Sample records for parent material soil

  1. SOIL PARENT MATERIALS Low-carbonate alluvium

    E-print Network

    , rhyolite and undifferentiated volcanics are low-carbonate. High- and low- carbonate parent materials CLIMATIC ZONES 1 0 1 2 3 4 5 6 Kilometers 1 0 1 2 3 Miles N RhyoliteR V Volcanic (undiff.) Intermediate

  2. Soil Inorganic Carbon Formation: Can Parent Material Overcome Climate?

    NASA Astrophysics Data System (ADS)

    Stanbery, C.; Will, R. M.; Seyfried, M. S.; Benner, S. G.; Flores, A. N.; Guilinger, J.; Lohse, K. A.; Good, A.; Black, C.; Pierce, J. L.

    2014-12-01

    Soil carbon is the third largest carbon reservoir and is composed of both organic and inorganic constituents. However, the storage and flux of soil carbon within the global carbon cycle are not fully understood. While organic carbon is often the focus of research, the factors controlling the formation and dissolution of soil inorganic carbon (SIC) are complex. Climate is largely accepted as the primary control on SIC, but the effects of soil parent material are less clear. We hypothesize that effects of parent material are significant and that SIC accumulation will be greater in soils formed from basalts than granites due to the finer textured soils and more abundant calcium and magnesium cations. This research is being conducted in the Reynolds Creek Experimental Watershed (RCEW) in southwestern Idaho. The watershed is an ideal location because it has a range of gradients in precipitation (250 mm to 1200 mm), ecology (sagebrush steppe to juniper), and parent materials (a wide array of igneous and sedimentary rock types) over a relatively small area. Approximately 20 soil profiles will be excavated throughout the watershed and will capture the effects of differing precipitation amounts and parent material on soil characteristics. Several samples at each site will be collected for analysis of SIC content and grain size distribution using a pressure calcimeter and hydrometers, respectively. Initial field data suggests that soils formed over basalts have a higher concentration of SIC than those on granitic material. If precipitation is the only control on SIC, we would expect to see comparable amounts in soils formed on both rock types within the same precipitation zone. However, field observations suggest that for all but the driest sites, soils formed over granite had no SIC detected while basalt soils with comparable precipitation had measurable amounts of SIC. Grain size distribution appears to be a large control on SIC as the sandier, granitic soils promote deeper percolation. This ongoing research will clarify the processes involved in SIC formation and identify the situations where it is an atmospheric source or sink.

  3. Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material

    USGS Publications Warehouse

    Steven, Blaire; Gallegos-Graves, La Verne; Belnap, Jayne; Kuske, Cheryl R.

    2013-01-01

    Biological soil crusts (biocrusts) are common to drylands worldwide. We employed replicated, spatially nested sampling and 16S rRNA gene sequencing to describe the soil microbial communities in three soils derived from different parent material (sandstone, shale, and gypsum). For each soil type, two depths (biocrusts, 0–1 cm; below-crust soils, 2–5 cm) and two horizontal spatial scales (15 cm and 5 m) were sampled. In all three soils, Cyanobacteria and Proteobacteria demonstrated significantly higher relative abundance in the biocrusts, while Chloroflexi and Archaea were significantly enriched in the below-crust soils. Biomass and diversity of the communities in biocrusts or below-crust soils did not differ with soil type. However, biocrusts on gypsum soil harbored significantly larger populations of Actinobacteria and Proteobacteria and lower populations of Cyanobacteria. Numerically dominant operational taxonomic units (OTU; 97% sequence identity) in the biocrusts were conserved across the soil types, whereas two dominant OTUs in the below-crust sand and shale soils were not identified in the gypsum soil. The uniformity with which small-scale vertical community differences are maintained across larger horizontal spatial scales and soil types is a feature of dryland ecosystems that should be considered when designing management plans and determining the response of biocrusts to environmental disturbances.

  4. Soil parent material is a key determinant of the bacterial community structure in arable soils.

    PubMed

    Ulrich, Andreas; Becker, Regina

    2006-06-01

    The bacterial community composition in soil and rhizosphere taken from arable field sites, differing in soil parent material and soil texture, was analyzed using terminal restriction fragment length polymorphism (T-RFLP) of 16S rRNA genes. Nine sandy to silty soils from North-East Germany could clearly be distinguished from each other, with a relatively low heterogeneity in the community structure within the field replicates. There was a relationship between the soil parent material, i.e. different glacial and aeolian sediments, and the clustering of the profiles from different sites. A site-specific grouping of T-RFLP profiles was also found for the rhizosphere samples of the same field sites that were planted with potatoes. The branching of the rhizosphere profiles corresponded partly with the soil parent material, whereas the effect of the plant genotype was negligible. Selected terminal restriction fragments differing in their relative abundance within the nine soils were analyzed based on the cloning of the 16S rRNA genes of one soil sample. A high phylogenetic diversity observed to include Acidobacteria, Betaproteobacteria, Bacteroidetes, Verrucomicrobia, and Gemmatimonadetes. The assignment of three out of the seven selected terminal restriction fragments to members of Acidobacteria suggested that this group seems to participate frequently in the shifting of community structures that result from soil property changes. PMID:16689875

  5. Parental material and cultivation determine soil bacterial community structure and fertility.

    PubMed

    Sun, Li; Gao, Jusheng; Huang, Ting; Kendall, Joshua R A; Shen, Qirong; Zhang, Ruifu

    2015-01-01

    Microbes are the key components of the soil environment, playing important roles during soil development. Soil parent material provides the foundation elements that comprise the basic nutritional environment for the development of microbial community. After 30 years artificial maturation of cultivation, the soil developments of three different parental materials were evaluated and bacterial community compositions were investigated using the high-throughput sequencing approach. Thirty years of cultivation increased the soil fertility and soil microbial biomass, richness and diversity, greatly changed the soil bacterial communities, the proportion of phylum Actinobacteria decreased significantly, while the relative abundances of the phyla Acidobacteria, Chloroflexi, Gemmatimonadetes, Armatimonadetes and Nitrospira were significantly increased. Soil bacterial communities of parental materials were separated with the cultivated ones, and comparisons of different soil types, granite soil and quaternary red clay soil were similar and different with purple sandy shale soil in both parental materials and cultivated treatments. Bacterial community variations in the three soil types were affected by different factors, and their alteration patterns in the soil development also varied with soil type. Soil properties (except total potassium) had a significant effect on the soil bacterial communities in all three soil types and a close relationship with abundant bacterial phyla. The amounts of nitrogen-fixing bacteria as well as the abundances of the nifH gene in all cultivated soils were higher than those in the parental materials; Burkholderia and Rhizobacte were enriched significantly with long-term cultivation. The results suggested that crop system would not deplete the nutrients of soil parental materials in early stage of soil maturation, instead it increased soil fertility and changed bacterial community, specially enriched the nitrogen-fixing bacteria to accumulate nitrogen during soil development. PMID:25764534

  6. Controls of Parent Material and Topography on Soil Carbon Storage in the Critical Zone

    NASA Astrophysics Data System (ADS)

    Patton, N. R.; Seyfried, M. S.; Lohse, K. A.; Link, T. E.

    2014-12-01

    Semi-arid environments make up a large percentage of the world's terrestrial ecosystems, and climate is a major factor influencing soil carbon storage and release. However, the roles of local controls such as parent material, aspect and microtopography have received less attention and are important for consideration in soil carbon modeling. The purpose of this study is to understand the role that parent material, aspect and micro-topography play in storage and release of soil carbon along an elevation gradient in a semi-arid climate. Johnston Draw (JD) is a first order watershed within the Reynolds Creek Critical Zone Observatory in southwestern Idaho with underlining late cretaceous, granitic Idaho batholith bedrock. Upper Sheep Creek (USC) is a first order watershed consisting of basalt. Both watersheds were chosen for this project due to similar size, aspect, elevation, vegetation and for the contrast in parent material. Two transects, totaling approximately nine soil pits, were excavated on both the north and south facing slopes of each watershed running parallel to the water channel. Soil carbon was generally higher in basalt compared to the granite parent material in pits with similar aspect, elevation and vegetation. Preliminary data using soil organic matter (SOM) as a proxy for organic carbon (OC) and soil water dynamics showed that percent OC declines markedly with elevation in JD and soil depth at lower elevations and is more homogenous throughout the profile moving up elevation (1646 meters 4.3-9.7%; 1707 meters 6.87-3.83%). Similarly, aspect controls patterns of SOM at depth more strongly at lower elevations. Findings from our study suggest that parent material and topography may play as important roles in semi-arid ecosystems as climate factors in controlling soil carbon storage.

  7. Assessment of soil parent material formation in periglacial environments through medium scale landscape evolution modelling

    NASA Astrophysics Data System (ADS)

    Bock, M.; Günther, A.; Ringeler, A.; Baritz, R.; Böhner, J.

    2012-04-01

    Soil parental materials represent the weathering product of any surficial geological substrates comprising in-situ fragmented and dissolved rocks, unconsolidated sediments of various types and origins, or even paleosoils. Weathering, erosion, transport and accumulation processes of geological materials governing the formation of soil parent materials display a highly complex non-linear behaviour at larger spatial scales over smaller geological time periods (< 50.000 years) in lithologically complex settings. This is particularly evident in periglacial environments where regional allochthonous sediment supply contributes to soil parent material formation. We propose a GIS implementation of a landscape evolution model (LEM) for the spatiotemporal investigation of soil parent material evolution following a lithologically differentiated approach. The well-established LEM tool GOLEM has been adapted and realized as a module for the open-source GIS SAGA to operate in a spatially distributed framework, taking advantage of the highly developed capabilities of SAGA for morphometric digital terrain analysis. The LEM is driven by high-resolution paleo-climatic data (temperature, precipitation) representative for periglacial areas in Northern Germany over the last 50.000 years. The initial conditions of the LEM are determined for a test site by a digital terrain model and a geological model. The geological model was parameterized through geological field data derived from rock mass rating procedures and soft sediment analyses to account for a lithologically differentiated LEM set up with respect to first-order mechanical properties of both rock-type and unconsolidated lithologies. Weathering, erosion and transport functions of the LEM are calibrated using the extrinsic (climatic) and intrinsic (lithology) parameter data. First results indicate that our differentiated LEM-based approach displays some evidence for the spatiotemporal prediction of important soil parental material properties (e.g., thickness, structure, texture, and composition). However, the results have to be validated against field data, and the influence of discrete events (landslides, floods) has to be evaluated.

  8. The chemistry and parent material of urban soils in Bristol (UK): implications for contaminated land assessment.

    PubMed

    Giusti, L

    2013-02-01

    An earlier survey of topsoil from parks and allotment in the city of Bristol (UK) revealed the presence of relatively high levels of "pseudo-total" Cd, As, Cu, Pb and Zn, with Cd and As exceeding present UK soil guidelines. This follow-up work aimed at (1) estimating geochemical thresholds for these elements based on "near-total" soil, bedrock and sediment heavy metals and (2) determining the genetic relationship between soil and bedrock using rare earth elements (REEs or lanthanides) as tracers. "Near-total" concentration of 34 elements (Al, Ca, Fe, K, Mg, Na, As, Ba, Cd, Cr, Cu, Li, Mn, Ni, P, Pb, Sc, Ti, V, Zn, Y and the rare earth elements Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Yb) were obtained by ICP-MS and ICP-OES. The results show that the soil composition is largely controlled by the soil parent material, though extreme outliers are indicative of contamination at a few sites of parkland and allotments. Cumulative frequency plots show the presence of different data sets for which separate "background" values should be determined. The REE data provide evidence that weathering of the underlying sandstone was a determinant factor leading to the relatively high heavy metal enrichment found in soil samples and sediments. Reference to UK soil guidelines to decide on possible remediation measures could be very misleading due to the natural high background levels of some elements in the underlying bedrock. Before defining land as "contaminated", a thorough geochemical investigation is required at local scale in order to produce a more realistic and correct environmental assessment. PMID:22740127

  9. Multiscale analysis of nitrogen adsorption and desorption isotherms in soils developed over sandstone and basic parent materials with contrasting texture

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, Jorge; Marinho, Mara de A.; de Abreu, Cleide A.

    2014-05-01

    Mono- and multifractal analysis of soil nitrogen adsorption isotherms (NAI) have been proven to be useful, allowing a better characterization of soil surface properties and soil porous system. Multiscale analysis of nitrogen desorption isotherms (NDI), which was less frequently performed, can also provide very valuable information. The multifractal theory was used to analyse both soil adsorption and desorption isotherms from soils developed over contrasting parent material and with different texture. We sampled 32 soil horizons from 6 soil profiles in neighbouring sites from São Paulo State, Brazil. Three of the profiles, developed over sandstone, were sandy loam or loamy, whereas the other three profiles, developed over weathered sediments or basic parent material, were clayey textured. Soil specific surface area (SSA) varied, from about 3.0 to 46 m2 g-1. Surface parameters showed a strong correlation with clay content, but they were not correlated with cation exchange capacity (CEC). The scaling properties of both nitrogen adsorption and desorption isotherms from all the studied soil horizons could be fitted reasonably well with multifractal models. Multifractal parameters from NAIs and NDIs showed great differences. The singularity spectra, f(?) of the desorption isotherms had an asymmetrically long left part and its asymmetry was in general higher compared with adsorption isotherms. Moreover, adsorption isotherms behaved like more clustered measures, showing lower entropy dimension, D1, smaller correlation dimension, D2, and higher heterogeneity than desorption isotherms. Differences in multifractal behaviour of NAIs and NDIs had been proven to be mainly related to the characteristics of the hysteretic loop measured at high relative pressures. Several multifractal parameters extracted from NAIs and NDIs also distinguished between sandy-loam and loam soils and clayey soils. Multifractal parameters calculated from NAIs and NDIs provide new insight to assess soil surface properties.

  10. The background concentrations of 13 soil trace elements and their relationships to parent materials and vegetation in Xizang (Tibet), China

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoping P.; Deng, Wei; Yang, Xueming M.

    2002-12-01

    The background concentrations of 13 soil trace elements, copper (Cu), lead (Pb), zinc (Zn), cadmium (Cd), nickel (Ni), chromium (Cr), mercury (Hg), arsenic (As), selenium (Se), cobalt (Co), vanadium (V), manganese (Mn), and fluorine (F), from approximately 205 pedons in Tibet, China are reported here for the first time. The 13 trace element concentrations follow an approximately log-normal distribution. While the mean concentrations of Hg and Se are lower and As is higher than the average concentration for all of China, concentrations of the other trace elements are similar to the national average. Trace element concentrations are related to vegetation and human activity also played a notable role on the contents of trace elements in Tibet. The parent material relationship for all 13 soil trace element concentrations follows the pattern: shale>sandstone?igneous rock?limestone>alluvial sediment>glacial deposits>lake sediments; while for vegetation and human activity the concentration pattern is farmland=shrub>forests>meadow>prairie>marsh and others. The soil trace element concentrations on the Tibetan Plateau are related primarily to the parent material, but were also affected by vegetation and human activity.

  11. Impact of climate and parent material on chemical weathering in Loess-derived soils of the Mississippi River valley

    USGS Publications Warehouse

    Muhs, D.R.; Bettis, E. Arthur, III; Been, J.; McGeehin, J.P.

    2001-01-01

    Peoria Loess-derived soils on uplands east of the Mississippi River valley were studied from Louisiana to Iowa, along a south-to-north gradient of decreasing precipitation and temperature. Major element analyses of deep loess in Mississippi and Illinois show that the composition of the parent material is similar in the northern and southern parts of the valley. We hypothesized that in the warmer, wetter parts of the transect, mineral weathering should be greater than in the cooler, drier parts of the transect. Profile average values of CaO/TiO2, MgO/ TiO2, K2O/TiO2, and Na2O/TiO2, Sr/Zr, Ba/Zr, and Rb/Zr represent proxies for depletion of loess minerals such as calcite, dolomite, hornblende, mica, and plagioclase. All ratios show increases from south to north, supporting the hypothesis of greater chemical weathering in the southern part of the valley. An unexpected result is that profile average values of Al2O3/TiO2 and Fe2O3/TiO2 (proxies for the relative abundance of clay minerals) show increases from south to north. This finding, while contrary to the evidence of greater chemical weathering in the southern part of the transect, is consistent with an earlier study which showed higher clay contents in Bt horizons of loess-derived soils in the northern part of the transect. We hypothesize that soils in the northern part of the valley received fine-grained loess from sources to the west of the Mississippi River valley either late in the last glacial period, during the Holocene or both. In contrast, soils in the southern part of the valley were unaffected by such additions.

  12. Phyllosilicate weathering pathways in chlorite-talc bearing soil parent materials, D.R. Congo: early findings.

    NASA Astrophysics Data System (ADS)

    Dumon, Mathijs; Oostermeyer, Fran; Timmermans, Els; De Meulemeester, Aschwin; Mees, Florias; Van Driessche, Isabel; Erens, Hans; Bazirake Mujinya, Basile; Van Ranst, Eric

    2015-04-01

    The study of the formation and transformation of clay minerals is of the upmost importance to understand soil formation and to adjust land-use management to the land surface conditions. These clay minerals determine to a large extent the soil physical and chemical properties. It is commonly observed that over time the mineralogy of any parent material is transformed to a simple assemblage composed mostly of Al and Fe oxides and low-activity clays, e.g. kaolinite. This is especially obvious in the humid tropics, which have been protected from glacial erosion, allowing deep, highly weathered soils to form. Despite the abundant presence of kaolinite in these soils, its formation pathways are still under debate: either neoformation by dissolution-crystallisation reactions or solid-state transformation of 2:1 phyllosilicates. To elucidate this, weathering sequences in a unique 40 m core taken below a termite mound, reaching a talc-chlorite bearing substrate in the Lubumbashi area, Katanga, DR Congo are being investigated in detail using a.o. quantitative X-ray diffraction analysis, chemical characterization, micromorphology and µXRF-scanning with the main objective to improve the understanding of the formation pathways of kaolinite subgroup minerals in humid tropical environments. Based on an initial characterization of the core, two zones of interest were selected for more detailed analysis, for which the early findings will be presented. The first zone extends from ca. 9 m to 11 m below the surface is dominated by kaolinite but shows early traces of primary talc and micas. The second zone extends from 34 to 36 m below the surface and contains large amounts of chlorite, with smaller amounts of talc, micas and kaolinite.

  13. Soils as Construction Materials

    NSDL National Science Digital Library

    Douglas Kowalewski

    This geotechnical project will introduce you with the concept of using soils as construction materials.This project involves characterizing soils using various laboratory analyses and applying the Unified Soil Classification System in naming the soil. Keywords: Geotechnical, Mass Wetness, Grain Size Analysis, Atterberg Limits

  14. The interaction between parent material, climate and volcanism as the major soil forming factor in the Ecuadorian high Andes region

    NASA Astrophysics Data System (ADS)

    Buytaert, W.; Duyck, H.; Dercon, G.; Deckers, J.; Wyseure, G.

    2003-04-01

    The high Andes region of Ecuador and Colombia (>3500m a.s.l.) is covered by the so-called páramo ecosystem, characterised by a cold climate, a typical grass or small shrub vegetation and volcanic soils. Soil profiles of the paramo in the Austro Ecuatoriano, South Ecuador, were studied in order to reveal genetic relationships with geology, volcanic ash deposits, climate and land use. A gradual diminuation of Andic properties was found, related to the distance of the pedon to the active volcanoes of the Northern Volcanic Zone of the Andes. Pedons in the north of the region, closer to these volcanoes (Sangay, Tungurahua) are classified as non-allophanic Histic Andosols. The influence of the vicinity of the volcanoes leads to a higher oxalate extractable aluminium and iron. The genesis of the Andosols seems to be strongly related to the presence and thickness of volcanic ash depositions. The limit of these depositions is situated south of the city of Cuenca. Pedons further to the south are classified as Histosols. However, they also have clear Andic properties. Several differences in chemical properties between the Western and Eastern cordilleras where found, that are most probable related with a difference in mother material, and maybe also a different climatic regime. Correlation of the chemical properties with land use reveals that no chemical differences can be found that are invoked by occupying natural Andosols for agricultural purposes, within the first five years of cultivation. At last, the conclusions were used to revisit the World Reference Base for Soil Resources in order to sharpen up differenciation between Andosols and Histosols.

  15. Rhizomes and fronds of Athyrium filix-femina as possible bioindicators of chemical elements from soils over different parent materials in southwest Poland

    Microsoft Academic Search

    Aleksandra Samecka-Cymerman; Krzysztof Kolon; Andrzej Stankiewicz; Joanna Kaszewska; Lucyna Mróz; Alexander J. Kempers

    2011-01-01

    Concentrations of P, K, Ca, Mg, Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn were measured in rhizomes and fronds of the fern Athyrium filix-femina in relation to the concentrations of the same elements in soils developed on various parent rocks in the Góry Kaczawskie mountains (southwest Poland). This species was sampled from sites on greenstone,

  16. An initial study to assess the use of geological parent materials to predict the Se concentration in overlying soils and in five staple foodstuffs produced on them in Scotland

    Microsoft Academic Search

    F. M. Fordyce; N. Brereton; J. Hughes; W. Luo; J. Lewis

    2010-01-01

    Evidence suggests that dietary-intakes of the essential element selenium have fallen in Scotland in recent years, due to changing sources of bread-making wheat. The Scottish environment is thought to be Se-poor due to the geology and climate. This initial study assessed whether geological parent-materials could be used to predict relatively high and low soil-Se areas in Scotland and whether differences

  17. Parents.

    ERIC Educational Resources Information Center

    Lao Parents and Teachers Association, Minneapolis, MN.

    This collection presents advice to help parents help their children succeed in school. Information sheets are included from many sources, in English and translated into Lao by the Lao Parents and Teachers Association. The emphasis is on the elementary grades, although some of the materials are useful for parents of high school students. The…

  18. Background levels of some major, trace, and rare earth elements in indigenous plant species growing in Norway and the influence of soil acidification, soil parent material, and seasonal variation on these levels.

    PubMed

    Gjengedal, Elin; Martinsen, Thomas; Steinnes, Eiliv

    2015-06-01

    Baseline levels of 43 elements, including major, trace, and rare earth elements (REEs) in several native plant species growing in boreal and alpine areas, are presented. Focus is placed on species metal levels at different soil conditions, temporal variations in plant tissue metal concentrations, and interspecies variation in metal concentrations. Vegetation samples were collected at Sogndal, a pristine site in western Norway, and at Risdalsheia, an acidified site in southernmost Norway. Metal concentrations in the different species sampled in western Norway are compared with relevant literature data from Norway, Finland, and northwest Russia, assumed to represent natural conditions. Except for aluminium (Al) and macronutrients, the levels of metals were generally lower in western Norway than in southern Norway and may be considered close to natural background levels. In southern Norway, the levels of cadmium (Cd) and lead (Pb) in particular appear to be affected by air pollution, either by direct atmospheric supply or through soil acidification. Levels of some elements show considerable variability between as well as within plant species. Calcium (Ca), magnesium (Mg), and potassium (K) are higher in most species at Sogndal compared to Risdalsheia, despite increased extractable concentrations in surface soil in the south, probably attributed to different buffer mechanisms in surface soil. Antagonism on plant uptake is suggested between Ca, Mg, and K on one hand and Al on the other. Tolerance among calcifuges to acid conditions and a particular ability to detoxify or avoid uptake of Al ions are noticeable for Vaccinium vitis-idaea. PMID:26022847

  19. DETERMINATION OF EFFECTIVE POROSITY OF SOIL MATERIALS

    EPA Science Inventory

    The performance of a compacted soil liner is partly a function of the porosity, where the transport of materials through the liner occurs via the pore space. The project studies the pore spaces of compacted soil materials to estimate the effective porosity, which is the portion o...

  20. EPR-based material modelling of soils

    NASA Astrophysics Data System (ADS)

    Faramarzi, Asaad; Alani, Amir M.

    2013-04-01

    In the past few decades, as a result of the rapid developments in computational software and hardware, alternative computer aided pattern recognition approaches have been introduced to modelling many engineering problems, including constitutive modelling of materials. The main idea behind pattern recognition systems is that they learn adaptively from experience and extract various discriminants, each appropriate for its purpose. In this work an approach is presented for developing material models for soils based on evolutionary polynomial regression (EPR). EPR is a recently developed hybrid data mining technique that searches for structured mathematical equations (representing the behaviour of a system) using genetic algorithm and the least squares method. Stress-strain data from triaxial tests are used to train and develop EPR-based material models for soil. The developed models are compared with some of the well-known conventional material models and it is shown that EPR-based models can provide a better prediction for the behaviour of soils. The main benefits of using EPR-based material models are that it provides a unified approach to constitutive modelling of all materials (i.e., all aspects of material behaviour can be implemented within a unified environment of an EPR model); it does not require any arbitrary choice of constitutive (mathematical) models. In EPR-based material models there are no material parameters to be identified. As the model is trained directly from experimental data therefore, EPR-based material models are the shortest route from experimental research (data) to numerical modelling. Another advantage of EPR-based constitutive model is that as more experimental data become available, the quality of the EPR prediction can be improved by learning from the additional data, and therefore, the EPR model can become more effective and robust. The developed EPR-based material models can be incorporated in finite element (FE) analysis.

  1. Microscale investigation into the geochemistry of arsenic, selenium, and iron in soil developed in pyritic shale materials

    Microsoft Academic Search

    Daniel Strawn; Harvey Doner; Mavrik Zavarin; Scott McHugo

    2002-01-01

    In this study, we report on the distribution and mineralogy of micron-sized mineral aggregates formed in the top horizon of an acid sulfate soil. The distribution and oxidation state of arsenic (As) and selenium (Se) were also determined. The soil used in this study was formed from pyritic shale parent materials on the east side of the California Coast Range.

  2. Response of plant species to coal-mine soil materials

    Microsoft Academic Search

    A. D. Day; T. C. Tucker; J. L. Thamest

    1983-01-01

    A two-year experiment was conducted on the Black Mesa Coal Mine near Kayenta, Arizona to investigate the growth and establishment of seven plant species in unmined soil (undisturbed soil) and coal-mine soil (spoils). Natural rainfall (20 cm\\/yr) and natural rainfull plus sprinkler irrigation (50 cm\\/yr) were the irrigation treatments applied to each soil material.

  3. Soil Quality: Science and Process

    Microsoft Academic Search

    Michelle M. Wander; Gerald L. Walter; Todd M. Nissen; German A. Bollero; Susan S. Andrews; Deborah A. Cavanaugh-Grant

    parent materials, topographies, and biota, all acting over geologic time (Jenny, 1941). Inherent differences are The term soil quality (SQ) encompasses both a soil's productive well reflected by the soil series description of the U.S.

  4. Evaluation of an alternative bituminous material as a soil stabilizer 

    E-print Network

    Kim, Yong-Rak

    1999-01-01

    granular base materials, the PRB material coated soil or aggregate particles and decreased the volume of voids, which can be thought as potential water flow channels. Consequently, the PRB material is expected to reduce permeability....

  5. Aging of oily soils on textile materials: A literature review

    Microsoft Academic Search

    Yong-Seung Chi; S. Kay Obendorf

    1998-01-01

    Literature covering the problems of oily soil aging on textile materials is reviewed. Difficulty of soil removal and discoloration\\u000a of oily soiled fabrics were the main problems of aged oily soil reported by researchers. Yellowing of fabrics is attributed\\u000a mainly to residual oily soils although there are other causes. Oxidation of unsaturated oils was suggested as the cause of\\u000a problems

  6. Decomposition of 13C-labelled standard plant material in a latitudinal transect of European coniferous forests: Differential impact of climate on the decomposition of soil organic matter compartments

    Microsoft Academic Search

    Marie-Madeleine Coûteaux; Pierre Bottner; Jonathan M. Anderson; Björn Berg; Thomas Bolger; Pere Casals; Joan Romanyà; Jean M. Thiéry; V. Ramon Vallejo

    2001-01-01

    13C labelled plant material was incubated in situ over 2 to 3 years in 8 conifer forest soils located on acid and limestone parent material along a north-south climatic transect from boreal to dry Mediterranean regions in western Europe. The objectives of the experiment were to evaluate the effects of climate and the soil environment on decomposition and soil organic

  7. Parenting.

    ERIC Educational Resources Information Center

    Markun, Patricia Maloney, Ed.

    This document contains 11 articles which are concerned with the education and development of people who are, or will be, parents. The term "parenting" is used to emphasize the need to help fathers and mothers to deal effectively with their own children. Also, the term reflects the growing awareness that child rearing is the function of many…

  8. The susceptibility of parental and hybrid willows to plant enemies under contrasting soil nutrient conditions

    Microsoft Academic Search

    C. M. Orians; T. Floyd

    1997-01-01

    We conducted an experimental study of the effects of nutrient addition on the susceptibility of two species of willows (Salix \\u000a eriocephala and S. sericea) and their hybrid to a pathogen and several herbivores. We hypothesized that the relative susceptibility of parental and\\u000a hybrid willows would depend upon soil nutrient availability and vary among plant enemies. Using potted plants in a

  9. Decomposition of 14C- and 15N-labelled plant material, under controlled conditions, in coniferous forest soils from a north–south climatic sequence in western Europe

    Microsoft Academic Search

    P. Bottner; F. Austrui; J. Cortez; G. Billès; M. M. Coûteaux

    1998-01-01

    The aim of this work was to clarify how decomposition kinetics and microbial biomass size and activity are controlled by humus and soil properties. The organic horizons (including Oh and A1 horizons) of seven coniferous forest soils (on siliceous and limestone parent material) from a north–south climatic sequence in western Europe from Boreal to Mediterranean climate, were incubated in laboratory

  10. Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil is a diverse natural material characterized by solid, liquid, and gas phases that impart unique chemical, physical, and biological properties. Soil provides many key functions, including supporting plant growth and providing environmental remediation. Monitoring key soil properties and processe...

  11. The influence of carbonates in parent rocks on the biological properties of mountain soils of the Northwest Caucasus region

    NASA Astrophysics Data System (ADS)

    Kazeev, K. Sh.; Kutrovskii, M. A.; Dadenko, E. V.; Vezdeneeva, L. S.; Kolesnikov, S. I.; Val'kov, V. F.

    2012-03-01

    The biological activity of different subtypes of soddy-calcareous soils (rendzinas) of the Northwest Caucasus region was studied. In the Novorossiisk-Abrau-Dyurso region (dry subtropics), typical soddy-calcareous soils with the high content of carbonates predominate; in the more humid conditions of the Lagonaki Plateau (Republic of Adygeya), leached soddy-calcareous soils carbonate-free down to the parent rock are spread. The number of microarthropods, the populations of fungi and bacteria, and the enzyme activity (catalase, dehydrogenase, and invertase) testify that the biological activity of these soils significantly differs. In the typical soddy-calcareous soils of the dry subtropics, the content of carbonates does not affect the characteristics mentioned; in the more humid conditions of the West Caucasus region, the presence of carbonates in the parent rocks intensifies the biological activity of the soddy-calcareous soils.

  12. Parenting.

    ERIC Educational Resources Information Center

    Spock, Benjamin; And Others

    Various aspects of child-rearing are covered in this transcript of a program broadcast in the National Public Radio weekly series, "Options in Education." Authors of current popular books on parenting are interviewed. Benjamin Spock discusses changes (including sex role revisions) in his "Baby and Child Care" since the 1946 first edition. Eda…

  13. Parenting.

    ERIC Educational Resources Information Center

    Jochim, Lisa; Mueller, Andrea

    This guide contains 15 learning activities that can be used in parenting classes, especially for adults with limited literacy skills. Activities include quotations for discussion and suggestions for conducting group discussions and writing lessons. The following activities are included: interpreting quotations about raising children; positive…

  14. Composting of Lignocellulosic Waste Material for Soil Amendment

    Microsoft Academic Search

    Ramesh Chander Kuhad; Piyush Chandna; Lata; Ajay Singh

    \\u000a Composting of lignocellulosic waste material and application of compost as soil amendment improves the physical, chemical,\\u000a and biological properties of soils. Composting method includes in-vessel, windrow, aerated pile, continuous-feed, and vermicomposting.\\u000a The composting process proceeds through three phases: the mesophilic phase, the thermophilic phase, and the cooling and maturation\\u000a phase. Extensive studies are available on the population of bacteria, actinomycetes,

  15. The measurement of 15 N in soil and plant material

    Microsoft Academic Search

    G Pruden; DS Powlson; DS Jenkinson

    1985-01-01

    A complete procedure for analysing soil and plant samples for total N and atom % excess15N is described. The salicylic acid version of the Kjeldahl method for measuring total N was modified for use in a digestion block, giving quantitative reduction of nitrate in both soil and plant material. Procedures for minimising cross-contamination between samples are specified, including a double-distillation

  16. Evaluation of soils for use as liner materials: a soil chemistry approach.

    PubMed

    DeSutter, Tom M; Pierzynski, Gary M

    2005-01-01

    Movement of NH(4)(+) below animal waste lagoons is generally a function of the whole-lagoon seepage rate, soil mineralogy, cations in the lagoon liquor, and selectivity for NH(4)(+) on the soil-exchange sites. Binary exchange reactions (Ca(2+)-K(+), Ca(2+)-NH(4)(+), and K(+)-NH(4)(+)) were conducted on two soils from the Great Plains and with combinations of these soils with bentonite or zeolite added. Binary exchanges were used to predict ternary exchanges Ca(2+)-K(+)-NH(4)(+) following the Rothmund-Kornfeld approach and Gaines-Thomas convention. Potassium and NH(4)(+) were preferred over Ca(2+), and K(+) was preferred over NH(4)(+) in all soils and soils with amendments. Generally, the addition of bentonite did not change cation selectivity over the native soils, whereas the addition of zeolite did. The Rothmund-Kornfeld approach worked well for predicting equivalent fractions of cations on the exchanger phase when only ternary-solution phase compositions were known. Actual swine- and cattle-lagoon solution compositions and the Rothmund-Kornfeld approach were used to project that native soils are predicted to retain 53 and 23%, respectively, of the downward-moving NH(4)(+) on their exchange sites. Additions of bentonite or zeolite to soils under swine lagoons may only slightly improve the equivalent fraction of NH(4)(+) on the exchange sites. Although additions of bentonite or zeolite may not help increase the NH(4)(+) selectivity of a liner material, increases in the overall cation exchange capacity (CEC) of a soil will ultimately decrease the amount of soil needed to adsorb downward-moving NH(4)(+). PMID:15843659

  17. Tension of Geosynthetic Material Regarding Soils on Landfill Liner Slopes

    Microsoft Academic Search

    CHIA-NAN LIU

    Evaluating the tension within geosynthetic components of landfill liner slopes is important for establishing the reliability of the lining system and the design of the anchor system. In this paper, a simple but accurate analytical approach for evaluating tensile loads within geosynthetic materials induced by the soils on landfill liner slopes is introduced. The existing conventional analytical methods consider the

  18. Estimation of Relative Bioavailability of Lead in Soil and Soil-Like Materials Using Young Swine

    PubMed Central

    Casteel, Stan W.; Weis, Christopher P.; Henningsen, Gerry M.; Brattin, William J.

    2006-01-01

    In this article we summarize the results of a series of studies that measured the relative bioavailability (RBA) of lead in a variety of soil and soil-like test materials. Reference material (Pb acetate) or Pb-contaminated soils were administered orally to juvenile swine twice a day for 15 days. Blood samples were collected from each animal at multiple times during the course of the study, and samples of liver, kidney, and bone were collected at sacrifice. All samples were analyzed for Pb. We estimated the RBA of a test material by fitting mathematical models to the dose–response curves for each measurement end point and finding the ratio of doses that gave equal responses. The final RBA for a test material is the simple average of the four end point–specific RBA values. Results from 19 different test materials reveal a wide range of RBA values across different exposure materials, ranging from 6 to 105%. This variability in RBA between different samples highlights the importance of reliable RBA data to help improve risk assessments for Pb in soil. Although the RBA value for a sample depends on the relative amounts of the different chemical and physical forms of Pb present, data are not yet adequate to allow reliable quantitative predictions of RBA from chemical speciation data alone. PMID:16882520

  19. EPR-based material modelling of soils considering volume changes

    NASA Astrophysics Data System (ADS)

    Faramarzi, Asaad; Javadi, Akbar A.; Alani, Amir M.

    2012-11-01

    In this paper an approach is presented for developing material models for soils based on evolutionary polynomial regression (EPR), taking into account its volumetric behaviour. EPR is a recently developed hybrid data mining technique that searches for structured mathematical equations (representing the behaviour of a system) using genetic algorithm and the least squares method. Stress-strain data from triaxial test are used to train and develop EPR-based material models for soil. The developed models are compared with some of the well known conventional material models. In particular, the capability of the developed EPR models in predicting volume change behaviour of soils is illustrated. It is also shown that the developed EPR-based material models can be incorporated in finite element (FE) analysis. Two geotechnical examples are presented to verify the developed EPR-based FE model (EPR-FEM). The results of the EPR-FEM are compared with those of a standard FEM where conventional constitutive models are used to describe the material behaviour. The results show that EPR-FEM can be successfully employed to analyse geotechnical engineering problems. The advantages of the proposed EPR models are highlighted.

  20. Microbial properties of mine spoil materials in the initial stages of soil development

    SciTech Connect

    Machulla, G.; Bruns, M.A.; Scow, K.M. [University of Halle Wittenberg, Halle Saale (Germany). Inst. for Soil Science

    2005-08-01

    The early years of soil genesis during mine spoil reclamation are critical for vegetative establishment and may help predict reclamation success. Mine spoils in the Halle-Leipzig region of Germany were analyzed for microbial changes following a hay mulch-seeding treatment without topsoil or fertilizer application. Microbial biomass carbon (C{sub mic}) and dehydrogenase activity (DHA) of spoils were measured each year in the first 3 yr after treatment. In the third year, bacterial community DNA fingerprints were compared with those from a reference soil. Microbial indicators were measured at three depths in the upper 10 cm of spoils at three sites with contrasting parent materials: glacial till (sandy loam), limnic tertiary sediments (high-lignite sandy clay loam), and quaternary sand and gravel (loamy sand). Before reclamation, C{sub mic} means and standard deviations of surface spoils (0-1 cm) were 9{+-}6, 39{+-}11, and 38{+-}16 mg kg{sup -1} for the loamy sand, high-lignite sandy clay loam, and sandy loam spoils, respectively. Within one year, mean C{sub mic} at the surface increased to 148{+-}70, 229{+-}64, and 497{+-}167 mg kg{sup -1}, respectively, and was significantly higher at 0 to 1 cm than at lower depths. Highest DHA and DNA yields were obtained in the 0- to 1-cm depth of the sandy loam spoils. Microbial biomass C values exhibited significant correlations with DHA, DNA yield, and extractable C for all three mine spoils. Soil microbial indices were more responsive than plant measurements to differences in parent materials.

  1. Extralunar materials in cone-crater soil 14141.

    NASA Technical Reports Server (NTRS)

    Wasson, J. T.; Chou, C.-L.; Bild, R. W.; Baedecker, P. A.

    1973-01-01

    Radiochemical neutron activation analysis has been used to determine Ni, Zn, Ga, Ge, Cd, In, Ir, and Au in duplicate samples of lunar soil 14141 and in one additional replicate each of soils 14163 and 14259. The concentrations of extralunar trace elements Ni, Ge, Ir, and Au in 14141 and 14163 are, respectively, about 69 and 82% as high as those in 14259. Although most of the mass of 14141 appears to be ejecta from Cone Crater, a sizable contamination by mature Fra Mauro soil such as 14259 is also present. The siderophilic-element concentrations of the subregolith Fra Mauro materials are estimated to be 25 plus or minus 25% of those observed in 14259.

  2. Forming artificial soils from waste materials for mine site rehabilitation

    NASA Astrophysics Data System (ADS)

    Yellishetty, Mohan; Wong, Vanessa; Taylor, Michael; Li, Johnson

    2014-05-01

    Surface mining activities often produce large volumes of solid wastes which invariably requires the removal of significant quantities of waste rock (overburden). As mines expand, larger volumes of waste rock need to be moved which also require extensive areas for their safe disposal and containment. The erosion of these dumps may result in landform instability, which in turn may result in exposure of contaminants such as trace metals, elevated sediment delivery in adjacent waterways, and the subsequent degradation of downstream water quality. The management of solid waste materials from industrial operations is also a key component for a sustainable economy. For example, in addition to overburden, coal mines produce large amounts of waste in the form of fly ash while sewage treatment plants require disposal of large amounts of compost. Similarly, paper mills produce large volumes of alkaline rejected wood chip waste which is usually disposed of in landfill. These materials, therefore, presents a challenge in their use, and re-use in the rehabilitation of mine sites and provides a number of opportunities for innovative waste disposal. The combination of solid wastes sourced from mines, which are frequently nutrient poor and acidic, with nutrient-rich composted material produced from sewage treatment and alkaline wood chip waste has the potential to lead to a soil suitable for mine rehabilitation and successful seed germination and plant growth. This paper presents findings from two pilot projects which investigated the potential of artificial soils to support plant growth for mine site rehabilitation. We found that pH increased in all the artificial soil mixtures and were able to support plant establishment. Plant growth was greatest in those soils with the greatest proportion of compost due to the higher nutrient content. These pot trials suggest that the use of different waste streams to form an artificial soil can potentially be used in mine site rehabilitation where there is a nutrient-rich source of waste.

  3. Adaptive transgenerational plasticity in an annual plant: grandparental and parental drought stress enhance performance of seedlings in dry soil.

    PubMed

    Herman, Jacob J; Sultan, Sonia E; Horgan-Kobelski, Tim; Riggs, Charlotte

    2012-07-01

    Stressful parental (usually maternal) environments can dramatically influence expression of traits in offspring, in some cases resulting in phenotypes that are adaptive to the inducing stress. The ecological and evolutionary impact of such transgenerational plasticity depends on both its persistence across generations and its adaptive value. Few studies have examined both aspects of transgenerational plasticity within a given system. Here we report the results of a growth-chamber study of adaptive transgenerational plasticity across two generations, using the widespread annual plant Polygonum persicaria as a naturally evolved model system. We grew five inbred Polygonum genetic lines in controlled dry vs. moist soil environments for two generations in a fully factorial design, producing replicate individuals of each genetic line with all permutations of grandparental and parental environment. We then measured the effects of these two-generational stress histories on traits critical for functioning in dry soil, in a third (grandchild) generation of seedling offspring raised in the dry treatment. Both grandparental and parental moisture environment significantly influenced seedling development: seedlings of drought-stressed grandparents or parents produced longer root systems that extended deeper and faster into dry soil compared with seedlings of the same genetic lines whose grandparents and/or parents had been amply watered. Offspring of stressed individuals also grew to a greater biomass than offspring of nonstressed parents and grandparents. Importantly, the effects of drought were cumulative over the course of two generations: when both grandparents and parents were drought-stressed, offspring had the greatest provisioning, germinated earliest, and developed into the largest seedlings with the most extensive root systems. Along with these functionally appropriate developmental effects, seedlings produced after two previous drought-stressed generations had significantly greater survivorship in very dry soil than did seedlings with no history of drought. These findings show that plastic responses to naturalistic resource stresses experienced by grandparents and parents can "preadapt" offspring for functioning under the same stresses in ways that measurably influence realized fitness. Possible implications of these environmentally-induced, inherited adaptations are discussed with respect to ecological distribution, persistence under novel stresses, and evolution in natural populations. PMID:22523124

  4. The effect of parent metal properties on the performance of Lattice Block Material{trademark}

    SciTech Connect

    Renauld, M.L.; Giamei, A.F.; Thompson, M.S. [United Technologies Research Center, East Hartford, CT (United States). Materials and Structures Technology Dept.; Priluck, J. [JAMCORP, Wilmington, MA (United States)

    1998-12-31

    Lattice Block Material{trademark}, or LBM{trademark} is a unique lightweight structure consisting of repeated cells with an internal node connected to, in the most common configuration, 14 ligaments. In its metallic version, this product is available in a variety of castable metals including aluminum alloys, copper alloys, nickel alloys and steels. The relationship between LBM structural performance (strength and stiffness) and parent metal properties is investigated using compression tests in three primary orientations and 3-pt. bend tests. Analytical assessment of the LBM via finite element analysis shows reasonable agreement with experimental findings and provides predictions for LBM capabilities with different materials, unit cell sizes and ligament geometries.

  5. Airborne particulate soiling of terrestrial photovoltaic modules and cover materials

    NASA Technical Reports Server (NTRS)

    Hoffman, A. R.; Maag, C. R.

    1980-01-01

    Results are presented for the first phase of a photovoltaic-module soiling study that was carried out with NASA participation to investigate the problem of the electrical performance degradation of flat-plate photovoltaic modules exposed at outdoor sites that is due to the accumulation of airborne particulates on sensitive optical surfaces. The results were obtained in both field and laboratory soiling experiments, as well as in materials field experiments using candidate encapsulants and top covers. It is concluded that: (1) the electrical performance degradation shows a significant time and site dependence, ranging from 2% to 60% power loss; (2) the rate of particulate accumulation appears to be largely material independent when natural removal processes do not dominate; (3) the effectiveness of natural removal processes, especially rain, is strongly material dependent; (4) top-cover materials of glass and plexiglass retain fewer particles than silicone rubber; and (5) high module voltages relative to ground do not appear to affect the rate of dirt accumulation on modules.

  6. Use of Biochar from the Pyrolysis of Waste Organic Material as a Soil Amendment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar is being promoted for its potential to improve soil properties, fertility and carbon sequestration in soil. How this material might impact agricultural soils within temperate regions is largely unknown, Validation of biochar as a beneficial soil amendment and carbon sink would add important...

  7. Soil solid materials affect the kinetics of extracellular enzymatic reactions

    NASA Astrophysics Data System (ADS)

    Lammirato, C.; Miltner, A.; Kästner, M.

    2009-04-01

    INTRODUCTION Soil solid materials affect the degradation processes of many organic compounds by decreasing the bioavailability of substrates and by interacting with degraders. The magnitude of this effect in the environment is shown by the fact that xenobiotics which are readily metabolized in aquatic environments can have long residence times in soil. Extracellular enzymatic hydrolysis of cellobiose (enzyme: beta-glucosidase from Aspergillus niger) was chosen as model degradation process since it is easier to control and more reproducible than a whole cell processes. Furthermore extracellular enzymes play an important role in the environment since they are responsible for the first steps in the degradation of organic macromolecules; beta-glucosidase is key enzyme in the degradation of cellulose and therefore it is fundamental in the carbon cycle and for soil in general. The aims of the project are: 1) quantification of solid material effect on degradation, 2) separation of the effects of minerals on enzyme (adsorption ?change in activity) and substrate (adsorption ?change in bioavailability). Our hypothesis is that a rate reduction in the enzymatic reaction in the presence of a solid phase results from the sum of decreased bioavailability of the substrate and decreased activity of enzyme molecules. The relative contribution of the two terms to the overall effect can vary widely depending on the chemical nature of the substrate, the properties of the enzyme and on the surface properties of the solid materials. Furthermore we hypothesize that by immobilizing the enzyme in an appropriate carrier the adsorption of enzymes to soil materials can be eliminated and that therefore immobilization can increase the overall reaction rate (activity loss caused by immobilization < activity loss caused by adsorption to soil minerals). MATERIALS AND METHODS Enzymatic kinetic experiments are carried out in homogeneous liquid systems and in heterogeneous systems where solid materials (bentonite, kaolinite, goethite, activated charcoal) are suspended in a mixed liquid (standard experimental conditions: 66 mM phosphate buffer, pH 5, 25°C, 20 mg solid/ml buffer). The enzyme in an immobilized form (covalent bonding to oxirane groups on the surfaces of macroporous Eupergit® C particles) is used to exclude a direct effect of soil solid materials on the enzyme without excluding their effect on the availability of the substrate.The progress of the reactions is determined by measuring the accumulation of the product (i.e. glucose) in the systems at different times (after destroying enzymatic activity by boiling the samples) with a coupled enzymatic assay and an automatic microplate spectrophotometer. A regression analysis on the data points is performed to calculate the initial reaction rates, which is the parameter that allows to compare the different systems. RESULTS AND DISCUSSION The results show that, under the standard experimental conditions, cellobiose is not adsorbed by the clay minerals bentonite and kaolinite and by the iron oxyhydroxide goethite. In the case of activated charcoal a rapid adsorption phase in the first 20' is followed by a much slower process; after 4h 30' approximately 98% of cellobiose was adsorbed. The results from the adsorption experiments of beta-glucosidase to bentonite, kaolinite, goethite and activated charcoal show that, under the standard experimental conditions, the adsorption process is rapid in all cases (more than 80% of the adsorption takes place in the first 20 minutes). After 1h 20min the following fractions of enzyme were adsorbed: 30 % to bentonite, 60% to kaolinite, 67% to goethite, 100% to activated charcoal. The effect of kaolinite on the reaction rate was quantified: under the standard experimental conditions the initial reaction rate in presence of the mineral was 22% less then in the control. The fraction of enzyme molecules which are adsorbed to kaolinite (60%) loses 37% of its activity. CONCLUSIONS The results from the adsorption experiments lead to the conclusion that, among the sol

  8. Measurement and modeling of energetic material mass transfer to soil pore water : Project CP-1227 : FY04 annual technical report.

    SciTech Connect

    Stein, Joshua S.; Webb, Stephen Walter

    2005-01-01

    Military test and training ranges operate with live fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low order detonations also disperse solid phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g., weather and geostratigraphy) contribute to groundwater pollution impacts. This report documents interim results of a mass transfer model evaluating mass transfer processes from solid phase energetics to soil pore water based on experimental work obtained earlier in this project. This mass transfer numerical model has been incorporated into the porous media simulation code T2TNT. Next year, the energetic material mass transfer model will be developed further using additional experimental data.

  9. Soil and xylem water potential and soil water content in contrasting Pinus contorta ecosystems, Southeastern Wyoming, USA

    Microsoft Academic Search

    T. J. Fahey; D. R. Young

    1984-01-01

    The relationships between volumetric soil water content (?), in situ soil water potential (?soil) and predawn xylem pressure potential (?predawn) were quantified in four contrasting lodgepole pine ecosystems in Wyoming, USA. On three of the sites, changes in ?soil correlated closely with ?predawn, but on a porous soil derived from coarse granitic parent material, ?predawn declines occurred much sooner than

  10. Materials Testing and Quality Control Soils, 3-28. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This instructional package on material testing and quality control of soils has been adapted from military curriculum materials for use in technical and vocational education programs. This short course presents basic information on soils as well as exploration, field identification, and laboratory procedures that will enable students completing…

  11. Predicting the preservation of cultural artefacts and buried materials in soil.

    PubMed

    Kibblewhite, Mark; Tóth, Gergely; Hermann, Tamás

    2015-10-01

    This study identifies factors affecting the fate of buried objects in soil and develops a method for assessing where preservation of different materials and stratigraphic evidence is more or less likely in the landscape. The results inform the extent of the cultural service that soil supports by preserving artefacts from and information about past societies. They are also relevant to predicting the state of existing and planned buried infrastructure and the persistence of materials spread on land. Soils are variable and preserve different materials and stratigraphic evidence differently. This study identifies the material and soil properties that affect preservation and relates these to soil types; it assesses their preservation capacities for bones, teeth and shells, organic materials, metals (Au, Ag, Cu, Fe, Pb and bronze), ceramics, glass and stratigraphic evidence. Preservation of Au, Pb and ceramics, glass and phytoliths is good in most soils but degradation rates of other materials (e.g. Fe and organic materials) is strongly influenced by soil type. A method is proposed for using data on the distribution of soil types to map the variable preservation capacities of soil for different materials. This is applied at a continental scale across the EU for bones, teeth and shells, organic materials, metals (Cu, bronze and Fe) and stratigraphic evidence. The maps produced demonstrate how soil provides an extensive but variable preservation of buried objects. PMID:26022409

  12. Measurement and modeling of energetic-material mass transfer to soil-pore water - Project CP-1227 final technical report.

    SciTech Connect

    Stein, Joshua S.; Sallaberry, Cedric M.; Webb, Stephen Walter; Phelan, James M.; Hadgu, Teklu

    2006-05-01

    Military test and training ranges operate with live-fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low-order detonations also disperse solid-phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g., weather and geostratigraphy) contribute to groundwater pollution. This final report documents the results of experimental and simulation model development for evaluating mass transfer processes from solid-phase energetics to soil-pore water.

  13. The Medical Geochemistry of Dusts, Soils, and Other Earth Materials

    NASA Astrophysics Data System (ADS)

    Plumlee, G. S.; Ziegler, T. L.

    2003-12-01

    "Town clenched in suffocating grip of asbestos"USA Today, article on Libby,Montana, February, 2000"Researchers find volcanoes are bad for your health… long after they finish erupting"University of WarwickPress Release, 1999"Toxic soils plague city - arsenic, lead in 5 neighborhoods could imperil 17,000 residents"Denver Post, 2002"Ill winds - dust storms ferry toxic agents between countries and even continents"Science News, 2002A quick scan of newspapers, television, science magazines, or the internet on any given day has a fairly high likelihood of encountering a story (usually accompanied by a creative headline such as those above) regarding human health concerns linked to dusts, soils, or other earth materials. Many such concerns have been recognized and studied for decades, but new concerns arise regularly.Earth scientists have played significant roles in helping the medical community understand some important links between earth materials and human health, such as the role of asbestos mineralogy in disease (Skinner et al., 1988; Ross, 1999; Holland and Smith, 2001), and the role of dusts generated by the 1994 Northridge, California, earthquake in an outbreak of Valley Fever ( Jibson et al., 1998; Schneider et al., 1997).Earth science activities tied to health issues are growing (Skinner and Berger, 2003), and are commonly classified under the emerging discipline of medical geology (Finkelman et al., 2001; Selinus and Frank, 2000; Selinus, in press).Medical geochemistry (also referred to as environmental geochemistry and health: Smith and Huyck (1999), Appleton et al. (1996)) can be considered as a diverse subdiscipline of medical geology that deals with human and animal health in the context of the Earth's geochemical cycle ( Figure 1). Many medical geochemistry studies have focused on how chemical elements in rocks, soils, and sediments are transmitted via water or vegetation into the food chain, and how regional geochemical variations can result in disease clusters either through dietary deficiency of essential elements or dietary excess of toxic elements. (28K)Figure 1. Potential human exposure routes within the earth's geochemical cycle can come from a wide variety of both natural and anthropogenic sources. This chapter focuses on a somewhat narrower area of medical geochemistry: the study of mechanisms of uptake of earth materials by humans and animals and their reactions to these materials. In order for earth materials to affect health, they must first interact with the body across key interfaces such as the respiratory tract, gastrointestinal tract, skin, and eyes. In some way, all of these interfaces require the earth materials to interact chemically with water-based body fluids such as lung fluids, gastrointestinal fluids, saliva, or blood plasma.The primary goal of this chapter, co-authored by a geochemist and a toxicologist, is to provide both geochemists and scientists from health disciplines with an overview of the potential geochemical mechanisms by which earth materials can influence human health. It is clear that significant opportunities for advancement in this arena will require continued and increased research collaborations between geochemists and their counterparts in the health disciplines.

  14. All the Children are Above Average: Parents' Perceptions of Education and Materialism as Media Effects on their Own and Other Children

    Microsoft Academic Search

    Patrick C. Meirick; Jeanetta D. Sims; Eileen S. Gilchrist; Stephen M. Croucher

    2009-01-01

    Recent research shows parents manifest parental third-person perceptions on behalf of their children; that is, they believe their children are less affected by media sex and violence than other children. This study (N = 171) found parental third-person perceptions for materialism effects of television and parental first-person perceptions for advanced educational effects of public television. Perceptions of materialism effects on one's own

  15. On the nature of fresh volcanic ashes as parent material ejected from the Sakurajima and Aso volcanoes

    Microsoft Academic Search

    Ichiro Kanno; Masao Nagai; Shizuoki Arimura

    1955-01-01

    There are few pedological studies in Japan of fresh volcanic ash. Fundamental information of the material from which Japanese volcanic-ash soils have developed, is of importance to obtain a better understanding of pedogenesis of such soils. The present paper deals with the mechanical. mmeralogical, and chemical characteristics of fresh ash ejected from the Sakurajima and Aso volcanoes which are among

  16. Economic Development Planning for Single Parents. Curriculum Materials for Vocational Teachers of Adolescents and Single Parents. Special Emphasis on Meeting the Needs of the Teen Parent.

    ERIC Educational Resources Information Center

    Simpson, Kawanna J.; And Others

    This guide is intended for use in school-based intervention programs intended to help single parents (particularly teenagers who are expecting or already have a child) master basic money management and consumer skills. The guide is divided into sections dealing with the following topics: interpersonal relationships, value clarification,…

  17. Net microbial amino sugar accumulation process in soil as influenced by different plant material inputs

    Microsoft Academic Search

    Chao Liang; Xudong Zhang; Teri C. Balser

    2007-01-01

    Identifying the impact of plant material inputs on soil amino sugar synthesis may advance our knowledge of microbial transformation\\u000a processes in soils. In a 12-week laboratory microcosm incubation, 1, 2, 4, and 6% (w\\/w) soybean leaf or maize stalk were initially\\u000a added to soil, respectively, whereas soil without plant addition was used as a control. The results showed that adding

  18. Long-Term Effects of Fluidized Bed Combustion Material Applied at Disposal Levels on Soil Properties

    Microsoft Academic Search

    Eton E. Codling; Akanksha W. Raja

    2012-01-01

    This study was conducted to assess changes in soil properties of a soil that received a one-time application (360 Mg ha) of fluidized bed combustion material (FBCM) 23 years earlier. Soil samples were taken at three depths (0–10, 10–20, and 20–30 cm). Samples were also collected from an adjacent field with the same soil type for control. Hot nitric acid

  19. The determination of boron in soil extracts, plant materials, composts, manures, water and nutrient solutions

    Microsoft Academic Search

    Benjamin Wolf

    1971-01-01

    A rapid colorimetric method for the determination of boron in soil extracts, plant materials, composts, manures, water and nutrient solution is proposed. The method is rapid, reliable and carried out in aqueous solution. A marked advantage is that boron can be determined in the same soil extract or plant material digest used for determination of other elements.

  20. MOBILE SYSTEM FOR EXTRACTING SPILLED HAZARDOUS MATERIALS FROM EXCAVATED SOILS

    EPA Science Inventory

    Laboratory tests were conducted with three separate pollutants (phenol, arsenic trioxide, and polychlorinated biphenyls (PCB's) and two soils of widely different characteristics (sand/gravel/silt/clay and organic loam) to evaluate techniques for cleansing soil contaminated with r...

  1. Soil: The Living Matrix

    Microsoft Academic Search

    Helwig Hohl; Ajit Varma

    Soil is often defined as the surface layer of the Earth that is exploited by roots. Another definition of it involves referencing\\u000a the factors involved in soil genesis—the parent material, the relief and climate of the area, the organisms involved, and\\u000a time. On the other hand, soil, according to its traditional meaning, is the natural medium for the growth of

  2. Element concentrations in soils and other surficial materials of Alaska

    USGS Publications Warehouse

    Gough, L.P.; Severson, R.C.; Shacklette, H.T.

    1988-01-01

    Mean concentrations of 35 elements, ash yields, and pH have been estimated for samples of sils and other unconsolidated surficial materials from 266 collection locations throughout Alaska. These background values can be applied to studies of environmental geochemistry and health, wildlife management, and soil-forming processes in cold climates and to computation of element abundances on a regional or worldwide scale. Limited data for an additoinal eight elements are also presented. Materials were collected using a one-way, three-level, analysis-of-variance samplling design in which collecting procedures were simplified for the convenience of the many volunteer field workers. The sample collectors were asked to avoid locations of known mineral deposits and obvious contamination, to take samples at a depth of about 20 cm where possible, and to take a replicate sample about 100 m distant from the first sample collected. With more than 60 percent of the samples replicated and 14 percent of the samples split for duplicate laboratory analyses, reliable estimates were made of the variability in element concentrations at two geographic scales and of the error associated with sample handling and laboratory procedures. Mean concentrations of most elements in surficial materials from the state of alaska correspond well with those reported in similar materials from the conterminous United STatess. Most element concentrations and ranges in samples of stream and lake sediments from Alaska, however, as reported in the literature, do not correspond well with those found in surficial materials of this study. This lack of correspondence is attributed to (1) a merger of two kinds ofsediments (stream and lake) for calculating means; (2) elimination from the sediment mean calculations of values below the limit of quantitative determination; (3) analytical methods different from those of the surficial materials study; and (4) most importantly, the inherent differences in chemistry of the materials. The distribution of variability in element concentrations o Alaskan surficial-material samples was, for most elements, largely among sampling locations, with only a samll part of the variability occurring between replicate samples at a location. The geochemical uniformity within sampling locations in Alaska is an expression of uniform geochemical cycling processes within small geographic areas. The concentration values for 35 elements in 266 samples were plotted on maps by symbols representing classes of concentration frequency distributions. These plotted symbols form patterns that may or may not be possible to interpret but nevertheless show differences that are observable at several geographical scales. The largest pattern is one generally low concentrations of many elements in materials from arctic and oceanic tundra regions, as contrasted to their often high concentrations in samples from interior and southeastern Alaska. The patttern for sodium isespecially pronounced. Intermediate-sized patterns are shown, for example, by the generally high values for magnesium and low values for silicon in the coastal forest region of southeastern Alaska. Many elements occur at low concentratoins in samples from the Alaskan peninsula and the Aleutian Islands. The degree of confidence in patterns of element abundance is expected to be in direct proportion to the number of samples included in the area. As the patterns become smaller, the probability increases that the patterns are not reproducible.

  3. Fractionation of copper and cadmium and their binding with soil organic matter in a contaminated soil amended with organic materials

    Microsoft Academic Search

    Ibrahim Mohamed; Bocar Ahamadou; Ming Li; Changxiu Gong; Peng Cai; Wei Liang; Qiaoyun Huang

    2010-01-01

    Purpose  The contamination of agricultural soils by heavy metals is a worldwide problem. Organic amendments can be used for the immobilization\\u000a and binding of heavy metal ions in soils by complexation, adsorption, and precipitation. A field trial was carried out to\\u000a evaluate the influence of some low-cost organic materials such as rice straw (RS), green manure (GM), and pig manure (PM)

  4. Mobile system for extracting spilled hazardous materials from excavated soils. Final report Dec 76-Apr 82

    SciTech Connect

    Scholz, R.; Milanowski, J.

