary acinar and stellate cells, as well as in the immortalized acinar and stellate cell lines AR42J and irPSCc3, respectively. Ethanol sensitizes acinar and stellate cells to the PTHrP-modulating effects of cerulein. Treatment of acinar cells with PTHrP (1-36) increases expression of the inflammatory mediators interleukin-6 (IL-6) and intracellular adhesion protein (ICAM-1), suggesting a potential autocrine loop. PTHrP also increases apoptosis in AR42J cells. Stellate cells mediate the fibrogenic response associated with pancreatitis; PTHrP (1-36) increases procollagen I and fibronectin mRNA levels in both primary and immortalized stellate cells. The effects of cerulein and ethanol on levels of IL-6 and procollagen I are suppressed by the PTH1R antagonist, PTHrP (7-34). Together these studies identify PTHrP as a potential mediator of the inflammatory and fibrogenic responses associated with alcoholic pancreatitis. PMID:22280800

  3. The C-terminal fragment of parathyroid hormone-related peptide promotes bone formation in diabetic mice with low-turnover osteopaenia

    PubMed Central

    Lozano, D; Fernández-de-Castro, L; Portal-Núñez, S; López-Herradón, A; Dapía, S; Gómez-Barrena, E; Esbrit, P

    2011-01-01

    BACKGROUND AND PURPOSE Current data suggest that parathyroid hormone (PTH)-related peptide (PTHrP) domains other than the N-terminal PTH-like domain contribute to its role as an endogenous bone anabolic factor. PTHrP-107-139 inhibits bone resorption, a fact which has precluded an unequivocal demonstration of its possible anabolic action in vivo. We thus sought to characterize the osteogenic effects of this peptide using a mouse model of diabetic low-turnover osteopaenia. EXPERIMENTAL APPROACH PTHrP-107-139 was administered to streptozotocin-induced diabetic mice, with or without bone marrow ablation, for 13 days. Osteopaenia was confirmed by dual-energy X-ray absorptiometry and microcomputed tomography analysis. Histological analysis was performed on paraffin-embedded bone tissue sections by haematoxylin/eosin and Masson's staining, and tartrate-resistent acid phosphatase immunohistochemistry. Mouse bone marrow stromal cells and osteoblastic MC3T3-E1 cells were cultured in normal and/or high glucose (HG) medium. Osteogenic and adipogenic markers were assessed by real-time PCR, and PTHrP and the PTH1 receptor protein expression by Western blot analysis. KEY RESULTS PTHrP-107-139 reversed the alterations in bone structure and osteoblast function, and also promoted bone healing after marrow ablation without affecting the number of osteoclast-like cells in diabetic mice. This peptide also reversed the high-glucose-induced changes in osteogenic differentiation in both bone marrow stromal cells and the more differentiated MC3T3-E1 cells. CONCLUSIONS AND IMPLICATIONS These findings demonstrate that PTHrP-107-139 promotes bone formation in diabetic mice. This mouse model and in vitro cell cultures allowed us to identify various anabolic effects of this peptide in this scenario. PMID:21175568

  4. Parathyroid hormone enhances fluid shear-induced [Ca2+]i signaling in osteoblastic cells through activation of mechanosensitive and voltage-sensitive Ca2+ channels

    NASA Technical Reports Server (NTRS)

    Ryder, K. D.; Duncan, R. L.

    2001-01-01

    Osteoblasts respond to both fluid shear and parathyroid hormone (PTH) with a rapid increase in intracellular calcium concentration ([Ca2+]i). Because both stimuli modulate the kinetics of the mechanosensitive cation channel (MSCC), we postulated PTH would enhance the [Ca2+]i response to fluid shear by increasing the sensitivity of MSCCs. After a 3-minute preflow at 1 dyne/cm2, MC3T3-E1 cells were subjected to various levels of shear and changes in [Ca2+]i were assessed using Fura-2. Pretreatment with 50 nM bovine PTH(1-34) [bPTH(1-34)] significantly enhanced the shear magnitude-dependent increase in [Ca2+]i. Gadolinium (Gd3+), an MSCC blocker, significantly inhibited the mean peak [Ca2+]i response to shear and shear + bPTH(1-34). Nifedipine (Nif), an L-type voltage-sensitive Ca2+ channel (VSCC) blocker, also significantly reduced the [Ca2+]i response to shear + bPTH(1-34), but not to shear alone, suggesting VSCC activation plays an interactive role in the action of these stimuli together. Activation of either the protein kinase C (PKC) or protein kinase A (PKA) pathways with specific agonists indicated that PKC activation did not alter the Ca2+ response to shear, whereas PKA activation significantly increased the [Ca2+]i response to lower magnitudes of shear. bPTH(1-34), which activates both pathways, induced the greatest [Ca2+]i response at each level of shear, suggesting an interaction of these pathways in this response. These data indicate that PTH significantly enhances the [Ca2+]i response to shear primarily via PKA modulation of the MSCC and VSCC.

  5. The effects of excipients and particle engineering on the biophysical stability and aerosol performance of parathyroid hormone (1-34) prepared as a dry powder for inhalation.

    PubMed

    Shoyele, Sunday A; Sivadas, Neeraj; Cryan, Sally-Ann

    2011-03-01

    Pulmonary delivery of therapeutic peptides and proteins has many advantages including high relative bioavailability, rapid systemic absorption and onset of action and a non-invasive mode of administration which improves patient compliance. In this study, we investigated the effect of spray-drying (SD) and spray freeze-drying processes on the stability and aerosol performance of parathyroid hormone (PTH) (1-34) microparticles. In this study, the stabilisation effect of trehalose (a non-reducing sugar) and Brij 97 (a non-ionic surfactant) on spray-dried PTH particles was assessed using analytical techniques including circular dichroism (CD), fluorescence spectroscopy, modulated differential scanning calorimetry and an in vitro bioactivity assay. Physical characterisation also included electron microscopy, tap density measurement and laser light diffraction. The aerosol aerodynamic performance of the formulations was assessed using the Andersen cascade impactor. Based on these studies, a formulation for spray freeze-drying was selected and the effects of the two particle engineering techniques on the biophysical stability and aerosol performance of the resulting powders was determined. CD, fluorescence spectroscopy and bioactivity data suggest that trehalose when used alone as a stabilising excipient produces a superior stabilising effect than when used in combination with a non-ionic surfactant. This highlights the utility of CD and fluorescence spectroscopy studies for the prediction of protein bioactivity post-processing. Therefore, a method and formulation suitable for the preparation of PTH as a dry powder was developed based on spray-drying PTH with trehalose as a stabiliser with the bioactivity of SD PTH containing trehalose being equivalent to that of unprocessed PTH. PMID:21271316

  6. Treatment and prevention of chemotherapy-induced alopecia with PTH-CBD, a collagen-targeted parathyroid hormone analog, in a non-depilated mouse model

    PubMed Central

    Katikaneni, Ranjitha; Ponnapakkam, Tulasi; Matsushita, Osamu; Sakon, Joshua; Gensure, Robert

    2014-01-01

    Alopecia is a psychologically devastating complication of chemotherapy for which there is currently no effective therapy. PTH-CBD is a collagen-targeted parathyroid hormone analog that has shown promise as a therapy for alopecia disorders. To compare the efficacy of prophylactic versus therapeutic administration of PTH-CBD in chemotherapy-induced alopecia using a mouse model that mimics the cyclic chemotherapy dosing used clinically. C57BL/6J mice were treated with a single subcutaneous injection of PTH-CBD (320 mcg/kg) or vehicle control before or after hair loss developing from three courses of cyclophosphamide chemotherapy (50–150 mg/kg/week). Mice receiving chemotherapy alone developed hair loss and depigmentation over 6–12 months. Mice pretreated with PTH-CBD did not develop these changes and maintained a normal-appearing coat. Mice treated with PTH-CBD after development of hair loss showed a partial recovery. Observations of hair loss were confirmed quantitatively by gray scale analysis. Histological examination showed that in mice receiving chemotherapy alone, there were small, dystrophic hair follicles mostly in the catagen phase. Mice receiving PTH-CBD before chemotherapy showed a mix of normal-appearing telogen and anagen hair follicles with no evidence of dystrophy. Mice receiving PTH-CBD therapy after chemotherapy showed intermediate histological features. PTH-CBD was effective in both the prevention and the treatment of chemotherapy-induced alopecia in mice, but pretreatment appears to result in a better cosmetic outcome. PTH-CBD shows promise as an agent in the prevention of this complication of chemotherapy and improving the quality of life for cancer patients. PMID:24025564

  7. Roles of Parathyroid Hormone (PTH) Receptor and Reactive Oxygen Species in Hyperlipidemia-Induced PTH(1-34) Resistance in Preosteoblasts.

    PubMed Central

    Li, Xin; Garcia, Jamie; Lu, Jinxiu; Iriana, Sidney; Kalajzic, Ivo; Rowe, David; Demer, Linda; Tintut, Yin

    2013-01-01

    Bioactive lipids initiate inflammatory reactions leading to pathogenesis of atherosclerosis. Evidence shows that they also contribute to bone loss by inhibiting parathyroid hormone receptor (PTH1R) expression and differentiation of osteoblasts. We previously demonstrated that bone anabolic effects of PTH(1-34) are blunted in hyperlipidemic mice and that these PTH effects are restored by antioxidants. However, it is not clear which osteoblastic cell developmental stage is targeted by bioactive lipids. To investigate the effects of hyperlipidemia at the cellular level, hyperlipidemic Ldlr?/? mice were bred with Col3.6GFPtpz mice, in which preosteoblasts/osteoblasts carry a topaz fluorescent label, and with Col2.3GFPcyan mice, in which more mature osteoblasts/osteocytes carry a cyan fluorescent label. Histological analyses of trabecular bone surfaces in femoral as well as calvarial bones showed that intermittent PTH(1-34) increased fluorescence intensity in WT-Tpz mice, but not in Tpz-Ldlr?/? mice. In contrast, PTH(1-34) did not alter fluorescence intensity in femoral cortical envelopes of either WT-Cyan or Ldlr?/?-Cyan mice. To test the mechanism of PTH1R downregulation, preosteoblastic MC3T3-E1 cells were treated with bioactive lipids and the antioxidant Trolox. Results showed that inhibitory effects of PTH1R levels by bioactive lipids were rescued by pretreatment with Trolox. The inhibitory effects on expression of PTH1R as well as on PTH-induced osteoblastic genes were mimicked by xanthine/xanthine oxidase, a known generator of reactive oxygen species. These findings suggest an important role of preosteoblasts as the target development stage and downregulation of PTH receptor expression mediated by intracellular oxidant stress as a mechanism in hyperlipidemia-induced PTH resistance. PMID:24038594

  8. The anabolic action of intermittent parathyroid hormone on cortical bone depends partly on its ability to induce nitric oxide-mediated vasorelaxation in BALB/c mice.

    PubMed

    Gohin, S; Carriero, A; Chenu, C; Pitsillides, A A; Arnett, T R; Marenzana, M

    2016-03-01

    There is strong evidence that vasodilatory nitric oxide (NO) donors have anabolic effects on bone in humans. Parathyroid hormone (PTH), the only osteoanabolic drug currently approved, is also a vasodilator. We investigated whether the NO synthase inhibitor L-NAME might alter the effect of PTH on bone by blocking its vasodilatory effect. BALB/c mice received 28 daily injections of PTH[1-34] (80?g/kg/day) or L-NAME (30?mg/kg/day), alone or in combination. Hindlimb blood perfusion was measured by laser Doppler imaging. Bone architecture, turnover and mechanical properties in the femur were analysed respectively by micro-CT, histomorphometry and three-point bending. PTH increased hindlimb blood flow by >30% within 10?min of injection (P?

  9. Parathyroid hormone-responsive Smad3-related factor, Tmem119, promotes osteoblast differentiation and interacts with the bone morphogenetic protein-Runx2 pathway.

    PubMed

    Hisa, Itoko; Inoue, Yoshifumi; Hendy, Geoffrey N; Canaff, Lucie; Kitazawa, Riko; Kitazawa, Sohei; Komori, Toshihisa; Sugimoto, Toshitsugu; Seino, Susumu; Kaji, Hiroshi

    2011-03-18

    The mechanisms whereby the parathyroid hormone (PTH) exerts its anabolic action on bone are incompletely understood. We previously showed that inhibition of ERK1/2 enhanced Smad3-induced bone anabolic action in osteoblasts. These findings suggested the hypothesis that changes in gene expression associated with the altered Smad3-induced signaling brought about by an ERK1/2 inhibitor would identify novel bone anabolic factors in osteoblasts. We therefore performed a comparative DNA microarray analysis between empty vector-transfected mouse osteoblastic MC3T3-E1 cells and PD98059-treated stable Smad3-overexpressing MC3T3-E1 cells. Among the novel factors, Tmem119 was selected on the basis of its rapid induction by PTH independent of later increases in endogenous TGF-?. The levels of Tmem119 increased with time in cultures of MC3T3-E1 cells and mouse mesenchymal ST-2 cells committed to the osteoblast lineage by BMP-2. PTH stimulated Tmem119 levels within 1 h as determined by Western blot analysis and immunocytochemistry in MC3T3-E1 cells. MC3T3-E1 cells stably overexpressing Tmem119 exhibited elevated levels of Runx2, osteocalcin, alkaline phosphatase, and ?-catenin, whereas Tmem119 augmented BMP-2-induced Runx2 levels in mesenchymal cells. Tmem119 interacted with Runx2, Smad1, and Smad5 in C2C12 cells. In conclusion, we identified a Smad3-related factor, Tmem119, that is induced by PTH and promotes differentiation in mouse osteoblastic cells. Tmem119 is an important molecule in the pathway downstream of PTH and Smad3 signaling in osteoblasts. PMID:21239498

  10. Parathyroid Hormone-responsive Smad3-related Factor, Tmem119, Promotes Osteoblast Differentiation and Interacts with the Bone Morphogenetic Protein-Runx2 Pathway*

    PubMed Central

    Hisa, Itoko; Inoue, Yoshifumi; Hendy, Geoffrey N.; Canaff, Lucie; Kitazawa, Riko; Kitazawa, Sohei; Komori, Toshihisa; Sugimoto, Toshitsugu; Seino, Susumu; Kaji, Hiroshi

    2011-01-01

    The mechanisms whereby the parathyroid hormone (PTH) exerts its anabolic action on bone are incompletely understood. We previously showed that inhibition of ERK1/2 enhanced Smad3-induced bone anabolic action in osteoblasts. These findings suggested the hypothesis that changes in gene expression associated with the altered Smad3-induced signaling brought about by an ERK1/2 inhibitor would identify novel bone anabolic factors in osteoblasts. We therefore performed a comparative DNA microarray analysis between empty vector-transfected mouse osteoblastic MC3T3-E1 cells and PD98059-treated stable Smad3-overexpressing MC3T3-E1 cells. Among the novel factors, Tmem119 was selected on the basis of its rapid induction by PTH independent of later increases in endogenous TGF-?. The levels of Tmem119 increased with time in cultures of MC3T3-E1 cells and mouse mesenchymal ST-2 cells committed to the osteoblast lineage by BMP-2. PTH stimulated Tmem119 levels within 1 h as determined by Western blot analysis and immunocytochemistry in MC3T3-E1 cells. MC3T3-E1 cells stably overexpressing Tmem119 exhibited elevated levels of Runx2, osteocalcin, alkaline phosphatase, and ?-catenin, whereas Tmem119 augmented BMP-2-induced Runx2 levels in mesenchymal cells. Tmem119 interacted with Runx2, Smad1, and Smad5 in C2C12 cells. In conclusion, we identified a Smad3-related factor, Tmem119, that is induced by PTH and promotes differentiation in mouse osteoblastic cells. Tmem119 is an important molecule in the pathway downstream of PTH and Smad3 signaling in osteoblasts. PMID:21239498

  11. Velcalcetide (AMG 416), a novel peptide agonist of the calcium-sensing receptor, reduces serum parathyroid hormone and FGF23 levels in healthy male subjects

    PubMed Central

    Martin, Kevin J.; Bell, Gregory; Pickthorn, Karen; Huang, Saling; Vick, Andrew; Hodsman, Peter; Peacock, Munro

    2014-01-01

    Context Velcalcetide, also known as AMG 416, is a novel, long-acting selective peptide agonist of the calcium sensing receptor. It is being developed as an intravenous treatment of secondary hyperparathyroidism (SHPT) in hemodialysis patients with chronic kidney disease—mineral and bone disorder. Objective To assess the safety, tolerability, pharmacokinetics and pharmacodynamics of velcalcetide in healthy male volunteers. Methods The study was a double-blind, randomized, placebo-controlled, single-dose, dose-escalation study in healthy males aged 18–45 years conducted at a single center. Each cohort included eight subjects randomized 6:2 to velcalcetide or placebo. Intervention Velcalcetide at 0.5, 2, 5 and 10 mg or placebo was administered intravenously. Outcomes Measurements included plasma ionized calcium (iCa), serum total calcium, intact parathyroid hormone (iPTH), phosphorus and fibroblast growth factor-23 (FGF23), 1,25-dihydroxyvitamin D, calcitonin and urine creatinine, calcium and phosphorus and plasma pharmacokinetics for velcalcetide. Vital signs, safety biochemical and hematological indices, and adverse events were monitored throughout the study. Results Intravenous administration of velcalcetide was well tolerated with no adverse reaction of nausea, vomiting or diarrhea reported. Velcalcetide mediated dose-dependent decreases in serum iPTH at 30 min, FGF23 at 24 h and iCa at 12 h post dose (P < 0.05) and in urine fractional excretion of phosphorus and increases in tubular reabsorption of phosphorus. Velcalcetide plasma exposure increased in a dose-related manner and the terminal elimination of half-life was comparable across the dose range evaluated and ranged from 18.4 to 20.0 h. Conclusion Single IV doses of velcalcetide were well tolerated and associated with rapid, sustained, dose-dependent reductions in serum PTH. The results support further evaluation of velcalcetide as a treatment for SHPT in hemodialysis patients. PMID:24235081

  12. Loss of cancellous bone mass and connectivity in ovariectomized rats can be restored by combined treatment with parathyroid hormone and estradiol.

    PubMed Central

    Shen, V; Dempster, D W; Birchman, R; Xu, R; Lindsay, R

    1993-01-01

    To evaluate the potential use of a combination of antiresorption and bone formation-promoting agents as a treatment for postmenopausal osteoporosis, we examined the effects of combined and separate administration of estrogen (17 beta-estradiol, 30 micrograms/kg per d, s.c.) and parathyroid hormone (rPTH [1-34], 40 micrograms/kg per d, s.c.) on the proximal tibia of ovariectomized (Ovx) rats. The treatments lasted for 4 wk and were initiated 1, 3, and 5 wk after surgery. Ovx resulted in rapid loss of cancellous bone volume (Cn-BV/TV) as well as trabecular connectivity, as determined by two dimensional strut analysis. When administered in a preventive mode, treatment beginning 1 wk post-Ovx, estrogen or PTH treatment alone preserved Cn-BV/TV and trabecular connectivity, and combined estrogen and PTH treatment caused a 40% increment in Cn-BV/TV while maintaining comparable trabecular connectivity with that seen in the Sham-operated animals. When administered in a curative mode to rats with established osteoporosis, treatments beginning 3 or 5 wk post-Ovx, estrogen or PTH treatment alone prevented further loss of connectivity and Cn-BV/TV, whereas the combined treatment resulted in as much as a 300% improvement in one of the parameters of trabecular connectivity, node to node strut length, and a 106% increase in Cn-BV/TV, with respect to the bone status at the initiation of treatment. The beneficial effects of this combined treatment derive from estrogen's ability to prevent accelerated bone resorption and, simultaneously, PTH's promotion of bone formation. These data demonstrate, in an animal model, that therapies can be devised to cure the skeletal defects associated with established osteoporosis. PMID:8514860

  13. Parathyroid hormone-related protein-stanniocalcin antagonism in regulation of bicarbonate secretion and calcium precipitation in a marine fish intestine.

    PubMed

    Fuentes, Juan; Power, Deborah M; Canrio, Adelino V M

    2010-07-01

    Bicarbonate secretion in the intestine (duodenum) of marine fish has been suggested to play a major role in regulation of calcium availability for uptake. However, while the end process may lead to carbonate precipitation, regulation of transport of calcium and/or bicarbonate may actually result in fine-tuning of calcium availability for transport. To test this hypothesis, sea bream (Sparus auratus) duodenal preparations were mounted in Ussing-type chambers and the effect of parathyroid hormone-related protein (PTHrP) and stanniocalcin 1 (STC 1) on the control of intestinal bicarbonate secretion and calcium transport was analyzed. As expected, PTHrP increased net calcium uptake, as a result of an increase of calcium uptake without changes in calcium efflux. In contrast, purified sea bream STC 1 caused a minor decrease of calcium uptake and a two- to threefold increase in calcium efflux. As a result, STC 1 was able to invert the calcium flux from net calcium uptake to net calcium loss, which is in keeping with its known actions as a hypocalcemic factor. Furthermore, both PTHrP and STC 1 regulate intestinal bicarbonate secretion. PTHrP increased calcium uptake and simultaneously reduced the single factor that induces calcium precipitation, bicarbonate secretion. In contrast, STC 1, while reversing the calcium net flux to make it secretory, promoted intestinal bicarbonate secretion, both actions directed to decrease the calcium gradient across the epithelium and promote immobilization in the form of bicarbonate in the intestinal lumen. Together our results provide robust evidence to support an antagonistic action of PTHrP and STC 1 in the fine control of movements of both calcium and bicarbonate in the intestine of seawater fish. PMID:20410471

  14. Successful induction of sclerostin in human-derived fibroblasts by 4 transcription factors and its regulation by parathyroid hormone, hypoxia, and prostaglandin E2.

    PubMed

    Fujiwara, Makoto; Kubota, Takuo; Wang, Wei; Ohata, Yasuhisa; Miura, Kohji; Kitaoka, Taichi; Okuzaki, Daisuke; Namba, Noriyuki; Michigami, Toshimi; Kitabatake, Yasuji; Ozono, Keiichi

    2016-04-01

    Sclerostin, coded by SOST, is a secretory protein that is specifically expressed in osteocytes and suppresses osteogenesis by inhibiting WNT signaling. The regulatory mechanism underlying SOST expression remains unclear mainly due to the absence of an adequate human cell model. Thus, we herein attempted to establish a cell model of human dermal fibroblasts in order to investigate the functions of sclerostin. We selected 20 candidate transcription factors (TFs) that induce SOST expression by analyzing gene expression patterns in the human sarcoma cell line, SaOS-2, between differentiation and maintenance cultures using microarrays. An effective set of TFs to induce SOST expression was sought by their viral transduction into fibroblasts, and a combination of four TFs: ATF3, KLF4, PAX4, and SP7, was identified as the most effective inducer of SOST expression. Quantitative PCR demonstrated that the expression levels of SOST in fibroblasts treated with the 4 TFs were 199- and 1439-fold higher than those of the control after 1-week and 4-week cultures, respectively. The level of sclerostin in the conditioned medium, as determined by ELISA, was 21.2pmol/l 4weeks after the transduction of the 4 TFs. Interestingly, the production of Dickkopf1 (DKK1), another secreted inhibitor of WNT signaling, was also increased by transduction of these 4 TFs. Parathyroid hormone (PTH) significantly suppressed the induced SOST by 38% and sclerostin by 82% that of the vehicle. Hypoxia increased the induced SOST by 62% that of normoxia. Furthermore, prostaglandin E2 (PGE2) increased SOST expression levels to 16-fold those of the vehicle. In conclusion, the efficient induction of SOST expression and sclerostin production was achieved in human dermal fibroblasts by the transduction of ATF3, KLF4, PAX4, and SP7, and the induced SOST and sclerostin were regulated by PTH, hypoxia, and PGE2. This model may contribute to elucidating the regulatory mechanisms underlying SOST expression and advancing drug development for metabolic bone diseases. PMID:26851122

  15. Enhancement of recombinant human bone morphogenetic protein-2 (rhBMP-2)-induced new bone formation by concurrent treatment with parathyroid hormone and a phosphodiesterase inhibitor, pentoxifylline.

