Science.gov

Sample records for parkland agroforestry systems

  1. The effect of trees on preferential flow and soil infiltrability in an agroforestry parkland in semiarid Burkina Faso

    NASA Astrophysics Data System (ADS)

    Bargués Tobella, A.; Reese, H.; Almaw, A.; Bayala, J.; Malmer, A.; Laudon, H.; Ilstedt, U.

    2014-04-01

    Water scarcity constrains the livelihoods of millions of people in tropical drylands. Tree planting in these environments is generally discouraged due to the large water consumption by trees, but this view may neglect their potential positive impacts on water availability. The effect of trees on soil hydraulic properties linked to groundwater recharge is poorly understood. In this study, we performed 18 rainfall simulations and tracer experiments in an agroforestry parkland in Burkina Faso to investigate the effect of trees and associated termite mounds on soil infiltrability and preferential flow. The sampling points were distributed in transects each consisting of three positions: (i) under a single tree, (ii) in the middle of an open area, and (iii) under a tree associated with a termite mound. The degree of preferential flow was quantified through parameters based on the dye infiltration patterns, which were analyzed using image analysis of photographs. Our results show that the degree of preferential flow was highest under trees associated with termite mounds, intermediate under single trees, and minimal in the open areas. Tree density also had an influence on the degree of preferential flow, with small open areas having more preferential flow than large ones. Soil infiltrability was higher under single trees than in the open areas or under trees associated with a termite mound. The findings from this study demonstrate that trees have a positive impact on soil hydraulic properties influencing groundwater recharge, and thus such effects must be considered when evaluating the impact of trees on water resources in drylands.

  2. The effect of trees on preferential flow and soil infiltrability in an agroforestry parkland in semiarid Burkina Faso

    PubMed Central

    Bargués Tobella, A; Reese, H; Almaw, A; Bayala, J; Malmer, A; Laudon, H; Ilstedt, U

    2014-01-01

    Water scarcity constrains the livelihoods of millions of people in tropical drylands. Tree planting in these environments is generally discouraged due to the large water consumption by trees, but this view may neglect their potential positive impacts on water availability. The effect of trees on soil hydraulic properties linked to groundwater recharge is poorly understood. In this study, we performed 18 rainfall simulations and tracer experiments in an agroforestry parkland in Burkina Faso to investigate the effect of trees and associated termite mounds on soil infiltrability and preferential flow. The sampling points were distributed in transects each consisting of three positions: (i) under a single tree, (ii) in the middle of an open area, and (iii) under a tree associated with a termite mound. The degree of preferential flow was quantified through parameters based on the dye infiltration patterns, which were analyzed using image analysis of photographs. Our results show that the degree of preferential flow was highest under trees associated with termite mounds, intermediate under single trees, and minimal in the open areas. Tree density also had an influence on the degree of preferential flow, with small open areas having more preferential flow than large ones. Soil infiltrability was higher under single trees than in the open areas or under trees associated with a termite mound. The findings from this study demonstrate that trees have a positive impact on soil hydraulic properties influencing groundwater recharge, and thus such effects must be considered when evaluating the impact of trees on water resources in drylands. Key Points Trees in dryland landscapes increase soil infiltrability and preferential flow Termite mounds in association with trees further enhance preferential flow PMID:25641996

  3. Agroforestry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impacts of agroforestry systems (AFS) on soil management in temperate, subtropical, and tropical biomes support the beneficial, holistic role of tree components in agricultural land-use systems. Compared to annual monocultures, AFS can enhance several soil physical properties improving soil resi...

  4. Agroforestry Systems In Poland A Preliminary Identification

    NASA Astrophysics Data System (ADS)

    Borek, Robert

    2015-01-01

    This paper seeks to use state-of-the-art knowledge to depict the foundations and prospects for agroforestry systems in Poland to develop, in line with political, legal, historical and environmental conditions pertaining in the country. The main legal provisions concerning the presence of trees in agriculture are presented prior to a first-ever defining of key traditional agroforestry systems in Poland.

  5. Forecasting the Performance of Agroforestry Systems

    NASA Astrophysics Data System (ADS)

    Luedeling, E.; Shepherd, K.

    2014-12-01

    Agroforestry has received considerable attention from scientists and development practitioners in recent years. It is recognized as a cornerstone of many traditional agricultural systems, as well as a new option for sustainable land management in currently treeless agricultural landscapes. Agroforestry systems are diverse, but most manifestations supply substantial ecosystem services, including marketable tree products, soil fertility, water cycle regulation, wildlife habitat and carbon sequestration. While these benefits have been well documented for many existing systems, projecting the outcomes of introducing new agroforestry systems, or forecasting system performance under changing environmental or climatic conditions, remains a substantial challenge. Due to the various interactions between system components, the multiple benefits produced by trees and crops, and the host of environmental, socioeconomic and cultural factors that shape agroforestry systems, mechanistic models of such systems quickly become very complex. They then require a lot of data for site-specific calibration, which presents a challenge for their use in new environmental and climatic domains, especially in data-scarce environments. For supporting decisions on the scaling up of agroforestry technologies, new projection methods are needed that can capture system complexity to an adequate degree, while taking full account of the fact that data on many system variables will virtually always be highly uncertain. This paper explores what projection methods are needed for supplying decision-makers with useful information on the performance of agroforestry in new places or new climates. Existing methods are discussed in light of these methodological needs. Finally, a participatory approach to performance projection is proposed that captures system dynamics in a holistic manner and makes probabilistic projections about expected system performance. This approach avoids the temptation to take

  6. Soil cover by natural trees in agroforestry systems

    NASA Astrophysics Data System (ADS)

    Diaz-Ambrona, C. G. H.; Almoguera Millán, C.; Tarquis Alfonso, A.

    2009-04-01

    The dehesa is common agroforestry system in the Iberian Peninsula. These open oak parklands with silvo-pastoral use cover about two million hectares. Traditionally annual pastures have been grazed by cows, sheep and also goats while acorns feed Iberian pig diet. Evergreen oak (Quercus ilex L.) has other uses as fuelwood collection and folder after tree pruning. The hypothesis of this work is that tree density and canopy depend on soil types. We using the spanish GIS called SIGPAC to download the images of dehesa in areas with different soil types. True colour images were restoring to a binary code, previously canopy colour range was selected. Soil cover by tree canopy was calculated and number of trees. Processing result was comparable to real data. With these data we have applied a dynamic simulation model Dehesa to determine evergreen oak acorn and annual pasture production. The model Dehesa is divided into five submodels: Climate, Soil, Evergreen oak, Pasture and Grazing. The first three require the inputs: (i) daily weather data (maximum and minimum temperatures, precipitation and solar radiation); (ii) the soil input parameters for three horizons (thickness, field capacity, permanent wilting point, and bulk density); and (iii) the tree characterization of the dehesa (tree density, canopy diameter and height, and diameter of the trunk). The influence of tree on pasture potential production is inversely proportional to the canopy cover. Acorn production increase with tree canopy cover until stabilizing itself, and will decrease if density becomes too high (more than 80% soil tree cover) at that point there is competition between the trees. Main driving force for dehesa productivity is soil type for pasture, and tree cover for acorn production. Highest pasture productivity was obtained on soil Dystric Planosol (Alfisol), Dystric Cambisol and Chromo-calcic-luvisol, these soils only cover 22.4% of southwest of the Iberian peninssula. Lowest productivity was

  7. Agroforestry Systems in Zimbabwe: Promoting Trees in Agriculture.

    ERIC Educational Resources Information Center

    Vukasin, Helen L., Ed.

    Agroforestry has been defined as a sustainable crop management system which combines the production of forest crops with field crops. In June, 1987, an agroforestry workshop took place in Nyanga, Manicaland, Zimbabwe. This document was prepared to share the information presented at this workshop with other non-government organizations around the…

  8. Determinants of bacterial communities in Canadian agroforestry systems.

    PubMed

    Banerjee, Samiran; Baah-Acheamfour, Mark; Carlyle, Cameron N; Bissett, Andrew; Richardson, Alan E; Siddique, Tariq; Bork, Edward W; Chang, Scott X

    2016-06-01

    Land-use change is one of the most important factors influencing soil microbial communities, which play a pivotal role in most biogeochemical and ecological processes. Using agroforestry systems as a model, this study examined the effects of land uses and edaphic properties on bacterial communities in three agroforestry types covering a 270 km soil-climate gradient in Alberta, Canada. Our results demonstrate that land-use patterns exert stronger effects on soil bacterial communities than soil zones in these agroforestry systems. Plots with trees in agroforestry systems promoted greater bacterial abundance and to some extent species richness, which was associated with more nutrient-rich soil resources. While Acidobacteria, Actinobacteria and Alphaproteobacteria were the dominant bacterial phyla and subphyla across land uses, Arthrobacter, Acidobacteria_Gp16, Burkholderia, Rhodanobacter and Rhizobium were the keystone taxa in these agroforestry systems. Soil pH and carbon contents emerged as the major determinants of bacterial community characteristics. We found non-random co-occurrence and modular patterns of soil bacterial communities, and these patterns were controlled by edaphic factors and not their taxonomy. Overall, this study highlights the drivers and co-occurrence patterns of soil microbial communities in agroforestry systems. PMID:26184386

  9. A common framework for greenhouse gas assessment protocols in temperate agroforestry systems: Connecting via GRACEnet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agroforestry systems offer many ecosystem benefits, but such systems have previously been marginalized in temperate environments due to overriding economic goals and perceived management complexity. In view of adaptation to a changing climate, agroforestry systems offer advantages that require quan...

  10. CARBON STORAGE BENEFITS OF AGROFORESTRY SYSTEMS

    EPA Science Inventory

    The process of land degradation is a local phenomenon that occurs field by field but also has a global dimension because of the sheer extent at which it is taking place. groforestry represents a link between the local and global scales. rom the farmer's perspective, agroforestry ...

  11. Cacau Cabruca Agroforestry System of Production in Bahia, Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Cacao Cabruca Agroforestry system of production was developed by farmers in Southern Bahia probably in the beginning of the 19th century. To establish such system, farmers in the Atlantic rain forest region selectively maintained around 75 adult individual native trees per hectare, removed the o...

  12. Agroforestry systems for bioenergy in the southeastern USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural landscapes are an important component of a biofuel strategy to develop energy independence. Agroforestry systems offer an opportunity to produce both food and biofuel feedstocks from the same land area. Such a strategy could improve numerous ecosystem services more so than either of t...

  13. Water use of agroforestry systems in semi-arid India

    SciTech Connect

    Ong, C.K.; Odongo, J.C.W.; Marshall, F.; Black, C.R.

    1992-12-31

    The increased productivity or yield advantage provided by intercropping and agroforestry systems is often attributed to the premise that mixtures of species make better use of environmental resources than when the same species are grown separately. The components complement each other because they make their major demand on resources at different times (temporal complementarity) or use resources more efficiently at a given point in time (spatial complementarity). However, mixed stands do not use resources more efficiently than sole stands when the component species compete for the same limited resources. This paper examines the evidence for interactions for physical resources in three major types of agroforestry systems, and highlights the importance of below-ground interactions, which are still poorly understood.

  14. [Research progress on carbon sink function of agroforestry system under climate change].

    PubMed

    Xie, Ting-Ting; Su, Pei-Xi; Zhou, Zi-Juan; Shan, Li-Shan

    2014-10-01

    As a land comprehensive utilization system, agroforestry system can absorb and fix CO2 effectively to increase carbon storage, and also reduces greenhouse effect convincingly while reaching the aim of harvest. The regulatory role in CO2 makes humans realize that agroforestry systems have significant superiority compared with single cropping systems, therefore, understanding the carbon sinks of different components in an agroforestry system and its influencing factors play an important role in studying global carbon cycle and accurate evaluation of carbon budget. This paper reviewed the concept and classification of agroforestry system, and then the carbon sequestration potentials of different components in agroforestry systems and influencing factors. It was concluded that the carbon sequestration rate of plants from different agroforestry systems in different regions are highly variable, ranging from 0.59 to 11.08 t C · hm(-2) · a(-1), and it is mainly influenced by climatic factors and the characteristics of agroforestry systems (species composition, tree density and stand age). The soil C sequestration of any agroforestry system is influenced by the amount and quality of biomass input provided by tree and nontree components of the system and the soil properties such as soil texture and soil structure. Overall the amount of carbon storage in any agroforestry system depends on the structure and function of its each component. The future studies should focus on the carbon sink functions of structurally optimized agroforestry systems, the temporal variation and spatial distribution pattern of carbon storage in agroforestry system and its carbon sequestration mechanism in a long time. PMID:25796917

  15. AGROFORESTRY SYSTEMS: INTEGRATED LAND USE TO STORE AND CONSERVE CARBON

    EPA Science Inventory

    Agroforestry is a promising land use practice to maintain or increase agricultural productivity while preserving or improving fertility. n extensive literature survey was conducted to evaluate the carbon dynamics of agroforestry practices and to assess their potential to store ca...

  16. Greenhouse gas emissions in an agroforestry system in the southeastern U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agroforestry systems can provide diverse ecosystem services and economic benefits that conventional farming practices cannot. Importantly, these systems have the potential to mitigate greenhouse gas emissions by reducing the need for external inputs, enhancing nutrient cycling and promoting C seques...

  17. Floristic evolution in an agroforestry system cultivation in Southern Brazil.

    PubMed

    Silva, Luís C R; Machado, Sebastião A; Galvão, Franklin; Figueiredo, Afonso

    2016-06-01

    Bracatinga (Mimosa scabrella Bentham) is an important pioneer tree species in Ombrophylous Mixed Forest of Brazil and is widely used as an energy source. In traditional agroforestry systems, regeneration is induced by fire, then pure and dense stands known as bracatinga stands (bracatingais) are formed. In the first year, annual crops are intercalated with the seedlings. At that time the seedlings are thinned, then the stands remain at a fallow period and cut at seven years old. The species is very important mainly for small landowners. We studied the understory species that occur naturally during the succession over several years in order to manage them rationally in the future and maintain the natural vegetation over time. Three to 20 year-old Bracatinga stands were sampled between 1998 and 2011. All tree species with diameter at breast height (DBH) ≥ 5 cm were measured.The floristic evolution was assessed with respect to Sociability Index, the Shannon Diversity Index and the Pielou Evenness Index. Graphs of rank/abundance over different age groups were evaluated using the Kolmogorov-Smirnov test. We identified 153 species dispersed throughout the understory and tend to become aggregated over time. PMID:27276374

  18. Parklands Partnership: Education through Reforestation.

    ERIC Educational Resources Information Center

    Scalia, Josephine A.

    1992-01-01

    Describes New York City's Parklands Partnership Program, in which elementary and secondary students visit natural woodlands areas in their neighborhood, learn about forest ecology, and engage in restoration and reforestation activities that foster a connection between themselves and their local environment. (SV)

  19. Soils organic C sequestration under poplar and willow agroforestry systems

    NASA Astrophysics Data System (ADS)

    Gunina, Anna; Tariq, Azeem; Lamersdorf, Norbert

    2015-04-01

    Short rotation coppices (SRC) as monocultures or as agroforestry (AF) applications (e.g. alley cropping) are two techniques to implement forest into agricultural practices. Despite afforestation promotes soil carbon (C) accumulation, age and type of the tree stand can affect the C accumulation in different degrees. Here, we studied the impact of afforestation on C accumulation for: i) pure SCR of willow (Salix viminalis x Salix schwerinii) and poplar (Populus nigra x Populus maximowiczii) and ii) AF cropping system with willow. Forest systems have been established within the BEST agroforestry project in Germany. Adjacent agricultural field have been used as a control. Soil samples were collected in 2014, three years after plantation establishment, from three soil depths: 0-3, 3-20, and 20-30 cm. Total organic C, labile C (incubation of 20 g soil during 100 days with measuring of CO2) and aggregate structure were analysed. Additionally, density fractionation of the samples from 0-3 cm was applied to separate particulate organic matter (POM) and mineral fractions. Aggregates and density fractions were analyzed for C content. High input of plant litter as well as root exudates have led to increases of organic C in AF and SRC plots compare to cropland, mainly in the top 0-3 cm. The highest C content was found for willow SRC (18.2 g kg-1 soil), followed by willow-AF (15.6 g kg-1 soil), and poplar SRC (13.7 g kg-1 soil). Carbon content of cropland was 12.5 g kg-1 soil. Absence of ploughing caused increase portion of macroaggregates (>2000 μm) under SRC and AF in all soil layers as well as the highest percentage of C in that aggregate size class (70-80%). In contrast, C in cropland soil was mainly accumulated in small macroaggregates (250-2000 μm). Intensive mineralisation of fresh litter and old POM, taking place during first years of trees development, resulted to similar portions of free POM for willow AF, willow SRC and cropland (8%), and even lower ones for poplar

  20. Changing human-ecological relationships and drivers using the Quesungual agroforestry system in western Honduras

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of sustainable agricultural production systems in the tropics is challenging in part because the local and external conditions that affect sustainability are constantly in flux. The Quesungual Agroforestry System (QSMAS) was developed in response to these changing conditions. The his...

  1. Status of microbial diversity in agroforestry systems in Tamil Nadu, India.

    PubMed

    Radhakrishnan, Srinivasan; Varadharajan, Mohan

    2016-06-01

    Soil is a complex and dynamic biological system. Agroforestry systems are considered to be an alternative land use option to help and prevent soil degradation, improve soil fertility, microbial diversity, and organic matter status. An increasing interest has emerged with respect to the importance of microbial diversity in soil habitats. The present study deals with the status of microbial diversity in agroforestry systems in Tamil Nadu. Eight soil samples were collected from different fields in agroforestry systems in Cuddalore, Villupuram, Tiruvanamalai, and Erode districts, Tamil Nadu. The number of microorganisms and physico-chemical parameters of soils were quantified. Among different microbial population, the bacterial population was recorded maximum (64%), followed by actinomycetes (23%) and fungi (13%) in different samples screened. It is interesting to note that the microbial population was positively correlated with the physico-chemical properties of different soil samples screened. Total bacterial count had positive correlation with soil organic carbon (C), moisture content, pH, nitrogen (N), and micronutrients such as Iron (Fe), copper (Cu), and zinc (Zn). Similarly, the total actinomycete count also showed positive correlations with bulk density, moisture content, pH, C, N, phosphorus (P), potassium (K), calcium (Ca), copper (Cu), magnesium (Mg), manganese (Mn), and zinc (Zn). It was also noticed that the soil organic matter, vegetation, and soil nutrients altered the microbial community under agroforestry systems. PMID:26924716

  2. KURA CLOVER INTERCROPPED IN A PECAN AGROFORESTRY SYSTEM IMPROVES SOIL QUALITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intercropping the alleys of agroforestry systems is desirable to provide income from the field until the tree crop begins to yield. However, cultivation of annual crops in the alleys may decrease soil organic matter and increase soil erosion, especially on sloping landscapes. Perennial crops maintai...

  3. Cover crops alter phosphorus soil fractions and organic matter accumulation in a Peruvian cacao agroforestry system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In many tropical soils, excessive weathering of primary minerals confounded by intense agricultural production has resulted in the depletion of organic matter and plant available forms of phosphorus (P). Long-term growth of cover crops in tropical agroforestry systems have been shown to influence nu...

  4. Soil and litter fauna of cacao agroforestry systems in Bahia, Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agroforestry systems deposit great amounts of plant residues on soil; and eventually, this leads to high levels of soil organic matter content and has increased soil biodiversity and improved its conservation. This study compares the distribution of meso and macrofaunal communities in soil and litte...

  5. Intercropping with Kura Clover Improves Soil Quality in a Pecan Agroforestry System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intercropping the alleys of agroforestry systems provides income until the tree crop begins to yield. However, cultivation of annual crops or intensive herbicidal control of vegetation in the alleys decreases soil organic matter and increases soil erosion, especially on sloping landscapes. Perennial...

  6. Carbon storage in soil-size fractions under two cacao agroforestry systems in Bahia, Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shaded-perennial agroforestry systems contain relatively higher quantities of soil carbon (C) because of continuous deposition of plant residues; however, the amount of C sequestered in the soil will vary depending on the turnover time and the extent of physical protection of different soil organic ...

  7. Distribution of oxidizable organic c fractions in soils under cacao agroforestry systems in Southern Bahia, Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agroforestry systems can play a major role in the sequestration of carbon (C) because of their higher input of organic materials to the soil. The importance of organic carbon to the physical, chemical, and biological aspects of soil quality is well recognized. However, total organic carbon measureme...

  8. Soil Quality in a Pecan Agroforestry System is Improved with Intercropped Kura Clover

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intercropping alleys of agroforestry systems provides an income source until the tree crop produces harvestable yields. However, cultivation of annual crops decreases soil organic matter and increases soil erosion, especially on sloping landscapes. Perennial crops maintain a continuous soil cover, m...

  9. Distribution of organic C oxidizable fractions in soils under cacao agroforestry systems in southern Bahia, Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agroforestry systems can play a major role in the sequestration of carbon (C) because of their higher input of organic material to the soil. The importance of organic carbon to the physical, chemical, and biological aspects of soil quality is well recognized. However, total organic carbon measuremen...

  10. Soil classification and carbon storage in cacao agroforestry farming systems of Bahia, Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information concerning the classification of soils and their properties under cacao agroforestry systems of the Atlantic rain forest biome region in the Southeast of Bahia Brazil is largely unknown. Soil and climatic conditions in this region are favorable for high soil carbon storage. This study is...

  11. Below-ground interspecific competition for water in a rubber agroforestry system may enhance water utilization in plants

    PubMed Central

    Wu, Junen; Liu, Wenjie; Chen, Chunfeng

    2016-01-01

    Rubber-based (Hevea brasiliensis) agroforestry systems are regarded as the best way to improve the sustainability of rubber monocultures, but few reports have examined water use in such systems. Accordingly, we tested whether interplanting facilitates water utilization of rubber trees using stable isotope (δD, δ18O, and δ13C) methods and by measuring soil water content (SWC), shoot potential, and leaf C and N concentrations in a Hevea-Flemingia agroforestry system in Xishuangbanna, southwestern China. We detected a big difference in the utilization of different soil layer water between both species in this agroforestry system, as evidenced by the opposite seasonal fluctuations in both δD and δ18O in stem water. However, similar predawn shoot potential of rubber trees at both sites demonstrating that the interplanted species did not affect the water requirements of rubber trees greatly. Rubber trees with higher δ13C and more stable physiological indexes in this agroforestry system showed higher water use efficiency (WUE) and tolerance ability, and the SWC results suggested this agroforestry is conductive to water conservation. Our results clearly indicated that intercropping legume plants with rubber trees can benefit rubber trees own higher N supply, increase their WUE and better utilize soil water of each soil layer. PMID:26781071

  12. Below-ground interspecific competition for water in a rubber agroforestry system may enhance water utilization in plants.

    PubMed

    Wu, Junen; Liu, Wenjie; Chen, Chunfeng

    2016-01-01

    Rubber-based (Hevea brasiliensis) agroforestry systems are regarded as the best way to improve the sustainability of rubber monocultures, but few reports have examined water use in such systems. Accordingly, we tested whether interplanting facilitates water utilization of rubber trees using stable isotope (δD, δ(18)O, and δ(13)C) methods and by measuring soil water content (SWC), shoot potential, and leaf C and N concentrations in a Hevea-Flemingia agroforestry system in Xishuangbanna, southwestern China. We detected a big difference in the utilization of different soil layer water between both species in this agroforestry system, as evidenced by the opposite seasonal fluctuations in both δD and δ(18)O in stem water. However, similar predawn shoot potential of rubber trees at both sites demonstrating that the interplanted species did not affect the water requirements of rubber trees greatly. Rubber trees with higher δ(13)C and more stable physiological indexes in this agroforestry system showed higher water use efficiency (WUE) and tolerance ability, and the SWC results suggested this agroforestry is conductive to water conservation. Our results clearly indicated that intercropping legume plants with rubber trees can benefit rubber trees own higher N supply, increase their WUE and better utilize soil water of each soil layer. PMID:26781071

  13. Ethnopedology and soil quality of bamboo (Bambusa sp.) based agroforestry system.

    PubMed

    Arun Jyoti, Nath; Lal, Rattan; Das, Ashesh Kumar

    2015-07-15

    It is widely recognized that farmers' hold important knowledge of folk soil classification for agricultural land for its uses, yet little has been studied for traditional agroforestry systems. This article explores the ethnopedology of bamboo (Bambusa sp.) based agroforestry system in North East India, and establishes the relationship of soil quality index (SQI) with bamboo productivity. The study revealed four basic folk soil (mati) types: kalo (black soil), lal (red soil), pathal (stony soil) and balu (sandy soil). Of these, lal mati soil was the most predominant soil type (~ 40%) in bamboo-based agroforestry system. Soil physio-chemical parameters were studied to validate the farmers' soil hierarchal classification and also to correlate with productivity of the bamboo stand. Farmers' hierarchal folk soil classification was consistent with the laboratory scientific analysis. Culm production (i.e. measure of productivity of bamboo) was the highest (27culmsclump(-1)) in kalo mati (black soil) and the lowest (19culmsclump(-1)) in balu mati (sandy soil). Linear correlation of individual soil quality parameter with bamboo productivity explained 16 to 49% of the variability. A multiple correlation of the best fitted linear soil quality parameter (soil organic carbon or SOC, water holding capacity or WHC, total nitrogen) with productivity improved explanatory power to 53%. Development of SQI from ten relevant soil quality parameters and its correlation with bamboo productivity explained the 64% of the variation and therefore, suggest SQI as the best determinant of bamboo yield. Data presented indicate that the kalo mati (black soil) is sustainable or sustainable with high input. However, the other three folk soil types (red, stony and sandy soil) are also sustainable but for other land uses. Therefore, ethnopedological studies may move beyond routine laboratory analysis and incorporate SQI for assessing the sustainability of land uses managed by the farmers'. Additional

  14. Comparative studies of the associated soil moisture regimes and their productivity in an agroforestry system

    SciTech Connect

    Bhaskar, V.; Rao, N.S.; Reddy, B.G.; Vedavyasa, K.; Ravishankar, H.M.; Venkatesh, R.

    1992-12-31

    Results are presented on the effects of Eucalyptus hybrid, Casuarina equisetifolia, Dalbergia sissoo and Acacia nilotica on certain field crops (finger millet, redgram, horsegram and castor) under dryland conditions. Eucalyptus hybrid showed the maximum border effect on field crops, followed by D. sissoo. C. equisetifolia and A. nilotica. The adverse effect of Eucalyptus was chiefly due to depletion of moisture in the upper surface layers of the soil, whereas shade and allelopathic effects were negligible. The reduction in the crop yield due to competition by trees has been compared with wood yield from trees. Over a period of three years it was found that with the exception of Acacia, there was distinct economic gain under an agroforestry system as the loss in agricultural crops due to the effect of trees was compensated for by wood yield. However, this gain varied considerably depending upon the tree species, crop combination and the prevailing market price of the wood and crop. Eucalyptus hybrid produced the highest wood yield at the expense of field crops than any other tree species. Hence it is recommended that, where food production is the main objective, preference should be given to species like Castuarina, D. Sissoo and Acacia, which have minimum border effect on agricultural crops for dryland agroforestry systems.

  15. Projecting the long-term biogeochemical impacts of a diverse agroforestry system in the Midwest

    NASA Astrophysics Data System (ADS)

    Wolz, K. J.; DeLucia, E. H.; Paul, R. F.

    2014-12-01

    Annual, monoculture cropping systems have become the standard agricultural model in the Midwestern US. Unintended consequences of these systems include surface and groundwater pollution, greenhouse gas emissions, loss of biodiversity, and soil erosion. Diverse agroforestry (DA) systems dominated by fruit and nut trees/shrubs have been proposed as an agricultural model for the Midwestern US that can restore ecosystem services while simultaneously providing economically viable and industrially relevant staple food crops. A DA system including six species of fruit and nut crops was established on long-time conventional agricultural land at the University of Illinois at Urbana-Champaign in 2012, with the conventional corn-soybean rotation (CSR) as a control. Initial field measurements of the nitrogen and water cycles during the first two years of transition have indicated a significant decrease in N losses and modification of the seasonal evapotranspiration (ET) pattern. While these early results suggest that the land use transition from CSR to DA can have positive biogeochemical consequences, models must be utilized to make long-term biogeochemical projections in agroforestry systems. Initial field measurements of plant phenology, net N2O flux, nitrate leaching, soil respiration, and soil moisture were used to parameterize the DA system within the DayCENT biogeochemical model as the "savanna" ecosystem type. The model was validated with an independent subset of field measurements and then run to project biogeochemical cycling in the DA system for 25 years past establishment. Model results show that N losses via N2O emission or nitrate leaching reach a minimum within the first 5 years and then maintain this tight cycle into the future. While early ET field measurements revealed similar magnitudes between the DA and CSR systems, modeled ET continued to increase for the DA system throughout the projected time since the trees would continue to grow larger. These modeling

  16. Microbial Community Diversity in Agroforestry and Grass Buffer Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agroforesty and grass buffer systems have long been promoted as a soil conservation practice that yields many environmental benefits. Previous research has described the ability of buffer systems to retain nutrients, slow water flow and soil erosion, or mitigate the potentially harmful effects of e...

  17. Socio-economic comparison between traditional and improved cultivation methods in agroforestry systems, East Usambara Mountains, Tanzania.

    PubMed

    Reyes, Teija; Quiroz, Roberto; Msikula, Shija

    2005-11-01

    The East Usambara Mountains, recognized as one of the 25 most important biodiversity hot spots in the world, have a high degree of species diversity and endemism that is threatened by increasing human pressure on resources. Traditional slash and burn cultivation in the area is no longer sustainable. However, it is possible to maintain land productivity, decrease land degradation, and improve rural people's livelihood by ameliorating cultivation methods. Improved agroforestry seems to be a very convincing and suitable method for buffer zones of conservation areas. Farmers could receive a reasonable net income from their farm with little investment in terms of time, capital, and labor. By increasing the diversity and production of already existing cultivations, the pressure on natural forests can be diminished. The present study shows a significant gap between traditional cultivation methods and improved agroforestry systems in socio-economic terms. Improved agroforestry systems provide approximately double income per capita in comparison to traditional methods. More intensified cash crop cultivation in the highlands of the East Usambara also results in double income compared to that in the lowlands. However, people are sensitive to risks of changing farming practices. Encouraging farmers to apply better land management and practice sustainable cultivation of cash crops in combination with multipurpose trees would be relevant in improving their economic situation in the relatively short term. The markets of most cash crops are already available. Improved agroforestry methods could ameliorate the living conditions of the local population and protect the natural reserves from human disturbance. PMID:16261277

  18. Getting Careers in Gear at Parkland College

    ERIC Educational Resources Information Center

    Gibbs, Hope J.

    2005-01-01

    Parkland College continues to move ahead with an innovative and diversified curriculum while laying valuable groundwork for future success in the neighboring high school classrooms by providing the option of dual credit programs. In 1963, the boards of education for both the cities of Champaign and Urbana, Illinois, began discussing the…

  19. Soil quality indicators of a mature alley-cropping agroforestry system in temperate North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although agroforestry practices are believed to improve soil quality, reports on long-term effects of alley cropping on soils within agroforestry in the temperate zone are limited. The objective of this study was to examine effects of management, landscape, and soil depth of an established agrofores...

  20. Carbon Storage in Soil Size Fractions Under Two Cacao Agroforestry Systems in Bahia, Brazil

    NASA Astrophysics Data System (ADS)

    Gama-Rodrigues, Emanuela F.; Ramachandran Nair, P. K.; Nair, Vimala D.; Gama-Rodrigues, Antonio C.; Baligar, Virupax C.; Machado, Regina C. R.

    2010-02-01

    Shaded perennial agroforestry systems contain relatively high quantities of soil carbon (C) resulting from continuous deposition of plant residues; however, the extent to which the C is sequestered in soil will depend on the extent of physical protection of soil organic C (SOC). The main objective of this study was to characterize SOC storage in relation to soil fraction-size classes in cacao ( Theobroma cacao L.) agroforestry systems (AFSs). Two shaded cacao systems and an adjacent natural forest in reddish-yellow Oxisols in Bahia, Brazil were selected. Soil samples were collected from four depth classes to 1 m depth and separated by wet-sieving into three fraction-size classes (>250 μm, 250-53 μm, and <53 μm)—corresponding to macroaggregate, microaggregate, and silt-and-clay size fractions—and analyzed for C content. The total SOC stock did not vary among systems (mean: 302 Mg/ha). On average, 72% of SOC was in macroaggregate-size, 20% in microaggregate-size, and 8% in silt-and-clay size fractions in soil. Sonication of aggregates showed that occlusion of C in soil aggregates could be a major mechanism of C protection in these soils. Considering the low level of soil disturbances in cacao AFSs, the C contained in the macroaggregate fraction might become stabilized in the soil. The study shows the role of cacao AFSs in mitigating greenhouse gas (GHG) emission through accumulation and retention of high amounts of organic C in the soils and suggests the potential benefit of this environmental service to the nearly 6 million cacao farmers worldwide.

  1. Village agroforestry systems and tree-use practices: A case study in Sri Lanka. Multipurpose tree species network research series

    SciTech Connect

    Wickramasinghe, A.

    1992-01-01

    Village agroforestry systems in Sri Lanka have evolved through farmers' efforts to meet their survival needs. The paper examines farmers' land-use systems and their perceptions of the role of trees in the villages of Bambarabedda and Madugalla in central Sri Lanka. The benefits of village agroforestry are diverse food, fuelwood, fodder, timber, and mulch, but food products are of outstanding importance. The ability of Artocarpus heterophyllus (the jackfruit tree) and Cocos nucifera (coconut) to ensure food security during the dry season and provide traditional foods throughout the year, as well as to grow in limited space, make them popular crops in the two study villages. The study recommends that further research precede the formulation of agricultural interventions and that efforts to promote improved tree varieties recognize farmers' practices and expressed needs.

  2. The Role of Soil Biological Function in Regulating Agroecosystem Services and Sustainability in the Quesungual Agroforestry System

    NASA Astrophysics Data System (ADS)

    Fonte, S.; Pauli, N.; Rousseau, L.; SIX, J. W. U. A.; Barrios, E.

