Science.gov

Sample records for partial molar entropy

  1. Quadrupole terms in the Maxwell equations: Born energy, partial molar volume, and entropy of ions

    NASA Astrophysics Data System (ADS)

    Slavchov, Radomir I.; Ivanov, Tzanko I.

    2014-02-01

    A new equation of state relating the macroscopic quadrupole moment density {seriesshape Q} to the gradient of the field ∇E in an isotropic fluid is derived: {seriesshape Q} = αQ(∇E - {series U}∇.E/3), where the quadrupolarizability αQ is proportional to the squared molecular quadrupole moment. Using this equation of state, a generalized expression for the Born energy of an ion dissolved in quadrupolar solvent is obtained. It turns out that the potential and the energy of a point charge in a quadrupolar medium are finite. From the obtained Born energy, the partial molar volume and the partial molar entropy of a dissolved ion follow. Both are compared to experimental data for a large number of simple ions in aqueous solutions. From the comparison the value of the quadrupolar length LQ is determined, LQ = (αQ/3ɛ)1/2 = 1-4 Å. Data for ion transfer from aqueous to polar oil solution are analyzed, which allowed for the determination of the quadrupolarizability of nitrobenzene.

  2. Molar heat capacity and entropy of calcium metal

    USGS Publications Warehouse

    Hemingway, B.S.; Robie, R.A.; Chase, M.W.

    1997-01-01

    The heat capacity of calcium has been measured at 85 mean temperatures between T ??? 8 K and T ??? 369 K using an adiabatically-shielded calorimeter in an intermittent heating mode. At T = 298.15 K, the recommended values for the molar heat capacity, molar entropy, and molar enthalpy increment referred to T = 0 are (25.77 ?? 0.08) J??K-1??mol-1, (42.90 ?? 0.11) J??K-1??mol-1, and (5811 ?? 12) J??mol-1, respectively. The uncertainties are twice the standard deviation of the mean. ?? 1997 Academic Press Limited.

  3. Partial transfer entropy on rank vectors

    NASA Astrophysics Data System (ADS)

    Kugiumtzis, D.

    2013-06-01

    For the evaluation of information flow in bivariate time series, information measures have been employed, such as the transfer entropy (TE), the symbolic transfer entropy (STE), defined similarly to TE but on the ranks of the components of the reconstructed vectors, and the transfer entropy on rank vectors (TERV), similar to STE but forming the ranks for the future samples of the response system with regard to the current reconstructed vector. Here we extend TERV for multivariate time series, and account for the presence of confounding variables, called partial transfer entropy on ranks (PTERV). We investigate the asymptotic properties of PTERV, and also partial STE (PSTE), construct parametric significance tests under approximations with Gaussian and gamma null distributions, and show that the parametric tests cannot achieve the power of the randomization test using time-shifted surrogates. Using simulations on known coupled dynamical systems and applying parametric and randomization significance tests, we show that PTERV performs better than PSTE but worse than the partial transfer entropy (PTE). However, PTERV, unlike PTE, is robust to the presence of drifts in the time series and it is also not affected by the level of detrending.

  4. Determination of partial molar volumes from free energy perturbation theory†

    PubMed Central

    Vilseck, Jonah Z.; Tirado-Rives, Julian

    2016-01-01

    Partial molar volume is an important thermodynamic property that gives insights into molecular size and intermolecular interactions in solution. Theoretical frameworks for determining the partial molar volume (V°) of a solvated molecule generally apply Scaled Particle Theory or Kirkwood–Buff theory. With the current abilities to perform long molecular dynamics and Monte Carlo simulations, more direct methods are gaining popularity, such as computing V° directly as the difference in computed volume from two simulations, one with a solute present and another without. Thermodynamically, V° can also be determined as the pressure derivative of the free energy of solvation in the limit of infinite dilution. Both approaches are considered herein with the use of free energy perturbation (FEP) calculations to compute the necessary free energies of solvation at elevated pressures. Absolute and relative partial molar volumes are computed for benzene and benzene derivatives using the OPLS-AA force field. The mean unsigned error for all molecules is 2.8 cm3 mol−1. The present methodology should find use in many contexts such as the development and testing of force fields for use in computer simulations of organic and biomolecular systems, as a complement to related experimental studies, and to develop a deeper understanding of solute–solvent interactions. PMID:25589343

  5. Determination of partial molar volumes from free energy perturbation theory.

    PubMed

    Vilseck, Jonah Z; Tirado-Rives, Julian; Jorgensen, William L

    2015-04-01

    Partial molar volume is an important thermodynamic property that gives insights into molecular size and intermolecular interactions in solution. Theoretical frameworks for determining the partial molar volume (V°) of a solvated molecule generally apply Scaled Particle Theory or Kirkwood-Buff theory. With the current abilities to perform long molecular dynamics and Monte Carlo simulations, more direct methods are gaining popularity, such as computing V° directly as the difference in computed volume from two simulations, one with a solute present and another without. Thermodynamically, V° can also be determined as the pressure derivative of the free energy of solvation in the limit of infinite dilution. Both approaches are considered herein with the use of free energy perturbation (FEP) calculations to compute the necessary free energies of solvation at elevated pressures. Absolute and relative partial molar volumes are computed for benzene and benzene derivatives using the OPLS-AA force field. The mean unsigned error for all molecules is 2.8 cm(3) mol(-1). The present methodology should find use in many contexts such as the development and testing of force fields for use in computer simulations of organic and biomolecular systems, as a complement to related experimental studies, and to develop a deeper understanding of solute-solvent interactions. PMID:25589343

  6. Kullback relative entropy and characterization of partially polarized optical waves.

    PubMed

    Réfrégier, Philippe; Goudail, François

    2006-03-01

    Different properties of partially polarized light are discussed using the Kullback relative entropy, which provides a physically meaningful measure of proximity between probability density functions (PDFs). For optical waves with a Gaussian PDF, the standard degree of polarization is a simple function of the Kullback relative entropy between the considered optical light and a totally depolarized light of the same intensity. It is shown that the Kullback relative entropies between different PDFs allow one to define other properties such as a degree of anisotropy and a degree of non-Gaussianity. It is also demonstrated that, in dimension three, the Kullback relative entropy between a partially polarized light and a totally depolarized light can lead to natural definitions of two degrees of polarization needed to characterize the polarization state. These analyses enlighten the physical meaning of partial polarization of light waves in terms of a measure of disorder provided by the Shannon entropy. PMID:16539066

  7. Characterization of Early Partial Seizure Onset: Frequency, Complexity and Entropy

    PubMed Central

    Jouny, Christophe C.; Bergey, Gregory K.

    2011-01-01

    Objective A clear classification of partial seizures onset features is not yet established. Complexity and entropy have been very widely used to describe dynamical systems, but a systematic evaluation of these measures to characterize partial seizures has never been performed. Methods Eighteen different measures including power in frequency bands up to 300Hz, Gabor atom density (GAD), Higuchi fractal dimension (HFD), Lempel-Ziv complexity, Shannon entropy, sample entropy, and permutation entropy, were selected to test sensitivity to partial seizure onset. Intracranial recordings from forty-five patients with mesial temporal, neocortical temporal and neocortical extratemporal seizure foci were included (331 partial seizures). Results GAD, Lempel-Ziv complexity, HFD, high frequency activity, and sample entropy were the most reliable measures to assess early seizure onset. Conclusions Increases in complexity and occurrence of high-frequency components appear to be commonly associated with early stages of partial seizure evolution from all regions. The type of measure (frequency-based, complexity or entropy) does not predict the efficiency of the method to detect seizure onset. Significance Differences between measures such as GAD and HFD highlight the multimodal nature of partial seizure onsets. Improved methods for early seizure detection may be achieved from a better understanding of these underlying dynamics. PMID:21872526

  8. Entropy and convexity for nonlinear partial differential equations

    PubMed Central

    Ball, John M.; Chen, Gui-Qiang G.

    2013-01-01

    Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue. PMID:24249768

  9. Reduced radiation-absorbed dose to tissues with partial panoramic radiography for evaluation of third molars.

    PubMed

    Kircos, L T; Eakle, W S; Smith, R A

    1986-05-01

    The radiation-absorbed doses from panoramic radiography, distal molar radiography, and a partial panoramic radiographic technique that exposes only the third molar region to radiation are compared. Doses of radiation to the submandibular salivary gland were comparable by all three techniques, but doses of radiation to the head and neck were reduced greatly by the partial panoramic radiographic technique. Partial panoramic radiography is a diagnostically satisfactory and a radiologically safer technique for evaluation of third molar pathosis than is panoramic or distal molar radiography. PMID:3458783

  10. Reduced radiation-absorbed dose to tissues with partial panoramic radiography for evaluation of third molars

    SciTech Connect

    Kircos, L.T.; Eakle, W.S.; Smith, R.A.

    1986-05-01

    The radiation-absorbed doses from panoramic radiography, distal molar radiography, and a partial panoramic radiographic technique that exposes only the third molar region to radiation are compared. Doses of radiation to the submandibular salivary gland were comparable by all three techniques, but doses of radiation to the head and neck were reduced greatly by the partial panoramic radiographic technique. Partial panoramic radiography is a diagnostically satisfactory and a radiologically safer technique for evaluation of third molar pathosis than is panoramic or distal molar radiography.

  11. Partial molar volume of L-Valine in water under high pressure

    NASA Astrophysics Data System (ADS)

    Sawamura, Seiji

    2013-06-01

    Partial molar volume of L-valine in water was estimated up to 400 MPa from pressure coefficient of the solubility of the solute and molar volume of solid valine. The former was measured in a previous paper and the latter was measured in this article using a piston-cylinder typed cell. The partial molar volume increased with pressure and a maximum was observed around 250 MPa. It was compared with other amino acids.

  12. Prenatal screening tests may be a warning for the partial molar pregnancy? case report

    PubMed Central

    Sargin, Mehmet Akif; Tug, Niyazi; Yassa, Murat; Yavuz, Arzu

    2015-01-01

    Prenatal screening tests are frequently requested for chromosomal abnormalities. Placental pathologies in early pregnancy may be overlooked, especially in partial molar pregnancy. We are reporting an incorrect preliminary diagnosed case with an increased risk of Down syndrome in her first-trimester screening test due to partial molar pregnancy. PMID:26175814

  13. Entropy Computation in Partially Observed Markov Chains

    NASA Astrophysics Data System (ADS)

    Desbouvries, François

    2006-11-01

    Let X = {Xn}n∈N be a hidden process and Y = {Yn}n∈N be an observed process. We assume that (X,Y) is a (pairwise) Markov Chain (PMC). PMC are more general than Hidden Markov Chains (HMC) and yet enable the development of efficient parameter estimation and Bayesian restoration algorithms. In this paper we propose a fast (i.e., O(N)) algorithm for computing the entropy of {Xn}n=0N given an observation sequence {yn}n=0N.

  14. The Component Slope Linear Model for Calculating Intensive Partial Molar Properties: Application to Waste Glasses

    SciTech Connect

    Reynolds, Jacob G.

    2013-01-11

    Partial molar properties are the changes occurring when the fraction of one component is varied while the fractions of all other component mole fractions change proportionally. They have many practical and theoretical applications in chemical thermodynamics. Partial molar properties of chemical mixtures are difficult to measure because the component mole fractions must sum to one, so a change in fraction of one component must be offset with a change in one or more other components. Given that more than one component fraction is changing at a time, it is difficult to assign a change in measured response to a change in a single component. In this study, the Component Slope Linear Model (CSLM), a model previously published in the statistics literature, is shown to have coefficients that correspond to the intensive partial molar properties. If a measured property is plotted against the mole fraction of a component while keeping the proportions of all other components constant, the slope at any given point on a graph of this curve is the partial molar property for that constituent. Actually plotting this graph has been used to determine partial molar properties for many years. The CSLM directly includes this slope in a model that predicts properties as a function of the component mole fractions. This model is demonstrated by applying it to the constant pressure heat capacity data from the NaOH-NaAl(OH{sub 4}H{sub 2}O system, a system that simplifies Hanford nuclear waste. The partial molar properties of H{sub 2}O, NaOH, and NaAl(OH){sub 4} are determined. The equivalence of the CSLM and the graphical method is verified by comparing results detennined by the two methods. The CSLM model has been previously used to predict the liquidus temperature of spinel crystals precipitated from Hanford waste glass. Those model coefficients are re-interpreted here as the partial molar spinel liquidus temperature of the glass components.

  15. Compositional dependent partial molar volume and compressibility of CO2 in rhyolite, phonolite and basalt glasses

    NASA Astrophysics Data System (ADS)

    Lerch, P.; Seifert, R.; Malfait, W. J.; Sanchez-Valle, C.

    2012-12-01

    Carbon dioxide is the second most abundant volatile in magmatic systems and plays an important role in many magmatic processes, e.g. partial melting, volatile saturation, outgassing. Despite this relevance, the volumetric properties of carbon-bearing silicates at relevant pressure and temperature conditions remain largely unknown because of considerable experimental difficulties associated with in situ measurements. Density and elasticity measurements on quenched glasses can provide an alternative source of information. For dissolved water, such measurements indicate that the partial molar volume is independent of compositions at ambient pressure [1], but the partial molar compressibility is not [2, 3]. Thus the partial molar volume of water may depend on melt composition at elevated pressure. For dissolved CO2, no such data is available. In order to constrain the effect of magma composition on the partial molar volume and compressibility of dissolved carbon, we determined the density and elasticity for three series of carbon-bearing basalt, phonolite and rhyolite glasses, quenched from 3.5 GPa and relaxed at ambient pressure. The CO2 content varies between 0 to 3.90 wt% depending on the glass composition. Glass densities were determined using the sink/float method in a diiodomethane (CH2I2) - acetone mixture. Brillouin measurements were conducted on relaxed and unrelaxed silicate glasses in platelet geometry to determine the compressional (VP) and shear (VS) wave velocities and elastic moduli. The partial molar volume of CO2 in rhyolite, phonolite and basalt glasses is 25.4 ± 0.9, 22.1 ± 0.6 and 26.6 ±1.8 cm3/mol, respectively. Thus, unlike for dissolved water, the partial molar volume of CO2 displays a resolvable compositional effect. Although the composition and CO2/carbonate speciation of the phonolite glasses is intermediate between that of the rhyolite and basalt glasses, the molar volume is not. Similar to dissolved water, the partial molar bulk modulus

  16. Partial moment entropy approximation to radiative heat transfer

    SciTech Connect

    Frank, Martin . E-mail: frank@mathematik.uni-kl.de; Dubroca, Bruno . E-mail: Bruno.Dubroca@math.u-bordeaux.fr; Klar, Axel . E-mail: klar@mathematik.uni-kl.de

    2006-10-10

    We extend the half moment entropy closure for the radiative heat transfer equations presented in Dubroca and Klar [B. Dubroca, A. Klar, Half moment closure for radiative transfer equations, J. Comput. Phys. 180 (2002) 584-596] and Turpault et al. [R. Turpault, M. Frank, B. Dubroca, A. Klar, Multigroup half space moment approximations to the radiative heat transfer equations, J. Comput. Phys. 198 (2004) 363-371] to multi-D. To that end, we consider a partial moment system with general partitions of the unit sphere closed by an entropy minimization principle. We give physical and mathematical reasons for this choice of model and study its properties. Several numerical examples in different physical regimes are presented.

  17. Pseudo-critical behavior on the partial molar volume of solutes in the isotropic phase of liquid crystal

    NASA Astrophysics Data System (ADS)

    Matsuoka, Tatsuro; Nakamura, Shunsuke; Yamaguchi, Tsuyoshi; Koda, Shinobu

    2012-01-01

    Temperature dependence of partial molar volume of 4-amino-4‧-nitrobiphenyl (ANB) and 4,4‧-dinitrobiphenyl (DNB) in the isotropic phase of 4-n-pentyl-4‧-cyanobiphenyl (5CB) was determined. Addition of ANB to 5CB causes increase of isotropic-nematic phase transition temperature (TIN) [1]. The decrease of partial molar volume of ANB was observed while the increase of partial molar volume of DNB and triphenyl phosphite (TPP) [8] was observed with approaching TIN. The anomalous behavior of partial molar volume was discussed using treatments similar to that of other thermodynamic derivatives in the I-N transition.

  18. Comment on ``Hydrophobic effects on partial molar volume'' [J. Chem. Phys. 122, 094509 (2005)

    NASA Astrophysics Data System (ADS)

    Graziano, Giuseppe

    2005-10-01

    It is pointed out that the results obtained by Imai and Hirata [ J. Chem. Phys.122, 094509 (2005)] for the partial molar volume of benzene in a detailed model of water and in a hypothetical nonpolar water model should be interpreted with care. By turning off the electrostatic interactions among water molecules, keeping fixed the molar volume and so the liquid number density, in order to produce the hypothetical nonpolar water without H bonds, the size of water molecules increases from about 2.8 to about 3.2Å. This fact is due to the bunching-up effect of H bonds. The consequences of this fact are clarified by means of calculations performed using the analytical expression of the partial molar volume derived by Lee [J. Phys. Chem.87, 112 (1983)] from the scaled particle theory equation of state for hard-sphere mixtures.