    TOXLINE Toxicology Bibliographic Information

    Horiuchi H; Saito N; Kinoshita T; Wakabayashi S; Tsutsumimoto T; Otsuru S; Takaoka K

    2004-01-01

    We investigated the enhancement of new bone |formation elicited ectopically by recombinant human bone morphogenetic protein-2 (rhBMP-2), using parathyroid hormone (PTH) and a phosphodiesterase inhibitor (PDEi), pentoxifylline (PTX), in an animal model. Collagen sponge sheet discs containing rhBMP were implanted onto the back muscles of mice. PTX alone (200 mg/kg body weight [BW]), PTH(1-34) (10 microg/kg BW), PTX plus PTH (200 mg/kg BW and 10 microg/kg BW, respectively), or vehicle (control) were injected subcutaneously daily for 3 weeks after implantation. At the end of this period, rhBMP-2-induced ectopic ossicles were harvested from each group of animals. Ossicles from the PTX-treated group were significantly larger in size, with unchanged bone mineral density (BMD), as compared with the ossicles from the controls. In contrast, the ossicles from the PTH-treated group had significantly higher BMD, but showed no difference in size when compared with those from the control animals. The ossicles of the PTX + PTH treatment group were significantly larger than those of the control and PTH treatment groups. In addition, the BMD of the harvested tissues from the PTX + PTH treatment group was signifi-cantly higher than that of tissues from the control and PTX treatment groups. Although the calcium content of ossicles was significantly higher in the PTX-, PTH-, and PTX + PTH-treated groups than in the control group, the Ca content of ossicles from the PTH + PTX-treated group was highest (two times that of controls), followed by the PTH- and PTX-treated groups.

  16. Enhancement of recombinant human bone morphogenetic protein-2 (rhBMP-2)-induced new bone formation by concurrent treatment with parathyroid hormone and a phosphodiesterase inhibitor, pentoxifylline.

    PubMed

    Horiuchi, Hiroshi; Saito, Naoto; Kinoshita, Tetsuya; Wakabayashi, Shinji; Tsutsumimoto, Takahiro; Otsuru, Satoru; Takaoka, Kunio

    2004-01-01

    We investigated the enhancement of new bone |formation elicited ectopically by recombinant human bone morphogenetic protein-2 (rhBMP-2), using parathyroid hormone (PTH) and a phosphodiesterase inhibitor (PDEi), pentoxifylline (PTX), in an animal model. Collagen sponge sheet discs containing rhBMP were implanted onto the back muscles of mice. PTX alone (200 mg/kg body weight [BW]), PTH(1-34) (10 microg/kg BW), PTX plus PTH (200 mg/kg BW and 10 microg/kg BW, respectively), or vehicle (control) were injected subcutaneously daily for 3 weeks after implantation. At the end of this period, rhBMP-2-induced ectopic ossicles were harvested from each group of animals. Ossicles from the PTX-treated group were significantly larger in size, with unchanged bone mineral density (BMD), as compared with the ossicles from the controls. In contrast, the ossicles from the PTH-treated group had significantly higher BMD, but showed no difference in size when compared with those from the control animals. The ossicles of the PTX + PTH treatment group were significantly larger than those of the control and PTH treatment groups. In addition, the BMD of the harvested tissues from the PTX + PTH treatment group was signifi-cantly higher than that of tissues from the control and PTX treatment groups. Although the calcium content of ossicles was significantly higher in the PTX-, PTH-, and PTX + PTH-treated groups than in the control group, the Ca content of ossicles from the PTH + PTX-treated group was highest (two times that of controls), followed by the PTH- and PTX-treated groups. PMID:15221490

  17. Doxercalciferol, a pro-hormone of Vitamin D, prevents the development of cardiac hypertrophy in rats

    PubMed Central

    Choi, Jun H.; Ke, Qingen; Bae, Soochan; Lee, Ji Yoo; Kim, Yu Jin; Kim, Ui Kyoung; Arbeeny, Cynthia; Thadhani, Ravi; Kang, Peter M.

    2011-01-01

    Background Activated vitamin D analog, paricalcitol, has been shown to attenuate the development of cardiac hypertrophy in Dahl salt sensitive (DSS) rats. To determine whether an anti-hypertrophic effect is class specific, we tested if doxercalciferol (a pro-hormone vitamin D2 analog) could also attenuate the development of cardiac hypertrophy in DSS rats. Methods and Results Male DSS rats were fed a high salt (HS) diet for 6 weeks beginning at 6 weeks of age. Doxercalciferol was administered intraperitoneally (i.p.) at 150ng, 3 times a week (Mon, Wed, Fri) for six weeks. Pathological and echocardiographic findings demonstrated that rats on HS diet with doxercalciferol administration had significant decrease in cardiac hypertrophy and improved cardiac function compared to the HS + vehicle. In addition, there was a significant decrease in plasma brain natriuretic peptide (BNP) level and tissue atrial natriuretic factor (ANF) mRNA level with doxercalciferol treatment. Doxercalciferol also significantly reduced the level of protein kinase C-? (PKC?) suggesting that PKC-mediated cardiac hypertrophy may be associated with vitamin D deficiency. Conclusions Administration of doxercalciferol attenuated the development of HS diet induced cardiac hypertrophy and cardiac dysfunction in DSS rats. PMID:22123370

  18. Parathyroid hormone 1-84 targets bone vascular structure and perfusion in mice: impacts of its administration regimen and of ovariectomy.

    PubMed

    Roche, Bernard; Vanden-Bossche, Arnaud; Malaval, Luc; Normand, Myriam; Jannot, Martin; Chaux, Robin; Vico, Laurence; Lafage-Proust, Marie-Hlne

    2014-07-01

    Bone vessel functions during bone remodeling are poorly understood. They depend on both vessel network structure and vasomotor regulation. Parathyroid hormone (PTH) is a systemic vasodilator that may modulate microvascularization. Moreover, although intermittent PTH is anti-osteoporotic, continuous PTH administration can be catabolic for bone. Finally, ovariectomy (OVX) reduces bone perfusion and vessel density in mice. We reasoned that the effects of PTH on bone vascularization might depend on its administration regimen and be impacted by ovariectomy. A 100-g/kg PTH 1-84 daily dose was administered for 15 days to 4-month-old female C57BL/6 mice, either as daily sc injection (iPTH) or continuously (cPTH; ALZET minipump). Blood pressure (BP) and tibia bone perfusion were measured in vivo with a laser Doppler device. Histomorphometry of bone and barium-contrasted vascular network were performed on the same tibia. Compared with untreated controls, both iPTH and cPTH increased bone formation but had opposite effects on resorption. Both iPTH and cPTH were slightly angiogenic. Intermittent PTH increased microvessel size (+48%, p < 0.001), whereas cPTH decreased it (-29%, p = 0.009). iPTH increased bone perfusion (27%, p < 0.001) with no change in BP, whereas cPTH did not. The vascular effects of a 15-day iPTH treatment were analyzed in OVX mice and compared with sham-operated and OVX untreated controls. Two other anti-osteoporotic drugs, zoledronate (one injection, 70?g/kg) and propranolol, (5 mg/kg/d) were tested in OVX mice. Although no change in bone mass was observed, iPTH stimulated bone formation and prevented the OVX-induced reduction in bone perfusion and vessel density. Both zoledronate and propranolol strongly lowered bone turnover, but surprisingly, zoledronate prevented OVX-induced reduction in bone perfusion but propranolol did not. Our integrative approach thus demonstrates that the effects of PTH on bone vessel structure and function depend on its mode of administration as well as on the HPG-axis hormonal status, and that OVX-induced vascular changes are prevented by iPTH. PMID:24496950

  19. Seasonal variations of 25 hydroxyvitamin D and parathyroid hormone in Ushuaia (Argentina), the southernmost city of the world.

    PubMed

    Oliveri, M B; Ladizesky, M; Mautalen, C A; Alonso, A; Martinez, L

    1993-01-01

    Serum levels of calcium, phosphorus, alkaline phosphatase, 250HD, 1.25(OH)2D and PTH were studied in a group of 42 children aged 8.5 +/- 1.8 years (X +/- SD) from the city of Ushuaia (latitude 55 degrees S), at both the end of the winter and the end of summer. Calcium, phosphorus, alkaline phosphatase and 1.25(OH)2D serum levels were not different in summer and winter. The levels of serum 25OHD were significantly higher in summer (18.4 +/- 7.3 ng/ml) than in winter (9.8 +/- 3.8 ng/ml P < 0.001). The levels of 25OHD in children with fair or dark skin were similar in winter but were significantly higher in children with fair skin in summer (20.0 +/- 7.2 ng/l vs 15.3 +/- 5.1 ng/ml (P < 0.05). Serum levels of PTH were higher in winter (58.2 +/- 30.5 pg/ml) than in summer (47.9 +/- 28.3 pg/ml) (P < 0.03). The results demonstrate the existence of a population with low serum levels of 25OHD in winter. The higher levels of PTH in winter when serum 25OHD levels are lower could be the cause of the lack of seasonal variation in serum calcium and 1.25(OH)2D levels. Further studies are needed to establish whether these changes besides increasing the incidence of rickets, could also affect the mineral density of the skeleton in the population of this vitamin-D-deficient area. PMID:8453326

  20. Programmed administration of parathyroid hormone increases bone formation and reduces bone loss in hindlimb-unloaded ovariectomized rats

    NASA Technical Reports Server (NTRS)

    Turner, R. T.; Evans, G. L.; Cavolina, J. M.; Halloran, B.; Morey-Holton, E.

    1998-01-01

    Gonadal insufficiency and reduced mechanical usage are two important risk factors for osteoporosis. The beneficial effects of PTH therapy to reverse the estrogen deficiency-induced bone loss in the laboratory rat are well known, but the influence of mechanical usage in this response has not been established. In this study, the effects of programed administration of PTH on cancellous bone volume and turnover at the proximal tibial metaphysis were determined in hindlimb-unloaded, ovariectomized (OVX), 3-month-old Sprague-Dawley rats. PTH was administered to weight-bearing and hindlimb-unloaded OVX rats with osmotic pumps programed to deliver 20 microg human PTH (approximately 80 microg/kg x day) during a daily 1-h infusion for 7 days. Compared with sham-operated rats, OVX increased longitudinal and radial bone growth, increased indexes of cancellous bone turnover, and resulted in net resorption of cancellous bone. Hindlimb unloading of OVX rats decreased longitudinal and radial bone growth, decreased osteoblast number, increased osteoclast number, and resulted in a further decrease in cancellous bone volume compared with those in weight-bearing OVX rats. Programed administration of PTH had no effect on either radial or longitudinal bone growth in weight-bearing and hindlimb-unloaded OVX rats. PTH treatment had dramatic effects on selected cancellous bone measurements; PTH maintained cancellous bone volume in OVX weight-bearing rats and greatly reduced cancellous bone loss in OVX hindlimb-unloaded rats. In the latter animals, PTH treatment prevented the hindlimb unloading-induced reduction in trabecular thickness, but the hormone was ineffective in preventing either the increase in osteoclast number or the loss of trabecular plates. Importantly, PTH treatment increased the retention of a baseline flurochrome label, osteoblast number, and bone formation in the proximal tibial metaphysis regardless of the level of mechanical usage. These findings demonstrate that programed administration of PTH is effective in increasing osteoblast number and bone formation and has beneficial effects on bone volume in the absence of weight-bearing and gonadal hormones. We conclude that the actions of PTH on cancellous bone are independent of the level of mechanical usage.

  1. Ligand-selective dissociation of activation and internalization of the parathyroid hormone (PTH) receptor: conditional efficacy of PTH peptide fragments.

    PubMed

    Sneddon, W Bruce; Magyar, Clara E; Willick, Gordon E; Syme, Colin A; Galbiati, Ferruccio; Bisello, Alessandro; Friedman, Peter A

    2004-06-01

    G protein-coupled receptors (GPCRs) mediate the action of many hormones, cytokines, and sensory and chemical signals. It is generally thought that receptor desensitization and internalization require occupancy and activation of the GPCR. PTH and PTHrP receptor (PTH1R) belongs to GPCR class B and is the major regulator of extracellular calcium homeostasis. Using kidney distal convoluted tubule cells transfected with a human PTH1R/enhanced green fluorescent protein fusion protein, quantitative, real-time fluorescence microscopy was used to analyze receptor internalization. In these cells, which are the target of the calcium-sparing action of PTH, PTH(1-34) activated adenylyl cyclase (AC) and phospholipase C (PLC) and PTH1R endocytosis. PTH(1-31), however, stimulated AC and PLC but not PTH1R endocytosis. Conversely, PTH(7-34) rapidly stimulated PTH1R internalization without activating AC or PLC. PTH(2-34) and (3-34) caused PTH1R internalization intermediate between PTH(1-34) and (7-34). PTH1R sequestration occurred in a dynamin- and clathrin-dependent manner. Directly activating AC inhibited PTH1R internalization in response to PTH(7-34). PTH1R endocytosis was sensitive to protein kinase C inhibition. PTH(1-34), (7-34), and (1-31) evoked PTH1R phosphorylation. Removal of most of the C terminus of the PTH1R eliminated receptor phosphorylation and the cAMP/protein kinase C sensitivity of internalization. PTH(1-34) and (7-34) internalized the truncated PTH1R with identical kinetics, and the response was unaffected by forskolin. Thus, the PTH1R C terminus contains regulatory sequences that are involved in, but not required for, PTH1R internalization. The results demonstrate that receptor activation and internalization can be selectively dissociated. PMID:15016722

  2. Vitamins

    MedlinePLUS

    ... helps you see at night. Vitamin C in oranges helps your body heal if you get a ... vitamin A? milk fortified with vitamin A liver orange fruits and vegetables (like cantaloupe, carrots, sweet potatoes) ...

  3. Parathyroid Hormone Induces Bone Cell Motility and Loss of Mature Osteocyte Phenotype through L-Calcium Channel Dependent and Independent Mechanisms

    PubMed Central

    Prideaux, Matthew; Dallas, Sarah L.; Zhao, Ning; Johnsrud, Erica D.; Veno, Patricia A.; Guo, Dayong; Mishina, Yuji; Harris, Stephen E.; Bonewald, Lynda F.

    2015-01-01

    Parathyroid Hormone (PTH) can exert both anabolic and catabolic effects on the skeleton, potentially through expression of the PTH type1 receptor (PTH1R), which is highly expressed in osteocytes. To determine the cellular and molecular mechanisms responsible, we examined the effects of PTH on osteoblast to osteocyte differentiation using primary osteocytes and the IDG-SW3 murine cell line, which differentiate from osteoblast to osteocyte-like cells in vitro and express GFP under control of the dentin matrix 1 (Dmp1) promoter. PTH treatment resulted in an increase in some osteoblast and early osteocyte markers and a decrease in mature osteocyte marker expression. The gene expression profile of PTH-treated Day 28 IDG-SW3 cells was similar to PTH treated primary osteocytes. PTH treatment induced striking changes in the morphology of the Dmp1-GFP positive cells in IDG-SW3 cultures and primary cells from Dmp1-GFP transgenic mice. The cells changed from a more dendritic to an elongated morphology and showed increased cell motility. E11/gp38 has been shown to be important for cell migration, however, deletion of the E11/gp38/podoplanin gene had no effect on PTH-induced motility. The effects of PTH on motility were reproduced using cAMP, but not with protein kinase A (PKA), exchange proteins activated by cAMP (Epac), protein kinase C (PKC) or phosphatidylinositol-4,5-bisphosphonate 3-kinase (Pi3K) agonists nor were they blocked by their antagonists. However, the effects of PTH were mediated through calcium signaling, specifically through L-type channels normally expressed in osteoblasts but decreased in osteocytes. PTH was shown to increase expression of this channel, but decrease the T-type channel that is normally more highly expressed in osteocytes. Inhibition of L-type calcium channel activity attenuated the effects of PTH on cell morphology and motility but did not prevent the downregulation of mature osteocyte marker expression. Taken together, these results show that PTH induces loss of the mature osteocyte phenotype and promotes the motility of these cells. These two effects are mediated through different mechanisms. The loss of phenotype effect is independent and the cell motility effect is dependent on calcium signaling. PMID:25942444

  4. c-myc and skp2 coordinate p27 degradation, vascular smooth muscle proliferation, and neointima formation induced by the parathyroid hormone-related protein.

    PubMed

    Sicari, Brian M; Troxell, Ronnie; Salim, Fatimah; Tanwir, Mansoor; Takane, Karen K; Fiaschi-Taesch, Nathalie

    2012-02-01

    Parathyroid hormone-related protein (PTHrP) contains a classical bipartite nuclear localization signal. Nuclear PTHrP induces proliferation of arterial vascular smooth muscle cells (VSMC). In the arterial wall, PTHrP is markedly up-regulated in response to angioplasty and promotes arterial restenosis. PTHrP overexpression exacerbates arterial restenosis, and knockout of the PTHrP gene results in decreased VSMC proliferation in vivo. In arterial VSMC, expression of the cell cycle inhibitor, p27, rapidly decreases after angioplasty, and replacement of p27 markedly reduces neointima development. We have shown that PTHrP overexpression in VSMC leads to p27 down-regulation, mostly through increased proteosomal degradation. Here, we determined the molecular mechanisms through which PTHrP targets p27 for degradation. S-phase kinase-associated protein 2 (skp2) and c-myc, two critical regulators of p27 expression and stability, and neointima formation were up-regulated in PTHrP overexpression in VSMC. Normalization of skp2 or c-myc using small interfering RNA restores normal cell cycle and p27 expression in PTHrP overexpression in VSMC. These data indicate that skp2 and c-myc mediate p27 loss and proliferation induced by PTHrP. c-myc promoter activity was increased, and c-myc target genes involved in p27 stability were up-regulated in PTHrP overexpression in VSMC. In primary VSMC, PTHrP overexpression led to increased c-myc and decreased p27. Conversely, knockdown of PTHrP in primary VSMC from PTHrP(flox/flox) mice led to cell cycle arrest, p27 up-regulation, with c-myc and skp2 down-regulation. Collectively, these data describe for the first time the role of PTHrP in the regulation of skp2 and c-myc in VSMC. This novel PTHrP-c-myc-skp2 pathway is a potential target for therapeutic manipulation of the arterial response to injury. PMID:22210745

  5. Treatment with N- and C-Terminal Peptides of Parathyroid Hormone-Related Protein Partly Compensate the Skeletal Abnormalities in IGF-I Deficient Mice

    PubMed Central

    Portal-Núñez, Sergio; Murillo-Cuesta, Silvia; Lozano, Daniel; Cediel, Rafael; Esbrit, Pedro

    2014-01-01

    Insulin-like growth factor-I (IGF-I) deficiency causes growth delay, and IGF-I has been shown to partially mediate bone anabolism by parathyroid hormone (PTH). PTH-related protein (PTHrP) is abundant in bone, and has osteogenic features by poorly defined mechanisms. We here examined the capacity of PTHrP (1–36) and PTHrP (107–111) (osteostatin) to reverse the skeletal alterations associated with IGF-I deficiency. Igf1-null mice and their wild type littermates were treated with each PTHrP peptide (80 µg/Kg/every other day/2 weeks; 2 males and 4 females for each genotype) or saline vehicle (3 males and 3 females for each genotype). We found that treatment with either PTHrP peptide ameliorated trabecular structure in the femur in both genotypes. However, these peptides were ineffective in normalizing the altered cortical structure at this bone site in Igf1-null mice. An aberrant gene expression of factors associated with osteoblast differentiation and function, namely runx2, osteoprotegerin/receptor activator of NF-κB ligand ratio, Wnt3a, cyclin D1, connexin 43, catalase and Gadd45, as well as in osteocyte sclerostin, was found in the long bones of Igf1-null mice. These mice also displayed a lower amount of trabecular osteoblasts and osteoclasts in the tibial metaphysis than those in wild type mice. These alterations in Igf1-null mice were only partially corrected by each PTHrP peptide treatment. The skeletal expression of Igf2, Igf1 receptor and Irs2 was increased in Igf1-null mice, and this compensatory profile was further improved by treatment with each PTHrP peptide related to ERK1/2 and FoxM1 activation. In vitro, PTHrP (1–36) and osteostatin were effective in promoting bone marrow stromal cell mineralization in normal mice but not in IGF-I-deficient mice. Collectively, these findings indicate that PTHrP (1–36) and osteostatin can exert several osteogenic actions even in the absence of IGF-I in the mouse bone. PMID:24503961

  6. Effects of parathyroid hormone on cortical porosity, non-enzymatic glycation and bone tissue mechanics in rats with type 2 diabetes mellitus.

    PubMed

    Campbell, G M; Tiwari, S; Hofbauer, C; Picke, A-K; Rauner, M; Huber, G; Peña, J A; Damm, T; Barkmann, R; Morlock, M M; Hofbauer, L C; Glüer, C-C

    2016-01-01

    Type 2 diabetes mellitus increases skeletal fragility; however, the contributing mechanisms and the efficacy of bone-forming agents are unclear. We studied diabetes and parathyroid hormone (PTH) treatment effects on cortical porosity (Ct.Po), non-enzymatic glycation (NEG) and bone mechanics in Zucker diabetic fatty (ZDF) rats. Eleven-week old ZDF diabetic (DB) and non-diabetic (ND) rats were given 75μg/kg PTH (1-84) or vehicle 5days per week over 12weeks. The right femora and L4 vertebrae were excised, micro-CT scanned, and tested in 3-point bending and uniaxial compression, respectively. NEG of the samples was determined using fluorescence. Diabetes increased Ct.Po (vertebra (vert): +40.6%, femur (fem): +15.5% vs. ND group, p<0.05) but had no effect on NEG. PTH therapy reduced vertebral NEG in the ND animals only (-73% vs untreated group, p<0.05), and increased femoral NEG in the DB vs. ND groups (+63%, p<0.05). PTH therapy had no effect on Ct.Po. Diabetes negatively affected bone tissue mechanics where reductions in vertebral maximum strain (-22%) and toughness (-42%) were observed in the DB vs. ND group (p<0.05). PTH improved maximum strain in the vertebra of the ND animals (+21%, p<0.05) but did not have an effect in the DB group. PTH increased femoral maximum strain (+21%) and toughness (+28%) in ND and decreased femoral maximum stress (-13%) and toughness (-27%) in the DB animals (treated vs. untreated, p<0.05). Ct.Po correlated negatively with maximum stress (fem: R=-0.35, p<0.05, vert: R=-0.57, p<0.01), maximum strain (fem: R=-0.35, p<0.05, vert: R=-0.43, p<0.05) and toughness (fem: R=-0.34, p<0.05, vert: R=-0.55, p<0.01), and NEG correlated negatively with toughness at the femur (R=-0.34, p<0.05) and maximum strain at the vertebra (R=-0.49, p<0.05). Diabetes increased cortical porosity and reduced bone mechanics, which were not improved with PTH treatment. PTH therapy alone may worsen diabetic bone mechanics through formation of new bone with high AGEs cross-linking. Optimal treatment regimens must address both improvements of bone mass and glycemic control in order to successfully reduce diabetic bone fragility. This article is part of a Special Issue entitled "Bone and diabetes". PMID:25952971

  7. Effects of a synthetic peptide of a parathyroid hormone-related protein on calcium homeostasis, renal tubular calcium reabsorption, and bone metabolism in vivo and in vitro in rodents.

