Science.gov

Sample records for parent material soil

  1. Soil Inorganic Carbon Formation: Can Parent Material Overcome Climate?

    NASA Astrophysics Data System (ADS)

    Stanbery, C.; Will, R. M.; Seyfried, M. S.; Benner, S. G.; Flores, A. N.; Guilinger, J.; Lohse, K. A.; Good, A.; Black, C.; Pierce, J. L.

    2014-12-01

    Soil carbon is the third largest carbon reservoir and is composed of both organic and inorganic constituents. However, the storage and flux of soil carbon within the global carbon cycle are not fully understood. While organic carbon is often the focus of research, the factors controlling the formation and dissolution of soil inorganic carbon (SIC) are complex. Climate is largely accepted as the primary control on SIC, but the effects of soil parent material are less clear. We hypothesize that effects of parent material are significant and that SIC accumulation will be greater in soils formed from basalts than granites due to the finer textured soils and more abundant calcium and magnesium cations. This research is being conducted in the Reynolds Creek Experimental Watershed (RCEW) in southwestern Idaho. The watershed is an ideal location because it has a range of gradients in precipitation (250 mm to 1200 mm), ecology (sagebrush steppe to juniper), and parent materials (a wide array of igneous and sedimentary rock types) over a relatively small area. Approximately 20 soil profiles will be excavated throughout the watershed and will capture the effects of differing precipitation amounts and parent material on soil characteristics. Several samples at each site will be collected for analysis of SIC content and grain size distribution using a pressure calcimeter and hydrometers, respectively. Initial field data suggests that soils formed over basalts have a higher concentration of SIC than those on granitic material. If precipitation is the only control on SIC, we would expect to see comparable amounts in soils formed on both rock types within the same precipitation zone. However, field observations suggest that for all but the driest sites, soils formed over granite had no SIC detected while basalt soils with comparable precipitation had measurable amounts of SIC. Grain size distribution appears to be a large control on SIC as the sandier, granitic soils promote deeper percolation. This ongoing research will clarify the processes involved in SIC formation and identify the situations where it is an atmospheric source or sink.

  2. Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material

    USGS Publications Warehouse

    Steven, Blaire; Gallegos-Graves, La Verne; Belnap, Jayne; Kuske, Cheryl R.

    2013-01-01

    Biological soil crusts (biocrusts) are common to drylands worldwide. We employed replicated, spatially nested sampling and 16S rRNA gene sequencing to describe the soil microbial communities in three soils derived from different parent material (sandstone, shale, and gypsum). For each soil type, two depths (biocrusts, 0–1 cm; below-crust soils, 2–5 cm) and two horizontal spatial scales (15 cm and 5 m) were sampled. In all three soils, Cyanobacteria and Proteobacteria demonstrated significantly higher relative abundance in the biocrusts, while Chloroflexi and Archaea were significantly enriched in the below-crust soils. Biomass and diversity of the communities in biocrusts or below-crust soils did not differ with soil type. However, biocrusts on gypsum soil harbored significantly larger populations of Actinobacteria and Proteobacteria and lower populations of Cyanobacteria. Numerically dominant operational taxonomic units (OTU; 97% sequence identity) in the biocrusts were conserved across the soil types, whereas two dominant OTUs in the below-crust sand and shale soils were not identified in the gypsum soil. The uniformity with which small-scale vertical community differences are maintained across larger horizontal spatial scales and soil types is a feature of dryland ecosystems that should be considered when designing management plans and determining the response of biocrusts to environmental disturbances.

  3. Parental material and cultivation determine soil bacterial community structure and fertility.

    PubMed

    Sun, Li; Gao, Jusheng; Huang, Ting; Kendall, Joshua R A; Shen, Qirong; Zhang, Ruifu

    2015-01-01

    Microbes are the key components of the soil environment, playing important roles during soil development. Soil parent material provides the foundation elements that comprise the basic nutritional environment for the development of microbial community. After 30 years artificial maturation of cultivation, the soil developments of three different parental materials were evaluated and bacterial community compositions were investigated using the high-throughput sequencing approach. Thirty years of cultivation increased the soil fertility and soil microbial biomass, richness and diversity, greatly changed the soil bacterial communities, the proportion of phylum Actinobacteria decreased significantly, while the relative abundances of the phyla Acidobacteria, Chloroflexi, Gemmatimonadetes, Armatimonadetes and Nitrospira were significantly increased. Soil bacterial communities of parental materials were separated with the cultivated ones, and comparisons of different soil types, granite soil and quaternary red clay soil were similar and different with purple sandy shale soil in both parental materials and cultivated treatments. Bacterial community variations in the three soil types were affected by different factors, and their alteration patterns in the soil development also varied with soil type. Soil properties (except total potassium) had a significant effect on the soil bacterial communities in all three soil types and a close relationship with abundant bacterial phyla. The amounts of nitrogen-fixing bacteria as well as the abundances of the nifH gene in all cultivated soils were higher than those in the parental materials; Burkholderia and Rhizobacte were enriched significantly with long-term cultivation. The results suggested that crop system would not deplete the nutrients of soil parental materials in early stage of soil maturation, instead it increased soil fertility and changed bacterial community, specially enriched the nitrogen-fixing bacteria to accumulate nitrogen during soil development. PMID:25764534

  4. Climatic controls on soil hydraulic properties along soil chronosequences on volcanic parent material

    NASA Astrophysics Data System (ADS)

    Beal, L. K.; Lohse, K. A.; Godsey, S.; Huber, D. P.

    2013-12-01

    Soil development is influenced by physical and chemical weathering processes and accumulation of eolian sediment. These weathering processes have often been examined using chronosequences that take advantage of deposited lava flows ranging in age. These studies typically characterize the physical and sometimes chemical properties, but rarely have these studies examined how hydraulic properties change with time. In addition, many of these studies occur in tropical climates where weathering occurs rapidly; relatively little is known about weathering processes in cool dry climates. This is important not only to understand how water and energy move in these water limited systems, but also to understand how they might change as climate patterns shift. The objectives of this research were to 1) measure and model the soil water retention, ?(h), and hydraulic conductivity, K(h), functions across a chronosequence of cinder cone sites in a cold desert region, 2) compare soil hydraulic properties across soil ages to examine how soil development in semi-arid climates moderates soil hydraulic processes, and 3) compare soil hydraulic characteristics in a dryland environment to those of a wet tropical climate across similarly aged lava flows. We contrast 2.1, 6.9 and 13.9 ka cinder cones soils at Craters of the Moon (COTM) National Monument, Idaho, USA. Soil development at COTM is sparse and is concentrated in joints and crevices of the basalt. The soils contrast slightly in texture with age. The young (2.1 ka) soils are coarser grained with at least 20% greater sand content than the older (6.9, 13.9 ka) soils. Preliminary hydraulic modeling suggests that older soils have lower ? values than younger soils. This is likely due to a higher bulk density values from higher accumulations of secondary minerals in the old soils from loess input. The models show that the air entry points (?) occur at lower tensions in the young soils, likely caused by a greater pore size distribution. We observe that ? decreases with age, and ? occurs at higher tensions. Soil horizons are developed dominantly on the cinder cones. These model estimates appear to match well with preliminary field measurements. Tropical climates enhance the weathering of basaltic parent material. The mean annual precipitation in the Hawaiian site is 2500 mm, and 310 mm at COTM. Accumulation of rainfall increases the weathering rate of the parent material. Using previous work characterizing the physical characteristics of soil across the Hawaii chronosequence to model the contrasting soils, we found that the 0.3 and 20 ka Hawaii soils had similar hydraulic properties; ? values were approximately 0.45 cm3/cm3 and Ks values were 6 cm/hr. However, these Hawaiian soils contrasted and were quantitatively lower than the entire COTM chronosequence. At the 2.1 ka COTM soil, Ks was 17 cm/hr and ? was 0.52-0.65 cm3/cm3 whereas at the 13.9 ka soil, Ks was 12 cm/hr and ? was 0.52 cm3/cm3. The 0.3 ka Hawaiian soil had a 20-30% higher silt content than the 2.1 ka COTM soil. Our models help quantify rates of soil development and hydraulic properties developed through time on volcanic parent materials.

  5. Nature and Properties of Lateritic Soils Derived from Different Parent Materials in Taiwan

    PubMed Central

    2014-01-01

    The objective of this study was to investigate the physical, chemical, and mineralogical composition of lateritic soils in order to use these soils as potential commercial products for industrial application in the future. Five lateritic soils derived from various parent materials in Taiwan, including andesite, diluvium, shale stone, basalt, and Pleistocene deposit, were collected from the Bt1 level of soil samples. Based on the analyses, the Tungwei soil is an alfisol, whereas other lateritic soils are ultisol. Higher pH value of Tungwei is attributed to the large amounts of Ca2+ and Mg2+. Loupi and Pingchen soils would be the older lateritic soils because of the lower active iron ratio. For the iron minerals, the magnetic iron oxides such as major amounts of magnetite and maghemite were found for Tamshui and Tungwei lateritic soils, respectively. Lepidocrocite was only found in Soka soil and intermediate amounts of goethite were detected for Loupi and Pingchen soils. After Mg-saturated and K-saturated processes, major amounts of mixed layer were observed in Loupi and Soka soils, whereas the montmorillonite was only detected in Tungwei soil. The investigation results revealed that the parent materials would play an important role during soil weathering process and physical, chemical, and mineralogy compositions strongly affect the formation of lateritic soils. PMID:24883366

  6. Nature and properties of lateritic soils derived from different parent materials in Taiwan.

    PubMed

    Ko, Tzu-Hsing

    2014-01-01

    The objective of this study was to investigate the physical, chemical, and mineralogical composition of lateritic soils in order to use these soils as potential commercial products for industrial application in the future. Five lateritic soils derived from various parent materials in Taiwan, including andesite, diluvium, shale stone, basalt, and Pleistocene deposit, were collected from the Bt1 level of soil samples. Based on the analyses, the Tungwei soil is an alfisol, whereas other lateritic soils are ultisol. Higher pH value of Tungwei is attributed to the large amounts of Ca(2+) and Mg(2+). Loupi and Pingchen soils would be the older lateritic soils because of the lower active iron ratio. For the iron minerals, the magnetic iron oxides such as major amounts of magnetite and maghemite were found for Tamshui and Tungwei lateritic soils, respectively. Lepidocrocite was only found in Soka soil and intermediate amounts of goethite were detected for Loupi and Pingchen soils. After Mg-saturated and K-saturated processes, major amounts of mixed layer were observed in Loupi and Soka soils, whereas the montmorillonite was only detected in Tungwei soil. The investigation results revealed that the parent materials would play an important role during soil weathering process and physical, chemical, and mineralogy compositions strongly affect the formation of lateritic soils. PMID:24883366

  7. Controls of Parent Material and Topography on Soil Carbon Storage in the Critical Zone

    NASA Astrophysics Data System (ADS)

    Patton, N. R.; Seyfried, M. S.; Lohse, K. A.; Link, T. E.

    2014-12-01

    Semi-arid environments make up a large percentage of the world's terrestrial ecosystems, and climate is a major factor influencing soil carbon storage and release. However, the roles of local controls such as parent material, aspect and microtopography have received less attention and are important for consideration in soil carbon modeling. The purpose of this study is to understand the role that parent material, aspect and micro-topography play in storage and release of soil carbon along an elevation gradient in a semi-arid climate. Johnston Draw (JD) is a first order watershed within the Reynolds Creek Critical Zone Observatory in southwestern Idaho with underlining late cretaceous, granitic Idaho batholith bedrock. Upper Sheep Creek (USC) is a first order watershed consisting of basalt. Both watersheds were chosen for this project due to similar size, aspect, elevation, vegetation and for the contrast in parent material. Two transects, totaling approximately nine soil pits, were excavated on both the north and south facing slopes of each watershed running parallel to the water channel. Soil carbon was generally higher in basalt compared to the granite parent material in pits with similar aspect, elevation and vegetation. Preliminary data using soil organic matter (SOM) as a proxy for organic carbon (OC) and soil water dynamics showed that percent OC declines markedly with elevation in JD and soil depth at lower elevations and is more homogenous throughout the profile moving up elevation (1646 meters 4.3-9.7%; 1707 meters 6.87-3.83%). Similarly, aspect controls patterns of SOM at depth more strongly at lower elevations. Findings from our study suggest that parent material and topography may play as important roles in semi-arid ecosystems as climate factors in controlling soil carbon storage.

  8. Mössbauer and magnetic studies of parent material from argentine pampas soils

    NASA Astrophysics Data System (ADS)

    Bidegain, J. C.; Bartel, A. A.; Sives, F. R.; Mercader, R. C.

    2007-02-01

    In order to establish a correlation between the different types of soils using hyperfine and magnetic parameters as climatic and environmental proxies, we have studied the differentiation of soil developed around 38.5° south latitude, in the central Pampas of Argentina, by means of Mössbauer spectroscopy and environmental magnetism. The soils transect (climosequence) investigated stretches from the drier west (around 64° W) to the more humid east (at around 59° W) in the Buenos Aires Province, covering a distance of 600 km. The soils studied developed during recent Holocene geologic times in a landscape characterized by small relict plateaus, slopes and depressions, dunes and prairies. The parent material consists of eolian sandy silts overlying calcrete layers. The low mean annual precipitation in the western parts of the region gives rise to soils without B-horizons, which limits the agricultural use of land. The preliminary results show an increase of the paramagnetic Fe3+ relative concentration from west to east in the soils investigated. Magnetite is probably mainly responsible for the observed enhancement in the susceptibility values. The magnetic response of the parent material is similar to that of the loess part of the previously investigated loess paleosol sequences of the Argentine loess plateau.

  9. Fe-C interactions and soil organic matter stability in two tropical soils of contrasting parent materials

    NASA Astrophysics Data System (ADS)

    Coward, E.; Thompson, A.; Plante, A. F.

    2014-12-01

    The long residence time of soil organic matter (SOM) is a dynamic property, reflecting the diversity of stabilization mechanisms active within the soil matrix. Climate and ecosystem properties act at the broadest scale, while biochemical recalcitrance, physical occlusion and mineral association drive stability at the microscale. Increasing evidence suggests that the stability of SOM is dominated by organo-mineral interactions. However, the 2:1 clays that provide much of the stabilization capacity in temperate soils are typically absent in tropical soils due to weathering. In contrast, these soils may contain an abundance of iron and aluminium oxides and oxyhydroxides, known as short-range-order (SRO) minerals. These SRO minerals are capable of SOM stabilization through adsorption or co-precipitation, a faculty largely enabled by their high specific surface area (SSA). As such, despite their relatively small mass, SRO minerals may contribute substantially to the SOM stabilization capacity of tropical soils. The objective of this work is to characterize and quantify these Fe-C interactions. Surface (0-20 cm) soil samples were taken from 20 quantitative soil pits dug within the Luquillo Critical Zone Observatory in northeast Puerto Rico. Soils were stratified across granodiorite and volcaniclastic parent materials. Four extraction procedures were used to isolate three different forms of Fe-C interactions: sodium pyrophosphate to isolate organo-metallic complexes, hydroxylamine and oxalate to isolate SRO Fe- and Al-hydroxides, and dithionite to isolate crystalline Fe-oxyhydroxides. Extracts were analysed for DOC and Fe and Al concentrations to estimate the amount of SOM associated with each mineral type. Soils were subjected to SSA and solid-phase C analyses before and after extraction to determine the contribution of the various Fe mineral types to soil SSA, and therefore to potential stabilization capacity through organo-mineral complexation. Preliminary results suggest that extracts from granodiorite parent material contain on average twice the Fe than those from volcaniclastic parent material. The removal of SRO minerals reduced SSA in both soil types, and appear to contribute substantially to SOM stabilization compared to the bulk mineral matrix.

  10. Shrubby Reed-Mustard Habitat: Parent Material, Soil, and Landscape Characteristics

    NASA Astrophysics Data System (ADS)

    Kelly, L. S.; Boettinger, J. L.

    2012-12-01

    Shrubby reed-mustard (Glaucocarpum suffrutescens, a.k.a. Schoenocrambe suffrutescens, Glaucocarpum suffrutescens, or Hesperidanthus suffrutescens) is an endangered perennial shrub endemic to the southern Uinta Basin in northeast Utah. Only seven populations of shrubby reed-mustard have been identified. The arid area where the plant grows is rich in natural gas and oil deposits, as well as oil shale. Oil wells already dot the landscape, and there is significant concern that further development of these resources will threaten the continued existence of shrubby reed-mustard. Determination of the parent material, soil and landscape characteristics associated with shrubby reed-mustard habitat is imperative to facilitate conservation management. Shrubby reed-mustard grows where little else does and, based on field observations and remotely sensed spectral data, appears to occur in a particular type of strata. Our objective is to identify the physical and chemical characteristics of shrubby reed-mustard's environment. Site characteristics such as parent material and associated vegetation have been identified and documented. Soil properties such as water-soluble and total leachable elements, particle-size distribution, organic carbon, cation exchange capacity, total nitrogen, and available phosphorus and potassium are being determined. During the course of this investigation, soils within four shrubby reed-mustard habitat areas were sampled. Soils from non-shrubby reed-mustard areas adjacent to the four shrubby reed-mustard populations were also sampled. Soil samples were collected from a total of twenty-five shrubby reed-mustard soil pits and twenty-four non-shrubby reed-mustard soil pits. The soil horizons of each pedon were delineated, and samples were collected from each horizon. Field data indicate that shrubby reed-mustard occurs exclusively in shale-derived, shallow soils on bedrock-controlled uplands. Although there is some overlap of plant species on both types of soils, soils that do not support shrubby reed-mustard are dominated by black sage, a species not found in shrubby reed-mustard habitat. To date, statistical analyses to compare shrubby reed-mustard sites and non-shrubby reed-mustard sites have included Mann-Whitney rank sum tests and t-tests. Statistical results to date show that chemical properties differ between shrubby reed-mustard and non-shrubby reed-mustard sites. Concentrations of several soluble and total metals were significantly higher in shrubby reed-mustard soils compared to adjacent soils, including copper, lead, nickel, and lithium. Soluble, total, and available phosphorus were significantly lower in shrubby reed-mustard soils than in non-shrubby reed-mustard soils. Elevated metals may be indicative of shrubby reed-mustard tolerance of these elements, while low phosphorus concentrations in shrubby reed-mustard soils may indicate that this plant can tolerate low-nutrient status soils. Additional laboratory analyses are underway to further characterize the habitat of shrubby reed-mustard. Descriptive analysis is continuing. Statistical analyses will be finalized upon completion of all laboratory tests. Based on these determinations, shrubby reed-mustard habitat will be better defined and understood, which will assist with the preservation of this endangered species in the face of further resource development.

  11. Unexpected dominance of parent-material strontium in a tropical forest on highly weathered soils

    USGS Publications Warehouse

    Bern, C.R.; Townsend, A.R.; Farmer, G.L.

    2005-01-01

    Controls over nutrient supply are key to understanding the structure and functioning of terrestrial ecosystems. Conceptual models once held that in situ mineral weathering was the primary long-term control over the availability of many plant nutrients, including the base cations calcium (Ca), magnesium (Mg), and potassium (K). Recent evidence has shown that atmospheric sources of these "rock-derived" nutrients can dominate actively cycling ecosystem pools, especially in systems on highly weathered soils. Such studies have relied heavily on the use of strontium isotopes as a proxy for base-cation cycling. Here we show that vegetation and soil-exchangeable pools of strontium in a tropical rainforest on highly weathered soils are still dominated by local rock sources. This pattern exists despite substantial atmospheric inputs of Sr, Ca, K, and Mg, and despite nearly 100% depletion of these elements from the top 1 m of soil. We present a model demonstrating that modest weathering inputs, resulting from tectonically driven erosion, could maintain parent-material dominance of actively cycling Sr. The majority of tropical forests are on highly weathered soils, but our results suggest that these forests may still show considerable variation in their primary sources of essential nutrients. ?? 2005 by the Ecological Society of America.

  12. Effects of different parent material on the mineral characteristics of soils in the arid region of Turkey.

    PubMed

    Irmak, S; Surucu, A K; Aydogdu, I H

    2007-02-15

    Physical, chemical and mineralogical characteristics of seven soils developed on four different parent materials such as basalt, limestone, marine and alluvium were studied to determine the effect of parent material on the soil characteristics in the arid and semiarid regions in the Southeast Anatolia Region of Turkey. Parent material have affected the morphology and chemistry of the soils. Carbonate contents of the soils are changing between 14.1 and 42.6%. The high carbonate contents of the soils, developed on the basalt rocks, might be attributed to eolian additions from calcareous soils. The red colour of basaltic soils might be associated with the Fe2O3 content of the parent material. Available Fe2O3 content of the basaltic soils was relatively higher than other soils and measured between 0.56 and 2.05%. Available Fe2O3 content of the soils on the marine was very low and changed between 0.26 and 0.37%. Total Fe2O3 content of the basaltic soils was higher than other soils and changed between 4.36 and 6.70%. The total Al2O3 content of the basaltic soils was obtained relatively higher than other soils and changed between 4.92 and 8.72%. The high Al2O3 and Fe2O3 contents of the basaltic soils may be associated with the weathering of basalt rocks. Also analysis of the basaltic rock samples has showed similar mineralogical composition. X-Ray diffraction analysis data showed that smectite was the dominant clay mineral in all the soils. Palygorskite was the second most abundant mineral after smectite. Moreover, some mineralogical properties reflected the traces of climatic changed during the Holocene. The leaching factor were determined as >1 in the Profile PL2 and as < 1 in the Profiles PL1, PL3, PL4, PL5; PL6 and PL7. The low leaching factor (< 1) may be attributed to weathering of parent material. The soils were classified according to Soil Taxonomy as Aridisol, Entisol, Vertisol and Inceptisol. PMID:19069531

  13. Impact of terrain attributes, parent material and soil types on gully erosion

    NASA Astrophysics Data System (ADS)

    Chaplot, Vincent

    2013-03-01

    Gully erosion is a worldwide matter of concern because of the irreversible losses of fertile land, which often have severe environmental, economic and social consequences. While most of the studies on the gullying process have investigated the involved mechanisms (either overland flow incision, seepage or piping erosion), only few have been conducted on the controlling factors of gully wall retreat, an important, if not the dominant, land degradation process and sediment source in river systems. In a representative 4.4 km2 degraded area of the Drakensberg foothills (South Africa) the main objective of this study was to evaluate the relationship between the rate of gully bank retreat (GBR) and parent material, soil types and selected terrain attributes (elevation, specific drainage area, mean slope gradient, slope length factor, stream power index, compound topographic index and slope curvatures). The survey of gully bank retreat was performed during an entire hydrological year, from September 2007 to September 2008, using a network of pins (n = 440 from 110 pits). Both the gully contours and pin coordinates were determined, using a GPS with a 0.5 m horizontal accuracy (n = 20,120). The information on the parent material and the soil types was obtained from field observations complemented by laboratory analysis, while terrain attributes were extracted from a 20 m DEM generated from 5 m interval contour lines. The average GBR value for the 6512 m of gully banks found in the area was 0.049 ± 0.0013 m y- 1, which, considering bank height and soil bulk density, corresponded to an erosion rate of 2.30 ton ha- 1 y- 1. There was no significant difference in GBR between sandstone and dolerite and between Acrisols and Luvisols. Despite a weak one-to-one correlation with the selected terrain attributes (r < 0.2), a principal component analysis (PCA), the first two axes of which explained 68% of the data variability, pointed out that GBR was the highest at hillslope inflexion points (profile and plan slope curvatures close to zero), in the vicinity of the head cuts and for drainage areas up to 500 m2, as both situations experience a high removal rate of the soil material produced from the gully bank collapse and protecting gullies from laterally retreating. These results could be used to digitally map the more active gully banks for the improved implementation of preventive measures of gully growth, if high resolution DEMs are available. There remained, however, a certain amount of unexplained variability in the data, that further research studies on the mechanisms and associated factors of control of GBR could help to address.

  14. Geochemical evidence of Saharan dust parent material for soils developed on Quaternary limestones of Caribbean and western Atlantic islands

    USGS Publications Warehouse

    Muhs, D.R.; Bush, C.A.; Stewart, K.C.; Rowland, T.R.; Crittenden, R.C.

    1990-01-01

    Most previous workers have regarded the insoluble residues of high-purity Quaternary limestones (coral reefs and oolites) as the most important parent material for well-developed, clay-rich soils on Caribbean and western Atlantic islands, but this genetic mechanism requires unreasonable amounts of limestone solution in Quaternary time. Other possible parent materials from external sources are volcanic ash from the Lesser Antilles island arc and Saharan dust carried across the Atlantic Ocean on the northeast trade winds. Soils on Quaternary coral terraces and carbonate eolianites on Barbados, Jamaica, the Florida Keys (United States), and New Providence Island (Bahamas) were studied to determine which, if either, external source was important. Caribbean volcanic ashes and Saharan dust can be clearly distinguished using ratios of relatively immobile elements ( Al2O3 TiO2, Ti Y, Ti Zr, and Ti Th). Comparison of these ratios in 25 soils, where estimated ages range from 125,000 to about 870,000 yr, shows that Saharan dust is the most important parent material for soils on all islands. These results indicate that the northeast trade winds have been an important component of the regional climatology for much of the Quaterary. Saharan dust may also be an important parent material for Caribbean island bauxites of much greater age. ?? 1990.

  15. Multiscale analysis of nitrogen adsorption and desorption isotherms in soils developed over sandstone and basic parent materials with contrasting texture

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, Jorge; Marinho, Mara de A.; de Abreu, Cleide A.

    2014-05-01

    Mono- and multifractal analysis of soil nitrogen adsorption isotherms (NAI) have been proven to be useful, allowing a better characterization of soil surface properties and soil porous system. Multiscale analysis of nitrogen desorption isotherms (NDI), which was less frequently performed, can also provide very valuable information. The multifractal theory was used to analyse both soil adsorption and desorption isotherms from soils developed over contrasting parent material and with different texture. We sampled 32 soil horizons from 6 soil profiles in neighbouring sites from São Paulo State, Brazil. Three of the profiles, developed over sandstone, were sandy loam or loamy, whereas the other three profiles, developed over weathered sediments or basic parent material, were clayey textured. Soil specific surface area (SSA) varied, from about 3.0 to 46 m2 g-1. Surface parameters showed a strong correlation with clay content, but they were not correlated with cation exchange capacity (CEC). The scaling properties of both nitrogen adsorption and desorption isotherms from all the studied soil horizons could be fitted reasonably well with multifractal models. Multifractal parameters from NAIs and NDIs showed great differences. The singularity spectra, f(?) of the desorption isotherms had an asymmetrically long left part and its asymmetry was in general higher compared with adsorption isotherms. Moreover, adsorption isotherms behaved like more clustered measures, showing lower entropy dimension, D1, smaller correlation dimension, D2, and higher heterogeneity than desorption isotherms. Differences in multifractal behaviour of NAIs and NDIs had been proven to be mainly related to the characteristics of the hysteretic loop measured at high relative pressures. Several multifractal parameters extracted from NAIs and NDIs also distinguished between sandy-loam and loam soils and clayey soils. Multifractal parameters calculated from NAIs and NDIs provide new insight to assess soil surface properties.

  16. Parent material and vegetation influence soil microbial community structure following 30-years of rock weathering and pedogenesis.

    PubMed

    Yarwood, Stephanie; Wick, Abbey; Williams, Mark; Daniels, W Lee

    2015-02-01

    The process of pedogenesis and the development of biological communities during primary succession begin on recently exposed mineral surfaces. Following 30 years of surface exposure of reclaimed surface mining sites (Appalachian Mountains, USA), it was hypothesized that microbial communities would differ between sandstone and siltstone parent materials and to a lesser extent between vegetation types. Microbial community composition was examined by targeting bacterial and archaeal (16S ribosomal RNA (rRNA)) and fungal (internal transcribed spacer (ITS)) genes and analyzed using Illumina sequencing. Microbial community composition significantly differed between parent materials and between plots established with tall fescue grass or pitch x loblolly pine vegetation types, suggesting that both factors are important in shaping community assembly during early pedogenesis. At the phylum level, Acidobacteria and Proteobacteria differed in relative abundance between sandstone and siltstone. The amount of the heavy fraction carbon (C) was significantly different between sandstone (2.0 mg g(-1)) and siltstone (5.2 mg g(-1)) and correlated with microbial community composition. Soil nitrogen (N) cycling was examined by determining gene copy numbers of ureC, archaeal amoA, and bacterial amoA. Gene quantities tended to be higher in siltstone compared to sandstone but did not differ by vegetation type. This was consistent with differences in extractable ammonium (NH4 (+)) concentrations between sandstone and siltstone (16.4 vs 8.5 ?g NH4 (+)-N g(-1) soil), suggesting that nitrification rates may be higher in siltstone. Parent material and early vegetation are important determinants of early microbial community assembly and could be drivers for the trajectory of ecosystem development over longer time scales. PMID:25370885

  17. A landscape-scale study of land use and parent material effects on soil organic carbon and total nitrogen in the Konya Basin, Turkey

    NASA Astrophysics Data System (ADS)

    Mayes, M. T.; Marin-Spiotta, E.; Ozdogan, M.; Erdogan, M. A.

    2011-12-01

    In ecosystems where intensive farming and grazing have been occurring for millennia, there is poor understanding of how present-day soil biogeochemical properties relate to factors associated with soil parent materials (e.g. texture, mineralogy), and the net effects of long-term land use practices. Soil organic carbon (SOC) and total soil nitrogen (TN) are important for their roles in maintaining soil structure, moisture, fertility and contributing to carbon sequestration. Our research used a state factor approach (Jenny 1981) to study effects of soil parent materials and land use practices on SOC, TN, and other properties across thirty-five sites in the Konya Basin, an arid region in south-central Turkey farmed and grazed for over 8,000 years. This project is one of the first to study land use impacts on soils at a landscape scale (500 km2) in south-central Turkey, and incorporate geospatial data (e.g. a satellite imagery-derived land cover map we developed) to aid selection of field sites. Focusing on the plough layer (0-25cm) in two depth intervals, we compared effects of agriculture, orchard cultivation and grazing land use practices and clay-loam alluvial, sandy-loam volcanic and lacustrine clay soils on soil properties using standard least squares regression analyses. SOC and TN depended strongly on parent materials, but not on land use. Averaged across both depth intervals, alluvial soil SOC and TN concentrations (19.4 ± 1.32 Mg/ha SOC, 2.86 ± 1.23 Mg/ha TN) were higher and significantly different than lacustrine (9.72 ± 3.01 Mg/ha SOC, 1.57 ± 0.69 Mg/ha TN) and volcanic soil concentrations (7.40 ± 1.72 Mg/ha SOC, 1.02 ± 0.35 Mg/ha TN). Land use significantly affected SOC and TN on alluvial soils, but not on volcanic or lacustrine soils. Our results demonstrate the potential for land use to have different effects on different soils in this region. Our data on SOC, TN and other soil properties illustrate patterns in regional SOC and TN variability not shown by previous modeling or soil survey efforts. We provide baseline information on SOC and TN that can inform benchmarks for future soil monitoring and land use planning in an arid region that is likely to be highly impacted by future climatic changes, agricultural intensification and urban development. Our results suggest the importance of accounting for soil physical properties, and land use effects that are dependent on soil parent materials in future efforts to model or account for SOC and TN in similar ancient agricultural landscapes.

  18. A comparison of rates of hornblende etching in soils in glacial deposits of the northern Rocky Mountains: Influence of climate and characteristics of parent material

    SciTech Connect

    Horn, L.L. . Dept. of Geology); Hall, R.D. . Dept. of Geology)

    1993-04-01

    Etching rates of hornblende grains in the soil matrix of glacial deposits in the Northern Rocky Mountains are dependent primarily upon the influences on soil moisture of the climate and texture of the parent materials. Etching is measured as the deepest penetration of weathering along cleavages. Previous works have shown that hornblende etching is a logarithmic function of depth. Hornblende etching is also a logarithmic function of age of the parent material, with etching rates declining rapidly after initially high rates during the first 10 to 15 kyr after deposition. A comparison of etching rates was made among four chronosequences from the Wind River Range, Wyoming and the Tobacco Root Range, Montana, which have differences in mean annual precipitation (MAP) and texture of the till parent materials. Using rates calculated from both ranges for the first 12 kyr after deposition, etching is slowest (0.02 [mu]m/1,000 yrs) in coarse-textured granitic parent materials where the MAP is 25--40 cm. In contrast, etching is faster by an order of magnitude (0.21 [mu]m/1,000 yrs) where MAP is 110--150 cm and the parent material is finer textured due to about 15% sedimentary rock material mixed with a granitic component. Within individual chronosequences, deposits at higher elevations have accelerated etching rates due to higher orographic precipitation or the influence of late-lying snow. These factors result in higher soil moisture content.

  19. Effect of aging on the bioavailability and fractionation of arsenic in soils derived from five parent materials in a red soil region of Southern China.

    PubMed

    Wang, Yanan; Zeng, Xibai; Lu, Yahai; Su, Shiming; Bai, Lingyu; Li, Lianfang; Wu, Cuixia

    2015-12-01

    The effects of aging time and soil parent materials on the bioavailability and fractionations of arsenic (As) in five red soils were studied. The results indicated that As bioavailability in all soils decreased during aging, especially with a sharp decline occurring in the first 30 days. After aging for 360 days, the highest available As concentration, which accounted for 12.3% of the total, was observed in soils derived from purple sandy shale. While 2.67% was the lowest proportion of the available As in soils derived from quaternary red clay. Furthermore, the best fit of the available As changing with aging time was obtained using the pseudo-second-order model (R(2) = 0.939-0.998, P < 0.05). Notably, Al oxides played a more crucial role (R(2) = 0.89, P?0.05) than did Fe oxides in controlling the rate of As aging. The non-specially and specially absorbed As constituted the primary forms of available As. PMID:26349069

  20. Impact of climate and parent material on chemical weathering in Loess-derived soils of the Mississippi River valley

    USGS Publications Warehouse

    Muhs, D.R.; Bettis, E. Arthur, III; Been, J.; McGeehin, J.P.

    2001-01-01

    Peoria Loess-derived soils on uplands east of the Mississippi River valley were studied from Louisiana to Iowa, along a south-to-north gradient of decreasing precipitation and temperature. Major element analyses of deep loess in Mississippi and Illinois show that the composition of the parent material is similar in the northern and southern parts of the valley. We hypothesized that in the warmer, wetter parts of the transect, mineral weathering should be greater than in the cooler, drier parts of the transect. Profile average values of CaO/TiO2, MgO/ TiO2, K2O/TiO2, and Na2O/TiO2, Sr/Zr, Ba/Zr, and Rb/Zr represent proxies for depletion of loess minerals such as calcite, dolomite, hornblende, mica, and plagioclase. All ratios show increases from south to north, supporting the hypothesis of greater chemical weathering in the southern part of the valley. An unexpected result is that profile average values of Al2O3/TiO2 and Fe2O3/TiO2 (proxies for the relative abundance of clay minerals) show increases from south to north. This finding, while contrary to the evidence of greater chemical weathering in the southern part of the transect, is consistent with an earlier study which showed higher clay contents in Bt horizons of loess-derived soils in the northern part of the transect. We hypothesize that soils in the northern part of the valley received fine-grained loess from sources to the west of the Mississippi River valley either late in the last glacial period, during the Holocene or both. In contrast, soils in the southern part of the valley were unaffected by such additions.

  1. Phyllosilicate weathering pathways in chlorite-talc bearing soil parent materials, D.R. Congo: early findings.

    NASA Astrophysics Data System (ADS)

    Dumon, Mathijs; Oostermeyer, Fran; Timmermans, Els; De Meulemeester, Aschwin; Mees, Florias; Van Driessche, Isabel; Erens, Hans; Bazirake Mujinya, Basile; Van Ranst, Eric

    2015-04-01

    The study of the formation and transformation of clay minerals is of the upmost importance to understand soil formation and to adjust land-use management to the land surface conditions. These clay minerals determine to a large extent the soil physical and chemical properties. It is commonly observed that over time the mineralogy of any parent material is transformed to a simple assemblage composed mostly of Al and Fe oxides and low-activity clays, e.g. kaolinite. This is especially obvious in the humid tropics, which have been protected from glacial erosion, allowing deep, highly weathered soils to form. Despite the abundant presence of kaolinite in these soils, its formation pathways are still under debate: either neoformation by dissolution-crystallisation reactions or solid-state transformation of 2:1 phyllosilicates. To elucidate this, weathering sequences in a unique 40 m core taken below a termite mound, reaching a talc-chlorite bearing substrate in the Lubumbashi area, Katanga, DR Congo are being investigated in detail using a.o. quantitative X-ray diffraction analysis, chemical characterization, micromorphology and µXRF-scanning with the main objective to improve the understanding of the formation pathways of kaolinite subgroup minerals in humid tropical environments. Based on an initial characterization of the core, two zones of interest were selected for more detailed analysis, for which the early findings will be presented. The first zone extends from ca. 9 m to 11 m below the surface is dominated by kaolinite but shows early traces of primary talc and micas. The second zone extends from 34 to 36 m below the surface and contains large amounts of chlorite, with smaller amounts of talc, micas and kaolinite.

  2. Modeling Water Flux at the Base of the Rooting Zone for Soils with Varying Glacial Parent Materials

    NASA Astrophysics Data System (ADS)

    Naylor, S.; Ellett, K. M.; Ficklin, D. L.; Olyphant, G. A.

    2013-12-01

    Soils of varying glacial parent materials in the Great Lakes Region (USA) are characterized by thin unsaturated zones and widespread use of agricultural pesticides and nutrients that affect shallow groundwater. To better our understanding of the fate and transport of contaminants, improved models of water fluxes through the vadose zones of various hydrogeologic settings are warranted. Furthermore, calibrated unsaturated zone models can be coupled with watershed models, providing a means for predicting the impact of varying climate scenarios on agriculture in the region. To address these issues, a network of monitoring sites was developed in Indiana that provides continuous measurements of precipitation, potential evapotranspiration (PET), soil volumetric water content (VWC), and soil matric potential to parameterize and calibrate models. Flux at the base of the root zone is simulated using two models of varying complexity: 1) the HYDRUS model, which numerically solves the Richards equation, and 2) the soil-water-balance (SWB) model, which assumes vertical flow under a unit gradient with infiltration and evapotranspiration treated as separate, sequential processes. Soil hydraulic parameters are determined based on laboratory data, a pedo-transfer function (ROSETTA), field measurements (Guelph permeameter), and parameter optimization. Groundwater elevation data are available at three of six sites to establish the base of the unsaturated zone model domain. Initial modeling focused on the groundwater recharge season (Nov-Feb) when PET is limited and much of the annual vertical flux occurs. HYDRUS results indicate that base of root zone fluxes at a site underlain by glacial ice-contact parent materials are 48% of recharge season precipitation (VWC RMSE=8.2%), while SWB results indicate that fluxes are 43% (VWC RMSE=3.7%). Due in part to variations in surface boundary conditions, more variable fluxes were obtained for a site underlain by alluvium with the SWB model (68% of recharge season precipitation, VWC RMSE=7.0%) predicting much greater drainage than HYDRUS (38% of recharge season precipitation, VWC RMSE=6.6%). Results also show that when calculating drainage flux over the recharge period, HYDRUS is highly sensitive to model initialization using observed water content from in-situ instrumentation. Simulated recharge season drainage flux is as much as 3.5 times higher when a one-month spin-up period was performed in the HYDRUS model for the same site. SWB results are less sensitive to water content initialization, but drainage flux is 1.6 times higher at one site using the same spin-up analysis. The long-term goals of this effort are to leverage the robust calibration data set to establish optimal approaches for determining hydraulic parameters such that water fluxes in the lower vadose zone can be modeled for a wider range of geomorphic settings where calibration data are unavailable.

  3. Applying a new procedure to assess the controls on aggregate stability - including soil parent material and soil organic carbon concentrations - at the landscape scale

    NASA Astrophysics Data System (ADS)

    Turner, Gren; Rawlins, Barry; Wragg, Joanna; Lark, Murray

    2014-05-01

    Aggregate stability is an important physical indicator of soil quality and influences the potential for erosive losses from the landscape, so methods are required to measure it rapidly and cost-effectively. Previously we demonstrated a novel method for quantifying the stability of soil aggregates using a laser granulometer (Rawlins et al., 2012). We have developed our method further to mimic field conditions more closely by incorporating a procedure for pre-wetting aggregates (for 30 minutes on a filter paper) prior to applying the test. The first measurement of particle-size distribution is made on the water stable aggregates after these have been added to circulating water (aggregate size range 1000 to 2000 µm). The second measurement is made on the disaggregated material after the circulating aggregates have been disrupted with ultrasound (sonication). We then compute the difference between the mean weight diameters (MWD) of these two size distributions; we refer to this value as the disaggregation reduction (DR; µm). Soils with more stable aggregates, which are resistant to both slaking and mechanical breakdown by the hydrodynamic forces during circulation, have larger values of DR. We made repeated analyses of DR using an aggregate reference material (RM; a paleosol with well-characterised disaggregation properties) and used this throughout our analyses to demonstrate our approach was reproducible. We applied our modified technique - and also the previous technique in which dry aggregates were used - to a set of 60 topsoil samples (depth 0-15 cm) from cultivated land across a large region (10 000 km2) of eastern England. We wished to investigate: (i) any differences in aggregate stability (DR measurements) using dry or pre-wet aggregates, and (ii) the dominant controls on the stability of aggregates in water using wet aggregates, including variations in mineralogy and soil organic carbon (SOC) content, and any interaction between them. The sixty soil sampling locations were selected based on the quantities of SOC from previous analysis (on samples collected at sites across the entire region). We chose the samples to encompass a wide range of SOC concentrations (1.2-7%) within each of six strongly contrasting soil parent material (PM) groups (sandstone, mudstone, clay, chalk, limestone and marine alluvium). The DR values (calculated using re-scaled size distributions for particle diameters < 500 µm) ranged from 17 to 151 µm. The co-efficient of variation for DR analyses using fourteen aliquots of the RM was reasonably small (21 %). The PM groups accounted for a larger proportion of the variation in DR than SOC concentrations; together they accounted for around 50% of the variation in DR values. There was no evidence to include an interaction term between PM and SOC concentration. The proportion of clay-sized particles in the material after sonication was not a statistically significant predictor of DR. Pre-wetting the aggregates typically resulted in substantially smaller values of DR by comparison to using air-dried aggregates in our test. We suggest that the effects of differential clay swelling as a disruptive force during the wetting stage are greater than those associated with slaking (fragmentation due to trapped air). We believe this rapid (duration after the wetting procedure is 10 minutes), reproducible test could could be an effective means to monitor changes in this important soil property and improve predictions of soil erosion. Reference: Rawlins, B. G., Wragg, J. & Lark, R. M. 2012. Application of a novel method for soil aggregate stability measurement by laser granulometry with sonication. European Journal of Soil Science, 64, 92-103.

  4. Similarity analysis of soils formed on limestone/marl-alluvial parent material and different topography using some physical and chemical properties via cluster and multidimensional scaling methods.

    PubMed

    Sa?lam, Mustafa; Dengiz, Orhan

    2015-03-01

    The aim of this study is to analyze the similarity of soils formed on limestone/marl alluvial parent material and different topography using some physical and chemical properties via cluster analysis (CA) and multidimensional scaling analysis (MDSA). Physical and chemical soil properties included in this study are texture, CaCO3, organic matter, pH, electrical conductivity, cation exchange capacity, and available water content. The study was carried out in Çetinkaya region located on Bafra Deltaic Plain. The study area has two main physiographic units. The first one is the flat or gently slope alluvial lands (0-2 %), and the other one involves hills with slopes ranging from middle to steep (3-20 %). The soil in the study area is mainly classified as entisol, inceptisol and vertisol. According to the CA results, while C horizons of the soils formed on alluvial deposits (typic ustifluvent and typic ustipsamment) bear similarity, Ap horizons of the soils formed on lime/marl parent material (vertic ustorhent, vertic calciustept, and calci haplustert) appear in the same group. Additionally, in order to support CA, MDSA was performed. Significant correlations were observed between the results of both analyses. PMID:25663394

  5. Elemental and strontium isotopic geochemistry of the soil profiles developed on limestone and sandstone in karstic terrain on Yunnan-Guizhou Plateau, China: Implications for chemical weathering and parent materials

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Jing; Liu, Cong-Qiang; Zhao, Zhi-Qi; Xu, Zhi-Fang; Liang, Chong-Shan; Li, Long-bo; Feng, Jia-Yi

    2013-05-01

    The limestone and yellow sandstone soil profiles from SW China were measured for chemical and Sr isotope compositions of the bulk soils and their sequential leachates (labile, carbonate, and residue or silicate fraction), aiming to characterize the parent materials of the soils, to understand the soil weathering and formation processes, and to discuss the origin of the red residua (terra rossa). The studied yellow sandstone soil, yellow limestone soil, and black limestone soil show different pH values, SiO2 contents, Rb/Sr abundance ratios, and 87Sr/86Sr ratios. The sequential leachates of different soil types also have different 87Sr/86Sr and Ca/Sr ratios. The major chemical compositions of the studied soil profiles suggest that all the sandstone and limestone soils are developing at a stage that feldspar is exhausting and the clay minerals are changing from smectite to kaolinite and gibbsite. As compared with the red residua distributed in the karst region, the soils studied here show lower CIA values (58-84), but both higher Na2O/K2O (0.9-2.7) and Na2O/Al2O3 concentration ratios (0.07-0.26) on average, suggesting a lower weathering intensity than that of the red residua. The depth profiles of soil CIA values, Na2O/K2O and Rb/Sr ratios, and 87Sr/86Sr ratios indicate that the weathering intensity is slightly lower for the upper and higher for the deeper soils, which suggest that the sandstone and limestone soil profiles were formed through both accumulation and weathering of in situ weathering residue and input of external detritus or soil from upper land. During weathering of the soils, preferential release of Ca and retention of Sr in soil result in higher Ca/Sr ratios in both labile and carbonate fractions than those in the residue fractions of all soil profiles. The co-variations of Hf/Nb and Zr/Nb ratios, together with those Rb/Sr and 87Sr/86Sr ratios of limestone soils, sandstone soils, and the red residua, demonstrate that their parent materials are distinct, and support the point that the widely distributed red residua is originated from the weathering residua of both carbonate and silicate clastic rocks, and further weathering of the weathering residua resulted in intensive release of Si, Na, Ca and relative enrichment of Al, K and other immobile elements in the red residua.

  6. Background levels of some major, trace, and rare earth elements in indigenous plant species growing in Norway and the influence of soil acidification, soil parent material, and seasonal variation on these levels.

    PubMed

    Gjengedal, Elin; Martinsen, Thomas; Steinnes, Eiliv

    2015-06-01

    Baseline levels of 43 elements, including major, trace, and rare earth elements (REEs) in several native plant species growing in boreal and alpine areas, are presented. Focus is placed on species metal levels at different soil conditions, temporal variations in plant tissue metal concentrations, and interspecies variation in metal concentrations. Vegetation samples were collected at Sogndal, a pristine site in western Norway, and at Risdalsheia, an acidified site in southernmost Norway. Metal concentrations in the different species sampled in western Norway are compared with relevant literature data from Norway, Finland, and northwest Russia, assumed to represent natural conditions. Except for aluminium (Al) and macronutrients, the levels of metals were generally lower in western Norway than in southern Norway and may be considered close to natural background levels. In southern Norway, the levels of cadmium (Cd) and lead (Pb) in particular appear to be affected by air pollution, either by direct atmospheric supply or through soil acidification. Levels of some elements show considerable variability between as well as within plant species. Calcium (Ca), magnesium (Mg), and potassium (K) are higher in most species at Sogndal compared to Risdalsheia, despite increased extractable concentrations in surface soil in the south, probably attributed to different buffer mechanisms in surface soil. Antagonism on plant uptake is suggested between Ca, Mg, and K on one hand and Al on the other. Tolerance among calcifuges to acid conditions and a particular ability to detoxify or avoid uptake of Al ions are noticeable for Vaccinium vitis-idaea. PMID:26022847

  7. DETERMINATION OF EFFECTIVE POROSITY OF SOIL MATERIALS

    EPA Science Inventory

    The performance of a compacted soil liner is partly a function of the porosity, where the transport of materials through the liner occurs via the pore space. The project studies the pore spaces of compacted soil materials to estimate the effective porosity, which is the portion o...

  8. Developmental effects of parental exposure to soil contaminated with urban metals.

    PubMed

    Garcia, Edariane Menestrino; da Silva Junior, Flavio Manoel Rodrigues; Soares, Maria Cristina Flores; Muccillo-Baisch, Ana Luiza

    2015-07-01

    Soil is a highly complex material, and because of rapid population growth, intense industrial activity and petrochemical development, it has suffered from contamination with substances of various origins. These environmental contaminants may have detrimental effects on human health, particularly during development. Due to the ability to transmit contaminants to the fetus, evaluating the effects of exposure of pregnant women on the psychomotor development of their offspring is of particular interest. Therefore, this study aimed to investigate the effects of exposure of female rats to an urban soil influenced by the dispersion of air contaminants during periods of pre-pregnancy, pregnancy and lactation on offspring development. Using physiological, behavioral and hematological parameters, deleterious effects on offspring were assessed. In behavioral parameters, parental exposure during pregnancy and lactation resulted in no significant differences in the evaluated parameters when compared to the control group. In contrast, pups from the pre-pregnancy group displayed decreased locomotor and exploratory activity in addition to increased levels of anxiety. Furthermore, offspring of rats exposed to contaminated urban soil during pre-pregnancy demonstrated significant changes in weight gain and development length and a reduction in the number of platelets compared to controls. Significantly, pups born to mothers exposed to contaminated urban soil during the pregnancy displayed changes in birth weight, weight gain during the growth, development length, incisor eruption and opening of the ears in addition to a reduction in their physical performance and a change in the number of lymphocytes. These results clearly show the negative influence of parental exposure to contaminated urban soil on the general development of the rats during the periods studied. These data indicate that developing organisms are highly sensitive to external factors. Further, they demonstrate the utility of these various biomarkers for identifying and displaying toxic effects of exposure to contaminated soils. PMID:25817757

  9. EPR-based material modelling of soils

    NASA Astrophysics Data System (ADS)

    Faramarzi, Asaad; Alani, Amir M.

    2013-04-01

    In the past few decades, as a result of the rapid developments in computational software and hardware, alternative computer aided pattern recognition approaches have been introduced to modelling many engineering problems, including constitutive modelling of materials. The main idea behind pattern recognition systems is that they learn adaptively from experience and extract various discriminants, each appropriate for its purpose. In this work an approach is presented for developing material models for soils based on evolutionary polynomial regression (EPR). EPR is a recently developed hybrid data mining technique that searches for structured mathematical equations (representing the behaviour of a system) using genetic algorithm and the least squares method. Stress-strain data from triaxial tests are used to train and develop EPR-based material models for soil. The developed models are compared with some of the well-known conventional material models and it is shown that EPR-based models can provide a better prediction for the behaviour of soils. The main benefits of using EPR-based material models are that it provides a unified approach to constitutive modelling of all materials (i.e., all aspects of material behaviour can be implemented within a unified environment of an EPR model); it does not require any arbitrary choice of constitutive (mathematical) models. In EPR-based material models there are no material parameters to be identified. As the model is trained directly from experimental data therefore, EPR-based material models are the shortest route from experimental research (data) to numerical modelling. Another advantage of EPR-based constitutive model is that as more experimental data become available, the quality of the EPR prediction can be improved by learning from the additional data, and therefore, the EPR model can become more effective and robust. The developed EPR-based material models can be incorporated in finite element (FE) analysis.

  10. Contrasting environmental memories by ancient soils on different parent rocks in the South-western Italian Alps

    NASA Astrophysics Data System (ADS)

    D'Amico, Michele; Catoni, Marcella; Bonifacio, Eleonora; Zanini, Ermanno

    2014-05-01

    Ancient soils (pre-Holocenic paleosols and vetusols) are uncommon on the Alps, because of the extensive Pleistocenic glaciations which erased most of the previously existing soils, the slope steepness and climatic conditions favoring soil erosion. However, in few sites, particularly in the outermost sections of the Alpine range, Pleistocene glaciers covered only small and scattered surfaces because of the low altitude reached in the basins, and ancient soils could be preserved for long periods of time on particularly stable surfaces. We described and sampled soils on 11 stable surfaces in the Upper Tanaro valley, Ligurian Alps (Southwestern Piemonte, Italy). The sampling sites were characterized by low steepness and elevation between 600 to 1600 m, under present day lower montane Castanea sativa/Ostrya carpinifolia forests, montane Fagus sylvatica and Pinus uncinata forests or montane heath/grazed grassland, on different substrata. In particular, we sampled soils developed on dolomite, limestone, quartzite, gneiss and shales. The soils were always well representative of the pedogenic trends active on the respective parent materials, i.e. the skeletal fraction in each soil was always composed of just one rock type, despite the proximity of lithological boundaries and the small dimensions of the different outcrops, often coexisting on the same stable surface. All the considered profiles showed signs of extremely long pedogenesis and/or different phases of intense pedogenesis interrupted by the deposition of periglacial cover beds in the steepest sites. Up to four phases of intense pedogenesis were recognized where cover beds were developed, presumably during cold Pleistocene phases, as present-day climate is not cold enough to create such periglacial morphologies. In such cases, each cover bed underwent similar pedogenesis, strongly dependent on the parent material: on quartzite, podzols with thick E horizons and well developed placic ones were formed in all phases except the most superficial one (i.e., Holocene phase), where non cemented spodic horizons or weakly cemented ortstein were formed; placic horizons were never found in Holocene soils. On limestone, each cover bed separated soils with extremely hard petrocalcic horizons overlaid by argillic ones. Where no cover beds were observed, podzols with extremely thick E horizons (up to more than 2 m thick) and a very hard, very thick ortstein were formed on quartzite. Red Nitisols-like or reddish brown Luvisols were formed on limestone and dolomite, while red, extremely acidic Alisols, with or without fragipan horizons were formed on shales. Very large stone circles and other large patterned ground features, which can be interpreted as evidence of past permafrost conditions, were preserved on coarse quartzitic conglomerate. These soils represent excellent pedo-signatures of different specific past climatic or environmental conditions, as a response of different lithologies to specific soil-forming environments, which range from warm and humid climates typical of red Luvisols and Nitisols, to cool and wet climates leading to the formation of Podzols with placic or ortstein horizons, to extremely cold and dry ones characterizing permafrost sites and often associated with fragipan formation, to warm and dry leading to the cementation of petrocalcic horizons. The precise dating and interpretation of these soils are intriguing.

  11. Carbonaceous materials in soil-derived dusts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind erosion affects over 500 million ha of land worldwide and creates between 500 and 5000 Tg of fugitive dust annually. This dust carries a disproportionate amount of organic and inorganic carbon when compared to the soil of origin. This loss of soil carbon degrades the soil of origin and may re...

  12. Parenting.

    ERIC Educational Resources Information Center

    Ziff, Barry, Ed.; Hostettler, Karen, Ed.

    1989-01-01

    The newsletter of the California Association for the Gifted includes the following brief articles on parenting: "Your Challenge, Their Lives" (Barry Ziff); "Courage to Be Who I Am, Unafraid" (Elizabeth Meckstroth); "Attribution: A Key to Encouraging More Responsible Behavior in the Gifted" (Saundra Sparling); "A Parent's Perspective" (Carolyn…

  13. Bibliotherapy for Children with Anxiety Disorders Using Written Materials for Parents: A Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Rapee, Ronald M.; Abbott, Maree J.; Lyneham, Heidi J.

    2006-01-01

    The current trial examined the value of modifying empirically validated treatment for childhood anxiety for application via written materials for parents of anxious children. Two hundred sixty-seven clinically anxious children ages 6-12 years and their parents were randomly allocated to standard group treatment, wait list, or a bibliotherapy…

  14. Hygrothermal Material Properties for Soils in Building Science

    SciTech Connect

    Pallin, Simon B; Kehrer, Manfred

    2013-01-01

    Hygrothermal performance of soils coupled to buildings is complicated because of the dearth of information on soil properties. However they are important when numerical simulation of coupled heat and moisture transport for below-grade building components are performed as their temperature and moisture content has an influence on the durability of the below-grade building component. Soils can be classified by soil texture. According to the Unified Soil Classification System (USCA), 12 different soils can be defined on the basis of three soil components: clay, sand, and silt. This study shows how existing material properties for typical American soils can be transferred and used for the calculation of the coupled heat and moisture transport of building components in contact with soil. Furthermore a thermal validation with field measurements under known boundary conditions is part of this study, too. Field measurements for soil temperature and moisture content for two specified soils are carried out right now under known boundary conditions. As these field measurements are not finished yet, the full hygrothermal validation is still missing.

  15. On identifying parent plutonic rocks from lunar breccia and soil fragments

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; Lindstrom, David J.

    1988-01-01

    Breccia fragments expected from a well-studied boulder of Stillwater anorthosite have been modeled to test the ability to identify parental rock types from examination of breccia and soil fragments. Depending on their size, the boulder fragments give distributions that suggest mixtures of rock types, including monominerallic anorthosite with subordinant amounts of more gabbroic anorthosite, anorthosite, and gabbro for small fragments. The distribution of FeO in samples of lunar ferroan anorthosite (FAN) indicates that FAN has a heterogeneous distribution of mafic minerals like the boulder.

  16. Artificial soil formation and stabilization of material cycles in closed ecological systems for Mars habitats

    NASA Astrophysics Data System (ADS)

    Borchardt, Joshua D.

    Scientists are increasingly pressured to investigate novel ways in which to feed astronauts for the first mission to Mars in the 2030s. It is the aim of this thesis to conduct a preliminary investigation for soil formation of NASA JSC Mars-1A Regolith Simulant in an environmentally closed ecosystem to simulate plant growth within these initial habitats, and the prospect of soil formation from a Mars parent material for agricultural purposes. The rhizosphere and plant stress will be the main regions of research focus. It is hypothesized rhizosphere activity will determine the rate of stable soil formation adequate to support the agricultural needs of Mars's first human inhabitants. A Brassica rapa (Wisconsin FastPlant(TM)) was grown on several different substrates, and evaluated for plant stress, elemental analysis, soil fertility, and mineralogical analysis to identify the biogeochemical factors related to areas inside and outside of the rhizosphere, which affect soil formation. In addition, multiple plant generations were grown to investigate bioavailability of nutrients within the system, and lay down preliminary approaches for mathematical model development in order to predict & evaluate future conditions and applications under reduced resource availability situations. Overall, the story of early soil formation from a Mars regolith simulant is further defined to aid in the success of our first human adventurers to the red planet.

  17. Hygrothermal Simulations of Foundations: Part 1 - Soil Material Properties

    SciTech Connect

    Pallin, Simon B; Kehrer, Manfred

    2013-01-01

    Hygrothermal performance of soils coupled to buildings is a complicated process. The computational approach for heat transfer via the ground is well defined (EN-ISO-13370:, 2007) together with simplified methods (Staszczuk, Radon, & Holm). Though the soil moisture transfer is generally ignored, it is proven not negligible (Janssen, Carmeliet, & Hens, 2004). Even though reliable material properties of soils are required to perform realistic hygrothermal calculations of soils coupled to buildings, such material properties have not been well defined in hygrothermal calculations tools. Typical building constructions which are greatly influenced by soils are basements, crawl spaces and slab on grade and reliable hygrothermal performance of such construction are highly requested; as it is ranked within the top 10 Building America Enclosure Research Ideas according to Enclosures STC - Residential Energy Efficiency Stakeholder Meeting, February 29, 2012 Austin, TX. There exists an extensive amount of measurements on soil properties in Soil Science though this information must be gathered as well as adapted to be applicable in Building Science and for hygrothermal simulation purposes. Soil properties are important when analyzing and designing both new building constructions and retrofitting measures, where the outer boundary of the buildings enclosure consists of soil materials. Concerning basement energy retrofits, interior solutions of improving the energy demand has to cooperate with the existing soil properties and must therefore be designed thereafter. In concerns of exterior retrofits, the soil material can be replaced, if needed, with a more suitable filling material, though this approach applies only for basement walls. The soil material beneath the basement floor can naturally not be replaced hence the soil properties of this part of the buildings enclosure still must be taken into consideration. This study is divided into several parts. The intention of the first part is to gather, comprehend and adapt soil properties from soil science. The obtained information must be applicable for Building Science related tasks and validated in hygrothermal calculation tools hence the second part of this study will focus on validation of the implemented soil properties. Basic changes in the software code may be requested as well. Different basement constructions will be created with a hygrothermal calculation tool, WUFI, from which simulations will be compared with existing or on-going measurements. The final outcome of the study is to enable an evaluation of several soil types in several climate zones combined with a number of basement assemblies. The study will define which type of soil together with a certain building construction which is considered most and least reliable in concerns of energy consumption and moisture safety. Further, what influences different soils will have on the total energy loss via the ground and if the performance of a different soils can be measured by a comparison of soil properties solely.

  18. Parenting.

    ERIC Educational Resources Information Center

    Jochim, Lisa; Mueller, Andrea

    This guide contains 15 learning activities that can be used in parenting classes, especially for adults with limited literacy skills. Activities include quotations for discussion and suggestions for conducting group discussions and writing lessons. The following activities are included: interpreting quotations about raising children; positive…

  19. Hygrothermal Simulation of Foundations: Part 1 - Soil Material Properties

    SciTech Connect

    Kehrer, Manfred; Pallin, Simon B

    2012-10-01

    The hygrothermal performance of soils coupled to buildings is a complicated process. A computational approach for heat transfer through the ground has been well defined (EN ISO 13370:2007, 2007), and simplified methods have been developed (Staszczuk, Radon, and Holm 2010). However, these approaches generally ignore the transfer of soil moisture, which is not negligible (Janssen, Carmeliet, and Hens 2004). This study is divided into several parts. The intention of the first part is to gather, comprehend and adapt soil properties from Soil Science. The obtained information must be applicable to related tasks in Building Science and validated with hygrothermal calculation tools. Future parts of this study will focus on the validation aspect of the soil properties to be implemented. Basic changes in the software code may be requested at this time. Different types of basement construction will be created with a hygrothermal calculation tool, WUFI. Simulations from WUFI will be compared with existing or ongoing measurements. The intentions of the first part of this study have been fulfilled. The soil properties of interest in Building Science have been defined for 12 different soil textures. These properties will serve as input parameters when performing hygrothermal calculations of building constructions coupled to soil materials. The reliability of the soil parameters will be further evaluated with measurements in Part 2.

  20. Evaluation of soils for use as liner materials: a soil chemistry approach.

    PubMed

    DeSutter, Tom M; Pierzynski, Gary M

    2005-01-01

    Movement of NH(4)(+) below animal waste lagoons is generally a function of the whole-lagoon seepage rate, soil mineralogy, cations in the lagoon liquor, and selectivity for NH(4)(+) on the soil-exchange sites. Binary exchange reactions (Ca(2+)-K(+), Ca(2+)-NH(4)(+), and K(+)-NH(4)(+)) were conducted on two soils from the Great Plains and with combinations of these soils with bentonite or zeolite added. Binary exchanges were used to predict ternary exchanges Ca(2+)-K(+)-NH(4)(+) following the Rothmund-Kornfeld approach and Gaines-Thomas convention. Potassium and NH(4)(+) were preferred over Ca(2+), and K(+) was preferred over NH(4)(+) in all soils and soils with amendments. Generally, the addition of bentonite did not change cation selectivity over the native soils, whereas the addition of zeolite did. The Rothmund-Kornfeld approach worked well for predicting equivalent fractions of cations on the exchanger phase when only ternary-solution phase compositions were known. Actual swine- and cattle-lagoon solution compositions and the Rothmund-Kornfeld approach were used to project that native soils are predicted to retain 53 and 23%, respectively, of the downward-moving NH(4)(+) on their exchange sites. Additions of bentonite or zeolite to soils under swine lagoons may only slightly improve the equivalent fraction of NH(4)(+) on the exchange sites. Although additions of bentonite or zeolite may not help increase the NH(4)(+) selectivity of a liner material, increases in the overall cation exchange capacity (CEC) of a soil will ultimately decrease the amount of soil needed to adsorb downward-moving NH(4)(+). PMID:15843659

  1. Potential for soil carbon sequestration of eroded areas in subtropical China , H.J. Wang a

    E-print Network

    Nassar, Ray

    is important for mitigating global climate change. Historically, soil erosion led to great reductions of soil soil erosion control measures in subtropical China over the past 20 years, soil erosion has been erosion types, altitudes, soil types and soil parent materials. In this study, 284 soil samples were

  2. EFFECTS OF DRYING TREATMENTS ON POROSITY OF SOIL MATERIALS

    EPA Science Inventory

    The effects of three drying techniques on total porosity and pore size distribution of three soil materials were studied by Hg intrusion porosimetry. Some samples were dried in an oven at 40 C for 7 d; some samples were quick frozen in liquid N and lyophilized; some samples were ...

  3. Differentiating pedogenesis from diagenesis in early terrestrial paleoweathering surfaces formed on granitic composition parent materials

    USGS Publications Warehouse

    Driese, S.G.; Medaris, L.G., Jr.; Ren, M.; Runkel, Anthony C.; Langford, R.P.

    2007-01-01

    Unconformable surfaces separating Precambrian crystalline basement and overlying Proterozoic to Cambrian sedimentary rocks provide an exceptional opportunity to examine the role of primitive soil ecosystems in weathering and resultant formation of saprolite (weathered rock retaining rock structure) and regolith (weathered rock without rock structure), but many appear to have been affected by burial diagenesis and hydrothermal fluid flow, leading some researchers to discount their suitability for such studies. We examine one modern weathering profile (Cecil series), four Cambrian paleoweathering profiles from the North American craton (Squaw Creek, Franklin Mountains, Core SQ-8, and Core 4), one Neoproterozoic profile (Sheigra), and one late Paleoproterozoic profile (Baraboo), to test the hypothesis that these paleoweathering profiles do provide evidence of primitive terrestrial weathering despite their diagenetic and hydrothermal overprinting, especially additions of potassium. We employ an integrated approach using (1) detailed thin-section investigations to identify characteristic pedogenic features associated with saprolitization and formation of well-drained regoliths, (2) electron microprobe analysis to identify specific weathered and new mineral phases, and (3) geochemical mass balance techniques to characterize volume changes during weathering and elemental gains and losses of major and minor elements relative to the inferred parent materials. There is strong pedogenic evidence of paleoweathering, such as clay illuviation, sepic-plasmic fabrics, redoximorphic features, and dissolution and alteration of feldspars and mafic minerals to kaolinite, gibbsite, and Fe oxides, as well as geochemical evidence, such as whole-rock losses of Na, Ca, Mg, Si, Sr, Fe, and Mn greater than in modern profiles. Evidence of diagenesis includes net additions of K, Ba, and Rb determined through geochemical mass balance, K-feldspar overgrowths in overlying sandstone sections, and K-feldspars with reaction rims in weathered basement. The sub-Cambrian paleoweathering profiles formed on granite are remarkably similar to modern weathering profiles formed on granite, in spite of overprinting by potassium diagenesis. ?? 2007 by The University of Chicago. All rights reserved.

  4. Gender and Material Transfers between Older Parents and Children in Ismailia, Egypt

    PubMed Central

    Yount, Kathryn M.; Cunningham, Solveig A.; Engelman, Michal; Agree, Emily M.

    2011-01-01

    In Egypt, kin relations have been governed by a patriarchal contract, which defines expectations for intergenerational support along gendered lines. Social changes may be disrupting these customs and bringing attention to the ways gender may influence intergenerational support in rapidly changing contexts. Using data from 4,465 parent–child dyads in Ismailia, Egypt, we examined whether intergenerational material transfers favored women over men and whether gaps in needs and endowments accounted for gender differences in transfers. Fathers gave children money and goods more often than did mothers; mothers received material transfers from children more often than did fathers. Compared to sons, daughters made transfers to parents less often and received transfers from parents more often. We found residual advantages to mothers and daughters, even adjusting for differential needs and endowments. Findings corroborate persistent norms of gender complementarity, patrilocal endogamy, and reciprocation for women’s caregiving, despite changes that have threatened patriarchal rules of exchange. PMID:22448075

  5. Microbial properties of mine spoil materials in the initial stages of soil development

    SciTech Connect

    Machulla, G.; Bruns, M.A.; Scow, K.M.

    2005-08-01

    The early years of soil genesis during mine spoil reclamation are critical for vegetative establishment and may help predict reclamation success. Mine spoils in the Halle-Leipzig region of Germany were analyzed for microbial changes following a hay mulch-seeding treatment without topsoil or fertilizer application. Microbial biomass carbon (C{sub mic}) and dehydrogenase activity (DHA) of spoils were measured each year in the first 3 yr after treatment. In the third year, bacterial community DNA fingerprints were compared with those from a reference soil. Microbial indicators were measured at three depths in the upper 10 cm of spoils at three sites with contrasting parent materials: glacial till (sandy loam), limnic tertiary sediments (high-lignite sandy clay loam), and quaternary sand and gravel (loamy sand). Before reclamation, C{sub mic} means and standard deviations of surface spoils (0-1 cm) were 9{+-}6, 39{+-}11, and 38{+-}16 mg kg{sup -1} for the loamy sand, high-lignite sandy clay loam, and sandy loam spoils, respectively. Within one year, mean C{sub mic} at the surface increased to 148{+-}70, 229{+-}64, and 497{+-}167 mg kg{sup -1}, respectively, and was significantly higher at 0 to 1 cm than at lower depths. Highest DHA and DNA yields were obtained in the 0- to 1-cm depth of the sandy loam spoils. Microbial biomass C values exhibited significant correlations with DHA, DNA yield, and extractable C for all three mine spoils. Soil microbial indices were more responsive than plant measurements to differences in parent materials.