    2014-12-01

    The Quesungual agroforestry system from western Honduras has been increasingly promoted as a promising alternative to traditional slash-and-burn agriculture in tropical dry forest regions of the Americas. Improved residue management and the lack of burning in this system can greatly impact soil biological functioning and a number of key soil-based ecosystem services, yet our understanding of these processes has not been thoroughly integrated to understand system functionality as a whole that can guide improved management. To address this gap, we present a synthesis of various field studies conducted in Central America aimed at: 1) quantifying the influence of the Quesungual agroforestry practices on soil macrofauna abundance and diversity, and 2) understanding how these organisms influence key soil-based ecosystem services that ultimately drive the success of this system. A first set of studies examined the impact of agroecosystem management on soil macrofauna populations, soil fertility and key soil processes. Results suggest that residue inputs (derived from tree biomass pruning), a lack of burning, and high tree densities, lead to conditions that support abundant, diverse soil macrofauna communities under agroforestry, with soil organic carbon content comparable to adjacent forest. Additionally, there is great potential in working with farmers to develop refined soil quality indicators for improved land management. A second line of research explored interactions between residue management and earthworms in the regulation of soil-based ecosystem services. Earthworms are the most prominent ecosystem engineers in these soils. We found that earthworms are key drivers of soil structure maintenance and the stabilization of soil organic matter within soil aggregates, and also had notable impacts on soil nutrient dynamics. However, the impact of earthworms appears to depend on residue management practices, thus indicating the need for an integrated approach for

  3. Geomorphological impact on agroforestry systems in the interior highlands of Nicaragua, Central America

    NASA Astrophysics Data System (ADS)

    Mentler, Axel; Wriessnig, Karin; Ottner, Franz; Schomakers, Jasmin; Benavides González, Álvaro; Cisne Contreras, José Dolores; Querol Lipcovich, Daniel

    2013-04-01

    Cerro el Castillo is located in the NW of Nicaragua, Central America, close to the border of Honduras (Provincia Central de las Cordilleras) at 1000-1200m above sea level. In this region, small and medium-sized farms are agroforestry systems with mangos, avocados, coffee, papayas, bananas, strawberries, maize, pumpkins, beans and other vegetables. The production systems are strongly linked to facilities for raising small domestic animals and cows. Main regional agricultural production problems are steep slopes, soil erosion, varying precipitation and distribution, water management and the unstable family income. An investigation of topsoil properties with comparable management systems showed on small scales significant differences in key values of soil chemistry and mineralogy. The outline of the analytical parameters included determination of pH, electrical conductivity (EC), cation exchange capacity (CEC), organic carbon (TOC), dissolved organic carbon (DOC), total nitrogen (TN) and dissolved nitrogen (DN) in soil solution, and plant available nutrients (P and K). The soil's mineralogical composition was determined by X-ray diffraction analysis. The area is a highly weathered karst landscape within a tropical limestone region displaying different amounts of volcanic pyroclastic parent material. The dominant Nitisoils and Andosols show degraded argic and andic horizons along the upper half of the mountainside. The pH values in the topsoil are moderate from pH 5.0 to 5.6. The upland topsoil is decalcified and the amount of plant available phosphorous is very low with significant low Ca concentration at the sorption complex. The mineralogical composition points to the high weathering intensity of this area (high content of kaolinite and a lower concentration of potassium and plagioclase feldspars and andesite). Along the upper half of the mountain, the soil profiles show wider C:N ratios and lower amounts of organic matter. Topsoil at lower altitude and with a lower

  4. The role of habitat patches on mammalian diversity in cork oak agroforestry systems

    NASA Astrophysics Data System (ADS)

    Rosalino, Luis M.; Rosário, João do; Santos-Reis, Margarida

    2009-07-01

    Habitat patches, depending on the degree of differentiation from the matrix, can add few or many elements to the species pool of a particular landscape. Their importance to biodiversity is particularly relevant in areas with complex landscapes, where natural, naturalized, or managed habitats are interspersed by small patches of habitat types with very different biophysical characteristics; e.g., fruit orchards and riparian areas. This is the case of the montado landscape, a cork oak agroforestry system that largely covers south-western Portugal. We evaluated whether the high mammalian biodiversity found in this system is, in part, the cumulative result of the species found in the non-matrix habitats. Our results indicate that in areas where there are inclusions of orchards/olive yards and riparian vegetation in the cork oak woodland, a significantly higher number of mammalian species are present. We further detected a positive effect of low human disturbance on mammal diversity. Ultimately, our results can be used by managers to augment their management options, since we show that the inclusion and maintenance of non-matrix habitat patches in cork oak agro-silvo-forestry systems can help to maximize mammal biodiversity without compromising services associated with agriculture and forestry.

  5. Soil Modification by Native Shrubs Boosts Crop Productivity in Sudano-Sahelian Agroforestry System

    NASA Astrophysics Data System (ADS)

    Bogie, N. A.; Bayala, R.; Diedhiou, I.; Ghezzehei, T. A.; Dick, R.

    2014-12-01

    A changing climate along with human and animal population pressure can have a devastating effect on crop yields and food security in the Sudano-Sahel. Agricultural solutions to address soil degradation and crop water stress are needed to combat this increasingly difficult situation. Significant differences in crop success have been observed in peanut and millet grown in association with two native evergreen shrubs Piliostigma reticulatum, and Guiera senegalensis at the sites of Nioro du Rip and Keur Matar, respectively.We investigate how farmers can increase crop productivity by capitalizing on the evolutionary adaptation of native shrubs to the harsh Sudano-Sahelian environment as well as the physical mechanisms at work in the system that can lead to more robust yields. Soil moisture and water potential data were collected during a dry season millet irrigation experiment where stress was imposed in the intercropped system. Despite lower soil moisture content, crops grown in association with shrubs have increased biomass production and a faster development cycle. Hydraulic redistribution is thought to exist in this system and we found diurnal fluctuations in water potential within the intercropped system that increased in magnitude of to 0.4 Mpa per day as the soil dried below 1.0 Mpa during the stress treatment. An isotopic tracer study investigating hydraulic redistribution was carried out by injecting labeled water into shrub roots and sampling shrubs and nearby crops for isotopic analysis of plant water. These findings build on work that was completed in 2004 at the site, but point to lower overall magnitude of diurnal soil water potential fluctuations in dry soils. Using even the limited resources that farmers possess, this agroforestry technique can be expanded over wide swaths of the Sahel.

  6. A common framework for GHG assessment protocols in temperate agroforestry systems: connecting via GRACEnet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are technical and financial advantages for pursuing agroforestry-derived mitigation and adaptation services simultaneously, with a recognition that carbon (C) payments could assist in supporting the deployment of adaptation strategies (Motocha et al. (2012). However, we lack the repeated/repea...

  7. Improved fodder tree management in the agroforestry systems of central and western Nepal

    SciTech Connect

    Karki, M.B.

    1992-01-01

    Ten, three year old, fodder tree species were evaluated at four on-station and three on-farm sites in Nepal. Ficus semicordata (Buchattam. ex Sm.) growth was found to be significantly higher than the rest in diameter and dry foliage weight values. Species were significantly different in height, diameter, and foliage and wood growth. Sites were significantly different in total height growth only. On-farm species evaluation indicated that A. lakoocha and F. semicordata had significantly higher growth. Allometric regression equations were developed to predict foliage, total wood, and total biomass yield of F. semicordata, and B. variegata. Individual-tree models were developed. For B. variegata, diameter at 50 cm. and for F. semicordata, crown diameter and height gave the best fitted equations. Regression equations for three sites did not differ significantly. Therefore, data were pooled and a common model was estimated for each species. In on-farm regression models, height and crown diameter were the best predictors for F. semicordata and dbh gave the best fit for B. variegata. The models for the two species were used to construct regional fodder and fuelwood biomass tables. An improved crop-livestock-fodder agroforestry system was designed for a village in Nepal. Linear programming was used to demonstrate the use of a tool to optimize land allocation maximizing net returns while satisfying the supply of minimum needs of food, fodder, and fuelwood. The optimal solution indicated that, by improving the returns to labor and by applying more compost, the village should be able to increase the annual net farm returns from NRs. 2.94 million to NRs. 3.85 million. The food, fodder and fuelwood production levels were shown to increase by 17%, 130%, and 537% respectively. The labor and compost requirements were up by 138% and 59% respectively, over the five year period. The soil loss through run-off was estimated to decrease by about 15% over the same period.

  8. Biomass production in agroforestry and forestry systems on salt-affected soils in South Asia: exploration of the GHG balance and economic performance of three case studies.

    PubMed

    Wicke, Birka; Smeets, Edward M W; Akanda, Razzaque; Stille, Leon; Singh, Ranjay K; Awan, Abdul Rasul; Mahmood, Khalid; Faaij, Andre P C

    2013-09-30

    This study explores the greenhouse gas balance and the economic performance (i.e. net present value (NPV) and production costs) of agroforestry and forestry systems on salt-affected soils (biosaline (agro)forestry) based on three case studies in South Asia. The economic impact of trading carbon credits generated by biosaline (agro)forestry is also assessed as a potential additional source of income. The greenhouse gas balance shows carbon sequestration over the plantation lifetime of 24 Mg CO2-eq. ha(-1) in a rice-Eucalyptus camaldulensis agroforestry system on moderately saline soils in coastal Bangladesh (case study 1), 6 Mg CO2-eq. ha(-1) in the rice-wheat- Eucalyptus tereticornis agroforestry system on sodic/saline-sodic soils in Haryana state, India (case study 2), and 96 Mg CO2-eq. ha(-1) in the compact tree (Acacia nilotica) plantation on saline-sodic soils in Punjab province of Pakistan. The NPV at a discount rate of 10% is 1.1 k€ ha(-1) for case study 1, 4.8 k€ ha(-1) for case study 2, and 2.8 k€ ha(-1) for case study 3. Carbon sequestration translates into economic values that increase the NPV by 1-12% in case study 1, 0.1-1% in case study 2, and 2-24% in case study 3 depending on the carbon credit price (1-15 € Mg(-1) CO2-eq.). The analysis of the three cases indicates that the economic performance strongly depends on the type and severity of salt-affectedness (which affect the type and setup of the agroforestry system, the tree species and the biomass yield), markets for wood products, possibility of trading carbon credits, and discount rate. PMID:23810966

  9. Changes in soil physical and chemical properties in long term improved natural and traditional agroforestry management systems of cacao genotypes in Peruvian Amazon.

    PubMed

    Arévalo-Gardini, Enrique; Canto, Manuel; Alegre, Julio; Loli, Oscar; Julca, Alberto; Baligar, Virupax

    2015-01-01

    Growing cacao (Theobroma cacao L.) in an agroforestry system generates a productive use of the land, preserves the best conditions for physical, chemical and biological properties of tropical soils, and plays an important role in improving cacao production and fertility of degraded tropical soils. The aim of this study was to evaluate the impact of two long term agroforestry systems of cacao management on soil physical and chemical properties in an area originally inhabited by 30 years old native secondary forest (SF). The two agroforestry systems adapted were: improved natural agroforestry system (INAS) where trees without economic value were selectively removed to provide 50% shade and improved traditional agroforestry system (ITAS) where all native trees were cut and burnt in the location. For evaluation of the changes of soil physical and chemical properties with time due to the imposed cacao management systems, plots of 10 cacao genotypes (ICS95, UF613, CCN51, ICT1112, ICT1026, ICT2162, ICT2171, ICT2142, H35, U30) and one plot with a spontaneous hybrid were selected. Soil samples were taken at 0-20, 20-40 and 40-60 cm depths before the installation of the management systems (2004), and then followed at two years intervals. Bulk density, porosity, field capacity and wilting point varied significantly during the years of assessment in the different soil depths and under the systems assessed. Soil pH, CEC, exchangeable Mg and sum of the bases were higher in the INAS than the ITAS. In both systems, SOM, Ext. P, K and Fe, exch. K, Mg and Al+H decreased with years of cultivation; these changes were more evident in the 0-20 cm soil depth. Overall improvement of SOM and soil nutrient status was much higher in the ITAS than INAS. The levels of physical and chemical properties of soil under cacao genotypes showed a marked difference in both systems. PMID:26181053

  10. Changes in Soil Physical and Chemical Properties in Long Term Improved Natural and Traditional Agroforestry Management Systems of Cacao Genotypes in Peruvian Amazon

    PubMed Central

    Arévalo-Gardini, Enrique; Canto, Manuel; Alegre, Julio; Loli, Oscar; Julca, Alberto; Baligar, Virupax

    2015-01-01

    Growing cacao (Theobroma cacao L.) in an agroforestry system generates a productive use of the land, preserves the best conditions for physical, chemical and biological properties of tropical soils, and plays an important role in improving cacao production and fertility of degraded tropical soils. The aim of this study was to evaluate the impact of two long term agroforestry systems of cacao management on soil physical and chemical properties in an area originally inhabited by 30 years old native secondary forest (SF). The two agroforestry systems adapted were: improved natural agroforestry system (INAS) where trees without economic value were selectively removed to provide 50% shade and improved traditional agroforestry system (ITAS) where all native trees were cut and burnt in the location. For evaluation of the changes of soil physical and chemical properties with time due to the imposed cacao management systems, plots of 10 cacao genotypes (ICS95, UF613, CCN51, ICT1112, ICT1026, ICT2162, ICT2171, ICT2142, H35, U30) and one plot with a spontaneous hybrid were selected. Soil samples were taken at 0-20, 20-40 and 40-60 cm depths before the installation of the management systems (2004), and then followed at two years intervals. Bulk density, porosity, field capacity and wilting point varied significantly during the years of assessment in the different soil depths and under the systems assessed. Soil pH, CEC, exchangeable Mg and sum of the bases were higher in the INAS than the ITAS. In both systems, SOM, Ext. P, K and Fe, exch. K, Mg and Al+H decreased with years of cultivation; these changes were more evident in the 0-20 cm soil depth. Overall improvement of SOM and soil nutrient status was much higher in the ITAS than INAS. The levels of physical and chemical properties of soil under cacao genotypes showed a marked difference in both systems. PMID:26181053

  11. Changes in soil physical and chemical properties in long term improved natural and traditional agroforestry management systems of cacao genotypes in Peruvian Amazon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditional slash and burn agriculture practiced in the Peruvian Amazon region is leading to soil degradation and deforestation of native forest flora. The only way to stop such destructive processes is through the adoptation of sustainable alternatives such as growing crops in agroforestry systems....

  12. The Network Of Shelterbelts As An Agroforestry System Controlling The Water Resources And Biodiversity In The Agricultural Landscape

    NASA Astrophysics Data System (ADS)

    Kędziora, Andrzej

    2015-01-01

    Long-term human activity has led to many unfavourable changes in landscape structure. The main negative effect has been a simplification of landscape structure reflecting the removal of stable ecosystems, such as forests, shelterbelts, strips of meadows and so on, which were converted into unstable ecosystems, mainly farmlands. Thanks to these changes, serious threats have been posed to the sustainable development of rural areas. The most hazardous of these involve a deteriorating of water balance, increased surface and ground water pollution, and impoverishment of biodiversity. An agroforestry system can serve as a toolkit which allows counteracting such negative changes in the landscape. This paper presents the main findings emerge from long-term investigations on the above issues carried out by the Institute for the Agricultural and Forest Environment of the Polish Academy of Sciences.

  13. Tree Crown Mapping in Managed Woodlands (Parklands) of Semi-Arid West Africa Using WorldView-2 Imagery and Geographic Object Based Image Analysis

    PubMed Central

    Karlson, Martin; Reese, Heather; Ostwald, Madelene

    2014-01-01

    Detailed information on tree cover structure is critical for research and monitoring programs targeting African woodlands, including agroforestry parklands. High spatial resolution satellite imagery represents a potentially effective alternative to field-based surveys, but requires the development of accurate methods to automate information extraction. This study presents a method for tree crown mapping based on Geographic Object Based Image Analysis (GEOBIA) that use spectral and geometric information to detect and delineate individual tree crowns and crown clusters. The method was implemented on a WorldView-2 image acquired over the parklands of Saponé, Burkina Faso, and rigorously evaluated against field reference data. The overall detection rate was 85.4% for individual tree crowns and crown clusters, with lower accuracies in areas with high tree density and dense understory vegetation. The overall delineation error (expressed as the difference between area of delineated object and crown area measured in the field) was 45.6% for individual tree crowns and 61.5% for crown clusters. Delineation accuracies were higher for medium (35–100 m2) and large (≥100 m2) trees compared to small (<35 m2) trees. The results indicate potential of GEOBIA and WorldView-2 imagery for tree crown mapping in parkland landscapes and similar woodland areas. PMID:25460815

  14. Tree crown mapping in managed woodlands (parklands) of semi-arid West Africa using WorldView-2 imagery and geographic object based image analysis.

    PubMed

    Karlson, Martin; Reese, Heather; Ostwald, Madelene

    2014-01-01

    Detailed information on tree cover structure is critical for research and monitoring programs targeting African woodlands, including agroforestry parklands. High spatial resolution satellite imagery represents a potentially effective alternative to field-based surveys, but requires the development of accurate methods to automate information extraction. This study presents a method for tree crown mapping based on Geographic Object Based Image Analysis (GEOBIA) that use spectral and geometric information to detect and delineate individual tree crowns and crown clusters. The method was implemented on a WorldView-2 image acquired over the parklands of Saponé, Burkina Faso, and rigorously evaluated against field reference data. The overall detection rate was 85.4% for individual tree crowns and crown clusters, with lower accuracies in areas with high tree density and dense understory vegetation. The overall delineation error (expressed as the difference between area of delineated object and crown area measured in the field) was 45.6% for individual tree crowns and 61.5% for crown clusters. Delineation accuracies were higher for medium (35-100 m(2)) and large (≥100 m(2)) trees compared to small (<35 m(2)) trees. The results indicate potential of GEOBIA and WorldView-2 imagery for tree crown mapping in parkland landscapes and similar woodland areas. PMID:25460815

  15. [Temporal and spatial distribution of ants in a light gradient, in a coffee agroforestry system, Turrialba, Costa Rica].

    PubMed

    Varón, Edgar H; Hanson, Paul; Longino, John T; Borbón, Olger; Carballo, Manuel; Hilje, Luko

    2007-01-01

    Shade trees are frequently present in coffee (Coffea arabica L.) agroforestry systems of Mesoamerica. These systems can harbor a rich entomofauna, including ants, which could be predators of key pests in these systems. However, the role of shade on the distribution and abundance of these ants is unknown, yet such knowledge could suggest guidelines for manipulating certain environmental conditions of their habitat, thereby achieving their conservation and increase. Therefore, we studied the effect of shade on the spatial and temporal distribution of three ant species (Solenopsis geminata, Pheidole radoszkowskii and Crematogaster curvispinosa) that may prey on the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae), and the mahogany shootborer, Hypsipyla grandella (Lepidoptera: Pyralidae). To do this, abundance was evaluated across a sun-shade gradient in a coffee plantation with four alternate plots (from pure sun to total shade) in Turrialba, Costa Rica. In the community that was studied 28 species of ants were collected, of which S. geminata was the dominant species (79% of the total individuals), followed by P. radoszkowskii (16 %). S. geminata and C. curvispinosa preferred sunny areas, while P. radoszkowskii showed no defined preference. Likewise, with respect to location, S. geminata predominated in the soil, while P. radoszkowskii and C. curvispinosa predominated in coffee bushes. PMID:19086397

  16. Effect of shade on Arabica coffee berry disease development: Toward an agroforestry system to reduce disease impact.

    PubMed

    Mouen Bedimo, J A; Njiayouom, I; Bieysse, D; Ndoumbè Nkeng, M; Cilas, C; Nottéghem, J L

    2008-12-01

    Coffee berry disease (CBD), caused by Colletotrichum kahawae, is a major constraint for Arabica coffee cultivation in Africa. The disease is specific to green berries and can lead to 60% harvest losses. In Cameroon, mixed cropping systems of coffee with other crops, such as fruit trees, are very widespread agricultural practices. Fruit trees are commonly planted at random on coffee farms, providing a heterogeneous shading pattern for coffee trees growing underneath. Based on a recent study of CBD, it is known that those plants can reduce disease incidence. To assess the specific effect of shade, in situ and in vitro disease development was compared between coffee trees shaded artificially by a net and trees located in full sunlight. In the field, assessments confirmed a reduction in CBD on trees grown under shade compared with those grown in full sunlight. Artificial inoculations in the laboratory showed that shade did not have any effect on the intrinsic susceptibility of coffee berries to CBD. Coffee shading mainly acts on environmental parameters in limiting disease incidence. In addition to reducing yield losses, agroforestry system may also be helpful in reducing chemical control of the disease and in diversifying coffee growers' incomes. PMID:19000007

  17. Nutrient cycling and Above- and Below-ground Interactions in a Runoff Agroforestry System Applied with Composted Tree Trimmings

    NASA Astrophysics Data System (ADS)

    Ilani, Talli; Ephrath, Jhonathan; Silberbush, Moshe; Berliner, Pedro

    2014-05-01

    The primary production in arid zones is limited due to shortage of water and nutrients. Conveying flood water and storing it in plots surrounded by embankments allows their cropping. The efficient exploitation of the stored water can be achieved through an agroforestry system, in which two crops are grown simultaneously: annual crops with a shallow root system and trees with a deeper root system. We posit that the long-term productivity of this system can be maintained by intercropping symbiotic N fixing shrubs with annual crops, and applying the pruned and composted shrub leaves to the soil, thus ensuring an adequate nitrogen level (a limiting factor in drylands) in the soil. To test our hypothesis we carried a two year trial in which fast-growing acacia (A. saligna) trees were the woody component and maize (Zea mays L.) the intercrop. Ten treatments were applied over two maize growth seasons to examine the below- and above-ground effects of tree pruning, compost application and interactions. The addition of compost in the first growth season led to an increase of the soil organic matter reservoir, which was the main N source for the maize during the following growth season. In the second growth season the maize yield was significantly higher in the plots to which compost was applied. Pruning the tree's canopies changed the trees spatial and temporal root development, allowing the annual crop to develop between the trees. The roots of pruned trees intercropped with maize penetrated deeper in the soil. The intercropping of maize within pruned trees and implementing compost resulted in a higher water use efficiency of the water stored in the soil when compared to the not composted and monoculture treatments. The results presented suggest that the approach used in this study can be the basis for achieving sustainable agricultural production under arid conditions.

  18. Potential Impacts of Climate Change on Coupled Socioecological Systems in East Africa: The Case of the Chagga Agroforestry and Maasai Agropastoralism across the Greater Environments of Mount Kilimanjaro Region

    NASA Astrophysics Data System (ADS)

    Mwangi, M. N.

    2014-12-01

    The various types of rainfall-dependent coupled socioecological systems that conspicuously characterize mountain-environments across Africa, such as the Chagga homegardens, an intensive agroforestry system, constitute a major economic backbone to the local inhabitants. Similarly, agropastoralism that characterizes the adjoining rangelands of such mountain-environments, such as that practiced by the Maasai people of Kenya, in the northern plains that adjoins Mount Kilimanjaro, is major contributor to local food security. Both Chagga agroforestry and Maasai agropastoralism also contribute greatly to broader-scale economic sectors and respectively to sustainable utilization of rangeland and mountain-environment resources. Like similar coupled socioecological systems across Africa, the Chagga agroforestry and Maasai agropastoralism are being, and will continue to be affected by the changing climate. This study uses an integrated approach to explore the sustainability of Chagga homegardens, an intensive agroforestry system, in the southern slopes of Mount Kilimanjaro in Tanzania. Concurrently, the sustainability of the Maasai agropastoralism (a livelihood-diversification type) in the northern slopes of Mount Kilimanjaro and the adjoining plains in Kenya is explored. This explication is followed by conceptualization of the potential future of Chagga agroforestry and Maasai agropastoralism systems under diverse scenarios of climate change—and alongside simultaneous effects of cross-scale social and biophysical factors, processes, and their interactions—in an integrated model. The premise of this study is that coupled socioecological systems, such as Chagga agroforestry and Maasai agropastoralism, linked to and/or dependent on mountain environments and microclimates, are natural-laboratories. Apropos this last point, the two systems offer timely insight into how similar systems in different geographical locations are likely to be influenced by the continuously changing

  19. Tree growth and management in Ugandan agroforestry systems: effects of root pruning on tree growth and crop yield.

    PubMed

    Wajja-Musukwe, Tellie-Nelson; Wilson, Julia; Sprent, Janet I; Ong, Chin K; Deans, J Douglas; Okorio, John

    2008-02-01

    Tree root pruning is a potential tool for managing belowground competition when trees and crops are grown together in agroforestry systems. We investigated the effects of tree root pruning on shoot growth and root distribution of Alnus acuminata (H.B. & K.), Casuarina equisetifolia L., Grevillea robusta A. Cunn. ex R. Br., Maesopsis eminii Engl. and Markhamia lutea (Benth.) K. Schum. and on yield of adjacent crops in sub-humid Uganda. The trees were 3 years old at the commencement of the study, and most species were competing strongly with crops. Tree roots were pruned 41 months after planting by cutting and back-filling a trench to a depth of 0.3 m, at a distance of 0.3 m from the trees, on one side of the tree row. The trench was reopened and roots recut at 50 and 62 months after planting. We assessed the effects on tree growth and root distribution over a 3 year period, and crop yield after the third root pruning at 62 months. Overall, root pruning had only a slight effect on aboveground tree growth: height growth was unaffected and diameter growth was reduced by only 4%. A substantial amount of root regrowth was observed by 11 months after pruning. Tree species varied in the number and distribution of roots, and C. equisetifolia and M. lutea had considerably more roots per unit of trunk volume than the other species, especially in the surface soil layers. Casuarina equisetifolia and M. eminii were the tree species most competitive with crops and G. robusta and M. lutea the least competitive. Crop yield data provided strong evidence of the redistribution of root activity following root pruning, with competition increasing on the unpruned side of tree rows. Thus, one-sided root pruning will be useful in only a few circumstances. PMID:18055434

  20. Ensemble Composition and Activity Levels of Insectivorous Bats in Response to Management Intensification in Coffee Agroforestry Systems

    PubMed Central

    Williams-Guillén, Kimberly; Perfecto, Ivette

    2011-01-01

    Shade coffee plantations have received attention for their role in biodiversity conservation. Bats are among the most diverse mammalian taxa in these systems; however, previous studies of bats in coffee plantations have focused on the largely herbivorous leaf-nosed bats (Phyllostomidae). In contrast, we have virtually no information on how ensembles of aerial insectivorous bats – nearly half the Neotropical bat species – change in response to habitat modification. To evaluate the effects of agroecosystem management on insectivorous bats, we studied their diversity and activity in southern Chiapas, Mexico, a landscape dominated by coffee agroforestry. We used acoustic monitoring and live captures to characterize the insectivorous bat ensemble in forest fragments and coffee plantations differing in the structural and taxonomic complexity of shade trees. We captured bats of 12 non-phyllostomid species; acoustic monitoring revealed the presence of at least 12 more species of aerial insectivores. Richness of forest bats was the same across all land-use types; in contrast, species richness of open-space bats increased in low shade, intensively managed coffee plantations. Conversely, only forest bats demonstrated significant differences in ensemble structure (as measured by similarity indices) across land-use types. Both overall activity and feeding activity of forest bats declined significantly with increasing management intensity, while the overall activity, but not feeding activity, of open-space bats increased. We conclude that diverse shade coffee plantations in our study area serve as valuable foraging and commuting habitat for aerial insectivorous bats, and several species also commute through or forage in low shade coffee monocultures. PMID:21298059

  1. TEK and biodiversity management in agroforestry systems of different socio-ecological contexts of the Tehuacán Valley.

    PubMed

    Vallejo-Ramos, Mariana; Moreno-Calles, Ana I; Casas, Alejandro

    2016-01-01

    Transformation of natural ecosystems into intensive agriculture is a main factor causing biodiversity loss worldwide. Agroforestry systems (AFS) may maintain biodiversity, ecosystem benefits and human wellbeing, they have therefore high potential for concealing production and conservation. However, promotion of intensive agriculture and disparagement of TEK endanger their permanence. A high diversity of AFS still exist in the world and their potentialities vary with the socio-ecological contexts. We analysed AFS in tropical, temperate, and arid environments, of the Tehuacan Valley, Mexico, to investigate how their capacity varies to conserve biodiversity and role of TEK influencing differences in those contexts. We hypothesized that biodiversity in AFS is related to that of forests types associated and the vigour of TEK and management. We conducted studies in a matrix of environments and human cultures in the Tehuacán Valley. In addition, we reviewed, systematized and compared information from other regions of Mexico and the world with comparable socio-ecological contexts in order to explore possible general patterns. Our study found from 26 % to nearly 90 % of wild plants species richness conserved in AFS, the decreasing proportion mainly associated to pressures for intensifying agricultural production and abandoning traditional techniques. Native species richness preserved in AFS is influenced by richness existing in the associated forests, but the main driver is how people preserve benefits of components and functions of ecosystems. Elements of modern agricultural production may coexist with traditional management patterns, but imposition of modern models may break possible balances. TEK influences decisions on what and how modern techniques may be advantageous for preserving biodiversity, ecosystem integrity in AFS and people's wellbeing. TEK, agroecology and other sciences may interact for maintaining and improving traditional AFS to increase biodiversity

  2. Fuelwood, agro-forestry, and natural resource management: the development significance of land tenure and other resource management/utilization systems

    SciTech Connect

    Brokensha, D.; Castro, A.P.; Kundu, M.; Hewlett, B.

    1984-04-01

    Using a systems approach and focusing on the social context, the study examines natural resource management in relation to fuelwood production and agroforestry. An initial section describing the use and interlinkage of the concepts of ecozone and ecosystem is followed by a discussion of problem ecozones, human use of ecozones, agricultural ecosystems, resource competition, uses of trees and forest products, and tree planting. Rural resource management strategies at the household, community, local, and state levels are discussed in the context of political economy, land tenure and rights, tenancy and sharecropping, group or public landholding, and acquisition and transfer of land.

  3. Changes in soil organic carbon and total nitrogen in croplands converted to walnut-based agroforestry systems and orchards in southeastern Loess Plateau of China.

    PubMed

    Lu, Sen; Meng, Ping; Zhang, Jinsong; Yin, Changjun; Sun, Shiyou

    2015-11-01

    Limited information is available on the effects of agroforestry system practices on soil properties in the Loess Plateau of China. Over the last decade, a vegetation restoration project has been conducted in this area by converting cropland into tree-based agroforestry systems and orchards to combat soil erosion and degradation. The objective of the present study was to determine the effects of land use conversion on soil organic carbon and total nitrogen in southeastern Loess Plateau. The experiment included three treatments: walnut intercropping system (AF), walnut orchard (WO), and traditional cropland (CR). After 7 years of continual management, soil samples were collected at 0-10, 10-30, and 30-50-cm depths for three treatments, and soil organic carbon (SOC) and total nitrogen (TN) were measured. Results showed that compared with the CR and AF treatments, WO treatment decreased both SOC and TN concentrations in the 0-50-cm soil profile. However, similar patterns of SOC and TN concentrations were observed in the AF and CR treatments across the entire profile. The SOC stocks at 0-50-cm depth were 5.42, 5.52, and 4.67 kg m(-2) for CR, AF, and WO treatments, respectively. The calculated TN stocks at 0-50-cm depth were 0.63, 0.62, and 0.57 kg m(-2) for CR, AF, and WO treatments, respectively. This result demonstrated that the stocks of SOC and TN in WO were clearly lower than those of AF and CR and that the walnut-based agroforestry system was more beneficial than walnut monoculture in terms of SOC and TN sequestration. Owing to the short-term intercropping practice, the changes in SOC and TN stocks were slight in AF compared with those in CR. However, a significant decrease in SOC and TN stocks was observed during the conversion of cropland to walnut orchard after 7 years of management. We also found that land use types had no significant effect on soil C/N ratio. These findings demonstrated that intercropping between walnut rows can potentially maintain

  4. Synergy of agroforestry and bottomland hardwood afforestation

    USGS Publications Warehouse

    Twedt, D.J.; Portwood, J.

    2003-01-01

    Afforestation of bottomland hardwood forests has historically emphasized planting heavy-seeded tree species such as oak (Quercus spp.) and pecan (Caryaillinoensis) with little or no silvicultural management during stand development. Slow growth of these tree species, herbivory, competing vegetation, and limited seed dispersal, often result in restored sites that are slow to develop vertical vegetation structure and have limited tree diversity. Where soils and hydrology permit, agroforestry can provide transitional management that mitigates these historical limitations on converting cropland to forests. Planting short-rotation woody crops and intercropping using wide alleyways are two agroforestry practices that are well suited for transitional management. Weed control associated with agroforestry systems benefits planted trees by reducing competition. The resultant decrease in herbaceous cover suppresses small mammal populations and associated herbivory of trees and seeds. As a result, rapid vertical growth is possible that can 'train' under-planted, slower-growing, species and provide favorable environmental conditions for naturally invading trees. Finally, annual cropping of alleyways or rotational pulpwood harvest of woody crops provides income more rapidly than reliance on future revenue from traditional silviculture. Because of increased forest diversity, enhanced growth and development, and improved economic returns, we believe that using agroforestry as a transitional management strategy during afforestation provides greater benefits to landowners and to the environment than does traditional bottomland hardwood afforestation.

  5. Determining options for agroforestry systems for the rehabilitation of degraded watersheds in Alemaya Basin, Hararghe Highlands, Ethiopia

    SciTech Connect

    Bishaw, B.