    PubMed Central

    Yates, A J; Gutierrez, G E; Smolens, P; Travis, P S; Katz, M S; Aufdemorte, T B; Boyce, B F; Hymer, T K; Poser, J W; Mundy, G R

    1988-01-01

    A synthetic peptide corresponding to the first 34 amino acids of the parathyroid hormone-related protein (PTH-rP) produced by a human tumor associated with hypercalcemia was examined for skeletal and renal effects on calcium metabolism in vivo and in vitro. These effects were compared with those of human parathyroid hormone (1-34), hPTH (1-34). Equal doses of PTH-rP(1-34) and hPTH(1-34) produced equivalent stimulation of adenylate cyclase in vitro in bone cells and kidney cells and tubules. Subcutaneous injection of PTH-rP(1-34) in mice caused a significant dose-related increase in blood ionized calcium similar to that seen with hPTH(1-34) at equivalent doses. Repeated injections of equal doses of both peptides caused sustained hypercalcemia which was significantly greater in PTH-rP(1-34)-treated mice, although each induced comparable increases in histomorphometric indices of osteoclastic bone resorption. PTH-rP(1-34) and hPTH(1-34) also caused similar increases in bone resorption when incubated with fetal rat long bones in organ culture. Infusion of either peptide into thyroparathyroidectomized rats suppressed urinary calcium excretion and increased urinary excretion of cyclic AMP. PTH-rP appears to have similar effects to those of PTH on the skeleton, the kidney, and overall calcium homeostasis. Images PMID:3343349

  8. Membrane receptors for vitamin D steroid hormones: potential new drug targets.

    PubMed

    Farach-Carson, M C; Nemere, I

    2003-01-01

    There is increasing evidence that steroid hormones derived from vitamin D act through classical nuclear receptors (nVDR), as well as specific binding sites on the plasma membrane of target cells that are coupled to signal transduction systems. These sites are referred to as Membrane Associated, Rapid Response Steroid (MARRS) binding proteins or complexes. In the case of the seco-steroid 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], the two 'receptors' appear to be different proteins with distinct affinities for vitamin D analogs. These differences may be useful in a number of clinical situations. In treating leukemias, it would be useful to promote the actions of the nVDR for differentiation to macrophages while blocking the 1,25D3-MARRS in intestine, which might contribute to the undesirable side effect of hypercalcemia. In contrast, stimulation of the intestinal 1,25D3-MARRS would be desirable in the elderly, since this signalling system appears to decline with age in model systems, potentially contributing to diminished intestinal absorption of calcium and associated bone loss. Bone itself is known to have osteoblasts that respond to 1,25(OH)2D3 through both nVDR and 1,25D3-MARRS mechanisms. Both systems are required for bone-building activities. Osteoclasts lack the nVDR, but may become activated through the 1,25D3-MARRS, offering another site of drug intervention in the treatment of osteoporosis. Finally, during tooth mineralization, immunohistochemical studies reveal an absence of the nVDR and a marked appearance of the 1,25D3-MARRS. In addition to our growing knowledge of 1,25(OH)2D3, the physiological actions of a lesser studied metabolite of vitamin D, 24,25(OH)2D3, are coming to light and may offer additional targets for pharmaceutical modulation. PMID:12528991

  9. Theoretical basis of a beneficial role for vitamin D in viral hepatitis

    PubMed Central

    Lương, Khanh vinh quốc; Nguyễn, Lan Thi Hoàng

    2012-01-01

    Abnormal bone metabolism and dysfunction of the calcium-parathyroid hormone-vitamin D axis have been reported in patients with viral hepatitis. Some studies suggested a relationship between vitamin D and viral hepatitis. Genetic studies have provided an opportunity to identify the proteins that link vitamin D to the pathology of viral hepatitis (i.e., the major histocompatibility complex class II molecules, the vitamin D receptor, cytochrome P450, the renin-angiotensin system, apolipoprotein E, liver X receptor, toll-like receptor, and the proteins regulated by the Sp1 promoter gene). Vitamin D also exerts its effects on viral hepatitis via non-genomic factors, i.e., matrix metalloproteinase, endothelial vascular growth factor, prostaglandins, cyclooxygenase-2, and oxidative stress. In conclusion, vitamin D could have a beneficial role in viral hepatitis. Calcitriol is best used for viral hepatitis because it is the active form of the vitamin D3 metabolite. PMID:23082050

  10. Nonfunctioning parathyroid carcinoma

    SciTech Connect

    Klink, B.K.; Karulf, R.E.; Maimon, W.N.; Peoples, J.B. )

    1991-07-01

    Parathyroid carcinoma is a rare clinical entity accounting for only 4 per cent of all cases of parathyroid neoplasia. Nonfunctioning parathyroid carcinoma is even rarer. Previously, virtually all patients with these lesions were treated for a nonspecific neck mass. However, in the present case, a preoperative diagnosis of nonfunctioning parathyroid carcinoma was made based on the technetium pertechnetate/thallium 201 subtraction scan. The authors report on the 14th case of nonfunctioning parathyroid carcinoma, a review of the literature, and guidelines for the preoperative and operative evaluation of neck masses suspected to be parathyroid carcinoma.22 references.

  11. Association of Higher Plasma Vitamin D Binding Protein and Lower Free Calcitriol Levels with Tenofovir Disoproxil Fumarate Use and Plasma and Intracellular Tenofovir Pharmacokinetics: Cause of a Functional Vitamin D Deficiency?

    PubMed Central

    Kiser, Jennifer J.; Stephensen, Charles B.; Hazra, Rohan; Flynn, Patricia M.; Wilson, Craig M.; Rutledge, Brandy; Bethel, James; Pan, Cynthia G.; Woodhouse, Leslie R.; Van Loan, Marta D.; Liu, Nancy; Lujan-Zilbermann, Jorge; Baker, Alyne; Kapogiannis, Bill G.; Gordon, Catherine M.

    2013-01-01

    Tenofovir disoproxil fumarate (TDF) causes bone, endocrine, and renal changes by an unknown mechanism(s). Data are limited on tenofovir pharmacokinetics and these effects. Using baseline data from a multicenter study of HIV-infected youth on stable treatment with regimens containing TDF (n = 118) or lacking TDF (n = 85), we measured cross-sectional associations of TDF use with markers of renal function, vitamin D-calcium-parathyroid hormone balance, phosphate metabolism (tubular reabsorption of phosphate and fibroblast growth factor 23 [FGF23]), and bone turnover. Pharmacokinetic-pharmacodynamic associations with plasma tenofovir and intracellular tenofovir diphosphate concentrations were explored among those receiving TDF. The mean age was 20.9 (standard deviation [SD], 2.0) years; 63% were male; and 52% were African American. Compared to the no-TDF group, the TDF group showed lower mean estimated glomerular filtration rates and tubular reabsorption of phosphate, as well as higher parathyroid hormone and 1,25-dihydroxy vitamin D [1,25-OH(2)D] levels. The highest quintile of plasma tenofovir concentrations was associated with higher vitamin D binding protein, lower free 1,25-OH(2)D, higher 25-OH vitamin D, and higher serum calcium. The highest quintile of intracellular tenofovir diphosphate concentration was associated with lower FGF23. Higher plasma tenofovir concentrations were associated with higher vitamin D binding protein and lower free 1,25-OH(2)D, suggesting a functional vitamin D deficiency explaining TDF-associated increased parathyroid hormone. The finding of lower FGF23 accompanying higher intracellular tenofovir diphosphate suggests that different mechanisms mediate TDF-associated changes in phosphate handling. Separate pharmacokinetic properties may be associated with distinct TDF toxicities: tenofovir with parathyroid hormone and altered calcium balance and tenofovir diphosphate with hypophosphatemia and FGF23 regulation. (The clinical trial registration number for this study is NCT00490412 and is available online at http://clinicaltrials.gov/ct2/show/NCT00490412.) PMID:24002093

  12. Relationship between vitamin D deficiency and cardiovascular disease

    PubMed Central

    Ku, Yan-Chiou; Liu, Mu-En; Ku, Chang-Sheng; Liu, Ta-Yuan; Lin, Shoa-Lin

    2013-01-01

    Epidemiological studies have found that low 25-hydroxyvitamin D levels may be associated with coronary risk factors and adverse cardiovascular outcomes. Additionally, vitamin D deficiency causes an increase in parathyroid hormone, which increases insulin resistance and is associated with diabetes, hypertension, inflammation, and increased cardiovascular risk. In this review, we analyze the association between vitamin D supplementation and the reduction in cardiovascular disease. The role of vitamin D deficiency in cardiovascular morbidity and mortality is still controversial, and larger scale, randomized placebo controlled trials are needed to investigate whether oral vitamin D supplementation can reduce cardiovascular risk. Given the low cost, safety, and demonstrated benefit of higher 25-hydroxyvitamin D levels, vitamin D supplementation should become a public health priority for combating common and costly chronic cardiovascular diseases. PMID:24109497

  13. Vitamin D and Clinical Outcomes in Dialysis.

    PubMed

    Parikh, Coral; Gutgarts, Victoria; Eisenberg, Elliot; Melamed, Michal L

    2015-01-01

    Most dialysis patients are vitamin D deficient, including deficiencies in both activated vitamin D (1, 25-dihydroxyvitamin D) and the less active 25-hydroxyvitamin D. These and other abnormalities associated with chronic kidney disease (CKD), if they remain untreated, lead to secondary hyperparathyroidism and bone changes, such as osteitis fibrosa cystica. Activated vitamin D has been proven to decrease parathyroid hormone (PTH) levels in dialysis patients and is currently used for this indication. There are multiple other potential "pleotrophic" effects associated with vitamin D therapy. These include associations with lower all-cause and cardiovascular mortality, lower rates of infections and improved glycemic indexes. Meta-analyses of multiple observational studies have shown activated vitamin D therapy to be associated with improved survival. Observational data also suggest fewer infections and better glucose control. There have been no randomized clinical trials powered to evaluate mortality or other clinical outcomes. Small trials of nutritional vitamin D (ergocalciferol and cholecalciferol) showed increases in 25-hydroxyvitamin D levels without hypercalcemia or hyperphosphatemia, even when given in addition to activated vitamin D therapy. While activated vitamin D therapy is associated with improved outcomes, it also leads to higher fibroblast growth factor 23 (FGF-23) levels, which may be detrimental in dialysis patients. Further research is needed to evaluate whether activated or nutritional vitamin D therapy are beneficial in dialysis patients for outcomes other than secondary hyperparathyroidism. PMID:26424141

  14. Vitamin D and primary hyperparathyroidism (PHPT).

    PubMed

    Souberbielle, Jean-Claude; Bienaim, Frank; Cavalier, Etienne; Cormier, Catherine

    2012-06-01

    Vitamin D deficiency and primary hyperparathyroidism (PHPT) are two common conditions, especially in postmenopausal women. Vitamin D deficiency is said to be even more frequent in PHPT patients than in the general population due to an accelerated conversion of 25-hydroxy vitamin D (25OHD) into calcitriol or 24-hydroxylated compounds. Although several studies have reported worsening of PHPT phenotype (larger tumours, higher parathyroid hormone [PTH] levels, more severe bone disease) when vitamin D deficiency coexists whereas vitamin D supplementation in PHPT patients with a serum calcium level less than 3 mmol/L has been shown to be safe (no increase in serum or urinary calcium) and to decrease serum PTH concentration, many physicians are afraid to give vitamin D to already hypercalcemic PHPT patients. It is possible that, in some patients, a persistent vitamin D deficiency induces, in the long-term, an autonomous secretion of PTH (i.e. tertiary hyperparathyroidism). The mechanism by which this could occur is unclear however. Finally, as many, otherwise normal, subjects with vitamin D insufficiency may have an increased serum PTH level we believe that those with vitamin D insufficiency should be excluded from a reference population for serum PTH levels. By doing that, we found that the upper normal limit for serum PTH was 25-30% lower than in the whole population. PMID:22677209

  15. A rare cystic lesion of the neck: parathyroid cyst

    PubMed Central

    Kaplanoglu, Veysel; Kaplanoglu, Hatice; C?l?z, Deniz Szmen; Duran, Semra

    2013-01-01

    Parathyroid cysts are rarely observed neck masses. Their physical examination is not specific and preoperative diagnosis is usually difficult. Imaging findings and ultrasound-guided fine-needle aspiration with hormone analysis evaluation are important diagnostic criteria. A 48-year-old female patient admitted to our hospital with a symptom of swelling on the left side of the neck was diagnosed with parathyroid cyst by imaging methods (ultrasonography, MRI, parathyroid scintigraphy) and laboratory findings. Fine-needle aspiration biopsy was performed and because of relapse on the follow-up sclerotherapy was planned. Our aim in this study was to present the radiological findings of this case of parathyroid cyst. PMID:24121814

  16. The effect of vitamin A deficiency on the biosynthesis of steroid hormones in rats

    PubMed Central

    Juneja, H. S.; Murthy, S. K.; Ganguly, J.

    1966-01-01

    1. The synthesis, both in vivo and in vitro, of various steroid hormones in the adrenals, testes and ovaries of rats was compared at various stages of vitamin A deficiency with the corresponding pair-fed controls. 2. The enzymic conversion of the ?5-3?-hydroxy steroids into the corresponding ?4-3-oxo steroids was significantly decreased in these tissues even at the mild-deficiency stage, further loss taking place on prolonging the deficiency. 3. In all three tissues the loss in the production of androstenedione from dehydroepiandrosterone could be reactivated in vitro by retinol or retinoic acid, but only at the mild stage of the deficiency. 4. Of the various lipoidal materials tried, retinal, retinol, retinoic acid, ?-tocopherol acetate, menadione, calciferol, lecithin, palmitic acid and cholesterol, only retinol and retinoic acid restored the lost activity. 5. Intraperitoneal injection of retinal, retinol or retinoic acid into the deficient rats, 24hr. before they were killed, corrected the effect of the deficiency on this reaction. 6. Vitamin A deficiency markedly affected the synthesis of deoxycorticosterone and corticosterone from pregnenolone in the adrenals of rats, even at the mildly deficient stage, with further loss taking place at the acute stage; in vitro, retinol or retinoic acid could restore the loss at the mild-deficiency but not at the acute-deficiency stage. 7. The deficiency had no such effect on the synthesis of deoxycorticosterone from progesterone or of corticosterone from progesterone or deoxycorticosterone. 8. Compared with the pair-fed normals, the adrenals of deficient rats contained smaller amounts of deoxycorticosterone and corticosterone. PMID:6007455

  17. Polybrominated diphenyl ether (PBDE)-induced alterations in vitamin A and thyroid hormone concentrations in the rat during lactation and early postnatal development

    SciTech Connect

    Ellis-Hutchings, Robert G.; Cherr, Gary N.; Hanna, Lynn A.; Keen, Carl L. . E-mail: clkeen@ucdavis.edu

    2006-09-01

    In experimental animals fed standard laboratory diets, penta-BDE mixtures can decrease circulating thyroid hormone and liver vitamin A concentrations. A substantial number of pregnant women and their children have marginal vitamin A status, potentially increasing their risk of adverse effects to penta-BDE exposure. The current study investigated the effects of maternal gestational and lactational penta-BDE exposure on thyroid hormone and vitamin A homeostasis in rats of sufficient vitamin A (VAS) or marginal vitamin A (VAM) status and their offspring. Dams were administered daily oral doses of 18 mg/kg DE-71 (a penta-BDE mixture) or a corn oil vehicle from gestation day 6 through lactation day (LD) 18. Thyroid hormone and vitamin A homeostasis were assessed in plasma and tissues of LD 19 dams and postnatal day (PND) 12, 18, and 31 pups. DE-71 exposure induced hepatomegaly in VAS and VAM pups at all timepoints and increased testes weights at PND 31. While liver vitamin A concentrations were low in DE-71 treated dams and pups, plasma retinol concentrations and plasma retinol binding protein levels were only low in VAM animals exposed to DE-71. DE-71 exposure lowered plasma thyroxine concentrations in VAS and VAM dams and pups. Plasma thyroid stimulating hormone concentrations were high in VAM dams exposed to DE-71, suggesting that marginal vitamin A status enhances the susceptibility to thyroid hormone axis disruption by DE-71. These results support the concept that marginal vitamin A status in pregnant women may increase the risk for PBDE-induced disruptions in vitamin A and thyroid hormone homeostasis.

  18. Effects on thyroid hormone metabolism and depletion of lung vitamin A in rats by airborne particulate matter

    SciTech Connect

    Heussen, G.A.; Schefferlie, G.J.; Talsma, M.J.; van Til, H.; Dohmen, M.J.; Brouwer, A.; Alink, G.M. )

    1993-04-01

    Thyroxine (T4) and vitamin A are important regulators of normal epithelial differentiation and proliferation and might act in the promotion phase of carcinogenesis. Thyroid hormone and vitamin A metabolism are linked by a common plasma carrier protein, transthyretin (TTR). Polychlorinated biphenyls (PCBs) and related organochlorine compounds deplete vitamin A and thyroxine by interaction with TTR and alteration of their metabolism in hepatic and other organs. In the present report an outdoor airborne particulate matter (APM) extract was tested for both interaction with thyroid hormone and vitamin A metabolism, in order to address the question of whether APM has the potency to deplete vitamin A and thyroid hormones. Furthermore, studies were performed to characterize compounds present in APM that interact with TTR. A third aim was to compare the interaction of APM extracts with TTR and thyroxine-binding globulin (TBG), the major carrier protein for thyroxine in humans. Results showed that a single treatment of rats with an outdoor APM extract depleted plasma thyroxine and triiodothyronine levels and increased plasma retinol levels gradually over the time period studied, while liver retinol, lung retinol, and retinyl palmitate levels were depleted by 30-50%. As outdoor APM was able to inhibit T4-TTR binding in vitro, this suggests that the reduction in thyroxine levels in vivo is caused by the same phenomenon. Experiments showed that the neutral fraction of the APM extract accounted for most of the inhibitory activity on T4-TTR binding. Polycyclic aromatic hydrocarbons and nitrated derivatives are not likely to be responsible for the activity of the neutral fraction, because several representatives of these compounds showed no or very little interaction with TTR. Pentachlorophenol, a compound with known inhibitory activity on T4-TTR binding, was detected in the organic acid fraction of both a cigarette smoke sample and an outdoor APM sample.

  19. Vitamin D analogs: novel therapeutic agents for cardiovascular disease?

    PubMed

    Reinhart, Glenn A

    2004-09-01

    Vitamin D3 plays a key role in regulating calcium and mineral homeostasis in support of normal development and maintenance of bone. The classic effects of vitamin D3 include promoting absorption of dietary calcium in the gut and, through its actions as a steroid endocrine hormone, regulating the synthesis and secretion of parathyroid hormone. The effects of the vitamin D3 system are mediated through the highly regulated generation of the potent, active metabolite 1,25-dihydroxyvitamin D3 (calcitriol). Vitamin D3 exerts its effects through the vitamin D3 receptor (VDR), a ligand-activated nuclear receptor expressed in a wide array of tissue and cell types. Studies performed in mice rendered deficient for VDR suggest that calcitriol and VDR may inhibit the renin-angiotensin system and reduce blood pressure in the long-term. Clinical studies suggest that administration of vitamin D3 analogs produces differential benefit with regards to mortality in dialysis patients; other studies suggest that vitamin D3 analogs may provide cardiovascular benefit in both dialysis and nondialysis patients. This paper reviews clinical and preclinical studies, which suggest that vitamin D3 analogs may provide therapeutic utility in the treatment of cardiovascular disease independent of those mechanisms typically associated with the vitamin D3 endocrine system. PMID:15503649

  20. Thyroid hormone and vitamin D regulate VGF expression and promoter activity.

    PubMed

    Lewis, Jo E; Brameld, John M; Hill, Phil; Wilson, Dana; Barrett, Perry; Ebling, Francis J P; Jethwa, Preeti H

    2016-02-01

    The Siberian hamster (Phodopus sungorus) survives winter by decreasing food intake and catabolizing abdominal fat reserves, resulting in a sustained, profound loss of body weight. Hypothalamic tanycytes are pivotal for this process. In these cells, short-winter photoperiods upregulate deiodinase 3, an enzyme that regulates thyroid hormone availability, and downregulate genes encoding components of retinoic acid (RA) uptake and signaling. The aim of the current studies was to identify mechanisms by which seasonal changes in thyroid hormone and RA signaling from tanycytes might ultimately regulate appetite and energy expenditure. proVGF is one of the most abundant peptides in the mammalian brain, and studies have suggested a role for VGF-derived peptides in the photoperiodic regulation of body weight in the Siberian hamster. In silico studies identified possible thyroid and vitamin D response elements in the VGF promoter. Using the human neuroblastoma SH-SY5Y cell line, we demonstrate that RA increases endogenous VGF expression (P<0.05) and VGF promoter activity (P<0.0001). Similarly, treatment with 1,25-dihydroxyvitamin D3 increased endogenous VGF mRNA expression (P<0.05) and VGF promoter activity (P<0.0001), whereas triiodothyronine (T3) decreased both (P<0.01 and P<0.0001). Finally, intra-hypothalamic administration of T3 blocked the short day-induced increase in VGF expression in the dorsomedial posterior arcuate nucleus of Siberian hamsters. Thus, we conclude that VGF expression is a likely target of photoperiod-induced changes in tanycyte-derived signals and is potentially a regulator of seasonal changes in appetite and energy expenditure. PMID:26643910

  1. Thyroid hormone and vitamin D regulate VGF expression and promoter activity

    PubMed Central

    Lewis, Jo E; Brameld, John M; Hill, Phil; Wilson, Dana; Barrett, Perry; Ebling, Francis J P; Jethwa, Preeti H

    2016-01-01

    The Siberian hamster (Phodopus sungorus) survives winter by decreasing food intake and catabolizing abdominal fat reserves, resulting in a sustained, profound loss of body weight. Hypothalamic tanycytes are pivotal for this process. In these cells, short-winter photoperiods upregulate deiodinase 3, an enzyme that regulates thyroid hormone availability, and downregulate genes encoding components of retinoic acid (RA) uptake and signaling. The aim of the current studies was to identify mechanisms by which seasonal changes in thyroid hormone and RA signaling from tanycytes might ultimately regulate appetite and energy expenditure. proVGF is one of the most abundant peptides in the mammalian brain, and studies have suggested a role for VGF-derived peptides in the photoperiodic regulation of body weight in the Siberian hamster. In silico studies identified possible thyroid and vitamin D response elements in the VGF promoter. Using the human neuroblastoma SH-SY5Y cell line, we demonstrate that RA increases endogenous VGF expression (P<0.05) and VGF promoter activity (P<0.0001). Similarly, treatment with 1,25-dihydroxyvitamin D3 increased endogenous VGF mRNA expression (P<0.05) and VGF promoter activity (P<0.0001), whereas triiodothyronine (T3) decreased both (P<0.01 and P<0.0001). Finally, intra-hypothalamic administration of T3 blocked the short day-induced increase in VGF expression in the dorsomedial posterior arcuate nucleus of Siberian hamsters. Thus, we conclude that VGF expression is a likely target of photoperiod-induced changes in tanycyte-derived signals and is potentially a regulator of seasonal changes in appetite and energy expenditure. PMID:26643910

  2. Primary Vitamin D Target Genes Allow a Categorization of Possible Benefits of Vitamin D3 Supplementation

    PubMed Central

    Carlberg, Carsten; Seuter, Sabine; de Mello, Vanessa D. F.; Schwab, Ursula; Voutilainen, Sari; Pulkki, Kari; Nurmi, Tarja; Virtanen, Jyrki; Tuomainen, Tomi-Pekka; Uusitupa, Matti

    2013-01-01

    Vitamin D deficiency has been associated with an increased risk of developing a number of diseases. Here we investigated samples from 71 pre-diabetic individuals of the VitDmet study, a 5-month high dose vitamin D3 intervention trial during Finnish winter, for their changes in serum 25-hydroxyvitamin D3 (25(OH)D3) concentrations and the expression of primary vitamin D target genes in peripheral blood mononuclear cells and adipose tissue. A negative correlation between serum concentrations of parathyroid hormone and 25(OH)D3 suggested an overall normal physiological vitamin D response among the participants. The genes CD14 and thrombomodulin (THBD) are up-regulated primary vitamin D targets and showed to be suitable gene expression markers for vitamin D signaling in both primary tissues. However, in a ranking of the samples concerning their expected response to vitamin D only the top half showed a positive correlation between the changes of CD14 or THBD mRNA and serum 25(OH)D3 concentrations. Interestingly, this categorization allows unmasking a negative correlation between changes in serum concentrations of 25(OH)D3 and the inflammation marker interleukin 6. We propose the genes CD14 and THBD as transcriptomic biomarkers, from which the effects of a vitamin D3 supplementation can be evaluated. These biomarkers allow the classification of subjects into those, who might benefit from a vitamin D3 supplementation, and others who do not. PMID:23923049

  3. Single-sperm typing: Determination of genetic distance between the sup G. gamma. -globulin and parathyroid hormone loci by using the polymerase chain reaction and allele-specific oligomers

    SciTech Connect

    Cui, Xiangfeng; Li, Honghua; Galas, D.; Arnheim, N. ); Goradia, T.M. Harvard Univ., Cambridge, MA ); Lange, K. ); Kazazian, H.H. Jr. )

    1989-12-01

    The frequency of recombination between the {sup G}{gamma}-globin (HBG2) and parathyroid hormone (PTH) loci on the short arm of human chromosome 11 was estimated by typing >700 single-sperm samples from two males. The sperm-typing technique employed involves the polymerase chain reaction and allele-specific oligonucleotide hybridization. The maximum likelihood recombination fraction estimate of 0.16 falls well within previous estimates based on family studies. With current technology and a sample size of 1000 sperm, recombination fractions down to {approx}0.009 can be estimated with statistical reliability; with a sample size of 5000 sperm, this value drops to about 0.004. Reasonable technological improvements could result in the detection of recombination frequencies <0.001.