  6. Impacts of Marital Status and Parental Presence on the Material Hardship of Families with Children.

    ERIC Educational Resources Information Center

    Lerman, Robert I.

    This study investigated how marriage, cohabitation, single parenthood, and the presence of biological parents affected the incomes and material hardships of children. Data from the 1997 and 1999 National Survey of America's Families were used to examine recent changes in the marital status and household structure of families with children, how…

  7. Parental separation and adult psychological distress: an investigation of material and relational mechanisms

    PubMed Central

    2014-01-01

    Background An association between parental separation or divorce occurring in childhood and increased psychological distress in adulthood is well established. However relatively little is known about why this association exists and how the mechanisms might differ for men and women. We investigate why this association exists, focussing on material and relational mechanisms and in particular on the way in which these link across the life course. Methods This study used the 1970 British Cohort Study (n?=?10,714) to investigate material (through adolescent and adult material disadvantage, and educational attainment) and relational (through parent–child relationship quality and adult partnership status) pathways between parental separation (0–16 years) and psychological distress (30 years). Psychological distress was measured using Rutter’s Malaise Inventory. The inter-linkages between these two broad mechanisms across the life course were also investigated. Missing data were multiply imputed by chained equations. Path analysis was used to explicitly model prospectively-collected measures across the life course, therefore methodologically extending previous work. Results Material and relational pathways partially explained the association between parental separation in childhood and adult psychological distress (indirect effect?=?33.3% men; 60.0% women). The mechanisms were different for men and women, for instance adult partnership status was found to be more important for men. Material and relational factors were found to interlink across the life course. Mechanisms acting through educational attainment were found to be particularly important. Conclusions This study begins to disentangle the mechanisms between parental separation in childhood and adult psychological distress. Interventions which aim to support children through education, in particular, are likely to be particularly beneficial for later psychological health. PMID:24655926

  8. Synergetic toxic effect of an explosive material mixture in soil.

    PubMed

    Panz, Katarzyna; Miksch, Korneliusz; Sójka, Tadeusz

    2013-11-01

    Explosives materials are stable in soil and recalcitrant to biodegradation. Different authors report that TNT (2,4,6-trinitrotoluene), RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) are toxic, but most investigations have been performed in artificial soil with individual substances. The aim of the presented research was to assess the toxicity of forest soil contaminated with these substances both individually as well in combinations of these substances. TNT was the most toxic substance. Although RDX and HMX did not have adverse effects on plants, these compounds did cause earthworm mortality, which has not been reported in earlier research. Synergistic effects of explosives mixture were observed. PMID:24005241

  9. Sulphate release from construction and demolition material in soils

    NASA Astrophysics Data System (ADS)

    Abel, Stefan; Wessolek, Gerd

    2013-04-01

    In Berlin and many other cities soils are heavily influenced by anthropogenic activities and deposited substrates. A widespread technical substrate in technosols is construction and demolition material from residential and industrial buildings. Existing rubble landfills without sealing facilities pose threats to ground water quality. In the central city of Berlin rising sulphate concentrations of groundwaters (up to 1200 mg/L) are measured since more than two decades. Previous studies point out that the high sulphate concentrations are mainly attributed to World War II rubble. The major part of debris was deposited in form of landfills and contains approximately 0.3 wt% gypsum. The scope of our research is to determine mechanisms of sulphate release from debris material, interactions between sulphate release, soil hydraulic properties and potential sinks of sulphur. To estimate equilibrium concentration and kinetics of sulphate release of various debris components batch and column experiments are conducted. The same method is applied to determine potential adsorptive character of common debris components. To analyse the impacts of soil hydraulic properties on sulphate leaching we carry out soil column experiments with defined upper and lower boundary conditions, varying water flow velocity and induced preferential flow. Simultaneously we monitor sulphate concentration of soil leachate in a 2 m³ lysimeter. First results of the batch experiments show that gypsum from broken stucco is the main source of sulphate in the observed technosols. Other components as mortar and slag show a quite low sulphate release. Similar results are found within the column experiments. For brigs medium and strongly time dependent sulphate release is determined. Concentrations up to 1500 mg/L are measured in the soil leachate from the lysimeter.

  10. Forming artificial soils from waste materials for mine site rehabilitation

    NASA Astrophysics Data System (ADS)

    Yellishetty, Mohan; Wong, Vanessa; Taylor, Michael; Li, Johnson

    2014-05-01

    Surface mining activities often produce large volumes of solid wastes which invariably requires the removal of significant quantities of waste rock (overburden). As mines expand, larger volumes of waste rock need to be moved which also require extensive areas for their safe disposal and containment. The erosion of these dumps may result in landform instability, which in turn may result in exposure of contaminants such as trace metals, elevated sediment delivery in adjacent waterways, and the subsequent degradation of downstream water quality. The management of solid waste materials from industrial operations is also a key component for a sustainable economy. For example, in addition to overburden, coal mines produce large amounts of waste in the form of fly ash while sewage treatment plants require disposal of large amounts of compost. Similarly, paper mills produce large volumes of alkaline rejected wood chip waste which is usually disposed of in landfill. These materials, therefore, presents a challenge in their use, and re-use in the rehabilitation of mine sites and provides a number of opportunities for innovative waste disposal. The combination of solid wastes sourced from mines, which are frequently nutrient poor and acidic, with nutrient-rich composted material produced from sewage treatment and alkaline wood chip waste has the potential to lead to a soil suitable for mine rehabilitation and successful seed germination and plant growth. This paper presents findings from two pilot projects which investigated the potential of artificial soils to support plant growth for mine site rehabilitation. We found that pH increased in all the artificial soil mixtures and were able to support plant establishment. Plant growth was greatest in those soils with the greatest proportion of compost due to the higher nutrient content. These pot trials suggest that the use of different waste streams to form an artificial soil can potentially be used in mine site rehabilitation where there is a nutrient-rich source of waste.

  11. Soils regulate and mitigate climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background/Question/Methods: The interaction of soil science and ecology can be traced back to the origins of soil science as an independent discipline within the natural sciences. Vasili Dokuchaev, the founder of modern soil science, identified five soil forming factors: parent material, climate, o...

  12. Use of Biochar from the Pyrolysis of Waste Organic Material as a Soil Amendment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar is being promoted for its potential to improve soil properties, fertility and carbon sequestration in soil. How this material might impact agricultural soils within temperate regions is largely unknown, Validation of biochar as a beneficial soil amendment and carbon sink would add important...

  13. Assessing lithologic discontinuities and parent material uniformity within the Texas sandy mantle and implications for archaeological burial and preservation potential in upland settings

    NASA Astrophysics Data System (ADS)

    Ahr, Steven W.; Nordt, Lee C.; Driese, Steven G.

    2012-07-01

    Alfisols within the Texas Gulf Coast Plain commonly exhibit textural contrasts between sandy, artifact-bearing A-E horizons (i.e., sandy mantle), and artifact-sterile clay-rich Bt (argillic) horizons. This has invoked debate about parent material uniformity and pedogenic versus geomorphic sandy mantle origins, which has implications for the scientific value of buried archaeological sites. To improve our understanding of archaeological burial in upland settings, we evaluated parent material uniformity within five pedons to distinguish pedogenically derived textural changes from geomorphologically created lithologic discontinuities. Depth trends in clay-free particle size classes and stable/immobile Ti and Zr constituents failed to reveal lithologic discontinuities between the sandy mantle and Bt horizons, and the observed textural differences are interpreted to have resulted from pedogenic processes. This interpretation is supported by clay skins, fine clay increases in Bt horizons, and micromorphological observations. Consequently, artifacts buried in upland summits have likely moved down the soil profile due to biomantle processes. Deep sandy mantle sites, non-parallel contacts between the sandy mantle and Bt horizons, and paleogullies incised into Eocene bedrock are better explained by colluvial/soil creep processes adjacent to summits, where archaeological materials may exhibit preservation potential. No single explanation can account for sandy mantle origins, and we advocate a case-by-case approach.

  14. Workshop on Parent-Body and Nebular Modification of Chondritic Materials

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E. (Editor); Krot, A. N. (Editor); Scott, E. R. D. (Editor)

    1997-01-01

    Topics considered include: thermal Metamorphosed Antarctic CM and CI Carbonaceous Chondrites in Japanese Collections, and Transformation Processes of Phyllosilicates; use of Oxygen Isotopes to Constrain the Nebular and Asteroidal Modification of Chondritic Materials; effect of Revised Nebular Water Distribution on Enstatite Chondrite Formation; interstellar Hydroxyls in Meteoritic Chondrules: Implications for the Origin of Water in the Inner Solar System; theoretical Models and Experimental Studies of Gas-Grain Chemistry in the Solar Nebula; chemical Alteration of Chondrules on Parent Bodies; thermal Quenching of Silicate Grains in Protostellar Sources; an Experimental Study of Magnetite Formation in the Solar Nebula; the Kaidun Meteorite: Evidence for Pre- and Postaccretionary Aqueous Alteration; a Transmission Electron Microscope Study of the Matrix Mineralogy of the Leoville CV3 (Reduced-Group) Carbonaceous Chondrite: Nebular and Parent-Body Features; rubidium-Strontium Isotopic Systematic of Chondrules from the Antarctic CV Chondrites Yamato 86751 and Yamato 86009: Additional Evidence for Late Parent-Body Modification; oxygen-Fugacity Indicators in Carbonaceous Chondrites: Parent-Body Alteration or High-Temperature Nebular Oxidation; thermodynamic Modeling of Aqueous Alteration in CV Chondrites; asteroidal Modification of C and O Chondrites: Myths and Models; oxygen Fugacity in the Solar Nebular; and the History of Metal and Sulfides in Chondrites.

  15. Soil solid materials affect the kinetics of extracellular enzymatic reactions

    NASA Astrophysics Data System (ADS)

    Lammirato, C.; Miltner, A.; Kästner, M.

    2009-04-01

    INTRODUCTION Soil solid materials affect the degradation processes of many organic compounds by decreasing the bioavailability of substrates and by interacting with degraders. The magnitude of this effect in the environment is shown by the fact that xenobiotics which are readily metabolized in aquatic environments can have long residence times in soil. Extracellular enzymatic hydrolysis of cellobiose (enzyme: beta-glucosidase from Aspergillus niger) was chosen as model degradation process since it is easier to control and more reproducible than a whole cell processes. Furthermore extracellular enzymes play an important role in the environment since they are responsible for the first steps in the degradation of organic macromolecules; beta-glucosidase is key enzyme in the degradation of cellulose and therefore it is fundamental in the carbon cycle and for soil in general. The aims of the project are: 1) quantification of solid material effect on degradation, 2) separation of the effects of minerals on enzyme (adsorption ?change in activity) and substrate (adsorption ?change in bioavailability). Our hypothesis is that a rate reduction in the enzymatic reaction in the presence of a solid phase results from the sum of decreased bioavailability of the substrate and decreased activity of enzyme molecules. The relative contribution of the two terms to the overall effect can vary widely depending on the chemical nature of the substrate, the properties of the enzyme and on the surface properties of the solid materials. Furthermore we hypothesize that by immobilizing the enzyme in an appropriate carrier the adsorption of enzymes to soil materials can be eliminated and that therefore immobilization can increase the overall reaction rate (activity loss caused by immobilization < activity loss caused by adsorption to soil minerals). MATERIALS AND METHODS Enzymatic kinetic experiments are carried out in homogeneous liquid systems and in heterogeneous systems where solid materials (bentonite, kaolinite, goethite, activated charcoal) are suspended in a mixed liquid (standard experimental conditions: 66 mM phosphate buffer, pH 5, 25°C, 20 mg solid/ml buffer). The enzyme in an immobilized form (covalent bonding to oxirane groups on the surfaces of macroporous Eupergit® C particles) is used to exclude a direct effect of soil solid materials on the enzyme without excluding their effect on the availability of the substrate.The progress of the reactions is determined by measuring the accumulation of the product (i.e. glucose) in the systems at different times (after destroying enzymatic activity by boiling the samples) with a coupled enzymatic assay and an automatic microplate spectrophotometer. A regression analysis on the data points is performed to calculate the initial reaction rates, which is the parameter that allows to compare the different systems. RESULTS AND DISCUSSION The results show that, under the standard experimental conditions, cellobiose is not adsorbed by the clay minerals bentonite and kaolinite and by the iron oxyhydroxide goethite. In the case of activated charcoal a rapid adsorption phase in the first 20' is followed by a much slower process; after 4h 30' approximately 98% of cellobiose was adsorbed. The results from the adsorption experiments of beta-glucosidase to bentonite, kaolinite, goethite and activated charcoal show that, under the standard experimental conditions, the adsorption process is rapid in all cases (more than 80% of the adsorption takes place in the first 20 minutes). After 1h 20min the following fractions of enzyme were adsorbed: 30 % to bentonite, 60% to kaolinite, 67% to goethite, 100% to activated charcoal. The effect of kaolinite on the reaction rate was quantified: under the standard experimental conditions the initial reaction rate in presence of the mineral was 22% less then in the control. The fraction of enzyme molecules which are adsorbed to kaolinite (60%) loses 37% of its activity. CONCLUSIONS The results from the adsorption experiments lead to the conclusion that, among the sol

  16. Microbiological destruction of composite polymeric materials in soils

    NASA Astrophysics Data System (ADS)

    Legonkova, O. A.; Selitskaya, O. V.

    2009-01-01

    Representatives of the same species of microscopic fungi developed on composite materials with similar polymeric matrices independently from the type of soils, in which the incubation was performed. Trichoderma harzianum, Penicillium auranthiogriseum, and Clonostachys solani were isolated from the samples of polyurethane. Fusarium solani, Clonostachys rosea, and Trichoderma harzianum predominated on the surface of ultrathene samples. Ulocladium botrytis, Penicillium auranthiogriseum, and Fusarium solani predominated in the variants with polyamide. Trichoderma harzianum, Penicillium chrysogenum, Aspergillus ochraceus, and Acremonium strictum were isolated from Lentex-based composite materials. Mucor circinelloides, Trichoderma harzianum, and Penicillium auranthiogriseum were isolated from composite materials based on polyvinyl alcohol. Electron microscopy demonstrated changes in the structure of polymer surface (loosening and an increase in porosity) under the impact of fungi. The physicochemical properties of polymers, including their strength, also changed. The following substances were identified as primary products of the destruction of composite materials: stearic acid for polyurethane-based materials; imide of dithiocarbonic acid and 1-nonadecen in variants with ultrathene; and tetraaminopyrimidine and isocyanatodecan in variants with polyamide. N,N-dimethyldodecan amide, 2-methyloximundecanon and 2-nonacosane were identified for composites on the base of Lentex A4-1. Allyl methyl sulfide and imide of dithiocarbonic acid were found in variants with the samples of composites based on polyvinyl alcohol. The identified primary products of the destruction of composite materials belong to nontoxic compounds.

  17. THE IMPACT OF PARENT AND CHILD RESPONSIVENESS ON THE ASSOCIATION BETWEEN PRINTED MATERIALS IN THE HOME AND CHILD LANGUAGE DEVELOPMENT

    E-print Network

    Gould, Sara Rebecca

    2010-04-02

    of the child's environment often investigated in a single study. The current study considered the direct influence of access to printed materials in the home, child responsiveness, and parental responsiveness on language development two time points in a sample...

  18. Fate of anilide and aniline herbicides in plant-materials-amended soils.

    PubMed

    Yen, Jui-Hung; Tsai, Pi-Wen; Chen, Wen-Ching; Wang, Yei-Shung

    2008-06-01

    The fate of herbicides trifluralin, pendimethalin, alachlor and metolachlor in paddy field soils amended with plant materials was investigated. The plant materials were purple sesbania, vegetable soybean and rice straw. The investigation was performed at two temperatures (25 and 40 degrees C) and two soil water moistures (60 and 90% water-holding capacity). The results showed linear and Freudlich equations described the adsorption of amide compound to soil. Adsorption coefficient (K(d)) fit to linear equation were in general greater in plant material-amended soils than in non-amended soil, especially in soil amending with rice straw. Increasing temperature and soil water moisture content shortened the half-lives of compounds in various treated soils. The movement of compounds in the soil columns showed the maximum distribution of aniline type compound, trifluralin and pendimethalin, appeared at the upper top of 0 to 5 and 0 to 10 cm of soil column, respectively, and of anilide type, alachlor and metolachlor, were distributed at 0 to 25 cm of the soil column. The mobility of chemicals in the different treated soils was simulated by the behavior assessment model (BAM). There was no significant difference among different plant material incubated soils on dissipation and mobility of compounds in soils. PMID:18576218

  19. Processing lunar soils for oxygen and other materials

    NASA Technical Reports Server (NTRS)

    Knudsen, Christian W.; Gibson, Michael A.

    1992-01-01

    Two types of lunar materials are excellent candidates for lunar oxygen production: ilmenite and silicates such as anorthite. Both are lunar surface minable, occurring in soils, breccias, and basalts. Because silicates are considerably more abundant than ilmenite, they may be preferred as source materials. Depending on the processing method chosen for oxygen production and the feedstock material, various useful metals and bulk materials can be produced as byproducts. Available processing techniques include hydrogen reduction of ilmenite and electrochemical and chemical reductions of silicates. Processes in these categories are generally in preliminary development stages and need significant research and development support to carry them to practical deployment, particularly as a lunar-based operation. The goal of beginning lunar processing operations by 2010 requires that planning and research and development emphasize the simplest processing schemes. However, more complex schemes that now appear to present difficult technical challenges may offer more valuable metal byproducts later. While they require more time and effort to perfect, the more complex or difficult schemes may provide important processing and product improvements with which to extend and elaborate the initial lunar processing facilities. A balanced R&D program should take this into account. The following topics are discussed: (1) ilmenite--semi-continuous process; (2) ilmenite--continuous fluid-bed reduction; (3) utilization of spent ilmenite to produce bulk materials; (4) silicates--electrochemical reduction; and (5) silicates--chemical reduction.

  20. Predicting the preservation of cultural artefacts and buried materials in soil.

    PubMed

    Kibblewhite, Mark; Tóth, Gergely; Hermann, Tamás

    2015-10-01

    This study identifies factors affecting the fate of buried objects in soil and develops a method for assessing where preservation of different materials and stratigraphic evidence is more or less likely in the landscape. The results inform the extent of the cultural service that soil supports by preserving artefacts from and information about past societies. They are also relevant to predicting the state of existing and planned buried infrastructure and the persistence of materials spread on land. Soils are variable and preserve different materials and stratigraphic evidence differently. This study identifies the material and soil properties that affect preservation and relates these to soil types; it assesses their preservation capacities for bones, teeth and shells, organic materials, metals (Au, Ag, Cu, Fe, Pb and bronze), ceramics, glass and stratigraphic evidence. Preservation of Au, Pb and ceramics, glass and phytoliths is good in most soils but degradation rates of other materials (e.g. Fe and organic materials) is strongly influenced by soil type. A method is proposed for using data on the distribution of soil types to map the variable preservation capacities of soil for different materials. This is applied at a continental scale across the EU for bones, teeth and shells, organic materials, metals (Cu, bronze and Fe) and stratigraphic evidence. The maps produced demonstrate how soil provides an extensive but variable preservation of buried objects. PMID:26022409

  1. Measurement and modeling of energetic-material mass transfer to soil-pore water - Project CP-1227 final technical report.

    SciTech Connect

    Stein, Joshua S.; Sallaberry, Cedric M.; Webb, Stephen Walter; Phelan, James M.; Hadgu, Teklu

    2006-05-01

    Military test and training ranges operate with live-fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low-order detonations also disperse solid-phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g., weather and geostratigraphy) contribute to groundwater pollution. This final report documents the results of experimental and simulation model development for evaluating mass transfer processes from solid-phase energetics to soil-pore water.

  2. As(V) and P Competitive Sorption on Soils, By-Products and Waste Materials

    PubMed Central

    Rivas-Pérez, Ivana María; Paradelo-Núñez, Remigio; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Sanjurjo, María José; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2015-01-01

    Batch-type experiments were used to study competitive As(V) and P sorption on various soils and sorbent materials. The materials assayed were a forest soil, a vineyard soil, pyritic material, granitic material, coarsely and finely ground mussel shell, calcinated mussel shell ash, pine sawdust and slate processing fines. Competition between As(V) and P was pronounced in the case of both soils, granitic material, slate fines, both shells and pine sawdust, showing more affinity for P. Contrary, the pyritic material and mussel shell ash showed high and similar affinity for As(V) and P. These results could be useful to make a correct use of the soils and materials assayed when focusing on As and P removal in solid or liquid media, in circumstances where both pollutants may compete for sorption sites. PMID:26690456

  3. The Medical Geochemistry of Dusts, Soils, and Other Earth Materials

    NASA Astrophysics Data System (ADS)

    Plumlee, G. S.; Ziegler, T. L.

    2003-12-01

    "Town clenched in suffocating grip of asbestos"USA Today, article on Libby,Montana, February, 2000"Researchers find volcanoes are bad for your health… long after they finish erupting"University of WarwickPress Release, 1999"Toxic soils plague city - arsenic, lead in 5 neighborhoods could imperil 17,000 residents"Denver Post, 2002"Ill winds - dust storms ferry toxic agents between countries and even continents"Science News, 2002A quick scan of newspapers, television, science magazines, or the internet on any given day has a fairly high likelihood of encountering a story (usually accompanied by a creative headline such as those above) regarding human health concerns linked to dusts, soils, or other earth materials. Many such concerns have been recognized and studied for decades, but new concerns arise regularly.Earth scientists have played significant roles in helping the medical community understand some important links between earth materials and human health, such as the role of asbestos mineralogy in disease (Skinner et al., 1988; Ross, 1999; Holland and Smith, 2001), and the role of dusts generated by the 1994 Northridge, California, earthquake in an outbreak of Valley Fever ( Jibson et al., 1998; Schneider et al., 1997).Earth science activities tied to health issues are growing (Skinner and Berger, 2003), and are commonly classified under the emerging discipline of medical geology (Finkelman et al., 2001; Selinus and Frank, 2000; Selinus, in press).Medical geochemistry (also referred to as environmental geochemistry and health: Smith and Huyck (1999), Appleton et al. (1996)) can be considered as a diverse subdiscipline of medical geology that deals with human and animal health in the context of the Earth's geochemical cycle ( Figure 1). Many medical geochemistry studies have focused on how chemical elements in rocks, soils, and sediments are transmitted via water or vegetation into the food chain, and how regional geochemical variations can result in disease clusters either through dietary deficiency of essential elements or dietary excess of toxic elements. (28K)Figure 1. Potential human exposure routes within the earth's geochemical cycle can come from a wide variety of both natural and anthropogenic sources. This chapter focuses on a somewhat narrower area of medical geochemistry: the study of mechanisms of uptake of earth materials by humans and animals and their reactions to these materials. In order for earth materials to affect health, they must first interact with the body across key interfaces such as the respiratory tract, gastrointestinal tract, skin, and eyes. In some way, all of these interfaces require the earth materials to interact chemically with water-based body fluids such as lung fluids, gastrointestinal fluids, saliva, or blood plasma.The primary goal of this chapter, co-authored by a geochemist and a toxicologist, is to provide both geochemists and scientists from health disciplines with an overview of the potential geochemical mechanisms by which earth materials can influence human health. It is clear that significant opportunities for advancement in this arena will require continued and increased research collaborations between geochemists and their counterparts in the health disciplines.

  4. Supplemental Material for Forty Five Years of Observed Soil Moisture in the Ukraine: No

    E-print Network

    Robock, Alan

    Supplemental Material for Forty Five Years of Observed Soil Moisture in the Ukraine: No Summer Submitted to Geophysical Research Letters November, 2004 #12;- 1 - Ukrainian Soil Moisture Stations The individual soil moisture stations in the Ukraine are shown in Figure 1. The data are averaged into the 25

  5. Impact of carbonaceous materials in soil on the transport of soil-bound PAHs during rainfall-runoff events.

    PubMed

    Luo, Xiaolin; Zheng, Yi; Wu, Bin; Lin, Zhongrong; Han, Feng; Zhang, Wei; Wang, Xuejun

    2013-11-01

    Polycyclic Aromatic Hydrocarbons (PAHs) transported from contaminated soils by surface runoff pose significant risk for aquatic ecosystems. Based on a rainfall-runoff simulation experiment, this study investigated the impact of carbonaceous materials (CMs) in soil, identified by organic petrology analysis, on the transport of soil-bound PAHs under rainfall conditions. The hypothesis that composition of soil organic matter significantly impacts the enrichment and transport of PAHs was proved. CMs in soil, varying significantly in content, mobility and adsorption capacity, act differently on the transport of PAHs. Anthropogenic CMs like black carbon (BC) largely control the transport, as PAHs may be preferentially attached to them. Eventually, this study led to a rethink of the traditional enrichment theory. An important implication is that CMs in soil have to be explicitly considered to appropriately model the nonpoint source pollution of PAHs (possibly other hydrophobic chemicals as well) and assess its environmental risk. PMID:23938446

  6. Chemical analyses of soils and other surficial materials, Alaska

    USGS Publications Warehouse

    Gough, L.P.; Peard, J.L.; Severson, R.C.; Shacklette, H.T.; Thompkins, M.L.; Stewart, K.C.; Briggs, P.H.

    1984-01-01

    Introduction: The favorable response to the reports on the geochemistry of unconsolidated surficial materials of the conterminous United States (informally called the '50-mile geochemical survey,' Shacklette and others, 1971a, 1971b, 1973, and 1974) led us, in 1975, to initiate a somewhat similar survey of Alaska. The principal objective of studies of this type is to establish estimates of the abundance of elements in soils and other surficial materials. Such information is useful in the evaluation of geochemical data for (1) mineral resources, (2) environmental appraisals, and (3) the definition of broad-scale geochemical patterns. For about six years this effort progressed slowly on a non-funded, time-available basis. During fiscal years 1982 and 1983, however, some funds were made available through the USGS Energy Lands and Alaska Mineral Surveys programs which allowed for the completion of the field-work phase of the project. The sampling plan was kept simple because, as with the 50-mile study, the acquisition of samples depended on the voluntary cooperation of field personnel (only about 40 percent of the total number of samples was obtained by the authors).

  7. MOBILE SYSTEM FOR EXTRACTING SPILLED HAZARDOUS MATERIALS FROM EXCAVATED SOILS

    EPA Science Inventory

    Laboratory tests were conducted with three separate pollutants (phenol, arsenic trioxide, and polychlorinated biphenyls (PCB's) and two soils of widely different characteristics (sand/gravel/silt/clay and organic loam) to evaluate techniques for cleansing soil contaminated with r...

  8. CLASSIFICATION OF COAL SURFACE MINE SOIL MATERIAL FOR VEGETATION MANAGEMENT AND SOIL WATER QUALITY

    EPA Science Inventory

    An Alabama minesoil classification system was developed based on soil texture, soil color value and soil pH. Only five different soil classes were found in this study. However, the classification scheme allows for the inclusion of any minesoil that occurs on the basis of its text...

  9. Soils and Fertilizers. Competency Based Teaching Materials in Horticulture.

    ERIC Educational Resources Information Center

    Legacy, Jim; And Others

    This competency-based curriculum unit on soils and fertilizers is one of four developed for classroom use in teaching the turf and lawn services area of horticulture. The four sections are each divided into teaching content (in a question-and-answer format) and student skills that outline taking soil samples, testing samples, preparing soil for…

  10. Income Is Not Enough: Incorporating Material Hardship Into Models of Income Associations With Parenting and Child Development

    PubMed Central

    Gershoff, Elizabeth T.; Aber, J. Lawrence; Raver, C. Cybele; Lennon, Mary Clare

    2010-01-01

    Although research has clearly established that low family income has negative impacts on children’s cognitive skills and social – emotional competence, less often is a family’s experience of material hardship considered. Using the Early Childhood Longitudinal Study, Kindergarten Class of 1998–1999 (N = 21,255), this study examined dual components of family income and material hardship along with parent mediators of stress, positive parenting, and investment as predictors of 6-year-old children’s cognitive skills and social – emotional competence. Support was found for a model that identified unique parent-mediated paths from income to cognitive skills and from income and material hardship to social – emotional competence. The findings have implications for future study of family income and child development and for identification of promising targets for policy intervention. PMID:17328694

  11. Development of the Intervention Materials for the HomeStyles Obesity Prevention Program for Parents of Preschoolers

    PubMed Central

    Martin-Biggers, Jennifer; Spaccarotella, Kim; Delaney, Colleen; Koenings, Mallory; Alleman, Gayle; Hongu, Nobuko; Worobey, John; Byrd-Bredbenner, Carol

    2015-01-01

    Home environment is key to the development of obesity-preventing behaviors during childhood, yet few resources help preschool parents address factors at home associated with obesity risk. This paper describes creation of materials for an in-home intervention (HomeStyles) with this population. An advisory group of stakeholders and target audience members determined salient factors affecting childhood obesity to address in-home and developed program materials. The Social Cognitive Theory, Faith’s Core Behavior Change Strategies to Treat Childhood Obesity, Adult Learning Theory and motivational interviewing techniques guided development of 12 guides targeting strategies parents can use to shape the home environment. Interviews were conducted to determine effectiveness of the guides. Cognitive testing of guide design (n = 251) and content (n = 261) occurred in English and Spanish in New Jersey and Arizona with parents and home visitation staff who would present the guides. Interviews investigated perceptions of content usefulness and parent comprehension. Findings were also examined in light of theoretical underpinnings. Both home visitation staff and parents felt the guides were very readable and useful. Parents appreciated use of motivational interviewing techniques and Adult Learning Theory. Current research is testing these guides through an in-home, randomized control trial. PMID:26266419

  12. Development of the Intervention Materials for the HomeStyles Obesity Prevention Program for Parents of Preschoolers.

    PubMed

    Martin-Biggers, Jennifer; Spaccarotella, Kim; Delaney, Colleen; Koenings, Mallory; Alleman, Gayle; Hongu, Nobuko; Worobey, John; Byrd-Bredbenner, Carol

    2015-08-01

    Home environment is key to the development of obesity-preventing behaviors during childhood, yet few resources help preschool parents address factors at home associated with obesity risk. This paper describes creation of materials for an in-home intervention (HomeStyles) with this population. An advisory group of stakeholders and target audience members determined salient factors affecting childhood obesity to address in-home and developed program materials. The Social Cognitive Theory, Faith's Core Behavior Change Strategies to Treat Childhood Obesity, Adult Learning Theory and motivational interviewing techniques guided development of 12 guides targeting strategies parents can use to shape the home environment. Interviews were conducted to determine effectiveness of the guides. Cognitive testing of guide design (n = 251) and content (n = 261) occurred in English and Spanish in New Jersey and Arizona with parents and home visitation staff who would present the guides. Interviews investigated perceptions of content usefulness and parent comprehension. Findings were also examined in light of theoretical underpinnings. Both home visitation staff and parents felt the guides were very readable and useful. Parents appreciated use of motivational interviewing techniques and Adult Learning Theory. Current research is testing these guides through an in-home, randomized control trial. PMID:26266419

  13. Element concentrations in soils and other surficial materials of Alaska

    USGS Publications Warehouse

    Gough, L.P.; Severson, R.C.; Shacklette, H.T.

    1988-01-01

    Mean concentrations of 35 elements, ash yields, and pH have been estimated for samples of sils and other unconsolidated surficial materials from 266 collection locations throughout Alaska. These background values can be applied to studies of environmental geochemistry and health, wildlife management, and soil-forming processes in cold climates and to computation of element abundances on a regional or worldwide scale. Limited data for an additoinal eight elements are also presented. Materials were collected using a one-way, three-level, analysis-of-variance samplling design in which collecting procedures were simplified for the convenience of the many volunteer field workers. The sample collectors were asked to avoid locations of known mineral deposits and obvious contamination, to take samples at a depth of about 20 cm where possible, and to take a replicate sample about 100 m distant from the first sample collected. With more than 60 percent of the samples replicated and 14 percent of the samples split for duplicate laboratory analyses, reliable estimates were made of the variability in element concentrations at two geographic scales and of the error associated with sample handling and laboratory procedures. Mean concentrations of most elements in surficial materials from the state of alaska correspond well with those reported in similar materials from the conterminous United STatess. Most element concentrations and ranges in samples of stream and lake sediments from Alaska, however, as reported in the literature, do not correspond well with those found in surficial materials of this study. This lack of correspondence is attributed to (1) a merger of two kinds ofsediments (stream and lake) for calculating means; (2) elimination from the sediment mean calculations of values below the limit of quantitative determination; (3) analytical methods different from those of the surficial materials study; and (4) most importantly, the inherent differences in chemistry of the materials. The distribution of variability in element concentrations o Alaskan surficial-material samples was, for most elements, largely among sampling locations, with only a samll part of the variability occurring between replicate samples at a location. The geochemical uniformity within sampling locations in Alaska is an expression of uniform geochemical cycling processes within small geographic areas. The concentration values for 35 elements in 266 samples were plotted on maps by symbols representing classes of concentration frequency distributions. These plotted symbols form patterns that may or may not be possible to interpret but nevertheless show differences that are observable at several geographical scales. The largest pattern is one generally low concentrations of many elements in materials from arctic and oceanic tundra regions, as contrasted to their often high concentrations in samples from interior and southeastern Alaska. The patttern for sodium isespecially pronounced. Intermediate-sized patterns are shown, for example, by the generally high values for magnesium and low values for silicon in the coastal forest region of southeastern Alaska. Many elements occur at low concentratoins in samples from the Alaskan peninsula and the Aleutian Islands. The degree of confidence in patterns of element abundance is expected to be in direct proportion to the number of samples included in the area. As the patterns become smaller, the probability increases that the patterns are not reproducible.

  14. A Novel Hybrid Element Analysis for Piezoelectric-parent Material Wedges

    NASA Astrophysics Data System (ADS)

    Chen, Meng-Cheng; Ping, Xue-Cheng

    2007-06-01

    A new super wedge-tip hybrid element together with standard hybrid finite elements is developed to determine singular electro-elastic fields at the vertex of piezoelectric-parent material wedges. With the technique, stress and electric displacement intensity factors and energy release rates in a PZT5H panel containing a central crack are computed and compared with the available theoretical solutions. It is shown that the numerical results converge to exact solutions rapidly with fewer elements and proper number of high order terms. Then, the fracture parameters named as general stress intensity parameters and general electric displacement intensity parameters for three kinds of bimaterial wedges such as bi-piezoelectric wedge, piezoelectric-conductor wedge and piezoelectric-composite wedge are computed and depicted in graphical forms.

  15. Online Soil Science Lesson 3: Soil Forming Factors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This lesson explores the five major factors of soil formation, namely: 1) climate; 2) organisms; 3) time; 4) topography; and 5) parent material and their influence in forming soil. The distinction between active and passive factors, moisture and temperature regimes, organism and topographic influen...

  16. Mobile system for extracting spilled hazardous materials from excavated soils. Final report Dec 76-Apr 82

    SciTech Connect

    Scholz, R.; Milanowski, J.

    1983-10-01

    Laboratory tests were conducted with three separate pollutants (phenol, arsenic trioxide, and polychlorinated biphenyls (PCB's) and two soils of widely different characteristics (sand/gravel/silt/clay and organic loam) to evaluate techniques for cleansing soil contaminated with released or spilled hazardous materials. The tests show that scrubbing of excavated soil on site is an efficient approach for freeing soils of certain contaminants but that the effectiveness depends on the washing fluid (water + additives) and on the soil composition and particle size distribution. Based on the test results, a full-scale, field-use system was designed, engineered, fabricated, assembled, and briefly tested; the unit is now ready for field demonstrations.

  17. Correspondence and Least Squares Analyses of Soil and Rock Compositions for the Viking Lander 1 and Pathfinder Sites

    NASA Technical Reports Server (NTRS)

    Larsen, K. W.; Arvidson, R. E.; Jolliff, B. L.; Clark, B. C.

    2000-01-01

    Correspondence and Least Squares Mixing Analysis techniques are applied to the chemical composition of Viking 1 soils and Pathfinder rocks and soils. Implications for the parent composition of local and global materials are discussed.

  18. TECHNICAL REPORTS Agricultural liming materials are used to correct soil acidity

    E-print Network

    considerably in their pH, and most temperate crops grow best when soil pH is approximately 6.5 to 7.0. For many centuries, lime in various forms has been used to raise soil pH and thereby improve soil fertility. Lime these materials are low-value, high-bulk products, it is important to find local sources to keep transportation

  19. Hygrothermal Material Properties for Soils in Building Science

    SciTech Connect

    Kehrer, Manfred; Pallin, Simon B

    2013-01-01

    Saving energy in buildings is top of mind with today s building professionals. Although designing energy-efficient walls and roofs is mostly a no-brainer, ensuring that below-grade foundations do not generate moisture problems has become even more complex, particularly because of how soil is involved. Hygrothermal performance of soils coupled to buildings is complicated because of the dearth of information on soil properties. A computational approach for heat transfer through the ground has been well-defined, and simplified methods have been developed. These approaches, however, generally ignore the transfer of soil moisture, which is not negligible. The intention of an ongoing study at Oak Ridge (TN) National Laboratory, therefore, is to gather, comprehend and adapt soil properties from soil science as well. The obtained information must be applicable to related tasks in building science and validated with hygrothermal calculation tools, where additional plugins to the existing software code WUFI (an acronym for Warme unde Felichte Instructionar, which translates to unsteady heat and moisture) are required. (See the sidebar, opposite page, for specifics on WUFI.)Simulation results from WUFI are being compared with existing thermal-only measurements and are being accomplished with ongoing hygrothermal measurements. The final outcome of the study will be the evaluation of several soil types in several climate zones for a number of basement assembly types. The study will define the type of soil, together with the type of building construction considered most and least reliable with respect to energy consumption and moisture safety. Furthermore, the study will determine the influences that different soils have on total energy loss through the ground.

  20. Unit The World of the Soil, First Trial Materials, Inspection Set, [Australian Science Education Project].

    ERIC Educational Resources Information Center

    Australian Council for Educational Research, Hawthorn.

    The Australian Science Education project is producing materials designed for use in grades 7 - 10 of Australian schools. This is the first trial version of a unit expected to take about 20 40-minute periods to complete. Included are a teacher's guide to the unit, four pupil booklets ("Looking at Soils,""Things to do With Soils,""What is it…

  1. Military Curriculum Materials for Vocational and Technical Education. Soils Engineering 3-1. Edition 1.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This individualized, self-paced course for independent study in soils engineering was adapted from military curriculum materials for use in vocational education. The course is designed to acquaint students with various soil types and their characteristics using various procedures, tests, and recording forms. Some of these duties are determining…

  2. Bioremediation of soils, sludges, and materials contaminated with toxic metals or radionuclides

    SciTech Connect

    Francis, A.J.

    1993-04-01

    Bioremediation stabilizes and reclaims radionuclide or toxic metal-contaminated materials, soils, sediments, or wastes; it then recovers the contaminating radionuclides and metals. Waste materials are stabilized and reduced in volume using anaerobic bacteria; or alternatively, materials are treated with citric acid before bioremediation begins. Photolysis is used after bioremediation to release radionuclides.

  3. Advances in Geosynthetics Materials and Applications for Soil Reinforcement

    E-print Network

    Zornberg, Jorge G.

    that are infilled with soil and sometimes concrete. In some cases 0.5 m to 1 m wide strips of polyolefin geogrids or single layer of geotextile. When hydrated they are effective as a barrier for liquid or gas

  4. Geobotanical discrimination of ultramafic parent materials An evaluation of remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Mouat, D. A.; Morrissey, L. A.; Horn, E. M.

    1984-01-01

    Color and color infrared aerial photography and imagery acquired from a Daedalus DEI-1260 multispectral airborne scanner were employed in an investigation to discriminate ultramafic rock types in a test site in southwest Oregon. An analysis of the relationships between vegetation characteristics and parent materials was performed using a vegetation classification and map developed for the project, lithologic information derived from published geologic maps of the region, and terrain information gathered in the field. Several analytical methods, including visual image analysis, band ratioing, principal components analysis, and contrast enhancement and subsequent color composite generation were used in the investigation. There was a close correspondence between vegetation types and major rock types. These were readily discriminated by the remote sensing techniques. It was found that ultramafic rock types were separable from non-ultramafic rock types and serpentine was distinguishable from non-serpentinized peridotite. Further investigations involving spectroradiometric and digital classification techniques are being performed to further identify rock types and to discriminate chromium and nickel-bearing rock types.

  5. Does thermal carbonization (Biochar) of organic material increase more merits for their amendments of sandy soil?

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Xu, G.; Sun, J. N.; Shao, H. B.

    2014-02-01

    Organic materials (e.g. furfural residue) are generally believed to improve the physical and chemical properties of the soils with low fertility. Recently, biochar have been received more attention as a possible measure to improve the carbon balance and improve soil quality in some degraded soils. However, little is known about their different amelioration of a sandy saline soil. In this study, 56d incubation experiment was conducted to evaluate the influence of furfural and its biochar on the properties of saline soil. The results showed that both furfural and biochar greatly reduced pH, increased soil organic carbon (SOC) content and cation exchange capacity (CEC), and enhanced the available phosphorus (P) in the soil. Furfural is more efficient than biochar in reducing pH: 5% furfural lowered the soil pH by 0.5-0.8 (soil pH: 8.3-8.6), while 5% biochar decreased by 0.25-0.4 due to the loss of acidity in pyrolysis process. With respect to available P, 5% of the furfural addition increased available P content by 4-6 times in comparison to 2-5 times with biochar application. In reducing soil exchangeable sodium percentage (ESP), biochar is slightly superior to furfural because soil ESP reduced by 51% and 43% with 5% furfural and 5% biochar addition at the end of incubation. In addition, no significant differences were observed between furfural and biochar about their capacity to retain N, P in leaching solution and to increase CEC in soil. These facts may be caused by the relatively short incubation time. In general, furfural and biochar have different amendments depending on soil properties: furfural was more effectively to decrease pH and to increase available P, whereas biochar played a more important role in increasing SOC and reducing ESP of saline soil.

  6. Minimizing soil remediation volume through specification of excavation and materials handling procedures

    SciTech Connect

    Oresik, W.L.S.; Otten, M.T.; Nelson, M.D.

    1994-12-31

    The technologies currently available for treating soils contaminated with the explosives 2,4,6-trinitroluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazene (RDX) are both limited and expensive. Therefore, an important consideration in soils remediation is the preparation of construction specifications and contract drawings which limit the volume of soil that will be required to undergo treatment. Construction specifications and contract drawings were developed for the Contaminated Soil Remediation of the Explosives Washout Lagoons at Umatilla Depot Activity (UMDA) with the following primary objectives: (1) limit the volume of soil excavated from the Explosives Washout Lagoons and Explosives Washout Plant Areas, (2) minimize materials handling, and (3) reduce the excavated volume of soil which will undergo treatment.

  7. Diverse Chemical Zoning Trends in Acapulco Chromites: How Many Sources for the Parental Materials?

    NASA Astrophysics Data System (ADS)

    El Goresy, A.; Janicke, J.

    1995-09-01

    Acapulco is considered to be a link between primitive chondritic meteorites and the differentiated achondrites. Its parent body presumably formed by accretion of material of chondritic compositions at an fO2 that lies between that of H- and enstatite chondrites [1]. The accreted chondritic material was subjected 4.557 Gyr ago to peak temperatures close to 1200 degrees C that lead to partial melting and extensive recrystallization [1, 2]. Seven morphologically different types of graphite with large variations in C- and N-isotopic compositions were recently reported from Acapulco [3, 4]. At least four distinct isotopic reservoirs are required to explain the C- and N-isotopic compositions of these graphites [3, 4]. While the silicate minerals in Acapulco have isotopically heavy N (delta^(15)N = + 15 per mil) chromites were found to be isotopically light (delta^(15)N = _ 75 to _ 82 per mil). Chromite occurs in Acapulco in six different assemblages: (1) as inclusions in silicates, (2) in FeNi, (3) in troilite, (4) with FeNi and troilite, (5) with FeNi and silicates, and (6) with troilite and silicates. It is also rarely present as small idiomorphic inclusions in plagioclase. Chromites in contact with silicates display no chemical zoning for Cr, Al, Ti, Fe, Mg, Mn, or Zn to the silicate borders thus indicating high degree of equilibration with the silicate neighbours. The MgO-contents of chromites in metals and troilites (4.74 to 7.2 %) are relatively lower and their compositional ranges are relatively wider than those in contact with silicates (6.1 to 7.69 %). Zoning profiles of MgO and FeO in chromites in all assemblages are quite flat. Chromites in contact with metals and troilite display a variety of zoning patterns of Cr, Al, Ti, and Zn. All these chromite types , however, depict the same MnO zoning trends with low MnO-contents in their cores (0.96 to 2.14 %) than in their rims to metal or troilite (1.7 to 3.1 %). With few exceptions, the zoning behaviour of Cr, Al, and Ti does not follow a substitutional scheme. Chromites with reverse Cr-zoning (61.3 wt. % Cr2O3 in the cores and 63.2 Wt. % Cr2O3 at the rims ) may have either flat Al2O3 - patterns (5.46 - 5.53 wt. %) or normal zoning trends (5.6 wt. % in the core and 4.81 wt. % at the rim). Some grains display prominent complementary Cr2O3- and Al2O3- zoning patterns (62.2 % wt. Cr2O3 and 2.9 wt. % Al2O3 in the Core; 58.9 wt. % Cr2O3 and 5.7 wt. % Al2O3 at the rim). In those grains the zoning profiles of TiO2 and ZnO (Figure 1) are similar to those of Al2O3 (in the core 1.33 wt. % TiO2, 1.63 wt. % ZnO; at the rim 0.67 wt. % TiO2, 1.24 wt. % ZnO). The well developed zoning of Cr, Al, Ti, Mn, and Zn from the cores of chromites to their borders to FeNi and troilite and the variability of the zoning patterns in assemblages containing FeNi and troilite indicate that the encountered zoning types reflect the primordial chemistry of these chromites in the parental material before melting. We have delineated six different types of zoning in Acapulco chromites so far. None of the encountered zoning patterns could have developed by crystallisation from a chondritic melt. The present results support the previous findings [3, 4] that several sources must have had contributed to the parental material of Acapulco. However, genetic correlations between the isotopically different graphite morphologies and the various chromites in Acapulco could not be established so far. References: [1] Zipfel et al. (1995) GCA, in press. [2] G"pel D. et al. (1992) Meteoritics, 27, 226. [3] El Goresy A. et al. (1995) Nature, 373, 496-499.[4] El Goresy A. and Zinner E. K. (1995) LPS XXVI, 367-368. [5] Sturgeon G. and Marti K. (1991) Proc. LPS, Vol. 21, 523-525. [6] Kim Y. and Marti K. (1994) LPS XXV, 703-704. Fig.1. Zoning profiles for Cr2O3, Al2O3, MnO, ZnO, and TiO2 in chromite # 1 enclosed in troilite.

  8. Soil Materials and Health: An new experience for teaching

    NASA Astrophysics Data System (ADS)

    Del Hoyo Martínez, Carmen

    2014-05-01

    Cationic clays are very extended compounds on the earth surface so they constitute the main component of soils and sedimentary rocks. Due to their presence and special properties that they have, mankind has used them with therapeutic aims from Prehistory, not being rare to find references to this subject in works of classic authors. During the Renaissance and with the appearance of the first Pharmacopeia, its use was regulated to a certain extent. The scientific development reached during the XXth century has allowed to understand and to study the reasons of the useful and peculiar properties of clays, directly related to their colloidal size and crystalline structure. These properties are translated in a high specific surface area, optimal rheological properties and/or excellent sorptive capacity; everything makes cationic clays very useful for a wide range of applications. In the field of health, cationic clays are used in Pharmaceutical Technology and Dermopharmacy as ideal excipients and substances of suitable biological activity due to their chemical inertness and low or null toxicity for the patient (Carretero, 2002; Lopez Galindo et al., 2005; Choy et al., 2007; del Hoyo, 2007). Cationic clays can be used in a wide range of applications in health. However, it must be also considered that the risk exposure to cationic clays may cause several diseases, as it has been seen above. Cationic clays have been used as excipients and active principles in the pharmaceutical industry. The last tendencies are their use in geomedicine, as much to come up as to treat diseases. One stands out his presence in spas and aesthetic medicine. Development of new pharmaceutical formulations is observed, based on cationic clays, for cancer therapy. It has to emphasize the importance in the synthesis of biosensors with cationic clays. Cationic clays can be considered a group of promising materials in the development of new health applications. The study of the use of the cationic clays in the field of the health is a source to develop numerous studies of cases in the teaching of different subjects related to the geoscience and a new opportunity to connect the learning with the reality. References -Carretero, MI 2002. Clay Minerals and Their Beneficial Effects upon Human Health. A review. Appl. Clay Sci. 21, pp. 155-163. -Choy, J.H., Choi, S.J., Oh, J.M., Park, T. 2007. Clay minerals and layered double hydroxides for novel biological applications. Appl. Clay Sci. 36 pp. 122-132. -Del Hoyo, C. 2007. Layered double hydroxides and human health: An overview. Appl. Clay Sci. 36, pp. 103-121. -Lopez-Galindo, A., Viseras Iborra, C. & Cerezo Gonzalez, P. 2005. Arcillas y salud. In: Conferencias de la XIX Reunion de la Sociedad Espanola de Arcillas. Rives, Ed., pp. 15-18.

  9. Use of Biochar from the Pyrolysis of Waste Organic Material as a Soil Amendment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar is a charcoal-like material produced by the thermochemical pyrolysis of biomass materials. It is being considered as a potentially significant means of storing carbon for long periods to mitigate greenhouse gases. Much of the interest comes from studies of Amazonian soils that appear to have...

  10. Influence of soil moisture on soil respiration

    NASA Astrophysics Data System (ADS)

    Fer, Miroslav; Kodesova, Radka; Nikodem, Antonin; Klement, Ales; Jelenova, Klara

    2015-04-01

    The aim of this work was to describe an impact of soil moisture on soil respiration. Study was performed on soil samples from morphologically diverse study site in loess region of Southern Moravia, Czech Republic. The original soil type is Haplic Chernozem, which was due to erosion changed into Regosol (steep parts) and Colluvial soil (base slope and the tributary valley). Soil samples were collected from topsoils at 5 points of the selected elevation transect and also from the parent material (loess). Grab soil samples, undisturbed soil samples (small - 100 cm3, and large - 713 cm3) and undisturbed soil blocks were taken. Basic soil properties were determined on grab soil samples. Small undisturbed soil samples were used to determine the soil water retention curves and the hydraulic conductivity functions using the multiple outflow tests in Tempe cells and a numerical inversion with HYDRUS 1-D. During experiments performed in greenhouse dry large undisturbed soil samples were wetted from below using a kaolin tank and cumulative water inflow due to capillary rise was measured. Simultaneously net CO2 exchange rate and net H2O exchange rate were measured using LCi-SD portable photosynthesis system with Soil Respiration Chamber. Numerical inversion of the measured cumulative capillary rise data using the HYDRUS-1D program was applied to modify selected soil hydraulic parameters for particular conditions and to simulate actual soil water distribution within each soil column in selected times. Undisturbed soil blocks were used to prepare thin soil sections to study soil-pore structure. Results for all soil samples showed that at the beginning of soil samples wetting the CO2 emission increased because of improving condition for microbes' activity. The maximum values were reached for soil column average soil water content between 0.10 and 0.15 cm3/cm3. Next CO2 emission decreased since the pore system starts filling by water (i.e. aggravated conditions for microbes, closing soil gas pathways etc.). In the case of H2O exchange rate, values increased with increasing soil water contents (up to 0.15-0.20 cm3/cm3) and then remained approximately constant. Acknowledgement: Authors acknowledge the financial support of the Ministry of Agriculture of the Czech Republic No. QJ1230319

  11. Immobilisation of Cu, Pb and Zn in Scrap Metal Yard Soil Using Selected Waste Materials.

    PubMed

    Kamari, A; Putra, W P; Yusoff, S N M; Ishak, C F; Hashim, N; Mohamed, A; Isa, I M; Bakar, S A

    2015-12-01

    Immobilisation of heavy metals in a 30-year old active scrap metal yard soil using three waste materials, namely coconut tree sawdust (CTS), sugarcane bagasse (SB) and eggshell (ES) was investigated. The contaminated soil was amended with amendments at application rates of 0 %, 1 % and 3 % (w/w). The effects of amendments on metal accumulation in water spinach (Ipomoea aquatica) and soil metal bioavailability were studied in a pot experiment. All amendments increased biomass yield and reduced metal accumulation in the plant shoots. The bioconcentration factor and translocation factor values of the metals were in the order of Zn > Cu > Pb. The addition of ES, an alternative source of calcium carbonate (CaCO3), has significantly increased soil pH and resulted in marked reduction in soil metal bioavailability. Therefore, CTS, SB and ES are promising low-cost immobilising agents to restore metal contaminated land. PMID:26395356

  12. Geochemical evidence for African dust inputs to soils of western Atlantic islands: Barbados, the Bahamas, and Florida

    E-print Network

    Prospero, Joseph M.

    of Barbados, the Florida Keys, and the Bahamas. Potential soil parent materials in this region, external contributor to Barbados soils. Soils on the Florida Keys and islands in the Bahamas appear to have developed for African dust inputs to soils of western Atlantic islands: Barbados, the Bahamas, and Florida, J. Geophys

  13. Soil as an inexhaustible and high-performance anode material for Li-ion batteries.

    PubMed

    Hu, Xiaofei; Zhang, Kai; Cong, Liang; Cheng, Fangyi; Chen, Jun

    2015-10-20

    Herein, we demonstrate that by a simple treatment of heating and ball-milling, soil is endowed with a 77.2% degree of defects and acts as a high-performance anode material for soil/Li half cells and 18650-type LiNi0.915Co0.075Al0.1O2 (NCA)/soil full batteries that displayed a high and stable capacity of 3200 mA h (corresponding to 176 W h kg(-1) and 522 W h L(-1)) in the 200th cycle at a high current of 4 A. PMID:26372419

  14. Shock-treated Lunar Soil Simulant: Preliminary Assessment as a Construction Material

    NASA Technical Reports Server (NTRS)

    Boslough, Mark B.; Bernold, Leonhard E.; Horie, Yasuyuki

    1992-01-01

    In an effort to examine the feasibility of applying dynamic compaction techniques to fabricate construction materials from lunar regolith, preliminary explosive shock-loading experiments on lunar soil simulants were carried out. Analysis of our shock-treated samples suggests that binding additives, such as metallic aluminum powder, may provide the necessary characteristics to fabricate a strong and durable building material (lunar adobe) that takes advantage of a cheap base material available in abundance: lunar regolith.

  15. Soil Loss From Tillage Ridge as Affected by Waste Materials and Soil Amendments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In semi-arid regions with low crop residues, tillage ridges are used to mitigate wind and water erosion. Unfortunately, without sufficient immobile soil aggregates, bare ridges also often need additional protection. From late winter through early summer of 2006-2008 the reduction in erosion by vario...

  16. Carbon dioxide emissions from agricultural soils amended with livestock-derived organic materials

    NASA Astrophysics Data System (ADS)

    Pezzolla, D.; Said-Pullicino, D.; Gigliotti, G.

    2009-04-01

    Carbon dioxide gas xchange between terrestrial ecosystems and the atmosphere, as well as the carbon sink strength of various arable land ecosystems, is of primary interest for global change research. Measures for increasing soil C inputs include the preferential use of livestock-derived organic materials (e.g. animal manure and slurries, digestate from biogas production plants and compost). The application of such materials to agricultural soils returns essential nutrients for plant growth and organic matter to maintain long-term fertility. Whether or not such practices ultimately result in sustained C sequestration at the ecosystem level will depend on their mineralization rates. This work presents preliminary results from a laboratory incubation trial to evaluate carbon dioxide fluxes from two agricultural soils (a calcareous silt loam and a silty clay loam) amended with agricultural doses of (i) pig slurry (PSL), (ii) the digestate from the anaerobic fermentation of pig slurries (AAS) and (ii) a compost from the aerobic stabilisation of the digestate (LDC). These subsequent steps of slurry stabilisation resulted in a decrease in the content of labile organic matter which was reflected in a reduction in maximum carbon dioxide emission rates from amended soils. Measurements have shown that peak emissions from soils occur immediately after application of these organic materials (within 5 days) and decrease in the order PSL > AAS > LDC. Moreover, mean cumulative emissions over the first 40 days showed that a higher percentage (about 44%) of the C added with PSL was mineralised respect to C added with AAS (39%) and LDC (25%). Although it was hypothesised that apart from the quantity and stability of the added organic materials, even soil characteristics could influence C mineralisation rates, no significant differences were observed between emission fluxes for similarly treated soils. Mean cumulative emission fluxes after 40 days from treatment were of 114, 103 and 84 g C m-2 for PSL, AAS and LDC respectively. Carbon dioxide emission rates were corroborated with results obtained from the quantification of water-extractable organic C (WEOC) and soil microbial biomass-C (Cmic). The former represents the more labile fraction of soil organic matter and its concentration in the freshly amended soils followed the order LDC > AAS ? PSL. However, whereas WEOC concentrations decrease rapidly for PSL and LDC amended soils, AAS treated soils showed a steady increase during the first 20 days of incubation followed by a decrease thereafter. This was attributed to the release of soluble organic matter from the anaerobically stabilised digestate in the presence of an aerobic soil microbial community. Irrespective of the type of amendment, Cmic values increased with time with respect to the unamended controls, reaching highest values after 20 days from amendment and decreasing thereafter. Even after 40 days of incubation, Cmic values in all amended soils did not return to the background values obtained with unamended controls. These results suggest that the application of stabilised livestock-derived organic materials to soils may play an important role in reducing C emissions associated with agricultural practices and increase soil C stocks, apart from other indirect beneficial effects such as the recovery of energy from combustion of biogas from anaerobic fermentation of these waste materials.

  17. Plastic Fibre Reinforced Soil Blocks as a Sustainable Building Material

    NASA Astrophysics Data System (ADS)

    Prasad, C. K. Subramania; Nambiar, E. K. Kunhanandan; Abraham, Benny Mathews

    2012-10-01

    Solid waste management, especially the huge quantity of waste plastics, is one of the major environmental concerns nowadays. Their employability in block making in the form of fibres, as one of the methods of waste management, can be investigated through a fundamental research. This paper highlights the salient observations from a systematic investigation on the effect of embedded fibre from plastic waste on the performance of stabilised mud blocks. Stabilisation of the soil was done by adding cement, lime and their combination. Plastic fibre in chopped form from carry bags and mineral water bottles were added (0.1% & 0.2% by weight of soil) as reinforcement. The blocks were tested for density, and compressive strength, and observed failure patterns were analysed. Blocks with 0.1% of plastic fibres showed an increase in strength of about 3 to 10%. From the observations of failure pattern it can be concluded that benefits of fibre reinforcement includes both improved ductility in comparison with raw blocks and inhibition of crack propogation after its initial formation.

  18. Gender and Material Transfers between Older Parents and Children in Ismailia, Egypt

    ERIC Educational Resources Information Center

    Yount, Kathryn M.; Cunningham, Solveig A.; Engelman, Michal; Agree, Emily M.

    2012-01-01

    In Egypt, kin relations have been governed by a patriarchal contract, which defines expectations for intergenerational support along gendered lines. Social changes may be disrupting these customs and bringing attention to the ways gender may influence intergenerational support in rapidly changing contexts. Using data from 4,465 parent-child dyads…

  19. Effect of organic materials on the chemical properties of saline soil in the Yellow River Delta of China

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Liu, Jie; Liu, Chunmeng; Zong, Shuang; Lu, Zhaohua

    2014-09-01

    A 180-day incubation experiment was conducted to investigate the effect of different organic materials on the chemical properties of coastal soil with high salinity and relatively low pH. Four organic materials (three kinds of plant residues: straw, composted straw, and fresh reed; and one kind of poultry manure: chicken manure) were applied at a ratio of 15 g·kg-1 to samples of costal saline soil from the Yellow River Delta of China. The results showed that the soil pH and exchangeable sodium percentage (ESP) decreased, whereas soil cation exchangeable capacity (CEC) and macronutrient concentrations increased, regardless of the type of organic material used. All treatments showed a remarkable increase in soil soluble organic carbon (SOC) during the 180-day incubation. The peak values of SOC in descending order were chicken manure, reed, composted straw, straw, and control soil. At the end of incubation, the highest level of SOC occurred in the straw-amended soil, followed by composted straw, reed, and chicken manureamended soils. Soil respiration rate and available nitrogen were significantly influenced by the type of material used. Although reed-amended soil had a relatively high SOC and respiration rate, the ESP was reduced the least. Considering the possible risk of heavy metals caused by chicken manure, it is proposed that straw and composted straw are the more efficient materials to use for reclaiming costal saline soil and improving the availability of macronutrients.

  20. Effect of organic materials on the chemical properties of saline soil in the Yellow River Delta of China

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Liu, Jie; Liu, Chunmeng; Zong, Shuang; Lu, Zhaohua

    2015-06-01

    A 180-day incubation experiment was conducted to investigate the effect of different organic materials on the chemical properties of coastal soil with high salinity and relatively low pH. Four organic materials (three kinds of plant residues: straw, composted straw, and fresh reed; and one kind of poultry manure: chicken manure) were applied at a ratio of 15 g·kg-1 to samples of costal saline soil from the Yellow River Delta of China. The results showed that the soil pH and exchangeable sodium percentage (ESP) decreased, whereas soil cation exchangeable capacity (CEC) and macronutrient concentrations increased, regardless of the type of organic material used. All treatments showed a remarkable increase in soil soluble organic carbon (SOC) during the 180-day incubation. The peak values of SOC in descending order were chicken manure, reed, composted straw, straw, and control soil. At the end of incubation, the highest level of SOC occurred in the straw-amended soil, followed by composted straw, reed, and chicken manureamended soils. Soil respiration rate and available nitrogen were significantly influenced by the type of material used. Although reed-amended soil had a relatively high SOC and respiration rate, the ESP was reduced the least. Considering the possible risk of heavy metals caused by chicken manure, it is proposed that straw and composted straw are the more efficient materials to use for reclaiming costal saline soil and improving the availability of macronutrients.

  1. Heavy metal fractionation and pedogenesis in subalpine and alpine soils on ophiolitic materials, western Alps

    NASA Astrophysics Data System (ADS)

    D'Amico, M.; Previtali, F.

    2009-04-01

    Soils on ultramafic materials are usually rich in Mg, Fe and heavy metals (particularly Ni, Cr, Mn, Co). These chemical properties could cause toxicity effects on biological communities. Metal fractionation shows the soil phases to which metals are associated (exchangeable, associated with organic matter, with amorphous or crystalline Fe or Mn oxides, in the crystal structure of primary minerals), and thus it is strictly related with metal mobilization and bioavailability. Ni, Cr, Mn, Co and Fe fractionations (6 fractions, analysed by a selective sequential extraction technique) were analysed in 6 subalpine and in 17 alpine soils (i.e., respectively under coniferous forest or above the present-day treeline) in the ophiolitic area of Mont Avic Natural Park (Valle d'Aosta, Italian Alps), on soils formed from metal-rich serpentinite or from metal-poor mafic rocks and calcschists. The results show a tight relationship between vegetation, soil forming processes, metal fractionation and bioavailability: below and above the present-day treeline soil forming processes and metal speciation change dramatically. Serpentinite soils are always extremely rich in metals, but metal speciation in analogous habitats is similar on every substrate. The results show a tight relationship between vegetation, soil forming processes, metal fractionation and bioavailability: below and above the present-day treeline soil forming processes and metal speciation change dramatically. Serpentinite soils are always extremely rich in metals, but metal speciation in analogous habitats is similar on every substrate. Under subalpine forest, the main pedogenic process is podzolization. In the extremely acidic and leached podzolic soils, all metals are mobilized and their lowest concentration is in the bleached E horizon, while there is a higher content in organic matter-rich surface horizon and in the spodic (illuvial) B. Not considering the amount associated with primary minerals (residual fraction), all the fractions of Ni, Co and Mn are strictly correlated with each other: in A and Bs horizons, the greatest amount is associated with organic matter and with crystalline Fe-oxides. The content in easily mobilizable forms associated with Mn and amorphous Fe oxides is only slightly lower. The greatest amount is in the residual fraction, as pedogenic forms are easily removed from the soil profiles by leaching; this is particularly evident in E horizons. Cr is less released by weathering, and the greatest fraction is associated with organic matter and amorphous Fe-oxides. No Cr could be detected associated with Mn oxides. The high mobility of metals in these soils increases their bioavailability. Above the treeline, the situation changes dramatically. Leaching is important only on stable, flat surfaces. Total and pedogenic fractions of Ni, Cr, Co and Fe increase from the bottom to the top of the soil profile, while all forms of Mn are strongly depleted in the upper horizons because of chemical reduction due to waterlogging at snowmelt. In fact, Mn is particularly sensitive to reduction processes. The most important factors involved in metal geochemistry are erosion and cryoturbation, which bring "fresh", metal-rich materials on the top of the profiles; weathering later releases the metals associated with pedogenic materials. The weak leaching due to limited acidification increases the concentration of potentially bioavailable metals (Fe, Co, Cr, and Ni) in the biologically active soil horizons. All metals are mobilized by waterlogging at snowmelt: extremely high contents of "labile" pedogenic forms of metals also in deep horizons of soils developed on metal-poor materials. However, the concentration due to the processes described above is stronger than leaching for Ni, Co, Fe and Cr.

  2. Strontium-Doped Hematite as a Possible Humidity Sensing Material for Soil Water Content Determination

    PubMed Central

    Tulliani, Jean-Marc; Baroni, Chiara; Zavattaro, Laura; Grignani, Carlo

    2013-01-01

    The aim of this work is to study the sensing behavior of Sr-doped hematite for soil water content measurement. The material was prepared by solid state reaction from commercial hematite and strontium carbonate heat treated at 900 °C. X-Ray diffraction, scanning electron microscopy and mercury intrusion porosimetry were used for microstructural characterization of the synthesized powder. Sensors were then prepared by uniaxially pressing and by screen-printing, on an alumina substrate, the prepared powder and subsequent firing in the 800–1,000 °C range. These sensors were first tested in a laboratory apparatus under humid air and then in an homogenized soil and finally in field. The results evidenced that the screen printed film was able to give a response for a soil matric potential from about 570 kPa, that is to say well below the wilting point in the used soil. PMID:24025555

  3. CHARACTERISTICS OF FLORIDA FILL MATERIALS AND SOILS - 1990

    EPA Science Inventory

    The report gives results of laboratory work by the University of Florida in support of the Foundation Fill Data Base project of the Foundation Fill Materials Specifications Task Area of the Florida Radon Research Program (FRRP). ork included determination of radon concentrations ...

  4. CHARACTERISTICS OF FLORIDA FILL MATERIALS AND SOILS 1990

    EPA Science Inventory

    The report gives results of laboratory work by the University of Florida in support of the Foundation Fill Data Base project of the Foundation Fill Materials Specifications Task Area of the Florida Radon Research Program (FRRP). Work included determination of radon concentrations...

  5. Parenting: The Underdeveloped Skill.

    ERIC Educational Resources Information Center

    National PTA, Chicago, IL.

    This parent education curriculum contains a variety of materials designed to help local Parent Teacher Associations (PTAs) hold meetings for parents on child rearing. The materials help organizers plan meetings on topics such as dating, drugs, and careers. The unit contains a leader's guide, which contains a description of how to plan meetings,…

  6. Trace elements as indicators of lithologic discontinuity in soils

    SciTech Connect

    De Nadai Fernandes, E.A.; Martins Bacchi, F.A.

    1997-12-01

    Soil is a natural entity having mineral and organic components as well as physical, chemical, and biological properties. It is a reflection of all the different environmental factors that prevailed during its formation from the parent material. Weathering, the basic soil forming process, physically and chemically alters the primary mineral constituents of the parent rocks, with pedogenesis leading to the formation of a soil profile from the weathered rock material. The chemical composition of soils is diverse and influenced by several factors, principally the nature of the parent rocks and climatic conditions. Although the rock material is the primordial source profiles, as well as their partitioning between the soil components, is a result of the predominating pedogenic processes as well as the impact of external factors such as agricultural practices and pollution.

  7. Overview of recent magnetic studies of high T{sub c} cuprate parent compounds and related materials

    SciTech Connect

    Johnston, D.C.; Ami, T.; Borsa, F.

    1995-12-01

    Recent studies of the magnetic properties of several high superconducting transition temperature (T{sub c}) cuprate parent compounds and related materials will be reviewed. The observations of a Heisenberg to XY-like crossover upon cooling below {approximately}300K towards the Neel temperature T{sub N} = 257 K and a subsequent magnetic field-induced XY-like to Ising-like crossover near TN in single crystals of the K{sub 2}NiF{sub 4} type spin 1/2 model compound Sr{sub 2}CuO{sub 2}Cl{sub 2} will be described.