  19. Cooperativity, partially bound states, and enthalpy-entropy compensation.

    PubMed

    Hunter, Christopher A; Tomas, Salvador

    2003-11-01

    Efforts to develop a quantitative understanding of molecular recognition rely on the additivity of individual intermolecular interactions, and cooperativity represents one of the major potential stumbling blocks. A chemical double-mutant cycle has been used to experimentally measure cooperativity between functional group interactions within a complex framework. The interaction between two aromatic groups varies by 0.2 +/- 0.4 kJ mol(-1) in synthetic H-bonded complexes that differ by 8-13 kJ mol(-1) in overall stability. In these systems, the free energies associated with individual intermolecular interactions can therefore be reliably treated in an additive fashion. The results suggest that alternative explanations should be considered for cooperative phenomena observed in other systems, and a rationale based on the population of partially bound states in flexible molecules is proposed to account for the enthalpic chelate effect and enthalpy-entropy compensation. PMID:14652069

  20. Studies of enthalpy-entropy compensation, partial entropies, and Kirkwood-Buff integrals for aqueous solutions of glycine, L-leucine, and glycylglycine at 298.15 K.

    PubMed

    Kurhe, Deepti N; Dagade, Dilip H; Jadhav, Jyoti P; Govindwar, Sanjay P; Patil, Kesharsingh J

    2009-12-31

    Densities and osmotic coefficient measurements for dilute aqueous solutions of glycine, l-leucine, and glycylglycine have been reported at 298.15 K. The partial molar volumes and activity coefficients of solute as well as solvent have been estimated using the density and osmotic coefficient data, respectively. Excess and mixing thermodynamic properties, such as Gibbs free energy, enthalpy, and entropy changes, have been obtained using the activity data from this study and the heat data reported in the literature. The concentration enthalpy-entropy compensation effects have been observed for the studied systems, and the compensation temperatures are reported. It has been observed that the excess free energy change for all the studied systems is almost the same over the studied concentration range, showing that the differences in properties of such solutions are largely decided by the enthalpy-entropy effects. These results, along with partial entropy data, show the effects of the presence of hydrophobic interactions and water structure making effect in the case of aqueous solutions of l-leucine. The application of the Starikov-Norden enthalpy-entropy compensation model yielded information about a "hidden Carnot cycle" and the existence of multiple microphases. Application of the Kirkwood-Buff (KB) theory of solutions for the studied systems yields pair correlation functions between the components. The variation of Kirkwood-Buff integrals with concentration further signifies the concentration dependence of the hydrophobic hydration and interactions in the solution phase. The osmotic second virial coefficients have also been obtained using the KB theory and show good agreement with those obtained using the McMillan-Mayer theory of solutions. The mean square concentration fluctuations is estimated using the KB theory, which gives information about the microheterogeneity in the solution phase, which further reflects the presence of hydration and solute association. PMID

  1. A partial molar volume for ZnO in silicate melts.

    NASA Astrophysics Data System (ADS)

    Ledda, B.; Potuzak, M.; Dingwell, D. B.; Courtial, P.

    2004-12-01

    Trace elements in igneous petrology have, in comparison with major elements, a relevance in the petrogenetic modelling of magmatic differentiation that far outweighs their relative abundance. Optimal use of the information contained in trace element variations within igneous phases requires an accurate description of their partitioning behaviour as a function of phase composition and structure, as well as temperature and pressure. In this manner, the partial molar thermodynamic properties of trace elements in silicate melts may contribute to the petrogenetic modelling of such systems. With this in mind, a series of investigations into the partial molar properties of trace elements in silicate melts have been carried out in recent years. Here we extend this work to the analysis of the volumetric properties of ZnO in silicate melts. Densities of 8 Zn-bearing silicate melts have been determined in air in the temperature range of 1363 to 1850 K. The compositional joins investigated (sodium disilicate (NS2) - ZnO; anorthite-diopside 1 bar eutectic (AnDi) - ZnO; and diopside - petedunnite) were chosen based on the pre-existing experimental density data set, their petrological relevance and to provide a test for significant compositionally induced variations in the structural role of ZnO. The ZnO concentrations investigated range up to 25 mol% for sodium disilicate, 20 mol% for the anorthite-diopside 1 atm eutectic and 100 mol% petedunnite. Molar volumes and expansivities of all melts have been derived. The molar volumes of the present liquids all decrease with increasing ZnO content. The partial molar volume of ZnO derived here from the volumetric measurements for each binary system is the same within error. A multicomponent fit to the volumetric data for all compositions yields a value of 14.141(0.730) cm3.mol-1 at 1300 K. We find, herewith, no volumetric evidence for compositionally-induced coordination number variations for ZnO in alkali-bearing versus alkali

  2. Hydrophobic hydration and the anomalous partial molar volumes in ethanol-water mixtures

    NASA Astrophysics Data System (ADS)

    Tan, Ming-Liang; Miller, Benjamin T.; Te, Jerez; Cendagorta, Joseph R.; Brooks, Bernard R.; Ichiye, Toshiko

    2015-02-01

    The anomalous behavior in the partial molar volumes of ethanol-water mixtures at low concentrations of ethanol is studied using molecular dynamics simulations. Previous work indicates that the striking minimum in the partial molar volume of ethanol VE as a function of ethanol mole fraction XE is determined mainly by water-water interactions. These results were based on simulations that used one water model for the solute-water interactions but two different water models for the water-water interactions. This is confirmed here by using two more water models for the water-water interactions. Furthermore, the previous work indicates that the initial decrease is caused by association of the hydration shells of the hydrocarbon tails, and the minimum occurs at the concentration where all of the hydration shells are touching each other. Thus, the characteristics of the hydration of the tail that cause the decrease and the features of the water models that reproduce this type of hydration are also examined here. The results show that a single-site multipole water model with a charge distribution that mimics the large quadrupole and the p-orbital type electron density out of the molecular plane has "brittle" hydration with hydrogen bonds that break as the tails touch, which reproduces the deep minimum. However, water models with more typical site representations with partial charges lead to flexible hydration that tends to stay intact, which produces a shallow minimum. Thus, brittle hydration may play an essential role in hydrophobic association in water.

  3. Note: Nonpolar solute partial molar volume response to attractive interactions with water

    NASA Astrophysics Data System (ADS)

    Williams, Steven M.; Ashbaugh, Henry S.

    2014-01-01

    The impact of attractive interactions on the partial molar volumes of methane-like solutes in water is characterized using molecular simulations. Attractions account for a significant 20% volume drop between a repulsive Weeks-Chandler-Andersen and full Lennard-Jones description of methane interactions. The response of the volume to interaction perturbations is characterized by linear fits to our simulations and a rigorous statistical thermodynamic expression for the derivative of the volume to increasing attractions. While a weak non-linear response is observed, an average effective slope accurately captures the volume decrease. This response, however, is anticipated to become more non-linear with increasing solute size.

  4. Note: Nonpolar solute partial molar volume response to attractive interactions with water

    SciTech Connect

    Williams, Steven M.; Ashbaugh, Henry S.

    2014-01-07

    The impact of attractive interactions on the partial molar volumes of methane-like solutes in water is characterized using molecular simulations. Attractions account for a significant 20% volume drop between a repulsive Weeks-Chandler-Andersen and full Lennard-Jones description of methane interactions. The response of the volume to interaction perturbations is characterized by linear fits to our simulations and a rigorous statistical thermodynamic expression for the derivative of the volume to increasing attractions. While a weak non-linear response is observed, an average effective slope accurately captures the volume decrease. This response, however, is anticipated to become more non-linear with increasing solute size.

  5. The Component Slope Linear Model for Calculating Intensive Partial Molar Properties: Application to Waste Glasses and Aluminate Solutions - 13099

    SciTech Connect

    Reynolds, Jacob G.

    2013-07-01

    Partial molar properties are the changes occurring when the fraction of one component is varied while the fractions of all other component mole fractions change proportionally. They have many practical and theoretical applications in chemical thermodynamics. Partial molar properties of chemical mixtures are difficult to measure because the component mole fractions must sum to one, so a change in fraction of one component must be offset with a change in one or more other components. Given that more than one component fraction is changing at a time, it is difficult to assign a change in measured response to a change in a single component. In this study, the Component Slope Linear Model (CSLM), a model previously published in the statistics literature, is shown to have coefficients that correspond to the intensive partial molar properties. If a measured property is plotted against the mole fraction of a component while keeping the proportions of all other components constant, the slope at any given point on a graph of this curve is the partial molar property for that constituent. Actually plotting this graph has been used to determine partial molar properties for many years. The CSLM directly includes this slope in a model that predicts properties as a function of the component mole fractions. This model is demonstrated by applying it to the constant pressure heat capacity data from the NaOHNaAl(OH){sub 4}-H{sub 2}O system, a system that simplifies Hanford nuclear waste. The partial molar properties of H{sub 2}O, NaOH, and NaAl(OH){sub 4} are determined. The equivalence of the CSLM and the graphical method is verified by comparing results determined by the two methods. The CSLM model has been previously used to predict the liquidus temperature of spinel crystals precipitated from Hanford waste glass. Those model coefficients are re-interpreted here as the partial molar spinel liquidus temperature of the glass components. (authors)

  6. The component slope linear model for calculating intensive partial molar properties /application to waste glasses and aluminate solutions

    SciTech Connect

    Reynolds, Jacob G.

    2013-01-11

    Partial molar properties are the changes occurring when the fraction of one component is varied while the fractions of all other component mole fractions change proportionally. They have many practical and theoretical applications in chemical thermodynamics. Partial molar properties of chemical mixtures are difficult to measure because the component mole fractions must sum to one, so a change in fraction of one component must be offset with a change in one or more other components. Given that more than one component fraction is changing at a time, it is difficult to assign a change in measured response to a change in a single component. In this study, the Component Slope Linear Model (CSLM), a model previously published in the statistics literature, is shown to have coefficients that correspond to the intensive partial molar properties. If a measured property is plotted against the mole fraction of a component while keeping the proportions of all other components constant, the slope at any given point on a graph of this curve is the partial molar property for that constituent. Actually plotting this graph has been used to determine partial molar properties for many years. The CSLM directly includes this slope in a model that predicts properties as a function of the component mole fractions. This model is demonstrated by applying it to the constant pressure heat capacity data from the NaOH-NaAl(OH){sub 4}-H{sub 2}O system, a system that simplifies Hanford nuclear waste. The partial molar properties of H{sub 2}O, NaOH, and NaAl(OH){sub 4} are determined. The equivalence of the CSLM and the graphical method is verified by comparing results determined by the two methods. The CSLM model has been previously used to predict the liquidus temperature of spinel crystals precipitated from Hanford waste glass. Those model coefficients are re-interpreted here as the partial molar spinel liquidus temperature of the glass components.

  7. Hydrophobic hydration and the anomalous partial molar volumes in ethanol-water mixtures

    SciTech Connect

    Tan, Ming-Liang; Te, Jerez; Cendagorta, Joseph R.; Miller, Benjamin T.; Brooks, Bernard R.; Ichiye, Toshiko

    2015-02-14

    The anomalous behavior in the partial molar volumes of ethanol-water mixtures at low concentrations of ethanol is studied using molecular dynamics simulations. Previous work indicates that the striking minimum in the partial molar volume of ethanol V{sub E} as a function of ethanol mole fraction X{sub E} is determined mainly by water-water interactions. These results were based on simulations that used one water model for the solute-water interactions but two different water models for the water-water interactions. This is confirmed here by using two more water models for the water-water interactions. Furthermore, the previous work indicates that the initial decrease is caused by association of the hydration shells of the hydrocarbon tails, and the minimum occurs at the concentration where all of the hydration shells are touching each other. Thus, the characteristics of the hydration of the tail that cause the decrease and the features of the water models that reproduce this type of hydration are also examined here. The results show that a single-site multipole water model with a charge distribution that mimics the large quadrupole and the p-orbital type electron density out of the molecular plane has “brittle” hydration with hydrogen bonds that break as the tails touch, which reproduces the deep minimum. However, water models with more typical site representations with partial charges lead to flexible hydration that tends to stay intact, which produces a shallow minimum. Thus, brittle hydration may play an essential role in hydrophobic association in water.

  8. Hydrophobic hydration and the anomalous partial molar volumes in ethanol-water mixtures.

    PubMed

    Tan, Ming-Liang; Miller, Benjamin T; Te, Jerez; Cendagorta, Joseph R; Brooks, Bernard R; Ichiye, Toshiko

    2015-02-14

    The anomalous behavior in the partial molar volumes of ethanol-water mixtures at low concentrations of ethanol is studied using molecular dynamics simulations. Previous work indicates that the striking minimum in the partial molar volume of ethanol VE as a function of ethanol mole fraction XE is determined mainly by water-water interactions. These results were based on simulations that used one water model for the solute-water interactions but two different water models for the water-water interactions. This is confirmed here by using two more water models for the water-water interactions. Furthermore, the previous work indicates that the initial decrease is caused by association of the hydration shells of the hydrocarbon tails, and the minimum occurs at the concentration where all of the hydration shells are touching each other. Thus, the characteristics of the hydration of the tail that cause the decrease and the features of the water models that reproduce this type of hydration are also examined here. The results show that a single-site multipole water model with a charge distribution that mimics the large quadrupole and the p-orbital type electron density out of the molecular plane has "brittle" hydration with hydrogen bonds that break as the tails touch, which reproduces the deep minimum. However, water models with more typical site representations with partial charges lead to flexible hydration that tends to stay intact, which produces a shallow minimum. Thus, brittle hydration may play an essential role in hydrophobic association in water. PMID:25681917

  9. Partial molar enthalpies and reaction enthalpies from equilibrium molecular dynamics simulation

    SciTech Connect

    Schnell, Sondre K.; Skorpa, Ragnhild; Bedeaux, Dick; Kjelstrup, Signe; Vlugt, Thijs J. H.; Simon, Jean-Marc

    2014-10-14

    We present a new molecular simulation technique for determining partial molar enthalpies in mixtures of gases and liquids from single simulations, without relying on particle insertions, deletions, or identity changes. The method can also be applied to systems with chemical reactions. We demonstrate our method for binary mixtures of Weeks-Chandler-Anderson particles by comparing with conventional simulation techniques, as well as for a simple model that mimics a chemical reaction. The method considers small subsystems inside a large reservoir (i.e., the simulation box), and uses the construction of Hill to compute properties in the thermodynamic limit from small-scale fluctuations. Results obtained with the new method are in excellent agreement with those from previous methods. Especially for modeling chemical reactions, our method can be a valuable tool for determining reaction enthalpies directly from a single MD simulation.

  10. Partial molar enthalpies and reaction enthalpies from equilibrium molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Schnell, Sondre K.; Skorpa, Ragnhild; Bedeaux, Dick; Kjelstrup, Signe; Vlugt, Thijs J. H.; Simon, Jean-Marc

    2014-10-01

    We present a new molecular simulation technique for determining partial molar enthalpies in mixtures of gases and liquids from single simulations, without relying on particle insertions, deletions, or identity changes. The method can also be applied to systems with chemical reactions. We demonstrate our method for binary mixtures of Weeks-Chandler-Anderson particles by comparing with conventional simulation techniques, as well as for a simple model that mimics a chemical reaction. The method considers small subsystems inside a large reservoir (i.e., the simulation box), and uses the construction of Hill to compute properties in the thermodynamic limit from small-scale fluctuations. Results obtained with the new method are in excellent agreement with those from previous methods. Especially for modeling chemical reactions, our method can be a valuable tool for determining reaction enthalpies directly from a single MD simulation.

  11. How big is the hydrated electron? Thermodynamics of electron solvation and its partial molar volume

    NASA Astrophysics Data System (ADS)

    Bartels, David

    2015-03-01

    Several models for the hydrated electron solvation structure have been proposed, which all can do a reasonable job of reproducing the room temperature optical spectrum. As Larsen, Glover and Schwartz demonstrated, tweaking the electron-water pseudopotential can completely change the structure from a cavity to a non-cavity geometry. Deciding between the competing models then requires comparison with other observables. The resonance Raman spectrum and the temperature dependence of the optical spectrum can be cited as evidence in favor of a non-cavity structure. In the present work we will re-examine the thermodynamics of hydration. In particular, we will present new experimental and simulation results for the partial molar volume, which can bear directly on the cavity vs. non-cavity controversy. DMB is supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences under Award Number DE- FC02-04ER1553.