  4. Replantation with cryopreserved parathyroid for permanent hypoparathyroidism: a case report and review of literatures

    PubMed Central

    Liu, Hai-Guang; Chen, Zai-Chong; Zhang, Xiao-Hua; Yang, Kai

    2015-01-01

    Permanent postsurgical hypoparathyroidism is defined as insufficient parathyroid hormone (PTH) to maintain normocalcemia 6 months after surgery. It occurs mostly in reoperation for persistent or recurrent hyperparathyroidism. The treatment of long-term calcium and vitamin D supplement is burdensome and may cause iatrogenic complications. PTH replacement is potential but still under trials. Only replantation with cryopreserved parathyroid is an available treatment for patients to reduce or stop long-term drug administration. However, this treatment is not applied widely in developing countries, due to lack of experiences and skills. Herein, we reported a 58-year-old male presented a continuous elevated parathyroid hormone up to about 2342 ng/L and bone pain during hemodialysis for 6 years due to chronic renal failure. He underwent the first operation total parathyroidectomy and autotransplantation. After this operation, he suffered from a persistent calcemia and permanent hypoparathyroidism. After three times of replantation with cryopreserved parathyroid and dialysis with a high calcium dialysate, the low concentration of calcium was elevated and symptoms of hypocalcemia disappeared. However, PTH was not elevated significantly in the long term. It might be related to our nonstandard cryopreservation protocol and no microbiological and histological examinations before replantation, compared with other successful reports. Therefore, we suggest a standard cryopreservation protocol should be followed by non-experienced institutions, especially in developing countries. Furthermore, a high calcium dialysate is efficient to increase calcium concentration and alleviate symptoms of hypocalcemia. It may be an available treatment of persistent hypocalcemia and permanent hypoparathyroidism in dialysis patients. PMID:26064394

  5. Life-threatening intrathyroidal parathyroid adenoma

    PubMed Central

    Dogan, Ugur; Koc, Umit; Mayir, Burhan; Habibi, Mani; Dogan, Berna; Gomceli, Ismail; Bulbuller, Nurullah

    2015-01-01

    Acute primary hyperparathyroidism and parathyroid crisis are characterized by life-threatening hypercalcemia, a rare disorder. A 69-year-old female patient presented at our hospitals neurology clinic with weakness, nausea, vomiting, depression, and hypercalcemia. Treatment of hypercalcemia resulted in no improvement in neurological symptoms, indicating resistance to treatment. Thyroid ultrasonography and parathyroid scintigraphy revealed hypoechoic nodules in the right lobe, pieces of nodules in the left lobe, and high serum calcium and parathyroid hormone levels. After provision of intensive medical treatment including hydration, diuresis, and bisphosphonate infusion resulted in only minimal decrease in the calcium level, urgent surgical treatment was performed. Frozen biopsy of the right intrathyroidal giant parathyroid adenoma in the right lobe confirmed initial diagnosis of primary hyperparathyroidism. Based on the biopsy findings, right parathyroidectomy and right total and left subtotal thyroidectomy were performed. Histopathologic examination revealed a parathyroid adenoma localized inside large thyroid nodules. Review of the findings resulted in diagnosis of intrathyroidal parathyroid adenoma. Symptoms of hypercalcemia improved rapidly during the postoperative period. PMID:25785164

  6. 1,25-Vitamin D3 Deficiency Induces Albuminuria.

    PubMed

    Sonneveld, Ramon; Hoenderop, Joost G J; Stavenuiter, Andrea W D; Ferrantelli, Evelina; Baltissen, Marijke P A; Dijkman, Henry B; Florquin, Sandrine; Rops, Angelique L; Wetzels, Jack F M; Berden, Jo H M; van der Vlag, Johan; Nijenhuis, Tom

    2016-04-01

    Vitamin D plays an important role in renal (patho)physiology. Patients with glomerular diseases have an injured renal filtration barrier, leading to proteinuria and reduced renal function. An impaired renal function also leads to 1,25-vitamin D3 deficiency as a result of reduced renal 1α-hydroxylase activity. Vitamin D treatment to reduce proteinuria remains controversial, although there is an inverse correlation between vitamin D levels and proteinuria. Herein, we showed that 1,25-vitamin D3-deficient 25-hydroxy-vitamin-D3-1α-hydroxylase knockout mice and 1,25-vitamin D3-deficient rats develop podocyte injury and renal dysfunction. Glomerular injury was characterized by proteinuria and partial podocyte foot process effacement. Expression of nephrin, podocin, desmin, and transient receptor potential channel C6 in the podocyte was significantly altered in 1,25-vitamin D3-deficient animals. Supplementation with 1,25-vitamin D3 or 1,25-vitamin D2 prevented podocyte effacement or reversed glomerular and tubulointerstitial damage in 1,25-vitamin D3-deficient animals, thereby preserving and restoring renal function, respectively. The effect of 1,25-vitamin D3 deficiency and 1,25-vitamin D3 and 1,25-vitamin D2 repletion on proteinuria could not be explained by hypocalcemia, changes in parathyroid hormone, or fibroblast growth factor 23. This study demonstrates that 1,25-vitamin D3 deficiency directly leads to renal injury in rodents. Translated to human subjects, this would underline the need for early vitamin D supplementation in patients with glomerular disease and chronic renal insufficiency, which might inhibit or potentially reverse renal injury. PMID:26851346

  7. Vitamins

    MedlinePLUS

    ... wheat and oats wheat germ leafy green vegetables vegetable oils like sunflower, canola, and olive egg yolks nuts ... foods are rich in vitamin K? leafy green vegetables dairy products, like milk and yogurt broccoli soybean oil When your body gets this vitamin and the ...

  8. PCBs and DDT in the serum of juvenile California sea lions: associations with vitamins A and E and thyroid hormones.

    PubMed

    Debier, Cathy; Ylitalo, Gina M; Weise, Michael; Gulland, Frances; Costa, Daniel P; Le Boeuf, Burney J; de Tillesse, Tanguy; Larondelle, Yvan

    2005-03-01

    Top-trophic predators like California sea lions bioaccumulate high levels of persistent fat-soluble pollutants that may provoke physiological impairments such as endocrine or vitamins A and E disruption. We measured circulating levels of polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane (DDT) in 12 healthy juvenile California sea lions captured on Ao Nuevo Island, California, in 2002. We investigated the relationship between the contamination by PCBs and DDT and the circulating levels of vitamins A and E and thyroid hormones (thyroxine, T4 and triiodothyronine, T3). Serum concentrations of total PCBs (sigmaPCBs) and total DDT were 14 +/- 9 mg/kg and 28 +/- 19 mg/kg lipid weight, respectively. PCB toxic equivalents (sigmaPCB TEQs) were 320 +/- 170 ng/kg lipid weight. Concentrations of sigmaPCBs and sigmaPCB TEQs in serum lipids were negatively correlated (p < 0.05) with serum vitamin A and T3, potentially reflecting PCB-related toxicity. A slight but not significant negative correlation (p < 0.1) was observed between serum T4 and the levels of sigmaPCBs and sigmaPCB TEQs. Conversely, no relationship was evident between the contaminant concentrations and vitamin E (p > 0.1). As juvenile California sea lions are useful sentinels of coastal contamination, the high levels encountered in their serum is cause for concern about the ecosystem health of the area. PMID:15589659

  9. Prevalence of vitamin D insufficiency among healthy school-age Cree children

    PubMed Central

    Riverin, Bruno; Dewailly, Eric; Ct, Suzanne; Johnson-Down, Louise; Morin, Suzanne; Dodin, Sylvie

    2014-01-01

    BACKGROUND: First Nations children are at higher risk for vitamin D deficiency and rickets. OBJECTIVE: To assess the prevalence of vitamin D deficiency and the correlations between fat mass, parathyroid hormone and dietary habits with serum vitamin D level in a random sample of Cree children eight to 14 years of age. METHODS: Serum 25-hydroxyvitamin D (25[OH]D) levels and additional information regarding anthropometrics and dietary habits were obtained from participants in two Cree communities. Vitamin D deficiency and insufficiency was defined as serum 25(OH)D levels <30 nmol/L and <50 nmol/L, respectively. Proportions to estimate the vitamin D status were weighted to account for the complex sampling design, and Pearsons correlation coefficients were used to estimate the associations of milk and fish intake, parathyroid hormone and fat mass with serum 25(OH)D levels. RESULTS: Data from 52 healthy Cree children (mean [ SD] age 11.12.0 years; 27 boys) were included in the analyses. The median serum 25(OH)D level was 52.4 nmol/L (range 22.1 nmol/L to 102.7 nmol/L). Forty-three percent (95% CI 29% to 58%) and 81% (95% CI 70% to 92%) of Cree children had vitamin D levels <50 nmol/L and <75 nmol/L, respectively. Vitamin D intake was positively associated with serum 25(OH)D levels. Obese children had lower vitamin D levels; however, the difference was nonsignificant. CONCLUSION: There may be a substantial proportion of Cree children who are vitamin D deficient. Increasing age, lower dietary vitamin D intake and, possibly, higher body mass index were associated with decreased vitamin D levels; however, causality cannot be inferred. PMID:24665228

  10. Single and Combined use of Human Parathyroid Hormone (PTH) (1-34) on Areal Bone Mineral Density (aBMD) in Postmenopausal Women with Osteoporosis: Evidence Based on 9 RCTs

    PubMed Central

    Song, Jiefu; Jing, Zhizhen; Chang, Feng; Li, Lijun; Su, Yunxing

    2014-01-01

    Background Human parathyroid hormone (PTH) (1-34) or teriparatide (TPTD) is an anabolic agent for osteoporosis. This recombinant protein stimulates positive bone formation balance and bone remodeling. However, when concomitantly used with antiresorptive (AR) agents, previous studies reported conflicting results in their potential additive and synergistic effects on bone metabolism and bone mineral density (BMD). This study aimed to integrate previous evidence to assess the effect of TPTD monotherapy and the additive effect of TPTD on AR agents in postmenopausal women with osteoporosis. Material/Methods This meta-analysis identified 9 RCTs from databases. To assess the therapeutic effect on osteoporosis, the weighted mean differences (WMDs) were used to pool the percentage change of BMD along with the 95% confidence intervals (CIs). BMD of 3 skeletal sites, including lumbar spine, total hip, and femoral neck were assessed. Results TPTD alone could significantly improve BMD of all 3 skeletal sites compared with placebo, although the effect on the femoral neck was less conclusive. The additive effect of TPTD over hormone replacement therapy (HRT) and denosumab (DEN) agents is evident in all 3 skeletal sites. But TPTD plus Alendronate (ALN) did not demonstrate additive effect in total hip and femoral neck. Conclusions TPTD alone could significantly improve BMD of lumbar spine, total hip, and femoral neck. BMD outcomes of concomitant use of TPTD and AR agents are site-dependent and vary depending on the specific AR agent used and the timing of AR therapy initiation. PMID:25503108

  11. Vitamins

    MedlinePLUS

    ... left navigation Fitness and Nutrition Nutrition basics Proteins Carbohydrates Fats Vitamins Minerals Water How to eat for ... and cheese. B 1 Helps your body use carbohydrates for energy Good for your nervous system Yeasts, ...

  12. Acute Vitamin D Intoxication Possibly Due to Faulty Production of a Multivitamin Preparation

    PubMed Central

    An?k, Ahmet; atl?, Gnl; Abac?, Ayhan; Dizdarer, Ceyhun; Bber, Ece

    2013-01-01

    Vitamin D intoxication usually occurs as a result of inappropriate use of vitamin D preparations and can lead to life-threatening hypercalcemia. It is also known that there are a number of physicians who prescribe vitamin D supplements for various clinical conditions, such as poor appetite and failure to thrive. While inappropriate use of vitamin D supplements may lead to vitamin D intoxication, there are no reports of cases of vitamin D toxicity due to manufacturing errors of vitamin D preparations. Here, we present cases of hypervitaminosis D which developed following the use of a standard dose of a multivitamin preparation. All three cases presented with hypercalcemia symptoms and had characteristic laboratory findings such as hypercalcemia, hypercalciuria, low levels of parathyroid hormone. The very high serum 25(OH) vitamin D levels in these patients indicated vitamin D excess. The vitamin D level of the prescribed multivitamin preparation in the market was studied and was found to contain a very low level of vitamin D (10 IU/5 mL). Although the stated vitamin D content of the preparations ingested by these patients was not high, unproven but possible manufacturing errors were considered to be a possible cause of the hypervitaminosis D diagnosed in these three patients. Conflict of interest:None declared. PMID:23748070

  13. Malignancy of parathyroid: An uncommon clinical entity

    PubMed Central

    Ali, Kamran; Sarangi, Rathindra; Dhawan, Shashi; Agarwal, Brij B.; Gupta, Manish K.

    2013-01-01

    Parathyroid carcinoma is a very rare cause of hyperparathyroidism. The diagnosis is usually established on histopathological grounds of capsular and vascular invasion, but a potential clue to the diagnosis is also offered by the severity of clinical profile, abrupt onset of symptoms, and a high degree of hypercalcemia and raised serum parathyroid hormone (PTH). We report a case of an elderly female with a prolonged history of generalized weakness and bone pain along with bilateral renal calculi, classical bony lesions, and a high serum calcium and PTH level who underwent a right inferior parathyroidectomy considering a parathyroid adenoma as our diagnosis. However, the biopsy report was consistent with a parathyroid carcinoma, and so, she was further subjected to an ipsilateral hemithyroidectomy as a completion procedure. So, we would like to emphasize that its preferable to have a high index of suspicion for parathyroid carcinoma when these clues are present, than to miss the opportunity for surgical cure in the first go by failing to consider it in the differential diagnosis. PMID:23776914

  14. The effects of cinacalcet treatment on bone mineral metabolism, anemia parameters, left ventricular mass index and parathyroid gland volume in hemodialysis patients with severe secondary hyperparathyroidism.

    PubMed

    Torun, Dilek; Yildiz, Ismail; Micozkadioglu, Hasan; Nursal, Gul Nihal; Yigit, Fatma; Ozelsancak, Ruya

    2016-01-01

    The aim of this study was to investigate the effects of cinacalcet therapy on anemia parameters, bone mineral metabolism, left ventricular mass index (LVMI) and parathyroid gland volume in hemodialysis (HD) patients with secondary hyperparathyroidism. Twenty-five HD patients (M/F: 11/14, mean age: 45.217.9 years, mean HD duration: 96.432.7 months) were included in this prospective pilot study. The indication to start calcimimetic therapy was persistent serum levels of parathyroid hormone (PTH)>1000 pg/mL, refractory to intravenous (i.v.) vitamin D and phosphate-binding therapy. The initial and one-year results of adjusted serum calcium (Ca+2), phosphate (P), CaP product, PTH, hemoglobin (Hb) and ferritin levels, transferrin saturation index (TSAT), median weekly erythropoietin (EPO) dose, LVMI, and parathyroid volume by parathyroid ultrasonography were determined. There were no differences between pre- and post-treatment levels of serum Ca+2 (P=0.853), P (P=0.447), CaP product (P=0.587), PTH (P=0.273), ferritin (P=0.153) and TSAT (P=0.104). After 1 year of calcimimetic therapy, the Hb levels were significantly higher than the initial levels (P=0.048). The weekly dose of EPO decreased with no statistical significance. The dose of cinacalcet was increased from 32.412.0 to 60.024.4 mg/day (P=0.01). There were no differences between the pre- and post-treatment results regarding weekly vitamin D dose, parenteral iron dose, LVMI and parathyroid volume. The results of our study suggest that cinacalcet therapy might have an additional benefit in the control anemia in HD patients. PMID:26787561

  15. Phosphate metabolism and vitamin D.

    PubMed

    Fukumoto, Seiji

    2014-01-01

    Phosphate plays many essential roles in our body. To accomplish these functions, serum phosphate needs to be maintained in a certain range. Serum phosphate level is regulated by intestinal phosphate absorption, renal phosphate handling and equilibrium of extracellular phosphate with that in bone or intracellular fluid. Several hormones such as parathyroid hormone, 1,25-dihydroxyvitamin D (1,25(OH)2D) and fibroblast growth factor 23 (FGF23) regulate serum phosphate by modulating intestinal phosphate absorption, renal phosphate reabsorption and/or bone metabolism. In addition, dietary phosphate rapidly enhances renal phosphate excretion, although detailed mechanisms of this adaptation remain to be clarified. Physiologically, extracellular concentrations of phosphate and these hormones are maintained by several negative feedback loops. For example, 1,25(OH)2D enhances FGF23 production and FGF23 reduces 1,25(OH)2D level. In addition, phosphate affects 1,25(OH)2D and FGF23 levels. Dysfunction of these negative feedback loops results in several diseases with abnormal phosphate and 1,25(OH)2D levels. Especially, excess actions of FGF23 cause several hypophosphatemic rickets/osteomalacia with relatively low level of 1,25(OH)2D that had been classified as vitamin D-resistant rickets/osteomalacia. In contrast, deficient actions of FGF23 cause hyperphosphatemic familial tumoral calcinosis. However, there still remain several unanswered questions regarding phosphate and vitamin D metabolism. PMID:24605214

  16. Phosphate metabolism and vitamin D

    PubMed Central

    Fukumoto, Seiji

    2014-01-01

    Phosphate plays many essential roles in our body. To accomplish these functions, serum phosphate needs to be maintained in a certain range. Serum phosphate level is regulated by intestinal phosphate absorption, renal phosphate handling and equilibrium of extracellular phosphate with that in bone or intracellular fluid. Several hormones such as parathyroid hormone, 1,25-dihydroxyvitamin D (1,25(OH)2D) and fibroblast growth factor 23 (FGF23) regulate serum phosphate by modulating intestinal phosphate absorption, renal phosphate reabsorption and/or bone metabolism. In addition, dietary phosphate rapidly enhances renal phosphate excretion, although detailed mechanisms of this adaptation remain to be clarified. Physiologically, extracellular concentrations of phosphate and these hormones are maintained by several negative feedback loops. For example, 1,25(OH)2D enhances FGF23 production and FGF23 reduces 1,25(OH)2D level. In addition, phosphate affects 1,25(OH)2D and FGF23 levels. Dysfunction of these negative feedback loops results in several diseases with abnormal phosphate and 1,25(OH)2D levels. Especially, excess actions of FGF23 cause several hypophosphatemic rickets/osteomalacia with relatively low level of 1,25(OH)2D that had been classified as vitamin D-resistant rickets/osteomalacia. In contrast, deficient actions of FGF23 cause hyperphosphatemic familial tumoral calcinosis. However, there still remain several unanswered questions regarding phosphate and vitamin D metabolism. PMID:24605214

  17. Hormones

    MedlinePLUS

    Hormones are your body's chemical messengers. They travel in your bloodstream to tissues or organs. They work ... glands, which are special groups of cells, make hormones. The major endocrine glands are the pituitary, pineal, ...

  18. Vitamin-D nutrition and bone mass in adolescent black girls.

    PubMed Central

    Talwar, Sonia A.; Swedler, Jane; Yeh, James; Pollack, Simcha; Aloia, John F.

    2007-01-01

    OBJECTIVE: To examine the relationship between bone mass and serum levels of 25-hydroxyvitamin D and parathyroid hormone in African-American adolescent girls. STUDY DESIGN: A cross-sectional sample at a suburban research center. METHODS: Twenty-one adolescent black girls 12-14 years of age, were studied during winter with biochemical measurements of serum 25-hydroxyvitamin D (25-OHD) and parathyroid hormone (PTH). Bone mass assessment was done with dual energy x-ray absorbsiometry (DXA) and peripheral quantitative computed tomography of the radius (p-QCT). Anthropometric, physical activity and nutritional data were collected. RESULTS: All participants were vitamin-D deficient (serum 25-OHD level <50 nmol/L), of whom nine (43%) were severely vitamin-D deficient (serum 25-OHD level <20 nmol/L). Mean daily intake of dietary calcium was 540 mg/d and vitamin D was 195 IU/d. There was a positive correlation, although statistically not significant, between serum 25-OHD and various bone mass measurements. Serum PTH was inversely correlated to total body BMD (r = -0.51, p = 0.02) and other bone mineral density at the lumbar spine, total femur and mid-radius. CONCLUSION: Vitamin-D insufficiency is a widely prevalent problem among adolescent African-American girls. Our data implies that enhancing vitamin-D nutrition resulting in lower serum PTH levels could potentially influence their peak bone mass. PMID:17595934

  19. Dietary contaminant exposure affects plasma testosterone, but not thyroid hormones, vitamin A, and vitamin E, in male juvenile arctic foxes (Vulpes lagopus).