  8. Analyses of exobiological and potential resource materials in the Martian soil.

    PubMed

    Mancinelli, R L; Marshall, J R; White, M R

    1992-01-01

    Potential Martian soil components relevant to exobiology include water, organic matter, evaporites, clays, and oxides. These materials are also resources for human expeditions to Mars. When found in particular combinations, some of these materials constitute diagnostic paleobiomarker suites, allowing insight to be gained into the probability of life originating on Mars. Critically important to exobiology is the method of data analysis and data interpretation. To that end we are investigating methods of analysis of potential biomarker and paleobiomarker compounds and resource materials in soils and rocks pertinent to Martian geology. Differential thermal analysis coupled with gas chromatography is shown to be a highly useful analytical technique for detecting this wide and complex variety of materials. PMID:11538128

  9. Analyses of exobiological and potential resource materials in the Martian soil

    NASA Technical Reports Server (NTRS)

    Mancinelli, Rocco L.; Marshall, John R.; White, Melisa R.

    1992-01-01

    Potential Martian soil components relevant to exobiology include water, organic matter, evaporites, clays, and oxides. These materials are also resources for human expeditions to Mars. When found in particular combinations, some of these materials constitute diagnostic paleobiomarker suites, allowing insight to be gained into the probability of life originating on Mars. Critically important to exobiology is the method of data analysis and data interpretation. To that end, methods of analysis of potential biomarker and paleobiomarker compounds and resource materials in soils and rocks pertinent to Martian geology are investigated. Differential thermal analysis coupled with gas chromotography is shown to be a highly useful analytical technique for detecting this wide and complex variety of materials.

  10. Fate of organic carbon from different waste materials in cropland soils

    NASA Astrophysics Data System (ADS)

    Paetsch, Lydia; Mueller, Carsten; Rumpel, Cornelia; Houot, Sabine; Kögel-Knabner, Ingrid

    2015-04-01

    Organic amendments are widely used to enhance the fertility of cropland soils. However, there is only scarce knowledge about the long term impact of added organic matter (OM) on the soil organic carbon (SOC) pool. Therefore, we analyzed a long-term field experiment in Feucherolles (France), which regularly received three different composts (home sorted bio-waste mixed with green waste (BIO), municipal solid waste (MSW) and a mixture of green waste and sewage sludge (GWS) and cattle manure since 1998. With these organic materials approximately 4 Mg total OC were added to the soil in two year intervals. The experiment was fully randomized with 4 replicates for each amendment. In September 2013 we took samples from the surface soil (0-5 cm of Ap horizon) of all 4 treatments and the unamended control. To study the chemical alteration and the fate of the added OC into different soil compartments, we fractionated the soils by physical means using a combined density and particle size protocol. Carbon and N content were determined in bulk soils, amendments as well as in size fractions (fPOM, oPOM <20µm and oPOM >20µm, sand, silt and a combined fine silt-clay fraction). Chemical composition was determined by solid-state 13C CPMAS NMR spectroscopy. We found significant higher C contents for the oPOM small and sand fraction of BIO treated soil and for the clay fraction of GWS treated soils (p<0.05). Nitrogen contents were significantly higher for BIO treated soils in bulk soil, fPOM, oPOM small and for GWS treated soils in bulk soil, fPOM and oPOM. The NMR measurements revealed that only the chemical composition of the fPOM differed according to the treatment; towards the more altered fractions as the oPOM small, the compositional differences leveled out and became almost homogeneous. Furthermore, the NMR measurements indicate a similar OC composition within the independent field replicates regarding the different amendments and fractions. As previously shown, N was found to be concentrated in the clay fractions, but interestingly we were able to show this also for the oPOM small. Proteins and peptides, as indicated by the broad resonance between 30 and 55 ppm, clearly point to the presence of microbial products and residues in this fraction.

  11. Data collection handbook to support modeling the impacts of radioactive material in soil

    SciTech Connect

    Yu, C.; Cheng, J.J.; Jones, L.G.; Wang, Y.Y.; Faillace, E.; Loureiro, C.; Chia, Y.P.

    1993-04-01

    A pathway analysis computer code called RESRAD has been developed for implementing US Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), and material-related (soil, concrete) parameters are used in the RESRAD code. This handbook discusses parameter definitions, typical ranges, variations, measurement methodologies, and input screen locations. Although this handbook was developed primarily to support the application of RESRAD, the discussions and values are valid for other model applications.

  12. Free and Inexpensive Materials Available for Teaching Conservation Education: Soil and Water.

    ERIC Educational Resources Information Center

    Cousins, Genevieve; Smith, Bonnie Mae

    This publication was prepared to accompany the revised "Soil and Water Section" of "Guides for Teacher Conservation in the Schools of Louisiana." Its purpose is to provide teachers with information about possible sources of teaching materials that can be obtained free or with only a small expenditure of funds. Each item listed is annotated for the…

  13. PERFORMANCE EVALUATION MATERIALS FOR THE ANALYSIS OF VOLATILE ORGANIC CONTAMINANTS IN SOILS: A PRELIMINARY ASSESSMENT

    EPA Science Inventory

    During an evaluation of field portable gas chromatographs (GC), site-specific performance evaluation materials (PEM) were prepared and used as quality control samples. lean soils from two contaminated sites were spiked with various volatile organic compounds. he PEM were shipped ...

  14. Advanced Characterisation of Pavement and Soil Engineering Materials Loizos, Scarpas & Al-Qadi (eds)

    E-print Network

    Paulino, Glaucio H.

    1241 Advanced Characterisation of Pavement and Soil Engineering Materials ­ Loizos, Scarpas & Al and economical alternative for the repair of deteriorated pavements, reflective cracking continues to be major approaches have not provided a direct means for the study of crack initiation and propagation in pavements

  15. METHOD OF ESTIMATING THE TRAVEL TIME OF NONINTERACTING SOLUTES THROUGH COMPACTED SOIL MATERIAL

    EPA Science Inventory

    The pollutant travel time through compacted soil material (i.e., when a pollutant introduced at the top first appears at the bottom) cannot be accurately predicted from the permeability (saturated hydraulic conductivity) alone. The travel time is also dependent on the effective p...

  16. Use of Fly Ash as a Liming Material for Corn and Soybean Production on an Acidic Sandy Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fly ash (FA) produced from subbituminous coal combustion can potentially serve as a lime material for crop production in acidic soils in areas. A five-year study was conducted to determine if FA can be used as a liming material in an acid sandy soil under corn and soybean grain production. Fly ash...

  17. Estimation of soil hydraulic material properties based on time-lapse GPR measurements Stefan Jaumann, Patrick Klenk, and Kurt Roth

    E-print Network

    Roth, Kurt

    quality freshwater, the coupling between the soil and the atmosphere or the storage and release of soil and features an effective 2D geometry with three distinct kinds of sand. It is equipped with a weather-station the distribution of the three materials A, B and C. Solid lines indicate material interfaces, whereas dashed lines

  18. Air-surface exchange of mercury with soils amended with ash materials.

    PubMed

    Ericksen, Jody; Gustin, Mae Sexauer

    2006-07-01

    Air-surface exchange of mercury (Hg) was measured from soil low in Hg (0.013 mg/kg) amended with four different ash materials: a wood ash containing -10% coal ash (0.070 mg/kg Hg), a mixture of two subbituminous coal fly ashes (0.075 mg/kg Hg), a subbituminous coal ash containing -10% petroleum coke ash (1.2 mg/kg Hg), and an ash from incinerated municipal sewage sludge (4.3 mg/kg Hg) using a dynamic flux chamber. Ash was added to soil to simulate agricultural supplements, soil stabilization, and pad layers used in livestock areas. For the agricultural amendment, -0.4% ash was well mixed into the soil. To make the stabilized soil that could be used for construction purposes, -20% ash was mixed into soil with water. The pad layer consisted of a wetted 1-cm layer of ash material on the soil surface. Diel trends of Hg flux were observed for all of the substrates with significantly higher Hg emissions during the day and negligible flux or deposition of Hg during the night. Hg fluxes, which were measured in the summer months, were best correlated with solar radiation, temperature, and air O3 concentrations. Mean Hg fluxes measured outdoors for unamended soils ranged from 19 to 140 ng/m2 day, whereas those for soil amended with ash to simulate an agricultural application ranged from 7.2 to 230 ng/m2 day. Fluxes for soil stabilized with ash ranged from 77 to 530 ng/m2 day and for soil with pads constructed of ash ranged from -50 to 90 ng/m2 day. Simple analytical tests (i.e., total Hg content, synthetic precipitation leaching procedure, heating, and indoor gas-exchange experiments) were performed to assess whether algorithms based on these tests could be used to predict Hg fluxes observed outdoors using the flux chamber. Based on this study, no consistent relationships could be developed. More work is needed to assess long-term and seasonal variations in Hg flux from (intact and disturbed) substrates before annual estimates of emissions can be developed. PMID:16878589

  19. Soils and the soil cover of the Valley of Geysers

    NASA Astrophysics Data System (ADS)

    Kostyuk, D. N.; Gennadiev, A. N.

    2014-06-01

    The results of field studies of the soil cover within the tourist part of the Valley of Geysers in Kamchatka performed in 2010 and 2011 are discussed. The morphology of soils, their genesis, and their dependence on the degree of hydrothermal impact are characterized; the soil cover patterns developing in the valley are analyzed. On the basis of the materials provided by the Kronotskii Biospheric Reserve and original field data, the soil map of the valley has been developed. The maps of vegetation conditions, soil temperature at the depth of 15 cm, and slopes of the surface have been used for this purpose together with satellite imagery and field descriptions of reference soil profiles. The legend to the soil map includes nine soil units and seven units of parent materials and their textures. Soil names are given according to the classification developed by I.L. Goldfarb (2005) for the soils of hydrothermal fields. The designation of soil horizons follows the new Classification and Diagnostic System of Russian Soils (2004). It is suggested that a new horizon—a thermometamorphic horizon TRM—can be introduced into this system by analogy with other metamorphic (transformed in situ) horizons distinguished in this system. This horizon is typical of the soils partly or completely transformed by hydrothermal impacts.

  20. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials

    SciTech Connect

    Rachor, Ingke; Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria

    2011-05-15

    The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material.

  1. Studies related to the evolution of the lunar soil materials

    NASA Technical Reports Server (NTRS)

    Carter, J. L.

    1973-01-01

    Studies of the chemistry and morphology of the lunar samples are reported. The presence of fragments of plagoclase in the centers of the impact craters indicate that the glass spheres were derived by meteoritic impact from high velocity particles, while the glass was at high temperatures. From the study of the Apollo 16 samples, it is suggested that this material was formed in a hot impact ejecta blanket, or in an igneous environment, and later exposed to meteoritic impact. It is suggested that particles from Apollo 17 were formed in a cloud of siliceous vapors.

  2. Correlations between soil magnetic susceptibility and the content of particular elements as a reflection of pollution level, land use and parent rocks

    NASA Astrophysics Data System (ADS)

    Rachwa?, Marzena; Magiera, Tadeusz; Bens, Oliver; Kardel, Kati

    2015-04-01

    Magnetic susceptibility is a worldwide used measure of (ferri)magnetic minerals occurring in soils, sediments and dusts. In soils, these minerals are of various origin: air-derived particulate pollutions, parent rocks or pedogenesis. Human activity causes different changes in the content of magnetic minerals as well as their spatial and vertical distribution in soil profiles. Magnetic minerals are characterized by an affinity for other elements occurring in the soil, so positive correlations between magnetic susceptibility and particular elements like macrocomponents or heavy metals often occurs. The archival soil samples collected from different soil horizons in the territory of the Free State of Saxony (Germany) were subjected to the magnetic susceptibility measurements using Bartington MS2B. Additionally, samples were chemically analyzed by the S Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences in Potsdam. Values of magnetic susceptibility varied from 9.3 to 1382 ×10-8 m3/kg in organic soil horizon and from 0.1 to 2105 ×10-8 m3/kg in dipper layers. Calculated correlation coefficients between magnetic susceptibility and some elements indicate significant relationships characteristic for different factors influenced soil properties (pollution level, land use and parent rocks). The northern part of Saxony is divided by the Elbe into two parts: east part with loose sedimentary rocks and the west one with more solid loess bedrock enriched by spectrum of elements from the Ore Mountains. Correlations between magnetic susceptibility and Ca, Fe, Mn, and Zn were stated in the eastern, while soil magnetic susceptibility of the western part revealed a correlation with Fe, P, Cd, Cu, Pb, Zn, Mo, U, V, and W. Taking into account influences of industry and urbanization, soil magnetic susceptibility is enhanced in the areas with higher population density comparing with rural sites. In the area of Hoyerswerda and Weisswasser with low magnetic natural background (sand) the load of (ferri)magnetic minerals explained by high magnetic susceptibility values as a result of high pollution level, shows the considerable correlations with Na, Ca, Fe, Mn, Zn, B, Be, V. What is more, the soil magnetic susceptibility, developed on different geological bedrocks, correlates with their natural geochemistry bound in the rock and connected with their ferromagnetic minerals (such magnetite and titanomagnetite present in slate, phyllite, mica schist). In that case the magnetic susceptibility correlates with such elements as: Fe, Mn, Ni, B and V. The soils in the south-eastern Saxony close to the border tri-point of Germany, Poland and the Czech Republic, reveal a correlation of magnetic susceptibility with Cd and As content. It can also be caused by power industry in Zittau, however they are developed on basalts and phonolithes in background that produce also strong magnetic signal of geogenic origin. All the statements made above are usually not so clear, since geogenic processes and anthropogenic influences often overlay in the soil.

  3. Evaluation of Varying Biochars as Carrier Materials for Bacterial Soil Inoculants

    NASA Astrophysics Data System (ADS)

    Hale, Lauren; Crowley, David

    2014-05-01

    The incorporation of biochar into agricultural soils for carbon sequestration and improved soil fertility creates an opportunity to simultaneously deliver plant-growth promoting rhizobacteria (PGPR). Many characteristics of biochar materials indicate that these particles could be conducive as inoculum carriers. This could provide a value-added component for biochar marketing and has an advantage over traditional carrier materials, which can be unsustainable or expensive to produce. Here, we assessed the suitability of 10 biochar types, made from 5 feedstocks at 2 pyrolysis temperatures (300°C and 600°C), to serve as carriers for 2 model PGPR strains, Enterobacter cloacae UW5 and Pseudomonas putida UW4. All biochars were characterized based on BET specific surface area, C-N content, pH, EC, and their abilities to adsorb bacterial cells from a liquid inoculum. Further studies incorporated qPCR to quantify the survival of inoculants after introduction into soils via biochar carriers. The biochars that performed well were further assayed for their influence on PGPR traits, 1-aminocyclopropane-1-carboxylate (ACC) deaminase and auxin production. Peat and vermiculite served as traditional carrier materials to which we compared the biochars. Our findings indicated that biochars varied in their interactions with our model PGPR strains. Based on our analysis several biochar types were able to serve as carriers which were as good, if not better than, the traditional carrier materials. Future work should seek to assess shelf life and varying inoculation methods for the biochar-inoculant complexes.

  4. Mass Transport within Soils

    SciTech Connect

    McKone, Thomas E.

    2009-03-01

    Contaminants in soil can impact human health and the environment through a complex web of interactions. Soils exist where the atmosphere, hydrosphere, geosphere, and biosphere converge. Soil is the thin outer zone of the earth's crust that supports rooted plants and is the product of climate and living organisms acting on rock. A true soil is a mixture of air, water, mineral, and organic components. The relative proportions of these components determine the value of the soil for agricultural and for other human uses. These proportions also determine, to a large extent, how a substance added to soil is transported and/or transformed within the soil (Spositio, 2004). In mass-balance models, soil compartments play a major role, functioning both as reservoirs and as the principal media for transport among air, vegetation, surface water, deeper soil, and ground water (Mackay, 2001). Quantifying the mass transport of chemicals within soil and between soil and atmosphere is important for understanding the role soil plays in controlling fate, transport, and exposure to multimedia pollutants. Soils are characteristically heterogeneous. A trench dug into soil typically reveals several horizontal layers having different colors and textures. As illustrated in Figure 1, these multiple layers are often divided into three major horizons: (1) the A horizon, which encompasses the root zone and contains a high concentration of organic matter; (2) the B horizon, which is unsaturated, lies below the roots of most plants, and contains a much lower organic carbon content; and (3) the C horizon, which is the unsaturated zone of weathered parent rock consisting of bedrock, alluvial material, glacial material, and/or soil of an earlier geological period. Below these three horizons lies the saturated zone - a zone that encompasses the area below ground surface in which all interconnected openings within the geologic media are completely filled with water. Similarly to the unsaturated zone with three major horizons, the saturated zone can be further divided into other zones based on hydraulic and geologic conditions. Wetland soils are a special and important class in which near-saturation conditions exist most of the time. When a contaminant is added to or formed in a soil column, there are several mechanisms by which it can be dispersed, transported out of the soil column to other parts of the environment, destroyed, or transformed into some other species. Thus, to evaluate or manage any contaminant introduced to the soil column, one must determine whether and how that substance will (1) remain or accumulate within the soil column, (2) be transported by dispersion or advection within the soil column, (3) be physically, chemically, or biologically transformed within the soil (i.e., by hydrolysis, oxidation, etc.), or (4) be transported out of the soil column to another part of the environment through a cross-media transfer (i.e., volatilization, runoff, ground water infiltration, etc.). These competing processes impact the fate of physical, chemical, or biological contaminants found in soils. In order to capture these mechanisms in mass transfer models, we must develop mass-transfer coefficients (MTCs) specific to soil layers. That is the goal of this chapter. The reader is referred to other chapters in this Handbook that address related transport processes, namely Chapter 13 on bioturbation, Chapter 15 on transport in near-surface geological formations, and Chapter 17 on soil resuspention. This chapter addresses the following issues: the nature of soil pollution, composition of soil, transport processes and transport parameters in soil, transformation processes in soil, mass-balance models, and MTCs in soils. We show that to address vertical heterogeneity in soils in is necessary to define a characteristic scaling depth and use this to establish process-based expressions for soil MTCs. The scaling depth in soil and the corresponding MTCs depend strongly on (1) the composition of the soil and physical state of the soil, (2) the chemical and physic

  5. Possible sources of H2 to H2O enrichment at evaporation of parent chondritic material

    NASA Technical Reports Server (NTRS)

    Makalkin, A. B.; Dorofeyeva, V. A.; Vityazev, A. V.

    1993-01-01

    One of the results obtained from thermodynamic simulation of recondensation of the source chondritic material is that at 1500-1800 K it's possible to form iron-rich olivine by reaction between enstatite, metallic iron and water vapor in the case of (H2O)/(H2) approximately equal to 0.1. This could be reached if the gas depletion in hydrogen is 200-300 times relative to solar abundance. To get this range of depletion one needs some source material more rich in hydrogen than the carbonaceous CI material which is the richest in volatiles among chondrites. In the case of recondensation at impact heating and evaporation of colliding planetesimals composed of CI material, we obtain insufficiently high value of (H2)/(H2O) ratio. In the present paper we consider some possible source materials and physical conditions necessary to reach gas composition with (H2)/(H2O) approximately 10 at high temperature.

  6. Biogeochemistry of hydrothermally and adjacent non-altered soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a field/lab project, students in the Soil Biogeochemistry class of the University of Nevada, Reno described and characterized seven pedons, developed in hydrothermally and adjacent non-hydrothermally altered andesitic parent material near Reno, NV. Hydrothermally altered soils had considerably lo...

  7. Assessment of ecotoxicological risks related to depositing dredged materials from canals in northern France on soil.

    PubMed

    Perrodin, Yves; Babut, Marc; Bedell, Jean-Philippe; Bray, Marc; Clement, Bernard; Delolme, Cécile; Devaux, Alain; Durrieu, Claude; Garric, Jeanne; Montuelle, Bernard

    2006-08-01

    The implementation of an ecological risk assessment framework is presented for dredged material deposits on soil close to a canal and groundwater, and tested with sediment samples from canals in northern France. This framework includes two steps: a simplified risk assessment based on contaminant concentrations and a detailed risk assessment based on toxicity bioassays and column leaching tests. The tested framework includes three related assumptions: (a) effects on plants (Lolium perenne L.), (b) effects on aquatic organisms (Escherichia coli, Pseudokirchneriella subcapitata, Ceriodaphnia dubia, and Xenopus laevis) and (c) effects on groundwater contamination. Several exposure conditions were tested using standardised bioassays. According to the specific dredged material tested, the three assumptions were more or less discriminatory, soil and groundwater pollution being the most sensitive. Several aspects of the assessment procedure must now be improved, in particular assessment endpoint design for risks to ecosystems (e.g., integration of pollutant bioaccumulation), bioassay protocols and column leaching test design. PMID:16797071

  8. Impact of rock materials and biofertilizations on P and K availability for maize (Zea Maize) under calcareous soil conditions

    PubMed Central

    Abou-el-Seoud, I.I.; Abdel-Megeed, A.

    2011-01-01

    The present work evaluated the synergistic effects of soil fertilization with rock P and K materials and co-inoculation with P and K-dissolving bacteria [PDB (Bacillus megaterium var. phosphaticum) and KDB (Bacillus mucilaginosus and B. subtilis)] on the improvement of P and K uptake, P and K availability and growth of maize plant grown under limited P and K soil conditions (calcareous soil). The experiment was establishment with eight treatments: without rock P and K materials or bacteria inoculation (control), rock P (RP), rock K (RK), RP + PDB, RK + KDB and R(P + K)+(P + K)DB. Under the same conditions of this study, co-inoculation of PDB and KDB in conjunction with direct application of rock P and K materials (R(P + K)) into the soil increased P and K availability and uptake, and the plant growth (shoot and root growth) of maize plants grown on P and K limited soils. PMID:23961162

  9. Soils, time, and primate paleoenvironments

    USGS Publications Warehouse

    Bown, T.M.; Kraus, M.J.

    1993-01-01

    Soils are the skin of the earth. From both poles to the equator, wherever rocks or sediment are exposed at the surface, soils are forming through the physical and chemical action of climate and living organisms. The physical attributes (color, texture, thickness) and chemical makeup of soils vary considerably, depending on the composition of the parent material and other variables: temperature, rainfall and soil moisture, vegetation, soil fauna, and the length of time that soil-forming processes have been at work. United States soil scientists1 have classified modern soils into ten major groups and numerous subgroups, each reflecting the composition and architecture of the soils and, to some extent, the processes that led to their formation. The physical and chemical processes of soil formation have been active throughout geologic time; the organic processes have been active at least since the Ordovician.2 Consequently, nearly all sedimentary rocks that were deposited in nonmarine settings and exposed to the elements contain a record of ancient, buried soils or paleosols. A sequence of these rocks, such as most ancient fluvial (stream) deposits, provides a record of soil paleoenvironments through time. Paleosols are also repositories of the fossils of organisms (body fossils) and the traces of those organisms burrowing, food-seeking, and dwelling activities (ichnofossils). Indeed, most fossil primates are found in paleosols. Careful study of ancient soils gives new, valuable insights into the correct temporal reconstruction of the primate fossil record and the nature of primate paleoenvironments. ?? 1993 Wiley-Liss, Inc.

  10. Electrokinetic removal of charged contaminant species from soil and other media using moderately conductive adsorptive materials

    DOEpatents

    Lindgren, Eric R. (Albuquerque, NM); Mattson, Earl D. (Idaho Falls, ID)

    2001-01-01

    Method for collecting and concentrating charged species, specifically, contaminant species in a medium, preferably soil. The method utilizes electrokinesis to drive contaminant species into and through a bed adjacent to a drive electrode. The bed comprises a moderately electrically conductive adsorbent material which is porous and is infused with water or other solvent capable of conducting electrical current. The bed material, preferably activated carbon, is easily removed and disposed of. Preferably, where activated carbon is used, after contaminant species are collected and concentrated, the mixture of activated carbon and contaminant species is removed and burned to form a stable and easily disposable waste product.

  11. Effect of Ground Rubber vs. ZnSO4 on Spinach Accumulation of Cd from Cd-Mineralized California Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Certain soils derived from marine shale in Salinas Valley, CA, USA, contain significant levels of natural Cd but normal levels of Zn, all derived from the soil parent materials. Crops grown on these soils contain high levels of Cd, and because of the high Cd:Zn, this Cd is highly bioavailable and a...

  12. Materials testing for in situ stabilization treatability study of INEEL mixed wastes soils

    SciTech Connect

    Heiser, J.; Fuhrmann, M.

    1997-09-01

    This report describes the contaminant-specific materials testing phase of the In Situ Stabilization Comprehensive Environment Response, Compensation, and Liability Act (CERCLA) Treatability Study (TS). The purpose of materials testing is to measure the effectiveness of grouting agents to stabilize Idaho National Engineering and Environmental Laboratory (INEEL) Acid Pit soils and select a grout material for use in the Cold Test Demonstration and Acid Pit Stabilization Treatability Study within the Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC). Test results will assist the selecting a grout material for the follow-on demonstrations described in Test Plan for the Cold Test Demonstration and Acid Pit Stabilization Phases of the In Situ Stabilization Treatability Study at the Radioactive Waste Management Complex.

  13. Soils

    NASA Astrophysics Data System (ADS)

    Schaetzl, Randall J.; Anderson, Sharon

    2005-06-01

    This comprehensive work on all aspects of soils includes introductory chapters on soil morphology, physics, mineralogy and organisms in anticipation of the more advanced analysis of the subject that follows. Replete with hundreds of high-quality figures and a large glossary, its global perspective makes it an invaluable text for anyone studying soils, landforms and landscape change in middle to upper-level undergraduate and graduate courses.

  14. Development of laboratory reference material: Soil 1. Baseline and highly elevated concentrations of metals and polycyclic aromatic hydrocarbons.

    PubMed

    Kupiec, K; Konieczka, P; Namie?nik, J

    2011-01-01

    Reference materials play a key part in systems of inspection and quality control of results of analytical measurements. The main limitation in using certified reference materials (CRM) is their high price, which results from the long and costly process of producing the reference material. An alternative to costly CRM materials is the employment of laboratory reference materials, particularly for interlaboratory control of measurement results and procedures. Under the auspices of the Chair of Analytical Chemistry at the Chemical Department of Gdansk University of Technology, research on the development of new reference materials is being conducted. At present, the research is aimed at producing a new laboratory reference material (LRM): 'Soil 1. Baseline and Highly Elevated Concentrations of Metals and Polycyclic Aromatic Hydrocarbons' - LRM soil 1. This paper presents the production stages of the developed laboratory reference material: acquisition of raw material from soil samples taken from the environment of the Tri-city (in Polish, Trójmiasto Gdansk, Sopot, Gdynia) bypass road, homogenization and subsequent dosage into appropriate containers, tests of homogeneity of sampled material within one container and between containers, based on the results of the determination of selected parameters (total carbon, content of optional metals - Hg, Fe, Cu Zn, Mn, Mg, water content, content of PAH-group analytes). The obtained results of homogeneity tests of the proposed future laboratory reference material have confirmed the homogeneity of soil samples within a container and between containers. Currently, interlaboratory tests are being carried out to determine the reference value. PMID:21473281

  15. Diffusion of Iodine and Rhenium in Category 3 Waste Encasement Concrete and Soil Fill Material

    SciTech Connect

    Wellman, Dawn M.; Mattigod, Shas V.; Whyatt, Greg A.; Powers, Laura; Parker, Kent E.; Wood, Marcus I.

    2006-12-15

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e. sorption or precipitation). This understanding will enable accurate prediction of radionuclide fate when the waste forms come in contact with groundwater. A set of diffusion experiments using carbonated and non-carbonated concrete-soil half cells was conducted under unsaturated conditions (4% and 7% by wt moisture content). Spiked concrete half-cell specimens were prepared with and without colloidal metallic iron addition and were carbonated using supercritical carbon dioxide. Spikes of I and Re were added to achieve measurable diffusion profile in the soil part of the half-cell. In addition, properties of concrete materials likely to influence radionuclide migration such as carbonation were evaluated in an effort to correlate these properties with the release of iodine and rhenium.

  16. Development of construction materials like concrete from lunar soils without water

    NASA Technical Reports Server (NTRS)

    Desai, Chandra S.; Saadatmanesh, H.; Frantziskonis, G.

    1989-01-01

    The development of construction materials such as concrete from lunar soils without the use of water requires a different methodology than that used for conventional terrestrial concrete. A unique approach is attempted that utilizes factors such as initial vacuum and then cyclic loading to enhance the mechanical properties of dry materials similar to those available on the moon. The application of such factors is expected to allow reorientation, and coming together, of particles of the materials toward the maximum theoretical density. If such a density can provide deformation and strength properties for even a limited type of construction, the approach can have significant application potential, although other factors such as heat and chemicals may be needed for specific construction objectives.

  17. THE DEVELOPMENT OF SYNTHETIC SOIL MATERIALS FOR THE SUCCESSFUL RECLAMATION OF ABANDONED MINED LAND SITES

    SciTech Connect

    Song Jin

    2006-03-01

    Abandoned mine sites associated with coal and metal mining across the western United States have been left as unproductive wastelands. The availability of soil materials or other materials to support the restoration of the vegetative cover and enhance the recovery of such areas is limited. The restoration of these areas often requires the use of available amendments such as organic waste products or to help stabilize the soil. Many of the organic waste products, including sewage sludge, clarifier sludge, fly ash sludge, and other by-products from the agricultural industries such as compost can be employed for beneficial uses. This study looked at the feasibility of applying organic waste products to a mine soil in Montana to increase soil fertility and enhance plant productivity. Waste rock samples were tested for acid forming potential via acid base accounting. Samples cores were constructed and leached with simulated rainwater to determine amendment affect on metal leaching. A greenhouse study was completed to determine the most suitable amendment(s) for the field mine land site. Results from the acid base accounting indicate that acid formed from the waste rock would be neutralized with the alkalinity in the system. Results also show that metals in solution are easily held by organics from the amendments and not allowed to leach in to the surrounding water system. Data from the greenhouse study indicated that the amendment of sewage sludge was most promising. Application of 2% sewage sludge along with 1% sewage sludge plus 1% clarifier sludge, 2% compost, and no treatment were used for mine land application. Initial results were encouraging and it appears that sewage sludge may be a good reclamation option for mine lands.

  18. Reflectance and Mossbauer spectroscopy of ferrihydrite-montmorillonite assemblages as Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Pieters, C. M.; Burns, R. G.; Chang, S. (Principal Investigator)

    1993-01-01

    Spectroscopic analyses show that Fe(3+)-doped smectites prepared in the laboratory exhibit important similarities to the soils on Mars. Ferrihydrite has been identified as the interlayer ferric component in Fe(3+)-doped smectites by a low quadrupole splitting and magnetic field strength of approximately 48 tesla in Mossbauer spectra measured at 4.2 K, as well as a crystal field transition at 0.92 micrometer. Ferrihydrite in these smectites explains features in the visible-near infrared region that resemble the energies and band strengths of features in reflectance spectra observed for several bright regions on Mars. Clay silicates have met resistance in the past as Mars soil analogs because terrestrial clay silicates exhibit prominent hydrous spectral features at 1.4, 1.9, and 2.2 micrometers; and these are observed weakly, if at all, in reflectance spectra of Mars. However, several mechanisms can weaken or compress these features, including desiccation under low-humidity conditions. The hydration properties of the interlayer cations also effect band strengths, such that a ferrihydrite-bearing smectite in the Martian environment would exhibit a 1.9 micrometers H2O absorption that is even weaker than the 2.2 micrometers structural OH absorption. Mixing experiments demonstrate that infrared spectral features of clays can be significantly suppressed and that the reflectance can be significantly darkened by mixing with only a few percent of a strongly absorbing opaque material. Therefore, the absolute reflectance of a soil on Mars may be disproportionately sensitive to a minor component. For this reason, the shape and position of spectral features and the chemical composition of potential analogs are of utmost importance in assessing the composition of the soil on Mars. Given the remarkable similarity between visible-infrared reflectance spectra of soils in bright regions on Mars and Fe(3+)-doped montmorillonites, coupled with recent observations of smectites in SNC meteorites and a weak 2.2 micrometers absorption in some Mars soils, ferrihydrite-bearing smectites warrant serious consideration as a Mars soil analog.

  19. Elaidate-Intercalated hydrotalcite as a sorbent material for metalaxyl immobilitzation in soil

    NASA Astrophysics Data System (ADS)

    López-Cabeza, Rocío; Cornejo, Juan; Hermosín, María C.; Cox, Lucía; Celis, Rafael

    2015-04-01

    Layered double hydroxides (LDHs), also known as hydrotalcite-like compounds (HTs), comprise a special group of layered materials. Their structure consists of positively charged layers of mixed divalent (MII) and trivalent (MIII) metal hydroxide [MII1-xMIIIx(OH)2]x+, with the positive charge being balanced by inorganic hydrated anions (An-x/n·mH2O), which occupy the interlayer space. LDHs have anion exchange properties and, therefore, are good sorbents for anionic pollutants. In addition, the anionic exchange properties of LDHs allow the intercalation of organic anions in the interlayer space to render the LDH surface hydrophobic. This increases its affinity to hydrophobic organic compounds. Pesticides with chiral centers are an emerging class of organic pollutants and it has become clear that addressing the different efficacy, toxicity, and environmental behavior of chiral pesticide enantiomers is necessary to avoid the incorrect assumption that enantiomers have identical environmental behavior. Appropriate soil remediation strategies accounting for the enantioselective behavior of chiral pesticide enantiomers are also needed. In this work, we evaluated the performance of elaidate-modified hydrotalcite (HT-ELA) as a sorbent to remove the chiral fungicide metalaxyl from aqueous solution and as an amendment for metalaxyl immobilization in soil. Analysis of metalaxyl by chiral high-performance liquid chromatography allowed us to monitor the sorption and mobility of the two enantiomers of metalaxyl, S-(+)-metalaxyl and R-(-)-metalaxyl, independently. Batch sorption experiments showed that HT-ELA [Mg3Al(OH)8ELA] displayed an excellent performance as an sorbent of the two enantiomers of metalaxyl from aqueous solution and that its addition to a sandy loam agricultural soil at a rate of 1% greatly enhanced the sorption of metalaxyl enantiomers by the soil. Column leaching experiments demonstrated that amending the soil top layer (0-2.5 cm) with HT-ELA at a rate of 1% reduced the leaching of S- and R-metalaxyl. The R-enantiomer of metalaxyl leached less than the S-enantiomer due to its faster degradation in the soil. Our results illustrate the ability of elaidate-modified hydrotalcite to enhance the retention of the two enantiomers of the fungicide metalaxyl in the tested soil, which may be useful in the design of immobilization strategies, particularly of the more persistent S-metalaxyl enantiomer, which may represent increased risk of ground water contamination. Acknowledgments: MINECO Project AGL2011-23779, FACCE-JPI Project Designchar4food, JA Research Group AGR-264 and FEDER-FSE (OP 2007-2013).

  20. Mineralization of Carbon and Nitrogen from Freeze-and Oven-Dried Plant Material Added to Soil

    E-print Network

    Florida, University of

    Mineralization of Carbon and Nitrogen from Freeze- and Oven-Dried Plant Material Added to Soil K. K. Freeze- and oven-dried water hyacinth (Eichhornia crassipes [Mart] Solms) was added to a Kendricksoil the mineral content of the plant material compared to freeze drying. The total C and N was not significantly

  1. Evaluation of lunar rocks and soils for resource utilization: Detailed image analysis of raw materials and beneficiated products

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence A.; Chambers, John G.; Patchen, Allan; Jerde, Eric A.; Mckay, David S.; Graf, John; Oder, Robin R.

    1993-01-01

    The rocks and soils of the Moon will be the raw materials for fuels and construction needs at a lunar base. This includes sources of materials for the generation of hydrogen, oxygen, metals, and other potential construction materials. For most of the bulk material needs, the regolith, and its less than 1 cm fraction, the soil, will suffice. But for specific mineral resources, it may be necessary to concentrate minerals from rocks or soils, and it is not always obvious which is the more appropriate feedstock. Besides an appreciation of site geology, the mineralogy and petrography of local rocks and soils is important for consideration of the resources which can provide feedstocks of ilmenite, glass, agglutinates, anorthite, etc. In such studies, it is very time-consuming and practically impossible to correlate particle counts (the traditional method of characterizing lunar soil petrography) with accurate modal analyses and with mineral associations in multi-mineralic grains. But x ray digital imaging, using x rays characteristic of each element, makes all this possible and much more (e.g., size and shape analysis). An application of beneficiation image analysis, in use in our lab (Oxford Instr. EDS and Cameca SX-50 EMP), was demonstrated to study mineral liberation from lunar rocks and soils. Results of x ray image analysis are presented.

  2. Using Self-Instructional Materials to Train Parents of Young Handicapped Children in Solving Behavior Problems. Final Report.

    ERIC Educational Resources Information Center

    Sloane, Howard N.; Endo, George T.

    The 3-year project developed self-instructional programs and evaluated parent use of these programs (approximately 185 families) to improve behavior problems of their handicapped children, aged 3 to 9. The project's format included five goals (e.g., determination of the degree to which parents can treat behavioral problems without professional…

  3. Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Pieters, Carle M.

    1995-01-01

    Infrared reflectance spectra of carefully selected Mars soil analog materials have been measured under low atmospheric pressures and temperatures. Chemically altered montmorillonites containing ferrihydrite and hydrated ferric sulfate complexes are examined, as well as synthetic ferrihydrite and a palagonitic soil from Haleakala, Maui. Reflectance spectra of these analog materials exhibit subtle visible to near-infrared features, which are indicative of nanophase ferric oxides or oxyhydroxides and are similar to features observed in the spectra of the bright regions of Mars. Infrared reflectance spectra of these analogs include hydration features due to structural OH, bound H2O, and adsorbed H2O. The spectral character of these hydration features is highly dependent on the sample environment and on the nature of the H2O/OH in the analogs. The behavior of the hydration features near 1.9 micron, 2.2 micron, 2.7 micron, 3 micron, and 6 microns are reported here in spectra measured under a Marslike atmospheric environment. In spectra of these analogs measured under dry Earth atmospheric conditions the 1.9-micron band depth is 8-17%; this band is much stronger under moist conditions. Under Marslike atmospheric conditions the 1.9-micron feature is broad and barely discernible (1-3% band depth) in spectra of the ferrihydrite and palagonitic soil samples. In comparable spectra of the ferric sulfate-bearing montmorillonite the 1.9-micron feature is also broad, but stronger (6% band depth). In the low atmospheric pressure and temperature spectra of the ferrihydrite-bearing montmorillonite this feature is sharper than the other analogs and relatively stronger (6% band depth). Although the intensity of the 3-micron band is weaker in spectra of each of the analogs when measured under Marslike conditions, the 3-micron band remains a dominant feature and is especially broad in spectra of the ferrihydrite and palagonitic soil. The structural OH features observed in these materials at 2.2-2.3 micron and 2.75 microns remain largely unaffected by the environmental conditions. A shift in the Christiansen feature towards shorter wavelengths has also been observed with decreasing atmospheric pressure and temperature in the midinfrared spectra of these samples.

  4. Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Pieters, Carle M.

    1995-01-01

    Infrared reflectance spectra of carefully selected Mars soil analog materials have been measured under low atmospheric pressures and temperatures. Chemically altered montmorillonites containing ferrihydrite and hydrated ferric sulfate complexes are examined, as well as synthetic ferrihydrate and a palagonitic soil from Haleakala, Maui. Reflectance spectra of these analog materials exhibit subtle visible to near-infrared features, which are indicative of nanophase ferric oxides or oxyhydroxides and are similar to features observed in the spectra of the bright regions of Mars. Infrared reflectance spectra of these analogs include hydration features due to structural OH, bound H2O and adsorbed H2O. The spectal character of these hydration features is highly dependent on the sample environment and on the nature of the H2O/OH in the analogs. The behavior of the hydration features near 1.9 micrometers, 2.2 micrometers, 2.7 micrometers, 3 micrometers, and 6 micrometers are reported here in spetra measured under Marslike atmospheric environment. In spectra of these analogs measured under dry Earth atmospheric conditions the 1.9-micrometer band depth is 8-17%; this band is much stonger under moist conditions. Under Marslike atmospheric conditions the 1.9-micrometer feature is broad and barely discernible (1-3% band depth) in spectra of the ferrihydrite and palagonitic soil samples. In comparable spectra of the ferric sulfate-bearing montmorillonite the 1.9-micrometer feature is also broad, but stronger (6% band depth). In the low atmospheric pressure and temperature spectra of the ferrihydrite-bearing montmorillonite this feature is sharper than the other analogs and relatively stronger (6% band depth). Although the intensity of the 3- micrometer band is weaker in spectra of each of the analogs when measured under Marslike conditions, the 3-micromter band remains a dominant feature and is especially broad in spectra of the ferrihydrite and palagonitic soil. The structural OH features observed in these materials at 2.2-2.3 micrometers and 2.27 micrometers remain largely unaffected by the environmental conditions. A shift in the Christiansen feature towards shorter wavelengths has also been observed with decreasing atmospheric pressure and temperature in the midinfrared spectra of these samples.

  5. Evaluation of bottom ash and composted manure blends as a soil amendment material.

    PubMed

    Mukhtar, S; Kenimer, A L; Sadaka, S S; Mathis, J G

    2003-09-01

    The long-term goal of this project was to find alternative uses for bottom ash (BA) and composted dairy manure (CM), by-products of coal combustion and livestock production, respectively. The study discussed in this paper focused on potential water quality impacts associated with using blended BA and CM as a soil amendment. The constituents of BA and CM include heavy metals and other chemicals that, while essential nutrients for plant growth, also pose a potential threat to water quality. Four blends (BA:CM, v/v) namely, B1 (100%:0%), B2 (70%:30%), B3 (50%:50%) and B4 (0%:100%), were subjected to flow-through water table management and two blends, B2 (70%:30%) and B3 (50%:50%), were subjected to constant head water table management using de-ionized water. Leachate and standing water from saturated and flooded blends of BA and CM were examined for total solids (TS), volatile solids (VS), COD, pH, total Kjeldahl nitrogen (TKN), NO(3)-N, total P, total K as well as selected metals over a 5 and 7 week period for flow-through and constant head watertables, respectively. The results showed that higher CM content resulted in higher TS, VS, TKN, P and K concentrations in the leachate and standing water. Concentrations of these constituents were higher in leachate than in the standing water. Even though, marked reductions of most chemicals in the leachate and standing water were realized within one to three weeks, initially high concentrations of chemicals in leachate and standing water from these particular blends made them unsuitable as soil amendment material. Based upon these results, it was concluded that additional column studies of BA and CM blends with reduced CM content (5%, 10% and 20%) should be performed to further assess the feasibility of BA and CM blends as an environmentally safe soil amendment material. PMID:12798111

  6. Dinosaur Reproduction and Parenting

    NASA Astrophysics Data System (ADS)

    Horner, John R.

    Non-avian dinosaur reproductive and parenting behaviors were mostly similar to those of extant archosaurs. Non-avian dinosaurs were probably sexually dimorphic and some may have engaged in hierarchical rituals. Non-avian coelurosaurs (e.g. Troodontidae, Oviraptorosauria) had two active oviducts, each of which produced single eggs on a daily or greater time scale. The eggs of non-coelurosaurian dinosaurs (e.g. Ornithischia, Sauropoda) were incubated in soils, whereas the eggs of non-avian coelurosaurs (e.g. Troodon, Oviraptor) were incubated with a combination of soil and direct parental contact. Parental attention to the young was variable, ranging from protection from predators to possible parental feeding of nest-bound hatchlings. Semi-altricial hadrosaur hatchlings exited their respective nests near the time of their first linear doubling. Some reproductive behaviors, once thought exclusive to Aves, arose first in non-avian dinosaurs. The success of the Dinosauria may be related to reproductive strategies.

  7. Plant material as bioaccumulator of arsenic in soils affected by mining activities

    NASA Astrophysics Data System (ADS)

    Martínez-López, Salvadora; Martínez-Sánchez, Maria Jose; García-Lorenzo, Maria Luz; Pérez-Sirvent, Carmen

    2010-05-01

    Heavy metal contamination is an important environmental problem, since the metals are harmful to humans, animals and tend to bioaccumulate in the food chain. The aim of this study was to determine the total concentration of As, As (III) and As(V) in soil samples, leaves and roots of plant material, growing in a mining area in Spain (Murcia). Ditichia viscosa was used as the plant of reference. The concentrations of bioavailable As in plant samples were calculated by different soil chemical extraction methods; deionized water, 0.5N NaHCO3 (Olsen extraction), oxidizable medium, 0.5 HCl, 0.05M (NH4)2SO4, 0.005M DTPA and Mehra-Jackson extraction. For this study, fourteen samples were collected in the surrounding area of Sierra Minera and Portman Bay (Murcia, SE Spain). Samples were air dried and sieved to < 2mm for general analytical determinations. To determine the As content, soil samples were first ground to a fine powder using an agate ball mill. Fresh vegetable samples were separated into root and aboveground biomass and then lyophilized. Arsenic levels were obtained by using atomic fluorescence spectrometry with an automated continuous flow hydride generation (HG-AFS) spectrometer. Samples showed pH average values close to neutrality. Most samples showed a very low organic matter percentage. Electrical conductivity and calcium carbonate content were considerably low in most samples. The mineralogical analysis showed that the main minerals were quartz, muscovite, kaolinite and illite, while the minority minerals were alteration products derived of mining activities (iron oxides and hydroxides, siderite, jarosite and gypsum), calcite and feldspars. Although the plants do not absorb arsenic in the same proportion, the results suggest that a good relationship exists between the total content of As in soil and the total content in plant. The results showed that the arsenic content in roots was positively correlated with the oxidizable-organic matter and sulfides fraction (oxidaizable medium extraction procedure). Arsenic concentration in leaves was positively correlated with the arsenic extracted by HCl, with the oxidizable-organic matter and sulfides fraction and with the arsenic extracted by Mehra-Jackson extraction. According to our results, As is accumulated in the leaves of the plants and is linked with iron oxides of these soils affected by mining activities.

  8. Curriculum Guide for Parent Education Programs (Including Special Sections for Rural Parents, Single Parents, Working Parents, and High Risk Parents). Columbia Basin College Parent Education Program.

    ERIC Educational Resources Information Center

    Hare, Jo Ann; And Others

    This curriculum for parent education through cooperative preschools has a sequential approach, with topics developed for parents with different age children enrolled in the various laboratory settings. Introductory materials include the goals and objectives for community college parent cooperative programs, methods of presentation, and a…

  9. Modeling soil magnetic susceptibility and frequency-dependent susceptibility to aid landmine clearance.

    NASA Astrophysics Data System (ADS)

    Hannam, Jacqueline A.; Dearing, John A.

    2006-05-01

    Information on the electromagnetic properties of soils and their effects on metal detectors is increasingly necessary for effective demining due to limited detector efficacy in highly magnetic soils and the difficulty of detecting minimummetal mines. Magnetic measurements of soils, such as magnetic susceptibility and frequency dependent susceptibility can aid the detection of problem soils, but are not part of standard soil analyses. Consequently, little information about soil magnetism exists within the soil, environmental science and environmental geophysics communities. Lack of empirical data may be compensated through the estimation of soil magnetic characteristics by predictive modeling approaches. Initial modeling of soil types in Bosnia and Herzegovina (BiH) was attempted by expert and analogue approaches, using only coarse scale soil type information, which resulted in the production of national soil maps for low field and frequency-dependent susceptibility. Validation of the maps was achieved by comparison of empirical magnetic data from soil samples in the National Bosnian soil archive in Sarajevo. Discrepancies between the model and empirical data are explained in part by the differences in soil parent material within each soil type, which controls the amount of Fe released into the soil system available for in situ conversion to magnetic Fe oxides. The integration of soil information (type and parent material), expert knowledge and empirical data refines the predictive modeling of soil magnetic characteristics in temperate-Mediterranean environments such as BiH. Further spatial separation of soil types in the landscape can be achieved by digital terrain modeling. Preliminary fine-scale, landscape-soil modeling indicates improved spatial resolution of soil types compared with the original coarsely-mapped soil units, and the potential to synthesize local scale soil magnetic maps.

  10. Tillage and crop rotation effects on soil quality in two Iowa fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil quality is affected by inherent (parent material, climate, and topography) and anthropogenic (tillage and crop rotation) factors. We evaluated effects of five tillage treatments on 23 potential soil quality indicators after 31 years in a corn (Zea mays L.)/soybean [Glycine max (L.) Merr.] rotat...

  11. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter

    E-print Network

    Bruns, Tom

    input, the proportion of various plant parts and their distribution (below-ground/above-ground), as wellReview The macromolecular organic composition of plant and microbial residues as inputs to soil 29 July 2001 Abstract Plant litter and the microbial biomass are the major parent materials for soil

  12. Oxygen Isotopes Unravel the Role of Microorganisms in Phosphate Cycling in Soils

    E-print Network

    Gilli, Adrian

    Oxygen Isotopes Unravel the Role of Microorganisms in Phosphate Cycling in Soils Federica Tamburini analyzed the isotopic composition of oxygen in phosphate (18 O-Pi) from the parent material, soil for the temperature- dependent equilibrium between phosphate and water. In addition, the isotopic signature

  13. Quantitative Relationships Between Net Volume Change and Fabric Properties During Soil Evolution

    NASA Technical Reports Server (NTRS)

    Chadwick, O. A.; Nettleton, W. D.

    1993-01-01

    The state of soil evolution can be charted by net long-term volume and elemental mass changes for individual horizons compared with parent material. Volume collapse or dilation depends on relative elemental mass fluxes associated with losses form or additions to soil horizons.

  14. Soil magnetic susceptibility reflects soil moisture regimes and the adaptability of tree species to these regimes

    USGS Publications Warehouse

    Wang, J.-S.; Grimley, D.A.; Xu, C.; Dawson, J.O.

    2008-01-01

    Flooded, saturated or poorly drained soils are frequently anaerobic, leading to dissolution of the strongly magnetic minerals, magnetite and maghemite, and a corresponding decrease in soil magnetic susceptibility (MS). In this study of five temperate deciduous forests in east-central Illinois, USA, mean surface soil MS was significantly higher adjacent to upland tree species (31 ?? 10-5 SI) than adjacent to floodplain or lowland tree species (17 ?? 10-5 SI), when comparing regional soils with similar parent material of loessal silt. Although the sites differ in average soil MS for each tree species, the relative order of soil MS means for associated tree species at different locations is similar. Lowland tree species, Celtis occidentalis L., Ulmus americana L., Acer saccharinum L., Carya laciniosa (Michx. f.) Loud., and Fraxinus pennsylvanica Marsh. were associated with the lowest measured soil MS mean values overall and at each site. Tree species' flood tolerance rankings increased significantly, as soil MS values declined, the published rankings having significant correlations with soil MS values for the same species groups. The three published classifications of tree species' flood tolerance were significantly correlated with associated soil MS values at all sites, but most strongly at Allerton Park, the site with the widest range of soil drainage classes and MS values. Using soil MS measurements in forests with soil parent material containing similar initial levels of strongly magnetic minerals can provide a simple, rapid and quantitative method to classify soils according to hydric regimes, including dry conditions, and associated plant composition. Soil MS values thus have the capacity to quantify the continuum of hydric tolerances of tree species and guide tree species selection for reforestation. ?? 2007 Elsevier B.V. All rights reserved.

  15. Effect of Soil Solid-Phase Material Migration on Soil Properties within a Small Watershed Detected Using the Magnetic Tracer Method

    NASA Astrophysics Data System (ADS)

    Koshovskii, Timur; Gennadiev, Alexander; Zhidkin, Andrei

    2014-05-01

    We have performed detailed studies of the lateral migration of the solid soil material and the soil cover within a small catchment area (Russia, Tula region, Lokna river basin). The main goal of this work is to characterize the migration and accumulation features of the soil solid-phase material within a small watershed and to analyze the effect of the lateral mass transfer on the crucial soil fertility-related properties in the catchment basin under study. The total area of the catchment and the ravine network elements is 96 ha. The catchment basin is drop-shaped; it slightly curves and is latitudinally oriented. The catchment basin's slopes are of southern, eastern, northern, and intermediate exposures with average inclination of 1,5-5 degrees. The magnetic tracer method was used to assess the volumes and rates of the lateral migration of the solid-phase soil material on the selected territory. This method is based on the investigation of the spherical magnetic particles (SMPs), which fall onto the soil cover from the atmosphere, where they arrive at the burning of coals and some other fuels, mostly in steam locomotives. The period of the most intensive emission of SMPs into the soil in the territory of Russia corresponds to the last 100-150 years [1]. The reserve of SMPs in the 0- to 25-cm layer is estimated to be 3.8 g/m2on the least eroded sub-horizontal surface. The zones with the concentration of SMPs lower than their average content on the least eroded surface were characterized as dispersion zones. The zones of the basin with significant exceeding the value of 3.8 g/m2 were marked as accumulation zones of the soil solid-phase material. Dispersion zones are found in the middle part of the ridge in the north-eastern area, in the middle part of a longslope in the south-western area of the catchment basin, and other [2]. Accumulation zones are observed in a cup-shaped depression on the plowed slope adjacent to the ravine's head, on steep unplowed slopes of the ravine adjacent to its bottom, on the ravine's bottom, and other [2]. The genesis of these zones is result of the summary effect of the exposure, the inclination, and the slope's length, the spatial interference of the zones, the variability of the carrying capacity of the water flow, etc. The total area of the revealed dispersion zones makes up 35% of the catchment basin; the accumulation zones occupy 26% of the catchment area. The transit-buffer area occupies 39% of the catchment basin. The area proportions of the different functional zones characterize the specific migration structure of the small watershed. [1] Olson K., Gennadiyev A., Zhidkin A., Markelov M., Golosov V., and Lang J. Use of magnetic tracer and radio-cesium methods to determine past cropland soil erosion amounts and rates. Catena 104 (2013), 103-110. [2] Gennadiev A., Koshovskii T., Zhidkin A., and Kovach R. Lateral migration of soil solid-phase material within a landscape-geochemical arena detected using the magnetic tracer method. Eurasian Soil Science 46, 10 (2013), 983-993.

  16. Soil Science Society of America Journal Supplemental Material is available online.

    E-print Network

    Paytan, Adina

    Zohar* Dep. of Environmental, Water and Agricultural Engineering Faculty of Civil and Environ. Eng and distribution in the soil. Solution 31P nuclear magnetic resonance (NMR) spectroscopy was employed to identify P forms in RW solutions, in whole soil extracts and in fraction- ated soil P pools in agricultural soils

  17. Continental-scale patterns in soil geochemistry and mineralogy: results from two transects across the United States and Canada

    USGS Publications Warehouse

    Woodruff, L.G.; Cannon, W.F.; Eberl, D.D.; Smith, D.B.; Kilburn, J.E.; Horton, J.D.; Garrett, R.G.; Klassen, R.A.

    2009-01-01

    In 2004, the US Geological Survey (USGS) and the Geological Survey of Canada (GSC) initiated a pilot study that involved collection of more than 1500 soil samples from 221 sites along two continental transects across Canada and the United States. The pilot study was designed to test and refine protocols for a soil geochemical survey of North America. The two transects crossed a wide array of soil parent materials, soil ages, climatic conditions, landforms, land covers and land uses. Sample sites were selected randomly at approximately 40-km intervals from a population defined as all soils of the continent. At each site, soils representing 0 to 5 cm depth, and the O, A, and C horizons, if present, were collected and analyzed for their near-total content of over 40 major and trace elements. Soils from 0–5 cm depth were also collected for analysis of organic compounds. Results from the transects confirm that soil samples collected at a 40-km spacing reveal coherent, continental- to subcontinental-scale geochemical and mineralogical patterns that can be correlated to aspects of underlying soil parent material, soil age and climate influence. The geochemical data also demonstrate that at the continental-scale the dominance of any of these major factors that control soil geochemistry can change across the landscape. Along both transects, soil mineralogy and geochemistry change abruptly with changes in soil parent materials. However, the chemical influence of a soil’s parent material can be obscured by changing climatic conditions. For the transects, increasing precipitation from west to east and increasing temperature from north to south affect both soil mineralogy and geochemistry because of climate effects on soil weathering and leaching, and plant productivity. Regional anomalous metal concentrations can be linked to natural variations in soil parent materials, such as high Ni and Cr in soils developed on ultramafic rocks in California or high P in soils formed on weathered Ordovician limestones in central Kentucky. On local scales, anomalous metal concentrations recognized in soil profiles, such as high P in soils from animal confinement sites, are consistent with local anthropogenic disturbances. At a larger scale, the distribution of Hg across the west to east transect demonstrates that it can be difficult to distinguish between natural or anthropogenic contributions and that many factors can contribute to an element’s spatial distribution. Only three samples in a subset of seventy-three 0–5 cm depth soil samples from the north to south transect had organochlorine pesticides values above the method detection limit, apparently related to historic usage of the pesticides DDT and dieldrin.

  18. Reclamation with Recovery of Radionuclides and Toxic Metals from Contaminated Materials, Soils, and Wastes

    NASA Technical Reports Server (NTRS)

    Francis, A. J.; Dodge, C. J.

    1993-01-01

    A process has been developed at Brookhaven National Laboratory (BNL) for the removal of metals and radionuclides from contaminated materials, soils, and waste sites. In this process, citric acid, a naturally occurring organic complexing agent, is used to extract metals such as Ba, Cd, Cr, Ni, Zn, and radionuclides Co, Sr, Th, and U from solid wastes by formation of water soluble, metal-citrate complexes. Citric acid forms different types of complexes with the transition metals and actinides, and may involve formation of a bidentate, tridentate, binuclear, or polynuclear complex species. The extract containing radionuclide/metal complex is then subjected to microbiological degradation followed by photochemical degradation under aerobic conditions. Several metal citrate complexes are biodegraded, and the metals are recovered in a concentrated form with the bacterial biomass. Uranium forms binuclear complex with citric acid and is not biodegraded. The supernatant containing uranium citrate complex is separated and upon exposure to light, undergoes rapid degradation resulting in the formation of an insoluble, stable polymeric form of uranium. Uranium is recovered as a precipitate (polyuranate) in a concentrated form for recycling or for appropriate disposal. This treatment process, unlike others which use caustic reagents, does not create additional hazardous wastes for disposal and causes little damage to soil which can then be returned to normal use.

  19. A framework for assessing ecological risks of petroleum-derived materials in soil

    SciTech Connect

    Suter, G.W. II

    1997-05-01

    Ecological risk assessment estimates the nature and likelihood of effects of human actions on nonhuman organisms, populations, and ecosystems. It is intended to be clearer and more rigorous in its approach to estimation of effects and uncertainties than previously employed methods of ecological assessment. Ecological risk assessment is characterized by a standard paradigm that includes problem formulation, analysis of exposure and effects, risk characterization, and communication with a risk manager. This report provides a framework that applies the paradigm to the specific problem of assessing the ecological risks of petroleum in soil. This type of approach requires that assessments be performed in phases: (1) a scoping assessment to determine whether there is a potential route of exposure for potentially significant ecological receptors; (2) a screening assessment to determine whether exposures could potentially reach toxic levels; and (3) a definitive assessment to estimate the nature, magnitude, and extent of risks. The principal technical issue addressed is the chemically complex nature of petroleum--a complexity that may be dealt with by assessing risks on the basis of properties of the whole material, properties of individual chemicals that are representative of chemical classes, distributions of properties of the constituents of chemical classes, properties of chemicals detected in the soil, and properties of indicator chemicals. The advantages and feasibility of these alternatives are discussed. The report concludes with research recommendations for improving each stage in the assessment process.

  20. Removal and recovery of radionuclides and toxic metals from wastes, soils and materials

    SciTech Connect

    Francis, A.J.

    1993-07-01

    A process has been developed at Brookhaven National Laboratory (BNL) for the removal of metals and radionuclides from contaminated materials, soils, and waste sites (Figure 1). In this process, citric acid, a naturally occurring organic complexing agent, is used to extract metals such as Ba, Cd, Cr, Ni, Zn, and radionuclides Co, Sr, Th, and U from solid wastes by formation of water soluble, metal-citrate complexes. Citric acid forms different types of complexes with the transition metals and actinides, and may involve formation of a bidentate, tridentate, binuclear, or polynuclear complex species. The extract containing radionuclide/metal complex is then subjected to microbiological degradation followed by photochemical degradation under aerobic conditions. Several metal citrate complexes are biodegraded and the metals are recovered in a concentrated form with the bacterial biomass. Uranium forms binuclear complex with citric acid and is not biodegraded. The supernatant containing uranium citrate complex is separated and upon exposure to light, undergoes rapid degradation resulting in the formation of an insoluble, stable polymeric form of uranium. Uranium is recovered as a precipitate (uranium trioxide) in a concentrated form for recycling or for appropriate disposal. This treatment process, unlike others which use caustic reagents, does not create additional hazardous wastes for disposal and causes little damage to soil which can then be returned to normal use.

  1. This research examines several critical aspects of the so-called "film induced cleavage" model of stress corrosion cracking using silver-gold alloys as the parent-phase material. The model

    E-print Network

    of stress corrosion cracking using silver-gold alloys as the parent-phase material. The model hypothesizes that the corrosion generates a brittle nanoporous film, which subsequently fractures forming a high-speed crack that is injected into the uncorroded parent-phase alloy. This high speed crack owing to its kinetic energy can

  2. MICHIGAN SOIL VAPOR EXTRACTION REMEDIATION (MISER) MODEL: A COMPUTER PROGRAM TO MODEL SOIL VAPORT EXTRACTION AND BIOVENTING OF ORGANIC MATERIALS IN UNSATURATED GEOLOGICAL MATERIAL

    EPA Science Inventory

    This report describes the formulation, numerical development, and use of a multiphase, multicomponent, biodegradation model designed to simulate physical, chemical, and biological interactions occurring primarily in field scale soil vapor extraction (SVE) and bioventing (B...

  3. NOLISM: a pc program for the evaluation of parameters describing the non-linear dynamic behavior of soil materials

    NASA Astrophysics Data System (ADS)

    Athanasopoulos, G. A.; Panagiotakos, T. B.; Maravegias, S. A.

    1998-12-01

    The program NOLISM utilizes well established equations that describe the behavior of soil materials under dynamic loading. The program, which is written in Visual Basic and operates in the Microsoft Windows environment, greatly facilitates the evaluation of parameters necessary for the description of cyclic soil behavior by either the equivalent-linear or the non-linear inelastic models. The program input includes the values of readily available soil parameters, whose values can be selected following the suggestions included in the paper, or the direct results of dynamic tests. The output of NOLISM includes screen graphics and printouts that facilitate the preparation of input for other commercially available programs of ground seismic response and can be directly incorporated into technical reports. The graphics capabilities of NOLISM make it a valuable educational tool for teaching important aspects of soil behavior under cyclic loading.

  4. An interdisciplinary approach to decipher different phases of soil formation using root abundances and geochemical methods

    NASA Astrophysics Data System (ADS)

    Wiesenberg, Guido; Gocke, Martina

    2015-04-01

    Pedogenic processes are commonly thought to be restricted mainly to the uppermost few dm of soils. However, often processes like water infiltration and - more obviously - rooting lead to much deeper penetration of soil, soil parent material and, if present, paleosols. The extent to which root penetration and subsequent organic matter incorporation, release of root exudates and microbial activity influence the general chemical and physical properties of deeper soil horizons remains largely unknown. We determined the lateral extent of root-derived overprint of the soil parent material as well as the overprint of the chemical properties in paleosols by combining root quantities obtained in the field with a large variety of inorganic and organic chemical as well as microbial properties in bulk soils and rhizosphere samples. Soils, soil parent material and paleosols were sampled along a transect from The Netherlands via Germany and Hungary towards Serbia, where soil and underlying loess, sand, and paleosol profiles were excavated in pits of 2 m to 13 m depth. Root counting on horizontal levels and profile walls during field campaigns, assisted by three-dimensional X-ray microtomographic scanning of undisturbed samples, enabled the quantitative assessment of recent and ancient root systems. Ages were determined by 14C dating for the latter, and by OSL dating for sediments, respectively. The bulk elemental composition of soils, sediments and paleosols and molecular structure of organic matter therein helped to quantitatively assess the root-related overprint in different depth intervals. The results point to the significance of deep roots as a soil forming factor extending into soil parent material, as well as the overprint of geochemical proxies in paleosols due to intense root penetration at various phases after burial. The shown examples highlight potential pitfalls in assessing rooted soil and paleosol profiles and their ages, and provide potential solutions for proper data interpretation.

  5. Diffusion of iodine and Technetium-99 through waste encasement concrete and unsaturated soil fill material

    SciTech Connect

    Mattigod, Shas V.; Whyatt, Greg A.; Serne, R JEFFREY.; Wood, Marcus I.; John M. Hanchar, Simcha Stores-Gascoyne, Lauren Browning

    2004-10-30

    An assessment of long-term performance of low level waste-enclosing cement grouts requires diffusivity data for radionuclide species such as, 129I and 99Tc. The diffusivity of radionuclides in soil and concrete media was collected by conducting soil-soil and concrete-soil half-cell experiments. The soil diffusivity coefficients for iodide were 7.03 x 10-8 cm2/s and 2.42 x 10-7 cm2/s for soils at 4% and 7% moisture contents, respectively. Iodide diffusivity in soil is a function of moisture content and is about an order of magnitude slower at lower moisture content. The soil diffusivity coefficients for 99Tc were 5.89 {+-} 0.80 x 10-8 cm2/s (4% moisture content) and 2.04 {+-} 0.57 x 10-7 cm2/s (7% moisture content), respectively. The soil diffusivity of iodide and 99Tc were similar in magnitude at both water contents, indicating that these ions have similar diffusion mechanisms in unsaturated coarse-textured Hanford soil. The diffusivity of iodide in concrete ranged from 2.07 x 10-14 cm2/s (4% soil moisture content) to 1.31 x 10-12 cm2/s (7% soil moisture content), indicating that under unsaturated soil moisture conditions, iodide diffusivity is highly sensitive to changing soil moisture conditions. Depending on the soil moisture content, the diffusivity of 99Tc in concrete ranged from 4.54 x 10-13 cm2/s to 8.02 x 10-12 cm2/s. At 4% soil moisture content, iodide diffused about 20 times more slowly than 99Tc, and at 7% soil moisture content, iodide in concrete diffused about 6 times slower than 99Tc.

  6. Heavy Metals and Benzo[a]pyrene in Soils from Construction and Demolition Rubble

    NASA Astrophysics Data System (ADS)

    Abel, Stefan; Nehls, Thomas; Wessolek, Gerd

    2014-05-01

    Rubble is an important component in urban soils worldwide, especially in Europe. In Berlin, Germany, rubble composed soils cover about 17% of the total city area and 60% of the inner city. This study assesses the contamination status of rubble soil, particularly for heavy metals and benzo[a]pyrene (B[a]P). The results of 164 soil surveys from Berlin, including more than 2000 analyzed soil samples of topsoils, rubble subsoils, and parent material have been analyzed for typical contamination patterns. The concentrations of all contaminants range over several orders of magnitude and follow negatively skewed log-normal distribution functions. For rubble containing subsoils a proportion of 34, 71, 67, 68, 74, and 61% of the analyzed samples exceed precautionary values of the German Soil Conservation Act, regarding Cd, Pb, Cu, Zn, Hg and B[a]P respectively. Similar results were found for topsoils. A minor part of the soils is contaminated with Cd, while Pb and Hg are the most typical contaminants of rubble material. In contrast to topsoils and rubble containing subsoils, the majority of the parent subsoil material is not contaminated. Only low to moderate positive correlations were found between the contaminants. Compared to parent soil material, rubble containing soils show clearly elevated concentrations of heavy metals and B[a]P. As the most characteristic contaminants for rubble are Pb and Hg, these heavy metals should first be analyzed as proxy contaminants.

  7. Spatial disaggregation of complex soil map units at regional scale based on soil-landscape relationships

    NASA Astrophysics Data System (ADS)

    Vincent, Sébastien; Lemercier, Blandine; Berthier, Lionel; Walter, Christian

    2015-04-01

    Accurate soil information over large extent is essential to manage agronomical and environmental issues. Where it exists, information on soil is often sparse or available at coarser resolution than required. Typically, the spatial distribution of soil at regional scale is represented as a set of polygons defining soil map units (SMU), each one describing several soil types not spatially delineated, and a semantic database describing these objects. Delineation of soil types within SMU, ie spatial disaggregation of SMU allows improved soil information's accuracy using legacy data. The aim of this study was to predict soil types by spatial disaggregation of SMU through a decision tree approach, considering expert knowledge on soil-landscape relationships embedded in soil databases. The DSMART (Disaggregation and Harmonization of Soil Map Units Through resampled Classification Trees) algorithm developed by Odgers et al. (2014) was used. It requires soil information, environmental covariates, and calibration samples, to build then extrapolate decision trees. To assign a soil type to a particular spatial position, a weighed random allocation approach is applied: each soil type in the SMU is weighted according to its assumed proportion of occurrence in the SMU. Thus soil-landscape relationships are not considered in the current version of DSMART. Expert rules on soil distribution considering the relief, parent material and wetlands location were proposed to drive the procedure of allocation of soil type to sampled positions, in order to integrate the soil-landscape relationships. Semantic information about spatial organization of soil types within SMU and exhaustive landscape descriptors were used. In the eastern part of Brittany (NW France), 171 soil types were described; their relative area in the SMU were estimated, geomorphological and geological contexts were recorded. The model predicted 144 soil types. An external validation was performed by comparing predicted with effectively observed soil types derived from available soil maps at scale of 1:25.000 or 1:50.000. Overall accuracies were 63.1% and 36.2%, respectively considering or not the adjacent pixels. The introduction of expert rules based on soil-landscape relationships to allocate soil types to calibration samples enhanced dramatically the results in comparison with a simple weighted random allocation procedure. It also enabled the production of a comprehensive soil map, retrieving expected spatial organization of soils. Estimation of soil properties for various depths is planned using disaggregated soil types, according to the GlobalSoilmap.net specifications. Odgers, N.P., Sun, W., McBratney, A.B., Minasny, B., Clifford, D., 2014. Disaggregating and harmonising soil map units through resampled classification trees. Geoderma 214, 91-100.