    1993-01-01

    Deforestation, accelerated soil erosion, and land degradation are serious problems in Ethiopia. The uncontrolled removal of natural forests, demographic pressures and cyclical drought has aggravated the situation, resulting in massive environmental degradation and a serious threat to sustainable agriculture and forestry. To overcome these problems efforts have been made to launch an afforestation and conservation program; however, success to data has been limited. Thus, the main objective of this study is to find the reasons for lack of success in tree planting in the Alemaya Basin both from biophysical and socio-economic perspectives. And, based on this analysis, to propose an alternative strategy for agroforestry for the Basin. The study has identified and characterized major land uses, socio-economic constraints and agricultural and forestry practices which have limited forestry development in the Alemaya Basin. To gather the necessary information for the study, existing information sources were reviewed. Two state sampling was used for a land-use survey, and stratified random sampling for the socio-economic study. Decrease in farm size due to population increases, soil erosion, shortage of fuelwood and fodder for livestock and lack of appropriate extension service were found to be the major problems that affect sustainable production in the Alemaya Basin. Agroforestry is one of the appropriate technologies to overcome some of the problem faced by the farmers in the Alemaya Basin. The study proposed a desired state of sustainable agriculture and forestry for the Basin based on population projections, agriculture and forest products needs, and stable or improved living standards for a 20 year planning period. Alley cropping with and without fertilizers was identified as a promising agroforestry technology. Its economic feasibility was assessed by estimating costs and returns both for traditional farming and alley cropping.

  6. Traditional farming systems of south-central Chile, with special emphasis on agroforestry

    SciTech Connect

    Altieri, M.A.; Farrell, J.

    1984-01-01

    Results are presented from a brief survey made in Nov-Dec 1982. Owners of small farms (up to 12 ha) generally have complex farming systems with a high diversity of enterprises, including the use of trees for a variety of purposes (food, fodder, wood, construction materials, fuel, etc.).

  7. Nutrient cycling in an agroforestry alley cropping system receiving poultry litter or nitrogen fertilizer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optimal utilization of animal manures as a plant nutrient source should also prevent adverse impacts on water quality. The objective of this study was to evaluate long-term poultry litter and N fertilizer application on nutrient cycling following establishment of an alley cropping system with easter...

  8. Soil Infiltration Characteristics in Agroforestry Systems and Their Relationships with the Temporal Distribution of Rainfall on the Loess Plateau in China

    PubMed Central

    Wang, Lai; Zhong, Chonggao; Gao, Pengxiang; Xi, Weimin; Zhang, Shuoxin

    2015-01-01

    Many previous studies have shown that land use patterns are the main factors influencing soil infiltration. Thus, increasing soil infiltration and reducing runoff are crucial for soil and water conservation, especially in semi-arid environments. To explore the effects of agroforestry systems on soil infiltration and associated properties in a semi-arid area of the Loess Plateau in China, we compared three plant systems: a walnut (Juglans regia) monoculture system (JRMS), a wheat (Triticum aestivum) monoculture system (TAMS), and a walnut-wheat alley cropping system (JTACS) over a period of 11 years. Our results showed that the JTACS facilitated infiltration, and its infiltration rate temporal distribution showed a stronger relationship coupled with the rainfall temporal distribution compared with the two monoculture systems during the growing season. However, the effect of JTACS on the infiltration capacity was only significant in shallow soil layer, i.e., the 0–40 cm soil depth. Within JTACS, the speed of the wetting front’s downward movement was significantly faster than that in the two monoculture systems when the amount of rainfall and its intensity were higher. The soil infiltration rate was improved, and the two peaks of soil infiltration rate temporal distribution and the rainfall temporal distribution coupled in rainy season in the alley cropping system, which has an important significance in soil and water conservation. The results of this empirical study provide new insights into the sustainability of agroforestry, which may help farmers select rational planting patterns in this region, as well as other regions with similar climatic and environmental characteristics throughout the world. PMID:25893832

  9. Soil Infiltration Characteristics in Agroforestry Systems and Their Relationships with the Temporal Distribution of Rainfall on the Loess Plateau in China.

    PubMed

    Wang, Lai; Zhong, Chonggao; Gao, Pengxiang; Xi, Weimin; Zhang, Shuoxin

    2015-01-01

    Many previous studies have shown that land use patterns are the main factors influencing soil infiltration. Thus, increasing soil infiltration and reducing runoff are crucial for soil and water conservation, especially in semi-arid environments. To explore the effects of agroforestry systems on soil infiltration and associated properties in a semi-arid area of the Loess Plateau in China, we compared three plant systems: a walnut (Juglans regia) monoculture system (JRMS), a wheat (Triticum aestivum) monoculture system (TAMS), and a walnut-wheat alley cropping system (JTACS) over a period of 11 years. Our results showed that the JTACS facilitated infiltration, and its infiltration rate temporal distribution showed a stronger relationship coupled with the rainfall temporal distribution compared with the two monoculture systems during the growing season. However, the effect of JTACS on the infiltration capacity was only significant in shallow soil layer, i.e., the 0-40 cm soil depth. Within JTACS, the speed of the wetting front's downward movement was significantly faster than that in the two monoculture systems when the amount of rainfall and its intensity were higher. The soil infiltration rate was improved, and the two peaks of soil infiltration rate temporal distribution and the rainfall temporal distribution coupled in rainy season in the alley cropping system, which has an important significance in soil and water conservation. The results of this empirical study provide new insights into the sustainability of agroforestry, which may help farmers select rational planting patterns in this region, as well as other regions with similar climatic and environmental characteristics throughout the world. PMID:25893832

  10. Interactive effects among ecosystem services and management practices on crop production: Pollination in coffee agroforestry systems

    PubMed Central

    Boreux, Virginie; Kushalappa, Cheppudira G.; Vaast, Philippe; Ghazoul, Jaboury

    2013-01-01

    Crop productivity is improved by ecosystem services, including pollination, but this should be set in the context of trade-offs among multiple management practices. We investigated the impact of pollination services on coffee production, considering variation in fertilization, irrigation, shade cover, and environmental variables such as rainfall (which stimulates coffee flowering across all plantations), soil pH, and nitrogen availability. After accounting for management interventions, bee abundance improved coffee production (number of berries harvested). Some management interventions, such as irrigation, used once to trigger asynchronous flowering, dramatically increased bee abundance at coffee trees. Others, such as the extent and type of tree cover, revealed interacting effects on pollination and, ultimately, crop production. The effects of management interventions, notably irrigation and addition of lime, had, however, far more substantial positive effects on coffee production than tree cover. These results suggest that pollination services matter, but managing the asynchrony of flowering was a more effective tool for securing good pollination than maintaining high shade tree densities as pollinator habitat. Complex interactions across farm and landscape scales, including both management practices and environmental conditions, shape pollination outcomes. Effective production systems therefore require the integrated consideration of management practices in the context of the surrounding habitat structure. This paper points toward a more strategic use of ecosystem services in agricultural systems, where ecosystem services are shaped by the coupling of management interventions and environmental variables. PMID:23671073

  11. Interactive effects among ecosystem services and management practices on crop production: pollination in coffee agroforestry systems.

    PubMed

    Boreux, Virginie; Kushalappa, Cheppudira G; Vaast, Philippe; Ghazoul, Jaboury

    2013-05-21

    Crop productivity is improved by ecosystem services, including pollination, but this should be set in the context of trade-offs among multiple management practices. We investigated the impact of pollination services on coffee production, considering variation in fertilization, irrigation, shade cover, and environmental variables such as rainfall (which stimulates coffee flowering across all plantations), soil pH, and nitrogen availability. After accounting for management interventions, bee abundance improved coffee production (number of berries harvested). Some management interventions, such as irrigation, used once to trigger asynchronous flowering, dramatically increased bee abundance at coffee trees. Others, such as the extent and type of tree cover, revealed interacting effects on pollination and, ultimately, crop production. The effects of management interventions, notably irrigation and addition of lime, had, however, far more substantial positive effects on coffee production than tree cover. These results suggest that pollination services matter, but managing the asynchrony of flowering was a more effective tool for securing good pollination than maintaining high shade tree densities as pollinator habitat. Complex interactions across farm and landscape scales, including both management practices and environmental conditions, shape pollination outcomes. Effective production systems therefore require the integrated consideration of management practices in the context of the surrounding habitat structure. This paper points toward a more strategic use of ecosystem services in agricultural systems, where ecosystem services are shaped by the coupling of management interventions and environmental variables. PMID:23671073

  12. Tillage and N-source influence soil-emitted nitrous oxide in the Alberta Parkland region

    SciTech Connect

    Lemke , R L.; Izaurralde, R Cesar C.; Nyborg, M.; Solberg, E D.

    1999-01-01

    Zero tillage systems are receiving attention as possible strategies for sequestering atmospheric carbon. This benefit may be offset by increased N2O emissions, which have been reported for soils under zero tillage (ZT) compared to those under more intensive tillage (IT). Comparisons of N2O emissions from the two systems have been restricted to the growing season, but substantial losses of N2O have been reported during spring thaw events in many regions. Inorganic and organic additions of nitrogen and fallowing have also been shown to increase levels of soil-emitted N2O. The objectives for this study were: (i) to confirm that losses of N2O are higher under ZT than under IT in Alberta Parkland agroecosystems; (ii) to compare the relative influence of urea fertilizer (56 or 100 kg N h--1), field pea residue (dry matter at 5 Mg h--1), sheep manure (dry matter at 40 Mg h--1) additions, and fallow on total N2O losses; and (iii) to investigate possible interactions between fertility and tillage treatments. Gas samples were collected using vented soil covers at three sites near Edmonton, Alberta during 1993, 1994, and 1995. Gas samples were analyzed using a gas chromatograph equipped with a 63Ni electron capture detector. Estimated annual N2O loss ranged from 0.1 to 4.0 kg N ha-1. Emissions during summer were slightly higher, similar, or lower on ZT compared to those under IT, but were consistently lower on ZT plots during spring thaw. Combined estimates (spring plus summer) of N2O loss under ZT were equal to or lower than those under IT. Highest overall losses were observed on fallow plots, followed by fertilizer, pea residue, and then either manure or control plots. We conclude that ZT management systems have potential for reducing agricultural greenhouse gas emissions in the Alberta Parkland region.

  13. Agriculture-related injuries in the parkland region of Manitoba.

    PubMed Central

    Young, S. K.

    1995-01-01

    OBJECTIVE: To review a series of farm injuries in the parkland region of Manitoba, compare the collected data to similar studies, and provide a baseline for deriving effective preventive measures for the local community. DESIGN: Retrospective case study involving review of hospital charts. SETTING: The population studied was derived from the catchment area for Dauphin General Hospital, a referral centre servicing an agricultural region of 57,000 people. PATIENTS: Seventy-two patients were admitted to hospital between January 1981 and December 1991 after being injured by agricultural machines, farm animals, herbicides or other chemicals, and fertilizers. Four fatalities were identified through a review of local medical examiner records, for a total of 76 cases. MAIN OUTCOME MEASURES: The following data were abstracted for each case: sex, age, time and date of injury, cause, type of injury, and body part involved. RESULTS: Most cases involved men, between the ages of 20 and 69, during the afternoon and early evening with a seasonal peak in late summer. More than 60% of injuries were caused by agricultural machinery, followed by animal-related injuries (25%). Grain augers were the most common type of machine causing injury (35%). All patients younger than 9 years were female, and 75% of their injuries involved farm animals. A decreasing annual frequency of farm injuries was noted over the 11-year period. Fewer accidents involving farm machinery appear most responsible for this trend. CONCLUSIONS: Many agriculture-related injuries occur in the parkland region of Manitoba. The type and pattern of injuries observed resembles those documented in other studies. With effective education and preventive measures, most injuries and fatalities could be prevented. Physicians are obliged to encourage and support educational programs in their communities and to review safety practices with patients. Images p1191-a PMID:7647624

  14. The effects of rainfall partitioning and evapotranspiration on the temporal and spatial variation of soil water content in a Mediterranean agroforestry system

    NASA Astrophysics Data System (ADS)

    Biel, C.; Molina, A.; Aranda, X.; Llorens, P.; Savé, R.

    2012-04-01

    Tree plantation for wood production has been proposed to mitigate CO2-related climate change. Although these agroforestry systems can contribute to maintain the agriculture in some areas placed between rainfed crops and secondary forests, water scarcity in Mediterranean climate could restrict its growth, and their presence will affect the water balance. Tree plantations management (species, plant density, irrigation, etc), hence, can be used to affect the water balance, resulting in water availability improvement and buffering of the water cycle. Soil water content and meteorological data are widely used in agroforestry systems as indicators of vegetation water use, and consequently to define water management. However, the available information of ecohydrological processes in this kind of ecosystem is scarce. The present work studies how the temporal and spatial variation of soil water content is affected by transpiration and interception loss fluxes in a Mediterranean rainfed plantation of cherry tree (Prunus avium) located in Caldes de Montbui (Northeast of Spain). From May till December 2011, rainfall partitioning, canopy transpiration, soil water content and meteorological parameters were continuously recorded. Rainfall partitioning was measured in 6 trees, with 6 automatic rain recorders for throughfall and 1 automatic rain recorder for stemflow per tree. Transpiration was monitored in 12 nearby trees by means of heat pulse sap flow sensors. Soil water content was also measured at three different depths under selected trees and at two depths between rows without tree cover influence. This work presents the relationships between rainfall partitioning, transpiration and soil water content evolution under the tree canopy. The effect of tree cover on the soil water content dynamics is also analyzed.

  15. Spatial and temporal effects of drought on soil CO2 efflux in a cacao agroforestry system in Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    van Straaten, O.; Veldkamp, E.; Köhler, M.; Anas, I.

    2010-04-01

    Climate change induced droughts pose a serious threat to ecosystems across the tropics and sub-tropics, particularly to those areas not adapted to natural dry periods. In order to study the vulnerability of cacao (Theobroma cacao) - Gliricidia sepium agroforestry plantations to droughts a large scale throughfall displacement roof was built in Central Sulawesi, Indonesia. In this 19-month experiment, we compared soil surface CO2 efflux (soil respiration) from three roof plots with three adjacent control plots. Soil respiration rates peaked at intermediate soil moisture conditions and decreased under increasingly dry conditions (drought induced), or increasingly wet conditions (as evidenced in control plots). The roof plots exhibited a slight decrease in soil respiration compared to the control plots (average 13% decrease). The strength of the drought effect was spatially variable - while some measurement chamber sites reacted strongly (responsive) to the decrease in soil water content (up to R2=0.70) (n=11), others did not react at all (non-responsive) (n=7). A significant correlation was measured between responsive soil respiration chamber sites and sap flux density ratios of cacao (R=0.61) and Gliricidia (R=0.65). Leaf litter CO2 respiration decreased as conditions became drier. The litter layer contributed approximately 3-4% of the total CO2 efflux during dry periods and up to 40% during wet periods. Within days of roof opening soil CO2 efflux rose to control plot levels. Thereafter, CO2 efflux remained comparable between roof and control plots. The cumulative effect on soil CO2 emissions over the duration of the experiment was not significantly different: the control plots respired 11.1±0.5 Mg C ha-1 yr-1, while roof plots respired 10.5±0.5 Mg C ha-1 yr-1. The relatively mild decrease measured in soil CO2 efflux indicates that this agroforestry ecosystem is capable of mitigating droughts with only minor stress symptoms.

  16. Improving the issuing, absorption and use of climate forecast information in agroforestry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agroforestry includes a range of practices that combine partial canopies of perennial woody vegetation (trees, shrubs, or hedges) with below-canopy production of forages, arable crops, fruits, berries, and nuts, herbs, or medicinal plants. Agroforestry systems can be broadly grouped into windbreaks ...

  17. Assessment of the Adoption of Agroforestry Technologies by Limited-Resource Farmers in North Carolina

    ERIC Educational Resources Information Center

    Faulkner, Paula E.; Owooh, Bismark; Idassi, Joshua

    2014-01-01

    Agroforestry is a natural resource management system that integrates trees, forages, and livestock. The study reported here was conducted to determine farmers' knowledge about and willingness to adopt agroforestry technologies in North Carolina. The study reported participants were primarily older, male farmers, suggesting the need to attract…

  18. C and N Content in Density Fractions of Whole Soil and Soil Size Fraction Under Cacao Agroforestry Systems and Natural Forest in Bahia, Brazil

    NASA Astrophysics Data System (ADS)

    Rita, Joice Cleide O.; Gama-Rodrigues, Emanuela Forestieri; Gama-Rodrigues, Antonio Carlos; Polidoro, Jose Carlos; Machado, Regina Cele R.; Baligar, Virupax C.

    2011-07-01

    Agroforestry systems (AFSs) have an important role in capturing above and below ground soil carbon and play a dominant role in mitigation of atmospheric CO2. Attempts has been made here to identify soil organic matter fractions in the cacao-AFSs that have different susceptibility to microbial decomposition and further represent the basis of understanding soil C dynamics. The objective of this study was to characterize the organic matter density fractions and soil size fractions in soils of two types of cacao agroforestry systems and to compare with an adjacent natural forest in Bahia, Brazil. The land-use systems studied were: (1) a 30-year-old stand of natural forest with cacao (cacao cabruca), (2) a 30-year-old stand of cacao with Erythrina glauca as shade trees (cacao + erythrina), and (3) an adjacent natural forest without cacao. Soil samples were collected from 0-10 cm depth layer in reddish-yellow Oxisols. Soil samples was separated by wet sieving into five fraction-size classes (>2000 μm, 1000-2000 μm, 250-1000 μm, 53-250 μm, and <53 μm). C and N accumulated in to the light (free- and intra-aggregate density fractions) and heavy fractions of whole soil and soil size fraction were determined. Soil size fraction obtained in cacao AFS soils consisted mainly (65 %) of mega-aggregates (>2000 μm) mixed with macroaggregates (32-34%), and microaggregates (1-1.3%). Soil organic carbon (SOC) and total N content increased with increasing soil size fraction in all land-use systems. Organic C-to-total N ratio was higher in the macroaggregate than in the microaggregate. In general, in natural forest and cacao cabruca the contribution of C and N in the light and heavy fractions was similar. However, in cacao + erythrina the heavy fraction was the most common and contributed 67% of C and 63% of N. Finding of this study shows that the majority of C and N in all three systems studied are found in macroaggregates, particularly in the 250-1000 μm size aggregate class

  19. Land cover changes and forest landscape evolution (1985-2009) in a typical Mediterranean agroforestry system (High Agri Valley)

    NASA Astrophysics Data System (ADS)

    Simoniello, T.; Coluzzi, R.; Imbrenda, V.; Lanfredi, M.

    2014-08-01

    The present study focuses on the transformations of a typical Mediterranean agroforestry landscape of southern Italy (High Agri Valley - Basilicata region) occurred during 24 years. In this period, the valuable agricultural and natural areas that compose such a landscape were subjected to intensive industry-related activities linked to the exploitation of the largest European on-shore oil reservoir. Landsat imagery acquired in 1985 and 2009 were used to detect changes in forest areas and major land use trajectories. Landscape metrics indicators were adopted to characterize landscape structure and evolution of both the complex ecomosaic (14 land cover classes) and the Forest/Non Forest arrangement. Our results indicate a net increase of 11% of forest areas between 1985 and 2009. The major changes concern: increase of all forest covers at the expense of pastures and grasses, enlargement of riparian vegetation, expansion of artificial areas. The observed expansion of forests was accompanied by a decrease of the fragmentation levels likely due to the reduction of small glades that break forest homogeneity and to the recolonization of herbaceous areas. Overall, we observe an evolution towards a more stable configuration depicting a satisfactory picture of vegetation health.

  20. Land cover changes and forest landscape evolution (1985-2009) in a typical Mediterranean agroforestry system (high Agri Valley)

    NASA Astrophysics Data System (ADS)

    Simoniello, T.; Coluzzi, R.; Imbrenda, V.; Lanfredi, M.

    2015-06-01

    The present study focuses on the transformations of a typical Mediterranean agroforestry landscape of southern Italy (high Agri Valley - Basilicata region) that occurred over 24 years. In this period, the valuable agricultural and natural areas that compose such a landscape were subjected to intensive industry-related activities linked to the exploitation of the largest European onshore oil reservoir. Landsat imagery acquired in 1985 and 2009 were used to detect changes in forest areas and major land use trajectories. Landscape metrics indicators were adopted to characterize landscape structure and evolution of both the complex ecomosaic (14 land cover classes) and the forest/non-forest arrangement. Our results indicate a net increase of 11% of forest areas between 1985 and 2009. The major changes concern increase of all forest covers at the expense of pastures and grasses, enlargement of riparian vegetation, and expansion of artificial areas. The observed expansion of forests was accompanied by a decrease of the fragmentation levels likely due to the reduction of small glades that break forest homogeneity and to the recolonization of herbaceous areas. Overall, we observe an evolution towards a more stable configuration depicting a satisfactory picture of vegetation health.

  1. Rainfall partitioning into throughfall, stemflow and interception loss in a coffee ( Coffea arabica L.) monoculture compared to an agroforestry system with Inga densiflora

    NASA Astrophysics Data System (ADS)

    Siles, Pablo; Vaast, Philippe; Dreyer, Erwin; Harmand, Jean-Michel

    2010-12-01

    SummaryPartitioning of gross rainfall into throughfall, stemflow and rainfall interception was assessed in Costa Rica during two rainy seasons (mean annual rainfall of 2900 mm) in two coffee systems: (1) a monoculture (MC) and (2) an agroforestry system (AFS) including Inga densiflora as the associated shade tree species. Coffee architecture, not LAI, appeared to be the main driver of stemflow as stemflow was higher for shaded coffee plants (10.6% of incident rainfall) than for coffee plants in MC (7.2%), despite the fact that these shaded plants had lower LAI. The presence of Inga trees modified coffee architecture with shaded coffee plants presenting larger stems and branches resulting in higher coffee funneling ratio under shade. In AFS, coffee plants and trees accounted respectively for 88% and 12% of total stemflow which represented 11.8% of incident rainfall. AFS displayed larger cumulative stemflow and smaller total throughfall compared to MC. Cumulative throughfall expressed in % of the gross rainfall, differed between systems and monitoring periods and the trend showed a decrease with increasing LAI. Nevertheless, as stemflow measurement and interception loss estimation were done only during the second year of the study, the shade tree showed a low influence in increasing interception loss, as the combined LAI of coffee plants and shade trees was rather similar in AFS as that of coffee in MC. Furthermore, coffee plants accounted for the largest fraction of the interception loss in AFS as the coffee LAI was more than 3-fold that of shade trees.

  2. Agroforestry buffers for nonpoint source pollution reductions from agricultural watersheds.

    PubMed

    Udawatta, Ranjith P; Garrett, Harold E; Kallenbach, Robert

    2011-01-01

    Despite increased attention and demand for the adoption of agroforestry practices throughout the world, rigorous long-term scientific studies confirming environmental benefits from the use of agroforestry practices are limited. The objective was to examine nonpoint-source pollution (NPSP) reduction as influenced by agroforestry buffers in watersheds under grazing and row crop management. The grazing study consists of six watersheds in the Central Mississippi Valley wooded slopes and the row crop study site consists of three watersheds in a paired watershed design in Central Claypan areas. Runoff water samples were analyzed for sediment, total nitrogen (TN), and total phosphorus (TP) for the 2004 to 2008 period. Results indicate that agroforestry and grass buffers on grazed and row crop management sites significantly reduce runoff, sediment, TN, and TP losses to streams. Buffers in association with grazing and row crop management reduced runoff by 49 and 19%, respectively, during the study period as compared with respective control treatments. Average sediment loss for grazing and row crop management systems was 13.8 and 17.9 kg ha yr, respectively. On average, grass and agroforestry buffers reduced sediment, TN, and TP losses by 32, 42, and 46% compared with the control treatments. Buffers were more effective in the grazing management practice than row crop management practice. These differences could in part be attributed to the differences in soils, management, and landscape features. Results from this study strongly indicate that agroforestry and grass buffers can be designed to improve water quality while minimizing the amount of land taken out of production. PMID:21546665

  3. Drought effects on soil COagroforestry system in Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    van Straaten, O.; Veldkamp, E.; Köhler, M.; Anas, I.

    2009-12-01

    Climate change induced droughts pose a serious threat to ecosystems across the tropics and sub-tropics, particularly to those areas not adapted to natural dry periods. In order to study the vulnerability of cacao (Theobroma cacao) - Gliricidia sepium agroforestry plantations to droughts a large scale throughfall displacement roof was built in Central Sulawesi, Indonesia. In this 19-month replicated experiment, we measured soil surface CO2 efflux (soil respiration) in three simulated drought plots compared with three adjacent control plots. Soil respiration rates peaked at intermediate soil moisture and decreased under increasingly dry conditions (drought induced), but also decreased when soils became water saturated, as evidenced in control plots. The simulated drought plots exhibited a slight decrease in soil respiration compared to the control plots (average 13% decrease). The strength of the drought effect was spatially variable - while some measurement chamber sites reacted strongly ("responsive") to the decrease in soil water content (up to R2=0.70) (n=11), others did not react at all ("non-responsive") (n=7). The degree of soil CO2 respiration drought response was highest around cacao tree stems and decreased with distance from the stem (R2=0.22). A significant correlation was measured between "responsive" soil respiration chamber sites and sap flux density ratios of cacao (R=0.61) and Gliricidia (R=0.65). Leaf litter CO2 respiration decreased as conditions became drier. During dry periods the litter layer contributed approximately 3-4% of the total CO2 efflux and up to 40% during wet periods. A CO2 flush was recorded during the rewetting phase that lasted for approximately two weeks, during which time accumulated labile carbon stocks mineralized. The net effect on soil CO2 emissions over the duration of the experiment was neutral, control plots respired 11.1±0.5 Mg C ha-1 yr-1, while roof plots respired 10.5±0.5 Mg C ha-1 yr-1.

  4. Environmental and Anthropogenic Impacts on Avifaunal Assemblages in an Urban Parkland, 1976 to 2007

    PubMed Central

    Ormond, Sara Elizabeth; Whatmough, Robert; Hudson, Irene Lena; Daniels, Christopher Brian

    2014-01-01

    Simple Summary Over 32 years, the bird species assemblage in the parklands of Adelaide showed a uniform decline. Surprisingly, both introduced and native species declined, suggesting that even urban exploiters are affected by changes in the structure of cities. Climate and anthropogenic factors also cause short term changes in the species mix. In the case of Adelaide, the drought of 2005–2007 and associated water restrictions profoundly impacted the avian assemblage using the city parklands. Abstract Urban environments are unique, rapidly changing habitats in which almost half of the world’s human population resides. The effects of urbanisation, such as habitat (vegetation) removal, pollution and modification of natural areas, commonly cause biodiversity loss. Long-term ecological monitoring of urban environments is vital to determine the composition and long-term trends of faunal communities. This paper provides a detailed view of long-term changes in avifaunal assemblages of the Adelaide City parklands and discusses the anthropogenic and environmental factors that contributed to the changes between 1976 and 2007. The Adelaide City parklands (ACP) comprise 760 ha of land surrounding Adelaide’s central business district. Naturalist Robert Whatmough completed a 32-year survey of the ACP to determine the structure of the urban bird community residing there. Annual species richness and the abundance of birds in March and September months were analysed. Linear regression analysis was applied to species richness and abundance data of each assemblage. Resident parkland birds demonstrated significant declines in abundance. Native and introduced species also exhibited long-term declines in species richness and abundance throughout the 32-year period. Cycles of varying time periods indicated fluctuations in avian biodiversity demonstrating the need for future monitoring and statistical analyses on bird communities in the Adelaide City parklands. PMID:26479887

  5. Short rotation woody crops: Using agroforestry technology for energy in the United States

    SciTech Connect

    Wright, L L; Ranney, J W

    1991-01-01

    Agroforestry in the United States is being primarily defined as the process of using trees in agricultural systems for conservation purposes and multiple products. The type of agroforestry most commonly practiced in many parts of the world, that is the planting of tree crops in combination with food crops or pasture, is the type least commonly practiced in the United States. One type of agroforestry technique, which is beginning now and anticipated to expand to several million acres in the United States, is the planting of short-rotation woody crops (SRWCs) primarily to provide fiber and fuel. Research on SRWC's and environmental concerns are described.

  6. Short rotation woody crops: Using agroforestry technology for energy in the United States

    SciTech Connect

    Wright, L.L.; Ranney, J.W.

    1991-12-31

    Agroforestry in the United States is being primarily defined as the process of using trees in agricultural systems for conservation purposes and multiple products. The type of agroforestry most commonly practiced in many parts of the world, that is the planting of tree crops in combination with food crops or pasture, is the type least commonly practiced in the United States. One type of agroforestry technique, which is beginning now and anticipated to expand to several million acres in the United States, is the planting of short-rotation woody crops (SRWCs) primarily to provide fiber and fuel. Research on SRWC`s and environmental concerns are described.

  7. Parkland College Student Occupational Follow-Up Survey, 1999-2000.

    ERIC Educational Resources Information Center

    Parkland Coll., Champaign, IL. Office of Institutional Research and Evaluation.

    This report contains graduate employment data obtained from the 1999-2000 Student Occupational Follow-Up Survey at Parkland College (Illinois). Out of 550 graduates of occupational programs contacted during the summer after graduation, 382 returned surveys (response rate of 70%). Results indicate: (1) about 85% reported they are employed, an…

  8. Effects of climate change and land use on duck abundance in Canadian prairie-parklands

    SciTech Connect

    Bethke, R.W.; Nudds, T.D.

    1995-08-01

    Recent declines in breeding ducks in the Canadian prairie-parklands may be due to loss of habitat to agriculture. However, prairie-parkland also has experienced wetland loss to drought as well as to agriculture. For sucessful habitat restoration, it is important to separate the effects of anthropogenic changes to the landscape from those caused by changes in climate. The researchers used data from annual air-ground surveys and from precipitation records to develop relationships between indices of abundance of each of 10 species of ducks and indices of wetland conditions during 1955-1974. Average annual deficits within Canadian prairie-parkland over the period 1975-1989 were estimated at 1.2 x 10{sup 6} birds for both Mallard (Anas platyrhynchos) and Northern Pintail (A. acuta), 480 000 for Blue-winged Teal (A. discors), 190 000 for American Wigeon (A. americana), 175 000 for Northern Shoveler (A. clypeata), 50 000 for Gadwall (A. strepera), 10 000 for Green-winged Teal (A. crecca), 40 000 for Canvasback (Aythya valisineria), 25 000 for Lesser Scaup (A. affinis), and 5000 for Redhead (A. americana). The effect of agricultural expansion in the east on prime waterfowl habitat since 1951 appears to have been negligible. There, as much as 90% had been already lost prior to 1951. In the west, however, where prime waterfowl habitat was still relatively abundant in 1951, agricultural development has encroached substantially. The relationship between the lost area of the best breeding habitats and the size of population deficits for Mallards and Northern Pintails in the entire Canadian prairie-parkland region was significant for both species (P < 0.0027 and P < 0.0001, respectively). Consequently, habitat restoration programs located where the highest quality waterfowl habitat and the lowest quality agricultural lands overlap most should have the greatest potential to affect recovery of breeding duck populations in the Canadian prairie-parklands. 39 refs., 8 figs., 4 tabs.

  9. Seasonal contrasts in the response of coffee ants to agroforestry shade-tree management.

    PubMed

    Teodoro, A V; Sousa-Souto, L; Klein, A-M; Tscharntke, T

    2010-12-01

    In many tropical landscapes, agroforestry systems are the last forested ecosystems, providing shade, having higher humidity, mitigating potential droughts, and possessing more species than any other crop system. Here, we tested the hypothesis that higher levels of shade and associated humidity in agroforestry enhance coffee ant richness more during the dry than rainy season, comparing ant richness in 22 plots of three coffee agroforestry types in coastal Ecuador: simple-shade agroforests (intensively managed with low tree species diversity), complex-shade agroforests (extensively managed with intermediate tree species diversity) and abandoned coffee agroforests (abandoned for 10-15 yr and resembling secondary forests). Seasonality affected responses of ant richness but not composition to agroforestry management, in that most species were observed in abandoned coffee agroforests in the dry season. In the rainy season, however, most species were found in simple-shade agroforests, and complex agroforestry being intermediate. Foraging coffee ants species composition did not change differently according to agroforestry type and season. Results show that shade appears to be most important in the dry seasons, while a mosaic of different land-use types may provide adequate environmental conditions to ant species, maximizing landscape-wide richness throughout the year. PMID:22182538

  10. Carbon, nitrogen, organic phosphorus, microbial biomass and N mineralization in soils under cacao agroforestry systems in Bahia, Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the soil organic P cycle is important to improve the P fertilization management in low-input tropical agricultural systems. The aim of this study was to evaluate organic P (Po) content by Bowman extraction method and labile P fractions by NaHCO3 extraction in soil profiles under cacao ...

  11. Impacts of public policies and farmer preferences on agroforestry practices in Kerala, India.

    PubMed

    Guillerme, S; Kumar, B M; Menon, A; Hinnewinkel, C; Maire, E; Santhoshkumar, A V

    2011-08-01

    Agroforestry systems are fundamental features of the rural landscape of the Indian state of Kerala. Yet these mixed species systems are increasingly being replaced by monocultures. This paper explores how public policies on land tenure, agriculture, forestry and tree growing on private lands have interacted with farmer preferences in shaping land use dynamics and agroforestry practices. It argues that not only is there no specific policy for agroforestry in Kerala, but also that the existing sectoral policies of land tenure, agriculture, and forestry contributed to promoting plantation crops, even among marginal farmers. Forest policies, which impose restrictions on timber extraction from farmers' fields under the garb of protecting natural forests, have often acted as a disincentive to maintaining tree-based mixed production systems on farmlands. The paper argues that public policies interact with farmers' preferences in determining land use practices. PMID:21461959

  12. Impacts of Public Policies and Farmer Preferences on Agroforestry Practices in Kerala, India

    NASA Astrophysics Data System (ADS)

    Guillerme, S.; Kumar, B. M.; Menon, A.; Hinnewinkel, C.; Maire, E.; Santhoshkumar, A. V.

    2011-08-01

    Agroforestry systems are fundamental features of the rural landscape of the Indian state of Kerala. Yet these mixed species systems are increasingly being replaced by monocultures. This paper explores how public policies on land tenure, agriculture, forestry and tree growing on private lands have interacted with farmer preferences in shaping land use dynamics and agroforestry practices. It argues that not only is there no specific policy for agroforestry in Kerala, but also that the existing sectoral policies of land tenure, agriculture, and forestry contributed to promoting plantation crops, even among marginal farmers. Forest policies, which impose restrictions on timber extraction from farmers' fields under the garb of protecting natural forests, have often acted as a disincentive to maintaining tree-based mixed production systems on farmlands. The paper argues that public policies interact with farmers' preferences in determining land use practices.