  12. Sealing versus partial caries removal in primary molars: a randomized clinical trial

    PubMed Central

    2014-01-01

    Background The resin-based pit and fissure sealant is considered a successful tool in caries prevention, however there is a growing evidence of its use in controlling already established caries in posterior teeth. The aim of this clinical trial is to verify the efficacy of pit and fissure sealants in arresting dentinal caries lesions compared to partial excavation and restorative treatment in primary molar teeth. Methods Thirty six patients with occlusal cavitated primary molar reaching outer half of dentin were selected. The patients were randomly allocated into two groups: sealant application (experimental group – n = 17) and restoration with composite resin (control group – n = 19). Clinical and radiograph evaluation were performed after 6, 12 and 18 months. The chi-square test was used to verify the distribution of characteristics variables of the sample among the groups. The survival rate of treatments was evaluated using Kaplan–Meier survival and log-rank test. Fisher’s Exact and logistic regression tests were calculated in each evaluation period (α = 5%). Results The control group showed significantly better clinical survival after 18 months (p = 0.0025). In both groups, no caries progression was registered on the radiographic evaluations. Conclusions Sealing had similar efficacy in the arrestment of caries progression of cavitated occlusal lesions compared to partial excavation of the lesions, even though the frequency of re-treatments was significantly higher in sealed lesions. Trial registration Registro Brasileiro de Ensaios Clínicos (ReBEC): RBR-9kkv53 PMID:24884684

  13. Fluctuations of entropy production in partially masked electric circuits

    NASA Astrophysics Data System (ADS)

    Chiang, Kuan-Hsun; Chou, Chia-Wei; Lee, Chi-Lun; Lai, Pik-Yin; Chen, Yung-Fu

    2016-02-01

    We experimentally investigate fluctuations of entropy production in a coupled driven-RC circuit. In particular, we focus on the hidden-variable problem, where part of the circuit is neglected intentionally. In the two versions of the reduced descriptions we provide for the system, the fluctuation theorem (FT) is valid in all timescales for weak coupling. However, FT fails in the strong-coupling regime, in the short-time limit for one version, and in the long-time limit for the other. In these timescales where FT fails, both descriptions still give FT-like behavior. The failure of FT implies non-Markovian dynamics, meaning there exists a hidden variable that cannot be incorporated into the heat bath. We argue that FT can be restored with the introduction of a timescale-dependent effective noise.

  14. Partial molar volumes and viscous properties of glycine-aqueous urea solutions at 298.15 K

    NASA Astrophysics Data System (ADS)

    Deosarkar, S. D.; Ban, A. R.; Tawde, P. D.; Sawale, R. T.

    2015-07-01

    Density (ρ) and viscosity (η) of glycine ( c = 0.02-0.22 mol dm-3) in aqueous urea ( c = 0.5, 1.5, and 3.0 mol dm-3) solutions were measured at 298.15 K. Experimental density data has been used to calculate apparent molar volumes (φv) of glycine in aqueous and aqueous-urea solutions at 298.15 K. The dependence of apparent molar volumes on concentration of glycine was fitted to the Massons relation and apparent molar volume of glycine at infinite dilution (partial molar volume, φ{v/0}) was determined graphically. The partial molar volumes of transfer (Δtrφ{v/0}) of glycine at infinite dilution from pure water to aqueous-urea solutions at 298.15 K were calculated and interpreted in terms of various interactions and structural fittings in studied solutions. The relative viscosity data has been analyzed by Jones-Dole relation and viscosity B-coefficients were determined graphically. Viscosity B-coefficient of transfer (Δ B) was also calculated and compared with Δtrφ{v/0}.

  15. The partial molar sound speed of TiO2 in sodium silicate melts: Evidence for an exceptionally compressible component

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Ai, Y.; Lange, R. A.

    2005-12-01

    Longitudinal acoustic velocities were measured at one bar by an ultrasonic frequency sweep acoustic interferometer for ten Na2O-TiO2-SiO2 (NTS) liquids for which previous density and thermal expansion measurements were made (Liu and Lange, 2001). This previous study showed that the partial molar volume of the TiO2 component varied systematically with composition and reflected changes in the average coordination of Ti4+ from values of ~4.6 to ~5.4. Sound speed data were collected at frequencies of 4.5, 5, and 6 MHz between 1233 and 1896 K; in all cases, the sound speeds decrease with increasing temperature. Six of the liquids share a similar (~25 mol%) TiO2 concentration, so that the effect of varying Na:Si ratio on the partial molar sound speed of the TiO2 component can be evaluated. The results for these ten NTS liquids were combined with sound speed data on Na2O-SiO2 liquids from the literature to derive the partial molar sound speed of the TiO2 component in these liquids. The results show that, at 1573 K, it is inversely correlated with SiO2 concentration, from values as low as 571±56 m/s to those as high as 1235±54 m/s, a variation of more than 100%. Fitted values for the partial molar sound speeds of the SiO2 and Na2O components at 1573 K are constants at 2538±52 and 2713±52 m/s, respectively. When the sound speed data are combined with density data to calculate melt compressibility, the results show that the TiO2 component is 3-15 more compressible than either the Na2O or SiO2 component. The partial molar compressibility of the TiO2 component is also strongly correlated to its partial molar thermal expansivity. It is shown that the TiO2 component is most compressible and most expansive when the average Ti4+ coordination in these sodium silicate liquids is near five, which strongly suggests that the abundance of five-coordinated Ti4+ enhances topological mechanisms of both compression and thermal expansion.

  16. Fast Computation of Solvation Free Energies with Molecular Density Functional Theory: Thermodynamic-Ensemble Partial Molar Volume Corrections.

    PubMed

    Sergiievskyi, Volodymyr P; Jeanmairet, Guillaume; Levesque, Maximilien; Borgis, Daniel

    2014-06-01

    Molecular density functional theory (MDFT) offers an efficient implicit-solvent method to estimate molecule solvation free-energies, whereas conserving a fully molecular representation of the solvent. Even within a second-order approximation for the free-energy functional, the so-called homogeneous reference fluid approximation, we show that the hydration free-energies computed for a data set of 500 organic compounds are of similar quality as those obtained from molecular dynamics free-energy perturbation simulations, with a computer cost reduced by 2-3 orders of magnitude. This requires to introduce the proper partial volume correction to transform the results from the grand canonical to the isobaric-isotherm ensemble that is pertinent to experiments. We show that this correction can be extended to 3D-RISM calculations, giving a sound theoretical justification to empirical partial molar volume corrections that have been proposed recently. PMID:26273876

  17. Partial Molar Volumes of Components and Species in O-S-Fe-Ni Oxide and Sulfide Liquids

    NASA Astrophysics Data System (ADS)

    Kress, V. C.

    2007-12-01

    High-quality thermochemical models are now available for sulfide liquids at one bar pressure. An accurate description of the volume mixing properties of these liquids is required in order to apply these one-bar models to important problems at elevated pressure, including sulfide-hosted ore formation, sulfur cycling in convergent margin settings and core formation. Our experimental data have been combined with select density data from other laboratories to calibrate a comprehensive model for density and partial molar volumes of liquids in the O-S- Fe-Ni system. Our results indicate significant negative deviation from linear mixing across the Fe-S, Ni-S and Cu-S binaries. This result is in qualitative agreement with those from prior studies. In the context of associated homogeneous speciation models for sulfide liquids (Kress, 2000, 2007), this negative volume of mixing can be interpreted as a strongly negative volume of reaction for the formation for intermediate melt species from end member elemental components (Δ Vf). Our regression yields Δ Vf values of -6.2, -9.4 and -9.1 cc/mol for FeS, NiS and CuS respectively. There is insufficient oxygen in experimental liquids to resolve a composition dependence for v¯O, but the unrealistic negative regressed value for oxygen partial molar volume suggests a negative Δ Vf for FeO and FeO1.5. Partial molar volumes of Fe, Ni and Cu liquid species are calculated from Nash and Steinemann (1995). All other v¯i are assumed to be linear mixtures of component species volumes. This assumption also implies a moderate negative Δ Vf for the species in question. The resulting model reproduces experimental densities from our laboratory with a 3.6% average error. This is comparable to the estimated measurement error. The larger 5.1% error for the full data set can be attributed to lower precision in some of the other studies and the effects of inter-laboratory error. The sulfide volume model can be applied to calculate thermochemical

  18. Studies of Partial Molar Volumes of Some Narcotic-Analgesic Drugs in Aqueous-Alcoholic Mixtures at 25°C

    NASA Astrophysics Data System (ADS)

    Sharma, Poonam; Chauhan, S.; Syal, V. K.; Chauhan, M. S.

    2008-04-01

    Partial molar volumes of the drugs Parvon Spas, Parvon Forte, Tramacip, and Parvodex in aqueous mixtures of methanol (MeOH), ethanol (EtOH), and propan-1-ol (1-PrOH) have been determined. The data have been evaluated using the Masson equation. The parameters, apparent molar volumes {(φ_v)}, partial molar volumes {(φ_v0)}, and S v values (experimental slopes) have been interpreted in terms of solute solvent interactions. In addition, these studies have also been extended to determine the effect of these drugs on the solvation behavior of an electrolyte (sodium chloride), a surfactant (sodium dodecyl sulfate), and a non-electrolyte (sucrose). It can be inferred from these studies that all drug cations can be regarded as structure makers/promoters due to hydrophobic hydration. Furthermore, the results are correlated to understand the solution behavior of drugs in aqueous-alcoholic systems, as a function of the nature of the alcohol and solutes.

  19. Infinite dilution partial molar properties of aqueous solutions of nonelectrolytes. I. Equations for partial molar volumes at infinite dilution and standard thermodynamic functions of hydration of volatile nonelectrolytes over wide ranges of conditions

    NASA Astrophysics Data System (ADS)

    Plyasunov, Andrey V.; O'Connell, John P.; Wood, Robert H.

    2000-02-01

    A semitheoretical expression for partial molar volumes at infinite dilution of aqueous nonelectrolyte solutes has been developed employing the collection of properties from fluctuation solution theory for use over wide ranges of temperature and pressure. The form of the solution expression was suggested by a comparison of solute/solvent and solvent/solvent direct correlation function integrals (DCFI). The selection of solvent density and compressibility as model variables provides a correct description in the critical region while second virial coefficients have been used to give a rigorous expression in the low density region. The formulation has been integrated to obtain analytic expressions for thermodynamic properties of hydration at supercritical temperatures. The equation is limited to solutes for which B12 (the second cross virial coefficient between water and a solute molecule) is known or can be estimated. Regression of the three remaining parameters gives good correlations of the available experimental data. A strategy for estimating these parameters allows prediction from readily available data.

  20. An inelastic nuclear resonant scattering study of partial entropies of ordered and disordered Fe{sub 3}Al

    SciTech Connect

    Fultz, B.; Sturhahn, W.; Toellner, T. S.; Alp, E. E.

    1999-11-29

    Inelastic nuclear resonant scattering spectra were measured on alloys of Fe{sub 3}Al that were chemically disordered, partially-ordered, and DO{sub 3}-ordered. The phonon partial DOS for {sup 57}Fe atoms were extracted from these data, and the change upon disordering in the partial vibrational entropy of Fe atoms was obtained. By comparison to previous calorimetry measurements, it is shown that the contribution of the Fe atoms to the vibrational entropy is a factor of 10 smaller than that of the Al atoms. With the assistance of Born - von Karman model calculations on the ordered alloy, it is shown that differences in the vibrational entropy originate primarily with changes in the optical modes upon disordering. The phonon DOS of {sup 57}Fe was found to change systematically with chemical short range order in the alloy. It is argued that changes in the vibrational entropy originate primarily with changes in the chemical short-range order in the alloy, as opposed to long-range order.

  1. Low-temperature molar heat capacities and entropies of MnO2 (pyrolusite), Mn3O4 (hausmanite), and Mn2O3 (bixbyite)

    USGS Publications Warehouse

    Robie, R.A.; Hemingway, B.S.

    1985-01-01

    Pyrolusite (MnO2), hausmanite (Mn3O4), and bixbyite (Mn2O3), are important ore minerals of manganese and accurate values for their thermodynamic properties are desirable to understand better the {p(O2), T} conditions of their formation. To provide accurate values for the entropies of these important manganese minerals, we have measured their heat capacities between approximately 5 and 380 K using a fully automatic adiabatically-shielded calorimeter. All three minerals are paramagnetic above 100 K and become antiferromagnetic or ferrimagnetic at lower temperatures. This transition is expressed by a sharp ??-type anomaly in Cpmo for each compound with Ne??el temperatures TN of (92.2??0.2), (43.1??0.2), and (79.45??0.05) K for MnO2, Mn3O4, and Mn2O3, respectively. In addition, at T ??? 308 K, Mn2O3 undergoes a crystallographic transition, from orthorhombic (at low temperatures) to cubic. A significant thermal effect is associated with this change. Hausmanite is ferrimagnetic below TN and in addition to the normal ??-shape of the heat-capacity maxima in MnO2 and Mn2O3, it has a second rounded maximum at 40.5 K. The origin of this subsidiary bump in the heat capacity is unknown but may be related to a similar "anomalous bump" in the curve of magnetization against temperature at about 39 K observed by Dwight and Menyuk.(1) At 298.15 K the standard molar entropies of MnO2, Mn3O4, and Mn2O3, are (52.75??0.07), (164.1??0.2), and (113.7??0.2) J??K-1??mol-1, respectively. Our value for Mn3O4 is greater than that adopted in the National Bureau of Standards tables(2) by 14 per cent. ?? 1985.

  2. Proposition of group molar constants for sodium to calculate the partial solubility parameters of sodium salts using the van Krevelen group contribution method.

    PubMed

    Barra, J; Peña, M A; Bustamante, P

    2000-04-01

    The aim of this study is to propose, for the first time, a set of group molar constants for sodium to calculate the partial solubility parameters of sodium salts. The values were estimated using the few experimental partial solubility parameters of acid/sodium salt series available either from the literature (benzoic acid/Na, ibuprofen acid/Na, diclofenac Na) or determined in this work (salicylic acid/Na, p-aminobenzoic acid/Na, diclofenac), the group contribution method of van Krevelen to calculate the partial parameters of the acids, and three reasonable hypothesis. The experimental method used is a modification of the extended Hansen approach based on a regression analysis of the solubility mole fraction of the drug lnX(2) against models including three- or four-partial solubility parameters of a series of pure solvents ranging from non-polar (heptane) to highly polar (water). The modified method combined with the four-parameter model provided the best results for both acids and sodium derivatives. The replacement of the acidic proton by sodium increased the dipolar and basic partial solubility parameters, whereas the dispersion parameter remained unaltered, thus increasing the overall total solubility parameter of the salt. The proposed group molar constants of sodium are consistent with the experimental results as sodium has a relatively low London dispersion molar constant (identical to that of -OH), a very high Keesom dipolar molar constant (identical to that of -NO(2), two times larger than that of -OH), and a very high hydrogen bonding molar constant (identical to that of -OH). The proposed values are: F((Na)d)=270 (J cm(3))(1/2) mol(-1); F((Na)p)=1030 (J cm(3))(1/2) mol(-1); U((Na)h)=17000 J mol(-1). Like the constants for the other groups, the group molar constants proposed for sodium are certainly not the exact values. However, they are believed to be a fair approximation of the impact of sodium on the partial solubility parameters and, therefore, can

  3. Analysis of the Velocity Distribution in Partially-Filled Circular Pipe Employing the Principle of Maximum Entropy

    PubMed Central

    2016-01-01

    The flow velocity distribution in partially-filled circular pipe was investigated in this paper. The velocity profile is different from full-filled pipe flow, since the flow is driven by gravity, not by pressure. The research findings show that the position of maximum flow is below the water surface, and varies with the water depth. In the region of near tube wall, the fluid velocity is mainly influenced by the friction of the wall and the pipe bottom slope, and the variation of velocity is similar to full-filled pipe. But near the free water surface, the velocity distribution is mainly affected by the contractive tube wall and the secondary flow, and the variation of the velocity is relatively small. Literature retrieval results show relatively less research has been shown on the practical expression to describe the velocity distribution of partially-filled circular pipe. An expression of two-dimensional (2D) velocity distribution in partially-filled circular pipe flow was derived based on the principle of maximum entropy (POME). Different entropies were compared according to fluid knowledge, and non-extensive entropy was chosen. A new cumulative distribution function (CDF) of partially-filled circular pipe velocity in terms of flow depth was hypothesized. Combined with the CDF hypothesis, the 2D velocity distribution was derived, and the position of maximum velocity distribution was analyzed. The experimental results show that the estimated velocity values based on the principle of maximum Tsallis wavelet entropy are in good agreement with measured values. PMID:26986064

  4. Analysis of the Velocity Distribution in Partially-Filled Circular Pipe Employing the Principle of Maximum Entropy.

    PubMed

    Jiang, Yulin; Li, Bin; Chen, Jie

    2016-01-01

    The flow velocity distribution in partially-filled circular pipe was investigated in this paper. The velocity profile is different from full-filled pipe flow, since the flow is driven by gravity, not by pressure. The research findings show that the position of maximum flow is below the water surface, and varies with the water depth. In the region of near tube wall, the fluid velocity is mainly influenced by the friction of the wall and the pipe bottom slope, and the variation of velocity is similar to full-filled pipe. But near the free water surface, the velocity distribution is mainly affected by the contractive tube wall and the secondary flow, and the variation of the velocity is relatively small. Literature retrieval results show relatively less research has been shown on the practical expression to describe the velocity distribution of partially-filled circular pipe. An expression of two-dimensional (2D) velocity distribution in partially-filled circular pipe flow was derived based on the principle of maximum entropy (POME). Different entropies were compared according to fluid knowledge, and non-extensive entropy was chosen. A new cumulative distribution function (CDF) of partially-filled circular pipe velocity in terms of flow depth was hypothesized. Combined with the CDF hypothesis, the 2D velocity distribution was derived, and the position of maximum velocity distribution was analyzed. The experimental results show that the estimated velocity values based on the principle of maximum Tsallis wavelet entropy are in good agreement with measured values. PMID:26986064

  5. Partial molar volumes of NiO and CoO liquids: implications for the pressure dependence of metal-silicate partitioning

    NASA Astrophysics Data System (ADS)

    Courtial, Philippe; Gottsmann, Joachim; Holzheid, Astrid; Dingwell, Donald B.