    1983-10-01

    Laboratory tests were conducted with three separate pollutants (phenol, arsenic trioxide, and polychlorinated biphenyls (PCB's) and two soils of widely different characteristics (sand/gravel/silt/clay and organic loam) to evaluate techniques for cleansing soil contaminated with released or spilled hazardous materials. The tests show that scrubbing of excavated soil on site is an efficient approach for freeing soils of certain contaminants but that the effectiveness depends on the washing fluid (water + additives) and on the soil composition and particle size distribution. Based on the test results, a full-scale, field-use system was designed, engineered, fabricated, assembled, and briefly tested; the unit is now ready for field demonstrations.

  5. What Is Soil?

    NSDL National Science Digital Library

    2001-01-01

    Soil is the solid material on Earth's surface that results from the interaction of weather and biological activities with the underlying geologic formation. Soil is produced from broken down rocks, organic matter (decayed animal and plant life), water, and air. Soil generally loosens from its parent material at a rate of one centimeter every 250 to 2,500 years. This lesson encourages students to think about the differences in soil. The Table of Contents, Preface, and a section that describes how to use this book are included in this free selection.

  6. The influence of parent material on small-scale spatial changes in streamwater chemistry in Scottish upland catchments

    Microsoft Academic Search

    M. F. Billett; J. A. H. Lowe; K. E. Black; M. S. Cresser

    1997-01-01

    Spatial changes in streamwater chemistry in seven upland catchments in NE Scotland have been studied using samples collected at 250 m intervals from the stream source to the catchment outlet. The catchments contain a number of different parent materials including granites and diorite from the Lochnagar Complex, and metasediments and metabasites from the Argyll and Appin Groups of the Dalradian

  7. 17—A STUDY OF THE OPTICS OF SOILING OF TEXTILE MATERIALS USING ARTIFICIAL-SOIL TECHNIQUES

    Microsoft Academic Search

    W. Howard Rees

    1962-01-01

    Investigations are described ofthe relationships between visual assessment of the soiling of a textile fabric and the mass of soil present in the fabric for three distinct modes of soiling of the fabric by particulate matter, namely (a) by deposition, (b) by liltration, and (c) by contact. The effects of the greyness of the unsoiled fabric and of the reflectance

  8. Measurement and modeling of energetic material mass transfer to soil pore water :project CP-1227 FY03 annual technical report.

    SciTech Connect

    Phelan, James M.; Barnett, James L.; Kerr, Dayle R.

    2004-01-01

    Military test and training ranges operate with live fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low order detonations also disperse solid phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g., weather and geostratigraphy) contribute to groundwater pollution impacts. This report documents interim results of experimental work evaluating mass transfer processes from solid phase energetics to soil pore water. The experimental work is used as a basis to formulate a mass transfer numerical model, which has been incorporated into the porous media simulation code T2TNT. This report documents the results of the Phase III experimental effort, which evaluated the impacts of surface deposits versus buried deposits, energetic material particle size, and low order detonation debris. Next year, the energetic material mass transfer model will be refined and a 2-d screening model will be developed for initial site-specific applications. A technology development roadmap was created to show how specific R&D efforts are linked to technology and products for key customers.

  9. Growth of barley exposed to solvent refined coal (SRC) materials added to soil

    SciTech Connect

    Cline, J.F.; Rickard, W.H.; Thiede, M.E.

    1980-01-01

    The growth of barley plants (Hordeum vulgare) grown in Ritzville silt loam soil, treated with solvent refined coal material, SRC solid (SRC I) and SRC liquid (SRC II) was examined. Although the SRC materials will not be introduced to soil or surface waters in normal uses, they could be spilled during transportation. Such spills could contaminate surface waters and agricultural, rangeland and forest soils, possibly causing acute or chronic damage to plants and also provide a way for certain inorganic and organic materials to enter food chains.

  10. Airborne particulate soiling of terrestrial photovoltaic modules and cover materials

    Microsoft Academic Search

    A. R. Hoffman; C. R. Maag

    1980-01-01

    Results are presented for the first phase of a photovoltaic-module soiling study that was carried out with NASA participation to investigate the problem of the electrical performance degradation of flat-plate photovoltaic modules exposed at outdoor sites that is due to the accumulation of airborne particulates on sensitive optical surfaces. The results were obtained in both field and laboratory soiling experiments,

  11. SOME CONSTRUCTION EXPERIENCES ON SOFT SOIL USING LIGHT WEIGHT MATERIALS

    Microsoft Academic Search

    C. H. Gan; S. M. Tan

    Time dependent settlement of soft soil poses s erious maintenance problem to the developments along the coastal area encountering thick marine deposits. Rehabilitation works for properties s uffering settlement problem in soft soil deposits generally face with time and facility services constraints. These c onstraints hampered the selection o f remedial methods which require longer construction duration and a mple

  12. Effect of plant materials on microbial transformation of amino sugars in three soil microcosms

    Microsoft Academic Search

    Chao Liang; Xudong Zhang; Kennedy F. Rubert; Teri C. Balser

    2007-01-01

    Amino sugars, being predominantly of microbial origin, can help elucidate the role of microbes in carbon and nitrogen cycling\\u000a in soils. However, little is known about the microbial degradation and synthesis of soil amino sugars as affected by plant-derived\\u000a organic materials. We conducted a 30-week microcosm study using three soils amended with soybean leaf or maize stalk to investigate\\u000a changes

  13. Factor analysis of the elemental composition of Pteridium aquilinum from serpentine and granite soils as a tool in the classification of relations between this composition and the type of parent rock in the ?l??a Massif in Lower Silesia, Poland

    NASA Astrophysics Data System (ADS)

    Samecka-Cymerman, A.; Garbiec, K.; Kolon, K.; Kempers, A. J.

    2009-08-01

    Concentrations of the elements N, P, K, Ca, Mg, S, Fe, Mn, Cu, Zn, Ni, Cr, Co, Mo, Cd and Pb were measured in serpentine and granite soils and in the fern Pteridium aquilinum sampled from the ?l??a Massif in Lower Silesia, Poland. The serpentine soils were typical for serpentine soils in general with deficiency of K and Ca and excess of Mg, Ni and Cr. The principal component analysis (PCA) ordination based on the matrix of concentrations of elements in plants growing on serpentine and granite soils enabled the identification of the parent material from which ferns in this study were collected. This method indicated that the ferns from granite soils were distinguished by higher concentrations of Mo and Pb, while those from serpentine soils were distinguished by higher concentrations of Mg, Ni, Cr and Co. These differences in bioaccumulation reflect the higher concentrations of total and plant-available forms of Mg, Ni, Cr, Co in serpentinite and the higher concentrations of total Mo and total and plant-available Pb in granites as reported in literature. The different parent material types in the ?l??a Massif on which the investigated soils were developed influence the concentration and type of elements accumulated in P. aquilinum.

  14. Copper Retention Kinetics in Acid Soils

    Microsoft Academic Search

    José Eugenio López-Periago; Manuel Arias-Estévez; Juan Carlos Nóvoa-Muñoz; David Fernández-Calviño; Benedicto Soto; Cristina Pèrez-Novo; Jesus Simal-Gándara

    2008-01-01

    Retention and release kinetics of Cu on four acid Typic haplumbrepts developed on two dif- ferent types of parent rock material (granite and amphibolite) were studied with a stirred-fl ow chamber (SFC) method. The granitic soils were lower in organic material and lower in Fe and Al oxides than the soils formed in amphibolite. The kinetic parameters were assessed in

  15. Supplemental Material for Forty Five Years of Observed Soil Moisture in the Ukraine: No

    E-print Network

    Robock, Alan

    Supplemental Material for Forty Five Years of Observed Soil Moisture in the Ukraine: No Summer, Kiev, Ukraine 5 Agrometeorology Department, Ukrainian Hydrometeorological Centre, Kiev, Ukraine The individual soil moisture stations in the Ukraine are shown in Figure 1. The data are averaged into the 25

  16. Unit The World of the Soil, First Trial Materials, Inspection Set, [Australian Science Education Project].

    ERIC Educational Resources Information Center

    Australian Council for Educational Research, Hawthorn.

    The Australian Science Education project is producing materials designed for use in grades 7 - 10 of Australian schools. This is the first trial version of a unit expected to take about 20 40-minute periods to complete. Included are a teacher's guide to the unit, four pupil booklets ("Looking at Soils,""Things to do With Soils,""What is it…

  17. Detection of tritium sorption on four soil materials Yanguo Teng a,b

    E-print Network

    Hu, Qinhong "Max"

    Detection of tritium sorption on four soil materials Yanguo Teng a,b , Rui Zuo a,b,*, Jinsheng Wang December 2010 Keywords: Tritium Adsorption Distribution coefficient water/solid ratio pH Humic substances, it is important to understand the sorption behavior of tritium on soils. In this study, batch tests were carried

  18. FRESHWATER ASSAY USING SOIL ELUATES AS SAMPLE MATERIAL (SINGLE LABORATORY EVALUATION)

    EPA Science Inventory

    The Chlorophyta assay, which uses soil as sample material, has been a useful bioassessment technique for screening hazardous waste site problems. n eluate is prepared from a 125-gram soil sample and then diluted into three separate concentrations prior to being tested using Selen...

  19. Geobotanical discrimination of ultramafic parent materials An evaluation of remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Mouat, D. A.; Morrissey, L. A.; Horn, E. M.

    1984-01-01

    Color and color infrared aerial photography and imagery acquired from a Daedalus DEI-1260 multispectral airborne scanner were employed in an investigation to discriminate ultramafic rock types in a test site in southwest Oregon. An analysis of the relationships between vegetation characteristics and parent materials was performed using a vegetation classification and map developed for the project, lithologic information derived from published geologic maps of the region, and terrain information gathered in the field. Several analytical methods, including visual image analysis, band ratioing, principal components analysis, and contrast enhancement and subsequent color composite generation were used in the investigation. There was a close correspondence between vegetation types and major rock types. These were readily discriminated by the remote sensing techniques. It was found that ultramafic rock types were separable from non-ultramafic rock types and serpentine was distinguishable from non-serpentinized peridotite. Further investigations involving spectroradiometric and digital classification techniques are being performed to further identify rock types and to discriminate chromium and nickel-bearing rock types.

  20. Hygrothermal Material Properties for Soils in Building Science

    SciTech Connect

    Kehrer, Manfred [ORNL] [ORNL; Pallin, Simon B [ORNL] [ORNL

    2013-01-01

    Saving energy in buildings is top of mind with today s building professionals. Although designing energy-efficient walls and roofs is mostly a no-brainer, ensuring that below-grade foundations do not generate moisture problems has become even more complex, particularly because of how soil is involved. Hygrothermal performance of soils coupled to buildings is complicated because of the dearth of information on soil properties. A computational approach for heat transfer through the ground has been well-defined, and simplified methods have been developed. These approaches, however, generally ignore the transfer of soil moisture, which is not negligible. The intention of an ongoing study at Oak Ridge (TN) National Laboratory, therefore, is to gather, comprehend and adapt soil properties from soil science as well. The obtained information must be applicable to related tasks in building science and validated with hygrothermal calculation tools, where additional plugins to the existing software code WUFI (an acronym for Warme unde Felichte Instructionar, which translates to unsteady heat and moisture) are required. (See the sidebar, opposite page, for specifics on WUFI.)Simulation results from WUFI are being compared with existing thermal-only measurements and are being accomplished with ongoing hygrothermal measurements. The final outcome of the study will be the evaluation of several soil types in several climate zones for a number of basement assembly types. The study will define the type of soil, together with the type of building construction considered most and least reliable with respect to energy consumption and moisture safety. Furthermore, the study will determine the influences that different soils have on total energy loss through the ground.

  1. Correspondence and Least Squares Analyses of Soil and Rock Compositions for the Viking Lander 1 and Pathfinder Sites

    NASA Technical Reports Server (NTRS)

    Larsen, K. W.; Arvidson, R. E.; Jolliff, B. L.; Clark, B. C.

    2000-01-01

    Correspondence and Least Squares Mixing Analysis techniques are applied to the chemical composition of Viking 1 soils and Pathfinder rocks and soils. Implications for the parent composition of local and global materials are discussed.

  2. Effects of compost material on yield and quality of glasshouse tomatoes grown in different textured soils

    Microsoft Academic Search

    B. Okur; Y. Tuzel; S. Toksöz; D. Anaç

    This research was established to study the effects of compost material, a supplement of organic matter, on tomato yield and\\u000a fruit quality. Tomato plants were grown up in plastic bags (25 kg) containing different textured soils (sandy and clay) and\\u000a different amounts of compost material (15–30 and 60 ton ha?1). The highest yield was determined in the clay soil+I dose

  3. Diverse Chemical Zoning Trends in Acapulco Chromites: How Many Sources for the Parental Materials?

    NASA Astrophysics Data System (ADS)

    El Goresy, A.; Janicke, J.

    1995-09-01

    Acapulco is considered to be a link between primitive chondritic meteorites and the differentiated achondrites. Its parent body presumably formed by accretion of material of chondritic compositions at an fO2 that lies between that of H- and enstatite chondrites [1]. The accreted chondritic material was subjected 4.557 Gyr ago to peak temperatures close to 1200 degrees C that lead to partial melting and extensive recrystallization [1, 2]. Seven morphologically different types of graphite with large variations in C- and N-isotopic compositions were recently reported from Acapulco [3, 4]. At least four distinct isotopic reservoirs are required to explain the C- and N-isotopic compositions of these graphites [3, 4]. While the silicate minerals in Acapulco have isotopically heavy N (delta^(15)N = + 15 per mil) chromites were found to be isotopically light (delta^(15)N = _ 75 to _ 82 per mil). Chromite occurs in Acapulco in six different assemblages: (1) as inclusions in silicates, (2) in FeNi, (3) in troilite, (4) with FeNi and troilite, (5) with FeNi and silicates, and (6) with troilite and silicates. It is also rarely present as small idiomorphic inclusions in plagioclase. Chromites in contact with silicates display no chemical zoning for Cr, Al, Ti, Fe, Mg, Mn, or Zn to the silicate borders thus indicating high degree of equilibration with the silicate neighbours. The MgO-contents of chromites in metals and troilites (4.74 to 7.2 %) are relatively lower and their compositional ranges are relatively wider than those in contact with silicates (6.1 to 7.69 %). Zoning profiles of MgO and FeO in chromites in all assemblages are quite flat. Chromites in contact with metals and troilite display a variety of zoning patterns of Cr, Al, Ti, and Zn. All these chromite types , however, depict the same MnO zoning trends with low MnO-contents in their cores (0.96 to 2.14 %) than in their rims to metal or troilite (1.7 to 3.1 %). With few exceptions, the zoning behaviour of Cr, Al, and Ti does not follow a substitutional scheme. Chromites with reverse Cr-zoning (61.3 wt. % Cr2O3 in the cores and 63.2 Wt. % Cr2O3 at the rims ) may have either flat Al2O3 - patterns (5.46 - 5.53 wt. %) or normal zoning trends (5.6 wt. % in the core and 4.81 wt. % at the rim). Some grains display prominent complementary Cr2O3- and Al2O3- zoning patterns (62.2 % wt. Cr2O3 and 2.9 wt. % Al2O3 in the Core; 58.9 wt. % Cr2O3 and 5.7 wt. % Al2O3 at the rim). In those grains the zoning profiles of TiO2 and ZnO (Figure 1) are similar to those of Al2O3 (in the core 1.33 wt. % TiO2, 1.63 wt. % ZnO; at the rim 0.67 wt. % TiO2, 1.24 wt. % ZnO). The well developed zoning of Cr, Al, Ti, Mn, and Zn from the cores of chromites to their borders to FeNi and troilite and the variability of the zoning patterns in assemblages containing FeNi and troilite indicate that the encountered zoning types reflect the primordial chemistry of these chromites in the parental material before melting. We have delineated six different types of zoning in Acapulco chromites so far. None of the encountered zoning patterns could have developed by crystallisation from a chondritic melt. The present results support the previous findings [3, 4] that several sources must have had contributed to the parental material of Acapulco. However, genetic correlations between the isotopically different graphite morphologies and the various chromites in Acapulco could not be established so far. References: [1] Zipfel et al. (1995) GCA, in press. [2] G"pel D. et al. (1992) Meteoritics, 27, 226. [3] El Goresy A. et al. (1995) Nature, 373, 496-499.[4] El Goresy A. and Zinner E. K. (1995) LPS XXVI, 367-368. [5] Sturgeon G. and Marti K. (1991) Proc. LPS, Vol. 21, 523-525. [6] Kim Y. and Marti K. (1994) LPS XXV, 703-704. Fig.1. Zoning profiles for Cr2O3, Al2O3, MnO, ZnO, and TiO2 in chromite # 1 enclosed in troilite.

  4. The Use of Soil Forming Factors in the Development of Soil Taxonomy

    NASA Astrophysics Data System (ADS)

    Bockheim, JG; Gennadiyev, AN; Hartemink, Alfred E.; Brevik, Eric C.

    2014-05-01

    The past and present roles of the five soil-forming factors in creating categories in USDA Soil Taxonomy have been analyzed. The factorial and genetic approach is clearly present in Soil Taxonomy, but was not so evident in the 7th Approximation of 1960. Soil climate is the most important factor in Soil Taxonomy. Climate is used at the highest level to define two of the 12 soil orders: Aridisols, the soils of the dry regions, and Gelisols, the permafrost-affected soils and is also used to differentiate suborders in eight of the remaining orders. Parent material is used to fully define two orders: Histosols and Andisols, and partially to define the suborders in the Entisol order (Fluvents, Psamments). Only one group of organisms, the worms (Verm-), is used at the great-group and subgroup levels in several orders. Relief and time are not used in defining taxa in Soil Taxonomy. Three of the eight epipedons are defined on the basis of parent material (folistic, histic, melanic), two on the basis of human activities (anthropic and plaggen), and two from the interaction of climate and vegetation (mollic and umbric). Of the 19 subsurface horizons, 11 originate from the interaction of climate and parent material. This analysis reveals there is an imbalance in the utilization of the soil-forming factors in Soil Taxonomy, with an emphasis on climate and parent material.

  5. Use of INAA in the preparation of a set of soil reference materials with certified values of total element contents

    Microsoft Academic Search

    J. Ku?era; V. Sychra; J. Horáková; L. Soukal

    1997-01-01

    A set of certified Reference Materials was prepared consisting of four natural agricultural soils with normal (n) and elevated (e) levels of element contents: CRM 7001 Light Sandy Soil (n), CRM 7002 Light Sandy Soil (e), CRM 7003 Silty Clay Loam (n), and CRM 7004 Loam (e). In these materials, certified and\\/or information values of the total contents of the

  6. Soils - Part 1: The Origin and Development of Soil(How Soil Gets a Life and a Name)

    NSDL National Science Digital Library

    In this lesson, you will gain an understanding of the five soil forming factors and will be able to describe how each influences soil development. You will learn to identify common parent materials, determine the age of a soil, identify the types of native vegetation associated with different soils in Nebraska and define soil horizons.[This lesson, as well as the other nine lessons in the Soils series, is taken from the "Soils Home Study Course," published in 1999 by the University of Nebraska Cooperative Extension.

  7. Acceptance of Soil from Off Site Sources In order to guard against receiving contaminated soils to used as fill material on campus,

    E-print Network

    de Lijser, Peter

    Acceptance of Soil from Off Site Sources I. Policy In order to guard against receiving contaminated of imported fill material has the potential of bringing contaminated soil onto the campus impacting of these soils on and off-site a contaminated site. Phase I Site Assessment (PSA) A PSA consists of a historical

  8. A description and classification of soils and landscapes of the lower Kolyma river, northeastern Russia

    Microsoft Academic Search

    C. A. S. Smith; D. K. Swanson; J. P. Moore; R. J. Ahrens; J. G. Bockheim; J. M. Kimble; G. G. Mazhitova; C. L. Ping; C. Tarnocai

    1995-01-01

    The combination of glacial history, ice?rich parent materials, and ultra?continental climate has produced unique soil landscapes in the Lower Kolyma River, a region representative of much of the arctic and subarctic lowlands of unglaciated western Beringia. All soils observed in the study area were underlain by permafrost. Soil development is generally controlled by available soil moisture, surface organic layer thickness,

  9. Theoretical Analysis of the Soiling of "Nonstick" Organic Materials

    E-print Network

    Chan, Derek Y C

    of the organic "soils", mineral oils are representedbyhexadecane,octane,andp-xylene;essential oils by d-R-pinene (turpentine); triglyceride-based veg- etable oils and animal fats by olive oil and sunflower oil (lard and butter fat have very similar dielectric properties to olive oil); fatty acids by 22-tricosenoic acid

  10. Soil Materials and Health: An new experience for teaching

    NASA Astrophysics Data System (ADS)

    Del Hoyo Martínez, Carmen

    2014-05-01

    Cationic clays are very extended compounds on the earth surface so they constitute the main component of soils and sedimentary rocks. Due to their presence and special properties that they have, mankind has used them with therapeutic aims from Prehistory, not being rare to find references to this subject in works of classic authors. During the Renaissance and with the appearance of the first Pharmacopeia, its use was regulated to a certain extent. The scientific development reached during the XXth century has allowed to understand and to study the reasons of the useful and peculiar properties of clays, directly related to their colloidal size and crystalline structure. These properties are translated in a high specific surface area, optimal rheological properties and/or excellent sorptive capacity; everything makes cationic clays very useful for a wide range of applications. In the field of health, cationic clays are used in Pharmaceutical Technology and Dermopharmacy as ideal excipients and substances of suitable biological activity due to their chemical inertness and low or null toxicity for the patient (Carretero, 2002; Lopez Galindo et al., 2005; Choy et al., 2007; del Hoyo, 2007). Cationic clays can be used in a wide range of applications in health. However, it must be also considered that the risk exposure to cationic clays may cause several diseases, as it has been seen above. Cationic clays have been used as excipients and active principles in the pharmaceutical industry. The last tendencies are their use in geomedicine, as much to come up as to treat diseases. One stands out his presence in spas and aesthetic medicine. Development of new pharmaceutical formulations is observed, based on cationic clays, for cancer therapy. It has to emphasize the importance in the synthesis of biosensors with cationic clays. Cationic clays can be considered a group of promising materials in the development of new health applications. The study of the use of the cationic clays in the field of the health is a source to develop numerous studies of cases in the teaching of different subjects related to the geoscience and a new opportunity to connect the learning with the reality. References -Carretero, MI 2002. Clay Minerals and Their Beneficial Effects upon Human Health. A review. Appl. Clay Sci. 21, pp. 155-163. -Choy, J.H., Choi, S.J., Oh, J.M., Park, T. 2007. Clay minerals and layered double hydroxides for novel biological applications. Appl. Clay Sci. 36 pp. 122-132. -Del Hoyo, C. 2007. Layered double hydroxides and human health: An overview. Appl. Clay Sci. 36, pp. 103-121. -Lopez-Galindo, A., Viseras Iborra, C. & Cerezo Gonzalez, P. 2005. Arcillas y salud. In: Conferencias de la XIX Reunion de la Sociedad Espanola de Arcillas. Rives, Ed., pp. 15-18.

  11. Lunar surface: identification of the dark mantling material in the Apollo 17 soil samples

    Microsoft Academic Search

    C. Pieters; T. B. McCord; M. P. Charette; J. B. Adams

    1974-01-01

    Evidence indicates that Apollo 17 sample 74001, a soil consisting of ; very dark spheres, is composed almost entirely of the dark mantling material that ; covers a large region of the southeastern boundary of Mare Serenitatis. Other ; Apollo 17 samples contain only a component of this material. The underlying ; basalt in the Taurus- Littrow valley appears to

  12. Material stiffness, branching pattern and soil matric potential affect the pullout resistance of model root systems

    Microsoft Academic Search

    S. B. MICKOVSKI; A. G. BENGOUGHb; M. F. B RANSBYa; R. S ONNENBERG

    Summary Understanding of the detailed mechanisms of how roots anchor in and reinforce soil is complicated by the variability and complexity of both materials. This study controlled material stiffness and architecture of root analogues, by using rubber and wood, and also employed real willow root segments, to investigate the effect on pullout resistance in wet and air-dry sand. The architecture

  13. Running heading: Water retention properties of the clay in clayey soils Water retention properties of the clay in soils developed

    E-print Network

    Paris-Sud XI, Université de

    1 Running heading: Water retention properties of the clay in clayey soils Water retention properties of the clay in soils developed on clayey sediments: Significance of parent material and soil of clayey subsoils horizons according to the variation of clay characteristics. The horizons studied

  14. [Decomposition process and residual rate of organic materials C and N in soils].

    PubMed

    Liu, Min; Zhang, Lu; Yu, Wan-tai; Shen, Shan-min

    2007-11-01

    By using nylon mesh bags and sand filter tubes, this paper studied the decomposition of organic materials in the soils at Shenyang and Hailun eco-experimental stations of CAS to investigate the dynamic changes of their organic C and N during decomposition. The results showed that the decomposition process could be divided into two phases, i.e., quick phase and slow phase. The organic N in the materials had an obviously lower decomposition rate than organic C, and thus, had a higher residual rate. The decline of C/N ratio could be also divided into quick and slow phases. After 3-5 years decomposition, the C/N ratio of all test materials tended to be stable. The C/N ratio of the residual organic materials with an initial lower C/N (such as pig manure) approached to that of soil humus, being about 10, which indicated that the humification process was completed, while that of the residual organic materials with an initial higher C/N was about 25, being available to the activities of soil microbes, which would benefit the increase of soil organic matter and the improvement of soil fertility. PMID:18260455

  15. Measurement and Modeling of Energetic Material Mass Transfer to Soil Pore Water - Project CP-1227 Annual Technical Report

    SciTech Connect

    PHELAN, JAMES M.; WEBB, STEPHEN W.; ROMERO, JOSEPH V.; BARNETT, JAMES L.; GRIFFIN, FAWN A.

    2003-01-01

    Military test and training ranges operate with live fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low order detonations also disperse solid phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g. weather and geostratigraphy) contribute to groundwater pollution impacts. This report documents interim results of experimental work evaluating mass transfer processes from solid phase energetics to soil pore water. The experimental work is used as a basis to formulate a mass transfer numerical model, which has been incorporated into the porous media simulation code T2TNT. Experimental work to date with Composition B explosive has shown that column tests typically produce effluents near the temperature dependent solubility limits for RDX and TNT. The influence of water flow rate, temperature, porous media saturation and mass loading is documented. The mass transfer model formulation uses a mass transfer coefficient and surface area function and shows good agreement with the experimental data. Continued experimental work is necessary to evaluate solid phase particle size and 2-dimensional effects, and actual low order detonation debris. Simulation model improvements will continue leading to a capability to complete screening assessments of the impacts of military range operations on groundwater quality.

  16. Nitrilotriacetate Stimulation of Anaerobic Fe(III) Respiration by Mobilization of Humic Materials in Soil

    Microsoft Academic Search

    Y. Luu; B. A. Ramsay; J. A. Ramsay

    2003-01-01

    An enrichment culture capable of naphthalene mineralization reduced Fe(III) oxides without direct contact in anaerobic soil microcosms when the Fe(III) was placed in dialysis membranes or entrapped within alginate beads. Both techniques demonstrated that a component in soil, possibly humic materials, facilitated Fe(III) reduction when direct contact between cells and Fe(III) was not possible. The addition of the synthetic Fe(III)

  17. Preparation and characterization of a soil reference material from a mercury contaminated site for comparability studies

    Microsoft Academic Search

    David Kocman; Nicolas S. Bloom; Hirokatso Akagi; Kevin Telmer; Lars Hylander; Vesna Fajon; Vesna Jereb; Radojko Ja?imovi?; Borut Smodiš; Justinian R. Ikingura; Milena Horvat

    2006-01-01

    The preparation and characterization of a soil reference material (SOIL-1) from a site polluted with mercury due to the past mercury mining in Idrija, Slovenia is reported. Homogeneity tests and intercomparison exercises for total (T-Hg) and methylmercury (MeHg) were performed. In addition, selective sequential extraction was applied for Hg fractionation, and multielemental analyses were performed by k0 standardization neutron activation

  18. Lateral migration of soil solid-phase material within a landscape-geochemical arena detected using the magnetic tracer method

    NASA Astrophysics Data System (ADS)

    Gennadiev, A. N.; Koshovskii, T. S.; Zhidkin, A. P.; Kovach, R. G.

    2013-10-01

    Thorough studies of the lateral migration of the solid soil material and the large-scale mapping of the soil cover have been performed within a landscape-geochemical arena in the small catchment area of the Lokna River basin (Tula oblast). Podzolized clay-illuvial agrochernozems are the predominant soils in the catchment area. Nine soil types from four orders according to the 2004 soil classification have also been described. The morphological analysis of the soil profile structures revealed their changes related to the lateral migration of the solid-phase products of the pedogenesis. From the estimated reserves of the spherical magnetic particles as tracers of the mass transfer, the accumulation and dispersion zones of the solid-phase material in the soil cover have been separated and conclusions about the genesis of these zones and their place in the migration structure of the catchment basin have been drawn. The soil catenas within the landscape-geochemical arena have been classified in accordance with the migration intensity of the soil solid-phase material, the localization of deposits, and the degree of openness of the soil-geochemical conjugations. The effect of the lateral migration of the soil solid-phase material on the structure of the microarena soil cover and the soil genetic profiles has been revealed.

  19. Gender and Material Transfers between Older Parents and Children in Ismailia, Egypt

    ERIC Educational Resources Information Center

    Yount, Kathryn M.; Cunningham, Solveig A.; Engelman, Michal; Agree, Emily M.

    2012-01-01

    In Egypt, kin relations have been governed by a patriarchal contract, which defines expectations for intergenerational support along gendered lines. Social changes may be disrupting these customs and bringing attention to the ways gender may influence intergenerational support in rapidly changing contexts. Using data from 4,465 parent-child dyads…

  20. Extension of a Current Continuum-Level Material Model for Soil into the Low-Density Discrete-Particle Regime

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Yavari, R.; Snipes, J. S.; Ramaswami, S.

    2013-05-01

    In this article, an attempt is made to construct a soil-material model which can be used over a wide range of soil densities. To construct such a model, an existing purely continuum-type soil material model (used in the high-density regime), within which the granular structure of the soil is neglected, is combined with an existing discrete-type soil material model (used in the low-density regime) within which soil is treated as an assembly of interacting particles. In order to enable it to be used in conventional transient, nonlinear dynamics, and finite element analyses, the new soil material model is cast using a continuum-type framework. Thus, while in the low-density regime soil behavior is fully dominated by the discrete-type soil-material model, soil has been treated as a continuum constituent properties of which are governed by particle geometrical parameters and particle-particle interaction laws. To demonstrate the utility and fidelity of the new soil material model, a series of uniaxial strain computational tests involving rectangular, parallelepiped-shaped soil-slug normal impact onto a rigid, fixed, flat surface is carried out. While these tests are of a one-dimensional character, they are generally considered as being representative of the loading and deformation histories experienced by mine-blast-ejected soil during its impact with the target structure. The results obtained using the newly proposed soil material model, in the low-density regime, are found to be fully consistent with their discrete-particle modeling and simulation counterparts, suggesting that the new model can be used in transient nonlinear dynamics, finite element simulations involving low-density soil.

  1. Influence of soil moisture on soil respiration

    NASA Astrophysics Data System (ADS)

    Fer, Miroslav; Kodesova, Radka; Nikodem, Antonin; Klement, Ales; Jelenova, Klara

    2015-04-01

    The aim of this work was to describe an impact of soil moisture on soil respiration. Study was performed on soil samples from morphologically diverse study site in loess region of Southern Moravia, Czech Republic. The original soil type is Haplic Chernozem, which was due to erosion changed into Regosol (steep parts) and Colluvial soil (base slope and the tributary valley). Soil samples were collected from topsoils at 5 points of the selected elevation transect and also from the parent material (loess). Grab soil samples, undisturbed soil samples (small - 100 cm3, and large - 713 cm3) and undisturbed soil blocks were taken. Basic soil properties were determined on grab soil samples. Small undisturbed soil samples were used to determine the soil water retention curves and the hydraulic conductivity functions using the multiple outflow tests in Tempe cells and a numerical inversion with HYDRUS 1-D. During experiments performed in greenhouse dry large undisturbed soil samples were wetted from below using a kaolin tank and cumulative water inflow due to capillary rise was measured. Simultaneously net CO2 exchange rate and net H2O exchange rate were measured using LCi-SD portable photosynthesis system with Soil Respiration Chamber. Numerical inversion of the measured cumulative capillary rise data using the HYDRUS-1D program was applied to modify selected soil hydraulic parameters for particular conditions and to simulate actual soil water distribution within each soil column in selected times. Undisturbed soil blocks were used to prepare thin soil sections to study soil-pore structure. Results for all soil samples showed that at the beginning of soil samples wetting the CO2 emission increased because of improving condition for microbes' activity. The maximum values were reached for soil column average soil water content between 0.10 and 0.15 cm3/cm3. Next CO2 emission decreased since the pore system starts filling by water (i.e. aggravated conditions for microbes, closing soil gas pathways etc.). In the case of H2O exchange rate, values increased with increasing soil water contents (up to 0.15-0.20 cm3/cm3) and then remained approximately constant. Acknowledgement: Authors acknowledge the financial support of the Ministry of Agriculture of the Czech Republic No. QJ1230319

  2. Soil Production and Erosion Rates and Processes in Mountainous Landscapes

    NASA Astrophysics Data System (ADS)

    Heimsath, A. M.; DiBiase, R. A.; Whipple, K. X.

    2012-12-01

    We focus here on high-relief, steeply sloped landscapes from the Nepal Himalaya to the San Gabriels of California that are typically thought to be at a critical threshold of soil cover. Observations reveal that, instead, there are significant areas mantled with soil that fit the conceptual framework of a physically mobile layer derived from the underlying parent material with some locally-derived organic content. The extent and persistence of such soils depends on the long-term balance between soil production and erosion despite the perceived discrepancy between high erosion and low soil production rates. We present cosmogenic Be-10-derived soil production and erosion rates that show that soil production increases with catchment-averaged erosion, suggesting a feedback that enhances soil-cover persistence, even in threshold landscapes. Soil production rates do decline systematically with increasing soil thickness, but hint at the potential for separate soil production functions for different erosional regimes. We also show that a process transistion to landslide-dominated erosion results in thinner, patchier soils and rockier topography, but find that there is no sudden transition to bedrock landscapes. Our landslide modeling is combined with a detailed quantification of bedrock exposure for these steep, mountainous landscapes. We also draw an important conclusion connecting the physical processes producing and transporting soil and the chemical processes weathering the parent material by measuring parent material strength across three different field settings. We observe that parent material strength increases with overlying soil thickness and, therefore, the weathered extent of the saprolite. Soil production rates, thus, decrease with increasing parent material competence. These observation highlight the importance of quantifying hillslope hydrologic processes where such multi-facted measurements are made.

  3. Effect of organic materials on the chemical properties of saline soil in the Yellow River Delta of China

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Liu, Jie; Liu, Chunmeng; Zong, Shuang; Lu, Zhaohua

    2015-06-01

    A 180-day incubation experiment was conducted to investigate the effect of different organic materials on the chemical properties of coastal soil with high salinity and relatively low pH. Four organic materials (three kinds of plant residues: straw, composted straw, and fresh reed; and one kind of poultry manure: chicken manure) were applied at a ratio of 15 g·kg-1 to samples of costal saline soil from the Yellow River Delta of China. The results showed that the soil pH and exchangeable sodium percentage (ESP) decreased, whereas soil cation exchangeable capacity (CEC) and macronutrient concentrations increased, regardless of the type of organic material used. All treatments showed a remarkable increase in soil soluble organic carbon (SOC) during the 180-day incubation. The peak values of SOC in descending order were chicken manure, reed, composted straw, straw, and control soil. At the end of incubation, the highest level of SOC occurred in the straw-amended soil, followed by composted straw, reed, and chicken manureamended soils. Soil respiration rate and available nitrogen were significantly influenced by the type of material used. Although reed-amended soil had a relatively high SOC and respiration rate, the ESP was reduced the least. Considering the possible risk of heavy metals caused by chicken manure, it is proposed that straw and composted straw are the more efficient materials to use for reclaiming costal saline soil and improving the availability of macronutrients.

  4. Overview of recent magnetic studies of high T{sub c} cuprate parent compounds and related materials

    SciTech Connect

    Johnston, D.C.; Ami, T.; Borsa, F. [and others

    1995-12-01

    Recent studies of the magnetic properties of several high superconducting transition temperature (T{sub c}) cuprate parent compounds and related materials will be reviewed. The observations of a Heisenberg to XY-like crossover upon cooling below {approximately}300K towards the Neel temperature T{sub N} = 257 K and a subsequent magnetic field-induced XY-like to Ising-like crossover near TN in single crystals of the K{sub 2}NiF{sub 4} type spin 1/2 model compound Sr{sub 2}CuO{sub 2}Cl{sub 2} will be described.

  5. Development of Paving Material for Footpath and CAR Park Pavement Using Granite Soil

    NASA Astrophysics Data System (ADS)

    Nagamachi, Masaharu; Mizuguchi, Hiroyuki; Inoue, Kentaro; Kamada, Koichi

    It is required to develop new paving materials for pavements, such as footpaths, car parks, etc., in parks, having good landscape. Such paving materials have been already developed, but these do not have sufficient strength, abrasion resistance and frost resistance. In this study, a new paving was examined material using cement, sand and granite soil. The mix proportion of this material tested was 2:4:4 of cement, sand and granite soil by mass. The maximum flexural and compressive strength were both obtained at a water content of 14% of the total mass, and the strength were several times larger than that of paving material on the market consisting of 10% of cement and 90% granite soil. The abrasion resistance was tested according to ASTM C 779, and this resistance was about four times greater than that of the paving material on the market. The frost resistance was obtained high value compared with the concrete of 72% in water cement ratio by a new simple resisting test method for freezing and thawing using liquid nitrogen and warm water. It is considered that this new paving material is applicable to pavement for footpath, car park, etc.

  6. Strontium-Doped Hematite as a Possible Humidity Sensing Material for Soil Water Content Determination

    PubMed Central

    Tulliani, Jean-Marc; Baroni, Chiara; Zavattaro, Laura; Grignani, Carlo

    2013-01-01

    The aim of this work is to study the sensing behavior of Sr-doped hematite for soil water content measurement. The material was prepared by solid state reaction from commercial hematite and strontium carbonate heat treated at 900 °C. X-Ray diffraction, scanning electron microscopy and mercury intrusion porosimetry were used for microstructural characterization of the synthesized powder. Sensors were then prepared by uniaxially pressing and by screen-printing, on an alumina substrate, the prepared powder and subsequent firing in the 800–1,000 °C range. These sensors were first tested in a laboratory apparatus under humid air and then in an homogenized soil and finally in field. The results evidenced that the screen printed film was able to give a response for a soil matric potential from about 570 kPa, that is to say well below the wilting point in the used soil. PMID:24025555

  7. CHARACTERISTICS OF FLORIDA FILL MATERIALS AND SOILS - 1990

    EPA Science Inventory

    The report gives results of laboratory work by the University of Florida in support of the Foundation Fill Data Base project of the Foundation Fill Materials Specifications Task Area of the Florida Radon Research Program (FRRP). ork included determination of radon concentrations ...

  8. Data collection handbook to support modeling the impacts of radioactive material in soil

    SciTech Connect

    Yu, C.; Cheng, J.J.; Jones, L.G.; Wang, Y.Y.; Faillace, E. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Loureiro, C. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Escola de Engenharia; Chia, Y.P. [National Taiwan Univ., Taipei (Taiwan, Province of China). Dept. of Geology

    1993-04-01

    A pathway analysis computer code called RESRAD has been developed for implementing US Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), and material-related (soil, concrete) parameters are used in the RESRAD code. This handbook discusses parameter definitions, typical ranges, variations, measurement methodologies, and input screen locations. Although this handbook was developed primarily to support the application of RESRAD, the discussions and values are valid for other model applications.

  9. Fate of organic carbon from different waste materials in cropland soils

    NASA Astrophysics Data System (ADS)

    Paetsch, Lydia; Mueller, Carsten; Rumpel, Cornelia; Houot, Sabine; Kögel-Knabner, Ingrid

    2015-04-01

    Organic amendments are widely used to enhance the fertility of cropland soils. However, there is only scarce knowledge about the long term impact of added organic matter (OM) on the soil organic carbon (SOC) pool. Therefore, we analyzed a long-term field experiment in Feucherolles (France), which regularly received three different composts (home sorted bio-waste mixed with green waste (BIO), municipal solid waste (MSW) and a mixture of green waste and sewage sludge (GWS) and cattle manure since 1998. With these organic materials approximately 4 Mg total OC were added to the soil in two year intervals. The experiment was fully randomized with 4 replicates for each amendment. In September 2013 we took samples from the surface soil (0-5 cm of Ap horizon) of all 4 treatments and the unamended control. To study the chemical alteration and the fate of the added OC into different soil compartments, we fractionated the soils by physical means using a combined density and particle size protocol. Carbon and N content were determined in bulk soils, amendments as well as in size fractions (fPOM, oPOM <20µm and oPOM >20µm, sand, silt and a combined fine silt-clay fraction). Chemical composition was determined by solid-state 13C CPMAS NMR spectroscopy. We found significant higher C contents for the oPOM small and sand fraction of BIO treated soil and for the clay fraction of GWS treated soils (p<0.05). Nitrogen contents were significantly higher for BIO treated soils in bulk soil, fPOM, oPOM small and for GWS treated soils in bulk soil, fPOM and oPOM. The NMR measurements revealed that only the chemical composition of the fPOM differed according to the treatment; towards the more altered fractions as the oPOM small, the compositional differences leveled out and became almost homogeneous. Furthermore, the NMR measurements indicate a similar OC composition within the independent field replicates regarding the different amendments and fractions. As previously shown, N was found to be concentrated in the clay fractions, but interestingly we were able to show this also for the oPOM small. Proteins and peptides, as indicated by the broad resonance between 30 and 55 ppm, clearly point to the presence of microbial products and residues in this fraction.

  10. Performance evaluation materials for the analysis of volatile organic contaminants in soil: A preliminary assessment

    Microsoft Academic Search

    T. E. Lewis; B. A. Deason; C. L. Gerlach; D. W. Bottrell

    1990-01-01

    During an evaluation of field portable gas chromatographs (GC), site?specific performance evaluation materials (PEM) were prepared and used as quality control samples. Clean soils from two contaminated sites were spiked with various volatile organic compounds. The PEM were shipped to the field via air carrier and analyzed by GC. The PEM samples were also shipped back to the laboratory and

  11. Influence of the stabilisation of organic materials on their biopesticide effect in soils

    Microsoft Academic Search

    C Garcia; J. A Pascual; E Mena; T Hernández

    2004-01-01

    Some organic materials have shown a suppressive effect on several diseases induced by soilborne plant pathogens. We have carried out a laboratory experiment (microcosm) to ascertain the influence of the stabilisation process of sewage sludge on it biopesticide effect when Pythium ultimum or Phytophthora sp. were introduced to soil as pathogens for pea or pepper. When P. ultimum was introduced

  12. Beneficial effects of plants in the remediation of soil and groundwater contaminated with organic materials

    Microsoft Academic Search

    J. F. Shimp; J. C. Tracy; L. C. Davis; E. Lee; W. Huang; L. E. Erickson; J. L. Schnoor

    1993-01-01

    The use of plants in remediation of soil and unconfined groundwater contaminated with organic materials is appealing for a variety of reasons: (1) plants provide a remediation strategy that utilizes solar energy; (2) vegetation is aesthetically pleasing; (3) plant samples can be harvested and tested as indicators of the level of remediation; (4) plants help contain the region of contamination

  13. METHOD OF ESTIMATING THE TRAVEL TIME OF NONINTERACTING SOLUTES THROUGH COMPACTED SOIL MATERIAL

    EPA Science Inventory

    The pollutant travel time through compacted soil material (i.e., when a pollutant introduced at the top first appears at the bottom) cannot be accurately predicted from the permeability (saturated hydraulic conductivity) alone. The travel time is also dependent on the effective p...

  14. EFFECT OF SALINITY ON THE DIELECTRIC PROPERTIES OF GEOLOGICAL MATERIALS : IMPLICATION FOR SOIL

    E-print Network

    Paris-Sud XI, Université de

    EFFECT OF SALINITY ON THE DIELECTRIC PROPERTIES OF GEOLOGICAL MATERIALS : IMPLICATION FOR SOIL of saline deposits for the detection and mapping of moisture in arid regions on both Earth and Mars. We then present a simulation and experimental study in order to assess the effect of salinity on the permittivity

  15. PERFORMANCE EVALUATION MATERIALS FOR THE ANALYSIS OF VOLATILE ORGANIC CONTAMINANTS IN SOILS: A PRELIMINARY ASSESSMENT

    EPA Science Inventory

    During an evaluation of field portable gas chromatographs (GC), site-specific performance evaluation materials (PEM) were prepared and used as quality control samples. lean soils from two contaminated sites were spiked with various volatile organic compounds. he PEM were shipped ...

  16. Free and Inexpensive Materials Available for Teaching Conservation Education: Soil and Water.

    ERIC Educational Resources Information Center

    Cousins, Genevieve; Smith, Bonnie Mae

    This publication was prepared to accompany the revised "Soil and Water Section" of "Guides for Teacher Conservation in the Schools of Louisiana." Its purpose is to provide teachers with information about possible sources of teaching materials that can be obtained free or with only a small expenditure of funds. Each item listed is annotated for the…

  17. Parenting: The Underdeveloped Skill.

    ERIC Educational Resources Information Center

    National PTA, Chicago, IL.

    This parent education curriculum contains a variety of materials designed to help local Parent Teacher Associations (PTAs) hold meetings for parents on child rearing. The materials help organizers plan meetings on topics such as dating, drugs, and careers. The unit contains a leader's guide, which contains a description of how to plan meetings,…

  18. Soil

    NSDL National Science Digital Library

    Scott Bauer (USDA-ARS; )

    2006-05-23

    Soil is an example of a non-living thing. Soil contains nutrients and living organisms, but the soil itself is not alive. Soil is important in plant growth because soil gives plants a place to anchor their roots and it also provides the plant with essential nutrients.

  19. Use of Fly Ash as a Liming Material for Corn and Soybean Production on an Acidic Sandy Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fly ash (FA) produced from subbituminous coal combustion can potentially serve as a lime material for crop production in acidic soils in areas. A five-year study was conducted to determine if FA can be used as a liming material in an acid sandy soil under corn and soybean grain production. Fly ash...

  20. Use of a multichannel photometer (Multiskan MS) for determination of humic materials in soil after their dichromate oxidation

    Microsoft Academic Search

    Alvyra Slepetiene; Bronislava Butkute

    2003-01-01

    Methodology for the determination of humus and humic materials content in soil after dichromate oxidation using a multichannel automatic photometer (Multiskan MS) has been developed. The study presented here demonstrates the benefits of using this methodology for the rapid, reliable and accurate determination of humus and humic materials content in various soils. The method is characterised by good data repeatability

  1. EFFECT OF SOIL PROPERTIES AND A SYNTHETIC MUNICIPAL LANDFILL LEACHATE ON THE RETENTION OF CD, NI, PB, AND ZN IN SOIL AND SEDIMENT MATERIALS

    EPA Science Inventory

    Batch equilibrium metal immobilization studies were conducted using seven soil and sediment materials spiked with varying concentrations of Cd, Ni, Pb, and Zn. The objective was to examine the potential mobility of metals in subsoils of metals-contaminated sites. Soil pH influenc...

  2. Air-surface exchange of mercury with soils amended with ash materials

    SciTech Connect

    Jody Ericksen; Mae Sexauer Gustin [University of Nevada-Reno, Reno, NV (United States). Department of Natural Resources and Environmental Sciences

    2006-07-15

    Air-surface exchange of mercury (Hg) was measured from soil low in Hg amended with four different ash materials: a wood ash containing {approximately} 10% coal ash, amixture of two subbituminous coal fly ashes, a subbituminous coal ash containing {approximately} 10% petroleum coke ash and an ash from incinerated municipal sewage sludge (4.3 mg/kg Hg) using a dynamic flux chamber. Ash was added to soil to simulate agricultural supplements, soil stabilization, and pad layers used in livestock areas. For the agricultural amendment, {approximately} 0.4% ash was well mixed into the soil. To make the stabilized soil that could be used for construction purposes, {approximately} 20% ash was mixed into soil with water. The pad layer consisted of a wetted 1-cm layer of ash material on the soil surface. Diel trends of Hg flux were observed for all of the substrates with significantly higher Hg emissions during the day and negligible flux or deposition of Hg during the night. Hg fluxes, which were measured in the summer months, were best correlated with solar radiation, temperature, and air O{sub 3} concentrations. Mean Hg fluxes measured outdoors for unamended soils ranged from 19 to 140 ng/m{sup 2} day, whereas those for soil amended with ash to simulate an agricultural application ranged from 7.2 to 230 ng/m{sup 2} day. Fluxes for soil stabilized with ash ranged from 77 to 530 ng/m{sup 2} day and for soil with pads constructed of ash ranged from -50 to 90 ng/m{sup 2} day. Simple analytical tests were performed to assess whether algorithms based on these tests could be used to predict Hg fluxes observed outdoors using the flux chamber. Based on this study, no consistent relationships could be developed. More work is needed to assess long-term and seasonal variations in Hg flux from substrates before annual estimates of emissions can be developed. 45 refs., 8 figs., 3 tabs.

  3. Air-surface exchange of mercury with soils amended with ash materials.

    PubMed

    Ericksen, Jody; Gustin, Mae Sexauer

    2006-07-01

    Air-surface exchange of mercury (Hg) was measured from soil low in Hg (0.013 mg/kg) amended with four different ash materials: a wood ash containing -10% coal ash (0.070 mg/kg Hg), a mixture of two subbituminous coal fly ashes (0.075 mg/kg Hg), a subbituminous coal ash containing -10% petroleum coke ash (1.2 mg/kg Hg), and an ash from incinerated municipal sewage sludge (4.3 mg/kg Hg) using a dynamic flux chamber. Ash was added to soil to simulate agricultural supplements, soil stabilization, and pad layers used in livestock areas. For the agricultural amendment, -0.4% ash was well mixed into the soil. To make the stabilized soil that could be used for construction purposes, -20% ash was mixed into soil with water. The pad layer consisted of a wetted 1-cm layer of ash material on the soil surface. Diel trends of Hg flux were observed for all of the substrates with significantly higher Hg emissions during the day and negligible flux or deposition of Hg during the night. Hg fluxes, which were measured in the summer months, were best correlated with solar radiation, temperature, and air O3 concentrations. Mean Hg fluxes measured outdoors for unamended soils ranged from 19 to 140 ng/m2 day, whereas those for soil amended with ash to simulate an agricultural application ranged from 7.2 to 230 ng/m2 day. Fluxes for soil stabilized with ash ranged from 77 to 530 ng/m2 day and for soil with pads constructed of ash ranged from -50 to 90 ng/m2 day. Simple analytical tests (i.e., total Hg content, synthetic precipitation leaching procedure, heating, and indoor gas-exchange experiments) were performed to assess whether algorithms based on these tests could be used to predict Hg fluxes observed outdoors using the flux chamber. Based on this study, no consistent relationships could be developed. More work is needed to assess long-term and seasonal variations in Hg flux from (intact and disturbed) substrates before annual estimates of emissions can be developed. PMID:16878589

  4. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials

    SciTech Connect

    Rachor, Ingke, E-mail: i.rachor@ifb.uni-hamburg.de [University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg (Germany); Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria [University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg (Germany)

    2011-05-15

    The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material.

  5. Heavy metal contamination of the soils used for stocking raw materials in the former ILVA iron-steel industrial plant of Bagnoli (southern Italy).

    PubMed

    Adamo, P; Arienzo, M; Bianco, M R; Terribile, F; Violante, P

    2002-08-01

    The total contents and the chemical and mineralogical forms of the metals Fe, Al, Cu, Co, Cr, Pb, Zn, Ni and Mn in the horizons of a soil profile, representative of an area devoted to stocking raw materials in the dismantled iron-steel industrial plant of ILVA of Bagnoli (Naples), were studied by physical and chemical methods. The geological setting of the study area is the result of volcanic activity in the Phlegrean Fields, a group of polygenic volcanoes to the west of Naples, which give rise to the parent soil material. Soil morphology appeared to be strongly disturbed by the occurrence and stratification of materials used in the industrial process. Fine sediments illuviation down the profile resulted in the occurrence of silt and clay coatings. The total contents of Cu, Co, Cr, Pb, Zn and Ni, in the whole soil samples, especially in the surface layers, were above the regulatory levels (Cu 120, Co 20, Cr 150, Pb 100, Zn 150, Ni 120 mg kg(-1)) stated by the Italian Ministry of Environment for soils in public, private and residential areas, and below the levels (Cu 600, Co 250, Cr 800, Pb 1000, Zn 1500, Ni 500 mg kg(-1)) outlined for soils and subsoils of industrial and commercial areas (Gazzetta Ufficiale della Repubblica Italiana, 1999). Speciation of heavy metals and the determination of the different chemical pools in the fraction < 2 mm identified the large presence of elements trapped in the mineralogical structure of oxides and silicates and occluded in easily reducible manganese or iron oxides. A constant amount of Cu was associated with organic compounds. A significant amount of Zn (> 20%) was extracted in diluted acetic acid solution, indicating that the element was present in a more readily and potentially available form. In the clay fraction (< 2 microm) heavy metals were associated with both amorphous and crystalline iron forms. The presence of iron-rich clay coatings was evident in the illuvial pores of deeper horizons. Enrichment in Cu, Co, Cr and Zn of the coatings was observed. Possible translocation of metals down through the soil profile mainly bound to fine particles of relatively inert forms of iron is hypothesised. The dispersion in water of the clay fraction resulted in an average percentage dispersion of approximately 20% with a peak of 41.7% at 68-72 cm depth. Magnetite, goethite, hematite, calcite and quartz mixed with K-feldspars, clynopyroxenes and mica occurred in the coarse sand fractions (2-0.2 mm) of the soil samples from all the surface horizons. Talcum and goethite together with clay minerals at 1.4 nm, kaolinite and illite were found in the clays (< 2 microm). PMID:12186286

  6. Correlations between soil magnetic susceptibility and the content of particular elements as a reflection of pollution level, land use and parent rocks

    NASA Astrophysics Data System (ADS)

    Rachwa?, Marzena; Magiera, Tadeusz; Bens, Oliver; Kardel, Kati

    2015-04-01

    Magnetic susceptibility is a worldwide used measure of (ferri)magnetic minerals occurring in soils, sediments and dusts. In soils, these minerals are of various origin: air-derived particulate pollutions, parent rocks or pedogenesis. Human activity causes different changes in the content of magnetic minerals as well as their spatial and vertical distribution in soil profiles. Magnetic minerals are characterized by an affinity for other elements occurring in the soil, so positive correlations between magnetic susceptibility and particular elements like macrocomponents or heavy metals often occurs. The archival soil samples collected from different soil horizons in the territory of the Free State of Saxony (Germany) were subjected to the magnetic susceptibility measurements using Bartington MS2B. Additionally, samples were chemically analyzed by the S Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences in Potsdam. Values of magnetic susceptibility varied from 9.3 to 1382 ×10-8 m3/kg in organic soil horizon and from 0.1 to 2105 ×10-8 m3/kg in dipper layers. Calculated correlation coefficients between magnetic susceptibility and some elements indicate significant relationships characteristic for different factors influenced soil properties (pollution level, land use and parent rocks). The northern part of Saxony is divided by the Elbe into two parts: east part with loose sedimentary rocks and the west one with more solid loess bedrock enriched by spectrum of elements from the Ore Mountains. Correlations between magnetic susceptibility and Ca, Fe, Mn, and Zn were stated in the eastern, while soil magnetic susceptibility of the western part revealed a correlation with Fe, P, Cd, Cu, Pb, Zn, Mo, U, V, and W. Taking into account influences of industry and urbanization, soil magnetic susceptibility is enhanced in the areas with higher population density comparing with rural sites. In the area of Hoyerswerda and Weisswasser with low magnetic natural background (sand) the load of (ferri)magnetic minerals explained by high magnetic susceptibility values as a result of high pollution level, shows the considerable correlations with Na, Ca, Fe, Mn, Zn, B, Be, V. What is more, the soil magnetic susceptibility, developed on different geological bedrocks, correlates with their natural geochemistry bound in the rock and connected with their ferromagnetic minerals (such magnetite and titanomagnetite present in slate, phyllite, mica schist). In that case the magnetic susceptibility correlates with such elements as: Fe, Mn, Ni, B and V. The soils in the south-eastern Saxony close to the border tri-point of Germany, Poland and the Czech Republic, reveal a correlation of magnetic susceptibility with Cd and As content. It can also be caused by power industry in Zittau, however they are developed on basalts and phonolithes in background that produce also strong magnetic signal of geogenic origin. All the statements made above are usually not so clear, since geogenic processes and anthropogenic influences often overlay in the soil.

  7. Trace elements as indicators of lithologic discontinuity in soils

    SciTech Connect

    De Nadai Fernandes, E.A.; Martins Bacchi, F.A. [Centro de Energia Nuclear na Agricultura, Piracicaba (Brazil)

    1997-12-01

    Soil is a natural entity having mineral and organic components as well as physical, chemical, and biological properties. It is a reflection of all the different environmental factors that prevailed during its formation from the parent material. Weathering, the basic soil forming process, physically and chemically alters the primary mineral constituents of the parent rocks, with pedogenesis leading to the formation of a soil profile from the weathered rock material. The chemical composition of soils is diverse and influenced by several factors, principally the nature of the parent rocks and climatic conditions. Although the rock material is the primordial source profiles, as well as their partitioning between the soil components, is a result of the predominating pedogenic processes as well as the impact of external factors such as agricultural practices and pollution.

  8. A cement kiln flue-dust evaluated as a soil liming material

    E-print Network

    Stacha, Raimund

    1973-01-01

    block with 5 replications of 2 lime sources (calcitic and flue-dust) applied at 4 rates (0, 2. 2, 4. 4, and 8. 9 MT/ha). A "split plot" technique was used where- in each 12 x 26. 9 m plot was split in half (6. 2 x 26. 9). One half hsd flue.../ha) on the Beaumont and Lufkin soils and at 5 treat- ment levels (0, 1. 1, 2. 2, 4. 4 and 8. 9 MT/ha) on the Hockley and Nacogdoches soil. Each treatment was replicated three times. Three liming materials were used in the comparative study (very fine, regular...

  9. Soils and the soil cover of the Valley of Geysers

    NASA Astrophysics Data System (ADS)

    Kostyuk, D. N.; Gennadiev, A. N.

    2014-06-01

    The results of field studies of the soil cover within the tourist part of the Valley of Geysers in Kamchatka performed in 2010 and 2011 are discussed. The morphology of soils, their genesis, and their dependence on the degree of hydrothermal impact are characterized; the soil cover patterns developing in the valley are analyzed. On the basis of the materials provided by the Kronotskii Biospheric Reserve and original field data, the soil map of the valley has been developed. The maps of vegetation conditions, soil temperature at the depth of 15 cm, and slopes of the surface have been used for this purpose together with satellite imagery and field descriptions of reference soil profiles. The legend to the soil map includes nine soil units and seven units of parent materials and their textures. Soil names are given according to the classification developed by I.L. Goldfarb (2005) for the soils of hydrothermal fields. The designation of soil horizons follows the new Classification and Diagnostic System of Russian Soils (2004). It is suggested that a new horizon—a thermometamorphic horizon TRM—can be introduced into this system by analogy with other metamorphic (transformed in situ) horizons distinguished in this system. This horizon is typical of the soils partly or completely transformed by hydrothermal impacts.

  10. Comparison of quantification methods to measure fire-derived (black\\/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere

    Microsoft Academic Search

    Karen Hammes; Michael W. I. Schmidt; Ronald J. Smernik; Lloyd A. Currie; William P. Ball; Thanh H. Nguyen; Patrick Louchouarn; Stephane Houel; Örjan Gustafsson; Marie Elmquist; Gerard Cornelissen; Jan O. Skjemstad; Caroline A. Masiello; Jianzhong Song; Ping'an Peng; Siddhartha Mitra; Joshua C. Dunn; Patrick G. Hatcher; William C. Hockaday; Dwight M. Smith; Christoph Hartkopf-Fröder; Axel Böhmer; Burkhard Lüer; Barry J. Huebert; Wulf Amelung; Sonja Brodowski; Lin Huang; Wendy Zhang; Philip M. Gschwend; D. Xanat Flores-Cervantes; Claude Largeau; Jean-Noël Rouzaud; Cornelia Rumpel; Georg Guggenberger; Klaus Kaiser; Andrei Rodionov; Francisco J. Gonzalez-Vila; José A. Gonzalez-Perez; José M. de la Rosa; David A. C. Manning; Elisa López-Capél; Luyi Ding

    2007-01-01

    Black carbon (BC), the product of incomplete combustion of fossil fuels and biomass (called elemental carbon (EC) in atmospheric sciences), was quantified in 12 different materials by 17 laboratories from different disciplines, using seven different methods. The materials were divided into three classes: (1) potentially interfering materials, (2) laboratory-produced BC-rich materials, and (3) BC-containing environmental matrices (from soil, water, sediment,

  11. Soils

    NSDL National Science Digital Library

    Pamela Gore

    1995-08-29

    The purpose of the handout is to identify the three major types of soils: pedalfer, pedocal, and laterite, and to understand the soil profile. This is accomplished with brief descriptions of the soil horizons and the designation of common elements to pedalfers, pedocals, and laterite soils. The handout is concluded with a discussion of soil erosion. Links are provided to the online Physical Geology resources at Georgia Perimeter College.