  13. Research issues: A prospectus for agroforestry

    SciTech Connect

    Hinds, W.T.

    1989-04-01

    Considerable progress is visible in both the concepts and practice of agroforestry projects, over the past few decades. In such circumstances, what might be a useful approach to structure further research or investigations At least three characteristics come to mind that merit consideration: complexity of the phenomena, criteria for priorities, and choices constrained by resource scarcity. In the next few paragraphs, these three topics will briefly examined. Significant research issues for agroforestry remain urgent, but they tend to be generally site-specific in nature in comparison with other disciplines of field-related research. This site-specific characteristic tends to Balkanize scientific attention, so that choices for research effort reflect local perceptions, and perhaps dilute attention to the overall importance of agroforestry as an investigative disciplines. Furthermore, these issues are notorious for their ecological complexity, so this aspect will be the first to be examined. 23 refs.

  14. Incorporating agroforestry approaches into commodity value chains.

    PubMed

    Millard, Edward

    2011-08-01

    The productivity of tropical agricultural commodities is affected by the health of the ecosystem. Shade tolerant crops such as coffee and cocoa benefit from environmental services provided by forested landscapes, enabling landscape design that meets biodiversity conservation and economic needs. What can motivate farmers to apply and maintain such landscape approaches? Rather than rely on a proliferation of externally funded projects new opportunities are emerging through the international market that buys these commodities. As part of their growing commitment to sustainable supply chains, major companies are supporting agroforestry approaches and requiring producers and traders to demonstrate that the source of their commodities complies with a set of principles that conserves forested landscapes and improves local livelihoods. The paper presents examples of international companies that are moving in this direction, analyzes why and how they are doing it and discusses the impact that has been measured in coffee and cocoa communities in Latin America and Africa. It particularly considers the role of standards and certification systems as a driver of this commitment to promote profitable operations, environmental conservation and social responsibility throughout the coffee and cocoa value chains. Such approaches are already being taken to scale and are no longer operating only in small niches of the market but the paper also considers the limitations to growth in this market-based approach. PMID:21556936

  15. Incorporating Agroforestry Approaches into Commodity Value Chains

    NASA Astrophysics Data System (ADS)

    Millard, Edward

    2011-08-01

    The productivity of tropical agricultural commodities is affected by the health of the ecosystem. Shade tolerant crops such as coffee and cocoa benefit from environmental services provided by forested landscapes, enabling landscape design that meets biodiversity conservation and economic needs. What can motivate farmers to apply and maintain such landscape approaches? Rather than rely on a proliferation of externally funded projects new opportunities are emerging through the international market that buys these commodities. As part of their growing commitment to sustainable supply chains, major companies are supporting agroforestry approaches and requiring producers and traders to demonstrate that the source of their commodities complies with a set of principles that conserves forested landscapes and improves local livelihoods. The paper presents examples of international companies that are moving in this direction, analyzes why and how they are doing it and discusses the impact that has been measured in coffee and cocoa communities in Latin America and Africa. It particularly considers the role of standards and certification systems as a driver of this commitment to promote profitable operations, environmental conservation and social responsibility throughout the coffee and cocoa value chains. Such approaches are already being taken to scale and are no longer operating only in small niches of the market but the paper also considers the limitations to growth in this market-based approach.

  16. Forest management and agroforestry to sequester and conserve atmospheric carbon dioxide

    SciTech Connect

    Schriwder, P.E.; Dixon, R.K.; Winjum, J.K.

    1993-01-01

    As part of the Global Change Research Program of the United States Environmental Protection Agency (USEPA), an assessment was initiated in 1990 to evaluate forest establishment and management options to sequester carbon and reduce the accumulation of greenhouse gases in the atmosphere. Three specific objectives are to: identify site-suitable technologies and practices that could be utilized to manage forests and agroforestry systems to sequester and conserve carbon; assess available data on site-level costs of promising forest and agroforestry management practices; evaluate estimates of technically suitable land in forested nations and biomes of the world to help meet the Noordwijk forestation targets.

  17. Agroforestry planting design affects loblolly pine growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of plantation design on resource utilization has not been adequately investigated in agroforestry plantations. An experiment was conducted near Booneville, AR on a silt loam soil with a fragipan. Loblolly pine trees were planted in 1994 in an east-west row orientation in three designs: ...

  18. Assessing Local Knowledge Use in Agroforestry Management with Cognitive Maps

    NASA Astrophysics Data System (ADS)

    Isaac, Marney E.; Dawoe, Evans; Sieciechowicz, Krystyna

    2009-06-01

    Small-holder farmers often develop adaptable agroforestry management techniques to improve and diversify crop production. In the cocoa growing region of Ghana, local knowledge on such farm management holds a noteworthy role in the overall farm development. The documentation and analysis of such knowledge use in cocoa agroforests may afford an applicable framework to determine mechanisms driving farmer preference and indicators in farm management. This study employed 12 in-depth farmer interviews regarding variables in farm management as a unit of analysis and utilized cognitive mapping as a qualitative method of analysis. Our objectives were (1) to illustrate and describe agroforestry management variables and associated farm practices, (2) to determine the scope of decision making of individual farmers, and (3) to investigate the suitability of cognitive mapping as a tool for assessing local knowledge use. Results from the cognitive maps revealed an average of 16 ± 3 variables and 19 ± 3 links between management variables in the farmer cognitive maps. Farmer use of advantageous ecological processes was highly central to farm management (48% of all variables), particularly manipulation of organic matter, shade and food crop establishment, and maintenance of a tree stratum as the most common, highly linked variables. Over 85% of variables included bidirectional arrows, interpreted as farm management practices dominated by controllable factors, insofar as farmers indicated an ability to alter most farm characteristics. Local knowledge use on cocoa production revealed detailed indicators for site evaluation, thus affecting farm preparation and management. Our findings suggest that amid multisourced information under conditions of uncertainty, strategies for adaptable agroforestry management should integrate existing and localized management frameworks and that cognitive mapping provides a tool-based approach to advance such a management support system.

  19. Resolving Controlled Vocabulary in DITA Markup: A Case Example in Agroforestry

    ERIC Educational Resources Information Center

    Zschocke, Thomas

    2012-01-01

    Purpose: This paper aims to address the issue of matching controlled vocabulary on agroforestry from knowledge organization systems (KOS) and incorporating these terms in DITA markup. The paper has been selected for an extended version from MTSR'11. Design/methodology/approach: After a general description of the steps taken to harmonize controlled…

  20. Agroforestry leads to shifts within the gammaproteobacterial microbiome of banana plants cultivated in Central America

    PubMed Central

    Köberl, Martina; Dita, Miguel; Martinuz, Alfonso; Staver, Charles; Berg, Gabriele

    2015-01-01

    Bananas (Musa spp.) belong to the most important global food commodities, and their cultivation represents the world's largest monoculture. Although the plant-associated microbiome has substantial influence on plant growth and health, there is a lack of knowledge of the banana microbiome and its influencing factors. We studied the impact of (i) biogeography, and (ii) agroforestry on the banana-associated gammaproteobacterial microbiome analyzing plants grown in smallholder farms in Nicaragua and Costa Rica. Profiles of 16S rRNA genes revealed high abundances of Pseudomonadales, Enterobacteriales, Xanthomonadales, and Legionellales. An extraordinary high diversity of the gammaproteobacterial microbiota was observed within the endophytic microenvironments (endorhiza and pseudostem), which was similar in both countries. Enterobacteria were identified as dominant group of above-ground plant parts (pseudostem and leaves). Neither biogeography nor agroforestry showed a statistically significant impact on the gammaproteobacterial banana microbiome in general. However, indicator species for each microenvironment and country, as well as for plants grown in Coffea intercropping systems with and without agri-silvicultural production of different Fabaceae trees (Inga spp. in Nicaragua and Erythrina poeppigiana in Costa Rica) could be identified. For example, banana plants grown in agroforestry systems were characterized by an increase of potential plant-beneficial bacteria, like Pseudomonas and Stenotrophomonas, and on the other side by a decrease of Erwinia. Hence, this study could show that as a result of legume-based agroforestry the indigenous banana-associated gammaproteobacterial community noticeably shifted. PMID:25717322

  1. Agroforestry leads to shifts within the gammaproteobacterial microbiome of banana plants cultivated in Central America.

    PubMed

    Köberl, Martina; Dita, Miguel; Martinuz, Alfonso; Staver, Charles; Berg, Gabriele

    2015-01-01

    Bananas (Musa spp.) belong to the most important global food commodities, and their cultivation represents the world's largest monoculture. Although the plant-associated microbiome has substantial influence on plant growth and health, there is a lack of knowledge of the banana microbiome and its influencing factors. We studied the impact of (i) biogeography, and (ii) agroforestry on the banana-associated gammaproteobacterial microbiome analyzing plants grown in smallholder farms in Nicaragua and Costa Rica. Profiles of 16S rRNA genes revealed high abundances of Pseudomonadales, Enterobacteriales, Xanthomonadales, and Legionellales. An extraordinary high diversity of the gammaproteobacterial microbiota was observed within the endophytic microenvironments (endorhiza and pseudostem), which was similar in both countries. Enterobacteria were identified as dominant group of above-ground plant parts (pseudostem and leaves). Neither biogeography nor agroforestry showed a statistically significant impact on the gammaproteobacterial banana microbiome in general. However, indicator species for each microenvironment and country, as well as for plants grown in Coffea intercropping systems with and without agri-silvicultural production of different Fabaceae trees (Inga spp. in Nicaragua and Erythrina poeppigiana in Costa Rica) could be identified. For example, banana plants grown in agroforestry systems were characterized by an increase of potential plant-beneficial bacteria, like Pseudomonas and Stenotrophomonas, and on the other side by a decrease of Erwinia. Hence, this study could show that as a result of legume-based agroforestry the indigenous banana-associated gammaproteobacterial community noticeably shifted. PMID:25717322

  2. Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification.

    PubMed

    Steffan-Dewenter, Ingolf; Kessler, Michael; Barkmann, Jan; Bos, Merijn M; Buchori, Damayanti; Erasmi, Stefan; Faust, Heiko; Gerold, Gerhard; Glenk, Klaus; Gradstein, S Robbert; Guhardja, Edi; Harteveld, Marieke; Hertel, Dietrich; Höhn, Patrick; Kappas, Martin; Köhler, Stefan; Leuschner, Christoph; Maertens, Miet; Marggraf, Rainer; Migge-Kleian, Sonja; Mogea, Johanis; Pitopang, Ramadhaniel; Schaefer, Matthias; Schwarze, Stefan; Sporn, Simone G; Steingrebe, Andrea; Tjitrosoedirdjo, Sri S; Tjitrosoemito, Soekisman; Twele, André; Weber, Robert; Woltmann, Lars; Zeller, Manfred; Tscharntke, Teja

    2007-03-20

    Losses of biodiversity and ecosystem functioning due to rainforest destruction and agricultural intensification are prime concerns for science and society alike. Potentially, ecosystems show nonlinear responses to land-use intensification that would open management options with limited ecological losses but satisfying economic gains. However, multidisciplinary studies to quantify ecological losses and socioeconomic tradeoffs under different management options are rare. Here, we evaluate opposing land use strategies in cacao agroforestry in Sulawesi, Indonesia, by using data on species richness of nine plant and animal taxa, six related ecosystem functions, and on socioeconomic drivers of agroforestry expansion. Expansion of cacao cultivation by 230% in the last two decades was triggered not only by economic market mechanisms, but also by rarely considered cultural factors. Transformation from near-primary forest to agroforestry had little effect on overall species richness, but reduced plant biomass and carbon storage by approximately 75% and species richness of forest-using species by approximately 60%. In contrast, increased land use intensity in cacao agroforestry, coupled with a reduction in shade tree cover from 80% to 40%, caused only minor quantitative changes in biodiversity and maintained high levels of ecosystem functioning while doubling farmers' net income. However, unshaded systems further increased income by approximately 40%, implying that current economic incentives and cultural preferences for new intensification practices put shaded systems at risk. We conclude that low-shade agroforestry provides the best available compromise between economic forces and ecological needs. Certification schemes for shade-grown crops may provide a market-based mechanism to slow down current intensification trends. PMID:17360392

  3. Guide to monitoring carbon storage in forestry and agroforestry projects

    SciTech Connect

    MacDicken, K.G.

    1997-10-01

    As the international Joint Implementation (JI) program develops a system for trading carbon credits to offset greenhouse gas emissions, project managers need a reliable basis for measuring the carbon storage benefits of carbon offset projects. Monitoring and verifying carbon storage can be expensive, depending on the level of scientific validity needed. This guide describes a system of cost-effective methods for monitoring and verification on a commercial basis, for three types of land use; forest plantations, managed natural forests and agroforestry. Winrock International`s Forest Carbon Monitoring Program developed this system with its partners as a way to provide reliable results using accepted principles and practices of forest inventory, soil science and ecological surveys. Perhaps most important, the system brings field research methods to bear on commercial-scale inventories, at levels of precision specified by funding agencies.

  4. Engaging in School-Led Multisectoral Collaboration: Implications to Agroforestry Promotion in the Philippine Uplands

    ERIC Educational Resources Information Center

    Landicho, Leila D.; Cabahug, Rowena D.; De Luna, Catherine C.

    2009-01-01

    The Agroforestry Support Program for Empowering Communities Towards Self-Reliance (ASPECTS) was conceived to develop a model of two-stage approach in agroforestry promotion by capacitating the upland communities to establish community-managed agroforestry extension services, while strengthening the agroforestry education programs of the three…

  5. Agroforestry Practices Promote Biodiversity and Natural Resource Diversity in Atlantic Nicaragua.

    PubMed

    Sistla, Seeta A; Roddy, Adam B; Williams, Nicholas E; Kramer, Daniel B; Stevens, Kara; Allison, Steven D

    2016-01-01

    Tropical forest conversion to pasture, which drives greenhouse gas emissions, soil degradation, and biodiversity loss, remains a pressing socio-ecological challenge. This problem has spurred increased interest in the potential of small-scale agroforestry systems to couple sustainable agriculture with biodiversity conservation, particularly in rapidly developing areas of the tropics. In addition to providing natural resources (i.e. food, medicine, lumber), agroforestry systems have the potential to maintain higher levels of biodiversity and greater biomass than lower diversity crop or pasture systems. Greater plant diversity may also enhance soil quality, further supporting agricultural productivity in nutrient-limited tropical systems. Yet, the nature of these relationships remains equivocal. To better understand how different land use strategies impact ecosystem services, we characterized the relationships between plant diversity (including species richness, phylogenetic diversity, and natural resource diversity), and soil quality within pasture, agroforests, and secondary forests, three common land use types maintained by small-scale farmers in the Pearl Lagoon Basin, Nicaragua. The area is undergoing accelerated globalization following the 2007 completion of the region's first major road; a change which is expected to increase forest conversion for agriculture. However, farmer agrobiodiversity maintenance in the Basin was previously found to be positively correlated with affiliation to local agricultural NGOs through the maintenance of agroforestry systems, despite these farmers residing in the communities closest to the new road, highlighting the potential for maintaining diverse agroforestry agricultural strategies despite heightened globalization pressures. We found that agroforestry sites tended to have higher surface soil %C, %N, and pH relative to neighboring to secondary forest, while maintaining comparable plant diversity. In contrast, pasture reduced

  6. SIGNAL : Water vapour flux variability and local wind field investigations within five differently managed agroforestry sites across Germany

    NASA Astrophysics Data System (ADS)

    Markwitz, Christian; Siebicke, Lukas; Knohl, Alexander

    2016-04-01

    Optimising soil water uptake and ground water consumption in mono-specific agricultural systems plays an important role for sustainable land management. By including tree alleys into the agricultural landscape, called agroforestry (AF), the wind flow is modified leading to a presumably favourable microclimate behind the tree alleys. We expect that this zone is characterized by increased air temperature and atmospheric water vapour content, compared to mono-specific fields. This would extend the growing season and increase the yield production behind the tree alleys. Within the SIGNAL (Sustainable Intensification of Agriculture through Agroforestry) project the evapotranspiration (ET) variability and the local wind field of agroforestry sites compared to mono-specific agricultural systems is investigated. Our study is based on the comparison of five differently managed agroforestry sites across Germany. All site feature one agroforestry plot and one reference plot, which represents a mono-specific cropped system. Each plot is equipped with an eddy-covariance tower, including a high frequency 3D SONIC anemometer and instruments gathering standard meteorological parameter as pressure, temperature, relative humidity, precipitation, ground heat flux, net- and global radiation. The Surface Energy Budget (SEB) method will be used to calculate evapotranspiration QE as QE = ‑ QN ‑ QH ‑ QG ‑ Res by measuring the sensible heat flux, QH, with the eddy covariance method, the radiation balance, QN and the ground heat flux, QG. QH and QN will be measured continuously long-term. We will quantify site specific energy balance non-closure, Res, by temporarily measuring QE, using eddy covariance and a roving tower and then solving the SEB equation for Res. The short term Res will be used to then continuously derive QE from the SEB method. We will compare measured evapotranspiration rates from the SEB method to modelled evapotranspiration of the agroforestry systems through

  7. Agroforestry practices, runoff, and nutrient loss: a paired watershed comparison.

    PubMed

    Udawatta, Ranjith P; Krstansky, J John; Henderson, Gray S; Garrett, Harold E

    2002-01-01

    A paired watershed study consisting of agroforestry (trees plus grass buffer strips), contour strips (grass buffer strips), and control treatments with a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation was used to examine treatment effects on runoff, sediment, and nutrient losses. During the (1991-1997) calibration and subsequent three-year treatment periods, runoff was measured in 0.91- and 1.37-m H-flumes with bubbler flow meters. Composite samples were analyzed for sediment, total phosphorus (TP), total nitrogen (TN), nitrate, and ammonium. Calibration equations developed to predict runoff, sediment, and nutrients losses explained 66 to 97% of the variability between treatment watersheds. The contour strip and agroforestry treatments reduced runoff by 10 and 1% during the treatment period. In both treatments, most runoff reductions occurred in the second and third years after treatment establishment. The contour strip treatment reduced erosion by 19% in 1999, while erosion in the agroforestry treatment exceeded the predicted loss. Treatments reduced TP loss by 8 and 17% on contour strip and agroforestry watersheds. Treatments did not result in reductions in TN during the first two years of the treatment period. The contour strip and agroforestry treatments reduced TN loss by 21 and 20%, respectively, during a large precipitation event in the third year. During the third year of treatments, nitrate N loss was reduced 24 and 37% by contour strip and agroforestry treatments. Contour strip and agroforestry management practices effectively reduced nonpoint-source pollution in runoff from a corn-soybean rotation in the clay pan soils of northeastern Missouri. PMID:12175039

  8. Agro-ecosystem and socio-economic role of homegarden agroforestry in Jabithenan District, North-Western Ethiopia: implication for climate change adaptation.

    PubMed

    Linger, Ewuketu

    2014-01-01

    Homegarden agroforestry is believed to be more diverse and provide multiple services for household than other monocropping system and this is due to the combination of crops, trees and livestock. The aim of this study was to assess socio-economic and agro-ecological role of homegardens in Jabithenan district, North-western Ethiopia. Two sites purposively and two villages randomly from each site were selected. Totally 96 households; in which 48 from homegarden agroforestry user and 48 from non-tree based garden user were selected for this study. Socio-economic data and potential economic and agro-ecosystem role of homegarden agroforestry over non-tree based garden were collected by using semi-structured and structured questionnaires to the households. Homegarden agroforestry significantly (P < 0.05) improved the farmers cash income than non-tree based garden. With insignificant garden size; homegarden agroforestry practice provides good socio-economical and agro-ecological service for farmers which have a higher implication for climate change adaptation than non-tree based garden. PMID:24790810

  9. A Mixed-Method Approach to Evaluating Learning Communities for Underprepared Community College Students: The Integrated Studies Communities at Parkland College.

    ERIC Educational Resources Information Center

    Moore, Linda Hamman

    This study evaluated two developmental learning communities, named the Integrated Studies Communities ISC, at Parkland College in Illinois. The primary purpose of the study was to compare the students in the ISC with similar underprepared students in the regular curriculum. The ISC offers four linked courses, and participating students take them…

  10. Assessing the potential of multi-seasonal WorldView-2 imagery for mapping West African agroforestry tree species

    NASA Astrophysics Data System (ADS)

    Karlson, Martin; Ostwald, Madelene; Reese, Heather; Bazié, Hugues Roméo; Tankoano, Boalidioa

    2016-08-01

    High resolution satellite systems enable efficient and detailed mapping of tree cover, with high potential to support both natural resource monitoring and ecological research. This study investigates the capability of multi-seasonal WorldView-2 imagery to map five dominant tree species at the individual tree crown level in a parkland landscape in central Burkina Faso. The Random Forest algorithm is used for object based tree species classification and for assessing the relative importance of WorldView-2 predictors. The classification accuracies from using wet season, dry season and multi-seasonal datasets are compared to gain insights about the optimal timing for image acquisition. The multi-seasonal dataset produced the most accurate classifications, with an overall accuracy (OA) of 83.4%. For classifications based on single date imagery, the dry season (OA = 78.4%) proved to be more suitable than the wet season (OA = 68.1%). The predictors that contributed most to the classification success were based on the red edge band and visible wavelengths, in particular green and yellow. It was therefore concluded that WorldView-2, with its unique band configuration, represents a suitable data source for tree species mapping in West African parklands. These results are particularly promising when considering the recently launched WorldView-3, which provides data both at higher spatial and spectral resolution, including shortwave infrared bands.

  11. Energy farming in Brazil: the role of agroforestry on the production of food and energy from biomass in southeast Bahia

    SciTech Connect

    Alvim, R.

    1983-01-01

    This paper analyzes the problem of fuel production from plants, on the basis of information drawn from the literature and from case studies conducted in Brazil. Special reference is made to the production of charcoal and the production of alcohol and vegetable oils to replace gasoline and diesel fuel. The potential and socioeconomic implications of energy farming are discussed. Diversified plant communities are more stable than monocropping systems in terms of prevention of soil degradation by erosion and leaching, and consequently agroforestry is the safest and the most attractive system for the combined production of food and energy from plants in the humid tropics. Agroforestry is especially interesting in the establishment of perennial energy crops, because it provides earlier cash returns.

  12. Economic principles to appraise agro-forestry projects

    SciTech Connect

    Harou, P.A.

    1983-01-01

    Basic economic principles and the classical project evaluation technique can be satisfactorily used to solve investment decisions for agroforestry projects. Recommendations made for this type of appraisal are to: concentrate on the small farm participants; study the forestry component and risk diversification; detail the externalities; and consider the cultural environment. 15 references.

  13. Variation in Soil Enzyme Activities in a Temperate Agroforestry Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integration of agroforestry and grass buffers into row crop watersheds improves overall environmental quality, including soil quality. The objective of this study was to examine management and landscape effects on soil carbon, soil nitrogen, microbial diversity, enzyme activity, and DNA concentrati...

  14. Simulation of regional temperature change effect of land cover change in agroforestry ecotone of Nenjiang River Basin in China

    NASA Astrophysics Data System (ADS)

    Liu, Tingxiang; Zhang, Shuwen; Yu, Lingxue; Bu, Kun; Yang, Jiuchun; Chang, Liping

    2016-02-01

    The Northeast China is one of typical regions experiencing intensive human activities within short time worldwide. Particularly, as the significant changes of agriculture land and forest, typical characteristics of pattern and process of agroforestry ecotone change formed in recent decades. The intensive land use change of agroforestry ecotone has made significant change for regional land cover, which had significant impact on the regional climate system elements and the interactions among them. This paper took agroforestry ecotone of Nenjiang River Basin in China as study region and simulated temperature change based on land cover change from 1950s to 1978 and from 1978 to 2010. The analysis of temperature difference sensitivity to land cover change based on Weather Research and Forecasting (WRF) model showed that the land cover change from 1950s to 1978 induced warming effect over all the study area, including the change of grassland to agriculture land, grassland to deciduous broad-leaved forest, and deciduous broad-leaved forest to shrub land. The land cover change from 1978 to 2010 induced cooling effect over all the study area, including the change of deciduous broad-leaved forest to agriculture land, grassland to agriculture land, shrub land to agriculture land, and deciduous broad-leaved forest to grassland. In addition, the warming and cooling effect of land cover change was more significant in the region scale than specific land cover change area.

  15. Disentangling herbivore impacts on Populus tremuloides: a comparison of native ungulates and cattle in Canada's Aspen Parkland.

    PubMed

    Bork, Edward W; Carlyle, Cameron N; Cahill, James F; Haddow, Rae E; Hudson, Robert J

    2013-11-01

    Ungulates impact woody species' growth and abundance but little is understood about the comparative impacts of different ungulate species on forest expansion in savanna environments. Replacement of native herbivore guilds with livestock [i.e., beef cattle (Bos taurus)] has been hypothesized as a factor facilitating trembling aspen (Populus tremuloides Michx.) encroachment into grasslands of the Northern Great Plains. We used a controlled herbivory study in the Parklands of western Canada to compare the impact of native ungulates and cattle on aspen saplings. Native ungulate treatments included a mixed species guild and sequences of herbivory by different ungulates [bison (Bison bison subsp. bison), elk (Cervus elaphus) then deer (Odocoileus hemionus); or deer, elk, then bison]. Herbivory treatments were replicated in three pastures, within which sets of 40 marked aspen saplings (<1.8 m) were tracked along permanent transects at 2-week intervals, and compared to a non-grazed aspen stand. Stems were assessed for mortality and incremental damage (herbivory, leader breakage, stem abrasion and trampling). Final mortality was greater with exposure to any type of herbivore, but remained similar between ungulate treatments. However, among all treatments, the growth of aspen was highest with exposure only to cattle. Herbivory of aspen was attributed primarily to elk within the native ungulate treatments, with other forms of physical damage, and ultimately sapling mortality, associated with exposure to bison. Overall, these results indicate that native ungulates, specifically elk and bison, have more negative impacts on aspen saplings and provide evidence that native and domestic ungulates can have different functional effects on woody plant dynamics in savanna ecosystems. PMID:23649757

  16. Tree Roots in Agroforestry: Evaluating Biomass and Distribution with Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Borden, Kira Alia

    The root systems of five tree species (Populus deltoides x nigra clone DN-177, Juglans nigra, Quercus rubra, Picea abies, and Thuja occidentalis) are described following non-intrusive imaging using ground penetrating radar (GPR). This research aimed to 1) assess the utility of GPR for in situ root studies and 2) employ GPR to estimate tree root biomass and distribution in an agroforestry system in southern Ontario, Canada. The mean coarse root biomass estimated from GPR analysis was 54.1 +/- 8.7 kg tree-1 (+/- S.E.; n=12), within 1 % of the mean coarse root biomass measured from matched excavations. The vertical distribution of detected roots varied among species, with T. occidentalis and P. abies roots concentrated in the top 20 cm and J. nigra and Q. rubra roots distinctly deeper. I evaluate these root systems based on their C storage potential and complementary root stratification with adjacent crops.

  17. DEM modelling, vegetation characterization and mapping of aspen parkland rangeland using LIDAR data

    NASA Astrophysics Data System (ADS)

    Su, Guangquan

    Detailed geographic information system (GIS) studies on plant ecology, animal behavior and soil hydrologic characteristics across spatially complex landscapes require an accurate digital elevation model (DEM). Following interpolation of last return LIDAR data and creation of a LIDAR-derived DEM, a series of 260 points, stratified by vegetation type, slope gradient and off-nadir distance, were ground-truthed using a total laser station, GPS, and 27 interconnected benchmarks. Despite an overall mean accuracy of +2 cm across 8 vegetation types, it created a RMSE (square root of the mean square error) of 1.21 m. DEM elevations were over-estimated within forested areas by an average of 20 cm with a RMSE of 1.05 m, under-estimated (-12 cm, RMSE = 1.36 m) within grasslands. Vegetation type had the greatest influence on DEM accuracy, while off-nadir distance (P = 0.48) and slope gradient (P = 0.49) did not influence DEM accuracy; however, the latter factors did interact (P < 0.10) to effect accuracy. Vegetation spatial structure (i.e., physiognomy) including plant height, cover, and vertical or horizontal heterogeneity, are important factors influencing biodiversity. Vegetation over and understory were sampled for height, canopy cover, and tree or shrub density within 120 field plots, evenly stratified by vegetation formation (grassland, shrubland, and aspen forest). Results indicated that LIDAR data could be used for estimating the maximum height, cover, and density, of both closed and semi-open stands of aspen (P < 0.001). However, LIDAR data could not be used to assess understory (<1.5 m) height within aspen stands, nor grass height and cover. Recognition and mapping of vegetation types are important for rangelands as they provide a basis for the development and evaluation of management policies and actions. In this study, LIDAR data were found to be superior to digital classification schedules for their mapping accuracy in aspen forest and grassland, but not shrubland

  18. A Paired watershed Evaluation of Agroforestry effects on Water Quality on a Corn/Soybean Rotation

    NASA Astrophysics Data System (ADS)

    Udawatta, Ranjith; Jose, Shibu; Garrett, Harold

    2015-04-01

    Rigorous long-term scientific studies confirming environmental benefits from the use of agroforestry practices are limited and thus limit the adoption of agroforestry practices throughout the world. The objective of the study was to examine non point source pollution (NPSP) reduction by agroforestry buffers in row-crop watersheds. The study consists of three watersheds in a paired watershed design in Knox County, Missouri, USA. Watersheds were established in 1991 and treatments of agroforestry (trees+grass) and grass buffers were established on two watersheds in 1997 after a 7-year calibration period. Runoff water samples were analyzed for sediment, total nitrogen (TN) and total phosphorus (TP) for the 2009 to 2010 period. Results indicated that agroforestry and grass buffers on row crop watersheds significantly reduce runoff, sediment, TN, and TP losses to streams. Buffers in association with row crop management reduced runoff by 26% during the study period as compared to the control treatments. Average sediment loss for row crop management and buffer watersheds was 14.8 and 9.7 kg ha-1 yr-1 respectively. On average, grass and agroforestry buffers reduced sediment, TN, and TP losses by 32, 42, and 46% compared to the control treatments. These differences could in part be attributed to the differences in management, soils, and landscape features. Results from this study strongly indicate that agroforestry and grass buffers can be implemented to reduce NPSP to water bodies while improving land value and environmental quality.

  19. Reducing pollution in agriculture land, agroforestry and Common Agrarian Policy

    NASA Astrophysics Data System (ADS)

    Rosa Mosquera Losada, Maria; Santiago-Freijanes, José Javier; Ferreiro-Domínguez, Nuria; Rois, Mercedes; Rigueiro-Rodríguez, Antonio

    2015-04-01

    Reducing non-point source pollution in Europe is a key activity for the European institutions and citizens. Ensuring high quality food supply while environment is sustainable managed is a highly relevant in the European agriculture. New CAP tries to promote sustainability with the greening measures in Pillar I (EU payments) and Pillar II (EU-Country cofinanced payments). The star component of the Pillar I is the greening. The greening includes three types of activities related to crop rotation, maintenance of permanent pasture and the promotion of Ecological Focus Areas (EFA). Greening practices are compulsory in arable lands when they are placed in regions with low proportion of forests and when the owner has large farms. Among the EFA, there are several options that include agroforestry practices like landscape features, buffer strips, agroforestry, strips of eligible hectares along forest edges, areas with short rotation coppice. These practices promote biodiversity and the inclusion of woody vegetation that is able to increase the uptake of the excess of nutrients like N or P. USA Agriculture Department has also recognize the importance of woody vegetation around the arable lands to reduce nutrient pollution and promote biodiversity.

  20. Pattern and potential causes of White-faced Ibis, Plegadis chihi, establishment in the northern prairie and parkland region of North America

    USGS Publications Warehouse

    Shaffer, J.A.; Knutsen, G.A.; Martin, R.E.; Brice, J.S.

    2008-01-01

    The Northern Prairie and Parkland Waterbird Conservation Plan calls for renewed attention to determining the current status of waterbird populations, their distributions, and conservation needs. It highlights the need for baseline information on the White-faced Ibis (Plegadis chihi). In response, we examined the historical and current distribution of the ibis in North Dakota and summarized first sightings and nest records for the provinces and other states composing the northern prairie and parkland region. The establishment of breeding colonies of White-faced Ibis here may be due to climate and precipitation patterns, invasion and spread of Narrowleaf Cattail (Typha angustifolia), changes in agricultural practices, habitat loss and range expansion in the southern and western portions of the species' range, and increases in ibis populations in the Intermountain West. We placed special emphasis on North Dakota, a state for which there is scant published information concerning the current status of this species. In recent decades, the ibis has become a regular breeding-season resident in North Dakota and in other areas of the northern prairie and parkland region. From 1882 to 2002, there were 145 reports of one or more White-faced Ibis in North Dakota, including 93 reports during the breeding season (15 May to 31 August), 49 during the non-breeding season (1 September to 14 May), and three for which the season of occurrence was not reported. Prior to the 1960s, there were only three records of the species in North Dakota. Observations of White-faced Ibises in North Dakota increased dramatically between the 1960s and the early 21st century, and the species has been observed nearly annually since 1971. The first White-faced Ibis nesting activity in the state was recorded in 1978, and to date, there have been 21 known records of nesting activity in the state. The species nested in large (>300 ha) semipermanent or permanent wetlands within mixed-species colonies ranging

  1. Bats and birds increase crop yield in tropical agroforestry landscapes.

    PubMed

    Maas, Bea; Clough, Yann; Tscharntke, Teja

    2013-12-01

    Human welfare is significantly linked to ecosystem services such as the suppression of pest insects by birds and bats. However, effects of biocontrol services on tropical cash crop yield are still largely unknown. For the first time, we manipulated the access of birds and bats in an exclosure experiment (day, night and full exclosures compared to open controls in Indonesian cacao agroforestry) and quantified the arthropod communities, the fruit development and the final yield over a long time period (15 months). We found that bat and bird exclusion increased insect herbivore abundance, despite the concurrent release of mesopredators such as ants and spiders, and negatively affected fruit development, with final crop yield decreasing by 31% across local (shade cover) and landscape (distance to primary forest) gradients. Our results highlight the tremendous economic impact of common insectivorous birds and bats, which need to become an essential part of sustainable landscape management. PMID:24131776

  2. Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy.