    1999-08-01

    Volumetric measurements have been conducted on 7 Ni- and Co-containing sodium disilicate liquids within a compositional range varying from 0 to 9 mol% of NiO and from 0 to 23 mol% of CoO and over a large temperature interval (i.e., above their respective glass transition temperature and up to at least 1473 K). Their molar volumes and thermal expansivities have been determined by combining high-temperature measurements using the Pt-based double-bob Archimedean method and low-temperature measurements using the method described by Webb et al. [S.L. Webb, R. Knoche, D.B. Dingwell, Determination of silicate liquid thermal expansivity using dilatometry and calorimetry, Eur. J. Mineral. 4 (1992) 95-104] based on an assumed equivalence of the relaxation of volume and enthalpy at the glass transition. The molar volume of the present liquids decreases with increasing NiO and CoO contents and the Co-containing liquids exhibit a greater molar volume than the Ni-containing liquids at equivalent molar concentrations. The present results were analysed using a regression equation from which the partial molar volume of NiO and CoO liquids was obtained by the least squares method. This procedure yields partial molar volumes valid over the entire temperature range of 11.506 ± 0.687 and 14.884 ± 0.149 cm 3/mol and temperature derivatives of 2.684 ± 1.6 × 10 -3 and 1.441 ± 0.4 × 10 -3 cm 3/mol K, respectively for NiO and CoO at 800 K. The behavior of M-Fe metal-silicate exchange partition coefficient (M = Ni, Co), based on present molar volume determinations, has been estimated as a function of pressure over a wide temperature range. The metal-silicate exchange partition coefficients of both Ni and Co decrease with increasing pressure within the entire temperature range considered in this study (i.e., 800-3000 K).

  6. The impact of oxygen nonstoichiometry upon partial molar thermodynamic quantities in PrBaCo{sub 2}O{sub 5+δ}

    SciTech Connect

    Suntsov, A.Yu.; Leonidov, I.A.; Patrakeev, M.V.; Kozhevnikov, V.L.

    2014-05-01

    The coulometric titration data are utilized in order to calculate changes of oxygen partial entropy and enthalpy in PrBaCo{sub 2}O{sub 5+δ} with variations of oxygen content and temperature. The thermodynamic equilibrium of the cobaltite with the ambient gas phase is analyzed based on the interface of oxygen exchange and oxidation, and the intrinsic reaction of thermal excitation of Co{sup 3+} cations. The partial thermodynamic functions of the movable oxygen in PrBaCo{sub 2}O{sub 5+δ} are shown to be interrelated with the thermodynamic parameters of the defect formation reactions. The existence of a band gap of about 0.4 eV in the electronic spectrum of the cobaltite follows from a favorable comparison of the calculated and experimental dependencies of the partial thermodynamic functions of the movable oxygen. - Graphical abstract: Partial thermodynamic functions of movable oxygen in PrBaCo{sub 2}O{sub 5+δ}. - Highlights: • Thermodynamic functions of oxygen in PrBaCo{sub 2}O{sub 5+δ} are obtained from pO{sub 2}–T–δ diagram. • The defect model is developed to describe changes in thermodynamic functions. • Thermodynamic analysis gives evidence to a band gap in PrBaCo{sub 2}O{sub 5+δ}.

  7. Entropy of adsorption of mixed surfactants from solutions onto the air/water interface

    USGS Publications Warehouse

    Chen, L.-W.; Chen, J.-H.; Zhou, N.-F.

    1995-01-01

    The partial molar entropy change for mixed surfactant molecules adsorbed from solution at the air/water interface has been investigated by surface thermodynamics based upon the experimental surface tension isotherms at various temperatures. Results for different surfactant mixtures of sodium dodecyl sulfate and sodium tetradecyl sulfate, decylpyridinium chloride and sodium alkylsulfonates have shown that the partial molar entropy changes for adsorption of the mixed surfactants were generally negative and decreased with increasing adsorption to a minimum near the maximum adsorption and then increased abruptly. The entropy decrease can be explained by the adsorption-orientation of surfactant molecules in the adsorbed monolayer and the abrupt entropy increase at the maximum adsorption is possible due to the strong repulsion between the adsorbed molecules.

  8. Partial molar volume, surface area, and hydration changes for equilibrium unfolding and formation of aggregation transition state: High-pressure and cosolute studies on recombinant human IFN-γ

    PubMed Central

    Webb, Jonathan N.; Webb, Serena D.; Cleland, Jeffrey L.; Carpenter, John F.; Randolph, Theodore W.

    2001-01-01

    The equilibrium dissociation of recombinant human IFN-γ was monitored as a function of pressure and sucrose concentration. The partial molar volume change for dissociation was −209 ± 13 ml/mol of dimer. The specific molar surface area change for dissociation was 12.7 ± 1.6 nm2/molecule of dimer. The first-order aggregation rate of recombinant human IFN-γ in 0.45 M guanidine hydrochloride was studied as a function of sucrose concentration and pressure. Aggregation proceeded through a transition-state species, N*. Sucrose reduced aggregation rate by shifting the equilibrium between native state (N) and N* toward the more compact N. Pressure increased aggregation rate through increased solvation of the protein, which exposes more surface area, thus shifting the equilibrium away from N toward N*. The changes in partial molar volume and specific molar surface area between the N* and N were −41 ± 9 ml/mol of dimer and 3.5 ± 0.2 nm2/molecule, respectively. Thus, the structural change required for the formation of the transition state for aggregation is small relative to the difference between N and the dissociated state. Changes in waters of hydration were estimated from both specific molar surface area and partial molar volume data. From partial molar volume data, estimates were 25 and 128 mol H2O/mol dimer for formation of the aggregation transition state and for dissociation, respectively. From surface area data, estimates were 27 and 98 mol H2O/mol dimer. Osmotic stress theory yielded values ≈4-fold larger for both transitions. PMID:11381145

  9. Partial molar volumes and viscosities of aqueous hippuric acid solutions containing LiCl and MnCl2 · 4H2O at 303.15 K

    NASA Astrophysics Data System (ADS)

    Deosarkar, S. D.; Tawde, P. D.; Zinjade, A. B.; Shaikh, A. I.

    2015-09-01

    Density (ρ) and viscosity (η) of aqueous hippuric acid (HA) solutions containing LiCl and MnCl2 · 4H2O have been studied at 303.15 K in order to understand volumetric and viscometric behavior of these systems. Apparent molar volume (φv) of salts were calculated from density data and fitted to Massons relation and partial molar volumes (φ{v/0}) at infinite dilution were determined. Relative viscosity data has been used to determine viscosity A and B coefficients using Jones-Dole relation. Partial molar volume and viscosity coefficients have been discussed in terms of ion-solvent interactions and overall structural fittings in solution.

  10. Entanglement entropy after a partial projective measurement in 1  +  1 dimensional conformal field theories: exact results

    NASA Astrophysics Data System (ADS)

    Rajabpour, M. A.

    2016-06-01

    We calculate analytically the Rényi bipartite entanglement entropy {{S}α} of the ground state of 1  +  1 dimensional conformal field theories (CFT) after performing a projective measurement in part of the system. We show that the entanglement entropy in this setup is dependent on the central charge and the operator content of the system. When the measurement region A separates the two parts B and \\bar{B} , the entanglement entropy between B and \\bar{B} decreases like a power-law with respect to the characteristic distance between the two regions with an exponent which is dependent on the rank α of the Rényi entanglement entropy and the smallest scaling dimension present in the system. We check our findings by making numerical calculations on the Klein–Gordon field theory (coupled harmonic oscillators) after fixing the position (partial measurement) of some of the oscillators. We also comment on the post-measurement entanglement entropy in the massive quantum field theories.

  11. Live-born diploid fetus complicated with partial molar pregnancy presenting with pre-eclampsia, maternal anemia, and seemingly huge placenta: A rare case of confined placental mosaicism and literature review.

    PubMed

    Kawasaki, Kaoru; Kondoh, Eiji; Minamiguchi, Sachiko; Matsuda, Fumihiko; Higasa, Koichiro; Fujita, Kohei; Mogami, Haruta; Chigusa, Yoshitsugu; Konishi, Ikuo

    2016-08-01

    A partial molar pregnancy almost always ends in miscarriage due to a triploid fetus. We describe a rare case of a singleton, partial molar pregnancy with a seemingly huge placenta, which continued to delivery of a live-born diploid baby. A 27-year-old primigravida suffered from severe pre-eclampsia and progressive anemia. The uterus was enormously enlarged for the gestational age. A cesarean section was performed because of deterioration of maternal status at 25 weeks' gestation, when more than 3000 mL blood spouted concurrently with the delivery of the placenta. The histological examination showed congestion in the decidua, which indicated disturbance of maternal venous return from the intervillous space. The chromosome complement of the placenta and the neonate were 69,XXX and 46,XX, respectively. We also reviewed all published cases of a singleton, partial molar pregnancy. A literature search yielded 18 cases of a singleton, diploid fetus with partial molar pregnancy. The mean gestational age at delivery was 24.5 ± 6.2 weeks, and fetuses survived outside the uterus in only four cases (22.2%). Intriguingly, previous reports numbered 10 cases with diploid placenta as well as five cases with no karyotyping of the placenta, indicating that they may have included a complete mole in a twin pregnancy or placental mesenchymal dysplasia. In conclusion, this was the first case of placentomegaly that presented manifestations of excessive abdominal distension and maternal severe anemia, and the second case of a singleton, partial molar pregnancy confirmed by chromosome analysis resulting in a diploid living baby. PMID:27225660

  12. Variation and decomposition of the partial molar volume of small gas molecules in different organic solvents derived from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Klähn, Marco; Martin, Alistair; Cheong, Daniel W.; Garland, Marc V.

    2013-12-01

    The partial molar volumes, bar V_i, of the gas solutes H2, CO, and CO2, solvated in acetone, methanol, heptane, and diethylether are determined computationally in the limit of infinite dilution and standard conditions. Solutions are described with molecular dynamics simulations in combination with the OPLS-aa force field for solvents and customized force field for solutes. bar V_i is determined with the direct method, while the composition of bar V_i is studied with Kirkwood-Buff integrals (KBIs). Subsequently, the amount of unoccupied space and size of pre-formed cavities in pure solvents is determined. Additionally, the shape of individual solvent cages is analyzed. Calculated bar V_i deviate only 3.4 cm3 mol-1 (7.1%) from experimental literature values. Experimental bar V_i variations across solutions are reproduced qualitatively and also quantitatively in most cases. The KBI analysis identifies differences in solute induced solvent reorganization in the immediate vicinity of H2 (<0.7 nm) and solvent reorganization up to the third solvation shell of CO and CO2 (<1.6 nm) as the origin of bar V_i variations. In all solutions, larger bar V_i are found in solvents that exhibit weak internal interactions, low cohesive energy density and large compressibility. Weak internal interactions facilitate solvent displacement by thermal solute movement, which enhances the size of solvent cages and thus bar V_i. Additionally, attractive electrostatic interactions of CO2 and the solvents, which do not depend on internal solvent interactions only, partially reversed the bar V_i trends observed in H2 and CO solutions where electrostatic interactions with the solvents are absent. More empty space and larger pre-formed cavities are found in solvents with weak internal interactions, however, no evidence is found that solutes in any considered solvent are accommodated in pre-formed cavities. Individual solvent cages are found to be elongated in the negative direction of solute

  13. Swiveled Rényi entropies

    NASA Astrophysics Data System (ADS)

    Dupuis, Frédéric; Wilde, Mark M.

    2016-03-01

    This paper introduces "swiveled Rényi entropies" as an alternative to the Rényi entropic quantities put forward in Berta et al. (Phys Rev A 91(2):022333, 2015). What distinguishes the swiveled Rényi entropies from the prior proposal of Berta et al. is that there is an extra degree of freedom: an optimization over unitary rotations with respect to particular fixed bases (swivels). A consequence of this extra degree of freedom is that the swiveled Rényi entropies are ordered, which is an important property of the Rényi family of entropies. The swiveled Rényi entropies are, however, generally discontinuous at α =1 and do not converge to the von Neumann entropy-based measures in the limit as α rightarrow 1, instead bounding them from above and below. Particular variants reduce to known Rényi entropies, such as the Rényi relative entropy or the sandwiched Rényi relative entropy, but also lead to ordered Rényi conditional mutual information and ordered Rényi generalizations of a relative entropy difference. Refinements of entropy inequalities such as monotonicity of quantum relative entropy and strong subadditivity follow as a consequence of the aforementioned properties of the swiveled Rényi entropies. Due to the lack of convergence at α =1, it is unclear whether the swiveled Rényi entropies would be useful in one-shot information theory, so that the present contribution represents partial progress toward this goal.

  14. FIGO Stage III Metastatic Gestational Choriocarcinoma Developed From an Antecedent Partial Hydatidiform Molar Pregnancy Bearing a Numerical Chromosomal Aberration 68, XX: A Case Report and Literature Review.

    PubMed

    Ma, Naili; Litkouhi, Babak; Mannion, Ciaran M

    2016-03-01

    A 36-yr-old, gravida 5 para 4 woman presented with uterine bleeding and was discovered to have a 3.7-cm uterine mass with multiple, bilateral, lung metastases. Six months earlier, the patient was diagnosed with a partial hydatidiform mole that demonstrated a rare chromosomal karyotype 68, XX[12]. The patient's serum β-human chorionic gonadotropin was elevated from baseline to 12,039 mIU/mL before the treatment. A total hysterectomy was performed and revealed a markedly hemorrhagic, extensively necrotic choriocarcinoma. The tumor mass invaded to a depth of 1/3 of the uterine wall thickness. Cytogenetic analysis of the choriocarcinoma revealed the same 68, XX karyotype, as observed in the antecedent partial hydatidiform mole. A clinical diagnosis of advanced stage invasive choriocarcinoma was rendered, with a risk factor score of 5. Following the development of chemoresistance to a single-agent (methotrexate) regimen, the patient subsequently received 5 cycles of chemotherapy (EMA-CO), without any major complication. She is currently >5 yr posttreatment and is asymptomatic. Her most recent imaging studies, including scans of chest and brain, show no evidence of disease, and her serum β-human chorionic gonadotropin level has remained consistently below detectable levels. PMID:26352546

  15. Progress in High-Entropy Alloys

    SciTech Connect

    Gao, Michael C

    2013-12-01

    Strictly speaking, high-entropy alloys (HEAs) refer to single-phase, solid-solution alloys with multiprincipal elements in an equal or a near-equal molar ratio whose configurational entropy is tremendously high. This special topic was organized to reflect the focus and diversity of HEA research topics in the community.

  16. Deciduous molar hypomineralization and molar incisor hypomineralization.

    PubMed

    Elfrink, M E C; ten Cate, J M; Jaddoe, V W V; Hofman, A; Moll, H A; Veerkamp, J S J

    2012-06-01

    This study was embedded in the Generation R Study, a population-based prospective cohort study from fetal life until young adulthood. This study focused on the relationship between Deciduous Molar Hypomineralization (DMH) and Molar Incisor Hypomineralization (MIH). First permanent molars develop during a period similar to that of second primary molars, with possible comparable risk factors for hypomineralization. Children with DMH have a greater risk of developing MIH. Clinical photographs of clean, moist teeth were taken with an intra-oral camera in 6,161 children (49.8% girls; mean age 74.3 mos, SD ± 5.8). First permanent molars and second primary molars were scored with respect to DMH or MIH. The prevalence of DMH and MIH was 9.0% and 8.7% at child level, and 4.0% and 5.4% at tooth level. The Odds Ratio for MIH based on DMH was 4.4 (95% CI, 3.1-6.4). The relationship between the occurrence of DMH and MIH suggests a shared cause and indicates that, clinically, DMH can be used as a predictor for MIH. PMID:22370445

  17. Magnetic entropy change and magnetic properties of LaFe11.5Si1.5 after controlling the Curie temperature by partial substitution of Mn and hydrogenation

    NASA Astrophysics Data System (ADS)

    Bin, Fu; Jie, Han

    2016-02-01

    Magnetic properties and magnetic entropy changes of La(Fe1-xMnx)11.5Si1.5Hy compounds are investigated. Their Curie temperatures are adjusted to room temperature by partial Mn substitution for Fe and hydrogen absorption in 1-atm (1 atm = 1.01325 × 105 Pa) hydrogen gas. Under a field change from 0 T to 2 T, the maximum magnetic entropy change for La(Fe0.99Mn0.01)11.5Si1.5H1.61 is -11.5 J/kg. The suitable Curie temperature and large value of ΔSm make it an attractive potential candidate for the room temperature magnetic refrigeration application. Projct supported by the Science and Technology Development Fund of Higher Education of Tianjin, China (Grant No. 20130301) and the Tianjin Research Program of Application Foundation and Advanced Technology, China (Grant No. 14JCQNJC4000).

  18. Low-temperature heat capacity and entropy of chalcopyrite (CuFeS2): estimates of the standard molar enthalpy and Gibbs free energy of formation of chalcopyrite and bornite (Cu5FeS4)

    USGS Publications Warehouse

    Robie, R.A.; Wiggins, L.B.; Barton, P.B., Jr.; Hemingway, B.S.