  12. Soil and Mold Influences on Fe and Zn Concentrations of Sorghum Grain in Mali, West Africa

    E-print Network

    Verbree, Cheryl

    2012-10-19

    participatory sorghum variety trials and areas of different parent material and proximity to Shea (Vitellaria paradoxa) trees were analyzed for diethylenetriaminepentaacetic acid (DTPA)-extractable Zn and related soil properties, and sorghum grain was analyzed...

  13. Electrokinetic removal of charged contaminant species from soil and other media using moderately conductive adsorptive materials

    DOEpatents

    Lindgren, Eric R. (Albuquerque, NM); Mattson, Earl D. (Idaho Falls, ID)

    2001-01-01

    Method for collecting and concentrating charged species, specifically, contaminant species in a medium, preferably soil. The method utilizes electrokinesis to drive contaminant species into and through a bed adjacent to a drive electrode. The bed comprises a moderately electrically conductive adsorbent material which is porous and is infused with water or other solvent capable of conducting electrical current. The bed material, preferably activated carbon, is easily removed and disposed of. Preferably, where activated carbon is used, after contaminant species are collected and concentrated, the mixture of activated carbon and contaminant species is removed and burned to form a stable and easily disposable waste product.

  14. Materials testing for in situ stabilization treatability study of INEEL mixed wastes soils

    SciTech Connect

    Heiser, J.; Fuhrmann, M. [Brookhaven National Lab., Upton, NY (United States)

    1997-09-01

    This report describes the contaminant-specific materials testing phase of the In Situ Stabilization Comprehensive Environment Response, Compensation, and Liability Act (CERCLA) Treatability Study (TS). The purpose of materials testing is to measure the effectiveness of grouting agents to stabilize Idaho National Engineering and Environmental Laboratory (INEEL) Acid Pit soils and select a grout material for use in the Cold Test Demonstration and Acid Pit Stabilization Treatability Study within the Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC). Test results will assist the selecting a grout material for the follow-on demonstrations described in Test Plan for the Cold Test Demonstration and Acid Pit Stabilization Phases of the In Situ Stabilization Treatability Study at the Radioactive Waste Management Complex.

  15. PREPARATION OF A SOIL REFERENCE MATERIAL WITH HIGH THORIUM CONCENTRATION FOR DETERMINATION OF RADIONUCLIDES FROM THORIUM AND URANIUM NATURAL SERIES

    Microsoft Academic Search

    A. F. Clain; M. J. C. S. Bragança; A. M. G. F. Azeredo; L. Tauhata; C. C. S Conceição; E. M. O Bernardes

    It was prepared a reference material from a soil with high thorium concentration from a region with high natural radioactivity. Performed tests using gamma spectrometry and statistical programs showed that t he prepared material was homogeneous and enough stable to be used as an in-house reference material in intercomp arison exercises.

  16. Cadmium contamination of soils and rice plants caused by zinc mining IV. Use of soil amendment materials for the control of Cd uptake by plants

    Microsoft Academic Search

    Yasuo Takijima; Futoshi Katsumi

    1973-01-01

    In view of the difficulty in practicing water management as a measure to prevent the production of high Cd rice, alkaline or calcareous soil amendment materials were examined, concerning their pH effect on the availability of soil heavy metals.1. In the experiment conducted on the contaminated paddy field, the essential Cd uptake by the plant occurred after the ear-forming stage

  17. A soil-inventory of agricultural used soils of Germany

    NASA Astrophysics Data System (ADS)

    Siebner, Clemens; Gensior, Andreas; Evertsbusch, Sven; Freibauer, Annette; Flessa, Heiner

    2010-05-01

    In the framework of UNFCCC reports for greenhouse gas emissions of land use and land use change also soil organic carbon stocks and stock changes of have to be reported. Since 1990 a forest soil inventory exists for Germany, but similar data are still missing for agricultural land. Up till now, a very rough estimation of the soil organic carbon stocks based on the soil map of Germany at the scale of 1:1,000,000 and estimated soil organic carbon contents and bulk densities have been used for the national inventory reports. Now we are starting an extended agricultural soil inventory for Germany which is explicitly designed to detect soil organic carbon stocks and stock changes. We will use a grid of 8x8 km, like it was used for the forest soil inventory. In order to extrapolate from point data and perform regionalisations, not only soil type, soil parent material and basic climate parameters will be taken into account, but under agricultural land use different agricultural management practices will be considered. Management data, like crop rotation, depth and intensity of soil tillage and application of fertilizers, manure and composts are collected from farmers during the inventory via questionnaires. It was shown that those data are essential to estimate and extrapolate point data to report soil organic carbon stocks and stock changes on regional scale. The concept of this soil carbon inventory will be presented.

  18. Deterministic uncertainty and complex pedogenesis in some Pleistocene dune soils

    Microsoft Academic Search

    J. D. Phillips; D. Perry; A. R. Garbee; K. Carey; D. Stein; M. B. Morde; J. A. Sheehy

    1996-01-01

    Deterministic uncertainty is a perspective on soil spatial variability that reconciles the traditional reductionist view (variability can be explained with more and better measurements) and the emerging nonlinear dynamics view (variability may be an irresolvable outcome of complex system dynamics). In the podzolized soils of the 77 ka Newport Barrier, age, parent material, climate, and general vegetation cover are constant,

  19. Biogeochemistry of hydrothermally and adjacent non-altered soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a field/lab project, students in the Soil Biogeochemistry class of the University of Nevada, Reno described and characterized seven pedons, developed in hydrothermally and adjacent non-hydrothermally altered andesitic parent material near Reno, NV. Hydrothermally altered soils had considerably lo...

  20. Rehabilitating acid soils for increasing crop productivity through low-cost liming material.

    PubMed

    Bhat, Javid Ahmad; Kundu, Manik Chandra; Hazra, Gora Chand; Santra, Gour Hari; Mandal, Biswapati

    2010-09-15

    Productivity of red and lateritic soils is low because of their acidity and deficiencies in few essential nutrients viz., nitrogen, phosphorus, calcium, zinc, boron, molybdenum etc. We compared the effectiveness of basic slag, a low-cost liming material, with that of calcite as an ameliorant for these soils using mustard followed by rice as test crops. Experiments were conducted with three levels of each of basic slag and calcite along with a control on farmers' fields at 14 different locations. Influence of farmyard manure (FYM) and poultry manure (PM) on the effectiveness of the slag was also tested. On an average, basic slag performed better than calcite in increasing yields of both mustard and rice and left over higher amounts of available Ca, Si and Zn in residual soils. The slag also improved N, P, K and Ca nutrition of mustard and Si and Zn nutrition of rice with a favorable benefit:cost (B:C) ratio over the calcite (4.82 vs. 1.44). Effectiveness of the basic slag improved when it was applied in combination with FYM or PM (B:C, 5.83 and 6.27). Basic slag can, therefore, be advocated for use in the acidic red and lateritic soils for economically improving their productivity. PMID:20659758

  1. Development of laboratory reference material: Soil 1. Baseline and highly elevated concentrations of metals and polycyclic aromatic hydrocarbons.

    PubMed

    Kupiec, K; Konieczka, P; Namie?nik, J

    2011-01-01

    Reference materials play a key part in systems of inspection and quality control of results of analytical measurements. The main limitation in using certified reference materials (CRM) is their high price, which results from the long and costly process of producing the reference material. An alternative to costly CRM materials is the employment of laboratory reference materials, particularly for interlaboratory control of measurement results and procedures. Under the auspices of the Chair of Analytical Chemistry at the Chemical Department of Gdansk University of Technology, research on the development of new reference materials is being conducted. At present, the research is aimed at producing a new laboratory reference material (LRM): 'Soil 1. Baseline and Highly Elevated Concentrations of Metals and Polycyclic Aromatic Hydrocarbons' - LRM soil 1. This paper presents the production stages of the developed laboratory reference material: acquisition of raw material from soil samples taken from the environment of the Tri-city (in Polish, Trójmiasto Gdansk, Sopot, Gdynia) bypass road, homogenization and subsequent dosage into appropriate containers, tests of homogeneity of sampled material within one container and between containers, based on the results of the determination of selected parameters (total carbon, content of optional metals - Hg, Fe, Cu Zn, Mn, Mg, water content, content of PAH-group analytes). The obtained results of homogeneity tests of the proposed future laboratory reference material have confirmed the homogeneity of soil samples within a container and between containers. Currently, interlaboratory tests are being carried out to determine the reference value. PMID:21473281

  2. Parents' Regulation and Self-Regulation and Performance in Children with Intellectual Disability in Problem-Solving Using Physical Materials or Computers

    ERIC Educational Resources Information Center

    Nader-Grosbois, Nathalie; Lefevre, Nathalie

    2012-01-01

    This study compared mothers and fathers' regulation with respect to 29 children with intellectual disability (ID) and 30 typically developing (TD) children, matched on their mental age (MA), as they solved eight tasks using physical materials and computers. Seven parents' regulatory strategies were coded as they supported their child's…

  3. Effect of Ground Rubber vs. ZnSO4 on Spinach Accumulation of Cd from Cd-Mineralized California Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Certain soils derived from marine shale in Salinas Valley, CA, USA, contain significant levels of natural Cd but normal levels of Zn, all derived from the soil parent materials. Crops grown on these soils contain high levels of Cd, and because of the high Cd:Zn, this Cd is highly bioavailable and a...

  4. Diffusion of Iodine and Rhenium in Category 3 Waste Encasement Concrete and Soil Fill Material

    SciTech Connect

    Wellman, Dawn M.; Mattigod, Shas V.; Whyatt, Greg A.; Powers, Laura; Parker, Kent E.; Wood, Marcus I.

    2006-12-15

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e. sorption or precipitation). This understanding will enable accurate prediction of radionuclide fate when the waste forms come in contact with groundwater. A set of diffusion experiments using carbonated and non-carbonated concrete-soil half cells was conducted under unsaturated conditions (4% and 7% by wt moisture content). Spiked concrete half-cell specimens were prepared with and without colloidal metallic iron addition and were carbonated using supercritical carbon dioxide. Spikes of I and Re were added to achieve measurable diffusion profile in the soil part of the half-cell. In addition, properties of concrete materials likely to influence radionuclide migration such as carbonation were evaluated in an effort to correlate these properties with the release of iodine and rhenium.

  5. Development of construction materials like concrete from lunar soils without water

    NASA Technical Reports Server (NTRS)

    Desai, Chandra S.; Saadatmanesh, H.; Frantziskonis, G.

    1989-01-01

    The development of construction materials such as concrete from lunar soils without the use of water requires a different methodology than that used for conventional terrestrial concrete. A unique approach is attempted that utilizes factors such as initial vacuum and then cyclic loading to enhance the mechanical properties of dry materials similar to those available on the moon. The application of such factors is expected to allow reorientation, and coming together, of particles of the materials toward the maximum theoretical density. If such a density can provide deformation and strength properties for even a limited type of construction, the approach can have significant application potential, although other factors such as heat and chemicals may be needed for specific construction objectives.

  6. Reflectance and Mossbauer spectroscopy of ferrihydrite-montmorillonite assemblages as Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Pieters, C. M.; Burns, R. G.; Chang, S. (Principal Investigator)

    1993-01-01

    Spectroscopic analyses show that Fe(3+)-doped smectites prepared in the laboratory exhibit important similarities to the soils on Mars. Ferrihydrite has been identified as the interlayer ferric component in Fe(3+)-doped smectites by a low quadrupole splitting and magnetic field strength of approximately 48 tesla in Mossbauer spectra measured at 4.2 K, as well as a crystal field transition at 0.92 micrometer. Ferrihydrite in these smectites explains features in the visible-near infrared region that resemble the energies and band strengths of features in reflectance spectra observed for several bright regions on Mars. Clay silicates have met resistance in the past as Mars soil analogs because terrestrial clay silicates exhibit prominent hydrous spectral features at 1.4, 1.9, and 2.2 micrometers; and these are observed weakly, if at all, in reflectance spectra of Mars. However, several mechanisms can weaken or compress these features, including desiccation under low-humidity conditions. The hydration properties of the interlayer cations also effect band strengths, such that a ferrihydrite-bearing smectite in the Martian environment would exhibit a 1.9 micrometers H2O absorption that is even weaker than the 2.2 micrometers structural OH absorption. Mixing experiments demonstrate that infrared spectral features of clays can be significantly suppressed and that the reflectance can be significantly darkened by mixing with only a few percent of a strongly absorbing opaque material. Therefore, the absolute reflectance of a soil on Mars may be disproportionately sensitive to a minor component. For this reason, the shape and position of spectral features and the chemical composition of potential analogs are of utmost importance in assessing the composition of the soil on Mars. Given the remarkable similarity between visible-infrared reflectance spectra of soils in bright regions on Mars and Fe(3+)-doped montmorillonites, coupled with recent observations of smectites in SNC meteorites and a weak 2.2 micrometers absorption in some Mars soils, ferrihydrite-bearing smectites warrant serious consideration as a Mars soil analog.

  7. Elaidate-Intercalated hydrotalcite as a sorbent material for metalaxyl immobilitzation in soil

    NASA Astrophysics Data System (ADS)

    López-Cabeza, Rocío; Cornejo, Juan; Hermosín, María C.; Cox, Lucía; Celis, Rafael

    2015-04-01

    Layered double hydroxides (LDHs), also known as hydrotalcite-like compounds (HTs), comprise a special group of layered materials. Their structure consists of positively charged layers of mixed divalent (MII) and trivalent (MIII) metal hydroxide [MII1-xMIIIx(OH)2]x+, with the positive charge being balanced by inorganic hydrated anions (An-x/n·mH2O), which occupy the interlayer space. LDHs have anion exchange properties and, therefore, are good sorbents for anionic pollutants. In addition, the anionic exchange properties of LDHs allow the intercalation of organic anions in the interlayer space to render the LDH surface hydrophobic. This increases its affinity to hydrophobic organic compounds. Pesticides with chiral centers are an emerging class of organic pollutants and it has become clear that addressing the different efficacy, toxicity, and environmental behavior of chiral pesticide enantiomers is necessary to avoid the incorrect assumption that enantiomers have identical environmental behavior. Appropriate soil remediation strategies accounting for the enantioselective behavior of chiral pesticide enantiomers are also needed. In this work, we evaluated the performance of elaidate-modified hydrotalcite (HT-ELA) as a sorbent to remove the chiral fungicide metalaxyl from aqueous solution and as an amendment for metalaxyl immobilization in soil. Analysis of metalaxyl by chiral high-performance liquid chromatography allowed us to monitor the sorption and mobility of the two enantiomers of metalaxyl, S-(+)-metalaxyl and R-(-)-metalaxyl, independently. Batch sorption experiments showed that HT-ELA [Mg3Al(OH)8ELA] displayed an excellent performance as an sorbent of the two enantiomers of metalaxyl from aqueous solution and that its addition to a sandy loam agricultural soil at a rate of 1% greatly enhanced the sorption of metalaxyl enantiomers by the soil. Column leaching experiments demonstrated that amending the soil top layer (0-2.5 cm) with HT-ELA at a rate of 1% reduced the leaching of S- and R-metalaxyl. The R-enantiomer of metalaxyl leached less than the S-enantiomer due to its faster degradation in the soil. Our results illustrate the ability of elaidate-modified hydrotalcite to enhance the retention of the two enantiomers of the fungicide metalaxyl in the tested soil, which may be useful in the design of immobilization strategies, particularly of the more persistent S-metalaxyl enantiomer, which may represent increased risk of ground water contamination. Acknowledgments: MINECO Project AGL2011-23779, FACCE-JPI Project Designchar4food, JA Research Group AGR-264 and FEDER-FSE (OP 2007-2013).

  8. Soil Textural Contrast as a Geofactor in Soil Formation, Bogowonto Watershed, Indonesia

    NASA Astrophysics Data System (ADS)

    Pulungan, Nur Ainun Harlin Jennie; Geitner, Clemens; Stötter, Johann; Sartohadi, Junun

    2014-05-01

    Geological aspect is considered crucial among the other factors in soil formation. Weathered rock as a geofactor will contribute much in forming the soil. Weathered rock is able to affect the basic characteristics of soil. One of the basic soil characteristics that would be intensively discussed here is soil texture. The presence of textural contrast in a soil profile implicates that there is a weathering activity. Therefore, the aim of this paper is to analyze the function of different rocks (lithology) related to soil textural contrast as a geofactor in soil formation. Jebol sub-catchment is one of water dividing in Bogowonto watershed. It is strongly influenced by 6 geological formations. They are old-andesitic formation, andesitic intrusion, halang formation, old Sumbing volcano formation, young Sumbing volcano formation, and alluvium. Different geological formation results different weathered rock. The focus in this research was on old-Sumbing volcano formation (Qsmo). Volcanic activities produced pyroclastic deposit. Multi-layer of old volcano materials provided specific parent material for soils. The methods applied in this research are fieldwork and laboratory analysis. All of the analysis was based on the common traditional concept of vertical texture contrast (VTC) in pedology. Direct assessment of soil texture was conducted during the field. Laboratory analysis, then, was considered to verify the field results. Five soil samples were taken for investigating. Each soil sample was expected as a representative of each rock. They were developed from volcanic air fall deposition (ash & lapilli), laharic sediment, and andesitic intrusion. The results showed that: (1) the soil profile was strongly provided by typical parent material from weathered rock. In multiple layers of parent material, the most-upper deposition would become parent material for soil; (2) volcanic air fall deposition was dominated by silty soil; (3) laharic sediment formed sandy soil; (4) intrusion rock resulted loamy and clay soil; (5) the soil texture variability in a profile is mostly emphasized by operating downwards of water percolation. The relative texture contrast in various horizons of the profile increased with clay illuviation process.

  9. ABC's (Antecedents-Behaviors-Consequences) for Parents: An Educational Workshop in Behavior Modification. Session Materials and Behavior Management Workbook.

    ERIC Educational Resources Information Center

    Rettig, Edward B.

    This guide for parents, which seeks to apply behavior modification techniques for changing their own as well as their children's behaviors, has two separate parts--a workshop and a workbook. The manual attempts to teach methods of effective parenting and behavior change through programmed instruction in "antecedents-behaviors-consequences." There…

  10. Revegetation of acidic coal refuse: effects of soil cover material depth and limiting rate on initial establishment

    SciTech Connect

    Jastrow, J.D.; Dvorak, A.J.; Knight, M.J.; Mueller, B.K.

    1981-09-01

    Sixteen plots were established in April 1977 on a recontoured coal refuse disposal site near the town of Staunton in southwestern Illinois, as a part of a larger project that is demonstrating and evaluating new and cost-effective methods for reclaiming abandoned coal refuse sites. The plots were designed to compare the effects of four soil cover material depths and two limestone application rates on vegetation establishment and growth. All plots were fertilized at the same rate and seeded with a mixture of seven grasses and one legume. Plot treatments and plant species were chosen on the basis of laboratory pot-culture experiments. During the initial growing season, plant germination, density, cover, and production, as well as soil abiotic parameters, were measured. Excellent plant cover (89 to 99%) developed over the first growing season on those plots with soil cover material. However, plant cover and production were dominated by invading annuals characteristic of old-field succession. The eight planted perennial species contributed minimally to both cover and production, but plant density data indicated that the planted species, although small in size, were becoming established in relatively large numbers on the plots with soil cover material. Even though the plots with the maximum depth (60 cm) of soil cover material supported the greatest plant production, by August total plant densities on the plots with soil cover material were not affected by either cover material depth or liming rate. Survival and growth of both planted and invader species were very poor on the plots without soil cover material; plant cover here was less than 3%.

  11. Sorption/desorption reversibility of phenanthrene in soils and carbonaceous materials

    SciTech Connect

    Guohui Wang; Sybille Kleineidam; Peter Grathwohl [University of Tuebingen, Tuebingen (Germany). Center for Applied Geoscience

    2007-02-15

    Sorption/desorption of phenanthrene in two soil samples and carbonaceous materials was found to yield co-incident equilibrium isotherms and no significant hysteresis was observed. Additionally, release of native phenanthrene was investigated. Equilibrium sorption and desorption isotherms were determined using pulverized samples of Pahokee peat, lignite, and high-volatile bituminous coal, a mineral soil, and an anthropogenic soil. Instead of the conventional decant-and-refill batch method, sorption/desorption was driven by temperature changes using consistent samples. Sorption started at 77{sup o}C and was increased by reducing the temperature stepwise to 46, 20, and finally 4{sup o}C. For desorption the temperature was increased stepwise again until 77{sup o}C was reached. Besides the co-incident sorption and desorption isotherms at each temperature step, the solubility-normalized sorption/desorption isotherms of all different temperatures collapse to unique overall isotherms. Leaching of native phenanthrene occurred at much lower concentrations but was well predicted by extrapolation of the spiked sorption isotherms indicating that the release of native phenanthrene involves the same sorption/desorption mechanisms as those for newly added phenanthrene. 35 refs., 4 figs., 5 tabs.

  12. Derivation of guidelines for uranium residual radioactive material in soil at the Colonie Site, Colonie, New York

    Microsoft Academic Search

    1996-01-01

    Residual radioactive material guidelines for uranium in soil were derived for the Colonie site located in Colonie, New York. This site has been designated for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the U.S. Department of Energy (DOE). The site became contaminated with radioactive material as a result of operations conducted by National Lead (NL)

  13. Supplementary Online Material Medium-term effects of corn biochar addition on soil biota activities and functions in a temperate soil cropped to corn

    E-print Network

    Lehmann, Johannes

    Supplementary Online Material Medium-term effects of corn biochar addition on soil biota activities and treatments, all expressed on a dry weight basis. Biochar Plot Sand Silt Clay Moisture pH EC SOC P-PO4 Cl N highlighted in bold and asterisks indicating the significance (*=p0.05, **=p0.01); n=15. Biochar rate Fauna

  14. Long Term Effects of Fluidized Bed Material Applied at Disposal Levels on Soil Metals and Nutrient Concentrations as Related to Soil Depth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to assess the movement of macro and micro elements in an old apple [Malus domestica Borkh.] orchard that received a one time application of 36 kg m-2 of fluidized bed combustion material (FBC) 23 years earlier. Soil samples were taken in an area where 15 trees were planted ...

  15. Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Pieters, Carle M.

    1995-01-01

    Infrared reflectance spectra of carefully selected Mars soil analog materials have been measured under low atmospheric pressures and temperatures. Chemically altered montmorillonites containing ferrihydrite and hydrated ferric sulfate complexes are examined, as well as synthetic ferrihydrite and a palagonitic soil from Haleakala, Maui. Reflectance spectra of these analog materials exhibit subtle visible to near-infrared features, which are indicative of nanophase ferric oxides or oxyhydroxides and are similar to features observed in the spectra of the bright regions of Mars. Infrared reflectance spectra of these analogs include hydration features due to structural OH, bound H2O, and adsorbed H2O. The spectral character of these hydration features is highly dependent on the sample environment and on the nature of the H2O/OH in the analogs. The behavior of the hydration features near 1.9 micron, 2.2 micron, 2.7 micron, 3 micron, and 6 microns are reported here in spectra measured under a Marslike atmospheric environment. In spectra of these analogs measured under dry Earth atmospheric conditions the 1.9-micron band depth is 8-17%; this band is much stronger under moist conditions. Under Marslike atmospheric conditions the 1.9-micron feature is broad and barely discernible (1-3% band depth) in spectra of the ferrihydrite and palagonitic soil samples. In comparable spectra of the ferric sulfate-bearing montmorillonite the 1.9-micron feature is also broad, but stronger (6% band depth). In the low atmospheric pressure and temperature spectra of the ferrihydrite-bearing montmorillonite this feature is sharper than the other analogs and relatively stronger (6% band depth). Although the intensity of the 3-micron band is weaker in spectra of each of the analogs when measured under Marslike conditions, the 3-micron band remains a dominant feature and is especially broad in spectra of the ferrihydrite and palagonitic soil. The structural OH features observed in these materials at 2.2-2.3 micron and 2.75 microns remain largely unaffected by the environmental conditions. A shift in the Christiansen feature towards shorter wavelengths has also been observed with decreasing atmospheric pressure and temperature in the midinfrared spectra of these samples.

  16. Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Pieters, Carle M.

    1995-01-01

    Infrared reflectance spectra of carefully selected Mars soil analog materials have been measured under low atmospheric pressures and temperatures. Chemically altered montmorillonites containing ferrihydrite and hydrated ferric sulfate complexes are examined, as well as synthetic ferrihydrate and a palagonitic soil from Haleakala, Maui. Reflectance spectra of these analog materials exhibit subtle visible to near-infrared features, which are indicative of nanophase ferric oxides or oxyhydroxides and are similar to features observed in the spectra of the bright regions of Mars. Infrared reflectance spectra of these analogs include hydration features due to structural OH, bound H2O and adsorbed H2O. The spectal character of these hydration features is highly dependent on the sample environment and on the nature of the H2O/OH in the analogs. The behavior of the hydration features near 1.9 micrometers, 2.2 micrometers, 2.7 micrometers, 3 micrometers, and 6 micrometers are reported here in spetra measured under Marslike atmospheric environment. In spectra of these analogs measured under dry Earth atmospheric conditions the 1.9-micrometer band depth is 8-17%; this band is much stonger under moist conditions. Under Marslike atmospheric conditions the 1.9-micrometer feature is broad and barely discernible (1-3% band depth) in spectra of the ferrihydrite and palagonitic soil samples. In comparable spectra of the ferric sulfate-bearing montmorillonite the 1.9-micrometer feature is also broad, but stronger (6% band depth). In the low atmospheric pressure and temperature spectra of the ferrihydrite-bearing montmorillonite this feature is sharper than the other analogs and relatively stronger (6% band depth). Although the intensity of the 3- micrometer band is weaker in spectra of each of the analogs when measured under Marslike conditions, the 3-micromter band remains a dominant feature and is especially broad in spectra of the ferrihydrite and palagonitic soil. The structural OH features observed in these materials at 2.2-2.3 micrometers and 2.27 micrometers remain largely unaffected by the environmental conditions. A shift in the Christiansen feature towards shorter wavelengths has also been observed with decreasing atmospheric pressure and temperature in the midinfrared spectra of these samples.

  17. Reflections on the Nature of Soil and Its Biomantle

    Microsoft Academic Search

    D. L. Johnson; J. E. J. Domier; D. N. Johnson

    2005-01-01

    Apart from the engineering approach to soil as movable regolith, most specialists who study soil view it as a plant-linked, land-only, and Earth-only entity whose character and properties are explained by a mix of four environmental factors—climate, organisms, relief, and parent material—that operate over time. These factors function to produce soil, where S=f (cl, o, r, p, t …). This

  18. Evaluation of bottom ash and composted manure blends as a soil amendment material.

    PubMed

    Mukhtar, S; Kenimer, A L; Sadaka, S S; Mathis, J G

    2003-09-01

    The long-term goal of this project was to find alternative uses for bottom ash (BA) and composted dairy manure (CM), by-products of coal combustion and livestock production, respectively. The study discussed in this paper focused on potential water quality impacts associated with using blended BA and CM as a soil amendment. The constituents of BA and CM include heavy metals and other chemicals that, while essential nutrients for plant growth, also pose a potential threat to water quality. Four blends (BA:CM, v/v) namely, B1 (100%:0%), B2 (70%:30%), B3 (50%:50%) and B4 (0%:100%), were subjected to flow-through water table management and two blends, B2 (70%:30%) and B3 (50%:50%), were subjected to constant head water table management using de-ionized water. Leachate and standing water from saturated and flooded blends of BA and CM were examined for total solids (TS), volatile solids (VS), COD, pH, total Kjeldahl nitrogen (TKN), NO(3)-N, total P, total K as well as selected metals over a 5 and 7 week period for flow-through and constant head watertables, respectively. The results showed that higher CM content resulted in higher TS, VS, TKN, P and K concentrations in the leachate and standing water. Concentrations of these constituents were higher in leachate than in the standing water. Even though, marked reductions of most chemicals in the leachate and standing water were realized within one to three weeks, initially high concentrations of chemicals in leachate and standing water from these particular blends made them unsuitable as soil amendment material. Based upon these results, it was concluded that additional column studies of BA and CM blends with reduced CM content (5%, 10% and 20%) should be performed to further assess the feasibility of BA and CM blends as an environmentally safe soil amendment material. PMID:12798111

  19. Quantities and associations of lead, zinc, cadmium, manganese, chromium, nickel, vanadium, and copper in fresh Mississippi delta alluvium and New Orleans alluvial soils

    Microsoft Academic Search

    H. W. Mielke; C. R. Gonzales; M. K. Smith; P. W. Mielke

    2000-01-01

    The topic of this study is the effect of anthropogenic metals on the geochemical quality of urban soils. This is accomplished by comparing the metal contents and associations between two alluvial soils of the lower Mississippi River Delta, freshly deposited alluvial parent materials and alluvial soils collected from a nearby urban environment. Fresh alluvium samples (n=97) were collected from the

  20. Effect of geo-pedological conditions on the distribution and chemical speciation of selected trace elements in forest soils of western Alborz, Iran

    Microsoft Academic Search

    Mohsen Nael; Hossein Khademi; Ahmad Jalalian; Rainer Schulin; Mahmoud Kalbasi; Farzad Sotohian

    2009-01-01

    Geologic and pedologic controls have an important influence on the abundance, distribution and behavior of elements in natural soil environments. In order to assess the role of these factors on distribution and chemical speciation of selected trace elements in soil, soils on six parent materials including phyllite, tonalite, peridotite, dolerite, shale and limestone were sampled in western Alborz in Iran.

  1. Plant material as bioaccumulator of arsenic in soils affected by mining activities

    NASA Astrophysics Data System (ADS)

    Martínez-López, Salvadora; Martínez-Sánchez, Maria Jose; García-Lorenzo, Maria Luz; Pérez-Sirvent, Carmen

    2010-05-01

    Heavy metal contamination is an important environmental problem, since the metals are harmful to humans, animals and tend to bioaccumulate in the food chain. The aim of this study was to determine the total concentration of As, As (III) and As(V) in soil samples, leaves and roots of plant material, growing in a mining area in Spain (Murcia). Ditichia viscosa was used as the plant of reference. The concentrations of bioavailable As in plant samples were calculated by different soil chemical extraction methods; deionized water, 0.5N NaHCO3 (Olsen extraction), oxidizable medium, 0.5 HCl, 0.05M (NH4)2SO4, 0.005M DTPA and Mehra-Jackson extraction. For this study, fourteen samples were collected in the surrounding area of Sierra Minera and Portman Bay (Murcia, SE Spain). Samples were air dried and sieved to < 2mm for general analytical determinations. To determine the As content, soil samples were first ground to a fine powder using an agate ball mill. Fresh vegetable samples were separated into root and aboveground biomass and then lyophilized. Arsenic levels were obtained by using atomic fluorescence spectrometry with an automated continuous flow hydride generation (HG-AFS) spectrometer. Samples showed pH average values close to neutrality. Most samples showed a very low organic matter percentage. Electrical conductivity and calcium carbonate content were considerably low in most samples. The mineralogical analysis showed that the main minerals were quartz, muscovite, kaolinite and illite, while the minority minerals were alteration products derived of mining activities (iron oxides and hydroxides, siderite, jarosite and gypsum), calcite and feldspars. Although the plants do not absorb arsenic in the same proportion, the results suggest that a good relationship exists between the total content of As in soil and the total content in plant. The results showed that the arsenic content in roots was positively correlated with the oxidizable-organic matter and sulfides fraction (oxidaizable medium extraction procedure). Arsenic concentration in leaves was positively correlated with the arsenic extracted by HCl, with the oxidizable-organic matter and sulfides fraction and with the arsenic extracted by Mehra-Jackson extraction. According to our results, As is accumulated in the leaves of the plants and is linked with iron oxides of these soils affected by mining activities.

  2. ESTIMATION OF RELATIVE BIOAVAILABILITY OF LEAD IN SOIL AND SOIL-LIKE MATERIALS BY IN VIVO AND IN VITRO METHODS

    EPA Science Inventory

    This is a technical support document which presents data to support an in vitro methodology to assess the bioavailability of lead in soil that correlates well with the in vivo juvenile swine assay....

  3. Effect of Soil Solid-Phase Material Migration on Soil Properties within a Small Watershed Detected Using the Magnetic Tracer Method

    NASA Astrophysics Data System (ADS)

    Koshovskii, Timur; Gennadiev, Alexander; Zhidkin, Andrei

    2014-05-01

    We have performed detailed studies of the lateral migration of the solid soil material and the soil cover within a small catchment area (Russia, Tula region, Lokna river basin). The main goal of this work is to characterize the migration and accumulation features of the soil solid-phase material within a small watershed and to analyze the effect of the lateral mass transfer on the crucial soil fertility-related properties in the catchment basin under study. The total area of the catchment and the ravine network elements is 96 ha. The catchment basin is drop-shaped; it slightly curves and is latitudinally oriented. The catchment basin's slopes are of southern, eastern, northern, and intermediate exposures with average inclination of 1,5-5 degrees. The magnetic tracer method was used to assess the volumes and rates of the lateral migration of the solid-phase soil material on the selected territory. This method is based on the investigation of the spherical magnetic particles (SMPs), which fall onto the soil cover from the atmosphere, where they arrive at the burning of coals and some other fuels, mostly in steam locomotives. The period of the most intensive emission of SMPs into the soil in the territory of Russia corresponds to the last 100-150 years [1]. The reserve of SMPs in the 0- to 25-cm layer is estimated to be 3.8 g/m2on the least eroded sub-horizontal surface. The zones with the concentration of SMPs lower than their average content on the least eroded surface were characterized as dispersion zones. The zones of the basin with significant exceeding the value of 3.8 g/m2 were marked as accumulation zones of the soil solid-phase material. Dispersion zones are found in the middle part of the ridge in the north-eastern area, in the middle part of a longslope in the south-western area of the catchment basin, and other [2]. Accumulation zones are observed in a cup-shaped depression on the plowed slope adjacent to the ravine's head, on steep unplowed slopes of the ravine adjacent to its bottom, on the ravine's bottom, and other [2]. The genesis of these zones is result of the summary effect of the exposure, the inclination, and the slope's length, the spatial interference of the zones, the variability of the carrying capacity of the water flow, etc. The total area of the revealed dispersion zones makes up 35% of the catchment basin; the accumulation zones occupy 26% of the catchment area. The transit-buffer area occupies 39% of the catchment basin. The area proportions of the different functional zones characterize the specific migration structure of the small watershed. [1] Olson K., Gennadiyev A., Zhidkin A., Markelov M., Golosov V., and Lang J. Use of magnetic tracer and radio-cesium methods to determine past cropland soil erosion amounts and rates. Catena 104 (2013), 103-110. [2] Gennadiev A., Koshovskii T., Zhidkin A., and Kovach R. Lateral migration of soil solid-phase material within a landscape-geochemical arena detected using the magnetic tracer method. Eurasian Soil Science 46, 10 (2013), 983-993.

  4. Mercury emission and plant uptake of trace elements during early stage of soil amendment using flue gas desulfurization materials.

    PubMed

    Cheng, Chin-Min; Chang, Yung-Nan; Sistani, Karamat R; Wang, Yen-Wen; Lu, Wen-Chieh; Lin, Chia-Wei; Dong, Jing-Hong; Hu, Chih-Chung; Pan, Wei-Ping

    2012-02-01

    A pilot-scale field study was carried out to investigate the distribution of Hg and other selected elements (i.e., As, B, and Se), i.e., emission to ambient air, uptake by surface vegetation, and/or rainfall infiltration, after flue gas desulfurization (FGD) material is applied to soil. Three FGD materials collected from two power plants were used. Our results show Hg released into the air and uptake in grass from all FGD material-treated soils were all higher (P < 0.1) than the amounts observed from untreated soil. Hg in the soil amended with the FGD material collected from a natural oxidation wet scrubber (i.e., SNO) was more readily released to air compared to the other two FGD materials collected from the synthetic gypsum dewatering vacuum belt (i.e., AFO-gypsum) and the waste water treatment plant (i.e., AFO-CPS) of a forced oxidation FGD system. No Hg was detected in the leachates collected during the only 3-hour, 1-inch rainfall event that occurred throughout the 4-week testing period. For every kilogram of FGD material applied to soil, AFO-CPS released the highest amount of Hg, B, and Se, followed by SNO, and AFO gypsum. Based on the same energy production rate, the land application of SNO FGD material from Plant S released higher amounts of Hg and B into ambient air and/or grass than the amounts released when AFO-gypsum from Plant A was used. Using FGD material with lower concentration levels of Hg and other elements of concern does not necessary post a lower environmental risk. In addition, this study demonstrates that considering only the amounts of trace elements uptake in surface vegetation may under estimate the overall release of the trace elements from FGD material-amended soils. It also shows, under the same soil amendment conditions, the mobility of trace elements varies when FGD materials produced from different processes are used. PMID:22442930

  5. A framework for assessing ecological risks of petroleum-derived materials in soil

    SciTech Connect

    Suter, G.W. II

    1997-05-01

    Ecological risk assessment estimates the nature and likelihood of effects of human actions on nonhuman organisms, populations, and ecosystems. It is intended to be clearer and more rigorous in its approach to estimation of effects and uncertainties than previously employed methods of ecological assessment. Ecological risk assessment is characterized by a standard paradigm that includes problem formulation, analysis of exposure and effects, risk characterization, and communication with a risk manager. This report provides a framework that applies the paradigm to the specific problem of assessing the ecological risks of petroleum in soil. This type of approach requires that assessments be performed in phases: (1) a scoping assessment to determine whether there is a potential route of exposure for potentially significant ecological receptors; (2) a screening assessment to determine whether exposures could potentially reach toxic levels; and (3) a definitive assessment to estimate the nature, magnitude, and extent of risks. The principal technical issue addressed is the chemically complex nature of petroleum--a complexity that may be dealt with by assessing risks on the basis of properties of the whole material, properties of individual chemicals that are representative of chemical classes, distributions of properties of the constituents of chemical classes, properties of chemicals detected in the soil, and properties of indicator chemicals. The advantages and feasibility of these alternatives are discussed. The report concludes with research recommendations for improving each stage in the assessment process.

  6. Reclamation with Recovery of Radionuclides and Toxic Metals from Contaminated Materials, Soils, and Wastes

    NASA Technical Reports Server (NTRS)

    Francis, A. J.; Dodge, C. J.

    1993-01-01

    A process has been developed at Brookhaven National Laboratory (BNL) for the removal of metals and radionuclides from contaminated materials, soils, and waste sites. In this process, citric acid, a naturally occurring organic complexing agent, is used to extract metals such as Ba, Cd, Cr, Ni, Zn, and radionuclides Co, Sr, Th, and U from solid wastes by formation of water soluble, metal-citrate complexes. Citric acid forms different types of complexes with the transition metals and actinides, and may involve formation of a bidentate, tridentate, binuclear, or polynuclear complex species. The extract containing radionuclide/metal complex is then subjected to microbiological degradation followed by photochemical degradation under aerobic conditions. Several metal citrate complexes are biodegraded, and the metals are recovered in a concentrated form with the bacterial biomass. Uranium forms binuclear complex with citric acid and is not biodegraded. The supernatant containing uranium citrate complex is separated and upon exposure to light, undergoes rapid degradation resulting in the formation of an insoluble, stable polymeric form of uranium. Uranium is recovered as a precipitate (polyuranate) in a concentrated form for recycling or for appropriate disposal. This treatment process, unlike others which use caustic reagents, does not create additional hazardous wastes for disposal and causes little damage to soil which can then be returned to normal use.

  7. Formation of free acid in soil materials exposed by excavation for highways in East Texas 

    E-print Network

    Miller, Wesley Leroy

    1969-01-01

    at various pH values and may be grouped as follows (8, 20, 42): ~Grou 4 - 5. 6 ComOonents + H30 or free H2504 (strong acid) Al(H20)6 (weak acid) Possibly some humus carboxyl 13 5, 6 - 7. 6 &7. 6 "Strong" hydroxy aluminum Al(OH) , Al(OH)2 Humus... at which the titration 2 4 6 8 10 12 14 16 18 20 22 24 meq NaOH/100 g Fig. 7 ? Potentiometric titration curve of soil material from site A-5, 0-6". Buffer ranges are (1) Fe3+ and H+, (2) A13+, and (3) hydroxy-Ai and-Fe compounds and/or organic matter...

  8. Soil magnetic susceptibility reflects soil moisture regimes and the adaptability of tree species to these regimes

    USGS Publications Warehouse

    Wang, J.-S.; Grimley, D.A.; Xu, C.; Dawson, J.O.

    2008-01-01

    Flooded, saturated or poorly drained soils are frequently anaerobic, leading to dissolution of the strongly magnetic minerals, magnetite and maghemite, and a corresponding decrease in soil magnetic susceptibility (MS). In this study of five temperate deciduous forests in east-central Illinois, USA, mean surface soil MS was significantly higher adjacent to upland tree species (31 ?? 10-5 SI) than adjacent to floodplain or lowland tree species (17 ?? 10-5 SI), when comparing regional soils with similar parent material of loessal silt. Although the sites differ in average soil MS for each tree species, the relative order of soil MS means for associated tree species at different locations is similar. Lowland tree species, Celtis occidentalis L., Ulmus americana L., Acer saccharinum L., Carya laciniosa (Michx. f.) Loud., and Fraxinus pennsylvanica Marsh. were associated with the lowest measured soil MS mean values overall and at each site. Tree species' flood tolerance rankings increased significantly, as soil MS values declined, the published rankings having significant correlations with soil MS values for the same species groups. The three published classifications of tree species' flood tolerance were significantly correlated with associated soil MS values at all sites, but most strongly at Allerton Park, the site with the widest range of soil drainage classes and MS values. Using soil MS measurements in forests with soil parent material containing similar initial levels of strongly magnetic minerals can provide a simple, rapid and quantitative method to classify soils according to hydric regimes, including dry conditions, and associated plant composition. Soil MS values thus have the capacity to quantify the continuum of hydric tolerances of tree species and guide tree species selection for reforestation. ?? 2007 Elsevier B.V. All rights reserved.

  9. Tillage and crop rotation effects on soil quality in two Iowa fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil quality is affected by inherent (parent material, climate, and topography) and anthropogenic (tillage and crop rotation) factors. We evaluated effects of five tillage treatments on 23 potential soil quality indicators after 31 years in a corn (Zea mays L.)/soybean [Glycine max (L.) Merr.] rotat...

  10. Geochemistry and biogeochemistry of rare earth elements in a surface environment (soil and plant) in South China

    Microsoft Academic Search

    Li Miao; Ruisong Xu; Yueliang Ma; Zhaoyu Zhu; Jie Wang; Rui Cai; Yu Chen

    2008-01-01

    Plants and soils derived from different kinds of parent materials in South China were collected for analyses of rare earth\\u000a elements (REEs) by inductively coupled plasma-mass spectrometry (ICP-MS). The distribution patterns and transportation characteristics\\u000a of REEs in the soil–plant system were studied. The results show that geochemical characteristics of REEs depend on the types\\u000a of soils, soils derived from granite

  11. Continental-scale patterns in soil geochemistry and mineralogy: results from two transects across the United States and Canada

    USGS Publications Warehouse

    Woodruff, L.G.; Cannon, W.F.; Eberl, D.D.; Smith, D.B.; Kilburn, J.E.; Horton, J.D.; Garrett, R.G.; Klassen, R.A.

    2009-01-01

    In 2004, the US Geological Survey (USGS) and the Geological Survey of Canada (GSC) initiated a pilot study that involved collection of more than 1500 soil samples from 221 sites along two continental transects across Canada and the United States. The pilot study was designed to test and refine protocols for a soil geochemical survey of North America. The two transects crossed a wide array of soil parent materials, soil ages, climatic conditions, landforms, land covers and land uses. Sample sites were selected randomly at approximately 40-km intervals from a population defined as all soils of the continent. At each site, soils representing 0 to 5 cm depth, and the O, A, and C horizons, if present, were collected and analyzed for their near-total content of over 40 major and trace elements. Soils from 0–5 cm depth were also collected for analysis of organic compounds. Results from the transects confirm that soil samples collected at a 40-km spacing reveal coherent, continental- to subcontinental-scale geochemical and mineralogical patterns that can be correlated to aspects of underlying soil parent material, soil age and climate influence. The geochemical data also demonstrate that at the continental-scale the dominance of any of these major factors that control soil geochemistry can change across the landscape. Along both transects, soil mineralogy and geochemistry change abruptly with changes in soil parent materials. However, the chemical influence of a soil’s parent material can be obscured by changing climatic conditions. For the transects, increasing precipitation from west to east and increasing temperature from north to south affect both soil mineralogy and geochemistry because of climate effects on soil weathering and leaching, and plant productivity. Regional anomalous metal concentrations can be linked to natural variations in soil parent materials, such as high Ni and Cr in soils developed on ultramafic rocks in California or high P in soils formed on weathered Ordovician limestones in central Kentucky. On local scales, anomalous metal concentrations recognized in soil profiles, such as high P in soils from animal confinement sites, are consistent with local anthropogenic disturbances. At a larger scale, the distribution of Hg across the west to east transect demonstrates that it can be difficult to distinguish between natural or anthropogenic contributions and that many factors can contribute to an element’s spatial distribution. Only three samples in a subset of seventy-three 0–5 cm depth soil samples from the north to south transect had organochlorine pesticides values above the method detection limit, apparently related to historic usage of the pesticides DDT and dieldrin.

  12. Revegetation of acidic coal refuse: effects of soil cover material depth and limiting rate on initial establishment

    Microsoft Academic Search

    J. D. Jastrow; A. J. Dvorak; M. J. Knight; B. K. Mueller

    1981-01-01

    Sixteen plots were established in April 1977 on a recontoured coal refuse disposal site near the town of Staunton in southwestern Illinois, as a part of a larger project that is demonstrating and evaluating new and cost-effective methods for reclaiming abandoned coal refuse sites. The plots were designed to compare the effects of four soil cover material depths and two

  13. Parents Helping Parents: Mutual Parenting Network Handbook.

    ERIC Educational Resources Information Center

    Simkinson, Charles H.; Redmond, Robert F.

    Guidelines for mutual parenting are provided in this handbook. "Mutual parenting" means that everyone in the community shares the responsibility for the safety and well-being of the community's youngsters. Several topics are discussed in the 15 brief chapters of the handbook. Chapters 1 through 3 focus on the formation of a mutual parenting

  14. Parenting Perfectionism and Parental Adjustment

    PubMed Central

    Lee, Meghan A.; Schoppe-Sullivan, Sarah J.; Kamp Dush, Claire M.

    2011-01-01

    The parental role is expected to be one of the most gratifying and rewarding roles in life. As expectations of parenting become ever higher, the implications of parenting perfectionism for parental adjustment warrant investigation. Using longitudinal data from 182 couples, this study examined the associations between societal- and self-oriented parenting perfectionism and new mothers’ and fathers’ parenting self-efficacy, stress, and satisfaction. For mothers, societal-oriented parenting perfectionism was associated with lower parenting self-efficacy, but self-oriented parenting perfectionism was associated with higher parenting satisfaction. For fathers, societal-oriented parenting perfectionism was associated with higher parenting stress, whereas higher levels of self-oriented parenting perfectionism were associated with higher parenting self-efficacy, lower parenting stress, and greater parenting satisfaction. These findings support the distinction between societal- and self-oriented perfectionism, extend research on perfectionism to interpersonal adjustment in the parenting domain, and provide the first evidence for the potential consequences of holding excessively high standards for parenting. PMID:22328797

  15. An interdisciplinary approach to decipher different phases of soil formation using root abundances and geochemical methods

    NASA Astrophysics Data System (ADS)

    Wiesenberg, Guido; Gocke, Martina

    2015-04-01

    Pedogenic processes are commonly thought to be restricted mainly to the uppermost few dm of soils. However, often processes like water infiltration and - more obviously - rooting lead to much deeper penetration of soil, soil parent material and, if present, paleosols. The extent to which root penetration and subsequent organic matter incorporation, release of root exudates and microbial activity influence the general chemical and physical properties of deeper soil horizons remains largely unknown. We determined the lateral extent of root-derived overprint of the soil parent material as well as the overprint of the chemical properties in paleosols by combining root quantities obtained in the field with a large variety of inorganic and organic chemical as well as microbial properties in bulk soils and rhizosphere samples. Soils, soil parent material and paleosols were sampled along a transect from The Netherlands via Germany and Hungary towards Serbia, where soil and underlying loess, sand, and paleosol profiles were excavated in pits of 2 m to 13 m depth. Root counting on horizontal levels and profile walls during field campaigns, assisted by three-dimensional X-ray microtomographic scanning of undisturbed samples, enabled the quantitative assessment of recent and ancient root systems. Ages were determined by 14C dating for the latter, and by OSL dating for sediments, respectively. The bulk elemental composition of soils, sediments and paleosols and molecular structure of organic matter therein helped to quantitatively assess the root-related overprint in different depth intervals. The results point to the significance of deep roots as a soil forming factor extending into soil parent material, as well as the overprint of geochemical proxies in paleosols due to intense root penetration at various phases after burial. The shown examples highlight potential pitfalls in assessing rooted soil and paleosol profiles and their ages, and provide potential solutions for proper data interpretation.

  16. Spatial disaggregation of complex soil map units at regional scale based on soil-landscape relationships

    NASA Astrophysics Data System (ADS)

    Vincent, Sébastien; Lemercier, Blandine; Berthier, Lionel; Walter, Christian

    2015-04-01

    Accurate soil information over large extent is essential to manage agronomical and environmental issues. Where it exists, information on soil is often sparse or available at coarser resolution than required. Typically, the spatial distribution of soil at regional scale is represented as a set of polygons defining soil map units (SMU), each one describing several soil types not spatially delineated, and a semantic database describing these objects. Delineation of soil types within SMU, ie spatial disaggregation of SMU allows improved soil information's accuracy using legacy data. The aim of this study was to predict soil types by spatial disaggregation of SMU through a decision tree approach, considering expert knowledge on soil-landscape relationships embedded in soil databases. The DSMART (Disaggregation and Harmonization of Soil Map Units Through resampled Classification Trees) algorithm developed by Odgers et al. (2014) was used. It requires soil information, environmental covariates, and calibration samples, to build then extrapolate decision trees. To assign a soil type to a particular spatial position, a weighed random allocation approach is applied: each soil type in the SMU is weighted according to its assumed proportion of occurrence in the SMU. Thus soil-landscape relationships are not considered in the current version of DSMART. Expert rules on soil distribution considering the relief, parent material and wetlands location were proposed to drive the procedure of allocation of soil type to sampled positions, in order to integrate the soil-landscape relationships. Semantic information about spatial organization of soil types within SMU and exhaustive landscape descriptors were used. In the eastern part of Brittany (NW France), 171 soil types were described; their relative area in the SMU were estimated, geomorphological and geological contexts were recorded. The model predicted 144 soil types. An external validation was performed by comparing predicted with effectively observed soil types derived from available soil maps at scale of 1:25.000 or 1:50.000. Overall accuracies were 63.1% and 36.2%, respectively considering or not the adjacent pixels. The introduction of expert rules based on soil-landscape relationships to allocate soil types to calibration samples enhanced dramatically the results in comparison with a simple weighted random allocation procedure. It also enabled the production of a comprehensive soil map, retrieving expected spatial organization of soils. Estimation of soil properties for various depths is planned using disaggregated soil types, according to the GlobalSoilmap.net specifications. Odgers, N.P., Sun, W., McBratney, A.B., Minasny, B., Clifford, D., 2014. Disaggregating and harmonising soil map units through resampled classification trees. Geoderma 214, 91-100.

  17. Heavy Metals and Benzo[a]pyrene in Soils from Construction and Demolition Rubble

    NASA Astrophysics Data System (ADS)

    Abel, Stefan; Nehls, Thomas; Wessolek, Gerd

    2014-05-01

    Rubble is an important component in urban soils worldwide, especially in Europe. In Berlin, Germany, rubble composed soils cover about 17% of the total city area and 60% of the inner city. This study assesses the contamination status of rubble soil, particularly for heavy metals and benzo[a]pyrene (B[a]P). The results of 164 soil surveys from Berlin, including more than 2000 analyzed soil samples of topsoils, rubble subsoils, and parent material have been analyzed for typical contamination patterns. The concentrations of all contaminants range over several orders of magnitude and follow negatively skewed log-normal distribution functions. For rubble containing subsoils a proportion of 34, 71, 67, 68, 74, and 61% of the analyzed samples exceed precautionary values of the German Soil Conservation Act, regarding Cd, Pb, Cu, Zn, Hg and B[a]P respectively. Similar results were found for topsoils. A minor part of the soils is contaminated with Cd, while Pb and Hg are the most typical contaminants of rubble material. In contrast to topsoils and rubble containing subsoils, the majority of the parent subsoil material is not contaminated. Only low to moderate positive correlations were found between the contaminants. Compared to parent soil material, rubble containing soils show clearly elevated concentrations of heavy metals and B[a]P. As the most characteristic contaminants for rubble are Pb and Hg, these heavy metals should first be analyzed as proxy contaminants.

  18. Rock types present in lunar highland soils

    NASA Technical Reports Server (NTRS)

    Reid, A. M.

    1974-01-01

    Several investigators have studied soils from the lunar highlands with the objective of recognizing the parent rocks that have contributed significant amounts of material to these soils. Comparing only major element data, and thus avoiding the problems induced by individual classifications, these data appear to converge on a relatively limited number of rock types. The highland soils are derived from a suite of highly feldspathic rocks comprising anorthositic gabbros (or norites), high alumina basalts, troctolites, and less abundant gabbroic (or noritic) anorthosites, anorthosites, and KREEP basalts.

  19. Rehabilitation materials from surface- coal mines in western U.S.A. III. Relations between elements in mine soil and uptake by plants.

    USGS Publications Warehouse

    Severson, R.C.; Gough, L.P.

    1984-01-01

    Plant uptake of Cd, Co, Cu, Fe, Mn, Ni, Pb and Zn from mine soils was assessed using alfalfa Medicago sativa, sainfoin Onobrychis viciaefolia, smooth brome Bromus inermis, crested wheatgrass Agropyron cristatum, slender wheatgrass A. trachycaulum and intermediate wheatgrass A. intermedium; mine soil (cover-soil and spoil material) samples were collected from rehabilitated areas of 11 western US surface-coal mines in North Dakota, Montana, Wyoming and Colorado. Correlations between metals in plants and DTPA-extractable metals from mine soils were generally not statistically significant and showed no consistent patterns for a single metal or for a single plant species. Metal uptake by plants, relative to amounts in DTPA extracts of mine soil, was positively related to mine soil organic matter content or negatively related to mine soil pH. DTPA-extractable metal levels were significantly correlated with mine soil pH and organic-matter content.-from Authors

  20. Distribution and variation of arsenic in Wisconsin surface soils, with data on other trace elements

    USGS Publications Warehouse

    Stensvold, Krista A.

    2012-01-01

    Soils with sandy glacial outwash as a parent material have a lower median arsenic concentration (1.0 mg/kg) than soils forming in other parent materials (1.5 to 3.0 mg/kg). Soil texture and drainage category also influence median arsenic concentration. Finer grained soils have a higher observed range of concentrations. For loamy and loess-dominated soil groups, drainage category influences the median arsenic concentration and observed range of values, but a consistent relationship within the data is not apparent. Statistical analysis of the 16 other elements are presented in this report, but the relationships of concentrations to soil properties or geographic areas were not examined.

  1. Saline soils spectral library as a tool for digital soil mapping

    NASA Astrophysics Data System (ADS)

    Bas, María Victoria; Meléndez-Pastor, Ignacio; Navarro-Pedreño, José; Gómez, Ignacio; Mataix-Solera, Jorge; Hernández, Encarni

    2013-04-01

    Soil information is needed at regional to global scales for proper land management. Soil scientist has been historically interested in mapping soil classes and properties to represent and explore the spatial distribution of soil characteristics. Fortunately, soil mapping came into the digital era decades ago, enabling the dissemination of computationally intensive techniques (e.g., geostatistics). Digital soil mapping is moving forward in recent decades. Digital soil mapping has evolved from "traditional" studies that employed a set of soils to build soil maps, to more recent approaches that exploit the increasing computing facilities to combine soil databases with ancillary data such as digital elevation models, remote sensing imagery and proximal sensing datasets. The inclusion of VNIR spectroscopy in digital soil mapping approaches is an outstanding research field. VNIR spectroscopy has largely been employed to quantify soil properties with proximal sensor and remote sensor (i.e., imaging spectroscopy). One of the traditional problems in soil mapping is the time needed to compile a soil database large enough to allow for mapping with robustness. Therefore there is a growing interest in using the less time consuming, immutability of the sample and increasing accuracy of soil spectroscopy to obtain accurate enough soil maps but with lower data requirements. This research trend is particularly interesting for the study of highly dynamic soil processes for which is necessary to know the spatial and temporal changes of certain properties for a correct soil assessment. The objective of this work was the study of soil salinity which is a dynamic property responding to seasonal (i.e., vertical upwelling) and inter-annual (i.e., salinization) changes. Soil salinity is a major constraint for agriculture by limiting or excluding certain crops. Thus, a continuous monitoring of soil salinity is needed to select the most suitable crops and to prevent future salinization. Large arid and semiarid Mediterranean areas are affected by severe salinization processes by converging salinity problems due to parent material salinity, water scarcity and poor quality of irrigation water. A soils database in the South-East of Spain (semiarid Mediterranean environments) is being developed, by sampling and analyzing soils properties but especially salinity, besides recording their VNIR spectral signatures in field conditions. Also a spectral library related to soil type and salinity in these environments was determined in laboratory and it is a promising tool to monitor soil spectral signature changes. Positive relations between salinity, spectral data and soil type have been found using this technique. Soil spectra could be employed for quantitative spectroscopic analyses of soil properties, as ancillary data for digital soil mapping and for spectral calibration of remotely sensed imagery.

  2. Canopy-tree influences along a soil parent material gradient in Pinus ponderosa-Quercus gambelii forests, northern Arizona

    E-print Network

    Abella, Scott R.

    C3 species like Poa fendleriana also occurred below trees. The forbs Thalictrum fendleri centranthera, positive plant interactions, single-tree influences, Thalictrum fendleri, understory. Canopy conducted an experimental planting with T. fendleri that was consistent with these correlational results

  3. [Desorption characteristics of phosphorus in tea tree rhizosphere soil].

    PubMed

    Yang, Wei; Zhou, Wei-Jun; Bao, Chun-Hong; Miao, Xiao-Lin; Hu, Wen-Min

    2013-07-01

    In order to explore the phosphorus (P) release process and its supply mechanism in tea tree rhizosphere soil, an exogenous P adsorption and culture experiment was conducted to study the P desorption process and characters in the tea tree rhizosphere soils having been cultivated for different years and derived from different parent materials. The least squares method was used to fit the isotherms of P desorption kinetics. There was an obvious difference in the P desorption process between the rhizosphere soils and non-rhizosphere soils. The P desorption ability of the rhizosphere soils was significantly higher than that of the non-rhizosphere soils. As compared with non-rhizosphere soils, rhizosphere soils had higher available P content, P desorption rate, and beta value (desorbed P of per unit adsorbed P), with the average increment being 5.49 mg x kg(-1), 1.7%, and 24.4%, respectively. The P desorption ability of the rhizosphere soils derived from different parent materials was in the order of granite > quaternary red clay > slate. The average available P content and P desorption ability of the rhizosphere soils increased with increasing cultivation years. PMID:24175512

  4. Contribution of technic materials to the mobile fraction of metals in urban soils in Marrakech (Morocco)

    Microsoft Academic Search

    Hicham El Khalil; Christophe Schwartz; Ouafae Elhamiani; Jochen Kubiniok; Jean Louis Morel; Ali Boularbah

    2008-01-01

    Background, Aim and Scope  In urban areas, soils are often dramatically altered by anthropogenic activity and these modifications distinguish these soils\\u000a (Anthrosols, Technosols) from those in natural systems. In urban environments, they receive considerable pollution from industry,\\u000a traffic and refuse. Since contaminated soil particles can be easily inhaled or ingested, there is a potential transfer of\\u000a toxic pollutants to humans. Risk

  5. The effect of soil microorganisms on the concentration of molybdenum in the radish (Raphanus sativus L.), variety “White Icicle”

    Microsoft Academic Search

    Margaret W. Loutit; R. S. Malthus; J. S. Loutit

    1968-01-01

    An experimental system has been established using the radish (Raphanus sativus L.), variety “White Icicle,” which allows the investigation in vitro of the effect of soil microorganisms on the availability of molybdenum to plants.The system has been used to study the reasons why vegetables, grown in two soils derived from similar parent materials and having comparable amounts of total molybdenum,

  6. THE IMPACT OF PARENT AND CHILD RESPONSIVENESS ON THE ASSOCIATION BETWEEN PRINTED MATERIALS IN THE HOME AND CHILD LANGUAGE DEVELOPMENT

    E-print Network

    Gould, Sara Rebecca

    2010-04-02

    by exposure to les than optimal environments (Hart & Risley, 1995). The picture is further complicated by the finding that some children from low-income homes have language skils similar to those children who do not experience economic adversity (Masten... of the individuals with whom the child may interact, it is the relationship with the child’s parent, that is, mother-child interactions that has received the most research (e.g., Evans, 2004; Fish, Amerikaner, & Lucas, 2007; Hart & Risley, 1995; Landry, Swank...

  7. Water in the critical zone: soil, water and life from profile to planet

    NASA Astrophysics Data System (ADS)

    Kirkby, Mike

    2015-04-01

    Water is essential to the critical zone between bedrock and the atmosphere, and without water the soil is dead. Water provides the basis for the abundant life within the soil and, interacting with micro-organisms, drives the key processes in the critical zone. This review looks at the balances that control the flow of water through the soil, and how water movement is one of the major controls on the fluxes and transformations that control the formation, evolution and loss of material that controls the 'life' and 'health' of the soil. At regional scales, climate, acting largely through the soil hydrology, plays a major part in determining the type of soils developed - from hyper arid soils dominated by aeolian inputs, through arid and semi-arid soils with largely vertical water exchanges with the atmosphere, to temperate soils with substantial lateral drainage, and humid soils dominated by organic peats. Soil water balance controls the partition of precipitation between evaporative loss, lateral subsurface flow and groundwater recharge, and, in turn, has a major influence on the potential for plant growth and on the lateral connectivity between soils on a hillslope. Sediment and solute balances distinguish soils of accumulation from soils that tend towards a stable chemical depletion ratio. Reflecting the availability of water and the soil material, carbon balance plays a major role in soil horizonation and distinguishes soils dominated by mineral or organic components. At finer catena and catchment scales, lateral connectivity, or its absence, determines how soils evolve through the transfer of water and sediment downslope, creating more or less integrated landscapes in a balance between geomorphological and pedological processes. Within single soil profiles, the movement of water controls the processes of weathering and soil horizonation by ion diffusion, advective leaching and bioturbation, creating horizonation that, in turn, modifies the hydrological responses of both soil and landscape. For example, the soil hydrological regime helps to contrast soils that accumulate more and less soluble constituents of the parent material.