  8. PRODUCTION OF METHYL SULFIDE AND DIMETHYL DISULFIDE FROM SOIL-INCORPORATED PLANT MATERIALS AND IMPLICATIONS FOR CONTROLLING SOILBORNE PATHOGENS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil-incorporated plant materials have been associated with reduction in soilborne pathogens and diseases. Most credits have been given to secondary products of glucosinolate hydrolysis. Little is known about the production of volatile sulfur compounds and even less on their efficacy against soilb...

  9. Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil and Building Structures

    SciTech Connect

    Yu, Charley; Kamboj, Sunita; Wang, Cheng; Cheng, Jing-Jy

    2015-09-01

    This handbook is an update of the 1993 version of the Data Collection Handbook and the Radionuclide Transfer Factors Report to support modeling the impact of radioactive material in soil. Many new parameters have been added to the RESRAD Family of Codes, and new measurement methodologies are available. A detailed review of available parameter databases was conducted in preparation of this new handbook. This handbook is a companion document to the user manuals when using the RESRAD (onsite) and RESRAD-OFFSITE code. It can also be used for RESRAD-BUILD code because some of the building-related parameters are included in this handbook. The RESRAD (onsite) has been developed for implementing U.S. Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), crops and livestock, human intake, source characteristic, and building characteristic parameters are used in the RESRAD (onsite) code. The RESRAD-OFFSITE code is an extension of the RESRAD (onsite) code and can also model the transport of radionuclides to locations outside the footprint of the primary contamination. This handbook discusses parameter definitions, typical ranges, variations, and measurement methodologies. It also provides references for sources of additional information. Although this handbook was developed primarily to support the application of RESRAD Family of Codes, the discussions and values are valid for use of other pathway analysis models and codes.

  10. Fundamental considerations of water repellancy in soil, and related effects on other natural and man-made materials

    NASA Astrophysics Data System (ADS)

    Matthews, G. Peter

    2010-05-01

    This presentation will concern the understanding of soil water repellancy and wettability at a fundamental level, and the difficulties of relating the very small, micron scale at which the repellancy and wettability characteristics are produced to the much larger, field scale at which they are normally observed. The presentation will not be a review of past work, but rather will concentrate on recent publications, publications in press, and speculative considerations which may lead to future work in this area. There are three fundamental components of water repellancy - the nature of the soil surfaces themselves, the effect of organic matter and microbiologically produced substances, and the topology of the resultant surfaces. The effects of hydrophobic surfaces will be illustrated by a consideration of the wettability of substances such as commercially produced talc grades. The faces of these platey mineral particles are hydrophobic, whereas their edges are hydrophilic, and the combination not only causes water repellency in itself, but also causes unusual adsorption effects from aqueous solution. The effect of organic matter on soil wettability has been widely studied, often by core-scale wettability experiments. It will be shown how a consideration of micro-wetting effects has led to a more robust data analysis method for such studies (Matthews, G. P. et al, European J.Soil Sci., 2008). Traditionally wetting fronts are assumed to advance in proportion to the square root of time (as predicted by the Washburn equation), but micro-modelling shows that, once inertial effects are taken into account, low-volume fingers of wetting fluid track through porous substances in advance of the observed Washburn wetting front (Bodurtha, P. et al, J.Colloid Interface Sci., 2005). The effects of micro-topology are also well known (Ridgway, C. J. et al, J.Colloid Interface Sci., 2001), but need to be integrated and upscaled, as described below. Soil water repellency is not only dependant on the soil mineral characteristics, surface topology and organic matter content, but is also influenced by microbiological activity. The production of hydrophobic microbial biomass and exudates alter the hydrological characteristics of soil (Chan, K. Y., Soil Sci.Soc.Am.J., 1992) and strengthen the bonds between soil particles. Amongst these are extracellular polymeric substances (EPS), which are produced as a result of microbial activity and increase during periods of substrate utilisation and microbial growth (Hallett, P. D. et al, European J.Soil Sci., 1999). They form part of a wide spectrum of soil organic species, many produced by the soil's bacterial and fungal biomass. EPS provides a living protective membrane between changing hydrological conditions and the micro-organisms. It comprises polysaccharides and smaller amounts of protein, lipids and humic substances, with masses ranging from 103 to 108 kDaltons (Allison, D. G. et al, Fems Microbiology Letters, 1998). The small amounts of EPS in soil have a disproportionately large effect on soil hydraulic properties, and the response of EPS to major perturbations, such as wetting and drying cycles, has recently been well characterised (Or, D. et al, Vadose Zone J, 2007). Therefore, as will be described, the use of EPS as an analogue to the wider range of organic species can lead to an understanding of climatic effects on soil wettability. The upscaling of the effects from micron to field scale requires a highly detailed modelling approach, using a dual -porous void structure model (a modification of the previous ‘Pore-Cor' model) which takes into account both the soil micro-matrix and the macroscopic percolation and wetting pathways (Laudone, G. M. et al, European J.Soil Sci., submitted). Super-hydrophobicity in natural materials (the ‘lotus' effect) and man-made materials (micro-structured arrays) will also be explained and illustrated, and the condition under which super-hydrophobicity can flip to super-wettability. Super-hydrophobicity gives an unusual insight into the less extreme examples

  11. Effectiveness of mineral soil to adsorb the natural occurring radioactive material (norm), uranium and thorium

    SciTech Connect

    Amir, Muhammad Nur Iman; Ismail, Nurul Izzatiafifi; Wood, Ab. Khalik Saat, Ahmad; Hamzah, Zaini

    2015-04-29

    A study has been performed on U-soil and Th-soil adsorption of three types of soil collected from Selangor State of Malaysia which are Saujana Putra, Bukit Changgang and Jenderam Hilir. In this study, natural radionuclide (U and Th) soil adsorption based on batch experiments with various initial concentrations of the radionuclide elements were carried out. Parameters that were set constant include pH at 5;amount of soil used was 5?g each, contact time was 24 hour and different initial concentration for each solution of U and Th which is 5?mg/L, 10?mg/L, 15?mg/L, 20?mg/L, 25?mg/L and 40?mg/L were used. The K{sub d} values for each type of soil were determined in this batch experiments which was based on US-EPA method, in order to estimate adsorption capacity of the soil.The K{sub d} values of Th found higher than Kd values of U for all of the soil samples, and the highest was found on the soil collected from Bukit Changgang. The soil clay content was one of factors to influence the adsorption of both U and Th from dilute initial solution. The U-soil and Th-soil adsorption process for all the soil samples studied are generally obeying unimolecular layer Langmuir isotherm model. From Langmuir isotherm, the maximum adsorption capacity for U was 0.393mg/g and for Th was 1.53?mg/g for the soil that was taken from Bukit Changgang. From the study, it suggested that the soil from Bukit Changgang applicable as potential enhanced barrier for site disposing waste containing U and Th.

  12. Effectiveness of mineral soil to adsorb the natural occurring radioactive material (norm), uranium and thorium

    NASA Astrophysics Data System (ADS)

    Amir, Muhammad Nur Iman; Ismail, Nurul Izzatiafifi; Wood, Ab. Khalik; Saat, Ahmad; Hamzah, Zaini

    2015-04-01

    A study has been performed on U-soil and Th-soil adsorption of three types of soil collected from Selangor State of Malaysia which are Saujana Putra, Bukit Changgang and Jenderam Hilir. In this study, natural radionuclide (U and Th) soil adsorption based on batch experiments with various initial concentrations of the radionuclide elements were carried out. Parameters that were set constant include pH at 5;amount of soil used was 5 g each, contact time was 24 hour and different initial concentration for each solution of U and Th which is 5 mg/L, 10 mg/L, 15 mg/L, 20 mg/L, 25 mg/L and 40 mg/L were used. The Kd values for each type of soil were determined in this batch experiments which was based on US-EPA method, in order to estimate adsorption capacity of the soil.The Kd values of Th found higher than Kd values of U for all of the soil samples, and the highest was found on the soil collected from Bukit Changgang. The soil clay content was one of factors to influence the adsorption of both U and Th from dilute initial solution. The U-soil and Th-soil adsorption process for all the soil samples studied are generally obeying unimolecular layer Langmuir isotherm model. From Langmuir isotherm, the maximum adsorption capacity for U was 0.393mg/g and for Th was 1.53 mg/g for the soil that was taken from Bukit Changgang. From the study, it suggested that the soil from Bukit Changgang applicable as potential enhanced barrier for site disposing waste containing U and Th.

  13. Genesis of marine terrace soils, Barbados, West Indies: evidence from mineralogy and geochemistry

    USGS Publications Warehouse

    Muhs, D.R.; Crittenden, R.C.; Rosholt, J.N.; Bush, C.A.; Stewart, K.C.

    1987-01-01

    Well-developed, clay-rich soils dominated by interstratified kaolinite-smectite are found on the uplifted coral reef terraces on the island of Barbados. The reef limestone is unlikely to have been the soil parent material however, because it is 98% CaCO 3 and geomorphic evidence argues against the 20 m of reef solution required to produce the soils by this process. The mineralogy of the sand, silt, and clay fractions of the soils, and trace element geochemistry, suggest that aeolian materials carried on the trade winds from Africa, volcanic ash from the island of St. Vincent, and quartz from Tertiary bedrock on the island itself are the parent materials for the soils. -Authors

  14. The Stress Corrosion Resistance and the Cryogenic Temperature Mechanical Behavior of 18-3 Mn (Nitronic 33) Stainless Steel Parent and Welded Material

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1976-01-01

    The ambient and cryogenic temperature mechanical properties and the ambient temperature stress corrosion results of 18-3 Mn (Nitronic 33)stainless steel, longitudinal and transverse, as received and as welded (TIG) material specimens manufactured from 0.063 inch thick sheet material, were described. The tensile test results indicate an increase in ultimate tensile and yield strengths with decreasing temperature. The elongation remained fairly constant to -200 F, but below that temperature the elongation decreased to less than 6.0% at liquid hydrogen temperature. The notched tensile strength (NTS) for the parent metal increased with decreasing temperature to liquid nitrogen temperature. Below -320 F the NTS decreased rapidly. The notched/unnotched (N/U) tensile ratio of the parent material specimens remained above 0.9 from ambient to -200 F, and decreased to approximately 0.65 and 0.62, respectively, for the longitudinal and transverse directions at liquid hydrogen temperature. After 180 days of testing, only those specimens exposed to the salt spray indicated pitting and some degradation of mechanical properties.

  15. Water in the critical zone: soil, water and life from profile to planet

    NASA Astrophysics Data System (ADS)

    Kirkby, Mike

    2015-04-01

    Water is essential to the critical zone between bedrock and the atmosphere, and without water the soil is dead. Water provides the basis for the abundant life within the soil and, interacting with micro-organisms, drives the key processes in the critical zone. This review looks at the balances that control the flow of water through the soil, and how water movement is one of the major controls on the fluxes and transformations that control the formation, evolution and loss of material that controls the 'life' and 'health' of the soil. At regional scales, climate, acting largely through the soil hydrology, plays a major part in determining the type of soils developed - from hyper arid soils dominated by aeolian inputs, through arid and semi-arid soils with largely vertical water exchanges with the atmosphere, to temperate soils with substantial lateral drainage, and humid soils dominated by organic peats. Soil water balance controls the partition of precipitation between evaporative loss, lateral subsurface flow and groundwater recharge, and, in turn, has a major influence on the potential for plant growth and on the lateral connectivity between soils on a hillslope. Sediment and solute balances distinguish soils of accumulation from soils that tend towards a stable chemical depletion ratio. Reflecting the availability of water and the soil material, carbon balance plays a major role in soil horizonation and distinguishes soils dominated by mineral or organic components. At finer catena and catchment scales, lateral connectivity, or its absence, determines how soils evolve through the transfer of water and sediment downslope, creating more or less integrated landscapes in a balance between geomorphological and pedological processes. Within single soil profiles, the movement of water controls the processes of weathering and soil horizonation by ion diffusion, advective leaching and bioturbation, creating horizonation that, in turn, modifies the hydrological responses of both soil and landscape. For example, the soil hydrological regime helps to contrast soils that accumulate more and less soluble constituents of the parent material.

  16. Sampling Soil for Characterization and Site Description

    NASA Technical Reports Server (NTRS)

    Levine, Elissa

    1999-01-01

    The sampling scheme for soil characterization within the GLOBE program is uniquely different from the sampling methods of the other protocols. The strategy is based on an understanding of the 5 soil forming factors (parent material, climate, biota, topography, and time) at each study site, and how each of these interact to produce a soil profile with unique characteristics and unique input and control into the atmospheric, biological, and hydrological systems. Soil profile characteristics, as opposed to soil moisture and temperature, vegetative growth, and atmospheric and hydrologic conditions, change very slowly, depending on the parameter being measured, ranging from seasonally to many thousands of years. Thus, soil information, including profile description and lab analysis, is collected only one time for each profile at a site. These data serve two purposes: 1) to supplement existing spatial information about soil profile characteristics across the landscape at local, regional, and global scales, and 2) to provide specific information within a given area about the basic substrate to which elements within the other protocols are linked. Because of the intimate link between soil properties and these other environmental elements, the static soil properties at a given site are needed to accurately interpret and understand the continually changing dynamics of soil moisture and temperature, vegetation growth and phenology, atmospheric conditions, and chemistry and turbidity in surface waters. Both the spatial and specific soil information can be used for modeling purposes to assess and make predictions about global change.

  17. Comparison of American Society of Testing Materials and Soil Science Society of America Hydrometer Methods for Particle-Size Analysis

    SciTech Connect

    Keller, Jason M.; Gee, Glendon W.

    2006-05-31

    Particle-size analysis (PSA) is widely used in both soil science and geo-engineering. Soil classification schemes are built on PSA values while recent developments in pedotransfer functions rely on PSA to estimate soil hydraulic properties. Because PSA is method dependent, the standardization of experimental procedures is important for the comparison of reported results. A study was conducted to compare the American Society of Testing Materials (ASTM) hydrometer method (D422) for particle-size analysis with the hydrometer method published by the Soil Science Society of America (SSSA). Tests on soils ranging in texture from sand to a sandy clay loam were conducted at temperatures ranging from 20 C to 30 C. The main difference between methods is the temperature correction, with the ASTM method relying on an empirical correction and the SSSA method using a blank hydrometer reading. Identical texture estimates for all but one sample was observed between methods. Percent fines, silt, and clay demonstrated relatively consistent values between methods. D50 and D30 showed reasonable agreement between methods, with differences of less than 4 percent and 8 percent. For D10 values, the agreement was less satisfactory, with uncertainties of as much as 10 percent. The results suggest that ASTM and SSSA methods can be used interchangeably for textural analysis.

  18. Geo-pedological control of soil organic carbon and nitrogen stocks at the landscape scale

    NASA Astrophysics Data System (ADS)

    Barré, Pierre; Durand, Hermine; Chenu, Claire; Meunier, Patrick; Montagne, David; Castel, Géraldine; Billiou, Daniel; Cécillon, Lauric

    2015-04-01

    Geo-pedology, here defined as soil type (or Reference Soil Group) and parent material, can have a major impact on ecosystem (vegetation and soil) functioning. Geo-pedology can therefore deeply influence soil organic matter (SOM) stock. Nonetheless, the effect of geo-pedology on soil organic C (SOC) and N stocks has seldom been investigated. Indeed, factors known to influence SOM stocks such as land use and climate frequently co-vary with geo-pedology, so that testing the influence on SOM stocks of the factor "geo-pedology" alone is challenging. In this work, we studied SOM stocks of forest and cropland soils in a small landscape (17 km²) of the Paris basin (AgroParisTech domain, Thiverval-Grignon, France). We collected soil samples (0-30 cm) in 50 forest and cropland plots, located in five geo-pedological contexts: Luvisols developed on loess deposit, Cambisols developed on hard limestone, Cambisols developed on shelly limestone, Cambisols developed on chalk and Cambisols developed on calcareous clay deposits. We then determined SOM stocks (organic C and total N) and SOM distribution across different particle size fractions (coarse sand, fine sand and silt-clay). As expected, SOC stocks were much higher in forests (~ 83 tC ha-1) than in cultivated soils (~ 49 tC ha-1). Interestingly, Cambisols had higher SOC stocks than Luvisols (69 vs 56 tC ha-1) and the difference between SOC stocks in forest and cultivated soils was much higher for Cambisols compared to Luvisols. Within Cambisols, parent material did not influence SOC stocks but the interaction between parent material and land use was significant, indicating that the effect of land use on SOC stocks was modulated by parent material. Similar trends were observed for soil N stocks. Conversely, soil type and parent material did not control SOM distribution in soil size fractions, while forest soils showed a higher distribution of SOC and N in the sand-size fraction than cropland soils. Overall, our study evidenced a geo-pedological control of SOM stocks and clearly indicates that the change in SOM stocks resulting from a land-use change is strongly modulated by soil type. A good knowledge of the Reference Soil Group distributions is therefore needed to reduce the uncertainty on SOC stock evolutions in a changing environment from the landscape to the global scale.

  19. Parenting Conflicts

    MedlinePLUS

    ... Listen Español Text Size Email Print Share Parenting Conflicts Article Body My spouse and I have different ... making responsibilities are divided within the family. Overt Conflict Too often, parents argue and openly challenge each ...

  20. Parent Involvement 

    E-print Network

    Howard, Jeff W.

    2005-05-10

    To be successful, a 4-H program must have parent involvement. Although 4-H leaders and Extension agents may interest young people in becoming members, they need the parents' goodwill and support to keep them interested, ...

  1. Effective Parenting

    MedlinePLUS

    ... Ribbon Commands Skip to main content Turn off Animations Turn on Animations Our Sponsors Log in | Register Menu Log in | ... good job as parents? There is a whole history to your parent-child relationship that began at ...

  2. Contributions of pyrogenic materials on the accumulation of soil organic matter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil amendment of charcoal co-product (HHVdb as high as coal) from thermochemical waste biomass-to-energy conversion (slow/fast pyrolysis and gasification) has received considerable interests for both contaminated and agricultural lands. Biochar amendment not only increases soil organic carbon cont...

  3. Parenting Matters

    ERIC Educational Resources Information Center

    Bornstein, Marc H.

    2005-01-01

    Parenting is a subject about which people typically hold strong opinions, but about which too little solid information or considered reflection exists. And clearly critical questions about parenting abound. Moreover, the family generally, and parenting specifically, are today in a greater state of flux, question, and re-definition than perhaps…

  4. Valuing Parents.

    ERIC Educational Resources Information Center

    Silverman, Linda Kreger, Ed.

    1993-01-01

    This theme issue on the role of parents in the education of their gifted children contains two feature articles. "'Pushy and Domineering': A Stigma Placed on Parents of Gifted Children," by Lynn C. Cole and Roxana M. DellaVecchia, examines how parents are perceived as "pushy and domineering" when they strongly advocate for appropriate education…

  5. Reflectance spectroscopy of ferric sulfate-bearing montmorillonites as Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Pieters, C. M.; Burns, R. G.; Edwards, J. O.; Mancinelli, R. L.; Froschl, H.

    1995-01-01

    Spectroscopic analyses have shown that smectites enhanced in the laboratory with additional ferric species exhibit important similarities to those of the soils on Mars. Ferrihydrite in these chemically treated smectites has features in the visible to near-infrared region that resemble the energies and band strengths of features in reflectance spectra observed for several bright regions on Mars. New samples have been prepared with sulfate as well, because S was found by Viking to be a major component in the surface material on Mars. A suite of ferrihydrite-bearing and ferric sulfate-bearing montmorillonites, prepared with variable Fe3+ and S concentrations and variable pH conditions, has been analyzed using reflectance spectroscopy in the visible and infrared regions, Mossbauer spectroscopy at room temperature and 4 K, differential thermal analysis, and X-ray diffraction. These analyses support the formation of ferrihydrite of variable crystallinity in the ferrihydrite-bearing montmorillonites and a combination of schwertmannite and ferrihydrite in the ferric sulfate-bearing montmorillonites. Small quantities of poorly crystalline or nanophase forms of other ferric materials may also be present in these samples. The chemical formation conditions of the ferrihydrite-bearing and ferric sulfate-bearing montmorillonites influence the character of the low temperature Mossbauer sextets and the visible reflectance spectra. An absorption minimum is observed at 0.88-0.89 micrometers in spectra of the ferric sulfate-bearing samples, and at 0.89-0.92 micrometers in spectra of the ferrihydrate-bearing montmorillonites. Mossbauer spectra of the ferric sulfate-bearing montmorillonites indicate variable concentrations of ferrihydrite and schwertmannite in the interlaminar spaces and along grain surfaces. Dehydration under reduced atmospheric pressure conditions induces a greater effect on the adsorbed and interlayer water in ferrihydrite-bearing montmorillonite than on the water in ferric sulfate-bearing montmorillonite. Reflectance spectra of ferric sulfate-bearing montmorillonite include a strong 3-micrometers band that is more resistant to dry atmospheric conditions than the 3-micrometers band in spectra of similarly prepared ferrihydrite-bearing montmorillonites.

  6. Protective barrier materials analysis: Fine soil site characterization: A research report for Westinghouse Hanford Company

    SciTech Connect

    Last, G.V.; Glennon, M.A.; Young, M.A.; Gee, G.W.

    1987-11-01

    We collected soil samples for the physical characterization of a potential fine-soil quarry site at the McGee Ranch, which is located approximately 1 km northwest of the Hanford Site's Yakima Barricade. Forty test borings were made using a hollow-stem auger. Field moisture content and grain-size distribution were determined. The samples were classified into one of 19 sediment classes based on their grain-size distributions. Maps and cross sections were constructed from both the field and laboratory data to delineate the distributions of the various sediment classes. Statistical evaluations were made to determine the variations within the fine-soil fraction of the various sediment classes. Volume estimates were then made of the amounts of soil meeting the preliminary grain-size criteria. The physical characterization of the fine soils sampled near the McGee Ranch site indicated that approximately 3.4 million cubic meters of soil met or exceeded the minimum grain-size criteria for the fine soils needed for the protective barriers program. 11 refs., 14 figs., 6 tabs.

  7. Soil Mineralogy and Substrate Quality Effects on Microbial Priming

    NASA Astrophysics Data System (ADS)

    Finley, B. K.; Rasmussen, C.; Dijkstra, P.; Schwartz, E.; Mau, R. L.; Liu, X. J. A.; Hungate, B. A.

    2014-12-01

    Soil carbon (C) cycling can slow or accelerate in response to new C inputs from fresh organic matter. This change in native C mineralization, known as the "microbial priming effect," is difficult to predict because the underlying mechanisms of priming are still poorly understood. We hypothesized that soil mineral assemblage, specifically short-range-order (SRO) minerals, influences microbial responses to different quality C substrate inputs. To test this, we added 350 ?g C g-1soil weekly of an artificial root exudates mixture primarily comprised of glucose, sucrose, lactate and fructose (a simple C source) or ground ponderosa pine litter (a complex C source) for six weeks to three soil types from similar ecosystems derived from different parent material. The soils, from andesite, basalt, and granite parent materials, had decreasing abundance in SRO minerals, respectively. We found that the simple C substrate induced 63 ±16.3% greater positive priming than the complex C across all soil types. The quantity of soil SRO materials was negatively correlated with soil respiration, but positively correlated with priming. The lowest SRO soil amended with litter primed the least (14 ± 11 ?gCO2-C g-1), while the largest priming effect occurring in the highest SRO soil amended with simple substrate (246 ± 18 ?gCO2-C g-1). Our results indicate that higher SRO mineral content could accelerate microorganisms' capacity to mineralize native soil organic carbon and respond more strongly to labile C inputs. However, while all treatments exhibited positive priming, the amount of C added over the six-week incubation was greater than total CO2 respired. This suggests that despite a relative stimulation of native C mineralization, these soils act as C sinks rather than sources in response to fresh organic matter inputs.

  8. Ice-lens formation and geometrical supercooling in soils and other colloidal materials

    E-print Network

    Robert W. Style; Stephen S. L. Peppin; Alan C. F. Cocks; John S. Wettlaufer

    2011-09-09

    We present a new, physically-intuitive model of ice-lens formation and growth during the freezing of soils and other dense, particulate suspensions. Motivated by experimental evidence, we consider the growth of an ice-filled crack in a freezing soil. At low temperatures, ice in the crack exerts large pressures on the crack walls that will eventually cause the crack to split open. We show that the crack will then propagate across the soil to form a new lens. The process is controlled by two factors: the cohesion of the soil, and the geometrical supercooling of the water in the soil; a new concept introduced to measure the energy available to form a new ice lens. When the supercooling exceeds a critical amount (proportional to the cohesive strength of the soil) a new ice lens forms. This condition for ice-lens formation and growth does not appeal to any ad hoc, empirical assumptions, and explains how periodic ice lenses can form with or without the presence of a frozen fringe. The proposed mechanism is in good agreement with experiments, in particular explaining ice-lens pattern formation, and surges in heave rate associated with the growth of new lenses. Importantly for systems with no frozen fringe, ice-lens formation and frost heave can be predicted given only the unfrozen properties of the soil. We use our theory to estimate ice-lens growth temperatures obtaining quantitative agreement with the limited experimental data that is currently available. Finally we suggest experiments that might be performed in order to verify this theory in more detail. The theory is generalizable to complex natural-soil scenarios, and should therefore be useful in the prediction of macroscopic frost heave rates.

  9. Sulfate Induced Heave: Addressing Ettringite Behavior in Lime Treated Soils and in Cementitious Materials 

    E-print Network

    Kochyil Sasidharan Nair, Syam Kumar

    2012-02-14

    ..............................................107 6.2. Future Work .................................................................................................111 6.2.1. Controlling Sulfate Induced Swell in Lime Treated Soils................111 6.2.2. Future Work on Use... the potential for sulfate induced structural distress prior to application of calcium based stabilizers. Even though sulfate-induced heave in stabilized soils was first reported by Sherwood in 1962, the problem received national attention only in the mid...

  10. Map Scale in the Context of Progress in Soil Geography

    NASA Astrophysics Data System (ADS)

    Miller, Bradley; Schaetzl, Randall

    2014-05-01

    In this presentation, we review historical soil maps from a geographical perspective, in contrast to the more traditional temporal perspective. Our geographical perspective is operationalized by comparing soil maps based on their scale and classification system. To analyze the connection between scale in historical soil maps and their associated classification systems, we place soil maps into three categories of cartographic scale. We then examine how categories of cartographic scale correspond to the selection of environmental soil predictors used to initially create the maps, as reflected by the maps' legend. Previous analyses of soil mapping from the temporal perspective have concluded that soil classification systems have co-evolved with gains in soil knowledge. We conclude that paradigm shifts in soil mapping and classification can be better explained by their correlation to historical improvements in scientific understanding, differences in purpose for mapping, and advancement in geographic technologies. We observe that, throughout history, small cartographic scale maps have tended to emphasize climate-vegetation zonation. Medium cartographic scale maps have put more emphasis on parent material as a variable to explain soil distributions. And finally, soil maps at large cartographic scales have relied more on topography as a predictive factor. Importantly, a key characteristic of modern soil classification systems is their multi-scale approach, which incorporates these phenomena scales within their classification hierarchies. Although most modern soil classification systems are based on soil properties, the soil map remains a model, the purpose of which is to predict the spatial distributions of those properties. Hence, multi-scale classification systems still tend to be organized, at least in part, by this observed spatial hierarchy. Although the hierarchy observed in this study is generally known in pedology today, it also represents a new view on the evolution of soil science. Increased recognition of this hierarchy may also help to more holistically combine soil formation factors with soil geography and pattern, particularly in the context of digital soil mapping.

  11. Glass and Glass-Ceramic Materials from Simulated Composition of Lunar and Martian Soils: Selected Properties and Potential Applications

    NASA Technical Reports Server (NTRS)

    Ray, C. S.; Sen, S.; Reis, S. T.; Kim, C. W.

    2005-01-01

    In-situ resource processing and utilization on planetary bodies is an important and integral part of NASA's space exploration program. Within this scope and context, our general effort is primarily aimed at developing glass and glass-ceramic type materials using lunar and martian soils, and exploring various applications of these materials for planetary surface operations. Our preliminary work to date have demonstrated that glasses can be successfully prepared from melts of the simulated composition of both lunar and martian soils, and the melts have a viscosity-temperature window appropriate for drawing continuous glass fibers. The glasses are shown to have the potential for immobilizing certain types of nuclear wastes without deteriorating their chemical durability and thermal stability. This has a direct impact on successfully and economically disposing nuclear waste generated from a nuclear power plant on a planetary surface. In addition, these materials display characteristics that can be manipulated using appropriate processing protocols to develop glassy or glass-ceramic magnets. Also discussed in this presentation are other potential applications along with a few selected thermal, chemical, and structural properties as evaluated up to this time for these materials.

  12. Effect of 10 different TiO2 and ZrO2 (nano)materials on the soil invertebrate Enchytraeus crypticus.

    PubMed

    Gomes, Susana I L; Caputo, Gianvito; Pinna, Nicola; Scott-Fordsmand, Janeck J; Amorim, Mónica J B

    2015-10-01

    Nearly 80% of all the nano-powders produced worldwide are metal oxides, and among these materials titanium dioxide (TiO2 ) is one of the most produced. Titanium dioxide's toxicity is estimated as low to soil organisms, but some studies have shown that TiO2 nanoparticles can cause oxidative stress. Additionally, it is known that TiO2 is activated by ultraviolet (UV) radiation, which can promote photocatalytic generation of reactive oxygen species, which is seldom taken into account in toxicity testing. In the present study, the authors investigated the effects of different TiO2 and zirconium materials on the soil oligochaete Enchytraeus crypticus, using exposure via soil, water, and soil:water extracts, and studied the effects combined with UV radiation. The results showed that zirconium dioxide (bulk and nano) was not toxic, whereas zirconium tetrachloride reduced enchytraeid reproduction in soil (50% effect concentration?=?502?mg/kg). The TiO2 materials were also not toxic via soil exposure or under UV radiation. However, pre-exposure to TiO2 and UV radiation via aqueous media caused a lower reproductive output post-exposure in clean soil (20-50% less but only observed at the lowest concentration tested, 1?mg/L); that is, the effect of TiO2 in water was potentiated by the UV radiation and measurable as a decrease in reproduction in soil media. Environ Toxicol Chem 2015;34:2409-2416. © 2015 SETAC. PMID:26013659

  13. Soil experiment

    NASA Technical Reports Server (NTRS)

    Hutcheson, Linton; Butler, Todd; Smith, Mike; Cline, Charles; Scruggs, Steve; Zakhia, Nadim

    1987-01-01

    An experimental procedure was devised to investigate the effects of the lunar environment on the physical properties of simulated lunar soil. The test equipment and materials used consisted of a vacuum chamber, direct shear tester, static penetrometer, and fine grained basalt as the simulant. The vacuum chamber provides a medium for applying the environmental conditions to the soil experiment with the exception of gravity. The shear strength parameters are determined by the direct shear test. Strength parameters and the resistance of soil penetration by static loading will be investigated by the use of a static cone penetrometer. In order to conduct a soil experiment without going to the moon, a suitable lunar simulant must be selected. This simulant must resemble lunar soil in both composition and particle size. The soil that most resembles actual lunar soil is basalt. The soil parameters, as determined by the testing apparatus, will be used as design criteria for lunar soil engagement equipment.

  14. Parents and Stress: Understanding Experiences, Context and Responses

    E-print Network

    Minnesota, University of

    HEALTH eREVIEW: PARENTAL STRESS 1 Authors: Sarah Cronin, M.A., Doctoral Student waste material. #12;CHILDREN'S MENTAL HEALTH eREVIEW: PARENTAL STRESS 2 EditorParents and Stress: Understanding Experiences, Context and Responses CHILDREN'S MENTAL

  15. Physiochemical, site, and bidirectional reflectance factor characteristics of uniformly moist soils. [Brazil, Spain and the United States of America

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F. (principal investigator)

    1980-01-01

    The author has identified the following significant results. The bidirectional reflectance factor (0.5 micron to 2.3 micron wavelength interval) and physiochemical properties of over 500 soils from 39 states, Brazil and Spain were measured. Site characteristics of soil temperature regime and moisture zone were used as selection criteria. Parent material and internal drainage were noted for each soil. At least five general types of soil reflectance curves were identified based primarily on the presence or absence of ferric iron absorption bands, organic matter content, and soil drainage characteristics. Reflectance in 10 bands across the spectrum was found to be negatively correlated with the natural log of organic matter content.

  16. Aggregating available soil water holding capacity data for crop yield models

    NASA Technical Reports Server (NTRS)

    Seubert, C. E.; Daughtry, C. S. T.; Holt, D. A.; Baumgardner, M. F.

    1984-01-01

    The total amount of water available to plants that is held against gravity in a soil is usually estimated as the amount present at -0.03 MPa average water potential minus the amount present at -1.5 MPa water potential. This value, designated available water-holding capacity (AWHC), is a very important soil characteristic that is strongly and positively correlated to the inherent productivity of soils. In various applications, including assessing soil moisture status over large areas, it is necessary to group soil types or series as to their productivity. Current methods to classify AWHC of soils consider only total capacity of soil profiles and thus may group together soils which differ greatly in AWHC as a function of depth in the profile. A general approach for evaluating quantitatively the multidimensional nature of AWHC in soils is described. Data for 902 soil profiles, representing 184 soil series, in Indiana were obtained from the Soil Characterization Laboratory at Purdue University. The AWHC for each of ten 150-mm layers in each soil was established, based on soil texture and parent material. A multivariate clustering procedure was used to classify each soil profile into one of 4, 8, or 12 classes based upon ten-dimensional AWHC values. The optimum number of classes depends on the range of AWHC in the population of oil profiles analyzed and on the sensitivity of a crop to differences in distribution of water within the soil profile.

  17. Mercury in humus horizons of soils in the Transbaikal region

    NASA Astrophysics Data System (ADS)

    Ivanov, G. M.; Kashin, V. K.

    2010-01-01

    The total mercury content has been determined in gray forest soils, chernozems, chestnut soils, and in different parent materials in the Transbaikal region. The mercury content is below the clarke value in the intrusive, effusive, and alluvial soil-forming rocks (0.004-0.024 mg/kg). In the humus horizons of the soils, it reaches 0.011-0.026 mg/kg, which is higher than the clarke value for the pedosphere. The mean background content of mercury in the soils of the Transbaikal region is 0.018 mg/kg. No significant positive correlation between the mercury content and the humus content of the soils has been revealed.

  18. Helping Parents To Be Informed Advocates for Their Handicapped Children: Planning Materials for Four Meetings To Provide Information and Support. Preschool Transition Project.

    ERIC Educational Resources Information Center

    Innocenti, Mark S.; And Others

    The manual provides parent educators with guidelines for conducting a series of four 1-hour meetings to help parents of preschool handicapped children fulfill their role as their child's advocate. At the first meeting, information on tests and testing and on the Individualized Education Program process is presented. In the second meeting, parents

  19. Extraction of arsenic species from spiked soils and standard reference materials.

    PubMed

    Kahakachchi, Chethaka; Uden, Peter C; Tyson, Julian F

    2004-08-01

    The abilities of various extractants to recover four arsenic species [As(iii), As(v), dimethylarsinic acid (DMA), and monomethylarsonic acid (MMA)] from soils spiked with 20 micro g g(-1) As were investigated. The extractants were water, buffer solutions (citrate and ammonium dihydrogen phosphate), acidic solutions (phosphoric acid and acetic acid), a basic solution (sodium hydroxide) and household chemicals (vinegar and Coca Cola). Gentle shaking at room temperature with each extractant for 24 h gave different recoveries for the different arsenic species. With 0.1 M NaOH solution 46% As(iii), 53% DMA, 100% MMA and 84% As(v) were recovered. A rapid extraction procedure using a sonicator probe has been developed to obtain higher extraction efficiencies. Extracts of arsenic-spiked soil, SRM 2711 Montana soil and SRM 2709 San Joaquin soil were analyzed by HPLC-ICP-MS. In the SRM water extracts, DMA and MMA were identified in addition to inorganic arsenic. The solution detection limits (3s) were 0.1, 0.12, 0.13 and 0.15 ng mL(-1) for As(iii), DMA, MMA and As(v), respectively for HPLC-ICP-MS. PMID:15284914

  20. SORPTION-DESORPTION OF IMIDACLOPRID AND ITS METABOLITES IN SOIL AND VADOSE ZONE MATERIALS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorption-desorption is arguably the most important process affecting the transport of pesticides through soil since it controls the amount of pesticide available for transport. Sorption is usually characterized by determining batch sorption coefficients. These coefficients are often used in transpor...

  1. System for high throughput water extraction from soil material for stable isotope analysis of water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major limitation in the use of stable isotope of water in ecological studies is the time that is required to extract water from soil and plant samples. Using vacuum distillation the extraction time can be less than one hour per sample. Therefore, assembling a distillation system that can process m...

  2. Arizona Heritage: A Bibliography of Materials and Directory of Authors, Illustrators and Storytellers for Teachers, Librarians and Parents.

    ERIC Educational Resources Information Center

    Arizona State Library Association, Phoenix.

    Resources about Arizona for children in kindergarten through eighth grade are listed. Materials include fiction and non-fiction and are mostly English language titles. Books listed have generally been published since 1977, although classic titles distinguished by literary or artistic merit are included, as are bibliographies published before 1977.…

  3. Parent Express.

    ERIC Educational Resources Information Center

    Kazanjian, Elise, Ed.

    1988-01-01

    Intended for use by parents of infants and toddlers, this series of 27 8-page month-by-month newsletters provides research-based information on infant and child development and care from 0 to 36 months. Topics in the series for infants include: becoming a parent; getting ready for child birth; the newborn child; and characteristics of the child at…

  4. Does the feedstock origin of pyrolyzed materials influence the leaching quality and quantity of dissolved organic carbon from soils?

    NASA Astrophysics Data System (ADS)

    Suddick, E.; Spencer, R. G.; Pereira, E. I.; Six, J. W.

    2011-12-01

    Soils play a major role in the global C cycle and can be both a source of C emissions to the atmosphere and also a C sink. In order to sequester vast quantities of C and increase soil C stocks, which may be used to partly offset greenhouse gas (GHG) emissions in the future, new technologies are needed. Recently, there has been an abundance of interest in the use of pyrolyzed biomass C, termed biochar, as an amendment to terrestrial ecosystems to provide a large and long term sink of C. However, the stability and permanence of this black C source in soil is still relatively unknown and the uncertainty surrounding its turnover time may have implications for both C sequestration and the fate and transport of dissolved organic C leached to nearby water resources. Biochar can be derived from a multitude of feed stocks (e.g. walnut shells, wood chippings, poultry litter) and under a variety of pyrolysis conditions (e.g. high temperature or low temperatures); each process and feed stock can yield very different materials that has many different physical (e.g. surface area) and chemical (e.g. CEC, C and N content) properties. Each feed stock and pyrolysis condition may consequently contribute to a distinct recalcitrance in soil. Therefore, we undertook a pot trial to evaluate the chemical characteristics of leachate from soils incubated with biochars derived from 15 different feed stocks. Using optical property parameters such as SUVA, chromophoric dissolved organic matter (CDOM) slope parameter and fluorescence characteristics, we were able to determine the C leaching potential of each feedstock. Preliminary data suggests that there are distinct variations in optical properties with feed stock origin, for example an algae digestate showed a lower absorbance at 350 nm (a350) (25.7 m-1) and a steeper spectral slope at 290-350 nm (S290-350 x10-3) (17.7 nm-1) indicative of the presence of lower molecular weight compounds compared to control treatment with a signature typical of SOC (a350 = 29.2 m-1; S290-350 = 16.8 nm-1). The ramifications for the transport of both the quantity and quality of C to aquatic systems will be discussed, especially in light of the popularity of "designer" biochars that could be used as a soil amendment in the future

  5. Intrinsic W nucleosynthetic isotope variations in carbonaceous chondrites: Implications for W nucleosynthesis and nebular vs. parent body processing of presolar materials

    NASA Astrophysics Data System (ADS)

    Burkhardt, Christoph; Schönbächler, Maria

    2015-09-01

    The progressive dissolution of the carbonaceous chondrites Orgueil (CI1), Murchison (CM2) and Allende (CV3) with acids of increasing strength reveals correlated W isotope variations ranging from 3.5 ?182W and 6.5 ?183W in the initial leachate (acetic acid) to -60 ?182W and -40 ?183W in the leachate residue. The observed variations are readily explained by variable mixing of s-process depleted and s-process enriched components. One W s-process carrier is SiC, however, the observed anomaly patterns and mass-balance considerations require at least on additional s-process carrier, possibly a silicate or sulfide. The data reveal well-defined correlations, which provide a test for s-process nucleosynthesis models. The correlations demonstrate that current models need to be revised and highlight the need for more precise W isotope data of SiC grains. Furthermore the correlations provide a mean to disentangle nucleosynthetic and radiogenic contributions to 182W (?182Wcorrected = ?182Wmeasured - (1.41 ± 0.05) × ?183Wmeasured; ?182Wcorrected = ?182Wmeasured - (-0.12 ± 0.06) × ?184Wmeasured), a prerequisite for the successful application of the Hf-W chronometer to samples with nucleosynthetic anomalies. The overall magnitude of the W isotope variations decreases in the order CI1 > CM2 > CV3. This can be interpreted as the progressive thermal destruction of an initially homogeneous mixture of presolar grains by parent-body processing. However, not only the magnitude but also the W anomaly patterns of the three chondrites are different. In particular leach step 2, that employs nitric acid, reveals a s-deficit signature for Murchison, but a s-excess for Orgueil and Allende. This could be the result of redistribution of anomalous W into a new phase by parent-body alteration, or, the fingerprint of dust processing in the solar nebula. Given that the thermal and aqueous alteration of Murchison is between the CI and CV3 chondrites, parent-body processing is probably not the sole cause for creating the different pattern. Small-scale nebular redistribution of anomalous W may have played a role as well. Similar nebular processes possibly acted differently on specific carrier phases and elements, resulting in the diverse nucleosynthetic signatures observed in planetary materials today.

  6. Derivation of guidelines for uranium residual radioactive material in soil at the Colonie Site, Colonie, New York

    SciTech Connect

    Dunning, D.

    1996-05-01

    Residual radioactive material guidelines for uranium in soil were derived for the Colonie site located in Colonie, New York. This site has been designated for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the U.S. Department of Energy (DOE). The site became contaminated with radioactive material as a result of operations conducted by National Lead (NL) Industries from 1958 to 1984; these activities included brass foundry operations, electroplating of metal products, machining of various components using depleted uranium, and limited work with small amounts of enriched uranium and thorium. The Colonie site comprises the former NL Industries property, now designated the Colonie Interim Storage Site (CISS), and 56 vicinity properties contaminated by fallout from airborne emissions; 53 of the vicinity properties were previously remediated between 1984 and 1988. In 1984, DOE accepted ownership of the CISS property from NL Industries. Residual radioactive material guidelines for individual radionuclides and total uranium were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the site should not exceed a dose of 30 mrem/yr following remedial action for the current use and likely future use scenarios or a dose of 100 mrem/yr for less likely future use scenarios. The DOE residual radioactive material guideline computer code, RESRAD, was used in this evaluation; RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines.

  7. The Toxicological Geochemistry of Dusts, Soils, and Other Earth Materials: Insights From In Vitro Physiologically-based Geochemical Leach Tests

    NASA Astrophysics Data System (ADS)

    Plumlee, G. S.; Ziegler, T. L.; Lamothe, P.; Meeker, G. P.; Sutley, S.

    2003-12-01

    Exposure to mineral dusts, soils, and other earth materials results in chemical reactions between the materials and different body fluids that include, depending upon the exposure route, lung fluids, gastrointestinal fluids, and perspiration. In vitro physiologically-based geochemical leach tests provide useful insights into these chemical reactions and their potential toxicological implications. We have conducted such leach tests on a variety of earth materials, including asbestos, volcanic ash, dusts from dry lake beds, mine wastes, wastes left from the roasting of mercury ores, mineral processing wastes, coal dusts and coal fly ash, various soils, and complex dusts generated by the World Trade Center collapse. Size-fractionated samples of earth materials that have been well-characterized mineralogically and chemically are reacted at body temperature (37 C) for periods from 2 hours up to multiple days with various proportions of simulated lung, gastric, intestinal, and/or plasma-based fluids. Results indicate that different earth materials may have quite different solubility and dissolution behavior in vivo, depending upon a) the mineralogic makeup of the material, and b) the exposure route. For example, biodurable minerals such as asbestos and volcanic ash particles, whose health effects result because they dissolve very slowly in vivo, bleed off low levels of trace metals into the simulated lung fluids; these include metals such as Fe and Cr that are suspected by health scientists of contributing to the generation of reactive oxygen species and resulting DNA damage in vivo. In contrast, dry lake bed dusts and concrete-rich dusts are highly alkaline and bioreactive, and cause substantial pH increases and other chemical changes in the simulated body fluids. Many of the earth materials tested contain a variety of metals that can be quite soluble (bioaccessible), depending upon the material and the simulated body fluid composition. For example, due to their acidic pH and high chloride concentrations, simulated gastric fluids are most efficient at solubilizing metals such as Hg, Pb, Zn, and others that form strong chloride complexes; although these metals tend to partially reprecipitate in the near-neutral simulated intestinal fluids, complexes with organic ligands (i.e., amino and carboxylic acids) enhance their solubility. These metals are also quite soluble in near-neutral, protein-rich plasma-based fluids because they form strong complexes with the proteins. In contrast, metalloids that form oxyanion species (such as As, Cr, Mo, W) are commonly more soluble in near-neutral pH simulated lung fluids than in simulated gastric fluids.

  8. Suppression of Boride Formation in Transient Liquid Phase Bonding of Pairings of Parent Superalloy Materials with Different Compositions and Grain Structures and Resulting Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Steuer, Susanne; Singer, Robert F.

    2014-07-01

    Two Ni-based superalloys, columnar grained Alloy 247 and single-crystal PWA1483, are joined by transient liquid phase bonding using an amorphous brazing foil containing boron as a melting point depressant. At lower brazing temperatures, two different morphologies of borides develop in both base materials: plate-like and globular ones. Their ratio to each other is temperature dependent. With very high brazing temperatures, the deleterious boride formation in Alloy 247 can be totally avoided, probably because the three-phase-field moves to higher alloying element contents. For the superalloy PWA1483, the formation of borides cannot be completely avoided at high brazing temperatures as incipient melting occurs. During subsequent solidification of these areas, Chinese-script-like borides precipitate. The mechanical properties (tensile tests at room and elevated temperatures and short-term creep rupture tests at elevated temperatures) for brazed samples without boride precipitation are very promising. Tensile strengths and creep times to 1 pct strain are comparable, respectively, higher than the ones of the weaker parent material for all tested temperatures and creep conditions (from 90 to 100 pct rsp. 175 to 250 pct).

  9. Method for recovery of hydrocarbons form contaminated soil or refuse materials

    DOEpatents

    Ignasiak, Teresa (417 Heffernan Drive, Edmonton, Alberta, CA); Turak, Ali A. (3125 - 109 Street, Edmonton, Alberta, CA); Pawlak, Wanda (407 Saddleback Road, #203, Edmonton, Alberta, CA); Ignasiak, Boleslaw L. (10967 34 A Avenue, Edmonton, Alberta, CA); Guerra, Carlos R. (6050 Boulevard E., West New York, NJ 07093); Zwillenberg, Melvin L. (475 Richmond Ave., Maplewood, NJ 07040)

    1991-01-01

    A method is provided for separating an inert solid substantially inorganic fraction comprising sand or soil from a tarry or oily organic matter in a feedstock. The feedstock may be contaminated soil or tarry waste. The feedstock is combined with pulverized coal and water. The ratio (oil or tar to dry weight of coal) of about 1.0:10 to about 4.0:10 at a temperature in the range of 60.degree.-95.degree. C. The mixture is agitated, the coarse particles are removed, and up to about 0.10% by weight (based on weight of coal) of a frothing agent is added. The mixture is then subjected to flotation, and the froth is removed from the mixture.

  10. Methods using earthworms for the evaluation of potentially toxic materials in soils

    SciTech Connect

    Neuhauser, E.F.; Loehr, R.C.; Malecki, M.R.

    1982-01-01

    The purpose of this study was to investigate the feasibility of using earthworms to indicate effects of potentially toxic wastes when such wastes are intentionally or accidentally added to soils. Initial work with metals has shown that earthworms exhibit specific growth and reproductive responses. These responses are related to the concentration and solubility of the metal. Of the metals tested, cadmium was found to be the most toxic, followed by nickel, copper, zinc, and lead. The metal concentration in earthworm tissue and the background manure-metal mixture was measured, permitting the concentration factor to be computed. The concentration factor is the ratio of the metal in the worm tissue to that in the surrounding manure-metal mixture. These and other studies in our laboratory have demonstrated that the methods described in this paper may be used to predict the effect of land-applied or atmospherically deposited residues on the soil biota.

  11. Titanium Mass-balance Analysis of Paso Robles Soils: Elemental Gains and Losses as Affected by Acid Alteration Fluids

    NASA Technical Reports Server (NTRS)

    Sutter, Brad; Ming, Douglas W.

    2010-01-01

    The Columbia Hills soils have been exposed to aqueous alteration in alkaline [1] as well as acid conditions [2,3]. The Paso Robles class soils are bright soils that possess the highest S concentration of any soil measured on Mars [2]. Ferric-sulfate detection by Moessbauer analysis indicated that acid solutions were involved in forming these soils [4]. These soils are proposed to have formed by alteration of nearby rock by volcanic hydrothermal or fumarolic activity. The Paso Robles soils consist of the original Paso Robles-disturbed-Pasadena (PR-dist), Paso Robles- PasoLight (PR-PL), Arad-Samra, Arad-Hula, Tyrone- Berker Island1 and Tyrone-MountDarwin [2 ,3. ]Chemical characteristics indicate that the PR-dist and PR-PL soils could be derived from acid weathering of local Wishstone rocks while the Samra and Hula soils are likely derived from local Algonquin-Iroquet rock [3]. The Paso Robles soils were exposed to acidic sulfur bearing fluids; however, little else is known about the chemistry of the alteration fluid and its effects on the alteration of the proposed parent materials. The objectives of this work are to conduct titanium normalized mass-balance analysis to1) assess elemental gains and losses from the parent materials in the formation of the Paso Robles soils and 2) utilize this information to indicate the chemical nature of the alteration fluids.

  12. Soil chemistry in lithologically diverse datasets: the quartz dilution effect

    USGS Publications Warehouse

    Bern, Carleton R.

    2009-01-01

    National- and continental-scale soil geochemical datasets are likely to move our understanding of broad soil geochemistry patterns forward significantly. Patterns of chemistry and mineralogy delineated from these datasets are strongly influenced by the composition of the soil parent material, which itself is largely a function of lithology and particle size sorting. Such controls present a challenge by obscuring subtler patterns arising from subsequent pedogenic processes. Here the effect of quartz concentration is examined in moist-climate soils from a pilot dataset of the North American Soil Geochemical Landscapes Project. Due to variable and high quartz contents (6.2–81.7 wt.%), and its residual and inert nature in soil, quartz is demonstrated to influence broad patterns in soil chemistry. A dilution effect is observed whereby concentrations of various elements are significantly and strongly negatively correlated with quartz. Quartz content drives artificial positive correlations between concentrations of some elements and obscures negative correlations between others. Unadjusted soil data show the highly mobile base cations Ca, Mg, and Na to be often strongly positively correlated with intermediately mobile Al or Fe, and generally uncorrelated with the relatively immobile high-field-strength elements (HFS) Ti and Nb. Both patterns are contrary to broad expectations for soils being weathered and leached. After transforming bulk soil chemistry to a quartz-free basis, the base cations are generally uncorrelated with Al and Fe, and negative correlations generally emerge with the HFS elements. Quartz-free element data may be a useful tool for elucidating patterns of weathering or parent-material chemistry in large soil datasets.

  13. Soils of the Galindez Island, Argentine archipelago, Western Antarctica

    NASA Astrophysics Data System (ADS)

    Abakumov, Evgeny; Parnikoza, Ivan

    2015-04-01

    Antarctic Peninsula is a part of Antarctica which is characterized by increased soil diversity, caused by specific of parent materials and diversity of non-vascular and vascular plants. Soils of Galindez Island have been investigated during the 18-th Ukranian Antarctic Expedition 2013/14. This Island situated in Argentine archipelago (coastal part of Antarctic Peninsula). Soils of Galindez Island presented by following types: Leptosols, Lithosols, Histic Lithosols and Leptosols and some Gleyic soils, located in lowlands and coastal parts. An average solum profile thickness is 3-19 cm which result from the small depth of debris's, underplayed by massive crystallic rocks. The permafrost layer is located within the massive rock, but not in coarse friable parent material. The soils with bird influence are widely spread both in coastal and central part of Island. In the coastal parts we can find typical Ornithosols in the penguin rockeries areas. The main aim of our investigation was characterization of soils formed under vegetation, exactly under Deschampsia antarctica Desv. localities. Argentine Islands is the central part of D. antarctica spreading area in region of Antarctic peninsula. Probably, these islands colonized by hairgrass mainly due to ornitogenic activity. So, coastal population appearance related with Larus dominicanus nest areas and feeding activity. Thus, we found typical post ornithogenic soils here. This kind of soils we also observed in population of hairgrass of Galindez mainland where it was connected with the other Antarctic bird - Catharacta maccormicki activity. Thus, the soil diversity and soil geochemistry of the Galindez Island are closely related to the activity of birds. The spatial pattern of soils, their chemistry and organic matter quality is discussed in relation with distribution of bird nesting and feeding activity.

  14. Survey and evaluation of contaminants in earthworms and in soils derived from dredged material at confined disposal facilities in the Great Lakes region

    USGS Publications Warehouse

    Beyer, W.N.; Stafford, C.

    1993-01-01

    Soils derived from dredged material were collected, together with earthworms from nine confined disposal facilities located in the Great Lakes Region. These samples were analyzed for 18 elements, 11 organochlorine pesticides, PCBs, and 24 polycyclic aromatic hydrocarbons. The concentrations detected in earthworms were evaluated in terms of their potential hazard to wildlife, which for the sake of the evaluation were assumed to prey entirely either on earthworms or on other soil invertebrates having similar concentrations. The soil concentrations (dry wt.) of the contaminants of greatest concern were < 1.9 to 32 ppm Cd, < 0.053 to 0.94 ppm Hg, 4.6 to 550 ppm Pb, and < 0.1 to 1.0 ppm PCBs. The concentrations in earthworms (dry wt., ingested soil included) were as high as 91 ppm Cd, 1.6 ppm Hg, 200 ppm Pb, and 1.8 ppm PCBs. Based on laboratory toxicity studies of relatively sensitive species, and on concentration factors calculated from the earthworm and soil data, we estimated that lethal or serious sublethal effects on wildlife might be expected at concentrations of 10 ppm Cd, 3 ppm Hg, 670 ppm Pb, and 1.7 ppm PCBs in alkaline surface soils derived from dredged material. Concentrations of polycyclic aromatic hydrocarbons in earthworms were well below those in soil.

  15. A quantitative comparison of Soil Development in four climatic regimes

    USGS Publications Warehouse

    Harden, J.W.; Taylor, E.M.

    1983-01-01

    A new quantitative Soil Development Index based on field data has been applied to chronosequences formed under different climatic regimes. The four soil chronosequences, developed primarily on sandy deposits, have some numeric age control and are located in xeric-inland (Merced, Calif.), xeric-coastal (Ventura, Calif.), aridic (Las Cruces, N. Mex.), and udic (Susquehanna Valley, Pa.) soil-moisture regimes. To quantify field properties, points are assigned for developmental increases in soil properties in comparison to the parent material. Currently ten soil-field properties are quantified and normalized for each horizon in a given chronosequence, including two new properties for carbonate-rich soils in addition to the eight properties previously defined. When individual properties or the combined indexes are plotted as a function of numeric age, rates of soil development can be compared in different climates. The results demonstrate that (1) the Soil Development Index can be applied to very different soil types, (2) many field properties develop systematically in different climatic regimes, (3) certain properties appear to have similar rates of development in different climates, and (4) the Profile Index that combines different field properties increases significantly with age and appears to develop at similar rates in different climates. The Soil Development Index can serve as a preliminary guide to soil age where other age control is lacking and can be used to correlate deposits of different geographical and climatic regions. ?? 1983.

  16. Estimating Soil Organic Carbon Stocks and Spatial Patterns with Statistical and GIS-Based Methods

    PubMed Central

    Zhi, Junjun; Jing, Changwei; Lin, Shengpan; Zhang, Cao; Liu, Qiankun; DeGloria, Stephen D.; Wu, Jiaping

    2014-01-01

    Accurately quantifying soil organic carbon (SOC) is considered fundamental to studying soil quality, modeling the global carbon cycle, and assessing global climate change. This study evaluated the uncertainties caused by up-scaling of soil properties from the county scale to the provincial scale and from lower-level classification of Soil Species to Soil Group, using four methods: the mean, median, Soil Profile Statistics (SPS), and pedological professional knowledge based (PKB) methods. For the SPS method, SOC stock is calculated at the county scale by multiplying the mean SOC density value of each soil type in a county by its corresponding area. For the mean or median method, SOC density value of each soil type is calculated using provincial arithmetic mean or median. For the PKB method, SOC density value of each soil type is calculated at the county scale considering soil parent materials and spatial locations of all soil profiles. A newly constructed 1?50,000 soil survey geographic database of Zhejiang Province, China, was used for evaluation. Results indicated that with soil classification levels up-scaling from Soil Species to Soil Group, the variation of estimated SOC stocks among different soil classification levels was obviously lower than that among different methods. The difference in the estimated SOC stocks among the four methods was lowest at the Soil Species level. The differences in SOC stocks among the mean, median, and PKB methods for different Soil Groups resulted from the differences in the procedure of aggregating soil profile properties to represent the attributes of one soil type. Compared with the other three estimation methods (i.e., the SPS, mean and median methods), the PKB method holds significant promise for characterizing spatial differences in SOC distribution because spatial locations of all soil profiles are considered during the aggregation procedure. PMID:24840890

  17. Estimating soil organic carbon stocks and spatial patterns with statistical and GIS-based methods.

    PubMed

    Zhi, Junjun; Jing, Changwei; Lin, Shengpan; Zhang, Cao; Liu, Qiankun; DeGloria, Stephen D; Wu, Jiaping

    2014-01-01

    Accurately quantifying soil organic carbon (SOC) is considered fundamental to studying soil quality, modeling the global carbon cycle, and assessing global climate change. This study evaluated the uncertainties caused by up-scaling of soil properties from the county scale to the provincial scale and from lower-level classification of Soil Species to Soil Group, using four methods: the mean, median, Soil Profile Statistics (SPS), and pedological professional knowledge based (PKB) methods. For the SPS method, SOC stock is calculated at the county scale by multiplying the mean SOC density value of each soil type in a county by its corresponding area. For the mean or median method, SOC density value of each soil type is calculated using provincial arithmetic mean or median. For the PKB method, SOC density value of each soil type is calculated at the county scale considering soil parent materials and spatial locations of all soil profiles. A newly constructed 1?50,000 soil survey geographic database of Zhejiang Province, China, was used for evaluation. Results indicated that with soil classification levels up-scaling from Soil Species to Soil Group, the variation of estimated SOC stocks among different soil classification levels was obviously lower than that among different methods. The difference in the estimated SOC stocks among the four methods was lowest at the Soil Species level. The differences in SOC stocks among the mean, median, and PKB methods for different Soil Groups resulted from the differences in the procedure of aggregating soil profile properties to represent the attributes of one soil type. Compared with the other three estimation methods (i.e., the SPS, mean and median methods), the PKB method holds significant promise for characterizing spatial differences in SOC distribution because spatial locations of all soil profiles are considered during the aggregation procedure. PMID:24840890

  18. Total parenting.

    PubMed

    Smith, Richard

    2010-01-01

    In this essay, Richard Smith observes that being a parent, like so much else in our late-modern world, is required to become ever more efficient and effective, and is increasingly monitored by the agencies of the state, often with good reason given the many recorded instances of child abuse and cruelty. However, Smith goes on to argue, this begins to cast being a parent as a matter of "parenting," a technological deployment of skills and techniques, with the loss of older, more spontaneous and intuitive relations between parents and children. Smith examines this phenomenon further through a discussion of how it is captured to some extent in Hannah Arendt's notion of "natality" and how it is illuminated by Charles Dickens in his classic novel, Dombey and Son. PMID:20662172

  19. Teen Parents

    MedlinePLUS

    ... Stages Listen Español Text Size Email Print Share Teen Parents Article Body A girl who has decided ... prenatal vitamins and iron is so important. Preparing Teens For Parenthood Fears about the future are common ...

  20. Parenting Multiples

    MedlinePLUS

    ... KidsHealth in the Classroom What Other Parents Are Reading Impetigo Head Lice Vomiting Chickenpox Helping Kids Deal ... speaking directly to each child, as well as reading to them and encouraging language. Social skills can ...

  1. Land application of carbonatic lake-dredged materials: Effects on soil quality and forage productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Productive disposal options of carbonatic lake-dredged materials (82% CaCO3) may provide substantial and intangible benefits that will enhance the environment, community, and society. The ability to reuse carbonatic lake-dredged materials (CLDM) for agricultural purposes is important because it redu...

  2. Efficiency of a multi-soil-layering system on wastewater treatment using environment-friendly filter materials.

    PubMed

    Ho, Chia-Chun; Wang, Pei-Hao

    2015-03-01

    The multi-soil-layering (MSL) system primarily comprises two parts, specifically, the soil mixture layer (SML) and the permeable layer (PL). In Japan, zeolite is typically used as the permeable layer material. In the present study, zeolite was substituted with comparatively cheaper and more environmentally friendly materials, such as expanded clay aggregates, oyster shells, and already-used granular activated carbon collected from water purification plants. A series of indoor tests indicated that the suspended solid (SS) removal efficiency of granular activated carbon was between 76.2% and 94.6%; zeolite and expanded clay aggregates achieved similar efficiencies that were between 53.7% and 87.4%, and oyster shells presented the lowest efficiency that was between 29.8% and 61.8%. Further results show that the oyster shell system required an increase of wastewater retention time by 2 to 4 times that of the zeolite system to maintain similar chemical oxygen demand (COD) removal efficiency. Among the four MSL samples, the zeolite system and granular activated carbon system demonstrated a stable NH3-N removal performance at 92.3%-99.8%. The expanded clay aggregate system present lower removal performance because of its low adsorption capacity and excessively large pores, causing NO3--N to be leached away under high hydraulic loading rate conditions. The total phosphorous (TP) removal efficiency of the MSL systems demonstrated no direct correlation with the permeable layer material. Therefore, all MSL samples achieved a TP efficiency of between 92.1% and 99.2%. PMID:25809517

  3. Efficiency of a Multi-Soil-Layering System on Wastewater Treatment Using Environment-Friendly Filter Materials

    PubMed Central

    Ho, Chia-Chun; Wang, Pei-Hao

    2015-01-01

    The multi-soil-layering (MSL) system primarily comprises two parts, specifically, the soil mixture layer (SML) and the permeable layer (PL). In Japan, zeolite is typically used as the permeable layer material. In the present study, zeolite was substituted with comparatively cheaper and more environmentally friendly materials, such as expanded clay aggregates, oyster shells, and already-used granular activated carbon collected from water purification plants. A series of indoor tests indicated that the suspended solid (SS) removal efficiency of granular activated carbon was between 76.2% and 94.6%; zeolite and expanded clay aggregates achieved similar efficiencies that were between 53.7% and 87.4%, and oyster shells presented the lowest efficiency that was between 29.8% and 61.8%. Further results show that the oyster shell system required an increase of wastewater retention time by 2 to 4 times that of the zeolite system to maintain similar chemical oxygen demand (COD) removal efficiency. Among the four MSL samples, the zeolite system and granular activated carbon system demonstrated a stable NH3-N removal performance at 92.3%–99.8%. The expanded clay aggregate system present lower removal performance because of its low adsorption capacity and excessively large pores, causing NO3?-N to be leached away under high hydraulic loading rate conditions. The total phosphorous (TP) removal efficiency of the MSL systems demonstrated no direct correlation with the permeable layer material. Therefore, all MSL samples achieved a TP efficiency of between 92.1% and 99.2%. PMID:25809517

  4. Soils and the soil cover of the arkaim reserve (Steppe Zone of the Trans-Ural Region)

    NASA Astrophysics Data System (ADS)

    Prikhod'ko, V. E.; Ivanov, I. V.; Manakhov, D. V.; Manakhova, E. V.

    2012-08-01

    Soils of the Arkaim Reserve in the area around a unique settlement-fortress of the Bronze Age in Chelyabinsk oblast have been studied. These soils are generally typical of the entire Trans-Ural Plateau. The soil properties are characterized in detail on the basis of factual data on 170 soil pits and four soil catenas. The soil cover of the reserve is specified into six geomorphic groups: (a) denudational surfaces of the low mountains, (b) accumulative-denudational surfaces of the low mountains, (c) denudational-accumulative plain surfaces, (d) lacustrine-alluvial plain surfaces, (e) floodplain surfaces, and (f) slopes and bottoms of the local ravines and hollows. Chernozems occupy about 50% of the reserve; solonetzes and saline soils, 32%; meadow chernozems, 7%; and forest soils, 1%. The soils of the reserve are relatively thin; they have a distinct tonguing of the humus horizon and are often saline and solonetzic. The latter properties are inherited from the parent materials and are preserved in the soils for a long time under the conditions of a dry continental climate. The genetic features of the soils differ in dependence on the composition and age of the parent materials. With respect to the thickness of the soil profiles and the reserves of soil humus, the soils can be arranged into the following lithogenic sequence: the soils developed from the eluvium of igneous rocks-redeposited kaolin clay-montmorillonite-hydromica nonsaline and saline loams and clays. The content of Corg in the upper 20 cm varies from 2.5 to 5.6%, and the reserves of Corg in the layers of 0-0.5 and 0-1.0 m reach 57-265 and 234-375 t/ha, respectively. The soils of pastures subjected to overgrazing occupy two-thirds of the reserve. Their humus content is 10-16% higher in comparison with that in the analogous plowed soils. Another characteristic feature of the humus in the soils of the pastures is its enrichment in the labile fraction (28-40% of Corg).

  5. Parental Marital Quality, Parental Divorce, and Relations with Parents.

    ERIC Educational Resources Information Center

    Booth, Alan; Amato, Paul R.

    1994-01-01

    Examined data from 419 parents and their adult children to assess impact of parental marital quality and divorce while child is residing with parents on parent-child relations 12 years later. Low marital quality and divorce appeared to have independent effects on adult child-parent relations. Fathers' relationships suffered more than mothers';…

  6. Sulfate reduction in sulfuric material after re-flooding: Effectiveness of organic carbon addition and pH increase depends on soil properties.

    PubMed

    Yuan, Chaolei; Fitzpatrick, Rob; Mosley, Luke M; Marschner, Petra

    2015-11-15

    Sulfuric material is formed upon oxidation of sulfidic material; it is extremely acidic, and therefore, an environmental hazard. One option for increasing pH of sulfuric material may be stimulation of bacterial sulfate reduction. We investigated the effects of organic carbon addition and pH increase on sulfate reduction after re-flooding in ten sulfuric materials with four treatments: control, pH increase to 5.5 (+pH), organic carbon addition with 2% w/w finely ground wheat straw (+C), and organic carbon addition and pH increase (+C+pH). After 36 weeks, in five of the ten soils, only treatment +C+pH significantly increased the concentration of reduced inorganic sulfur (RIS) compared to the control and increased the soil pore water pH compared to treatment+pH. In four other soils, pH increase or/and organic carbon addition had no significant effect on RIS concentration compared to the control. The RIS concentration in treatment +C+pH as percentage of the control was negatively correlated with soil clay content and initial nitrate concentration. The results suggest that organic carbon addition and pH increase can stimulate sulfate reduction after re-flooding, but the effectiveness of this treatment depends on soil properties. PMID:26024614

  7. Effects of land use and geological factors on the spatial variability of soil carbon and nitrogen in the Konya Basin, Turkey

    NASA Astrophysics Data System (ADS)

    Mayes, M. T.; Marin-Spiotta, E.; Ozdogan, M.; Clayton, M.