    PubMed

    Hallanger, Ingeborg G; Jørgensen, Even H; Fuglei, Eva; Ahlstrøm, Øystein; Muir, Derek C G; Jenssen, Bjørn Munro

    2012-01-01

    Levels of persistent organic pollutants (POP), such as polychlorinated biphenyls (PCB), are high in many Arctic top predators, including the Arctic fox (Vulpes lagopus). The aim of this study was to examine possible endocrine-disruptive effects of dietary POP exposure in male juvenile Arctic foxes in a controlled exposure experiment. The study was conducted using domesticated farmed blue foxes (Vulpes lagopus) as a model species. Two groups of newly weaned male foxes received a diet supplemented with either minke whale (Baleneoptera acutorostrata) blubber that was naturally contaminated with POP (exposed group, n = 5 or 21), or pork (Sus scrofa) fat (control group, n = 5 or 21). When the foxes were 6 mo old and had received the 2 diets for approximately 4 mo (147 d), effects of the dietary exposure to POP on plasma concentrations of testosterone (T), thyroid hormones (TH), thyroid-stimulating hormone (TSH), retinol (vitamin A), and tocopherol (viramin E) were examined. At sampling, the total body concentrations of 104 PCB congeners were 0.1 ± 0.03 μg/g lipid weight (l.w.; n = 5 [mean ± standard deviation]) and 1.5 ± 0.17 μg/g l.w. (n = 5) in the control and exposed groups, respectively. Plasma testosterone concentrations in the exposed male foxes were significantly lower than in the control males, being approximately 25% of that in the exposed foxes. There were no between-treatment differences for TH, TSH, retinol, or tocopherol. The results suggest that the high POP levels experienced by costal populations of Arctic foxes, such as in Svalbard and Iceland, may result in delayed masculine maturation during adolescence. Sex hormone disruption during puberty may thus have lifetime consequences on all aspects of reproductive function in adult male foxes. PMID:23030655

  20. Parathyroid cell resistance to fibroblast growth factor 23 in secondary hyperparathyroidism of chronic kidney disease.

    PubMed

    Galitzer, H; Ben-Dov, I Z; Silver, Justin; Naveh-Many, Tally

    2010-02-01

    Although fibroblast growth factor 23 (FGF23) acting through its receptor Klotho-FGFR1c decreases parathyroid hormone expression, this hormone is increased in chronic kidney disease despite an elevated serum FGF23. We measured possible factors that might contribute to the resistance of parathyroid glands to FGF23 in rats with the dietary adenine-induced model of chronic kidney disease. Quantitative immunohistochemical and reverse transcription-PCR analysis using laser capture microscopy showed that both Klotho and FGFR1 protein and mRNA levels were decreased in histological sections of the parathyroid glands. Recombinant FGF23 failed to decrease serum parathyroid hormone levels or activate the mitogen-activated protein kinase signaling pathway in the glands of rats with advanced experimental chronic kidney disease. In parathyroid gland organ culture, the addition of FGF23 decreased parathyroid hormone secretion and mRNA levels in control animals or rats with early but not advanced chronic kidney disease. Our results show that because of a downregulation of the Klotho-FGFR1c receptor complex, an increase of circulating FGF23 does not decrease parathyroid hormone levels in established chronic kidney disease. This in vivo resistance is sustained in parathyroid organ culture in vitro. PMID:20016468

  1. Vitamin D and muscle function.

    PubMed

    Pfeifer, M; Begerow, B; Minne, H W

    2002-03-01

    The aim of this review is to summarize current knowledge on the relation between vitamin D and muscle function. Molecular mechanisms of vitamin D action on muscle tissue have been known for many years and include genomic and non-genomic effects. Genomic effects are initiated by binding of 1,25-dihydroxyvitamin D3 (1,25(OH)2D) to its nuclear receptor, which results in changes in gene transcription of messenger RNA and subsequent protein synthesis. Non-genomic effects of vitamin D are rapid and mediated through a membrane-bound vitamin D receptor (VDR). Genetic variations in the VDR and the importance of VDR polymorphisms in the development of osteoporosis are still a matter of controversy and debate. Most recently, VDR polymorphisms have been described to affect muscle function. The skin has an enormous capacity for vitamin D production and supplies the body with 80-100% of its requirements of vitamin D. Age, latitude, time of day, season of the year and pigmentation can dramatically affect the production of vitamin D in the skin. Hypovitaminosis D is a common feature in elderly people living in northern latitudes and skin coverage has been established as an important factor leading to vitamin D deficiency. A serum 25-hydroxyvitamin D level below 50 nmol/l has been associated with increased body sway and a level below 30 nmol/l with decreased muscle strength. Changes in gait, difficulties in rising from a chair, inability to ascend stairs and diffuse muscle pain are the main clinical symptoms in osteomalacic myopathy. Calcium and vitamin D supplements together might improve neuromuscular function in elderly persons who are deficient in calcium and vitamin D. Thus 800 IU of cholecalciferol in combination with mg of elemental calcium reduces hip fractures and other non-vertebral fractures and should generally be recommended in individuals who are deficient in calcium and vitamin D. Given the strong interdependency of vitamin D deficiency, low serum calcium and high levels of parathyroid hormone, however, it is difficult to identify exact mechanisms of action. PMID:11991436

  2. Parathyroid Cancer Treatment

    MedlinePLUS

    ... tomography, or computerized axial tomography. SPECT scan (single photon emission computed tomography scan) : A procedure that uses ... a recurrence. The parathyroid cancer usually recurs between 2 and 5 years after the first surgery , but ...

  3. Stages of Parathyroid Cancer

    MedlinePLUS

    ... tomography, or computerized axial tomography. SPECT scan (single photon emission computed tomography scan) : A procedure that uses ... a recurrence. The parathyroid cancer usually recurs between 2 and 5 years after the first surgery , but ...

  4. Does Levothyroxine Administration Impact Parathyroid Localization?

    PubMed Central

    Ayers, Rachell R.; Tobin, Kirby; Sippel, Rebecca S.; Balentine, Courtney; Elfenbein, Dawn; Chen, Herbert; Schneider, David F.

    2016-01-01

    Background Proper localization is crucial in performing minimally invasive parathyroidectomy for primary hyperparathyroidism (PHPT). Ultrasonography (US) and Tc-99m sestamibi (MIBI) scintigraphy are common methods used for localization. As the appearance and activity of the thyroid gland may impact parathyroid localization, the purpose of this study was to determine how exogenous use of the thyroid hormone, levothyroxine (LT), affects parathyroid localization. Methods Adult patients with non-familial PHPT who underwent initial parathyroidectomy from 2000 to 2014 were retrospectively identified. Levothyroxine (+LT) and non-levothyroxine (-LT) patients were matched 1:3 based on age, gender, goiter status, and preoperative parathyroid hormone levels. Subgroup analysis was performed on patients previously treated with radioactive iodine and patients undergoing single adenoma resection. Results Of the 1,737 patients that met inclusion criteria, 286 were on LT at the time of their parathyroid localization scan. Use of LT not did impact the percentage of correct MIBI localization scans when compared to −LT patients (p=0.83). Interestingly, use of LT significantly hindered localization by US in comparison to the −LT group (48.4 vs 62.2%, p<0.01). When examining only patients where a single upper gland was removed, the +LT group was less likely to have a correct US compared to the −LT group (50 vs. 72.8%, p<0.01). However, there was no difference in US accuracy for patients who only had a single lower gland removed (p=0.51). Conclusions Exogenous levothyroxine is associated with impaired parathyroid localization with US but not MIBI. Surgeons should be aware of localization efficiency for this subset of patients in the era of personalized medicine and cost effectiveness. PMID:25917998

  5. Identification of a vitamin D-responsive protein on the surface of human osteosarcoma cells.

    PubMed Central

    Shull, S; Tracy, R P; Mann, K G

    1989-01-01

    Monoclonal antibodies were elicited to membrane constituents of the osteoblastic human osteosarcoma cell line Saos-2. Two types of antibody reactivities were characterized: one group of antibodies identified fibroblastic and osteoblastic cultured cells, whereas the other group was specific for the parent cell line, Saos-2. Primary endothelial cells and hepatoma cells were not recognized by either group of antibodies. Through indirect immunofluorescent microscopy, the Saos-2-specific antigen was demonstrated to reside on the surface of these osteosarcoma cells. Metabolic radiolabeling of cultured Saos-2 cells and subsequent immunoprecipitation, electrophoretic separation, and autoradiography revealed this protein to have a Mr of 80,000. Similar experiments in the presence of hormones showed that the expression of this cell surface protein was influenced in an opposing fashion by the bone-regulating hormones parathyroid hormone and vitamin D. Vitamin D stimulated expression by 300%, whereas parathyroid hormone depressed expression by 50%. Thus, Saos-2 human osteoblastic cells demonstrate hormonal regulation through an apparently specific membrane protein. Images PMID:2664784

  6. Combination Treatment with Progesterone and Vitamin D Hormone May Be More Effective than Monotherapy for Nervous System Injury and Disease

    PubMed Central

    Cekic, Milos; Sayeed, Iqbal; Stein, Donald G.

    2010-01-01

    More than two decades of pre-clinical research and two recent clinical trials have shown that progesterone (PROG) and its metabolites exert beneficial effects after traumatic brain injury (TBI) through a number of metabolic and physiological pathways that can reduce damage in many different tissues and organ systems. Emerging data on 1,25-dihydroxyvitamin D3 (VDH), itself a steroid hormone, have begun to provide evidence that, like PROG, it too is neuroprotective, although some of its actions may involve different pathways. Both agents have high safety profiles, act on many different injury and pathological mechanisms, and are clinically relevant, easy to administer, and inexpensive. Furthermore, vitamin D deficiency is prevalent in a large segment of the population, especially the elderly and institutionalized, and can significantly affect recovery after CNS injury. The combination of PROG and VDH in pre-clinical and clinical studies is a novel and compelling approach to TBI treatment. PMID:19394357

  7. Association of vitamin D deficiency, secondary hyperparathyroidism, and heterotopic ossification in spinal cord injury.

    PubMed

    Oleson, Christina V; Seidel, Benjamin J; Zhan, Tingting

    2013-01-01

    Our objective was to explore the relationship between low vitamin D, secondary hyperparathyroidism, and heterotopic ossification (HO) in patients with spinal cord injury (SCI). Ninety-six subjects with acute or chronic motor complete SCI participated. Levels of serum vitamin D25(OH), calcium, and intact parathyroid hormone (PTH) were collected, and information regarding nutritional patterns and fracture history was obtained from subjects. Evidence of current or previous HO was ascertained through chart review. Of the 96 subjects, 12 were found to have developed HO, 11 with serum vitamin D25(OH) between 5 and 17 ng/mL. Nine subjects exhibited secondary hyperparathyroidism in the range of 72 to 169 pg/mL. Only one subject demonstrated HO in the absence of low vitamin D. However, many subjects with low vitamin D (5-31 ng/mL) did not have hyperparathyroidism or HO. Statistical testing demonstrated a correlation between hyperparathyroidism and HO (p < 0.001) as well as hyperparathyroidism and vitamin D deficiency (<20 ng/mL). Direct correlation between HO and low vitamin D was not observed, but hyperparathyroidism may increase this risk. We believe that those patients who demonstrate low vitamin D and elevated PTH should be screened for HO in addition to beginning vitamin supplementation. Initiating early treatment of low vitamin D to restore therapeutic levels may prevent development of HO. PMID:24458959

  8. The hormone-bound vitamin D receptor enhances the FBW7-dependent turnover of NF-?B subunits

    PubMed Central

    Fekrmandi, Fatemeh; Wang, Tian-Tian; White, John H.

    2015-01-01

    Signaling by hormonal vitamin D, 1,25-dihydroxyvitamin D (1,25D) has attracted increasing interest because of its non-classical actions, particularly its putative anticancer properties and its role in controlling immune system function. Notably, the hormone-bound vitamin D receptor (VDR) suppresses signaling by pro-inflammatory NF-?B transcription factors, although the underlying mechanisms have remained elusive. Recently, the VDR was shown to enhance the turnover of the oncogenic transcription factor cMYC mediated by the E3 ligase and tumor suppressor FBW7. As FBW7 also controls the turnover of the p100 (NF-?B2) subunit of the family, we determined whether the 1,25D enhanced FBW7-dependent turnover of NF-?B subunits p100, p105 (NF-?B1) and p65 (RELA). Protein levels of all three subunits declined markedly in the presence of 1,25D in multiple cell lines in the absence of substantial changes in mRNA expression. The VDR coimmunoprecipitated with all three subunits, and 1,25D treatment accelerated subunit turnover in cycloheximide-treated cells. Importantly, we observed an association of FBW7 with p105 and p65, as well as p100, and knockdown of FBW7 eliminated 1,25D-dependent subunit turnover. Moreover, expression of NF-?B target genes was elevated in FBW7-depleted cells. These results reveal that 1,25D signaling suppresses NF-?B function by enhancing FBW7-dependent subunit turnover. PMID:26269414

  9. Non-functioning parathyroid gland carcinoma: case report.

    PubMed

    Krvavica, Ana; Kovaci?, Marijan; Baraka, Ivan; Rudi?, Milan

    2011-06-01

    Parathyroid gland carcinoma is a rare malignancy. The tumor is mostly functioning, causing severe hyperparathyroidism, with high serum calcium level and severe bone disease. Non-functioning parathyroid carcinomas are extremely rare. We report on a 60-year-old male patient admitted to ENT Department due to a large neck tumor mass compressing the thyroid and trachea. Preoperatively, thyroid hormone, parathyroid hormone (PTH) and calcium serum levels were normal. The following immunohistochemical markers (DAKO, Denmark) were used: bcl-2; CD-10; Chromogranin-A; Cyclin-D1; EMA; Ki-67; Mdm-2; p-53; PGP-9,5; RCC; Synaptophysin; Thyroglobulin; and TTF-1. Immunohistochemical analysis indicated the diagnosis of a primary parathyroid gland carcinoma. Tumor cells showed diffusely positive immunohistochemical staining with chromogranin-A and PGP-9,5, positive staining of variable intensity with synaptophysin, and weakly positive reaction with EMA. Also, the cytoplasm of tumor cells was diffusely positively stained with bcl-2, while the nuclei showed positive reaction with p-53 oncogene and TTF-1. The remaining markers (CD-10, cyclin-D1, Ki-67, Mdm-2, RCC and thyroglobulin) were negative. Four years after the surgery, the patient died from renal carcinoma pulmonary metastases and liver cirrhosis complications. In conclusion, non-functioning parathyroid gland carcinoma is a very rare disease. Detailed immunohistochemical analysis is needed to distinguish it from other thyroid and parathyroid neoplasms and metastatic carcinoma. Surgical treatment is presently the best mode of therapy. PMID:22263388

  10. The effects of programmed administration of human parathyroid hormone fragment (1-34) on bone histomorphometry and serum chemistry in rats

    NASA Technical Reports Server (NTRS)

    Dobnig, H.; Turner, R. T.

    1997-01-01

    PTH treatment can result in dramatic increases in cancellous bone volume in normal and osteopenic rats. However, this potentially beneficial response is only observed after pulsatile treatment; continuous infusion of PTH leads to hypercalcemia and bone abnormalities. The purpose of these studies was to determine the optimal duration of the PTH pulses. A preliminary study revealed that human PTH-(1-34) (hPTH) is cleared from circulation within 6 h after sc administration of an anabolic dose of the hormone (80 microg/kg). To establish the effects of gradually extending the duration of exposure to hPTH without increasing the daily dose, we programmed implanted Alzet osmotic pumps to deliver the 80 microg/kg x day dose of the hormone during pulses of 1, 2, and 6 h/day, or 40 microg/kg x day continuously. Discontinuous infusion was accomplished by alternate spacing of external tubing with hPTH solution and sesame oil. After 6 days of treatment, we evaluated serum chemistry and bone histomorphometry. As negative and positive controls, groups of rats received pumps that delivered vehicle only and 80 microg/kg x day hPTH by daily sc injection, respectively. Dynamic and static bone histomorphometry revealed that the daily sc injection and 1 h/day infusion dramatically increased osteoblast number and bone formation in the proximal tibial metaphysis, whereas longer infusion resulted in systemic side-effects, including up to a 10% loss in body weight, hypercalcemia, and histological changes in the proximal tibia resembling abnormalities observed in patients with chronic primary hyperparathyroidism, including peritrabecular marrow fibrosis and focal bone resorption. Infusion for as little as 2 h/day resulted in minor weight loss and changes in bone histology that were intermediate between sc and continuous administration. The results demonstrate that the therapeutic interval for hPTH exposure is brief, but that programmed administration of implanted hormone is a feasible alternative to daily injection as a route for administration of the hormone.

  11. Vitamin D Deficiency and Exogenous Vitamin D Excess Similarly Increase Diffuse Atherosclerotic Calcification in Apolipoprotein E Knockout Mice

    PubMed Central

    Ellam, Timothy; Hameed, Abdul; ul Haque, Risat; Muthana, Munitta; Wilkie, Martin; Francis, Sheila E.; Chico, Timothy J. A.

    2014-01-01

    Background Observational data associate lower levels of serum vitamin D with coronary artery calcification, cardiovascular events and mortality. However, there is little interventional evidence demonstrating that moderate vitamin D deficiency plays a causative role in cardiovascular disease. This study examined the cardiovascular effects of dietary vitamin D deficiency and of vitamin D receptor agonist (paricalcitol) administration in apolipoprotein E knockout mice. Methods Mice were fed atherogenic diets with normal vitamin D content (1.5IU/kg) or without vitamin D. Paricalcitol, or matched vehicle, was administered 3× weekly by intraperitoneal injection. Following 20 weeks of these interventions cardiovascular phenotype was characterized by histological assessment of aortic sinus atheroma, soluble markers, blood pressure and echocardiography. To place the cardiovascular assessments in the context of intervention effects on bone, structural changes at the tibia were assessed by microtomography. Results Vitamin D deficient diet induced significant reductions in plasma vitamin D (p<0.001), trabecular bone volume (p<0.01) and bone mineral density (p<0.005). These changes were accompanied by an increase in calcification density (number of calcifications per mm2) of von Kossa-stained aortic sinus atheroma (461 versus 200, p<0.01). Paricalcitol administration suppressed parathyroid hormone (p<0.001), elevated plasma calcium phosphate product (p<0.005) and induced an increase in calcification density (472 versus 200, p<0.005) similar to that seen with vitamin D deficiency. Atheroma burden, blood pressure, metabolic profile and measures of left ventricular hypertrophy were unaffected by the interventions. Conclusion Vitamin D deficiency, as well as excess, increases atherosclerotic calcification. This phenotype is induced before other measures of cardiovascular pathology associated clinically with vitamin D deficiency. Thus, maintenance of an optimal range of vitamin D signalling may be important for prevention of atherosclerotic calcification. PMID:24586387

  12. In vivo distribution of parathyroid hormone receptors in bone: evidence that a predominant osseous target cell is not the mature osteoblast

    SciTech Connect

    Rouleau, M.F.; Mitchell, J.; Goltzman, D.

    1988-07-01

    Previous studies in vitro and in vivo have demonstrated the presence of receptor sites for PTH on cells of the osteoblast phenotype. Nevertheless, it is unclear whether the diverse functions of this hormone in bone can all be attributed to its interaction with a single cell type. In this study, we have used a radioautographic method to examine the competitive binding of /sup 125/I-labeled rat PTH-(1-34) to the long bones of rats in vivo. Our studies confirm the presence of competitive binding to mature osteoblasts and the absence of significant competitive binding to multinucleated osteoclasts. However, by light and electron microscopic radioautographic analysis, the majority of specific competitive PTH binding was present over a cell in the intertrabecular space of the metaphyseal region, which was distinct from the mature osteoblast. This large mononuclear cell with multiple cytoplasmic extensions appeared to interface with both the bone matrix and the microvascular osseous circulation and may provide an additional target to mediate hormonal effects on the skeleton.

  13. Parathyroid adenoma causing a spontaneous cervical and mediastinal massive hematoma

    PubMed Central

    Zhao, Cheng; Wang, Xiurong; Wei, Hui; Ma, Guifeng

    2015-01-01

    Cervical and mediastinal hemorrhaging caused by a spontaneous rupture of a parathyroid adenoma has been rarely reported. Herein, we report a case of a 52-year-old woman who experienced a sudden onset of cervical and mediastinal bleeding related to a parathyroid adenoma. The patient had a history of trauma to the left thorax with a fracture of two ribs. Ultrasonography and computer tomography revealed a nodule in the retrotracheal space and hematoma of the bilateral trachea and thorax. Laboratory examinations revealed significant hypercalcemia, hypophosphatemia, and a high level of intact parathyroid hormone. Surgery was performed and a dark-red, soft tumor was found behind the trachea, which adhered to the surrounding tissues. The pathological diagnosis was a parathyroid adenoma with hemosiderin deposition and fibrosis.

  14. Effects of different dress styles on vitamin D levels in healthy young Jordanian women.

    PubMed

    Mishal, A A

    2001-01-01

    Jordan is a sunny Middle Eastern country where no vitamin D fortification of milk is undertaken, and where women wear dress styles that cover the body to a variable extent. This may produce variable effects on vitamin D, parathyroid hormone and bone mineralization. The aim of the present study was to evaluate the vitamin D and parathyroid hormone levels in healthy young women of child-bearing age, and to examine the effects of dress style and season, in a survey of the effects of these parameters on vitamin D metabolism, and the possible bone mineralization consequences. One hundred and forty-six subjects (22 men, 124 women) were selected, according to established inclusion criteria. Of the women, 21 wore Western-type dress styles (group 1), 80 wore dress styles covering the whole body but the sparing face and hands (group 2) and 23 wore dress styles covering the whole body including the face and hands (group 3). The study was conducted in summer and winter. All volunteers underwent initial interviews, answered a food frequency questionnaire, and underwent essential laboratory tests (serum 25-hydroxyvitamin D (25(OH)D) by radioimmunoassay, and serum parathyroid hormone (PTH) by chemiluminescent enzyme immunoassay). The 25(OH) D levels in groups 2 and 3 were significantly lower than in the men (p<0.05 in both comparisons). No significant differences were noted between women wearing different dress styles. PTH levels were in the upper limits of normal but failed to show statistical differences between study groups. The prevalence of hypovitaminosis D was 62.3% in the study groups as a whole. Dress styles covering the whole body, totally or nearly totally, have adverse effects on 25(OH)D levels and may produce a state of secondary hyperparathyroidism on the long run. Although Jordan enjoys plenty of sunshine, these data are suggestive of widespread hypovitaminosis D in Jordan. PMID:11804019

  15. Invited commentary: The association of low vitamin D with cardiovascular disease--getting at the "heart and soul" of the relationship.