    PubMed

    Borland, Anne M; Wullschleger, Stan D; Weston, David J; Hartwell, James; Tuskan, Gerald A; Yang, Xiaohan; Cushman, John C

    2015-09-01

    Global climate change threatens the sustainability of agriculture and agroforestry worldwide through increased heat, drought, surface evaporation and associated soil drying. Exposure of crops and forests to warmer and drier environments will increase leaf:air water vapour-pressure deficits (VPD), and will result in increased drought susceptibility and reduced productivity, not only in arid regions but also in tropical regions with seasonal dry periods. Fast-growing, short-rotation forestry (SRF) bioenergy crops such as poplar (Populus spp.) and willow (Salix spp.) are particularly susceptible to hydraulic failure following drought stress due to their isohydric nature and relatively high stomatal conductance. One approach to sustaining plant productivity is to improve water-use efficiency (WUE) by engineering crassulacean acid metabolism (CAM) into C3 crops. CAM improves WUE by shifting stomatal opening and primary CO2 uptake and fixation to the night-time when leaf:air VPD is low. CAM members of the tree genus Clusia exemplify the compatibility of CAM performance within tree species and highlight CAM as a mechanism to conserve water and maintain carbon uptake during drought conditions. The introduction of bioengineered CAM into SRF bioenergy trees is a potentially viable path to sustaining agroforestry production systems in the face of a globally changing climate. PMID:25366937

  3. Hydrologic Activity of Deciduous Agroforestry Tree : Observed through Monitoring of Stable Isotopes in Stem Water, Solar Radiation Attenuation, and Sapflow

    NASA Astrophysics Data System (ADS)

    Ceperley, N. C.; Mande, T.; Parlange, M. B.

    2012-12-01

    The net benefit of agroforestry trees for small scale farmers in dryland agricultural systems is debatable because while they provide significant direct and indirect services, they also consume considerable amounts of scare water resources. In this study we monitor the stable isotopes of water to improve a water budget of a Sclerocarya birrea tree in a millet field in South Eastern Burkina Faso. Data obtained from air temperature and humidity, surface temperature, solar radiation, and soil moisture sensors attached to a wireless sensor network uniquely configured around the agroforestry tree provided the initial calculation of the local water balance. Isotopic ratios were determined from water extracted from stems and sub canopy soil, and from nearby ground water, precipitation, and surface water that was sampled weekly. A linear mixing model is used to predict when the tree switched between water sources. The results from the linear mixing model coupled with a tree water balance demonstrate the extreme seasonality of the annual cycle of water use by this deciduous species.

  4. Knowledge and valuation of Andean agroforestry species: the role of sex, age, and migration among members of a rural community in Bolivia

    PubMed Central

    2013-01-01

    Background Agroforestry is a sustainable land use method with a long tradition in the Bolivian Andes. A better understanding of people’s knowledge and valuation of woody species can help to adjust actor-oriented agroforestry systems. In this case study, carried out in a peasant community of the Bolivian Andes, we aimed at calculating the cultural importance of selected agroforestry species, and at analysing the intracultural variation in the cultural importance and knowledge of plants according to peasants’ sex, age, and migration. Methods Data collection was based on semi-structured interviews and freelisting exercises. Two ethnobotanical indices (Composite Salience, Cultural Importance) were used for calculating the cultural importance of plants. Intracultural variation in the cultural importance and knowledge of plants was detected by using linear and generalised linear (mixed) models. Results and discussion The culturally most important woody species were mainly trees and exotic species (e.g. Schinus molle, Prosopis laevigata, Eucalyptus globulus). We found that knowledge and valuation of plants increased with age but that they were lower for migrants; sex, by contrast, played a minor role. The age effects possibly result from decreasing ecological apparency of valuable native species, and their substitution by exotic marketable trees, loss of traditional plant uses or the use of other materials (e.g. plastic) instead of wood. Decreasing dedication to traditional farming may have led to successive abandonment of traditional tool uses, and the overall transformation of woody plant use is possibly related to diminishing medicinal knowledge. Conclusions Age and migration affect how people value woody species and what they know about their uses. For this reason, we recommend paying particular attention to the potential of native species, which could open promising perspectives especially for the young migrating peasant generation and draw their interest in

  5. Farmers, the Practice of Farming and the Future of Agroforestry: An Application of Bourdieu's Concepts of Field and Habitus

    ERIC Educational Resources Information Center

    Raedeke, Andrew H.; Green, John J.; Hodge, Sandra S.; Valdivia, Corinne

    2003-01-01

    Agroforestry, the practice of raising crops and trees together in ways that are mutually beneficial, provides farmers with an alternative to more conventional farming practices. In this paper, we apply Bourdieu's concepts of "field" and "habitus" in an attempt to better understand the practice of farming and the role that agroforestry may have in…

  6. Modelling the hydrological behaviour of a coffee agroforestry basin in Costa Rica

    NASA Astrophysics Data System (ADS)

    Gómez-Delgado, F.; Roupsard, O.; Moussa, R.; Le Maire, G.; Taugourdeau, S.; Bonnefond, J. M.; Pérez, A.; van Oijen, M.; Vaast, P.; Rapidel, B.; Voltz, M.; Imbach, P.; Harmand, J. M.

    2010-05-01

    streamflow was constituted by 63% of baseflow originating from the aquifer, 29% of subsurface non-saturated runoff and 8% of surface runoff. Given the low surface runoff observed under the current physical conditions (andisol) and management practices (no tillage, planted trees, bare soil kept by weeding), this agroforestry system on a volcanic soil demonstrated potential to provide valuable HES, such as a reduced superficial displacement-capacity for fertilizers, pesticides and sediments, as well as a streamflow regulation function provided by the highly efficient mechanisms of aquifer recharge and discharge. The proposed combination of experimentation and modelling across ecophysiological and hydrological approaches proved to be useful to account for the behaviour of a given basin, so that it can be applied to compare HES provision for different regions or management alternatives.

  7. Enhanced selective metal adsorption on optimised agroforestry waste mixtures.

    PubMed

    Rosales, Emilio; Ferreira, Laura; Sanromán, M Ángeles; Tavares, Teresa; Pazos, Marta

    2015-04-01

    The aim of this work is to ascertain the potentials of different agroforestry wastes to be used as biosorbents in the removal of a mixture of heavy metals. Fern (FE), rice husk (RI) and oak leaves (OA) presented the best removal percentages for Cu(II) and Ni(II), Mn(II) and Zn(II) and Cr(VI), respectively. The performance of a mixture of these three biosorbents was evaluated, and an improvement of 10% in the overall removal was obtained (19.25mg/g). The optimum mixture proportions were determined using simplex-centroid mixture design method (FE:OA:RI=50:13.7:36.3). The adsorption kinetics and isotherms of the optimised mixture were fit by the pseudo-first order kinetic model and Langmuir isotherm. The adsorption mechanism was studied, and the effects of the carboxylic, hydroxyl and phenolic groups on metal-biomass binding were demonstrated. Finally, the recoveries of the metals using biomass were investigated, and cationic metal recoveries of 100% were achieved when acidic solutions were used. PMID:25681794

  8. Modelling agro-forestry scenarios for ammonia abatement in the landscape

    NASA Astrophysics Data System (ADS)

    Bealey, W. J.; Loubet, B.; Braban, C. F.; Famulari, D.; Theobald, M. R.; Reis, S.; Reay, D. S.; Sutton, M. A.

    2014-12-01

    Ammonia emissions from livestock production can have negative impacts on nearby protected sites and ecosystems that are sensitive to eutrophication and acidification. Trees are effective scavengers of both gaseous and particulate pollutants from the atmosphere making tree belts potentially effective landscape features to support strategies aiming to reduce ammonia impacts. This research used the MODDAS-THETIS a coupled turbulence and deposition turbulence model, to examine the relationships between tree canopy structure and ammonia capture for three source types—animal housing, slurry lagoon, and livestock under a tree canopy. By altering the canopy length, leaf area index, leaf area density, and height of the canopy in the model the capture efficiencies varied substantially. A maximum of 27% of the emitted ammonia was captured by tree canopy for the animal housing source, for the slurry lagoon the maximum was 19%, while the livestock under trees attained a maximum of 60% recapture. Using agro-forestry systems of differing tree structures near ‘hot spots’ of ammonia in the landscape could provide an effective abatement option for the livestock industry that complements existing source reduction measures.

  9. Patterns in hydraulic architecture from roots to branches in six tropical tree species from cacao agroforestry and their relation to wood density and stem growth

    PubMed Central

    Kotowska, Martyna M.; Hertel, Dietrich; Rajab, Yasmin Abou; Barus, Henry; Schuldt, Bernhard

    2015-01-01

    For decades it has been assumed that the largest vessels are generally found in roots and that vessel size and corresponding sapwood area-specific hydraulic conductivity are acropetally decreasing toward the distal twigs. However, recent studies from the perhumid tropics revealed a hump-shaped vessel size distribution. Worldwide tropical perhumid forests are extensively replaced by agroforestry systems often using introduced species of various biogeographical and climatic origins. Nonetheless, it is unknown so far what kind of hydraulic architectural patterns are developed in those agroforestry tree species and which impact this exerts regarding important tree functional traits, such as stem growth, hydraulic efficiency and wood density (WD). We investigated wood anatomical and hydraulic properties of the root, stem and branch wood in Theobroma cacao and five common shade tree species in agroforestry systems on Sulawesi (Indonesia); three of these were strictly perhumid tree species, and the other three tree species are tolerating seasonal drought. The overall goal of our study was to relate these properties to stem growth and other tree functional traits such as foliar nitrogen content and sapwood to leaf area ratio. Our results confirmed a hump-shaped vessel size distribution in nearly all species. Drought-adapted species showed divergent patterns of hydraulic conductivity, vessel density, and relative vessel lumen area between root, stem and branch wood compared to wet forest species. Confirming findings from natural old-growth forests in the same region, WD showed no relationship to specific conductivity. Overall, aboveground growth performance was better predicted by specific hydraulic conductivity than by foliar traits and WD. Our study results suggest that future research on conceptual trade-offs of tree hydraulic architecture should consider biogeographical patterns underlining the importance of anatomical adaptation mechanisms to environment. PMID:25873922

  10. Patterns in hydraulic architecture from roots to branches in six tropical tree species from cacao agroforestry and their relation to wood density and stem growth.

    PubMed

    Kotowska, Martyna M; Hertel, Dietrich; Rajab, Yasmin Abou; Barus, Henry; Schuldt, Bernhard

    2015-01-01

    For decades it has been assumed that the largest vessels are generally found in roots and that vessel size and corresponding sapwood area-specific hydraulic conductivity are acropetally decreasing toward the distal twigs. However, recent studies from the perhumid tropics revealed a hump-shaped vessel size distribution. Worldwide tropical perhumid forests are extensively replaced by agroforestry systems often using introduced species of various biogeographical and climatic origins. Nonetheless, it is unknown so far what kind of hydraulic architectural patterns are developed in those agroforestry tree species and which impact this exerts regarding important tree functional traits, such as stem growth, hydraulic efficiency and wood density (WD). We investigated wood anatomical and hydraulic properties of the root, stem and branch wood in Theobroma cacao and five common shade tree species in agroforestry systems on Sulawesi (Indonesia); three of these were strictly perhumid tree species, and the other three tree species are tolerating seasonal drought. The overall goal of our study was to relate these properties to stem growth and other tree functional traits such as foliar nitrogen content and sapwood to leaf area ratio. Our results confirmed a hump-shaped vessel size distribution in nearly all species. Drought-adapted species showed divergent patterns of hydraulic conductivity, vessel density, and relative vessel lumen area between root, stem and branch wood compared to wet forest species. Confirming findings from natural old-growth forests in the same region, WD showed no relationship to specific conductivity. Overall, aboveground growth performance was better predicted by specific hydraulic conductivity than by foliar traits and WD. Our study results suggest that future research on conceptual trade-offs of tree hydraulic architecture should consider biogeographical patterns underlining the importance of anatomical adaptation mechanisms to environment. PMID:25873922

  11. Barriers and Coping Mechanisms Relating to Agroforestry Adoption by Smallholder Farmers in Zimbabwe

    ERIC Educational Resources Information Center

    Chitakira, Munyaradzi; Torquebiau, Emmanuel

    2010-01-01

    Purpose: The purpose of the present study was to investigate agroforestry adoption by smallholder farmers in Gutu District, Zimbabwe. Design/Methodology/Approach: The methodology was based on field data collected through household questionnaires, key informant interviews and direct observations. Findings: Major findings reveal that traditional…

  12. VARIATIONS IN SOIL AGGREGATE STABILITY AND ENZYME ACTIVITIES IN A TEMPERATE AGROFORESTRY PRACTICE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agroforestry and grass buffers have been shown to improve soil properties and overall environmental quality. The objective of this study was to examine management and landscape effects on water stable soil aggregates (WSA), soil carbon, soil nitrogen, enzyme activity, and microbial community DNA co...

  13. Impact of agroforestry plantings for bioenergy production on soil organic carbon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tree windbreaks are an attractive multiple-benefit land use through their ability to mitigate climate change by modifying the local microclimate to improve crop growth and by sequestering carbon in the soil and tree biomass. Recently, such agroforestry practices are also being considered for their b...

  14. Field Note: Standard Web Application for Information Exchange on Agroforestry in India

    ERIC Educational Resources Information Center

    Ajit; Nighat Jabeen; Handa, A. K.; Uma

    2008-01-01

    Agroforestry (AF)/forestry is no longer an isolated field, with so many developmental activities having links with this sector, and thus the information required to be handled by the researchers all over the world has increased exponentially. This article discusses a website that was developed by the National Research Centre for Agroforestry…

  15. Seasonal isotope hydrology of a coffee agroforestry watershed in Costa Rica

    NASA Astrophysics Data System (ADS)

    Welsh Unwala, K.; Boll, J.; Roupsard, O.

    2014-12-01

    Improved information of seasonal variations in watershed hydrology in the tropics can strengthen models and understanding of hydrology of these areas. Seasonality in the tropics produces rainy seasons versus dry seasons, leading to different hydrologic and water quality processes throughout the year. We questioned whether stable isotopes in water can be used to trace the seasonality in this region, despite experiencing a "drier" season, such as in a Tropical Humid location. This study examines the fluctuations of stable isotope compositions (δ18O and δD) in water balance components in a small (<1 km2) coffee agroforestry watershed located in central Costa Rica on the Caribbean side. Samples were collected in precipitation, groundwater, and stream water for more than two years, across seasons and at an hourly frequency during storm events to better characterize spatial and temporal variations of the isotopic composition and of the respective contribution of surface and deeper groundwater to streamflow in the watershed. Isotope composition in precipitation ranged from -18.5 to -0.3‰ (∂18O) and -136.4 to 13.7‰ (∂D), and data indicate that atmospheric moisture cycling plays an important role in this region. A distinct seasonality was observed in monthly-averaged data between enriched dry season events as compared with the rainy season events. Streamflow data indicate that a deep groundwater system contributes significantly to baseflow, although a shallow, spring-driven system also contributes to stream water within the watershed. During storm events, precipitation contributes to stormflow in the short-term, confirming the role of superficial runoff. These results indicate that isotopes are helpful to partition the water balance even in a Tropical Humid situation where the rainfall seasonality is weak.

  16. Changes in soil nitrogen storage and δ15N with woody plant encroachment in a subtropical savanna parkland landscape

    NASA Astrophysics Data System (ADS)

    Boutton, T. W.; Liao, J. D.

    2010-09-01

    Subtropical woodlands dominated by N-fixing tree legumes have largely replaced grasslands in the Rio Grande Plains, southwestern United States, during the past century. To evaluate the impact of this vegetation change on the N cycle, we measured the mass and isotopic composition (δ15N) of N in the soil system of remnant grasslands and woody plant stands ranging in age from 10 to 130 years. Nitrogen accumulated at linear rates following woody encroachment in the litter (0.10-0.14 g N m-2 yr-1), roots (0.63-0.98 g N m-2 yr-1), and soils (0.75-3.50 g N m-2 yr-1), resulting in a 50%-150% increase in N storage in the soil system (0-30 cm) in woody stands older than 60 years. Simultaneous decreases in soil δ15N of up to 2‰ in the upper 30 cm of the profile are consistent with a scenario in which N inputs have exceeded losses following woody encroachment and suggest N accrual was derived from symbiotic N fixation by tree legumes and/or differential atmospheric N deposition to wooded areas. Vertical uplift and lateral transfer of N by the more deeply and intensively rooted woody plants may have contributed to N accumulation in wooded areas, but soil δ15N values are inconsistent with this explanation. N accumulation following woody encroachment may alter soil N availability, species interactions and successional dynamics, flux rates of key trace gases such as NOX and N2O and ecosystem C sequestration. Given the geographic dimensions of woody encroachment, these results may have implications for atmospheric composition and the climate system.

  17. Modelling the hydrological behaviour of a coffee agroforestry basin in Costa Rica

    NASA Astrophysics Data System (ADS)

    Gómez-Delgado, F.; Roupsard, O.; Le Maire, G.; Taugourdeau, S.; Pérez, A.; van Oijen, M.; Vaast, P.; Rapidel, B.; Harmand, J. M.; Voltz, M.; Bonnefond, J. M.; Imbach, P.; Moussa, R.

    2011-01-01

    percolation, measurement errors and/or inter-annual changes in soil and aquifer water stocks. The model indicated an interception loss equal to 4% of R, a surface runoff of 4% and an infiltration component of 92%. The modelled streamflow was constituted by 87% of baseflow originating from the aquifer, 7% of subsurface non-saturated runoff and 6% of surface runoff. Given the low surface runoff observed under the current physical conditions (andisol) and management practices (no tillage, planted trees, bare soil kept by weeding), this agroforestry system on a volcanic soil demonstrated potential to provide valuable HES, such as a reduced superficial displacement-capacity for fertilizers, pesticides and sediments, as well as a streamflow regulation function provided by the highly efficient mechanisms of aquifer recharge and discharge. The proposed combination of experimentation and modelling across ecophysiological and hydrological approaches proved to be useful to account for the behaviour of a given basin, so that it can be applied to compare HES provision for different regions or management alternatives.

  18. Fuelwood production in traditional farming systems

    SciTech Connect

    Salem, B.B.; Van Nao, T.

    1981-01-01

    Local systems (windbreaks, shade trees, bush fallow, agroforestry, amenity, etc.), uses (fuelwood, timber, light farm wood, and other uses), method of propagation, and site requirements are tabulated for 14 species groups.

  19. GHG Mitigation potential and cost in tropical forestry - Relative role for agroforestry

    SciTech Connect

    Makundi, Willy R.; Sathaye, Jayant A.

    2004-01-01

    This paper summarizes studies of carbon mitigation potential (MP) and costs of forestry options in seven developing countries with a focus on the role of agroforestry. A common methodological approach known as comprehensive mitigation assessment process (COMAP) was used in each study to estimate the potential and costs between 2000 and 2030. The approach requires the projection of baseline and mitigation land-use scenarios derived from the demand for forest products and forestland for other uses such as agriculture and pasture. By using data on estimated carbon sequestration, emission avoidance, costs and benefits, the model enables one to estimate cost effectiveness indicators based on monetary benefit per t C, as well as estimates of total mitigation costs and potential when the activities are implemented at equilibrium level. The results show that about half the MP of 6.9 Gt C (an average of 223 Mt C per year) between 2000 and 2030 in the seven countries could be achieved at a negative cost, and the other half at costs not exceeding $100 per t C. Negative cost indicates that non-carbon revenue is sufficient to offset direct costs of about half of the options. The agroforestry options analyzed bear a significant proportion of the potential at medium to low cost per t C when compared to other options. The role of agroforestry in these countries varied between 6% and 21% of the MP, though the options are much more cost effective than most due to the low wage or opportunity cost of rural labor. Agroforestry options are attractive due to the large number of people and potential area currently engaged in agriculture, but they pose unique challenges for carbon and cost accounting due to the dispersed nature of agricultural activities in the tropics, as well as specific difficulties arising from requirements for monitoring, verification, leakage assessment and the establishment of credible baselines.

  20. Mitigation potential and cost in tropical forestry - relative role for agroforestry

    SciTech Connect

    Makundi, Willy R.; Sathaye, Jayant A.

    2004-01-01

    This paper summarizes studies of carbon mitigation potential (MP) and costs of forestry options in seven developing countries with a focus on the role of agroforestry. A common methodological approach known as comprehensive mitigation assessment process (COMAP) was used in each study to estimate the potential and costs between 2000 and 2030. The approach requires the projection of baseline and mitigation land-use scenarios derived from the demand for forest products and forestland for other uses such as agriculture and pasture. By using data on estimated carbon sequestration, emission avoidance, costs and benefits, the model enables one to estimate cost effectiveness indicators based on monetary benefit per t C, as well as estimates of total mitigation costs and potential when the activities are implemented at equilibrium level. The results show that about half the MP of 6.9 Gt C (an average of 223 Mt C per year) between 2000 and 2030 in the seven countries could be achieved at a negative cost, and the other half at costs not exceeding $100 per t C. Negative cost indicates that non-carbon revenue is sufficient to offset direct costs of about half of the options. The agroforestry options analyzed bear a significant proportion of the potential at medium to low cost per t C when compared to other options. The role of agroforestry in these countries varied between 6% and 21% of the MP, though the options are much more cost effective than most due to the low wage or opportunity cost of rural labor. Agroforestry options are attractive due to the large number of people and potential area currently engaged in agriculture, but they pose unique challenges for carbon and cost accounting due to the dispersed nature of agricultural activities in the tropics, as well as specific difficulties arising from requirements for monitoring, verification, leakage assessment and the establishment of credible baselines.

  1. Assessment of Agroforestry Trees in Dry-land Savanna Supports Ecohydrologic Separation

    NASA Astrophysics Data System (ADS)

    Ceperley, Natalie; Mande, Theophile; Van de Giesen, Nick; Tyler, Scott; Parlange, Marc

    2016-04-01

    We use stable isotopes of water to demonstrate the ecohydrologic separation, or the plant controlled compartmentalization, of different water sources in a catchment in South Eastern Burkina Faso. We analyze water extracted from the groundwater, stream water, precipitation, perched aquifer, xylem water of agroforestry trees, and sub-canopy soil water over a 6 year period to explore how the separation affects different components of the system over time. The ratio between deuterium and O18 allows us to assess whether the water that plants use is the same as the water that recharges the aquifer and runs off in the stream. Water extracted from the tree at leaf out in February corresponded to deuterium and O18 concentrations of the groundwater, a drop from its dry season, enriched, levels which mimicked the soil water. Examination of the isotopic signature suggests that the size of tree plays an important role in duration and timing of this leaf-out as well as the degree of enrichment during the peak of the dry season. Dates of leaf out were confirmed by analyzing sub-canopy radiation and photographs. Water extracted from roots suggests that the trees are performing hydraulic redistribution, or lifting the ground water and 'sharing it' with the rooting zone soil during the dry season. The enriched level of xylem, in this case, is a product of water loss and enrichment along the travel path of the water from the roots to the tip of the branch, as evidenced by the variation according to size of tree. Vapor pressure deficit, sap flow, soil water, and soil moisture interactions support this picture of interacting controls, separate from hydrologic triggers on the water movement in the tree. A second round of sampling focused on the leaf out period by extracting and analyzing stem water from throughout the canopy during the leaf out. Simultaneous large eddy correlation revealed high levels of latent energy flux, even during the dry season. Our isotope analysis allowed us to

  2. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets.

    PubMed

    Zomer, Robert J; Neufeldt, Henry; Xu, Jianchu; Ahrends, Antje; Bossio, Deborah; Trabucco, Antonio; van Noordwijk, Meine; Wang, Mingcheng

    2016-01-01

    Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha(-1). Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases. PMID:27435095

  3. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets

    NASA Astrophysics Data System (ADS)

    Zomer, Robert J.; Neufeldt, Henry; Xu, Jianchu; Ahrends, Antje; Bossio, Deborah; Trabucco, Antonio; van Noordwijk, Meine; Wang, Mingcheng

    2016-07-01

    Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha‑1. Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases.

  4. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets

    PubMed Central

    Zomer, Robert J.; Neufeldt, Henry; Xu, Jianchu; Ahrends, Antje; Bossio, Deborah; Trabucco, Antonio; van Noordwijk, Meine; Wang, Mingcheng

    2016-01-01

    Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha−1. Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases. PMID:27435095

  5. Modelling the impact of agroforestry on hydrology of Mara River basin in East Africa using a distributed model

    NASA Astrophysics Data System (ADS)

    Mwangi, Hosea; Julich, Stefan; Patil, Sopan; McDonald, Morag; Feger, Karl-Heinz

    2016-04-01

    Land use change is one of the main drivers of change of watershed hydrology. The effect of forestry related land use changes (e.g., afforestation, deforestation, agroforestry) on watershed hydrology depends on climate, watershed characteristics and watershed scale. The Soil and Water Assessment Tool (SWAT) model was calibrated, validated and used to simulate the impact of agroforestry on the water balance in Mara River Basin (MRB) in East Africa. Model performance was assessed by Nash-Sutcliffe Efficiency (NSE) and Kling-Gupta Efficiency (KGE). The NSE (and KGE) values for calibration and validation were 0.77 (0.88) and 0.74 (0.85) for the Nyangores sub-watershed and 0.78 (0.89) and 0.79 (0.63) for the entire MRB. It was found that agroforestry in the catchment would generally reduce surface runoff, mainly due to enhanced infiltration. However, it would also increase evapotranspiration and consequently reduce the baseflow and the overall water yield, which was attributed to increased water use by trees. Spatial scale was found to have a significant effect on water balance; the impact of agroforestry was higher at the smaller headwater catchment (Nyangores) than for the larger watershed (entire MRB). However, the rate of change in water yield with increase in area under agroforestry was different for the two and could be attributed to the spatial variability of climate within MRB. Our results suggest that direct extrapolation of the findings from a small sub-catchment to a larger watershed may not always be accurate. These findings could guide watershed managers on the level of trade-offs to make between reduced water yields and other benefits (e.g., soil erosion control, improved soil productivity) offered by agroforestry.

  6. Modeling and validation of directional reflectance for heterogeneous agro-forestry scenarios

    NASA Astrophysics Data System (ADS)

    Yelu, Z.; Jing, L.; Qinhuo, L.; Huete, A. R.

    2015-12-01

    Landscape heterogeneity is a common natural phenomenon but is seldom considered in current radiative transfer models for predicting the surface reflectance. This paper developed an explicit analytical Radiative Transfer model for heterogeneous Agro-Forestry scenarios (RTAF) by dividing the scenario into non-boundary regions and boundary regions. The scattering contribution of the non-boundary regions that are treated as homogeneous canopies can be estimated from the SAILH model, whereas that of the boundary regions with lengths, widths, canopy heights, and orientations of the field patches, is calculated based on the bidirectional gap probability by considering the interactions and mutual shadowing effects among different patches. The hot spot factor is extended for heterogeneous scenarios, the Hapke model for soil anisotropy is incorporated, and the contributions of the direct and diffuse radiation are separately calculated. The multi-angular airborne observations and the Discrete Anisotropic Radiative Transfer (DART) model simulations were used for validating and evaluating the RTAF model over an agro-forestry scenario in Heihe River Basin, China. It indicates that the RTAF model can accurately simulate the hemispherical-directional reflectance factors (HDRFs) of the heterogeneous agro-forestry scenario, with an RMSE of 0.0016 and 0.0179 in the red and near-infrared (NIR) bands, respectively. The RTAF model was compared with two widely used models, the dominant cover type (DCT) model and the spectral linear mixture (SLM) model, which either neglected the interactions and mutual shadowing effects between the shelterbets and crops, or did not account for the contribution of the shelterbets. Results suggest that the boundary effect can significantly influence the angular distribution of the HDRFs, and consequently enlarged the HDRF variations between the backward and forward directions in the principle plane. The RTAF model reduced the maximum relative error from 25

  7. Distribution of throughfall and stemflow in multi-strata agroforestry, perennial monoculture, fallow and primary forest in central Amazonia, Brazil

    NASA Astrophysics Data System (ADS)

    Schroth, Götz; Ferreira da Silva, Luciana; Wolf, Marc-Andree; Geraldes Teixeira, Wenceslau; Zech, Wolfgang

    1999-07-01

    The partitioning of rain water into throughfall, stemflow and interception loss when passing through plant canopies depends on properties of the respective plant species, such as leaf area and branch angles. In heterogeneous vegetation, such as tropical forest or polycultural systems, the presence of different plant species may consequently result in a mosaic of situations with respect to quantity and quality of water inputs into the soil. As these processes influence not only the water availability for the plants, but also water infiltration and nutrient leaching, the understanding of plant effects on the repartitioning of rain water may help in the optimization of land use systems and management practices. We measured throughfall and stemflow in a perennial polyculture (multi-strata agroforestry), monocultures of peach palm (Bactris gasipaes) for fruit and for palmito, a monoculture of cupuaçu (Theobroma grandiflorum), spontaneous fallow and primary forest during one year in central Amazonia, Brazil. The effect on rain water partitioning was measured separately for four useful tree species in the polyculture and for two tree species in the primary forest. Throughfall at two stem distances, and stemflow, differed significantly between tree species, resulting in pronounced spatial patterns of water input into the soil in the polyculture system. For two tree species, peach palm for fruit (Bactris gasipaes) and Brazil nut trees (Bertholletia excelsa), the water input into the soil near the stem was significantly higher than the open-area rainfall. This could lead to increased nutrient leaching when fertilizer is applied close to the stem of these trees. In the primary forest, such spatial patterns could also be detected, with significantly higher water input near a palm (Oenocarpus bacaba) than near a dicotyledonous tree species (Eschweilera sp.). Interception losses were 6·4% in the polyculture, 13·9 and 12·3% in the peach palm monocultures for fruit and for

  8. Extrapolating soil redistribution rates estimated from 137Cs to catchment scale in a complex agroforestry landscape using GIS

    NASA Astrophysics Data System (ADS)

    Gaspar, Leticia; López-Vicente, Manuel; Palazón, Leticia; Quijano, Laura; Navas, Ana

    2015-04-01

    The use of fallout radionuclides, particularly 137Cs, in soil erosion investigations has been successfully used over a range of different landscapes. This technique provides mean annual values of spatially distributed soil erosion and deposition rates for the last 40-50 years. However, upscaling the data provided by fallout radionuclides to catchment level is required to understand soil redistribution processes, to support catchment management strategies, and to assess the main soil erosion factors like vegetation cover or topography. In recent years, extrapolating field scale soil erosion rates estimated from 137Cs data to catchment scale has been addressed using geostatistical interpolation and Geographical Information Systems (GIS). This study aims to assess soil redistribution in an agroforestry catchment characterized by abrupt topography and an intricate mosaic of land uses using 137Cs data and GIS. A new methodological approach using GIS is presented as an alternative of interpolation tools to extrapolating soil redistribution rates in complex landscapes. This approach divides the catchment into Homogeneous Physiographic Units (HPUs) based on unique land use, hydrological network and slope value. A total of 54 HPUs presenting specific land use, strahler order and slope combinations, were identified within the study area (2.5 km2) located in the north of Spain. Using 58 soil erosion and deposition rates estimated from 137Cs data, we were able to characterize the predominant redistribution processes in 16 HPUs, which represent the 78% of the study area surface. Erosion processes predominated in 6 HPUs (23%) which correspond with cultivated units in which slope and strahler order is moderate or high, and with scrubland units with high slope. Deposition was predominant in 3 HPUs (6%), mainly in riparian areas, and to a lesser extent in forest and scrubland units with low slope and low and moderate strahler order. Redistribution processes, both erosion and

  9. Oakland Ravine Stormwater Treatment System Project, Borough of Queens, NYC

    SciTech Connect

    Dinkle, R.E.; Moutal, H.P.; Evans, T.M.; Kloman, L.

    1999-07-01

    Compared to other cities, New York City (NYC) is abundantly endowed with parklands and open spaces, many of which can be utilized to treat and dissipate stormwater runoff flows, in conjunction with the preservation, restoration and creation of ecological systems. Such use of available parklands and open spaces has the benefit of decreasing cost for stormwater treatment and conveyance, while at the same time enhancing the natural biological systems. Through the combined efforts of the NYC Department of Environmental Protection (NYCDEP), which is responsible for stormwater control, and the NYC Department of Parks and Recreation (NYCDPR), which is responsible for preserving and restoring the ecological systems of parklands and open spaces, URS Greiner Woodward Clyde (URSGWC) developed a project to provide for the treatment of stormwater and the attenuation of peak stormwater flows through restoration and creation of wetlands within Oakland Ravine (located in the densely populated northeastern section of the Borough of Queens, NYC). The proposed Oakland Ravine Stormwater Treatment System Project was developed in conjunction with the East River Combined Sewer Overflow (CSO) Abatement Project, which is part of the NYC comprehensive program to reduce CSO discharges into receiving waters. Discharges into Alley Creek through Outfall TI-7, an outfall located about one-half mile northeast of the ravine which has been designated for CSO abatement, will be reduced as a result of the project.

  10. Development Of An Agroforestry Sequestration Project In KhammamDistrict Of India

    SciTech Connect

    Sudha, P.; Ramprasad, V.; Nagendra, M.D.V.; Kulkarni, H.D.; Ravindranath, N.H.

    2007-06-01

    Large potential for agroforestry as a mitigation option hasgiven rise to scientific and policy questions. This paper addressesmethodological issues in estimating carbon sequestration potential,baseline determination, additionality and leakage in Khammam district,Andhra Pradesh, southern part of India. Technical potential forafforestation was determined considering the various landuse options. Forestimating the technical potential, culturable wastelands, fallow andmarginal croplands were considered for Eucalyptus clonal plantations.Field studies for aboveground and below ground biomass, woody litter andsoil organic carbon for baseline and project scenario were conducted toestimate the carbon sequestration potential. The baseline carbon stockwas estimated to be 45.33 tC/ha. The additional carbon sequestrationpotential under the project scenario for 30 years is estimated to be12.82 tC/ha/year inclusive of harvest regimes and carbon emissions due tobiomass burning and fertilizer application. The project scenario thoughhas a higher benefit cost ratio compared to baseline scenario, initialinvestment cost is high. Investment barrier exists for adoptingagroforestry in thedistrict.