    2012-12-01

    The landscape-scale (10s-100s km2) spatial variability of soil properties such as carbon and nitrogen stocks is poorly known in many regions worldwide, especially in semi-arid landscapes with millenial histories of intense land use activities. Characterizing patterns and understanding processes that affect such variability is important for basic research on land use impacts for soils and ecosystems, such as modeling regional-scale ecosystem biogeochemical balances and greenhouse gas emissions, as well as applied research for precision agriculture, soil erosion control, water conservation and carbon accounting. Here, we use geostatistical analyses to study patterns of spatial variability in total carbon (TC), organic carbon (SOC), and total nitrogen (TN) stocks in soils (0-25 cm) of the Konya Basin, Turkey. We hypothesized that land use will have a stronger effect on SOC variability, which will be more tightly linked with vegetation and human management, while parent material will be a more important predictor of TC variability in these arid soils with high carbonate content. We collected a total of 560 samples from 35 sites distributed across three soil parent materials and three classes of land use (agriculture, grazing lands and orchards), using multi-temporal analyses of Landsat data to map land cover and geographic information systems (GIS) to aid selection of field sites. Building on previous research that found parent materials strongly control TC, TN and SOC, we tested whether soil parent materials or land-use practices more strongly explain patterns of spatial variability of soil properties at nested scales, including within field-site (within 35 1-ha field sites) and landscape scales (across 35 sites). Initial results show that spatial patterns of total carbon (TC) are strongly affected by soil parent materials and field sites at landscape scales. Forthcoming analyses will analyze patterns in TN and SOC. Our analyses, which test effects of geological factors and human activities on the spatial variability of soil properties, can inform development of landscape-scale soil sampling schemes for soil carbon and nitrogen accounting so that they are representative of soils at landscape scales in dryland environments. They suggest that in drylands, land management strategies to increase carbon stocks in soils differ based on soil type. Further, they will contribute understanding to what processes varying across spatial scales may be driving soil heterogeneity.

  8. Derivation of guidelines for uranium residual radioactive material in soil at the former Baker Brothers, Inc., Site, Toledo, Ohio

    SciTech Connect

    Nimmagadda, M.; Kamboj, S.; Yu, C.

    1995-04-01

    Residual radioactive material guidelines for uranium in soil were derived for the former Baker Brothers, Inc., site in Toledo, Ohio. This site has been identified for remedial action under the U.S. Department of Energy`s (DOE`s) Formerly Utilized Sites Remedial Action Program (FUSRAP). Single-nuclide and total-uranium guidelines were derived on the basis of the requirement that following remedial action, the 50-year committed effective dose equivalent to a hypothetical individual living or working in the immediate vicinity of the site should not exceed a dose constraint of 30 mrem/yr for the current use and likely future use scenarios or a dose limit of 100 mrem/yr for less likely future use scenarios. The DOE residual radioactive material guideline computer code, RESRAD, was used in this evaluation; RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines. Three scenarios were considered; each assumed that for a period of 1,000 years following remedial action, the site would be used without radiological restrictions. The three scenarios varied with regard to the type of site use, time spent at the site by the exposed individual, and sources of food and water consumed. The evaluation indicates that the dose constraint of 30 mrem/yr would not be exceeded for uranium (including uranium-234, uranium-235, and uranium-238) within 1,000 years, provided that the soil concentration of total combined uranium (uranium-234, uranium-235, and uranium-238) at the former Baker Brothers site did not exceed 710 pCi/g for Scenario A (industrial worker, current use) or 210 pCi/g for Scenario B (resident - municipal water supply, a likely future use). The dose limit of 100 mrem/yr would not be exceeded at the site if the total uranium concentration of the soil did not exceed 500 pCi/g for Scenario C (subsistence farmer - on-site well water, a plausible but unlikely future use).

  9. MODIFICATIONS OF FINE- AND COARSE-TEXTURED SOIL MATERIAL CAUSED BY THE ANT FORMICA SUBSERICEA

    E-print Network

    Drager, Kim

    2015-05-31

    The majority of ant-related bioturbation research has focused on physiochemical properties of the nest mound. However, ants are also known to line subsurface nest components (chambers and galleries) with coarse material, and may expand or backfill...

  10. MOELCULAR SIZE EXCLUSION BY SOIL ORGANIC MATERIALS ESTIMATED FROM THEIR SWELLING IN ORGANIC SOLVENTS

    EPA Science Inventory

    A published method previously developed to measure the swelling characteristics of pow dered coal samples has been adapted for swelling measurements on various peat, pollen, chain, and cellulose samples The swelling of these macromolecular materials is the volumetric manifestatio...

  11. MOLECULAR SIZE EXCLUSION BY SOIL ORGANIC MATERIALS ESTIMATED FROM THEIR SWELLING IN ORGANIC SOLVENTS

    EPA Science Inventory

    A published method previously developed to measure the swelling characteristics of powdered coal samples has been adapted for swelling measurements on various peat, pollen, chitin, and cellulose samples. he swelling of these macromolecular materials is the volumetric manifestatio...

  12. About soil cover heterogeneity of agricultural research stations' experimental fields

    NASA Astrophysics Data System (ADS)

    Rannik, Kaire; Kõlli, Raimo; Kukk, Liia

    2013-04-01

    Depending on local pedo-ecological conditions (topography, (geo) diversity of soil parent material, meteorological conditions) the patterns of soil cover and plant cover determined by soils are very diverse. Formed in the course of soil-plant mutual relationship, the natural ecosystems are always influenced to certain extent by the other local soil forming conditions or they are site specific. The agricultural land use or the formation of agro-ecosystems depends foremost on the suitability of soils for the cultivation of feed and food crops. As a rule, the most fertile or the best soils of the area, which do not present any or present as little as possible constraints for agricultural land use, are selected for this purpose. Compared with conventional field soils, the requirements for the experimental fields' soil cover quality are much higher. Experimental area soils and soil cover composition should correspond to local pedo-ecological conditions and, in addition to that, represent the soil types dominating in the region, whereas the fields should be as homogeneous as possible. The soil cover heterogeneity of seven arable land blocks of three research stations (Jõgeva, Kuusiku and Olustvere) was studied 1) by examining the large scale (1:10 000) digital soil map (available via the internet), and 2) by field researches using the transect method. The stages of soils litho-genetic and moisture heterogeneities were estimated by using the Estonian normal soils matrix, however, the heterogeneity of top- and subsoil texture by using the soil texture matrix. The quality and variability of experimental fields' soils humus status, was studied more thoroughly from the aspect of humus concentration (g kg-1), humus cover thickness (cm) and humus stocks (Mg ha-1). The soil cover of Jõgeva experimental area, which presents an accumulative drumlin landscape (formed during the last glacial period), consist from loamy Luvisols and associated to this Cambisols. In Kuusiku area, which landscape is characterized by till and limestone plains with thin Quaternary cover, the soil cover is more heterogeneous than in previous area. Kuusiku soil cover is more variegated by the soil texture and as well as by the genesis of soils. In addition to Cambisols, Leptosols, Gleysols and Luvisols may be found here as well. The dominating soils in Olustvere research area, which is situated on wavy upland plateau, are Albeluvisols.

  13. Summary of hydrologic and physical properties of rock and soil materials, as analyzed by the hydrologic laboratory of the U.S. Geological Survey, 1948-60

    USGS Publications Warehouse

    Morris, D.A.; Johnson, A.I.

    1967-01-01

    The Hydrologic Laboratory was established in 1948 to serve as the central testing laboratory for the Water Resources Division of the U.S. Geological Survey. Since then, thousands of samples of rock and soil materials have been analyzed in the laboratory. Analytical data on samples from 42 States and for the period 1948-60 are summarized in this report. The data are presented in a form that allows easy comparison of the physical and hydrologic properties of many sedimentary, igneous, and metamorphic rock and soil materials. Sedimentary rocks--the principal water-bearing rocks analyzed--are discussed in detail.

  14. Molybdenum isotope fractionation in soils: Influence of redox conditions, organic matter, and atmospheric inputs

    NASA Astrophysics Data System (ADS)

    Siebert, C.; Pett-Ridge, J. C.; Opfergelt, S.; Guicharnaud, R. A.; Halliday, A. N.; Burton, K. W.

    2015-08-01

    Molybdenum isotope fractionation accompanying soil development is studied across three pedogenic gradients encompassing a range of controlling factors. These factors include variable redox conditions, organic matter content, Fe and Mn oxy(hydr)oxide content, mineral composition, degree of weathering, pH, type and amount of atmospheric inputs, age, climate, and underlying rock type. Soil profiles from the island of Maui (Hawaii) along a precipitation gradient ranging from 850 to 5050 mm mean annual precipitation show a decrease in average soil ?98Mo from -0.04 ± 0.11‰ at the driest, most oxic site, which is indistinguishable from the basalt parent material (-0.09 ± 0.08‰), to -0.33 ± 0.10‰ at the wettest, most reducing site. A suite of 6 Icelandic soils display a broad trend with heavier ?98Mo values (up to +1.50 ± 0.09‰) in soil horizons that are more weathered and have higher organic matter content. Selective extractions of Mo from different soil components indicate that the association with organic matter and silicate or Ti-oxide residue dominates retention of Mo in these soils, with adsorption on Fe and Mn oxy(hydr)oxides playing a lesser role. Across all basaltic soils, ?98Mo values are lighter in soils that exhibit the most net Mo loss relative to the parent material, and ?98Mo values are heavier in soils that exhibit net Mo gains. A well-drained regolith profile in the Luquillo Mountains of Puerto Rico developed on quartz diorite shows heavier ?98Mo values than the parent material (up to +0.71 ± 0.10‰ with an integrated profile average of +0.28 ± 0.10‰) in soil and shallower saprolite, despite overall moderate loss of 28% of Mo relative to the bedrock. However, the deeper saprolite is unfractionated from bedrock (-0.01 ± 0.10‰, quartz diorite bedrock) indicating that rock weathering dissolution processes and secondary clay formation do not fractionate Mo isotopes. Our data suggest that the Mo mass balance and isotope composition of soils are controlled by redox conditions, organic matter, and atmospheric inputs. In this way Mo isotopes have the potential to react to and record climate driven changes in the weathering environment. The presence of both isotopically light and heavy Mo (relative to parent material) across all sites and within individual soil profiles suggests that it is normal for multiple fractionation mechanisms to operate under the open-system conditions of soils.

  15. Cr(VI) sorption/desorption on untreated and mussel-shell-treated soil materials: fractionation and effects of pH and chromium concentration

    NASA Astrophysics Data System (ADS)

    Otero, M.; Cutillas-Barreiro, L.; Nóvoa-Muñoz, J. C.; Arias-Estévez, M.; Fernández-Sanjurjo, M. J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A.

    2015-04-01

    We used batch-type experiments to study Cr(VI) sorption/desorption on granitic material, forest soil, pyritic material, mussel shell, and on forest soil and granitic material amended with 12 t ha-1 (1.2 kg m -2) shell, considering the effects of varying Cr(VI) concentration and pH. Sequential extractions were carried out to fractionate adsorbed Cr(VI) and to determine the stability of Cr(VI) retention. The pyritic material had the highest Cr(VI) retention capacity, whereas the granitic material showed the lowest retention potential. When high Cr concentrations were added, some saturation of the adsorbent surfaces became apparent, but Cr release remained low. The highest Cr retention was achieved at a very acid pH value, with release progressively increasing as a function of increasing pH. The amendment with 12 t ha-1 mussel shell did not cause marked changes in Cr(VI) retention. Sorption data were satisfactory adjusted to the Freundlich model. Regarding Cr(VI) fractionation, the soluble fraction (weakly bound) was dominant in mussel shell and in the unamended and amended granitic material, whereas more stable fractions dominated in the pyritic material (residual fraction) and in the forest soil (oxidizable fraction). In conclusion, the pyritic material presented the highest Cr(VI) retention capacity, while the retention was low and weak on the granitic material; mussel shell was not characterized by a marked Cr(VI) retention potential, and it did not cause remarkable increase in Cr(VI) retention when used to amend the granitic material or the forest soil.

  16. A new approach of mapping soils in the Alps - Challenges of deriving soil information and creating soil maps for sustainable land use. An example from South Tyrol (Italy)

    NASA Astrophysics Data System (ADS)

    Baruck, Jasmin; Gruber, Fabian E.; Geitner, Clemens

    2015-04-01

    Nowadays sustainable land use management is gaining importance because intensive land use leads to increasing soil degradation. Especially in mountainous regions like the Alps sustainable land use management is important, as topography limits land use. Therefore, a database containing detailed information of soil characteristics is required. However, information of soil properties is far from being comprehensive. The project "ReBo - Terrain classification based on airborne laser scanning data to support soil mapping in the Alps", founded by the Autonomous Province of Bolzano, aims at developing a methodical framework of how to obtain soil data. The approach combines geomorphometric analysis and soil mapping to generate modern soil maps at medium-scale in a time and cost efficient way. In this study the open source GRASS GIS extension module r.geomorphon (Jasciewicz and Stepinski, 2013) is used to derive topographically homogeneous landform units out of high resolution DTMs on scale 1:5.000. Furthermore, for terrain segmentation and classification we additionally use medium-scale data sets (geology, parent material, land use etc.). As the Alps are characterized by a great variety of topography, parent material, wide range of moisture regimes etc. getting reliable soil data is difficult. Additionally, geomorphic activity (debris flow, landslide etc.) leads to natural disturbances. Thus, soil properties are highly diverse and largely scale dependent. Furthermore, getting soil information of anthropogenically influenced soils is an added challenge. Due to intensive cultivation techniques the natural link between the soil forming factors is often repealed. In South Tyrol we find the largest pome producing area in Europe. Normally, the annual precipitation is not enough for intensive orcharding. Thus, irrigation strategies are in use. However, as knowledge about the small scaled heterogeneous soil properties is mostly lacking, overwatering and modifications of the regional water balance are often involved. Therefore, a rudimentary approach to involve these anthropogenically influenced areas in soil maps can be based on expert decision trees. In it the potential soil inclusive the kind and degree of the anthropogenic degradation is presented. The aim of this approach is to give the map user suitable soil information itself. References: Jasiewicz, J. & Stepinski, T. F. (2013): Geomorphons - a pattern recognition approach to classification and mapping of landforms. Geomorphology 182, 147 - 156.

  17. Development of a standard reference material for Cr(vi) in contaminated soil

    USGS Publications Warehouse

    Nagourney, S.J.; Wilson, S.A.; Buckley, B.; Kingston, H.M.S.; Yang, S.-Y.; Long, S.E.

    2008-01-01

    Over the last several decades, considerable contamination by hexavalent chromium has resulted from the land disposal of Chromite Ore Processing Residue (COPR). COPR contains a number of hexavalent chromium-bearing compounds that were produced in high temperature industrial processes. Concern over the carcinogenic potential of this chromium species, and its environmental mobility, has resulted in efforts to remediate these waste sites. To provide support to analytical measurements of hexavalent chromium, a candidate National Institute of Standards and Technology (NIST) Standard Reference Material?? (SRM 2701), having a hexavalent chromium content of approximately 500 mg kg -1, has been developed using material collected from a waste site in Hudson County, New Jersey, USA. The collection, processing, preparation and preliminary physico-chemical characterization of the material are discussed. A two-phase multi-laboratory testing study was carried out to provide data on material homogeneity and to assess the stability of the material over the duration of the study. The study was designed to incorporate several United States Environmental Protection Agency (USEPA) determinative methods for hexavalent chromium, including Method 6800 which is based on speciated isotope dilution mass spectrometry (SIDMS), an approach which can account for chromium species inter-conversion during the extraction and measurement sequence. This journal is ?? The Royal Society of Chemistry 2008.

  18. MICHIGAN SOIL VAPOR EXTRACTION REMEDIATION (MISER) MODEL: A COMPUTER PROGRAM TO MODEL SOIL VAPOR EXTRACTION AND BIOVENTING OF ORGANIC CHEMICALS IN UNSATURATED GEOLOGICAL MATERIAL

    EPA Science Inventory

    Soil vapor extraction (SVE) and bioventing (BV) are proven strategies for remediation of unsaturated zone soils. Mathematical models are powerful tools that can be used to integrate and quantify the interaction of physical, chemical, and biological processes occurring in field sc...

  19. Acidification of forest soil in Russia: From 1893 to present

    USGS Publications Warehouse

    Lapenis, A.G.; Lawrence, G.B.; Andreev, A.A.; Bobrov, A.A.; Torn, M.S.; Harden, J.W.

    2004-01-01

    It is commonly believed that fine-textured soils developed on carbonate parent material are well buffered from possible acidification. There are no data, however, that document resistance of such soils to acidic deposition exposure on a timescale longer than 30-40 years. In this paper, we report on directly testing the long-term buffering capacity of nineteenth century forest soils developed on calcareous silt loam. In a chemical analysis comparing archived soils with modern soils collected from the same locations ???100 years later, we found varying degrees of forest-soil acidification in the taiga and forest steppe regions. Land-use history, increases in precipitation, and acidic deposition were contributing factors in acidification. The acidification of forest soil was documented through decreases in soil pH and changes in concentrations of exchangeable calcium and aluminum, which corresponded with changes in communities of soil microfauna. Although acidification was found at all three analyzed locations, the trends in soil chemistry were most pronounced where the highest loading of acidic deposition had taken place. Copyright 2004 by the American Geophysical Union.

  20. Acidification of forest soil in Russia: From 1893 to present

    SciTech Connect

    Lapenis, A.G.; Lawrence, G.B.; Andreev, A.A.; Bobrov, A.A.; Torn, M.S.; Harden, J.W.

    2003-01-02

    It is commonly believed that fine-textured soils developed on carbonate parent material are well buffered from possible acidification. There are no data, however, that document resistance of such soils to acidic deposition exposure on a timescale longer than 30-40 years. In this paper, we report on directly testing the long-term buffering capacity of nineteenth century forest soils developed on calcareous silt loam. In a chemical analysis comparing archived soils with modern soils collected from the same locations similar to 100 years later, we found varying degrees of forest-soil acidification in the taiga and forest steppe regions. Land-use history, increases in precipitation, and acidic deposition were contributing factors in acidification. The acidification of forest soil was documented through decreases in soil pH and changes in concentrations of exchangeable calcium and aluminum, which corresponded with changes in communities of soil microfauna. Although acidification was found at all three analyzed locations, the trends in soil chemistry were most pronounced where the highest loading of acidic deposition had taken place.

  1. Analysis and assessment on heavy metal sources in the coastal soils developed from alluvial deposits using multivariate statistical methods.

    PubMed

    Li, Jinling; He, Ming; Han, Wei; Gu, Yifan

    2009-05-30

    An investigation on heavy metal sources, i.e., Cu, Zn, Ni, Pb, Cr, and Cd in the coastal soils of Shanghai, China, was conducted using multivariate statistical methods (principal component analysis, clustering analysis, and correlation analysis). All the results of the multivariate analysis showed that: (i) Cu, Ni, Pb, and Cd had anthropogenic sources (e.g., overuse of chemical fertilizers and pesticides, industrial and municipal discharges, animal wastes, sewage irrigation, etc.); (ii) Zn and Cr were associated with parent materials and therefore had natural sources (e.g., the weathering process of parent materials and subsequent pedo-genesis due to the alluvial deposits). The effect of heavy metals in the soils was greatly affected by soil formation, atmospheric deposition, and human activities. These findings provided essential information on the possible sources of heavy metals, which would contribute to the monitoring and assessment process of agricultural soils in worldwide regions. PMID:18976857

  2. Contaminant-induced changes to soil properties: From general overview to study of metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ben Moshe, T.; Dror, I.; Yaron, B.; Berkowitz, B.

    2011-12-01

    A contemporary metapedogenetic process in which anthropogenic contaminants become an additional soil-forming factor is presented. Several examples that link contamination and modification of soil properties from the existing literature are reviewed. Also, recent experimental results that show possible soil property modifications as a result of application of metal oxide nanoparticles to natural soils are shown. Research results published in literature on chemical contaminant-soil interactions show that in some cases, irreversible changes to the soil matrix and properties may occur. In such cases, a pristine soil may become the parent material for a newly-formed soil. In contrast to natural processes over geological time scales, contaminant-induced soil modification occurs over much shorter time scales. In recent years, the effects of soil on the behavior and properties of nanoparticles released to the environment have been studied extensively. The behavior, transport and mobility of nanoparticles were shown to be strongly dependent on environmental conditions. However, little is known about the possible effects of nanoparticles on soil properties. In this study, two types of metal oxide nanoparticles, CuO and Fe3O4 were mixed with two types of soil and the effects of the nanoparticles on various soil properties were assessed. Metal oxide nanoparticles were previously shown to catalyze the oxidation of organic pollutants in aqueous suspensions, and they were therefore expected to induce changes in the organic material in the soil, especially upon addition of an oxidant. It was found that the nanoparticles did not change the total amount of organic materials in the soil or the total organic carbon in the soil extract; however, three-dimensional fluorescence spectroscopy demonstrated changes in humic substances.

  3. Soil Chemistry Still Affected 23 Years After Large Application of Fluidized Bed Material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to assess the movement of arsenic, aluminum, calcium, copper, iron, lead, magnesium, manganese, mercury and zinc in an old apple (Malus domestica Borkh) orchard that received a one time application of 36 kg/ m2 of fluidized bed combustion material (FBCM) 23 years earlier. S...

  4. Soil morphology of canopy and intercanopy sites in a pinon-Juniper woodland

    SciTech Connect

    Davenport, D.W.; Wilcox, B.P.; Breshear, D.D.

    1996-11-01

    Pinon-juniper woodlands in the semiarid western USA have expanded as much as fivefold during the last 150 yr, often accompanied by losses of understory vegetation and increasing soil erosion. We conducted this study to determine the differences in soil morphology between canopy and intercanopy locations within a pinon (Pinus edulis Engelm.)-juniper [Juniperus monosperma (Engelm.) Sarg.] woodland with uniform parent material, topography, and climate. The woodland studied, located near Los Alamos, NM, has a mean tree age of 135 yr. We examined soil morphology by augering 135 profiles in a square grid pattern and comparing soils under pinon and juniper canopies with intercanopy soils. Only two of the 17 morphological properties compared showed significant differences. The B horizons make up a slightly greater proportion of total profile thickness in intercanopy soils, and there are higher percentages of coarse fragments in the lower portions of canopy soil profiles. Canopy soils have lower mean pH and higher mean organic C than intercanopy soils. Regression analysis showed that most soil properties did not closely correspond with tree size, but total soil thickness and B horizon thickness are significantly greater under the largest pinon trees, and soil reaction is lower under the largest juniper trees. Our findings suggest that during the period in which pinon-juniper woodlands have been expanding, the trees have had only minor effects on soil morphology. 36 refs., 4 figs., 4 tabs.

  5. Soiling of building envelope surfaces and its effect on solar reflectance - Part II: Development of an accelerate aging method for roofing materials

    SciTech Connect

    Sleiman, Mohamad; Kirchstetter, Thomas W.; Berdahl, Paul; Gilbert, Haley; Quelen, Sarah; Marlot, Lea; Preble, Chelsea; Chen, Sharon; Montalbano, Amadine; Rosseler, Olivier; Akbari, Hashem; Levinson, Ronnen; Destaillats, Hugo

    2013-11-18

    Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and high temperatures. This study developed an accelerated aging method that incorporates features of soiling and weathering. The method sprays a calibrated aqueous soiling mixture of dust minerals, black carbon, humic acid, and salts onto preconditioned coupons of roofing materials, then subjects the soiled coupons to cycles of ultraviolet radiation, heat and water in a commercial weatherometer. Three soiling mixtures were optimized to reproduce the site-specific solar spectral reflectance features of roofing products exposed for 3 years in a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth mixture was designed to reproduce the three-site average values of solar reflectance and thermal emittance attained after 3 years of natural exposure, which the Cool Roof Rating Council (CRRC) uses to rate roofing products sold in the US. This accelerated aging method was applied to 25 products?single ply membranes, factory and field applied coatings, tiles, modified bitumen cap sheets, and asphalt shingles?and reproduced in 3 days the CRRC's 3-year aged values of solar reflectance. This accelerated aging method can be used to speed the evaluation and rating of new cool roofing materials.

  6. GEMAS - Soil geochemistry and health implications

    NASA Astrophysics Data System (ADS)

    Ernstsen, Vibeke; Ladenberger, Anna; Wragg, Joanna; Gulan, Aleksandra

    2014-05-01

    The GEMAS Project resulted in a large coherent data set displaying baseline levels of elements in agricultural and grazing land soil, which has a wide variety of applications. Medical geology is an emerging new discipline providing a link between geoscience and medicine by interpreting natural geological factors in relation to human and animal health and their geographical distribution. Medical geology shows not only problems related to harmful health effects of natural geological materials and processes, but also deals with their beneficial aspects. Since the GEMAS project demonstrates the importance of geological factors in geochemical patterns in European soil, this data set can be used in improving our understanding of how the geological processes may affect human health in Europe. The main potential health problems are related to deficiency of nutrients in soil and toxic effects of potentially harmful elements. Deficiency in macro- (e.g., K, Fe, Mg, P) and micro-nutrients (e.g., Se, Zn, Cl) can be responsible for a reduction in crop productivity and certain health issues for livestock and humans. On the other hand, bioavailability of crucial elements depends on soil parameters, e.g., pH; namely, low pH in soil (in northern Europe) makes more micronutrients bioavailable, with the exception of Mo, P and Ca. Rocks underlying the soil layer have a major impact on soil composition, and soil parent material can be a main source of toxic metals, for instance, soil developed on black shale (e.g., Oslo region) shows potentially toxic levels of metals, such as As, Cd, U, Zn and Pb. High content of organic matter is another factor amplifying the toxic levels of metals in soil. Several important topics with health implications can be then addressed using the GEMAS data set, namely, soil properties and element bioavailability, arsenic toxicity, selenium deficiency, potential health effects of liming, uranium in European soil, influence of recent and historical volcanic activity on soil composition and its health consequences. References Reimann, C., Birke, M., Demetriades, A., Filzmoser, P. & O'Connor, P. (Editors), 2014. Chemistry of Europe's agricultural soils - Part A: Methodology and interpretation of the GEMAS data set. Geologisches Jahrbuch (Reihe B), Schweizerbarth, Hannover, 528 pp. Reimann, C., Birke, M., Demetriades, A., Filzmoser, P. & O'Connor, P. (Editors), 2014. Chemistry of Europe's agricultural soils - Part B: General background information and further analysis of the GEMAS data set. Geologisches Jahrbuch (Reihe B), Schweizerbarth, Hannover, 352 pp.

  7. Organic carbon stocks and sequestration rates of forest soils in Germany.

    PubMed

    Grüneberg, Erik; Ziche, Daniel; Wellbrock, Nicole

    2014-08-01

    The National Forest Soil Inventory (NFSI) provides the Greenhouse Gas Reporting in Germany with a quantitative assessment of organic carbon (C) stocks and changes in forest soils. Carbon stocks of the organic layer and the mineral topsoil (30 cm) were estimated on the basis of ca. 1.800 plots sampled from 1987 to 1992 and resampled from 2006 to 2008 on a nationwide grid of 8 × 8 km. Organic layer C stock estimates were attributed to surveyed forest stands and CORINE land cover data. Mineral soil C stock estimates were linked with the distribution of dominant soil types according to the Soil Map of Germany (1 : 1 000 000) and subsequently related to the forest area. It appears that the C pool of the organic layer was largely depending on tree species and parent material, whereas the C pool of the mineral soil varied among soil groups. We identified the organic layer C pool as stable although C was significantly sequestered under coniferous forest at lowland sites. The mineral soils, however, sequestered 0.41 Mg C ha(-1) yr(-1) . Carbon pool changes were supposed to depend on stand age and forest transformation as well as an enhanced biomass input. Carbon stock changes were clearly attributed to parent material and soil groups as sandy soils sequestered higher amounts of C, whereas clayey and calcareous soils showed small gains and in some cases even losses of soil C. We further showed that the largest part of the overall sample variance was not explained by fine-earth stock variances, rather by the C concentrations variance. The applied uncertainty analyses in this study link the variability of strata with measurement errors. In accordance to other studies for Central Europe, the results showed that the applied method enabled a reliable nationwide quantification of the soil C pool development for a certain period. PMID:24616061

  8. Organic carbon stocks and sequestration rates of forest soils in Germany

    PubMed Central

    Grüneberg, Erik; Ziche, Daniel; Wellbrock, Nicole

    2014-01-01

    The National Forest Soil Inventory (NFSI) provides the Greenhouse Gas Reporting in Germany with a quantitative assessment of organic carbon (C) stocks and changes in forest soils. Carbon stocks of the organic layer and the mineral topsoil (30 cm) were estimated on the basis of ca. 1.800 plots sampled from 1987 to 1992 and resampled from 2006 to 2008 on a nationwide grid of 8 × 8 km. Organic layer C stock estimates were attributed to surveyed forest stands and CORINE land cover data. Mineral soil C stock estimates were linked with the distribution of dominant soil types according to the Soil Map of Germany (1 : 1 000 000) and subsequently related to the forest area. It appears that the C pool of the organic layer was largely depending on tree species and parent material, whereas the C pool of the mineral soil varied among soil groups. We identified the organic layer C pool as stable although C was significantly sequestered under coniferous forest at lowland sites. The mineral soils, however, sequestered 0.41 Mg C ha?1 yr?1. Carbon pool changes were supposed to depend on stand age and forest transformation as well as an enhanced biomass input. Carbon stock changes were clearly attributed to parent material and soil groups as sandy soils sequestered higher amounts of C, whereas clayey and calcareous soils showed small gains and in some cases even losses of soil C. We further showed that the largest part of the overall sample variance was not explained by fine-earth stock variances, rather by the C concentrations variance. The applied uncertainty analyses in this study link the variability of strata with measurement errors. In accordance to other studies for Central Europe, the results showed that the applied method enabled a reliable nationwide quantification of the soil C pool development for a certain period. PMID:24616061

  9. Total Parenting

    ERIC Educational Resources Information Center

    Smith, Richard

    2010-01-01

    In this essay, Richard Smith observes that being a parent, like so much else in our late-modern world, is required to become ever more efficient and effective, and is increasingly monitored by the agencies of the state, often with good reason given the many recorded instances of child abuse and cruelty. However, Smith goes on to argue, this begins…

  10. Parental Monitoring

    ERIC Educational Resources Information Center

    Shillington, Audrey M.; Lehman, Stephanie; Clapp, John; Hovell, Melbourne; Sipan, Carol; Blumberg, Elaine

    2005-01-01

    Adolescence is a developmental period during which many youth experiment with risk practices. This paper examined the association of parental monitoring with a range of alcohol and other drug (AOD) use behaviors among high-risk youth, while controlling for other demographic and environmental variables previously found to be associated with AOD…

  11. Constructive Parenting.

    ERIC Educational Resources Information Center

    Goldberg, Sally

    This book turns important research and theory into essential, easy-to-follow guidelines for new parents and child care providers to help them focus on the critical first 3 years of life to build a strong foundation for the future. All the key areas of child development are covered, including self-esteem, and cognitive, motor and social…

  12. Aging Parents.

    ERIC Educational Resources Information Center

    Frazier, Billie H.

    This document contains a brief bibliography of peer-reviewed literature, with abstracts, on aging parents. It is one of 12 bibliographies on aging prepared by the National Agricultural Library for its "Pathfinders" series of publications. Topics covered by the other 11 bibliographies include adult children, dementia and Alzheimer's disease in the…

  13. Perceived Parenting

    ERIC Educational Resources Information Center

    Wouters, Sofie; Doumen, Sarah; Germeijs, Veerle; Colpin, Hilde; Verschueren, Karine

    2013-01-01

    Contingent self-esteem (i.e., the degree to which one's self-esteem is dependent on meeting particular conditions) has been shown to predict a wide range of psychosocial and academic problems. This study extends previous research on contingent self-esteem by examining the predictive role of perceived parenting dimensions in a sample of early…

  14. Synthesis and Characterization of the Hybrid Clay- Based Material Montmorillonite-Melanoidin: A Potential Soil Model

    SciTech Connect

    V Vilas; B Matthiasch; J Huth; J Kratz; S Rubert de la Rosa; P Michel; T Schäfer

    2011-12-31

    The study of the interactions among metals, minerals, and humic substances is essential in understanding the migration of inorganic pollutants in the geosphere. A considerable amount of organic matter in the environment is associated with clay minerals. To understand the role of organic matter in the environment and its association with clay minerals, a hybrid clay-based material (HCM), montmorillonite (STx-1)-melanoidin, was prepared from L-tyrosine and L-glutamic acid by the Maillard reaction. The HCM was characterized by elemental analysis, nuclear magnetic resonance, x-ray photoelectron spectroscopy (XPS), scanning transmission x-ray microscopy (STXM), and thermal analysis. The presence of organic materials on the surface was confirmed by XPS and STXM. The STXM results showed the presence of organic spots on the surface of the STx-1 and the characterization of the functional groups present in those spots. Thermal analysis confirmed the existence of organic materials in the montmorillonite interlayer, indicating the formation of a composite of melanoidin and montmorillonite. The melanoidin appeared to be located partially between the layers of montmorillonite and partially at the surface, forming a structure that resembles the way a cork sits on the top of a champagne bottle.

  15. Selenium in arid and semiarid soils

    SciTech Connect

    Burau, R.G. )

    1989-02-01

    Selenium is an essential element for many life forms but can cause toxicity when present at high levels in animal diets. The chemistry and particularly the geochemistry of selenium is similar to that of sulfur. Selenate, the selenium analog of sulfate, is the key to understanding selenium toxicity in arid and semiarid areas. Selenate salts of calcium, magnesium, sodium, and potassium are generally more soluble than those of sulfate. Also, selenate is not significantly adsorbed in neutral and alkaline soils. Therefore, selenate is highly mobile, causing it to be transferred readily from place to place dissolved in water, where it also enters biological food webs by plant uptake. Within plants, selenium is incorporated into organic compounds by forming C-Se bonds. Three other factors that control selenium in soil-water-plant systems are soil parent material. 14 refs.

  16. Soil-restoration rate and initial soil formation trends on example of anthropogenically affected soils of opencast mine in Kursk region, Russian Federation

    NASA Astrophysics Data System (ADS)

    Pigareva, Tatiana

    2015-04-01

    The mining industry is one of the main factors which anthropogenically change the environment. Mining process results in removing of the rocks and mechanical changes of considerable amounts of ground. One of the main results of mining arising of antropic ecosystems as well as increasing of the new created soils total area is technosols. The main factor controlling the soil formation in postmining environment is the quality of spoiled materials. Initial soil formation has been investigated on spoils of the largest iron ore extraction complex in Russia - Mikhailovsky mining and concentration complex which is situated in Kursk region, Russia. Investigated soils are presented by monogenetic weak developed soils of different age (10-15-20 years). Young soils are formed on the loess parent materials (20 year-old soil), or on a mix of sand and clay overburdens (15 and 10-year-old soils). Anthropogenically affected soils are characterized by well-developed humus horizon which is gradually replaced by weakly changed soil-building rocks (profile type A-C for 10-, 15-years old soils, and A-AC-C for 20 years old soils). Gray-humus soils are characterized by presence of diagnostic humus horizon gradually replaced by soil-building rock. The maximum intensity of humus accumulation has been determined in a semi-hydromorphic 10-year-old soil developed on the mixed heaps which is connected with features of water-air conditions complicating mineralization of plant remnants. 20-year-old soil on loess is characterized by rather high rate of organic substances accumulation between all the automorphous soils. It was shown that one of the most effective restoration ways for anthropogenically affected soils is a biological reclamation. Since overburdens once appeared on a day surface are overgrown badly in the first years, they are subject to influence of water and wind erosion. Our researchers have found out that permanent grasses are able to grow quickly; they accumulate a considerable quantity of top and root mass, promote accumulation of humus and accelerate soil building.

  17. Trace element analysis of soil type collected from the Manjung and central Perak

    NASA Astrophysics Data System (ADS)

    Azman, Muhammad Azfar; Hamzah, Suhaimi; Rahman, Shamsiah Abdul; Elias, Md Suhaimi; Abdullah, Nazaratul Ashifa; Hashim, Azian; Shukor, Shakirah Abd; Kamaruddin, Ahmad Hasnulhadi Che

    2015-04-01

    Trace elements in soils primarily originated from their parent materials. Parents' material is the underlying geological material that has been undergone different types of chemical weathering and leaching processes. Soil trace elements concentrations may be increases as a result of continuous input from various human activities, including power generation, agriculture, mining and manufacturing. This paper describes the Neutron Activation Analysis (NAA) method used for the determination of trace elements concentrations in part per million (ppm) present in the terrestrial environment soil in Perak. The data may indicate any contamination of trace elements contributed from human activities in the area. The enrichment factors were used to check if there any contamination due to the human activities (power plants, agricultural, mining, etc.) otherwise the values would serve as a baseline data for future study. The samples were collected from 27 locations of different soil series in the area at two different depths: the top soil (0-15cm) and the sub soil (15-30cm). The collected soil samples were air dried at 60°C and passed through 2 µm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia TRIGA Mark II reactor followed by gamma spectrometric analysis. By activating the stable elements in the samples, the elements can be determined from the intensities of gamma energies emitted by the respected radionuclides.

  18. Trace element analysis of soil type collected from the Manjung and central Perak

    SciTech Connect

    Azman, Muhammad Azfar Hamzah, Suhaimi; Rahman, Shamsiah Abdul; Elias, Md Suhaimi; Abdullah, Nazaratul Ashifa; Hashim, Azian; Shukor, Shakirah Abd; Kamaruddin, Ahmad Hasnulhadi Che

    2015-04-29

    Trace elements in soils primarily originated from their parent materials. Parentsmaterial is the underlying geological material that has been undergone different types of chemical weathering and leaching processes. Soil trace elements concentrations may be increases as a result of continuous input from various human activities, including power generation, agriculture, mining and manufacturing. This paper describes the Neutron Activation Analysis (NAA) method used for the determination of trace elements concentrations in part per million (ppm) present in the terrestrial environment soil in Perak. The data may indicate any contamination of trace elements contributed from human activities in the area. The enrichment factors were used to check if there any contamination due to the human activities (power plants, agricultural, mining, etc.) otherwise the values would serve as a baseline data for future study. The samples were collected from 27 locations of different soil series in the area at two different depths: the top soil (0-15cm) and the sub soil (15-30cm). The collected soil samples were air dried at 60°C and passed through 2 µm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia TRIGA Mark II reactor followed by gamma spectrometric analysis. By activating the stable elements in the samples, the elements can be determined from the intensities of gamma energies emitted by the respected radionuclides.

  19. Successful Parenting for School-Age Parents. Teacher's Resource Guide. Student Reference Book.

    ERIC Educational Resources Information Center

    Texas Tech Univ., Lubbock. Home Economics Curriculum Center.

    The teacher's guide and student reference book presented here were developed as resources to facilitate school-age parenting education. The materials were organized around the nine essential elements for the Parenting Education for School-Age Parents course in Texas. The teacher's guide contains teaching strategies, teaching aids, paper-and-pencil…

  20. Is the Triple P-Positive Parenting Program Acceptable to Parents from Culturally Diverse Backgrounds?

    ERIC Educational Resources Information Center

    Morawska, Alina; Sanders, Matthew; Goadby, Elizabeth; Headley, Clea; Hodge, Lauren; McAuliffe, Christine; Pope, Sue; Anderson, Emily

    2011-01-01

    Behavioural parenting programs are an effective intervention for behavioural and emotional problems in children, however these programs have low utilisation rates by culturally diverse parents. We examined the cultural acceptability of program materials, preferences for delivery methods, and barriers to use of the Triple P-Positive Parenting

  1. ANALYSIS OF SULFUR IN SOIL, PLANT AND SEDIMENT MATERIALS: SAMPLE HANDLING AND USE OF AN AUTOMATED ANALYZER

    EPA Science Inventory

    Methods for analyzing soil, vegetation and sediment samples for total S and handling soil samples for analysis of S constituents were examined. ECO automated total S anelyzer (SC-132) was used for the analysis of vegetation, sediments and soil samples. esults from the LECO analyz...

  2. "Lou soil", a fertile anthropogenic soil with thousands of years of cultivating history

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Liang, B.; Yan, J.; Zhao, W.

    2012-12-01

    Chinese farmers have a very long history of using manures in their fields. Owing to the long-term addition of manures, an anthropogenic layer was formed on the top of original soil profile (drab soil) in Guanzhong Plains on the south edge of the Loess Plateau, North China. This soil is named the Manural Loessial soil (or Lou soil, "Lou" means the different stories of a building in Chinese). The depth of anthropogenic layer is in range of about 30 to 100 cm depth, which has a close relationship with the soil productivity. This fertile agricultural soil has sustained the agriculture in the region for millenniums. We had determined the organic carbon (SOC) in 7 soil profiles, and found that the depths of anthropogenic layer of were in range of 40 to 71 cm (averaging 59 cm). And the anthropogenic layer became shallower as the profile was far from the village due to less manure application. The organic C stocks in this layer accounted for 69% of organic C stocks in 0-100 cm soil profiles. Organic C stocks in Lou soil was higher than that in the newly cultivated soil developed from loess parent materials. Our 30-day incubation experiment found that addition of synthetic N fertilizer significantly increased the decomposition of SOC in the soils. However, The decomposition rate of SOC in the soil added with manure and inorganic fertilizers for 18-yr (MNPK soil) was significantly lower than in the soils added without fertilizer or inorganic fertilizers (NF soil, and NPK soils). The half-life of the organic C in MNPK soils was also slower than the NF soil, and NPK soil. It indicates that long-term combined application of manure and inorganic fertilizers improves the stabilization of soil organic C. Long-term cultivation has not only increased organic C stocks, but also stabilization of organic C in soil profile. It provides us a unique sample to study the mechanism of accumulation and stabilization of organic C in soil to balance agricultural production and C sequestration in a warming earth. Our micro-plot experiment with 15N-labeled fertilizer in the long-term fertilizer trial found that the use efficiency of N fertilizer (NUE) in MNPK soil was higher than the NPK soil and NF soil in both wheat-summer fallow and winter wheat and summer corn rotation system. However, the N fertilizer losses in MNPK soil was lower than the NPK soil and NF soil in the two systems. We concluded that the long-term combined application of manure and inorganic fertilizers improves N synchrony between the supply and crop demand, and reduces its loss. Since the 1980s, however, the application of manure to arable fields has declined in Guanzhong Plain, and in other parts of China, due to the increasing use of inorganic fertilizers, and labor costs to apply manure. The nutrient input of the arable fields are heavily dependent on inorganic fertilizers. It changes the biogeochemical cycling of the ecosystem, and results in a series of problems, including eutrophication, greenhouse gas emission, and nitrate leaching. Therefore, we need to find the alternatives to solve the problems, to conserve this old anthropogenic soil while producing enough food to feed the growing population.

  3. For Parents and Kids

    MedlinePLUS

    ... A A A Listen En Español For Parents & Kids Diabetes is a disease that affects the whole ... balance between caring and hovering. Explore: For Parents & Kids Parent's Perspective Parents of children with diabetes share ...

  4. A garden mulch is any material spread on the soil surface to modify the environment where the plant is growing. The materials used can be natural or synthetic and can be used in any number of combinations

    E-print Network

    New Hampshire, University of

    A garden mulch is any material spread on the soil surface to modify the environment where the plant Extra nitrogen fertilizer needed for decomposition. Can be a fire hazard. Apply 6-8 inches thick. Grass to apply and will not compact. Apply 3-4 inches thick. Sawdust Extra nitrogen needed. Aged sawdust is best

  5. Lunar Soil Particle Separator

    NASA Technical Reports Server (NTRS)

    Berggren, Mark

    2010-01-01

    The Lunar Soil Particle Separator (LSPS) beneficiates soil prior to in situ resource utilization (ISRU). It can improve ISRU oxygen yield by boosting the concentration of ilmenite, or other iron-oxide-bearing materials found in lunar soils, which can substantially reduce hydrogen reduction reactor size, as well as drastically decreasing the power input required for soil heating

  6. Diffusion and Leaching Behavior of Radionuclides in Category 3 Waste Encasement Concrete and Soil Fill Material – Summary Report

    SciTech Connect

    Mattigod, Shas V.; Wellman, Dawn M.; Bovaird, Chase C.; Parker, Kent E.; Clayton, Libby N.; Powers, Laura; Recknagle, Kurtis P.; Wood, Marcus I.

    2011-08-31

    One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Such concrete encasement would contain and isolate the waste packages from the hydrologic environment and would act as an intrusion barrier. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages in concrete. These concrete-encased waste stacks are expected to vary in size with maximum dimensions of 6.4 m long, 2.7 m wide, and 4 m high. The waste stacks are expected to have a surrounding minimum thickness of 15 cm of concrete encasement. These concrete-encased waste packages are expected to withstand environmental exposure (solar radiation, temperature variations, and precipitation) until an interim soil cover or permanent closure cover is installed, and to remain largely intact thereafter. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion and move into the surrounding subsurface environment. Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. The retardation factors for radionuclides contained in the waste packages can be determined from measurements of diffusion coefficients for these contaminants through concrete and fill material. Some of the mobilization scenarios include (1) potential leaching of waste form before permanent closure cover is installed; (2) after the cover installation, long-term diffusion of radionuclides from concrete waste form into surrounding fill material; (3) diffusion of radionuclides from contaminated soils into adjoining concrete encasement and clean fill material. Additionally, the rate of diffusion of radionuclides may be affected by the formation of structural cracks in concrete, the carbonation of the buried waste form, and any potential effect of metallic iron (in the form of rebars) on the mobility of radionuclides. The radionuclides iodine-129 ({sup 129}I), technetium-99 ({sup 99}Tc), and uranium-238 ({sup 238}U) are identified as long-term dose contributors in Category 3 waste (Mann et al. 2001; Wood et al. 1995). Because of their anionic nature in aqueous solutions, {sup 129}I, {sup 99}Tc, and carbonate-complexed {sup 238}U may readily leach into the subsurface environment (Serne et al. 1989, 1992a, b, 1993, and 1995). The leachability and/or diffusion of radionuclide species must be measured to assess the long-term performance of waste grouts when contacted with vadose-zone pore water or groundwater. Although significant research has been conducted on the design and performance of cementitious waste forms, the current protocol conducted to assess radionuclide stability within these waste forms has been limited to the Toxicity Characteristic Leaching Procedure, Method 1311 Federal Registry (EPA 1992) and ANSI/ANS-16.1 leach test (ANSI 1986). These tests evaluate the performance under water-saturated conditions and do not evaluate the performance of cementitious waste forms within the context of waste repositories which are located within water-deficient vadose zones. Moreover, these tests assess only the diffusion of radionuclides from concrete waste forms and neglect evaluating the mechanisms of retention, stability of the waste form, and formation of secondary phases during weathering, which may serve as long-term secondary hosts for immobilization of radionuclides. The results of recent investigations conducted under arid and semi-arid conditions (Al-Khayat et al. 2002; Garrabrants et al. 2002; Garrabrants and Kosson 2003; Garrabrants et al. 2004; Gervais et al. 2004; Sanchez et al. 2002; Sanchez et al. 2003) provide valuable information suggesting structural and chemical changes to concrete waste forms which may affect contaminant containm

  7. National Soil Information System in Turkey

    NASA Astrophysics Data System (ADS)

    Emrah Erdogan, Hakki; Sahin, Mehmet; Sahin, Yuksel

    2013-04-01

    Land consolidation (LC) represents complexity if management, legal, economic and technical procedures realized in order to adjust the land structure according to actual human preferences and needs. It includes changes in ownership rights to land and other real estate property, exchange of parcels among owners, changes in parcel borders, parcel size and shape, joining and dividing of parcels, changes in land use, construction works as roads, bridges, water changes etc.. Since the subject of LC is agricultural lands, the quality of consolidation depends on the quality of soil data. General Directorate of Agrarian Reform (GDAR) is the responsible institution on land consolidation whole of Turkey. Under GDAR, National Soil Information System (NSIS) has been build up with base soil data in relevant scale (1:5000). NSIS contain detailed information on soil chemical and physical properties, current land use, parent material, land capability class, Storie Index Values. SI were used on land consolidation, land use planning and farm development services. LCC was used for land distribution, rental land; define of village settlement, consolidation, expropriation, reconstruction, reclamation, non-agricultural usage. LCC were also specified to subclasses in four different limited factors as i) flow and erosion risk ii) requirement of drainage and soil moisture iii) Limits of soil tillage and root (shallow soils, low water retention capacity, stony, salty .etc) iv) climatic limits. In this study, digital soil survey and mapping project located in Yumurtalik, Adana is presented as an example of NSIS data structure. The project cover an area of 45709 ha that include crop lands as an area of 28528 ha and other land use (urban, roads..etc) as an area of 17181 ha. Soil profiles were described in 45 different points and totally 1279 soil samples were collected in field study and the check bore hole were made in 3170 points.

  8. A new model for humic materials and their interactions with hydrophobic organic chemicals in soil-water or sediment-water systems

    USGS Publications Warehouse

    Wershaw, R.L.

    1986-01-01

    A generalized model of humic materials in soils and sediments, which is consistent with their observed properties, is presented. This model provides a means of understanding the interaction of hydrophobic pollutants with humic materials. In this model, it is proposed that the humic materials in soils and sediments consist of a number of different oligomers and simple compounds which result from the partial degradation of plant remains. These degradation products are stabilized by incorporation into humic aggregates bound together by weak bonding mechanisms, such as hydrogen bonding, pi bonding, and hydrophobic interactions. The resulting structures are similar to micelles or membranes, in which the interiors of the structures are hydrophobic and the exteriors are hydrophilic. Hydrophobic compounds will partition into the hydrophobic interiors of the humic micelles or "membrane-like" structures. ?? 1986.

  9. Knowledge translation of the HELPinKIDS clinical practice guideline for managing childhood vaccination pain: usability and knowledge uptake of educational materials directed to new parents

    PubMed Central

    2013-01-01

    Background Although numerous evidence-based and feasible interventions are available to treat pain from childhood vaccine injections, evidence indicates that children are not benefitting from this knowledge. Unrelieved vaccination pain puts children at risk for significant long-term harms including the development of needle fears and subsequent health care avoidance behaviours. Parents report that while they want to mitigate vaccination pain in their children, they lack knowledge about how to do so. An evidence-based clinical practice guideline for managing vaccination pain was recently developed in order to address this knowledge-to-care gap. Educational tools (pamphlet and video) for parents were included to facilitate knowledge transfer at the point of care. The objectives of this study were to evaluate usability and effectiveness in terms of knowledge acquisition from the pamphlet and video in parents of newly born infants. Methods Mixed methods design. Following heuristic usability evaluation of the pamphlet and video, parents of newborn infants reviewed revised versions of both tools and participated in individual and group interviews and individual knowledge testing. The knowledge test comprised of 10 true/false questions about the effectiveness of various pain management interventions, and was administered at three time points: at baseline, after review of the pamphlet, and after review of the video. Results Three overarching themes were identified from the interviews regarding usability of these educational tools: receptivity to learning, accessibility to information, and validity of information. Parents’ performance on the knowledge test improved (p?0.001) from the baseline phase to after review of the pamphlet, and again from the pamphlet review phase to after review of the video. Conclusions Using a robust testing process, we demonstrated usability and conceptual knowledge acquisition from a parent-directed educational pamphlet and video about management of vaccination pain. Future studies are planned to determine the impact of these educational tools when introduced in clinical settings on parent behaviors during infant vaccinations. PMID:23394070

  10. Many Parents?

    NASA Astrophysics Data System (ADS)

    Maseng, Torleiv; Moxnes, John F.

    2015-06-01

    In all living species at most, two parents are needed in order to make an offspring. In this paper, we assume that N parents are needed, and we calculate the optimum N in terms of fitness using a simple probabilistic approach. The probability of finding an attractive partner is set to P. The probability that this partner gives increased fitness is set to 1- R. We show that the best number of partners is N = 2 for any value of R as long as 1/2 < P < 2/3. For P < 1/2, the most beneficial is N = 1 partner. As P increases, there exists an optimum number of partners N > 2.

  11. Soil development over millennial timescales - a comparison of soil chronosequences of different climates and lithologies

    NASA Astrophysics Data System (ADS)

    Sauer, D.; Schülli-Maurer, I.; Wagner, S.; Scarciglia, F.; Sperstad, R.; Svendgård-Stokke, S.; Sørensen, R.; Schellmann, G.

    2015-07-01

    This paper reports soil development over time in different climates, on time-scales ranging from a few thousand to several hundred thousand years. Changes in soil properties over time, underlying soil-forming processes and their rates are presented. The paper is based on six soil chronosequences, i.e. sequences of soils of different age that are supposed to have developed under the similar conditions with regard to climate, vegetation and other living organisms, relief and parent material. The six soil chronosequences are from humid-temperate, Mediterranean and semi-arid climates. They are compared with regard to soil thickness increase, changes in soil pH, formation of pedogenic iron oxides (expressed as Fed/Fet ratios), clay formation, dust influx (both reflected in clay/silt ratios), and silicate weathering and leaching of base cations(expressed as (Ca+Mg+K+Na)/Al molar ratios) over time. This comparison reveals that the increase of solum thickness with time can be best described by logarithmic equations in all three types of climates. Fed/Fet ratios (proportion of pedogeniciron Fed compared to total iron Fet) reflects the transformation of iron in primary minerals into pedogeniciron. This ratio usually increases with time, except for regions, where the influx of dust (having low Fed/Fet ratios) prevails over the process of pedogeniciron oxide formation, which is the case in the Patagonian chronosequences. Dust influx has also a substantial influence on the time courses of clay/silt ratios and on element indices of silicate weathering. Using the example of a 730 kasoil chronosequence from southern Italy, the fact that soils of long chronosequences inevitably experienced major environmental changes is demonstrated, and, consequentially a modified definition of requirements for soil chronosequences is suggested. Moreover, pedogenic thresholds, feedback systems and progressive versus regressive processes identified in the soil chronosequences are discussed.

  12. Spatial variability of available soil microelements in an ecological functional zone of Beijing.

    PubMed

    Ye, Huichun; Shen, Chongyang; Huang, Yuanfang; Huang, Wenjiang; Zhang, Shiwen; Jia, Xiaohong

    2015-02-01

    Understanding the spatial variability of soil microelements and its influencing factors is of importance for a number of applications such as scientifically formulated fertilizer and environmental protection. This study used descriptive statistics and geostatistics to investigate the spatial variability of available soil Fe, Mn, Cu, and Zn contents in agricultural topsoil (0-20 cm) in an ecological functional zone located at Yanqing County, Beijing, China. Kriging method was applied to map the spatial patterns of available soil Fe, Mn, Cu, and Zn contents. Results showed that the available soil Cu had a widest spatial correlation distance (e.g., 9.6 km), which for available soil Fe, Mn, and Zn were only 1.29, 2.58, and 0.99 km, respectively. The values of C 0/sill for available soil Fe and Zn were 0.12 and 0.11, respectively, demonstrating that the spatial heterogeneity was mainly due to structural factors. The available soil Mn and Cu had the larger values of C 0/sill (i.e., 0.50 and 0.44 for Mn and Cu, respectively), which showed a medium spatial correlation. Mapping of the spatial patterns of the four microelements showed that the decrease trend of available soil Fe and Mn were from northeast to southwest across the study area. The highest amount of available soil Cu was distributed in the middle of the study area surrounding urban region which presented as a "single island". The highest amount of available soil Zn was mainly distributed in the north and south of the study area. One-way analysis of variance for the influencing factors showed that the lithology of parental materials, soil organic matter, and pH were important factors affecting spatial variability of the available microelements. The topography only had a significant influence on the spatial variability of available soil Fe and Mn contents, parental materials, and the land use types had little influence on the spatial variability. PMID:25619696

  13. Fine-resolution multiscale mapping of clay minerals in Australian soils measured with near infrared spectra

    NASA Astrophysics Data System (ADS)

    Viscarra Rossel, R. A.

    2011-12-01

    Clay minerals are the most reactive inorganic components of soils. They help to determine soil properties and largely govern their behaviors and functions. Clay minerals also play important roles in biogeochemical cycling and interact with the environment to affect geomorphic processes such as weathering, erosion and deposition. This paper provides new spatially explicit clay mineralogy information for Australia that will help to improve our understanding of soils and their role in the functioning of landscapes and ecosystems. I measured the abundances of kaolinite, illite and smectite in Australian soils using near infrared (NIR) spectroscopy. Using a model-tree algorithm, I built rule-based models for each mineral at two depths (0-20 cm, 60-80 cm) as a function of predictors that represent the soil-forming factors (climate, parent material, relief, vegetation and time), their processes and the scales at which they vary. The results show that climate, parent material and soil type exert the largest influence on the abundance and spatial distribution of the clay minerals; relief and vegetation have more local effects. I digitally mapped each mineral on a 3 arc-second grid. The maps show the relative abundances and distributions of kaolinite, illite and smectite in Australian soils. Kaolinite occurs in a range of climates but dominates in deeply weathered soils, in soils of higher landscapes and in regions with more rain. Illite is present in varied landscapes and may be representative of colder, more arid climates, but may also be present in warmer and wetter soil environments. Smectite is often an authigenic mineral, formed from the weathering of basalt, but it also occurs on sediments and calcareous substrates. It occurs predominantly in drier climates and in landscapes with low relief. These new clay mineral maps fill a significant gap in the availability of soil mineralogical information. They provide data to for example, assist with research into soil fertility and food production, carbon sequestration, land degradation, dust and climate modeling and paleoclimatic change.

  14. Conserving Soil. Revised.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    This book of enrichment materials is an interdisciplinary study of soil designed for students in grades 6-9. The materials are presented in three units. Unit 1 contains eight activities in which students investigate soil science and study the social impact of soil by examining the history of land use by local Native Americans. Unit 2 contains 10…

  15. Soil mineral surfaces of paddy soils are accessible for organic carbon accumulation after decalcification

    NASA Astrophysics Data System (ADS)

    Wissing, Livia

    2013-04-01

    We studied organic carbon (OC) accumulation due to organo-mineral associations during soil development on calcareous parent material. Two chronosequences in Zhejiang Province, PR China, were investigated; one under paddy cultivation with a maximum soil age of 2000 years, and the other under upland crops where the oldest soil was 700 years old. Bulk soils and soil fractions of the uppermost A horizons were analyzed for OC concentrations and radio carbon contents. Total pedogenic iron (Fed) concentration was determined by dithionite extraction and the proportion of oxalate extractable iron (Feox) was extracted by using the method of Schwertmann (1964). The specific surface area (SSA) of soil minerals was measured by the BET-N2 method (Brunauer et al., 1938) under four conditions: untreated, after organic matter removal, after iron removal and after removal of both. Within 700/2000 years of pedogenesis, we observed no change in clay mineral composition and no additional formation of the SSA of soil minerals. But the soils differed in the degree of decalcification, OC accumulation and in the formation of iron. Paddy soil management led to an enhanced decalcification and larger OC accumulation. Management-induced redox cycles caused larger proportions of Feox in paddy soils. Their large SSA, added to the surface area of clay minerals, provided additional options for OC covering. Unexpectedly, there was no evidence of formation of secondary minerals during soil development, which could provide new surfaces for OC accumulation. However, the study revealed higher OC coverings of mineral surfaces after decalcification in paddy soils. As carbonate and Ca2+ ions seemed to interconnect clay minerals, making their surface accessible to OC, the faster dissolution of carbonate and leaching of Ca2+ ions in paddy soils made additional clay mineral surfaces available to OC. In contrast, the surface area of minerals in non-paddy soils, in which decalcification was much lower, seemed to be partly inaccessible for OC covering due to strong microaggregation by cementation with carbonate and Ca2+-bridging. The smaller accumulation of mineral-associated SOM in non-paddy soils was additionally confirmed by the retarded replacement of the inherited carbon. The accelerated decalcification of paddy soils led to enhanced accessibility of mineral surfaces for OC covering, which intensified OC accumulation from the early stages of soil formation onward. References Brunauer, S., Emmett, P.H., Teller, E., (1938). Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60 (2), 309-319. Schwertmann, U., 1964. Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde 105 (3), 194-202.

  16. Mercury content of Illinois soils

    USGS Publications Warehouse

    Dreher, G.B.; Follmer, L.R.

    2004-01-01

    For a survey of Illinois soils, 101 cores had been collected and analyzed to determine the current and background elemental compositions of Illinois soils. Mercury and other elements were determined in six samples per core, including a surface sample from each core. The mean mercury content in the surface samples was 33 ?? 20 ??g/kg soil, and the background content was 20 ?? 9 ??g/kg. The most probable sources of mercury in these soils were the parent material, and wet and dry deposition of Hg0 and Hg2+ derived from coal-burning power plants, other industrial plants, and medical and municipal waste incinerators. Mercury-bearing sewage sludge or other fertilizers applied to agricultural fields could have been the local sources of mercury. Although the mercury content correlated with organic carbon content or clay content in individual cores, when all the data were considered, there was no strong correlation between mercury and either the organic carbon or the clay-size content.

  17. Chinese Parenting Reconsideration: Parenting Practices in Taiwan.

    ERIC Educational Resources Information Center

    Chen, Fu-mei; Luster, Tom

    This study examined authoritative and authoritarian parenting and specific parenting practices among Chinese mothers with preschoolers. The final sample consisted of 463 mothers with their 3 to 7 year-olds from 11 preschools, in Taiwan. Mothers completed a Chinese translation of the Parenting Behavior Questionnaire that assessed their parenting

  18. Bioremediation of distillery sludge into soil-enriching material through vermicomposting with the help of Eisenia fetida.

    PubMed

    Singh, Jaswinder; Kaur, Arvinder; Vig, Adarsh Pal

    2014-10-01

    The aim of the present study was bioremediation of distillery sludge into a soil-enriching material. It was mixed with a complementary waste, cattle dung, and subjected to vermicomposting with (V) and without (T, control) Eisenia fetida in the ratio of 0:100 % (V1, T1), 10:90 (V2, T2), 25:75 (V3, T3), 50:50 (V4, T4), 75:25 (V5, T5) and 100:0 % (V6, T6), respectively. Survival rate, growth rate, onset of maturity, cocoon production and population build-up increased with increasing ratio of cattle dung. Maximum mortality of earthworm was observed in V6 mixture. On the basis of response surface design, the concentration of sludge giving highest number of worms, cocoons and hatchlings came out to be 21.11, 24.51 and 17.19 %, respectively. Nitrogen, phosphorus, sodium and pH increased during vermicomposting but decreased in the products without earthworm and there was increase in the contents of transition metals in the products of both the techniques. However, organic carbon, electrical conductivity and potassium showed an opposite trend. PMID:25113550

  19. MICHIGAN SOIL VAPOR EXTRACTION REMEDIATION (MISER) MODEL: A COMPUTER PROGRAM TO MODEL SOIL VAPORT EXTRACTION AND BIOVENTING OF ORGANIC MATERIALS IN UNSATURATED GEOLO-GICAL MATERIAL (EPA/600/SR-97/099)

    EPA Science Inventory

    Soil vapor extraction (SVE) and bioventing (BV) are proven strategies for remediation of unsaturated zone soils. Mathematical models are powerful tools that can be used to integrate and quantify the interaction of physical, chemical, and biological processes occurring in field sc...

  20. Magnetic and Geochemical Properties of Andic Soils from the Massif Central, France

    NASA Astrophysics Data System (ADS)

    Grison, H.; Petrovsky, E.; Dlouha, S.; Kapicka, A.

    2014-12-01

    Ferrimagnetic iron oxides are the key magnetic minerals responsible for enhancement of the magnetic susceptibility in soils. Soils with andic properties contain high amount of Fe-oxides, but only few attempts were made to characterize these soils using magnetic methods. Magnetic susceptibility is in particular suitable for its sensitivity and fast measurement; the presence of Fe-oxides can be easily identified directly in the field. The aim of our study is to describe main magnetic and geochemical properties of soils rich in Fe oxides derived from strongly magnetic volcanic basement. The studied sites are located at the basalt parent rock formed during Pleistocene, Pliocene and Miocene. Investigated soils are exposed to the mountainous climate with the perudic soil moisture regime and cryic temperature soil regime. Seven basalt soil profiles with typical andic properties were analyzed down to parent rock by a set of magnetic and geochemical methods. The magnetic susceptibility was measured in situ and in laboratory using the Bartington MS2D and AGICO MFK1. Its temperature dependence was measured in order to assess phase transformations of magnetic minerals using the KLY4. Magnetic data were completed by the hysteresis, IRM and DCD measurements using ADE EV9 VSM. Geochemical data include soil reaction (pH), organic carbon, cations exchange capacity, and extractable iron and aluminium in the soil extracted by a dithionite-citrate, acid-ammonium oxalate and a pyrophosphate solution. Scanning electron microscopy was done for top/sub-soil and rock samples. Geochemical soil properties reflecting iron oxide stability correlate well with mass-specific magnetic susceptibility. Well pronounced relationship was observed between magnetic grain size, precipitation and soil pH, second group is reflecting concentration of feri-magnetic particles and age of parent rock, and the third group reflects degree of weathering and the thermomagnetic indices expressing changes in magneto-mineralogy along the soil profiles. Influence of the weathering processes on all the measured parameters is discussed. Soil genesis is influenced by several factors, where the moisture is more important than the age of the parent material. Acknowledgement: This study was supported by Czech Science Foundation through grant No 13-10775S.

  1. Origin of nitrogen in reforested lignite-rich mine soils revealed by stable isotope analysis

    SciTech Connect

    Abad Chabbi; Mathieu Sebilo; Cornelia Rumpel; Wolfgang Schaaf; Andre Mariotti

    2008-04-15

    Restoration of the nitrogen cycle is an important step in the recovery of an ecosystem after open-cast mining. Carbon and nitrogen in rehabilitated lignite containing mine soils can be derived from plant material as well as from lignite inherent to the parent substrate. We assessed the use elemental and stable carbon and nitrogen isotope measurements to trace the origin of soil nitrogen and applied these techniques to elucidate the origin of mineral N in the soil and the soil solution. The conceptual approach of this study included physical fractionation in addition to sampling of vegetation and soil from a lignite-containing mine site in Lusatia rehabilitated in 1985 with Pinus Nigra. We studied the elemental and isotopic composition of bulk samples as well as isolated fractions and soil solution. Our data indicate that the stable carbon and nitrogen isotopic composition of the soil samples are the result of mixing between plant material and substrate inherent lignite. {delta}{sup 15}N isotopes may be used as indicators of nitrogen contribution from plants to solid samples as well as soil solution. N-isotope composition of ammonia shows low spatial and interannual variability, despite strong concentration changes. Plant-derived nitrogen contributes in higher amounts to the soil solution compared to the bulk mineral soil. 45 refs., 3 figs., 3 tabs.

  2. Soil moisture: Some fundamentals. [agriculture - soil mechanics

    NASA Technical Reports Server (NTRS)

    Milstead, B. W.

    1975-01-01

    A brief tutorial on soil moisture, as it applies to agriculture, is presented. Information was taken from books and papers considered freshman college level material, and is an attempt to briefly present the basic concept of soil moisture and a minimal understanding of how water interacts with soil.

  3. Geochemistry of the Paleocene-Eocene and Miocene-Pliocene clayey materials of the eastern part of the Wouri River (Douala sub-basin, Cameroon): Influence of parent rocks

    NASA Astrophysics Data System (ADS)

    Ngon Ngon, G. F.; Mbog, M. B.; Etame, J.; Ntamak-Nida, M. J.; Logmo, E. O.; Gerard, M.; Yongue-Fouateu, R.; Bilong, P.

    2014-03-01

    Major and trace element concentrations of clay deposits of the Missole II and Bomkoul respectively from the Paleocene-Eocene N'Kapa Formation and the Miocene-Pliocene-Matanda-Wouri Formation in the eastern part of the Wouri River in the Douala sub-basin of Cameroon have been investigated to identify the parent rocks. To carry out this study, X-ray diffraction, inductively coupled plasma-atomic emission spectrometry (ICP/AES) and inductively coupled plasma-mass spectrometry (ICP/MS) were performed to determine respectively the mineralogical and chemical data of Missole II and Bomkoul clayey materials. Clay sediments are essentially kaolinitic and illitic, and kaolinitic and smectitic respectively in both sites. They are generally siliceous, aluminous with small iron and bases (MgO, CaO, Na2O, and K2O) contents. Samples of Missole II profiles are more siliceous than those from the Bomkoul grey and dark grey clayey materials. Clayey materials have high Chemical Index of Alteration (CIA = 80-99.34) which suggests that they are strongly weathered under humid tropical climate before and after their deposition in the coastal plain. The value of Eu/Eu* (0.48-0.61), La/Sc (2.15-20.50), Th/Sc (0.74-2.25), Th/Co (1.08-8.33), and Cr/Th (5.24-13.55) ratios support essentially a silicic or felsic parent rocks. Total REE concentrations reflect the variations in their grain-size fractions. Chondrite-normalised REE patterns with LREE enrichment, flat HREE, and negative Eu anomaly are attributed essentially to silicic or felsic parent rocks like those from weathered materials developed from the gneisses around the coastal plain in the littoral part of Cameroon (Noa Tang et al., 2012), main characteristic of Paleocene-Eocene and Miocene-Pliocene clay sediments of Missole II and Bomkoul areas.