  8. Effect of different mulch materials on winter wheat production in desalinized soil in Heilonggang region of North China.

    PubMed

    Yang, Yan-min; Liu, Xiao-jing; Li, Wei-qiang; Li, Cun-zhen

    2006-11-01

    Freshwater shortage is the main problem in Heilonggang lower-lying plain, while a considerable amount of underground saline water is available. We wanted to find an effective way to use the brackish water in winter wheat production. Surface mulch has significant effect in reducing evaporation and decreasing soil salinity level. This research was aimed at comparing the effect of different mulch materials on winter wheat production. The experiment was conducted during 2002~2003 and 2003~2004. Four treatments were setup: (1) no mulch, (2) mulch with plastic film, (3) mulch with corn straw, (4) mulch with concrete slab between the rows. The result indicated that concrete mulch and straw mulch was effective in conserving soil water compared to plastic film mulch which increased soil temperature. Concrete mulch decreases surface soil salinity better in comparison to other mulches used. Straw mulch conserved more soil water but decreased wheat grain yield probably due to low temperature. Concrete mulch had similar effect with plastic film mulch on promoting winter wheat development and growth. PMID:17048298

  9. Derivation of guidelines for uranium residual radioactive material in soil at the New Brunswick Site, Middlesex County, New Jersey

    SciTech Connect

    Dunning, D.; Kamboj, S.; Nimmagadda, M.; Yu, C. [Argonne National Lab., IL (United States). Environmental Assessment Div.

    1996-02-01

    Residual radioactive material guidelines for uranium in soil were derived for the New Brunswick Site, located in Middlesex County, New Jersey. This site has been designated for remedial action under the Formerly Utilized Sites Remedial Action Program of the US Department of Energy (DOE). Residual radioactive material guidelines for individual radionuclides of concern and total uranium were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the New Brunswick Site should not exceed a dose of 30 mrem/yr following remedial action for the current-use and likely future-use scenarios or a dose of 100 mrem/yr for less likely future-use scenarios. The DOE residual radioactive material guideline computer code, RESRAD, was used in this evaluation; RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines. The guidelines derived in this report are intended to apply to the remediation of these remaining residual radioactive materials at the site. The primary radionuclides of concern in these remaining materials are expected to be radium-226 and, to a lesser extent, natural uranium and thorium. The DOE has established generic cleanup guidelines for radium and thorium in soil; however, cleanup guidelines for other radionuclides must be derived on a site-specific basis.

  10. Parent Involvement 

    E-print Network

    Howard, Jeff W.

    2005-05-10

    To be successful, a 4-H program must have parent involvement. Although 4-H leaders and Extension agents may interest young people in becoming members, they need the parents' goodwill and support to keep them interested, enthusiastic and active. Here...

  11. Particle size distribution of eroded material from semi-arid soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The particle size distribution (PSD) of eroded sediments can be used to deduce potential nutrient losses, pollution hazards and the redistribution of soil components over the landscape. We studied eroded sediments from three semi-arid soils, with different clay contents, that were wetted at a slow (...

  12. Copper Release Behavior in Two Calcareous Soils Amended with Three Organic Materials

    Microsoft Academic Search

    Vida Olama; Abdolmajid Ronaghi; Najafali Karimian; Reza Ghasemi-Fasaei; Jafar Yasrebi; Mansooreh Tavajjoh

    2010-01-01

    Understanding time-dependent copper (Cu) desorption behavior is critical for improving the prediction of Cu availability in soils. This study was conducted to evaluate the influence of municipal waste compost, sheep manure, and wheat straw on desorption characteristics of Cu and to evaluate the suitability of different kinetic models to describe the Cu release pattern in two calcareous soils. Diethylenetriaminepentaacetic acid

  13. Contributions of pyrogenic materials on the accumulation of soil organic matter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil amendment of charcoal co-product (HHVdb as high as coal) from thermochemical waste biomass-to-energy conversion (slow/fast pyrolysis and gasification) has received considerable interests for both contaminated and agricultural lands. Biochar amendment not only increases soil organic carbon cont...

  14. Soil formation under two moss species in sandy materials of central British Columbia (Canada)

    Microsoft Academic Search

    D. W. Carter; J. M. Arocena

    2000-01-01

    Mosses can influence soil formation because of its role in the transfer of energy, water and chemical compounds. This study was conducted (1) to compare the morphological, chemical and mineralogical properties of soils under two species of mosses (Pleurozium schreberi (Brid.) Mitt. and Ptilium crista-castrensis (Hedw.)), and (2) to determine the chemical composition of the moss carpets associated with these

  15. Production of methyl sulfide and dimethyl disulfide from soil-incorporated plant materials and implications for controlling soilborne pathogens

    Microsoft Academic Search

    D. Wang; C. Rosen; L. Kinkel; A. Cao; N. Tharayil; J. Gerik

    2009-01-01

    Soil-incorporated plant materials have been associated with reduction in soilborne pathogens and diseases. Mechanisms of the\\u000a biocidal actions are complex and not well understood. A glasshouse experiment, a non replicated field demonstration, and a\\u000a field experiment were conducted to determine volatile compounds after incorporation of various plant species and their effect\\u000a on pest control. Cabbage (Brassica oleracea), canola (Brassica rapa),

  16. Intercomparison exercise for determination of 226Ra, 232Th and 40K in soil and building material

    Microsoft Academic Search

    Fei Tuo; Qing Zhang; Jing Zhang; Qiang Zhou; Li Zhao; Wenhong Li; Jianfeng Zhang; Cuihua Xu

    2010-01-01

    A nationwide inter-comparison exercise for the determination of activity concentration of 226Ra, 232Th and 40K in soil and building material was organized by the National Institute for Radiological Protection (NIRP), CDC, China. The primary purpose of this work was to assess the accuracy and precision of ?-spectrometry analyses. Activity concentrations of 226Ra, 232Th and 40K were determined by gamma-ray spectrometry

  17. Aspects of the chemical structure of soil organic materials as revealed by solid-state13C NMR spectroscopy

    Microsoft Academic Search

    J. A. Baldock; J. M. Oades; A. G. Waters; X. Peng; A. M. Vassallo; M. A. Wilson

    1992-01-01

    Solid-state cross-polarisation\\/magic-angle-spinning3C nuclear magnetic resonance (CP\\/MAS13C NMR) spectroscopy was used to characterise semi-quantitatively the organic materials contained in particle size and density fractions isolated from five different mineral soils: two Mollisols, two Oxisols and an Andosol. The acquired spectra were analysed to determine the relative proportion of carboxyl, aromatic, O-alkyl and alkyl carbon contained in each fraction. Although similar types

  18. Determination of Heavy Metals in Soils, Sediments and Geological Materials by ICP-AES and ICP-MS

    Microsoft Academic Search

    Christoph Moor; Theopisti Lymberopoulou; Volker J. Dietrich

    2001-01-01

    .  ?Sixteen soil and sedimentary geological reference materials were analysed for As and the heavy metals Cd, Co, Cr, Cu, Ni,\\u000a Pb and Zn by inductively coupled plasma-atomic emission spectrometry (ICP-AES) and inductively coupled plasma-mass spectrometry\\u000a (ICP-MS) in combination with total and partial dissolution of the samples. It can be demonstrated that none of the modern\\u000a ICP methods is completely free

  19. Assessment of radium and radon exhalation rate in soil and building material samples using LR-115 plastic track detectors.

    PubMed

    Mehra, Rohit; Badhan, Komal; Bala, Pankaj

    2013-04-01

    Solid state nuclear track detectors (LR-115 TYPE-II) were used to determine the concentration of radium and radon exhalation rate in soil samples collected from the different areas of Dharamshala,Himachal Pradesh (India) and in building material samples :" viz. cement, bricks and white marble collected from different locations of India. The radium concentration for the soil samples and building materials variedfrom 16.22Bqkg-1 to 25.44Bqkg-1 and 32.33 Bqkg-1 to 52.26Bqkg-1 with an average value of 22.03 Bqkg-1 and 39.12 Bqkg-1 respectively. The calculated average values of radon exhalation rate in terms of mass (E.) and area (E.) for soil samples and building material samples are (8.59mBqkg-1h-1 and 310.6 mBqm-1h-1) and (15.26mBqkg-1h-1and 551.6 mBqm-2h-1) respectively. PMID:25464693

  20. Sampling Soil for Characterization and Site Description

    NASA Technical Reports Server (NTRS)

    Levine, Elissa

    1999-01-01

    The sampling scheme for soil characterization within the GLOBE program is uniquely different from the sampling methods of the other protocols. The strategy is based on an understanding of the 5 soil forming factors (parent material, climate, biota, topography, and time) at each study site, and how each of these interact to produce a soil profile with unique characteristics and unique input and control into the atmospheric, biological, and hydrological systems. Soil profile characteristics, as opposed to soil moisture and temperature, vegetative growth, and atmospheric and hydrologic conditions, change very slowly, depending on the parameter being measured, ranging from seasonally to many thousands of years. Thus, soil information, including profile description and lab analysis, is collected only one time for each profile at a site. These data serve two purposes: 1) to supplement existing spatial information about soil profile characteristics across the landscape at local, regional, and global scales, and 2) to provide specific information within a given area about the basic substrate to which elements within the other protocols are linked. Because of the intimate link between soil properties and these other environmental elements, the static soil properties at a given site are needed to accurately interpret and understand the continually changing dynamics of soil moisture and temperature, vegetation growth and phenology, atmospheric conditions, and chemistry and turbidity in surface waters. Both the spatial and specific soil information can be used for modeling purposes to assess and make predictions about global change.

  1. Geo-pedological control of soil organic carbon and nitrogen stocks at the landscape scale

    NASA Astrophysics Data System (ADS)

    Barré, Pierre; Durand, Hermine; Chenu, Claire; Meunier, Patrick; Montagne, David; Castel, Géraldine; Billiou, Daniel; Cécillon, Lauric

    2015-04-01

    Geo-pedology, here defined as soil type (or Reference Soil Group) and parent material, can have a major impact on ecosystem (vegetation and soil) functioning. Geo-pedology can therefore deeply influence soil organic matter (SOM) stock. Nonetheless, the effect of geo-pedology on soil organic C (SOC) and N stocks has seldom been investigated. Indeed, factors known to influence SOM stocks such as land use and climate frequently co-vary with geo-pedology, so that testing the influence on SOM stocks of the factor "geo-pedology" alone is challenging. In this work, we studied SOM stocks of forest and cropland soils in a small landscape (17 km²) of the Paris basin (AgroParisTech domain, Thiverval-Grignon, France). We collected soil samples (0-30 cm) in 50 forest and cropland plots, located in five geo-pedological contexts: Luvisols developed on loess deposit, Cambisols developed on hard limestone, Cambisols developed on shelly limestone, Cambisols developed on chalk and Cambisols developed on calcareous clay deposits. We then determined SOM stocks (organic C and total N) and SOM distribution across different particle size fractions (coarse sand, fine sand and silt-clay). As expected, SOC stocks were much higher in forests (~ 83 tC ha-1) than in cultivated soils (~ 49 tC ha-1). Interestingly, Cambisols had higher SOC stocks than Luvisols (69 vs 56 tC ha-1) and the difference between SOC stocks in forest and cultivated soils was much higher for Cambisols compared to Luvisols. Within Cambisols, parent material did not influence SOC stocks but the interaction between parent material and land use was significant, indicating that the effect of land use on SOC stocks was modulated by parent material. Similar trends were observed for soil N stocks. Conversely, soil type and parent material did not control SOM distribution in soil size fractions, while forest soils showed a higher distribution of SOC and N in the sand-size fraction than cropland soils. Overall, our study evidenced a geo-pedological control of SOM stocks and clearly indicates that the change in SOM stocks resulting from a land-use change is strongly modulated by soil type. A good knowledge of the Reference Soil Group distributions is therefore needed to reduce the uncertainty on SOC stock evolutions in a changing environment from the landscape to the global scale.

  2. Sulfate Induced Heave: Addressing Ettringite Behavior in Lime Treated Soils and in Cementitious Materials 

    E-print Network

    Kochyil Sasidharan Nair, Syam Kumar

    2012-02-14

    Approach ...................................................................64 4.3.3. DSC Approach....................................................................................66 4.4. Results and Discussion... on DSC Approach.....73 4.4.4. Ettringite Growth in Soil: Comparison of Phase Diagram Approach and DSC???????????????????????..77 4.5. Conclusions...

  3. Transformation of 15 N-labelled leguminous plant material in three contrasting soils

    Microsoft Academic Search

    F. Azam; R. L. Mulvaney; F. J. Stevenson

    1989-01-01

    Two soils from Pakistan (Hafizabad silt loam and Khurrarianwala silt loam) and one from Illinois, USA (Drummer silty clay loam) were incubated with 15N-labelled soybean tops for up to 20 weeks at 30°C. Mineralization of soybean 15N was slightly more rapid in the Pakistani soils, and after 20 weeks of incubation, 50%, 53%, and 56% of the applied 15N was

  4. Ice-lens formation and geometrical supercooling in soils and other colloidal materials

    NASA Astrophysics Data System (ADS)

    Style, Robert W.; Peppin, Stephen S. L.; Cocks, Alan C. F.; Wettlaufer, J. S.

    2011-10-01

    We present a physically intuitive model of ice-lens formation and growth during the freezing of soils and other dense, particulate suspensions. Motivated by experimental evidence, we consider the growth of an ice-filled crack in a freezing soil. At low temperatures, ice in the crack exerts large pressures on the crack walls that will eventually cause the crack to split open. We show that the crack will then propagate across the soil to form a new lens. The process is controlled by two factors: the cohesion of the soil and the geometrical supercooling of the water in the soil, a new concept introduced to measure the energy available to form a new ice lens. When the supercooling exceeds a critical amount (proportional to the cohesive strength of the soil) a new ice lens forms. This condition for ice-lens formation and growth does not appeal to any ad hoc, empirical assumptions, and explains how periodic ice lenses can form with or without the presence of a frozen fringe. The proposed mechanism is in good agreement with experiments, in particular explaining ice-lens pattern formation and surges in heave rate associated with the growth of new lenses. Importantly for systems with no frozen fringe, ice-lens formation and frost heave can be predicted given only the unfrozen properties of the soil. We use our theory to estimate ice-lens growth temperatures obtaining quantitative agreement with the limited experimental data that are currently available. Finally we suggest experiments that might be performed in order to verify this theory in more detail. The theory is generalizable to complex natural-soil scenarios and should therefore be useful in the prediction of macroscopic frost-heave rates.

  5. Glass and Glass-Ceramic Materials from Simulated Composition of Lunar and Martian Soils: Selected Properties and Potential Applications

    NASA Technical Reports Server (NTRS)

    Ray, C. S.; Sen, S.; Reis, S. T.; Kim, C. W.

    2005-01-01

    In-situ resource processing and utilization on planetary bodies is an important and integral part of NASA's space exploration program. Within this scope and context, our general effort is primarily aimed at developing glass and glass-ceramic type materials using lunar and martian soils, and exploring various applications of these materials for planetary surface operations. Our preliminary work to date have demonstrated that glasses can be successfully prepared from melts of the simulated composition of both lunar and martian soils, and the melts have a viscosity-temperature window appropriate for drawing continuous glass fibers. The glasses are shown to have the potential for immobilizing certain types of nuclear wastes without deteriorating their chemical durability and thermal stability. This has a direct impact on successfully and economically disposing nuclear waste generated from a nuclear power plant on a planetary surface. In addition, these materials display characteristics that can be manipulated using appropriate processing protocols to develop glassy or glass-ceramic magnets. Also discussed in this presentation are other potential applications along with a few selected thermal, chemical, and structural properties as evaluated up to this time for these materials.

  6. Soil Investigations

    NSDL National Science Digital Library

    2014-09-18

    Students learn the basics about soil, including its formation through the cycling of the Earth's materials, as well as its characteristics and importance. They are also introduced to soil profiles and how engineers conduct site investigations to learn about soil quality for development, contamination transport, and assessing the general environmental health of an area.

  7. Corrosion rate of parent and weld materials of F82H and JPCA steels under LBE flow with active oxygen control at 450 and 500 °C

    NASA Astrophysics Data System (ADS)

    Kikuchi, Kenji; Kamata, Kinya; Ono, Mikinori; Kitano, Teruaki; Hayashi, Kenichi; Oigawa, Hiroyuki

    2008-06-01

    Corrosion behavior of parent and weld materials of F82H and JPCA was studied in the circulating LBE loop under impinging flow. These are candidate materials for Japanese Accelerator Driven System (ADS) beam windows. Maximum temperatures were kept to 450 and 500 °C with 100 °C constant temperature difference. Main flow velocity was 0.4-0.6 m/s in every case. Oxygen concentration was controlled to 2-4 × 10 -5 mass% although there was one exception. Testing time durations were 500-3000 h. Round bar type specimens were put in the circular tube of the loop. An electron beam weld in the middle of specimens was also studied. Optical microscopy, electron microscopy, X-ray element analyses and X-ray diffraction were used to investigate corrosion in these materials. Consequently corrosion depth and stability of those oxide layers were characterized based on the analyses. For a long-term behavior a linear law is recommended to predict corrosion in the ADS target design.

  8. Bacterial 16S rDNA sequences in immature volcanic ash soil on volcanoes Mt. Sakurajima and Mt. Fugen in Japan determined by PCR amplification

    Microsoft Academic Search

    Masaya Nishiyama; Yuko Watanabe; Takuya Marumoto

    1998-01-01

    Volcanogenous soils are widely distributed in Japan. Andosols, a group of volcanogenous soil, are known to show several physicochemical characteristics such as high porosity, presence of allophane, and high content of organic carbon (FitzPatrick 1980). The formation of Andosols is a very rapid process resulting from the large surface area of the volcanic ash-derived parent materials.

  9. Income Is Not Enough: Incorporating Material Hardship into Models of Income Associations with Parenting and Child Development

    ERIC Educational Resources Information Center

    Gershoff, Elizabeth T.; Aber, J. Lawrence; Raver, C. Cybele; Lennon, Mary Clare

    2007-01-01

    Although research has clearly established that low family income has negative impacts on children's cognitive skills and social-emotional competence, less often is a family's experience of material hardship considered. Using the Early Childhood Longitudinal Study, Kindergarten Class of 1998-1999 (N=21,255), this study examined dual components of…

  10. Parent material and weldments degradation on SASOL reduction reactors due to combined effect of thermal fatigue, vibration and hydrogen attack

    Microsoft Academic Search

    Jan Z Borla

    2002-01-01

    All six installed reduction reactors showed the same failure pattern, which can be attributed to inadequate original design, material degradation due to service conditions and improper maintenance activities.Service is typically low frequency fatigue load conditions with changes of pressure, temperature and batch load. All revealed defects severely affected the integrity of the pressure envelope and vessels were classified for major

  11. Development of a certified reference material for the content of nitroimidazole parent drugs and hydroxy metabolites in pork meat.

    PubMed

    Zeleny, R; Schimmel, H; Ulberth, F; Emons, H

    2009-02-23

    Nitroimidazoles have been applied in the past to poultry and pigs to treat protozoan diseases and to combat bacterial infections, but due to adverse health effects their use in food-producing animals has meanwhile been banned in the EU. The request for a certified reference material in a representative matrix was stipulated by the responsible Community Reference Laboratory and is underpinned by the need to improve the accuracy and comparability of measurement data and to establish metrological traceability of analytical results. The Institute for Reference Materials and Measurements (IRMM) has responded to this demand by developing and producing a new certified matrix reference material, ERM-BB124. This incurred lyophilised pork meat material was certified according to ISO guides 34 and 35 for the mass fractions of six nitroimidazole compounds. Processing of the frozen muscle tissue to the final material was accomplished by application of cutting, freeze-drying, mixing and milling techniques. Homogeneity and stability measurements were performed using liquid chromatography tandem mass spectrometry. The relative standard uncertainty due to possible heterogeneity showed to be below 1.8% for all analytes. Potential degradation during transport and storage was assessed by isochronous stability studies. No significant instability was detected at a storage temperature of -20 degrees C for a shelf-life of 2 years. The certified mass fraction values were assigned upon evaluation of the data acquired in an international laboratory inter-comparison involving 12 expert laboratories using different sample preparation procedures, but exclusively LC-MS/MS methods. Relative standard uncertainty contributions for the characterisation (between-lab variation of mean values) were found to be between 1.6 and 4.8%. Certified values for five analytes were in the range of 0.7 to 6.2 microg kg(-1), with expanded relative uncertainties ranging between 7 and 14%. Dimetridazole could be certified as "<0.25 microg kg(-1) with a probability of 95%". All values are traceable to the International System of Units (SI). The material is intended to be used for method validation purposes (including trueness estimation) and for method performance assessment. PMID:19185126

  12. Soil Mineralogy and Substrate Quality Effects on Microbial Priming

    NASA Astrophysics Data System (ADS)

    Finley, B. K.; Rasmussen, C.; Dijkstra, P.; Schwartz, E.; Mau, R. L.; Liu, X. J. A.; Hungate, B. A.

    2014-12-01

    Soil carbon (C) cycling can slow or accelerate in response to new C inputs from fresh organic matter. This change in native C mineralization, known as the "microbial priming effect," is difficult to predict because the underlying mechanisms of priming are still poorly understood. We hypothesized that soil mineral assemblage, specifically short-range-order (SRO) minerals, influences microbial responses to different quality C substrate inputs. To test this, we added 350 ?g C g-1soil weekly of an artificial root exudates mixture primarily comprised of glucose, sucrose, lactate and fructose (a simple C source) or ground ponderosa pine litter (a complex C source) for six weeks to three soil types from similar ecosystems derived from different parent material. The soils, from andesite, basalt, and granite parent materials, had decreasing abundance in SRO minerals, respectively. We found that the simple C substrate induced 63 ±16.3% greater positive priming than the complex C across all soil types. The quantity of soil SRO materials was negatively correlated with soil respiration, but positively correlated with priming. The lowest SRO soil amended with litter primed the least (14 ± 11 ?gCO2-C g-1), while the largest priming effect occurring in the highest SRO soil amended with simple substrate (246 ± 18 ?gCO2-C g-1). Our results indicate that higher SRO mineral content could accelerate microorganisms' capacity to mineralize native soil organic carbon and respond more strongly to labile C inputs. However, while all treatments exhibited positive priming, the amount of C added over the six-week incubation was greater than total CO2 respired. This suggests that despite a relative stimulation of native C mineralization, these soils act as C sinks rather than sources in response to fresh organic matter inputs.

  13. Water extraction times for plant and soil materials used in stable isotope analysis.

    PubMed

    West, Adam G; Patrickson, Shela J; Ehleringer, James R

    2006-01-01

    Stable isotopic analysis of water for many ecological applications commonly requires extractions of water from dozens to hundreds of plant and soil samples. With recent advances in mass spectrometry, water extraction, rather than the isotopic analysis itself, is the bottleneck in sample processing. Using cryogenic vacuum distillation, we have created extraction timing curves to determine how much time (T(min)) is required to extract an unfractionated water sample. Our results indicated that T(min) values are 60 to 75 min for stems, 40 min for clay soils, 30 min for sandy soils and 20 to 30 min for leaves. While the extraction times reported here may allow for some reductions relative to times reported in the literature, the extraction process will continue to be a rate-limiting step in plant water analyses. Ultimately, technological advances eliminating the need for extraction are required to greatly increase throughput rates in water isotope analysis for ecological research. PMID:16555369

  14. Soil experiment

    NASA Technical Reports Server (NTRS)

    Hutcheson, Linton; Butler, Todd; Smith, Mike; Cline, Charles; Scruggs, Steve; Zakhia, Nadim

    1987-01-01

    An experimental procedure was devised to investigate the effects of the lunar environment on the physical properties of simulated lunar soil. The test equipment and materials used consisted of a vacuum chamber, direct shear tester, static penetrometer, and fine grained basalt as the simulant. The vacuum chamber provides a medium for applying the environmental conditions to the soil experiment with the exception of gravity. The shear strength parameters are determined by the direct shear test. Strength parameters and the resistance of soil penetration by static loading will be investigated by the use of a static cone penetrometer. In order to conduct a soil experiment without going to the moon, a suitable lunar simulant must be selected. This simulant must resemble lunar soil in both composition and particle size. The soil that most resembles actual lunar soil is basalt. The soil parameters, as determined by the testing apparatus, will be used as design criteria for lunar soil engagement equipment.

  15. A Multi-Wavelength Grain-by-Grain Survey of Lunar Soils in Search of Rare Materials

    NASA Astrophysics Data System (ADS)

    Crites, S.; Lucey, P. G.; Viti, T.

    2014-12-01

    The Moon is unique among terrestrial planets for its lack of an atmosphere and global tectonic or volcanic processes. These factors and its position in the inner solar system mean that it is a potential repository of meteoritic material from all of the terrestrial planets. The National Research Council's 2007 report on the Scientific Context for the Exploration of the Moon highlighted this unique possibility and defined the search for rare materials including those from the early Earth as a key goal for future lunar exploration. Armstrong et al. (2002) estimated that Earth material could be present at the 7 ppm level in surface lunar regolith and emphasized that since a single gram of lunar fines contains over 10 million particles, the search for terran material in lunar soils should begin with the current stock of lunar samples. Joy et al. (2012) demonstrated that mineral and lithologic relics of impactors can survive and be recognized in lunar samples, and recent work by Burchell et al. (2014) suggests that fossil fragments from Earth could survive the extreme shocks associated with transport to the Moon. Following the concept laid out by Armstrong et al. (2002), we are conducting a survey of lunar soil samples using microscopic hyperspectral imaging spectroscopy across visible, near-infrared, and thermal infrared wavelengths to conduct a search for rare particles, including those that could be sourced from the early Earth. Our system currently consists of three microscopic imaging spectrometers with ~30 micron spatial resolution, permitting resolved imaging of individual grains. Fields of view of at least 1 cm and scan rates near 1 mm/sec permit rapid processing of relatively large quantities of sample. Existing spectrometers cover the 0.5 to 2.5 micron region, permitting detection and characterization of the common iron-bearing lunar minerals olivine and pyroxene, and the 8-14 micron region, which permits detection of other, rarer minerals of interest such as apatite and zircons. We are developing the capability to measure the 3 micron region to search for hydrated minerals. Our system also incorporates a micromanipulator which will be used for sorting of soils and isolation of grains of interest. We will report on the status of the system and progress towards identifying and isolating rare grains in lunar soils.

  16. Aspects of the chemical structure of soil organic materials as revealed by solid-state 13 C NMR spectroscopy

    Microsoft Academic Search

    J. A. Baldock; J. M. Oades; A. G. Waters; X. Peng; A. M. Vassallo; M. A. Wilson

    1992-01-01

    Solid-state cross-polarisation\\/magic-angle-spinning3C nuclear magnetic resonance (CP\\/MAS13C NMR) spectroscopy was used to characterise semi-quantitatively the organic materials contained in particle size and density\\u000a fractions isolated from five different mineral soils: two Mollisols, two Oxisols and an Andosol. The acquired spectra were\\u000a analysed to determine the relative proportion of carboxyl, aromatic, O-alkyl and alkyl carbon contained in each fraction.\\u000a Although similar types

  17. SORPTION-DESORPTION OF IMIDACLOPRID AND ITS METABOLITES IN SOIL AND VADOSE ZONE MATERIALS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorption-desorption is arguably the most important process affecting the transport of pesticides through soil since it controls the amount of pesticide available for transport. Sorption is usually characterized by determining batch sorption coefficients. These coefficients are often used in transpor...

  18. System for high throughput water extraction from soil material for stable isotope analysis of water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major limitation in the use of stable isotope of water in ecological studies is the time that is required to extract water from soil and plant samples. Using vacuum distillation the extraction time can be less than one hour per sample. Therefore, assembling a distillation system that can process m...

  19. Progress in the Understanding of Geosynthetic\\/Soil Composite Material Behaviour in Geosynthetic Reinforced Earth Structures

    Microsoft Academic Search

    M. Ziegler; G. Heerten; A. Ruiken

    One of the main applications for geogrid reinforced ground compounds is the construction of slopes and retaining walls. Test results attained at RWTH Aachen University lead to a calculation model with which the observed nonlinear drag force transmission into the soil can be mapped to serve not only economical dimensioning of the anchor length but also a realistic appraisal of

  20. Suppression of Boride Formation in Transient Liquid Phase Bonding of Pairings of Parent Superalloy Materials with Different Compositions and Grain Structures and Resulting Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Steuer, Susanne; Singer, Robert F.

    2014-07-01

    Two Ni-based superalloys, columnar grained Alloy 247 and single-crystal PWA1483, are joined by transient liquid phase bonding using an amorphous brazing foil containing boron as a melting point depressant. At lower brazing temperatures, two different morphologies of borides develop in both base materials: plate-like and globular ones. Their ratio to each other is temperature dependent. With very high brazing temperatures, the deleterious boride formation in Alloy 247 can be totally avoided, probably because the three-phase-field moves to higher alloying element contents. For the superalloy PWA1483, the formation of borides cannot be completely avoided at high brazing temperatures as incipient melting occurs. During subsequent solidification of these areas, Chinese-script-like borides precipitate. The mechanical properties (tensile tests at room and elevated temperatures and short-term creep rupture tests at elevated temperatures) for brazed samples without boride precipitation are very promising. Tensile strengths and creep times to 1 pct strain are comparable, respectively, higher than the ones of the weaker parent material for all tested temperatures and creep conditions (from 90 to 100 pct rsp. 175 to 250 pct).

  1. Aggregating available soil water holding capacity data for crop yield models

    NASA Technical Reports Server (NTRS)

    Seubert, C. E.; Daughtry, C. S. T.; Holt, D. A.; Baumgardner, M. F.

    1984-01-01

    The total amount of water available to plants that is held against gravity in a soil is usually estimated as the amount present at -0.03 MPa average water potential minus the amount present at -1.5 MPa water potential. This value, designated available water-holding capacity (AWHC), is a very important soil characteristic that is strongly and positively correlated to the inherent productivity of soils. In various applications, including assessing soil moisture status over large areas, it is necessary to group soil types or series as to their productivity. Current methods to classify AWHC of soils consider only total capacity of soil profiles and thus may group together soils which differ greatly in AWHC as a function of depth in the profile. A general approach for evaluating quantitatively the multidimensional nature of AWHC in soils is described. Data for 902 soil profiles, representing 184 soil series, in Indiana were obtained from the Soil Characterization Laboratory at Purdue University. The AWHC for each of ten 150-mm layers in each soil was established, based on soil texture and parent material. A multivariate clustering procedure was used to classify each soil profile into one of 4, 8, or 12 classes based upon ten-dimensional AWHC values. The optimum number of classes depends on the range of AWHC in the population of oil profiles analyzed and on the sensitivity of a crop to differences in distribution of water within the soil profile.

  2. Physiochemical, site, and bidirectional reflectance factor characteristics of uniformly moist soils. [Brazil, Spain and the United States of America

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F. (principal investigator)

    1980-01-01

    The author has identified the following significant results. The bidirectional reflectance factor (0.5 micron to 2.3 micron wavelength interval) and physiochemical properties of over 500 soils from 39 states, Brazil and Spain were measured. Site characteristics of soil temperature regime and moisture zone were used as selection criteria. Parent material and internal drainage were noted for each soil. At least five general types of soil reflectance curves were identified based primarily on the presence or absence of ferric iron absorption bands, organic matter content, and soil drainage characteristics. Reflectance in 10 bands across the spectrum was found to be negatively correlated with the natural log of organic matter content.

  3. Differences in soil solution chemistry between soils amended with nanosized CuO or Cu reference materials: implications for nanotoxicity tests.

    PubMed

    McShane, Heather V A; Sunahara, Geoffrey I; Whalen, Joann K; Hendershot, William H

    2014-07-15

    Soil toxicity tests for metal oxide nanoparticles often include micrometer-sized oxide and metal salt treatments to distinguish between toxicity from nanometer-sized particles, non-nanometer-sized particles, and dissolved ions. Test result will be confounded if each chemical form has different effects on soil solution chemistry. We report on changes in soil solution chemistry over 56 days-the duration of some standard soil toxicity tests-in three soils amended with 500 mg/kg Cu as nanometer-sized CuO (nano), micrometer-sized CuO (micrometer), or Cu(NO3)2 (salt). In the CuO-amended soils, the log Cu2+ activity was initially low (minimum -9.48) and increased with time (maximum -5.20), whereas in the salt-amended soils it was initially high (maximum -4.80) and decreased with time (minimum -6.10). The Cu2+ activity in the nano-amended soils was higher than in the micrometer-amended soils for at least the first 11 days, and lower than in the salt-amended soils for at least 28 d. The pH, and dissolved Ca and Mg concentrations in the CuO-amended soils were similar, but the salt-amended soils had lower pH for at least 14 d, and higher Ca and Mg concentrations throughout the test. Soil pretreatments such as leaching and aging prior to toxicity tests are suggested. PMID:24992481

  4. Does the feedstock origin of pyrolyzed materials influence the leaching quality and quantity of dissolved organic carbon from soils?

    NASA Astrophysics Data System (ADS)

    Suddick, E.; Spencer, R. G.; Pereira, E. I.; Six, J. W.

    2011-12-01

    Soils play a major role in the global C cycle and can be both a source of C emissions to the atmosphere and also a C sink. In order to sequester vast quantities of C and increase soil C stocks, which may be used to partly offset greenhouse gas (GHG) emissions in the future, new technologies are needed. Recently, there has been an abundance of interest in the use of pyrolyzed biomass C, termed biochar, as an amendment to terrestrial ecosystems to provide a large and long term sink of C. However, the stability and permanence of this black C source in soil is still relatively unknown and the uncertainty surrounding its turnover time may have implications for both C sequestration and the fate and transport of dissolved organic C leached to nearby water resources. Biochar can be derived from a multitude of feed stocks (e.g. walnut shells, wood chippings, poultry litter) and under a variety of pyrolysis conditions (e.g. high temperature or low temperatures); each process and feed stock can yield very different materials that has many different physical (e.g. surface area) and chemical (e.g. CEC, C and N content) properties. Each feed stock and pyrolysis condition may consequently contribute to a distinct recalcitrance in soil. Therefore, we undertook a pot trial to evaluate the chemical characteristics of leachate from soils incubated with biochars derived from 15 different feed stocks. Using optical property parameters such as SUVA, chromophoric dissolved organic matter (CDOM) slope parameter and fluorescence characteristics, we were able to determine the C leaching potential of each feedstock. Preliminary data suggests that there are distinct variations in optical properties with feed stock origin, for example an algae digestate showed a lower absorbance at 350 nm (a350) (25.7 m-1) and a steeper spectral slope at 290-350 nm (S290-350 x10-3) (17.7 nm-1) indicative of the presence of lower molecular weight compounds compared to control treatment with a signature typical of SOC (a350 = 29.2 m-1; S290-350 = 16.8 nm-1). The ramifications for the transport of both the quantity and quality of C to aquatic systems will be discussed, especially in light of the popularity of "designer" biochars that could be used as a soil amendment in the future

  5. PARENTING WORKSHOP SERIES Expecting Parents

    E-print Network

    Loudon, Catherine

    PARENTING WORKSHOP SERIES Expecting Parents Learn how to navigate the UCI Disability leave process 200 Infant and Child First Aid and CPR Be Prepared. Learn and practice the proper techniques Lam. 12-1PM ARC Kitchen/Classroom. 680 California Ave. Adult First Aid and CPR Learn and practice

  6. Derivation of guidelines for uranium residual radioactive material in soil at the Colonie Site, Colonie, New York

    SciTech Connect

    Dunning, D.

    1996-05-01

    Residual radioactive material guidelines for uranium in soil were derived for the Colonie site located in Colonie, New York. This site has been designated for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the U.S. Department of Energy (DOE). The site became contaminated with radioactive material as a result of operations conducted by National Lead (NL) Industries from 1958 to 1984; these activities included brass foundry operations, electroplating of metal products, machining of various components using depleted uranium, and limited work with small amounts of enriched uranium and thorium. The Colonie site comprises the former NL Industries property, now designated the Colonie Interim Storage Site (CISS), and 56 vicinity properties contaminated by fallout from airborne emissions; 53 of the vicinity properties were previously remediated between 1984 and 1988. In 1984, DOE accepted ownership of the CISS property from NL Industries. Residual radioactive material guidelines for individual radionuclides and total uranium were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the site should not exceed a dose of 30 mrem/yr following remedial action for the current use and likely future use scenarios or a dose of 100 mrem/yr for less likely future use scenarios. The DOE residual radioactive material guideline computer code, RESRAD, was used in this evaluation; RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines.

  7. Soil magnetic susceptibility: A quantitative proxy of soil drainage for use in ecological restoration

    USGS Publications Warehouse

    Grimley, D.A.; Wang, J.-S.; Liebert, D.A.; Dawson, J.O.

    2008-01-01

    Flooded, saturated, or poorly drained soils are commonly anaerobic, leading to microbially induced magnetite/maghemite dissolution and decreased soil magnetic susceptibility (MS). Thus, MS is considerably higher in well-drained soils (MS typically 40-80 ?? 10-5 standard international [SI]) compared to poorly drained soils (MS typically 10-25 ?? 10-5 SI) in Illinois, other soil-forming factors being equal. Following calibration to standard soil probings, MS values can be used to rapidly and precisely delineate hydric from nonhydric soils in areas with relatively uniform parent material. Furthermore, soil MS has a moderate to strong association with individual tree species' distribution across soil moisture regimes, correlating inversely with independently reported rankings of a tree species' flood tolerance. Soil MS mapping can thus provide a simple, rapid, and quantitative means for precisely guiding reforestation with respect to plant species' adaptations to soil drainage classes. For instance, in native woodlands of east-central Illinois, Quercus alba , Prunus serotina, and Liriodendron tulipifera predominantly occur in moderately well-drained soils (MS 40-60 ?? 10-5 SI), whereas Acer saccharinum, Carya laciniosa, and Fraxinus pennsylvanica predominantly occur in poorly drained soils (MS <20 ?? 10-5 SI). Using a similar method, an MS contour map was used to guide restoration of mesic, wet mesic, and wet prairie species to pre-settlement distributions at Meadowbrook Park (Urbana, IL, U.S.A.). Through use of soil MS maps calibrated to soil drainage class and native vegetation occurrence, restoration efforts can be conducted more successfully and species distributions more accurately reconstructed at the microecosystem level. ?? 2008 Society for Ecological Restoration International.

  8. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials.

    PubMed

    Rauret, G; López-Sánchez, J F; Sahuquillo, A; Rubio, R; Davidson, C; Ure, A; Quevauviller, P

    1999-02-01

    The Standards, Measurements and Testing Programme (formerly BCR) of the European Commission proposed a three-step sequential extraction procedure for sediment analysis, following extensive expert consultations and two interlaboratory studies. This scheme was recently used to certify the extractable trace element contents of a sediment reference material (CRM 601). Although this procedure offers a means to ensure the comparability of data in this field, some difficulties concerning the interlaboratory reproducibility still remain, and a new project is currently being conducted to determine the causes of poor reproducibility in the extraction scheme. The final objective of the project is the certification of new sediment and soil reference materials for their extractable contents of Cd, Cr, Cu, Ni, Pb and Zn. This paper presents the results of a small-scale interlaboratory study, which aimed to test a revised version of the extraction schemes by comparing the original and the modified protocols using the CRM 601 sample. This work offers an improvement to the BCR sequential extraction procedure through intercomparison exercises. This improved procedure will allow the obtaining of CRMs to validate analytical data in the analysis of soils and sediments, and it will also facilitate comparability of data in the European Union. PMID:11529080

  9. The determination of adsorbable organically bound halogens (AOX) in soil: interlaboratory comparisons and reference materials

    Microsoft Academic Search

    R. Becker; H.-G. Buge; I. Nehls

    2007-01-01

    The interlaboratory variability in the quantification of adsorbable organically bound halogens (AOX) in industrially contaminated\\u000a soil is presented. Three consecutive rounds of a proficiency testing scheme, in which between 88 and 119 routine laboratories\\u000a participated, yielded relative reproducibility standard deviations between 7 and 20% at AOX contents between 10.9 and 268 mg\\u000a kg?1. Nineteen laboratories with established proficiency were invited to

  10. Calorimetric and thermogravimetric studies of UV-irradiated polypropylene\\/starch-based materials aged in soil

    Microsoft Academic Search

    J. M. Morancho; X. Ramis; X. Fernández; A. Cadenato; J. M. Salla; A. Vallés; L. Contat; A. Ribes

    2006-01-01

    We studied the biodegradability in soil of mixtures of polypropylene and a starch-based biodegradable additive. The changes in their properties were studied using calorimetry and thermogravimetric analysis. To observe the effect of UV radiation, the mixtures were photo-oxidized before biodegradation. The results were compared with those obtained from previous studies on non-photo-oxidized samples. Using calorimetry, we observed changes in the

  11. Relationships between reddening and soil magnetic properties as indices for the weathering of tropical soils

    NASA Astrophysics Data System (ADS)

    Preetz, Holger; Hannam, Jacqueline; Igel, Jan

    2010-05-01

    Soil magnetic susceptibility is caused by the presence of ferrimagnetic Fe- and Fe-/Ti-Oxides such as magnetite, titanomagnetite and maghemite that are stable in soils and can accumulate due to their resistance to weathering. Macro-sized ferrimagnetic minerals tend to be of lithogenic provenance and weather directly from basic igneous rocks. Ultrafine grained ferrimagnetic minerals are thought to form during pedogenesis and can be identified by their superparamagnetic (SP) behaviour. Quantifying SP behaviour by measuring frequency dependent (FD) magnetic susceptibility can potentially provide a proxy for soil formation and weathering in certain environments. There are very limited magnetic measurements of tropical soils and we investigated a unique dataset of 506 samples from tropical regions. Samples included topsoils, subsoils and weathered and unweathered parent rock from lateritic soils from the entire tropical belt representing a variety of soil parent materials: ultrabasic magmatic rocks, basic and intermediate magmatic rocks, acid magmatic rocks, clay and clay slate, phyllite, sandstones. The relationship between magnetic measurements and redness rating was investigated as a potential indicator of tropical soil development, particularly lateritic processes. Soils from ultrabasic and basic parent materials showed little correlation between FD susceptibility and RR due a strong lithogenic overprint and a potential input of lithogenic SP material. This influence is likely to derive from a relative enrichment, indicated by higher magnetic values from pedogenic samples compared with unweathered parent material. The enrichment of weathering resistant ferrimagnetic iron oxides is concordant with lateritic processes for enrichment of other elements such as Al. Soils from clay and clay slate show positive correlations primarily due to diminished inputs from lithogenic sources. In this instance, RR and FD susceptibility could be used as proxies for neoformation of hematite and SP ferrimagnetic iron oxides respectively. Pedogenic hematite has been suggested to derive from the transformation of ferrimagnetic minerals, hence as hematite content increases, magnetic properties should decrease. The coexistence of hematite and ferrimagnetic minerals after such long weathering histories in the clay-derived laterites suggest other pathways may operate during tropical weathering and laterite formation. However, colour saturation may occur in the RR measurements as hematite content reaches large concentrations.

  12. Engaging parents in child obesity prevention: support preferences of parents.

    PubMed

    Wolfenden, Luke; Bell, Colin; Wiggers, John; Butler, Michelle; James, Erica; Chipperfield, Kelly

    2012-02-01

    Helping parents engage in practices that are likely to prevent childhood obesity is a considerable challenge for health professionals, policy makers and researchers. The aim of the study was to determine who is likely to use services designed to help parents prevent overweight and obesity and what types of services they prefer. Two hundred and forty randomly selected parents of children 4-15 years from the Hunter New England region of New South Wales completed a 15 min telephone survey. Most parents would use a service to help them prevent obesity in their children but particularly parents of households from higher socioeconomic areas, female parents, parents of younger children and parents of children who are not consuming sufficient serves of fruits and vegetables, or are less active. Parents preferred personalised mailed print materials (85%), specialist appointments (61%) and emailed information (58%). Parents are interested in using a range of services to support them to encourage their children to eat healthily and be active. Researchers should test the efficacy of promising services. PMID:20598070

  13. Effects of the composition of standard reference material on the accuracy of determinations of 210Pb and 137Cs in soils with gamma spectrometry.

    PubMed

    Li, Y; Geng, X C; Yu, H Q; Wan, G J

    2011-02-01

    The effect of the composition of the used standard reference material (SRM) on results of determination of fallout radionuclides in soil samples was studied. Using five soil types as SRMs, we measured the specific activity of (210)Pb and (137)Cs in six target samples of Chestnut soil. It was observed that the determination of the (210)Pb activity in the samples depended on the chemical composition of SRMs used to create the efficiency curves. Thus, using SRMs similar in chemical composition to the target samples should improve accuracy in the determination of (210)Pb in environmental samples. PMID:21071235

  14. Advances in Geosynthetics Materials and Applications for Soil Reinforcement and Environmental Protection Works

    Microsoft Academic Search

    Ennio M. Palmeira; Fumio Tatsuoka; Richard J. Bathurst; Peter E. Stevenson

    Geosynthetics have become well established construction materials for geotechnical and environmental applications in most parts of the world. Because they constitute manufactured materials, new products and applications are developed on a routine basis to provide solutions to routine and critical problems alike. Results from recent research and from monitoring of instrumented structures throughout the years have led to new design

  15. Efficiency of a Multi-Soil-Layering System on Wastewater Treatment Using Environment-Friendly Filter Materials

    PubMed Central

    Ho, Chia-Chun; Wang, Pei-Hao

    2015-01-01

    The multi-soil-layering (MSL) system primarily comprises two parts, specifically, the soil mixture layer (SML) and the permeable layer (PL). In Japan, zeolite is typically used as the permeable layer material. In the present study, zeolite was substituted with comparatively cheaper and more environmentally friendly materials, such as expanded clay aggregates, oyster shells, and already-used granular activated carbon collected from water purification plants. A series of indoor tests indicated that the suspended solid (SS) removal efficiency of granular activated carbon was between 76.2% and 94.6%; zeolite and expanded clay aggregates achieved similar efficiencies that were between 53.7% and 87.4%, and oyster shells presented the lowest efficiency that was between 29.8% and 61.8%. Further results show that the oyster shell system required an increase of wastewater retention time by 2 to 4 times that of the zeolite system to maintain similar chemical oxygen demand (COD) removal efficiency. Among the four MSL samples, the zeolite system and granular activated carbon system demonstrated a stable NH3-N removal performance at 92.3%–99.8%. The expanded clay aggregate system present lower removal performance because of its low adsorption capacity and excessively large pores, causing NO3?-N to be leached away under high hydraulic loading rate conditions. The total phosphorous (TP) removal efficiency of the MSL systems demonstrated no direct correlation with the permeable layer material. Therefore, all MSL samples achieved a TP efficiency of between 92.1% and 99.2%. PMID:25809517

  16. Keep your soil covered

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn residue is being considered as a possible feedstock for biofuels production. The long-term impacts on soil health of removing this residue are not well understood. Plant material is one of the soil’s main sources of organic materials. Organic matter is a very important component of soil. It su...

  17. Body for Parents (Girls)

    MedlinePLUS

    ... Illness & disability Drugs, alcohol & smoking Your feelings Relationships Bullying Safety Your future Environmental health Skip section navigation ( ... parents Girls' feelings for parents Relationships for parents Bullying for parents Safety for parents The future for ...

  18. Derivation of guidelines for uranium residual radioactive material in soil at the B&T Metals Company site, Columbus, Ohio

    SciTech Connect

    Kamboj, S.; Nimmagadda, Mm.; Yu, C

    1996-01-01

    Guidelines for uranium residual radioactive material in soil were derived for the B&T Metals Company site in Columbus, Ohio. This site has been identified for remedial action under the US Department of Energy`s (DOE`s) Formerly Utilized Sites Remedial Action Program (FUSRAP). Single-nuclide and total-uranium guidelines were derived on the basis of the requirement that following remedial action, the 50-year committed effective dose equivalent to a hypothetical individual living or working in the immediate vicinity of the site should not exceed a dose constraint of 30 mrem/yr for the current use and likely future use scenarios or a dose limit of 100 n-mrem/yr for less likely future use scenarios. The DOE residual radioactive material guideline computer code, RESRAD, was used in this evaluation. RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines. Three scenarios were considered; each assumed that for a period of 1,000 years following remedial action, the site would be used without radiological restrictions. The three scenarios varied with regard to the type of site use, time spent at the site by the exposed individual, and sources of food and water consumed. The evaluations indicate that the dose constraint of 30 mrem/yr would not be exceeded for uranium (including uranium-234, uranium-235, and uranium-238) within 1,000 years, provided that the soil concentration of total uranium (uranium-234, uranium-235, and uranium-238) at the B&T Metals site did not exceed 1, I 00 pCi/g for Scenario A (industrial worker, current use) or 300 pCi/g for Scenario B (resident with municipal water supply, a likely future use). The dose limit of 100 mrem/yr would not be exceeded at the site if the total uranium concentration of the soil did not exceed 880 pCi/g for Scenario C (resident with an on-site water well, a plausible but unlikely future use).

  19. Parent role characteristics: Parents' perceptions of their parent role

    Microsoft Academic Search

    Rose Anne Turiano

    2001-01-01

    Research has widely examined the various beliefs, attitudes, and perceptions held by parents. However, few have formally examined parents' perceptions of their role or the characteristics that encompass this role, even though many have argued that the job of parent is most difficult. This study utilized the Parent Role Questionnaire (PRQ), developed by Mowder in 1990, to examine how parents

  20. Titanium Mass-balance Analysis of Paso Robles Soils: Elemental Gains and Losses as Affected by Acid Alteration Fluids

    NASA Technical Reports Server (NTRS)

    Sutter, Brad; Ming, Douglas W.

    2010-01-01

    The Columbia Hills soils have been exposed to aqueous alteration in alkaline [1] as well as acid conditions [2,3]. The Paso Robles class soils are bright soils that possess the highest S concentration of any soil measured on Mars [2]. Ferric-sulfate detection by Moessbauer analysis indicated that acid solutions were involved in forming these soils [4]. These soils are proposed to have formed by alteration of nearby rock by volcanic hydrothermal or fumarolic activity. The Paso Robles soils consist of the original Paso Robles-disturbed-Pasadena (PR-dist), Paso Robles- PasoLight (PR-PL), Arad-Samra, Arad-Hula, Tyrone- Berker Island1 and Tyrone-MountDarwin [2 ,3. ]Chemical characteristics indicate that the PR-dist and PR-PL soils could be derived from acid weathering of local Wishstone rocks while the Samra and Hula soils are likely derived from local Algonquin-Iroquet rock [3]. The Paso Robles soils were exposed to acidic sulfur bearing fluids; however, little else is known about the chemistry of the alteration fluid and its effects on the alteration of the proposed parent materials. The objectives of this work are to conduct titanium normalized mass-balance analysis to1) assess elemental gains and losses from the parent materials in the formation of the Paso Robles soils and 2) utilize this information to indicate the chemical nature of the alteration fluids.

  1. MOELCULAR SIZE EXCLUSION BY SOIL ORGANIC MATERIALS ESTIMATED FROM THEIR SWELLING IN ORGANIC SOLVENTS

    EPA Science Inventory

    A published method previously developed to measure the swelling characteristics of pow dered coal samples has been adapted for swelling measurements on various peat, pollen, chain, and cellulose samples The swelling of these macromolecular materials is the volumetric manifestatio...

  2. MOLECULAR SIZE EXCLUSION BY SOIL ORGANIC MATERIALS ESTIMATED FROM THEIR SWELLING IN ORGANIC SOLVENTS

    EPA Science Inventory

    A published method previously developed to measure the swelling characteristics of powdered coal samples has been adapted for swelling measurements on various peat, pollen, chitin, and cellulose samples. he swelling of these macromolecular materials is the volumetric manifestatio...

  3. Vegetation Influences on Long-Term Carbon Stabilization in Soils: a Coast Redwood-Prairie Comparison

    Microsoft Academic Search

    S. Mambelli; S. D. Burton; K. J. McFarlane; M. S. Torn; T. E. Dawson

    2010-01-01

    Complex interactions and feedbacks among soil, biota, climate, and parent material determine the long-term pathways and mechanisms of carbon persistence in soils. While it is well known that litter chemistry influences litter decay on annual-decadal timescales, its impact on long-term SOM storage is still under debate. We tested the role of the substrate available to decomposers in determining decomposition and

  4. Pollution caused by metallic fragments introduced into soils because of World War I activities

    Microsoft Academic Search

    P. Souvent; S. Pirc

    2001-01-01

    The influence of parent rock and soil material on the corrosion rate of metallic fragments that remained in soil after World\\u000a War I in the So?a front area (Slovenia), as well as the corrosion products of these fragments, were studied. The results of\\u000a corrosion tests did not indicate appreciable differences in corrosion rates between various corrosion media. Consequently,\\u000a the corrosion

  5. Soils of the Galindez Island, Argentine archipelago, Western Antarctica

    NASA Astrophysics Data System (ADS)

    Abakumov, Evgeny; Parnikoza, Ivan

    2015-04-01

    Antarctic Peninsula is a part of Antarctica which is characterized by increased soil diversity, caused by specific of parent materials and diversity of non-vascular and vascular plants. Soils of Galindez Island have been investigated during the 18-th Ukranian Antarctic Expedition 2013/14. This Island situated in Argentine archipelago (coastal part of Antarctic Peninsula). Soils of Galindez Island presented by following types: Leptosols, Lithosols, Histic Lithosols and Leptosols and some Gleyic soils, located in lowlands and coastal parts. An average solum profile thickness is 3-19 cm which result from the small depth of debris's, underplayed by massive crystallic rocks. The permafrost layer is located within the massive rock, but not in coarse friable parent material. The soils with bird influence are widely spread both in coastal and central part of Island. In the coastal parts we can find typical Ornithosols in the penguin rockeries areas. The main aim of our investigation was characterization of soils formed under vegetation, exactly under Deschampsia antarctica Desv. localities. Argentine Islands is the central part of D. antarctica spreading area in region of Antarctic peninsula. Probably, these islands colonized by hairgrass mainly due to ornitogenic activity. So, coastal population appearance related with Larus dominicanus nest areas and feeding activity. Thus, we found typical post ornithogenic soils here. This kind of soils we also observed in population of hairgrass of Galindez mainland where it was connected with the other Antarctic bird - Catharacta maccormicki activity. Thus, the soil diversity and soil geochemistry of the Galindez Island are closely related to the activity of birds. The spatial pattern of soils, their chemistry and organic matter quality is discussed in relation with distribution of bird nesting and feeding activity.

  6. Soil chemistry in lithologically diverse datasets: the quartz dilution effect

    USGS Publications Warehouse

    Bern, Carleton R.

    2009-01-01

    National- and continental-scale soil geochemical datasets are likely to move our understanding of broad soil geochemistry patterns forward significantly. Patterns of chemistry and mineralogy delineated from these datasets are strongly influenced by the composition of the soil parent material, which itself is largely a function of lithology and particle size sorting. Such controls present a challenge by obscuring subtler patterns arising from subsequent pedogenic processes. Here the effect of quartz concentration is examined in moist-climate soils from a pilot dataset of the North American Soil Geochemical Landscapes Project. Due to variable and high quartz contents (6.2–81.7 wt.%), and its residual and inert nature in soil, quartz is demonstrated to influence broad patterns in soil chemistry. A dilution effect is observed whereby concentrations of various elements are significantly and strongly negatively correlated with quartz. Quartz content drives artificial positive correlations between concentrations of some elements and obscures negative correlations between others. Unadjusted soil data show the highly mobile base cations Ca, Mg, and Na to be often strongly positively correlated with intermediately mobile Al or Fe, and generally uncorrelated with the relatively immobile high-field-strength elements (HFS) Ti and Nb. Both patterns are contrary to broad expectations for soils being weathered and leached. After transforming bulk soil chemistry to a quartz-free basis, the base cations are generally uncorrelated with Al and Fe, and negative correlations generally emerge with the HFS elements. Quartz-free element data may be a useful tool for elucidating patterns of weathering or parent-material chemistry in large soil datasets.

  7. Estimating soil organic carbon stocks and spatial patterns with statistical and GIS-based methods.

    PubMed

    Zhi, Junjun; Jing, Changwei; Lin, Shengpan; Zhang, Cao; Liu, Qiankun; DeGloria, Stephen D; Wu, Jiaping

    2014-01-01

    Accurately quantifying soil organic carbon (SOC) is considered fundamental to studying soil quality, modeling the global carbon cycle, and assessing global climate change. This study evaluated the uncertainties caused by up-scaling of soil properties from the county scale to the provincial scale and from lower-level classification of Soil Species to Soil Group, using four methods: the mean, median, Soil Profile Statistics (SPS), and pedological professional knowledge based (PKB) methods. For the SPS method, SOC stock is calculated at the county scale by multiplying the mean SOC density value of each soil type in a county by its corresponding area. For the mean or median method, SOC density value of each soil type is calculated using provincial arithmetic mean or median. For the PKB method, SOC density value of each soil type is calculated at the county scale considering soil parent materials and spatial locations of all soil profiles. A newly constructed 1?50,000 soil survey geographic database of Zhejiang Province, China, was used for evaluation. Results indicated that with soil classification levels up-scaling from Soil Species to Soil Group, the variation of estimated SOC stocks among different soil classification levels was obviously lower than that among different methods. The difference in the estimated SOC stocks among the four methods was lowest at the Soil Species level. The differences in SOC stocks among the mean, median, and PKB methods for different Soil Groups resulted from the differences in the procedure of aggregating soil profile properties to represent the attributes of one soil type. Compared with the other three estimation methods (i.e., the SPS, mean and median methods), the PKB method holds significant promise for characterizing spatial differences in SOC distribution because spatial locations of all soil profiles are considered during the aggregation procedure. PMID:24840890

  8. Cr(VI) adsorption/desorption on untreated and mussel shell-treated soil materials: fractionation and effects of pH and chromium concentration

    NASA Astrophysics Data System (ADS)

    Otero, M.; Cutillas-Barreiro, L.; Nóvoa-Muñoz, J. C.; Arias-Estévez, M.; Fernández-Sanjurjo, M. J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A.

    2014-12-01

    We used batch-type experiments to study Cr(VI) adsorption/desorption on granitic material, forest soil, pyritic material, mussel shell, and on forest soil and granitic material amended with 12 t ha-1 shell, considering the effects of varying Cr(VI) concentration and pH. Sequential extractions were carried out to fractionate adsorbed Cr(VI) and to determine the stability of Cr(VI) retention. The pyritic material had the highest Cr(VI) retention capacity, whereas the granitic material showed the lowest retention potential. When high Cr concentrations were added, some saturation of the adsorbent surfaces became apparent, but Cr release remained low. The highest Cr retention was achieved at very acid pH value, with release progressively increasing as a function of increasing pH. The amendment with 12 t ha-1 mussel shell did not cause marked changes in Cr(VI) retention. Adsorption data were satisfactory adjusted to the Freundlich model. Regarding Cr(VI) fractionation, the soluble fraction (weakly bound) was the dominant in mussel shell and in the un-amended and amended granitic material, whereas more stable fractions dominated in the pyritic material (residual fraction) and in the forest soil (oxidizable fraction). In conclusion, the pyritic material presented the highest Cr(VI) retention capacity, while the retention was low and weak on the granitic material; mussel shell was characterized by not marked Cr(VI) retention potential, and it did not cause remarkable increase in Cr(VI) retention when used to amend the granitic material or the forest soil.

  9. Cr(VI) sorption/desorption on untreated and mussel-shell-treated soil materials: fractionation and effects of pH and chromium concentration

    NASA Astrophysics Data System (ADS)

    Otero, M.; Cutillas-Barreiro, L.; Nóvoa-Muñoz, J. C.; Arias-Estévez, M.; Fernández-Sanjurjo, M. J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A.

    2015-04-01

    We used batch-type experiments to study Cr(VI) sorption/desorption on granitic material, forest soil, pyritic material, mussel shell, and on forest soil and granitic material amended with 12 t ha-1 (1.2 kg m -2) shell, considering the effects of varying Cr(VI) concentration and pH. Sequential extractions were carried out to fractionate adsorbed Cr(VI) and to determine the stability of Cr(VI) retention. The pyritic material had the highest Cr(VI) retention capacity, whereas the granitic material showed the lowest retention potential. When high Cr concentrations were added, some saturation of the adsorbent surfaces became apparent, but Cr release remained low. The highest Cr retention was achieved at a very acid pH value, with release progressively increasing as a function of increasing pH. The amendment with 12 t ha-1 mussel shell did not cause marked changes in Cr(VI) retention. Sorption data were satisfactory adjusted to the Freundlich model. Regarding Cr(VI) fractionation, the soluble fraction (weakly bound) was dominant in mussel shell and in the unamended and amended granitic material, whereas more stable fractions dominated in the pyritic material (residual fraction) and in the forest soil (oxidizable fraction). In conclusion, the pyritic material presented the highest Cr(VI) retention capacity, while the retention was low and weak on the granitic material; mussel shell was not characterized by a marked Cr(VI) retention potential, and it did not cause remarkable increase in Cr(VI) retention when used to amend the granitic material or the forest soil.