    1985-01-01

    The heat capacity of CuFeS2 (chalcopyrite) was measured between 6.3 and 303.5 K. At 298.15 K, Cp,mo and Smo(T) are (95.67??0.14) J??K-1??mol-1 and (124.9??0.2) J??K-1??mol-1, respectively. From a consideration of the results of two sets of equilibrium measurements we conclude that ??fHmo(CuFeS2, cr, 298.15 K) = -(193.6??1.6) kJ??mol-1 and that the recent bomb-calorimetric determination by Johnson and Steele (J. Chem. Thermodynamics 1981, 13, 991) is in error. The standard molar Gibbs free energy of formation of bornite (Cu5FeS4) is -(444.9??2.1) kJ??mol-1 at 748 K. ?? 1985.

  19. Transfer Partial Molar Isentropic Compressibilities of ( l-Alanine/ l-Glutamine/Glycylglycine) from Water to 0.512 {mol} \\cdot {kg}^{-1} Aqueous {KNO}3/0.512 {mol} \\cdot {kg}^{-1} Aqueous {K}2{SO}4 Solutions Between 298.15 K and 323.15 K

    NASA Astrophysics Data System (ADS)

    Riyazuddeen; Gazal, Umaima

    2013-03-01

    Speeds of sound of ( l-alanine/ l-glutamine/glycylglycine + 0.512 {mol}\\cdot {kg}^{-1} aqueous {KNO}3/0.512 {mol}\\cdot {kg}^{-1} aqueous {K}2{SO}4) systems have been measured for several molal concentrations of amino acid/peptide at different temperatures: T = (298.15 to 323.15) K. Using the speed-of-sound and density data, the parameters, partial molar isentropic compressibilities φ _{kappa }0 and transfer partial molar isentropic compressibilities Δ _{tr} φ _{kappa }0, have been computed. The trends of variation of φ _{kappa }0 and Δ _{tr} φ _{kappa }0 with changes in molal concentration of the solute and temperature have been discussed in terms of zwitterion-ion, zwitterion-water dipole, ion-water dipole, and ion-ion interactions operative in the systems.

  20. Ruptured tubal molar pregnancy.

    PubMed

    Yakasai, I A; Adamu, N; Galadanchi, H S

    2012-01-01

    Molar pregnancies in most instances develop within the uterine cavity, but may occur at any site. Ectopic molar pregnancy is a rare event. The objective of this study was to present a case of ruptured tubal molar gestation, discuss its clinical features and ways to improve diagnostic accuracy. A 35-year-old woman presented with features suggestive of ruptured tubal ectopic pregnancy. There was neither any evidence at the time of presentation to suspect a molar gestation, nor β human chorionic gonadotrophin (βhCG) hormone estimation was done, but only a clearview pregnancy test was carried out. She had total left salpingectomy and histological evaluation of the specimen revealed complete hydatidiform mole. The hCG level normalized within 3 weeks of follow-up. Clinical features of ectopic molar pregnancy may be indistinguishable from non-molar ectopic pregnancy. We recommend βhCG estimation as well as histological examination of the surgical specimen for all patients coming with features suggestive of ectopic pregnancy. PMID:23238205

  1. Entropy of Mixing of Distinguishable Particles

    ERIC Educational Resources Information Center

    Kozliak, Evguenii I.

    2014-01-01

    The molar entropy of mixing yields values that depend only on the number of mixing components rather than on their chemical nature. To explain this phenomenon using the logic of chemistry, this article considers mixing of distinguishable particles, thus complementing the well-known approach developed for nondistinguishable particles, for example,…

  2. Endodontic treatment of molars

    PubMed Central

    Habl, Claudia; Bodenwinkler, Andrea; Stürzlinger, Heidi

    2006-01-01

    Objective Commissioned by the German Institute of Medical Documentation and Information (DIMDI) the Austrian Health Institute (ÖBIG) prepared a HTA report on the long-term effectiveness of endodontic treatment (root canal treatment, RCT) of molars. The focus is to examine factors influencing the outcome of endodontic treatment and showing their impact on long-term results. Additionally, economic aspects of root canal treatment in Germany are discussed. Methodology By performing a systematic literature search in 29 databases (e.g. MEDLINE), the Cochrane Library and by hand searching two peer-reviewed endodontic journals the authors could identify 750 relevant articles, of which finally 18 qualified for assessment. Results The findings show that the most relevant factor influencing the long-term outcome of endodontic treatment is the preoperative status of a tooth. The lowest success rates are reported for molars with a preoperative devital or necrotic pulp and persisting periapical lesions (so called periapical disease). Discussion Even if there is no positive selection of patients and the RCT is performed by a normal dentist rather than an endodontist - a fact which is very common - long-term success rates of more then 90% are possible. The overall success rates for endodontic treatment of molars therefore seem to be similar to those of other tooth-types. Conclusions Especially primary, conventional (i.e. non-surgical) root canal treatment is an effective and efficient therapy for endodontically ill molars, especially if no large periapical lesion persists. Nonetheless, a long term successful endodontic therapy requires a thorough assessment of the pre-operative status of the molar and treatment according to established guidelines. PMID:21289954

  3. Entropy, materials, and posterity

    USGS Publications Warehouse

    Cloud, P.

    1977-01-01

    Materials and energy are the interdependent feedstocks of economic systems, and thermodynamics is their moderator. It costs energy to transform the dispersed minerals of Earth's crust into ordered materials and structures. And it costs materials to collect and focus the energy to perform work - be it from solar, fossil fuel, nuclear, or other sources. The greater the dispersal of minerals sought, the more energy is required to collect them into ordered states. But available energy can be used once only. And the ordered materials of industrial economies become disordered with time. They may be partially reordered and recycled, but only at further costs in energy. Available energy everywhere degrades to bound states and order to disorder - for though entropy may be juggled it always increases. Yet industry is utterly dependent on low entropy states of matter and energy, while decreasing grades of ore require ever higher inputs of energy to convert them to metals, with ever increasing growth both of entropy and environmental hazard. Except as we may prize a thing for its intrinsic qualities - beauty, leisure, love, or gold - low-entropy is the only thing of real value. It is worth whatever the market will bear, and it becomes more valuable as entropy increases. It would be foolish of suppliers to sell it more cheaply or in larger amounts than their own enjoyment of life requires, whatever form it may take. For this reason, and because of physical constraints on the availability of all low-entropy states, the recent energy crises is only the first of a sequence of crises to be expected in energy and materials as long as current trends continue. The apportioning of low-entropy states in a modern industrial society is achieved more or less according to the theory of competitive markets. But the rational powers of this theory suffer as the world grows increasingly polarized into rich, over-industrialized nations with diminishing resource bases and poor, supplier nations

  4. Upper entropy axioms and lower entropy axioms

    SciTech Connect

    Guo, Jin-Li Suo, Qi

    2015-04-15

    The paper suggests the concepts of an upper entropy and a lower entropy. We propose a new axiomatic definition, namely, upper entropy axioms, inspired by axioms of metric spaces, and also formulate lower entropy axioms. We also develop weak upper entropy axioms and weak lower entropy axioms. Their conditions are weaker than those of Shannon–Khinchin axioms and Tsallis axioms, while these conditions are stronger than those of the axiomatics based on the first three Shannon–Khinchin axioms. The subadditivity and strong subadditivity of entropy are obtained in the new axiomatics. Tsallis statistics is a special case of satisfying our axioms. Moreover, different forms of information measures, such as Shannon entropy, Daroczy entropy, Tsallis entropy and other entropies, can be unified under the same axiomatics.

  5. Upper entropy axioms and lower entropy axioms

    NASA Astrophysics Data System (ADS)

    Guo, Jin-Li; Suo, Qi

    2015-04-01

    The paper suggests the concepts of an upper entropy and a lower entropy. We propose a new axiomatic definition, namely, upper entropy axioms, inspired by axioms of metric spaces, and also formulate lower entropy axioms. We also develop weak upper entropy axioms and weak lower entropy axioms. Their conditions are weaker than those of Shannon-Khinchin axioms and Tsallis axioms, while these conditions are stronger than those of the axiomatics based on the first three Shannon-Khinchin axioms. The subadditivity and strong subadditivity of entropy are obtained in the new axiomatics. Tsallis statistics is a special case of satisfying our axioms. Moreover, different forms of information measures, such as Shannon entropy, Daroczy entropy, Tsallis entropy and other entropies, can be unified under the same axiomatics.

  6. Angle Class II, subdivision, with agenesis of mandibular second molars and extrusion of maxillary second molars *

    PubMed Central

    Tavares, Rubens Rodrigues

    2015-01-01

    This clinical case reports the treatment of an Angle Class II malocclusion in a young woman with a balanced face affected by agenesis of second and third mandibular molars and subsequent extrusion of second maxillary molars. The atypical and peculiar occlusal anomaly led to individualized treatment proposed in order to normalize dental malpositions, with subsequent rehabilitation of edentulous areas by means of a multidisciplinary approach. This case was presented to the Brazilian Board of Orthodontics and Dentofacial Orthopedics (BBO) in partial fulfillment of the requirements for obtaining the title of certified by the BBO. PMID:25992995

  7. Ectopic molar pregnancy: a case report

    PubMed Central

    Bousfiha, Najoua; Erarhay, Sanaa; Louba, Adnane; Saadi, Hanan; Bouchikhi, Chahrazad; Banani, Abdelaziz; Fatemi, Hind El; Sekkal, Med; Laamarti, Afaf

    2012-01-01

    The incidence of hydatidiform moles is 1 per 1,000 pregnancies. Ectopic pregnancy occurs in 20 per 1,000 pregnancies. Thus, the incidence of the ectopic molar gestation is very rare. We report a case of tubal molar pregnancy diagnosed at the systematic histology exam of an ectopic pregnancy. We report the case of 32 years old nulliparus women who presented a vaginal bleeding, lower abdominal pain and 6 weeks amenorrhea corresponding to the last menstrual period. At the clinical examination, the arterial pressure was 100/60 mmHG. The gynecological examination was difficult because of lower abdominal pain. Serum gonadotropin activity was 3454 ui/l. Pelvic ultrasound revealed an irregular echogenic mass in the left adnexa. Diagnostic laparoscopy revealed a left-sided unruptured ampullary ectopic pregnancy. A left laparoscopic salpingectomy was performed. The systematic histologic test identified an ectopic partial molar pregnancy, which was confirmed by DNA ploidy image analysis. The patient was followed with weekly quantitative B-hCG titers until three successive B-hCG levels were negative. It is pertinent that clinicians take routine histological examination of tubal specimens in ectopic pregnancy very seriously in order to diagnose cases of ectopic molar gestations early and mount appropriate post treatment surveillance. PMID:22655097

  8. Ectopic molar pregnancy: a case report.

    PubMed

    Bousfiha, Najoua; Erarhay, Sanaa; Louba, Adnane; Saadi, Hanan; Bouchikhi, Chahrazad; Banani, Abdelaziz; El Fatemi, Hind; Sekkal, Med; Laamarti, Afaf

    2012-01-01

    The incidence of hydatidiform moles is 1 per 1,000 pregnancies. Ectopic pregnancy occurs in 20 per 1,000 pregnancies. Thus, the incidence of the ectopic molar gestation is very rare. We report a case of tubal molar pregnancy diagnosed at the systematic histology exam of an ectopic pregnancy. We report the case of 32 years old nulliparus women who presented a vaginal bleeding, lower abdominal pain and 6 weeks amenorrhea corresponding to the last menstrual period. At the clinical examination, the arterial pressure was 100/60 mmHG. The gynecological examination was difficult because of lower abdominal pain. Serum gonadotropin activity was 3454 ui/l. Pelvic ultrasound revealed an irregular echogenic mass in the left adnexa. Diagnostic laparoscopy revealed a left-sided unruptured ampullary ectopic pregnancy. A left laparoscopic salpingectomy was performed. The systematic histologic test identified an ectopic partial molar pregnancy, which was confirmed by DNA ploidy image analysis. The patient was followed with weekly quantitative B-hCG titers until three successive B-hCG levels were negative. It is pertinent that clinicians take routine histological examination of tubal specimens in ectopic pregnancy very seriously in order to diagnose cases of ectopic molar gestations early and mount appropriate post treatment surveillance. PMID:22655097

  9. Correct Expressions of Enthalpy of Mixing and Excess Entropy from MIVM and Their Simplified Forms

    NASA Astrophysics Data System (ADS)

    Tao, Dong-Ping

    2016-02-01

    In this work, the author pointed out that empirically to compare the molecular interaction volume model (MIVM) with thermodynamic definition of excess Gibbs energy would result in the incorrect expressions of enthalpy of mixing and excess entropy. The correct expressions of molar and partial molar enthalpies of mixing and excess entropies from the MIVM are consistent thermodynamically and are suggested for replacing their past incorrect ones. The simplification of Z i = Z = 10 is verified to be feasible by the average errors of fitting in the binary liquid alloys M-P (M = Cr, Fe, and Mn) and of predicting in the ternary liquid alloys Fe-Cr-P and Fe-Mn-P by using two coordination numbers of phosphorus Z P = 3.04 and Z P = 8.96. Further, their simplified forms are proposed for predicting easily thermodynamic properties of a multicomponent liquid system and are preliminarily tested to be coordinated mutually in the binary liquid alloys Au-Cu, Cd-Zn, Ca-Zn, and Ni-Pb.

  10. Molar Incisor Hypomineralization.

    PubMed

    Rao, Murali H; Aluru, Srikanth C; Jayam, Cheranjeevi; Bandlapalli, Anila; Patel, Nikunj

    2016-01-01

    Molar incisor hypomineralization (MIH) is a developmental defect affecting teeth. High prevalence rates of MIH and its clinical implications are significant for both the patients and clinicians. A wide variation in defect prevalence (2.4-40.2%) is reported. It seems to differ with regions and various birth cohorts. Some of the recent prevalence studies are tabulated. Patient implications include hypersensitive teeth, rapid progression of caries, mastication impairment due to rapid attrition, and esthetic repercussions. Implications for clinicians include complexity in treatment planning and treatment implementation, poor prognosis of the restorations, difficulty in achieving pain control during treatment, and behavior management problems. Intention of this paper is to review the etio-pathogenesis, prevalence, clinical features, diagnostic features, and eventually present a sequential treatment approach, i.e., in accordance with current clinical practice guidelines. PMID:27595731

  11. Entanglement entropy of scattering particles

    NASA Astrophysics Data System (ADS)

    Peschanski, Robi; Seki, Shigenori

    2016-07-01

    We study the entanglement entropy between the two outgoing particles in an elastic scattering process. It is formulated within an S-matrix formalism using the partial wave expansion of two-body states, which plays a significant role in our computation. As a result, we obtain a novel formula that expresses the entanglement entropy in a high energy scattering by the use of physical observables, namely the elastic and total cross sections and a physical bound on the impact parameter range, related to the elastic differential cross-section.

  12. The Maximum Entropy Principle for Generalized Entropies

    NASA Astrophysics Data System (ADS)

    Tsukada, Makoto

    2008-03-01

    It is well known that Gibbs states and the Gaussian distribution are characterized by the maximum entropy principle. In this paper we discuss probability distributions which maximize generalized entropies including Rényi's and Tsal-lis's.

  13. Controversy of the third molars.

    PubMed

    Pitekova, L; Satko, I

    2009-01-01

    Third molars are teeth that have little functional value and a relatively high rate of associated pain and disease. Their value as a part of the dentition of modern people is dubious. Our aim is to review the evolution, morbidity and complications of the third molars (Ref. 19). Full Text (Free, PDF) www.bmj.sk. PMID:19408843

  14. The Correlation of Standard Entropy with Enthalpy Supplied from 0 to 298.15 K

    ERIC Educational Resources Information Center

    Lambert, Frank L.; Leff, Harvey S.

    2009-01-01

    As a substance is heated at constant pressure from near 0 K to 298 K, each incremental enthalpy increase, dH, alters entropy by dH/T, bringing it from approximately zero to its standard molar entropy S degrees. Using heat capacity data for 32 solids and CODATA results for another 45, we found a roughly linear relationship between S degrees and…

  15. Entropy power inequalities for qudits

    NASA Astrophysics Data System (ADS)

    Audenaert, Koenraad; Datta, Nilanjana; Ozols, Maris

    2016-05-01

    Shannon's entropy power inequality (EPI) can be viewed as a statement of concavity of an entropic function of a continuous random variable under a scaled addition rule: f ( √{ a } X + √{ 1 - a } Y ) ≥ a f ( X ) + ( 1 - a ) f ( Y ) ∀ a ∈ [ 0 , 1 ] . Here, X and Y are continuous random variables and the function f is either the differential entropy or the entropy power. König and Smith [IEEE Trans. Inf. Theory 60(3), 1536-1548 (2014)] and De Palma, Mari, and Giovannetti [Nat. Photonics 8(12), 958-964 (2014)] obtained quantum analogues of these inequalities for continuous-variable quantum systems, where X and Y are replaced by bosonic fields and the addition rule is the action of a beam splitter with transmissivity a on those fields. In this paper, we similarly establish a class of EPI analogues for d-level quantum systems (i.e., qudits). The underlying addition rule for which these inequalities hold is given by a quantum channel that depends on the parameter a ∈ [0, 1] and acts like a finite-dimensional analogue of a beam splitter with transmissivity a, converting a two-qudit product state into a single qudit state. We refer to this channel as a partial swap channel because of the particular way its output interpolates between the states of the two qudits in the input as a is changed from zero to one. We obtain analogues of Shannon's EPI, not only for the von Neumann entropy and the entropy power for the output of such channels, but also for a much larger class of functions. This class includes the Rényi entropies and the subentropy. We also prove a qudit analogue of the entropy photon number inequality (EPnI). Finally, for the subclass of partial swap channels for which one of the qudit states in the input is fixed, our EPIs and EPnI yield lower bounds on the minimum output entropy and upper bounds on the Holevo capacity.