  11. Canopy development, CO(2) exchange and carbon balance of a modeled agroforestry tree.

    PubMed

    Nygren, P; Kiema, P; Rebottaro, S

    1996-09-01

    We developed a whole-canopy CO(2) exchange simulation model to study effects of pruning on the carbon balance of trees. Model inputs include global short-wave radiation, photosynthetic photon flux density (PFD), air temperature, time series of the development of canopy diameter, height and total leaf area during the simulation period and local geographical and atmospheric parameters. Canopy structure is derived stochastically from the time series of canopy development and growth functions of individual phytoelements. The PFD incident on a phytoelement is computed from the average gap frequency of the canopy and the binary random probability of sunflecks on the phytoelement. Instantaneous CO(2) assimilation rate of each phytoelement is computed from PFD and phytoelement age. Assimilation rates are integrated over space and time to estimate whole-canopy CO(2) assimilation. The model was used to study carbon balance in five sources of the leguminous agroforestry tree Erythrina poeppigiana (Walpers) O.F. Cook during two 6-month pruning intervals. The canopy description appeared to be realistic. According to the simulations, cumulative assimilation did not provide enough carbon for tree growth until two months after pruning, indicating dependence of tree growth on reserve carbohydrates. The two most productive sources, which had the most open canopies, were the most dependent on reserve carbohydrates after pruning. PMID:14871680

  12. Elephants Also Like Coffee: Trends and Drivers of Human-Elephant Conflicts in Coffee Agroforestry Landscapes of Kodagu, Western Ghats, India

    NASA Astrophysics Data System (ADS)

    Bal, P.; Nath, C. D.; Nanaya, K. M.; Kushalappa, C. G.; Garcia, C.

    2011-05-01

    Kodagu district produces 2% of the world's coffee, in complex, multistoried agroforestry systems. The forests of the district harbour a large population of the Asian elephant ( Elephas maximus). The combined effects of high elephant density and major landscape changes due to the expansion of coffee cultivation are the cause of human-elephant conflicts (HEC). Mitigation strategies, including electric fences and compensation schemes implemented by the Forest Department have met with limited success. Building on previous studies in the area, we assessed current spatial and temporal trends of conflict, analysed local stakeholders' perceptions and identified factors driving elephants into the estates. Our study, initiated in May 2007, shows that the intensity of HEC has increased over the last 10 years, exhibiting new seasonal patterns. Conflict maps and the lack of correlation between physical features of the coffee plantations and elephant visits suggest elephants move along corridors between the eastern and western forests of the district, opportunistically foraging when crossing the plantations. Dung analyses indicate elephants have selectively included ripe coffee berries in their diet. This is, to our knowledge, the first report of wild elephants feeding on coffee berries. If this new behaviour spreads through the population, it will compound an already severe conflict situation. The behavioural plasticity, the multiplicity of stakeholders involved, the difficulty in defining the problem and the limits of technical solutions already proposed suggest that HEC in Kodagu has the ingredients of a "wicked" problem whose resolution will require more shared understanding and problem solving work amongst the stakeholders.

  13. Erratum: Erratum to: Elephants Also Like Coffee: Trends and Drivers of Human-Elephant Conflicts in Coffee Agroforestry Landscapes of Kodagu, Western Ghats, India

    NASA Astrophysics Data System (ADS)

    Bal, P.; Nath, C. D.; Nanaya, K. M.; Kushalappa, C. G.; Garcia, C.

    2011-08-01

    Kodagu district produces 2% of the world's coffee, in complex, multistoried agroforestry systems. The forests of the district harbour a large population of the Asian elephant ( Elephas maximus). The combined effects of high elephant density and major landscape changes due to the expansion of coffee cultivation are the cause of human-elephant conflicts (HEC). Mitigation strategies, including electric fences and compensation schemes implemented by the Forest Department have met with limited success. Building on previous studies in the area, we assessed current spatial and temporal trends of conflict, analysed local stakeholders' perceptions and identified factors driving elephants into the estates. Our study, initiated in May 2007, shows that the intensity of HEC has increased over the last 10 years, exhibiting new seasonal patterns. Conflict maps and the lack of correlation between physical features of the coffee plantations and elephant visits suggest elephants move along corridors between the eastern and western forests of the district, opportunistically foraging when crossing the plantations. Dung analyses indicate elephants have selectively included ripe coffee berries in their diet. This is, to our knowledge, the first report of wild elephants feeding on coffee berries. If this new behaviour spreads through the population, it will compound an already severe conflict situation. The behavioural plasticity, the multiplicity of stakeholders involved, the difficulty in defining the problem and the limits of technical solutions already proposed suggest that HEC in Kodagu has the ingredients of a "wicked" problem whose resolution will require more shared understanding and problem solving work amongst the stakeholders.

  14. Depletion of Stem Water of Sclerocarya birrea Agroforestry Tree Precedes Start of Rainy Season in West African Sudanian Zone

    NASA Astrophysics Data System (ADS)

    Ceperley, Natalie; Mande, Theophile; Parlange, Marc B.

    2013-04-01

    Understanding water use by agroforestry trees in dry-land ecosystems is essential for improving water management. Agroforestry trees are valued and promoted for many of their ecologic and economic benefits but are often criticized as competing for valuable water resources. In order to understand the seasonal patterns of source water used by agroforestry trees, samples from rain, ground, and surface water were collected weekly in the subcatchment of the Singou watershed that is part of the Volta Basin. Soil and vegetation samples were collected from and under a Sclerocarya birrea agroforstry trees located in this catchment in sealed vials, extracted, and analyzed with a Picarro L2130-i CRDS to obtain both δO18 and δDH fractions. Meteorological measurements were taken with a network of wireless, autonomous stations that communicate through the GSM network (Sensorscope) and two complete eddy-covariance energy balance stations, in addition to intense monitoring of sub-canopy solar radiation, throughfall, stemflow, and soil moisture. Examination of the time series of δO18 concentrations confirm that values in soil and xylem water are coupled, both becoming enriched during the dry season and depleted during the rainy season. Xylem water δO18 levels drops to groundwater δO18 levels in early March when trees access groundwater for leafing out, however soil water does not reach this level until soil moisture increases in mid-June. The relationship between the δDH and δO18 concentrations of water extracted from soil and tree samples do not fall along the global meteoric water line. In order to explore whether this was a seasonally driven, we grouped samples into an "evaporated" group or a "meteoric" group based on the smaller residual to the respective lines. Although more soil samples were found along the m-line during the rainy season than tree samples or dry season soil samples, there was no significant difference in days since rain for any group This suggests that

  15. Characterization of nutrient transport below the root zone of a willow plantation irrigated with municipal waste water in the Boreal-Parkland transition zone, Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Gainer, A. E.; Dyck, M. F.; Kachanoski, G.

    2010-12-01

    Irrigation of willow and poplar species with municipal waste water offers municipalities a variety of opportunities including reduced energy and waste management costs and preservation of surface water quality. Municipal waste water contains various nutrients that are beneficial to plants such as nitrogen and phosphorus. The woody species reduce treatment costs by further removing many of these nutrients and potentially using the resulting biomass to fuel the facilities. Diversion of municipal waste water from rivers and water bodies improves water quality by reducing the amount of nutrients entering water bodies, decreasing pollution such as eutrophication. As found by many European countries, the bioenergy combined with waste water treatment approach is promising but there are environmental drawbacks including nutrient leaching to groundwater and degradation to soil hydraulic properties. Various nitrogen forms like nitrate are of concern due to impacts on human and environmental health, most notably methemoglobinemia in infants. The overall objective of this research is to assess ecosystem resilience and sustainability with repeated applications of municipal wastewater over the life cycle of a willow plantation. The specific objective of this presentation is to quantify nutrient transport below the root zone of a poplar plantation previously irrigated with municipal waste water under natural climatic conditions using soil solution samplers at 4 depths (50 cm, 90 cm, 120 cm and 150 cm). Meteorological data (precipitation, temperature, evaporimeter) was collected as well. Transport of conservative tracers, bromide and chloride, are compared to the transport of nutrients (nitrogen forms and DOC,). Parameterization of the measured breakthrough curves may be used to predict future nutrient fluxes. The goal of this research is to improve the design of municipal waste water subsurface irrigation systems by minimizing leaching and water losses.

  16. Soil quality parameters for row-crop and grazed pasture systems with agroforestry buffers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incorporation of trees and establishment of buffers are practices that can improve soil quality. Soil enzyme activities and water stable aggregates are sensitive indices for assessing soil quality by detecting early changes in soil management. However, studies comparing grazed pasture and row crop...

  17. Assessment of Soil Quality for Grazed Pastures with Agroforestry Buffers and Row Crop Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incorporation of trees and establishment of buffers are believed to enhance soil quality. Soil enzyme activities and water stable aggregates have been identified as good indices for assessing soil quality to evaluate early responses to changes in soil management. However, studies comparing these p...

  18. Spatial variability in the soil water content of a Mediterranean agroforestry system with high soil heterogeneity

    NASA Astrophysics Data System (ADS)

    Molina, Antonio Jaime; Llorens, Pilar; Aranda, Xavier; Savé, Robert; Biel, Carmen

    2013-04-01

    Variability of soil water content is known to increase with the size of spatial domain in which measurements are taken. At field scale, heterogeneity in soil, vegetation, topography, water input volume and management affects, among other factors, hydrologic plot behaviour under different mean soil water contents. The present work studies how the spatial variability of soil water content (SWC) is affected by soil type (texture, percentage of stones and the combination of them) in a timber-orientated plantation of cherry tree (Prunus avium) under Mediterranean climatic conditions. The experimental design is a randomized block one with 3 blocks * 4 treatments, based on two factors: irrigation (6 plots irrigated versus 6 plots not irrigated) and soil management (6 plots tillaged versus 6 plots not tillaged). SWC is continuously measured at 25, 50 and 100 cm depth with FDR sensors, located at two positions in each treatment: under tree influence and 2.5 m apart. This study presents the results of the monitoring during 2012 of the 24 sensors located at the 25 cm depth. In each of the measurement point, texture and percentage of stones were measured. Sandy-loam, sandy-clay-loam and loam textures were found together with a percentage of stones ranging from 20 to 70 %. The results indicated that the relationship between the daily mean SWC and its standard deviation, a common procedure used to study spatial variability, changed with texture, percentage of stones and the estimation of field capacity from the combination of both. Temporal stability analysis of SWC showed a clear pattern related to field capacity, with the measurement points of the sandy-loam texture and the high percentage of stones showing the maximun negative diference with the global mean. The high range in the mean relative difference observed (± 75 %), could indicate that the studied plot may be considered as a good field-laboratory to extrapolate results at higher spatial scales. Furthermore, the pattern in the temporal stability of tree growth was clearly related to that one in SWC. Nevertheless, the treatments that represent the mean conditions in growth were not exactly the same than those in SWC, which could be attributable to other characteristics than soil.

  19. Linking deforestation scenarios to pollination services and economic returns in coffee agroforestry systems.

    PubMed

    Priess, J A; Mimler, M; Klein, A M; Schwarze, S; Tscharntke, T; Steffan-Dewenter, I

    2007-03-01

    The ecological and economic consequences of rain forest conversion and fragmentation for biodiversity, ecosystem functioning, and ecosystem services like protection of soils, water retention, pollination, or biocontrol are poorly understood. In human-dominated tropical landscapes, forest remnants may provide ecosystem services and act as a source for beneficial organisms immigrating into adjacent annual and perennial agro-ecosystems. In this study, we use empirical data on the negative effects of increasing forest distance on both pollinator diversity and fruit set of coffee to estimate future changes in pollination services for different land use scenarios in Sulawesi, Indonesia. Spatially explicit land use simulations demonstrate that depending on the magnitude and location of ongoing forest conversion, pollination services are expected to decline continuously and thus directly reduce coffee yields by up to 18%, and net revenues per hectare up to 14% within the next two decades (compared to average yields of the year 2001). Currently, forests in the study area annually provide pollination services worth 46 Euros per hectare. However, our simulations also revealed a potential win-win constellation, in which ecological and economic values can be preserved, if patches of forests (or other natural vegetation) are maintained in the agricultural landscape, which could be a viable near future option for local farmers and regional land use planners. PMID:17489248

  20. SOIL AGGREGATE STABILITY AND ENZYME ACTIVITY IN AGROFORESTRY AND ROW-CROP SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The proportion of water-stable aggregates (WSA) influences soil quality, crop growth, nutrient retention, water infiltration, and surface runoff. Roots, fungi, and bacteria as well as numerous chemical substances secreted by these agents play important roles in soil aggregate formation, persistence...

  1. Determining vegetation coverage and changes in land use under the Quesungual slash and mulch agroforestry system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land use throughout history has changed to suit the needs of the people, but just as the needs of the people have changed so should the methods employed to cultivate the land. As of 1985 producers in the municipality of Candelaria in the Department of Lempira in Honduras have been applying a locally...

  2. The Influence of Agroforestry and Other Land-Use Types on the Persistence of a Sumatran Tiger ( Panthera tigris sumatrae) Population: An Individual-Based Model Approach

    NASA Astrophysics Data System (ADS)

    Imron, Muhammad Ali; Herzog, Sven; Berger, Uta

    2011-08-01

    The importance of preserving both protected areas and their surrounding landscapes as one of the major conservation strategies for tigers has received attention over recent decades. However, the mechanism of how land-use surrounding protected areas affects the dynamics of tiger populations is poorly understood. We developed Panthera Population Persistence (PPP)—an individual-based model—to investigate the potential mechanism of the Sumatran tiger population dynamics in a protected area and under different land-use scenarios surrounding the reserve. We tested three main landscape compositions (single, combined and real land-uses of Tesso-Nilo National Park and its surrounding area) on the probability of and time to extinction of the Sumatran tiger over 20 years in Central Sumatra. The model successfully explains the mechanisms behind the population response of tigers under different habitat landscape compositions. Feeding and mating behaviours of tigers are key factors, which determined population persistence in a heterogeneous landscape. All single land-use scenarios resulted in tiger extinction but had a different probability of extinction within 20 years. If tropical forest was combined with other land-use types, the probability of extinction was smaller. The presence of agroforesty and logging concessions adjacent to protected areas encouraged the survival of tiger populations. However, with the real land-use scenario of Tesso-Nilo National Park, tigers could not survive for more than 10 years. Promoting the practice of agroforestry systems surrounding the park is probably the most reasonable way to steer land-use surrounding the Tesso-Nilo National Park to support tiger conservation.

  3. Elephants also like coffee: trends and drivers of human-elephant conflicts in coffee agroforestry landscapes of Kodagu, Western Ghats, India.

    PubMed

    Bal, P; Nath, C D; Nanaya, K M; Kushalappa, C G; Garcia, C

    2011-05-01

    Kodagu district produces 2% of the world's coffee, in complex, multistoried agroforestry systems. The forests of the district harbour a large population of the Asian elephant (Elephas maximus). The combined effects of high elephant density and major landscape changes due to the expansion of coffee cultivation are the cause of human-elephant conflicts (HEC). Mitigation strategies, including electric fences and compensation schemes implemented by the Forest Department have met with limited success. Building on previous studies in the area, we assessed current spatial and temporal trends of conflict, analysed local stakeholders' perceptions and identified factors driving elephants into the estates. Our study, initiated in May 2007, shows that the intensity of HEC has increased over the last 10 years, exhibiting new seasonal patterns. Conflict maps and the lack of correlation between physical features of the coffee plantations and elephant visits suggest elephants move along corridors between the eastern and western forests of the district, opportunistically foraging when crossing the plantations. Dung analyses indicate elephants have selectively included ripe coffee berries in their diet. This is, to our knowledge, the first report of wild elephants feeding on coffee berries. If this new behaviour spreads through the population, it will compound an already severe conflict situation. The behavioural plasticity, the multiplicity of stakeholders involved, the difficulty in defining the problem and the limits of technical solutions already proposed suggest that HEC in Kodagu has the ingredients of a "wicked" problem whose resolution will require more shared understanding and problem solving work amongst the stakeholders. PMID:21359868

  4. Erratum to: Elephants also like coffee: Trends and drivers of human-elephant conflicts in coffee agroforestry landscapes of Kodagu, Western Ghats, India.

    PubMed

    Bal, P; Nath, C D; Nanaya, K M; Kushalappa, C G; Garcia, C

    2011-08-01

    Kodagu district produces 2% of the world's coffee, in complex, multistoried agroforestry systems. The forests of the district harbour a large population of the Asian elephant (Elephas maximus). The combined effects of high elephant density and major landscape changes due to the expansion of coffee cultivation are the cause of human-elephant conflicts (HEC). Mitigation strategies, including electric fences and compensation schemes implemented by the Forest Department have met with limited success. Building on previous studies in the area, we assessed current spatial and temporal trends of conflict, analysed local stakeholders' perceptions and identified factors driving elephants into the estates. Our study, initiated in May 2007, shows that the intensity of HEC has increased over the last 10 years, exhibiting new seasonal patterns. Conflict maps and the lack of correlation between physical features of the coffee plantations and elephant visits suggest elephants move along corridors between the eastern and western forests of the district, opportunistically foraging when crossing the plantations. Dung analyses indicate elephants have selectively included ripe coffee berries in their diet. This is, to our knowledge, the first report of wild elephants feeding on coffee berries. If this new behaviour spreads through the population, it will compound an already severe conflict situation. The behavioural plasticity, the multiplicity of stakeholders involved, the difficulty in defining the problem and the limits of technical solutions already proposed suggest that HEC in Kodagu has the ingredients of a "wicked" problem whose resolution will require more shared understanding and problem solving work amongst the stakeholders. PMID:21751010

  5. The influence of agroforestry and other land-use types on the persistence of a Sumatran tiger (Panthera tigris sumatrae) population: an individual-based model approach.

    PubMed

    Imron, Muhammad Ali; Herzog, Sven; Berger, Uta

    2011-08-01

    The importance of preserving both protected areas and their surrounding landscapes as one of the major conservation strategies for tigers has received attention over recent decades. However, the mechanism of how land-use surrounding protected areas affects the dynamics of tiger populations is poorly understood. We developed Panthera Population Persistence (PPP)--an individual-based model--to investigate the potential mechanism of the Sumatran tiger population dynamics in a protected area and under different land-use scenarios surrounding the reserve. We tested three main landscape compositions (single, combined and real land-uses of Tesso-Nilo National Park and its surrounding area) on the probability of and time to extinction of the Sumatran tiger over 20 years in Central Sumatra. The model successfully explains the mechanisms behind the population response of tigers under different habitat landscape compositions. Feeding and mating behaviours of tigers are key factors, which determined population persistence in a heterogeneous landscape. All single land-use scenarios resulted in tiger extinction but had a different probability of extinction within 20 years. If tropical forest was combined with other land-use types, the probability of extinction was smaller. The presence of agroforesty and logging concessions adjacent to protected areas encouraged the survival of tiger populations. However, with the real land-use scenario of Tesso-Nilo National Park, tigers could not survive for more than 10 years. Promoting the practice of agroforestry systems surrounding the park is probably the most reasonable way to steer land-use surrounding the Tesso-Nilo National Park to support tiger conservation. PMID:20967444

  6. Eco-environment contribution of agroforestry to agriculture development in the plain area of China--Huai' an Prefecture, Jiangsu Province as the case study area.

    PubMed

    Ren, Hong-chang; Lu, Yong-long; Liu, Can; Meng, Qing-hua; Shi, Ya-juan

    2005-01-01

    For improving the environmental quality and ensuring supply of wood and non-timber forest products, many forests have been planted in plain areas of China. Scientists have studied their benefits, almost all of the approaches were based on fixed-point data, and few was considered on the non-efficient factors and temporal scale effects. This paper studies the positive and negative benefits at a large temporal scale, and the effects of plain afforestation on stockbreeding and rural economy. The benefits of plain afforestation, correlation coefficiency of agroforestry and production factors are analyzed via stochastic frontier modeling in Huanghuaihai Plain Area of China; elastic coefficient of agroforestry, husbandry, farming, and total output of agricultural sector are calculated through adopting partial differential equation. Some conclusions can be drawn that, plain forests have an important effect on the development of plain agriculture. But shelterbelts and small-scale forests have different effect on the development of agricultural economy. Shelterbelts have negative effect on the industries, but small-scale forest has positive effect. On the whole, contribution of forest resource to value of animal husbandry and gross production value of agriculture is positive, and to the value of farming is negative. PMID:16295915

  7. Agroforestry In-Service Training. A Training Aid for Asia & the Pacific Islands (Honiara, Solomon Islands, South Pacific, October 23-29, 1983). Training for Development. Peace Corps Information Collection & Exchange Training Manual No. T-16.

    ERIC Educational Resources Information Center

    Fillion, Jacob; Weeks, Julius

    The Forestry/Natural Resources Sector in the Office of Training and Program Support of the Peace Corps conducted an agroforestry inservice training workshop in Honiara, Solomon Islands, in 1983. Participants included Peace Corps volunteers and their host country national counterparts from six countries of the Pacific Islands and Asia (Western…

  8. FOREST MANAGEMENT AND AGROFORESTRY TO SEQUESTER AND CONSERVE ATMOSPHERIC CARBON DIOXIDE

    EPA Science Inventory

    Overall, the biological opportunity to conserve and sequester carbon in the terrestrial biosphere, especially in forest systems, appears significant. ith careful planning and implementation, management practices useful for this carbon benefit would appear to have potential to pro...

  9. Impacts of climate change on soil erosion in Portuguese watersheds with contrasting Mediterranean climates and agroforestry practices

    NASA Astrophysics Data System (ADS)

    Nunes, J. P.; Lima, J. C.; Bernard-Jannin, L.; Veiga, S.; Rodríguez-Blanco, M. L.; Sampaio, E.; Batista, D. P.; Zhang, R.; Rial-Rivas, M. E.; Moreira, M.; Santos, J. M.; Keizer, J. J.; Corte-Real, J.

    2012-04-01

    Climate change in Mediterranean regions could lead to higher winter rainfall intensity and, due to higher climatic aridity, lower vegetation cover. This could lead to increasing soil erosion rates, accelerating ongoing soil degradation and desertification processes. Adaptation to these scenarios would have costs and benefits associated with soil protection but also agroforestry production and water usage. This presentation will cover project ERLAND, which is studying these impacts for two headwater catchments (<1000 ha) in Portugal, located in distinct climatic conditions within the Mediterranean climate area, and their land-use practices are adapted to these conditions. The Macieira de Alcoba catchment in northern Portugal has a wet Mediterranean climate (1800 mm/yr, but with a dry summer season). The high rainfall allows the plantation of fast growing tree species (pine and eucalypt) in the higher slopes, and the irrigation of corn in the lower slopes. Forest fires are a recurring problem, linked with the high biomass growth and the occurrence of a dry season. Potential impacts of climate change include less favorable conditions for eucalypt growth, higher incidence of wildfires, and less available water for summer irrigation, all of which could lead to lower vegetation cover. The Guadalupe catchment in southern Portugal has a dry Mediterranean climate (700 mm/yr, falling mostly in winter). The land-use is montado, an association between sclerophyllous oaks (cork and holm oaks) and annual herbaceous plans (winter wheat or pasture). The region suffers occasional severe droughts; climate change has the potential to increase the frequency and severity of these droughts, leading to lower vegetation cover and, potentially, limiting the conditions for cork and holm oak growth. Each catchment has been instrumented with erosion measurement plots and flow and turbidity measurements at the outlet, together with surveys of vegetation and soil properties; measurements in

  10. Model Optimization Planting Pattern Agroforestry Forest Land Based on Pine Tree

    ERIC Educational Resources Information Center

    Rajati, Tati

    2015-01-01

    This study aims to determine cropping patterns in class slopes 0 - <15% and the grade slope slopes 15% - <30% and the slopes> 30%. The method used in this study is a description of the dynamic system approach using a software power sim. Forest areas where the research, which is a type of plant that is cultivated by the people in the study…

  11. Biodiversity conservation, ecosystem functioning, and economic incentives under cocoa agroforestry intensification.

    PubMed

    Bisseleua, D H B; Missoup, A D; Vidal, S

    2009-10-01

    World chocolate demand is expected to more than double by 2050. Decisions about how to meet this challenge will have profound effects on tropical rainforests and wild species in cocoa-producing countries. Cocoa, "the chocolate tree," is traditionally produced under a diverse and dense canopy of shade trees that provide habitat for a high diversity of organisms. The current trend to reduce or eliminate shade cover raises concerns about the potential loss of biodiversity. Nevertheless, few studies have assessed the ecological consequences and economic trade-offs under different management options in cocoa plantations. Here we describe the relationships between ant ecology (species richness, community composition, and abundance) and vegetation structure, ecosystem functions, and economic profitability under different land-use management systems in 17 traditional cocoa forest gardens in southern Cameroon. We calculated an index of profitability, based on the net annual income per hectare. We found significant differences associated with the different land-use management systems for species richness and abundance of ants and species richness and density of trees. Ant species richness was significantly higher in floristically and structurally diverse, low-intensity, old cocoa systems than in intensive young systems. Ant species richness was significantly related to tree species richness and density. We found no clear relationship between profitability and biodiversity. Nevertheless, we suggest that improving the income and livelihood of smallholder cocoa farmers will require economic incentives to discourage further intensification and ecologically detrimental loss of shade cover. Certification programs for shade-grown cocoa may provide socioeconomic incentives to slow intensification. PMID:19765036

  12. Two-dimensional finite elements model for boron management in agroforestry sites.

    PubMed

    Tayfur, Gokmen; Tanji, Kenneth K; Baba, Alper

    2010-01-01

    Agroforesty systems, which are recommended as a management option to lower the shallow groundwater level and to reuse saline subsurface drainage waters from the tile-drained croplands in the drainage-impacted areas of Jan Joaquin Valley of California, have resulted in excessive boron buildup in the soil root zone. To assess the efficacy of the long-term impacts of soil boron buildup in agroforesty systems, a mathematical model was developed to simulate non-conservative boron transport. The developed dynamic two-dimensional finite element model simulates water flow and boron transport in saturated-unsaturated soil system, including boron sorption and boron uptake by root-water extraction processes. The simulation of two different observed field data sets by the developed model is satisfactory, with mean absolute error of 1.5 mg/L and relative error of 6.5%. Application of the model to three different soils shows that boron adsorption is higher in silt loam soil than that in sandy loam and clay loam soils. This result agrees with the laboratory experimental observations. The results of the sensitivity analysis indicate that boron uptake by root-water extraction process influences the boron concentration distribution along the root zone. Also, absorption coefficient and maximum adsorptive capacity of a soil for boron are found to be sensitive parameters. PMID:19184495

  13. Relationships between invertebrate communities, litter quality and soil attributes under different cacao agroforestry systems in the south of Bahia, Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to understand how soil and litter attributes interact with the faunal community, this study was undertaken to investigate the relationship between soil and litter attributes to soil and litter fauna, and further to determine which of these attributes would be most significant in explaining ...

  14. Technical and institutional innovation in agroforestry for protected areas management in the Brazilian Amazon: opportunities and limitations.

    PubMed

    Schroth, Götz; da Mota, Maria do Socorro S

    2013-08-01

    Tropical forest countries are struggling with the partially conflicting policy objectives of socioeconomic development, forest conservation, and safeguarding the livelihoods of local forest-dependent people. We worked with communities in the lower Tapajós region of the central Brazilian Amazon for over 10 years to understand their traditional and present land use practices, the constraints, and decision making processes imposed by their biophysical, socioeconomic, and political environment, and to facilitate development trajectories to improve the livelihoods of forest communities while conserving the forest on the farms and in the larger landscape. The work focused on riverine communities initially in the Tapajós National Forest and then in the Tapajós-Arapiuns Extractive Reserve. These communities have a century-old tradition of planting rubber agroforests which despite their abandonment during the 1990s still widely characterize the vegetation of the river banks, especially in the two protected areas where they are safe from the recent expansion of mechanized rice and soybean agriculture. The project evolved from the capacity-building of communities in techniques to increase the productivity of the rubber agroforests without breaking their low-input and low-risk logic, to the establishment of a community enterprise that allowed reserve inhabitants to reforest their own land with tree species of their choice and sell reforestation (not carbon) credits to local timber companies while retaining the ownership of the trees. By making land use practices economically more viable and ecologically more appropriate for protected areas, the project shows ways to strengthen the system of extractive and sustainable development reserves that protects millions of hectares of Amazon forest with the consent of the communities that inhabit them. PMID:23636205

  15. Technical and Institutional Innovation in Agroforestry for Protected Areas Management in the Brazilian Amazon: Opportunities and Limitations

    NASA Astrophysics Data System (ADS)

    Schroth, Götz; da Mota, Maria do Socorro S.

    2013-08-01

    Tropical forest countries are struggling with the partially conflicting policy objectives of socioeconomic development, forest conservation, and safeguarding the livelihoods of local forest-dependent people. We worked with communities in the lower Tapajós region of the central Brazilian Amazon for over 10 years to understand their traditional and present land use practices, the constraints, and decision making processes imposed by their biophysical, socioeconomic, and political environment, and to facilitate development trajectories to improve the livelihoods of forest communities while conserving the forest on the farms and in the larger landscape. The work focused on riverine communities initially in the Tapajós National Forest and then in the Tapajós-Arapiuns Extractive Reserve. These communities have a century-old tradition of planting rubber agroforests which despite their abandonment during the 1990s still widely characterize the vegetation of the river banks, especially in the two protected areas where they are safe from the recent expansion of mechanized rice and soybean agriculture. The project evolved from the capacity-building of communities in techniques to increase the productivity of the rubber agroforests without breaking their low-input and low-risk logic, to the establishment of a community enterprise that allowed reserve inhabitants to reforest their own land with tree species of their choice and sell reforestation (not carbon) credits to local timber companies while retaining the ownership of the trees. By making land use practices economically more viable and ecologically more appropriate for protected areas, the project shows ways to strengthen the system of extractive and sustainable development reserves that protects millions of hectares of Amazon forest with the consent of the communities that inhabit them.

  16. Variation in woody plant delta(13)C along a topoedaphic gradient in a subtropical savanna parkland.

    PubMed

    Bai, Edith; Boutton, Thomas W; Liu, Feng; Wu, X Ben; Archer, Steven R

    2008-06-01

    delta(13)C values of C(3) plants are indicators of plant carbon-water relations that integrate plant responses to environmental conditions. However, few studies have quantified spatial variation in plant delta(13)C at the landscape scale. We determined variation in leaf delta(13)C, leaf nitrogen per leaf area (N(area)), and specific leaf area (SLA) in April and August 2005 for all individuals of three common woody species within a 308 x 12-m belt transect spanning an upland-lowland topoedaphic gradient in a subtropical savanna in southern Texas. Clay content, available soil moisture, and soil total N were all negatively correlated with elevation. The delta(13)C values of Prosopis glandulosa (deciduous N(2)-fixing tree legume), Condalia hookeri (evergreen shrub), and Zanthoxylum fagara (evergreen shrub) leaves increased 1-4 per thousand with decreasing elevation, with the delta(13)C value of P. glandulosa leaves being 1-3 per thousand higher than those of the two shrub species. Contrary to theory and results from previous studies, delta(13)C values were highest where soil water was most available, suggesting that some other variable was overriding or interacting with water availability. Leaf N(area) was positively correlated with leaf delta(13)C of all species (p < 0.01) and appeared to exert the strongest control over delta(13)C along this topoedaphic gradient. Since leaf N(area) is positively related to photosynthetic capacity, plants with high leaf N(area) are likely to have low p (I)/p (a) ratios and therefore higher delta(13)C values, assuming stomatal conductance is constant. Specific leaf area was not correlated significantly with leaf delta(13)C. Following a progressive growing season drought in July/August, leaf delta(13)C decreased. The lower delta(13)C in August may reflect the accumulation of (13)C-depleted epicuticular leaf wax. We suggest control of leaf delta(13)C along this topoedaphic gradient is mediated by leaf N(area) rather than by stomatal conductance limitations associated with water availability. PMID:18327619

  17. Analysis And Assistant Planning System Ofregional Agricultural Economic Inform

    NASA Astrophysics Data System (ADS)

    Han, Jie; Zhang, Junfeng

    For the common problems existed in regional development and planning, we try to design a decision support system for assisting regional agricultural development and alignment as a decision-making tool for local government and decision maker. The analysis methods of forecast, comparative advantage, liner programming and statistical analysis are adopted. According to comparative advantage theory, the regional advantage can be determined by calculating and comparing yield advantage index (YAI), Scale advantage index (SAI), Complicated advantage index (CAI). Combining with GIS, agricultural data are presented as a form of graph such as area, bar and pie to uncover the principle and trend for decision-making which can't be found in data table. This system provides assistant decisions for agricultural structure adjustment, agro-forestry development and planning, and can be integrated to information technologies such as RS, AI and so on.

  18. Using Multi-Criteria Analysis for the Study of Human Impact on Agro-Forestry Ecosystem in the Region of Khenchela (algeria)

    NASA Astrophysics Data System (ADS)

    Bouzekri, A.; Benmessaoud, H.

    2016-06-01

    The objective of this work is to study and analyze the human impact on agro-forestry-pastoral ecosystem of Khenchela region through the application of multi-criteria analysis methods to integrate geographic information systems, our methodology is based on a weighted linear combination of information on four criteria chosen in our analysis representative in the vicinity of variables in relation to roads, urban areas, water resources and agricultural space, the results shows the effect of urbanization and socio-economic activity on the degradation of the physical environment and found that 32% of the total area are very sensitive to human impact.

  19. Sulfamethazine transport in agroforestry and cropland soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of veterinary antibiotic transport and persistence is critical to understanding environmental risks associated with these potential contaminants. To understand mobility of sulfamethazine (SMZ) and sorption processes involved during SMZ transport in soil, column leaching experiments were p...

  20. Agroforestry, climate change, and food security

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Successfully addressing global climate change effects on agriculture will require a holistic, sustained approach incorporating a suite of strategies at multiple spatial scales and time horizons. In the USA of the 1930’s, bold and innovative leadership at high levels of government was needed to enact...