  10. Effects of rainfall on weathering rate, base cation provenance, and Sr isotope composition of Hawaiian soils

    Microsoft Academic Search

    BRIAN W. STEWART; R OSEMARY C. CAPO; OLIVER A. CHADWICK

    2001-01-01

    A climate transect across the Kohala Peninsula, Hawaii provides an ideal opportunity to study soil processes and evolution as a function of rainfall. The parent material is the ?150 ka Hawi alkali basalt aa flow, and median annual precipitation (MAP) changes from ?16 cm along the west coast to ?450 cm in the rain forest near the crest of the

  11. Hydromorphic and clay-related processes in soils from the Llanos de Moxos (northern Bolivia)

    Microsoft Academic Search

    J. Boixadera; R. M. Poch; M. T. Garc??a-González; C. Vizcayno

    2003-01-01

    The Llanos de Moxos is one of the largest wetlands in the world (more than 100,000 km2) due to seasonal floods. The soil parent materials are fine Quaternary sediments brought by tributaries of the Amazon River. Forests cover some areas, although the dominant vegetation is a pastured savannah and backswamps. At present, the main land use is a very extensive

  12. Development of a standard reference material for Cr(vi) in contaminated soil

    USGS Publications Warehouse

    Nagourney, S.J.; Wilson, S.A.; Buckley, B.; Kingston, H.M.S.; Yang, S.-Y.; Long, S.E.

    2008-01-01

    Over the last several decades, considerable contamination by hexavalent chromium has resulted from the land disposal of Chromite Ore Processing Residue (COPR). COPR contains a number of hexavalent chromium-bearing compounds that were produced in high temperature industrial processes. Concern over the carcinogenic potential of this chromium species, and its environmental mobility, has resulted in efforts to remediate these waste sites. To provide support to analytical measurements of hexavalent chromium, a candidate National Institute of Standards and Technology (NIST) Standard Reference Material?? (SRM 2701), having a hexavalent chromium content of approximately 500 mg kg -1, has been developed using material collected from a waste site in Hudson County, New Jersey, USA. The collection, processing, preparation and preliminary physico-chemical characterization of the material are discussed. A two-phase multi-laboratory testing study was carried out to provide data on material homogeneity and to assess the stability of the material over the duration of the study. The study was designed to incorporate several United States Environmental Protection Agency (USEPA) determinative methods for hexavalent chromium, including Method 6800 which is based on speciated isotope dilution mass spectrometry (SIDMS), an approach which can account for chromium species inter-conversion during the extraction and measurement sequence. This journal is ?? The Royal Society of Chemistry 2008.

  13. Soils and Climate... Of the Texas A&M University Research and Extension Center at Stephenville in Relation to the Cross Timbers Land Resource Area. 

    E-print Network

    Stahnke, C.R.; Godfrey, C.L.; Moore, Joe; Newman, J.S.

    1980-01-01

    importance. General Description of the Area Geology Both Cretaceous and Pennsylvanian age strata occur in the general geographic area occupied by the western portion of the Cross Timbers (12). However, the major soils of this area have formed fi... Description The soils occurring in the geographic area of interest may be divided into several broad groups according to the general characteristics of the parent material. One group has formed predominantly from sandstone, or closely related materials...

  14. Effects of land use and geological factors on the spatial variability of soil carbon and nitrogen in the Konya Basin, Turkey

    NASA Astrophysics Data System (ADS)

    Mayes, M. T.; Marin-Spiotta, E.; Ozdogan, M.; Clayton, M.

    2012-12-01

    The landscape-scale (10s-100s km2) spatial variability of soil properties such as carbon and nitrogen stocks is poorly known in many regions worldwide, especially in semi-arid landscapes with millenial histories of intense land use activities. Characterizing patterns and understanding processes that affect such variability is important for basic research on land use impacts for soils and ecosystems, such as modeling regional-scale ecosystem biogeochemical balances and greenhouse gas emissions, as well as applied research for precision agriculture, soil erosion control, water conservation and carbon accounting. Here, we use geostatistical analyses to study patterns of spatial variability in total carbon (TC), organic carbon (SOC), and total nitrogen (TN) stocks in soils (0-25 cm) of the Konya Basin, Turkey. We hypothesized that land use will have a stronger effect on SOC variability, which will be more tightly linked with vegetation and human management, while parent material will be a more important predictor of TC variability in these arid soils with high carbonate content. We collected a total of 560 samples from 35 sites distributed across three soil parent materials and three classes of land use (agriculture, grazing lands and orchards), using multi-temporal analyses of Landsat data to map land cover and geographic information systems (GIS) to aid selection of field sites. Building on previous research that found parent materials strongly control TC, TN and SOC, we tested whether soil parent materials or land-use practices more strongly explain patterns of spatial variability of soil properties at nested scales, including within field-site (within 35 1-ha field sites) and landscape scales (across 35 sites). Initial results show that spatial patterns of total carbon (TC) are strongly affected by soil parent materials and field sites at landscape scales. Forthcoming analyses will analyze patterns in TN and SOC. Our analyses, which test effects of geological factors and human activities on the spatial variability of soil properties, can inform development of landscape-scale soil sampling schemes for soil carbon and nitrogen accounting so that they are representative of soils at landscape scales in dryland environments. They suggest that in drylands, land management strategies to increase carbon stocks in soils differ based on soil type. Further, they will contribute understanding to what processes varying across spatial scales may be driving soil heterogeneity.

  15. Total Parenting

    ERIC Educational Resources Information Center

    Smith, Richard

    2010-01-01

    In this essay, Richard Smith observes that being a parent, like so much else in our late-modern world, is required to become ever more efficient and effective, and is increasingly monitored by the agencies of the state, often with good reason given the many recorded instances of child abuse and cruelty. However, Smith goes on to argue, this begins…

  16. Fungal and bacterial growth in soil with plant materials of different C/N ratios.

    PubMed

    Rousk, Johannes; Bååth, Erland

    2007-12-01

    Fungal (acetate-in-ergosterol incorporation) and bacterial (leucine/thymidine incorporation) growth resulting from alfalfa (C/N=15) and barley straw (C/N=75) addition was studied in soil microcosms for 64 days. Nitrogen amendments were used to compensate for the C/N difference between the substrates. Fungal growth increased to a maximum after 3-7 days, at five to eight times the controls, following the addition of straw, and three to four times the controls following the addition of alfalfa. After 20-30 days, the fungal growth rate converged with the controls, resulting in a cumulative fungal growth two to three times the controls following straw addition and about 20% higher than the controls following alfalfa addition. The bacterial growth rate reached rates five times the controls following alfalfa addition and twice that of the controls following straw addition after 3-7 days. It remained elevated after 64 days. The cumulative bacterial growth was two and four times the controls following straw and alfalfa addition, respectively. A negative correlation was found between N addition and bacterial growth, while N stimulated fungal growth. Thus, the C/N ratio of the additions (substrate and extra N) could not entirely explain the different results regarding fungal and bacterial growths. Respiration was not always related to the combined growth of the microorganisms, emphasizing the requirement for a better understanding of growth efficiencies of fungi and bacteria. PMID:17991019

  17. A new approach of mapping soils in the Alps - Challenges of deriving soil information and creating soil maps for sustainable land use. An example from South Tyrol (Italy)

    NASA Astrophysics Data System (ADS)

    Baruck, Jasmin; Gruber, Fabian E.; Geitner, Clemens

    2015-04-01

    Nowadays sustainable land use management is gaining importance because intensive land use leads to increasing soil degradation. Especially in mountainous regions like the Alps sustainable land use management is important, as topography limits land use. Therefore, a database containing detailed information of soil characteristics is required. However, information of soil properties is far from being comprehensive. The project "ReBo - Terrain classification based on airborne laser scanning data to support soil mapping in the Alps", founded by the Autonomous Province of Bolzano, aims at developing a methodical framework of how to obtain soil data. The approach combines geomorphometric analysis and soil mapping to generate modern soil maps at medium-scale in a time and cost efficient way. In this study the open source GRASS GIS extension module r.geomorphon (Jasciewicz and Stepinski, 2013) is used to derive topographically homogeneous landform units out of high resolution DTMs on scale 1:5.000. Furthermore, for terrain segmentation and classification we additionally use medium-scale data sets (geology, parent material, land use etc.). As the Alps are characterized by a great variety of topography, parent material, wide range of moisture regimes etc. getting reliable soil data is difficult. Additionally, geomorphic activity (debris flow, landslide etc.) leads to natural disturbances. Thus, soil properties are highly diverse and largely scale dependent. Furthermore, getting soil information of anthropogenically influenced soils is an added challenge. Due to intensive cultivation techniques the natural link between the soil forming factors is often repealed. In South Tyrol we find the largest pome producing area in Europe. Normally, the annual precipitation is not enough for intensive orcharding. Thus, irrigation strategies are in use. However, as knowledge about the small scaled heterogeneous soil properties is mostly lacking, overwatering and modifications of the regional water balance are often involved. Therefore, a rudimentary approach to involve these anthropogenically influenced areas in soil maps can be based on expert decision trees. In it the potential soil inclusive the kind and degree of the anthropogenic degradation is presented. The aim of this approach is to give the map user suitable soil information itself. References: Jasiewicz, J. & Stepinski, T. F. (2013): Geomorphons - a pattern recognition approach to classification and mapping of landforms. Geomorphology 182, 147 - 156.

  18. Soiling of building envelope surfaces and its effect on solar reflectance - Part II: Development of an accelerate aging method for roofing materials

    SciTech Connect

    Sleiman, Mohamad; Kirchstetter, Thomas W.; Berdahl, Paul; Gilbert, Haley; Quelen, Sarah; Marlot, Lea; Preble, Chelsea; Chen, Sharon; Montalbano, Amadine; Rosseler, Olivier; Akbari, Hashem; Levinson, Ronnen; Destaillats, Hugo

    2013-11-18

    Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and high temperatures. This study developed an accelerated aging method that incorporates features of soiling and weathering. The method sprays a calibrated aqueous soiling mixture of dust minerals, black carbon, humic acid, and salts onto preconditioned coupons of roofing materials, then subjects the soiled coupons to cycles of ultraviolet radiation, heat and water in a commercial weatherometer. Three soiling mixtures were optimized to reproduce the site-specific solar spectral reflectance features of roofing products exposed for 3 years in a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth mixture was designed to reproduce the three-site average values of solar reflectance and thermal emittance attained after 3 years of natural exposure, which the Cool Roof Rating Council (CRRC) uses to rate roofing products sold in the US. This accelerated aging method was applied to 25 products?single ply membranes, factory and field applied coatings, tiles, modified bitumen cap sheets, and asphalt shingles?and reproduced in 3 days the CRRC's 3-year aged values of solar reflectance. This accelerated aging method can be used to speed the evaluation and rating of new cool roofing materials.

  19. Field corrosion testing and performance of cable shielding materials in soils

    Microsoft Academic Search

    G. Haynes; R. Baboian

    1989-01-01

    This article discusses the importance of corrosion resistance in cable-shielding materials, describes the mechanisms of shielding corrosion that occur in buried telephone cable, and evaluates the results of the six-year REA Horry Cooperative buried telephone cable corrosion test. In this study, both active and static cables were included. Withdrawals were made over a six-year period. These cables were evaluated for

  20. On the origin of superparamagnetic minerals of tropical soils and their impact on landmine detection

    NASA Astrophysics Data System (ADS)

    Igel, Jan; Preetz, Holger; Altfelder, Sven

    2010-05-01

    Magnetic susceptibility of soils is mainly determined by their content of ferrimagnetic minerals whereas titanomagnetite, magnetite and maghemite being the most important ones. Titanomagnetite and magnetite are of magmatic origin, i.e. they crystallise during cooling of iron-rich magma and are part of many igneous rocks. Maghemite and sometimes magnetite are of pedogenic origin. They develop by crystallisation of dissolved iron during soil forming processes. Ferrimagnetic minerals that are smaller than some tens of nanometres are superparamagnetic (SP) and show frequency dependent susceptibility. SP minerals crystallise if magma cools down rapidly (e.g. volcanic magmas, glasses and ashes) and are frequently formed during pedogenesis. In order to investigate the origin and formation of SP minerals in tropical soils, we analyse magnetic properties of 594 samples from the entire tropics comprising the whole range of weathering states from unweathered rock to highly weathered soil. Tropical soils are subject to intense chemical weathering and are rich in ferrimagnetic and in particular SP minerals. The process leading to a high content of these minerals is either residual enrichment due to their weathering resistance or neo-formation. In this study we focus on the frequency dependent susceptibility (absolute and relative) of the samples and classify it according to the parent material and alteration. We observe that • within each parent-material group, rock material shows in general lower susceptibility and absolute frequency dependence than soil material • ultrabasic and basic/intermediate rocks and soils developed from these rocks show high absolute frequency dependent susceptibility and, in contrast, acid rocks and sediments show lower absolute frequency dependence • absolute frequency dependence increases from unweathered rock to weathered rock, and from subsoil to topsoil material within every group of parent material • relative frequency dependence rises successively with weathering for ultrabasic, basic/intermediate and acid igneous parent material, but, it tends to decrease for clay/clay slate and sandstone. Based on the above observations we conclude that the content of SP minerals depends on both: parent rock and alteration of the material. The total amount of SP minerals rises during weathering, regardless of the parent material. The process is either preferential accumulation of weathering resistant magnetic minerals, including the ultra-fine grained fraction, or neo-formation of new magnetic minerals. The increase of relative frequency dependence of igneous rocks is a clear indication that SP minerals are formed during soil genesis. However, for some sedimentary rocks, the amount of SP minerals is already high and is not subsequently increased further during weathering. Electromagnetic induction (EMI) based metal detectors are the most widely used sensing techniques in landmine clearance operations. They are negatively influenced by magnetic susceptibility and its frequency dependence. In particular tropical soils show to have a negative impact on EMI sensors. Besides, the tropics are the regions which are most affected by landmines where most of the humanitarian demining-activities concentrate. Currently, no soil classification system exists that helps to predict the influence of frequency dependent susceptibility on landmine detection. We deduce a system that can be used to predict the soil impact depending on parent material and weathering. Our system can be consulted by demining organisations to predict metal detector performance in tropical regions based on geologic and soil maps. Ultra-basic, basic and intermediate igneous rocks have a moderate influence on EMI detectors in average cases and a very severe influence in extreme cases. Soils developed from these rocks have a severe or very severe influence. In contrast, acid igneous rocks and sediments do not influence EMI detectors severely. Soils developed from these rocks have no influence in average cases; however, they may have a very severe infl

  1. Synthesis and Characterization of the Hybrid Clay- Based Material Montmorillonite-Melanoidin: A Potential Soil Model

    SciTech Connect

    V Vilas; B Matthiasch; J Huth; J Kratz; S Rubert de la Rosa; P Michel; T Schäfer

    2011-12-31

    The study of the interactions among metals, minerals, and humic substances is essential in understanding the migration of inorganic pollutants in the geosphere. A considerable amount of organic matter in the environment is associated with clay minerals. To understand the role of organic matter in the environment and its association with clay minerals, a hybrid clay-based material (HCM), montmorillonite (STx-1)-melanoidin, was prepared from L-tyrosine and L-glutamic acid by the Maillard reaction. The HCM was characterized by elemental analysis, nuclear magnetic resonance, x-ray photoelectron spectroscopy (XPS), scanning transmission x-ray microscopy (STXM), and thermal analysis. The presence of organic materials on the surface was confirmed by XPS and STXM. The STXM results showed the presence of organic spots on the surface of the STx-1 and the characterization of the functional groups present in those spots. Thermal analysis confirmed the existence of organic materials in the montmorillonite interlayer, indicating the formation of a composite of melanoidin and montmorillonite. The melanoidin appeared to be located partially between the layers of montmorillonite and partially at the surface, forming a structure that resembles the way a cork sits on the top of a champagne bottle.

  2. Parents' talk : multiple schemas and parenting practice

    E-print Network

    Sarda, Zoltan G.

    2012-01-01

    parenting behaviors and affects are twofold: Parents’ attachment style has profound effects on the child’effects on children’s development, research findings indicate a correlation between low self-efficacy and more authoritarian parenting styles,

  3. Magnetic susceptibility for use in delineating hydric soils

    USGS Publications Warehouse

    Grimley, D.A.; Vepraskas, M.J.

    2000-01-01

    Field indicators are used to identify hydric soil boundaries and to delineate wetlands. The most common field indicators may not be seen in some soils with thick, dark, mollic epipedons, and do not form in Fe-poor soils. This study evaluated magnetic susceptibility (MS) meter as a field tool to determine hydric soil boundaries. Five Mollisoldominated sites formed in glacial deposits in Illinois were evaluated along with one Ultisol-dominated site formed in Coastal Plain sediments of North Carolina. Measurements of volumetric MS were made along transects at each site that extended from wetland into upland areas. One created wetland was evaluated. Field indicators were used to identify the hydric soils. Results showed that volumetric MS values were significantly (P 0.15) differences in MS were found for Coastal Plain hydric and nonhydric soils where MS values were low (<10 ?? 10-5 SI). Critical MS values that separated hydric and nonhydric soils varied between 20 ?? 10-5 and 30 ?? 10-5 SI for the loessal soils evaluated in Illinois. Such critical values will have to be determined on site using field indicators until specific values can be defined for hydric soils within a given parent material. With a critical MS value in hand, a wetland delineator can make MS measurements along transects perpendicular to the envisioned hydric soil boundary to quickly and quantitatively identify it.

  4. Acidification of forest soil in Russia: From 1893 to present

    USGS Publications Warehouse

    Lapenis, A.G.; Lawrence, G.B.; Andreev, A.A.; Bobrov, A.A.; Torn, M.S.; Harden, J.W.

    2004-01-01

    It is commonly believed that fine-textured soils developed on carbonate parent material are well buffered from possible acidification. There are no data, however, that document resistance of such soils to acidic deposition exposure on a timescale longer than 30-40 years. In this paper, we report on directly testing the long-term buffering capacity of nineteenth century forest soils developed on calcareous silt loam. In a chemical analysis comparing archived soils with modern soils collected from the same locations ???100 years later, we found varying degrees of forest-soil acidification in the taiga and forest steppe regions. Land-use history, increases in precipitation, and acidic deposition were contributing factors in acidification. The acidification of forest soil was documented through decreases in soil pH and changes in concentrations of exchangeable calcium and aluminum, which corresponded with changes in communities of soil microfauna. Although acidification was found at all three analyzed locations, the trends in soil chemistry were most pronounced where the highest loading of acidic deposition had taken place. Copyright 2004 by the American Geophysical Union.

  5. ANALYSIS OF SULFUR IN SOIL, PLANT AND SEDIMENT MATERIALS: SAMPLE HANDLING AND USE OF AN AUTOMATED ANALYZER

    EPA Science Inventory

    Methods for analyzing soil, vegetation and sediment samples for total S and handling soil samples for analysis of S constituents were examined. ECO automated total S anelyzer (SC-132) was used for the analysis of vegetation, sediments and soil samples. esults from the LECO analyz...

  6. Soil morphology of canopy and intercanopy sites in a pinon-Juniper woodland

    SciTech Connect

    Davenport, D.W.; Wilcox, B.P.; Breshear, D.D. [Los Alamos National Lab., NM (United States)

    1996-11-01

    Pinon-juniper woodlands in the semiarid western USA have expanded as much as fivefold during the last 150 yr, often accompanied by losses of understory vegetation and increasing soil erosion. We conducted this study to determine the differences in soil morphology between canopy and intercanopy locations within a pinon (Pinus edulis Engelm.)-juniper [Juniperus monosperma (Engelm.) Sarg.] woodland with uniform parent material, topography, and climate. The woodland studied, located near Los Alamos, NM, has a mean tree age of 135 yr. We examined soil morphology by augering 135 profiles in a square grid pattern and comparing soils under pinon and juniper canopies with intercanopy soils. Only two of the 17 morphological properties compared showed significant differences. The B horizons make up a slightly greater proportion of total profile thickness in intercanopy soils, and there are higher percentages of coarse fragments in the lower portions of canopy soil profiles. Canopy soils have lower mean pH and higher mean organic C than intercanopy soils. Regression analysis showed that most soil properties did not closely correspond with tree size, but total soil thickness and B horizon thickness are significantly greater under the largest pinon trees, and soil reaction is lower under the largest juniper trees. Our findings suggest that during the period in which pinon-juniper woodlands have been expanding, the trees have had only minor effects on soil morphology. 36 refs., 4 figs., 4 tabs.

  7. Many Parents?

    NASA Astrophysics Data System (ADS)

    Maseng, Torleiv; Moxnes, John F.

    2015-06-01

    In all living species at most, two parents are needed in order to make an offspring. In this paper, we assume that N parents are needed, and we calculate the optimum N in terms of fitness using a simple probabilistic approach. The probability of finding an attractive partner is set to P. The probability that this partner gives increased fitness is set to 1- R. We show that the best number of partners is N = 2 for any value of R as long as 1/2 < P < 2/3. For P < 1/2, the most beneficial is N = 1 partner. As P increases, there exists an optimum number of partners N > 2.

  8. Murderous parents.

    PubMed

    Palermo, George B

    2002-04-01

    This article offers observations regarding some of the major manifestations of family violence, neonaticide, infanticide, and filicide with the purpose of aiding in the early identification of parents at risk. They are discussed within the past and present historical and cultural milieu. A brief review of pertinent literature is presented. Pertinent case studies from the forensic psychiatric practice of the author along with psychodynamic reflections are offered. PMID:12113159

  9. For Parents and Kids

    MedlinePLUS

    ... A A A Listen En Español For Parents & Kids Diabetes is a disease that affects the whole ... balance between caring and hovering. Explore: For Parents & Kids Parent's Perspective Parents of children with diabetes share ...

  10. Diffusion and Leaching Behavior of Radionuclides in Category 3 Waste Encasement Concrete and Soil Fill Material – Summary Report

    SciTech Connect

    Mattigod, Shas V.; Wellman, Dawn M.; Bovaird, Chase C.; Parker, Kent E.; Clayton, Libby N.; Powers, Laura; Recknagle, Kurtis P.; Wood, Marcus I.

    2011-08-31

    One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Such concrete encasement would contain and isolate the waste packages from the hydrologic environment and would act as an intrusion barrier. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages in concrete. These concrete-encased waste stacks are expected to vary in size with maximum dimensions of 6.4 m long, 2.7 m wide, and 4 m high. The waste stacks are expected to have a surrounding minimum thickness of 15 cm of concrete encasement. These concrete-encased waste packages are expected to withstand environmental exposure (solar radiation, temperature variations, and precipitation) until an interim soil cover or permanent closure cover is installed, and to remain largely intact thereafter. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion and move into the surrounding subsurface environment. Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. The retardation factors for radionuclides contained in the waste packages can be determined from measurements of diffusion coefficients for these contaminants through concrete and fill material. Some of the mobilization scenarios include (1) potential leaching of waste form before permanent closure cover is installed; (2) after the cover installation, long-term diffusion of radionuclides from concrete waste form into surrounding fill material; (3) diffusion of radionuclides from contaminated soils into adjoining concrete encasement and clean fill material. Additionally, the rate of diffusion of radionuclides may be affected by the formation of structural cracks in concrete, the carbonation of the buried waste form, and any potential effect of metallic iron (in the form of rebars) on the mobility of radionuclides. The radionuclides iodine-129 ({sup 129}I), technetium-99 ({sup 99}Tc), and uranium-238 ({sup 238}U) are identified as long-term dose contributors in Category 3 waste (Mann et al. 2001; Wood et al. 1995). Because of their anionic nature in aqueous solutions, {sup 129}I, {sup 99}Tc, and carbonate-complexed {sup 238}U may readily leach into the subsurface environment (Serne et al. 1989, 1992a, b, 1993, and 1995). The leachability and/or diffusion of radionuclide species must be measured to assess the long-term performance of waste grouts when contacted with vadose-zone pore water or groundwater. Although significant research has been conducted on the design and performance of cementitious waste forms, the current protocol conducted to assess radionuclide stability within these waste forms has been limited to the Toxicity Characteristic Leaching Procedure, Method 1311 Federal Registry (EPA 1992) and ANSI/ANS-16.1 leach test (ANSI 1986). These tests evaluate the performance under water-saturated conditions and do not evaluate the performance of cementitious waste forms within the context of waste repositories which are located within water-deficient vadose zones. Moreover, these tests assess only the diffusion of radionuclides from concrete waste forms and neglect evaluating the mechanisms of retention, stability of the waste form, and formation of secondary phases during weathering, which may serve as long-term secondary hosts for immobilization of radionuclides. The results of recent investigations conducted under arid and semi-arid conditions (Al-Khayat et al. 2002; Garrabrants et al. 2002; Garrabrants and Kosson 2003; Garrabrants et al. 2004; Gervais et al. 2004; Sanchez et al. 2002; Sanchez et al. 2003) provide valuable information suggesting structural and chemical changes to concrete waste forms which may affect contaminant containm

  11. GEMAS - Soil geochemistry and health implications

    NASA Astrophysics Data System (ADS)

    Ernstsen, Vibeke; Ladenberger, Anna; Wragg, Joanna; Gulan, Aleksandra

    2014-05-01

    The GEMAS Project resulted in a large coherent data set displaying baseline levels of elements in agricultural and grazing land soil, which has a wide variety of applications. Medical geology is an emerging new discipline providing a link between geoscience and medicine by interpreting natural geological factors in relation to human and animal health and their geographical distribution. Medical geology shows not only problems related to harmful health effects of natural geological materials and processes, but also deals with their beneficial aspects. Since the GEMAS project demonstrates the importance of geological factors in geochemical patterns in European soil, this data set can be used in improving our understanding of how the geological processes may affect human health in Europe. The main potential health problems are related to deficiency of nutrients in soil and toxic effects of potentially harmful elements. Deficiency in macro- (e.g., K, Fe, Mg, P) and micro-nutrients (e.g., Se, Zn, Cl) can be responsible for a reduction in crop productivity and certain health issues for livestock and humans. On the other hand, bioavailability of crucial elements depends on soil parameters, e.g., pH; namely, low pH in soil (in northern Europe) makes more micronutrients bioavailable, with the exception of Mo, P and Ca. Rocks underlying the soil layer have a major impact on soil composition, and soil parent material can be a main source of toxic metals, for instance, soil developed on black shale (e.g., Oslo region) shows potentially toxic levels of metals, such as As, Cd, U, Zn and Pb. High content of organic matter is another factor amplifying the toxic levels of metals in soil. Several important topics with health implications can be then addressed using the GEMAS data set, namely, soil properties and element bioavailability, arsenic toxicity, selenium deficiency, potential health effects of liming, uranium in European soil, influence of recent and historical volcanic activity on soil composition and its health consequences. References Reimann, C., Birke, M., Demetriades, A., Filzmoser, P. & O'Connor, P. (Editors), 2014. Chemistry of Europe's agricultural soils - Part A: Methodology and interpretation of the GEMAS data set. Geologisches Jahrbuch (Reihe B), Schweizerbarth, Hannover, 528 pp. Reimann, C., Birke, M., Demetriades, A., Filzmoser, P. & O'Connor, P. (Editors), 2014. Chemistry of Europe's agricultural soils - Part B: General background information and further analysis of the GEMAS data set. Geologisches Jahrbuch (Reihe B), Schweizerbarth, Hannover, 352 pp.

  12. A new model for humic materials and their interactions with hydrophobic organic chemicals in soil-water or sediment-water systems

    USGS Publications Warehouse

    Wershaw, R.L.

    1986-01-01

    A generalized model of humic materials in soils and sediments, which is consistent with their observed properties, is presented. This model provides a means of understanding the interaction of hydrophobic pollutants with humic materials. In this model, it is proposed that the humic materials in soils and sediments consist of a number of different oligomers and simple compounds which result from the partial degradation of plant remains. These degradation products are stabilized by incorporation into humic aggregates bound together by weak bonding mechanisms, such as hydrogen bonding, pi bonding, and hydrophobic interactions. The resulting structures are similar to micelles or membranes, in which the interiors of the structures are hydrophobic and the exteriors are hydrophilic. Hydrophobic compounds will partition into the hydrophobic interiors of the humic micelles or "membrane-like" structures. ?? 1986.

  13. Organic carbon stocks and sequestration rates of forest soils in Germany

    PubMed Central

    Grüneberg, Erik; Ziche, Daniel; Wellbrock, Nicole

    2014-01-01

    The National Forest Soil Inventory (NFSI) provides the Greenhouse Gas Reporting in Germany with a quantitative assessment of organic carbon (C) stocks and changes in forest soils. Carbon stocks of the organic layer and the mineral topsoil (30 cm) were estimated on the basis of ca. 1.800 plots sampled from 1987 to 1992 and resampled from 2006 to 2008 on a nationwide grid of 8 × 8 km. Organic layer C stock estimates were attributed to surveyed forest stands and CORINE land cover data. Mineral soil C stock estimates were linked with the distribution of dominant soil types according to the Soil Map of Germany (1 : 1 000 000) and subsequently related to the forest area. It appears that the C pool of the organic layer was largely depending on tree species and parent material, whereas the C pool of the mineral soil varied among soil groups. We identified the organic layer C pool as stable although C was significantly sequestered under coniferous forest at lowland sites. The mineral soils, however, sequestered 0.41 Mg C ha?1 yr?1. Carbon pool changes were supposed to depend on stand age and forest transformation as well as an enhanced biomass input. Carbon stock changes were clearly attributed to parent material and soil groups as sandy soils sequestered higher amounts of C, whereas clayey and calcareous soils showed small gains and in some cases even losses of soil C. We further showed that the largest part of the overall sample variance was not explained by fine-earth stock variances, rather by the C concentrations variance. The applied uncertainty analyses in this study link the variability of strata with measurement errors. In accordance to other studies for Central Europe, the results showed that the applied method enabled a reliable nationwide quantification of the soil C pool development for a certain period. PMID:24616061

  14. Organic carbon stocks and sequestration rates of forest soils in Germany.

    PubMed

    Grüneberg, Erik; Ziche, Daniel; Wellbrock, Nicole

    2014-08-01

    The National Forest Soil Inventory (NFSI) provides the Greenhouse Gas Reporting in Germany with a quantitative assessment of organic carbon (C) stocks and changes in forest soils. Carbon stocks of the organic layer and the mineral topsoil (30 cm) were estimated on the basis of ca. 1.800 plots sampled from 1987 to 1992 and resampled from 2006 to 2008 on a nationwide grid of 8 × 8 km. Organic layer C stock estimates were attributed to surveyed forest stands and CORINE land cover data. Mineral soil C stock estimates were linked with the distribution of dominant soil types according to the Soil Map of Germany (1 : 1 000 000) and subsequently related to the forest area. It appears that the C pool of the organic layer was largely depending on tree species and parent material, whereas the C pool of the mineral soil varied among soil groups. We identified the organic layer C pool as stable although C was significantly sequestered under coniferous forest at lowland sites. The mineral soils, however, sequestered 0.41 Mg C ha(-1) yr(-1) . Carbon pool changes were supposed to depend on stand age and forest transformation as well as an enhanced biomass input. Carbon stock changes were clearly attributed to parent material and soil groups as sandy soils sequestered higher amounts of C, whereas clayey and calcareous soils showed small gains and in some cases even losses of soil C. We further showed that the largest part of the overall sample variance was not explained by fine-earth stock variances, rather by the C concentrations variance. The applied uncertainty analyses in this study link the variability of strata with measurement errors. In accordance to other studies for Central Europe, the results showed that the applied method enabled a reliable nationwide quantification of the soil C pool development for a certain period. PMID:24616061

  15. Soil-restoration rate and initial soil formation trends on example of anthropogenically affected soils of opencast mine in Kursk region, Russian Federation

    NASA Astrophysics Data System (ADS)

    Pigareva, Tatiana

    2015-04-01

    The mining industry is one of the main factors which anthropogenically change the environment. Mining process results in removing of the rocks and mechanical changes of considerable amounts of ground. One of the main results of mining arising of antropic ecosystems as well as increasing of the new created soils total area is technosols. The main factor controlling the soil formation in postmining environment is the quality of spoiled materials. Initial soil formation has been investigated on spoils of the largest iron ore extraction complex in Russia - Mikhailovsky mining and concentration complex which is situated in Kursk region, Russia. Investigated soils are presented by monogenetic weak developed soils of different age (10-15-20 years). Young soils are formed on the loess parent materials (20 year-old soil), or on a mix of sand and clay overburdens (15 and 10-year-old soils). Anthropogenically affected soils are characterized by well-developed humus horizon which is gradually replaced by weakly changed soil-building rocks (profile type A-C for 10-, 15-years old soils, and A-AC-C for 20 years old soils). Gray-humus soils are characterized by presence of diagnostic humus horizon gradually replaced by soil-building rock. The maximum intensity of humus accumulation has been determined in a semi-hydromorphic 10-year-old soil developed on the mixed heaps which is connected with features of water-air conditions complicating mineralization of plant remnants. 20-year-old soil on loess is characterized by rather high rate of organic substances accumulation between all the automorphous soils. It was shown that one of the most effective restoration ways for anthropogenically affected soils is a biological reclamation. Since overburdens once appeared on a day surface are overgrown badly in the first years, they are subject to influence of water and wind erosion. Our researchers have found out that permanent grasses are able to grow quickly; they accumulate a considerable quantity of top and root mass, promote accumulation of humus and accelerate soil building.

  16. "Lou soil", a fertile anthropogenic soil with thousands of years of cultivating history

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Liang, B.; Yan, J.; Zhao, W.

    2012-12-01

    Chinese farmers have a very long history of using manures in their fields. Owing to the long-term addition of manures, an anthropogenic layer was formed on the top of original soil profile (drab soil) in Guanzhong Plains on the south edge of the Loess Plateau, North China. This soil is named the Manural Loessial soil (or Lou soil, "Lou" means the different stories of a building in Chinese). The depth of anthropogenic layer is in range of about 30 to 100 cm depth, which has a close relationship with the soil productivity. This fertile agricultural soil has sustained the agriculture in the region for millenniums. We had determined the organic carbon (SOC) in 7 soil profiles, and found that the depths of anthropogenic layer of were in range of 40 to 71 cm (averaging 59 cm). And the anthropogenic layer became shallower as the profile was far from the village due to less manure application. The organic C stocks in this layer accounted for 69% of organic C stocks in 0-100 cm soil profiles. Organic C stocks in Lou soil was higher than that in the newly cultivated soil developed from loess parent materials. Our 30-day incubation experiment found that addition of synthetic N fertilizer significantly increased the decomposition of SOC in the soils. However, The decomposition rate of SOC in the soil added with manure and inorganic fertilizers for 18-yr (MNPK soil) was significantly lower than in the soils added without fertilizer or inorganic fertilizers (NF soil, and NPK soils). The half-life of the organic C in MNPK soils was also slower than the NF soil, and NPK soil. It indicates that long-term combined application of manure and inorganic fertilizers improves the stabilization of soil organic C. Long-term cultivation has not only increased organic C stocks, but also stabilization of organic C in soil profile. It provides us a unique sample to study the mechanism of accumulation and stabilization of organic C in soil to balance agricultural production and C sequestration in a warming earth. Our micro-plot experiment with 15N-labeled fertilizer in the long-term fertilizer trial found that the use efficiency of N fertilizer (NUE) in MNPK soil was higher than the NPK soil and NF soil in both wheat-summer fallow and winter wheat and summer corn rotation system. However, the N fertilizer losses in MNPK soil was lower than the NPK soil and NF soil in the two systems. We concluded that the long-term combined application of manure and inorganic fertilizers improves N synchrony between the supply and crop demand, and reduces its loss. Since the 1980s, however, the application of manure to arable fields has declined in Guanzhong Plain, and in other parts of China, due to the increasing use of inorganic fertilizers, and labor costs to apply manure. The nutrient input of the arable fields are heavily dependent on inorganic fertilizers. It changes the biogeochemical cycling of the ecosystem, and results in a series of problems, including eutrophication, greenhouse gas emission, and nitrate leaching. Therefore, we need to find the alternatives to solve the problems, to conserve this old anthropogenic soil while producing enough food to feed the growing population.

  17. Lunar Soil Particle Separator

    NASA Technical Reports Server (NTRS)

    Berggren, Mark

    2010-01-01

    The Lunar Soil Particle Separator (LSPS) beneficiates soil prior to in situ resource utilization (ISRU). It can improve ISRU oxygen yield by boosting the concentration of ilmenite, or other iron-oxide-bearing materials found in lunar soils, which can substantially reduce hydrogen reduction reactor size, as well as drastically decreasing the power input required for soil heating

  18. Survey of magnesium content of soils and pastures and incidence of grass tetany in three selected areas of Taranaki

    Microsoft Academic Search

    M. A. Turner; V. E. Neall; G. F. Wilson

    1978-01-01

    Results of a survey of the Mg content of representative yellow-brown loam soils in three selected areas of Taranaki are presented and discussed in relation to parent material and altitude. The areas investigated are in Inglewood, Stratford, and Waimate West counties. Factors affecting herbage Mg concentrations are examined and discussed in relation to the observed incidence of grass tetany (hypomagnesaemia)

  19. Bioremediation of distillery sludge into soil-enriching material through vermicomposting with the help of Eisenia fetida.

    PubMed

    Singh, Jaswinder; Kaur, Arvinder; Vig, Adarsh Pal

    2014-10-01

    The aim of the present study was bioremediation of distillery sludge into a soil-enriching material. It was mixed with a complementary waste, cattle dung, and subjected to vermicomposting with (V) and without (T, control) Eisenia fetida in the ratio of 0:100 % (V1, T1), 10:90 (V2, T2), 25:75 (V3, T3), 50:50 (V4, T4), 75:25 (V5, T5) and 100:0 % (V6, T6), respectively. Survival rate, growth rate, onset of maturity, cocoon production and population build-up increased with increasing ratio of cattle dung. Maximum mortality of earthworm was observed in V6 mixture. On the basis of response surface design, the concentration of sludge giving highest number of worms, cocoons and hatchlings came out to be 21.11, 24.51 and 17.19 %, respectively. Nitrogen, phosphorus, sodium and pH increased during vermicomposting but decreased in the products without earthworm and there was increase in the contents of transition metals in the products of both the techniques. However, organic carbon, electrical conductivity and potassium showed an opposite trend. PMID:25113550

  20. Spatial variability characteristics of soil available N, P, and K and their influencing factors at the county scale

    NASA Astrophysics Data System (ADS)

    Pang, Su; Li, Tinxuan; Wang, Yongdong; Yu, Haiying

    2009-06-01

    Spatial variability, a major feature of soils, was generally influenced by various factors, relative studies on which laid solid foundations for precision agriculture. In this investigation, method of geostatistics combined with GIS was used to analyze the spatial variability characteristics of soil available nitrogen (SAN), soil available phosphorus (SAP) and soil available potassium (SAK) and their influencing factors in Shuangliu county Sichuan province, China. The results showed that, SAP and SAK were normally distributed through naturally logarithmic transformation. Semivariogram analysis revealed that SAN and SAK were highly spatial correlated, while SAP moderately spatial correlated, and the spatially dependent ranges of SAN, SAK and SAP contents were 21590m, 76903m and 23300m, respectively. Through ordinary Kriging interpolation, SAN, SAP and SAK presented different varying tendencies in the study area. SSR test indicated that SAN was significantly different depending on different soil types; SAP was significantly different depending on terrain conditions and soil parental materials; SAK was strongly affected by soil parental materials. The fertilizer application rate at the regions with high soil available N, P and K contents was obviously higher than that with low soil available nutrient contents.

  1. Preliminary investigation of Large Format Camera photography utility in soil mapping and related agricultural applications

    NASA Technical Reports Server (NTRS)

    Pelletier, R. E.; Hudnall, W. H.

    1987-01-01

    The use of Space Shuttle Large Format Camera (LFC) color, IR/color, and B&W images in large-scale soil mapping is discussed and illustrated with sample photographs from STS 41-6 (October 1984). Consideration is given to the characteristics of the film types used; the photographic scales available; geometric and stereoscopic factors; and image interpretation and classification for soil-type mapping (detecting both sharp and gradual boundaries), soil parent material topographic and hydrologic assessment, natural-resources inventory, crop-type identification, and stress analysis. It is suggested that LFC photography can play an important role, filling the gap between aerial and satellite remote sensing.

  2. Soils developed from alluvial and proluvial deposits in the Gröndalselva River valley in West Spitsbergen

    NASA Astrophysics Data System (ADS)

    Pereverzev, V. N.; Litvinova, T. I.

    2012-05-01

    The genetic characterization of soils developed from alluvial and proluvial deposits in the Gröndalselva River valley (West Spitsbergen) is presented. These soils are compared with analogous soils formed on marine terraces along the coasts of Isfjord and Grönfjord. Gray-humus (soddy) soils with an O-AY-C profile have been described on parent materials of different origins, including alluvial and proluvial sediments. The texture of the soils in the Gröndalselva River valley varies from medium to heavy loam and differs from the texture of the soils on other geomorphic positions in the higher content of fine particles. The soils developed from the alluvial deposits are characterized by their richer mineralogical and chemical composition in comparison with the soils developed from proluvial deposits, marine deposits, and bedrocks. All the deposits are impoverished in CaO. No differentiation of the chemical composition of the soils along the soil profiles has been found in the soils of the coastal areas and the river valley. Some accumulation of oxalate-soluble Al and Fe compounds takes place in the uppermost mineral horizon. The soils of all the geomorphic positions have a high humus content and a high exchange capacity.

  3. The application of pH(stat) leaching tests to assess the pH-dependent release of trace metals from soils, sediments and waste materials.

    PubMed

    Cappuyns, Valérie; Swennen, Rudy

    2008-10-01

    pH is one of the key parameters that determines heavy metal mobility in soils, sediments and waste materials. In many respects leaching behaviour as reflected by the pH(stat) leaching tests provide a better means of assessing environmental impact than analysis of total elemental composition. This paper discusses the use of pH(stat) leaching tests as a tool to assess the potential mobilisation of trace metals from soils, sediments and waste materials. The possibilities of pH(stat) leaching tests are illustrated by means of different examples. The mathematical fitting of metal leaching behaviour from soils and sediments enabled a distinction between 5 groups of elements with a different leaching behaviour, which could be related to 'pools' with different reactivity. Contrary to single and sequential extractions, where pH is difficult to control, the reactivity and mobility of metals at a user-defined pH can be investigated. Moreover, the potential buffering capacity of the sample and its sensitivity to pH changes as a result of external stresses (e.g. soil acidification, liming) can be estimated. A multidisciplinary approach combining mineralogical analysis (X-ray diffraction) with chemical analysis, pH(stat) leaching tests and geochemical modelling (MINTEQA2) can provide information on the solid-phase speciation and reactivity of heavy metals in soils, sediments and waste materials. Besides the influence of pH on heavy metal leaching behaviour, additional information on heavy metal leachability and retention by the solid matrix was obtained from the kinetics of metal release during a pH(stat) test. PMID:18313214

  4. Spatial variability of available soil microelements in an ecological functional zone of Beijing.

    PubMed

    Ye, Huichun; Shen, Chongyang; Huang, Yuanfang; Huang, Wenjiang; Zhang, Shiwen; Jia, Xiaohong

    2015-02-01

    Understanding the spatial variability of soil microelements and its influencing factors is of importance for a number of applications such as scientifically formulated fertilizer and environmental protection. This study used descriptive statistics and geostatistics to investigate the spatial variability of available soil Fe, Mn, Cu, and Zn contents in agricultural topsoil (0-20 cm) in an ecological functional zone located at Yanqing County, Beijing, China. Kriging method was applied to map the spatial patterns of available soil Fe, Mn, Cu, and Zn contents. Results showed that the available soil Cu had a widest spatial correlation distance (e.g., 9.6 km), which for available soil Fe, Mn, and Zn were only 1.29, 2.58, and 0.99 km, respectively. The values of C 0/sill for available soil Fe and Zn were 0.12 and 0.11, respectively, demonstrating that the spatial heterogeneity was mainly due to structural factors. The available soil Mn and Cu had the larger values of C 0/sill (i.e., 0.50 and 0.44 for Mn and Cu, respectively), which showed a medium spatial correlation. Mapping of the spatial patterns of the four microelements showed that the decrease trend of available soil Fe and Mn were from northeast to southwest across the study area. The highest amount of available soil Cu was distributed in the middle of the study area surrounding urban region which presented as a "single island". The highest amount of available soil Zn was mainly distributed in the north and south of the study area. One-way analysis of variance for the influencing factors showed that the lithology of parental materials, soil organic matter, and pH were important factors affecting spatial variability of the available microelements. The topography only had a significant influence on the spatial variability of available soil Fe and Mn contents, parental materials, and the land use types had little influence on the spatial variability. PMID:25619696

  5. Phosphate retention by New Zealand soils and its relationship to free sesquioxides, organic matter, and other soil properties

    Microsoft Academic Search

    W. M. H. Saunders

    1965-01-01

    Phosphate retention from KH2PO4 solution at pH 4.6 was measured in some New Zealand soil profiles, arranged in sequences of increasing weathering and leaching, from sedimentary and volcanic parent materials. P retention from KH2PO4 solution correlated closely with Pretention measured by adding solid Ca(H2PO4)2H2O to moist soil and subsequently measuring water-soluble P.P retention by topsoils correlated closely with organic carbon,

  6. Working with Parents of the Handicapped: A Resource Guide.

    ERIC Educational Resources Information Center

    Klafter, Marcia B.

    The resource guide lists approximately 700 print materials and audiovisual programs (1970-1979) designed to support training efforts for parents of handicapped children. Intended for parent training, for direct parent use, and/or for professional training, the materials are organized into four categories (sample subtopics in parentheses): impact…

  7. Soil mineral surfaces of paddy soils are accessible for organic carbon accumulation after decalcification

    NASA Astrophysics Data System (ADS)

    Wissing, Livia

    2013-04-01

    We studied organic carbon (OC) accumulation due to organo-mineral associations during soil development on calcareous parent material. Two chronosequences in Zhejiang Province, PR China, were investigated; one under paddy cultivation with a maximum soil age of 2000 years, and the other under upland crops where the oldest soil was 700 years old. Bulk soils and soil fractions of the uppermost A horizons were analyzed for OC concentrations and radio carbon contents. Total pedogenic iron (Fed) concentration was determined by dithionite extraction and the proportion of oxalate extractable iron (Feox) was extracted by using the method of Schwertmann (1964). The specific surface area (SSA) of soil minerals was measured by the BET-N2 method (Brunauer et al., 1938) under four conditions: untreated, after organic matter removal, after iron removal and after removal of both. Within 700/2000 years of pedogenesis, we observed no change in clay mineral composition and no additional formation of the SSA of soil minerals. But the soils differed in the degree of decalcification, OC accumulation and in the formation of iron. Paddy soil management led to an enhanced decalcification and larger OC accumulation. Management-induced redox cycles caused larger proportions of Feox in paddy soils. Their large SSA, added to the surface area of clay minerals, provided additional options for OC covering. Unexpectedly, there was no evidence of formation of secondary minerals during soil development, which could provide new surfaces for OC accumulation. However, the study revealed higher OC coverings of mineral surfaces after decalcification in paddy soils. As carbonate and Ca2+ ions seemed to interconnect clay minerals, making their surface accessible to OC, the faster dissolution of carbonate and leaching of Ca2+ ions in paddy soils made additional clay mineral surfaces available to OC. In contrast, the surface area of minerals in non-paddy soils, in which decalcification was much lower, seemed to be partly inaccessible for OC covering due to strong microaggregation by cementation with carbonate and Ca2+-bridging. The smaller accumulation of mineral-associated SOM in non-paddy soils was additionally confirmed by the retarded replacement of the inherited carbon. The accelerated decalcification of paddy soils led to enhanced accessibility of mineral surfaces for OC covering, which intensified OC accumulation from the early stages of soil formation onward. References Brunauer, S., Emmett, P.H., Teller, E., (1938). Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60 (2), 309-319. Schwertmann, U., 1964. Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde 105 (3), 194-202.

  8. Parent to Parent Programs: Parent Preferences for Supports

    E-print Network

    Santelli, Betsy; Turnbull, Ann P.; Sergeant, Julie; Lerner, Esther P.; Marquis, Janet

    1996-01-01

    about the disability, finding and getting services, living with and caring for the child, and accessing community resources #0;y Other program supports—having group meetings for either emotional or educa- tional support. #0;y Contact local Parent...). A multi-site evaluation of Parent to Parent programs for parents of children with disabilities. Journal of Early Intervention, 22(3), 217-229. This research was conducted in collaboration with the Beach Center on Disability. It was funded...

  9. Mercury content of Illinois soils

    USGS Publications Warehouse

    Dreher, G.B.; Follmer, L.R.

    2004-01-01

    For a survey of Illinois soils, 101 cores had been collected and analyzed to determine the current and background elemental compositions of Illinois soils. Mercury and other elements were determined in six samples per core, including a surface sample from each core. The mean mercury content in the surface samples was 33 ?? 20 ??g/kg soil, and the background content was 20 ?? 9 ??g/kg. The most probable sources of mercury in these soils were the parent material, and wet and dry deposition of Hg0 and Hg2+ derived from coal-burning power plants, other industrial plants, and medical and municipal waste incinerators. Mercury-bearing sewage sludge or other fertilizers applied to agricultural fields could have been the local sources of mercury. Although the mercury content correlated with organic carbon content or clay content in individual cores, when all the data were considered, there was no strong correlation between mercury and either the organic carbon or the clay-size content.

  10. The Soil Is Alive!

    ERIC Educational Resources Information Center

    Science and Children, 1989

    1989-01-01

    Describes activities which demonstrate the abundance of organisms living underground. Provides outlined directions, lists of materials, and a soil ecosystem transparency for delving into the properties of soil. (RT)

  11. Games in an Introductory Soil Science Course: A Novel Approach for Increasing Student Involvement with Course Material

    ERIC Educational Resources Information Center

    Sulzman, Elizabeth W.

    2004-01-01

    An optional 1-credit recitation course was developed to supplement a traditionally taught 4-credit lecture-plus-laboratory course in soil science at Oregon State University. Popular, competitive games that would be familiar to students were revised to be "soils-based" and were employed in the recitation class. These games were seen as a potential…

  12. Effect of Organic Materials on Partitioning, Extractability and Plant Uptake of Metals in an Alum Shale Soil

    Microsoft Academic Search

    R. P. Narwal; B. R. Singh

    1998-01-01

    Soils developed on sulphide-bearing shale (alum shale) in Norway contain naturally high amount of heavy metals. We conducted a greenhouse pot experiment to study the effect of four rates (0, 2, 4, and 8%) and three sources (cow manure, pig manure and peat soil) of organic matter in partitioning and distribution, extractability and plant uptake of Cd, Cu, Ni and

  13. Glomalin-related soil protein contains non-mycorrhizal-related heat-stable proteins, lipids and humic materials

    Microsoft Academic Search

    Adam W. Gillespie; Richard E. Farrell; Fran L. Walley; Andrew R. S. Ross; Peter Leinweber; Kai-Uwe Eckhardt; Tom Z. Regier; Robert I. R. Blyth

    2011-01-01

    Glomalin is reportedly a stable and persistent protein produced in copious quantities by mycorrhizal fungi and may be an important pool of organic N in soil. Glomalin-related soil protein (GRSP), however, is only operationally defined by its extraction method, and has been only poorly characterized at best. The goal of this study was to characterize the molecular structures within GRSP.

  14. Effects of organic materials added to vary acid soils on pH, aluminum, exchangeable NHâ, and crop yields

    Microsoft Academic Search

    P. B. Hoyt; R. C. Turner

    1975-01-01

    Alfalfa meal, sucrose, and peat moss were added in large amounts to very acid soil to find their effects on yields of barley and alfalfa grown in the greenhouse. Alfalfa meal was found to be the most effective. Its action was attributed primarily to complexing of exchangeable Al and, in consequence, decreasing toxic quantities of Al in the soil. The

  15. Soil moisture: Some fundamentals. [agriculture - soil mechanics

    NASA Technical Reports Server (NTRS)

    Milstead, B. W.

    1975-01-01

    A brief tutorial on soil moisture, as it applies to agriculture, is presented. Information was taken from books and papers considered freshman college level material, and is an attempt to briefly present the basic concept of soil moisture and a minimal understanding of how water interacts with soil.

  16. k 0INAA quality assessment by analysis of soil reference material GBW07401 using the comparator and neutron flux monitor approaches

    Microsoft Academic Search

    M. A. B. C. Menezes; R. Ja?imovi?

    2011-01-01

    It is possible to apply the k0-method using a simplified equation for concentration calculations using Excel spreadsheet, using comparators without making corrections. The objective of this study was to confirm that the k0-standardization method is more efficient and accurate than this “k0-comparator” procedure, applying suitable software that takes into account several corrections. The reference material GBW07401 soil was analyzed in

  17. Improvement of 13C and 15N CPMAS NMR spectra of bulk soils, particle size fractions and organic material by treatment with 10% hydrofluoric acid

    Microsoft Academic Search

    M. W. I. SCHMIDT; H. KNICKER; P. G. HATCHER; I. KOGEL-KNABNER

    1997-01-01

    Summary The small organic matter content of mineral soils makes it difficult to obtain I3C and 15N nuclear magnetic resonance (NMR) spectra with acceptable signal-to-noise ratios. Subjecting such samples to hydrofluoric acid removes mineral matter and leads to a relative increase in organic material. The effect of treatment with 10% hydrofluoric acid on bulk chemical composition and resolution of solid-state

  18. Parental Influences on Adolescent Adjustment: Parenting Styles Versus Parenting Practices

    ERIC Educational Resources Information Center

    Lee, Sang Min; Daniels, M. Harry; Kissinger, Daniel B.

    2006-01-01

    The study identified distinct patterns of parental practices that differentially influence adolescent behavior using the National Educational Longitudinal Survey (NELS:88) database. Following Brenner and Fox's research model (1999), the cluster analysis was used to classify the four types of parental practices. The clusters of parenting practices…

  19. Origin of nitrogen in reforested lignite-rich mine soils revealed by stable isotope analysis

    SciTech Connect

    Abad Chabbi; Mathieu Sebilo; Cornelia Rumpel; Wolfgang Schaaf; Andre Mariotti [Brandenburg University of Technology, Cottbus (Germany). Department of Soil Protection and Recultivation

    2008-04-15

    Restoration of the nitrogen cycle is an important step in the recovery of an ecosystem after open-cast mining. Carbon and nitrogen in rehabilitated lignite containing mine soils can be derived from plant material as well as from lignite inherent to the parent substrate. We assessed the use elemental and stable carbon and nitrogen isotope measurements to trace the origin of soil nitrogen and applied these techniques to elucidate the origin of mineral N in the soil and the soil solution. The conceptual approach of this study included physical fractionation in addition to sampling of vegetation and soil from a lignite-containing mine site in Lusatia rehabilitated in 1985 with Pinus Nigra. We studied the elemental and isotopic composition of bulk samples as well as isolated fractions and soil solution. Our data indicate that the stable carbon and nitrogen isotopic composition of the soil samples are the result of mixing between plant material and substrate inherent lignite. {delta}{sup 15}N isotopes may be used as indicators of nitrogen contribution from plants to solid samples as well as soil solution. N-isotope composition of ammonia shows low spatial and interannual variability, despite strong concentration changes. Plant-derived nitrogen contributes in higher amounts to the soil solution compared to the bulk mineral soil. 45 refs., 3 figs., 3 tabs.

  20. Major element composition of glasses in three Apollo 15 soils.

    NASA Technical Reports Server (NTRS)

    Reid, A. M.; Warner, J.; Ridley, W. I.; Brown, R. W.

    1972-01-01

    Approximately 180 glasses in each of three Apollo 15 soils have been analyzed for nine elements. Cluster analysis techniques allow the recognition of preferred glass compositions that are equated with parent rock compositions. Green glass rich in Fe and Mg, poor in Al and Ti may be derived from deep-seated pyroxenitic material now present at the Apennine Front. Fra Mauro basalt (KREEP) is most abundant in the LM soil and is tentatively identified as ray material from the Aristillus-Autolycus area. Highland basalt (anorthositic gabbro), believed to be derived from the lunar highlands, has the same composition as at other landing sites, but is less abundant. The Apennine Front is probably not true highland material but may contain a substantial amount of material with the composition of Fra Mauro basalt, but lacking the high-K content.

  1. Magnetic and Geochemical Properties of Andic Soils from the Massif Central, France

    NASA Astrophysics Data System (ADS)

    Grison, H.; Petrovsky, E.; Dlouha, S.; Kapicka, A.

    2014-12-01

    Ferrimagnetic iron oxides are the key magnetic minerals responsible for enhancement of the magnetic susceptibility in soils. Soils with andic properties contain high amount of Fe-oxides, but only few attempts were made to characterize these soils using magnetic methods. Magnetic susceptibility is in particular suitable for its sensitivity and fast measurement; the presence of Fe-oxides can be easily identified directly in the field. The aim of our study is to describe main magnetic and geochemical properties of soils rich in Fe oxides derived from strongly magnetic volcanic basement. The studied sites are located at the basalt parent rock formed during Pleistocene, Pliocene and Miocene. Investigated soils are exposed to the mountainous climate with the perudic soil moisture regime and cryic temperature soil regime. Seven basalt soil profiles with typical andic properties were analyzed down to parent rock by a set of magnetic and geochemical methods. The magnetic susceptibility was measured in situ and in laboratory using the Bartington MS2D and AGICO MFK1. Its temperature dependence was measured in order to assess phase transformations of magnetic minerals using the KLY4. Magnetic data were completed by the hysteresis, IRM and DCD measurements using ADE EV9 VSM. Geochemical data include soil reaction (pH), organic carbon, cations exchange capacity, and extractable iron and aluminium in the soil extracted by a dithionite-citrate, acid-ammonium oxalate and a pyrophosphate solution. Scanning electron microscopy was done for top/sub-soil and rock samples. Geochemical soil properties reflecting iron oxide stability correlate well with mass-specific magnetic susceptibility. Well pronounced relationship was observed between magnetic grain size, precipitation and soil pH, second group is reflecting concentration of feri-magnetic particles and age of parent rock, and the third group reflects degree of weathering and the thermomagnetic indices expressing changes in magneto-mineralogy along the soil profiles. Influence of the weathering processes on all the measured parameters is discussed. Soil genesis is influenced by several factors, where the moisture is more important than the age of the parent material. Acknowledgement: This study was supported by Czech Science Foundation through grant No 13-10775S.

  2. Unlocking the biogeochemical black box: What drives microbial response to climate forcing in semi-arid soils?

    NASA Astrophysics Data System (ADS)

    Moravec, B. G.; McLain, J. E.; Lohse, K. A.

    2009-12-01

    Microbial mediated cycling of carbon (C) and nitrogen (N) and their loss from soils are closely linked to soil moisture and temperature. Yet, it is unclear how microbial communities will respond to climatic forcing (namely increased inter-annual precipitation variability and severe drought) and to what extent parent material controls these responses. We used Real Time Polymerase Chain Reaction (RT-PCR) and C utilization assays to determine the relative abundance and diversity of microbial populations during pre-, mid- and post-monsoon time intervals at four sites along a steep elevation gradient (temperature and precipitation range of >10°C and >50 cm, respectively) in the Santa Catalina Mountains, AZ. Contrasting parent materials (schist and granite) were paired at elevations. RT-PCR results showed large increases of bacterial and fungal biomarkers at high elevations with the onset of precipitation (pre- to mid- monsoon conditions) (as much as 824%). In contrast, bacteria biomarkers did not change at low elevation granite site as a result of the onset of precipitation whereas fungal biomarkers increased by 177% at this site. Both bacteria and fungal biomarkers increased substantially at low elevation schist sites with the onset of precipitation. Finally, C utilization assays indicated that high elevation sites had a relatively high diversity of C utilization compared to low elevation soils. We hypothesize that increased bacterial and fungal abundance in low elevation schist-derived soils relative to granite soils after the onset of monsoon rains may be a function of soil texture, with higher clay content in schist soils leading to higher soil moisture availability. Alternatively, differences in microbial responses may be due to higher C availability in schist soils compared to granite soils. Higher C utilization diversity as well as similar bacteria and fungal biomarker responses found at high elevation sites (both granite and schist soils) in response to increased precipitation suggest that climate conditions rather than parent materials direct microbial response under wet/cool soil conditions. Findings from our lower elevation sites suggest that microbial sensitivity to dryer and hotter conditions result in a decrease in soil microbial diversity and seasonal response and stronger control of parent material in modulating these responses. Rainout and rainon experiments and reciprocal transplants are underway to test these hypotheses.