  16. Evolution of stellar entropy

    NASA Astrophysics Data System (ADS)

    de Souza, R. A.; de Avellar, M. G. B.; Horvath, J. E.

    2015-11-01

    An appraisal of the behavior of stellar entropy along stellar evolution is made. It is shown that the entropy per baryon of a star of a fixed baryon number decreases monotonically with increasing compactness of the star. The same entropy per baryon increases only whenever an irreversible collapse of the star happens. The recent proposals for a gravitational entropy related to curvature may justify the huge increase of the entropy in the ultimate collapse to a black hole.

  17. [Headgear-free molar distalization].

    PubMed

    Manhartsberger, C

    1994-12-01

    The difficulty in treating dentoalveolar class II disharmonies is briefly outlined. An innovative treatment method is presented which makes possible a distalization without the use of headgear. In the treatment method bands are cemented on the first molars, next impressions are made of the upper and lower dental arch, and then the impressions are poured with plaster. Following this the models are mounted in centric relationship in an articulator and the bite is opened 2 mm to 3 mm, so that the molars can be moved without making occlusal contact. The apparatus, an acrylic splint, is constructed in such a fashion as to cover the palatal surfaces from 2nd premolar to 2nd premolar. In addition, the premolars are also covered occlusally and buccally and the canine tips and the incisal edges are covered labially. A headgear tube is attached at the buccal surface in the premolar region of the acrylic splint. This acrylic splint, which is itself retentive, is cemented using glass ionomer cement. Combining this apparatus with a modified Nance Button makes it possible to establish an anchoring segment which is able to retain its position in the face of molar distalization. Molar distalization is then performed using a 0.032 inch stainless steel wire, which is placed between the headgear tube of the acrylic splint and the headgear tube of the band of the first molar. Highly elastic nickel-titanium open coil springs are used as the force elements. PMID:7851830

  18. Generalized entanglement entropy

    NASA Astrophysics Data System (ADS)

    Taylor, Marika

    2016-07-01

    We discuss two measures of entanglement in quantum field theory and their holographic realizations. For field theories admitting a global symmetry, we introduce a global symmetry entanglement entropy, associated with the partitioning of the symmetry group. This quantity is proposed to be related to the generalized holographic entanglement entropy defined via the partitioning of the internal space of the bulk geometry. Thesecond measure of quantum field theory entanglement is the field space entanglement entropy, obtained by integrating out a subset of the quantum fields. We argue that field space entanglement entropy cannot be precisely realised geometrically in a holographic dual. However, for holographic geometries with interior decoupling regions, the differential entropy provides a close analogue to the field space entanglement entropy. We derive generic descriptions of such inner throat regions in terms of gravity coupled to massive scalars and show how the differential entropy in the throat captures features of the field space entanglement entropy.

  19. Entropy descriptors and Entropy Stabilized Oxides

    NASA Astrophysics Data System (ADS)

    Curtarolo, Stefano

    In this presentation we will discuss the development of entropy descriptors for the AFLOWLIB.org ab-initio repository and the path leading to the synthesis of the novel entropy stabilized oxides. [Nat. Comm. 6:8485 (2015)]. Research sponsored by DOD-ONR N000141310635 and N000141512863.

  20. Hypomineralized Second Primary Molars as Predictor of Molar Incisor Hypomineralization.

    PubMed

    Negre-Barber, A; Montiel-Company, J M; Boronat-Catalá, M; Catalá-Pizarro, M; Almerich-Silla, J M

    2016-01-01

    Molar incisor hypomineralization (MIH) is a developmental defect of dental enamel that shares features with hypomineralized second primary molars (HSPM). Prior to permanent tooth eruption, second primary molars could have predictive value for permanent molar and incisor hypomineralization. To assess this possible relationship, a cross-sectional study was conducted in a sample of 414 children aged 8 and 9 years from the INMA cohort in Valencia (Spain). A calibrated examiner (linear-weighted Kappa 0.83) performed the intraoral examinations at the University of Valencia between November 2013 and 2014, applying the diagnostic criteria for MIH and HSPM adopted by the European Academy of Paediatric Dentistry. 100 children (24.2%) presented MIH and 60 (14.5%) presented HSPM. Co-occurrence of the two defects was observed in 11.1% of the children examined. The positive predictive value was 76.7% (63.9-86.6) and the negative predictive value 84.7% (80.6-88.3). The positive likelihood ratio (S/1-E) was 10.3 (5.9-17.9) and the negative likelihood ratio (1-S/E) 0.57 (0.47-0.68). The odds ratio was 18.2 (9.39-35.48). It was concluded that while the presence of HSPM can be considered a predictor of MIH, indicating the need for monitoring and control, the absence of this defect in primary dentition does not rule out the appearance of MIH. PMID:27558479

  1. Entropy: Order or Information

    ERIC Educational Resources Information Center

    Ben-Naim, Arieh

    2011-01-01

    Changes in entropy can "sometimes" be interpreted in terms of changes in disorder. On the other hand, changes in entropy can "always" be interpreted in terms of changes in Shannon's measure of information. Mixing and demixing processes are used to highlight the pitfalls in the association of entropy with disorder. (Contains 3 figures.)

  2. Entropy Is Simple, Qualitatively.

    ERIC Educational Resources Information Center

    Lambert, Frank L.

    2002-01-01

    Suggests that qualitatively, entropy is simple. Entropy increase from a macro viewpoint is a measure of the dispersal of energy from localized to spread out at a temperature T. Fundamentally based on statistical and quantum mechanics, this approach is superior to the non-fundamental "disorder" as a descriptor of entropy change. (MM)

  3. Partial Pressures of Te2 and Thermodynamic Properties of Ga-Te System

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    The partial pressures of Te2 in equilibrium with Ga(1-x)Te(x) samples were measured by optical absorption technique from 450 to 1100 C for compositions, x, between 0.333 and 0.612. To establish the relationship between the partial pressure of Te, and the measured optical absorbance, the calibration runs of a pure Te sample were also conducted to determine the Beer's Law constants. The partial pressures of Te2 in equilibrium with the GaTe(s) and Ga2Te3(s)compounds, or the so-called three-phase curves, were established. These partial pressure data imply the existence of the Ga3Te4(s) compound. From the partial pressures of Te2 over the Ga-Te melts, partial molar enthalpy and entropy of mixing for Te were derived and they agree reasonable well with the published data. The activities of Te in the Ga-Te melts were also derived from the measured partial pressures of Te2. These data agree well with most of the previous results. The possible reason for the high activity of Te measured for x less than 0.60 is discussed.

  4. Complications after third molar surgery.

    PubMed

    Pitekova, L; Satko, I; Novotnakova, D

    2010-01-01

    The authors describe the incidence of postoperative complications after the surgical removal of third molars, most common postoperative complications and their symptoms as well as risk factors leading to greater incidence of postoperative complications (Ref. 17). Full Text (Free, PDF) www.bmj.sk. PMID:20568422

  5. RNA Thermodynamic Structural Entropy

    PubMed Central

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner’99 and Turner’04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  6. Hypomineralized Second Primary Molars as Predictor of Molar Incisor Hypomineralization

    PubMed Central

    Negre-Barber, A.; Montiel-Company, J. M.; Boronat-Catalá, M.; Catalá-Pizarro, M.; Almerich-Silla, J. M.

    2016-01-01

    Molar incisor hypomineralization (MIH) is a developmental defect of dental enamel that shares features with hypomineralized second primary molars (HSPM). Prior to permanent tooth eruption, second primary molars could have predictive value for permanent molar and incisor hypomineralization. To assess this possible relationship, a cross-sectional study was conducted in a sample of 414 children aged 8 and 9 years from the INMA cohort in Valencia (Spain). A calibrated examiner (linear-weighted Kappa 0.83) performed the intraoral examinations at the University of Valencia between November 2013 and 2014, applying the diagnostic criteria for MIH and HSPM adopted by the European Academy of Paediatric Dentistry. 100 children (24.2%) presented MIH and 60 (14.5%) presented HSPM. Co-occurrence of the two defects was observed in 11.1% of the children examined. The positive predictive value was 76.7% (63.9–86.6) and the negative predictive value 84.7% (80.6–88.3). The positive likelihood ratio (S/1-E) was 10.3 (5.9–17.9) and the negative likelihood ratio (1-S/E) 0.57 (0.47–0.68). The odds ratio was 18.2 (9.39–35.48). It was concluded that while the presence of HSPM can be considered a predictor of MIH, indicating the need for monitoring and control, the absence of this defect in primary dentition does not rule out the appearance of MIH. PMID:27558479

  7. Relative entropy equals bulk relative entropy

    NASA Astrophysics Data System (ADS)

    Jafferis, Daniel L.; Lewkowycz, Aitor; Maldacena, Juan; Suh, S. Josephine

    2016-06-01

    We consider the gravity dual of the modular Hamiltonian associated to a general subregion of a boundary theory. We use it to argue that the relative entropy of nearby states is given by the relative entropy in the bulk, to leading order in the bulk gravitational coupling. We also argue that the boundary modular flow is dual to the bulk modular flow in the entanglement wedge, with implications for entanglement wedge reconstruction.

  8. Configurational Entropy Revisited

    NASA Astrophysics Data System (ADS)

    Lambert, Frank L.

    2007-09-01

    Entropy change is categorized in some prominent general chemistry textbooks as being either positional (configurational) or thermal. In those texts, the accompanying emphasis on the dispersal of matter—independent of energy considerations and thus in discord with kinetic molecular theory—is most troubling. This article shows that the variants of entropy can be treated from a unified viewpoint and argues that to decrease students' confusion about the nature of entropy change these variants of entropy should be merged. Molecular energy dispersal in space is implicit but unfortunately tacit in the cell models of statistical mechanics that develop the configurational entropy change in gas expansion, fluids mixing, or the addition of a non-volatile solute to a solvent. Two factors are necessary for entropy change in chemistry. An increase in thermodynamic entropy is enabled in a process by the motional energy of molecules (that, in chemical reactions, can arise from the energy released from a bond energy change). However, entropy increase is only actualized if the process results in a larger number of arrangements for the system's energy, that is, a final state that involves the most probable distribution for that energy under the new constraints. Positional entropy should be eliminated from general chemistry instruction and, especially benefiting "concrete minded" students, it should be replaced by emphasis on the motional energy of molecules as enabling entropy change.

  9. Fracture behavior of human molars.

    PubMed

    Keown, Amanda J; Lee, James J-W; Bush, Mark B

    2012-12-01

    Despite the durability of human teeth, which are able to withstand repeated loading while maintaining form and function, they are still susceptible to fracture. We focus here on longitudinal fracture in molar teeth-channel-like cracks that run along the enamel sidewall of the tooth between the gum line (cemento-enamel junction-CEJ) and the occlusal surface. Such fractures can often be painful and necessitate costly restorative work. The following study describes fracture experiments made on molar teeth of humans in which the molars are placed under axial compressive load using a hard indenting plate in order to induce longitudinal cracks in the enamel. Observed damage modes include fractures originating in the occlusal region ('radial-median cracks') and fractures emanating from the margin of the enamel in the region of the CEJ ('margin cracks'), as well as 'spalling' of enamel (the linking of longitudinal cracks). The loading conditions that govern fracture behavior in enamel are reported and observations made of the evolution of fracture as the load is increased. Relatively low loads were required to induce observable crack initiation-approximately 100 N for radial-median cracks and 200 N for margin cracks-both of which are less than the reported maximum biting force on a single molar tooth of several hundred Newtons. Unstable crack growth was observed to take place soon after and occurred at loads lower than those calculated by the current fracture models. Multiple cracks were observed on a single cusp, their interactions influencing crack growth behavior. The majority of the teeth tested in this study were noted to exhibit margin cracks prior to compression testing, which were apparently formed during the functional lifetime of the tooth. Such teeth were still able to withstand additional loading prior to catastrophic fracture, highlighting the remarkable damage containment capabilities of the natural tooth structure. PMID:22956116

  10. Entropy Transfer of Quantum Gravity Information Processing

    NASA Astrophysics Data System (ADS)

    Gyongyosi, Laszlo; Imre, Sandor

    2015-05-01

    We introduce the term smooth entanglement entropy transfer, a phenomenon that is a consequence of the causality-cancellation property of the quantum gravity environment. The causality-cancellation of the quantum gravity space removes the causal dependencies of the local systems. We study the physical effects of the causality-cancellation and show that it stimulates entropy transfer between the quantum gravity environment and the independent local systems of the quantum gravity space. The entropy transfer reduces the entropies of the contributing local systems and increases the entropy of the quantum gravity environment. We discuss the space-time geometry structure of the quantum gravity environment and the local quantum systems. We propose the space-time geometry model of the smooth entropy transfer. We reveal on a smooth Cauchy slice that the space-time geometry of the quantum gravity environment dynamically adapts to the vanishing causality. We prove that the Cauchy area expansion, along with the dilation of the Rindler horizon area of the quantum gravity environment, is a corollary of the causality-cancellation of the quantum gravity environment. This work was partially supported by the GOP-1.1.1-11-2012-0092 (Secure quantum key distribution between two units on optical fiber network) project sponsored by the EU and European Structural Fund, and by the COST Action MP1006.

  11. Computing the conformational entropy for RNA folds

    NASA Astrophysics Data System (ADS)

    Liu, Liang; Chen, Shi-Jie

    2010-06-01

    We develop a polymer physics-based method to compute the conformational entropy for RNA tertiary folds, namely, conformations consisting of multiple helices connected through (cross-linked) loops. The theory is based on a virtual bond conformational model for the nucleotide chain. A key issue in the calculation of the entropy is how to treat the excluded volume interactions. The weak excluded volume interference between the different loops leads to the decomposition of the whole structure into a number of three-body building blocks, each consisting of a loop and two helices connected to the two ends of the loop. The simple construct of the three-body system allows an accurate computation for the conformational entropy for each building block. The assembly of the building blocks gives the entropy of the whole structure. This approach enables treatment of molten globule-like folds (partially unfolded tertiary structures) for RNAs. Extensive tests against experiments and exact computer enumerations indicate that the method can give accurate results for the entropy. The method developed here provides a solid first step toward a systematic development of a theory for the entropy and free energy landscape for complex tertiary folds for RNAs and proteins.

  12. Mandibular lip bumper for molar torque control.

    PubMed

    Celentano, Giuseppe; Longobardi, Annalisa; Cannavale, Rosangela; Perillo, Letizia

    2011-01-01

    Treatment effects of lip bumpers alone include flaring of the mandibular incisors, distalization and uprighting of the mandibular first molars, and buccal expansion of the canines, premolars, and molar. Lip forces are transmitted through this appliance onto the molars. Moreover the lip bumper is able to derotate, expand or constrict, upright and reinforce the anchorage whereas torque control is lacking. Aim of this paper is the presentation of a new type of lip bumper that allows the molar torque control. PMID:21515237

  13. [Distalization of the upper second molar: biomechanics].

    PubMed

    Castaldo, A

    1991-01-01

    The Author shows a system to dystalize the second upper molars and, if necessary, the third upper molars. This system, easy to be adapted, is made up by a palatal bar inserted between the first upper molars, by a sectional and a 100 grams precalibrated open Sentalloy coil spring used as an active force. PMID:1784296

  14. Molar versus as a paradigm clash.

    PubMed Central

    Baum, W M

    2001-01-01

    The molar view of behavior arose in response to the demonstrated inadequacy of explanations based on contiguity. Although Dinsmoor's (2001) modifications to two-factor theory render it irrefutable, a more basic criticism arises when we see that the molar and molecular views differ paradigmatically. The molar view has proven more productive. PMID:11453623

  15. Entropy in Rhetoric.

    ERIC Educational Resources Information Center

    Marder, Daniel

    The Second Law of Thermodynamics demonstrates the idea of entropy, the tendency of ordered energy to free itself and thus break apart the system that contains it and dissipate that system into chaos. When applied to communications theory, entropy increases not only with noise but with the density of information--particles of possible meaning…

  16. The Holographic Entropy Cone

    SciTech Connect

    Bao, Ning; Nezami, Sepehr; Ooguri, Hirosi; Stoica, Bogdan; Sully, James; Walter, Michael

    2015-09-21

    We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phase space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.

  17. Generalized quantum entropies

    NASA Astrophysics Data System (ADS)

    Santos, A. P.; Silva, R.; Alcaniz, J. S.; Anselmo, D. H. A. L.

    2011-08-01

    A deduction of generalized quantum entropies within the Tsallis and Kaniadakis frameworks is derived using a generalization of the ordinary multinomial coefficient. This generalization is based on the respective deformed multiplication and division. We show that the two above entropies are consistent with ones arbitrarily assumed at other contexts.