  1. The maintenance of soil fertility in Amazonian managed systems

    NASA Astrophysics Data System (ADS)

    Luizão, Flávio J.; Fearnside, Philip M.; Cerri, Carlos E. P.; Lehmann, Johannes

    Most of Brazilian Amazonia faces important limitations for conventional agriculture and pastures due to a generally poor chemical fertility as well as the region's environmental conditions, especially high temperature and moisture. Without proper management, degradation of the soil and resulting unsustainability of agricultural and ranching production occur within a few years, leading to land abandonment. Use of perennial crops, especially those based on native tree species, would be instrumental in order to achieve best management such as that which assure recycling processes similar to those in the primary forest. Recommended alternative land uses are those producing high soil organic matter, recycling of nutrients, substantial agricultural production, and economic viability. These include agroforestry systems, enrichment of second growth with valuable native timber or fruit species, accelerated fallow regrowth via enrichment plantings, sequential agroforestry with slash-and-mulch, and diversified forest plantations. Improvement of agricultural soils can be based on lessons learned from the study of processes involved in the formation and maintenance of the rich "dark earths" (terra preta), which owe their high carbon content and fertility in part to high content of charcoal. Adding powdered charcoal combined with selected nutrients can increase soil carbon in modern agriculture. Considering that limitations to expansion of intensified land uses in Amazonia are serious, regional development should emphasize the natural forest, which can maintain itself without external inputs of nutrients. Instead of creating conditions to further expand deforestation, these forests may be used as they stand to provide a variety of valuable environmental services that could offer a sustainable basis for development of Amazonia.

  2. Impact of Makowal type water system on crop productivity in Shivalik foothills of India.

    PubMed

    Singh, Sher; Singh, Satvinder; Bawa, S S; Sharma, S C; Salaria, Amit

    2015-07-01

    The availability of water through community based water harvesting structure has intensified agriculture and improved livelihood of the surveyed beneficiary households in the Shivalik foothills of India. Before the introduction of Makowal Type Water Harvesting System (before MTWHS), only 83.8% farmers in kharif and 79.7% during rabi season were growing crops but after its introduction (after MTWHS) the corresponding values improved to 100% and 97.3%, respectively, thus increasing cropping intensity from 145% to 189%. Introduction of MTWHS enabled farmers to take paddy and agro-forestry during Kharif, and vegetables and fodder during Rabi season. The increase in cultivated area due to MTWHS was to the tune of 46.1% in Kharif and 36.3% during Rabi, while increase in crop productivity ranged from 55.1% to 111.3% in kharif and 8.6 to 132.0% in Rabiseason. Better availability of irrigation changed varietal spectrum in favour of hybrids and high yielding varieties and farmers started adopting improved agronomic practices targeting better input-use efficiency. The MTWHS produced positive impact on the on-farm (crops, dairy and agro-forestry) sources of income and reduced the relative dependence on off-farm activities (labour, community forest area, etc.) for earnings. This system has brought drinking water very close to hutments of rural women thus reducing their drudgery and saving time. In general, rainwater harvesting from forest watersheds has resulted in quantum jumps in crop and milk production and acted as a catalyst to tie up the economic interest of communities, along with forest protection. PMID:26364477

  3. Sources of water used by trees and millet in Sahelian windbreak systems

    NASA Astrophysics Data System (ADS)

    Smith, D. Mark; Jarvis, Paul G.; Odongo, Julius C. W.

    1997-11-01

    The extent to which water use by trees and crops is complementary in agroforestry systems may be affected by the proximity of groundwater to the soil surface. This may have important implications for the planning and management of agroforestry in semi-arid regions such as the Sahel of West Africa. A method of distinguishing uptake of water by plants from different sources was used, therefore, at locations with contrasting water table levels, to determine whether Azadirachta indica A. Juss (neem) trees in windbreaks utilised water from the same depths as adjacent crops of pearl millet ( Pennisetum glaucum (L.) R. Br.). Comparisons of ratios of the stable isotopes of oxygen ( 18O/ 16O) in plant sap, groundwater and water in the unsaturated zone of the soil profile were made in the Majjia Valley, in south-central Niger, where groundwater was found at depths of 6-8 m, and at Sadoré in south-western Niger, where the water table was at a depth of 35 m. In the Majjia Valley, the trees obtained large portions of their water from surface layers of the soil only after rain, when water there was abundant. During dry periods, roots of the trees extracted groundwater or deep reserves of soil water, while the millet crop extracted water from closer to the top of the soil profile. In contrast, at Sadoré, both the trees and crop fulfilled their water requirements from the top 2-3 m of the soil throughout the year. Thus, utilisation of water by windbreak trees and crops is more complementary where groundwater is accessible to tree roots. Competition for water is likely reduced at such locations as a consequence, but may affect the productivity of windbreak systems where groundwater is inaccessible. To maximise the benefits of establishing windbreaks, therefore, it is important that planners recommend strategies for reducing competition for water between trees and crops at sites where groundwater cannot be reached by tree roots.

  4. Effects of different agricultural systems on soil quality in Northern Limón province, Costa Rica.

    PubMed

    Cornwell, Emma

    2014-09-01

    Conversion of native rainforest ecosystems in Limón Province of Costa Rica to banana and pineapple monoculture has led to reductions in biodiversity and soil quality. Agroforestry management of cacao (Theobroma cacao) is an alternative system that may maintain the agricultural livelihood of the region while more closely mimicking native ecosystems. This study compared physical, biological and chemical soil quality indicators of a cacao plantation under organic agroforestry management with banana, pineapple, and pasture systems; a native forest nearby served as a control. For bulk density and earthworm analysis, 18 samples were collected between March and April 2012 from each ecosystem paired with 18 samples from the cacao. Cacao had a lower bulk density than banana and pineapple monocultures, but greater than the forest (p < 0.05). Cacao also hosted a greater number and mass of earthworms than banana and pineapple (p < 0.05), but similar to forest and pasture. For soil chemical characteristics, three composite samples were collected in March 2012 from each agroecosystem paired with three samples from the cacao plantation. Forest and pineapple ecosystems had the lowest pH, cation exchange capacity, and exchangeable nutrient cations, while cacao had the greatest (p < 0.05). Total nutrient levels of P and N were slightly greater in banana, pineapple and pasture than in cacao; probably related to addition of chemical fertilizer and manure from cattle grazing. Forest and cacao also had greater %C, than other ecosystems, which is directly related to soil organic matter content (p < 0.0001). Overall, cacao had more favorable physical, biological and chemical soil characteristics than banana and pineapple monocultures, while trends were less conclusive compared to the pastureland. While organic cacao was inferior to native forest in some soil characteristics such as bulk density and organic carbon, its soil quality did best mimic that of the native forest. This supports

  5. Assessment of Carbon Sequestration in German Alley Cropping Systems

    NASA Astrophysics Data System (ADS)

    Tsonkova, P. B.; Quinkenstein, A.; Böhm, C.; Freese, D.

    2012-04-01

    Alley cropping systems (ACS) are agroforestry practices in which perennial trees or shrubs are grown in wide rows and arable crops are cultivated in the alleys between the tree rows. Recently, ACS which integrate stripes of short rotation coppices into conventional agricultural sites have gained interest in Germany. These systems can be used for simultaneous production of crops and woody biomass which enables farmers to diversify the provision of market goods. Adding trees into the agricultural landscape creates additional benefits for the farmer and society also known as ecosystem services. An ecosystem service provided by land use systems is carbon sequestration. The literature indicates that ACS are able to store more carbon compared to agriculture and their implementation may lead to greater benefits for the environment and society. Moreover, carbon sequestration in ACS could be included in carbon trading schemes and farmers rewarded additionally for the provision of this ecosystem service. However, methods are required which are easy to use and provide reliable information regarding change in carbon sequestration with change of the land use practice. In this context, our aim was to develop a methodology to assess carbon sequestration benefit provided by ACS in Germany. Therefore, the change of carbon in both soil and biomass had to be considered. To predict the change in soil carbon our methodology combined the 2006 IPCC Guidelines for National Greenhouse Gas Inventories and the soil organic carbon balance recommended by the Association of German Agricultural Investigation and Research Centers (VDLUFA). To reflect the change in biomass carbon average annual yields were adopted. The results showed that ACS established on agricultural sites can increase the carbon stored because in the new soil-plant system carbon content is higher compared to agriculture. ACS have been recommended as suitable land use systems for marginal sites, such as post-mining areas. In

  6. Soil quality in a pecan – Kura clover alley cropping system in the midwestern USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intercropping alleys in agroforestry provides an income source until the tree crop produces harvestable yields. However, cultivation of annual crops decreases soil organic matter and increases soil erosion potential, especially on sloping landscapes. Perennial crops maintain a continuous soil cover,...

  7. Relationship between C:N/C:O Stoichiometry and Ecosystem Services in Managed Production Systems

    PubMed Central

    Ghaley, Bhim B.; Sandhu, Harpinder S.; Porter, John R.

    2015-01-01

    Land use and management intensity can influence provision of ecosystem services (ES). We argue that forest/agroforestry production systems are characterized by relatively higher C:O/C:N and ES value compared to arable production systems. Field investigations on C:N/C:O and 15 ES were determined in three diverse production systems: wheat monoculture (Cwheat), a combined food and energy system (CFE) and a beech forest in Denmark. The C:N/C:O ratios were 194.1/1.68, 94.1/1.57 and 59.5/1.45 for beech forest, CFE and Cwheat, respectively. The economic value of the non-marketed ES was also highest in beech forest (US$ 1089 ha-1 yr-1) followed by CFE (US$ 800 ha-1 yr-1) and Cwheat (US$ 339 ha-1 yr-1). The combined economic value was highest in the CFE (US$ 3143 ha-1 yr-1) as compared to the Cwheat (US$ 2767 ha-1 yr-1) and beech forest (US$ 2365 ha-1 yr-1). We argue that C:N/C:O can be used as a proxy of ES, particularly for the non-marketed ES, such as regulating, supporting and cultural services. These ES play a vital role in the sustainable production of food and energy. Therefore, they should be considered in decision making and developing appropriate policy responses for land use management. PMID:25894553

  8. Relationship between C:N/C:O stoichiometry and ecosystem services in managed production systems.

    PubMed

    Ghaley, Bhim B; Sandhu, Harpinder S; Porter, John R

    2015-01-01

    Land use and management intensity can influence provision of ecosystem services (ES). We argue that forest/agroforestry production systems are characterized by relatively higher C:O/C:N and ES value compared to arable production systems. Field investigations on C:N/C:O and 15 ES were determined in three diverse production systems: wheat monoculture (Cwheat), a combined food and energy system (CFE) and a beech forest in Denmark. The C:N/C:O ratios were 194.1/1.68, 94.1/1.57 and 59.5/1.45 for beech forest, CFE and Cwheat, respectively. The economic value of the non-marketed ES was also highest in beech forest (US$ 1089 ha(-1) yr(-1)) followed by CFE (US$ 800 ha(-1) yr(-1)) and Cwheat (US$ 339 ha(-1) yr(-1)). The combined economic value was highest in the CFE (US$ 3143 ha(-1) yr(-1)) as compared to the Cwheat (US$ 2767 ha(-1) yr(-1)) and beech forest (US$ 2365 ha(-1) yr(-1)). We argue that C:N/C:O can be used as a proxy of ES, particularly for the non-marketed ES, such as regulating, supporting and cultural services. These ES play a vital role in the sustainable production of food and energy. Therefore, they should be considered in decision making and developing appropriate policy responses for land use management. PMID:25894553

  9. Re-marriage of crops and trees

    SciTech Connect

    Nair, P.K.R.

    1983-01-01

    Agroforestry is defined and its role in the productive use and conservation of marginal or forested lands explained. Examples are given of existing agroforestry and silvo-pastural systems involving plantation crops (coffee, tea, cacao, rubber) and multipurpose species (Leucaena leucocephale, Casuarina, Almis, Parasponia, Acacia, Prosopis). The origin and activities of ICRAF are outlined.

  10. Integrated Food-Energy Systems: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Gerst, M.; Cox, M. E.; Locke, K. A.; Laser, M.; Raker, M.; Gooch, C.; Kapuscinski, A. R.

    2015-12-01

    Predominant forms of food and energy systems pose multiple challenges to the environment as current configurations tend to be structured around centralized one-way through-put of materials and energy. One proposed form of system transformation involves locally integrating "unclosed" material and energy loops from food and energy systems. Such systems, which have been termed integrated food-energy systems (IFES), have existed in diverse niche forms but have not been systematically studied with respect to technological, governance, and environmental differences. This is likely because IFES can have widely different configurations, from co-located renewable energy production on cropland to agroforestry. As a first step in creating a synthesis of IFES, our research team constructed a taxonomy using exploratory data analysis of diverse IFES cases (Gerst et al., 2015, ES&T 49:734-741). It was found that IFES may be categorized by type of primary product produced (plant- or animal-based food or energy) and the degree and direction of vertical supply chain coordination. To further explore these implications, we have begun a study of a highly-coordinated, animal-driven IFES: dairy farms with biogas production from anaerobic digestion of manure. The objectives of the research are to understand the barriers to adoption and the potential benefits to the farms financial resilience and to the environment. To address these objectives, we are interviewing 50 farms across New York and Vermont, collecting information on farmer decision-making and farm operation. These results will be used to calibrate biophysical and economic models of the farm in order understand the future conditions under which adoption of an IFES is beneficial.

  11. Framework for studying the hydrological impact of climate change in an alley cropping system

    NASA Astrophysics Data System (ADS)

    Hallema, Dennis W.; Rousseau, Alain N.; Gumiere, Silvio J.; Périard, Yann; Hiemstra, Paul H.; Bouttier, Léa; Fossey, Maxime; Paquette, Alain; Cogliastro, Alain; Olivier, Alain

    2014-09-01

    Alley cropping is an agroforestry practice whereby crops are grown between hedgerows of trees planted at wide spacings. The local climate and the physiological adaptation mechanisms of the trees are key factors in the growth and survival of the trees and intercrops, because they directly affect the soil moisture distribution. In order to evaluate the long-term hydrological impact of climate change in an alley cropping system in eastern Canada, we developed a framework that combines local soil moisture data with local projections of climate change and a model of soil water movement, root uptake and evapotranspiration. Forty-five frequency domain reflectometers (FDR) along a transect perpendicular to the tree rows generated a two-year dataset that we used for the parameterization and evaluation of the model. An impact study with simulations based on local projections of three global and one regional climate simulation suggest that the soil becomes drier overall in the period between 2041 and 2070, while the number of critically wet periods with a length of one day increases slightly with respect to the reference period between 1967 and 1996. Hydrological simulations based on a fourth climate scenario however point toward wetter conditions. In all cases the changes are minor. Although our simulations indicate that the experimental alley cropping system will possibly suffer drier conditions in response to higher temperatures and increased evaporative demand, these conditions are not necessarily critical for vegetation during the snow-free season.

  12. High Bee and Wasp Diversity in a Heterogeneous Tropical Farming System Compared to Protected Forest

    PubMed Central

    Schüepp, Christof; Rittiner, Sarah; Entling, Martin H.

    2012-01-01

    It is a globally important challenge to meet increasing demands for resources and, at the same time, protect biodiversity and ecosystem services. Farming is usually regarded as a major threat to biodiversity due to its expansion into natural areas. We compared biodiversity of bees and wasps between heterogeneous small-scale farming areas and protected forest in northern coastal Belize, Central America. Malaise traps operated for three months during the transition from wet to dry season. Farming areas consisted of a mosaic of mixed crop types, open habitat, secondary forest, and agroforestry. Mean species richness per site (alpha diversity), as well as spatial and temporal community variation (beta diversity) of bees and wasps were equal or higher in farming areas compared to protected forest. The higher species richness and community variation in farmland was due to additional species that did not occur in the forest, whereas most species trapped in forest were also found in farming areas. The overall regional species richness (gamma diversity) increased by 70% with the inclusion of farming areas. Our results suggest that small-scale farming systems adjacent to protected forest may not only conserve, but even favour, biodiversity of some taxonomic groups. We can, however, not exclude possible declines of bee and wasp diversity in more intensified farmland or in landscapes completely covered by heterogeneous farming systems. PMID:23300598

  13. Microbial community diversity in agroforestry and grass vegetative filter strips

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetative filter strips (VFS) have long been promoted as a soil conservation practice that yields many additional environmental benefits. Most previous studies have focused primarily on the role of vegetation and/or soil physical properties in these ecosystem services. Few studies have investigated...

  14. Assessing Farmer Innovations in Agroforestry in Eastern Zambia

    ERIC Educational Resources Information Center

    Katanga, R.; Kabwe, G.; Kuntashula, E.; Mafongoya, P. L.; Phiri, S.

    2007-01-01

    This paper describes farmer innovations on improved fallows developed by researchers to replenish soil fertility. The reasons for the innovations and how these innovations are facilitating wide adoption of improved fallows are discussed. Research designed trial results to evaluate the ecological robustness of these innovations are also analyzed in…

  15. Long-term effect of rice-based farming systems on soil health.

    PubMed

    Bihari, Priyanka; Nayak, A K; Gautam, Priyanka; Lal, B; Shahid, M; Raja, R; Tripathi, R; Bhattacharyya, P; Panda, B B; Mohanty, S; Rao, K S

    2015-05-01

    Integrated rice-fish culture, an age-old farming system, is a technology which could produce rice and fish sustainably at a time by optimizing scarce resource use through complementary use of land and water. An understanding of microbial processes is important for the management of farming systems as soil microbes are the living part of soil organic matter and play critical roles in soil C and N cycling and ecosystem functioning of farming system. Rice-based integrated farming system model for small and marginal farmers was established in 2001 at Central Rice Research Institute, Cuttack, Odisha. The different enterprises of farming system were rice-fish, fish-fingerlings, fruits, vegetables, rice-fish refuge, and agroforestry. This study was conducted with the objective to assess the soil physicochemical properties, microbial population, carbon and nitrogen fractions, soil enzymatic activity, and productivity of different enterprises. The effect of enterprises induced significant changes in the chemical composition and organic matter which in turn influenced the activities of enzymes (urease, acid, and alkaline phosphatase) involved in the C, N, and P cycles. The different enterprises of long-term rice-based farming system caused significant variations in nutrient content of soil, which was higher in rice-fish refuge followed by rice-fish enterprise. Highest microbial populations and enzymatic properties were recorded in rice-fish refuge system because of waterlogging and reduced condition prolonged in this system leading to less decomposition of organic matter. The maximum alkaline phosphatase, urease, and FDA were observed in rice-fish enterprise. However, highest acid phosphatase and dehydrogenase activity were obtained in vegetable enterprise and fish-fingerlings enterprise, respectively. PMID:25913623

  16. Occurrence and diversity of arbuscular mycorrhizal fungi in trap cultures from soils under different land use systems in the Amazon, Brazil

    PubMed Central

    Leal, Patrícia Lopes; Stürmer, Sidney Luiz; Siqueira, José Oswaldo

    2009-01-01

    The aim of this work was to evaluate the occurrence of arbuscular mycorrhizal fungi (AMF) species diversity in soil samples from the Amazon region under distinct land use systems (Forest, Old Secondary Forest, Young Secondary Forest, Agroforestry systems, Crops and Pasture) using two distinct trap cultures. Traps established using Sorghum sudanense and Vigna unguiculata (at Universidade Regional de Blumenau -FURB) and Brachiaria decumbens and Neonotonia wightii (at Universidade Federal de Lavras - UFLA) were grown for 150 days in greenhouse conditions, when spore density and species identification were evaluated. A great variation on species richness was detected in several samples, regardless of the land use systems from where samples were obtained. A total number of 24 AMF species were recovered using both methods of trap cultures, with FURB′s traps yielding higher number of species. Acaulospora delicata, A. foveata, Entrophospora colombiana and two undescribed Glomus species were the most abundant and frequent species recovered from the traps. Number of species decreased in each genus according to this order: Acaulospora, Glomus, Entrophospora, Gigaspora, Archaeospora, Scutellospora and Paraglomus. Spore numbers were higher in Young Secondary Forest and Pastures. Our study demonstrated that AMF have a widespread occurrence in all land use systems in Amazon and they sporulate more abundantly in trap cultures from land uses under interference than in the pristine Forest ecosystem. PMID:24031328

  17. Effect of liming and organic and inorganic fertilization on soil carbon sequestered in macro-and microaggregates in a 17-year old Pinus radiata silvopastoral system.

    PubMed

    Mosquera-Losada, M R; Rigueiro-Rodríguez, A; Ferreiro-Domínguez, N

    2015-03-01

    Agroforestry systems have been recognized as a potential greenhouse gas mitigation strategy under the Kyoto Protocol because of their ability to absorb carbon dioxide from the atmosphere and store carbon mainly in the soil. Soil particle size and land management practices are known to have a considerable influence on carbon storage in soils. This study evaluated changes in soil chemical and physical properties, and quantified and compared the amount of C stored in the bulk soil and in three different soil fractions (250-2000, 53-250 and <53 μm) at each of four soil depths (0-25, 25-50, 50-75 and 75-100 cm) in a silvopastoral system located on an acidic forest soil under Pinus radiata D. Don. Areas of this system were subjected ten years ago to one of nine fertilization treatments: three different doses of sewage sludge or no fertilization, all with or without the addition of lime, and mineral fertilizer with no liming. Seventeen years after reforestation and seven years after canopy closure, strong gradients with soil depth were found regarding soil bulk density, pH and carbon storage. Intense soil management (high doses of sewage sludge and liming) generally reduced soil carbon storage, mainly in coarse aggregates, but this could be compensated by the increase in tree and pasture development observed in soils subject to intermediate sewage sludge doses. PMID:25460421

  18. Soil phosphorus dynamics in a humid tropical silvopastoral system

    SciTech Connect

    Cooperband, L.R.

    1992-01-01

    In developing countries of the humid tropics, timber exploitation and agricultural expansion frequently result in deforestation. Extensive land management, coupled with inherently low soil fertility invariably produce declines in agricultural/livestock productivity which eventually lead to land abandonment and further deforestation. Phosphorus is often the major nutrient limiting plant growth in tropical soils. Agroforestry systems have been considered as viable alternatives to current land use practices. Several hypotheses suggest that combining trees with crops or pasture, especially leguminous species will improve soil nutrient cycling, soil structure and soil organic matter. In this experiment Erythrina berteroana (an arboreous legume) was grown in native grass pastures in Costa Rica to determine the effects of tree pruning and cattle grazing on soil P availability. I measured soil P fluxes as well as changes in pasture biomass over an 18-month period. In a separate field experiment, I determined decomposition rates and P release characteristics of Erythrina leaves, pasture grass clippings and cattle dung. Erythrina leaves decomposed faster than both pasture grass and cattle dung. Erythrina and pasture residues released 4-5 times less P than dung. Phosphorus fluxes after tree pruning and grazing were highly dynamic for all treatments. Tree pruning increased labile soil P over time when coupled with grazing. Pasture biomass production was greatest in the grazed tree treatment. Pasture biomass P production and concentration was greatest in the non-grazed treatment. Trees and grazing together tended to increase nutrient (P) turnover which stimulated biomass production. In contrast, trees without grazing promoted nutrient (P) accumulation in pasture biomass.

  19. Measuring and modelling interception loss by an isolated olive tree in a traditional olive grove - pasture system

    NASA Astrophysics Data System (ADS)

    Nóbrega, Cristina; Pereira, Fernando L.; Valente, Fernanda

    2015-04-01

    Water losses associated to the rainfall interception process by trees can be an important component of the local hydrologic balance and must be accounted for when implementing any sustainable water management programme. In many dry areas of the Mediterranean region where agro-forestry systems are common, those programmes are crucial to foster adequate water conservation measures. Recent studies have shown that the evaluation of interception loss in sparse forests or tree plantations should be made for individual trees, being the total value determined as the sum of the individual contributions. Following this approach, rainfall interception was measured and modelled over two years, in an isolated Olea europeaea L. tree, in a traditional low-density olive grove in Castelo Branco, central Portugal. Total interception loss over the experimental period was 243.5 mm, on a tree crown projected area basis, corresponding to 18.0% of gross rainfall (Pg). Modelling made for each rainfall event using the sparse version of the Gash model, slightly underestimated interception loss with a value of 240.5 mm, i.e., 17.8 % ofPg. Modelling quality, evaluated according to a number of criteria, was good, allowing the conclusion that the methodology used was adequate. Modelling was also made on a daily basis, i.e., assuming a single storm per rainday. In this case, interception loss was overestimated by 12%, mostly because 72% of all rainfall events lasted for more than a day.

  20. Creating the Sustainable City: Building a Seminar (and Curriculum) through Interdisciplinary Learning

    ERIC Educational Resources Information Center

    Bryson, Michael A.; Zimring, Carl A.

    2010-01-01

    Using the wealth of sites available in the Chicago metropolitan area, online learning technologies, and classroom interactions, Roosevelt University's seminar "The Sustainable City" takes a multidisciplinary approach to urban ecology, waste management, green design, climate change, urban planning, parklands, water systems, environmental justice,…

  1. Carbon storage of different soil-size fractions in Florida silvopastoral systems.

    PubMed

    Haile, Solomon G; Nair, P K Ramachandran; Nair, Vimala D

    2008-01-01

    Compared with open (treeless) pasture systems, silvopastoral agroforestry systems that integrate trees into pasture production systems are likely to enhance soil carbon (C) sequestration in deeper soil layers. To test this hypothesis, total soil C contents at six soil depths (0-5, 5-15, 15-30, 30-50, 50-75, and 75-125 cm) were determined in silvopastoral systems with slash pine (Pinus elliottii) + bahiagrass (Paspalum notatum) and an adjacent open pasture (OP) with bahiagrass at four sites, representing Spodosols and Ultisols, in Florida. Soil samples from each layer were fractionated into three classes (250-2000, 53-250, and <53 microm), and the C contents in each were determined. Averaged across four sites and all depths, the total soil organic carbon (SOC) content was higher by 33% in silvopastures near trees (SP-T) and by 28% in the alleys between tree rows (SP-A) than in adjacent open pastures. It was higher by 39% in SP-A and 20% in SP-T than in open pastures in the largest fraction size (250-2000 microm) and by 12.3 and 18.8%, respectively, in the intermediate size fraction (53-250 microm). The highest SOC increase (up to 45 kg m(-2)) in whole soil of silvopasture compared with OP was at the 75- to 125-cm depth at the Spodosol sites. The results support the hypothesis that, compared with open pastures, silvopastures contain more C in deeper soil layers under similar ecological settings, possibly as a consequence of a major input to soil organic matter from decomposition of dead tree-roots. PMID:18689740

  2. Soil quality differences in a mature alley cropping system in temperate North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alley cropping in agroforestry practices has been shown to improve soil quality, however information on long-term effects (>10 years) of alley cropping on soils in the temperate zone is very limited. The objective of this study was to examine effects of management, landscape, and soil depth on soil...

  3. Integrated plant nutrient system - with special emphasis on mineral nutriton and biofertilizers for Black pepper and cardamom - A review.

    PubMed

    K P, Sangeeth; R, Suseela Bhai

    2016-05-01

    Integrated Plant Nutrition System (IPNS) as a concept and farm management strategy embraces and transcends from single season crop fertilization efforts to planning and management of plant nutrients in crop rotations and farming systems on a long-term basis for enhanced productivity, profitability and sustainability. It is estimated that about two-thirds of the required increase in crop production in developing countries will have to come from yield increases from lands already under cultivation. IPNS enhances soil productivity through a balanced use of soil nutrients, chemical fertilizers, combined with organic sources of plant nutrients, including bio-inoculants and nutrient transfer through agro-forestry systems and has adaptation to farming systems in both irrigated and rainfed agriculture. Horticultural crops, mainly plantation crops, management practices include application of fertilizers and pesticides which become inevitable due to the depletion of soil organic matter and incidence of pests and diseases. The extensive use of chemical fertilizers in these crops deteriorated soil health that in turn affected the productivity. To revitalize soil health and to enhance productivity, it is inexorable to enrich the soil using microorganisms. The lacunae observed here is the lack of exploitation of indigenous microbes having the potential to fix atmospheric nitrogen (N) and to solubilize Phosphorus (P) and Potassium (K). The concept of biofertilizer application appears to be technically simple and financially feasible, but the task of developing biofertilizers with efficient strains in appropriate combinations in a consortia mode is not easier. More than developing consortia, a suitable delivery system to discharge the microbial inoculants warranted much effort. This review focuses on the integrated plant nutrition system incorporating biofertilizer with special emphasis on developing and formulating biofertilizer consortium. PMID:25834919

  4. Modeling Hydrological Services in Shade Grown Coffee Systems: Case Study of the Pico Duarte Region of the Dominican Republic

    NASA Astrophysics Data System (ADS)

    Erickson, J. D.; Gross, L.; Agosto Filion, N.; Bagstad, K.; Voigt, B. G.; Johnson, G.

    2010-12-01

    The modification of hydrologic systems in coffee-dominated landscapes varies widely according to the degree of shade trees incorporated in coffee farms. Compared to mono-cropping systems, shade coffee can produce both on- and off-farm benefits in the form of soil retention, moderation of sediment transport, and lower hydropower generating costs. The Pico Duarte Coffee Region and surrounding Madres de Las Aguas (Mother of Waters) Conservation Area in the Dominican Republic is emblematic of the challenges and opportunities of ecosystem service management in coffee landscapes. Shade coffee poly-cultures in the region play an essential role in ensuring ecosystem function to conserve water resources, as well as provide habitat for birds, sequester carbon, and provide consumptive resources to households. To model the provision, use, and flow of ecosystem services from coffee farms in the region, an application of the Artificial Intelligence for Ecosystem Services (ARIES) model was developed with particular focus on sediment regulation. ARIES incorporates an array of techniques from data mining, image analysis, neural networks, Bayesian statistics, information theory, and expert systems to model the production, delivery, and demand for ecosystem services. Geospatial data on slope, soils, and vegetation cover is combined with on-farm data collection of coffee production, tree diversity, and intercropping of household food. Given hydropower production and river recreation in the region, the management of sedimentation through on-farm practices has substantial, currently uncompensated value that has received recent attention as the foundation for a payment for ecosystem services system. Scenario analysis of the implications of agro-forestry management choices on farmer livelihoods and the multiple beneficiaries of farm-provided hydrological services provide a foundation for ongoing discussions in the region between local, national, and international interests.

  5. Impact of tree planting configuration on canopy interception and soil hydrological properties: Implications for flood mitigation in silvopastoral systems

    NASA Astrophysics Data System (ADS)

    Lunka, Peter; Patil, Sopan

    2015-04-01

    Compaction of upper soil layers by intensive sheep grazing has been connected with increased local flood risk in silvopastoral systems. A 12 week field study was conducted at the Henfaes Research Station near Bangor, Wales to compare two silvopastoral configurations, trees planted in fenced off clumps and trees planted evenly spaced, in terms of canopy throughfall, soil water infiltration and soil bulk density. The study's aim was to characterize the potential of these tree planting configurations to reduce local flood risk. The study site (Henfaes) was established in 1992 on 14 ha of agricultural land and is part of the Silvopastoral National Network Experiment sites that have been set up across the UK to examine the potential of silvopasture and agroforestry on UK farms. Automated throughfall gauges were installed in each silvopastoral treatment along with a similarly designed control gauge located in the grazed control pasture. Soil water infiltration and bulk density were measured 20 times in a stratified random design for each treatment and the control. Soil infiltration capacity in the clumped configuration was significantly higher than in the even spaced configuration and control pasture. The clumped configuration had mean infiltration capacity 504% greater than the control pasture and 454% greater than the even spaced configuration. Canopy interception was higher in the clumped trees than in the evenly spaced trees. Average canopy interception was 34% in the clumped treatment and 28% in the evenly spaced treatment. Soil bulk density was lower in the clumped configuration than in the control pasture and evenly spaced configuration. Results suggest that in silvopastoral systems the clumped tree configuration is more likely to reduce local flood risk than the evenly spaced tree configuration due to enhanced infiltration and increased canopy interception.

  6. Soil moisture mapping in an alley cropping system in Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Hallema, D. W.; Rousseau, A. N.; Gumiere, S. J.

    2012-12-01

    Alley cropping is an agroforestry practice whereby trees are planted in rows, thus creating alleyways within which companion crops are grown. The alley cropping systems as we call them may not only influence the local thermal energy balance by changes in airflow and solar irradiance, but also affect water uptake in plant roots and evapotranspiration. However, our understanding of the soil water balance and regulating mechanisms in alley cropping systems is very limited compared to what we know about the more common monoculture farming. Root systems of the trees are known to interact with soil water dynamics, in that they tend to grow in the direction of soil layers with a water content corresponding to a pF between 2-2.4, and conversely, water flows in the direction of decreasing hydraulic head, which, close to the root system, is in the direction of the roots when the trees absorb water by applying a suction gradient. As such, the trees in alley cropping systems either improve the resilience to drought by retaining more water in the upper soil layers, or they compete with the crops for water. With the eye on the future environmental conditions that may result from a shift in the local climate in southern Quebec, Canada, our objective is to characterize and evaluate the influence of alley cropping systems on soil water dynamics under various climate conditions. In order to evaluate the interaction between root system and soil water dynamics, we adopt an approach divided into three steps: (i) a field campaign where we monitor soil water patterns on an alley cropping site during the growing season; (ii) simulation of these soil water patterns with the HYDRUS model for two-dimensional movement of water; and (iii) the evolution of these patterns for a given scenario of climate change. Our submission focuses on the field campaign in which we used forty-five frequency domain reflectometers (FDR) along a 25-m transect perpendicular to the tree rows in order to monitor

  7. Soil carbon sequestration in rainfed production systems in the semiarid tropics of India.

    PubMed

    Srinivasarao, Ch; Lal, Rattan; Kundu, Sumanta; Babu, M B B Prasad; Venkateswarlu, B; Singh, Anil Kumar

    2014-07-15

    Severe soil organic carbon (SOC) depletion is a major constraint in rainfed agroecosystems in India because it directly influences soil quality, crop productivity and sustainability. The magnitude of soil organic, inorganic and total carbon stocks in the semi-arid bioclimate is estimated at 2.9, 1.9 and 4.8 Pg respectively. Sorghum, finger millet, pearl millet, maize, rice, groundnut, soybean, cotton, food legumes etc. are predominant crop production systems with a little, if any, recycling of organic matter. Data from the long term experiments on major rainfed production systems in India show that higher amount of crop residue C input (Mg/ha/y) return back to soil in soybean-safflower (3.37) system practiced in Vertisol region of central India. Long term addition of chemical fertilizer and organic amendments improved the SOC stock. For every Mg/ha increase in SOC stock in the root zone, there occurs an increase in grain yield (kg/ha) of 13, 101, 90, 170, 145, 18 and 160 for groundnut, finger millet, sorghum, pearl millet, soybean and rice, respectively. Long-term cropping without using any organic amendment and/or mineral fertilizers can severely deplete the SOC stock which is the highest in groundnut-finger millet system (0.92 Mg C/ha/y) in Alfisols. Some agroforestry systems also have a huge potential of C sequestration to the extent of 10Mg/ha/y in short rotation eucalyptus and Leucaena plantations. The critical level of C input requirements for maintaining SOC at the antecedent level ranges from 1.1 to 3.5 Mg C/ha/y and differs among soil type and production systems. National level policy interventions needed to promote sustainable use of soil and water resources include prohibiting residue burning, reducing deforestation, promoting integrated farming systems and facilitating payments for ecosystem services. A wide spread adoption of these measures can improve soil quality through increase in SOC sequestration and improvement in agronomic productivity of

  8. Diversity and communities of foliar endophytic fungi from different agroecosystems of Coffea arabica L. in two regions of Veracruz, Mexico.