    PubMed

    Schneider, Andrea L C; Michos, Erin D

    2014-06-01

    Low concentrations of 25-hydroxyvitamin D have been consistently associated with cardiovascular disease (CVD) in many observational studies. In an analysis published in this issue of the American Journal of Epidemiology, Welles et al. (Am J Epidemiol. 2014;179(11):1279-1287) used data from 946 participants with stable CVD who were enrolled in the Heart and Soul Study (San Francisco Bay Area, 2000-2012) and found that the association of low 25-hydroxyvitamin D with increased secondary CVD event risk was attenuated after adjustment for parathyroid hormone level, suggesting that parathyroid hormone may mediate this association. They used observational data to gain insight into potential mechanisms underlying the association between vitamin D and CVD risk. Their study focused on secondary CVD events, whereas many previous observational studies have focused on incident CVD events among persons without a history of CVD. In this commentary, we place the study by Welles et al. in context with the existing literature and propose future directions for vitamin D research. We highlight a number of methodological concepts that are important in analyzing vitamin D data, including racial differences in vitamin D concentrations and adjustment for seasonal variation in vitamin D concentrations. We agree that randomized controlled trials should be conducted before making guidelines for screening and treating vitamin D deficiency for the prevention of CVD events. PMID:24699787

  16. The Role of Vitamin D in Autoimmune Hepatitis

    PubMed Central

    Luong, Khanh vinh quoc; Nguyen, Lan Thi Hoang

    2013-01-01

    Autoimmune hepatitis is an inflammation of the liver characterized by the presence of peri-portal hepatitis, hypergammaglobulinemia, and the serum autoantibodies. The disease is classified into 2 distinct types according to the nature of auto-antibodies. Disturbances of the calcium-parathyroid hormone-vitamin D axis are frequently associated with chronic liver disease. Patients with AIH have a high prevalence of vitamin D deficiency. Genetic studies have provided the opportunity to determine which proteins link vitamin D to AIH pathology, namely, the major histocompatibility complex class II molecules, vitamin D receptors, toll-like receptors, cytotoxic T lymphocyte antigen-4, cytochrome P450 CYP2D6, regulatory T cells (Tregs) and the forkhead/winged helix transcription factor 3. Vitamin D also exerts its effect on AIH through non-genomic factors, namely, mitogen-activated protein kinase signaling pathways, ??T cells, interferon-gamma nitric oxide synthase, and reactive oxygen stress. In conclusion, vitamin D may have a beneficial role in AIH and improves liver function in concanavalin A-induced mouse AIH. Calcitriol is best used for AIH because it is the active form of a vitamin D3 metabolite and its receptors are present in sinusoidal endothelial cells, Kupffer cells, stellate cells of normal livers, and the biliary cell line. PMID:24171052

  17. Needle aspirate PTH in diagnosis of primary hyperparathyroidism due to intrathyroidal parathyroid cyst

    PubMed Central

    Dutta, Deep; Selvan, Chitra; Kumar, Manoj; Datta, Saumik; Das, Ram Narayan; Ghosh, Sujoy; Mukhopadhyay, Satinath; Chowdhury, Subhankar

    2013-01-01

    Summary Parathyroid cysts are rare (0.83.41% of all parathyroid lesions) and usually arise secondary to cystic degeneration of parathyroid adenomas. Intrathyroidal parathyroid cysts are extremely rare with only three cases reported till date. We present a 24-year-old female with clinical and biochemical features of primary hyperparathyroidism (PHPT; Ca2 +: 12.1?mg/dl; intact parathyroid hormone (iPTH): 1283?pg/ml) and poor radiotracer uptake with minimal residual uptake in the left thyroid lobe at 2 and 4?h on Tc99m sestamibi imaging. Neck ultrasonography (USG) revealed 0.61?cm parathyroid posterior left lobe of thyroid along with 2218?mm simple thyroid cyst. USG-guided fine-needle aspiration (FNA) and needle tip iPTH estimation (FNA-iPTH) from parathyroid lesion was inconclusive (114?pg/ml), necessitating FNA of thyroid cyst, which revealed high iPTH (3480?pg/ml) from the aspirate. The patient underwent a left hemithyroidectomy. A >50% drop in serum iPTH 20?min after left hemithyroidectomy (29.4?pg/ml) along with histopathology suggestive of intrathyroidal cystic parathyroid adenoma (cystic lesion lined by chief cell variant parathyroid cells without any nuclear atypia, capsular or vascular invasion surrounded by normal thyroid follicles) confirmed that the parathyroid cyst was responsible for PHPT. This report highlights the importance of FNA-iPTH in localizing and differentiating a functional parathyroid lesion from nonfunctional tissue in PHPT. Learning points Fine-needle aspiration from suspected parathyroid lesion and needle tip iPTH (FNA-iPTH) estimation from the saline washing has an important role in localizing primary hyperparathyroidism (PHPT).FNA-iPTH estimation may help in differentiating functional from nonfunctional parathyroid lesion responsible for PHPT.iPTH estimation from aspirate of an intrathyroid cyst is helpful in differentiating intrathyroidal parathyroid cyst from thyroid cyst. PMID:24616763

  18. Evaluation of the 'putative' role of intraoperative intact parathyroid hormone assay during parathyroidectomy for secondary hyperparathyroidism. A retrospective study on 35 consecutive patients: intraoperative iPTH assay during parathyroidectomy.

    PubMed

    Conzo, G; Perna, A; Avenia, N; De Santo, R M; Della Pietra, C; Palazzo, A; Sinisi, A A; Stanzione, F; Santini, L

    2012-12-01

    In the surgical treatment of secondary hyperparathyroidism (2HPT) of chronic kidney disease (CKD), a parathyroidectomy (PTx) of 4 glands can only be presumed as 'total', and indications for autoimplantation are complex. Intraoperative rapid parathyroid hormone assay could be useful to predict a radical resection. We evaluated iPTH levels 20 min and 24 h after a 4-gland PTx in 35 patients to determine the predictive value of intraoperative iPTH assay. We analysed retrospectively 35 patients affected by 2HPT of CKD, 13 undergoing total parathyroidectomy (TP) and 22 TP + autoimplantation (TPai), after removing 4 glands in 33 cases and 5 glands in 2. Intact PTH assays were acquired after 40 min before induction of anaesthesia, after removing both ipselateral glands, at 20 min after surgery and on postoperative day 1. 20 min after 4-gland PTx, a decrease of iPTH levels >80 % of the preoperative value was observed in 27 of 35 cases (77.1 %) and <80 % in 8 of 35 cases (22.8 %). In 6 of these 8 patients, iPTH levels were within the normal range 24 h after surgery. Although the intraoperative iPTH assays are of interest in the treatment of 2HPT, the predictive value of this method is not entirely satisfactory. In fact, a 4-gland PTx ensures euparathyroidism in most cases, even when intraoperative iPTH assays are not trustworthy; however, intraoperative iPTH assay, although not a perfect 'tool', is a proved aid for the surgeon in making his decision. PMID:22418689

  19. Cellular mechanism through which parathyroid hormone-related protein induces proliferation in arterial smooth muscle cells: definition of an arterial smooth muscle PTHrP/p27kip1 pathway.

    PubMed

    Fiaschi-Taesch, Nathalie; Sicari, Brian M; Ubriani, Kiran; Bigatel, Todd; Takane, Karen K; Cozar-Castellano, Irene; Bisello, Alessandro; Law, Brian; Stewart, Andrew F

    2006-10-27

    Parathyroid hormone-related protein (PTHrP) is present in vascular smooth muscle (VSM), is markedly upregulated in response to arterial injury, is essential for normal VSM proliferation, and also markedly accentuates neointima formation following rat carotid angioplasty. PTHrP contains a nuclear localization signal (NLS) through which it enters the nucleus and leads to marked increases in retinoblastoma protein (pRb) phosphorylation and cell cycle progression. Our goal was to define key cell cycle molecules upstream of pRb that mediate cell cycle acceleration induced by PTHrP. The cyclin D/cdk-4,-6 system and its upstream regulators, the inhibitory kinases (INKs), are not appreciably influenced by PTHrP. In striking contrast, cyclin E/cdk-2 kinase activity is markedly increased by PTHrP, and this is a result of a specific, marked, PTHrP-induced proteasomal degradation of p27(kip1). Adenoviral restoration of p27(kip1) fully reverses PTHrP-induced cell cycle progression, indicating that PTHrP mediates its cell cycle acceleration in VSM via p27(kip1). In confirmation, adenoviral delivery of PTHrP to murine primary vascular smooth muscle cells (VSMCs) significantly decreases p27(kip1) expression and accelerates cell cycle progression. p27(kip1) is well known to be a central cell cycle regulatory molecule involved in both normal and pathological VSM proliferation and is a target of widely used drug-eluting stents. The current observations define a novel "PTHrP/p27(kip1) pathway" in the arterial wall and suggest that this pathway is important in normal arterial biology and a potential target for therapeutic manipulation of the arterial response to injury. PMID:17023675

  20. Parathyroid hormone linked to a collagen binding domain (PTH-CBD) promotes hair growth in a mouse model of chemotherapy-induced alopecia in a dose-dependent manner

    PubMed Central

    Katikaneni, Ranjitha; Ponnapakkam, Tulasi; Seymour, Andrew; Sakon, Joshua; Gensure, Robert

    2014-01-01

    Chemotherapy-induced alopecia is a major source of psychological stress in patients undergoing cancer chemotherapy, and can influence treatment decisions. While there is currently no therapy, PTH-CBD, a fusion protein of parathyroid hormone and collagen binding domain, has shown promise in animal models. Objective To determine if there are dose-dependent effects of PTH-CBD on chemotherapy-induced alopecia in a mouse model. Methods C57BL/6J mice were waxed to synchronize hair follicles; treated on day 7 with vehicle or PTH-CBD (100, 320 and 1000 mcg/kg subcutaneous injection); treated on day 9 with vehicle or cyclophosphamide (150 mg/kg i.p.). Mice were photographed every 3–4 days and sacrificed on day 63 for histological analysis. Photographs were quantified by grey scale analysis to assess hair content. Results Mice not receiving chemotherapy showed regrowth of hair 2 weeks following waxing, and normal histology after 2 months. Mice receiving chemotherapy alone showed marked hair loss after chemotherapy, which was sustained for 10 days and was followed by rapid regrowth of a normal coat. Histology revealed rapid cycling dystrophic anagen/catagen follicles. Animals receiving chemotherapy and PTH-CBD showed decreased hair loss and more rapid regrowth of hair than that seen with chemotherapy alone (increased hair growth by grey scale analysis, p<0.05), and the effects were dose dependent. Histologically, hair follicles in animals receiving the highest dose of PTH-CBD were in a quiescent phase, similar to mice which did not receive chemotherapy. Conclusions Single dose subcutaneous administration of PTH-CBD showed dose-dependent effects in minimizing hair loss and speeding recovery from chemotherapy-induced alopecia. PMID:24710191

  1. The N-terminal region of the third intracellular loop of the parathyroid hormone (PTH)/PTH-related peptide receptor is critical for coupling to cAMP and inositol phosphate/Ca2+ signal transduction pathways.

    PubMed

    Huang, Z; Chen, Y; Pratt, S; Chen, T H; Bambino, T; Nissenson, R A; Shoback, D M

    1996-12-27

    Structural determinants within the parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptor that mediate G-protein activation of adenylate cyclase and phospholipase C are unknown. We investigated the role of the N-terminal region of the third intracellular loop of the opossum PTH/PTHrP receptor in coupling to two signal transduction pathways. We mutated residues in this region by tandem-alanine scanning and expressed these mutant receptors in COS-7 cells and/or Xenopus oocytes. All mutant receptors retained high affinity PTH binding in COS-7 cells, indistinguishable from wild-type receptors. Receptors with tandem-alanine substitutions in two N-terminal segments (377RVL379 and 381TKLR384) demonstrated impaired adenylate cyclase and phospholipase C activation. Receptor mutants with single-alanine substitutions scanning these two segments showed three different signaling defects in COS-7 cells. 1) Two mutant receptors (V378A and L379A) had reduced inositol phosphate (IP), but normal cAMP responses to PTH. 2) Mutant receptor T381A showed reduced cAMP, but wild-type IP responses to PTH. 3) Mutant receptor K382A demonstrated both markedly reduced cAMP and IP production due to PTH. In oocytes, mutants T381A and K382A showed decreased PTH-stimulated cAMP accumulation and intracellular Ca2+ mobilization. Thus, the N-terminal region of the third intracellular loop of this receptor plays a critical role in coupling to both Gs- and Gq-mediated second-messenger generation. PMID:8969199

  2. Negative Association between Serum Parathyroid Hormone Levels and Urinary Perchlorate, Nitrate, and Thiocyanate Concentrations in U.S. Adults: The National Health and Nutrition Examination Survey 20052006

    PubMed Central

    Ko, Wen-Ching; Liu, Chien-Liang; Lee, Jie-Jen; Liu, Tsang-Pai; Yang, Po-Sheng; Hsu, Yi-Chiung; Cheng, Shih-Ping

    2014-01-01

    Objectives Perchlorate, nitrate, and thiocyanate are well-known inhibitors of the sodium-iodide symporter and may disrupt thyroid function. This exploratory study investigated the association among urinary perchlorate, nitrate, and thiocyanate concentrations and parathyroid hormone (PTH) levels in the general U.S. population. Methods We analyzed data on 4265 adults (aged 20 years and older) from the National Health and Nutrition Examination Survey in 2005 through 2006 to evaluate the relationship among urinary perchlorate, nitrate, and thiocyanate concentration and PTH levels and the presence of hyperparathyroidism cross-sectionally. Results The geometric means and 95% confidence interval (95% CI) concentrations of urinary perchlorate, nitrate, and thiocyanate were 3.38 (3.153.62), 40363 (3751243431), and 1129 (10291239) ng/mL, respectively. After adjusting for confounding variables and sample weights, creatinine-corrected urinary perchlorate was negatively associated with serum PTH levels in women (P?=?0.001), and creatinine-corrected urinary nitrate and thiocyanate were negatively associated with serum PTH levels in both sex groups (P?=?0.001 and P<0.001 for men, P?=?0.018 and P<0.001 for women, respectively). Similar results were obtained from sensitivity analyses performed for exposure variables unadjusted for creatinine with urinary creatinine added as a separate covariate. There was a negative relationship between hyperparathyroidism and urinary nitrate and thiocyanate [odds ratio (95% CI)?=?0.77 (0.600.98) and 0.69 (0.610.79), respectively]. Conclusions A higher urinary concentration of perchlorate, nitrate, and thiocyanate is associated with lower serum PTH levels. Future studies are needed to determine the pathophysiological background of the observation. PMID:25514572

  3. Combination therapy with ONO-KK1-300-01, a cathepsin K inhibitor, and parathyroid hormone results in additive beneficial effect on bone mineral density in ovariectomized rats.

    PubMed

    Ochi, Yasuo; Yamada, Hiroyuki; Mori, Hiroshi; Kawada, Naoki; Tanaka, Makoto; Imagawa, Akira; Ohmoto, Kazuyuki; Kawabata, Kazuhito

    2016-01-01

    This study examined the effects of a novel cathepsin K inhibitor, ONO-KK1-300-01 (KK1-300), used concurrently with parathyroid hormone (PTH) in ovariectomized (OVX) rats. KK1-300 (3mg/kg, twice daily), alendronate (1mg/kg, once daily) or vehicle were orally administered to OVX rats for 56days, starting the day after ovariectomy, followed by combination treatment with or without PTH (3?g/kg, subcutaneously three times a week) for another 28days. OVX control animals exhibited a significant increase in both bone resorption (urinary deoxypyridinoline; DPD) and formation markers (serum osteocalcin) as well as microstructural changes associated with decreased bone mineral density (BMD). Combination treatment with KK1-300 and PTH significantly decreased urinary DPD and increased serum osteocalcin, indicating a sustained beneficial effect compared to the effect of each mono-therapy. On the other hand, combination therapy with alendronate and PTH weakened the PTH-induced increase in osteocalcin. In proximal tibia, combination treatment with KK1-300 and PTH increased BMD to a level significantly higher than that achieved following single treatment with KK1-300 or PTH alone. On the other hand, combination treatment with alendronate and PTH failed to produce any significant additive effect on BMD following single treatment with alendronate or PTH alone. Microstructural analysis revealed that the PTH-induced increase in bone formation (MS/BS and BFR/BS) was fully maintained following combination treatment with KK1-300 and PTH, but not following combination treatment with alendronate and PTH. These findings indicate that KK1-300, unlike alendronate, has an additive effect on the preventive action of PTH on bone loss in OVX rats. PMID:25762435

  4. Molecular Mechanisms for Regulation of Intestinal Calcium Absorption by Vitamin D and Other Factors

    PubMed Central

    Fleet, James C.; Schoch, Ryan D.

    2011-01-01

    Optimal intestinal calcium (Ca) absorption is necessary for the protection of bone and the prevention of osteoporosis. Ca absorption can be represented as the sum of a saturable pathway and a non-saturable pathway that is primarily dependent upon luminal Ca concentration. While models have been proposed to describe these transport components, significant gaps still exist in our understanding of these processes. Habitual low intake of Ca up-regulates the saturable transport pathway, a process mediated by increased renal production of 1,25 dihydroxyvitamin D (1,25(OH)2 D). Consistent with this, low vitamin D status as well as deletion/mutation of the vitamin D receptor (VDR) or 25 hydroxyvitamin D-1α hydroxylase (CYP27B1) genes limit Ca absorption by reducing the saturable pathway. There is some evidence that non-saturable Ca absorption in the ileum is also regulated by vitamin D status, but the mechanism is unclear. Treatment with a number of hormones can regulate Ca absorption in vivo [e.g. parathyroid hormone (PTH), thyroid hormone, growth hormone (GH)/insulin-like growth factor I (IGF-1), estrogen, testosterone]. However, some of these actions are indirect (i.e. mediated through the regulation of vitamin D metabolism or signaling), whereas only a few (e.g. estrogen, IGF-1) have been shown to persist in the absence of vitamin D signaling. PMID:21182397

  5. The mediastinal parathyroid.

    PubMed

    Conn, J M; Goncalves, M A; Mansour, K A; McGarity, W C

    1991-01-01

    Of 573 patients explored for primary hyperparathyroidism (PHP), parathyroid tissue was found in the mediastinum in 64 (11.2%). Age, sex, symptoms, gland mass, and pathologic diagnoses did not differ significantly from those of all PHP patients. Mean preoperative serum calcium values were higher for patients with mediastinal parathyroid tissue than for all patients with PHP, although median serum calcium values were similar in both groups. Mediastinal parathyroid glands numbered 68, of which 55 (81%) were enlarged, and 13 were normal size. One-third (36%) of patients with mediastinal parathyroid tissue underwent more than one exploration for PHP. However, 43 (63%) of 68 mediastinal glands were found on first exploration of the neck. Sternotomy was carried out in 21 (3.6%) of the 573 patients with PHP but showed mediastinal pathology in only 15 cases, being unsuccessful in 29 per cent. Of the six failed sternotomies, four patients were cured by simultaneous or subsequent neck exploration and resection, and two remain hypercalcemic. "Culprit" parathyroid glands are those typically enlarged and histologically abnormal glands that are credited with causing PHP in a given patient. Of 60 patients whose mediastinal glands were culprits, 48 (80%) were retrieved on initial or subsequent neck exploration. Localizing studies were used in all reoperative patients, and results are evaluated in detail. If neither CT scan nor angiogram localized the gland preoperatively, then sternotomy was always negative. PMID:1796800

  6. Parathyroid carcinoma in pregnancy

    PubMed Central

    Baretić, Maja; Tomić Brzac, Hrvojka; Dobrenić, Margareta; Jakovčević, Antonia

    2014-01-01

    A 24-year-old female patient with parathyroid carcinoma, the rarest endocrine malignancy, had two pregnancies. In the first pregnancy, she had severe nausea and fatigue. Hypercalcemia and hyperparathyroidism were diagnosed in the postpartum period. Hyperemesis gravidarum masked a diagnosis of hypercalcemia. Neck ultrasound and Tc-99m sestamibi found an enlarged lower right parathyroid gland. The gland was surgically removed, and an initial pathology report described atypical adenoma. Shortly afterward, she became pregnant again. During the second pregnancy, her calcium level was frequently controlled but was always in the normal range. Normocalcemia is explained by the specific physiology of pregnancy accompanied by hemodilution, hypoalbuminemia and maternal hypercalciuria (mediated by increased glomerular filtration). During lactation, calcium levels rose, and a new neck ultrasound showed a solitary mass in the area of prior surgery and an enlarged pretracheal lymph node. Fine needle aspiration of the solitary mass and node showed parathyroid carcinoma cells. The tumor mass was resected en bloc with the contiguous tissues and surrounding lymph nodes (pathology report; parathyroid carcinoma with metastases). Over the next five years, four consecutive surgeries were performed to remove malignant parathyroid tissue, lymph nodes and local metastases. Following the surgical procedures, no hypocalcemia was observed. More serious hypercalcemia recurred; the calcium level was difficult to control with a combination of pamidronate, cinacalcet and loop diuretic. No elements of multiple endocrine neoplasia were present. PMID:24868516

  7. Regulation of Calcitriol Biosynthesis and Activity: Focus on Gestational Vitamin D Deficiency and Adverse Pregnancy Outcomes

    PubMed Central

    Olmos-Ortiz, Andrea; Avila, Euclides; Durand-Carbajal, Marta; Díaz, Lorenza

    2015-01-01

    Vitamin D has garnered a great deal of attention in recent years due to a global prevalence of vitamin D deficiency associated with an increased risk of a variety of human diseases. Specifically, hypovitaminosis D in pregnant women is highly common and has important implications for the mother and lifelong health of the child, since it has been linked to maternal and child infections, small-for-gestational age, preterm delivery, preeclampsia, gestational diabetes, as well as imprinting on the infant for life chronic diseases. Therefore, factors that regulate vitamin D metabolism are of main importance, especially during pregnancy. The hormonal form and most active metabolite of vitamin D is calcitriol. This hormone mediates its biological effects through a specific nuclear receptor, which is found in many tissues including the placenta. Calcitriol synthesis and degradation depend on the expression and activity of CYP27B1 and CYP24A1 cytochromes, respectively, for which regulation is tissue specific. Among the factors that modify these cytochromes expression and/or activity are calcitriol itself, parathyroid hormone, fibroblast growth factor 23, cytokines, calcium and phosphate. This review provides a current overview on the regulation of vitamin D metabolism, focusing on vitamin D deficiency during gestation and its impact on pregnancy outcomes. PMID:25584965

  8. Vitamin D3: a helpful immuno-modulator

    PubMed Central

    Di Rosa, Michelino; Malaguarnera, Michele; Nicoletti, Ferdinando; Malaguarnera, Lucia

    2011-01-01

    The active metabolite of vitamin D, 1α, 25-dihydroxyvitamin D3 [1,25(OH)2D3], is involved in calcium and phosphate metabolism and exerts a large number of biological effects. Vitamin D3 inhibits parathyroid hormone secretion, adaptive immunity and cell proliferation, and at the same time promotes insulin secretion, innate immunity and stimulates cellular differentiation. The role of vitamin D3 in immunoregulation has led to the concept of a dual function as both as an important secosteroid hormone for the regulation of body calcium homeostasis and as an essential organic compound that has been shown to have a crucial effect on the immune responses. Altered levels of vitamin D3 have been associated, by recent observational studies, with a higher susceptibility of immune-mediated disorders and inflammatory diseases. This review reports the new developments with specific reference to the metabolic and signalling mechanisms associated with the complex immune-regulatory effects of vitamin D3 on immune cells. PMID:21896008

  9. Thyroid and parathyroid imaging

    SciTech Connect

    Sandler, M.P.; Patton, J.A.; Partain, C.L.

    1986-01-01

    This book describes the numerous modalities currently used in the diagnosis and treatment of both thyroid and parathyroid disorders. Each modality is fully explained and then evaluated in terms of benefits and limitations in the clinical context. Contents: Production and Quality Control of Radiopharmaceutics Used for Diagnosis and Therapy in Thyroid and Parathyroid Disorders. Basic Physics. Nuclear Instrumentation. Radioimmunoassay: Thyroid Function Tests. Quality Control. Embryology, Anatomy, Physiology, and Thyroid Function Studies. Scintigraphic Thyroid Imaging. Neonatal and Pediatric Thyroid Imaging. Radioiodine Thyroid Uptake Measurement. Radioiodine Treatment of Thyroid Disorders. Radiation Dosimetry of Diagnostic Procedures. Radiation Safety Procedures for High-Level I-131 Therapies. X-Ray Fluorescent Scanning. Thyroid Sonography. Computed Tomography in Thyroid Disease. Magnetic Resonance Imaging in Thyroid Disease. Parathyroid Imaging.