  18. The Holographic Entropy Cone

    DOE PAGESBeta

    Bao, Ning; Nezami, Sepehr; Ooguri, Hirosi; Stoica, Bogdan; Sully, James; Walter, Michael

    2015-09-21

    We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phasemore » space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.« less

  19. The holographic entropy cone

    NASA Astrophysics Data System (ADS)

    Bao, Ning; Nezami, Sepehr; Ooguri, Hirosi; Stoica, Bogdan; Sully, James; Walter, Michael

    2015-09-01

    We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phase space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.

  20. Charged topological entanglement entropy

    NASA Astrophysics Data System (ADS)

    Matsuura, Shunji; Wen, Xueda; Hung, Ling-Yan; Ryu, Shinsei

    2016-05-01

    A charged entanglement entropy is a new measure which probes quantum entanglement between different charge sectors. We study symmetry-protected topological (SPT) phases in (2+1)-dimensional space-time by using this charged entanglement entropy. SPT phases are short-range entangled states without topological order and hence cannot be detected by the topological entanglement entropy. We demonstrate that the universal part of the charged entanglement entropy is nonzero for nontrivial SPT phases and therefore it is a useful measure to detect short-range entangled topological phases. We also discuss that the classification of SPT phases based on the charged topological entanglement entropy is related to that of the braiding statistics of quasiparticles.

  1. Laser assisted high entropy alloy coating on aluminum: Microstructural evolution

    SciTech Connect

    Katakam, Shravana; Joshi, Sameehan S.; Mridha, Sanghita; Mukherjee, Sundeep; Dahotre, Narendra B.

    2014-09-14

    High entropy alloy (Al-Fe-Co-Cr-Ni) coatings were synthesized using laser surface engineering on aluminum substrate. Electron diffraction analysis confirmed the formation of solid solution of body centered cubic high entropy alloy phase along with phases with long range periodic structures within the coating. Evolution of such type of microstructure was a result of kinetics associated with laser process, which generates higher temperatures and rapid cooling resulting in retention of high entropy alloy phase followed by reheating and/or annealing in subsequent passes of the laser track giving rise to partial decomposition. The partial decomposition resulted in formation of precipitates having layered morphology with a mixture of high entropy alloy rich phases, compounds, and long range ordered phases.

  2. Maxillary First Molar with Two Root Canals

    PubMed Central

    Rahimi, Saeed; Ghasemi, Negin

    2013-01-01

    Knowledge regarding the anatomic morphology of maxillary molars is absolutely essential for the success of endodontic treatment. The morphology of the permanent maxillary first molar has been reviewed extensively; however, the presence of two canals in a two-rooted maxillary first molar has rarely been reported in studies describing tooth and root canal anatomies. This case report presents a patient with a maxillary first molar with two roots and two root canals, who was referred to the Department of Endodontics, Tabriz University of Medical Sciences, Iran. PMID:23862051

  3. Conditional entropy of ordinal patterns

    NASA Astrophysics Data System (ADS)

    Unakafov, Anton M.; Keller, Karsten

    2014-02-01

    In this paper we investigate a quantity called conditional entropy of ordinal patterns, akin to the permutation entropy. The conditional entropy of ordinal patterns describes the average diversity of the ordinal patterns succeeding a given ordinal pattern. We observe that this quantity provides a good estimation of the Kolmogorov-Sinai entropy in many cases. In particular, the conditional entropy of ordinal patterns of a finite order coincides with the Kolmogorov-Sinai entropy for periodic dynamics and for Markov shifts over a binary alphabet. Finally, the conditional entropy of ordinal patterns is computationally simple and thus can be well applied to real-world data.

  4. The Mystique of Entropy.

    ERIC Educational Resources Information Center

    Kyle, Benjamin G.

    1988-01-01

    Illustrates qualitative and metaphoric applications of entropy in the areas of cosmology, the birth and death of the universe and time; life and evolution; literature and art; and social science. (RT)

  5. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  6. Local entropy generation analysis

    SciTech Connect

    Drost, M.K.; White, M.D.

    1991-02-01

    Second law analysis techniques have been widely used to evaluate the sources of irreversibility in components and systems of components but the evaluation of local sources of irreversibility in thermal processes has received little attention. While analytical procedures for evaluating local entropy generation have been developed, applications have been limited to fluid flows with analytical solutions for the velocity and temperature fields. The analysis of local entropy generation can be used to evaluate more complicated flows by including entropy generation calculations in a computational fluid dynamics (CFD) code. The research documented in this report consists of incorporating local entropy generation calculations in an existing CFD code and then using the code to evaluate the distribution of thermodynamic losses in two applications: an impinging jet and a magnetic heat pump. 22 refs., 13 figs., 9 tabs.

  7. Entropy of stochastic flows

    SciTech Connect

    Dorogovtsev, Andrei A

    2010-06-29

    For sets in a Hilbert space the concept of quadratic entropy is introduced. It is shown that this entropy is finite for the range of a stochastic flow of Brownian particles on R. This implies, in particular, the fact that the total time of the free travel in the Arratia flow of all particles that started from a bounded interval is finite. Bibliography: 10 titles.

  8. Asymptotic entropy bounds

    NASA Astrophysics Data System (ADS)

    Bousso, Raphael

    2016-07-01

    We show that known entropy bounds constrain the information carried off by radiation to null infinity. We consider distant, planar null hypersurfaces in asymptotically flat spacetime. Their focusing and area loss can be computed perturbatively on a Minkowski background, yielding entropy bounds in terms of the energy flux of the outgoing radiation. In the asymptotic limit, we obtain boundary versions of the quantum null energy condition, of the generalized Second Law, and of the quantum Bousso bound.

  9. Anomalies and entanglement entropy

    NASA Astrophysics Data System (ADS)

    Nishioka, Tatsuma; Yarom, Amos

    2016-03-01

    We initiate a systematic study of entanglement and Rényi entropies in the presence of gauge and gravitational anomalies in even-dimensional quantum field theories. We argue that the mixed and gravitational anomalies are sensitive to boosts and obtain a closed form expression for their behavior under such transformations. Explicit constructions exhibiting the dependence of entanglement entropy on boosts is provided for theories on spacetimes with non-trivial magnetic fluxes and (or) non-vanishing Pontryagin classes.

  10. Symbolic transfer entropy.

    PubMed

    Staniek, Matthäus; Lehnertz, Klaus

    2008-04-18

    We propose to estimate transfer entropy using a technique of symbolization. We demonstrate numerically that symbolic transfer entropy is a robust and computationally fast method to quantify the dominating direction of information flow between time series from structurally identical and nonidentical coupled systems. Analyzing multiday, multichannel electroencephalographic recordings from 15 epilepsy patients our approach allowed us to reliably identify the hemisphere containing the epileptic focus without observing actual seizure activity. PMID:18518155

  11. Symbolic Transfer Entropy

    NASA Astrophysics Data System (ADS)

    Staniek, Matthäus; Lehnertz, Klaus

    2008-04-01

    We propose to estimate transfer entropy using a technique of symbolization. We demonstrate numerically that symbolic transfer entropy is a robust and computationally fast method to quantify the dominating direction of information flow between time series from structurally identical and nonidentical coupled systems. Analyzing multiday, multichannel electroencephalographic recordings from 15 epilepsy patients our approach allowed us to reliably identify the hemisphere containing the epileptic focus without observing actual seizure activity.

  12. Entropy, matter, and cosmology.

    PubMed

    Prigogine, I; Géhéniau, J

    1986-09-01

    The role of irreversible processes corresponding to creation of matter in general relativity is investigated. The use of Landau-Lifshitz pseudotensors together with conformal (Minkowski) coordinates suggests that this creation took place in the early universe at the stage of the variation of the conformal factor. The entropy production in this creation process is calculated. It is shown that these dissipative processes lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Gravitational entropy takes a simple meaning as associated to the entropy that is necessary to produce matter. This leads to an extension of the third law of thermodynamics, as now the zero point of entropy becomes the space-time structure out of which matter is generated. The theory can be put into a convenient form using a supplementary "C" field in Einstein's field equations. The role of the C field is to express the coupling between gravitation and matter leading to irreversible entropy production. PMID:16593747

  13. Entropy of quasiblack holes

    SciTech Connect

    Lemos, Jose P. S.; Zaslavskii, Oleg B.

    2010-03-15

    We trace the origin of the black hole entropy S, replacing a black hole by a quasiblack hole. Let the boundary of a static body approach its own gravitational radius, in such a way that a quasihorizon forms. We show that if the body is thermal with the temperature taking the Hawking value at the quasihorizon limit, it follows, in the nonextremal case, from the first law of thermodynamics that the entropy approaches the Bekenstein-Hawking value S=A/4. In this setup, the key role is played by the surface stresses on the quasihorizon and one finds that the entropy comes from the quasihorizon surface. Any distribution of matter inside the surface leads to the same universal value for the entropy in the quasihorizon limit. This can be of some help in the understanding of black hole entropy. Other similarities between black holes and quasiblack holes such as the mass formulas for both objects had been found previously. We also discuss the entropy for extremal quasiblack holes, a more subtle issue.

  14. Entropy, matter, and cosmology

    PubMed Central

    Prigogine, I.; Géhéniau, J.

    1986-01-01

    The role of irreversible processes corresponding to creation of matter in general relativity is investigated. The use of Landau-Lifshitz pseudotensors together with conformal (Minkowski) coordinates suggests that this creation took place in the early universe at the stage of the variation of the conformal factor. The entropy production in this creation process is calculated. It is shown that these dissipative processes lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Gravitational entropy takes a simple meaning as associated to the entropy that is necessary to produce matter. This leads to an extension of the third law of thermodynamics, as now the zero point of entropy becomes the space-time structure out of which matter is generated. The theory can be put into a convenient form using a supplementary “C” field in Einstein's field equations. The role of the C field is to express the coupling between gravitation and matter leading to irreversible entropy production. PMID:16593747

  15. Fluctuation theorem for partially masked nonequilibrium dynamics.

    PubMed

    Shiraishi, Naoto; Sagawa, Takahiro

    2015-01-01

    We establish a generalization of the fluctuation theorem for partially masked nonequilibrium dynamics. We introduce a partial entropy production with a subset of all possible transitions, and show that the partial entropy production satisfies the integral fluctuation theorem. Our result reveals the fundamental properties of a broad class of autonomous as well as nonautonomous nanomachines. In particular, our result gives a unified fluctuation theorem for both autonomous and nonautonomous Maxwell's demons, where mutual information plays a crucial role. Furthermore, we derive a fluctuation-dissipation theorem that relates nonequilibrium stationary current to two kinds of equilibrium fluctuations. PMID:25679593

  16. Fluctuation theorem for partially masked nonequilibrium dynamics

    NASA Astrophysics Data System (ADS)

    Shiraishi, Naoto; Sagawa, Takahiro

    2015-01-01

    We establish a generalization of the fluctuation theorem for partially masked nonequilibrium dynamics. We introduce a partial entropy production with a subset of all possible transitions, and show that the partial entropy production satisfies the integral fluctuation theorem. Our result reveals the fundamental properties of a broad class of autonomous as well as nonautonomous nanomachines. In particular, our result gives a unified fluctuation theorem for both autonomous and nonautonomous Maxwell's demons, where mutual information plays a crucial role. Furthermore, we derive a fluctuation-dissipation theorem that relates nonequilibrium stationary current to two kinds of equilibrium fluctuations.

  17. Molar volumes and densities of minerals

    USGS Publications Warehouse

    Robie, Richard A.; Bethke, Philip M.

    1962-01-01

    These tables present critically chosen "best values" for the density and molar volume of selected mineral compounds. No attempt was made to be all-inclusive; rather we have tried to present data for chemically and physically well-defined phases for which the molar volume and/or density was knovvn to the order of 0. 2 percent.

  18. Heat capacty, relative enthalpy, and calorimetric entropy of silicate minerals: an empirical method of prediction.

    USGS Publications Warehouse

    Robinson, G.R., Jr.; Haas, J.L., Jr.

    1983-01-01

    Through the evaluation of experimental calorimetric data and estimates of the molar isobaric heat capacities, relative enthalpies and entropies of constituent oxides, a procedure for predicting the thermodynamic properties of silicates is developed. Estimates of the accuracy and precision of the technique and examples of its application are also presented. -J.A.Z.

  19. General technique of third molar removal.

    PubMed

    Farish, Sam E; Bouloux, Gary F

    2007-02-01

    The most commonly performed surgical procedure in most oral and maxillofacial surgery practices is the removal of impacted third molars. Extensive training, skill, and experience allow this procedure to be performed in an atraumatic fashion with local anesthesia, sedation, or general anesthesia. The decision to remove symptomatic third molars is not usually difficult, but the decision to remove asymptomatic third molars is sometimes less clear and requires clinical experience. A wide body of literature (discussed elsewhere in this issue) attempts to establish clinical practice guidelines for dealing with impacted teeth. Data is beginning to accumulate from third molar studies, which hopefully will provide surgeons and their patients with evidence-based guidelines regarding elective third molar surgery. PMID:18088862

  20. Histological evaluation of mandibular third molar roots retrieved after coronectomy.

    PubMed

    Patel, Vinod; Sproat, Chris; Kwok, Jerry; Beneng, Kiran; Thavaraj, Selvam; McGurk, Mark

    2014-05-01

    There is a resurgence of interest in coronectomy for the management of mandibular third molars because it has a low risk of injury to the inferior dental nerve. However, there is concern that the root that is left in place will eventually become a source of infection. We describe the histological evaluation of 26 consecutive symptomatic coronectomy roots in 21 patients. All roots had vital tissue in the pulp chamber and there was no evidence of periradicular inflammation. Persistent postoperative symptoms related predominantly to inflammation of the soft tissue, which was caused by partially erupted roots or failure of the socket to heal. PMID:24684971

  1. Expressly fabricated molar tube bases: enhanced adhesion.

    PubMed

    Sharma, Tarun; Phull, Tarun Singh; Rana, Tarun; Kumar, Varun

    2014-06-01

    Clinicians, Orthodontists and their patients' parents often expect the best results in the shortest time span possible. Orthodontic bonding of molar tubes has been an acceptable risk in a modern era of refined biomaterials and instrumentation. Although many orthodontists still prefer banding to bonding, it is the failure rate of the tubes on molars which accounts to an impedance in molar bonding. One of the reasons for molar attachment failures is attributed to improper adaptation of the buccal tube base with or without increased thickness of composite. Merits of banding the second molars especially when these are the terminal teeth for anchorage have been overemphasized in the literature. The present article presents a simple and relatively less time consuming technique of preparing molar tubes to be bonded on tooth surfaces which may be quite difficult to isolate especially for bonding, for example, mandibular second molars. The increased surface area of the composite scaffold helps not only in enhanced bond strength but also serves to reduce the incidence of plaque accumulation given the dexterity of invitro preparation. The removal of the occlusal part of the molar tube scaffold helps in prevention of open / raised bite tendencies. The present innovation, therefore, is not merely serendipity but a structured technique to overcome a common dilemma for the clinical orthodontist. The present dictum of banding being superior to molar tube bonding may prove to be futile with trendsetting molar attachments. It is also an established fact that bonding proves to be a lesser expensive modality when compared to banding procedures. PMID:25121070

  2. Measuring heart rate variability by means of information entropies based on Choi-Williams distribution.

    PubMed

    Vallverdú, Montserrat; Clariá, Francesc; Melia, Umberto; Bayés de Luna, Antonio; Caminal, Pere

    2015-08-01

    The Shannon entropy theory was applied to the Choi-Williams time-frequency distribution (CWD) of cardiac time series (RR series) in order to extract entropy information in both time and frequency domains. From this distribution, four indexes were defined: (1) instantaneous partial entropy; (2) spectral partial entropy; (3) instantaneous complete entropy; (4) spectral complete entropy. These indexes were used for analyzing the heart rate variability of ischemic cardiomyopathy patients (ICM) with different sudden cardiac death risk. The results have shown that the values of these indexes tend to decrease, with different proportion, when the severity of pathological condition increases. Statistical differences (p-value < 0.0005) of these indexes were found comparing low risk and high risk of cardiac death during night and between daytime and nighttime periods of ICM patients. Finally, these indexes have demonstrated to be useful tools to quantify the different complex components of the cardiac time series. PMID:26736628

  3. Entanglement entropy on fractals

    NASA Astrophysics Data System (ADS)

    Faraji Astaneh, Amin

    2016-03-01

    We use the heat kernel method to calculate the entanglement entropy for a given entangling region on a fractal. The leading divergent term of the entropy is obtained as a function of the fractal dimension as well as the walk dimension. The power of the UV cutoff parameter is (generally) a fractional number, which, indeed, is a certain combination of these two indices. This exponent is known as the spectral dimension. We show that there is a novel log-periodic oscillatory behavior in the expression of entropy which has root in the complex dimension of the fractal. We finally indicate that the holographic calculation in a certain hyperscaling-violating bulk geometry yields the same leading term for the entanglement entropy, if one identifies the effective dimension of the hyperscaling-violating theory with the spectral dimension of the fractal. We provide additional support by comparing the behavior of the thermal entropy in terms of the temperature, computed for two geometries, the fractal geometry and the hyperscaling-violating background.