  4. Major element composition of glasses in three Apollo 15 soils.

    NASA Technical Reports Server (NTRS)

    Reid, A. M.; Warner, J.; Ridley, W. I.; Brown, R. W.

    1972-01-01

    Approximately 180 glasses in each of three Apollo 15 soils have been analyzed for nine elements. Cluster analysis techniques allow the recognition of preferred glass compositions that are equated with parent rock compositions. Green glass rich in Fe and Mg, poor in Al and Ti may be derived from deep-seated pyroxenitic material now present at the Apennine Front. Fra Mauro basalt (KREEP) is most abundant in the LM soil and is tentatively identified as ray material from the Aristillus-Autolycus area. Highland basalt (anorthositic gabbro), believed to be derived from the lunar highlands, has the same composition as at other landing sites, but is less abundant. The Apennine Front is probably not true highland material but may contain a substantial amount of material with the composition of Fra Mauro basalt, but lacking the high-K content.

  5. Radionuclides in soils of Byers Peninsula, South Shetland Islands, Western Antarctica.

    PubMed

    Navas, A; Soto, J; López-Martínez, J

    2005-05-01

    As a part of a broader study of the surface formations in maritime Antarctica, a preliminary survey on the content of radionuclides has been carried out in soils of Byers Peninsula, located in the western end of Livingston Island, South Shetland Islands. Data on natural and artificial radionuclides are very scarce in Antarctica and the studied soil samples can be representative of the maritime Antarctic environment. Byers Peninsula has an extensive presence of permafrost and an active layer, the studied soils being Criosols and Cryic Leptosols. A series of soil cores between 13 and 40 cm depth have been collected in different lithological and altitudinal contexts. In the southwestern sector of the peninsula, soils have been sampled in seven different sites along a transect on different geomorphological units from an upper marine platform (88 m above sea level) to a Holocene raised beach at an altitude of 24 m a.s.l. The parent materials are mainly Upper Jurassic-Lower Cretaceous marine sandstones and conglomerates and Lower Cretaceous volcanoclastic materials. Individual samples have been obtained from the cores according to textural and colour criteria and analysed for (238)U, (226)Ra, (232)Th, (40)K and (137)Cs by gamma spectrometry. Radionuclides show variations in the depth profile as well as in the different morphoedaphic environments studied. Variability in some radionuclides seems to be related to mineralogy derived from parent materials as well as with cryogenic and soil processes affecting the depth distribution of the granulometric fractions and the organic matter. PMID:15763489

  6. Soil stabilization 1982

    NASA Astrophysics Data System (ADS)

    Barenberg, E. J.; Thompson, M. R.; Tayabji, S. D.; Nussbaum, P. J.; Ciolko, A. T.

    Seven papers cover the following areas: design, construction and performance of lime, fly ash, and slag pavement; evaluation of heavily loaded cement stabilized bases; coal refuse and fly ash compositions; potential highway base course materials; lime soil mixture design considerations for soils of southeastern United States; short term active soil property changes caused by injection of lime and fly ash; soil cement for use in stream channel grade stabilization structures; and reaction products of lime treated southeastern soils.

  7. Novel approach for quantitatively estimating element retention and material balances in soil profiles of recharge basins used for wastewater reclamation.

    PubMed

    Eshel, Gil; Lin, Chunye; Banin, Amos

    2015-01-01

    We investigated changes in element content and distribution in soil profiles in a study designed to monitor the geochemical changes accruing in soil due to long-term secondary effluent recharge, and its impact on the sustainability of the Soil Aquifer Treatment (SAT) system. Since the initial elemental contents of the soils at the studied site were not available, we reconstructed them using scandium (Sc) as a conservative tracer. By using this approach, we were able to produce a mass-balance for 18 elements and evaluate the geochemical changes resulting from 19 years of effluent recharge. This approach also provides a better understanding of the role of soils as an adsorption filter for the heavy metals contained in the effluent. The soil mass balance suggests 19 years of effluent recharge cause for a significant enrichment in Cu, Cr, Ni, Zn, Mg, K, Na, S and P contents in the upper 4m of the soil profile. Combining the elements lode record during the 19 years suggest that Cr, Ni, and P inputs may not reach the groundwater (20 m deep), whereas the other elements may. Conversely, we found that 58, 60, and 30% of the initial content of Mn, Ca and Co respectively leached from the upper 2-m of the soil profile. These high percentages of Mn and Ca depletion from the basin soils may reduce the soil's ability to buffer decreases in redox potential pe and pH, respectively, which could initiate a reduction in the soil's holding capacity for heavy metals. PMID:25300016

  8. Remote Sensing of Soil Surface Texture, Carbon and Water Contents using Bare Soil Imagery

    NASA Astrophysics Data System (ADS)

    Iqbal, J.; Owens, P. R.

    2005-12-01

    Knowledge of spatial soil diversity and landscape dynamics is fundamental to understanding of global biogeochemical cycles. Remote sensing data are increasingly being used for large-scale quantification of land-based measurements such as soil texture, carbon and water content. These regional estimates of surface soil properties through remote sensing can be used as input for global biogeochemical models. The objective of this study was to explore the relationship between bare soil reflectance and surface soil texture (sand, silt, and clay), organic matter, and soil moisture. High spatial (2 m) and spectral resolution (414-920 nm) hyperspectral /multispectral aerial imageries were collected over the Mississippi Delta and Mississippi Blackland Prairie Regions. Major soils included Commerce (fine-silty, mixed, superactive, nonacid, thermic Fluvaquentic Endoaquepts), Robinsonville (coarse-loamy, mixed, superactive, nonacid, thermic Typic Udifluvents), and Convent (coarse-silty, mixed, superactive, nonacid, thermic Fluvaquentic Endoaquepts) and Brooksville (Fine, smectitic, thermic Aquic Hapluderts). Over three hundred surface soil samples were collected within the study area and analyzed for particle size analysis, organic matter, moisture and hydraulic properties. ArcView GIS was used to generate sampling locations which included random, transect, and target soil sampling. Each soil sample represented a composite of six sub-samples collected within a two meter square area. These sample sites were selected to represent the range of aspect, slope, elevation, and parent materials within the site. To reduce the dimensionality of the hyperspectral data set, PCA analysis was applied. The selected bands were used in generating the statistical relationships between spectral reflectance and surface soil properties data. Stepwise (backward & forward) and partial least square statistical methods were used to generate surface maps of soil texture, organic matter, and surface soil moisture. The multivariate analysis including partial least squares and stepwise linear regression reveal that the near infrared band (NIR950 nm) was the best predictor of percent clay (R2 = 0.683) and silt (R2 = 0.634), while the combination of Red band (RED650 nm) and Green band (Green550 nm) were the best predictors of organic matter. Surface soil moisture dynamic was highly spatially correlated with soil texture maps. Once these relationships were established, ERDAS Imagine Spatial Module was used to generate surface maps for percent clay, percent silt and percent organic matter. These final products not only could be used for management purposes but also to quantify the spatial patterns and temporal dynamics of soils and their impact on climate change.

  9. Soil development as limiting factor for shrub expansion in southwestern Greenland

    NASA Astrophysics Data System (ADS)

    Caviezel, Chatrina; Hunziker, Matthias; Zoller, Oliver; Wüthrich, Christoph; Kuhn, Nikolaus J.

    2014-05-01

    Southern Greenland currently experiences an increase in summer temperatures and a prolonged growing season (Masson-Delmotte et al. 2012), resulting in an increased shrub cover at the boreal - tundra border ecotone (Normand et al. 2013). These findings suggest the beginning of a greener Greenland in which tundra vegetation is transformed to a boreal woody flora. However, vegetation at borderline ecotones is influenced by further ecologic factors than just temperature. In this study, the ecologic conditions at a selection of sites along an elevation gradient near Igaliku in southern Greenland were examined to identify potential factors limiting the expansion of woody vegetation apart from temperature. The sites differ in elevation, topography, shrub density and soil parent material. The three study sites comprise i) well established birch shrubs growing between 50 and 180 m a.s.l., where the parent material origins from the Julianehab granite (Brooks 2012); ii) extended shrub patches at about 250 m a.s.l., where the parent material consists of Gardar Sandstones and Lavas (Brooks 2012) and iii) restricted shrub patches at an elevation of 250 m a.s.l., where the soil parent material originates from the Gardar intrusions (Brooks 2012). The extent of the shrub areas, topography and soil moisture were mapped, additionally soil samples were analyzed for C-and N-content, texture including coarse fraction and pH and used as soil development indicators. Our results show that the topographic setting regulates the existence or absence of soil while the soil parent material is an important limiting factor for soil moisture. According to these findings, we suggest that a high proportion of areas where temperature increase would allow the increase of shrub cover is not suitable for a woody flora. Brooks, Kent. 2012. "A Tale of Two Intrusions—where Familiar Rock Names No Longer Suffice." Geology Today 28 (1): 13-19. doi:10.1111/j.1365-2451.2012.00815.x. Masson-Delmotte, V., D. Swingedouw, A. Landais, M. S. Seidenkrantz, E. Gauthier, V. Bichet, C. Massa, B. Perren, V. Jomelli, and G. Adalgeirsdottir. 2012. "Greenland Climate Change: From the Past to the Future." Wiley Interdisciplinary Reviews: Climate Change. http://onlinelibrary.wiley.com/doi/10.1002/wcc.186/full. Normand, Signe, Christophe Randin, Ralf Ohlemüller, Christian Bay, Toke T. Høye, Erik D. Kjær, Christian Körner, et al. 2013. "A Greener Greenland? Climatic Potential and Long-Term Constraints on Future Expansions of Trees and Shrubs." Philosophical Transactions of the Royal Society B: Biological Sciences 368 (1624) (August 19): 20120479. doi:10.1098/rstb.2012.0479.

  10. VALIDATION OF SIGNATURE POLARLIPID FATTY ACID BIOMARKERS FOR ALKANE-UTILIZING BACTERIA IN SOILS AND SUBSURFACE AQUIFER MATERIALS

    EPA Science Inventory

    Extractable cell membrane-derived polarlipid ester-linked fatty acids (PLFA) obtained from aerated soils gassed with methane or propane and from methane-and propane-oxidizing bacteria isolated from the soils were analyzed by capiliary gas chromatography/mass spectrometry. xposure...

  11. Games in an Introductory Soil Science Course: A Novel Approach for Increasing Student Involvement with Course Material

    ERIC Educational Resources Information Center

    Sulzman, Elizabeth W.

    2004-01-01

    An optional 1-credit recitation course was developed to supplement a traditionally taught 4-credit lecture-plus-laboratory course in soil science at Oregon State University. Popular, competitive games that would be familiar to students were revised to be "soils-based" and were employed in the recitation class. These games were seen as a potential…

  12. Parental licensure.

    PubMed

    Lykken, D T

    2001-11-01

    Most of the 1,400,000 men currently locked up in American prisons would have become tax-paying neighbors had they been switched in the hospital nursery and sent home with a mature, self-supporting, married couple. The parent with whom they did go home would in most instances not have been fit to adopt someone else's baby. It is argued that perhaps the only effective way to reduce crime and the other pathologies of the growing American underclass--apart from building still more prisons--would be to require from persons wishing to birth and rear a child of their own those same minimal criteria usually expected in adoptive parents. For evolutionary reasons, human beings are reluctant to interfere with the procreational rights of any person, no matter how immature, incompetent, or unsocialized he or she might be. In consequence, human beings tend not to think about the right of the child to a reasonable opportunity for life, liberty, and the pursuit of happiness. PMID:11785157

  13. Parental Influences on Adolescent Adjustment: Parenting Styles Versus Parenting Practices

    ERIC Educational Resources Information Center

    Lee, Sang Min; Daniels, M. Harry; Kissinger, Daniel B.

    2006-01-01

    The study identified distinct patterns of parental practices that differentially influence adolescent behavior using the National Educational Longitudinal Survey (NELS:88) database. Following Brenner and Fox's research model (1999), the cluster analysis was used to classify the four types of parental practices. The clusters of parenting practices…

  14. Bacterial community composition in Brazilian Anthrosols and adjacent soils characterized using culturing and molecular identification.

    PubMed

    O'Neill, B; Grossman, J; Tsai, M T; Gomes, J E; Lehmann, J; Peterson, J; Neves, E; Thies, J E

    2009-07-01

    Microbial community composition was examined in two soil types, Anthrosols and adjacent soils, sampled from three locations in the Brazilian Amazon. The Anthrosols, also known as Amazonian dark earths, are highly fertile soils that are a legacy of pre-Columbian settlement. Both Anthrosols and adjacent soils are derived from the same parent material and subject to the same environmental conditions, including rainfall and temperature; however, the Anthrosols contain high levels of charcoal-like black carbon from which they derive their dark color. The Anthrosols typically have higher cation exchange capacity, higher pH, and higher phosphorus and calcium contents. We used culture media prepared from soil extracts to isolate bacteria unique to the two soil types and then sequenced their 16S rRNA genes to determine their phylogenetic placement. Higher numbers of culturable bacteria, by over two orders of magnitude at the deepest sampling depths, were counted in the Anthrosols. Sequences of bacteria isolated on soil extract media yielded five possible new bacterial families. Also, a higher number of families in the bacteria were represented by isolates from the deeper soil depths in the Anthrosols. Higher bacterial populations and a greater diversity of isolates were found in all of the Anthrosols, to a depth of up to 1 m, compared to adjacent soils located within 50-500 m of their associated Anthrosols. Compared to standard culture media, soil extract media revealed diverse soil microbial populations adapted to the unique biochemistry and physiological ecology of these Anthrosols. PMID:19381712

  15. Pedological and geological relationships with soil lichen and moss distribution in the eastern Mojave Desert, CA, USA

    USGS Publications Warehouse

    Belnap, Jayne; Miller, David M.; Bedford, David R.; Phillips, Susan L.

    2014-01-01

    Biological soil crusts (biocrusts) are ubiquitous in drylands globally. Lichens and mosses are essential biocrust components and provide a variety of ecosystem services, making their conservation and management of interest. Accordingly, understanding what factors are correlated with their distribution is important to land managers. We hypothesized that cover would be related to geologic and pedologic factors. We sampled 32 sites throughout the eastern Mojave Desert, stratifying by parent material and the age of the geomorphic surfaces. The cover of lichens and mosses on ‘available ground’ (L + Mav; available ground excludes ground covered by rocks or plant stems) was higher on limestone and quartzite-derived soils than granite-derived soils. Cover was also higher on moderately younger-aged geomorphic surfaces (Qya2, Qya3, Qya4) and cutbanks than on very young (Qya1), older-aged surfaces (Qia1, Qia2), or soils associated with coppice mounds or animal burrowing under Larrea tridentata. When all sites and parent materials were combined, soil texture was the most important factor predicting the occurrence of L + Mav, with cover positively associated with higher silt, very fine sand, and fine sand fractions and negatively associated with the very coarse sand fraction. When parent materials were examined separately, nutrients such as available potassium, iron, and calcium became the most important predictors of L + Mav cover.

  16. Cave-soils, the soils forming underneath the surface

    NASA Astrophysics Data System (ADS)

    Dobos, Endre; Bertóti, Diána; Kovács, Károly; Vadnai, Péter

    2015-04-01

    Limestone cave sediments of the Bükk-mountain in the North-Eastern part of Hungary were described, analysed and classified using WRB soil classification system. Cave sediments can be considered as soils, partly on the basis of their origin, partly of processes taking place in them. Based on the results, it can be concluded that cave soils are often shallow, lying directly above the continuous rock. In general they are layered, with clearly distinct layers of alluvial origin. Their organic matter content depends on the nature of the sediment. They often contain considerable quantities of undecomposed organic sediment, acting as the basis for very intensive soil life, which can be detected in the soil structure and may in some cases result in Vermic characteristics. The texture is very variable, ranging from clay to rough gravelly sand. Almost 100% of the soils are calcareous, the lime content is of secondary origin and its amount is at least 2%. Therefore, the pH values fluctuate from neutral to 8.5, mostly having a value around 8. In rare cases gley formation also occurs, especially on poorly drained areas, where there is no water flow to refresh the dissolved oxygen content. In the "oxy-aquic" state, characterized by high dissolved oxygen content, the iron is not reduced, so gley formation is not induced. From pedological point of view, cave sediments show a very diverse picture. Besides sedimentary layers, numerous soil formation processes can be detected, which can be considered analogue with surface processes, therefore they definitely need to be classified as soils. According to all these, in the Hungarian classification cave soils are primarily classified as alluvial, colluvial or lithomorphic soils. The WRB classification places them mainly in the Fluvisol and Leptosol Reference Groups, and according to the soils examined in the present work, they can be described with the Leptic (Epileptic), Fluvic (in rare cases Colluvic), Vermic, Calcaric, Eutric, Gleyic, or possibly with the Mollic or Rhodic qualifiers. Despite the relatively small number of analysed and reference samples during the mineralogical examinations, we can say that clear trends could be observed in the cave sediments. Due to the present and historical heterogeneity of the catchment area, it is difficult to associate the samples with surface soils. It could be established, however, that approximately half of the minerals in the cave soils are quartz, with ratios of 38-73% depending on the texture. Smectite-vermiculite associations were dominant in the clay mineral fraction, making up 80-90% of the whole fraction in seven of the eight samples. The only exception was the Mexikó-2 sample, where relatively fresh, unweathered, unleached illite-muscovite is mixed with intensively weathered kaolinite. The explanation for this probably comes from the different origin of the parent materials deposited on each other, either over time or during sampling. This theory needs to be confirmed by further detailed analysis. The work has been supported by "Kútf?" TÁMOP-4.2.2.-A11/1/KONV-2012-0049 project and HUSK/1001/2.1.2/0058 cross-border project. Keywords: cave sediments, soil, WRB, soil contamination, soil formation

  17. Rock and Soil Types at Pathfinder Landing Site

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Type areas of rocks and soils. (A) Dark rock type and bright soil type: Shown is the dark rock Barnacle Bill. Reflectance spectra typical of fresh basalt and APXS spectra indicating more silica-rich basaltic andesite compositions characterize this type. These rocks are typically the small boulders and intermediate-sized cobbles at the Pathfinder site. The bright soil type is very common and in this case comprises Barnacle Bill's wind tail and much of the surround soil area. This soil has a high reflectance and a strongly reddened spectrum indicative of oxidized ferric minerals. (B) Bright rock type: Shown is the bright rock Wedge. Reflectance spectra typical of weathered basalt and APXS spectra indicating basaltic compositions characterize this type. These rocks are typically larger than 1 meter in diameter and many display morphologies indicating flood deposition. (C) Pink rock type: Shown is the pink rock Scooby Doo. APXS and reflectance spectra indicate a composition and optical characteristics similar to the drift soil. However, the morphology of the pink rock type indicates a cemented or rocklike structure. This material may be a chemically cemented hardpan that underlies much of the Pathfinder site. (D) Dark soil type: The dark soil type is typically found on the windward sides of rocks or in rock-free areas like Photometry Flats (shown here) where the bright soil has been striped away by aeolian action or in open areas. Other locations include the Mermaid Dune. (E) Disturbed soil type: The darkening of disturbed soil relative to its parent material, bright soil, as a result of changes in soil texture and compaction caused by movement of the rover and retraction of the lander airbag. (F) Lamb-like soil type: This soil type shows reflectance and spectral characteristics intermediate between the bright and dark soils. Its distinguishing feature is a weak spectral absorption near 900 nanometers not seen in either the bright or dark soils.

    NOTE: original caption as published in Science Magazine

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  18. Exploring the multiplicity of soil-human interactions: organic carbon content, agro-forest landscapes and the Italian local communities.

    PubMed

    Salvati, Luca; Barone, Pier Matteo; Ferrara, Carlotta

    2015-05-01

    Topsoil organic carbon (TOC) and soil organic carbon (SOC) are fundamental in the carbon cycle influencing soil functions and attributes. Many factors have effects on soil carbon content such as climate, parent material, land topography and the human action including agriculture, which sometimes caused a severe loss in soil carbon content. This has resulted in a significant differentiation in TOC or SOC at the continental scale due to the different territorial and socioeconomic conditions. The present study proposes an exploratory data analysis assessing the relationship between the spatial distribution of soil organic carbon and selected socioeconomic attributes at the local scale in Italy with the aim to provide differentiated responses for a more sustainable use of land. A strengths, weaknesses, opportunities and threats (SWOT) analysis contributed to understand the effectiveness of local communities responses for an adequate comprehension of the role of soil as carbon sink. PMID:25903408

  19. A history of Soil Survey in England and Wales

    NASA Astrophysics Data System (ADS)

    Hallett, S.; Deeks, L.

    2012-04-01

    Early soil mapping in Britain was dominated, as in the USA, by soil texture with maps dating back to the early 1900's identifying surface texture and parent rock materials. Only in the 1920's did Dokuchaev's work in Russia involving soil morphology and the development of the soil profile start to gain popularity, drawing in the influence of climate and topography on pedogenesis. Intentions to create a formal body at this time responsible for soil survey were not implemented and progress remained slow. However, in 1939 definite steps were taken to address this and the soil survey was created. In 1947, its activities were transferred from Bangor to the research branch of the Rothamsted experimental station in Hertfordshire under Professor G.W. Robinson. Soon after, a number of regional offices were also established to act as a link with the National Agricultural Advisory Service. At this time a Pedology Department was established at Rothamsted, focussing on petrological, X-ray, spectrographic and chemical analyses. Although not a Rothamsted Department itself, the Survey did fall under the 'Lawes Agricultural Trust'. A Soil Survey Research Advisory Board was also formed to act as a liaison with the Agricultural Field Council. In Scotland by contrast, soil survey activities became centred on the Macaulay Institute in Aberdeen. Developments in the survey of British soils were accompanied in parallel by the development of soil classification systems. In 1930 a Soils Correlation Committee had been formed to ensure consistency in methods and naming of soil series and to ensure the classification was applied uniformly. In England and Wales the zonal system adopted was similar to that used in the USA, where soil series were named after the location where they were first described. American soil scientists such as Veitch and Lee provided stimulus to the development of mapping methods. In Scotland a differing classification was adopted, being similar to that used in Canada, recognising the importance of the soil drainage characteristics within areas of similar parent material. This led to the adoption of the soil catena approach and the usage of soil 'associations'. With Britain entering the Second World War in 1939, there followed the almost complete cessation of survey activities and it was only in the aftermath of that war that recruitment of surveyors could re-commence. The first Soil Survey Field Handbook was published in 1940. Systematic and formal national soil survey activities across both England and Wales can be dated back to 1947 when work commenced to provide a complete picture of the soil resources of the two countries. Mapping at 1:25,000 scale, almost half the land was covered when, in 1979, the survey received instructions, together with the Scottish survey, to complete respective national maps at 1:250,000, which were published in the early 1980s. Attention then turned again to mapping lowland areas in more detail as well as specialised and thematic maps. However, in 1987 systematic survey was terminated and staff of the Soil Survey of England and Wales disbanded to form the Soil Survey and Land Research Centre (SSLRC) at what became Cranfield University - where its successor, the National Soil Resources Institute (NSRI) operates currently.

  20. The Occurrence, Sources and Spatial Characteristics of Soil Salt and Assessment of Soil Salinization Risk in Yanqi Basin, Northwest China

    PubMed Central

    Zhaoyong, Zhang; Abuduwaili, Jilili; Yimit, Hamid

    2014-01-01

    In order to evaluate the soil salinization risk of the oases in arid land of northwest China, we chose a typical oasis-the Yanqi basin as the research area. Then, we collected soil samples from the area and made comprehensive assessment for soil salinization risk in this area. The result showed that: (1) In all soil samples, high variation was found for the amount of Ca2+ and K+, while the other soil salt properties had moderate levels of variation. (2) The land use types and the soil parent material had a significant influence on the amount of salt ions within the soil. (3) Principle component (PC) analysis determined that all the salt ion values, potential of hydrogen (pHs) and ECs fell into four PCs. Among them, PC1 (C1-, Na+, SO42-, EC, and pH) and PC2 (Ca2+, K+, Mg2+and total amount of salts) are considered to be mainly influenced by artificial sources, while PC3 and PC4 (CO3- and HCO32-) are mainly influenced by natural sources. (4) From a geo-statistical point of view, it was ascertained that the pH and soil salt ions, such as Ca2+, Mg2+ and HCO3-, had a strong spatial dependency. Meanwhile, Na+ and Cl- had only a weak spatial dependency in the soil. (5) Soil salinization indicators suggested that the entire area had a low risk of soil salinization, where the risk was mainly due to anthropogenic activities and climate variation. This study can be considered an early warning of soil salinization and alkalization in the Yanqi basin. It can also provide a reference for environmental protection policies and rational utilization of land resources in the arid region of Xinjiang, northwest China, as well as for other oases of arid regions in the world. PMID:25211240

  1. The occurrence, sources and spatial characteristics of soil salt and assessment of soil salinization risk in Yanqi basin, northwest China.

    PubMed

    Zhaoyong, Zhang; Abuduwaili, Jilili; Yimit, Hamid

    2014-01-01

    In order to evaluate the soil salinization risk of the oases in arid land of northwest China, we chose a typical oasis-the Yanqi basin as the research area. Then, we collected soil samples from the area and made comprehensive assessment for soil salinization risk in this area. The result showed that: (1) In all soil samples, high variation was found for the amount of Ca2+ and K+, while the other soil salt properties had moderate levels of variation. (2) The land use types and the soil parent material had a significant influence on the amount of salt ions within the soil. (3) Principle component (PC) analysis determined that all the salt ion values, potential of hydrogen (pHs) and ECs fell into four PCs. Among them, PC1 (C1-, Na+, SO4(2-), EC, and pH) and PC2 (Ca2+, K+, Mg2+and total amount of salts) are considered to be mainly influenced by artificial sources, while PC3 and PC4 (CO3(-) and HCO3(2-)) are mainly influenced by natural sources. (4) From a geo-statistical point of view, it was ascertained that the pH and soil salt ions, such as Ca2+, Mg2+ and HCO3(-), had a strong spatial dependency. Meanwhile, Na+ and Cl- had only a weak spatial dependency in the soil. (5) Soil salinization indicators suggested that the entire area had a low risk of soil salinization, where the risk was mainly due to anthropogenic activities and climate variation. This study can be considered an early warning of soil salinization and alkalization in the Yanqi basin. It can also provide a reference for environmental protection policies and rational utilization of land resources in the arid region of Xinjiang, northwest China, as well as for other oases of arid regions in the world. PMID:25211240

  2. Preliminary results of the North American Soil Geochemical Landscapes Project, northeast United States and Maritime Provinces of Canada

    USGS Publications Warehouse

    Grunsky, Eric C.; Smith, David B.; Friske, Peter W.B.; Woodruff, Laurel G.

    2009-01-01

    The results of a soil geochemical survey of the Canadian Maritime provinces and the northeast states of the United States are described. The data presented are for the <2-mm fraction of the surface layer (0-5 cm depth) and C horizons of the soil. Elemental determinations were made by ICP-MS following two digestions, aqua regia (partial dissolution) and a strong 4-acid mixture (near-total dissolution). The preliminary results show that Hg and Pb exhibit elevated abundances in the surface layer, while As and Ni exhibit abundances that can be attributed to the geological provenance of the soil parent materials.

  3. Parenting while Being Homeless

    ERIC Educational Resources Information Center

    Swick, Kevin J.; Williams, Reginald; Fields, Evelyn

    2014-01-01

    This article explores the dynamics of parenting while being in a homeless context. The mosaic of stressors involved in this homeless parenting process are explicated and discussed. In addition, resources and strategies that may support parenting are presented and discussed.

  4. Kawasaki Disease (For Parents)

    MedlinePLUS

    ... from Nemours for Parents for Kids for Teens Parents Home General Health Growth & Development Infections Diseases & Conditions Pregnancy & Baby Nutrition & Fitness Emotions & Behavior School & Family Life First Aid & Safety Doctors & ... Other Parents Are Reading All About Allergies First Aid: What ...

  5. Quantifying soil and critical zone variability in a forested catchment through digital soil mapping

    NASA Astrophysics Data System (ADS)

    Holleran, M.; Levi, M.; Rasmussen, C.

    2015-01-01

    Quantifying catchment-scale soil property variation yields insights into critical zone evolution and function. The objective of this study was to quantify and predict the spatial distribution of soil properties within a high-elevation forested catchment in southern Arizona, USA, using a combined set of digital soil mapping (DSM) and sampling design techniques to quantify catchment-scale soil spatial variability that would inform interpretation of soil-forming processes. The study focused on a 6 ha catchment on granitic parent materials under mixed-conifer forest, with a mean elevation of 2400 m a.s.l, mean annual temperature of 10 °C, and mean annual precipitation of ~ 85 cm yr-1. The sample design was developed using a unique combination of iterative principal component analysis (iPCA) of environmental covariates derived from remotely sensed imagery and topography, and a conditioned Latin hypercube sampling (cLHS) scheme. Samples were collected by genetic horizon from 24 soil profiles excavated to the depth of refusal and characterized for soil mineral assemblage, geochemical composition, and general soil physical and chemical properties. Soil properties were extrapolated across the entire catchment using a combination of least-squares linear regression between soil properties and selected environmental covariates, and spatial interpolation or regression residual using inverse distance weighting (IDW). Model results indicated that convergent portions of the landscape contained deeper soils, higher clay and carbon content, and greater Na mass loss relative to adjacent slopes and divergent ridgelines. The results of this study indicated that (i) the coupled application of iPCA and cLHS produced a sampling scheme that captured the greater part of catchment-scale soil variability; (ii) application of relatively simple regression models and IDW interpolation of residuals described well the variance in measured soil properties and predicted spatial correlation of soil properties to landscape structure; and (iii) at this scale of observation, 6 ha catchment, topographic covariates explained more variation in soil properties than vegetation covariates. The DSM techniques applied here provide a framework for interpreting catchment-scale variation in critical zone process and evolution. Future work will focus on coupling results from this coupled empirical-statistical approach to output from mechanistic, process-based numerical models of critical zone process and evolution.

  6. Relevant magnetic and soil parameters as potential indicators of soil conservation status of Mediterranean agroecosystems

    NASA Astrophysics Data System (ADS)

    Quijano, Laura; Chaparro, Marcos A. E.; Marié, Débora C.; Gaspar, Leticia; Navas, Ana

    2014-09-01

    The main sources of magnetic minerals in soils unaffected by anthropogenic pollution are iron oxides and hydroxides derived from parent materials through soil formation processes. Soil magnetic minerals can be used as indicators of environmental factors including soil forming processes, degree of pedogenesis, weathering processes and biological activities. In this study measurements of magnetic susceptibility are used to detect the presence and the concentration of soil magnetic minerals in topsoil and bulk samples in a small cultivated field, which forms a hydrological unit that can be considered to be representative of the rainfed agroecosystems of Mediterranean mountain environments. Additional magnetic studies such as isothermal remanent magnetization (IRM), anhysteretic remanent magnetization (ARM) and thermomagnetic measurements are used to identify and characterize the magnetic mineralogy of soil minerals. The objectives were to analyse the spatial variability of the magnetic parameters to assess whether topographic factors, soil redistribution processes, and soil properties such as soil texture, organic matter and carbonate contents analysed in this study, are related to the spatial distribution pattern of magnetic properties. The medians of mass specific magnetic susceptibility at low frequency (?lf) were 36.0 and 31.1 × 10-8 m3 kg-1 in bulk and topsoil samples respectively. High correlation coefficients were found between the ?lf in topsoil and bulk core samples (r = 0.951, p < 0.01). In addition, volumetric magnetic susceptibility was measured in situ in the field (?is) and values varied from 13.3 to 64.0 × 10-5 SI. High correlation coefficients were found between ?lf in topsoil measured in the laboratory and volumetric magnetic susceptibility field measurements (r = 0.894, p < 0.01). The results obtained from magnetic studies such as IRM, ARM and thermomagnetic measurements show the presence of magnetite, which is the predominant magnetic carrier, and hematite. The predominance of superparamagnetic minerals in upper soil layers suggests enrichment in pedogenic minerals. The finer soil particles, the organic matter content and the magnetic susceptibility values are statistically correlated and their spatial variability is related to similar physical processes. Runoff redistributes soil components including magnetic minerals and exports fine particles out the field. This research contributed to further knowledge on the application of soil magnetic properties to derive useful information on soil processes in Mediterranean cultivated soils.

  7. Genetic features of soils in the basin of Lake Kotokel, the Transbaikal region

    NASA Astrophysics Data System (ADS)

    Balsanova, L. D.; Gyninova, V. B.; Tsybikdorzhiev, Ts. Ts.; Gonchikov, B.-M. N.; Shakhmatova, E. Yu.

    2014-07-01

    The diversity of the soils and the specific features of the pedogenesis in the basin of Lake Kotokel have been studied. The specificity of the pedogenesis and soil cover patterns in the lake basin are controlled by the altitudinal zonation, the diversity of parent materials, and the influence of air masses from Lake Baikal. Gray metamorphic soils and raw-humus burozems developed under taiga vegetation in the mountains predominate in the basin of Lake Kotokel. The coastal landscapes and river valleys are occupied by swampy and meadow alluvial soils. The genetic features of the major soils have been characterized on the basis of field descriptions, laboratory data, and special macro- and micromorphological studies.

  8. A statistical approach for validating eSOTER and digital soil maps in front of traditional soil maps

    NASA Astrophysics Data System (ADS)

    Bock, Michael; Baritz, Rainer; Köthe, Rüdiger; Melms, Stephan; Günther, Susann

    2015-04-01

    During the European research project eSOTER, three different Digital Soil Maps (DSM) were developed for the pilot area Chemnitz 1:250,000 (FP7 eSOTER project, grant agreement nr. 211578). The core task of the project was to revise the SOTER method for the interpretation of soil and terrain data. It was one of the working hypothesis that eSOTER does not only provide terrain data with typical soil profiles, but that the new products actually perform like a conceptual soil map. The three eSOTER maps for the pilot area considerably differed in spatial representation and content of soil classes. In this study we compare the three eSOTER maps against existing reconnaissance soil maps keeping in mind that traditional soil maps have many subjective issues and intended bias regarding the overestimation and emphasize of certain features. Hence, a true validation of the proper representation of modeled soil maps is hardly possible; rather a statistical comparison between modeled and empirical approaches is possible. If eSOTER data represent conceptual soil maps, then different eSOTER, DSM and conventional maps from various sources and different regions could be harmonized towards consistent new data sets for large areas including the whole European continent. One of the eSOTER maps has been developed closely to the traditional SOTER method: terrain classification data (derived from SRTM DEM) were combined with lithology data (re-interpreted geological map); the corresponding terrain units were then extended with soil information: a very dense regional soil profile data set was used to define soil mapping units based on a statistical grouping of terrain units. The second map is a pure DSM map using continuous terrain parameters instead of terrain classification; radiospectrometric data were used to supplement parent material information from geology maps. The classification method Random Forest was used. The third approach predicts soil diagnostic properties based on covariates similar to DSM practices; in addition, multi-temporal MODIS data were used; the resulting soil map is the product of these diagnostic layers producing a map of soil reference groups (classified according to WRB). Because the third approach was applied to a larger test area in central Europe, and compared to the first two approaches, has worked with coarser input data, comparability is only partly fulfilled. To evaluate the usability of the three eSOTER maps, and to make a comparison among them, traditional soil maps 1:200,000 and 1:50,000 were used as reference data sets. Three statistical methods were applied: (i) in a moving window the distribution of the soil classes of each DSM product was compared to that of the soil maps by calculating the corrected coefficient of contingency, (ii) the value of predictive power for each of the eSOTER maps was determined, and (iii) the degree of consistency was derived. The latter is based on a weighting of the match of occurring class combinations via expert knowledge and recalculating the proportions of map appearance with these weights. To re-check the validation results a field study by local soil experts was conducted. The results show clearly that the first eSOTER approach based on the terrain classification / reinterpreted parent material information has the greatest similarity with traditional soil maps. The spatial differentiation offered by such an approach is well suitable to serve as a conceptual soil map. Therefore, eSOTER can be a tool for soil mappers to generate conceptual soil maps in a faster and more consistent way. This conclusion is at least valid for overview scales such as 1.250,000.

  9. Preparation for Parenting. Teacher's Instructional Guide.

    ERIC Educational Resources Information Center

    Texas Tech Univ., Lubbock. Home Economics Curriculum Center.

    This instructional guide for a one-half-credit technical laboratory course for grades 10-12 teaches parental responsibilities; child guidance techniques; positive role modeling and parenting practices that promote child development, health, safety, and well-being. Introductory materials consist of a course description; overview of course design;…

  10. Parents with Children--II. Intergenerational Continuities.

    ERIC Educational Resources Information Center

    Quinton, D.; Rutter, M.

    1984-01-01

    Studies families showing parenting difficulties and examines possible origins of those difficulties. Findings demonstrate a strong link between multiple parenting breakdown and markedly disrupted family experiences in childhood. Concludes that explanatory models based exclusively on either personal or material factors are inadequate. (RH)

  11. Can Low Water/Rock Hydrothermal Alteration of Impact Materials Explain the Rock Component of the Martian Soil?

    NASA Technical Reports Server (NTRS)

    Nelson, M. J.; Newsom, H. E.

    2003-01-01

    The martian regolith is a globally homogenized product of chemical and aeolian weathering processes. The soil is thought to consist of a rock component, with lesser amounts of mobile elements (Ca, Na, and K) than a presumed protolith, and a salt or mobile element component enriched in sulfur and chlorine. In this study we consider the contributions of hydrothermal processes to the origin of the rock component of the martian soil.

  12. Once a Parent, Always a Parent.

    ERIC Educational Resources Information Center

    Hale, Lynelle; Cottone, Ben

    The information in this pamphlet is designed to assist parents in helping their children cope with divorce or separation. Parents are urged to build a constructive life for themselves and their children and to continue to make children feel that they are loved. There are four sets of guidelines offered to parents. The first two are designed to…

  13. Effects of aqueous extract of soil-like substrate made from three different materials on seed germination and seedling growth of rice

    NASA Astrophysics Data System (ADS)

    Shao, Lingzhi; Fu, Yuming; Fu, Wenting; Yan, Min; Li, Leyuan; Liu, Hong

    2014-03-01

    Biologically processing rice and wheat straws into soil-like substrate (SLS) and then reusing them in plant cultivation system to achieve waste recycle is very crucially important in Bioregenerative life support system (BLSS). However, rice is a plant with strong allelopathic potential. It is not clear yet that what kinds of raw materials can be processed into proper SLS to grow rice in BLSS. Therefore, in this study, the aqueous extract of SLS made from three different materials including rice straw, wheat straw and rice-wheat straw mixture was utilized to investigate its effects on the seed germination and seedling growth of rice. The gradients of the extract concentrations (soil:water) were 1:3, 1:5, 1:9, and 1:15 with deionized water used as control. The effects of different types of SLS on seed germination and seedling vitality of rice were confirmed by analyzing the germination rate, seedling length, root length, the fresh weight and other indicants. In addition, based on the analysis towards pH, organic matter composition and other factors of the SLS as well as the chlorophyll, hormone content of rice, and the mechanism of the inhibition was speculated in order to explore the preventive methods of the phenomenon. Finally, the feasibility of cultivating rice on SLSs made from the raw materials mentioned above was evaluated and wheat raw was determined as the most appropriate material for growing rice.

  14. Silent play in a loud theatre - soil development in a geomorphically active proglacial area

    NASA Astrophysics Data System (ADS)

    Harlaar, Piet; Temme, Arnaud; Heckmann, Tobias

    2015-04-01

    Proglacial areas are scientifically famous for two sets of processes: first, the tumultuous geomorphic response to glacial retreat including enhanced fluvial activity and mass movements such as debris flows, rock fall and landslides. Second, the slow and somewhat regular development of soil and vegetation. These two sets of processes have usually been studied in isolation: soil development is best observed in wide, flat proglacial areas where not much geomorphic work is done. This has left questions unanswered that relate to the effect of geomorphic disturbance on high mountain soil formation, and vice versa. We attempted to characterize these interactions in the geomorphically active proglacial area of the Gepatsch Ferner in the Kaunertal in Austria. Geomorphic activity in this area is intensively studied in the PROSA project. In our study, several dozen soils were sampled in order to describe soil properties. Sampling locations were selected with Latin Hypercube sampling to best cover the variation in soil-forming factors. Results clearly showed that soil properties were not only a function of age, but also of erosion-deposition amounts and geomorphic regime. In contrast to what is reported in literature, soil pH in very young soils rose before it dropped as soils became older. The early pH rise probably reflects the leaching of pyrite in the parent material.

  15. Disruption of fragmented parent bodies as the

    E-print Network

    Richardson, Derek Charles

    of the Karin family formation. In such events, the parent body is first totally shattered by the shock wave the material strength of the rock. The size and velocity distributions of the family members provide important

  16. Magnetic properties of agricultural soil in the Pearl River Delta, South China - Spatial distribution and influencing factor analysis

    NASA Astrophysics Data System (ADS)

    Bian, Yong; Ouyang, Tingping; Zhu, Zhaoyu; Huang, Ningsheng; Wan, Hongfu; Li, Mingkun

    2014-08-01

    Environmental magnetism has been widely applied to soil science due to its speediness, non-destructiveness and cost-effectiveness. However, the magnetic investigation of agricultural soil, so closely related to human activity, is limited, most probably because of its complexity. Here we present a magnetic investigation of 301 agricultural soil samples collected from the Pearl River Delta (PRD, 112°E-115°E and 22°N-24°N), China. The results showed that both low and high coercivity magnetic minerals coexist in agricultural soil. The values of concentration-dependent parameters, low-field susceptibility (?lf), anhysteretic remanence magnetization susceptibility (?ARM), and saturation isothermal remanence magnetization (SIRM) were much higher in the PRD plain than in the surrounding areas. The S-ratio (S- 300) showed a similar spatial pattern to the aforementioned parameters. By contrast, frequency-dependent susceptibility (?fd%) and ?ARM/SIRM were higher in the surrounding hilly and mountainous areas than in the PRD plain. Natural and anthropogenic factors such as parent material, soil type and cultivation methods play important roles in determining agricultural soil magnetic properties. Magnetic minerals were coarser grained and overall indicated higher concentrations in soils from river alluvium and deposited materials. Soils which had suffered long-term water submergence have the lowest magnetic mineral concentration, a result consistent with previous studies. The magnetic properties of agricultural soils are strongly influenced by cultivation methods. Other human activities, such as industrial development and concomitant emitted pollutants, might have had an additional impact on the magnetic properties of agricultural soil.

  17. Derivation of residual radioactive material guidelines for uranium in soil at the Former Associate Aircraft Tool and Manufacturing Company Site, Fairfield, Ohio

    SciTech Connect

    Faillace, E.R.; Nimmagadda, M.; Yu, C.

    1995-01-01

    Residual radioactive material guidelines for uranium in soil were derived for the former Associate Aircraft Tool and Manufacturing Company site in Fairfield, Ohio. This site has been identified for remedial action under the U.S. Department of Energy`s (DOE`s) Formerly Utilized Sites Remedial Action Program (FUSRAP). Single-nuclide and total-uranium guidelines were derived on the basis of the requirement that, after remedial action, the 50-year committed effective dose equivalent to a hypothetical individual living or working in the immediate vicinity of the site should not exceed (1) 30 mrem/yr for the current-use and likely future-use scenarios or (2) 100 mrem/yr for less likely future-use scenarios. The DOE residual radioactive material (RESRAD) computer code, which implements the methodology described in the DOE manual for establishing residual radioactive material guidelines, was used in this evaluation.

  18. Role of Omani Parents: Fostering Emergent Literacy Skills

    ERIC Educational Resources Information Center

    Al-Qaryouti, Ibrahim A.; Kilani, Hashem A.

    2015-01-01

    The purpose of this study is to document the significance of four practices employed by parents that contribute to such development. Those practices encompassed the availability of materials, activities at home, parent attitude and visits to their child's class. Subjects consisted of 314 male and female parents of kindergarten children in the…

  19. Parent-child Interactions.

    ERIC Educational Resources Information Center

    Erlich, A. C., Ed.

    This survey investigates 6 major questions: (1) do adolescents and their parents perceive youth as overindulged; (2) are parent-child communication channels open; (3) has understanding between parents and their children broken down; (4) do children identify with their parents; (5) has discipline been permissive; and (6) do adolescents reject the…

  20. Parental Involvement. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1994

    1994-01-01

    This newsletter contains seven articles about meaningful participation by parents, particularly Hispanic and other minority parents, in the education of their children. "Parents Reclaiming Their Schools: New Initiative Brings Parents Together for Better Schools" (Aurelio M. Montemayor) describes objectives and activities of a Texas-based coalition…

  1. Children of Incarcerated Parents.

    ERIC Educational Resources Information Center

    Gabel, Katherine, Ed.; Johnston, Denise, Ed.

    The arrest and imprisonment of a parent is significant trauma for children, and children of incarcerated parents are at high risk for juvenile delinquency. This book for social workers, psychologists, and others who work with children whose parents are incarcerated examines parental incarceration, its impact on children, care and placement of…

  2. Customizing Parenting Education

    ERIC Educational Resources Information Center

    Goddard, H. Wallace; Dennis, Steven A.

    2004-01-01

    The authors of this article discuss customizing parent education which requires customized assessment. At Auburn University, Kreg Edgmon and Wally Goddard developed a parent assessment based on the National Extension Parent Education Model (NEPEM) (Smith, Cudaback, Goddard, & Myers-Walls, 1994). All items in the parent assessment were tested with…

  3. A Chance to Parent

    ERIC Educational Resources Information Center

    Yuan, Susan; Brillhart, Lindsay; Lightfoot, Elizabeth

    2012-01-01

    While parents with disabilities may face big challenges, with appropriate supports, many can be great parents. Just like other parents, they do not have to be responsible for every part of childrearing all by themselves. All parents rely on supports to help raise their children, such as day care, carpools, schools, babysitting co-ops, or advice…

  4. Meet the Parents

    ERIC Educational Resources Information Center

    Villano, Matt

    2008-01-01

    Notification tools can do more than alert the school community to an emergency. New systems are cultivating parental involvement by sending home daily reports on students' behavior, attendance, and performance. South El Monte High School's new parent notification system, a service from TeleParent, contacts parents personally by text message or…

  5. Parent Hearing Aid Experiences

    ERIC Educational Resources Information Center

    Munoz, Karen; Roberts, Mallory; Mullings, Day; Harward, Richard

    2012-01-01

    This study addresses parent experiences in obtaining and managing hearing aids for their young child. The purpose was to identify challenges parents encounter to determine what state agencies can do to improve parent access to amplification. Data were collected July through September of 2010; 40 parents of children ages birth to 3 years old…

  6. Involving Today's Parents.

    ERIC Educational Resources Information Center

    Music Educators Journal, 1992

    1992-01-01

    Presents the attempts of four teachers to get parents involved in and excited about school music. Includes a description of a school concert that included a performance by band parents; parents clubs for orchestra, band, or choral groups; newsletters; and a band class in which parents learned to play their child's instrument. (DK)

  7. Discrete Element Method (DEM) Soil simulations --liquefaction

    E-print Network

    Kuhn, Matthew R.

    Discrete Element Method (DEM) Soil simulations -- liquefaction Granular materials: Are they simple simulations -- liquefaction Granular materials: Are they simple? Outline 1 Discrete Element Method (DEM) 2 Soil simulations -- liquefaction 3 Granular materials: Are they simple? Kuhn -- January 17, 2013 http

  8. A mass-balance model to separate and quantify colloidal and solute redistributions in soil

    USGS Publications Warehouse

    Bern, C.R.; Chadwick, O.A.; Hartshorn, A.S.; Khomo, L.M.; Chorover, J.

    2011-01-01

    Studies of weathering and pedogenesis have long used calculations based upon low solubility index elements to determine mass gains and losses in open systems. One of the questions currently unanswered in these settings is the degree to which mass is transferred in solution (solutes) versus suspension (colloids). Here we show that differential mobility of the low solubility, high field strength (HFS) elements Ti and Zr can trace colloidal redistribution, and we present a model for distinguishing between mass transfer in suspension and solution. The model is tested on a well-differentiated granitic catena located in Kruger National Park, South Africa. Ti and Zr ratios from parent material, soil and colloidal material are substituted into a mixing equation to quantify colloidal movement. The results show zones of both colloid removal and augmentation along the catena. Colloidal losses of 110kgm-2 (-5% relative to parent material) are calculated for one eluviated soil profile. A downslope illuviated profile has gained 169kgm-2 (10%) colloidal material. Elemental losses by mobilization in true solution are ubiquitous across the catena, even in zones of colloidal accumulation, and range from 1418kgm-2 (-46%) for an eluviated profile to 195kgm-2 (-23%) at the bottom of the catena. Quantification of simultaneous mass transfers in solution and suspension provide greater specificity on processes within soils and across hillslopes. Additionally, because colloids include both HFS and other elements, the ability to quantify their redistribution has implications for standard calculations of soil mass balances using such index elements. ?? 2011.

  9. Excavators are used for the rapid removal of soil and other materials in mines, quarries, and construction sites.

    E-print Network

    Singh, Sanjiv

    of metals, quarrying of rock, and con- struction of highways require the rapid removal and han- dling of massive quantities of soil, ore, and rock. Typically, explosive or mechanical techniques are used of the excavation cycle with a human operator. Typically, these systems [1],[2],[8],[9], [11

  10. Reconceptualizing Parent Involvement: Parent as Accomplice or Parent as Partner?

    ERIC Educational Resources Information Center

    Stitt, Nichole M.; Brooks, Nancy J.

    2014-01-01

    Policy statements of the last two decades have directed schools to enter into partnerships with parents to enhance the social, emotional, and academic growth of their children. However, in practice and scholarship, parental involvement has been constructed as attendance to school-based activities and needs. This article draws on data from an…

  11. Landmarks of History of Soil Science in Sri Lanka

    NASA Astrophysics Data System (ADS)

    Mapa, R.

    2012-04-01

    Sri Lanka is a tropical Island in the Southern tip of Indian subcontinent positioned at 50 55' to 90 50' N latitude and 790 42' to 810 53' E longitude surrounded by the Indian Ocean. It is an island 435 km in length and 224 km width consisting of a land are of 6.56 million ha with a population of 20 million. In area wise it is ranked as 118th in the world, where at present ranked as 47 in population wise and ranked 19th in population density. The country was under colonial rule under Portuguese, Dutch and British from 1505 to 1948. The majority of the people in the past and present earn their living from activities based on land, which indicates the important of the soil resource. The objective of this paper is to describe the landmarks of the history of Soil Science to highlight the achievements and failures, which is useful to enrich our present understanding of Sri Lankan soils. The landmarks of the history of Soil Science in Sri Lanka can be divided to three phases namely, the early period (prior to 1956), the middle period (1956 to 1972) and the present period (from 1972 onwards). During the early period, detailed analytical studies of coffee and tea soils were compiled, and these gave mainly information on up-country soils which led to fertilizer recommendations based on field trials. In addition, rice and forest soils were also studied in less detail. The first classification of Sri Lankan soils and a provisional soil map based on parent material was published by Joachim in 1945 which is a major landmark of history of Soil Science in Sri Lanka. In 1959 Ponnamperuma proposed a soil classification system for wetland rice soils. From 1963 to 1968 valuable information on the land resource was collected and documented by aerial resource surveys funded by Canada-Ceylon Colombo plan aid project. This covered 18 major river basins and about 1/4th of Sri Lanka, which resulted in producing excellent soil maps and information of the areas called the Kelani Aruvi Ara and Walawe basins. The provisional soil map was updated by many other workers as Moorman and Panabokke in 1961 and 1972 using this information. The soil map produced by De Alwis and Panabokke in 1972 at a scale of 1:500,000 was the soil maps mostly used during the past years During the present era, the need for classification of Soils of Sri Lanka according to international methods was felt. A major leap forward in Soil Survey, Classification leading to development of a soil data base was initiated in 1995 with the commencement of the "SRICANSOL" project which was a twining project between the Soil Science Societies of Sri Lanka and Canada. This project is now completed with detail soil maps at a scale of 1:250,000 and soil classified according to international methods for the Wet, Intermediate and Dry zones of Sri Lanka. A digital database consisting of soil profile description and physical and chemical data is under preparation for 28, 40 and 51 benchmark sites of the Wet, Intermediate and Dry zones respectively. The emphases on studies on Soil Science in the country at present is more towards environmental conservation related to soil erosion control, reducing of pollution of soil and water bodies from nitrates, pesticide residues and heavy metal accumulation. Key words: Sri Lanka, Provisional soil map

  12. Saharan dust in Yucatan soils: Sr isotope and trace element evidence of dust inputs

    NASA Astrophysics Data System (ADS)

    Das, R.; Pett-Ridge, J. C.; D'Odorico, P.; Lawrence, D.

    2012-12-01

    Saharan dust transport is an important source of material for soil development in Caribbean islands, and may even be a larger source than the weathering of parent material on calcareous substrates in the Florida Keys and Bahamas. The Yucatan peninsula has similar soils and limestone parent materials, and receives annual Saharan dust inputs, but the importance of long-range dust transport for soil development in the region remains uncertain. Here we find evidence of Saharan dust in soils from a karst landscape in the central Yucatan peninsula using Sr isotopes, trace and rare earth element geochemistry. 87Sr/86Sr isotope ratios and trace element concentrations were measured in three soil profiles - an upland mature forest, upland secondary forest and depositional lowland (bajo) mature forest. 87Sr/86Sr isotope ratios in the upland mature and secondary forests were close to local limestone bedrock, while the bajo soil profile had higher values than local bedrock or Central American volcanic inputs, indicating the influence of Saharan dust. Trace element concentrations and rare earth element patterns in the upland mature forest and bajo profiles are more similar to values for Saharan dust and Central American volcanic sources than to local limestone bedrock. However, influence from volcanic sources would have lower 87Sr/86Sr values, indicating that Saharan dust influence is more likely. The bajo soil shows higher 87Sr/86Sr ratios and trace element concentrations compared to the upland soils, especially the secondary forest profile, indicating that soil disturbance and transport within the karst landscape influence the fate of eolian inputs and trace element geochemistry of soils in this region. Saharan dust is an important input to soil development at this location, and further work using isotopes and rare earth elements are necessary to quantify long-term dust inputs as a source material for soil development; Plot of Sr isotope ratio vs trace element (Zr/Y) ratio in three soil profiles at El Refugio, central Yucatan peninsula. Values for local limestone bedrock at El Refugio, Saharan dust and Central American volcanic sources are indicated for reference

  13. Rb-Sr isotope systematics of granitic soil chronosequence: The importance of biotite weathering

    SciTech Connect

    Blum, J.D.; Erel, Y.

    1997-08-01

    The Rb-Sr isotope systematics of bedrock, soil digests, and the cation exchange fraction of soils from a granitic glacial soil chronosequence in the Wind River Mountains, Wyoming, USA, were investigated. Six soil profiles ranging in age from 0.4 to {approximately}300 kyr were studied and revealed that the {sup 87}Sr/{sup 86}Sr ratio of exchangeable strontium in the B-horizons decreased from 0.7947 to 0.7114 with increasing soil age. Soil digests of the same samples showed much smaller variation in {sup 87}Sr/{sup 86}Sr from 0.7272 to 0.7103 and also generally decreased with increasing soil age. Elevation of the {sup 87}Sr/{sup 86}Sr ratios of Sr released by weathering over the soil digest and bedrock values results from the rapid weathering of biotite to form hydrobiotite and vermiculite in the younger soils. Biotite is estimated to weather at approximately eight times the rate of plagioclase (per gram of mineral) in the youngest soil profile and decreases to a rate of only {approximately}20% of that of plagioclase in the oldest soil. {sup 87}Rb/{sup 86}Sr ratios of the soil cation exchange fraction are estimated to be depleted by factors of up to 11 over the {sup 87}Sr/{sup 86}Sr ratios released by weathering, due to ion exchange partitioning. This study demonstrates that the {sup 87}Sr/{sup 86}Sr ratio released by weathering of crystalline rocks can deviate significantly from bedrock values, and that in soils less than {approximately}20 kyr in age which contain biotite in the soil parent material, weathering-derived {sup 87}Sr/{sup 86}Sr values can be elevated so dramatically that this factor must be considered in estimations of weathering rates based on strontium isotopes. 54 refs., 3 figs., 4 tabs.

  14. Maternal personality, parenting cognitions, and parenting practices.

    PubMed

    Bornstein, Marc H; Hahn, Chun-Shin; Haynes, O Maurice

    2011-05-01

    A community sample of 262 European American mothers of firstborn 20-month-olds completed a personality inventory and measures of parenting cognitions (knowledge, self-perceptions, and reports about behavior) and was observed in interaction with their children from which measures of parenting practices (language, sensitivity, affection, and play) were independently coded. Factor analyses of the personality inventory replicated extraction of the 5-factor model of personality (Openness, Neuroticism, Extraversion, Agreeableness, and Conscientiousness). When controlling for sociodemographic characteristics, the 5 personality factors qua variables and in patterns qua clusters related differently to diverse parenting cognitions and practices, supporting the multidimensional, modular, and specific nature of parenting. Maternal personality in the normal range, a theoretically important but empirically neglected factor in everyday parenting, has meaning in studies of parenting, child development, and family process. PMID:21443335

  15. SOIL INGESTION BY CONSTRUCTION WORKERS

    EPA Science Inventory

    Soil ingestion is a means by which toxic materials can enter the human body. Soil ingestion is considered to be a potentially important mechanism of exposure, especially for toxic substances that are concentrated in soil and dust. There are very few studies of soil ingestion in...

  16. [Morphology of soil iron oxides and its correlation with soil-forming process and forming conditions in a karst mountain].

    PubMed

    Zhang, Zhi-Wei; Zhu, Zhang-Xiong; Fu, Wa-Li; Wen, Zhi-Lin

    2012-06-01

    The quantity and morphology of iron oxides are indicators of soil forming-process and forming conditions. In order to analyze the connection between soil iron oxides and soil forming conditions and degenerative process of karst ecosystem, we have chosen 14 soil profiles on the top and middle section of Jinfo Mountain, a typical karst slope in Chongqing, China. Morphology and contents of soil iron oxides were studied by using chemical selective extraction techniques. We draw conclusions: 1) total iron (Fe(t)) is mainly controlled by parent material and lithology. Significant difference of Fe(t) content exists between soils in Top Mountain (51.49 g x kg(-1), mean value from 5 profiles) and soils at the middle sector of North Slope (86.29 g x kg(-1), mean value of 9 profiles); 2) the results show low concentration of F(d) (29.16 g x kg(-1)) and low ratio of Fe(d) to Fe(t)(35.40%) in soil clay under conditions of high elevation and low temperature on Top Mountain. In contrast, the results indicate advanced weathering and soil-forming process at middle slope sites due to high temperature; this is supported by high mean values of Fe(d) (43.92 g x kg(-1)) and ratio of Fe(d)/Fe(t) in clay (60.41%); 3) long humid climatic setting and large numbers of soil organic matter on top of the mountain result in high activation degrees (F(o)/Fe(d)) and high complexation degrees (Fe(p)/Fe(d)); mean values of them are 73.51%, 17.21% respectively, which are higher than that of soils at middle slope sites (13.06%, 0.41%); 4) after degradation or deforestation of secondary forestland (pines massoniana among bushes) at middle section of the hillslope, soil free iron oxides (Fe(d)) and total iron oxides (Fe(t)) decrease as well as soil organic carbon and clay, because of progressively increasing of soil erosion. Average contents of Fe(t) and Fe(d) in clay from 2 shrub profiles are 98.25 g x kg(-1), 50.81 g x kg(-1) respectively. However, the four tillage soils we have studied reveal lower values of Fe(t) (84.52 g x kg(-1)) and Fe(d) in clay (47.86 g x kg(-1)). Soil iron oxides are reliable indicators to estimate degeneration of karst ecosystem and karst rock desertification. PMID:22946190

  17. Variable Charge Soils: Mineralogy and Chemistry

    SciTech Connect

    Qafoku, Nik; Van Ranst, Eric; Noble, Andrew; Baert, Geert

    2003-11-01

    Soils rich in particles with amphoteric surface properties in the Oxisols, Ultisols, Alfisols, Spodosols and Andisols orders (1) are considered variable charge soils (2). The term “variable charge” is used to describe organic and inorganic soil constituents with reactive surface groups whose charge varies with pH, ionic concentration and composition of the soil solution. Such groups are the surface carboxyl, phenolic and amino functional groups of organic materials in soils, and surface hydroxyl groups of Fe and Al oxides, allophane and imogolite. The hydroxyl surface groups are also present on edges of some phyllosilicate minerals such as kaolinite, mica, and hydroxyl-interlayered vermiculite. The variable charge is developed on the surface groups as a result of adsorption or desorption of ions that are constituents of the solid phase, i.e., H+, and the adsorption or desorption of solid-unlike ions that are not constituents of the solid. Highly weathered soils usually undergo isoeletric weathering and reach a “zero net charge” stage during their development. They have a slightly acidic to acidic soil solution pH, which is close to either point of zero net charge (PZNC) (3) or point of zero salt effect (PZSE) (3). They are characterized by high abundances of minerals with a point of zero net proton charge (PZNPC) (3) at neutral and slightly basic pHs; the most important being Fe and Al oxides and allophane. Under acidic conditions, the surfaces of these minerals are net positively charged. In contrast, the surfaces of permanent charge phyllosilicates are negatively charged regardless of ambient conditions. Variable charge soils therefore, are heterogeneous charge systems. The coexistence and interactions of oppositely charged surfaces or particles confers a different pattern of physical and chemical behavior on the soil, relatively to a homogeneously charged system of temperate regions. In some variable charge soils (Oxisols and some Ultisols developed on ferromagnesian-rich parent materials) the surfaces of phyllosilicates are coated to a lesser or greater extent by amorphous or crystalline, oppositely charged nanoparticles of Fe and Al oxides. These coatings exhibit a high reactive surface area and help cementing larger particles with one another. As a result of these electrostatic interactions, stable microaggregates that are difficult to disperse are formed in variable charge soils. Most of highly weathered soils have reached the “advanced stage” of Jackson-Sherman weathering sequence that is characterized by the removal of Na, K, Ca, Mg, and Fe(II), the presence of Fe and Al polymers, and very dilute soil solutions with an ionic strength (IS) of less than 1 mmol L-1. The inter-penetration or overlapping of the diffuse double layers on oppositely charged surfaces may occur in these dilute systems. These diffuse layer interactions may affect the magnitude of the effective charge, i.e., the counter-ion charge (4). In addition, salt adsorption, which is defined as the simultaneous adsorption in equivalent amounts of the cation and anion of an electrolyte with no net release of other ions into the soil solution, appears to be a common phenomenon in these soils. They act as cation- and anion-exchangers and as salt-sorbers. The magnitude of salt adsorption depends strongly on initial IS in the soil solution and the presence in appreciable amounts of oppositely charged surfaces. Among the authors that have made illustrious contributions towards a better understanding of these fascinating soil systems are S. Matson, R.K. Schofield, van Olphen, M.E. Sumner, G.W. Thomas, G.P. Gillman, G. Uehara, B.K.G. Theng, K. Wada, N.J. Barrow, J.W. Bowden, R.J. Hunter and G. Sposito. This entry is mainly based on publications by these authors.

  18. Rare earth elements in soils from selected areas on the Island of Hawaii

    SciTech Connect

    Barnard, W.M.; Halbig, J.B.

    1985-07-01

    Fifty soil samples for the wet, windward (east) side and dry, leeward (west) side of the Island of Hawaii were analyzed for La, Ce, Sm, Eu, Yb, and Lu by neutron activation/gamma-ray spectroscopic analysis. Data on concentrations in each sample are listed and analyzed statistically for soil samples collected from the western slope of Kohala Mountain, the western coastal plain of Mauna Kea, and the Northeastern coastal plain of Maunal Loa. Rare earth element (REE) concentrations are two to six times greater in soils from the western, dry side of the island, and good statistical correlation is exhibited among the samples for pairs of individual REEs. In the organic-rich soils of the east side, correlations are poor but are markedly improved when sample weights are adjusted for weight due to organic matter and water in soil colloids. If the mean compositions of selected rock samples from the Hawaii Reference Suite are representative of the compositions of the parent materials, REEs in the soils are moderately enriched (up to two times, based on oven-dry weights). Rare earth element concentrations in the island's western soils are as much as two times greater than the mean REE values of common sedimentary rocks worldwide; however, they are well within the concentration ranges of soils of continental origin. The eastern soils tend to have less La and Ce, but similar amounts of the middle and heavy REEs.

  19. Soils of Sub-Antarctic tundras: diversity and basic chemical characteristics

    NASA Astrophysics Data System (ADS)

    Abakumov, Evgeny; Vlasov, Dmitry; Mukhametova, Nadezhda

    2014-05-01

    Antarctic peninsula is known as specific part of Antarctica, which is characterizes by humid and relatively warm climate of so-called sub Antarctic (maritime) zone. Annual precipitation and long above zero period provides the possibility of sustainable tundra's ecosystem formation. Therefore, the soil diversity of these tundra landscapes is maximal in the whole Antarctic. Moreover, the thickness of parent material debris's is also highest and achieves a 1 or 2 meters as highest. The presence of higher vascular plants Deshampsia antarctica which is considered as one of the main edificators provides the development of humus accumulation in upper solum. Penguins activity provides an intensive soil fertilization and development of plant communities with increased density. All these factors leads to formation of specific and quite diverse soil cover in sub Antarctic tundra's. These ecosystems are presented by following permafrost affected soils: Leptosols, Lithoosols, Crysols, Gleysols, Peats and Ornhitosols. Also the post Ornhitosols are widely spreaded in subantarcic ecosystems, they forms on the penguin rockeries during the plant succession development, leaching of nutrients and organic matter mineralization. "Amphibious" soils are specific for seasonal lakes, which evaporates in the end if Australian summer. These soils have specific features of bio sediments and soils as well. Soil chemical characteristic as well as organic matter features discussed in comparison with Antacrtic continental soil in presentation.

  20. The distribution of organic material and its contribution to the micro-topography of particles from wettable and water repellent soils

    NASA Astrophysics Data System (ADS)

    Bryant, Rob; Cheng, Shuying; Doerr, Stefan H.; Wright, Chris J.; Bayer, Julia V.; Williams, Rhodri P.

    2010-05-01

    Organic coatings on mineral particles will mask the physic-chemical properties of the underlying mineral surface. Surface images and force measurements obtained using atomic force microscopy (AFM) provide information about the nature of and variability in surfaces properties at the micro- to nano-scale. As AFM technology and data processing advance it is anticipated that a significant amount of information will be obtained simultaneously from individual contacts made at high frequency in non-contact or tapping mode operation. For present purposes the surfaces of model materials (smooth glass surfaces and acid-washed sand (AWS)) provide an indication of the dependency of the so-called AFM phase image on the topographic image (which is obtained synoptically). Pixel wise correlation of these images reveals how the modulation of an AFM probe is affected when topographic features are encountered. Adsorption of soil-derived humic acid (HA) or lecithin (LE), used here as an example for natural organic material, on these surfaces provides a soft and compliant, albeit partial, covering on the mineral which modifies the topography and the response of an AFM tip as it partially indents the soft regions (which contributes depth to the phase image). This produces a broadening on the data domain in the topographic/phase scatter diagram. Two dimensional classifications of these data, together with those obtained from sand particles drawn from water repellent and wettable soils, suggest that these large adsorbate molecules appear to have little preference to attach to particular topographic features or elevations. It appears that they may effectively remain on the surface at the point of initial contact. If organic adsorbates present a hydrophobic outer surface, then it seems possible that elevated features will not be immune from this and provide scope for a local, albeit, small contribution to the expression of super-hydrophobicity. It is therefore speculated here that the water repellency of a soil is the result of not only of particle surface chemistry and soil pore space geometry, but also of the micro-topography generated by organic material adsorbed on particle surfaces.