    PubMed

    Saucedo-García, Aurora; Anaya, Ana Luisa; Espinosa-García, Francisco J; González, María C

    2014-01-01

    Over the past 20 years, the biodiversity associated with shaded coffee plantations and the role of diverse agroforestry types in biodiversity conservation and environmental services have been topics of debate. Endophytic fungi, which are microorganisms that inhabit plant tissues in an asymptomatic manner, form a part of the biodiversity associated with coffee plants. Studies on the endophytic fungi communities of cultivable host plants have shown variability among farming regions; however, the variability in fungal endophytic communities of coffee plants among different coffee agroforestry systems is still poorly understood. As such, we analyzed the diversity and communities of foliar endophytic fungi inhabiting Coffea arabica plants growing in the rustic plantations and simple polycultures of two regions in the center of Veracruz, Mexico. The endophytic fungi isolates were identified by their morphological traits, and the majority of identified species correspond to species of fungi previously reported as endophytes of coffee leaves. We analyzed and compared the colonization rates, diversity, and communities of endophytes found in the different agroforestry systems and in the different regions. Although the endophytic diversity was not fully recovered, we found differences in the abundance and diversity of endophytes among the coffee regions and differences in richness between the two different agroforestry systems of each region. No consistent pattern of community similarity was found between the coffee agroforestry systems, but we found that rustic plantations shared the highest number of morphospecies. The results suggest that endophyte abundance, richness, diversity, and communities may be influenced predominantly by coffee region, and to a lesser extent, by the agroforestry system. Our results contribute to the knowledge of the relationships between agroforestry systems and biodiversity conservation and provide information regarding some endophytic fungi and

  9. Diversity and Communities of Foliar Endophytic Fungi from Different Agroecosystems of Coffea arabica L. in Two Regions of Veracruz, Mexico

    PubMed Central

    Saucedo-García, Aurora; Anaya, Ana Luisa; Espinosa-García, Francisco J.; González, María C.

    2014-01-01

    Over the past 20 years, the biodiversity associated with shaded coffee plantations and the role of diverse agroforestry types in biodiversity conservation and environmental services have been topics of debate. Endophytic fungi, which are microorganisms that inhabit plant tissues in an asymptomatic manner, form a part of the biodiversity associated with coffee plants. Studies on the endophytic fungi communities of cultivable host plants have shown variability among farming regions; however, the variability in fungal endophytic communities of coffee plants among different coffee agroforestry systems is still poorly understood. As such, we analyzed the diversity and communities of foliar endophytic fungi inhabiting Coffea arabica plants growing in the rustic plantations and simple polycultures of two regions in the center of Veracruz, Mexico. The endophytic fungi isolates were identified by their morphological traits, and the majority of identified species correspond to species of fungi previously reported as endophytes of coffee leaves. We analyzed and compared the colonization rates, diversity, and communities of endophytes found in the different agroforestry systems and in the different regions. Although the endophytic diversity was not fully recovered, we found differences in the abundance and diversity of endophytes among the coffee regions and differences in richness between the two different agroforestry systems of each region. No consistent pattern of community similarity was found between the coffee agroforestry systems, but we found that rustic plantations shared the highest number of morphospecies. The results suggest that endophyte abundance, richness, diversity, and communities may be influenced predominantly by coffee region, and to a lesser extent, by the agroforestry system. Our results contribute to the knowledge of the relationships between agroforestry systems and biodiversity conservation and provide information regarding some endophytic fungi and

  10. Quantifying Human Appropriated Net Primary Productivity (HANPP) in a Ghanaian Cocoa System

    NASA Astrophysics Data System (ADS)

    Morel, A.; Adu-Bredu, S.; Adu Sasu, M.; Ashley Asare, R.; Boyd, E.; Hirons, M. A.; Malhi, Y.; Mason, J.; Norris, K.; Robinson, E. J. Z.; McDermott, C. L.

    2015-12-01

    Ghana is the second largest producer of cocoa (Theobroma cacoa), exporting approximately 18 percent of global volumes. These cocoa farms are predominantly small-scale, ranging in size from 2-4 hectares (ha). Traditionally, the model of cocoa expansion in Ghana relied on clearing new areas of forest and establishing a farm under remnant forest trees. This is increasingly less practical due to few unprotected forest areas remaining and management practices favoring close to full sun cocoa to maximize short-term yields. This study is part of a larger project, ECOLMITS, which is an interdisciplinary, ESPA-funded[1] initiative exploring the ecological limits of ecosystem system services (ESS) for alleviating poverty in small-scale agroforestry systems. The ecological study plots are situated within and around the Kakum National Forest, a well-protected, moist-evergreen forest of the Lower Guinea Forest region. Net primary productivity (NPP) is a measure of the rate at which carbon dioxide (CO2) is incorporated into plant tissues (e.g. canopy, stem and root). For this study, NPP was monitored in situ using methods developed by the Global Environmental Monitoring Network (GEM, http://gem.tropicalforests.ox.ac.uk/). By comparing NPP measured in intact forest and farms, the human appropriated NPP (HANPP) of this system can be estimated. The forest measures provide the "potential" NPP of the region, and then the reduction in NPP for farm plots is calculated for both land-cover change (HANPPLUC) and cocoa harvesting (HANPPHARV). The results presented are of the first year of NPP measurements across the cocoa landscape, including measurements from intact forest, logged forest and cocoa farms across a shade gradient and located at varying distances from the forest edge (e.g. 100 m, 500 m, 1 km and 5 km). These measures will have implications for carbon sequestration potential over the region and long-term sustainability of the Ghanaian cocoa sector. [1] Ecosystem Services for

  11. Making biodiversity-friendly cocoa pay: combining yield, certification, and REDD for shade management.

    PubMed

    Waldron, A; Justicia, R; Smith, L E

    2015-03-01

    The twin United Nations' Millennium Development Goals of biodiversity preservation and poverty reduction both strongly depend on actions in the tropics. In particular, traditional agroforestry could be critical to both biological conservation and human livelihoods in human-altered rainforest areas. However, traditional agroforestry is rapidly disappearing, because the system itself is economically precarious, and because the forest trees that shade traditional crops are now perceived to be overly detrimental to agricultural yield. Here, we show a case where the commonly used agroforestry shade metric, canopy cover, would indeed suggest complete removal of shade trees to maximize yield, with strongly negative biodiversity and climate implications. However, a yield over 50% higher was achievable if approximately 100 shade trees per hectare were planted in a spatially organized fashion, a win-win for biodiversity and the smallholder. The higher yield option was detected by optimizing simultaneously for canopy cover, and a second shade metric, neighboring tree density, which was designed to better capture the yield value of ecological services flowing from forest trees. Nevertheless, even a 50% yield increase may prove insufficient to stop farmers converting away from traditional agroforestry. To further increase agroforestry rents, we apply our results to the design of a sustainable certification (eco-labelling) scheme for cocoa-based products in a biodiversity hotspot, and consider their implications for the use of the United Nations REDD (reducing emissions from deforestation and forest degradation) program in agroforestry systems. Combining yield boost, certification, and REDD has the potential to incentivize eco-friendly agroforestry and lift smallholders out of poverty, simultaneously. PMID:26263660

  12. Winter wheat and summer shade

    NASA Astrophysics Data System (ADS)

    Artru, S.; Garre, S.; Lassois, L.; Dupraz, C.

    2014-12-01

    Agroforestry research is in full expansion, but uncertainty remains on the performance of combinations of species with regard to the broad range of possible species associations. In addition, the variability of environmental conditions under which agroforestry stands can be successfully developed is unknown. Under Belgian pedoclimatic conditions, tree-crop competition for light might be the principal limiting factor in the agroforestry context. Most studies show that shade stress induces a systematic reduction of final crop yield. However, the response of a specific crop to shade is highly dependent on environmental conditions. In agroforestry systems, the tree canopy reduces the incident radiation for the crop following a dynamic spatio-temporal pattern. In this study, we will report on the efficiency of wheat under artificial dynamic shade in the experimental farm of Gembloux Agro-Bio Tech, Belgium in order to evaluate it's potential for agroforestry purposes in the same region. Wheat productivity and development under artificial shade conditions have been monitored during 1 year and the observations will be continued for 2 more years. We constructed an artificial shade structure, which mimics the light environment observed under hybrid walnut agroforestry trees: periodic fluctuation in radiation transmittance and discontinuous light quantity. We collected information on biomass development, soil state and radiation patterns in the field. Using this data, we evaluated the influence of dynamic shade, light availability and the efficiency with which energy is converted in wheat dry matter under the artificial shade treatment. This, in combination with modeling, will allow a thorough study of the potential of wheat-walnut agroforestry systems in the Hesbaye region in Belgium.

  13. System requirements. [Space systems

    SciTech Connect

    Austin, R.E.

    1982-06-01

    Requirements of future space systems, including large space systems, that operate beyond the space shuttle are discussed. Typical functions required of propulsion systems in this operational regime include payload placement, retrieval, observation, servicing, space debris control and support to large space systems. These functional requirements are discussed in conjunction with two classes of propulsion systems: (1) primary or orbit transfer vehicle (OTV) and (2) secondary or systems that generally operate within or relatively near an operational base orbit. Three propulsion system types are described in relation to these requirements: cryogenic OTV, teleoperator maneuvering system and a solar electric OTV.

  14. Soil and pasture P concentration in a Fraxinus excelsior L. silvopastoral system fertilised with different types of sewage sludge

    NASA Astrophysics Data System (ADS)

    Ferreiro-Domínguez, Nuria; Nair, Vimala; Rigueiro-Rodríguez, Antonio; Rosa Mosquera-Losada, María

    2015-04-01

    In Europe, sewage sludge should be stabilised before using as fertiliser in agriculture. Depending on the stabilisation process that is used, sewage sludge has different characteristics, nutrient contents and soil nutrient incorporation rates. Sewage sludge is usually applied on a plant-available N or total metal concentration basic, and therefore, P concentrations can be well above crop needs. Leaching of excess P can threaten surface and ground waters with eutrophication. In this context, recent studies have demonstrated that the implementation of agroforestry systems could reduce the P leaching risk compared with conventional agricultural systems due to the different localisation of tree and crop roots which enhance nutrient uptake. The aim of this study was to evaluate during three consecutive years the effect of municipal sewage sludge stabilised by anaerobic digestion, composting, and pelletisation on concentration of P in soil and pasture compared to control treatments (mineral and no fertilisation) in a silvopastoral system established under Fraxinus excelsior L. in Galicia (Spain). The results showed that at the beginning of the study, the fertilisation with mineral increased more the total and available P in soil than the fertilisation with sewage sludge probably because the sludge nutrient release rate is slower than those from mineral fertilisers. The increment of soil available P caused by the mineral fertiliser implied an improvement of the P concentration in the pasture. However, in the last year of the experiment it was observed a positive effect of the fertilisation with pelletised sludge on the concentration of P in pasture compared with the composted sludge and the mineral fertiliser probably due to the annual application of this type of sludge. Therefore, the establishment of silvopastoral systems and their fertilisation with pelletized sludge should be recommended because the pelletized sludge increases the concentration of P in the pasture and

  15. Veterinary antibiotic sorption and transport through agroforestry buffer, grass buffer and cropland soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Veterinary antibiotics (VAs), such as sulfamethazine (SMZ) are released into the environment by application of manure to agricultural fields. Understanding the fate and transport of VAs is important for assessing and mitigating possible environmental hazards. To study the effects of dissolved organi...

  16. POTENTIAL OF FORESTRY AND AGROFORESTRY PRACTICES TO STORE CARBON IN THE TROPICS

    EPA Science Inventory

    Terrestrial vegetation plays a pivotal role in the global carbon cycle. ot only are tremendous amounts of. carbon stored in terrestrial egetation, but large amounts are also actively exchanged,between vegetation and the atmosphere. his suggests that vegetation, and specifically f...

  17. Branching out: Agroforestry as a climate change mitigation and adaptation tool for agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The United States and Canadian agricultural lands are being targeted to provide more environmental and economic services while at the same time their capacity to provide these services under potential climate change (CC) is being questioned. Predictions of future climate conditions include longer gr...

  18. APEX Model Simulation for Row Crop Watersheds with Agroforestry and Grass Buffers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Watershed model simulation has become an important tool in studying ways and means to reduce transport of agricultural pollutants. Conducting field experiments to assess buffer influences on water quality are constrained by the large-scale nature of watersheds, high experimental costs, private owner...

  19. Agroforestry: Conifers. (Latest citations from the Cab Abstracts database). NewSearch

    SciTech Connect

    Not Available

    1994-10-01

    The bibliography contains citations concerning the use of lands forested with conifers for crop and livestock production. Citations cover the grazing of livestock and the production of crops, including tomatoes, soybeans, lespedeza, wheat, rape, taro, cotton, cabbages, ginger, watermelons, and strawberries. Livestock discussed include cattle, sheep, geese, and horses. Economic analyses and economic models are presented. (Contains a minimum of 147 citations and includes a subject term index and title list.)

  20. Apex simulation: environmental benefits of agroforestry and grass buffers for corn-soybean watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Agricultural Policy Environmental Extender (APEX) model is used to simulate the effects of vegetative filter strips on runoff and pollutant loadings from agricultural watersheds. A long-term paired watershed study under corn (Zea mays L-soybean [Glycine max (L.) Merr.] rotation with agroforestr...

  1. APEX simulation: environmental benefits of agroforestry and grass buffers on corn-soybean watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Agricultural Policy Environmental Extender (APEX) model has the ability to simulate the effects of vegetative filter strips on runoff and pollutant loadings from agricultural watersheds. The objectives of this study were to calibrate and validate the APEX model for three adjacent watersheds and...

  2. Application of root bioassays to detect nutrient deficiencies in fast-growing trees and agroforestry crops

    SciTech Connect

    Harrison, A.F.; Dighton, J.; Jones, H.E.

    1992-12-31

    A new method for the detection of nutrient deficiencies is outlined and recommended as an alternative to conventional soil and foliar analyses. Bioassays are conducted to measure the uptake and supply of the macronutrients. Examples are quoted of the successful use of this technique with Eucalyptus and Sitka spruce. The bioassays have been shown to give equally good results with a range of tree and ground crops.

  3. Soil quality indicator responses to row crop, grazed pasture, and agroforestry buffer management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incorporation of trees and establishment of grass buffers within agroecosystems are management practices shown to enhance soil quality. Soil enzyme activities and water stable aggregates (WSA) have been identified as sensitive soil quality indicators to evaluate early responses to soil management. ...

  4. Microsatellites for Carpotroche brasiliensis (Flacourtiaceae), a useful species for agroforestry and ecosystem conservation1

    PubMed Central

    Bittencourt, Flora; Alves, Jackeline S.; Gaiotto, Fernanda A.

    2015-01-01

    Premise of the study: We developed microsatellite markers for Carpotroche brasiliensis (Flacourtiaceae), a dioecious tree that is used as a food resource by midsize animals of the Brazilian fauna. Methods and Results: We designed 30 primer pairs using next-generation sequencing and classified 25 pairs as polymorphic. Observed heterozygosity ranged from 0.5 to 1.0, and expected heterozygosity ranged from 0.418 to 0.907. The combined probability of exclusion was greater than 0.999 and the combined probability of identity was less than 0.001, indicating that these microsatellites are appropriate for investigations of genetic structure, individual identification, and paternity testing. Conclusions: The developed molecular tools may contribute to future studies of population genetics, answering ecological and evolutionary questions regarding efficient conservation strategies for C. brasiliensis. PMID:26697275

  5. Recreation and Agroforestry: Examining New Dimensions of Multifunctionality in Family Farms

    ERIC Educational Resources Information Center

    Barbieri, Carla; Valdivia, Corinne

    2010-01-01

    Multifunctionality serves as an analytical framework to recognize many services that farms provide to their surrounding communities and society. This study explores an often overlooked dimension of multifunctionality by examining different recreational services provided by landowners in Missouri and analyzing the relationship between recreational…

  6. An educational program for training beginning farmers in sustainable poultry, livestock and agroforestry production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a pressing need to rejuvenate rural populations in this country with new and innovative ventures. Investing resources in beginning farmers is one way to make rural populations more vibrant. However, beginning farmers lack adequate farm skills and background to initiate and maintain viable a...

  7. Large-scale investment in green space as an intervention for physical activity, mental and cardiometabolic health: study protocol for a quasi-experimental evaluation of a natural experiment

    PubMed Central

    Astell-Burt, Thomas; Feng, Xiaoqi; Kolt, Gregory S

    2016-01-01

    Introduction ‘Green spaces’ such as public parks are regarded as determinants of health, but evidence from tends to be based on cross-sectional designs. This protocol describes a study that will evaluate a large-scale investment in approximately 5280 hectares of green space stretching 27 km north to south in Western Sydney, Australia. Methods and analysis A Geographic Information System was used to identify 7272 participants in the 45 and Up Study baseline data (2006–2008) living within 5 km of the Western Sydney Parklands and some of the features that have been constructed since 2009, such as public access points, advertising billboards, walking and cycle tracks, BBQ stations, and children's playgrounds. These data were linked to information on a range of health and behavioural outcomes, with the second wave of data collection initiated by the Sax Institute in 2012 and expected to be completed by 2015. Multilevel models will be used to analyse potential change in physical activity, weight status, social contacts, mental and cardiometabolic health within a closed sample of residentially stable participants. Comparisons between persons with contrasting proximities to different areas of the Parklands will provide ‘treatment’ and ‘control’ groups within a ‘quasi-experimental’ study design. In line with expectations, baseline results prior to the enhancement of the Western Sydney Parklands indicated virtually no significant differences in the distribution of any of the outcomes with respect to proximity to green space preintervention. Ethics and dissemination Ethical approval was obtained for the 45 and Up Study from the University of New South Wales Human Research Ethics Committee. Ethics approval for this study was obtained from the University of Western Sydney Ethics Committee. Findings will be disseminated through partner organisations (the Western Sydney Parklands and the National Heart Foundation of Australia), as well as to policymakers in

  8. Biodiversity Conservation, Ecosystem Services and Livelihoods in Tropical Landscapes: Towards a Common Agenda

    NASA Astrophysics Data System (ADS)

    Schroth, Götz; McNeely, Jeffrey A.

    2011-08-01

    Trade-offs between ecosystem conservation and agricultural production can more easily be addressed by shifting the view from the plot scale to the scale of the landscape and integrating biodiversity friendly land use systems into development strategies. The provision of ecosystem services such as watershed protection and carbon sequestration by natural and complex agro-ecosystems can play an important role in making such integrated landscape approaches viable. This special issue brings together papers that were presented at a symposium on agroforestry and landscape scale conservation at the Second World Agroforestry Congress in Nairobi in August 2009. It is divided into two sections focusing on: (1) the biological mechanisms and implications of landscape scale conservation strategies as influenced by land use, especially agroforestry; and (2) the economic drivers and public policies that determine to a large extent the success of agroforestry-based landscape conservation strategies. The contributions provide evidence both for the potential and limitations of agroforestry in landscape scale conservation and development strategies and highlight the importance of economic incentives and policies to promote integrated landscape solutions. This introductory paper summarizes and discusses the contributions and concludes with policy recommendations and research needs.

  9. High Contribution of Gallery Forests to Local Evaporation in Semi-Arid Burkina Faso

    NASA Astrophysics Data System (ADS)

    Ceperley, N. C.; Mande, T.; Tyler, S. W.; Van De Giesen, N.; Rinaldo, A.; Parlange, M. B.

    2014-12-01

    Management of the hydrologic cycle is critical to the primary livelihood of a large part of semi-arid West Africa's primary livelihood, rain-fed farming. We use flux measurements from an eddy-covariance station coupled with a dense network of small wireless meteorological stations to examine the relationship between land surface properties (albedo, soil moisture, and roughness) and evapotranspiration in a small (3.5 km2) catchment in Burkina Faso, West Africa. The catchment is a matrix of savanna and agricultural land maintained under various regimes, providing a comparison of multiple land use types of Sudanian Wooded Savanna including a canyon gallery forest, agroforestry parklands, occasionally grazed semi-open savanna, a semi-closed wooded slope, fallow fields, rice paddies, and ephemeral wetlands. By filtering out times when dry air was entrained, we demonstrate the small control of soil moisture and vegetation on the evaporative fraction, which was not initially visible. Additionally we document the high contribution of the gallery forest to the the catchment evaporation, despite its small size. These small meteorological stations could be paired with currently available satellite data to calculate evaporation over a much larger area, even when eddy-covariance equipment is not available. These findings reinforce local cultural beliefs of the importance of gallery forests for climate regulation and may provide tools to key local decision makers, rural farmers.

  10. Assessment of promising forest-management practices and technologies for enhancing the conservation and sequestration of atmospheric carbon and their costs at the site level

    SciTech Connect

    Dixon, R.K.; Schroeder, P.E.; Winjum, J.K.

    1991-10-01

    The objectives of the report are to assess and synthesize current knowledge on three policy-science topics: (1) Identify promising technologies and practices that could be utilized at technically suitable sites in the world to manage forests and agroforestry systems for sequestering and conserving carbon; (2) Assess available data on costs at the site level for promising forest and agroforestry management practices; and (3) Evaluate estimates of land technically suitable in forested nations and biomes of the world to help meet the Noordwijk forestation targets and the proposed Global Forest Agreement goals.

  11. Solar system positioning system

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I.; Chui, Talso

    2006-01-01

    Power-rich spacecraft envisioned in Prometheus initiative open up possibilities for long-range high-rate communication. A constellation of spacecraft on orbits several A.U. from the Sun, equipped with laser transponders and precise clocks can be configured to measure their mutual distances to within few cm. High on-board power can create substantial non-inertial contribution to the spacecraft trajectory. We propose to alleviate this contribution by employing secondary ranging to a passive daughter spacecraft. Such constellation can form the basis of it navigation system capable of providing position information anywhere in the soIar system with similar accuracy. Apart from obvious Solar System exploration implications, this system can provide robust reference for GPS and its successors.

  12. Cabruca agroforests of southern Bahia Brazil: tree component, management, species conservation and sustainability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In southern Bahia, cabruca is the agroforestry system in which cocoa is cultivated under the shade of sparse native forest trees. Aiming to characterize the tree component of this system and its management practices, we conducted an inventory of the non-cocoa trees in 16 ha of cabruca and do intervi...

  13. Cabruca its agrobiodiversity potential on small farmers in Southern region of Bahia, Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Cacao Cabruca Agroforestry system of production was developed by farmers in Bahia over 200 years ago. This system consists of planting cacao under the shade of trees in the Atlantic rain forest and has on an average 693 cacao plants and 93 trees per hectare. Even though the local community utili...

  14. Systems autonomy

    NASA Technical Reports Server (NTRS)

    Lum, Henry, Jr.

    1988-01-01

    Information on systems autonomy is given in viewgraph form. Information is given on space systems integration, intelligent autonomous systems, automated systems for in-flight mission operations, the Systems Autonomy Demonstration Project on the Space Station Thermal Control System, the architecture of an autonomous intelligent system, artificial intelligence research issues, machine learning, and real-time image processing.

  15. The Impact of Policy and Institutional Environment on Costs and Benefits of Sustainable Agricultural Land Uses: The Case of the Chittagong Hill Tracts, Bangladesh

    NASA Astrophysics Data System (ADS)

    Rasul, Golam; Thapa, Gopal B.

    2007-08-01

    As in other mountain regions of Asia, agricultural lands in the Chittagong Hill Tracts (CHT) of Bangladesh are undergoing degradation due primarily to environmentally incompatible land-use systems such as shifting cultivation ( jhum) and annual cash crops. The suitable land-use systems such as agroforestry and timber tree plantation provide benefit to the society at large, but they might not provide attractive economic benefits to farmers, eventually constraining a wide-scale adoption of such land-use systems. Therefore, it is essential to evaluate agricultural land-use systems from both societal and private perspectives in the pursuit of promoting particularly environmentally sustainable systems. This article evaluated five major land-use systems being practiced in CHT, namely jhum, annual cash crops, horticulture, agroforestry, and timber plantation. The results of the financial analysis revealed the annual cash crops as the most attractive land use and jhum as the least attractive of the five land-use systems considered under the study. Horticulture, timber plantation, and agroforestry, considered to be suitable land-use systems particularly for mountainous areas, held the middle ground between these two systems. Annual cash crops provided the highest financial return at the cost of a very high rate of soil erosion. When the societal cost of soil erosion is considered, annual cash crops appear to be the most costly land-use system, followed by jhum and horticulture. Although financially less attractive compared to annual cash crops and horticulture, agroforestry and timber plantation are the socially most beneficial land-use systems. Findings of the alternative policy analyses indicate that there is a good prospect for making environmentally sustainable land-use systems, such as agroforestry and timber plantation, attractive for the farmers by eliminating existing legal and institutional barriers, combined with the provision of necessary support services and

  16. Immune System

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Immune System KidsHealth > For Teens > Immune System Print A A ... could put us out of commission. What the Immune System Does The immune (pronounced: ih-MYOON) system, which ...

  17. Mapping of invasive Acacia species in Brazilian Mussununga ecosystems using high- resolution IR remote sensing data acquired with an autonomous Unmanned Aerial System (UAS)

    NASA Astrophysics Data System (ADS)

    Lehmann, Jan Rudolf Karl; Zvara, Ondrej; Prinz, Torsten

    2015-04-01

    The biological invasion of Australian Acacia species in natural ecosystems outside Australia has often a negative impact on native and endemic plant species and the related biodiversity. In Brazil, the Atlantic rainforest of Bahia and Espirito Santo forms an associated type of ecosystem, the Mussununga. In our days this biologically diverse ecosystem is negatively affected by the invasion of Acacia mangium and Acacia auriculiformis, both introduced to Brazil by the agroforestry to increase the production of pulp and high grade woods. In order to detect the distribution of Acacia species and to monitor the expansion of this invasion the use of high-resolution imagery data acquired with an autonomous Unmanned Aerial System (UAS) proved to be a very promising approach. In this study, two types of datasets - CIR and RGB - were collected since both types provide different information. In case of CIR imagery attention was paid on spectral signatures related to plants, whereas in case of RGB imagery the focus was on surface characteristics. Orthophoto-mosaics and DSM/DTM for both dataset were extracted. RGB/IHS transformations of the imagery's colour space were utilized, as well as NDVIblue index in case of CIR imagery to discriminate plant associations. Next, two test areas were defined in order validate OBIA rule sets using eCognition software. In case of RGB dataset, a rule set based on elevation distinction between high vegetation (including Acacia) and low vegetation (including soils) was developed. High vegetation was classified using Nearest Neighbour algorithm while working with the CIR dataset. The IHS information was used to mask shadows, soils and low vegetation. Further Nearest Neighbour classification was used for distinction between Acacia and other high vegetation types. Finally an accuracy assessment was performed using a confusion matrix. One can state that the IHS information appeared to be helpful in Acacia detection while the surface elevation

  18. ASSESSMENT OF PROMISING FOREST MANAGEMENT PRACTICES AND TECHNOLOGIES FOR ENHANCING THE CONSERVATION AND SEQUESTRATION OF ATMOSPHERIC CARBON AND THEIR COSTS AT SITE LEVEL

    EPA Science Inventory

    The objectives of this report are to assess and synthesize current knowledge on three policy-science topics: ) Identify promising technologies and practices that could be utilized at technically suitable sites in the world to manage forests and agroforestry systems for sequesteri...

  19. Cacao genomics and the development of a marker-assisted-selection program for cacao

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Theobroma cacao L. is an understory tree from the Amazon basin that can be cultivated in a sustainable agro-forestry system. Four main genetic groups of cacao are traditionally described: Criollo, Trinitario, and lower and upper Amazon Forastero. Production of cacao in tropical America has been seve...

  20. Estimating surface energy fluxes over an Andalusian Dehesa ecosystem using a thermal-based two-source energy balance model and validation with flux tower measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Dehesa, the most widespread agroforestry land-use system in Europe (˜ 3 million ha), is recognized as an example of sustainable land use and for its importance in the rural economy (Diaz et al., 1997; Plieninger and Wilbrand, 2001). It consists of widely-spaced oak forest (mostly Quercus Ilex L....

  1. Sustainable development and use of ecosystems with non-forest trees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Non-forest trees are components of managed ecosystems including orchards and agroforestry systems and natural ecosystems such as savannas and riparian corridors. Each of these ecosystems includes trees but does not have a complete tree canopy or spatial extent necessary to create a true forest ecosy...

  2. Intercropping of two Leucaena spp. with sweet potato: yield, growth rate and biomass

    SciTech Connect

    Swift, J.F.

    1982-01-01

    Results of trials with Leucaena leucocephala and Leucaena diversifolia at Wau, Papua New Guinea, showed potential benefits of the agroforestry cropping system. The total biomass yield (sweet potato plus firewood and green manure) was considerably greater than the yield per unit area of sweet potato alone. 3 references.

  3. Modelling surface energy fluxes over a Dehesa ecosystem using a two-source energy balance model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Dehesa is the most widespread agroforestry land-use system in Europe, covering more than 3 million hectares in the Iberian Peninsula and Greece (Grove and Rackham, 2001; Papanastasis, 2004). It is an agro-silvo-pastural ecosystem consisting of widely-spaced oak trees (mostly Quercus ilex L.), co...

  4. Evaluation of soil quality in areas of cocoa cabruca, forest and multicropping in southern Bahia, Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Atlantic Rain Forest is one of the most complex natural environments of the earth and, linked with this ecosystem, the cacao-cabruca system is agroforestry cultivation with an arrangement including a range of environmental, social and economical benefits and can protect many features of the biod...

  5. Modeling of afforestation possibilities on one part of Hungary

    NASA Astrophysics Data System (ADS)

    Bozsik, Éva; Riczu, Péter; Tamás, János; Burriel, Charles; Helilmeier, Hermann

    2015-04-01

    Agroforestry systems are part of the history of the European Union rural landscapes, but the regional increase of size of agricultural parcels had a significant effect on European land use in the 20th century, thereby it has radically reduced the coverage of natural forest. However, this cause conflicts between interest of agricultural and forestry sectors. The agroforestry land uses could be a solution of this conflict management. One real - ecological - problem with the remnant forests and new forest plantation is the partly missing of network function without connecting ecological green corridors, the other problem is verifiability for the agroforestry payment system, monitoring the arable lands and plantations. Remote sensing methods are currently used to supervise European Union payments. Nowadays, next to use satellite imagery the airborne hyperspectral and LiDAR (Light Detection And Ranging) remote sensing technologies are becoming more widespread use for nature, environmental, forest, agriculture protection, conservation and monitoring and it is an effective tool for monitoring biomass production. In this Hungarian case study we made a Spatial Decision Support System (SDSS) to create agroforestry site selection model. The aim of model building was to ensure the continuity of ecological green corridors, maintain the appropriate land use of regional endowments. The investigation tool was the more widely used hyperspectral and airborne LiDAR remote sensing technologies which can provide appropriate data acquisition and data processing tools to build a decision support system

  6. Systems Thinking (and Systems Doing).

    ERIC Educational Resources Information Center

    Brethower, Dale M.; Dams, Peter-Cornelius

    1999-01-01

    Introduces human performance technology (HPT) by answering the following questions related to: what systems does; practical issues and questions to which systems thinking is relevant; research questions and answers with respect to systems thinking; how HPT practitioners can do systems thinking; systems thinking tools; what is and is not known…

  7. Discovery Systems

    NASA Technical Reports Server (NTRS)

    Pell, Barney

    2003-01-01

    A viewgraph presentation on NASA's Discovery Systems Project is given. The topics of discussion include: 1) NASA's Computing Information and Communications Technology Program; 2) Discovery Systems Program; and 3) Ideas for Information Integration Using the Web.

  8. Crystal Systems.

    ERIC Educational Resources Information Center

    Schomaker, Verner; Lingafelter, E. C.

    1985-01-01

    Discusses characteristics of crystal systems, comparing (in table format) crystal systems with lattice types, number of restrictions, nature of the restrictions, and other lattices that can accidently show the same metrical symmetry. (JN)

  9. Concentrator Systems

    NASA Astrophysics Data System (ADS)

    Luque-Heredia, Ignacio; Luque, Antonio

    2015-10-01

    The following sections are included: * Introduction * The early development of CPV * Concentrator solar cells * Optics for photovoltaic concentrators * Photovoltaic concentration modules * Tracking systems for photovoltaic concentration * High-concentration systems * Rating and performance * Cost considerations * Conclusions * References

  10. Fluid Management System (FMS) fluid systems overview

    NASA Technical Reports Server (NTRS)

    Baird, R. S.

    1990-01-01

    Viewgraphs on fluid management system (FMS) fluid systems overview are presented. Topics addressed include: fluid management system description including system requirements (integrated nitrogen system, integrated water system, and integrated waste gas system) and physical description; and fluid management system evolution.