  3. A simple method to determine mineralization of (14) C-labeled compounds in soil.

    PubMed

    Myung, Kyung; Madary, Michael W; Satchivi, Norbert M

    2014-06-01

    Degradation of organic compounds in soil is often determined by measuring the decrease of the parent compound and analyzing the occurrence of its metabolites. However, determining carbon species as end products of parent compound dissipation requires using labeled materials that allow more accurate determination of the environmental fate of the compound of interest. The current conventional closed system widely used to monitor degradation of (14) C-labeled compounds in soil is complex and expensive and requires a specialized apparatus and facility. In the present study, the authors describe a simple system that facilitates measurement of mineralization of (14) C-labeled compounds applied to soil samples. In the system, soda lime pellets to trap mineralized (14) C-carbon species, including carbon dioxide, were placed in a cup, which was then inserted above the treated soil sample in a tube. Mineralization of [(14) C]2,4-D applied to soil samples in the simple system was compared with that in the conventional system. The simple system provided an equivalent detection of (14) C-carbon species mineralized from the parent compound. The results demonstrate that this cost- and space-effective simple system is suitable for examining degradation and mineralization of (14) C-labeled compounds in soil and could potentially be used to investigate their mineralization in other biological matrices. PMID:24677225

  4. Spatial variability and temporal changes in the trace metal content of soils: implications for mine restoration plan.

    PubMed

    Chandra, Rachna; Prusty, B Anjan Kumar; Azeez, P A

    2014-06-01

    Trace metals in soils may be inherited from the parent materials or added to the system due to anthropogenic activities. In proposed mining areas, trace metals become an integral part of the soil system. Usually, researchers undertake experiments on plant species selection (for the restoration plan) only after the termination of mining activities, i.e. without any pre-mining information about the soil-plant interactions. Though not shown in studies, it is clear that several recovery plans remain unsuccessful while carrying out restoration experiments. Therefore, we hypothesize that to restore the area effectively, it is imperative to consider the pre-mining scenario of metal levels in parent material as well as the vegetation ecology of the region. With these specifics, we examined the concentrations of trace metals in parent soils at three proposed bauxite locations in the Eastern Ghats, India, and compared them at a spatio-temporal scale. Vegetation quantification and other basic soil parameters accounted for establishing the connection between soil and plants. The study recorded significant spatial heterogeneity in trace metal concentrations and the role of vegetation on metal availability. Oxidation reduction potential (ORP), pH and cation exchange capacity (CEC) directly influenced metal content, and Cu and Ni were lithogenic in origin. It implies that for effective restoration plant species varies for each geological location. PMID:24493264

  5. Parent Academic Overview Student-Parent Orientation

    E-print Network

    Barrett, Jeffrey A.

    resources and student academic programs · Assistance with policies and procedures · Act Academic Advising #12;Important Offices & Departments Admissions Financial AidParent Academic Overview Student-Parent Orientation Program University of California

  6. Biological control of beech and hornbeam affects species richness via changes in the organic layer, pH and soil moisture characteristics

    Microsoft Academic Search

    A. M. Kooijman; E. Cammeraat

    2010-01-01

    1. ?Litter quality is an important ecosystem factor, which may affect undergrowth species richness via decomposition and organic layers directly, but also via longer-term changes in soil pH and moisture. The impact of beech trees with low-degradable and hornbeam trees with high-degradable litter on biodiversity and soil characteristics was studied in ancient forests on decalcified marl, a parent material sensitive

  7. Development of laboratory reference material: Soil 1. Baseline and highly elevated concentrations of metals and polycyclic aromatic hydrocarbons

    Microsoft Academic Search

    K. Kupiec; P. Konieczka; J. Namie?nik

    2011-01-01

    Reference materials play a key part in systems of inspection and quality control of results of analytical measurements. The main limitation in using certified reference materials (CRM) is their high price, which results from the long and costly process of producing the reference material. An alternative to costly CRM materials is the employment of laboratory reference materials, particularly for interlaboratory

  8. Cave-soils, the soils forming underneath the surface

    NASA Astrophysics Data System (ADS)

    Dobos, Endre; Bertóti, Diána; Kovács, Károly; Vadnai, Péter

    2015-04-01

    Limestone cave sediments of the Bükk-mountain in the North-Eastern part of Hungary were described, analysed and classified using WRB soil classification system. Cave sediments can be considered as soils, partly on the basis of their origin, partly of processes taking place in them. Based on the results, it can be concluded that cave soils are often shallow, lying directly above the continuous rock. In general they are layered, with clearly distinct layers of alluvial origin. Their organic matter content depends on the nature of the sediment. They often contain considerable quantities of undecomposed organic sediment, acting as the basis for very intensive soil life, which can be detected in the soil structure and may in some cases result in Vermic characteristics. The texture is very variable, ranging from clay to rough gravelly sand. Almost 100% of the soils are calcareous, the lime content is of secondary origin and its amount is at least 2%. Therefore, the pH values fluctuate from neutral to 8.5, mostly having a value around 8. In rare cases gley formation also occurs, especially on poorly drained areas, where there is no water flow to refresh the dissolved oxygen content. In the "oxy-aquic" state, characterized by high dissolved oxygen content, the iron is not reduced, so gley formation is not induced. From pedological point of view, cave sediments show a very diverse picture. Besides sedimentary layers, numerous soil formation processes can be detected, which can be considered analogue with surface processes, therefore they definitely need to be classified as soils. According to all these, in the Hungarian classification cave soils are primarily classified as alluvial, colluvial or lithomorphic soils. The WRB classification places them mainly in the Fluvisol and Leptosol Reference Groups, and according to the soils examined in the present work, they can be described with the Leptic (Epileptic), Fluvic (in rare cases Colluvic), Vermic, Calcaric, Eutric, Gleyic, or possibly with the Mollic or Rhodic qualifiers. Despite the relatively small number of analysed and reference samples during the mineralogical examinations, we can say that clear trends could be observed in the cave sediments. Due to the present and historical heterogeneity of the catchment area, it is difficult to associate the samples with surface soils. It could be established, however, that approximately half of the minerals in the cave soils are quartz, with ratios of 38-73% depending on the texture. Smectite-vermiculite associations were dominant in the clay mineral fraction, making up 80-90% of the whole fraction in seven of the eight samples. The only exception was the Mexikó-2 sample, where relatively fresh, unweathered, unleached illite-muscovite is mixed with intensively weathered kaolinite. The explanation for this probably comes from the different origin of the parent materials deposited on each other, either over time or during sampling. This theory needs to be confirmed by further detailed analysis. The work has been supported by "Kútf?" TÁMOP-4.2.2.-A11/1/KONV-2012-0049 project and HUSK/1001/2.1.2/0058 cross-border project. Keywords: cave sediments, soil, WRB, soil contamination, soil formation

  9. Parental Involvement to Parental Engagement: A Continuum

    ERIC Educational Resources Information Center

    Goodall, Janet; Montgomery, Caroline

    2014-01-01

    Based on the literature of the field, this article traces a continuum between parental involvement with schools, and parental engagement with children's learning. The article seeks to shed light on an area of confusion; previous research has shown that different stakeholder groups understand "parental engagement" in different ways.…

  10. Excluded Parents: The Deracialisation of Parental Involvement.

    ERIC Educational Resources Information Center

    Crozier, Gill

    2001-01-01

    Argues that parent involvement policies in British schools are flawed in their failure to recognize the ethnic diversity of parents and the institutional racism within the educational system. Suggests that deracialized parent involvement may in the long run contribute to widening the gap between the involved and the uninvolved, the achievers and…

  11. Parents with Children--II. Intergenerational Continuities.

    ERIC Educational Resources Information Center

    Quinton, D.; Rutter, M.

    1984-01-01

    Studies families showing parenting difficulties and examines possible origins of those difficulties. Findings demonstrate a strong link between multiple parenting breakdown and markedly disrupted family experiences in childhood. Concludes that explanatory models based exclusively on either personal or material factors are inadequate. (RH)

  12. Divorce and One-Parent Family Counseling.

    ERIC Educational Resources Information Center

    Baker, Adrian J.

    This collection of ERIC documents is designed to assist anyone involved in the counseling of single parents, divorced adults, or children of divorced parents to identify useful resources. These documents represent a computer search of the ERIC database covering the period of November, 1966 through May, 1978. The materials reviewed here address the…

  13. A survey of pasture composition in relation to soils and topography on a hill country farm in the southern Ruahine Range, New Zealand

    Microsoft Academic Search

    D. A. Grant; J. L. Brock

    1974-01-01

    Results of a pasture survey conducted on the Grasslands Division, DSIR, hilI country property in the sou!hern Ruahine Range are presented. Relationships between pasture species frequency and soils, parent material, topography, aspect, and slope are discussed. In general the pastures were dominated by Agrostis tenuis and Anthoxanthum odoratum, with moderate frequencies of Trifolium repens, flatweeds, Cynosurus cristatus, Holcus lanatus, and

  14. Effects of aqueous extract of soil-like substrate made from three different materials on seed germination and seedling growth of rice

    NASA Astrophysics Data System (ADS)

    Shao, Lingzhi; Fu, Yuming; Fu, Wenting; Yan, Min; Li, Leyuan; Liu, Hong

    2014-03-01

    Biologically processing rice and wheat straws into soil-like substrate (SLS) and then reusing them in plant cultivation system to achieve waste recycle is very crucially important in Bioregenerative life support system (BLSS). However, rice is a plant with strong allelopathic potential. It is not clear yet that what kinds of raw materials can be processed into proper SLS to grow rice in BLSS. Therefore, in this study, the aqueous extract of SLS made from three different materials including rice straw, wheat straw and rice-wheat straw mixture was utilized to investigate its effects on the seed germination and seedling growth of rice. The gradients of the extract concentrations (soil:water) were 1:3, 1:5, 1:9, and 1:15 with deionized water used as control. The effects of different types of SLS on seed germination and seedling vitality of rice were confirmed by analyzing the germination rate, seedling length, root length, the fresh weight and other indicants. In addition, based on the analysis towards pH, organic matter composition and other factors of the SLS as well as the chlorophyll, hormone content of rice, and the mechanism of the inhibition was speculated in order to explore the preventive methods of the phenomenon. Finally, the feasibility of cultivating rice on SLSs made from the raw materials mentioned above was evaluated and wheat raw was determined as the most appropriate material for growing rice.

  15. Parenting Workshops on Child Development.

    ERIC Educational Resources Information Center

    Warren-Newport Public Library, Gurnee, IL.

    The parent education materials in this packet are intended for use by professionals, and some paraprofessionals, who work with children from birth through 5 years of age and with their families. Included are guidelines for choosing playthings for children of any age, and lists of suggested toys for children of various ages, and, in particular,…

  16. A history of Soil Survey in England and Wales

    NASA Astrophysics Data System (ADS)

    Hallett, S.; Deeks, L.

    2012-04-01

    Early soil mapping in Britain was dominated, as in the USA, by soil texture with maps dating back to the early 1900's identifying surface texture and parent rock materials. Only in the 1920's did Dokuchaev's work in Russia involving soil morphology and the development of the soil profile start to gain popularity, drawing in the influence of climate and topography on pedogenesis. Intentions to create a formal body at this time responsible for soil survey were not implemented and progress remained slow. However, in 1939 definite steps were taken to address this and the soil survey was created. In 1947, its activities were transferred from Bangor to the research branch of the Rothamsted experimental station in Hertfordshire under Professor G.W. Robinson. Soon after, a number of regional offices were also established to act as a link with the National Agricultural Advisory Service. At this time a Pedology Department was established at Rothamsted, focussing on petrological, X-ray, spectrographic and chemical analyses. Although not a Rothamsted Department itself, the Survey did fall under the 'Lawes Agricultural Trust'. A Soil Survey Research Advisory Board was also formed to act as a liaison with the Agricultural Field Council. In Scotland by contrast, soil survey activities became centred on the Macaulay Institute in Aberdeen. Developments in the survey of British soils were accompanied in parallel by the development of soil classification systems. In 1930 a Soils Correlation Committee had been formed to ensure consistency in methods and naming of soil series and to ensure the classification was applied uniformly. In England and Wales the zonal system adopted was similar to that used in the USA, where soil series were named after the location where they were first described. American soil scientists such as Veitch and Lee provided stimulus to the development of mapping methods. In Scotland a differing classification was adopted, being similar to that used in Canada, recognising the importance of the soil drainage characteristics within areas of similar parent material. This led to the adoption of the soil catena approach and the usage of soil 'associations'. With Britain entering the Second World War in 1939, there followed the almost complete cessation of survey activities and it was only in the aftermath of that war that recruitment of surveyors could re-commence. The first Soil Survey Field Handbook was published in 1940. Systematic and formal national soil survey activities across both England and Wales can be dated back to 1947 when work commenced to provide a complete picture of the soil resources of the two countries. Mapping at 1:25,000 scale, almost half the land was covered when, in 1979, the survey received instructions, together with the Scottish survey, to complete respective national maps at 1:250,000, which were published in the early 1980s. Attention then turned again to mapping lowland areas in more detail as well as specialised and thematic maps. However, in 1987 systematic survey was terminated and staff of the Soil Survey of England and Wales disbanded to form the Soil Survey and Land Research Centre (SSLRC) at what became Cranfield University - where its successor, the National Soil Resources Institute (NSRI) operates currently.

  17. The occurrence, sources and spatial characteristics of soil salt and assessment of soil salinization risk in Yanqi basin, northwest China.

    PubMed

    Zhaoyong, Zhang; Abuduwaili, Jilili; Yimit, Hamid

    2014-01-01

    In order to evaluate the soil salinization risk of the oases in arid land of northwest China, we chose a typical oasis-the Yanqi basin as the research area. Then, we collected soil samples from the area and made comprehensive assessment for soil salinization risk in this area. The result showed that: (1) In all soil samples, high variation was found for the amount of Ca2+ and K+, while the other soil salt properties had moderate levels of variation. (2) The land use types and the soil parent material had a significant influence on the amount of salt ions within the soil. (3) Principle component (PC) analysis determined that all the salt ion values, potential of hydrogen (pHs) and ECs fell into four PCs. Among them, PC1 (C1-, Na+, SO4(2-), EC, and pH) and PC2 (Ca2+, K+, Mg2+and total amount of salts) are considered to be mainly influenced by artificial sources, while PC3 and PC4 (CO3(-) and HCO3(2-)) are mainly influenced by natural sources. (4) From a geo-statistical point of view, it was ascertained that the pH and soil salt ions, such as Ca2+, Mg2+ and HCO3(-), had a strong spatial dependency. Meanwhile, Na+ and Cl- had only a weak spatial dependency in the soil. (5) Soil salinization indicators suggested that the entire area had a low risk of soil salinization, where the risk was mainly due to anthropogenic activities and climate variation. This study can be considered an early warning of soil salinization and alkalization in the Yanqi basin. It can also provide a reference for environmental protection policies and rational utilization of land resources in the arid region of Xinjiang, northwest China, as well as for other oases of arid regions in the world. PMID:25211240

  18. The Occurrence, Sources and Spatial Characteristics of Soil Salt and Assessment of Soil Salinization Risk in Yanqi Basin, Northwest China

    PubMed Central

    Zhaoyong, Zhang; Abuduwaili, Jilili; Yimit, Hamid

    2014-01-01

    In order to evaluate the soil salinization risk of the oases in arid land of northwest China, we chose a typical oasis-the Yanqi basin as the research area. Then, we collected soil samples from the area and made comprehensive assessment for soil salinization risk in this area. The result showed that: (1) In all soil samples, high variation was found for the amount of Ca2+ and K+, while the other soil salt properties had moderate levels of variation. (2) The land use types and the soil parent material had a significant influence on the amount of salt ions within the soil. (3) Principle component (PC) analysis determined that all the salt ion values, potential of hydrogen (pHs) and ECs fell into four PCs. Among them, PC1 (C1-, Na+, SO42-, EC, and pH) and PC2 (Ca2+, K+, Mg2+and total amount of salts) are considered to be mainly influenced by artificial sources, while PC3 and PC4 (CO3- and HCO32-) are mainly influenced by natural sources. (4) From a geo-statistical point of view, it was ascertained that the pH and soil salt ions, such as Ca2+, Mg2+ and HCO3-, had a strong spatial dependency. Meanwhile, Na+ and Cl- had only a weak spatial dependency in the soil. (5) Soil salinization indicators suggested that the entire area had a low risk of soil salinization, where the risk was mainly due to anthropogenic activities and climate variation. This study can be considered an early warning of soil salinization and alkalization in the Yanqi basin. It can also provide a reference for environmental protection policies and rational utilization of land resources in the arid region of Xinjiang, northwest China, as well as for other oases of arid regions in the world. PMID:25211240

  19. Relevant magnetic and soil parameters as potential indicators of soil conservation status of Mediterranean agroecosystems

    NASA Astrophysics Data System (ADS)

    Quijano, Laura; Chaparro, Marcos A. E.; Marié, Débora C.; Gaspar, Leticia; Navas, Ana

    2014-09-01

    The main sources of magnetic minerals in soils unaffected by anthropogenic pollution are iron oxides and hydroxides derived from parent materials through soil formation processes. Soil magnetic minerals can be used as indicators of environmental factors including soil forming processes, degree of pedogenesis, weathering processes and biological activities. In this study measurements of magnetic susceptibility are used to detect the presence and the concentration of soil magnetic minerals in topsoil and bulk samples in a small cultivated field, which forms a hydrological unit that can be considered to be representative of the rainfed agroecosystems of Mediterranean mountain environments. Additional magnetic studies such as isothermal remanent magnetization (IRM), anhysteretic remanent magnetization (ARM) and thermomagnetic measurements are used to identify and characterize the magnetic mineralogy of soil minerals. The objectives were to analyse the spatial variability of the magnetic parameters to assess whether topographic factors, soil redistribution processes, and soil properties such as soil texture, organic matter and carbonate contents analysed in this study, are related to the spatial distribution pattern of magnetic properties. The medians of mass specific magnetic susceptibility at low frequency (?lf) were 36.0 and 31.1 × 10-8 m3 kg-1 in bulk and topsoil samples respectively. High correlation coefficients were found between the ?lf in topsoil and bulk core samples (r = 0.951, p < 0.01). In addition, volumetric magnetic susceptibility was measured in situ in the field (?is) and values varied from 13.3 to 64.0 × 10-5 SI. High correlation coefficients were found between ?lf in topsoil measured in the laboratory and volumetric magnetic susceptibility field measurements (r = 0.894, p < 0.01). The results obtained from magnetic studies such as IRM, ARM and thermomagnetic measurements show the presence of magnetite, which is the predominant magnetic carrier, and hematite. The predominance of superparamagnetic minerals in upper soil layers suggests enrichment in pedogenic minerals. The finer soil particles, the organic matter content and the magnetic susceptibility values are statistically correlated and their spatial variability is related to similar physical processes. Runoff redistributes soil components including magnetic minerals and exports fine particles out the field. This research contributed to further knowledge on the application of soil magnetic properties to derive useful information on soil processes in Mediterranean cultivated soils.

  20. A statistical approach for validating eSOTER and digital soil maps in front of traditional soil maps

    NASA Astrophysics Data System (ADS)

    Bock, Michael; Baritz, Rainer; Köthe, Rüdiger; Melms, Stephan; Günther, Susann

    2015-04-01

    During the European research project eSOTER, three different Digital Soil Maps (DSM) were developed for the pilot area Chemnitz 1:250,000 (FP7 eSOTER project, grant agreement nr. 211578). The core task of the project was to revise the SOTER method for the interpretation of soil and terrain data. It was one of the working hypothesis that eSOTER does not only provide terrain data with typical soil profiles, but that the new products actually perform like a conceptual soil map. The three eSOTER maps for the pilot area considerably differed in spatial representation and content of soil classes. In this study we compare the three eSOTER maps against existing reconnaissance soil maps keeping in mind that traditional soil maps have many subjective issues and intended bias regarding the overestimation and emphasize of certain features. Hence, a true validation of the proper representation of modeled soil maps is hardly possible; rather a statistical comparison between modeled and empirical approaches is possible. If eSOTER data represent conceptual soil maps, then different eSOTER, DSM and conventional maps from various sources and different regions could be harmonized towards consistent new data sets for large areas including the whole European continent. One of the eSOTER maps has been developed closely to the traditional SOTER method: terrain classification data (derived from SRTM DEM) were combined with lithology data (re-interpreted geological map); the corresponding terrain units were then extended with soil information: a very dense regional soil profile data set was used to define soil mapping units based on a statistical grouping of terrain units. The second map is a pure DSM map using continuous terrain parameters instead of terrain classification; radiospectrometric data were used to supplement parent material information from geology maps. The classification method Random Forest was used. The third approach predicts soil diagnostic properties based on covariates similar to DSM practices; in addition, multi-temporal MODIS data were used; the resulting soil map is the product of these diagnostic layers producing a map of soil reference groups (classified according to WRB). Because the third approach was applied to a larger test area in central Europe, and compared to the first two approaches, has worked with coarser input data, comparability is only partly fulfilled. To evaluate the usability of the three eSOTER maps, and to make a comparison among them, traditional soil maps 1:200,000 and 1:50,000 were used as reference data sets. Three statistical methods were applied: (i) in a moving window the distribution of the soil classes of each DSM product was compared to that of the soil maps by calculating the corrected coefficient of contingency, (ii) the value of predictive power for each of the eSOTER maps was determined, and (iii) the degree of consistency was derived. The latter is based on a weighting of the match of occurring class combinations via expert knowledge and recalculating the proportions of map appearance with these weights. To re-check the validation results a field study by local soil experts was conducted. The results show clearly that the first eSOTER approach based on the terrain classification / reinterpreted parent material information has the greatest similarity with traditional soil maps. The spatial differentiation offered by such an approach is well suitable to serve as a conceptual soil map. Therefore, eSOTER can be a tool for soil mappers to generate conceptual soil maps in a faster and more consistent way. This conclusion is at least valid for overview scales such as 1.250,000.

  1. Preliminary results of the North American Soil Geochemical Landscapes Project, northeast United States and Maritime Provinces of Canada

    USGS Publications Warehouse

    Grunsky, Eric C.; Smith, David B.; Friske, Peter W.B.; Woodruff, Laurel G.

    2009-01-01

    The results of a soil geochemical survey of the Canadian Maritime provinces and the northeast states of the United States are described. The data presented are for the <2-mm fraction of the surface layer (0-5 cm depth) and C horizons of the soil. Elemental determinations were made by ICP-MS following two digestions, aqua regia (partial dissolution) and a strong 4-acid mixture (near-total dissolution). The preliminary results show that Hg and Pb exhibit elevated abundances in the surface layer, while As and Ni exhibit abundances that can be attributed to the geological provenance of the soil parent materials.

  2. Volatile element depletion and K-39/K-41 fractionation in lunar soils

    NASA Technical Reports Server (NTRS)

    Church, S. E.; Tilton, G. R.; Wright, J. E.; Lee-Hu, C.-N.

    1976-01-01

    Evidence for selective loss and isotopic fractionation (in the case of K) of volatile elements during formation of agglutinates by micrometeoritic bombardment of lunar soils is presented. Concentrations and isotopic compositions of volatile elements (K, Rb, Pb) and nonvolatile elements (U, Th, Ba, Sr, rare earths) in separates taken from soils 14163, 14259, 15041, 68501, and 71500 are examined. Rayleigh fractionation calculations applied to K-39/K-41 isotopic data indicate ten-fold recycling of bulk soil, to account for observed isotopic anomalies. The lunar soil fines fraction seems to be a site of deposition for volatile or labile Pb produced during agglutination. Local fines (below 75 microns) are viewed as representative of the parent material for agglutinates formed in situ by micrometeoritic impact. Magnetic separation of agglutinates from soil 68501 revealed a bimodal population, with one class comprising welded blocky magnetic glasses.

  3. Release of soil bound (nonextractable) residues by various physiological groups of microorganisms

    SciTech Connect

    Khan, S.U.; Ivarson, K.C.

    1982-01-01

    Soil bound /sup 14/C-labeled residues were released by four different physiological groups of microorganisms from an organic soil treated with /sup 14/C-ring-labeled prometryn (2-(methylthio)-4,6-bis(isopropylamino)-s-triazine). The extent to which the different microbial populations released bound /sup 14/C residues (25-30% of the total bound /sup 14/C) from the gamma-irradiated soil after 28 days incubation did not differ considerably. Analysis of the extractable material from the incubated soil showed the presence of small amounts of the parent compound, and its hydroxy and mono-N-dealkylated analogues. Low level of /sup 14/CO2 (1.5-3.0% of the total bound /sup 14/C) was evolved from the microbial systems indicating ring cleavage of the released material as being a very minor reaction.

  4. Evaluation of meat and bone meal combustion residue as lead immobilizing material for in situ remediation of polluted aqueous solutions and soils: "chemical and ecotoxicological studies".

    PubMed

    Deydier, E; Guilet, R; Cren, S; Pereas, V; Mouchet, F; Gauthier, L

    2007-07-19

    As a result of bovine spongiform encephalopathy (BSE) crisis, meat and bone meal (MBM) production can no longer be used to feed cattle and must be safely disposed of or transformed. MBM specific incineration remains an alternative that could offer the opportunity to achieve both thermal valorization and solid waste recovery as ashes are calcium phosphate-rich material. The aim of this work is to evaluate ashes efficiency for in situ remediation of lead-contaminated aqueous solutions and soils, and to assess the bioavailability of lead using two biological models, amphibian Xenopus laevis larvae and Nicotiana tabaccum tobacco plant. With the amphibian model, no toxic or genotoxic effects of ashes are observed with concentrations from 0.1 to 5 g of ashes/L. If toxic and genotoxic effects of lead appear at concentration higher than 1 mg Pb/L (1 ppm), addition of only 100 mg of ashes/L neutralizes lead toxicity even with lead concentration up to 10 ppm. Chemical investigations (kinetics and X-ray diffraction (XRD) analysis) reveals that lead is quickly immobilized as pyromorphite [Pb10(PO4)6(OH)2] and lead carbonate dihydrate [PbCO(3).2H2O]. Tobacco experiments are realized on contaminated soils with 50, 100, 2000 and 10000 ppm of lead with and without ashes amendment (35.3g ashes/kg of soil). Tobacco measurements show that plant elongation is bigger in an ashes-amended soil contaminated with 10000 ppm of lead than on the reference soil alone. Tobacco model points out that ashes present two beneficial actions as they do not only neutralize lead toxicity but also act as a fertilizer. PMID:17240054

  5. Rapid mineral differentiation among horizons of a meadow soil

    NASA Astrophysics Data System (ADS)

    Szalai, Zoltán; Ringer, Marianna; Kiss, Klaudia; Horváth Szabó, Kata; Németh, Tibor; Sipos, Péter; Madarász, Balázs; Jakab, Gergely

    2015-04-01

    Soil development under hydromorphic conditions may results intense mineral transformation and rapid vertical differentiation in the profile. Original papers refer more than hundreds of years for this kinds of mineral transformations. We suppose that this process could be more rapid. Present paper focuses on the profile development of a sandy meadow soil (calcic, gleyic Phaeozem ferric, arenic) from the soil mineralogical viewpoint. The main aim was to explore the degree of mineral phase alteration via soil formation during a half-century under hydromorphic conditions. The studied soil is located in a swampy area (near to Ceglédbercel, Hungary). The parent material deposited during an extremely heavy flood event in 1963. The reference (parent) material can be found near to the study site. We combined routine field tests (carbonate content, dipididil test) with laboratory measurements (selective extractions for the determination of amorphous and crystalline Fe, and Mn content; X-ray phase analysis; X-ray fluorescence spectroscopy; particle sizing by laser diffraction; NDIR and FT-IR and DRS spectrometry), whereas Eh and pH measured by field monitoring station. The most intense mineralogical transformations developed in the zone of the heaviest redox oscillation. Results show that well developed horizons have emerged during fifty years in the studied soil. This time was enough for bivalent and trivalent iron mineral crystallisation and smectite formation in this zone. The high proportion of amorphous and colloidal phases refers to very intensive recent processes. Soil formation under hydromorphic conditions proceeds at higher speeds contrariwise to the century time scale reported in sources (discussing non-waterlogged cases). Support of the Hungarian Research Fund OTKA under contracts K100180 (for Z. Szalai) and K100181 (for T Németh) are gratefully acknowledged.

  6. Long-term stabilization of uranium mill tailings: effects of rock material on vegetation on soil moisture

    SciTech Connect

    Beedlow, P.A.; Carlile, D.W.

    1982-11-01

    A field-scale experiment was conducted to investigate the effects of pit-run rock and washed cobble on vegetation and soil moisture. The success of various seed mixtures, transplanting and irrigation levels were evaluated. Total cover changed negligibly from the first growing season to the next, but the structure of the vegetation changed markedly. Moderate levels of irrigation increased the establishment of perennial grasses and shrubs. Rock placed on the surface prior to planting resulted in increased cover of weeds, shrubs and forbs and decreased grass cover relative to soil without surface rock. The most successful seed mixture was one of predominantly shrub and forb species adapted to the local environment. No significant differences in soil moisture were found between surface cover types. 6 references, 7 figures.

  7. Involving Latino Parents.

    ERIC Educational Resources Information Center

    Quezada, Reyes L.; Diaz, Delia M.; Sanchez, Maria

    2003-01-01

    Describes barriers to Latino parent involvement in educational activities, factors to consider when involving Latino parents, and two examples of Latino involvement programs in California: Family Literacy Workshop at James Monroe Elementary School, Madera Unified School District, and Parents Take P.A.R.T. (Parent Assisted Reading Training) at…

  8. Parent Hearing Aid Experiences

    ERIC Educational Resources Information Center

    Munoz, Karen; Roberts, Mallory; Mullings, Day; Harward, Richard

    2012-01-01

    This study addresses parent experiences in obtaining and managing hearing aids for their young child. The purpose was to identify challenges parents encounter to determine what state agencies can do to improve parent access to amplification. Data were collected July through September of 2010; 40 parents of children ages birth to 3 years old…

  9. Codependency and Parenting Styles

    Microsoft Academic Search

    Judith L. Fischer; Duane W. Crawford

    1992-01-01

    This study examined the association between the parent-child relationship (as perceived by late adolescent-early adult children) and the adolescent's codependency. College students 17through 22 years of age (N = 175) reported the parenting style of their mother and father (via ratings of perceived parental support and coercive control) and completed a scale assessing their own level of codependency. Parenting style

  10. Parents Teach Reading, Too.

    ERIC Educational Resources Information Center

    Clary, Linda Mixon

    Parents and teachers need to be involved in teaching children to read and to enjoy reading. There are three planks in a platform that will help all parents become involved in their children's learning to read. First, parents must set the example. If they want their children to read, parents must read around them and to them. Secondly, they must…

  11. Metals Data Pennsylvania Soils

    E-print Network

    Boyer, Elizabeth W.

    than the comments given in the following section. Materials and Methods The soil samples used personnel. #12;2 The methods used to analyze soil samples is a major concern when data is evaluated, mergedMetals Data for Pennsylvania Soils by Edward J. Ciolkosz, Richard C. Stehouwer, and Mary Kay

  12. Games in an Introductory Soil Science Course: A Novel Approach for Increasing Student Involvement with Course Material

    NSDL National Science Digital Library

    Elizabeth Sulzman

    This article describes an optional recitation course that was developed to supplement a traditionally taught lecture-plus-laboratory course in soil science. Popular, competitive games that would be familiar to students were revised to be "soils-based" and were employed in the recitation class. These games were seen as a potential means to use knowledge in an atypical fashion while at the same time generating enthusiasm for the subject. Evaluation of two terms of games implementation showed that these activities increased both student enthusiasm and, potentially, course performance.

  13. Rehabilitation materials from surface- coal mines in western USA. I. Chemical characteristics of spoil and replaced cover-soil.

    USGS Publications Warehouse

    Severson, R.C.; Gough, L.P.

    1983-01-01

    A range of at least one order of magnitude was observed for DTPA-extractable Cd, Cu, Fe, Mn, Ni, Pb and Zn and organic matter content of samples of spoil and cover-soil from eleven western USA surface-coal mines. The observed pH of these samples ranged from 3.9 to 8.9; however, most samples were near-neutral to alkaline in reaction. Most constituent levels were found to be below proposed guidelines for maximum permissible levels in mine soil. -from Authors

  14. Silent play in a loud theatre - soil development in a geomorphically active proglacial area

    NASA Astrophysics Data System (ADS)

    Harlaar, Piet; Temme, Arnaud; Heckmann, Tobias

    2015-04-01

    Proglacial areas are scientifically famous for two sets of processes: first, the tumultuous geomorphic response to glacial retreat including enhanced fluvial activity and mass movements such as debris flows, rock fall and landslides. Second, the slow and somewhat regular development of soil and vegetation. These two sets of processes have usually been studied in isolation: soil development is best observed in wide, flat proglacial areas where not much geomorphic work is done. This has left questions unanswered that relate to the effect of geomorphic disturbance on high mountain soil formation, and vice versa. We attempted to characterize these interactions in the geomorphically active proglacial area of the Gepatsch Ferner in the Kaunertal in Austria. Geomorphic activity in this area is intensively studied in the PROSA project. In our study, several dozen soils were sampled in order to describe soil properties. Sampling locations were selected with Latin Hypercube sampling to best cover the variation in soil-forming factors. Results clearly showed that soil properties were not only a function of age, but also of erosion-deposition amounts and geomorphic regime. In contrast to what is reported in literature, soil pH in very young soils rose before it dropped as soils became older. The early pH rise probably reflects the leaching of pyrite in the parent material.

  15. Mineral Occurrence, Translocation, and Weathering in Soils Developed on Four Types of Carbonate and Non-carbonate Alluvial Fan Deposits in Mojave Desert, Southeastern California

    NASA Astrophysics Data System (ADS)

    Deng, Y.; McDonald, E. V.

    2007-12-01

    Soil geomorphology and mineralogy can reveal important clues about Quaternary climate change and geochemical process occurring in desert soils. We investigated (1) the mineral transformation in desert soils developed on four types of alluvial fans (carbonate and non-carbonate) under the same conditions of climate and landscape evolution; and (2) the effects of age, parent materials, and eolian processes on the transformation and translocation of the minerals. Four types of alluvial-fan deposits along the Providence Mountains piedmonts, Mojave Desert, southeastern California, USA were studied: (1) carbonate rocks, primarily limestone and marble (LS), (2) fine-grained rhyodacite and rhyolitic tuff mixed with plutonic and carbonate rocks (VX), (3) fine- to coarse- grained mixed plutonic (PM) rocks, and (4) coarse-grained quartz monzonite (QM). These juxtaposed fan deposits are physically correlated in a small area (about 20 km by 15 km) and experienced the same climatic changes in the late Pleistocene and Holocene. The soils show characteristic mineral compositions of arid/semiarid soils: calcite is present in nearly all of the samples, and a few of the oldest soils contain gypsum and soluble salts. Parent material has profound influence on clay mineral composition of the soils: (1) talc were observed only in soils developed on the volcanic mixture fan deposits, and talc occurs in all horizons; (2) palygorskite occur mainly in the petrocalcic (Bkm) of old soils developed on the LS and VX fan deposits, indicating pedogenic origin; (3) chlorite was observed mainly in soils developed on VX fan deposits (all ages) and on some LS deposits, but it is absent in soils developed on PM and QM fan deposits; and (4) vermiculite was common throughout soils developed on plutonic rock fan deposits. These mineralogical differences suggest that minerals in the soils are primarily inherited from their parent materials and that mineral weathering in this area was weak. Except the abundance of palygorskite, soils developed on alluvial fans with different ages (4,000 to 200,000 yrs old) did not show other distinct mineralogy difference as a function of age or soil development, which supports the weak weathering of the soils. The results suggest that the clays in the argillic horizons are primarily derived from the accumulation of desert dust, and with time, are translocated into subsoil horizons. The pedogenic accumulation of dust is a soil-geomorphic process common to the Mojave Desert, as well as other deserts in the world.

  16. PHYSICAL REVIEW E 84, 041402 (2011) Ice-lens formation and geometrical supercooling in soils and other colloidal materials

    E-print Network

    Wettlaufer, John S.

    2011-01-01

    that in the United States over $2 billion was spent on reparations to roads caused by frost-heave damage alone [5 mark after frozen soils have melted. Damaged rocks can break away to kickstart landslides, while damage to roads and buildings in cold climates and has a significant cost, in particular because

  17. The effect of addition of different amounts and types of organic materials on soil physical properties and yield of wheat

    Microsoft Academic Search

    A. R. Barzegar; A. Yousefi; A. Daryashenas

    2002-01-01

    A field experiment was conducted to investigate the influences of 0, 5, 10, 15 Mg ha-1 of wheat (Triticum aestivum) straw, composted sugarcane bagasse residue and farmyard manure on soil physical properties and yield of winter wheat. The experimental design was a split plot with four replicates. The considered physical properties, 1 year after organic matter addition, included aggregate stability,

  18. Contamination of Soil by Crude Oil and Drilling Muds. Use of Wastes by Production of Road Construction Materials

    Microsoft Academic Search

    Z. A. Mansurov; E. K. Ongarbaev; B. K. Tuleutaev

    2001-01-01

    A thermal method of separating wastes into organic and mineral parts is proposed for processing crude oil sludges and oil-contaminated soils accumulated in operation of oil fields and oil pipelines. After exposure to heat, the content of the organic part in wastes decreases to 15-20 wt. %. The possibility of producing a cold asphalt concrete mixture from solid waste residue

  19. Radon-222 in soil, water and building materials: Presentation of laboratory measurement methods in use at Ris

    E-print Network

    a dominant part of the life-time radiation dose for most persons in the Nordic countries. This is, however controls the soil-gas radon concentration. It is measured as follows: The sample is mildly disaggregated. Analysis of precision is carried out both for each chamber concentration determination (typically each cell

  20. Quality soil management or soil quality management : performance versus semantics

    Microsoft Academic Search

    R. E Sojka; D. R Upchurch; N. E Borlaug

    2003-01-01

    In the past 200 years, soil science has used reductionist research to develop agricultural technologies that have unlocked the hidden potential of earth's natural systems to feed, clothe, and provide raw materials to the human population of over six billion. The soil quality paradigm seeks to change that scientific approach, the nomenclature of soil science, and institutional priorities for soil

  1. Parent Behavior Importance and Parent Behavior Frequency Questionnaires: Psychometric Characteristics

    ERIC Educational Resources Information Center

    Mowder, Barbara A.; Sanders, Michelle

    2008-01-01

    This study examined the psychometric characteristics of two parenting measures: the Parent Behavior Importance Questionnaire (PBIQ) and Parent Behavior Frequency Questionnaire (PBFQ). Both research questionnaires are based on the parent development theory (PDT) and offer parent as well as non-parent respondents the opportunity to rate 38 parenting

  2. ?-cyclodextrin functionalized meso-/macroporous magnetic titanium dioxide adsorbent as extraction material combined with gas chromatography-mass spectrometry for the detection of chlorobenzenes in soil samples.

    PubMed

    Zhang, Jiabin; Gan, Ning; Chen, Si; Pan, Muyun; Wu, Dazhen; Cao, Yuting

    2015-07-01

    A high-performance and selective adsorbent was developed for simultaneous extraction of 6 chlorobenzenes residues in soil samples by using magnetic solid phase extraction (MSPE) combined with automated SPE followed by gas chromatography-mass spectrometry (GC-MS). The adsorbent was synthesized by grafting carboxymethyl-?-cyclodextrin (CM-?-CD) on the surface of porous core-shell magnetic Fe3O4@flower like TiO2 microspheres (Fe3O4@fTiO2-CMCD), used as a carrier. The main factors (adsorbent amount, adsorption time, elution solvent, elution volume, and elution flow rate) affecting the extraction efficiency were investigated in detail. The adsorbent exhibited high loading capacity (25.6mgg(-1) for 1,3-dichlorobenzene). This maybe due to meso-/macroporous TiO2 having high specific surface area; as a carrier of the ?-cyclodextrin film, it could obviously increase the number of recognition sites. The newly developed adsorbent also showed good selectivity towards chlorobenzenes based on host-guest interactions between ?-cyclodextrin (on adsorbent's surface) and targets, which can minimize complex matrix interference in soil samples. The proposed method was successfully applied for the analysis of environmental soil samples with recovery ranging from 87.3 to 104.3%. All target compounds showed good linearities with correlation coefficients (r) higher than 0.996. The limits of quantitation for the 6 CBs were 0.03-0.09?gkg(-1). These findings confirmed meso-/macroporous structure Fe3O4@fTiO2-CMCD as a highly effective extraction material for use in trace CB analyses in complex soil samples. PMID:25990351

  3. Saharan dust in Yucatan soils: Sr isotope and trace element evidence of dust inputs

    NASA Astrophysics Data System (ADS)

    Das, R.; Pett-Ridge, J. C.; D'Odorico, P.; Lawrence, D.

    2012-12-01

    Saharan dust transport is an important source of material for soil development in Caribbean islands, and may even be a larger source than the weathering of parent material on calcareous substrates in the Florida Keys and Bahamas. The Yucatan peninsula has similar soils and limestone parent materials, and receives annual Saharan dust inputs, but the importance of long-range dust transport for soil development in the region remains uncertain. Here we find evidence of Saharan dust in soils from a karst landscape in the central Yucatan peninsula using Sr isotopes, trace and rare earth element geochemistry. 87Sr/86Sr isotope ratios and trace element concentrations were measured in three soil profiles - an upland mature forest, upland secondary forest and depositional lowland (bajo) mature forest. 87Sr/86Sr isotope ratios in the upland mature and secondary forests were close to local limestone bedrock, while the bajo soil profile had higher values than local bedrock or Central American volcanic inputs, indicating the influence of Saharan dust. Trace element concentrations and rare earth element patterns in the upland mature forest and bajo profiles are more similar to values for Saharan dust and Central American volcanic sources than to local limestone bedrock. However, influence from volcanic sources would have lower 87Sr/86Sr values, indicating that Saharan dust influence is more likely. The bajo soil shows higher 87Sr/86Sr ratios and trace element concentrations compared to the upland soils, especially the secondary forest profile, indicating that soil disturbance and transport within the karst landscape influence the fate of eolian inputs and trace element geochemistry of soils in this region. Saharan dust is an important input to soil development at this location, and further work using isotopes and rare earth elements are necessary to quantify long-term dust inputs as a source material for soil development; Plot of Sr isotope ratio vs trace element (Zr/Y) ratio in three soil profiles at El Refugio, central Yucatan peninsula. Values for local limestone bedrock at El Refugio, Saharan dust and Central American volcanic sources are indicated for reference

  4. A mass-balance model to separate and quantify colloidal and solute redistributions in soil

    USGS Publications Warehouse

    Bern, C.R.; Chadwick, O.A.; Hartshorn, A.S.; Khomo, L.M.; Chorover, J.

    2011-01-01

    Studies of weathering and pedogenesis have long used calculations based upon low solubility index elements to determine mass gains and losses in open systems. One of the questions currently unanswered in these settings is the degree to which mass is transferred in solution (solutes) versus suspension (colloids). Here we show that differential mobility of the low solubility, high field strength (HFS) elements Ti and Zr can trace colloidal redistribution, and we present a model for distinguishing between mass transfer in suspension and solution. The model is tested on a well-differentiated granitic catena located in Kruger National Park, South Africa. Ti and Zr ratios from parent material, soil and colloidal material are substituted into a mixing equation to quantify colloidal movement. The results show zones of both colloid removal and augmentation along the catena. Colloidal losses of 110kgm-2 (-5% relative to parent material) are calculated for one eluviated soil profile. A downslope illuviated profile has gained 169kgm-2 (10%) colloidal material. Elemental losses by mobilization in true solution are ubiquitous across the catena, even in zones of colloidal accumulation, and range from 1418kgm-2 (-46%) for an eluviated profile to 195kgm-2 (-23%) at the bottom of the catena. Quantification of simultaneous mass transfers in solution and suspension provide greater specificity on processes within soils and across hillslopes. Additionally, because colloids include both HFS and other elements, the ability to quantify their redistribution has implications for standard calculations of soil mass balances using such index elements. ?? 2011.

  5. Parent to Parent: Giftedness with a Twist

    ERIC Educational Resources Information Center

    McGee, Christy D.

    2012-01-01

    Discovering that a child is gifted can be both exhilarating and daunting. Parents watch in amazement and awe as their 3-year-old reads a first-grade-level book flawlessly, or they might listen to their preschool child's distress over seeing a homeless person on the street. Parents observe as their 6-year-old dismantles a broken CD player and…

  6. Maternal Personality, Parenting Cognitions, and Parenting Practices

    ERIC Educational Resources Information Center

    Bornstein, Marc H.; Hahn, Chun-Shin; Haynes, O. Maurice

    2011-01-01

    A community sample of 262 European American mothers of firstborn 20-month-olds completed a personality inventory and measures of parenting cognitions (knowledge, self-perceptions, and reports about behavior) and was observed in interaction with their children from which measures of parenting practices (language, sensitivity, affection, and play)…

  7. SOIL PHYSICAL PROPERTIES AND CROP PRODUCTIVITY OF AN ERODED SOIL AMENDED WITH CATTLE MANURE

    Microsoft Academic Search

    Francisco J. Arriaga; Birl Lowery

    2003-01-01

    Erosion changes soil properties, especially physical properties, mainly because it removes surface soil rich in organic materials and exposes lower soil layers. In 1988, a study was established to determine the effects of soil erosion and long-term manure applications on selected soil phys­ ical properties and corn (Zea mays L.) production. After 10 years of an­ nual manure applications, soil

  8. The importance of crop residue on soil aggregation and soil organic matter components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Above- and below-ground plant residues are the soil’s main sources of organic materials that bind soil particles together into aggregates and increase soil carbon storage. Serving to stabilize soil particles, soil organic matter assists in supplying plant available nutrients, increases water holding...

  9. Geomorphic Controls on High Elevation Meadow Soil Development and Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Guerrero, J.; Arnold, C. L.; Ghezzehei, T. A.; Berhe, A. A.

    2012-12-01

    High elevation meadows form in response to the geomorphology of the landscape that ultimately controls the elevation of their water table and soil development. Proper understanding of soil development in high elevation meadows is essential since these meadow soils play a critical role in the filtering and release of water to the watershed. This study was conducted in a subalpine meadow in Yosemite National Park that formed in response to glacial ablation drift. In this heterogeneous landscape, we were able to examine geomorphological controls on meadow soil development, while controlling for all other soil forming factors such as time, parent material, climate, and organisms. We collected soil samples from three depths across the meadow hydrologic gradient in three topographically distinct locations in the meadow. We measured gravimetric water content, pH, soil color, particle size distribution, cation exchange capacity, C:N ratio, and bulk density on each sample. By conducting these tests on each sample we were able to obtain data that would allow us to compare how soils differ in characteristics based on their topographical location in the meadow. We found that soil color showed very small differences across depth and water content of the relevant area. The carbon concentration of the samples differed throughout depth and water content of an area. Dry areas had a carbon concentration ranging between 2.52-5.99%, while intermediate areas had a range of 2.67-24.66%; wet areas had a range of 3.45-24.84%. C: N ratio was more consistent with all values ranging from 13.04-18.13%, with an average throughout all samples of 15.02% N. Understanding how soils differ across geomorphologically distinct regions of the meadow will allow for a better understanding on how topography will affect biodiversity and water quality in these areas.

  10. Variable Charge Soils: Mineralogy and Chemistry

    SciTech Connect

    Qafoku, Nik; Van Ranst, Eric; Noble, Andrew; Baert, Geert

    2003-11-01

    Soils rich in particles with amphoteric surface properties in the Oxisols, Ultisols, Alfisols, Spodosols and Andisols orders (1) are considered variable charge soils (2). The term “variable charge” is used to describe organic and inorganic soil constituents with reactive surface groups whose charge varies with pH, ionic concentration and composition of the soil solution. Such groups are the surface carboxyl, phenolic and amino functional groups of organic materials in soils, and surface hydroxyl groups of Fe and Al oxides, allophane and imogolite. The hydroxyl surface groups are also present on edges of some phyllosilicate minerals such as kaolinite, mica, and hydroxyl-interlayered vermiculite. The variable charge is developed on the surface groups as a result of adsorption or desorption of ions that are constituents of the solid phase, i.e., H+, and the adsorption or desorption of solid-unlike ions that are not constituents of the solid. Highly weathered soils usually undergo isoeletric weathering and reach a “zero net charge” stage during their development. They have a slightly acidic to acidic soil solution pH, which is close to either point of zero net charge (PZNC) (3) or point of zero salt effect (PZSE) (3). They are characterized by high abundances of minerals with a point of zero net proton charge (PZNPC) (3) at neutral and slightly basic pHs; the most important being Fe and Al oxides and allophane. Under acidic conditions, the surfaces of these minerals are net positively charged. In contrast, the surfaces of permanent charge phyllosilicates are negatively charged regardless of ambient conditions. Variable charge soils therefore, are heterogeneous charge systems. The coexistence and interactions of oppositely charged surfaces or particles confers a different pattern of physical and chemical behavior on the soil, relatively to a homogeneously charged system of temperate regions. In some variable charge soils (Oxisols and some Ultisols developed on ferromagnesian-rich parent materials) the surfaces of phyllosilicates are coated to a lesser or greater extent by amorphous or crystalline, oppositely charged nanoparticles of Fe and Al oxides. These coatings exhibit a high reactive surface area and help cementing larger particles with one another. As a result of these electrostatic interactions, stable microaggregates that are difficult to disperse are formed in variable charge soils. Most of highly weathered soils have reached the “advanced stage” of Jackson-Sherman weathering sequence that is characterized by the removal of Na, K, Ca, Mg, and Fe(II), the presence of Fe and Al polymers, and very dilute soil solutions with an ionic strength (IS) of less than 1 mmol L-1. The inter-penetration or overlapping of the diffuse double layers on oppositely charged surfaces may occur in these dilute systems. These diffuse layer interactions may affect the magnitude of the effective charge, i.e., the counter-ion charge (4). In addition, salt adsorption, which is defined as the simultaneous adsorption in equivalent amounts of the cation and anion of an electrolyte with no net release of other ions into the soil solution, appears to be a common phenomenon in these soils. They act as cation- and anion-exchangers and as salt-sorbers. The magnitude of salt adsorption depends strongly on initial IS in the soil solution and the presence in appreciable amounts of oppositely charged surfaces. Among the authors that have made illustrious contributions towards a better understanding of these fascinating soil systems are S. Matson, R.K. Schofield, van Olphen, M.E. Sumner, G.W. Thomas, G.P. Gillman, G. Uehara, B.K.G. Theng, K. Wada, N.J. Barrow, J.W. Bowden, R.J. Hunter and G. Sposito. This entry is mainly based on publications by these authors.

  11. Communication with Parents

    ERIC Educational Resources Information Center

    Shipstone, Warwick

    1978-01-01

    Discusses the problems in communicating with parents and involving them in the development of their children and in the growth of their children's school. An experimental group, the Parent, Teacher, Governor Working Party (PTG), is described and evaluated. (RK)

  12. Parent's Firearm Safety Checklist

    MedlinePLUS

    Parent’s Firearm Safety Checklist IN YOUR HOME ? Before you buy a gun, consider less dangerous ways to keep your family ... window locks, dogs, etc. ? Don't buy a gun unless you have the necessary knowledge to use ...

  13. Questions about Biological Parents

    MedlinePLUS

    ... Español Text Size Email Print Share Questions About Biological Parents Article Body As you raise your adopted ... to her life—the fact that she has biological parents elsewhere—that may make it necessary for ...

  14. Growth & Development / Parental Care

    E-print Network

    Butler, Christopher J.

    Parental care Essential Minimal Nourishment Parents Self-feeding Egg size Ssmall (4-10%) Large (9-21%) Egg from insects) and calcium (from eggs or bones) Bird Protein (%) Lipid (%) Carbohydrates (%) Pigeon 23

  15. Multidimensionality of parental monitoring 

    E-print Network

    Secrest, Laura A

    2001-01-01

    This study explored the construct of parental monitoring and its relation to antisocial behavior in children. The factor structure of the Alabama Parenting Questionnaire Poor Monitoring/Supervision Scale (Frick, 1991) was examined to determine...

  16. Genetic features of soils on sorted sand deposits of different origins in the Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Pereverzev, V. N.

    2009-09-01

    Differences in the chemical composition of soils developed from sorted sands of different origins are revealed. The iron-illuvial podzols on rich glaciofluvial and marine sands are characterized by well-pronounced Al-Fe-humus differentiation of the Si, Al, and Fe in the soil profile. These soils are relatively similar in their bulk elemental composition. The difference between them is seen in the degree of differentiation of the soil profiles; it is stronger in the soils developed from glaciofluvial deposits. This is particularly true with respect to the oxalate-soluble iron and aluminum hydroxides. The deposits derived from the red-colored Tersk sandstone and processed by the sea (in the coastal zone of the White Sea) have the poorest chemical composition. In the soils developed from them, the differentiation of oxalate-soluble compounds is slightly pronounced (for Fe) or completely absent (for Si and Al). These soils can be classified as podzolized ferruginous red-colored psammozems (within the order of poorly developed soils) with the following horizons: O-Ce-Cf-C. The Ce horizon has the features of podzolization, and the Cf horizon has some features attesting to the illuvial accumulation of Fe. The profile of these soils inherits a reddish tint from the parent material.

  17. Gamma ray attenuation in the soils of Northern Ireland, with special reference to peat.

    PubMed

    Beamish, David

    2013-01-01

    This study considers gamma ray attenuation in relation to the soils and bedrock of Northern Ireland using simple theory and data from a high resolution airborne survey. The bedrock is considered as a source of radiogenic material acting as parent to the soil. Attenuation in the near-surface is then controlled by water content in conjunction with the porosity and density of the soil cover. The Total Count radiometric data together with 1:250 k mapping of the soils and bedrock of Northern Ireland are used to perform statistical analyses emphasising the nature of the low count behaviour. Estimations of the bedrock response characteristics are improved by excluding areas covered by low count soils (organic/humic). Equally, estimations of soil response characteristics are improved by excluding areas underlain by low count bedrock (basalt). When the spatial characteristics of the soil-classified data are examined in detail, the low values form spatially-coherent zones (natural clusters) that can potentially be interpreted as areas of increased water content for each soil type. As predicted by theory, the highest attenuation factors are associated with the three organic soil types studied here. Peat, in particular, is remarkably skewed to low count behaviour in its radiometric response. Two detailed studies of blanket bogs reveal the extent to which peat may be mapped by its radiometric response while the intra-peat variations in the observed response may indicate areas of thin cover together with areas of increased water content. PMID:22858640

  18. Attributing spatial and temporal changes in soil C in the UK to environmental drivers

    NASA Astrophysics Data System (ADS)

    Thomas, Amy; Cosby, Bernard; Quin, Sam; Henrys, Pete; Robinson, David; Emmett, Bridget

    2015-04-01

    The largest terrestrial pool of carbon is found in soils. Understanding how soil C responds to drivers of change (land use and management, atmospheric deposition, climate change) and how these responses are modified by inherent soil properties is crucial if we are to manage soils more sustainably in the future. Here we attempt to attribute spatial and temporal changes in UK soil C to environmental drivers using data from the UK Countryside Survey (CS), a national soil survey across England, Scotland and Wales repeated in 1978, 1998 and 2007. A mixed model approach was used to model soil C concentration (g C kg-1) and density (t C ha-1) and their absolute changes for the time periods 1978-1998, 1998-2007 and 1978-2007 across the CS sites using a variety of explanatory variables: soil (parent material, pH, moisture, Olsen-P, Shannon Diversity Index); atmospheric deposition (nitrogen and sulphur); climate (growing degree days and rain); and land use (aggregate vegetation class). Spatially, prediction of soil C concentration was good; soil moisture, pH, vegetation class and dominant grain size were all significant predictors. Field capacity also appeared to be important; however this data was only collected for a fraction of sites. N% was also strongly related to soil C concentration and density, as would be expected due to coupling of C and N in soil OM pools. Although N may drive soil C through impact on plant productivity, this cannot be separated from correlated C and N losses with OM decomposition, and hence N was not included as a driver for modelling. Predictive power for C density is not as strong as for concentration, which may reflect nonlinear relationships not represented by the modelling approach. Temporally, change in soil C is more difficult to explain, and model predictive power was lower. Change in soil pH was important in explaining change in C concentration and density, along with change in atmospheric deposition; decrease in deposition and associated soil acidity (increase in pH) was associated with a decrease in soil C concentration and density. Change in soil moisture or rainfall was also important. Inherent soil and site properties such as soil texture, vegetation class and parent material appeared to contribute most to the prediction of soil C change through modulation of the relationship between change in soil C and change in pH. Including anthropogenic and natural drivers in models of soil C stocks and changes in the UK enables assessment of the relative importance of each across the UK CS sites, however interactions among the drivers are more difficult to disentangle. Given the statistical significance of a number of drivers and soil variables in predicting soil C stocks and changes in the UK, it is important that these continue to be measured to allow better model development and more reliable predictions of future soil C conditions.

  19. The Parent Loan Trap

    ERIC Educational Resources Information Center

    Wang, Marian; Supiano, Beckie; Fuller, Andrea

    2012-01-01

    As the cost of college has spiraled ever upward and median family income has fallen, the loan program, called Parent PLUS, has become indispensable for increasing numbers of parents desperate to make their children's college plans work. Last year the government disbursed $10.6-billion in Parent PLUS loans to just under a million families. Even…

  20. Does parents’ money matter?

    Microsoft Academic Search

    John Shea

    2000-01-01

    This paper asks whether parents’ income per se has a positive impact on children’s abilities. Previous research has established that income is positively correlated across generations. This does not prove that parents’ money matters, however, since income is presumably correlated with ability. This paper estimates the impact of parents’ income by focusing on income variation due to factors – union,

  1. Parent's Journal. [Videotape Series].

    ERIC Educational Resources Information Center

    1999

    Parent's Journal is a set of 16 videotapes for parents of prenatal, infant, and toddler-age children, created by the Alaska Native Home Base Video Project of the Tlingit and Haida Head Start Program. This series offers culturally relevant solutions to the challenges of parenting, drawing on the life stories and experiences of capable mothers and…

  2. Parental Engagement with Science

    ERIC Educational Resources Information Center

    Bond, Joanna; Harbinson, Terence

    2010-01-01

    A programme of parental engagement with school science is described, in which parents and their children take part in scientific debate and practical science lessons. Three sessions, in biology, chemistry and physics, of this ongoing programme are described, through which parents have been able to support their children by learning science with…

  3. The parent connection.

    PubMed

    Snodgrass, D M

    1991-01-01

    This paper addresses the role of parents as contributing members of their children's educational team. The effect of parental involvement on academic success is investigated from primary through secondary school levels. Research has repeatedly demonstrated the connection between family and achievement, and this paper supports the premise that parental involvement plays a critical role in children's academic success. PMID:2048485

  4. Parental Rights in Education.

    ERIC Educational Resources Information Center

    Volz, Marlin M.

    Chapter 15 in a book on school law summarizes court decisions and legislation concerning the rights of parents in the education of children. On purely educational matters, the interest of the parent normally must yield to the dominant interest of the state. Parental arguments are strongest when they can sincerely rely upon religious beliefs that…

  5. The Teen Parent Academy

    ERIC Educational Resources Information Center

    Baptiste, H. Prentice, Jr.; Walker, Diane

    2005-01-01

    Pregnant teenagers and young parents often do not receive the quality of education available to other students. Most schools do not have a separate facility or program that deals with their special needs. Pregnant teens and teen parents should not be left behind. The Teen Parent Academy--a unique program in a predominantly Hispanic Texas border…

  6. Predicting Parent Satisfaction.

    ERIC Educational Resources Information Center

    Meredith, William H.; And Others

    Because the factors which influence parent functioning have not been extensively researched, a study was conducted to determine the relationships among marital adjustment, child temperament, locus of control, and parent satisfaction. Participants included 93 volunteer couples who had at least one child at home. Parents averaged 35 years old and…

  7. Parent Involvement: Some Considerations.

    ERIC Educational Resources Information Center

    Hyde Park - Kenwood Community Conference, Chicago, IL. Child Care Task Force.

    The focus of this paper is on the immediate and long-range advantages of parent involvement, the definitions and implications of varying levels of parent involvement in child care center operations, and the general means by which a chosen level of involvement might be achieved. The advantages of parent involvement are discussed briefly in terms of…

  8. Parent Abuse: A Review

    ERIC Educational Resources Information Center

    Kennair, Nicola; Mellor, David

    2007-01-01

    A recent focus of research and clinical practice has been on the issue of abuse of parents by their children (parent abuse). This paper reviews the literature on this phenomenon. While parent abuse falls under the umbrella of family violence, it appears to be qualitatively different from other forms of intra-family abuse. Research has primarily…

  9. Parental Spending on School-Age Children: Structural Stratification and Parental Expectation.

    PubMed

    Hao, Lingxin; Yeung, Wei-Jun Jean

    2015-06-01

    As consumption expenditures are increasingly recognized as direct measures of children's material well-being, they provide new insights into the process of intergenerational transfers from parents to children. Little is known, however, about how parents allocate financial resources to individual children. To fill this gap, we develop a conceptual framework based on stratification theory, human capital theory, and the child-development perspective; exploit unique child-level expenditure data from Child Supplements of the PSID; and employ quantile regression to model the distribution of parental spending on children. Overall, we find strong evidence supporting our hypotheses regarding the effects of socioeconomic status (SES), race, and parental expectation. Our nuanced estimates suggest that (1) parental education, occupation, and family income have differential effects on parental spending, with education being the most influential determinant; (2) net of SES, race continues to be a significant predictor of parental spending on children; and (3) parental expectation plays a crucial role in determining whether parents place a premium on child development in spending and how parents prioritize different categories of spending. PMID:25933638

  10. Geochemical evidence for African dust inputs to soils of western Atlantic islands: Barbados, the Bahamas, and Florida

    USGS Publications Warehouse

    Muhs, D.R.; Budahn, J.R.; Prospero, J.M.; Carey, S.N.

    2007-01-01

    We studied soils on high-purity limestones of Quaternary age on the western Atlantic Ocean islands of Barbados, the Florida Keys, and the Bahamas. Potential soil parent materials in this region, external to the carbonate substrate, include volcanic ash from the island of St. Vincent (near Barbados), volcanic ash from the islands of Dominica and St. Lucia (somewhat farther from Barbados), the fine-grained component of distal loess from the lower Mississippi River Valley, and wind-transported dust from Africa. These four parent materials can be differentiated using trace elements (Sc, Cr, Th, and Zr) and rare earth elements that have minimal mobility in the soil-forming environment. Barbados soils have compositions that indicate a complex derivation. Volcanic ash from the island of St. Vincent appears to have been the most important influence, but African dust is a significant contributor, and even Mississippi River valley loess may be a very minor contributor to Barbados soils. Soils on the Florida Keys and islands in the Bahamas appear to have developed mostly from African dust, but Mississippi River valley loess may be a significant contributor. Our results indicate that inputs of African dust are more important to the genesis of soils on islands in the western Atlantic Ocean than previously supposed. We hypothesize that African dust may also be a major contributor to soils on other islands of the Caribbean and to soils in northern South America, central America, Mexico, and the southeastern United States. Dust inputs to subtropical and tropical soils in this region increase both nutrient-holding capacity and nutrient status and thus may be critical in sustaining vegetation. Copyright 2007 by the American Geophysical Union.

  11. Geochemical evidence for African dust inputs to soils of western Atlantic islands: Barbados, the Bahamas, and Florida

    NASA Astrophysics Data System (ADS)

    Muhs, Daniel R.; Budahn, James R.; Prospero, Joseph M.; Carey, Steven N.