  1. Parenting support groups for parents at risk of abuse and neglect.

    PubMed

    Kline, B; Grayson, J; Mathie, V A

    1990-06-01

    In order to provide parent education groups to low income parents with few resources, an outreach program was piloted in a rural town in the Shenandoah Valley of western Virginia. The groups were located in the homes of the members and incentives such as stipends, refreshments, free babysitting, and door prizes, were used to improve attendance. Content material was presented in films, with discussion afterwards. The program proved to be successful in attracting and keeping parents involved, and resulted in parent-reported changes in child management strategies, self-esteem, and social activity. The program has been replicated 5 of the past 7 years. PMID:24264810

  2. Attributing spatial and temporal changes in soil C in the UK to environmental drivers

    NASA Astrophysics Data System (ADS)

    Thomas, Amy; Cosby, Bernard; Quin, Sam; Henrys, Pete; Robinson, David; Emmett, Bridget

    2015-04-01

    The largest terrestrial pool of carbon is found in soils. Understanding how soil C responds to drivers of change (land use and management, atmospheric deposition, climate change) and how these responses are modified by inherent soil properties is crucial if we are to manage soils more sustainably in the future. Here we attempt to attribute spatial and temporal changes in UK soil C to environmental drivers using data from the UK Countryside Survey (CS), a national soil survey across England, Scotland and Wales repeated in 1978, 1998 and 2007. A mixed model approach was used to model soil C concentration (g C kg-1) and density (t C ha-1) and their absolute changes for the time periods 1978-1998, 1998-2007 and 1978-2007 across the CS sites using a variety of explanatory variables: soil (parent material, pH, moisture, Olsen-P, Shannon Diversity Index); atmospheric deposition (nitrogen and sulphur); climate (growing degree days and rain); and land use (aggregate vegetation class). Spatially, prediction of soil C concentration was good; soil moisture, pH, vegetation class and dominant grain size were all significant predictors. Field capacity also appeared to be important; however this data was only collected for a fraction of sites. N% was also strongly related to soil C concentration and density, as would be expected due to coupling of C and N in soil OM pools. Although N may drive soil C through impact on plant productivity, this cannot be separated from correlated C and N losses with OM decomposition, and hence N was not included as a driver for modelling. Predictive power for C density is not as strong as for concentration, which may reflect nonlinear relationships not represented by the modelling approach. Temporally, change in soil C is more difficult to explain, and model predictive power was lower. Change in soil pH was important in explaining change in C concentration and density, along with change in atmospheric deposition; decrease in deposition and associated soil acidity (increase in pH) was associated with a decrease in soil C concentration and density. Change in soil moisture or rainfall was also important. Inherent soil and site properties such as soil texture, vegetation class and parent material appeared to contribute most to the prediction of soil C change through modulation of the relationship between change in soil C and change in pH. Including anthropogenic and natural drivers in models of soil C stocks and changes in the UK enables assessment of the relative importance of each across the UK CS sites, however interactions among the drivers are more difficult to disentangle. Given the statistical significance of a number of drivers and soil variables in predicting soil C stocks and changes in the UK, it is important that these continue to be measured to allow better model development and more reliable predictions of future soil C conditions.

  3. SOIL PHYSICS AND HYDROLOGY: CONDITIONERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil conditioners have been used since ancient times, even before the chemical and physical basis of conditioner effectiveness was accurately understood. Soil conditioners have included both organic and mineral materials as well as natural and synthetic materials. Examples of natural organic soil ...

  4. The mass balance of soil evolution on late Quaternary marine terraces, northern California

    NASA Technical Reports Server (NTRS)

    Merritts, Dorothy J.; Chadwick, Oliver A.; Hendricks, David M.; Brimhall, George H.; Lewis, Christopher J.

    1992-01-01

    Mass-balance interpretation of a soil chronosequence provides a means of quantifying elemental addition, removal, and transformation that occur in soils from a flight of marine terraces in northern California. Six soil profiles that range in age from several to 240,000 yr are developed in unconsolidated, sandy-marine, and eolian parent material deposited on bedrock marine platforms. Soil evolution is dominated by (1) open-system depletion of Si, Ca, Mg, K, and Na; (2) open-system enrichment of P in surface soil horizons; (3) relative immobility of Fe and Al; and (4) transformation of Fe, Si, and Al in the parent material to secondary clay minerals and sesquioxides. Net mass losses of bases and Si are generally uniform with depth and substantial, in some cases approaching 100 percent; however, the rate of loss of each element differs markedly, causing the ranking of each by relative abundance to shift with time. Loss of Si from the sand fraction by dissolution and particle-size diminution, from about 100 percent to less than 35 percent over 240 ky, mirrors a similar gain in the silt and clay size fractions. The Fe originally present in the sand fraction decreases from greater than 80 percent to less than 10 percent, whereas the amount of Fe present in the clay and crystalline oxyhydroxide fractions increases to 25 percent and 70 percent, respectively.

  5. Effect of Combustion Temperature on Soil and Soil Organic Matter Properties: A Study of Soils from the Western Elevation Transect in Central Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Araya, S. N.; Berhe, A. A.

    2014-12-01

    Fire is a common ecosystem perturbation that affects many soil physical and chemical properties and soil organic matter (SOM). We investigated the effect of combustion temperatures on the physical and chemical properties of five soils from an elevation transect that spans from 210 to 2865 m.a.s.l. along the Western slope of the Sierra Nevada. All soils formed on a granitic parent material under either oak woodland, oak/mixed-conifer forest, mixed-conifer forest or subalpine mixed-conifer forest ecosystem. Soils show significant differences in SOM content and mineralogy owing to the effects of climate on soil development. Soils from 0 to 5 cm depth were combusted in a muffle furnace at six different temperatures within major fire intensity classes (150, 250, 350, 450, 550 and 650ºC). We determined the effects of combustion temperature on aggregation; specific surface area; pH; mineralogy; cation exchange capacity; carbon (C) and nitrogen (N) content; 13C and 15N isotopic composition, and distribution within aggregate sizes; and quality of SOM through infrared spectroscopy. Among other things, we found significant reduction total C and N, accumulation of aromatic carbon functional groups, and loss of aggregation with implication to loss of protection of C as the combustion temperature increases. The findings demonstrate that most significant changes in the soils physical and chemical properties occur around 350ºC. Findings from this study are critical for estimating the amount and rate of change in C and N loss, and other essential soil properties that can be expected from topsoils exposed to different intensity fires.

  6. Geochemical evidence for African dust inputs to soils of western Atlantic islands: Barbados, the Bahamas, and Florida

    USGS Publications Warehouse

    Muhs, D.R.; Budahn, J.R.; Prospero, J.M.; Carey, S.N.

    2007-01-01

    We studied soils on high-purity limestones of Quaternary age on the western Atlantic Ocean islands of Barbados, the Florida Keys, and the Bahamas. Potential soil parent materials in this region, external to the carbonate substrate, include volcanic ash from the island of St. Vincent (near Barbados), volcanic ash from the islands of Dominica and St. Lucia (somewhat farther from Barbados), the fine-grained component of distal loess from the lower Mississippi River Valley, and wind-transported dust from Africa. These four parent materials can be differentiated using trace elements (Sc, Cr, Th, and Zr) and rare earth elements that have minimal mobility in the soil-forming environment. Barbados soils have compositions that indicate a complex derivation. Volcanic ash from the island of St. Vincent appears to have been the most important influence, but African dust is a significant contributor, and even Mississippi River valley loess may be a very minor contributor to Barbados soils. Soils on the Florida Keys and islands in the Bahamas appear to have developed mostly from African dust, but Mississippi River valley loess may be a significant contributor. Our results indicate that inputs of African dust are more important to the genesis of soils on islands in the western Atlantic Ocean than previously supposed. We hypothesize that African dust may also be a major contributor to soils on other islands of the Caribbean and to soils in northern South America, central America, Mexico, and the southeastern United States. Dust inputs to subtropical and tropical soils in this region increase both nutrient-holding capacity and nutrient status and thus may be critical in sustaining vegetation. Copyright 2007 by the American Geophysical Union.

  7. Trace element geochemistry of soils and plants in Kenyan conservation areas and implications for wildlife nutrition.

    PubMed

    Maskall, J; Thornton, I

    1991-06-01

    Trace element concentrations in soils, plants and animals in National Parks and Wildlife Reserves in Kenya are assessed using geochemical mapping techniques. Soil trace element concentrations are shown to be related to soil parent material and possibly to pedological and hydrological factors. At Lake Nakuru National Park, plant trace element concentrations vary with plant species and the geochemical conditions that influence uptake are discussed. Impala at Lake Nakuru National Park and black rhino at Solio Wildlife Reserve are shown to have a lower blood copper status than animals from other areas. The trace element status of wildlife is assessed also with respect to critical concentrations used for domestic ruminants. It is suggested that at Lake Nakuru National Park, the low soil copper content and high molybdenum content of some plants contributes to the low copper status of impala and may also influence the nutrition of other species. PMID:24202842

  8. Wildfire Ash: Chemical Composition, Ash-Soil Interactions and Environmental Impacts

    NASA Astrophysics Data System (ADS)

    Brook, Anna; Hamzi, Seham; Wittenberg, Lea

    2015-04-01

    Of the five classical factors of soil formation, climate, parent material, topography, time, organisms, and recently recognized human activity, it is the latter factor which discretely includes fire and post-burn impact. However, it is considered that soil undergoing fire just experience a temporary removal of the top organic horizon, thus slightly modified and often labeled as 'temporarily disturbed' soil or soil 'under restoration/rehabilitation'. In fact the suggested seventh factor, post-burned produced ash, can act both dependently and independently of the other soil forming factors (Levin et al., 2013; Certini 2013). They are interdependent in cases where ash influences occur on time scales similar to 'natural' soil formation (Keesstra et ai., 2014) such as changes in vegetation. On the other hand, in post-fire areas a strong dependency is expected between soil-water retention mechanism, climate and topography. Wild-land fires exert many changes on the physical, chemical, mineralogical, biological, and morphological properties of soil that, in turn, affect the soil's hydrology and nutrient flux, modifying its ability to support vegetation and resist erosion. The ash produced by forest fires is a complex mixture composed of organic and inorganic particles characterized by vary physical-chemical and morphological properties. The importance of this study is straightforwardly related to the frequency and large-scales wildfires in Mediterranean region. In fact, wildfires are major environmental and land management concern in the world, where the number and severity of wildfires has increased during the past decades (Bodi, 2013). Certini (2013) assumed that cumulatively all of the vegetated land is burned in about 31 years annually affecting 330-430 Mha (over 3% of the Earth's surface) and wide range of land cover types worldwide including forests, peatlands, shrublands and grasslands. Whereas, the fire is identified as an important factor in soil formation, the produced ash has significant and not always constructive pedological, ecological, hydrological and geomorphological effects and impacts (Shakesby, 2011). Abundant scientific information is assembled either from control fires by collecting samples before and after wildfire event, or conducting laboratory experiments exanimating data under truly isolated conditions (Lugassi et al., 2013). However, an integration and synthesis of the knowledge about ash including deeper understanding of inter-correlation between chemical, physical and morphological compounds in open post-burn environment and its possible interactions in soil formation or impact on soil composition are highly needed. The main aim of the presented study was to advance the science of soil-fire relationship by recognizing the remains ash as a new soil-forming factor, on par with the traditionally recognized factors: parent material, topography, time, climate, organisms, and recently recognized human activity as the sixth factor. This research was conducted to develop new methods to assess impacts and quantify the contributions/influences of post-fire products, mainly ash, on soil composition and soil properties in post-burned environment. We conducted several controlled experiments using 40 soil samples (typical Mediterranean Rendzina soil, pH 6.84, a grayish-brown, humus- and free calcium carbonate- rich, intra-zonal). The samples include bare soils and different types and loads of forest litter, were exposed to different temperatures (200° C, 400° C and 600° C) in a muffle furnace for 2 hours (Pereira et al. 2011) as fire temperature plays a key role in determining ash properties. The ash produced at a low temperatures (50% carbon and retains many of the structural characteristics of the parent material. At higher temperatures, the residue ash is greyish, consisted of very fine particles that preserve almost none of the original structural characteristics of the fuel (Woods and Balfour, 2008) creating gradient of layered ash with diverse physicochemical properties. The obtained post-burned soils we

  9. Maternal Personality, Parenting Cognitions, and Parenting Practices

    ERIC Educational Resources Information Center

    Bornstein, Marc H.; Hahn, Chun-Shin; Haynes, O. Maurice

    2011-01-01

    A community sample of 262 European American mothers of firstborn 20-month-olds completed a personality inventory and measures of parenting cognitions (knowledge, self-perceptions, and reports about behavior) and was observed in interaction with their children from which measures of parenting practices (language, sensitivity, affection, and play)…

  10. Parent to Parent: Giftedness with a Twist

    ERIC Educational Resources Information Center

    McGee, Christy D.

    2012-01-01

    Discovering that a child is gifted can be both exhilarating and daunting. Parents watch in amazement and awe as their 3-year-old reads a first-grade-level book flawlessly, or they might listen to their preschool child's distress over seeing a homeless person on the street. Parents observe as their 6-year-old dismantles a broken CD player and…

  11. Towards a spatially continuous parametrization of soil hydraulic properties (Invited)

    NASA Astrophysics Data System (ADS)

    Vogel, H.; Weller, U.

    2013-12-01

    There is a frowning gap between the characteristic scale at which flow and transport within soils can be understood at the level of the actual physical processes and the scale at which these processes need to be known for coupling with neighboring compartments, i.e. groundwater and atmosphere. The first one is the scale of soil profiles, the other one that of catchments and landscapes. Looking at the different disciplines from soil physics to hydrology and atmospheric sciences these different scales are absolutely well justified. The challenge to overcome the gap in between comes with the obvious need to include soil processes into large scale models of water and matter cycling within terrestrial systems. The difficulties are mainly rooted in two aspects: i) soil processes are highly non-linear which hampers any averaging when going from smaller to larger scales and ii) the omnipresent spatial heterogeneity of soil properties at the scale of a couple of meters. In this presentation we first defend the characteristic scale of soil physics, the soil profile, which should not be sacrificed just to deal with a scale deemed to be more relevant - it does not help a lot to work at the relevant scale but posing irrelevant questions. In the second part we discuss the different possibilities to transfer the local knowledge on soil profile to that of catchments and beyond. As a more specific example: how to get a map of soil hydraulic properties at a resolution of 1 meter for a region of several square kilometers. There are different avenues towards this task: One approach is to use directly measured quantities with or without geostatistical interpolation depending on the spatial density and the spatial support of the measurements. More often than not the measured quantities are proxies which are linked to the parameters of interest through empirical relations. Another approach is to make use of the available process understanding of soil formation and to predict soil properties in the context of known site conditions (topography, parent material, climate, land use,...). Both approaches have their merits, but also their drawbacks: The pure data driven approach often lacks to predict more than a single soil property and the combination of the different parameter is often unrealistic. Also, in most circumstances, it is difficult to deal with sharp boundaries due to the required interpolation. In contrast, the genetic approach, has a much higher predictive potential and describes patterns within the entire soil profile. Unfortunately the true localization of the soils can be rather different from the predicted ones and in many cases a verification lacks completely. Based on these considerations we conclude that a coupling both approaches should be the most promising to reach the ambitious goal.

  12. Parenting Stress and Parent Support Among Mothers With High and Low Education

    PubMed Central

    2015-01-01

    Current theorizing and evidence suggest that parenting stress might be greater among parents from both low and high socioeconomic positions (SEP) compared with those from intermediate levels because of material hardship among parents of low SEP and employment demands among parents of high SEP. However, little is known about how this socioeconomic variation in stress relates to the support that parents receive. This study explored whether variation in maternal parenting stress in a population sample was associated with support deficits. To obtain a clearer understanding of support deficits among mothers of high and low education, we distinguished subgroups according to mothers’ migrant and single-parent status. Participants were 5,865 mothers from the Growing Up in Scotland Study, who were interviewed when their children were 10 months old. Parenting stress was greater among mothers with either high or low education than among mothers with intermediate education, although it was highest for those with low education. Support deficits accounted for around 50% of higher stress among high- and low-educated groups. Less frequent grandparent contact mediated parenting stress among both high- and low-educated mothers, particularly migrants. Aside from this common feature, different aspects of support were relevant for high- compared with low-educated mothers. For high-educated mothers, reliance on formal childcare and less frequent support from friends mediated higher stress. Among low-educated mothers, smaller grandparent and friend networks and barriers to professional parent support mediated higher stress. Implications of differing support deficits are discussed. PMID:26192130

  13. Ca, Sr and Ba stable isotopes reveal the fate of soil nutrientsalong a tropical climosequence

    USGS Publications Warehouse

    Bullen, Thomas D.; Chadwick, Oliver A.

    2016-01-01

    Nutrient biolifting is an important pedogenic process in which plant roots obtain inorganic nutrients such as phosphorus (P) and calcium (Ca) from minerals at depth and concentrate those nutrients at the surface. Here we use soil chemistry and stable isotopes of the alkaline earth elements Ca, strontium (Sr) and barium (Ba) to test the hypothesis that biolifting of P has been an important pedogenic process across a soil climosequence developed on volcanic deposits at Kohala Mountain, Hawaii. The geochemical linkage between these elements is revealed as generally positive site-specific relationships in soil mass gains and losses, particularly for P, Ba and Ca, using the ratio of immobile elements titanium and niobium (Ti/Nb) to link individual soil samples to a restricted compositional range of the chemically and isotopically diverse volcanic parent materials. At sites where P is enriched in surface soils relative to abundances in deeper soils, the isotope compositions of exchangeable Ca, Sr and Ba in the shallowest soil horizons (< 10 cm depth) are lighter than those of the volcanic parent materials and trend toward those of plants growing on fresh volcanic deposits. In contrast the isotope composition of exchangeable Ba in deeper soil horizons (> 10 cm depth) at those sites is consistently heavier than the volcanic parent materials. The isotope compositions of exchangeable Ca and Sr trend toward heavier compositions with depth more gradually, reflecting increasing leakiness from these soils in the order Ba < Sr < Ca and downward transfer of light biocycled Ca and Sr to deeper exchange sites. Given the long-term stability of ecosystem properties at the sites where P is enriched in surface soils, a simple box model demonstrates that persistence of isotopically light exchangeable Ca, Sr and Ba in the shallowest soil horizons requires that the uptake flux to plants from those near-surface layers is less than the recycling flux returned to the surface as litterfall. This observation implicates an uptake flux from an additional source which we attribute to biolifting. We view the heavy exchangeable Ba relative to soil parent values in deeper soils at sites where P is enriched in surface soils, and indeed at all but the wettest site across the climosequence, to represent the complement of an isotopically light Ba fraction removed from these soils by plant roots consistent with the biolifting hypothesis. We further suggest that decreasing heaviness of depth-integrated exchangeable Ba in deeper soils with increasing median annual precipitation across the climosequence reflects greater reliance on shallow nutrient sources as site water balance increases. While the Ca, Sr and Ba isotopes considered together were useful in confirming an important role for nutrient biolifting across the climosequence, the Ba isotopes provided the most robust tracer of biolifting and have the greatest potential to find application as an isotopic proxy for P dynamics in soils.

  14. Project BEST-PAL (Basic Education Skills Through-Parenting Affective Learning): Level II Modules.

    ERIC Educational Resources Information Center

    Brevard Community Coll., Cocoa, FL.

    These eight learning modules were prepared for parents participating in Brevard Community College's Project BEST-PAL (Basic Education Skills Through-Parenting Affective Learning), which was designed for low socioeconomic parents who are in need of an opportunity to explore effective parenting. First, materials for the BEST-PAL volunteer sponsors…

  15. Project BEST-PAL (Basic Education Skills Through-Parenting Affective Learning): Level I Modules.

    ERIC Educational Resources Information Center

    Brevard Community Coll., Cocoa, FL.

    These eight learning modules were prepared for parents participating in Brevard Community College's Project BEST-PAL (Basic Education Skills Through-Parenting Affective Learning), which was designed for low socioeconomic parents who are in need of an opportunity to explore effective parenting. First, materials for the BEST-PAL volunteer sponsors…

  16. Diabetes Movie (For Parents)

    MedlinePLUS Videos and Cool Tools

    KidsHealth from Nemours for Parents for Kids for Teens Parents Home General Health Growth & Development Infections Diseases & Conditions Pregnancy & Baby Nutrition & Fitness Emotions & Behavior School & Family Life First Aid & ...

  17. Parenting the Gifted Adolescent.

    ERIC Educational Resources Information Center

    Parker, Marolyn; And Others

    1980-01-01

    The authors discuss difficulties in parenting gifted adolescents whose development may be strikingly uneven. Research is cited regarding fostering self confidence, task persistence, goal direction, and the acquisition of an androgynous self-concept. Democratic parenting is also discussed. (CL)

  18. When Your Parents Fight

    MedlinePLUS

    ... the Body Works Main Page When Your Parents Fight KidsHealth > Kids > Feelings > My Home & Family > When Your ... of kids. What Does It Mean When Parents Fight? Kids often worry about what it means when ...

  19. Effects of bedding materials in applied broiler litter and immobilizing agents on runoff water, soil properties, and bermudagrass growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently poultry producers in the USA have begun using different types of bedding materials in production houses. Nutrient release into the environment from applied broiler litter (BL) made with different bedding materials has not been investigated. In this greenhouse study, broiler litter (BL) wi...

  20. H-binding of size- and polarity-fractionated soil and lignite humic acids after removal of metal and ash components.

    PubMed

    Drosos, Marios; Leenheer, Jerry A; Avgeropoulos, Apostolos; Deligiannakis, Yiannis

    2014-03-01

    A fractionation technique, combining dialysis removal of metal and ash components with hydrofluoric acid and pH 10 citrate buffer followed by chromatography of dialysis permeate on XAD-8 resin at decreasing pH values, has been applied to lignite humic acid (lignite-HA) and soil humic acid (soil-HA). H-binding data and non ideal competitive adsorption-Donnan model parameters were obtained for the HA fractions by theoretical analysis of H-binding data which reveal a significant increase of the carboxyl and the phenolic charge for the lignite-HA fractions vs. the parental lignite humic acid (LParentalHA). The fractionated lignite-HA material consisted mainly of permeate fractions, some of which were fulvic acid-like. The fractionated soil-HA material consisted mainly of large macromolecular structures that did not permeate the dialysis membrane during deashing. Chargeable groups had comparable concentrations in soil-HA fractions and parental soil humic acid (SParentalHA), indicating minimal interference of ash components with carboxyl and phenolic (and/or enolic) groups. Fractionation of HA, combined with theoretical analysis of H-binding, can distinguish the supramolecular vs. macromolecular nature of fractions within the same parental HA. PMID:24297463

  1. The Teen Parent Academy

    ERIC Educational Resources Information Center

    Baptiste, H. Prentice, Jr.; Walker, Diane

    2005-01-01

    Pregnant teenagers and young parents often do not receive the quality of education available to other students. Most schools do not have a separate facility or program that deals with their special needs. Pregnant teens and teen parents should not be left behind. The Teen Parent Academy--a unique program in a predominantly Hispanic Texas border…

  2. WCPSS Parent Survey.

    ERIC Educational Resources Information Center

    Isenberg, Bob

    A study examined parents' opinions about the Wake County (Raleigh, North Carolina) public school system (WCPSS). Opinions were sought on the following areas at both the school and district level: school climate, quality of educational programs, expectations of students, school and system pride, parent involvement, and responsiveness to parent

  3. Parent's Journal. [Videotape Series].

    ERIC Educational Resources Information Center

    1999

    Parent's Journal is a set of 16 videotapes for parents of prenatal, infant, and toddler-age children, created by the Alaska Native Home Base Video Project of the Tlingit and Haida Head Start Program. This series offers culturally relevant solutions to the challenges of parenting, drawing on the life stories and experiences of capable mothers and…

  4. The Parent Loan Trap

    ERIC Educational Resources Information Center

    Wang, Marian; Supiano, Beckie; Fuller, Andrea

    2012-01-01

    As the cost of college has spiraled ever upward and median family income has fallen, the loan program, called Parent PLUS, has become indispensable for increasing numbers of parents desperate to make their children's college plans work. Last year the government disbursed $10.6-billion in Parent PLUS loans to just under a million families. Even…

  5. Surrogate Parent Handbook.

    ERIC Educational Resources Information Center

    Maine State Dept. of Education, Augusta. Div. of Special Services.

    This manual, which is designed for surrogate parents, social workers, and educational personnel working with the Maine Surrogate Parent Program, attempts to ensure that children without available parents or guardians are provided with equal educational opportunities. Individual sections address the following topics: program purpose, definitions,…

  6. Training Surrogate Parents.

    ERIC Educational Resources Information Center

    Miller, Susan A.

    The role of surrogate parents in advocating for handicapped children whose parents or guardians are unknown or unavailable, or children who are wards of the state is discussed and a surrogate parent training program in South Dakota is described. The program provides 20 hours of instruction including lecture and large group discussion, small group…

  7. Educational Surrogate Parent Manual.

    ERIC Educational Resources Information Center

    North Dakota State Dept. of Public Instruction, Bismarck.

    This manual is intended for individuals who agree to act as educational surrogate parents for children with disabilities in North Dakota. Section 1 provides an overview of the educational surrogate parent service, including surrogate parent qualifications, protections, responsibilities, confidentiality, and the surrogate's partnership with the…

  8. Parent Surrogate Handbook.

    ERIC Educational Resources Information Center

    Maryland State Dept. of Education, Baltimore. Office of Special Education.

    The manual is intended to help parent surrogates carry out their role by providing an overview of the special education decisionmaking process in Maryland. The parent surrogate is responsible for representing the child in all matters relating to identification, evaluation, educational placement, and programing. Roles of the parent surrogate are…

  9. Successful Parent Meetings.

    ERIC Educational Resources Information Center

    Foster, Suzanne M.

    1994-01-01

    Key ingredients to successful parent meetings include planning with parents and including the children; assessing parents' needs and interests; planning the details of the meeting, such as meeting place, transportation, child care arrangements, and refreshments and activities; and planning the key elements of the meeting, such as presentations and…

  10. Parenting after Infertility

    ERIC Educational Resources Information Center

    Olshansky, Ellen

    2009-01-01

    Becoming a parent after experiencing infertility can pose unique challenges to early parenthood. Parents may struggle with the normal anxiety and fatigue, as well as possible depression, that accompany new parenthood, but with added guilt or shame because of how much they wanted a child and how hard they worked to become parents. These feelings…

  11. Parents, Publishers and Reading.

    ERIC Educational Resources Information Center

    LaPlante, William

    The relationship between educational textbook publishers and parents has, in the past, been restricted to parents glancing at their children's textbooks. Now, however, as a result of a general increase of interest in education, the schools' need for parental help in the learning process, and the increased instructional focus of the media (such as…

  12. Parental Rights in Education.

    ERIC Educational Resources Information Center

    Volz, Marlin M.

    Chapter 15 in a book on school law summarizes court decisions and legislation concerning the rights of parents in the education of children. On purely educational matters, the interest of the parent normally must yield to the dominant interest of the state. Parental arguments are strongest when they can sincerely rely upon religious beliefs that…

  13. Family Problems Single Parenting

    E-print Network

    O'Toole, Alice J.

    Family Problems Single Parenting Dual Careers Anxiety Depression Parent/Child Conflict Job "Burnout Life Transition Aging Parents Unresolved Grief Marital Problems Sexual Problems Personal Concerns to assist employees who may be dealing with personal problems that affect their relationships at home

  14. Morphology and genesis of carbonate soils on the Kyle Canyon fan, Nevada, U.S.A.

    USGS Publications Warehouse

    Reheis, M.C.; Sowers, J.M.; Taylor, E.M.; McFadden, L.D.; Harden, J.W.

    1992-01-01

    The physical and chemical properties of soils formed in an arid climate on calcareous alluvium of the Kyle Canyon alluvial fan, southern Nevada, were studied in order to infer the rates and relative importance of various soil-forming processes. These studies included field and microscopic observations and analyses of thin sections, major oxides, extractable iron, and clay minerals. The results are interpreted to reflect five major pedogenic processes: (1) The calcic horizons and calcretes of Kyle Canyon soils form by precipitation of CaCO3, derived from eolian dust and alluvium, as clast coats, matrix cement, and massive layers. (2) The A and uppermost B horizons are essentially dust-derived, for they contain large amounts of detrital material not present in the alluvial parent material, and their major-oxide content is similar to that of modern dust. (3) Clay particles are translocated from A into B horizons. (4) Iron-bearing minerals in the near-surface B horizons are slowly oxidized. (5) Carbonate and aluminosilicate grains are both displaced and replaced by pedogenic CaCO3; the silica released by replacement of aluminosilicates may be locally precipitated as amorphous or opaline silica and (or) incorporated into newly formed palygorskite and sepiolite. Rates of soil development at Kyle Canyon are approximate due to uncertainties in age estimates. Some soil field properties change at rates that are similar to rates for soils formed in rhyolitic parent material near Mercury, Nevada. The rate of accumulation of CaCO3 (3-5 g m-2 yr-1) at Kyle Canyon is an order of magnitude faster than that near Mercury, but is comparable to rates calculated for soils in southern New Mexico and Utah. ?? 1992.

  15. Evaluation of a Blog Based Parent Involvement Approach by Parents

    ERIC Educational Resources Information Center

    Ozcinar, Zehra; Ekizoglu, Nihat

    2013-01-01

    Despite the well-known benefits of parent involvement in children's education, research clearly shows that it is difficult to effectively involve parents. This study aims to capture parents' views of a Blog Based Parent Involvement Approach (BPIA) designed to secure parent involvement in education by strengthening school-parent communication. Data…

  16. Parenting Beliefs, Parental Stress, and Social Support Relationships

    ERIC Educational Resources Information Center

    Respler-Herman, Melissa; Mowder, Barbara A.; Yasik, Anastasia E.; Shamah, Renee

    2012-01-01

    The present study built on prior research by examining the relationship of parental stress and social support to parenting beliefs and behaviors. A sample of 87 parents provided their views concerning the importance of parenting characteristics as well as their level of parental stress and perceived social support. These parents completed the…

  17. Personality and Parenting Style in Parents of Adolescents

    ERIC Educational Resources Information Center

    Huver, Rose M. E.; Otten, Roy; de Vries, Hein; Engels, Rutger C. M. E.

    2010-01-01

    Since parental personality traits are assumed to play a role in parenting behaviors, the current study examined the relation between parental personality and parenting style among 688 Dutch parents of adolescents in the SMILE study. The study assessed Big Five personality traits and derived parenting styles (authoritative, authoritarian,…

  18. Sulfur status and forms in some surface soils of Ghana

    SciTech Connect

    Acquaye, D.K.; Kang, B.T.

    1987-07-01

    The authors analyzed surface samples of 48 important soil series in the different ecological zones of Ghana for total S, inorganic sulfate-S, HI-reducible S, carbon-bonded S, organic C, total N, and total and organic P. Total S ranged from 44-281 ppm, organic S ranged from 37-268 ppm and sulfate-S content ranged from 3-22 ppm. Ester sulfate, calculated from HI-reducible S, ranged from 5-123 ppm, and carbon-bonded S ranged from 1-57 ppm. Total S was significantly correlated with organic C, with total N, and with organic P. The soils had average C:N, N:S, N:P, P:S, C:S, and C:N:P:S ratios of 10.7:1, 6.8:1, 11.4:1, 0.7:1, 65.7:1, and 102:10:1.0:1.5 respectively. Assessment of the data indicated that parent material, organic matter content, vegetative cover, and, to a lesser extent, pH had influenced the S status of the soils. Soils formed over Birrimian rocks and phyllite and basic rocks had higher S status than soils formed over acidic rocks, alluvium, and shales or sandstones and Tertiary sands. Forest soils had higher S status than savanna soils on account of their higher organic matter content. Incubation studies showed that, of the 48 soils, 18 resulted in net immobilization, and the rest yielded only small amounts of mineralized S (average, 2.2 ppm). Net mineralized S was weakly correlated with sulfate-S and pH, but not with total S, organic C, total N, or arylsulfatase activity. Generally, the soils showed relative low sulfate adsorption capacity (range 6-46).

  19. Teaching with Moodle in Soil Science

    NASA Astrophysics Data System (ADS)

    Roca, Núria

    2014-05-01

    Soil is a 3-dimensional body with properties that reflect the impact of climate, vegetation, fauna, man and topography on the soil's parent material over a variable time span. Therefore, soil is integral to many ecological and social systems and it holds potential solutions for many of the world's economic and scientific problems as climate change or scarcity of food and water. The teaching of Soil Science, as a natural science in its own right, requires principles that reflect the unique features and behaviour of soil and the practices of soil scientists. It could be argued that a unique set of teaching practices applies to Soil Science; however specific teaching practices are scarce in literature. The present work was triggered by the need to develop new techniques of teaching to speed up the learning process and to experiment with new methods of teaching. For such, it is necessary to adopt virtual learning environment to new learning requirements regarding Soil Science. This paper proposes a set of e-teaching techniques (as questionnaires, chats as well as forums) introduced in Moodle virtual learning Environment in order to increase student motivation and interest in Soil Science. Such technologies can be used to: a)Increase the amount of time a teacher allots for student reflection after asking a question and before a student responds (wait-time). This practice increases the quantity and quality of students' answers. The students give longer responses, students give more evidence for their ideas and conclusions, students speculate and hypothesize more and more students participated in responding. Furthermore, students ask more questions and talk more to other students. b)Improve active learning, an essential paradigm in education. In contrast to learning-before-doing, we propose to focus on learning-in-doing, a model where learners are increasingly involved in the authentic practices of communities through learning conversations and activities involving expert practitioners, educators and peers. c)Introduce the specific specialised technical language (jargon) gradually. The excessive use of Soil Science jargon confuses students and frequently put obstacles in the way of learning. d)Encourage the students to take responsibility for their learning, continuous assessment with direct error correction and content feedback and peer review with comments sent to forum. The student interest to learn using e-project is clearly strong.

  20. Contrasting soils and landscapes of the Piedmont and Coastal Plain, eastern United States

    USGS Publications Warehouse

    Markewich, H.W.; Pavich, M.J.; Buell, G.R.

    1990-01-01

    The Piedmont and Coastal Plain physiographic provinces comprise 80 percent of the Atlantic Coastal states from New Jersey to Georgia. The provinces are climatically similar. The soil moisture regime is udic. The soil temperature regime is typically thermic from Virginia through Georgia, although it is mesic at altitudes above 400 m in Georgia and above 320 m in Virginia. The soil temperature regime is mesic for the Piedmont and Coastal Plain from Maryland through New Jersey. The tightly folded, structurally complex crystalline rocks of the Piedmont and the gently dipping "layer-cake" clastic sedimentary rocks and sediments of the Coastal Plain respond differently to weathering, pedogenesis, and erosion. The different responses result in two physiographically contrasting terrains; each has distinctive near-surface hydrology, regolith, drainage morphology, and morphometry. The Piedmont is predominantly an erosional terrain. Interfluves are as narrow as 0.5 to 2 km, and are convex upward. Valleys are as narrow as 0.1 to 0.5 km and generally V-shaped in cross section. Alluvial terraces are rare and discontinuous. Soils in the Piedmont are typically less than 1 m thick, have less sand and more clay than Coastal Plain soils, and generally have not developed sandy epipedons. Infiltration rates for Piedmont soils are low at 6-15 cm/h. The soil/saprolite, soil/rock, and saprolite/rock boundaries are distinct (can be placed within 10 cm) and are characterized by ponding and/or lateral movement of water. Water movement through soil into saprolite, and from saprolite into rock, is along joints, foliation, bedding planes and faults. Soils and isotopic data indicate residence times consistent with a Pleistocene age for most Piedmont soils. The Coastal Plain is both an erosional and a constructional terrain. Interfluves commonly are broader than 2 km and are flat. Valleys are commonly as wide as 1 km to greater than 10 km, and contain numerous alluvial and estuarine terrace sequences that can be correlated along valleys for tens of kilometers. Coastal Plain soils are typically as thick as 2 to 8 m, have high sand content throughout, and have sandy epipedons. These epipedons consist of both A and E horizons and are 1 to 4 m thick. In Coastal Plain soils, the boundaries are transitional between the solum and the underlying parent material and between weathered and unweathered parent material. Infiltration rates for Coastal Plain soils are typically higher at 13-28 cm/h, than are those for Piedmont soils. Indeed, for unconsolidated quartz sand, rates may exceed 50 cm/h. Water moves directly from the soil into the parent material through intergranularpores with only minor channelization along macropores, joints, and fractures. The comparatively high infiltration capacity results in relatively low surface runoff, and correspondingly less erosion than on the Piedmont uplands. Due to differences in Piedmont and Coastal Plain erosion rates, topographic inversion is common along the Fall Zone; surfaces on Cenozoic sedimentary deposits of the Coastal Plain are higher than erosional surfaces on regolith weathered from late Precambrian to early Paleozoic crystalline rocks of the Piedmont. Isotopic, paleontologic, and soil data indicate that Coastal Plain surficial deposits are post-middle Miocene to Holocene in age, but most are from 5 to 2 Ma. Thus, the relatively uneroded surfaces comprise a Pliocene landscape. In the eastern third of the Coastal Plain, deposits that are less than 3.5 Ma include alluvial terraces, marine terraces and barrier/back-barrier complexes as morphostratigraphic units that cover thousands of square kilometers. Isotopic and soil data indicate that eastern Piedmont soils range from late Pliocene to Pleistocene in age, but are predominantly less than 2 Ma old. Thus, the eroded uplands of the Piedmont "peneplain" comprise a Pleistocene landscape. ?? 1990.

  1. In-situ vitrification of soil

    DOEpatents

    Brouns, Richard A. (Kennewick, WA); Buelt, James L. (Richland, WA); Bonner, William F. (Richland, WA)

    1983-01-01

    A method of vitrifying soil at or below a soil surface location. Two or more conductive electrodes are inserted into the soil for heating of the soil mass between them to a temperature above its melting temperature. Materials in the soil, such as buried waste, can thereby be effectively immobilized.

  2. Morphological and chemical properties of soils on the eastern shore of Lake Bulukhta, northern Caspian region

    NASA Astrophysics Data System (ADS)

    Shabanova, N. P.; Kolesnikov, A. V.; Bykov, A. V.

    2015-08-01

    Morphological and chemical properties of soils in a soil catena crossing the eastern coast of salt Bulukhta Lake in the northern part of the Caspian region were studied. The catena included different kinds of solonetzes and solonchaks occupying the lake bottom. The morphogenetic and analytical study of the soils made it possible to judge the intensity of the major soil-forming processes on different elements of the local topography. It was shown that the intensity of humus accumulation increases from the autonomous eluvial positions towards the accumulative positions and decreases in the superaqual landscape, where the accumulation of organic matter is limited by the high soil salinity and by the washout of humified material from the shore into the lake. In the transitional and accumulative positions of the catena with saline parent materials, the upper soil horizons are subjected to desalinization owing to the additional water inflow and transformation of surface runoff into subsurface water flows along zoogenic pores. A comparative analysis of the seasonal dynamics of the level, salinity, and chemical composition of groundwater under the soils of the catena was performed. It demonstrated that the dynamics of the groundwater level and salinity in the geochemically subordinate positions depend on the hydrological regime of the lake, which, in turn, is controlled by the amount and seasonal distribution of precipitation.

  3. Estonian soil classification as a tool for recording information on soil cover and its matching with local site types, plant covers and humus forms classifications

    NASA Astrophysics Data System (ADS)

    Kõlli, Raimo; Tõnutare, Tõnu; Rannik, Kaire; Krebstein, Kadri

    2015-04-01

    Estonian soil classification (ESC) has been used successfully during more than half of century in soil survey, teaching of soil science, generalization of soil databases, arrangement of soils sustainable management and others. The Estonian normally developed (postlithogenic) mineral soils (form 72.4% from total area) are characterized by mean of genetic-functional schema, where the pedo-ecological position of soils (ie. location among other soils) is given by means of three scalars: (i) 8 stage lithic-genetic scalar (from rendzina to podzols) separates soils each from other by parent material, lithic properties, calcareousness, character of soil processes and others, (ii) 6 stage moisture and aeration conditions scalar (from aridic or well aerated to permanently wet or reductic conditions), and (iii) 2-3 stage soil development scalar, which characterizes the intensity of soil forming processes (accumulation of humus, podzolization). The organic soils pedo-ecological schema, which links with histic postlithogenic soils, is elaborated for characterizing of peatlands superficial mantle (form 23.7% from whole soil cover). The position each peat soil species among others on this organic (peat) soil matrix schema is determined by mean of 3 scalars: (i) peat thickness, (ii) type of paludification or peat forming peculiarities, and (iii) stage of peat decomposition or peat type. On the matrix of abnormally developed (synlithogenic) soils (all together 3.9%) the soil species are positioned (i) by proceeding in actual time geological processes as erosion, fluvial processes (at vicinity of rivers, lakes or sea) or transforming by anthropogenic and technological processes, and (ii) by 7 stage moisture conditions (from aridic to subaqual) of soils. The most important functions of soil cover are: (i) being a suitable environment for plant productivity; (ii) forming adequate conditions for decomposition, transformation and conversion of falling litter (characterized by humus cover type); (iii) being compartment for deposition of humus, individual organic compounds, plant nutrition elements, air and water, and (iv) forming (bio)chemically variegated active space for soil type specific edaphon. For studying of ESC matching with others ecosystem compartments classifications the comparative analysis of corresponding classification schemas was done. It may be concluded that forest and natural grasslands site types as well the plant associations of forests and grasslands correlate (match) well with ESC and therefore these compartments may be adequately expressed on soil cover matrixes. Special interest merits humus cover (in many countries known as humus form), which is by the issue natural body between plant and soil or plant cover and soil cover. The humus cover, which lied on superficial part of soil cover, has been formed by functional interrelationships of plants and soils, reflects very well the local pedo-ecological conditions (both productivity and decomposition cycles) and, therefore, the humus cover types are good indicators for characterizing of local pedo-ecological conditions. The classification of humus covers (humus forms) should be bound with soil classifications. It is important to develop a pedocentric approach in treating of fabric and functioning of natural and agro-ecosystems. Such, based on soil properties, ecosystem approach to management and protection natural resources is highly recommended at least in temperate climatic regions. The sound matching of soil and plant cover is of decisive importance for sustainable functioning of ecosystem and in attaining a good environmental status of the area.

  4. A Reexamination of Amino Acids in Lunar Soils: Implications for the Survival of Exogenous Organic Material During Impact Delivery

    NASA Technical Reports Server (NTRS)

    Brinton, Karen L. F.; Bada, Jeffrey L.

    1996-01-01

    Using a sensitive high performance liquid chromatography technique, we have analyzed both the hot water extract and the acid hydrolyzed hot water extract of lunar soil collected during the Apollo 17 mission. Both free amino acids and those derived from acid labile precursors are present at a level of roughly 15 ppb. Based on the D/L amino acid ratios, the free alanine and aspartic acid observed in the hot water extract can be entirely attributed to terrestrial biogenic contamination. However, in the acid labile fraction, precursors which yield amino acids are apparently present in the lunar soil. The amino acid distribution suggests that the precursor is probably solar wind implanted HCN. We have evaluated our results with regard to the meteoritic input of intact organic compounds to the moon based on an upper limit of less than or equal to 0.3 ppb for alpha-aminoisobutyric acid, a non-protein amino acid which does not generally occur in terrestrial organisms and which is not a major amino acid produced from HCN, but which is a predominant amino acid in many carbonaceous chondrites. We find that the survival of exogenous organic compounds during lunar impact is less than or equal to 0.8%. This result represents an example of minimum organic impact survivability. This is an important first step toward a better understanding of similar processes on Earth and on Mars, and their possible contribution to the budget of prebiotic organic compounds on the primitive Earth.

  5. Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies.

    PubMed

    Taberlet, Pierre; Prud'Homme, Sophie M; Campione, Etienne; Roy, Julien; Miquel, Christian; Shehzad, Wasim; Gielly, Ludovic; Rioux, Delphine; Choler, Philippe; Clément, Jean-Christophe; Melodelima, Christelle; Pompanon, François; Coissac, Eric

    2012-04-01

    DNA metabarcoding refers to the DNA-based identification of multiple species from a single complex and degraded environmental sample. We developed new sampling and extraction protocols suitable for DNA metabarcoding analyses targeting soil extracellular DNA. The proposed sampling protocol has been designed to reduce, as much as possible, the influence of local heterogeneity by processing a large amount of soil resulting from the mixing of many different cores. The DNA extraction is based on the use of saturated phosphate buffer. The sampling and extraction protocols were validated first by analysing plant DNA from a set of 12 plots corresponding to four plant communities in alpine meadows, and, second, by conducting pilot experiments on fungi and earthworms. The results of the validation experiments clearly demonstrated that sound biological information can be retrieved when following these sampling and extraction procedures. Such a protocol can be implemented at any time of the year without any preliminary knowledge of specific types of organisms during the sampling. It offers the opportunity to analyse all groups of organisms using a single sampling/extraction procedure and opens the possibility to fully standardize biodiversity surveys. PMID:22300434

  6. A reexamination of amino acids in lunar soils: implications for the survival of exogenous organic material during impact delivery.

    PubMed

    Brinton, K L; Bada, J L

    1996-01-01

    Using a sensitive high performance liquid chromatography technique, we have analyzed both the hot water extract and the acid hydrolyzed hot water extract of lunar soil collected during the Apollo 17 mission. Both free amino acids and those derived from acid labile precursors are present at a level of roughly 15 ppb. Based on the D/L amino acid ratios, the free alanine and aspartic acid observed in the hot water extract can be entirely attributed to terrestrial biogenic contamination. However, in the acid labile fraction, precursors which yield amino acids are apparently present in the lunar soil. The amino acid distribution suggests that the precursor is probably solar wind implanted HCN. We have evaluated our results with regard to the meteoritic input of intact organic compounds to the moon based on an upper limit of < or = 0.3 ppb for alpha-aminoisobutyric acid, a non-protein amino acid which does not generally occur in terrestrial organisms and which is not a major amino acid produced from HCN, but which is a predominant amino acid in many carbonaceous chondrites. We find that the survival of exogenous organic compounds during lunar impact is < or = 0.8%. This result represents an example of minimum organic impact survivability. This is an important first step toward a better understanding of similar processes on Earth and on Mars, and their possible contribution to the budget of prebiotic organic compounds on the primitive Earth. PMID:11541128

  7. Do reclamation speed up recovery of soil and soil biota on post mining sites along climatic gradient across continental USA?

    NASA Astrophysics Data System (ADS)

    Frouz, Jan

    2015-04-01

    Soil biota community (macrofauna, nematodes and microbial community studied by PLFA) was studied together with soil development in post-mining chronosequences along climatic gradient in the USA, covering hardwood forest (TN, IN), tallgrass prairie (IL), or shortgrass prairie (WY). Post mining sites reclaimed according recent regulation which includes topsoil application and vegetation establishment were compared to local climax. Both young and old restoration sites were much closer to the climax condition in shortgrass prairie than in the other sites. The shortgrass prairie soil community contained abundant root-feeding organisms, which may establish quicker than the saprophagous fauna that was abundant at the other sites. Absence of saprophagous groups, and especially earthworms, resulted in the absence of bioturbation in shortgrass prairie sites while in chronosequences other than the one in shortgrass prairie, bioturbation played an important role in topsoil formation resulting in more complex soil profile development compare to shortgrass prairie. This may contribute to faster recovery communities in shortgrass prairie in comparison with tallgrass prairie and forest as At the same time sites that were reclaimed according recent regulation (topsoil application and vegetation establishment) were compare to unreclaimed sites both about 30 years old in TN IL and WY. It TN soil and soil biota seems to approach fasted to climax in unreclaimed than reclaimed sites. In IL this differences between reclaimed and unreclaimed sites was not so clear. While in WY reclaimed sites seems to approach to climax community fasted than unreclaimed one. This suggests that effect of reclamation vary along climatic gradient. In drier sites, formation of soil matrix from parent material is probably much slower and topsoil application speed up soil community recovery substantially while this effect is less pronounces in more wet sites, where soil compaction due to restoration may in some cases even slow recovery.

  8. Parenting a child with autism in India: narratives before and after a parent-child intervention program.

    PubMed

    Brezis, Rachel S; Weisner, Thomas S; Daley, Tamara C; Singhal, Nidhi; Barua, Merry; Chollera, Shreya P

    2015-06-01

    In many low and middle income countries where autism-related resources are scarce, interventions must rely on family and parents. A 3-month Parent-Child Training Program (PCTP) at Action For Autism, New Delhi, India is aimed at empowering and educating parents, encouraging acceptance of their child, and decreasing parent stress. Forty couples were asked to describe their child with autism using the Five Minute Speech Sample (FMSS), an open-ended narrative method, before and after the program. Parents described a wide range of child behaviors, primarily social and cognitive skills. While all families were of a relatively affluent strata compared to the general Indian population, there were nonetheless significant differences in parents' narratives based on their income levels. Coming into the program, parents with relatively less income focused on their child's immediate and material needs, while higher income parents discussed their parental roles and vision for society. After the PCTP, parents were more likely to reflect on their child beyond comparisons to 'normality,' and beyond the here-and-now. Mothers were more likely than fathers to reflect on themselves and their relationships with their child. Understanding parents' experiences and narratives is essential for the evaluation of interventions such as the PCTP, as Indian parents are incorporated into a growing global network of 'parents of children with autism.' PMID:25739529

  9. Characterizing Phosphorus in Eroding Streambank Soils in Chittenden County, Vermont

    NASA Astrophysics Data System (ADS)

    Ross, D. S.; Ishee, E. R.

    2011-12-01

    Lake Champlain has had persistent algal blooms associated with excess phosphorus (P) from the landscape. Streambank erosion is ubiquitous throughout the Champlain Basin with 75% of Vermont stream reaches classified as unstable. The P contribution of streambank erosion has not been well quantified, yet could be a significant source of non-point P. The objectives of this study were to 1) assess the variability in total P (TP) and soil test P (MM-P) for eroding riparian soils; 2) relate TP and MM-P with soil physical and chemical properties, including texture, Al, Ca, and Fe; 3) relate TP and MM-P to landscape parameters, including land use/land cover (LULC), landscape position, soil type and parent material; and 4) quantify the potential P load from eroding streambanks. Soil samples were taken from 76 erosion features to a depth of 90 cm on 4 streams in Chittenden County, Vermont. Samples were analyzed for texture, total P, Modified-Morgan's P, and total aluminum, calcium, iron, and manganese. A subset of samples was extracted with acid ammonium oxalate to estimate the degree of P saturation. Landscape parameters were assessed using available spatial databases for LULC, parent material, soil type, landscape position. Mean concentrations of TP and MM-P were similar among the four streams and through depth, but not correlated with each other. A strong relationship existed between Ca and TP in excess of apatite ratios suggesting apatite-P is a common P form in these soils. Low MM-P concentrations and oxalate results indicate that eroded streambank soil may act as a sink rather than a source of P. Landscape parameters including LULC and landscape position correlated with TP and MM-P. Streambank erosion from four streams in Chittenden County contributed a total of 11.2 to 14.1 MT of TP and 37.7 kg of MM-P to corresponding stream corridors. Estimated potential P load from eroding streambanks was equivalent to 50 to 60% of total non-point P load. Streambank soils may contribute a significant amount of P to the aquatic system, although the ultimate fate of the eroded P is uncertain.

  10. Arsenic fractions in soils: A case study in the Amblés valley (Castilla-León, Spain)

    NASA Astrophysics Data System (ADS)

    Joaquin Ramos-Miras, Jose; Díaz-Fernández, Pedro; Sanjosé Wery, Ana; Rodríguez-Martín, Jose Antonio; Boluda, Rafael; Bech, Jaume; Gil, Carlos

    2014-05-01

    Arsenic (As) is a trace element whose distribution and toxicology in the environment is a serious issue. In Spain, presence of As has been mainly related with mining activities because oxidation of sulphur minerals releases As into the environment. As has been detected in aquifers and soils in southern areas of the Spanish Autonomous Castilla-León Community (central Spain). Risk of human contact with As has increased substantially in the last two decades as residential areas continue to expand into former agricultural land. As distribution in topsoil horizons in the high Adaja river basin in the Amblés Valley, Ávila (Autonomous Castilla-León Community) were studied. In this area, the principal soil use is conventional farming. Three As-soil fractions: total content, extractable with EDTA and water-soluble, were determined. The origin and the causes that might favour their higher or lower concentrations were investigated. Geochemical baseline concentrations were established, and the relationships between the concentration of the different As fractions and soil properties were investigated. Iron-aluminium oxides, clay content, soil organic matter, and soil pH were the main controlling factors for As soil concentrations. Total As content in soils was related with parent material, whereas anthropogenic activities affected its solubility.

  11. A new framework for predicting how roots and microbes influence soil organic matter dynamics in forests

    NASA Astrophysics Data System (ADS)

    Phillips, R.; Midgley, M.; Brzostek, E. R.

    2012-12-01

    While it is well-established that tree species modify soil organic matter (SOM) through differences in leaf litter chemistry, far less is known about the role of roots and their microbial associates in influencing SOM dynamics. We investigated the extent to which temperate hardwood trees which associate with arbuscular mycorrhizal (AM) fungi differ in their effects on SOM turnover from those associating with ectomycorrhizal (EM) fungi using 1) root and fungal ingrowth cores, 2) experimental tree girdling and 3) fertilization additions. We conducted our research in the central hardwood forests of southern Indiana where a rich assemblage of AM (e.g. maples, ashes, tulip poplar, black cherry) and EM (e.g. oaks, hickories, beech, pine) tree species co-occur on soils developed from similar parent materials. Our results indicate that EM trees likely play a greater role in contributing to SOM turnover than AM trees as rhizosphere enzyme activities were greater in EM soils than AM soils, and both girdling and fertilization reduced enzyme activities in EM soils but not in AM soils. Although girdling and fertilization had little effect on enzyme activities in AM soils, soil respiration decreased suggesting that much of the carbon (C) allocated belowground was likely derived from roots rather than from mycorrhizal fungi. Collectively our results suggest AM and EM trees influence SOM dynamics in fundamentally unique ways, and that categorizing forests based on the relative abundance of AM and EM trees may provide a useful framework for predicting complex biogeochemical interactions between roots, microbes and SOM.

  12. Detection of residual oil-sand-derived organic material in developing soils of reclamation sites by ultra-high-resolution mass spectrometry.

    PubMed

    Noah, Mareike; Poetz, Stefanie; Vieth-Hillebrand, Andrea; Wilkes, Heinz

    2015-06-01

    The reconstruction of disturbed landscapes back to working ecosystems is an issue of increasing importance for the oil sand areas in Alberta, Canada. In this context, the fate of oil-sand-derived organic material in the tailings sands used for reclamation is of utmost environmental importance. Here we use electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry of maltene fractions to identify compositional variations over a complete oil sand mining and recultivation process chain. On the basis of bulk compound class distributions and percentages of unique elemental compositions, we identify specific compositional features that are related to the different steps of the process chain. The double bond equivalent and carbon number distributions of the N1 and S1O2 classes are almost invariant along the process chain, despite a significant decrease in overall abundance. We thus suggest that these oil-sand-derived components can be used as sensitive tracers of residual bitumen, even in soils from relatively old reclamation sites. The patterns of the O2, O3, and O4 classes may be applied to assess process-chain-related changes in organic matter composition, including the formation of plant-derived soil organic matter on the reclamation sites. The N1O2 species appear to be related to unidentified processes in the tailings ponds but do not represent products of aerobic biodegradation of pyrrolic nitrogen compounds. PMID:25961672

  13. Calcium carbonate precipitation by strain Bacillus licheniformis AK01, newly isolated from loamy soil: a promising alternative for sealing cement-based materials.

    PubMed

    Vahabi, Ali; Ramezanianpour, Ali Akbar; Sharafi, Hakimeh; Zahiri, Hossein Shahbani; Vali, Hojatollah; Noghabi, Kambiz Akbari

    2015-01-01

    The relevant experiments were designed to determine the ability of indigenous bacterial strains isolated from limestone caves, mineral springs, and loamy soils to induce calcium carbonate precipitation. Among all isolates examined in this study, an efficient carbonate-precipitating soil bacterium was selected from among the isolates and identified by 16S rRNA gene sequences as Bacillus licheniformis AK01. The ureolytic isolate was able to grow well on alkaline carbonate-precipitation medium and precipitate calcium carbonate more than 1?g?L(-1). Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analyses, and scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX) examinations were performed in order to confirm the presence of calcium carbonate in the precipitate and to determine which polymorphs were present. The selected isolate was determined to be an appropriate candidate for application in a surface treatment of cement-based material to improve the properties of the mortar. Biodeposition of a layer of calcite on the surface of cement specimens resulted in filling in pore spaces. This could be an alternative method to improve the durability of the mortar. The kind of bacterial culture and medium composition had a profound impact on the resultant CaCO(3) crystal morphology. PMID:25590872

  14. Radiological dose assessment for residual radioactive material in soil at the clean slate sites 1, 2, and 3, Tonopah Test Range

    SciTech Connect

    1997-06-01

    A radiological dose assessment has been performed for Clean Slate Sites 1, 2, and 3 at the Tonopah Test Range, approximately 390 kilometers (240 miles) northwest of Las Vegas, Nevada. The assessment demonstrated that the calculated dose to hypothetical individuals who may reside or work on the Clean Slate sites, subsequent to remediation, does not exceed the limits established by the US Department of Energy for protection of members of the public and the environment. The sites became contaminated as a result of Project Roller Coaster experiments conducted in 1963 in support of the US Atomic Energy Commission (Shreve, 1964). Remediation of Clean Slate Sites 1, 2, and 3 is being performed to ensure that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works on a Clean Slate site should not exceed 100 millirems per year. The DOE residual radioactive material guideline (RESRAD) computer code was used to assess the dose. RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines (Yu et al., 1993a). In May and June of 1963, experiments were conducted at Clean Slate Sites 1, 2, and 3 to study the effectiveness of earth-covered structures for reducing the dispersion of nuclear weapons material as a result of nonnuclear explosions. The experiments required the detonation of various simulated weapons using conventional chemical explosives (Shreve, 1964). The residual radioactive contamination in the surface soil consists of weapons grade plutonium, depleted uranium, and their radioactive decay products.

  15. Changes in Carbon Chemistry and Stability Along Deep Tropical Soil Profiles at the Luquillo Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Stone, M.; Hockaday, W. C.; Plante, A. F.

    2014-12-01

    Tropical forests are the largest terrestrial carbon (C) sink, and tropical forest soils contribute disproportionately to the poorly-characterized deep soil C pool. The goal of this study was to evaluate how carbon chemistry and stability change with depth in tropical forest soils formed on two contrasting parent materials. We used soils from pits excavated to 140 cm depth that were stratified across two soil types (Oxisols and Inceptisols) at the Luquillo Critical Zone Observatory in northeast Puerto Rico. We used 13C nuclear magnetic resonance (NMR) spectroscopy to characterize soil C chemistry and differential scanning calorimetry (DSC) coupled with evolved gas analysis (CO2-EGA) to evaluate the thermal stability of soil C during ramped combustion. Thirty-four samples with an initial C concentration ?1% were chosen from discrete depth intervals (0, 30, 60, 90 & 140 cm) for 13C NMR analysis, while DSC was performed on 122 samples that included the NMR sample set and additional samples at 20, 50, 80 and 110 cm depth. Preliminary 13C NMR results indicate higher alkyl : O-alkyl ratios and an enrichment of aliphatic and proteinaceous C with depth, compared with greater aromatic and carbohydrate signals in surface soils. The energy density of soil C (J mg-1 C) also declined significantly with depth. In Oxisols, most CO2 evolution from combustion occurred around 300ºC, while most CO2 evolution occurred at higher temperatures (400-500ºC) in Inceptisols. Our findings suggest soil C is derived primarily of plant biomolecules in surface soils and becomes increasingly microbial with depth. Soil matrix-mediated differences in C transport and preservation may result in differences in C chemistry between the two soil types and a more thermally labile C pool in the Oxisols. We suggest that energy-poor substrates, combined with potentially stronger organo-mineral interactions in subsoils, may explain the long-term stability of deep C in highly weathered tropical soils.

  16. Soil carbon under perennial pastures; benchmarking the influence of pasture age and management

    NASA Astrophysics Data System (ADS)

    Orgill, Susan E.; Spoljaric, Nancy; Kelly, Georgina

    2015-07-01

    This paper reports baseline soil carbon stocks from a field survey of 19 sites; 8 pairs/triplet in the Monaro region of New South Wales. Site comparisons were selected by the Monaro Farming Systems group to demonstrate the influence of land management on soil carbon, and included: nutrient management, liming, pasture age and cropping history. Soil carbon stocks varied with parent material and with land management. The fertilised (phosphorus) native perennial pasture had a greater stock of soil carbon compared with the unfertilised site; 46.8 vs 40.4 Mg.C.ha to 0.50 m. However, the introduced perennial pasture which had been limed had a lower stock of soil carbon compared with the unlimed site; 62.8 vs 66.7 Mg.C.ha to 0.50 m. There was a greater stock of soil carbon under two of the three younger (<10 yr old) perennial pastures compared with older (>35 yr old) pastures. Cropped sites did not have lower soil carbon stocks at all sites; however, this survey was conducted after three years of above average annual rainfall and most sites had been cropped for less than three years. At all sites more than 20% of the total carbon stock to 0.50 m was in the 0.30 to 0.50 m soil layer highlighting the importance of considering this soil layer when investigating the implications of land management on soil carbon. Our baseline data indicates that nutrient management may increase soil carbon under perennial pastures and highlights the importance of perennial pastures for soil carbon sequestration regardless of age.

  17. Lead in vegetation, forest floor material, and soils of the spruce-fir zone, Great Smoky Mountains National Park

    SciTech Connect

    Bogle, M.A.; Turner, R.R.

    1983-01-01

    Based on a survey during 1982, lead concentrations in vegetation, litter and soils of the spruce-fir zone of the Great Smoky Mountains National Park are generally less than values reported for similar sites in the northeastern United States and western Europe. As expected, lead concentrations increased with increasing age of spruce and fir foliage, and with increasing degree of decomposition of litter. Fir bole wood was higher in lead than spruce bole wood, but both species were far below acutely phytotoxic levels. Although the results of this study indicated no immediate cause for concern, periodic monitoring of lead and other metals in the spruce-fir zone should be continued to provide early detection of significant changes. 32 references, 1 figure, 4 tables.

  18. Expectant parents’ experiences of parental education within the antenatal health service

    PubMed Central

    Norling-Gustafsson, Ann; Skaghammar, Katarina; Adolfsson, Annsofie

    2011-01-01

    Being an expectant parent is a life changing event and it is something that most people will experience in their lifetime. Many people who are parents for the first time will participate in parenting education. Most of the previous studies associated with parenting education focus on subjects such as birth outcome and breastfeeding. The purpose of this study is to focus on the less investigated aspect of the parents’ experience of participating in parenting education with Maternal Healthcare Services (MVC). A qualitative, phenomenological, hermeneutical method was selected to be used to analyze our findings and we used the statements of twenty participants to accumulate enough material to develop it into twelve sub-themes and five themes. The results of this study show that these expectant parents had few or no expectations of the parenting education that they were going to participate in. Generally speaking the parents seemed to be satisfied with the program. They described their reasons for participating as a chance to get together with other people in similar circumstances and to share information and they found a midwife to be a trustworthy professional person to confirm the information that was available to them from other sources. PMID:22241955

  19. Parent Stress and Its Relation to Parent Perceptions of Communication following Parent-Coached Language Intervention

    ERIC Educational Resources Information Center

    Smith, Ashlyn L.; Romski, Mary Ann; Sevcik, Rose A.; Adamson, Lauren B.; Bakeman, Roger

    2011-01-01

    The effects of a parent-coached language intervention on parent stress and its relation to parent perceptions of communication development were examined in 60 parents of toddlers with developmental delays. Results indicated that overall parent stress was not high prior to or following language intervention. Parents' perceptions about the severity…

  20. Using Radiocarbon to Assess Soil Organic Matter Stabilization in a Transect of Mature Forests in the Pacific Northwest USA

    NASA Astrophysics Data System (ADS)

    Johnson, M. G.; Swanston, C.

    2011-12-01

    Soils influence the cycling of nutrients, movement and storage of water, and serve as an important global reservoir of carbon (C). The accumulation and storage of C in soils is a major factor in the global C cycle and is crucial for sustaining ecosystem health and function, yet gaps remain in our understanding of the processes that lead to the accumulation and stabilization of soil organic matter (SOM). This information is essential for ascertaining ecosystem health and the trajectory of carbon sequestration. Because vegetation, clay mineralogy, and environmental conditions play important roles in the production, stabilization, and sequestration of SOM, we developed a study to investigate their role in the accumulation of SOM across a range of forested soils in the Pacific Northwest USA. We selected 8 mature (? 150 years old) forest stands in the Oregon Coast Range Mountains and Cascade Mountains. These forests cover a range of forest types, environments and soil parent materials. Annual precipitation values range from less than 30 cm for the dry Juniper forest to more than 300 cm for the wet coastal Douglas-fir and Sitka spruce forests. Parent materials include volcanic ash, other volcanics, marine sediments and basalts. Soil chemical and physical properties were quantified. Soil particle size distribution and clay mineralogy was determined. We hypothesized that particle density is directly proportional to SOM stability (i.e., residence time), and separated SOM by density using sodium polytungstate. Total C and N and ?13C and ?15N in whole soil and in 4 density fractions were determined for each soil horizon. Accelerator mass spectrometry (AMS) was used to measure the 14C in the whole soil from each horizon for the purpose of determining radiocarbon-based mean residence times of C. Infrared spectroscopy was used to characterize C chemistry. We found a 5-fold difference between the amount of C in the soil with the lowest soil C and the soil with the greatest soil C. Clay mineralogy of the sites is quite diverse, reflecting the soil parent material, age and weathering environment. The amount of heavy-density fraction associated organic matter seems to be related to the amount and kind of clay present in the soil. Radiocarbon abundance decreased with increasing depth, indicating higher mean residence times in deep soil. Soil C at depth was much older in the wet forest soils and the most recent C was found in the dry forest soils. However, the strongest relationship appears to be between mean residence times and the amount of clay, which is indicative of the protective and stabilizing nature of clay on SOM. These data along with environmental data and forest site history provide a unique way to evaluate the interacting factors that affect the accumulation and stabilization of SOM in forested soils in the Pacific Northwest USA.

  1. EVALUATION OF FUNGAL GROWTH ON FIBERGLASS DUCT MATERIALS FOR VARIOUS MOISTURE, SOIL, USE, AND TEMPERATURE CONDITIONS (JOURNAL)

    EPA Science Inventory

    The paper gives results of a series of experiments, each lasing 6 weeks, conducted in static environmental chambers to assess some of the conditions that may impact the ability of a variety of fiberglass materials to support the growth of a fungus, Penicillium chrysogenum. (NOTE:...

  2. Mercury emission and plant uptake of trace elements during early stage of soil amendment using flue gas desulfurization materials.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A pilot-scale field study was carried out to investigate the distribution of Hg and other selected elements in the three potential mitigation pathways, i.e., emission to ambient air, uptake by surface vegetation (i.e., grass), and rainfall infiltration, after flue gas desulfurization (FGD) material ...

  3. Multiple parent bodies of ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Yomogida, K.; Matsui, T.

    1984-01-01

    Thermal histories of chondrite parent bodies are calculated from an initial state with material in a powder-like form, taking into account the effect of consolidation state on thermal conductivity. The very low thermal conductivity of the starting materials makes it possible for a small body with a radius of less than 100 km to be heated by several hundred degrees even if long-lived radioactive elements in chondritic abundances are the only source of heat. The maximum temperature is determined primarily by the temperature at which sintering of the constituent materials occurs. The thermal state of the interior of a chondrite parent body after sintering has begun is nearly isothermal. Near the surface, however, where the material is unconsolidated and the thermal conductivity is much lower, the thermal gradient is quite large. This result contradicts the conventional 'onion-shell' model of chondrite parent bodies. But because the internal temperature is almost constant through the whole body, it supports a 'multiple-parent bodies' model, according to which each petrologic type of chondrite comes from a different parent body.

  4. Materials

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Schoeppner, Gregory A.

    2006-01-01

    NASA Langley Research Center has successfully developed an electron beam freeform fabrication (EBF3) process, a rapid metal deposition process that works efficiently with a variety of weldable alloys. The EBF3 process can be used to build a complex, unitized part in a layer-additive fashion, although the more immediate payoff is for use as a manufacturing process for adding details to components fabricated from simplified castings and forgings or plate products. The EBF3 process produces structural metallic parts with strengths comparable to that of wrought product forms and has been demonstrated on aluminum, titanium, and nickel-based alloys to date. The EBF3 process introduces metal wire feedstock into a molten pool that is created and sustained using a focused electron beam in a vacuum environment. Operation in a vacuum ensures a clean process environment and eliminates the need for a consumable shield gas. Advanced metal manufacturing methods such as EBF3 are being explored for fabrication and repair of aerospace structures, offering potential for improvements in cost, weight, and performance to enhance mission success for aircraft, launch vehicles, and spacecraft. Near-term applications of the EBF3 process are most likely to be implemented for cost reduction and lead time reduction through addition of details onto simplified preforms (casting or forging). This is particularly attractive for components with protruding details that would require a significantly large volume of material to be machined away from an oversized forging, offering significant reductions to the buy-to-fly ratio. Future far-term applications promise improved structural efficiency through reduced weight and improved performance by exploiting the layer-additive nature of the EBF3 process to fabricate tailored unitized structures with functionally graded microstructures and compositions.

  5. Parenting by lying

    PubMed Central

    Heyman, Gail D.; Luu, Diem H.; Lee, Kang

    2010-01-01

    The present set of studies identifies the phenomenon of `parenting by lying', in which parents lie to their children as a means of influencing their emotional states and behaviour. In Study 1, undergraduates (n = 127) reported that their parents had lied to them while maintaining a concurrent emphasis on the importance of honesty. In Study 2 (n = 127), parents reported lying to their children and considered doing so to be acceptable under some circumstances, even though they also reported teaching their children that lying is unacceptable. As compared to European American parents, Asian American parents tended to hold a more favourable view of lying to children for the purpose of promoting behavioural compliance. PMID:20930948

  6. Handbook of Parenting. Volume 1: Children and Parenting.

    ERIC Educational Resources Information Center

    Bornstein, Marc H., Ed.