  10. Experimental induction of parathyroid adenomas in the rat

    SciTech Connect

    Wynford-Thomas, V.; Wynford-Thomas, D.; Williams, E.D.

    1983-01-01

    Neonatal inbred Wistar albino rats were given either 5 or 10 microCi radioiodine (/sup 131/I) within 24 hours of birth. After weaning, animals were placed on diets high, normal, or deficient in vitamin D3 (cholecalciferol) for periods up to 2 years. In animals aged 12 months and older, adenomas were found in 0 of 67 unirradiated controls, in 22 of 67 given 5 microCi /sup 131/I, and in 25 of 67 given to microCi /sup 131/I. The incidence of tumors in irradiated animals was highest (55%) in those on a low-vitamin D diet and lowest (20%) in those on a high-vitamin D diet. Plasma calcium levels were significantly increased by the high-vitamin D diet, but the low-vitamin D diet did not lead to any significant decrease as compared to the calcium levels of the normal vitamin D diet group. Small but significant calcium increases were found in tumor-bearing animals. These findings indicate that parathyroid tumors in the rat can be induced by radiation and that their incidence is strongly influenced by dietary vitamin D content. The possibility that metabolites of vitamin D3 may influence parathyroid growth and tumor formation directly is discussed.

  11. Prevalence and Prognostic Implications of Vitamin D Deficiency in Chronic Kidney Disease

    PubMed Central

    Obi, Yoshitsugu; Hamano, Takayuki; Isaka, Yoshitaka

    2015-01-01

    Vitamin D is an important nutrient involved in bone mineral metabolism, and vitamin D status is reflected by serum total 25-hydroxyvitamin D (25[OH]D) concentrations. Vitamin D deficiency is highly prevalent in patients with chronic kidney disease (CKD), and nutritional vitamin D supplementation decreases elevated parathyroid hormone concentrations in subgroups of these patients. Furthermore, vitamin D is supposed to have pleiotropic effects on various diseases such as cardiovascular diseases, malignancies, infectious diseases, diabetes, and autoimmune diseases. Indeed, there is cumulative evidence showing the associations of low vitamin D with the development and progression of CKD, cardiovascular complication, and high mortality. Recently, genetic polymorphisms in vitamin D-binding protein have received great attention because they largely affect bioavailable 25(OH)D concentrations. This finding suggests that the serum total 25(OH)D concentrations would not be comparable among different gene polymorphisms and thus may be inappropriate as an index of vitamin D status. This finding may refute the conventional definition of vitamin D status based solely on serum total 25(OH)D concentrations. PMID:25883412

  12. Oral active vitamin D is associated with improved survival in hemodialysis patients.

    PubMed

    Naves-Díaz, Manuel; Alvarez-Hernández, Daniel; Passlick-Deetjen, Jutta; Guinsburg, Adrian; Marelli, Cristina; Rodriguez-Puyol, Diego; Cannata-Andía, Jorge B

    2008-10-01

    Injection of active vitamin D is associated with better survival of patients receiving chronic hemodialysis. Since in many countries oral active vitamin D administration is the most common form of treatment for secondary hyperparathyroidism we determined the survival benefit of oral active vitamin D in hemodialysis patients from six Latin America countries (FME Register as part of the CORES study) followed for a median of 16 months. Time-dependent Cox regression models, after adjustment for potential confounders, showed that the 7,203 patients who received oral active vitamin D had significant reductions in overall, cardiovascular, infectious and neoplastic mortality compared to the 8,801 patients that had not received vitamin D. Stratified analyses found a survival advantage in the group that had received oral active vitamin D in 36 of the 37 strata studied including that with the highest levels of serum calcium, phosphorus and parathyroid hormone. The survival benefit of oral active vitamin D was seen in those patients receiving mean daily doses of less than 1 microg with the highest reduction associated with the lowest dose. Our study shows that hemodialysis patients receiving oral active vitamin D had a survival advantage inversely related to the vitamin dose. PMID:18633342

  13. Early intervention with intravenous or pulse oral vitamin D therapy is more effective in the treatment of secondary hyperparathyroidism.

    PubMed

    Yamada, Shunsuke; Taniguchi, Masatomo; Tokumoto, Masanori; Tsuruya, Kazuhiko; Hirakata, Hideki; Iida, Mitsuo

    2010-08-01

    The K/DOQI clinical practice guidelines recommend vitamin D therapy should be started when the intact parathyroid hormone (iPTH) exceeds 300 pg/mL in patients with secondary hyperparathyroidism. To examine whether the effect of vitamin D therapy on mineral metabolism and parathyroid gland growth varies according to the stage of secondary hyperparathyroidism and iPTH level, 47 patients with secondary hyperparathyroidism received either intravenous or pulse oral vitamin D therapy. The patients were divided into two groups based on the iPTH level at the start of vitamin D therapy: the P(<300) group (N = 23) with iPTH <300 pg/mL; and the P(>or=300) group (N = 24) with iPTH >or=300 pg/mL. We examined serial changes in several serum mineral parameters and parathyroid gland volume and the cumulative incidence of parathyroidectomy in the first two years. Serum calcium, phosphorus, calcium-phosphorus product, and iPTH levels of the P(>or=300) group were significantly higher than those of the P(<300) group, and could not be maintained within the target ranges set by the K/DOQI guidelines. In contrast, the serum levels of phosphorus, calcium-phosphorus product, and iPTH were maintained within the target ranges and the parathyroid gland did not enlarge in the P(<300) group. The cumulative incidence of parathyroidectomy in the P(>or=300) group was significantly higher than in the P(<300) group. Early intervention with intravenous or pulse oral vitamin D therapy at serum iPTH <300 pg/mL can control serum phosphorus, calcium-phosphorus product, and PTH levels to the target ranges and slow the progression of secondary hyperparathyroidism. PMID:20649764

  14. Vitamin D and genomic stability.

    PubMed

    Chatterjee, M

    2001-04-18

    1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] has been shown to act on novel target tissues not related to calcium homeostasis. There have been reports characterizing 1,25(OH)(2)D(3) receptors and activities in diverse tissues such as brain, pancreas, pituitary, skin, muscle, placenta, immune cells and parathyroid. The receptor hormone complex becomes localized in the nucleus, and undergoes phosphorylation by reacting with a kinase. This form of the receptor then interacts with the Vitamin D responsive element of target gene and modifies the transcription of those genes to develop the action. The modulation of gene transcription results in either the induction or repression of specific messenger RNAs (m-RNAs), ultimately resulting in changes in protein expression needed to produce biological responses. Genes for carbonic anhydrase that are expressed at high levels in osteoclast are known to be involved in bone resorption and Id genes role in osteoblast-osteoclast differentiation reflects the genomic effect of Vitamin D on bones. Genomic action of Vitamin D also explains the biosynthesis of oncogenes, polyamines, lymphokines and calcium binding proteins. However, there is a possibility that some of the actions of 1,25(OH)(2)D(3) may be mediated by non-genomic mechanisms and may not require the binding to Vitamin D receptor (VDR). Vitamin D offers a protection from genotoxic effects of Vitamin D deficiency by increasing the insulin receptor gene expression and BSP (bone sialoprotein), bone-remodeling by decreasing the osteopontin (OPN) m-RNAs, maintaining the normal epidermal structure and enamel matrix. Gonadal insufficiency in Vitamin D deficiency was corrected by vitamin mediated direct regulation of the expression of aramotase gene. The supportive role of Vitamin D in placental function is also evident by its influence on human placental lactogen (hpl) gene transcription accompanied by increase hpl m-RNA levels. Further role of Vitamin D is envisaged in identifying cyclin C as an important target for Vitamin D in cell-cycle regulation. Vitamin D at physiological concentration has been found to protect cell proteins and membranes against oxidative stress by inhibiting the peroxidative attack on membrane lipids. Vitamin D, at a concentration range of 2x10(-8)-5x10(-8)M, induces apoptosis in most cancer cells, stabilizes chromosomal structure and prevents DNA double-strand breaks induced either by endogenous or exogenous factors. Vitamin D is also effective in stimulating DNA synthesis in adult alveolar II cells and provides a novel mechanism of modulation of epithelial cell proliferation in the context of lung development and repair against injury. The regulation of various proto-oncogenes (c-myc, c-fos, c-jun), differentiation inducing properties, antiproliferative effects on keratinocytes and inhibitory effects in several human malignancy ranks Vitamin D as a novel hormone that may have physiological and clinical implication in the carcinogenic process. PMID:11295155

  15. Prevalence and risk factors of vitamin D deficiency in inherited ichthyosis: A French prospective observational study performed in a reference center

    PubMed Central

    2014-01-01

    Background To date, few studies have investigated serum vitamin D status in patients with inherited ichthyosis. The aim of this study was to determine the prevalence of vitamin D deficiency (defined as serum level <10ng/mL) in a French cohort of patients and to identify associated risk factors. Methods This was a prospective observational study performed in a hospital reference center with expertise for rare skin diseases. Patients clinical characteristics were recorded. Serum concentration of 25-hydroxyvitamin D and parathyroid hormone were determined. For patients with vitamin D deficiency, serum calcium, serum phosphorus and bone mineral density were also investigated. Comparisons between groups (25-hydroxyvitamin D <10ng/mL versus ?10ng/mL) were conducted by univariate and multivariate logistic regression. Results Of the 53 included patients, 47 (88.7%) had serum 25-hydroxyvitamin D below the optimal level of 30ng/mL: 18 (34%) had vitamin D sufficiency, 14 (26.4%) had vitamin D insufficiency, and 15 (28.3%) had vitamin D deficiency. A negative linear correlation was found between 25-hydroxyvitamin D and parathyroid hormone levels for the whole study population. Serum calcium and phosphorus levels were normal for the 15 patients with vitamin D deficiency. Bone mineral density was investigated for 11 of these latter 15 patients, and six of them had osteopenia. Winter/spring seasons of vitamin D measurement, severity of ichthyosis, and phototypes IVVI were identified as independent risk factors for vitamin D deficiency. Conclusions Clinicians should be aware of the risk of vitamin D deficiency in the management of patients with inherited ichthyosis, especially in winter and spring, and in case of dark skin or severe disease. PMID:25091406

  16. Parathyroid Cyst Presenting as Acute Pancreatitis: Report of a Case

    PubMed Central

    Kim, Mi-Young; Chung, Cho-Yun; Kim, Jong-Sun; Myung, Dae-Seong; Cho, Sung-Bum; Park, Chang-Hwan; Kim, Young

    2013-01-01

    We report the first case of hypercalcemia-induced acute pancreatitis caused by a functioning parathyroid cyst in a 67-year-old man. Laboratory investigation revealed increased serum amylase and lipase, increased serum ionized calcium and parathyroid hormone (PTH) levels, and decreased serum phosphate, indicating pancreatitis and primary hyperparathyroidism (PHPT). Abdominal computed tomography (CT) revealed mild swelling of the pancreatic head with peri-pancreatic fat infiltration and fluid collection around the pancreatic tail. Ultrasonography and CT of the neck showed a cystic lesion at the inferior portion of the left thyroid gland, suggesting a parathyroid cyst. There was no evidence of parathyroid adenoma by 99mTc sestamibi scintigraphy. PHPT caused by a functioning parathyroid cyst was suspected. The patient underwent surgical resection of the functioning parathyroid cyst owing to his prolonged hypercalcemia. At 3 weeks after the operation, his serum levels of PTH, total calcium, ionized calcium, inorganic phosphate, amylase, and lipase were normalized. At the follow-up examinations, he has remained asymptomatic. PMID:24400215

  17. [A case of parathyroid adenoma with oxyphil cells].

    PubMed

    Enomoto, Katsuhisa; Sakurai, Kenichi; Amano, Sadao

    2014-11-01

    A 56-year-old woman who was undergoing dialysis for renal failure that occurred 4 years previously was identified with hypercalcemia and high levels of intact parathyroid hormone (iPTH), as observed on blood analysis results. Blood analysis also indicated high levels of Ca (12.7 mg/dL) and parathyroid hormone (PTH 1,280 ng/mL). Secondary hyperparathyroidism was suspected to be the cause of hypercalcemia. Cervical neck ultrasonography revealed a 13- 4-mm hypoechoic mass in the lower left pole of the thyroid gland. Tc-99 metaiodobenzylguanidine (MIBG )imaging revealed aberrant accumulation at the lower region of the left accessory thyroid. Cervical neck computed tomography revealed a 12-mm mass at the inferior pole of the left thyroid gland. Considering the above observations, a diagnosis of lower left parathyroid adenoma was made. Lumpectomy was performed, and the final pathology report indicated oxyphilic adenoma. Chief cells are often observed in parathyroid adenoma, but, to our knowledge, this is the first case of a parathyroid adenoma with oxyphil cells. PMID:25731384

  18. Vitamin D insufficiency and insulin resistance in obese adolescents

    PubMed Central

    Tosh, Aneesh K.; Belenchia, Anthony M.

    2014-01-01

    Obese adolescents represent a particularly vulnerable group for vitamin D deficiency which appears to have negative consequences on insulin resistance and glucose homeostasis. Poor vitamin D status is also associated with future risk of type 2 diabetes and metabolic syndrome in the obese. The biological mechanisms by which vitamin D influences glycemic control in obesity are not well understood, but are thought to involve enhancement of peripheral/hepatic uptake of glucose, attenuation of inflammation and/or regulation of insulin synthesis/secretion by pancreatic β cells. Related to the latter, recent data suggest that the active form of vitamin, 1,25-dihydroxyvitamin D, does not impact insulin release in healthy pancreatic islets; instead they require an environmental stressor such as inflammation or vitamin D deficiency to see an effect. To date, a number of observational studies exploring the relationship between the vitamin D status of obese adolescents and markers of glucose homeostasis have been published. Most, although not all, show significant associations between circulating 25-hydroxyvitamn D concentrations and insulin sensitivity/resistance indices. In interpreting the collective findings of these reports, significant considerations surface including the effects of pubertal status, vitamin D status, influence of parathyroid hormone status and the presence of nonalcoholic fatty liver disease. The few published clinical trials using vitamin D supplementation to improve insulin resistance and impaired glucose tolerance in obese adolescents have yielded beneficial effects. However, there is a need for more randomized controlled trials. Future investigations should involve larger sample sizes of obese adolescents with documented vitamin D deficiency, and careful selection of the dose, dosing regimen and achievement of target 25-hydroxyvitamn D serum concentrations. These trials should also include clamp-derived measures of in vivo sensitivity and β-cell function to more fully characterize the effects of vitamin D replenishment on insulin resistance. PMID:25489472

  19. [Overdose or hypersensitivity to vitamin D?].

    PubMed

    Hmami, F; Oulmaati, A; Amarti, A; Kottler, M-L; Bouharrou, A

    2014-10-01

    Vitamin D intoxication with severe hypercalcemia is rare in the neonatal and infancy period. Through nine cases of hypercalcemia, secondary to taking 600,000 units of vitamin D (Sterogyl(®)), a review of vitamin D requirements and possible mechanisms of toxicity including hypersensitivity to this vitamin will be discussed. We report nine cases of babies admitted to our department between the ages of 25 and 105 days for treatment of severe dehydration. The pregnancies were normal, with no incidents at delivery. Clinical signs were dominated by weight loss, vomiting, and fever. Examination on admission revealed dehydration whose degree ranged from 8 to 15% with preserved diuresis and loss weight between 100 and 1100 g. Laboratory tests objectified hypercalcemia between 113 and 235mg/L, hypercalciuria (urinary calcium/creatinine mmol/mmol >0.5), and a low-level of parathyroid hormone. The vitamin D values in nine patients were toxic (344-749 nmol/L; normal >50 nmol/L; toxicity if >250 nmol/L). Abdominal ultrasound objectified renal nephrocalcinosis in seven patients. The DNA study, performed in eight patients, did not reveal a mutation of the vitamin D 24-hydroxylase gene (CYP24A1). The treatment consisted of intravenous rehydration with treatment of hypercalcemia (diuretics and corticosteroids). Serum calcium returned to the normal range within 4-50 days, with weight gain progressively over the following weeks. The follow-up (2 years for the oldest case) showed the persistence of images of nephrocalcinosis. Genetic susceptibility and metabolic differences appear to modulate the threshold of vitamin D toxicity. However, respect for recommended doses, recognized as safe in a large study population, reduces the risk of toxicity. PMID:25129320

  20. A novel rat model of vitamin D deficiency: safe and rapid induction of vitamin D and calcitriol deficiency without hyperparathyroidism.

    PubMed

    Stavenuiter, Andrea W D; Arcidiacono, Maria Vittoria; Ferrantelli, Evelina; Keuning, Eelco D; Vila Cuenca, Marc; ter Wee, Piet M; Beelen, Robert H J; Vervloet, Marc G; Dusso, Adriana S

    2015-01-01

    Vitamin D deficiency is associated with a range of clinical disorders. To study the mechanisms involved and improve treatments, animal models are tremendously useful. Current vitamin D deficient rat models have important practical limitations, including time requirements when using, exclusively, a vitamin D deficient diet. More importantly, induction of hypovitaminosis D causes significant fluctuations in parathyroid hormone (PTH) and mineral levels, complicating the interpretation of study results. To overcome these shortcomings, we report the successful induction of vitamin D deficiency within three weeks, with stable serum PTH and minerals levels, in Wistar rats. We incorporated two additional manoeuvres compared to a conventional diet. Firstly, the vitamin D depleted diet is calcium (Ca) enriched, to attenuate the development of secondary hyperparathyroidism. Secondly, six intraperitoneal injections of paricalcitol during the first two weeks are given to induce the rapid degradation of circulating vitamin D metabolites. After three weeks, serum 25-hydroxyvitamin D3 (25D) and 1,25-dihydroxyvitamin D3 (1,25D) levels had dropped below detection limits, with unchanged serum PTH, Ca, and phosphate (P) levels. Therefore, this model provides a useful tool to examine the sole effect of hypovitaminosis D, in a wide range of research settings, without confounding changes in PTH, Ca, and P. PMID:25815325

  1. A Novel Rat Model of Vitamin D Deficiency: Safe and Rapid Induction of Vitamin D and Calcitriol Deficiency without Hyperparathyroidism

    PubMed Central

    Stavenuiter, Andrea W. D.; Arcidiacono, Maria Vittoria; Ferrantelli, Evelina; Keuning, Eelco D.; Vila Cuenca, Marc; ter Wee, Piet M.; Beelen, Robert H. J.; Vervloet, Marc G.; Dusso, Adriana S.

    2015-01-01

    Vitamin D deficiency is associated with a range of clinical disorders. To study the mechanisms involved and improve treatments, animal models are tremendously useful. Current vitamin D deficient rat models have important practical limitations, including time requirements when using, exclusively, a vitamin D deficient diet. More importantly, induction of hypovitaminosis D causes significant fluctuations in parathyroid hormone (PTH) and mineral levels, complicating the interpretation of study results. To overcome these shortcomings, we report the successful induction of vitamin D deficiency within three weeks, with stable serum PTH and minerals levels, in Wistar rats. We incorporated two additional manoeuvres compared to a conventional diet. Firstly, the vitamin D depleted diet is calcium (Ca) enriched, to attenuate the development of secondary hyperparathyroidism. Secondly, six intraperitoneal injections of paricalcitol during the first two weeks are given to induce the rapid degradation of circulating vitamin D metabolites. After three weeks, serum 25-hydroxyvitamin D3 (25D) and 1,25-dihydroxyvitamin D3 (1,25D) levels had dropped below detection limits, with unchanged serum PTH, Ca, and phosphate (P) levels. Therefore, this model provides a useful tool to examine the sole effect of hypovitaminosis D, in a wide range of research settings, without confounding changes in PTH, Ca, and P. PMID:25815325

  2. Bone-related effects of contaminants in seals may be associated with vitamin D and thyroid hormones.

    PubMed

    Routti, Heli; Nyman, Madeleine; Jenssen, Bjrn Munro; Bckman, Christina; Koistinen, Jaana; Gabrielsen, Geir Wing

    2008-04-01

    The high levels of polychlorinated biphenyls (PCBs) and DDT in gray seal (Halichoerus grypus) and ringed seal (Phoca hispida botnica) in the Baltic Sea have been associated with pathological disruptions, including bone lesions and reproductive failures. The underlying environmental and toxicological mechanisms leading to these pathological changes are not yet fully understood. The present study investigated the relationship between the individual contaminant load and bone- and thyroid-related effects in adult gray seals (n=30) and ringed seals (n=46) in the highly contaminated Baltic Sea and in reference areas (Sable Island, Canada, and Svalbard, Norway). In the gray seals, multivariate and correlation analyses revealed a clear relationship between circulating 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D), calcium, phosphate, and thyroid hormone (TH) levels and hepatic PCB and DDT load, which suggests contaminant-mediated disruption of the bone and thyroid homeostasis. Contaminants may depress 1,25(OH)(2)D levels or lead to hyperthyroidism, which may cause bone resorption. In the ringed seals, associations between circulating 1,25(OH)(2)D, THs, and hepatic contaminants were less prominent. These results suggest that bone lesions observed in the Baltic gray seals may be associated with contaminant-mediated vitamin D and thyroid disruption. PMID:18333671

  3. Vitamin D Status and Outcomes After Renal Transplantation

    PubMed Central

    Girard, Delphine; Anglicheau, Dany; Canaud, Guillaume; Souberbielle, Jean Claude; Kreis, Henri; Noël, Laure Hélène; Friedlander, Gérard; Elie, Caroline; Legendre, Christophe; Prié, Dominique

    2013-01-01

    Kidney transplant recipients usually have low vitamin D levels, especially in the early posttransplantation period, but the association between vitamin D status with renal outcomes is not well described in this population. Here, we studied a prospective cohort of 634 kidney recipients who underwent transplantation at a single institution between January 2005 and June 2010. In this cohort, low 25-hydroxyvitamin D concentrations 3 months after transplantation did not predict early death or graft loss but were independently associated with lower measured GFR at 12 months (P=0.001) and higher risk for interstitial fibrosis and tubular atrophy (P=0.01). In contrast, levels of calcium, phosphorus, calcitriol, parathyroid hormone, or fibroblast growth factor-23 were not consistently associated with any of the studied outcomes. In conclusion, low 25-hydroxyvitamin D concentration measured 3 months after transplantation is an independent risk factor for interstitial fibrosis progression and is associated with a lower GFR 1 year after transplantation. PMID:23539758

  4. Apical membrane segregation of phosphatidylinositol-4,5-bisphosphate influences parathyroid hormone 1 receptor compartmental signaling and localization via direct regulation of ezrin in LLC-PK1 cells

    PubMed Central

    Mahon, Matthew J.