    2007-06-01

    We studied soils on high-purity limestones of Quaternary age on the western Atlantic Ocean islands of Barbados, the Florida Keys, and the Bahamas. Potential soil parent materials in this region, external to the carbonate substrate, include volcanic ash from the island of St. Vincent (near Barbados), volcanic ash from the islands of Dominica and St. Lucia (somewhat farther from Barbados), the fine-grained component of distal loess from the lower Mississippi River Valley, and wind-transported dust from Africa. These four parent materials can be differentiated using trace elements (Sc, Cr, Th, and Zr) and rare earth elements that have minimal mobility in the soil-forming environment. Barbados soils have compositions that indicate a complex derivation. Volcanic ash from the island of St. Vincent appears to have been the most important influence, but African dust is a significant contributor, and even Mississippi River valley loess may be a very minor contributor to Barbados soils. Soils on the Florida Keys and islands in the Bahamas appear to have developed mostly from African dust, but Mississippi River valley loess may be a significant contributor. Our results indicate that inputs of African dust are more important to the genesis of soils on islands in the western Atlantic Ocean than previously supposed. We hypothesize that African dust may also be a major contributor to soils on other islands of the Caribbean and to soils in northern South America, central America, Mexico, and the southeastern United States. Dust inputs to subtropical and tropical soils in this region increase both nutrient-holding capacity and nutrient status and thus may be critical in sustaining vegetation.

  12. PARENTAL BONDING AND PARENT-CHILD RELATIONSHIP AMONG TERTIARY STUDENTS

    Microsoft Academic Search

    TAM CAI LIAN; YEOH SI HAN

    Parental bonding is an important predictor that gives a lot of insight into parent-child relationship. Studies have demonstrated the importance of parent child relationship for adjustment, ranging from attachment during infancy, indiscipline style during childhood and adolescence to parenting style during adulthood. This paper aims to investigate the relationship between parental bonding and parent-child relationship among tertiary level students in

  13. Parental Feeding Practices Predict Authoritative, Authoritarian, and Permissive Parenting Styles

    Microsoft Academic Search

    Laura Hubbs-Tait; Tay Seacord Kennedy; Melanie C. Page; Glade L. Topham; Amanda W. Harrist

    2008-01-01

    BackgroundOur goal was to identify how parental feeding practices from the nutrition literature link to general parenting styles from the child development literature to understand how to target parenting practices to increase effectiveness of interventions. Stand-alone parental feeding practices could be targeted independently. However, parental feeding practices linked to parenting styles require interventions treating underlying family dynamics as a whole.

  14. Parenting Beliefs, Parental Stress, and Social Support Relationships

    ERIC Educational Resources Information Center

    Respler-Herman, Melissa; Mowder, Barbara A.; Yasik, Anastasia E.; Shamah, Renee

    2012-01-01

    The present study built on prior research by examining the relationship of parental stress and social support to parenting beliefs and behaviors. A sample of 87 parents provided their views concerning the importance of parenting characteristics as well as their level of parental stress and perceived social support. These parents completed the…

  15. Wildfire Ash: Chemical Composition, Ash-Soil Interactions and Environmental Impacts

    NASA Astrophysics Data System (ADS)

    Brook, Anna; Hamzi, Seham; Wittenberg, Lea

    2015-04-01

    Of the five classical factors of soil formation, climate, parent material, topography, time, organisms, and recently recognized human activity, it is the latter factor which discretely includes fire and post-burn impact. However, it is considered that soil undergoing fire just experience a temporary removal of the top organic horizon, thus slightly modified and often labeled as 'temporarily disturbed' soil or soil 'under restoration/rehabilitation'. In fact the suggested seventh factor, post-burned produced ash, can act both dependently and independently of the other soil forming factors (Levin et al., 2013; Certini 2013). They are interdependent in cases where ash influences occur on time scales similar to 'natural' soil formation (Keesstra et ai., 2014) such as changes in vegetation. On the other hand, in post-fire areas a strong dependency is expected between soil-water retention mechanism, climate and topography. Wild-land fires exert many changes on the physical, chemical, mineralogical, biological, and morphological properties of soil that, in turn, affect the soil's hydrology and nutrient flux, modifying its ability to support vegetation and resist erosion. The ash produced by forest fires is a complex mixture composed of organic and inorganic particles characterized by vary physical-chemical and morphological properties. The importance of this study is straightforwardly related to the frequency and large-scales wildfires in Mediterranean region. In fact, wildfires are major environmental and land management concern in the world, where the number and severity of wildfires has increased during the past decades (Bodi, 2013). Certini (2013) assumed that cumulatively all of the vegetated land is burned in about 31 years annually affecting 330-430 Mha (over 3% of the Earth's surface) and wide range of land cover types worldwide including forests, peatlands, shrublands and grasslands. Whereas, the fire is identified as an important factor in soil formation, the produced ash has significant and not always constructive pedological, ecological, hydrological and geomorphological effects and impacts (Shakesby, 2011). Abundant scientific information is assembled either from control fires by collecting samples before and after wildfire event, or conducting laboratory experiments exanimating data under truly isolated conditions (Lugassi et al., 2013). However, an integration and synthesis of the knowledge about ash including deeper understanding of inter-correlation between chemical, physical and morphological compounds in open post-burn environment and its possible interactions in soil formation or impact on soil composition are highly needed. The main aim of the presented study was to advance the science of soil-fire relationship by recognizing the remains ash as a new soil-forming factor, on par with the traditionally recognized factors: parent material, topography, time, climate, organisms, and recently recognized human activity as the sixth factor. This research was conducted to develop new methods to assess impacts and quantify the contributions/influences of post-fire products, mainly ash, on soil composition and soil properties in post-burned environment. We conducted several controlled experiments using 40 soil samples (typical Mediterranean Rendzina soil, pH 6.84, a grayish-brown, humus- and free calcium carbonate- rich, intra-zonal). The samples include bare soils and different types and loads of forest litter, were exposed to different temperatures (200° C, 400° C and 600° C) in a muffle furnace for 2 hours (Pereira et al. 2011) as fire temperature plays a key role in determining ash properties. The ash produced at a low temperatures (50% carbon and retains many of the structural characteristics of the parent material. At higher temperatures, the residue ash is greyish, consisted of very fine particles that preserve almost none of the original structural characteristics of the fuel (Woods and Balfour, 2008) creating gradient of layered ash with diverse physicochemical properties. The obtained post-burned soils we

  16. A Reexamination of Amino Acids in Lunar Soils: Implications for the Survival of Exogenous Organic Material During Impact Delivery

    NASA Technical Reports Server (NTRS)

    Brinton, Karen L. F.; Bada, Jeffrey L.

    1996-01-01

    Using a sensitive high performance liquid chromatography technique, we have analyzed both the hot water extract and the acid hydrolyzed hot water extract of lunar soil collected during the Apollo 17 mission. Both free amino acids and those derived from acid labile precursors are present at a level of roughly 15 ppb. Based on the D/L amino acid ratios, the free alanine and aspartic acid observed in the hot water extract can be entirely attributed to terrestrial biogenic contamination. However, in the acid labile fraction, precursors which yield amino acids are apparently present in the lunar soil. The amino acid distribution suggests that the precursor is probably solar wind implanted HCN. We have evaluated our results with regard to the meteoritic input of intact organic compounds to the moon based on an upper limit of less than or equal to 0.3 ppb for alpha-aminoisobutyric acid, a non-protein amino acid which does not generally occur in terrestrial organisms and which is not a major amino acid produced from HCN, but which is a predominant amino acid in many carbonaceous chondrites. We find that the survival of exogenous organic compounds during lunar impact is less than or equal to 0.8%. This result represents an example of minimum organic impact survivability. This is an important first step toward a better understanding of similar processes on Earth and on Mars, and their possible contribution to the budget of prebiotic organic compounds on the primitive Earth.

  17. A comparison between the effect of fresh and dried organic materials added to soil on carbon and nitrogen mineralization

    Microsoft Academic Search

    D. A. Van Schreven

    1964-01-01

    Summary Incubation experiments were carried out at 29°C in which fresh chopped, dried chopped, or dried and ground material of wheat plants,Polygonum nodosum, Senecio congestus (R. Br. DC.) and lucerne was mixed with a heavy calcareous loam. The C\\/N ratios of these materials were 45.9, 32.0, 19.3, and 12.6, respectively. At intervals of one or two weeks the content of

  18. Fire induced changes in aggregate stability: the interacting effects of soil heating and ash leachate

    NASA Astrophysics Data System (ADS)

    Balfour, V.; Hatley, D.; Woods, S.

    2011-12-01

    Increases in runoff and erosion after wildfires are typically attributed to the combined effects of the loss of ground cover, water repellency and surface sealing. Surface sealing in burned areas is caused by raindrop compaction of mineral soils (structural seal formation), the clogging of soil pores by fine soil and ash, or the formation of low conductivity ash crusts (depositional seal formation). Structural sealing is more likely to occur if the fire reduces the aggregate stability of the mineral soil. Soil heating tends to reduce aggregate stability by combusting soil organic matter. Effects due to soil heating may be amplified or reduced by interactions between soil clays and ash leachate, but these effects are poorly understood. We are investigating the interacting effects of soil heating and exposure to ash leachate on the stability of soil aggregates in burned areas. During the 2011 fire season in the Rocky Mountains we collected soil samples (~1000g) from unburned areas adjacent to three recent wildfires. Soils were obtained from areas with sharply contrasting parent materials, leading to differences in the soil mineralogy. High severity ash was collected from within the burned areas. Each soil sample was divided into 6 subsamples with the first subsample acting as a control. The remaining five subsamples were heated to 100, 200, 300, 500, and 700C respectively. After heating, each subsample was split in two. Ash leachate was added to one half and DI water was added to the other half. The ash leachate was prepared by mixing 10 g of ash with 1000 mL of water in accordance with previous studies. All samples were then air dried and analyzed for porosity, bulk density, aggregate size distribution, aggregate stability and water repellency. Initial results suggest that there is an interacting effect of soil heating and exposure to ash leachate on the stability of soil aggregates, but the effect varies depending on the mineralogy of soil clays and the type of cations in the leachate. Thus, in order to predict effects of fire on soil aggregate stability it is necessary to determine not only the intensity of soil heating but also the soil clay mineralogy and the ash cation chemistry.

  19. Biochar effects on soil biota – A review

    Microsoft Academic Search

    Johannes Lehmann; Matthias C. Rillig; Janice Thies; Caroline A. Masiello; William C. Hockaday; David Crowley

    2011-01-01

    Soil amendment with biochar is evaluated globally as a means to improve soil fertility and to mitigate climate change. However, the effects of biochar on soil biota have received much less attention than its effects on soil chemical properties. A review of the literature reveals a significant number of early studies on biochar-type materials as soil amendments either for managing

  20. Detection of residual oil-sand-derived organic material in developing soils of reclamation sites by ultra-high-resolution mass spectrometry.

    PubMed

    Noah, Mareike; Poetz, Stefanie; Vieth-Hillebrand, Andrea; Wilkes, Heinz

    2015-06-01

    The reconstruction of disturbed landscapes back to working ecosystems is an issue of increasing importance for the oil sand areas in Alberta, Canada. In this context, the fate of oil-sand-derived organic material in the tailings sands used for reclamation is of utmost environmental importance. Here we use electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry of maltene fractions to identify compositional variations over a complete oil sand mining and recultivation process chain. On the basis of bulk compound class distributions and percentages of unique elemental compositions, we identify specific compositional features that are related to the different steps of the process chain. The double bond equivalent and carbon number distributions of the N1 and S1O2 classes are almost invariant along the process chain, despite a significant decrease in overall abundance. We thus suggest that these oil-sand-derived components can be used as sensitive tracers of residual bitumen, even in soils from relatively old reclamation sites. The patterns of the O2, O3, and O4 classes may be applied to assess process-chain-related changes in organic matter composition, including the formation of plant-derived soil organic matter on the reclamation sites. The N1O2 species appear to be related to unidentified processes in the tailings ponds but do not represent products of aerobic biodegradation of pyrrolic nitrogen compounds. PMID:25961672

  1. Radiological dose assessment for residual radioactive material in soil at the clean slate sites 1, 2, and 3, Tonopah Test Range

    SciTech Connect

    NONE

    1997-06-01

    A radiological dose assessment has been performed for Clean Slate Sites 1, 2, and 3 at the Tonopah Test Range, approximately 390 kilometers (240 miles) northwest of Las Vegas, Nevada. The assessment demonstrated that the calculated dose to hypothetical individuals who may reside or work on the Clean Slate sites, subsequent to remediation, does not exceed the limits established by the US Department of Energy for protection of members of the public and the environment. The sites became contaminated as a result of Project Roller Coaster experiments conducted in 1963 in support of the US Atomic Energy Commission (Shreve, 1964). Remediation of Clean Slate Sites 1, 2, and 3 is being performed to ensure that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works on a Clean Slate site should not exceed 100 millirems per year. The DOE residual radioactive material guideline (RESRAD) computer code was used to assess the dose. RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines (Yu et al., 1993a). In May and June of 1963, experiments were conducted at Clean Slate Sites 1, 2, and 3 to study the effectiveness of earth-covered structures for reducing the dispersion of nuclear weapons material as a result of nonnuclear explosions. The experiments required the detonation of various simulated weapons using conventional chemical explosives (Shreve, 1964). The residual radioactive contamination in the surface soil consists of weapons grade plutonium, depleted uranium, and their radioactive decay products.

  2. Evaluating soluble toxicants in contaminated soils

    Microsoft Academic Search

    J. R. Pratt; P. V. McCormick; K. W. Pontasch; J. Cairns

    1988-01-01

    Complex mixtures of water soluble materials from contaminated soils can move into groundwater and surface water by leaching, percolation, and runoff. We evaluated the potential toxicity of leachable materials from seven soils. Five soil samples were obtained at designated toxic or hazardous waste sites, and two additional soils samples were obtained from a coal storage area and from an agricultural

  3. Improved soil carbonate determination by FT-IR and X-ray analysis

    NASA Astrophysics Data System (ADS)

    Bruckman, Viktor; Wriessnig, Karin

    2013-04-01

    In forest soils on calcareous parent material, carbonate is a key component which influences both chemical and physical soil properties and thus fertility and productivity. At low organic carbon contents it is difficult to distinguish between organic and inorganic carbon (carbonate) in soils. The common gas-volumetric method to determine carbonate has a number of disadvantages. We hypothesize that a combination of two spectroscopic methods, which account for different forms of carbonate, can be used to model soil carbonate in our study region. Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) was combined with X-ray diffraction (XRD) to develop a model based on partial least squares regression (PLSR). Results of the gas-volumetric Scheibler method were corrected for the calcite/dolomite ratio. The best model performance was achieved when we combined the two analytical methods using four principal components. The root mean squared error of prediction decreased from 13.07 to 11.57, while full cross-validation explained 94.5% of the variance of the carbonate content. This is the first time that a combination of the proposed methods has been used to predict carbonate in forest soils, offering a simple and cheap method to precisely estimate soil carbonate contents while increasing accuracy in comparison to spectroscopic approaches proposed earlier. This approach has the potential to complement or substitute gas-volumetric methods, specifically in study areas with low soil heterogeneity and similar parent material or in long-term monitoring by consecutive sampling. Reference: Bruckman, V. and K. Wriessnig, Improved soil carbonate determination by FT-IR and X-ray analysis. Environmental Chemistry Letters, 2012: p. 1-6. [DOI:DOI 10.1007/s10311-012-0380-4

  4. U.S. Geological Survey Field Leach Test for Assessing Water Reactivity and Leaching Potential of Mine Wastes, Soils, and Other Geologic and Environmental Materials

    USGS Publications Warehouse

    Hageman, Philip L.

    2007-01-01

    The U. S. Geological Survey (USGS) has developed a fast (5-minute), effective, simple, and cost-effective leach test that can be used to simulate the reactions that occur when materials are leached by water. The USGS Field Leach Test has been used to predict, assess, and characterize the geochemical interactions between water and a broad variety of geologic and environmental matrices. Examples of some of the samples leached include metal mine wastes, various types of dusts, biosolids (processed sewage sludge), flood and wetland sediments, volcanic ash, forest-fire burned soils, and many other diverse matrices. The Field Leach Test has been an integral part of these investigations and has demonstrated its value as a geochemical characterization tool. It has enabled investigators to identify which constituents are water reactive, soluble, mobilized, and made bioaccessible because of leaching by water, and to understand potential impacts of these interactions on the surrounding environment.

  5. Morphology and genesis of carbonate soils on the Kyle Canyon fan, Nevada, U.S.A.

    USGS Publications Warehouse

    Reheis, M.C.; Sowers, J.M.; Taylor, E.M.; McFadden, L.D.; Harden, J.W.

    1992-01-01

    The physical and chemical properties of soils formed in an arid climate on calcareous alluvium of the Kyle Canyon alluvial fan, southern Nevada, were studied in order to infer the rates and relative importance of various soil-forming processes. These studies included field and microscopic observations and analyses of thin sections, major oxides, extractable iron, and clay minerals. The results are interpreted to reflect five major pedogenic processes: (1) The calcic horizons and calcretes of Kyle Canyon soils form by precipitation of CaCO3, derived from eolian dust and alluvium, as clast coats, matrix cement, and massive layers. (2) The A and uppermost B horizons are essentially dust-derived, for they contain large amounts of detrital material not present in the alluvial parent material, and their major-oxide content is similar to that of modern dust. (3) Clay particles are translocated from A into B horizons. (4) Iron-bearing minerals in the near-surface B horizons are slowly oxidized. (5) Carbonate and aluminosilicate grains are both displaced and replaced by pedogenic CaCO3; the silica released by replacement of aluminosilicates may be locally precipitated as amorphous or opaline silica and (or) incorporated into newly formed palygorskite and sepiolite. Rates of soil development at Kyle Canyon are approximate due to uncertainties in age estimates. Some soil field properties change at rates that are similar to rates for soils formed in rhyolitic parent material near Mercury, Nevada. The rate of accumulation of CaCO3 (3-5 g m-2 yr-1) at Kyle Canyon is an order of magnitude faster than that near Mercury, but is comparable to rates calculated for soils in southern New Mexico and Utah. ?? 1992.

  6. Solid-liquid separation method governs the in vitro bioaccessibility of metals in contaminated soil-like test materials.

    PubMed

    Laird, Brian D; Weiseth, Blake; Packull-McCormick, Sara R; Peak, Derek; Dodd, Matt; Siciliano, Steven D

    2015-09-01

    An in vitro gastrointestinal model was used to explore the role of solid-liquid separation method on the bioaccessibility of trace elements in a smelter-impacted soil (NIST-2711) from Helena, MT and a mine overburden from an open-pit gold and silver mine in Mount Nansen, YK (YK-OVB). Separation methods studied included centrifugation (5000g, 12000g), syringe microfiltration (0.45?m), and ultrafiltration (1000kDa, 50kDa, 30kDa, 10kDa, 3kDa). Results indicated that the use of syringe microfiltration generally yields the same bioaccessibility as the use of centrifugation and that the speed of centrifugation does not typically affect metal bioaccessibility. However, ultrafiltration consistently yields a significantly lower bioaccessibility than the use of centrifugation and syringe microfiltration. There are rarely any differences between bioaccessibility estimates generated using a low-resistance (1000kDa) and a high-resistance (3kDa) ultrafiltration membrane; therefore, under the in vitro gastrointestinal conditions modeled herein, negligible quantities of trace elements are complexed to small molecules between 3 and 1000kDa. The primary exceptions to these trends were observed for Pb in NIST-2711 (5000g>12000g>0.45?m>ultrafiltration) and for Tl in NIST-2711 and YK-OVB (5000g?12000g>0.45?m>ultrafiltration). These results provide valuable information to researchers attempting to expand the use of in vitro bioaccessibility beyond soil Pb and As. PMID:25600322

  7. Estonian soil classification as a tool for recording information on soil cover and its matching with local site types, plant covers and humus forms classifications

    NASA Astrophysics Data System (ADS)

    Kõlli, Raimo; Tõnutare, Tõnu; Rannik, Kaire; Krebstein, Kadri

    2015-04-01

    Estonian soil classification (ESC) has been used successfully during more than half of century in soil survey, teaching of soil science, generalization of soil databases, arrangement of soils sustainable management and others. The Estonian normally developed (postlithogenic) mineral soils (form 72.4% from total area) are characterized by mean of genetic-functional schema, where the pedo-ecological position of soils (ie. location among other soils) is given by means of three scalars: (i) 8 stage lithic-genetic scalar (from rendzina to podzols) separates soils each from other by parent material, lithic properties, calcareousness, character of soil processes and others, (ii) 6 stage moisture and aeration conditions scalar (from aridic or well aerated to permanently wet or reductic conditions), and (iii) 2?3 stage soil development scalar, which characterizes the intensity of soil forming processes (accumulation of humus, podzolization). The organic soils pedo-ecological schema, which links with histic postlithogenic soils, is elaborated for characterizing of peatlands superficial mantle (form 23.7% from whole soil cover). The position each peat soil species among others on this organic (peat) soil matrix schema is determined by mean of 3 scalars: (i) peat thickness, (ii) type of paludification or peat forming peculiarities, and (iii) stage of peat decomposition or peat type. On the matrix of abnormally developed (synlithogenic) soils (all together 3.9%) the soil species are positioned (i) by proceeding in actual time geological processes as erosion, fluvial processes (at vicinity of rivers, lakes or sea) or transforming by anthropogenic and technological processes, and (ii) by 7 stage moisture conditions (from aridic to subaqual) of soils. The most important functions of soil cover are: (i) being a suitable environment for plant productivity; (ii) forming adequate conditions for decomposition, transformation and conversion of falling litter (characterized by humus cover type); (iii) being compartment for deposition of humus, individual organic compounds, plant nutrition elements, air and water, and (iv) forming (bio)chemically variegated active space for soil type specific edaphon. For studying of ESC matching with others ecosystem compartments classifications the comparative analysis of corresponding classification schemas was done. It may be concluded that forest and natural grasslands site types as well the plant associations of forests and grasslands correlate (match) well with ESC and therefore these compartments may be adequately expressed on soil cover matrixes. Special interest merits humus cover (in many countries known as humus form), which is by the issue natural body between plant and soil or plant cover and soil cover. The humus cover, which lied on superficial part of soil cover, has been formed by functional interrelationships of plants and soils, reflects very well the local pedo-ecological conditions (both productivity and decomposition cycles) and, therefore, the humus cover types are good indicators for characterizing of local pedo-ecological conditions. The classification of humus covers (humus forms) should be bound with soil classifications. It is important to develop a pedocentric approach in treating of fabric and functioning of natural and agro-ecosystems. Such, based on soil properties, ecosystem approach to management and protection natural resources is highly recommended at least in temperate climatic regions. The sound matching of soil and plant cover is of decisive importance for sustainable functioning of ecosystem and in attaining a good environmental status of the area.

  8. Teaching with Moodle in Soil Science

    NASA Astrophysics Data System (ADS)

    Roca, Núria

    2014-05-01

    Soil is a 3-dimensional body with properties that reflect the impact of climate, vegetation, fauna, man and topography on the soil's parent material over a variable time span. Therefore, soil is integral to many ecological and social systems and it holds potential solutions for many of the world's economic and scientific problems as climate change or scarcity of food and water. The teaching of Soil Science, as a natural science in its own right, requires principles that reflect the unique features and behaviour of soil and the practices of soil scientists. It could be argued that a unique set of teaching practices applies to Soil Science; however specific teaching practices are scarce in literature. The present work was triggered by the need to develop new techniques of teaching to speed up the learning process and to experiment with new methods of teaching. For such, it is necessary to adopt virtual learning environment to new learning requirements regarding Soil Science. This paper proposes a set of e-teaching techniques (as questionnaires, chats as well as forums) introduced in Moodle virtual learning Environment in order to increase student motivation and interest in Soil Science. Such technologies can be used to: a)Increase the amount of time a teacher allots for student reflection after asking a question and before a student responds (wait-time). This practice increases the quantity and quality of students' answers. The students give longer responses, students give more evidence for their ideas and conclusions, students speculate and hypothesize more and more students participated in responding. Furthermore, students ask more questions and talk more to other students. b)Improve active learning, an essential paradigm in education. In contrast to learning-before-doing, we propose to focus on learning-in-doing, a model where learners are increasingly involved in the authentic practices of communities through learning conversations and activities involving expert practitioners, educators and peers. c)Introduce the specific specialised technical language (jargon) gradually. The excessive use of Soil Science jargon confuses students and frequently put obstacles in the way of learning. d)Encourage the students to take responsibility for their learning, continuous assessment with direct error correction and content feedback and peer review with comments sent to forum. The student interest to learn using e-project is clearly strong.

  9. Do reclamation speed up recovery of soil and soil biota on post mining sites along climatic gradient across continental USA?

    NASA Astrophysics Data System (ADS)

    Frouz, Jan

    2015-04-01

    Soil biota community (macrofauna, nematodes and microbial community studied by PLFA) was studied together with soil development in post-mining chronosequences along climatic gradient in the USA, covering hardwood forest (TN, IN), tallgrass prairie (IL), or shortgrass prairie (WY). Post mining sites reclaimed according recent regulation which includes topsoil application and vegetation establishment were compared to local climax. Both young and old restoration sites were much closer to the climax condition in shortgrass prairie than in the other sites. The shortgrass prairie soil community contained abundant root-feeding organisms, which may establish quicker than the saprophagous fauna that was abundant at the other sites. Absence of saprophagous groups, and especially earthworms, resulted in the absence of bioturbation in shortgrass prairie sites while in chronosequences other than the one in shortgrass prairie, bioturbation played an important role in topsoil formation resulting in more complex soil profile development compare to shortgrass prairie. This may contribute to faster recovery communities in shortgrass prairie in comparison with tallgrass prairie and forest as At the same time sites that were reclaimed according recent regulation (topsoil application and vegetation establishment) were compare to unreclaimed sites both about 30 years old in TN IL and WY. It TN soil and soil biota seems to approach fasted to climax in unreclaimed than reclaimed sites. In IL this differences between reclaimed and unreclaimed sites was not so clear. While in WY reclaimed sites seems to approach to climax community fasted than unreclaimed one. This suggests that effect of reclamation vary along climatic gradient. In drier sites, formation of soil matrix from parent material is probably much slower and topsoil application speed up soil community recovery substantially while this effect is less pronounces in more wet sites, where soil compaction due to restoration may in some cases even slow recovery.

  10. Parenting a child with autism in India: narratives before and after a parent-child intervention program.

    PubMed

    Brezis, Rachel S; Weisner, Thomas S; Daley, Tamara C; Singhal, Nidhi; Barua, Merry; Chollera, Shreya P

    2015-06-01

    In many low and middle income countries where autism-related resources are scarce, interventions must rely on family and parents. A 3-month Parent-Child Training Program (PCTP) at Action For Autism, New Delhi, India is aimed at empowering and educating parents, encouraging acceptance of their child, and decreasing parent stress. Forty couples were asked to describe their child with autism using the Five Minute Speech Sample (FMSS), an open-ended narrative method, before and after the program. Parents described a wide range of child behaviors, primarily social and cognitive skills. While all families were of a relatively affluent strata compared to the general Indian population, there were nonetheless significant differences in parents' narratives based on their income levels. Coming into the program, parents with relatively less income focused on their child's immediate and material needs, while higher income parents discussed their parental roles and vision for society. After the PCTP, parents were more likely to reflect on their child beyond comparisons to 'normality,' and beyond the here-and-now. Mothers were more likely than fathers to reflect on themselves and their relationships with their child. Understanding parents' experiences and narratives is essential for the evaluation of interventions such as the PCTP, as Indian parents are incorporated into a growing global network of 'parents of children with autism.' PMID:25739529

  11. Mineralization of Carbon and Nitrogen from Freeze-and Oven-Dried Plant Material Added to Soil

    E-print Network

    Florida, University of

    . At 90 d, SOand 41% of the plant C had evolved as CO2 for the freeze- and oven-dried plant material erroneous measurements of lignin when forages were oven-dried. A procedure for measuring cell wall constitutents (Goering and Van Soest, 1970) stated that heat drying of forages at tem- peratures above 50 °C

  12. EVALUATION OF FUNGAL GROWTH ON FIBERGLASS DUCT MATERIALS FOR VARIOUS MOISTURE, SOIL, USE, AND TEMPERATURE CONDITIONS (JOURNAL)

    EPA Science Inventory

    The paper gives results of a series of experiments, each lasing 6 weeks, conducted in static environmental chambers to assess some of the conditions that may impact the ability of a variety of fiberglass materials to support the growth of a fungus, Penicillium chrysogenum. (NOTE:...

  13. Mercury in soils of three agricultural experimental stations with long-term fertilization in China.

    PubMed

    Zheng, Yuan-Ming; Liu, Yu-Rong; Hu, Hong-Qing; He, Ji-Zheng

    2008-07-01

    Mercury (Hg) in the agricultural ecosystem is a global concern because of its high potential toxicity. The objectives of this study were to determine the concentration and distribution of Hg in soils from three long-term experimental stations, i.e., Taoyuan (TY) and Qiyang (QY) in Hunan Province and Fengqiu (FQ) in Henan Province of China, and thus to assess the possible food and health risk of long-term applications of fertilizers. Soil samples at each site were collected from different fertilization plots and also from soil profiles with depths 0-100 cm. There were significant differences in soil Hg concentrations in 0-20 cm (A) or 20-40 cm (B) horizon among the three experimental stations. QY station showed significantly higher Hg concentrations than TY and FQ stations. However, there were no significant differences in soil Hg concentrations between A and B horizons at each station. It was concluded that the soil Hg concentrations at the three sites were mainly controlled by the parent materials. Moreover, chemical fertilizer, especially phosphorous fertilizers, could influence the soil Hg concentrations to some extent at the station with lower soil Hg concentrations, for example, at TY station. There were minimal amounts of Hg resulting from applications of the other chemical fertilizers and organic manure, and thus the fertilization had very low risk to the food security of the agro-ecosystems in the terms of Hg inputs and contamination. PMID:18541285

  14. A new framework for predicting how roots and microbes influence soil organic matter dynamics in forests

    NASA Astrophysics Data System (ADS)

    Phillips, R.; Midgley, M.; Brzostek, E. R.

    2012-12-01

    While it is well-established that tree species modify soil organic matter (SOM) through differences in leaf litter chemistry, far less is known about the role of roots and their microbial associates in influencing SOM dynamics. We investigated the extent to which temperate hardwood trees which associate with arbuscular mycorrhizal (AM) fungi differ in their effects on SOM turnover from those associating with ectomycorrhizal (EM) fungi using 1) root and fungal ingrowth cores, 2) experimental tree girdling and 3) fertilization additions. We conducted our research in the central hardwood forests of southern Indiana where a rich assemblage of AM (e.g. maples, ashes, tulip poplar, black cherry) and EM (e.g. oaks, hickories, beech, pine) tree species co-occur on soils developed from similar parent materials. Our results indicate that EM trees likely play a greater role in contributing to SOM turnover than AM trees as rhizosphere enzyme activities were greater in EM soils than AM soils, and both girdling and fertilization reduced enzyme activities in EM soils but not in AM soils. Although girdling and fertilization had little effect on enzyme activities in AM soils, soil respiration decreased suggesting that much of the carbon (C) allocated belowground was likely derived from roots rather than from mycorrhizal fungi. Collectively our results suggest AM and EM trees influence SOM dynamics in fundamentally unique ways, and that categorizing forests based on the relative abundance of AM and EM trees may provide a useful framework for predicting complex biogeochemical interactions between roots, microbes and SOM.

  15. Arsenic fractions in soils: A case study in the Amblés valley (Castilla-León, Spain)

    NASA Astrophysics Data System (ADS)

    Joaquin Ramos-Miras, Jose; Díaz-Fernández, Pedro; Sanjosé Wery, Ana; Rodríguez-Martín, Jose Antonio; Boluda, Rafael; Bech, Jaume; Gil, Carlos

    2014-05-01

    Arsenic (As) is a trace element whose distribution and toxicology in the environment is a serious issue. In Spain, presence of As has been mainly related with mining activities because oxidation of sulphur minerals releases As into the environment. As has been detected in aquifers and soils in southern areas of the Spanish Autonomous Castilla-León Community (central Spain). Risk of human contact with As has increased substantially in the last two decades as residential areas continue to expand into former agricultural land. As distribution in topsoil horizons in the high Adaja river basin in the Amblés Valley, Ávila (Autonomous Castilla-León Community) were studied. In this area, the principal soil use is conventional farming. Three As-soil fractions: total content, extractable with EDTA and water-soluble, were determined. The origin and the causes that might favour their higher or lower concentrations were investigated. Geochemical baseline concentrations were established, and the relationships between the concentration of the different As fractions and soil properties were investigated. Iron-aluminium oxides, clay content, soil organic matter, and soil pH were the main controlling factors for As soil concentrations. Total As content in soils was related with parent material, whereas anthropogenic activities affected its solubility.

  16. Changes in Carbon Chemistry and Stability Along Deep Tropical Soil Profiles at the Luquillo Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Stone, M.; Hockaday, W. C.; Plante, A. F.

    2014-12-01

    Tropical forests are the largest terrestrial carbon (C) sink, and tropical forest soils contribute disproportionately to the poorly-characterized deep soil C pool. The goal of this study was to evaluate how carbon chemistry and stability change with depth in tropical forest soils formed on two contrasting parent materials. We used soils from pits excavated to 140 cm depth that were stratified across two soil types (Oxisols and Inceptisols) at the Luquillo Critical Zone Observatory in northeast Puerto Rico. We used 13C nuclear magnetic resonance (NMR) spectroscopy to characterize soil C chemistry and differential scanning calorimetry (DSC) coupled with evolved gas analysis (CO2-EGA) to evaluate the thermal stability of soil C during ramped combustion. Thirty-four samples with an initial C concentration ?1% were chosen from discrete depth intervals (0, 30, 60, 90 & 140 cm) for 13C NMR analysis, while DSC was performed on 122 samples that included the NMR sample set and additional samples at 20, 50, 80 and 110 cm depth. Preliminary 13C NMR results indicate higher alkyl : O-alkyl ratios and an enrichment of aliphatic and proteinaceous C with depth, compared with greater aromatic and carbohydrate signals in surface soils. The energy density of soil C (J mg-1 C) also declined significantly with depth. In Oxisols, most CO2 evolution from combustion occurred around 300ºC, while most CO2 evolution occurred at higher temperatures (400-500ºC) in Inceptisols. Our findings suggest soil C is derived primarily of plant biomolecules in surface soils and becomes increasingly microbial with depth. Soil matrix-mediated differences in C transport and preservation may result in differences in C chemistry between the two soil types and a more thermally labile C pool in the Oxisols. We suggest that energy-poor substrates, combined with potentially stronger organo-mineral interactions in subsoils, may explain the long-term stability of deep C in highly weathered tropical soils.

  17. Soil Carbon Storage and Turnover in an Old-Growth Coastal Redwood Forest and Adjacent Prairie

    NASA Astrophysics Data System (ADS)

    McFarlane, K. J.; Torn, M. S.; Mambelli, S.; Dawson, T. E.

    2010-12-01

    Coastal redwood (Sequoia sempervirens) forests store lots of carbon in aboveground tree biomass because redwoods are very long-lived and can grow very large. Redwood is known for its high resistance to decay, a result of high levels of aromatic compounds (tannins) in the tree’s tissues. We tested the hypothesis that because coastal redwoods are highly productive and produce organic matter that is chemically resistant to decay, old-growth redwood forests should store large amounts of stabilized soil carbon. We measured soil C storage to 110 cm depth in an old-growth coastal redwood forest and used physical soil fractionation combined with radiocarbon measurements to determine soil organic matter turnover time. In addition, we measured soil C storage and turnover at an adjacent prairie experiencing the same climate and with soils derived from the same parent material. We found larger soil C stocks to 110 cm at the prairie (350 Mg C ha-1) than the redwood forest (277 Mg C ha-1) even with O-horizons included for the forest. Larger N stocks were also observed at the prairie than the redwood and these differences in stocks were driven by higher C and N concentrations in mineral soils at the prairie. Differences between ecosystems in soil C and N concentrations, C:N ratios, and C and N stocks were observed for the top 50 cm only, suggesting that the influence of the different litter types did not extend to deeper soils. Contrary to what was expected, bulk soil and heavy density-fraction ?14C values were higher, indicating shorter turnover times, for the redwood forest than the prairie. In summary, we did not observe greater C storage or 14C-based turnover times in old-growth redwood forest compared to adjacent prairie, suggesting chemical recalcitrance of litter inputs does not drive soil C stabilization at these ecosystems.

  18. Fate of the nonsteroidal anti-inflammatory drug naproxen in agricultural soil receiving liquid municipal biosolids.

    PubMed

    Topp, Edward; Hendel, John G; Lapen, David R; Chapman, Ralph

    2008-10-01

    Naproxen (2-(6-methoxy-2-naphthyl) propionic acid) is widely used for the treatment of pain and swelling associated with arthritis, gout, and other inflammatory conditions. Naproxen has been detected in municipal sewage outflows and in surface waters and could reach agricultural land through the application of municipal biosolids or reclaimed water. The persistence characteristics of naproxen in three agricultural soils were investigated. In laboratory microcosms of moist soil incubated at 30 degrees C, [O-14CH3]naproxen was rapidly and thoroughly mineralized to 14CO2 with comparable kinetics in a sandy loam soil, a loam soil, and a silt loam soil. Naproxen mineralization was responsive to soil temperature and soil moisture content, consistent with the primary mechanism of dissipation being biodegradation. Mineralization of naproxen was hastened by the addition of liquid municipal biosolids (LMBs) from a municipal sewage treatment plant that aerated this material. Naproxen was stable in autoclaved soils with or without addition of autoclaved LMBs, whereas naproxen was rapidly mineralized in sterile soil supplemented with nonsterile LMBs. An enrichment culture was obtained from aerobically digested LMBs in a mineral salts medium with naproxen as the sole source of carbon. The culture converted the parent compound to the corresponding naphthol, O-desmethyl naproxen. In summary, naproxen was rapidly removed from soil, with mesophilic aerobic biodegradation being the primary mechanism of dissipation. Microorganisms carried in biosolids enhanced naproxen dissipation in soil, with the initial mechanism of attack likely being O-demethylation. We conclude on this basis that naproxen in soils receiving biosolids would be readily biodegradable and, in the absence of preferential flow or runoff, pose little risk for contamination of adjacent water or crops. PMID:18419173

  19. Vegetation Influences on Long-Term Carbon Stabilization in Soils: a Coast Redwood-Prairie Comparison

    NASA Astrophysics Data System (ADS)

    Mambelli, S.; Burton, S. D.; McFarlane, K. J.; Torn, M. S.; Dawson, T. E.

    2010-12-01

    Complex interactions and feedbacks among soil, biota, climate, and parent material determine the long-term pathways and mechanisms of carbon persistence in soils. While it is well known that litter chemistry influences litter decay on annual-decadal timescales, its impact on long-term SOM storage is still under debate. We tested the role of the substrate available to decomposers in determining decomposition and sequestration of carbon by comparing two contrasting ecosystems representing end-members in terms of tissue lifespan and litter recalcitrance, an old-growth redwood forest and an adjacent tree-less prairie, at one site with identical climate, topography, and parent material. Solid-state CP MAS 13C NMR was applied to investigate the chemical structure of vegetation tissues (aboveground and belowground), and of soil fractions (particulate organic carbon free in the soil matrix and particulate organic carbon located inside soil aggregates, or free and occluded light fraction (LF), respectively) at different depths. In addition, the carbon stability of these soil density fractions was estimated based on radiocarbon modeling. Preliminary NMR results showed strong differences between redwood and prairie tissues, and between litters and surface soil fractions. On average, redwood litter contained more aromatic carbon (C and O substituted aryl C), more lipids (alkyl C) and fewer carbohydrates (O-alkyl C) than prairie litter. Under both vegetation types we found that the chemical structure changed consistently from litter to free LF, and from free LF to occluded LF. The alkyl C signal intensity increased, while the O-alkyl C fraction decreased, but more strongly at the redwood forest. The proportion of aromatic functional groups in the total organic matter (aromaticity) was always higher in the soil fractions compared with the original litters. Redwood soil fractions aromaticity was 0.32 (+80% from litter), while prairie soil fractions aromaticity varied from 0.17 (free LF) to 0.23 (occluded LF)(+40 and +90% from litter, respectively). The proportion of carbon in carbonyl groups (alkyl/O-alkyl ratio), an estimate of the degree of decomposition, increased from the free LF to the occluded LF at both ecosystems (0.30 to 0.75 in the redwood forest, 0.24 to 0.68 in the prairie, respectively). In summary, the similar decomposition stage of the redwood and prairie SOM and the higher aromaticity of the free LF in the redwood soil compared to the original litter suggest the preservation of recalcitrant redwood constituents but only in the free soil matrix. Further investigations at deeper soil depths are underway.

  20. Persistence of Mineral-Associated Soil Organic Carbon in European Soil Profiles

    NASA Astrophysics Data System (ADS)

    Mayer, A.; Schrumpf, M.; Trumbore, S.

    2014-12-01

    Soil Organic Carbon (SOC) is a heterogeneous mixture of components that are not equally biologically available, including light, plant derived material, dissolved organic carbon, and mineral-associated organic matter (MOM). Radiocarbon ages of bulk SOC average across this heterogeneity. Of particular interest is whether there are small amounts of very old OC (the so-called 'passive' pool) that can mask the fact that much of the OM is much younger. MOM has been shown to be older than the light fraction and DOC, but MOM is also a mixture of old and young material. This study seeks to clarify the quantity of C persisting on millennial time scales at different depths in the soil profile, and what factors allow this fraction to be more persistent than other fractions. We studied the fraction and age of C of the most chemically and physically stable fraction we could isolate from five European soils with differing land use, parent material, and soil type. First we isolated the MOM fraction by density, and then oxidized the MOM fraction with H2O2 to remove the labile C. The oxidation resistant residue was analyzed for C content and radiocarbon signature. The oxidation procedure removed 70-95% of the MOM fraction; the residue had a consistently older radiocarbon signature than the initial MOM, indicating that the C removed was younger than the bulk average. This stable fraction ranged from 100 radiocarbon years Before Present (BP) in the top 5 cm, to 10,000 years BP at the 30-40 cm depth. Non-crystalline iron concentrations were correlated with the absolute amount of SOC protected from oxidation, but not its proportion or age. With the exception of a tilled cropland site, all examined profiles exhibited a nearly linear depletion in radiocarbon signature with depth in both the protected and oxidizable MOM, confirming that the most chemically and physically stable C is oldest at the deepest point in a 50 cm profile. Ongoing work on this study will further elucidate how the origin of the MOM (microbe-, plant-, or parent material-derived) relates to the radiocarbon age along the soil depth profile.

  1. Multiple parent bodies of ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Yomogida, K.; Matsui, T.

    1984-01-01

    Thermal histories of chondrite parent bodies are calculated from an initial state with material in a powder-like form, taking into account the effect of consolidation state on thermal conductivity. The very low thermal conductivity of the starting materials makes it possible for a small body with a radius of less than 100 km to be heated by several hundred degrees even if long-lived radioactive elements in chondritic abundances are the only source of heat. The maximum temperature is determined primarily by the temperature at which sintering of the constituent materials occurs. The thermal state of the interior of a chondrite parent body after sintering has begun is nearly isothermal. Near the surface, however, where the material is unconsolidated and the thermal conductivity is much lower, the thermal gradient is quite large. This result contradicts the conventional 'onion-shell' model of chondrite parent bodies. But because the internal temperature is almost constant through the whole body, it supports a 'multiple-parent bodies' model, according to which each petrologic type of chondrite comes from a different parent body.

  2. Parents Come to Class

    NSDL National Science Digital Library

    Kelly Gooden

    2003-01-01

    Are you challenged to involve parents in your school's science curriculum? Ridgecrest Elementary School in Hyattsville, Maryland, tackled that issue and found a successful solution in an exciting program called "Playtime Is Science" (Sprung, Froschl, and Colon 1997). This program trains parent volunteers as "coteachers" to help classroom teachers facilitate learning in specific science units and also encourages parental participation in the school at all levels.

  3. Parent Abuse: A Review

    Microsoft Academic Search

    Nicola Kennair; David Mellor

    2007-01-01

    A recent focus of research and clinical practice has been on the issue of abuse of parents by their children (parent abuse).\\u000a This paper reviews the literature on this phenomenon. While parent abuse falls under the umbrella of family violence, it appears\\u000a to be qualitatively different from other forms of intra-family abuse. Research has primarily focused on prevalence rates and

  4. Effect of distribution coefficient, contaminated area, and the depth contamination of the guildelines for uranium residual radoiactive material in soils

    Microsoft Academic Search

    S. Kamboj; M. Nimmagadda; E. Faillace; C. Yu; W. A. Williams

    1996-01-01

    U.S. Department of Energy (DOE) cleanup guidelines for uranium applicable to remedial actions at Formerly Utilized Sites Remedial Action Program (FUSRAP) sites are derived on a site-specific basis. The DOE residual radioactive material guideline Computer code, RESRAD, is used in these evaluations. This analysis investigates the effect of site-specific parameters on the guideline values (specifically distribution coefficient, depth of contamination,

  5. Recycling parental sexual messages.

    PubMed

    Darling, C A; Hicks, M W

    1983-01-01

    The purpose of this study was to explore parent-child sexual communication by investigating the impact of direct and indirect parental messages on the sexual attitudes and sexual satisfaction of young adults. A survey research design was used to obtain data from undergraduate students attending a large Southern university. The findings indicate that both direct and indirect parental sexual messages are negative and restrictive and have a differential impact on sexual satisfaction and sexual attitudes. While sexual satisfaction was positive, sexual attitudes were found to be problematic, especially among females. Suggestions are given for approaches that family life educators and parents may use in order to recycle previous sexual messages. PMID:6631981

  6. Late adolescent perceptions of parent religiosity and parenting processes.

    PubMed

    Snider, J Blake; Clements, Andrea; Vazsonyi, Alexander T

    2004-12-01

    The current investigation examined the relations between adolescent reports of parent religiosity and parenting processes, using both a dimensional and a typological conceptualization of parenting. Self-report data were collected from 357 late adolescents. Partial correlations indicated that parent religiosity was associated with both parenting dimensions and parenting styles in conceptually expected directions. Regression analyses provided evidence that the dimensional conceptualization of parenting explained additional variability in perceived parental religiosity above and beyond parenting style effects. Findings suggest that a dimensional conceptualization of parenting processes extends the literature on parent religiosity because it yields more nuanced information about how parental religiosity may be related to differentiated parenting behaviors. Potential therapeutic implications of the findings are discussed. PMID:15605980

  7. Handbook of Parenting. Volume 1: Children and Parenting. Second Edition.

    ERIC Educational Resources Information Center

    Bornstein, Marc H., Ed.

    Concerned with different types of parents and the forces that shape parenting, this volume, the first of five volumes on parenting, deals specifically with parent-child relationships throughout the lifespan and the parenting of children of different physical, behavioral, and intellectual needs. The volume consists of the following 14 chapters: (1)…

  8. Parenting Training for Intellectually Disabled Parents: A Cochrane Systematic Review

    ERIC Educational Resources Information Center

    Coren, Esther; Thomae, Manuela; Hutchfield, Jemeela

    2011-01-01

    Objectives: This article presents a Cochrane/Campbell systematic review of the evidence on the effect of parent training to support the parenting of parents with intellectual disabilities. Method: Randomized controlled trials (RCTs) comparing parent training interventions for parents with intellectual disability with usual care or with a control…

  9. Parenting Styles and Conceptions of Parental Authority during Adolescence.

    ERIC Educational Resources Information Center

    Smetana, Judith G.

    1995-01-01

    Reports of parenting styles were assessed in 100 mostly white, middle-class, 6th, 8th, and 10th graders and their parents. Adolescents viewed their parents as more permissive and more authoritarian than parents viewed themselves, whereas parents viewed themselves as more authoritative than did adolescents. Differences were primarily over the…

  10. Some Effects of Parent Education On Parents and Their Children

    Microsoft Academic Search

    Mary P. Endres; Merry J. Evans

    1968-01-01

    The effects of a parent education program on knowledge, atti tudes, and overt behavior of parents and self-concepts of their children were studied. Three randomized groups of fourth grade children and their respective parents comprised the experimental, placebo, and control groups. After the parents in the experimental group received parent education, several types of data were ob tained. Analyses of

  11. Family and Relationship Influences on Parenting Behaviors of Young Parents

    PubMed Central

    Kershaw, Trace; Murphy, Alexandrea; Lewis, Jessica; Divney, Anna; Albritton, Tashuna; Magriples, Urania; Gordon, Derrick

    2013-01-01

    Purpose Assess the influence of relationship and family factors during pregnancy on parenting behavior 6 months postpartum among low-income young parents. Methods 434 young expectant couples were recruited from obstetrics clinics during pregnancy and followed 6-months postpartum. Using a series of general estimating equations to control for the correlated nature of the data, we assessed the influence of relationship factors (e.g., relationship satisfaction, attachment) and family factors (e.g., family functioning, family history) during pregnancy on parenting (e.g., parenting involvement, time spent caregiving, parenting experiences, and parenting sense of competence) 6 months postpartum controlling for covariates. Results Relationship functioning related to parenting involvement, caregiving, parenting experiences, and parenting sense of competence. In addition, several family factors related to parenting. Mother involvement during childhood was related to more parenting involvement, parenting positive experiences, and parenting sense of competence. History of being spanked as a child related to less time spent caregiving and less positive life change from being a parent. Further, gender significantly moderated the associations between relationship and family factors and parenting behavior. Male’ parenting behavior was more influenced by relationship and family factors than females. Conclusions This study suggests the importance of relationship and family contexts for parenting behaviors of young mothers and fathers, highlighting the potential utility of involving both young mothers and fathers in parenting programs, and developing interventions that focus on strengthening young parents’ romantic relationships and that address negative parenting experienced during childhood. PMID:24113495

  12. Tetanus (For Parents)

    MedlinePLUS

    ... called Clostridium tetani , which is often found in soil. Once the bacteria are in the body, they ... more likely to cause tetanus. Wounds contaminated with soil, saliva, or feces — especially if not properly cleaned — ...

  13. Variations in germination and grain quality within a rust resistant common wheat germplasm as affected by parental CO 2 conditions

    Microsoft Academic Search

    Y. Bai; C. R. Tischler; D. T. Booth; E. M. Taylor

    2003-01-01

    Parental conditions, such as temperature, soil moisture, nutrient availability, light and competition during plant growth and seed maturation, influence seed quality and germinability. Elevated CO2 concentration can be also treated as a parental condition and should be considered when evaluating crop productivity under future climate conditions. Available information on the effect of parental CO2 conditions on seed quality and germinability

  14. Foster Parents’ Involvement in Authoritative Parenting and Interest in Future Parenting Training

    Microsoft Academic Search

    Keith A. King; Linda K. Kraemer; Amy L. Bernard; Rebecca A. Vidourek

    2007-01-01

    We surveyed 191 Southwest Ohio foster parents regarding their involvement in authoritative parenting and interest for additional\\u000a parenting education. Our results showed that most respondents reported using an authoritative parenting style and were interested\\u000a in receiving future training. Involvement in authoritative parenting differed significantly based on level of education and\\u000a number of years as a foster parent. Foster parents with

  15. Parenting in the New Millennium.

    ERIC Educational Resources Information Center

    Warnemuende, Carolyn

    2002-01-01

    Discusses parental guilt, fear, and lack of confidence eroding parents' ability to create a healthy balance between career and family. Maintains that the amount of time employed parents spend with children is not the problem, but that parental fatigue and stress spill into the home environment. Suggests ways parents can improve their confidence…

  16. Creative Approaches to Parenting Education.

    ERIC Educational Resources Information Center

    DeBord, Karen; Roseboro, Jacqueline D.; Wicker, Karen M.

    1998-01-01

    Two North Carolina projects used methods from the National Network for Family Resiliency's Parenting Evaluation Decision Framework. Parenting for Success for Hispanic Parents used focus group interviews and summative evaluation. Individualized education for Head Start parents used pre/posttests of parental self-esteem and child development…

  17. Child Abuse and Adolescent Parenting

    Microsoft Academic Search

    Tracie O. Afifi

    2007-01-01

    Adolescent parents are commonly identified as an at-risk group in the child abuse literature. However, theoretical models specific to the area of child abuse and adolescent parenting are not well developed. This essay reviews established theories on child abuse, abusive parenting, and adolescent parenting to synthesize a proposed child abuse and adolescent parenting model. An ecological perspective is used to

  18. Exceptional Parent, 2000.

    ERIC Educational Resources Information Center

    Rader, Rick, Ed.

    2000-01-01

    This document collects the 12 monthly issues of Volume 30 of "Exceptional Parent," a magazine focused on practical advice for parents of children with disabilities. Most issues include a focus topic as well as articles on other issues, columns, reviews, and letters. The issues focus on the following areas: (1) an extensive resource guide; (2)…

  19. Exceptional Parent, 2001.

    ERIC Educational Resources Information Center

    Rader, Rick, Ed.

    2001-01-01

    This document collects the 12 monthly issues of Volume 31 of "Exceptional Parent," a magazine focused on practical advice for parents of children with disabilities. Most of the issues include a focus topic as well as articles on other issues, columns, reviews, and letters. These 12 issues concentrate on the following areas: (1) information…

  20. Learning Parenting in Prison

    ERIC Educational Resources Information Center

    Sackman, Sue

    1978-01-01

    Evaluates the Preschool Program for Parents of Young Children sponsored by the Cuyahoga Community College and implemented by the inmates of the Cleveland House of Correction, their children, and spouses. The thrust of the program is parent education and includes play sessions and discussion groups. (TP)

  1. Pinterest for Parent Education

    ERIC Educational Resources Information Center

    Routh, Brianna; Langworthy, Sara; Jastram, Hannah

    2014-01-01

    As more parents are using the Internet to answer their questions, Extension needs to provide practical, research-based resources in an accessible format. Pinterest is a platform that can be used by Extension educators to provide continued education and make reputable resources more discoverable for parents. Based on Knowles adult learning theory…

  2. Parents as Participating Partners

    ERIC Educational Resources Information Center

    Marshall, Linda; Swan, Paul

    2010-01-01

    Recent research has confirmed that parental involvement in education is positively associated with student achievement, yet further efforts are needed to measure the effects of such programs systematically so as to inform the development of improved methods. Having parents help their children with mathematics can be problematic. Teachers may not…

  3. When Your Parents Fight

    MedlinePLUS

    ... other anymore. They might think it means their parents will get a divorce . But parents' arguments usually don't mean that they don't love each other or that they're getting a divorce. Most of the time the arguments are just ...

  4. Parent Involvement. Research Brief

    ERIC Educational Resources Information Center

    Walker, Karen

    2007-01-01

    What are some ways in which to get parents meaningfully involved in their child's high school? According to the research, the most successful programs are those that provide a variety of ways in which parents can be actively engaged in their child's academic life. Joyce Epstein, Director of the National Network of Partnership Schools, out of Johns…

  5. Parents as Partners

    ERIC Educational Resources Information Center

    Brooks, Michele P.

    2011-01-01

    Family involvement is a key ingredient of improving underperforming schools, but families are often unaware of how to get involved. To engage families in schools, an urban school district offers Parent University to teach family members how to become leaders in schools and advocates for their children. Parent University is one of Boston Public…

  6. Parents as Partners Program.

    ERIC Educational Resources Information Center

    Ryan, Thomas E.

    1992-01-01

    In September 1990, three programs (Family Study Institute, Saturday School Programs, and Evening Programs) to strengthen and improve parent-school partnerships and enhance communication were instituted in a racially integrated school district in Cook County, Illinois. Evaluation findings showed that parental involvement significantly enhanced…

  7. Parental Engagement Pays Off

    ERIC Educational Resources Information Center

    Dessoff, Alan

    2009-01-01

    Although data directly linking parental engagement with positive results is limited, administrators, teachers, and parent cite anecdotal evidence--and some numbers about test scores and attendance from individual schools--to affirm the effectiveness of engagement programs. Meanwhile, researchers are studying the keys to successful programs and…

  8. Getting Parents Involved.

    ERIC Educational Resources Information Center

    Butts, Vickie; Finch, Patty A.

    1985-01-01

    Describes a parental involvement program in reading, writing, and human education. The project consists of caring for Clifford, a stuffed toy dog, on a rotated basis by first grade students. Books and pet care items accompany Clifford and provide an opportunity for parent and child to work together. (ML)

  9. Parent News Offline, 2002.

    ERIC Educational Resources Information Center

    Robertson, Anne S., Ed.

    2002-01-01

    This document is comprised of the two issues in volume 4 of "Parent News Offline," a publication of the National Parent Information Network (NPIN) designed to introduce those without Internet access to the activities and information available through NPIN. The Spring 2002 issue contains the following articles: (1) "Middle College High Schools:…

  10. Grief, parenting, and schizophrenia

    Microsoft Academic Search

    Daniel J. Davis; Cynthia L. Schultz

    1998-01-01

    It is argued that a child with schizophrenia represents an ongoing source of loss and grief for parents. The study aimed to (a) validate the presence of grief in mothers and fathers of children with schizophrenia, and (b)explore whether the hours of parental contact with the child influences the strength of grief reactions. The mean age (62 years) of the

  11. Getting Along with Parents

    MedlinePLUS

    ... or read a book out loud. If your parents are divorced, make the most of the time you do spend together. In between, talk on the phone (or video chat) and email each ... Many kids say they'd like their parents to help them when they're upset. But ...

  12. Building Relationships with Parents

    ERIC Educational Resources Information Center

    Cullaj, Stephanie

    2015-01-01

    Communicating with parents may seem like one more task on top of an overwhelming workload, but creating a positive relationship with parents has many benefits for all involved. The author discusses the steps to creating these relationships and communicating with families.

  13. Parenting for Independence.

    ERIC Educational Resources Information Center

    Matthews, Mary G.

    1996-01-01

    Responds to William Sears's article: "Attachment Parenting: A Style That Works" (PS 523 690). Claims that there are alternatives to "attachment parenting" based on the Montessori philosophy, pointing out that Sears's suggestion of sleeping with the baby and carrying the baby in a sling may easily become obstacles in the path of natural development…

  14. Parental Divorce, Parental Religious Characteristics, and Religious Outcomes in Adulthood

    PubMed Central

    Uecker, Jeremy E.; Ellison, Christopher G.

    2013-01-01

    Parental divorce has been linked to religious outcomes in adulthood. Previous research has not adequately accounted for parental religious characteristics or subsequent family context, namely whether one’s custodial parent remarries. Using pooled data from three waves of the General Social Survey, we examine the relationships among parental divorce, subsequent family structure, and religiosity in adulthood. Growing up in a single-parent family—but not a stepparent family—is positively associated with religious disaffiliation and religious switching and negatively associated with regular religious attendance. Accounting for parental religious characteristics, however, explains sizable proportions of these relationships. Accounting for parental religious affiliation and attendance, growing up with a single parent does not significantly affect religious attendance. Parental religiosity also moderates the relationship between growing up with a single parent and religious attendance: being raised in a single-parent home has a negative effect on religious attendance among adults who had two religiously involved parents. PMID:23357965

  15. Soil organic carbon stocks in southeast Germany as affected by land use, soil type and sampling depth

    NASA Astrophysics Data System (ADS)

    Wiesmeier, M.; von Lützow, M.; Spörlein, P.; Geuß, U.; Hangen, E.; Reischl, A.; Schilling, B.; Kögel-Knabner, I.

    2012-04-01

    Precise estimations of soil organic carbon (SOC) stocks are of decided importance for the detection of carbon sequestration or emission potential induced by land use changes. For Germany, a comprehensive, land use-specific SOC data set has not yet been compiled. We evaluated a unique data set of 1460 soil profiles in southeast Germany in order to calculate representative SOC stocks to a depth of 1 m for the main land use types. The results showed that grassland soils stored the highest amount of SOC, with a median value of 11.8 kg m-2, whereas considerably lower stocks of 9.8 and 9.0 kg m-2 were found for forest and cropland soils, respectively. However, the differences between extensively used land (grassland, forest) and cropland were much lower compared with results from other studies in central European countries. The depth distribution of SOC showed that despite low SOC concentrations in A horizons of cropland soils, their stocks were not considerably lower compared with other land uses. This was due to a deepening of the topsoil compared with grassland soils. Higher grassland SOC stocks were caused by an accumulation of SOC in the B horizon which was attributable to a high proportion of C-rich Gleysols within grassland soils. The incorporation of subsoil SOC stocks revealed that land use may not be the main controlling factor for SOC storage and highlighted the importance of pedogenetic properties, particularly in grassland soils. We recommend that pedogenetic soil information should be included in SOC stock estimations as well as in carbon sequestration studies. Our results further indicate that SOC depletion in cropland soils due to cultivation is probably often overestimated because tillage-induced deepening of the topsoil was ignored by studies with fixed depths. The application of modelled parameters in SOC inventories is generally questioned, because SOC stocks, calculated with pedotransfer functions, were systematically biased, particularly for forest soils. Therefore, we propose that in future SOC inventories, soils should be sampled down to the parent material and completely analyzed by horizon instead of depth increments in order to increase the accuracy of SOC stock estimations and to elucidate pedogenetic effects on SOC storage. A land use-specific and soil type-specific quantification of functional SOC pools with different turnover times would make it possible to estimate the future development of SOC stocks under a changing climate.

  16. Transformation of the organic matter of steppe soils of the Trans-Ural region after their conversion into the reserved regime

    NASA Astrophysics Data System (ADS)

    Prikhodko, V. E.; Manakhov, D. V.

    2014-04-01

    Soils of the Arkaim Reserve were studied before the establishment of the reserve and, then, 12 and 18 years after the reservation of this territory. Former pastures and hayfields occupy 70% of the reserve, and former plowlands occupy about 30%. Some of them have been converted into sown meadows. The soil cover of the reserve is composed of chernozems (about 50% of the area), solonetzes and salt-affected soils (32%), meadow-chernozemic soils (7%), and forest soils (1%). In eighteen years of reservation, the Corg content in the upper 20 cm has increased by 0.5-0.8%, or by 14-25% of the initial content with the average rate of 60-100 g C/m2 per year. The accumulation of Corg has been more intensive in the soils of former plowlands than in the soils of former pastures and in the chernozems than in the meadow-chernozemic soils. Self-restoration of most of the soils of the reserve is accompanied the rise in the content of the labile fraction of organic carbon. In some soils, the contents of the labile fraction (0.3%) and light-weight fraction (>25% of Corg) have reached optimum values. After 18 years of reservation, the biomass of microorganisms has reached 500-800 ?g/g of soil (or 1.1-1.9% of Corg); the basal respiration has reached 0.7-1.5 ?g C-CO2/g per hour. These characteristics are the highest for meadow-chernozemic soils under former pasture and the lowest for postagrogenic chernozems. The rise in the Corg content and changes in the particular forms of soil organic matter under the regime of a reserve greatly depend on the soil type and on the former land use. The role of parent materials is smaller. Many soils of the reserve require a long period of rehabilitation.