    Concerned with different types of parents and the forces that shape parenting, this volume, the first of four volumes on parenting deals specifically with parent-child relationships throughout the lifespan and the parenting of children of different physical, behavioral, and intellectual needs. The volume consists of 12 chapters as follows: (1)…

  7. Family and Relationship Influences on Parenting Behaviors of Young Parents

    PubMed Central

    Kershaw, Trace; Murphy, Alexandrea; Lewis, Jessica; Divney, Anna; Albritton, Tashuna; Magriples, Urania; Gordon, Derrick

    2013-01-01

    Purpose Assess the influence of relationship and family factors during pregnancy on parenting behavior 6 months postpartum among low-income young parents. Methods 434 young expectant couples were recruited from obstetrics clinics during pregnancy and followed 6-months postpartum. Using a series of general estimating equations to control for the correlated nature of the data, we assessed the influence of relationship factors (e.g., relationship satisfaction, attachment) and family factors (e.g., family functioning, family history) during pregnancy on parenting (e.g., parenting involvement, time spent caregiving, parenting experiences, and parenting sense of competence) 6 months postpartum controlling for covariates. Results Relationship functioning related to parenting involvement, caregiving, parenting experiences, and parenting sense of competence. In addition, several family factors related to parenting. Mother involvement during childhood was related to more parenting involvement, parenting positive experiences, and parenting sense of competence. History of being spanked as a child related to less time spent caregiving and less positive life change from being a parent. Further, gender significantly moderated the associations between relationship and family factors and parenting behavior. Male’ parenting behavior was more influenced by relationship and family factors than females. Conclusions This study suggests the importance of relationship and family contexts for parenting behaviors of young mothers and fathers, highlighting the potential utility of involving both young mothers and fathers in parenting programs, and developing interventions that focus on strengthening young parents’ romantic relationships and that address negative parenting experienced during childhood. PMID:24113495

  8. Parenting Training for Intellectually Disabled Parents: A Cochrane Systematic Review

    ERIC Educational Resources Information Center

    Coren, Esther; Thomae, Manuela; Hutchfield, Jemeela

    2011-01-01

    Objectives: This article presents a Cochrane/Campbell systematic review of the evidence on the effect of parent training to support the parenting of parents with intellectual disabilities. Method: Randomized controlled trials (RCTs) comparing parent training interventions for parents with intellectual disability with usual care or with a control…

  9. www.parent.ttu.edu THE PARENT AND FAMILY GUIDE

    E-print Network

    Rock, Chris

    www.parent.ttu.edu GUNSUP! AND #12;#12;THE PARENT AND FAMILY GUIDE Texas Tech University 2015-2016 Provided by: Parent and Family Relations 201Q Student Union Building Box 42024, TTU Lubbock, Texas 79409..................................................................................................2 Texas Texas Parents Association (Tech Parents

  10. Parenting and Adolescents' Accuracy in Perceiving Parental Values.

    ERIC Educational Resources Information Center

    Knafo, Ariel; Schwartz, Shalom H.

    2003-01-01

    Examined potential predictors of Israeli adolescents' accuracy in perceiving parental values. Found that accuracy in perceiving parents' overall value system correlated positively with parents' actual and perceived value agreement and perceived parental warmth and responsiveness, but negatively with perceived value conflict, indifferent parenting,…

  11. Mental Representations of Relationships, Parent Belief Systems, and Parenting Behavior.

    ERIC Educational Resources Information Center

    Grusec, Joan E.; And Others

    Research on determinants of parenting behavior has traditionally focused on parents' goals and beliefs about child rearing or on the effect of parents' own attachment experiences. In an effort to relate these two approaches, a study was conducted to examine parent behaviors and attitudes in 94 parent-child dyads. Dyads consisted of 20 fathers and…

  12. Soil anomalies associated with Cu-Ni mineralization in the South Kawishiwi area, northern Lake County, Minnesota

    USGS Publications Warehouse

    Alminas, Henry V.

    1975-01-01

    Geochemical sampling in the contact zone between the Giants Range Granite and the Duluth Gabbro Complex along the South Kawishiwi River indicates the presence of extensive soil anomalies associated with the known Cu-Ni-Co-Ag mineralization in the basal part of the Duluth Gabbro Complex. A close spatial relationship was found between the ore bodies and associated anomalies, despite the fact that the parent material of the sampled soils was glacial overburden that mantles the area to a depth of 0-50 feet. The <74 mesh fraction of B-horizon soils was found to be an effective sample type for geochemical exploration in this area. Trace metals are believed to be held primarily by the clay-size hydrated iron oxides and manganese oxide, which are somewhat enriched in the fine fraction of the B-horizon soils.

  13. (The determination of sup 222 Rn flux from soils based on sup 210 Pb and sup 226 Ra disequilibrium)

    SciTech Connect

    Turekian, K.K.

    1991-01-01

    The emanating fraction of radon in soils from the southern part of the United States is about 40% greater than in those from the northern part. The mean {sup 226}Ra activity in the southern soils is also slightly higher and as a consequence the {sup 222}Rn flux derived from the top 50 cm. is greater in the southern samples. We tentatively attribute these observations to the greater degree of weathering associated with the pre-glacial age of the parent material of many of the southern soils. The weathering has concentrated {sup 226}Ra near grain surfaces and results in an increased emanating power for {sup 222}Rn. The estimated correction in {sup 210}Pb analyses described above results in a small decrease in our estimate of the mean loss rate of {sup 222}Rn from the upper 50 cm of soils.

  14. Mass-Loss Buttons Monitor Material Degradation

    NASA Technical Reports Server (NTRS)

    Webster, C. N.

    1982-01-01

    Small button-sized samples attached to parent materials are simple way of monitoring degradation of parent in harsh environments. Samples determine effects of multiple exposures to environmental extremes without disturbing fit or function of parent. They are less costly and more convenient than complex instrumentation normally required to measure complete temperature/pressure time history of parent component.

  15. Soil bioturbation. A commentary

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; Wilkinson, Marshall

    2010-05-01

    Organisms such as trees, ants, earthworms, termites are important components of the earth systems that have dominantly been thought of as abiotic. Despite an early focus on soil bioturbation by heavy-weights such as Charles Darwin and Nathanial Shaler in the late 19th century, sporadic attention to this theme has subsequently followed. Recent compilations demonstrate that soil bioturbation by fauna and flora is widespread across Earths terrestrial surface, and operates at geologically rapid rates that warrant further attention. Such biotic activity contributes to soil creep, soil carbon dynamics, and is critical in engineering the medium through which ecosystems draw their abiotic requirements. Soil and its biota are fundamental components of the Earth System. However, soil scientist focussed on the dominant paradigm of landscape evolution, and bioturbation was relegated. In fact, bioturbation is still not widely appreciated within the soil and earth system research community. Nevertheless, within the last decade a review of the impact of bioturbation was launched by authors such as Geoff S. Humphreys. Bioturbation is a complex process as new soil is formed, mounds are developed, soil is buried and a downslope transport of material is done. Bioturbation modify the soil texture and porosity, increase the nutrients and encourage the soil creep flux. A review of the State-of-the-Art of Bioturbation will be presented.

  16. Using consumer preference information to increase the reach and impact of media-based parenting interventions in a public health approach to parenting support.

    PubMed

    Metzler, Carol W; Sanders, Matthew R; Rusby, Julie C; Crowley, Ryann N

    2012-06-01

    Within a public health approach to improving parenting, the mass media offer a potentially more efficient and affordable format for directly reaching a large number of parents with evidence-based parenting information than do traditional approaches to parenting interventions that require delivery by a practitioner. Little is known, however, about factors associated with parents' interest in and willingness to watch video messages about parenting. Knowledge of consumer preferences could inform the effective design of media interventions to maximize parental engagement in the parenting messages. This study examined parents' preferred formats for receiving parenting information, as well as family sociodemographic and child behavior factors that predict parents' ratings of acceptability of a media-based parenting intervention. An ethnically diverse sample of 162 parents of children ages 3-6 years reported their preferences for various delivery formats for parenting information and provided feedback on a prototype episode of a video-format parenting program based on the Triple P Positive Parenting Program. Parents reported the strongest preference for self-administered delivery formats such as television, online programs, and written materials; the least preferred formats were home visits, therapists, and multiweek parenting groups. Parents' ratings of engagement, watchability, and realism of the prototype parenting episode were quite strong. Parents whose children exhibited clinical levels of problem behaviors rated the episode as more watchable, engaging, and realistic. Mothers also rated the episodes as more engaging and realistic than did fathers. Lower income marginally predicted higher watchability ratings. Minority status and expectations of future problems did not predict acceptability ratings. The results suggest that the episode had broad appeal across groups. PMID:22440064

  17. Anthropogenic lead distribution in rodent-affected and undisturbed soils in southern California

    SciTech Connect

    Mace, J.E.; Graham, R.C.; Amrhein, C.

    1997-01-01

    Anthropogenic Pb is the world`s largest and most widespread heavy metal contamination. Inspired by recent evidence suggesting a faster redistribution of Pb through the mineral soil profile than was previously expected, we investigated the effects of rodent activity on Pb redistribution. Total Pb was analyzed at the 0-1, 1-4, and 4-7-cm depths in a rodent-affected soil and in an undisturbed soil, in the same proximity and with the same parent material, in the Box Springs Mountains near Riverside, California. Six replicate sites of each condition were sampled. Lead was recovered by a digest in 4 M HNO{sub 3} and measured using a graphite furnace atomic absorption spectrophotometer. Anthropotenic Pb content to a 7-cm depth averaged 19 mg kg{sup -1} in undisturbed soils and 10 mg kg{sup -1} in rodent-affected soils. In both soils, the highest concentrations of Pb were located in the top 4 cm of the profile. After accounting for an estimated native Pb ({approximately}3.3 mg kg{sup -1}), we determined that 20 to 38 kg ha{sup -1} Pb has been deposited on these soils, through air pollution. Our findings suggest rodents significantly modify the distribution of anthropogenic Pb in the rodent-affected soils of the box Springs Mountains primarily in two ways: (i) by reducing Pb concentration in surface soils, thereby decreasing the potential for erosional redistribution of Pb, and (ii) by decreasing Pb transport time through the soil profile as a result of physical mixing. This redistribution mechanism is likely applicable to other surface deposited anthropogenic contaminants that have similarly low soil mobility. 18 refs., 1 fig., 2 tabs.

  18. Container Soil-Water Reactions.

    ERIC Educational Resources Information Center

    Spomer, L. Art; Hershey, David R.

    1990-01-01

    Presented is an activity that illustrates the relationship between the soil found in containers and soil in the ground including the amount of air and water found in each. Sponges are used to represent soil. Materials, procedures, and probable results are described. (KR)

  19. Changes in eroded material and runoff as affected by rain depth and aggregate slaking in three semi-arid region soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seal formation, runoff and interrill soil erosion are controlled by, among other factors, soil texture, rain properties (kinetic energy and intensity), and aggregate slaking. Previous studies typically reported the total amounts of runoff and soil loss for an entire storm.We examined, at intervals o...

  20. Soil moisture under contrasted atmospheric conditions in Eastern Spain

    NASA Astrophysics Data System (ADS)

    Azorin-Molina, César; Cerdà, Artemi; Vicente-Serrano, Sergio M.

    2014-05-01

    Soil moisture plays a key role on the recently abandoned agriculture land where determine the recovery and the erosion rates (Cerdà, 1995), on the soil water repellency degree (Bodí et al., 2011) and on the hydrological cycle (Cerdà, 1999), the plant development (García Fayos et al., 2000) and the seasonality of the geomorphological processes (Cerdà, 2002). Moreover, Soil moisture is a key factor on the semiarid land (Ziadat and Taimeh, 2013), on the productivity of the land (Qadir et al., 2013) and soils treated with amendments (Johnston et al., 2013) and on soil reclamation on drained saline-sodic soils (Ghafoor et al., 2012). In previous study (Azorin-Molina et al., 2013) we investigated the intraannual evolution of soil moisture in soils under different land managements in the Valencia region, Eastern Spain, and concluded that soil moisture recharges are much controlled by few heavy precipitation events; 23 recharge episodes during 2012. Most of the soil moisture recharge events occurred during the autumn season under Back-Door cold front situations. Additionally, sea breeze front episodes brought isolated precipitation and moisture to mountainous areas within summer (Azorin-Molina et al., 2009). We also evidenced that the intraanual evolution of soil moisture changes are positively and significatively correlated (at p<0.01) with the amount of measured precipitation. In this study we analyze the role of other crucial atmospheric parameters (i.e., temperature, relative humidity, global solar radiation, and wind speed and wind direction) in the intraanual evolution of soil moisture; focussing our analyses on the soil moisture discharge episodes. Here we present 1-year of soil moisture measurements at two experimental sites in the Valencia region, one representing rainfed orchard typical from the Mediterranean mountains (El Teularet-Sierra de Enguera), and a second site corresponding to an irrigated orange crop (Alcoleja). Key Words: Soil Moisture Discharges, Intraannual changes, Atmospheric parameters, Eastern Spain Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and RECARE FP7 project 603498 supported this research. References: Azorin-Molina, C., Connell, B.H., Baena-Calatrava, R. 2009. Sea-breeze convergence zones from AVHRR over the Iberian Mediterranean Area and the Isle of Mallorca, Spain. Journal of Applied Meteorology and Climatology 48 (10), 2069-2085. Azorin-Molina, C., Vicente-Serrano, S. M., Cerdà, A. 2013. Soil moisture changes in two experimental sites in Eastern Spain. Irrigation versus rainfed orchards under organic farming. EGU, Geophysical Research Abstracts, EGU2013-13286. Bodí, M.B., Mataix-Solera, J., Doerr, S.H. & Cerdà, A. 2011. The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic carbon content. Geoderma, 160, 599-607. 10.1016/j.geoderma.2010.11.009 Cerdà, A. 1995. Soil moisture regime under simulated rainfall in a three years abandoned field in Southeast Spain. Physics and Chemistry of The Earth, 20 (3-4), 271-279. Cerdà, A. 1999. Seasonal and spatial variations in infiltration rates in badland surfaces under Mediterranean climatic conditions. Water Resources Research, 35 (1) 319-328. Cerdà, A. 2002. The effect of season and parent material on water erosion on highly eroded soils in eastern Spain. Journal of Arid Environments, 52, 319-337. García-Fayos, P. García-Ventoso, B. Cerdà, A. 2000. Limitations to Plant establishment on eroded slopes in Southeastern Spain. Journal of Vegetation Science, 11- 77- 86. Ghafoor, A., Murtaza, G., Rehman, M. Z., Saifullah Sabir, M. 2012. Reclamation and salt leaching efficiency for tile drained saline-sodic soil using marginal quality water for irrigating rice and wheat crops. Land Degradation & Development, 23: 1 -9. DOI 10.1002/ldr.1033 Johnston, C. R., Vance, G. F., Ganjegunte, G. K. 2013. Soil properties changes following irrigation with coalbed natural gas water: role of water treatments, soil amendments and land suitability.

  1. Weathering and genesis of Soils from Ellsworth Mountains, East Antarctica

    NASA Astrophysics Data System (ADS)

    Karoline Delpupo Souza, Katia; Schaefer, Carlos Ernesto; Michel, Roberto; Monari, Julia; Machado, Vania

    2015-04-01

    Knowledge on Antarctic soils from the Ellsworth Mountains (EM) are patchy comparatively with Dry Valleys soils from the Transantartic Mountains, and could help understand the genesis of cryogenic soils under extreme dry, cold desert conditions. The EM are a slightly arcuate 350-km-long north-northwest-trending mountain chain is bordered on the west by the polar plateau of West Antarctica and on the east by Ronne Ice Shelf. The range is as much as 90 km wide and constitutes one of the largest areas of exposed bedrock in West Antarctica. The stratigraphic succession in the EM includes strata from Cambriam to Permian in age. The objective of this study is to analyze the properties of soils from EM in order to identify the main factors and processes involved in soil formation under cold desert conditions in Antarctica. The sampling design aimed to represent the different geological substrates (marble-clast conglomerate, graywacke, argillite, conglomerate, black shale, marble and quartzite) as well as altitudinal levels and landforms within the same substrate. We characterized soils from EM regarding their morphological, physics and chemical properties. Soil samples were air dried and passed through 2 mm sieves. After removal of water soluble salts, the samples were submitted to chemical and physical analyses such as: pH in water, potential acidity (H + Al), exchangeable bases, total organic carbon, electric conductivity, soil texture and color. The soils classify, for the most part, in weathering stages 1 to 2. Only in the upper parts of ridges were there traces of soils at weathering stage 3. This indicates that much of the present icefree topography has been overridden by ice within the last few hundred thousand years. Cryoturbation is a widespread phenomenon in this area resulting in intense cryoclastic weathering and patterned ground, forming sorted circles, stripes and gelifluxion lobes. The soil show low horizontation, discrete patches of salt on the surface, and salt crusts beneath the rock fragments. Despite of the low weathering stage of the soil, they have yellowish hue and high chroma values from influence by sulfide material. Boulders on moraines show staining, pitting, spalling, and some striations. All soil are alkaline in reaction, with pHs at the range between 7.5-9.2. Cryptogamic (lichens or mosses) crusts are absent, and the organic matter contents were invariably very low, ranging between 0.13 and 0.38%. Permafrost is continuous and occurs close to the surface, at between 5-15 cm down the top. The available P background is also very low (< 5.3 mg/kg), exchangeable K and Na levels are surprisingly low for Polar Desert soils. Soils are all skelletic, with a predominance of coarse materials. CEC is medium to high, and Ca-dominated, as a result of a strong limestone influence in the moraine parent materials. The main salts present are Ca and Na-sulphate forms, and less cloride forms, and clay sized materials are dominated by salts in all soils, especially below 5 cm depth.

  2. Application of arsenic baselines in the assessment of soil contamination in Finland.

    PubMed

    Jarva, Jaana; Tarvainen, Timo; Reinikainen, Jussi

    2008-12-01

    In Finland, a new Government Decree on the Assessment of Soil Contamination and Remediation Needs (214/2007) came into force on 1 June 2007. According to the Decree, natural baseline concentration levels should be taken into account when assessing potential soil contamination and the need for remediation. This applies particularly in the case of toxic metallic elements, since baseline concentrations may naturally be rather high. The new decree prescribes soil screening values for 52 substances or groups of substances. The natural baseline concentrations have been taken into account in the definition of the screening values for inorganic pollutants. The Geological Survey of Finland (GTK) carried out a nation-wide geochemical mapping of till on a reconnaissance scale in 1983 and on a regional scale during 1984-1992. These surveys have provided information on natural elemental distribution in subsoils of the glacial till. However, some important trace elements in regional mapping such as arsenic are missing from the analysis, and subsoil samples do not reflect the diffuse anthropogenic input. Thus, GTK has continued the survey work by determining geochemical baselines around suburban areas. Samples have been taken from humus, topsoil and subsoil layers, and the soil parent material has covered sandy soils, glacial tills and fine-grained sediments. According to the studies, a regional difference in the levels of arsenic and some other trace elements can be clearly seen, especially in minerogenic soils. The results illustrate the importance of information on regional baseline concentrations while assessing potential soil contamination. PMID:18535911

  3. Soil gas radon assessment and development of a radon risk map in Bolsena, Central Italy.

    PubMed

    Cinelli, G; Tositti, L; Capaccioni, B; Brattich, E; Mostacci, D

    2015-04-01

    Vulsini Volcanic district in Northern Latium (Central Italy) is characterized by high natural radiation background resulting from the high concentrations of uranium, thorium and potassium in the volcanic products. In order to estimate the radon radiation risk, a series of soil gas radon measurements were carried out in Bolsena, the principal urban settlement in this area NE of Rome. Soil gas radon concentration ranges between 7 and 176 kBq/m(3) indicating a large degree of variability in the NORM content and behavior of the parent soil material related in particular to the occurrence of two different lithologies. Soil gas radon mapping confirmed the existence of two different areas: one along the shoreline of the Bolsena lake, characterized by low soil radon level, due to a prevailing alluvial lithology; another close to the Bolsena village with high soil radon level due to the presence of the high radioactive volcanic rocks of the Vulsini volcanic district. Radon risk assessment, based on soil gas radon and permeability data, results in a map where the alluvial area is characterized by a probability to be an area with high Radon Index lower than 20 %, while probabilities higher than 30 % and also above 50 % are found close to the Bolsena village. PMID:25239677

  4. Spatial distribution of selected heavy metals and soil fertility status in south-eastern Serbia

    NASA Astrophysics Data System (ADS)

    Saljnikov, E.; Mrvic, V.; Cakmak, D.; Nikoloski, M.; Perovic, V.; Kostic, L.; Brebanovic, B.

    2009-04-01

    Environmental pollution by heavy metals is one of the most powerful factors destroying biosphere components that directly affecting agricultural production quality and therefore health of human and animals. Regional soil contamination by heavy metals occurs mainly in industrial areas and in big cities. However, pollutants can be air-and/or water-transferred to big distances and may accumulated far from industrial zone what makes difficult to distinguish original background concentrations of heavy metals in soil. Our study covers south-eastern part of Serbia and is a part of a big project studying soil fertility and heavy metal contamination all around Serbia. Diverse natural characteristics and heterogeneity of soil cover, as well as, human activity greatly influenced soil fertility parameters, while, diverse geological substrate and human activity determined the level of potential geochemical pollution. There are number of industrial factories functioning from the last century on the studied area. Also, close to studied area, there was a mining in the middle of the last century. About 600 soil samples from surface 0-30 cm were investigated for main soil fertility characteristics (pH, humus, available K and P) and concentrations of selected heavy metals (As, Cd, Cr, Ni and Pb). Soils graded as very acidic cover 46% of the area, which are mainly mountains with acidic parent materials. Content of humus in 41% of soil samples were below 3%. The most of the soils (71%) are weakly supplied available phosphorus. While available potassium in more than 70% is presented in the concentrations enough for good soil quality. So, about 75% of studied area is characterized with unfavorable soil fertility properties (extremly low soil pH, very low content of available P, about half of the area maintained low soil humus) that is located under forests, meadows and pastures. Content of heavy metals on studied area in 80% of sampled soils was below maximum allowed concentrations (Sluzbeni glasnik RS, 1994). However, 19 % of samples showed contamination or potential contamination with one or other toxic elements, where As was the most often pollutant. Contaminated sites is the results of both, geochemical composition of the area and anthropogenic pollution. Our study gives a clear picture of the status of soil fertility and the level of soil pollution with selected heavy metals. The rezults of this study build the foundation for further detailed investigations of effects of higher concentrations of pollutants on plants and other components of biosphere, which in turn would help in finding measures for amelioratin and/or prevention of eventual negative consequences.

  5. Spatial patterns and controls of soil chemical weathering rates along a transient hillslope

    USGS Publications Warehouse

    Yoo, K.; Mudd, S.M.; Sanderman, J.; Amundson, Ronald; Blum, A.

    2009-01-01

    Hillslopes have been intensively studied by both geomorphologists and soil scientists. Whereas geomorphologists have focused on the physical soil production and transport on hillslopes, soil scientists have been concerned with the topographic variation of soil geochemical properties. We combined these differing approaches and quantified soil chemical weathering rates along a grass covered hillslope in Coastal California. The hillslope is comprised of both erosional and depositional sections. In the upper eroding section, soil production is balanced by physical erosion and chemical weathering. The hillslope then transitions to a depositional slope where soil accumulates due to a historical reduction of channel incision at the hillslope's base. Measurements of hillslope morphology and soil thickness were combined with the elemental composition of the soil and saprolite, and interpreted through a process-based model that accounts for both chemical weathering and sediment transport. Chemical weathering of the minerals as they moved downslope via sediment transport imparted spatial variation in the geochemical properties of the soil. Inverse modeling of the field and laboratory data revealed that the long-term soil chemical weathering rates peak at 5 g m- 2 yr- 1 at the downslope end of the eroding section and decrease to 1.5 g m- 2 yr- 1 within the depositional section. In the eroding section, soil chemical weathering rates appear to be primarily controlled by the rate of mineral supply via colluvial input from upslope. In the depositional slope, geochemical equilibrium between soil water and minerals appeared to limit the chemical weathering rate. Soil chemical weathering was responsible for removing 6% of the soil production in the eroding section and 5% of colluvial influx in the depositional slope. These were among the lowest weathering rates reported for actively eroding watersheds, which was attributed to the parent material with low amount of weatherable minerals and intense coating of the primary minerals by secondary clay and iron oxides. We showed that both the morphologic disequilibrium of the hillslope and the spatial heterogeneity of soil properties are due to spatial variations in the physical and chemical processes that removed mass from the soil. ?? 2009 Elsevier B.V.

  6. Lead isotopes as a tracer of pollution in soils in Lower Silesia (SW Poland)

    NASA Astrophysics Data System (ADS)

    Tyszka, Rafa?; Kierczak, Jakub; Pietranik, Anna; Weber, Jerzy; D?ugosz, Ma?gorzata; Ettler, Vojtech; Mchaljevic, Martin

    2014-05-01

    Distribution of Pb and its isotopic composition in different types of soils in Lower Silesia were characterized in order to identify the sources of Pb pollution. The analysed soils included: - 6 soil profiles derived from different parent rocks (granite, tonalite, granodiorite) with different Pb concentrations (Tyszka et al. 2012). The soils were located far from pollution centers. - 4 soil profiles located close to or on historical slag deposits (Kierczak et al. 2013); - 10 soil profiles situated close to a large Cu smelting site affected mainly by contamination with emitted fly ashes (Tyszka et al. 2012). - 4 soil profiles situated in a major urban area in Wroc?aw city close to a busy road and 3 profiles outside Wroc?aw city and close to the same road. The profiles close to the road and in Wroc?aw city were affected by pollution with leaded petrol, which was observed in 15 cm of the uppermost soil. The petrol pollution is characterized by the lowest Pb207/Pb206 ratio of those occurring in Lower Silesia. The material of slag, fly ashes and coal have similar isotopic characteristic of the rato of Pb207/Pb206 = 1.18 and such is the value observed commonly in the uppermost parts of all other soil profiles. The soils developed on the slag heap show the largest enrichments in Pb and Pb207/Pb206 = 1.18 in the B horizons. Interestingly, most of the soil profiles located far from the pollution centres also have the ratio Pb207/Pb206 = 1.18 in the upper horozons (O and sometimes also A horizons). That's the case for soils derived from parent rock with strongly variable Pb content and different Pb isotope ratios, but generally higher that 1.20. That may suggest that natural weathering of basement rocks also brings Pb207/Pb206 ratio down and both natural and anthropogenic signals are mixed in the uppermost soil horizons. However, our research shows that combined observations of Pb concentration, its isotope composition as well as its distribution within the profile forms a specific pattern that may be used to reconstruct sources and processes involved in Pb pollution.

  7. Superparamagnetism of two modern soils from the northeastern Pampean region, Argentina and its paleoclimatic indications

    NASA Astrophysics Data System (ADS)

    Liu, Qingsong; Torrent, José; Morrás, Héctor; Hong, Ao; Jiang, Zhaoxia; Su, Youliang

    2010-11-01

    The magnetic susceptibility (?) carried by pedogenic fine-grained ferrimagnets has been widely used as paleoclimatic proxy to elucidate long-term paleoclimatic variations for wind-blown terrestrial loess/paleosol sequences. However, the magnetic properties of the lithogenic parent material can mask the pedogenic signals. In this study, we systematically investigated the origin of the superparamagnetism of two modern soils from the northeastern humid Pampean region, Argentina, developed on loess materials of different mineralogical composition. The samples were treated with the citrate-bicarbonate-dithionite (CBD) reagent, which is known to dissolve the submicron, pedogenic ferrimagnets while leaving unaltered the coarse grained ones. The magnetic material accounting for the frequency-dependent magnetic susceptibility peak at about 50 K remained in the residuals and is independent of the pedogenic processes. In addition, pedogenic ferrimagnetic particles in the two soils have a magnetic signature comparable to that of the soils from the Chinese Loess Plateau. It is also suggested that the ? for the bulk samples does not seem to be a reliable paleoclimatic proxy for the Pampean soils investigated in this study. Instead, the CBD-soluble magnetic signals could be more useful to detect paleoenvironmental variations in this region. These new findings provide improved understanding of the magnetic assemblage in the Pampean loess soils and make it feasible to retrieve the paleoclimatic signals carried by the pedogenic, CBD-soluble, iron oxides after removing the effects of the lithogenic inputs.

  8. Profile: parents help themselves.

    PubMed

    Woods, G E

    1981-01-01

    A short account is given of a voluntary organization, PACE, formed by parents of young handicapped children in Leeds. PACE provides friendship and help to other parents, arranges the toy library, riding for the disabled and other activities for the children. It also raises money that is needed for special projects. PMID:6452232

  9. Understanding the Parent's Perspective

    ERIC Educational Resources Information Center

    Tilley, Kim

    2010-01-01

    Sally Smith's contribution to the world of children with learning disabilities is well documented, particularly by the other contributors to this journal. An area deserving attention, but one usually overlooked, is Smith's understanding of the parent's perspective--the challenges of parenting a child with learning disabilities. It was a priceless…

  10. Parents Leading the Way.

    ERIC Educational Resources Information Center

    Wolf, Kathy Goetz

    1996-01-01

    This special issue of the Family Resource Coalition Report presents personal experiences and reflections regarding parent involvement and leadership in family support. Articles in this issue are: (1) "The Vaughn Family Center: It's My Story" (Jorge Lara and Matt Oppenheim); (2) "Asking the Right Questions is Key to Developing Parent Advocacy" (Luz…

  11. Gay and Lesbian Parents

    MedlinePLUS

    ... Life Listen Español Text Size Email Print Share Gay and Lesbian Parents Article Body I am gay. Should I worry how this will affect my children? Millions of children have one or more gay and/or lesbian parents. For some children, having ...

  12. Parent Resources Inventory.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton. Early Childhood Services.

    This resource inventory is for the use of parent groups and others who are concerned with the provision of parent education and suppport services. There are two parts to the inventory. Section 1 contains the titles of articles and standard bibliographic information, as well as annotations of contents. Copies of the articles are available through…

  13. Parent Resources Inventory.

    ERIC Educational Resources Information Center

    Alberta Education Response Centre, Edmonton.

    This resource inventory is for the use of parent groups and others who are concerned with parent education and support services. The inventory contains the titles of articles, copies of which are available through the Alberta Education Response Centre. The articles and publications listed cover a wide range of topics related to child development…

  14. Parenting by Automatic Pilot.

    ERIC Educational Resources Information Center

    O'Callaghan, J. Brien

    This guide on parenting suggests ideas and methods to build self-esteem, courage, decision-making, and loving which are so important to child success and happiness. The introduction notes that this book is written for what seems to be the majority of parents who, despite the availability of much writing and other information on the subject of…

  15. Parenting, Pressures and Policies.

    ERIC Educational Resources Information Center

    Chance, Graham W.

    2000-01-01

    In the 1990s, parenting became a difficult effort to balance work demands with children's needs. However, Canadian and U.S. government policies have not met changing family needs for child care, other services, paid parental leave, and work flexibility. Canada's long-awaited National Children's Agenda has the potential to modernize family policy…

  16. Handling "Helicopter Parents"

    ERIC Educational Resources Information Center

    Lum, Lydia

    2006-01-01

    Once upon a time, parents would help their children move into dorm rooms and apartments, then wave good-bye for the semester. Not anymore. Baby boomers have arguably been more involved in their children's educations--and their lives in general--than any preceding generation of parents, university observers say. And boomers see no reason why that…

  17. Handbook on Parents' Rights.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Exceptional Children's Services.

    This handbook is intended to inform parents of children with disabilities with information about parent rights, the rights of the child, and the responsibilities of the local education agency (LEA) toward meeting the special needs of the child. Individual sections address the following topics: special education laws and children with disabilities,…

  18. Exceptional Parent, 1996.

    ERIC Educational Resources Information Center

    Klein, Stanley, Ed.

    1996-01-01

    Twelve 1996 issues of "Exceptional Parent" magazine provide a variety of articles and resources on parenting the child or young adult with a disability. The January issue is a resource guide, with directories of national organizations, associations, products, and services. The February issue focuses on early childhood, including articles on…

  19. Parents as Writing Partners

    ERIC Educational Resources Information Center

    Ehrenworth, Mary

    2014-01-01

    Parents know that writing is essential to their children's success, and they're eager to help their children become good writers. But often, they're at a loss about how to help. Instead of leaving them in the dark, schools can make parents into valuable writing partners by giving them a toolkit of guidelines for coaching writers.…

  20. Exceptional Parent, 1993.

    ERIC Educational Resources Information Center

    Klein, Stanley D., Ed.

    1993-01-01

    This document consists of the nine issues of the journal "Exceptional Parent" published during 1993. This journal contains articles particularly aimed at parents of children with disabilities. Major articles published during this period are the following: "Annual Guide to Products and Services"; "Coping with Incontinence" (Katherine F. Jeter);…

  1. Counseling Single Parents.

    ERIC Educational Resources Information Center

    Atwood, Joan D.; Genovese, Frank

    Single parents face not only the challenge of raising their children alone, but also the negative messages about their lifestyle. This book emphasizes the strengths of single parents. It provides counselors with techniques to empower these clients, whether they are single due to divorce, death, or because they never married. Included are…

  2. Growth & Development / Parental Care

    E-print Network

    Butler, Christopher J.

    Growth & Development / Parental Care #12;Embryonic Development Although the sequence of 42 stages the egg The hatching muscle helps the chick break out of the egg Parents typically dispose of the egg.5-10.5%) Growth rate Fast (3-4x precocial rate) Slow #12;#12;Developmental Categories Superprecocial Wholly

  3. Parent News Offline, 2003.

    ERIC Educational Resources Information Center

    Robertson, Anne S., Ed.

    2003-01-01

    This document is comprised of the two issues in volume 5 of "Parent News Offline," a publication of the National Parent Information Network (NPIN) designed to introduced those without Internet Access to the activities and information available through NPIN. The Spring 2003 issue contains the following articles: (1) "Summer Academic Programs" (Anne…

  4. Parenting: An Ecological Perspective.

    ERIC Educational Resources Information Center

    Luster, Tom, Ed.; Okagaki, Lynn, Ed.

    This book examines various aspects of parenting and influences on parents, including such key contexts affecting child development as school, neighborhood, and culture. After a forward by Urie Bronfenbrenner and a preface by Tom Luster and Lynn Okagaki, which together help to introduce the topics to be discussed, the book is divided into nine…

  5. Pinterest for Parent Education

    ERIC Educational Resources Information Center

    Routh, Brianna; Langworthy, Sara; Jastram, Hannah

    2014-01-01

    As more parents are using the Internet to answer their questions, Extension needs to provide practical, research-based resources in an accessible format. Pinterest is a platform that can be used by Extension educators to provide continued education and make reputable resources more discoverable for parents. Based on Knowles adult learning theory…

  6. Single Parent Adoptive Homes.

    ERIC Educational Resources Information Center

    Shireman, Joan F.

    1996-01-01

    Reviews research and reports on a longitudinal study of 15 single-parent adoptive homes over a 14-year period that demonstrated that these homes have the capacity to be successful adoptive placements. Identifies unique characteristics of single-parent adoptive homes, and notes the need for additional research to identify children for whom these…

  7. Popular Primers for Parents

    ERIC Educational Resources Information Center

    Clarke-Stewart, K. Alison

    1978-01-01

    The extent and characteristics of the parental audience for practical child care manuals are discussed. Information is integrated from four studies: a survey of child care publications; a questionnaire about sources of child care advice; a questionnaire distributed to readers of parenting books through the public library; and interviews with…

  8. Evolution and Parenting

    ERIC Educational Resources Information Center

    Bardwick, Judith M.

    1974-01-01

    Reviews the theory and research on the physiological or genetic origins of parenting behavior, noting that an ethological or evolutionary analysis of parenting behavior supports the idea that primates, including man, have evolved psychological structures which are particularly adapted to respond to cues from young children. (Author/JM)

  9. The Best of "Parent News": A Sourcebook on Parenting from the National Parent Information Network.

    ERIC Educational Resources Information Center

    Robertson, Anne S., Comp.

    The National Parent Information Network (NPIN) was created in 1993 to collect and disseminate information about high-quality resources for parents. One of the services provided by NPIN is "Parent News," an Internet magazine that focuses on topics of interest to parents and to professionals who work with parents. Compiled in response to requests…

  10. Actividades Para Padres: A Parent Handbook (Activities for Parents: A Parent Handbook).

    ERIC Educational Resources Information Center

    Coca, Benjamin

    Thirty Mora, New Mexico parents attended a 13-session parent involvement workshop (The Mora Adventure) designed to help parents foster successful school experiences through non-school activities with their children. A parent involvement model was used as the basis of the workshop in which the parents developed more effective communication skills;…

  11. Soil property effects on wind erosion of organic soils

    NASA Astrophysics Data System (ADS)

    Zobeck, Ted M.; Baddock, Matthew; Scott Van Pelt, R.; Tatarko, John; Acosta-Martinez, Veronica

    2013-09-01

    Histosols (also known as organic soils, mucks, or peats) are soils that are dominated by organic matter (OM > 20%) in half or more of the upper 80 cm. Forty two states have a total of 21 million ha of Histosols in the United States. These soils, when intensively cropped, are subject to wind erosion resulting in loss of crop productivity and degradation of soil, air, and water quality. Estimating wind erosion on Histosols has been determined by USDA-Natural Resources Conservation Service (NRCS) as a critical need for the Wind Erosion Prediction System (WEPS) model. WEPS has been developed to simulate wind erosion on agricultural land in the US, including soils with organic soil material surfaces. However, additional field measurements are needed to understand how soil properties vary among organic soils and to calibrate and validate estimates of wind erosion of organic soils using WEPS. Soil properties and sediment flux were measured in six soils with high organic contents located in Michigan and Florida, USA. Soil properties observed included organic matter content, particle density, dry mechanical stability, dry clod stability, wind erodible material, and geometric mean diameter of the surface aggregate distribution. A field portable wind tunnel was used to generate suspended sediment and dust from agricultural surfaces for soils ranging from 17% to 67% organic matter. The soils were tilled and rolled to provide a consolidated, friable surface. Dust emissions and saltation were measured using an isokinetic vertical slot sampler aspirated by a regulated suction source. Suspended dust was sampled using a Grimm optical particle size analyzer. Particle density of the saltation-sized material (>106 ?m) was inversely related to OM content and varied from 2.41 g cm-3 for the soil with the lowest OM content to 1.61 g cm-3 for the soil with highest OM content. Wind erodible material and the geometric mean diameter of the surface soil were inversely related to dry clod stability. The effect of soil properties on sediment flux varied among flux types. Saltation flux was adequately predicted with simple linear regression models. Dry mechanical stability was the best single soil property linearly related to saltation flux. Simple linear models with soil properties as independent variables were not well correlated with PM10E values (mass flux). A second order polynomial equation with OM as the independent variable was found to be most highly correlated with PM10E values. These results demonstrate that variations in sediment and dust emissions can be linked to soil properties using simple models based on one or more soil properties to estimate saltation mass flux and PM10E values from organic and organic-rich soils.

  12. Impact of hydrochar application on soil nutrient dynamics and plant availability

    NASA Astrophysics Data System (ADS)

    Bargmann, I.; Greef, J. M.; Kücke, M.

    2012-04-01

    In order to investigate potentials for the use of HTC-products (hydrochar) in agriculture, the influence of soil application of different hydrochars on soil nutrient dynamics as well as on plant growth and plant nutrient uptake was determined. Hydrochars were produced from sugar beet pulps and brewer's grains by carbonization at 190°C for 4 respectively 12 hours each. Incubation experiments with two soil types showed an increase of soil pH by 0.5 to 2.5 pH units, depending on the amount of hydrochar added and the process conditions (i.e. addition of calcium carbonate during production). The application of HTC to soil decreased the plant available nitrogen to almost zero in the first week after HTC-addition, followed by a slow re-release of nitrate in the following weeks. A similar immobilization of soluble phosphate was observed for one soil type, although to a lower extent. The plant availability of phosphorus in hydrochars and biochars is subject of current trials. Furthermore it is actually investigated to what extend the N immobilization is related to soil microbial activity. Germination tests with barley showed toxic effects of hydrochar application on germination, both by direct contact of grains with HTC as well as by release of gaseous compounds from HTC. Effects differ significantly for different parent materials and pretreatments (washing, drying, storage). The influence of HTC-addition to soil on plant growth and nutrient uptake was investigated in pot experiments with various crop species (barley, phaseolus bean, leek), comparing HTC from different parent materials and process parameters such as carbonization time. With increasing addition of HTC, the N availability was decreased and N contents in the plant were significantly lower compared with the untreated control. The plant growth response was different for each tested crop. On barley, leaf tip necroses were observed, but not on phaseolus. Biomass yield of barley and beans was generally increased by HTC application. In contrast, leek biomass production was reduced. Our experiences show that HTC-materials should be incorporated into soils several weeks before planting/sowing, similar as it is widely recommended for straw incorporation. Alternatively, HTC can be pretreated by composting or fermentation with fresh organic material to destroy toxic compounds microbially.

  13. Parental Report of Sleep Problems in Down Syndrome

    ERIC Educational Resources Information Center

    Breslin, J. H.; Edgin, J. O.; Bootzin, R. R.; Goodwin, J. L.; Nadel, L.

    2011-01-01

    Background: Children with Down syndrome (DS) suffer from sleep problems, including sleep maintenance problems, as well as snoring, and other symptoms of disordered breathing. To examine sleep in DS, we gave parents a questionnaire assessing their child's sleep. Materials and methods: The parents of 35 children with DS (mean age = 12.65 years,…

  14. Good Nutrition Promotes Health: Guide for Parent Nutrition Education.

    ERIC Educational Resources Information Center

    Administration for Children, Youth, and Families (DHHS), Washington, DC. Head Start Bureau.

    The purpose of this manual is to guide users of the nutrition education project produced by Padres Hispanos en Accion por Una Sana Generacion (Hispanic Parents in Action for a Healthy Generation). The project provides nutrition education materials to trainers who provide nutrition counseling to parents of Head Start children. The project has two…

  15. Concentrations of polycyclic aromatic hydrocarbons and inorganic constituents in ambient surface soils, Chicago, Illinois: 2001-2002

    USGS Publications Warehouse

    Kay, R.T.; Arnold, T.L.; Cannon, W.F.; Graham, D.

    2008-01-01

    Samples of ambient surface soils were collected from 56 locations in Chicago, Illinois, using stratified random sampling techniques and analyzed for polycyclic aromatic hydrocarbon (PAH) compounds and inorganic constituents. PAHs appear to be derived primarily from combustion of fossil fuels and may be affected by proximity to industrial operations, but do not appear to be substantially affected by the organic carbon content of the soil, proximity to nonindustrial land uses, or proximity to a roadway. Atmospheric settling of particulate matter appears to be an important mechanism for the placement of PAH compounds into soils. Concentrations of most inorganic constituents are affected primarily by soil-forming processes. Concentrations of lead, arsenic, mercury, calcium, magnesium, phosphorus, copper, molybdenum, zinc, and selenium are elevated in ambient surface soils in Chicago in comparison to the surrounding area, indicating anthropogenic sources for these elements in Chicago soils. Concentrations of calcium and magnesium in Chicago soils appear to reflect the influence of the carbonate bedrock parent material on the chemical composition of the soil, although the effects of concrete and road fill cannot be discounted. Concentrations of inorganic constituents appear to be largely unaffected by the type of nearby land use. Copyright ?? Taylor & Francis Group, LLC.

  16. Decoding implicit information from the soil map of Belgium and implications for spatial modelling and soil classification

    NASA Astrophysics Data System (ADS)

    Dondeyne, Stefaan; Legrain, Xavier; Colinet, Gilles; Van Ranst, Eric; Deckers, Jozef

    2014-05-01

    A systematic soil survey of Belgium was conducted from 1948 to 1991. Field surveys were done at the detailed scale of 1:5000 with the final maps published at a 1:20,000 scale. Soil surveyors were classifying soils in the field according to physical and morphogenetic characteristics such as texture, drainage class and profile development. Mapping units are defined as a combination of these characteristics but to which modifiers can be added such as parent material, stoniness or depth to substrata. Interpretation of the map towards predicting soil properties seems straight forward. Consequently, since the soil map has been digitized, it has been used for e.g. hydrological modelling or for estimating soil organic carbon content at sub-national and national level. Besides the explicit information provided by the legend, a wealth of implicit information is embedded in the map. Based on three cases, we illustrate that by decoding this information, properties pertaining to soil drainage or soil organic carbon content can be assessed more accurately. First, the presence/absence of fragipans affects the soil hydraulic conductivity. Although a dedicated symbol exits for fragipans (suffix "...m"), it is only used explicitly in areas where fragipans are not all that common. In the Belgian Ardennes, where fragipans are common, their occurrence is implicitly implied for various soil types mentioned in explanatory booklets. Second, whenever seasonal or permanent perched water tables were observed, these were indicated by drainage class ".h." or ".i.", respectively. Stagnic properties have been under reported as typical stagnic mottling - i.e. when the surface of soil peds are lighter and/or paler than the more reddish interior - were not distinguished from mottling due to groundwater gley. Still, by combining information on topography and the occurrence of substratum layers, stagnic properties can be inferred. Thirdly, soils with deep anthropogenic enriched organic matter (Anthrosols) are distinguished for their specific profile development (code "..m"). Obviously, when assessing soil organic carbon content these soil types need particular consideration. Soils in the Campine region with anthropogenic layers only 30 to 40 cm thick, not being Anthrosols, got a specific suffix code ("…3"). Still, as these soils may have a buried Ah horizon of up to 20 cm, their soil organic carbon content can be comparable to those of Anthrosols. The buried Ah horizon is however not explicitly mapped; its presence needs to be inferred from other environmental information. In conclusion, conventional soil maps convey more information than what transpires from just the explicit legend's semantics. Although a challenge, decoding the implicit information should be particularly useful for spatial modeling. The cases also point to the importance of classifying soil characteristics explicitly, wherever possible, and in particularly when soil maps are integrated into geographical information systems.

  17. Influences of quaternary climatic changes on processes of soil development on desert loess deposits of the Cima volcanic field, California

    USGS Publications Warehouse

    McFadden, L.D.; Wells, S.G.; Dohrenwend, J.C.

    1986-01-01

    Soils formed in loess are evidence of both relict and buried landscapes developed on Pliocene-to-latest Pleistocene basalt flows of the Cima volcanic field in the eastern Mojave Desert, California. The characteristics of these soils change systematically and as functions of the age and surface morphology of the lava flow. Four distinct phases of soil development are recognized: phase 1 - weakly developed soils on flows less than 0.18 M.y. old; phase 2 - strongly developed soils with thick argillic horizons on 0.18 - 0.7 M.y. old flows; phase 3 - strongly developed soils with truncated argillic horizons massively impregnated by carbonate on 0.7 to 1.1 M.y. old flows; and phase 4 - degraded soils with petrocalcic rubble on Pliocene flows. A critical aspect of the development of stage 1 soils is the evolution of a vesicular A horizon which profoundly affects the infiltration characteristics of the loess parent materials. Laboratory studies show that secondary gypsum and possibly other salt accumulation probably occurred during the period of phase 1 soil development. Slight reddening of the interiors of peds from vesicular-A horizons of phase 1 soils and presence of weakly developed B horizons indicates a slight degree of in situ chemical alteration. However, clay and Fe oxide contents of these soils show that these constituents, as well as carbonates and soluble salts, are incorporated as eolian dust. In contrast to phase 1 soils, chemical and mineralogical analysis of argillic horizons of phase 2 soils indicate proportionally greater degrees of in-situ chemical alteration. These data, the abundant clay films, and the strong reddening in the thick argillic horizons suggest that phase 2 and phase 3 soils formed during long periods of time and periodically were subjected to leaching regimes more intense than those that now exist. Flow-age data and soil-stratigraphic evidence also indicate that several major loess-deposition events occurred during the past ??? 1.0 M.y. Loess events are attributed to past changes in climate, such as the Pleistocene-to-Holocene climatic change, that periodically caused regional desiccation of pluvial lakes, reduction of vegetational density, and exposure of loose, unconsolidated fine materials. During times of warmer interglacial climates, precipitation infiltrates to shallower depths than during glacial periods. Extensive, saline playas which developed in the Mojave Desert during the Holocene are a likely source of much of the carbonates and soluble salts that are accumulating at shallow depths both in phase 1 soils and in the formerly noncalcareous, nongypsiferous argillic horizons of phase 2 and 3 soils. ?? 1986.

  18. Dynamics of pedogenic carbonate for the last 5000 years and its role as a buffer reservoir for atmospheric carbon dioxide in soils of Russia

    NASA Astrophysics Data System (ADS)

    Ryskov, Ya. G.; Demkin, V. A.; Oleynik, S. A.; Ryskova, E. A.

    2008-03-01

    The carbon isotopic composition of humus and carbonates was determined in the soils of the Selenga Range and in paleosols buried beneath mounds of various ages on the Russian plain. All of the soils contained both carbonate remnants inherited from the source rocks and pedogenic carbonates formed during soil formation. The proportions of pedogenic and lithogenic components can be calculated from the carbon isotopic composition of humus and soil carbonates. The abundance of pedogenic carbonates depends primarily on the climate condition, i.e. soil type and, to a lesser extent, soil age and content of lithogenic clasts in the parent material. Two epochs of carbonate formation are clearly manifest in the soils of European Russia. These epochs coincide with the periods of arid climates about 3750 and 2300 years ago. In the course of soil formation for the last 5000 years the soils fixed atmospheric carbon dioxide as pedogenic carbonate during the arid periods at a rate of 2.2 kgC/m 2 a year in chernozem (Typic Calciustoll), 1.13 kgC/m 2 a year in dark-chestnut soil (Typic Haplocalcid), 0.86 kgC/m 2 a year in light-chestnut soil (Typic Natrargid). So, together, during the most recent 3500-5000 years, the soils sequestered CO 2 from the atmosphere within carbonates and so served as an additional sink in the carbon cycle. Soil carbonates are a sink for ?? 2, representing approximately 2.6% of the common emission of ?? 2 from soils.

  19. Pedogenetic processes and carbon budgets in soils of Queretaro, Mexico

    NASA Astrophysics Data System (ADS)

    García Calderón, Norma Eugenia; Fuentes Romero, Elizabeth; Hernandez Silva, Gilberto

    2014-05-01

    Pedogenetic processes have been investigated in two different physiographic regions of the state of Querétaro in order to assess the carbon budget of soils, looking into the gains and losses of organic and inorganic carbon: In the mountain region of the natural reserve Sierra Gorda (SG) with soils developed on cretaceous argillites and shales under sub-humid temperate to semi-arid conditions, and in the Transmexican Volcanic Belt (TMVB) with soils developed on acid and intermediate igneous rocks under humid temperate climate in the highlands and semi-arid and subhumid subtropical conditions in the lowlands. The analyses of soil organic carbon (SOC) and soil inorganic carbon (SIC) of the SG region, including additional physical, chemical and mineralogical investigations were based on 103 topsoils in an area of 170 km2. The analyses in the TMVB region were based on the profiles of a soil toposequence from high mountainous positions down to the plains of the lowlands. The results show a SOC accumulation from temperate to semi-arid forest environments, based on processes of humification and clay formation including the influence of exchangeable Ca and the quantity and quality of clay minerals. The turnover rates of SOC and SIC depended largely on the rock parent materials, especially the presence of carbonate rocks. Moreover, we found that the SOC content and distribution was clearly depending on land use, decreasing from forests to agricultural land, such as pasture and cropping areas and were lowest under mining sites. The highest SIC pools were found in accumulation horizons of soils under semi-arid conditions. On all investigated sites SOC decreased the mobility of cations and especially that of heavy metals, such as As, Hg, Sb, Pb, and Cd.

  20. Parenting stress and parent support among mothers with high and low education.

    PubMed

    Parkes, Alison; Sweeting, Helen; Wight, Daniel

    2015-12-01

    Current theorizing and evidence suggest that parenting stress might be greater among parents from both low and high socioeconomic positions (SEP) compared with those from intermediate levels because of material hardship among parents of low SEP and employment demands among parents of high SEP. However, little is known about how this socioeconomic variation in stress relates to the support that parents receive. This study explored whether variation in maternal parenting stress in a population sample was associated with support deficits. To obtain a clearer understanding of support deficits among mothers of high and low education, we distinguished subgroups according to mothers' migrant and single-parent status. Participants were 5,865 mothers from the Growing Up in Scotland Study, who were interviewed when their children were 10 months old. Parenting stress was greater among mothers with either high or low education than among mothers with intermediate education, although it was highest for those with low education. Support deficits accounted for around 50% of higher stress among high- and low-educated groups. Less frequent grandparent contact mediated parenting stress among both high- and low-educated mothers, particularly migrants. Aside from this common feature, different aspects of support were relevant for high- compared with low-educated mothers. For high-educated mothers, reliance on formal childcare and less frequent support from friends mediated higher stress. Among low-educated mothers, smaller grandparent and friend networks and barriers to professional parent support mediated higher stress. Implications of differing support deficits are discussed. (PsycINFO Database Record PMID:26192130

  1. Soil Erosion. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Buydos, John F., Comp.

    Soil erosion is the detachment and movement of topsoil or soil material from the upper part of the soil profile. It may occur in the form of rill, gully, sheet, or wind erosion. Agents of erosion may be water, wind, glacial ice, agricultural implements, machinery, and animals. Soil conservation measures require a thorough understanding of the…

  2. High mountain soil sequence at the Páramos of Cotopaxi volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Rocha Francelino, Marcio; Muselli Barbosa, Alexandre; Adnet Moura, Pedro; Adent Moura, Tom; Correia, Guilherme; Cunha Anjos, Lúcia Helena; Schaefer, Carlos Ernesto

    2015-04-01

    Very little is known about high-mountain cryopedogenesis under Páramo vegetation in the Andes. We studied soils along a typical topossequence at the periglacial zone on the northern flank of Cotopaxi volcano, Ecuador, emphasizing the cryopedogenesis process and altitudinal soil climatic regime, in soils ranging from 3980 to 4885m, above the tree line and below the snow line. At each site, a complete set of instruments (sensors and datalogger) were installed to monitoring air and soil temperatures and moisture, at five soil depths, in three different elevation points; in addition we selected, described and sampled six representative soil profiles, according to local variations in vegetation cover, topography, presence of snow and elevation; soils were studied concerning the petrographic composition, mineralogical, physical and chemical properties of different soil fractions. The geology of the Cotopaxi volcano is complex due to recent volcanic activity. Petrographically, the most recent ejected material is of Andesite-rhyolitic composition, with large deposits of tephra, and solifluxion lobes forming a mixed debris mantle. The landforms are characteristic of a stratovolcano, with conical and symmetric formations, with a dissected, broad base with gentle slopes, changing to steep slopes and eroded, rugged peaks, displaying periglacial erosional features. Also, we find cumulative sedimentary materials of periglacial origin in the lower parts of the landscape. Soil monitoring temperatures for one year showed that the surface soil is warmer than the air temperature for the three elevations, even under snow cover, indicating a strong thermal insulation of these volcanic soils. No permafrost was detected at the 200 cm section. The volcanic soils are stratified, with alternating layers of ash and lapilli, with pumices, with predominantly coarse textures and low clay content, features that may contribute to the observed insulation. Mineralogical analyzes indicated the presence of easily weathered minerals such as apatite, olivine, pyroxenes and feldspars, resulting in high exchangeable levels of Na, P and K, and the large amounts of Fe, present in the ferromagnesian minerals in the volcanic parent materials. The six profiles described were classified according to the WRB (FAO): 3 was classified in the class of Regosol, 2 as Leptosols, and 1 as Cryosol, and the Soil Taxonomy, 3 was classified in the class of Inceptisol, 2 as Entisol and 1 as Gelisol.

  3. Parents Sharing Books: Motivation and Reading.

    ERIC Educational Resources Information Center

    Shefelbine, John

    This booklet focuses on reading motivation, especially on specific steps to motivate the middle school child to learn. The main topics explored are: finding or making time for reading for pleasure; filling or flooding the house with interesting reading materials; and reading as a way of life. Practical questions from parents are answered and…

  4. Parent Tookit: Homework Help. Helpful Tips.

    ERIC Educational Resources Information Center

    All Kinds of Minds, 2006

    2006-01-01

    This check list contains tips for parents to help students reinforce and build upon what children learn at school: (1) Set a consistent time each day for doing homework; (2) Encourage children to make a homework checklist; (3) Provide assistance to help get started on a task; (4) Help children make a list of all needed materials before starting…

  5. Soil carbon storage and respiration potential across a landscape age and climate gradient in western Greenland

    NASA Astrophysics Data System (ADS)

    Bradley-Cook, J. I.; Virginia, R. A.; Hammond Wagner, C.; Racine, P. E.

    2013-12-01

    The soil formation state factors proposed by Hans Jenny (climate, organisms, relief, parent material, time) explain many soil characteristics, yet geological controls on biological carbon cycling are not well represented in regional carbon models. Landscape age, for instance, can directly affect the quantity and quality of soil organic carbon, which are key determinants of the temperature sensitivity of soil organic matter (SOM) to decomposition. Temperature control of SOM decomposition is of particular importance in Arctic soils, which contain nearly half of global belowground organic carbon and have a permafrost thermal regime that straddles the freeze-thaw threshold. We investigated soil carbon storage and respiration potential across a west Greenland transect, and related the landscape carbon patterns to regional variation in climate and landscape age. The four study sites capture a range in: landscape age from 180 years on the inland Little Ice Age moraine near Kangerlussuaq to ~10,000 years at the coastal sites near Sisimiut and Nuuk, mean annual air temperatures from -5.7 to -1.4 °C, and mean annual precipitation from 149 to 752 mm. At each site, we collected surface and mineral samples from nine soil pits within similar vegetation cover and relief classes. We measured total organic carbon and nitrogen though elemental analysis, and incubated soils at 4 °C and field capacity moisture for 175 day to measure carbon dioxide production from which we derived soil respiration potential. We hypothesized that soil carbon storage and respiration potential would be greatest at the sites with the oldest landscape age. Soil carbon content was more than four times greater at the 10,000 year sites (Nuuk = 24.03%, Sisimiut = 17.34%) than the inland sites (Ørkendalen = 3.49%, LIA = 0.05%). Carbon quality decreased across the age gradient, as measured by a nearly two-fold increase in C:N ratio from the youngest and driest to the oldest and wettest soils (LIA = 12.2, Nuuk = 22.8). While soil respiration rates were significantly highest in the surface soils at the wettest coastal site, we observed high variation in respiration potential indicating that small-scale variation in carbon quality and other soil properties is high. This study informs our understanding of regional variation of carbon storage and turnover in western Greenland and provides important information for the parameterization of landscape scale models of soil carbon dynamics in the Arctic tundra.

  6. Determination of cobalt, nickel, lead, bismuth and indium in ores, soils and related materials by atomic-absorption spectrometry after separation by xanthate extraction.

    PubMed

    Donaldson, E M

    1989-05-01

    A method for determining approximately 0.5, mug/g or more of cobalt, nickel and lead and approximately 3 mug/g or more of bismuth and indium in ores, soils and related materials is described. After sample decomposition and dissolution of the salts in dilute hydrochloric-tartaric acid solution, iron(III) is reduced with ascorbic acid and the resultant iron(II) is complexed with ammonium fluoride. Cobalt, nickel, lead, bismuth and indium are subsequently separated from iron, aluminium, zinc and other matrix elements by a triple chloroform extraction of their xanthate complexes at pH 2.00 +/- 0.05. After the removal of chloroform by evaporation and the destruction of the xanthates with nitric and perchloric acids, the solution is evaporated to dryness and the individual elements are ultimately determined in a 20% v/v hydrochloric acid medium containing 1000 mug/ml potassium by atomic-absorption spectrometry with an air-acetylene flame. Co-extraction of arsenic and antimony is avoided by volatilizing them as the bromides during the decomposition step. Small amounts of co-extracted molybdenum, iron and copper do not interfere. PMID:18964754

  7. Environmental conditions and soils of natural oases in the Alashan Gobi Desert, Mongolia

    NASA Astrophysics Data System (ADS)

    Pankova, E. I.

    2008-08-01

    Environmental conditions and soils of nine natural oases in the Alashan Gobi Desert of Mongolia are characterized. All these oases are allocated to the zones of tectonic faults, where the discharge of slightly saline groundwater takes place. The absolute heights are about 1500 m a.s.l. The oases are found on piedmont plains or in hilly areas occupied by true deserts with fragments of extremely arid deserts. With respect to geomorphological conditions, four types of oases can be distinguished: isolated (isle-type) oases, oases in large mesodepressions, oases formed in naturally ponded areas, and oases within terraced valleys. Each of these types is characterized by specific soil cover patterns controlled by the geomorphological features of the territory, the character of parent materials, and the groundwater depth. At the same time, some common soil properties are typical of all the oases. Hydromorphic soils—peat meadow-swampy soils, dark-colored nonsaline meadow soils, oasis solonchaks that developed in areas with shallow nonsaline groundwater, solonchaks with different degrees of hydromorphism that developed from mottled-colored salt-bearing Cretaceous and Paleogene deposits, and soddy alluvial (floodplain) soils—predominate in the central parts of the oases. Under conditions of deep groundwater, takyric and sandy desert soils are formed. The oases are encircled by desert ecosystems with gray-brown desert and extremely arid soils and with poorly developed stony soils that formed on the low residual mounts. In the period of the study (1991), irrigated farming was only developed within one of the studied oases. The main part of the land was used for pasturing. In some cases, the high grazing pressure led to degradation (desertification) of oasis ecosystems. A comparison of the oases studied in the Alashan Gobi with the Ekhiin-Gol oasis in the Transaltai Gobi attests to the similarity of their nature.

  8. Interactions of aluminum with forest soils and vegetation: Implications for acid deposition

    SciTech Connect

    Maynard, A.A.

    1989-01-01

    Recent evidence suggests that an important ecological consequence of acidic deposition is increased aluminum mobilization. There is concern that increased aluminum activity may produce toxic effects in forested ecosystems. My studies were concerned with the behavior of pedogenic and added aluminum in soils derived from chemically different parent material. Soil aluminum was related to the aluminum content of the vegetation found growing in the soils. In addition, aluminum levels of forest litter was compared to levels determined 40 years ago. Field, greenhouse, and laboratory investigations were conducted in which the effects of aluminum concentration on germination and early growth was determined. Soils were then used in greenhouse and laboratory studies to establish patterns of soil and plant aluminum behavior with implications to acid deposition. Results show that the amount of aluminum extracted was related to the pH value of the extracting solution and to the chemical characteristics of the soil. Some acid rain solutions extracted measurable amounts of aluminum from selected primary minerals. Germination and early growth of Pinus radiata was controlled by levels of aluminum in the soil or in solution. Field studies indicated that most forest species were sensitive to rising levels of aluminum in the soil. In general, ferns and fern allies were less sensitive to very high levels of aluminum in the soil, continuing to grow when more advanced dicots have disappeared. Aluminum tissue levels of all species were related to the concentration of aluminum in the soil as was the reappearance of species. Aluminum levels in leaf litter have risen at least 50% in the last 40 years. These values were consistent over 3 years. The implications to acid deposition were discussed.

  9. Critical shear stress for erosion of cohesive soils subjected to temperatures typical of wildfires

    USGS Publications Warehouse

    Moody, J.A.; Dungan, Smith J.; Ragan, B.W.

    2005-01-01

    [1] Increased erosion is a well-known response after wildfire. To predict and to model erosion on a landscape scale requires knowledge of the critical shear stress for the initiation of motion of soil particles. As this soil property is temperature-dependent, a quantitative relation between critical shear stress and the temperatures to which the soils have been subjected during a wildfire is required. In this study the critical shear stress was measured in a recirculating flume using samples of forest soil exposed to different temperatures (40??-550??C) for 1 hour. Results were obtained for four replicates of soils derived from three different types of parent material (granitic bedrock, sandstone, and volcanic tuffs). In general, the relation between critical shear stress and temperature can be separated into three different temperature ranges (275??C), which are similar to those for water repellency and temperature. The critical shear stress was most variable (1.0-2.0 N m-2) for temperatures 2.0 N m-2) between 175?? and 275??C, and was essentially constant (0.5-0.8 N m-2) for temperatures >275??C. The changes in critical shear stress with temperature were found to be essentially independent of soil type and suggest that erosion processes in burned watersheds can be modeled more simply than erosion processes in unburned watersheds. Wildfire reduces the spatial variability of soil erodibility associated with unburned watersheds by eliminating the complex effects of vegetation in protecting soils and by reducing the range of cohesion associated with different types of unburned soils. Our results indicate that modeling the erosional response after a wildfire depends primarily on determining the spatial distribution of the maximum soil temperatures that were reached during the wildfire. Copyright 2005 by the American Geophysical Union.

  10. Shrublands and Soil Erosion. An State-of-the-Art

    NASA Astrophysics Data System (ADS)

    García Estríngana, Pablo; Dunkerley, David; Cerdà, Artemi

    2014-05-01

    Shrublands and Soil Erosion. An State-of-the-Art Arid and semiarid regions occupy two-fifth of the continents (Reynolds et al., 2007). These regions are characterized by dry climatic conditions, recurrent droughts and a scant rainfall pattern with a marked seasonality and a high inter-annual variability which makes water to be a scant resource and vegetation to follow a high variability spatial distribution pattern (Breshears et al., 1998; Cecchi et al., 2006; Dunkerley, 2008). These conditions make these areas more sensitive to climate change (Rowell, 2005) and to land use change as a consequence of land abandonment (Poyatos et al., 2003; Delgado et al., 2010; García-Ruiz, 2010), increasing the risk of desertification (Puigdefábregas and Mendizabal, 1998; Geeson et al., 2002), in such a way that 65-70% of arid and semiarid areas are vulnerable to this degradation process (UNEP, 1991). Soil Erosion and Land Degradation are closely related to the changes in the vegetation cover (Zhao et al., 2013). Although other factors such as rainfall intensity or slope (Ziadat and Taimeh, 2013) the plant cover is the main factor that controls the soil erosion, controlling the infiltration and runoff generation (Cerdà, 1998a; Kargar Chigani et al., 2012; Haregeweyn, 2013). Soil erosion show non-sustainable rates under these regions, such as under Mediterranean conditions (Cerdà et al., 2010) and on agriculture land (Cerdà et al; 2007; 2009) due to climatic conditions, to parent material and to the roughed terrain (Romero Díaz et al., 2010). The traditional impact of grazing, of extremely intense fires, of ploughing and the widespread use of herbicides on agriculture, the increase of the road and railway embankments and the agricultural land abandonment cause vegetation removal. Canopy cover partitions rainfall reducing the amount of water reaching the soil and the kinetic energy of rainfall drops, protecting the soil against the impact of rainfall drops. Vegetation distribution controls the exposure of soils to rainfall drops affecting soil erosion (Cerdà, 1997a; Cammeraat et al., 2010; Kakembo et al., 2012). The lost of vegetation can trigger Desertification (Izzo et al., 2013) because soil erosion is highly dependent on the effective rainfall striking soil particles (Cerdà and Lasanta, 2005; Haile and Fetene; 2012; Miao et al., 2012, Prokop and Por?ba, 2012). Shrubs are the most characteristic vegetation type in semiarid and arid ecosystems all over the world (Tomaselli, 1981; Kummerrow, 1989), typical of intermediate stages of most vegetation succession series, being the first in terms of dominant vegetation coverage, occupying 24% of drylands, followed by crop vegetation with 20% (Reynolds et al., 2007). Moreover, shrub vegetation covers the soil permanently, being able to adapt to very unfavourable conditions like droughts, frosts, non-fertile soils,… improving the soil quality due to their capacity to activate organic matter cycles supplying greater amounts of litter (Alegre et al., 2004). Shrubs have complex root systems, inducing changes in soil properties and increasing soil macroporosity (indirect effects) that increase infiltration reducing runoff and the soil loss (Garcia-Estringana et al., 2010). Shrubs improve the infiltration capacity of soils (Cerdà, 1997), even in the most difficult conditions (Marques et al., 2005), the water retention capacity (Ruiz Sinoga et al., 2010) and the runoff and sediment redistribution. Shrub vegetation has been seen as a key vegetation cover in semiarid lands to control the soil and water losses (Francis and Thornes, 1990; Barea et al., 1996; Romero Díaz, 2003; Cerdà and Doerr, 2007). But the majority of revegetation programmes in arid and semiarid regions still ignores the great potential of this type of vegetation. Romero Díaz et al. (2010) indicated that 99% of revegetation programmes carried out by public authorities in Spain used fast growing tree vegetation (Pinus sp. and Eucalyptus sp.) that grow faster in non-fertile soils resisting to isolation. But the introduction

  11. Diffusion and Leaching of Selected Radionuclides (Iodine-129, Technetium-99, and Uranium) Through Category 3 Waste Encasement Concrete and Soil Fill Material

    SciTech Connect

    Mattigod, Shas V.; Whyatt, Greg A.; Serne, R. Jeffrey; Martin, P. F.; Schwab, Kristen E.; Wood, Marcus I.

    2001-09-24

    An assessment of long-term performance of Category 3 waste-enclosing cement grouts requires data about the leachability/diffusion of radionuclide species (iodine-129, technetium-99, and uranium) when the waste forms come in contact with groundwater. Leachability data were collected by conducting dynamic (ANS-16.1) and static leach tests on radionuclide-containing cement specimens. The diffusivity of radionuclides in soil and concrete media was collected by conducting soil-soil and concrete-soil half-cell experiments.