    2011-01-01

    The parathyroid hormone 1 receptor (PTH1R), a primary regulator of mineral ion homeostasis, is expressed on both the apical and basolateral membranes of kidney proximal tubules and in the LLC-PK1 kidney cell line. In LLC-PK1 cells, apical PTH1R subpopulations are far more effective at signaling via phospholipase (PLC) than basolateral counterparts, revealing the presence of compartmental signaling. Apical PTH1R localization is dependent upon direct interactions with ezrin, an actin-membrane cross-linking scaffold protein. Ezrin undergoes an activation process that is dependent upon phosphorylation and binding to phosphatidylinositol-4,5-bisphosphate (PIP2), a lipid that is selectively concentrated to apical surfaces of polarized epithelia. Consistently, the intracellular probe for PIP2, GFP-PLC?1-PH, localizes to the apical membranes of LLC-PK1 cells, directly overlapping ezrin and PTH1R expression. Activation of the apical PTH1R shifts the GFP-PLC?1-PH probe from the apical membrane to the cytosol and basolateral membranes, reflecting domain-specific activation of PLC and hydrolysis of PIP2. This compartmental signaling is likely due to the polarized localization of PIP2, the substrate for PLC. PIP2 degradation using a membrane-directed phosphatase shifts ezrin localization to the cytosol and induces ezrin de-phosphorylation, processes consistent with inactivation. PIP2 degradation also shifts PTH1R expression from brush border microvilli to basolateral membranes and markedly blunts PTH-elicited activation of the MAPK pathway. Transient expression of ezrin in HEK293 cells shifts PTH1R expression from the plasma membrane to microvilli-like surface projections that also contain PIP2. As a result, ezrin enhances PTH mediated activation of the PLC pathway in this cell model with increasing total receptor surface expression. Collectively, these findings demonstrate that the apical segregation of PIP2 to the apical domains not only promotes the activation of ezrin and the subsequent formation of the PTH1R containing scaffold, but also ensures the presence of ample substrate for propagating the PLC pathway. PMID:21672629

  5. The effect of supplementation of calcium, vitamin D, boron, and increased fluoride intake on bone mechanical properties and metabolic hormones in rat.

    PubMed

    Ghanizadeh, G; Babaei, M; Naghii, Mohammad Reza; Mofid, M; Torkaman, G; Hedayati, M

    2014-04-01

    Evidence indicates that optimal nutrition plays a role in bone formation and maintenance. Besides major components of mineralization such as calcium, phosphorus, and vitamin D, other nutrients like boron and fluoride have beneficial role, too. In this study, 34 male Wistar rats were divided into five groups: control diet, fluoride, fluoride + boron, fluoride + calcium + vitamin D, and fluoride + boron + calcium + vitamin D. Boron equal to 1.23 mg, calcium and vitamin D equal to 210 mg + 55 IU and fluoride equal to 0.7 mg/rat/day was added to their drinking water for 8 weeks. Plasma blood samples and bones were collected. Findings are evidence that fluoride + boron intake revealed significant positive effects on bone mechanical properties and bone metabolic hormones. These findings suggest that combined intake of these two elements has beneficial effects on bone stiffness and breaking strength comparing to even calcium + vitamin D supplementation. This evidence dealing with health problems related to bone and skeletal system in humans should justify further investigation of the role of boron and fluoride with other elements in relation to bone. PMID:22782709

  6. FGF-23 and vitamin D: don't shoot the messenger?

    PubMed

    Fish, Richard S; Cunningham, John

    2012-06-01

    The discovery of fibroblast growth factor-23 (FGF-23) as a key regulator of phosphate and vitamin D metabolism has forced a rethink about the mineral and bone disorder of chronic kidney disease (CKD). FGF-23 powerfully predicts adverse cardiovascular outcomes in patients with CKD and an important question is whether treatment regimens should now be tailored to address FGF-23 levels in addition to those of calcium, phosphate, parathyroid hormone and vitamin D. Nevertheless, despite the known action of active vitamin D therapies to increase FGF-23, this should probably still form an important part of the management of patients with hyperparathyroidism and perhaps at low doses of essentially all patients with advanced renal disease. PMID:22523113

  7. Parathyroid-specific deletion of dicer-dependent microRNAs abrogates the response of the parathyroid to acute and chronic hypocalcemia and uremia.

    PubMed

    Shilo, Vitali; Ben-Dov, Iddo Z; Nechama, Morris; Silver, Justin; Naveh-Many, Tally

    2015-09-01

    MicroRNAs (miRNAs) down-regulate gene expression and have vital roles in biology but their functions in the parathyroid are unexplored. To study this, we generated parathyroid-specific Dicer1 knockout (PT-Dicer(-/-) ) mice where parathyroid miRNA maturation is blocked. Remarkably, the PT-Dicer(-/-) mice did not increase serum parathyroid hormone (PTH) in response to acute hypocalcemia compared with the >5-fold increase in controls. PT-Dicer(-/-) glands cultured in low-calcium medium secreted 5-fold less PTH at 1.5 h than controls. Chronic hypocalcemia increased serum PTH >4-fold less in PT-Dicer(-/-) mice compared with control mice with no increase in PTH mRNA levels and parathyroid cell proliferation compared with the 2- to 3-fold increase in hypocalcemic controls. Moreover, uremic PT-Dicer(-/-) mice increased serum PTH and FGF23 significantly less than uremic controls. Therefore, stimulation of the parathyroid by both hypocalcemia and uremia is dependent upon intact dicer function and miRNAs. In contrast, the PT-Dicer(-/-) mice responded normally to activation of the parathyroid calcium-sensing receptor (Casr) by both hypercalcemia and a calcimimetic that decreases PTH secretion, demonstrating that they are dicer-independent. Therefore, miRNAs are essential for the response of the parathyroid to both acute and chronic hypocalcemia and uremia, the major stimuli for PTH secretion. PMID:26054367

  8. Prevalence of vitamin D deficiency and associated factors in women and newborns in the immediate postpartum period

    PubMed Central

    do Prado, Mara Rbia Maciel Cardoso; Oliveira, Fabiana de Cssia Carvalho; Assis, Karine Franklin; Ribeiro, Sarah Aparecida Vieira; do Prado, Pedro Paulo; Sant'Ana, Luciana Ferreira da Rocha; Priore, Silvia Eloiza; Franceschini, Sylvia do Carmo Castro

    2015-01-01

    Abstract Objective: To assess the prevalence of vitamin D deficiency and its associated factors in women and their newborns in the postpartum period. Methods: This cross-sectional study evaluated vitamin D deficiency/insufficiency in 226 women and their newborns in Viosa (Minas Gerais, BR) between December 2011 and November 2012. Cord blood and venous maternal blood were collected to evaluate the following biochemical parameters: vitamin D, alkaline phosphatase, calcium, phosphorus and parathyroid hormone. Poisson regression analysis, with a confidence interval of 95%, was applied to assess vitamin D deficiency and its associated factors. Multiple linear regression analysis was performed to identify factors associated with 25(OH)D deficiency in the newborns and women from the study. The criteria for variable inclusion in the multiple linear regression model was the association with the dependent variable in the simple linear regression analysis, considering p<0.20. Significance level was ? <5%. Results: From 226 women included, 200 (88.5%) were 20-44 years old; the median age was 28 years. Deficient/insufficient levels of vitamin D were found in 192 (85%) women and in 182 (80.5%) neonates. The maternal 25(OH)D and alkaline phosphatase levels were independently associated with vitamin D deficiency in infants. Conclusions: This study identified a high prevalence of vitamin D deficiency and insufficiency in women and newborns and the association between maternal nutritional status of vitamin D and their infants' vitamin D status. PMID:26100593

  9. The history of parathyroid endocrinology.

    PubMed

    Kalra, Sanjay; Baruah, Manash P; Sahay, Rakesh; Sawhney, Kanishka

    2013-03-01

    The parathyroid glands are now recognized as being essential for life. Their structure and function is well delineated, and their disease and dysfunction, well characterized. Diagnosis and management of parathyroid disease has improved in the past few decades. The path of parathyroid science, however, has been far from smooth. This paper describes the early history of parathyroid endocrinology. In doing so, it focuses on major events and discoveries, which improved the understanding and practice of our specialty. Contribution in anatomy, physiology, pathology, medicine, surgery and biochemistry are reviewed. PMID:23776911

  10. The history of parathyroid endocrinology

    PubMed Central

    Kalra, Sanjay; Baruah, Manash P.; Sahay, Rakesh; Sawhney, Kanishka

    2013-01-01

    The parathyroid glands are now recognized as being essential for life. Their structure and function is well delineated, and their disease and dysfunction, well characterized. Diagnosis and management of parathyroid disease has improved in the past few decades. The path of parathyroid science, however, has been far from smooth. This paper describes the early history of parathyroid endocrinology. In doing so, it focuses on major events and discoveries, which improved the understanding and practice of our specialty. Contribution in anatomy, physiology, pathology, medicine, surgery and biochemistry are reviewed. PMID:23776911

  11. Preliminary evidence for vitamin D deficiency in nodulocystic acne

    PubMed Central

    Yildizgren, Mustafa Turgut; Togral, Arzu Karatas

    2014-01-01

    Objective: Acne vulgaris is a chronic inflammatory disease, and hormonal influences, follicular plugging and follicular hyperkeratinization, increased sebum secretion, Propionibacterium acnes colonization, and inflammation are involved in its pathogenesis. Recently, a significant body of evidence has accumulated that describes the comedolytic properties of vitamin D and its roles as a modulator of the immune system, a regulator of the proliferation and differentiation of sebocytes and keratinocytes, and as an antioxidant. In this study, we aimed to compare serum vitamin D levels in a group of patients with nodulocystic acne with vitamin D levels in a group of control subjects to determine whether there was any relationship between the vitamin D and acne. Methods: Levels of 25-hydroxyvitamin D (25[OH]D) were measured in 43 patients with newly diagnosed nodulocystic acne and in 46 healthy control subjects, and participants were grouped according to their 25[OH]D levels as follows: normal/sufficient (>20ng/mL) or insufficient/deficient (<20ng/mL). Serum concentrations of calcium (Ca), phosphorus (P), alkaline phosphatase (ALP), and parathyroid hormone (PTH) were measured. Results: Forty-three patients and 46 control individuals, with mean ages of 23.13 ( 5.78) years and 25.23 ( 4.73) years, respectively, were included in this study. There were no significant differences between the groups in relation to their body mass indices and Ca, P, ALP, and PTH levels. However, the patients with nodulocystic acne had significantly lower 25[OH]D levels than the subjects in the control group (P< 0.05). Conclusion: The patients with nodulocystic acne had relatively low serum vitamin D levels compared with the subjects in the control group. The findings from this study suggest that there is a connection between low vitamin D levels and acne. Larger epidemiologic studies are needed to confirm the status of vitamin D levels in patients with acne. PMID:26413187

  12. Parathyroid hormone-related protein blood test

    MedlinePLUS

    PTHrp; PTH-related peptide ... calcium level is caused by an increase in PTH-related protein. ... No detectable (or minimal) PTH-like protein is normal. Women who are breastfeeding may have detectable PTH-related protein values. The examples above are common ...

  13. An Unusual Presentation of Parathyroid Adenoma in an Adolescent: Calcific Achilles Tendinitis.

    PubMed

    Kurtoğlu, Selim; Akın, Leyla; Kendirci, Mustafa; Çağlı, Sedat; Özgöçmen, Salih

    2015-12-01

    Primary hyperparathyroidism (PHPT) in children and adolescents is a rare condition. PHPT is usually sporadic and caused by parathyroid adenoma. Patients may present with bone pain, proximal myopathy, bony deformities, fractures, renal calculi, mass on the neck, or acute pancreatitis. A sixteen-year-old boy presented to our outpatient clinic with difficulty in walking due to swelling of both ankles. Ultrasonography revealed intratendinous calcific nodules in both Achilles tendons. Serum biochemistry showed hypercalcemia and hypophosphatemia. Serum parathormone level was high (512 pg/mL). Parathyroid scanning revealed a suspected parathyroid adenoma. The patient underwent parathyroidectomy and the diagnosis of parathyroid adenoma was confirmed by histopathology. Serum levels of parathyroid hormone, phosphate, and calcium returned to normal, and the tenderness over the Achilles tendon and the flow pattern on Doppler examination disappeared as well. In conclusion, hyperparathyroidism should be kept in mind in the differential diagnosis of tendonopathies. Early diagnosis can be crucial for prevention of severe complications. PMID:26777046

  14. Complete genomic landscape of a recurring sporadic parathyroid carcinoma.

    PubMed

    Kasaian, Katayoon; Wiseman, Sam M; Thiessen, Nina; Mungall, Karen L; Corbett, Richard D; Qian, Jenny Q; Nip, Ka Ming; He, Ann; Tse, Kane; Chuah, Eric; Varhol, Richard J; Pandoh, Pawan; McDonald, Helen; Zeng, Thomas; Tam, Angela; Schein, Jacquie; Birol, Inanc; Mungall, Andrew J; Moore, Richard A; Zhao, Yongjun; Hirst, Martin; Marra, Marco A; Walker, Blair A; Jones, Steven J M

    2013-07-01

    Parathyroid carcinoma is a rare endocrine malignancy with an estimated incidence of less than 1 per million population. Excessive secretion of parathyroid hormone, extremely high serum calcium level, and the deleterious effects of hypercalcaemia are the clinical manifestations of the disease. Up to 60% of patients develop multiple disease recurrences and although long-term survival is possible with palliative surgery, permanent remission is rarely achieved. Molecular drivers of sporadic parathyroid carcinoma have remained largely unknown. Previous studies, mostly based on familial cases of the disease, suggested potential roles for the tumour suppressor MEN1 and proto-oncogene RET in benign parathyroid tumourigenesis, while the tumour suppressor HRPT2 and proto-oncogene CCND1 may also act as drivers in parathyroid cancer. Here, we report the complete genomic analysis of a sporadic and recurring parathyroid carcinoma. Mutational landscapes of the primary and recurrent tumour specimens were analysed using high-throughput sequencing technologies. Such molecular profiling allowed for identification of somatic mutations never previously identified in this malignancy. These included single nucleotide point mutations in well-characterized cancer genes such as mTOR, MLL2, CDKN2C, and PIK3CA. Comparison of acquired mutations in patient-matched primary and recurrent tumours revealed loss of PIK3CA activating mutation during the evolution of the tumour from the primary to the recurrence. Structural variations leading to gene fusions and regions of copy loss and gain were identified at a single-base resolution. Loss of the short arm of chromosome 1, along with somatic missense and truncating mutations in CDKN2C and THRAP3, respectively, provides new evidence for the potential role of these genes as tumour suppressors in parathyroid cancer. The key somatic mutations identified in this study can serve as novel diagnostic markers as well as therapeutic targets. PMID:23616356

  15. Omega-3 Fatty Acids and Vitamin D in Cardiology

    PubMed Central

    Gttler, Norbert; Zheleva, Kirila; Parahuleva, Mariana; Chasan, Ridvan; Bilgin, Mehmet; Neuhof, Christiane; Burgazli, Mehmet; Niemann, Bernd; Erdogan, Ali; Bning, Andreas

    2012-01-01

    Dietary modification and supplementation play an increasingly important role in the conservative treatment of cardiovascular disease. Current interest has focused on n-3 polyunsaturated fatty acids (PUFA) and vitamin D. Clinical trial results on this subject are contradictory in many aspects. Several studies indicate that n-3 PUFA consumption improves vascular and cardiac hemodynamics, triglycerides, and possibly endothelial function, autonomic control, inflammation, thrombosis, and arrhythmia. Experimental studies show effects on membrane structure and associated functions, ion channel properties, genetic regulation, and production of anti-inflammatory mediators. Clinical trials evaluating a possible reduction in cardiovascular disease by n-3 PUFA have shown different results. Supplementation of vitamin D is common regarding prevention and treatment of osteoporosis. But vitamin D also seems to have several effects on the cardiovascular system. Vitamin D deficiency appears to be related to an increase in parathyroid hormone levels and can predispose to essential hypertension and left ventricular hypertrophy, increased insulin resistance, and eventually to atherosclerosis and adverse cardiovascular events. Randomized prospective clinical trials are needed to determine whether vitamin D and omega-3 FA supplementation therapy should be recommended as a routine therapy for primary or secondary prevention of cardiovascular disease. PMID:23346457

  16. Fat-Soluble Vitamin Status in Self-Neglecting Elderly

    NASA Technical Reports Server (NTRS)

    Kala, G.; Oliver, S. Mathews; Kelly, P. A.; Pickens, S.; Burnett, J.; Dyer, C. B.; Smith, S. M.

    2006-01-01

    Elder self-neglect is a form of elder mistreatment. The systematic characterization of self-neglecting individuals is the goal of the CREST project. Reported here is the evaluation of fat-soluble vitamin status. Self-neglect (SN) subjects were recruited and consented following referral from Adult Protective Services. Control (CN) subjects were matched for age, gender, race, and socioeconomic status, as possible. We report here on 47 SN subjects (age 77 plus or minus 7, mean plus or minus SD; body weight 76 kg plus or minus 26) and 40 CN subjects (77 y plus or minus 7, 79 kg plus or minus 20). Blood samples were analyzed for indices of fat-soluble vitamin status. Plasma retinol (p less than 0.01) was lower in SN subjects. Plasma tocopherol tended (p less than 0.06) to be lower in SN subjects, while gamma-tocopherol was unchanged. SN subjects tended to have lower serum 25-OH vitamin D (p less than 0.11), and to be vitamin D deficient (26% below 23 mmol/L). Hypercalcemia occurred more often in SN subjects (23% had values above 2.56 mmol/L), as did elevated parathyroid hormone concentrations (p less than 0.05). These data demonstrate that many nutrients are affected in the self-neglecting elderly, and that long-term deficits are evident by the nature of changes in fat soluble vitamins.

  17. Localization of abnormal parathyroid glands using thallium-201

    SciTech Connect

    MacFarlane, S.D.; Hanelin, L.G.; Taft, D.A.; Ryan, J.A. Jr.; Fredlund, P.N.

    1984-07-01

    Ectopically located parathyroid adenomas may be difficult to find during initial neck exploration. They account for over 70 percent of missed adenomas found at reexploration. Preoperative localization of parathyroid adenomas would reduce unnecessary dissection and possibly reduce the number of negative results of initial neck exploration. Before reoperative parathyroid surgery is performed, some means of localization is mandatory to detect ectopic adenomas in the neck and mediastinum. Computed tomography and ultrasonography cannot effectively evaluate the mediastinum. Angiography and venous parathyroid hormone sampling are invasive, costly, and tedious to perform. We have shown that thallium-201 will accurately localize ectopic parathyroid adenomas. All 10 adenomas found in positions not immediately adjacent to the thyroid gland were detected by thallium-201 scintigraphy. One was a mediastinal adenoma resected with a median sternotomy. Our results suggest that thallium-201 scintigraphy should be the initial localization procedure of choice before all reexplorations. Its use before initial explorations, as well, will enable the surgeon to immediately direct attention to the area of the localized adenoma. If mediastinal uptake is found to be present, then median sternotomy may be performed during initial surgery provided a thorough neck exploration is performed first.

  18. Regulation of Phosphate Homeostasis by PTH, Vitamin D, and FGF23

    PubMed Central

    Bergwitz, Clemens; Jüppner, Harald

    2015-01-01

    In contrast to the regulation of calcium homeostasis, which has been extensively studied over the past several decades, relatively little is known about the regulation of phosphate homeostasis. Fibroblast growth factor 23 (FGF23) is part of a previously unrecognized hormonal bone-parathyroid-kidney axis, which is modulated by PTH, 1,25(OH)2-vitamin D (1,25(OH)2D), dietary and serum phosphorus levels. Synthesis and secretion of FGF23 by osteocytes are positively regulated by 1,25(OH)2D and serum phosphorus and negatively regulated, through yet unknown mechanisms, by the phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX) and by dentin matrix protein 1 (DMP1). In turn, FGF23 inhibits the synthesis of 1,25(OH)2D, and it may negatively regulate the secretion of parathyroid hormone (PTH) from the parathyroid glands. However, FGF23 synergizes with PTH to increase renal phosphate excretion by reducing expression of the renal sodium-phosphate cotransporters NaPi-IIa and NaPi-IIc in the proximal tubules. Most insights gained into the regulation of phosphate homeostasis by these factors are derived from human genetic disorders and genetically engineered mice, which are reviewed in this paper. PMID:20059333

  19. Parathyroid Lipoadenoma: a Clinicopathological Diagnosis and Possible Trap for the Unaware Pathologist.

    PubMed

    Hyrcza, Martin D; Sargın, Pınar; Mete, Ozgur

    2016-03-01

    The authors present clinicopathological features of parathyroid lipoadenoma in a 48-year-old woman who presented with symptomatic primary hyperparathyroidism manifesting with pathological fractures and osteoporosis. Preoperative sestamibi scan failed to localize the source of her disease. Exploratory surgery identified an enlarged parathyroid gland with abundant fat tissue. The significant drop of intraoperative serum parathyroid hormone after the removal of this gland and postoperative biochemical cure justified the presence of a single gland disease presenting as parathyroid lipoadenoma. From an educational perspective, the presented case emphasizes why the historical approach to parathyroid proliferations by assessing alone the ratio of parenchymal cells to adipocytes is not a reliable method in the diagnostic evaluation of parathyroid disease. While the accurate size and weight of a parathyroid gland are defining parameters of an abnormal gland, intraoperative and postoperative biochemical workup distinguishes uniglandular disease (adenoma) from multiglandular disease (hyperplasia). The authors also provide a brief review of the previously published cases of parathyroid lipoadenomas to highlight their clinicopathological characteristics of relevance to surgical pathologists. PMID:26585863

  20. Correlation between total vitamin D levels and psychotic psychopathology in patients with schizophrenia: therapeutic implications for add-on vitamin D augmentation

    PubMed Central

    Altunsoy, Neslihan; Tikir, Baise; Cingi Külük, Merve; Unal, Kubranur; Goka, Sema; Aydemir, Cigdem; Goka, Erol

    2014-01-01

    Objectives: Vitamin D deficiency is one of the implicated factors in ethio-pathogenesis of schizophrenia. Low serum vitamin D levels have been reported in many schizophrenia studies. However, the question is still not answered: Is there a correlation between disease activity and serum vitamin D levels? This is the first study evaluating the relationship between serum total vitamin D levels and disease activity, by comparing total vitamin D levels in two schizophrenia groups abruptly different in terms of disease activity. Methods: 41 patients with schizophrenia in remission, 40 patients with schizophrenia those in an acute episode and 40 age- and sex -matched controls with no major psychopatology were recruited in this study. Positive and Negative Syndrome Scale (PANSS) and the Clinical Global Impression – Severety scale (CGI-S) were used to evaluate disease activity. A demographic data form that included entries on age, gender, ethnicity, weight, skin color, daily duration of sun exposure and nutritional assessment were used. Blood samples were taken from all patients and controls. Total vitamin D (D2+D3), calcium, phosphor, parathyroid hormone values were measured. Results: Patients in an acute episode had significantly lower vitamin D levels compared to patients in remission and to healthy controls (in terms of median values respectively, 7.18, 15.03, 15.02, p < 0.001). We observed negative and moderate correlations between vitamin D levels and CGI scores (r = −0.624, p < 0.001), vitamin D levels and PANNS scores (r = −0.508, p < 0.001). There were no significant differences between groups in terms of serum P, Ca and PTH levels (p = 0.099, p = 0.943, p = 0.762). We could not detect any significant impact of weekly duration of sun exposure, skin color, ethnicity or nutrition on total vitamin D levels. Conclusions: Even though important factors for vitamin D synthesis were similar, there was severe vitamin D deficiency in patients presenting with an acute episode, significantly different from those in remission. Is vitamin D deficiency the result or the cause of an acute episode? Our results contribute to the idea that vitamin D deficiency and schizophrenia may have interactions with an unknown pathway. Present data points out a possible influence at a genomic level. Future trials may investigate this association with longer follow up. We recommend that, serum vitamin D levels should be measured in patients with schizophrenia especially in long term care. Appropriate further treatment with add-on vitamin D supplements and diets that are rich in vitamin D should be considered. PMID:25489478