  17. Magnetic soil properties at two arid to semi-arid sites in the western United States

    NASA Astrophysics Data System (ADS)

    van Dam, Remke L.; Harrison, J. Bruce J.; Rittel, Carson L.; Hendrickx, Jan M. H.; Borchers, Brian

    2006-05-01

    In this paper we present the results of recent field and laboratory studies of the mineralogy and magnetic properties of young and/or weakly developed soils in Montana and California. The Chevallier Ranch UXO site in Montana is characterized by a basaltic plug and radiating feeder dikes, which is found surrounded by shales of the Spokane Formation. The site in California consists of an offset alluvial fan soil chronosequence of Little Rock Creek along the Mojave section of the San Andreas fault. The fan sediments include significant amounts of mafic material. The fan ages range from 16 to 413 thousand years. The results of magnetic susceptibility measurements and laboratory analysis of mineralogy demonstrate that the magnetic susceptibility in these soils is predominantly correlated with parent material and less with age or landscape position. Slow rates of soil forming processes lead to relatively low frequency dependence in magnetic susceptibility as compared to similar-age soils in tropical environments. The magnetic character of the soils can be accurately predicted with a previously developed model.

  18. The Best of "Parent News": A Sourcebook on Parenting from the National Parent Information Network.

    ERIC Educational Resources Information Center

    Robertson, Anne S., Comp.

    The National Parent Information Network (NPIN) was created in 1993 to collect and disseminate information about high-quality resources for parents. One of the services provided by NPIN is "Parent News," an Internet magazine that focuses on topics of interest to parents and to professionals who work with parents. Compiled in response to requests…

  19. Parents and Their Children's Reading.

    ERIC Educational Resources Information Center

    Hazell, Anne

    1981-01-01

    Describes the development and content of a program for parents designed to present the need for parent-child book sharing and to familiarize parents with outstanding book titles, sources, and criteria for book selection. (HTH)

  20. Effects of biological weathering on mine soil genesis and fertility

    Microsoft Academic Search

    1981-01-01

    Strip mine spoils derived from overburden rocks of the Pennsylvanian Wise Formation in Buchanan County, Virginia, commonly contain 40% less than 2 mm sized soil material. The physical and chemical properties of these soil materials are related to their rock origin. The soil materials are alkaline due to the presence of carbonates. The principal source of P in the soil

  1. Weathering and genesis of Soils from Ellsworth Mountains, East Antarctica

    NASA Astrophysics Data System (ADS)

    Karoline Delpupo Souza, Katia; Schaefer, Carlos Ernesto; Michel, Roberto; Monari, Julia; Machado, Vania

    2015-04-01

    Knowledge on Antarctic soils from the Ellsworth Mountains (EM) are patchy comparatively with Dry Valleys soils from the Transantartic Mountains, and could help understand the genesis of cryogenic soils under extreme dry, cold desert conditions. The EM are a slightly arcuate 350-km-long north-northwest-trending mountain chain is bordered on the west by the polar plateau of West Antarctica and on the east by Ronne Ice Shelf. The range is as much as 90 km wide and constitutes one of the largest areas of exposed bedrock in West Antarctica. The stratigraphic succession in the EM includes strata from Cambriam to Permian in age. The objective of this study is to analyze the properties of soils from EM in order to identify the main factors and processes involved in soil formation under cold desert conditions in Antarctica. The sampling design aimed to represent the different geological substrates (marble-clast conglomerate, graywacke, argillite, conglomerate, black shale, marble and quartzite) as well as altitudinal levels and landforms within the same substrate. We characterized soils from EM regarding their morphological, physics and chemical properties. Soil samples were air dried and passed through 2 mm sieves. After removal of water soluble salts, the samples were submitted to chemical and physical analyses such as: pH in water, potential acidity (H + Al), exchangeable bases, total organic carbon, electric conductivity, soil texture and color. The soils classify, for the most part, in weathering stages 1 to 2. Only in the upper parts of ridges were there traces of soils at weathering stage 3. This indicates that much of the present icefree topography has been overridden by ice within the last few hundred thousand years. Cryoturbation is a widespread phenomenon in this area resulting in intense cryoclastic weathering and patterned ground, forming sorted circles, stripes and gelifluxion lobes. The soil show low horizontation, discrete patches of salt on the surface, and salt crusts beneath the rock fragments. Despite of the low weathering stage of the soil, they have yellowish hue and high chroma values from influence by sulfide material. Boulders on moraines show staining, pitting, spalling, and some striations. All soil are alkaline in reaction, with pHs at the range between 7.5-9.2. Cryptogamic (lichens or mosses) crusts are absent, and the organic matter contents were invariably very low, ranging between 0.13 and 0.38%. Permafrost is continuous and occurs close to the surface, at between 5-15 cm down the top. The available P background is also very low (< 5.3 mg/kg), exchangeable K and Na levels are surprisingly low for Polar Desert soils. Soils are all skelletic, with a predominance of coarse materials. CEC is medium to high, and Ca-dominated, as a result of a strong limestone influence in the moraine parent materials. The main salts present are Ca and Na-sulphate forms, and less cloride forms, and clay sized materials are dominated by salts in all soils, especially below 5 cm depth.

  2. Soil mapping and classification in the Alps: Current state and future challenges

    NASA Astrophysics Data System (ADS)

    Baruck, Jasmin; Gruber, Fabian; Geitner, Clemens

    2014-05-01

    Soil is an essential, non-renewable resource, which fundamentally needs sustainable management. Soils in mountain regions like the Alps have a diverse small-scale distribution and they are characterized by a slow soil development and multilayer profiles. This is mainly caused by high process dynamics and harsh climate conditions. Therefore, soils are particularly vulnerable and require a sustainable management approach. Furthermore, the global change, especially the climate and land use change, leads to new demands on the soil. Thus, high-resolution spatial informations on soil properties are required to protect this resource and to consider its properties in spatial planning and decision making. In the Alpine region soil maps are mostly confined to small (mostly agriculture) areas. Especially, in higher altitudes of the Alps pedologic research and data collection are lacking. However, nowadays and in the future systematic soil mapping works are and will be no longer applied. Another methodical problem arises because each Alpine country has its own national soil mapping and classification system which are not adapted to Alpine areas. Therefore, appropriate methods of working practices for the Alpine region are mostly missing. The central aim of the research project "ReBo - Terrain Classification based on airborne laser scanning data to support soil mapping in the Alps", founded by the Autonomous Province of Bolzano - South Tyrol, is to develop and verify a concept, which allows the collection of soil data through an optimized interaction of soil mapping and geomorphometric analysis. The test sites are located in South Tyrol (Italy). The workflow shall minimise the required pedologic field work and shall provide a reliable strategy for transferring punctual soil informations into spatial soil maps. However, for a detailed analysis a systematic pedologic field work is still indispensable. As in the Alps reliable soil mapping and classification standards are lacking, following questions arise: What can we learn and adopt from existing mapping and classifications systems? Is there a basis for the development of international standards and future collaborations in the Alpine region? Against this background we give an overview of the national classification systems in the Alpine region. Additionally, a data set of soil profiles from South Tyrol will be used to show the effects of different soil classifications with special reference to topography and parent material.

  3. Soil property effects on wind erosion of organic soils

    NASA Astrophysics Data System (ADS)

    Zobeck, Ted M.; Baddock, Matthew; Scott Van Pelt, R.; Tatarko, John; Acosta-Martinez, Veronica

    2013-09-01

    Histosols (also known as organic soils, mucks, or peats) are soils that are dominated by organic matter (OM > 20%) in half or more of the upper 80 cm. Forty two states have a total of 21 million ha of Histosols in the United States. These soils, when intensively cropped, are subject to wind erosion resulting in loss of crop productivity and degradation of soil, air, and water quality. Estimating wind erosion on Histosols has been determined by USDA-Natural Resources Conservation Service (NRCS) as a critical need for the Wind Erosion Prediction System (WEPS) model. WEPS has been developed to simulate wind erosion on agricultural land in the US, including soils with organic soil material surfaces. However, additional field measurements are needed to understand how soil properties vary among organic soils and to calibrate and validate estimates of wind erosion of organic soils using WEPS. Soil properties and sediment flux were measured in six soils with high organic contents located in Michigan and Florida, USA. Soil properties observed included organic matter content, particle density, dry mechanical stability, dry clod stability, wind erodible material, and geometric mean diameter of the surface aggregate distribution. A field portable wind tunnel was used to generate suspended sediment and dust from agricultural surfaces for soils ranging from 17% to 67% organic matter. The soils were tilled and rolled to provide a consolidated, friable surface. Dust emissions and saltation were measured using an isokinetic vertical slot sampler aspirated by a regulated suction source. Suspended dust was sampled using a Grimm optical particle size analyzer. Particle density of the saltation-sized material (>106 ?m) was inversely related to OM content and varied from 2.41 g cm-3 for the soil with the lowest OM content to 1.61 g cm-3 for the soil with highest OM content. Wind erodible material and the geometric mean diameter of the surface soil were inversely related to dry clod stability. The effect of soil properties on sediment flux varied among flux types. Saltation flux was adequately predicted with simple linear regression models. Dry mechanical stability was the best single soil property linearly related to saltation flux. Simple linear models with soil properties as independent variables were not well correlated with PM10E values (mass flux). A second order polynomial equation with OM as the independent variable was found to be most highly correlated with PM10E values. These results demonstrate that variations in sediment and dust emissions can be linked to soil properties using simple models based on one or more soil properties to estimate saltation mass flux and PM10E values from organic and organic-rich soils.

  4. Soil gas radon assessment and development of a radon risk map in Bolsena, Central Italy.

    PubMed

    Cinelli, G; Tositti, L; Capaccioni, B; Brattich, E; Mostacci, D

    2015-04-01

    Vulsini Volcanic district in Northern Latium (Central Italy) is characterized by high natural radiation background resulting from the high concentrations of uranium, thorium and potassium in the volcanic products. In order to estimate the radon radiation risk, a series of soil gas radon measurements were carried out in Bolsena, the principal urban settlement in this area NE of Rome. Soil gas radon concentration ranges between 7 and 176 kBq/m(3) indicating a large degree of variability in the NORM content and behavior of the parent soil material related in particular to the occurrence of two different lithologies. Soil gas radon mapping confirmed the existence of two different areas: one along the shoreline of the Bolsena lake, characterized by low soil radon level, due to a prevailing alluvial lithology; another close to the Bolsena village with high soil radon level due to the presence of the high radioactive volcanic rocks of the Vulsini volcanic district. Radon risk assessment, based on soil gas radon and permeability data, results in a map where the alluvial area is characterized by a probability to be an area with high Radon Index lower than 20 %, while probabilities higher than 30 % and also above 50 % are found close to the Bolsena village. PMID:25239677

  5. Superparamagnetism of two modern soils from the northeastern Pampean region, Argentina and its paleoclimatic indications

    NASA Astrophysics Data System (ADS)

    Liu, Qingsong; Torrent, José; Morrás, Héctor; Hong, Ao; Jiang, Zhaoxia; Su, Youliang

    2010-11-01

    The magnetic susceptibility (?) carried by pedogenic fine-grained ferrimagnets has been widely used as paleoclimatic proxy to elucidate long-term paleoclimatic variations for wind-blown terrestrial loess/paleosol sequences. However, the magnetic properties of the lithogenic parent material can mask the pedogenic signals. In this study, we systematically investigated the origin of the superparamagnetism of two modern soils from the northeastern humid Pampean region, Argentina, developed on loess materials of different mineralogical composition. The samples were treated with the citrate-bicarbonate-dithionite (CBD) reagent, which is known to dissolve the submicron, pedogenic ferrimagnets while leaving unaltered the coarse grained ones. The magnetic material accounting for the frequency-dependent magnetic susceptibility peak at about 50 K remained in the residuals and is independent of the pedogenic processes. In addition, pedogenic ferrimagnetic particles in the two soils have a magnetic signature comparable to that of the soils from the Chinese Loess Plateau. It is also suggested that the ? for the bulk samples does not seem to be a reliable paleoclimatic proxy for the Pampean soils investigated in this study. Instead, the CBD-soluble magnetic signals could be more useful to detect paleoenvironmental variations in this region. These new findings provide improved understanding of the magnetic assemblage in the Pampean loess soils and make it feasible to retrieve the paleoclimatic signals carried by the pedogenic, CBD-soluble, iron oxides after removing the effects of the lithogenic inputs.

  6. Building Blocks. An Annotated Bibliography for Single Parent Programming.

    ERIC Educational Resources Information Center

    Wiley-Thomas, Cheryl, Comp.; Norden, Tamara, Ed.

    This booklet lists 645 books, articles, curriculum materials, computer software, and videos that educational professionals can use to develop programs for single parents (especially teen parents). Many of the listings are annotated; all contain information on author, title, publisher name and city, and date of publication or production. The…

  7. Parents, Children, and TV: A Guide to Using TV Wisely.

    ERIC Educational Resources Information Center

    Singer, Dorothy; Kelly, Helen Bryman

    Adapted from a series of 20 monthly columns which originally appeared in Highlights for Children, Inc.'s "Newsletter of Parenting," the material in this booklet explores: (1) ways in which television influences viewers; (2) what television teaches; and (3) some positive aspects of television. It also suggests activities for parents which will…

  8. Parent Report of Conversations with Their Adolescents with Intellectual Disability

    ERIC Educational Resources Information Center

    Jones, Jennifer L.; Oseland, Lauren M.; Morris, Kathryn L.; Larzelere, Robert E.

    2014-01-01

    Background: The purpose of this study was to examine parent report of conversations about difference and disability in families of adolescents with intellectual disability. Materials and Methods: Participants included 50 parents (44 mothers, four fathers, and two other caregivers) and their adolescents with intellectual disability (M age = 15.9).…

  9. Parenting from before conception.

    PubMed

    Lane, Michelle; Robker, Rebecca L; Robertson, Sarah A

    2014-08-15

    At fertilization, the gametes endow the embryo with a genomic blueprint, the integrity of which is affected by the age and environmental exposures of both parents. Recent studies reveal that parental history and experiences also exert effects through epigenomic information not contained in the DNA sequence, including variations in sperm and oocyte cytosine methylation and chromatin patterning, noncoding RNAs, and mitochondria. Transgenerational epigenetic effects interact with conditions at conception to program the developmental trajectory of the embryo and fetus, ultimately affecting the lifetime health of the child. These insights compel us to revise generally held notions to accommodate the prospect that biological parenting commences well before birth, even prior to conception. PMID:25124428

  10. Parents Sharing Books: Motivation and Reading.

    ERIC Educational Resources Information Center

    Shefelbine, John

    This booklet focuses on reading motivation, especially on specific steps to motivate the middle school child to learn. The main topics explored are: finding or making time for reading for pleasure; filling or flooding the house with interesting reading materials; and reading as a way of life. Practical questions from parents are answered and…

  11. Diffusion and Leaching of Selected Radionuclides (Iodine-129, Technetium-99, and Uranium) Through Category 3 Waste Encasement Concrete and Soil Fill Material

    SciTech Connect

    Mattigod, Shas V.; Whyatt, Greg A.; Serne, R. Jeffrey; Martin, P. F.; Schwab, Kristen E.; Wood, Marcus I.

    2001-09-24

    An assessment of long-term performance of Category 3 waste-enclosing cement grouts requires data about the leachability/diffusion of radionuclide species (iodine-129, technetium-99, and uranium) when the waste forms come in contact with groundwater. Leachability data were collected by conducting dynamic (ANS-16.1) and static leach tests on radionuclide-containing cement specimens. The diffusivity of radionuclides in soil and concrete media was collected by conducting soil-soil and concrete-soil half-cell experiments.

  12. Soil Erosion. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Buydos, John F., Comp.

    Soil erosion is the detachment and movement of topsoil or soil material from the upper part of the soil profile. It may occur in the form of rill, gully, sheet, or wind erosion. Agents of erosion may be water, wind, glacial ice, agricultural implements, machinery, and animals. Soil conservation measures require a thorough understanding of the…

  13. Concentrations of polycyclic aromatic hydrocarbons and inorganic constituents in ambient surface soils, Chicago, Illinois: 2001-2002

    USGS Publications Warehouse

    Kay, R.T.; Arnold, T.L.; Cannon, W.F.; Graham, D.

    2008-01-01

    Samples of ambient surface soils were collected from 56 locations in Chicago, Illinois, using stratified random sampling techniques and analyzed for polycyclic aromatic hydrocarbon (PAH) compounds and inorganic constituents. PAHs appear to be derived primarily from combustion of fossil fuels and may be affected by proximity to industrial operations, but do not appear to be substantially affected by the organic carbon content of the soil, proximity to nonindustrial land uses, or proximity to a roadway. Atmospheric settling of particulate matter appears to be an important mechanism for the placement of PAH compounds into soils. Concentrations of most inorganic constituents are affected primarily by soil-forming processes. Concentrations of lead, arsenic, mercury, calcium, magnesium, phosphorus, copper, molybdenum, zinc, and selenium are elevated in ambient surface soils in Chicago in comparison to the surrounding area, indicating anthropogenic sources for these elements in Chicago soils. Concentrations of calcium and magnesium in Chicago soils appear to reflect the influence of the carbonate bedrock parent material on the chemical composition of the soil, although the effects of concrete and road fill cannot be discounted. Concentrations of inorganic constituents appear to be largely unaffected by the type of nearby land use. Copyright ?? Taylor & Francis Group, LLC.

  14. Geochemistry and biogeochemistry of rare earth elements in a surface environment (soil and plant) in South China

    NASA Astrophysics Data System (ADS)

    Miao, Li; Xu, Ruisong; Ma, Yueliang; Zhu, Zhaoyu; Wang, Jie; Cai, Rui; Chen, Yu

    2008-11-01

    Plants and soils derived from different kinds of parent materials in South China were collected for analyses of rare earth elements (REEs) by inductively coupled plasma-mass spectrometry (ICP-MS). The distribution patterns and transportation characteristics of REEs in the soil-plant system were studied. The results show that geochemical characteristics of REEs depend on the types of soils, soils derived from granite being the highest in REE concentration. In a soil profile, REE concentrations are higher in B and C horizons than those in A horizon, with Eu negative anomaly and Ce positive anomaly. Plants of different genera growing in the same sampling site have quite similar REE distribution pattern, but plants of the same genera growing in different soils show considerable variation in characteristics of REEs. The patterns of the different parts of plant resemble each other, but the slope of the patterns becomes different. REEs have fractionated when they were transported and migrated from soil to plant root, stem and leaf, revealing that heavy REEs are relatively less available. REEs distributions in plants are influenced by the soil they grow in and also characterized by their individual biogeochemical characteristics. Biological absorption coefficients indicate difference of REE absorption capacity of plants.

  15. Challenges of Parenting Multiples

    MedlinePLUS

    ... Parenting Multiples There are many psychological, social, and economic issues associated with multiple pregnancies. These issues should be given the same amount of attention as the medical risks. Fertility treatment makes you ...

  16. Parental Socialization of Emotion

    PubMed Central

    Cumberland, Amanda; Spinrad, Tracy L.

    2006-01-01

    Recently, there has been a resurgence of research on emotion, including the socialization of emotion. In this article, a heuristic model of factors contributing to the socialization of emotion is presented. Then literature relevant to the socialization of children’s emotion and emotion-related behavior by parents is reviewed, including (a) parental reactions to children’s emotions, (b) socializers’ discussion of emotion, and (c) socializers’ expression of emotion. The relevant literature is not conclusive and most of the research is correlational. However, the existing body of data provides initial support for the view that parental socialization practices have effects on children’s emotional and social competence and that the socialization process is bidirectional. In particular, parental negative emotionality and negative reactions to children’s expression of emotion are associated with children’s negative emotionality and low social competence. In addition, possible moderators of effects such as level of emotional arousal are discussed. PMID:16865170

  17. Parenting Your Infant

    MedlinePLUS

    ... easily. This can lead to choking! Infants Have Personalities Even very tiny infants act in very individual ... and will pass. Reach Out To Family and Friends, or Make New Friends With Other Parents Having ...

  18. Parental attitudes towards epilepsy.

    PubMed

    Bains, H S; Raizada, N

    1992-12-01

    Parents of 352 children with history of epilepsy were interviewed by a pretested, open ended questionnaire to ascertain the nature of first aid care during an epileptic fit, complications arising out of this care, and parents' perceptions regarding causes of epilepsy. The commonest form of care provided was to force liquids by mouth (50.6%), followed by pressure over body to restrain convulsive movements (13.0%) or to put some object to force the teeth open (11.9%). The various causes of epilepsy according to the parents were: due to an evil spirit (26.7%0, heritable causes (13.9%), physical or mental weakness (6.6%) and brain damage (5.9%). The need of imparting knowledge and clear understanding about epilepsy among parents is emphasized. PMID:1291493

  19. Eye Injuries (For Parents)

    MedlinePLUS

    ... Sports: Keeping Kids Safe Concussions: What to Know Eye Injuries KidsHealth > Parents > First Aid & Safety > Emergencies > Eye ... do not delay flushing the eye first. Black Eyes and Blunt Injuries A black eye is often ...

  20. Girls' Feelings (Parents)

    MedlinePLUS

    ... for parents The teen years can be a pretty tough time for girls — and for their families! ... of the mental health issues that teens may face. These can include depression , cutting , and eating disorders , ...

  1. Parent to Parent Peer Support across the Pacific Rim

    ERIC Educational Resources Information Center

    Singer, George H. S.; Hornby, Garry; Park, Jiyeon; Wang, Mian; Xu, Jiacheng

    2012-01-01

    In Pacific Rim countries parents of children with developmental disabilities have organized peer support organizations. One form of peer support is Parent to Parent based on one to one connections between two parents. The movements to create and sustain peer support in the U.S., New Zealand, China, and Korea are described. Qualitative evidence…

  2. Handbook of Parenting. Volume 4: Applied and Practical Parenting.

    ERIC Educational Resources Information Center

    Bornstein, Marc H., Ed.

    Concerned with problems, compromises, and challenges of parenting, this volume, the fourth of four volumes on parenting specifically deals with applied issues and practical considerations in parenting. The volume consists of 18 chapters as follows: (1) "Maternal Deprivation" (Michael Rutter); (2) "Marital Interaction and Parenting" (Kathryn P.…

  3. Parenting Perceptions: Comparing Parents of Typical and Special Needs Preschoolers

    ERIC Educational Resources Information Center

    Sperling, Shoshana; Mowder, Barbara A.

    2006-01-01

    Using the Parent Development Theory (PDT; B.A. Mowder, 2005) as the conceptual framework, this research explored parenting related to preschoolers' special needs status. Parents of special needs children rated general welfare and protection as well as sensitivity as the most important parenting characteristics during the preschool years. By…

  4. Parenting Behaviour among Parents of Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Lambrechts, Greet; Van Leeuwen, Karla; Boonen, Hannah; Maes, Bea; Noens, Ilse

    2011-01-01

    Contrary to the extensive amount of empirical findings about parental perceptions, parenting cognitions, and coping in families with a child with autism spectrum disorder (ASD), research about parenting itself is very scarce. A first goal of this study was to examine the factor structure and internal consistency of two scales to measure parenting

  5. Real Parents, Real Children: Parenting the Adopted Child.

    ERIC Educational Resources Information Center

    van Gulden, Holly; Bartels-Rabb, Lisa M.

    Parenting an adopted child is, for the most part, the same as parenting any other child, but is different in some unique and critical ways related to the child's separation from birth parents and genetic roots. Understanding how a child interprets, understands, and feels about adoption, and why, can help the parent guide the adopted child…

  6. Child Care Access Means Parents In School Student Parent Application

    E-print Network

    Hanson, Stephen José

    Child Care Access Means Parents In School (CCAMPIS) Student Parent Application 2013-2014 Rutgers, The State University of New Jersey - Newark Campus Child Care Access Means Parents In School (CCAMPIS-income, Student parents in postsecondary education through the provision of child care stipends. #12;Page 1 of 3

  7. Child Care Access Means Parents In School Student Parent Application

    E-print Network

    Hanson, Stephen José

    Child Care Access Means Parents In School (CCAMPIS) Student Parent Application Fall 2014 Rutgers, The State University of New Jersey - Newark Campus Child Care Access Means Parents In School (CCAMPIS-income, Student parents in postsecondary education through the provision of child care stipends. #12;Page 1 of 3

  8. Adolescent Gambling: Relationships With Parent Gambling and Parenting Practices

    Microsoft Academic Search

    Julie Vachon; Frank Vitaro; Brigitte Wanner; Richard E. Tremblay

    2004-01-01

    This study explored the possible links between family risk factors (i.e., parent gambling and parenting practices) and adolescent gambling. A community sample of 938 adolescents (496 females and 442 males) completed the South Oaks Gambling Screen Revised for Adolescents (SOGS-RA; K. C. Winters, R. Stinchfield, & J. Fulkerson, 1993b) along with a questionnaire assessing parenting practices. Both parents completed the

  9. Parents' Workplace Situation and Fathers' Parental Leave Use

    ERIC Educational Resources Information Center

    Bygren, Magnus; Duvander, Ann-Zofie

    2006-01-01

    This study examines how the workplace situation of both parents affects fathers' parental leave use. We used parental leave-taking register data from Statistics Sweden for dual-earner couples who resided in Stockholm and had children in 1997 (n=3,755). The results indicate that fathers shorten their parental leave if their workplaces are such that…

  10. Parental Role Construction and Parental Involvement in Children's Education.

    ERIC Educational Resources Information Center

    Hoover-Dempsey, Kathleen V.; Jones, Kathleen P.

    Following a model suggesting that parental role construction fills specific functions in the parental involvement process (Hoover-Dempsey and Sandler, 1995; in press), this study examined parents' role construction as it relates to children's schooling. A sample of 74 parents of public elementary school children participated in focused interviews…

  11. Fostering Parental Autonomy: An Aid to Effective Parenting.

    ERIC Educational Resources Information Center

    Stanberry, J. Phillip; Stanberry, Anne M.

    This study examined the feelings of confidence in parenting among 13 women enrolled in a parent education program in rural Mississippi which emphasized academic skills and personal growth. It was hypothesized that there would be a significant correlation between parents' feelings of self-differentiation and confidence as parents. Based on several…

  12. Adolescent Violence towards Parents

    Microsoft Academic Search

    Gregory Routt; Lily Anderson

    2011-01-01

    Although adolescent-to-parent violence is often overlooked by family violence researchers and practitioners, there is a growing body of evidence that suggests it is widespread. Knowledge about this type of violence is limited and few established interventions exist. This article describes an intervention—called the Step-Up program—for youth who assault their parents in King County, Washington, and identifies risk factors for youth

  13. Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals

    NASA Astrophysics Data System (ADS)

    Schrumpf, M.; Kaiser, K.; Guggenberger, G.; Persson, T.; Kögel-Knabner, I.; Schulze, E.-D.

    2012-09-01

    Conceptual models suggest that stability and age of organic carbon (OC) in soil depends on the source of plant litter, occlusion within aggregates, incorporation in organo-mineral complexes, and location within the soil profile. Various tools like density fractionation, mineralization experiments, and radiocarbon analyses have been used to study the importance of these mechanisms. We systematically apply them to a range of European soils to test whether general controls emerge even for soils that vary in vegetation, soil types, parent material, and land use. At each of the 12 study sites, 10 soil cores were sampled in 10 cm depth intervals to 60 cm depth and subjected to density separation. Bulk soil samples and density fractions (free light fractions - fLF, occluded light fractions - oLF, heavy fractions - HF) were analysed for OC, total nitrogen (TN), ?13C, and ?14C. Bulk samples were also incubated to determine mineralizable OC. Declining OC-normalized CO2 release and increasing age with soil depth confirm greater stability of OC in subsoils across sites. Depth profiles of LF-OC matched those of roots, which in turn reflect plant functional types in soil profiles not subject to ploughing. Modern ?14C signatures and positive correlation between mineralizable C and fLF-OC indicate the fLF is an easily available energy and nutrient source for subsurface microbes. Fossil C derived from the geogenic parent material affected the age of OC especially in the LF at three study sites. The overall importance of OC stabilization by binding to minerals was demonstrated by declining OC-normalized CO2 release rates with increasing contributions of HF-OC to bulk soil OC and the low ?14C values of HF-OC. The stability of HF-OC was greater in subsoils than in topsoils; nevertheless, a portion of HF-OC was active throughout the profile. The decrease in ?14C (increase in age) of HF-OC with soil depth was related to soil pH as well as to dissolved OC fluxes. This indicates that dissolved OC translocation contributes to the formation of subsoil HF-OC and shapes the ?14C profiles. While quantitatively less important than OC in the HF, consistent older ages of oLF-OC than fLF-OC indicate that occlusion of LF-OC in aggregates also contributes to OC stability in subsoils. Overall, our results showed that association with minerals is the most important factor in stabilization of OC in soils.

  14. Natural Resources Conservation Service: Soil Education

    NSDL National Science Digital Library

    The Natural Resources Conservation Service provides an array of materials to assist people with their understanding of soils. Through an online presentation, users can learn ten key points about soil characteristics and their importance. Teachers and students can find many fun activities including soil erosion and particle size demonstrations and soil songs. The website provides a great introduction to soil formation and classification. Those contemplating a career in soil science can discover the specifics of the soil profession. The website offers a wide range of links to outside sources involved with soil science.

  15. High mountain soil sequence at the Páramos of Cotopaxi volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Rocha Francelino, Marcio; Muselli Barbosa, Alexandre; Adnet Moura, Pedro; Adent Moura, Tom; Correia, Guilherme; Cunha Anjos, Lúcia Helena; Schaefer, Carlos Ernesto

    2015-04-01

    Very little is known about high-mountain cryopedogenesis under Páramo vegetation in the Andes. We studied soils along a typical topossequence at the periglacial zone on the northern flank of Cotopaxi volcano, Ecuador, emphasizing the cryopedogenesis process and altitudinal soil climatic regime, in soils ranging from 3980 to 4885m, above the tree line and below the snow line. At each site, a complete set of instruments (sensors and datalogger) were installed to monitoring air and soil temperatures and moisture, at five soil depths, in three different elevation points; in addition we selected, described and sampled six representative soil profiles, according to local variations in vegetation cover, topography, presence of snow and elevation; soils were studied concerning the petrographic composition, mineralogical, physical and chemical properties of different soil fractions. The geology of the Cotopaxi volcano is complex due to recent volcanic activity. Petrographically, the most recent ejected material is of Andesite-rhyolitic composition, with large deposits of tephra, and solifluxion lobes forming a mixed debris mantle. The landforms are characteristic of a stratovolcano, with conical and symmetric formations, with a dissected, broad base with gentle slopes, changing to steep slopes and eroded, rugged peaks, displaying periglacial erosional features. Also, we find cumulative sedimentary materials of periglacial origin in the lower parts of the landscape. Soil monitoring temperatures for one year showed that the surface soil is warmer than the air temperature for the three elevations, even under snow cover, indicating a strong thermal insulation of these volcanic soils. No permafrost was detected at the 200 cm section. The volcanic soils are stratified, with alternating layers of ash and lapilli, with pumices, with predominantly coarse textures and low clay content, features that may contribute to the observed insulation. Mineralogical analyzes indicated the presence of easily weathered minerals such as apatite, olivine, pyroxenes and feldspars, resulting in high exchangeable levels of Na, P and K, and the large amounts of Fe, present in the ferromagnesian minerals in the volcanic parent materials. The six profiles described were classified according to the WRB (FAO): 3 was classified in the class of Regosol, 2 as Leptosols, and 1 as Cryosol, and the Soil Taxonomy, 3 was classified in the class of Inceptisol, 2 as Entisol and 1 as Gelisol.

  16. Soil carbon storage and respiration potential across a landscape age and climate gradient in western Greenland

    NASA Astrophysics Data System (ADS)

    Bradley-Cook, J. I.; Virginia, R. A.; Hammond Wagner, C.; Racine, P. E.

    2013-12-01

    The soil formation state factors proposed by Hans Jenny (climate, organisms, relief, parent material, time) explain many soil characteristics, yet geological controls on biological carbon cycling are not well represented in regional carbon models. Landscape age, for instance, can directly affect the quantity and quality of soil organic carbon, which are key determinants of the temperature sensitivity of soil organic matter (SOM) to decomposition. Temperature control of SOM decomposition is of particular importance in Arctic soils, which contain nearly half of global belowground organic carbon and have a permafrost thermal regime that straddles the freeze-thaw threshold. We investigated soil carbon storage and respiration potential across a west Greenland transect, and related the landscape carbon patterns to regional variation in climate and landscape age. The four study sites capture a range in: landscape age from 180 years on the inland Little Ice Age moraine near Kangerlussuaq to ~10,000 years at the coastal sites near Sisimiut and Nuuk, mean annual air temperatures from -5.7 to -1.4 °C, and mean annual precipitation from 149 to 752 mm. At each site, we collected surface and mineral samples from nine soil pits within similar vegetation cover and relief classes. We measured total organic carbon and nitrogen though elemental analysis, and incubated soils at 4 °C and field capacity moisture for 175 day to measure carbon dioxide production from which we derived soil respiration potential. We hypothesized that soil carbon storage and respiration potential would be greatest at the sites with the oldest landscape age. Soil carbon content was more than four times greater at the 10,000 year sites (Nuuk = 24.03%, Sisimiut = 17.34%) than the inland sites (Ørkendalen = 3.49%, LIA = 0.05%). Carbon quality decreased across the age gradient, as measured by a nearly two-fold increase in C:N ratio from the youngest and driest to the oldest and wettest soils (LIA = 12.2, Nuuk = 22.8). While soil respiration rates were significantly highest in the surface soils at the wettest coastal site, we observed high variation in respiration potential indicating that small-scale variation in carbon quality and other soil properties is high. This study informs our understanding of regional variation of carbon storage and turnover in western Greenland and provides important information for the parameterization of landscape scale models of soil carbon dynamics in the Arctic tundra.

  17. Critical shear stress for erosion of cohesive soils subjected to temperatures typical of wildfires

    USGS Publications Warehouse

    Moody, J.A.; Dungan, Smith J.; Ragan, B.W.

    2005-01-01

    [1] Increased erosion is a well-known response after wildfire. To predict and to model erosion on a landscape scale requires knowledge of the critical shear stress for the initiation of motion of soil particles. As this soil property is temperature-dependent, a quantitative relation between critical shear stress and the temperatures to which the soils have been subjected during a wildfire is required. In this study the critical shear stress was measured in a recirculating flume using samples of forest soil exposed to different temperatures (40??-550??C) for 1 hour. Results were obtained for four replicates of soils derived from three different types of parent material (granitic bedrock, sandstone, and volcanic tuffs). In general, the relation between critical shear stress and temperature can be separated into three different temperature ranges (275??C), which are similar to those for water repellency and temperature. The critical shear stress was most variable (1.0-2.0 N m-2) for temperatures 2.0 N m-2) between 175?? and 275??C, and was essentially constant (0.5-0.8 N m-2) for temperatures >275??C. The changes in critical shear stress with temperature were found to be essentially independent of soil type and suggest that erosion processes in burned watersheds can be modeled more simply than erosion processes in unburned watersheds. Wildfire reduces the spatial variability of soil erodibility associated with unburned watersheds by eliminating the complex effects of vegetation in protecting soils and by reducing the range of cohesion associated with different types of unburned soils. Our results indicate that modeling the erosional response after a wildfire depends primarily on determining the spatial distribution of the maximum soil temperatures that were reached during the wildfire. Copyright 2005 by the American Geophysical Union.

  18. Interactions of aluminum with forest soils and vegetation: Implications for acid deposition

    SciTech Connect

    Maynard, A.A.

    1989-01-01

    Recent evidence suggests that an important ecological consequence of acidic deposition is increased aluminum mobilization. There is concern that increased aluminum activity may produce toxic effects in forested ecosystems. My studies were concerned with the behavior of pedogenic and added aluminum in soils derived from chemically different parent material. Soil aluminum was related to the aluminum content of the vegetation found growing in the soils. In addition, aluminum levels of forest litter was compared to levels determined 40 years ago. Field, greenhouse, and laboratory investigations were conducted in which the effects of aluminum concentration on germination and early growth was determined. Soils were then used in greenhouse and laboratory studies to establish patterns of soil and plant aluminum behavior with implications to acid deposition. Results show that the amount of aluminum extracted was related to the pH value of the extracting solution and to the chemical characteristics of the soil. Some acid rain solutions extracted measurable amounts of aluminum from selected primary minerals. Germination and early growth of Pinus radiata was controlled by levels of aluminum in the soil or in solution. Field studies indicated that most forest species were sensitive to rising levels of aluminum in the soil. In general, ferns and fern allies were less sensitive to very high levels of aluminum in the soil, continuing to grow when more advanced dicots have disappeared. Aluminum tissue levels of all species were related to the concentration of aluminum in the soil as was the reappearance of species. Aluminum levels in leaf litter have risen at least 50% in the last 40 years. These values were consistent over 3 years. The implications to acid deposition were discussed.

  19. Parenting Practices, Parenting Style, and Children’s School Achievement

    Microsoft Academic Search

    Shaljan Areepattamannil

    2010-01-01

    This study, drawing on data from the 2002 Survey of Approaches to Educational Planning (SAEP), examined the predictive effects\\u000a of parenting practices and parenting style on children’s school achievement, and the predictive effects of parental expectations\\u000a and parental beliefs on parenting style for 6,626 respondents with children aged 5–18 years in Canada. Hierarchical multiple\\u000a regression analyses, after controlling for family socioeconomic

  20. The diversity and biogeography of soil

    E-print Network

    Chave, Jérôme

    predictors of bacterial diversity 5 #12;Material and methods · Soil sampling · 98 distinct soil samples samples Sites in the US #12;Material and methods · Data · Compare bacterial diversity and community structure across soils T-RFLP method vs Clone libraries · T-RFLP Method (Terminal-Restriction Fragment

  1. A DIRECT OBSERVATION TECHNIQUE FOR EVALUATING SCLEROTIUM GERMINATION BY MACROPHOMINA PHASEOLINA AND EFFECTS OF BIOCONTROL MATERIALS ON SURVIVAL OF SCLEROTIA IN SOIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Germination of sclerotia of Macrophomina phaseolina was quantified by direct microscopic observation following application of experimental treatments in vitro and incubation of sclerotia in soil. Survival in soil was evaluated at different moisture levels and with and without poultry litter amendme...

  2. Parenting Education - Preparing for Parenthood.

    ERIC Educational Resources Information Center

    National Indian Child Abuse and Neglect Resource Center, Tulsa, OK.

    The first in a series on parenting education, for American Indians, the booklet looks at preparation for parenthood. Learning to be a good parent begins when one is a child, watching our parents and copying their ways with our own children. The booklet recognizes problems and needs of new parents. Some problems are an unplanned pregnancy,…

  3. Getting Schools Involved with Parents.

    ERIC Educational Resources Information Center

    Kroth, Roger L.; Scholl, Geraldine T.

    To provide practical assistance in involving parents of exceptional students in their child's education, examples of successful school programs of parental involvement are presented, along with vignettes illustrating various aspects of parental involvement. In the section on the merits of parent participation are discussed political activities,…

  4. Active Parenting Now: Program Kit.

    ERIC Educational Resources Information Center

    Popkin, Michael H.

    Based largely on the theories of Alfred Adler and Rudolf Dreikurs, this parent education curriculum is a video-based interactive learning experience that teaches a comprehensive model of parenting to parents of children ages 5 to 12 years. The kit provides parents with the skills needed to help their children develop courage, responsibility, and…

  5. Parent Surveys for Teacher Evaluation

    ERIC Educational Resources Information Center

    Peterson, Kenneth D.; Wahlquist, Christine; Brown, Julie Esparza; Mukhopadhyay, Swapna

    2003-01-01

    Parent or guardian perceptions play a specialized role in the evaluation of school teachers. Parents are important stakeholders in teacher success, they are in some instances partners in the teachers' work, parents have unique personal information about student learning, and they can report on the teacher duties to inform parents about the…

  6. Parent and Adolescent Reports of Parenting When a Parent Has a History of Depression: Associations with Observations of Parenting

    PubMed Central

    Parent, Justin; Forehand, Rex; Dunbar, Jennifer P.; Watson, Kelly H.; Reising, Michelle M.; Seehuus, Martin; Compas, Bruce E.

    2013-01-01

    The current study examined the congruence of parent and adolescent reports of positive and negative parenting with observations of parent-adolescent interactions as the criterion measure. The role of parent and adolescent depressive symptoms in moderating the associations between adolescent or parent report and observations of parenting also was examined. Participants were 180 parents (88.9% female) with a history of clinical depression and one of their 9-to-15 year old children (49.4% female). Parents and adolescents reported on parenting skills and depressive symptoms, and parenting was independently observed subsequently in the same session. Findings indicated adolescent report of positive, but not negative, parenting was more congruent with observations than parent report. For negative parenting, depressive symptoms qualified the relation between the parent or adolescent report and independent observations. For parents, higher levels of depressive symptoms were associated with more congruence with observed parenting (supporting a depressive realism hypothesis) whereas an opposite trend emerged for adolescents (providing some supporting evidence for a depression-distortion hypothesis). PMID:23851629

  7. Microclimate affects soil chemical and mineralogical properties of cold-alpine soils of the Altai Mountains (Russia)

    NASA Astrophysics Data System (ADS)

    Egli, Markus; Lessovaia, Sofia; Chistyakov, Kirill; Inozemzev, Svyatoslav

    2013-04-01

    Precipitation and temperature particularly influence soil properties by affecting the type and rates of chemical, biological, and physical processes. To a great extent, element leaching and weathering rates are governed by these processes. Vegetation growth and decomposition, that depend on temperature and the other environmental factors, influence weathering reactions through the production of acidity and organic ligands that may promote chemical weathering and subsequent elemental leaching. The present work focuses on cold-alpine soils of the Altai Mountains (Siberia, Russia). The investigated field site (2380 m asl) is characterised by cold winters (with absolute minimum temperatures of -50°C; a mean temperature in January is -21°C) and cool summers (+8°C mean temperature in July). The mean annual temperature is -5.4°C. Annual precipitations are relatively low (500 mm with 20% of precipitation in July). Permafrost is widespread and occurs sometimes at a depth of 30 to 50 cm. Several studies have shown the influence of slope aspect and the resulting microclimate on soil weathering and development. There is however no unanimous agreement whether weathering is more intense on north- or south-facing slopes and whether small differences in thermal conditions may lead to detectable differences. Higher temperatures do not necessarily lead to higher weathering rates in cold alpine regions as shown by previous investigations in the European Alps. Water fluxes through the soils seemed to be more important. We consequently investigated soils in the cold-alpine environment of the Central Altai Mountains on a very small area close to a local glacier tongue. Half of the investigated soil profiles were south-facing (5) and the other half north-facing (5). The soils have the same parent material (mica-rich till), altitude, topography, and soil age. The vegetation is alpine grassland that is partially intersected with some juniper and mosses, which portion in the soil surface increases towards the hill footslope. Soil chemical properties such as organic C, N, soil organic matter quality (using DRIFT), pH value, (oxy)hydroxides, total elemental contents (XRF), and soil mineralogy (using diagnostic treatments and XRD) were determined. The age constraint of the site was given by geomorphic studies, 14C dating of a nearby peat-bog and of the stable organic matter fraction of the soils. The soils have a Holocene age. The results showed astonishingly clearly - similarly to the European Alps - that the south-facing soils have a lower weathering state. This is expressed by statistically significant lower pH-values, more oxalate and dithionite extractable Fe, Al, Mn, and Si contents, higher C concentrations and stocks and even lower total Si- and Ca-contents at north facing sites. A similar weathering trend was also obtained from the weathering index (Ca+K)/Ti. The geochemical evolution of the soils seems also here to be enhanced at north facing sites, although very severe climatic conditions prevail. We must assume that weathering is not limited by temperature in the active layer but rather by soil moisture that seems to be higher during the warmer period in the north-facing soils. This is furthermore confirmed by the appearance of slightly evident features of an umbric soil horizon at the north-facing sites at the hill footslope. Furthermore, biodegradation seem to be less pronounced on north-facing sites compared to south-facing sites. Poorly degraded organic matter is consequently accumulated on north-facing sites. This finally gives rise to more organic and mobile organic ligands that promote weathering processes.

  8. Soil genesis on the island of Bermuda in the Quaternary: The importance of African dust transport and deposition

    NASA Astrophysics Data System (ADS)

    Muhs, Daniel R.; Budahn, James R.; Prospero, Joseph M.; Skipp, Gary; Herwitz, Stanley R.

    2012-09-01

    The origin of terra rossa, red or reddish-brown, clay-rich soils overlying high-purity carbonate substrates, has intrigued geologists and pedologists for decades. Terra rossa soils can form from accumulation of insoluble residues during dissolution of the host limestones, addition of volcanic ash, or addition of externally derived, long-range-transported (LRT) aeolian particles. We studied soils and paleosols on high-purity, carbonate aeolianites of Quaternary age on Bermuda, where terra rossa origins have been debated for more than a century. Potential soil parent materials on this island include sand-sized fragments of local volcanic bedrock, the LRT, fine-grained (<20?m) component of distal loess from the lower Mississippi River Valley, and LRT dust from Africa. These parent materials can be characterized geochemically using trace elements that are immobile in the soil-forming environment. Results indicate that local volcanic bedrock on Bermuda has Sc-Th-La, Cr-Ta-Nd, and Eu/Eu*, LaN/YbN, GdN/YbNthat can be distinguished from African dust and lower Mississippi River valley loess. Bermuda soils have Sc-Th-La, Cr-Ta-Nd, and Eu/Eu*, LaN/YbN, GdN/YbN that indicate derivation from a combination of LRT dust from Africa and local volcanic bedrock. Our results indicate that soils on islands in a very broad latitudinal belt of the western Atlantic margin have been influenced by African LRT dust inputs over much of the past ˜500 ka.

  9. Soil Moisture

    NSDL National Science Digital Library

    NOAA's Climate Prediction Center offers this useful data site on soil moisture across the US. Soil moisture data are provided here as color contour maps that represent calculated soil moisture, anomalies, and percentiles for the most recent day, monthly, and twelve-month time periods. Also provided here are 25-year average soil moisture & soil wetness summaries. In addition to providing recent and historical data, the Soil Moisture site features soil moisture forecasts for two-week, monthly, and seasonal intervals, based on the National Weather Service Medium Range Forecast (MRF) and the Constructed Analog on Soil Moisture (CAS).

  10. The Influences of the Sixth Graders' Parents' Internet Literacy and Parenting Style on Internet Parenting

    ERIC Educational Resources Information Center

    Lou, Shi-Jer; Shih, Ru-Chu; Liu, Hung-Tzu; Guo, Yuan-Chang; Tseng, Kuo-Hung

    2010-01-01

    This study aims to explore the sixth grade students' parents' Internet literacy and parenting style on Internet parenting in Kaohsiung County in Taiwan. Upon stratified cluster sampling, a total of 822 parents from 34 classes in 28 schools participated in this study. The descriptive statistics and chi-square test were used to analyze the responses…

  11. Sense of Coherence, Parenting Attitudes and Stress among Mothers of Children with Autism in Hong Kong

    ERIC Educational Resources Information Center

    Mak, Winnie W. S.; Ho, Anna H. Y.; Law, Rita W.

    2007-01-01

    Background: The moderating and mediating relationships among sense of coherence, parental attitudes and parenting stress for caregiving parents of children with autism were tested. Materials and Methods: One hundred and fifty-seven mothers of children with autism recruited from representative community service centres in Hong Kong completed the…

  12. Soil discontinuities as potential factors of shallow landslides: a case study from Calabria, southern Italy

    NASA Astrophysics Data System (ADS)

    Scarciglia, Fabio; Morrone, Fabio; Pelle, Teresa; Buttafuoco, Gabriele; Conforti, Massimo; Muto, Francesco; Critelli, Salvatore; Fabbricatore, Davide; Filomena, Luciana; Rago, Valeria; Robustelli, Gaetano; Tripodi, Vincenzo; Versace, Pasquale

    2015-04-01

    Effects of chemical and physical weathering processes on different rock types as predisposing factors of a number of landslides are often investigated in detail. Conversely, very few research studies on triggering mechanisms of shallow landslides and related risk assessment are focused on evaluation of morphological and physical discontinuities caused by pedogenetic processes affecting parent materials. Also sampling strategies for geotechnical or hydrological laboratory analyses can be biased by the lack of detailed information about the soil spatial variability and of a consequent horizon-wise selection of samples from soil profiles. In this work we summarize the main results on the assessment of shallow landslide susceptibility along the A3 highway section between Cosenza Sud and Altilia in northern Calabria (southern Italy). This research is part of a wider project (PON01-01503: "Integrated systems for hydrogeological risk monitoring, early warning and mitigation along the main lifelines"), aimed at hydro-geological risk mitigation and early warning along three highway sections of southern Italy. Based on a detailed geological and geomorphological survey, the main lithological, structural and relief features of the landscape were mapped, with a special emphasis on active, dormant and inactive landslides and their geo-lithological control factors. A soil survey was also carried out in the field, showing a dominance of Entisols and Inceptisols on steep slopes, and Mollisols and Alfisols on gentle landforms. Soil observations were focused on the identification of pedological discontinuities as potential factors that might trigger shallow landslides. A number of soil profiles, often close to landslide scarps, evidenced significant morphological changes of the parent materials, such as texture, pedogenic structure, dry consistence and moisture, or hydromorphic features caused by transient water-logging conditions, and clay-illuviated horizons. Buried soils were recognized, often truncated by erosion, and overlain by younger soils developed on colluvia, debris flows and detrital slope deposits. Five representative soil profiles were selected and sampled for pedological, geotechnical and hydrological laboratory analyses. Bulk and undisturbed samples were collected for chemical and physical soil analyses (particle size distribution, organic and inorganic carbon, pH, electrical conductivity, soluble salts), for determining bulk density, Atterberg limits, cohesive strength, angle of internal friction, water retention and for thin sections to be observed under an optical polarizing microscope, respectively. Preliminary results of laboratory analyses showed irregular patterns of pedological (particle size distribution, organic matter content, bulk density), geotechnical (Atterberg limits) and hydrological data (water content, pore distribution) along the soil profiles, coherently with field observations.

  13. The Effects of Simulated Wildfire on Particle Size and Carbon Content in Piedmont Soils.

    NASA Astrophysics Data System (ADS)

    Wynes, A.; Werts, S. P.

    2014-12-01

    Soils are a known carbon sink, holding twice as much carbon as the atmosphere (Schlesinger, 1995). However, little is known about how much soil organic carbon (SOC) is released from the soil during fire events. Surface fires can heat mineral soils to up to 500°C at depths of several centimeters and maintain that temperature for hours (Werts and Jahren, 2007). This has been known to affect the size of particles in soils, carbon content in the soils, and the clay mineralogy (Hungerford et al, 1993). This study looks at relationships between soil clay content and clay chemistry in relation to carbon emissions during surface fires, to determine temperature effects on several piedmont soil types from South Carolina. Soil samples were taken from three different sites varying in clay content, clay type, parent material, and development. Temperature increases were applied in increments of 50°C, with a range from 100°C to 500°C, to determine fire effects on SOC, particle size, and clay mineralogy of the soils. We found a decrease in SOC (up to 98%) from the original amount in all soil horizons with temperature applications up to 500°C. At a temperature range between 100°C and 300°C, most soil horizons showed an increase in clay of a range between 0.1 and 34%. At temperatures ranging from 300°C to 500°C, there was a decrease in clay ranging from 2.5-42%. While previous research suggests that a positive correlation between the percentage of clay and SOC in soils is common (Feller and Beare, 1997), in this study, a negative correlation was found between the percentage of clay and SOC in all three soil types (R2=0.87, 0.76, and 0.59) at 100°C. There appears to be an increasingly positive relationship between clay and carbon as temperature increases, although a consistent high correlation was not present at all temperatures. This is counter to what was found initially in our soils prior to heating. While research into surface fires is important to the understanding of ecosystems and carbon cycling above ground, understanding SOC dynamics following a surface fire event can provide further insight on carbon cycling and erosion impacts of surface fires.

  14. Spatial variability assessment of soil nutrients in an intense agricultural area, a case study of Rugao County in Yangtze River Delta Region, China

    NASA Astrophysics Data System (ADS)

    Zhao, Yongcun; Xu, Xianghua; Darilek, Jeremy Landon; Huang, Biao; Sun, Weixia; Shi, Xuezheng

    2009-05-01

    Topsoil samples (0-20 cm) ( n = 237) were collected from Rugao County, China. Geostatistical variogram analysis, sequential Gaussian simulation (SGS), and principal component (PC) analysis were applied to assess spatial variability of soil nutrients, identify the possible areas of nutrient deficiency, and explore spatial scale of variability of soil nutrients in the county. High variability of soil nutrient such as soil organic matter (SOM), total nitrogen (TN), available P, K, Fe, Mn, Cu, Zn, and B concentrations were observed. Soil nutrient properties displayed significant differences in their spatial structures, with available Cu having strong spatial dependence, SOM and available P having weak spatial dependence, and other nutrient properties having moderate spatial dependence. The soil nutrient deficiency, defined here as measured nutrient concentrations which do not meet the advisory threshold values specific to the county for dominant crops, namely rice, wheat, and rape seeds, was observed in available K and Zn, and the deficient areas covered 38 and 11%, respectively. The first three PCs of the nine soil nutrient properties explained 62.40% of the total variance. TN and SOM with higher loadings on PC1 are closely related to soil texture derived from different parent materials. The PC2 combined intermediate response variables such as available Zn and P that are likely to be controlled by land use and soil pH. Available B has the highest loading on PC3 and its variability of concentrations may be primarily ascribed to localized anthropogenic influence. The amelioration of soil physical properties (i.e. soil texture) and soil pH may improve the availability of soil nutrients and the sustainability of the agricultural system of Rugao County.

  15. Soil Quality Assessment

    NSDL National Science Digital Library

    This portal provides access to materials on the assessment of soil quality for agricultural and conservation purposes. A brief overview introduces users to the concept of using indicators (physical, chemical, biological, etc.) as an indirect means of assessment. Links are provided to a set of guides, including guidelines for assessing soil quality in the conservation planning process; a guide to on-farm tests, an interpretive section for each test, data recording sheets, and a section on how to build a test kit; how to make and use soil quality cards; and a how-to section on using the Soil Conditioning Index (SCI), a Windows based model that can predict the consequences of cropping systems and tillage practices on the status of soil organic matter in a field.

  16. Developing A Food Allergy Curriculum for Parents

    PubMed Central

    Vargas, Perla A.; Sicherer, Scott H.; Christie, Lynn; Keaveny, Maureen; Noone, Sally; Watkins, Debra; Carlisle, Suzanna K; Jones, Stacie M

    2014-01-01

    Food allergy (FA) is potentially severe and requires intensive education to master allergen avoidance and emergency care. There is evidence suggesting the need for a comprehensive curriculum for food allergic families. This paper describes the results of focus groups conducted to guide the development of a curriculum for parents of food allergic children. The focus groups were conducted using standard methodology with experienced parents of food allergic children. Participants were parents (n=36) with experience managing FA recruited from allergy clinics at two academic centers. Topics identified by parents as key for successful management included as expected: 1) early signs/symptoms, 2) “cross-contamination”, 3) label-reading, 4) self-injectable epinephrine; and 5) becoming a teacher and advocate. Participants also recommended developing a “one pageroad map” to the information, and to provide the information early and be timed according to developmental stages/needs. Suggested first points for curriculum dissemination were emergency rooms, obstetrician and pediatrician offices. Participants also recommended targeting pediatricians, emergency physicians, school personnel, and the community-at-large in educational efforts. Parents often sought FA information from non-medical sources such as the Internet and support groups. These resources were also accessed to find ways to cope with stress. Paradoxically, difficulties gaining access to resources and uncertainty regarding reliability of the information added to the stress experience. Based on reports from experienced parents of food allergic children, newly diagnosed parents could benefit from a comprehensive FA management curriculum. Improving access to clear and concise educational materials would likely reduce stress/anxiety and improve quality of life. PMID:21332804

  17. Quantification of colloidal and aqueous element transfer in soils: The dual-phase mass balance model

    NASA Astrophysics Data System (ADS)

    Bern, Carleton R.; Thompson, Aaron; Chadwick, Oliver A.

    2015-02-01

    Mass balance models have become standard tools for characterizing element gains and losses and volumetric change during weathering and soil development. However, they rely on the assumption of complete immobility for an index element such as Ti or Zr. Here we describe a dual-phase mass balance model that eliminates the need for an assumption of immobility and in the process quantifies the contribution of aqueous versus colloidal element transfer. In the model, the high field strength elements Ti and Zr are assumed to be mobile only as suspended solids (colloids) and can therefore be used to distinguish elemental redistribution via colloids from redistribution via dissolved aqueous solutes. Calculations are based upon element concentrations in soil, parent material, and colloids dispersed from soil in the laboratory. We illustrate the utility of this model using a catena in South Africa. Traditional mass balance models systematically distort elemental gains and losses and changes in soil volume in this catena due to significant redistribution of Zr-bearing colloids. Applying the dual-phase model accounts for this colloidal redistribution and we find that the process accounts for a substantial portion of the major element (e.g., Al, Fe and Si) loss from eluvial soil. In addition, we find that in illuvial soils along this catena, gains of colloidal material significantly offset aqueous elemental loss. In other settings, processes such as accumulation of exogenous dust can mimic the geochemical effects of colloid redistribution and we suggest strategies for distinguishing between the two. The movement of clays and colloidal material is a major process in weathering and pedogenesis; the mass balance model presented here is a tool for quantifying effects of that process over time scales of soil development.

  18. Are Pediatric Emergency Department Nurses Delivering Tobacco Cessation Advice to Parents?

    PubMed Central

    Deckter, Leslie; Mahabee-Gittens, E. Melinda; Gordon, Judith S.

    2015-01-01

    Introduction Due to the adverse health effects of second hand smoke exposure in children, pediatric nurses (RN) have frequent encounters with parents who smoke. RNs have a unique opportunity to provide tobacco cessation counseling to parental smokers during their child’s emergency department (ED) or hospital visit. The purpose of the study was to assess pediatric RN’s levels of knowledge, attitudes, and behaviors regarding provision of tobacco cessation advice to parents who smoke. Methods An anonymous electronic self-administered survey of current tobacco cessation practices and attitudes was sent to ED RNs (N=130) at a tertiary care pediatric hospital in Ohio. Results A total of 87 (67%) of RNs completed the survey. Approximately 22% of respondents indicated that they assess parental smoking status; 14% encouraged parents who smoke to quit; even fewer indicated that they provided specific counseling or assistance to their patient’s parents. Perceived barriers to delivering tobacco cessation counseling included parent resistance, parent complaints, parent anger, and lack of parent materials. Over 60% agreed that they should learn new ways to help parents quit and advise tobacco-using parents to quit, and that RNs can be effective in helping parents quit. Conclusions Pediatric Emergency Department nurses are unlikely to engage in tobacco cessation activities, but express interest in learning new ways to help patients’ parents quit smoking. Future education could promote tobacco cessation advice and assistance, thus improving the health of parents and patients in the pediatric setting. PMID:19748018

  19. In-situ vitrification of soil. [Patent application

    SciTech Connect

    Brouns, R.A.; Buelt, J.L.; Bonner, W.F.

    1981-04-06

    A method of vitrifying soil at or below a soil surface location. Two or more conductive electrodes are inserted into the soil for heating of the soil mass between them to a temperature above its melting temperature. Materials in the soil, such as buried waste, can thereby be effectively immobilized.

  20. How soil shapes the landscape

    NASA Astrophysics Data System (ADS)

    Minasny, Budiman; Finke, Peter; Vanwalleghem, Tom Tom; Stockmann, Uta; McBratney, Alex

    2014-05-01

    There has been an increase in interest in quantitative modelling of soil genesis, which can provide prediction of environmental changes through numerical models. Modelling soil formation is a difficult task because soil itself is highly complex with interactions between water, inorganic materials and organic matter. This paper will provide a review on the research efforts of modelling soil genesis, their connection with landscape models and the inexorable genesis of the IUSS soil landscape modelling working group. Quantitative modelling soil formation using mechanistic models have begun in the 1980s such as the 'soil deficit' model by Kirkby (1985), Hoosbeek & Bryant's pedodynamic model (1992), and recently the SoilGen model by Finke (2008). These profile models considered the chemical reactions and physical processes in the soil at the horizon and pedon scale. The SoilGen model is an integration of sub-models, such as water and solute movement, heat transport, soil organic matter decomposition, mineral dissolution, ion exchange, adsorption, speciation, complexation and precipitation. The model can calculate with detail the chemical changes and materials fluxes in a profile and has been successfully applied. While they can simulate soil profile development in detail, there is still a gap how the processes act in the landscape. Meanwhile research in landscape formation in geomorphology is progressing steadily over time, slope development models model have been developed since 1970s (Ahnert, 1977). Soil was also introduced in a landscape, however soil processes are mainly modelled through weathering and transport processes (Minasny & McBratney 1999, 2001). Recently, Vanwalleghem et al. (2013) are able to combine selected physical, chemical and biological processes to simulate a full 3-D soil genesis in the landscape. Now there are research gaps between the 2 approaches: the landscape modellers increasingly recognise the importance of soil and need more detailed soil processes, and the soil profile modellers need to consider material fluxes at the landscape scale. The IUSS working group (WG) on modelling of soil and landscape evolution has been recently proposed, accepted and established. The WG tries to engage scientists (landscape and pedon scale modellers, critical zone scientists, palaeopedologists, process-quantifying pedologists, and others) to work actively together towards a better soil-landscape model. Some aspects of the work include (i) improving ways to generate boundary conditions (climate, vegetation, human impacts) along the timeline, both at landscape and pedon scale; (ii) better model validation and its consequences for data collection; (iii) finding a more efficient simulation algorithms (iv) an inventory of the (mis-)match between present and needed process coverage to answer societal questions on soil behavior under global change.