  4. On Entropy Trail

    NASA Astrophysics Data System (ADS)

    Farokhi, Saeed; Taghavi, Ray; Keshmiri, Shawn

    2015-11-01

    Stealth technology is developed for military aircraft to minimize their signatures. The primary attention was focused on radar signature, followed by the thermal and noise signatures of the vehicle. For radar evasion, advanced configuration designs, extensive use of carbon composites and radar-absorbing material, are developed. On thermal signature, mainly in the infra-red (IR) bandwidth, the solution was found in blended rectangular nozzles of high aspect ratio that are shielded from ground detectors. For noise, quiet and calm jets are integrated into vehicles with low-turbulence configuration design. However, these technologies are totally incapable of detecting new generation of revolutionary aircraft. These shall use all electric, distributed, propulsion system that are thermally transparent. In addition, composite skin and non-emitting sensors onboard the aircraft will lead to low signature. However, based on the second-law of thermodynamics, there is no air vehicle that can escape from leaving an entropy trail. Entropy is thus the only inevitable signature of any system, that once measured, can detect the source. By characterizing the entropy field based on its statistical properties, the source may be recognized, akin to face recognition technology. Direct measurement of entropy is cumbersome, however as a derived property, it can be easily measured. The measurement accuracy depends on the probe design and the sensors onboard. One novel air data sensor suite is introduced with promising potential to capture the entropy trail.

  5. Maxillary second molar impaction in the adjacent ectopic third molar: Report of five rare cases.

    PubMed

    Souki, Bernardo Q; Cheib, Paula L; de Brito, Gabriela M; Pinto, Larissa S M C

    2015-01-01

    Maxillary second molar impaction in the adjacent ectopic third molar is a rare condition that practitioners might face in the field of pediatric dentistry and orthodontics. The early diagnosis and extraction of the adjacent ectopic third molar have been advocated, and prior research has reported a high rate of spontaneous eruption following third molar removal. However, some challenges in the daily practice are that the early diagnosis of this type of tooth impaction is difficult with conventional radiographic examination, and sometimes the early surgical removal of the maxillary third molar must be postponed because of the risks of damaging the second molar. The objective of this study is to report a case series of five young patients with maxillary second molar impaction and to discuss the difficulty of early diagnosis with the conventional radiographic examination, and unpredictability of self-correction. PMID:26321848

  6. Generalized gravitational entropy

    NASA Astrophysics Data System (ADS)

    Lewkowycz, Aitor; Maldacena, Juan

    2013-08-01

    We consider classical Euclidean gravity solutions with a boundary. The boundary contains a non-contractible circle. These solutions can be interpreted as computing the trace of a density matrix in the full quantum gravity theory, in the classical approximation. When the circle is contractible in the bulk, we argue that the entropy of this density matrix is given by the area of a minimal surface. This is a generalization of the usual black hole entropy formula to euclidean solutions without a Killing vector. A particular example of this set up appears in the computation of the entanglement entropy of a subregion of a field theory with a gravity dual. In this context, the minimal area prescription was proposed by Ryu and Takayanagi. Our arguments explain their conjecture.

  7. Casimir entropy for magnetodielectrics

    NASA Astrophysics Data System (ADS)

    Klimchitskaya, G. L.; Korikov, C. C.

    2015-06-01

    We find the analytic expressions for the Casimir free energy, entropy and pressure at low temperature in the configuration of two parallel plates made of magnetodielectic material. The cases of constant and frequency-dependent dielectic permittivity and magnetic permeability of the plates are considered. Special attention is paid to the account of dc conductivity. It is shown that in the case of finite static dielectric permittivity and magnetic permeability the Nernst heat theorem for the Casimir entropy is satisfied. If the dc conductivity is taken into account, the Casimir entropy goes to a positive nonzero limit depending on the parameters of a system when the temperature vanishes, i.e. the Nernst theorem is violated. The experimental situation is also discussed.

  8. Causality & holographic entanglement entropy

    NASA Astrophysics Data System (ADS)

    Headrick, Matthew; Hubeny, Veronika E.; Lawrence, Albion; Rangamani, Mukund

    2014-12-01

    We identify conditions for the entanglement entropy as a function of spatial region to be compatible with causality in an arbitrary relativistic quantum field theory. We then prove that the covariant holographic entanglement entropy prescription (which relates entanglement entropy of a given spatial region on the boundary to the area of a certain extremal surface in the bulk) obeys these conditions, as long as the bulk obeys the null energy condition. While necessary for the validity of the prescription, this consistency requirement is quite nontrivial from the bulk standpoint, and therefore provides important additional evidence for the prescription. In the process, we introduce a codimension-zero bulk region, named the entanglement wedge, naturally associated with the given boundary spatial region. We propose that the entanglement wedge is the most natural bulk region corresponding to the boundary reduced density matrix.

  9. Holographic entropy production

    NASA Astrophysics Data System (ADS)

    Tian, Yu; Wu, Xiao-Ning; Zhang, Hongbao

    2014-10-01

    The suspicion that gravity is holographic has been supported mainly by a variety of specific examples from string theory. In this paper, we propose that such a holography can actually be observed in the context of Einstein's gravity and at least a class of generalized gravitational theories, based on a definite holographic principle where neither is the bulk space-time required to be asymptotically AdS nor the boundary to be located at conformal infinity, echoing Wilson's formulation of quantum field theory. After showing the general equilibrium thermodynamics from the corresponding holographic dictionary, in particular, we provide a rather general proof of the equality between the entropy production on the boundary and the increase of black hole entropy in the bulk, which can be regarded as strong support to this holographic principle. The entropy production in the familiar holographic superconductors/superfluids is investigated as an important example, where the role played by the holographic renormalization is explained.

  10. EEG entropy measures in anesthesia

    PubMed Central

    Liang, Zhenhu; Wang, Yinghua; Sun, Xue; Li, Duan; Voss, Logan J.; Sleigh, Jamie W.; Hagihira, Satoshi; Li, Xiaoli

    2015-01-01

    Highlights: ► Twelve entropy indices were systematically compared in monitoring depth of anesthesia and detecting burst suppression.► Renyi permutation entropy performed best in tracking EEG changes associated with different anesthesia states.► Approximate Entropy and Sample Entropy performed best in detecting burst suppression. Objective: Entropy algorithms have been widely used in analyzing EEG signals during anesthesia. However, a systematic comparison of these entropy algorithms in assessing anesthesia drugs' effect is lacking. In this study, we compare the capability of 12 entropy indices for monitoring depth of anesthesia (DoA) and detecting the burst suppression pattern (BSP), in anesthesia induced by GABAergic agents. Methods: Twelve indices were investigated, namely Response Entropy (RE) and State entropy (SE), three wavelet entropy (WE) measures [Shannon WE (SWE), Tsallis WE (TWE), and Renyi WE (RWE)], Hilbert-Huang spectral entropy (HHSE), approximate entropy (ApEn), sample entropy (SampEn), Fuzzy entropy, and three permutation entropy (PE) measures [Shannon PE (SPE), Tsallis PE (TPE) and Renyi PE (RPE)]. Two EEG data sets from sevoflurane-induced and isoflurane-induced anesthesia respectively were selected to assess the capability of each entropy index in DoA monitoring and BSP detection. To validate the effectiveness of these entropy algorithms, pharmacokinetic/pharmacodynamic (PK/PD) modeling and prediction probability (Pk) analysis were applied. The multifractal detrended fluctuation analysis (MDFA) as a non-entropy measure was compared. Results: All the entropy and MDFA indices could track the changes in EEG pattern during different anesthesia states. Three PE measures outperformed the other entropy indices, with less baseline variability, higher coefficient of determination (R2) and prediction probability, and RPE performed best; ApEn and SampEn discriminated BSP best. Additionally, these entropy measures showed an advantage in computation

  11. Unilateral Molar Distalization: A Nonextraction Therapy

    PubMed Central

    Prasad, M. Bhanu; Sreevalli, S.

    2012-01-01

    In the recent years, nonextraction treatment approaches and noncompliance therapies have become more popular in the correction of space discrepancies. One of the conventional approaches for space gaining in the arches without patient compliance is done by using certain extra oral appliances or intraoral appliance. The greatest advantage of certain appliances like fixed functional and molar distalization appliances is that they minimize the dependence on patient cooperation. Molar distalization appliances like pendulum appliance which distalizes the molar rapidly without the need of head gear can be used in patients as a unilateral space gaining procedure due to buccal segment crowding. PMID:23320203

  12. Role of third molars in orthodontics.

    PubMed

    Almpani, Konstantinia; Kolokitha, Olga-Elpis

    2015-02-16

    The role of third molars in the oral cavity has been extensively studied over the years. Literature includes numerous diagnostic and treatment alternatives regarding the third molars. However, an issue that has not been discussed at the same level is their involvement in orthodontic therapy. The aim of this study is to present a review of the contemporary literature regarding the most broadly discussed aspects of the multifactorial role of third molars in orthodontics and which are of general dental interest too. PMID:25685759

  13. Valence bond entanglement entropy.

    PubMed

    Alet, Fabien; Capponi, Sylvain; Laflorencie, Nicolas; Mambrini, Matthieu

    2007-09-14

    We introduce for SU(2) quantum spin systems the valence bond entanglement entropy as a counting of valence bond spin singlets shared by two subsystems. For a large class of antiferromagnetic systems, it can be calculated in all dimensions with quantum Monte Carlo simulations in the valence bond basis. We show numerically that this quantity displays all features of the von Neumann entanglement entropy for several one-dimensional systems. For two-dimensional Heisenberg models, we find a strict area law for a valence bond solid state and multiplicative logarithmic corrections for the Néel phase. PMID:17930468

  14. A note on bounded entropies

    NASA Astrophysics Data System (ADS)

    Amblard, Pierre-Olivier; Vignat, Christophe

    2006-06-01

    The aim of the paper is to study the link between non-additivity of some entropies and their boundedness. We propose an axiomatic construction of the entropy relying on the fact that entropy belongs to a group isomorphic to the usual additive group. This allows to show that the entropies that are additive with respect to the addition of the group for independent random variables are nonlinear transforms of the Rényi entropies, including the particular case of the Shannon entropy. As a particular example, we study as a group a bounded interval in which the addition is a generalization of the addition of velocities in special relativity. We show that Tsallis-Havrda-Charvat entropy is included in the family of entropies we define. Finally, a link is made between the approach developed in the paper and the theory of deformed logarithms.

  15. Intracoronal radiolucency in an incompletely erupted permanent molar with a diagnosis of pericoronitis: importance of radiographic examination.

    PubMed

    Segura, J J; Jiménez-Rubio, A; Cabrera, R

    1998-04-01

    Because of clinical signs and symptoms, a diagnosis of pericoronitis in a partially erupted, partially impacted first molar was made. A more thorough diagnosis was made with the help of a periapical radiograph that showed caries and thus revealed an irreversible pulpitis. Appropriate treatment was the result. PMID:9574958

  16. Entropy Effects in Chelation Reactions.

    ERIC Educational Resources Information Center

    Chung, Chung-Sun

    1984-01-01

    The entropy change for a reaction in aqueous solution can be evaluated as a combination of entropy factors. Valuable insight or understanding can be obtained from a detailed examination of these factors. Several entropy effects of inorganic chemical reactions are discussed as examples. (Author/JN)

  17. A Note on Quantum Entropy

    NASA Astrophysics Data System (ADS)

    Hansen, Frank

    2016-06-01

    Incremental information, as measured by the quantum entropy, is increasing when two ensembles are united. This result was proved by Lieb and Ruskai, and it is the foundation for the proof of strong subadditivity of quantum entropy. We present a truly elementary proof of this fact in the context of the broader family of matrix entropies introduced by Chen and Tropp.

  18. Molars and incisors: show your microarray IDs

    PubMed Central

    2013-01-01

    Background One of the key questions in developmental biology is how, from a relatively small number of conserved signaling pathways, is it possible to generate organs displaying a wide range of shapes, tissue organization, and function. The dentition and its distinct specific tooth types represent a valuable system to address the issues of differential molecular signatures. To identify such signatures, we performed a comparative transcriptomic analysis of developing murine lower incisors, mandibular molars and maxillary molars at the developmental cap stage (E14.5). Results 231 genes were identified as being differentially expressed between mandibular incisors and molars, with a fold change higher than 2 and a false discovery rate lower than 0.1, whereas only 96 genes were discovered as being differentially expressed between mandibular and maxillary molars. Numerous genes belonging to specific signaling pathways (the Hedgehog, Notch, Wnt, FGF, TGFβ/BMP, and retinoic acid pathways), and/or to the homeobox gene superfamily, were also uncovered when a less stringent fold change threshold was used. Differential expressions for 10 out of 12 (mandibular incisors versus molars) and 9 out of 10 selected genes were confirmed by quantitative reverse transcription-PCR (qRT-PCR). A bioinformatics tool (Ingenuity Pathway Analysis) used to analyze biological functions and pathways on the group of incisor versus molar differentially expressed genes revealed that 143 genes belonged to 9 networks with intermolecular connections. Networks with the highest significance scores were centered on the TNF/NFκB complex and the ERK1/2 kinases. Two networks ERK1/2 kinases and tretinoin were involved in differential molar morphogenesis. Conclusion These data allowed us to build several regulatory networks that may distinguish incisor versus molar identity, and may be useful for further investigations of these tooth-specific ontogenetic programs. These programs may be dysregulated in

  19. Single-rooted primary first mandibular molar

    PubMed Central

    Haridoss, SelvaKumar; Swaminathan, Kavitha; Rajendran, Vijayakumar; Rajendran, Bharathan

    2014-01-01

    Morphological variations like single-rooted molar in primary dentition are scarce. Understanding the root canal anatomy and variations is necessary for successful root canal therapy. The purpose of the present article is to report successful endodontic treatment of primary left mandibular first molar with an abnormal morphology of a single root. This case report highlights the importance of knowledge and its applications in the management of anomalous anatomic variants which play a crucial role in the success of endodontic treatment. PMID:25150245

  20. Maximum Entropies Copulas

    NASA Astrophysics Data System (ADS)

    Pougaza, Doriano-Boris; Mohammad-Djafari, Ali

    2011-03-01

    New families of copulas are obtained in a two-step process: first considering the inverse problem which consists of finding a joint distribution from its given marginals as the constrained maximization of some entropies (Shannon, Rényi, Burg, Tsallis-Havrda-Charvát), and then using Sklar's theorem, to define the corresponding copula.

  1. Rescaling Temperature and Entropy

    ERIC Educational Resources Information Center

    Olmsted, John, III

    2010-01-01

    Temperature and entropy traditionally are expressed in units of kelvin and joule/kelvin. These units obscure some important aspects of the natures of these thermodynamic quantities. Defining a rescaled temperature using the Boltzmann constant, T' = k[subscript B]T, expresses temperature in energy units, thereby emphasizing the close relationship…

  2. Entropy and evolution

    NASA Astrophysics Data System (ADS)

    Styer, Daniel F.

    2008-11-01

    Quantitative estimates of the entropy involved in biological evolution demonstrate that there is no conflict between evolution and the second law of thermodynamics. The calculations are elementary and could be used to enliven the thermodynamics portion of a high school or introductory college physics course.

  3. Entropy of the Universe

    NASA Astrophysics Data System (ADS)

    Sato, Humitaka

    2010-06-01

    Charles Darwin's calculation of a life of Earth had ignited Kelvin's insight on a life of Sun, which had eventually inherited to the physical study of stellar structure and energy source. Nuclear energy had secured a longevity of the universe and the goal of the cosmic evolution has been secured by the entropy of black holes.

  4. An investigation of combustion and entropy noise

    NASA Technical Reports Server (NTRS)

    Strahle, W. C.

    1977-01-01

    The relative importance of entropy and direct combustion noise in turbopropulsion systems and the parameters upon which these noise sources depend were studied. Theory and experiment were employed to determine that at least with the apparatus used here, entropy noise can dominate combustion noise if there is a sufficient pressure gradient terminating the combustor. Measurements included combustor interior fluctuating pressure, near and far field fluctuating pressure, and combustor exit plane fluctuating temperatures, as well as mean pressures and temperatures. Analysis techniques included spectral, cross-correlation, cross power spectra, and ordinary and partial coherence analysis. Also conducted were combustor liner modification experiments to investigate the origin of the frequency content of combustion noise. Techniques were developed to extract nonpropagational pseudo-sound and the heat release fluctuation spectra from the data.

  5. Maxillary molar distalization with first class appliance

    PubMed Central

    Ramesh, Namitha; Palukunnu, Biswas; Ravindran, Nidhi; Nair, Preeti P

    2014-01-01

    Non-extraction treatment has gained popularity for corrections of mild-to-moderate class II malocclusion over the past few decades. The distalization of maxillary molars is of significant value for treatment of cases with minimal arch discrepancy and mild class II molar relation associated with a normal mandibular arch and acceptable profile. This paper describes our experience with a 16-year-old female patient who reported with irregularly placed upper front teeth and unpleasant smile. The patient was diagnosed to have angles class II malocclusion with moderate maxillary anterior crowding, deep bite of 4 mm on a skeletal class II base with an orthognathic maxilla and retrognathic mandible and normal growth pattern. She presented an ideal profile and so molar distalization was planned with the first-class appliance. Molars were distalised by 8 mm on the right and left quadrants and class I molar relation achieved within 4 months. The space gained was utilised effectively to align the arch and establish a class I molar and canine relation. PMID:24577171

  6. Entropy and cosmology.

    NASA Astrophysics Data System (ADS)

    Zucker, M. H.

    This paper is a critical analysis and reassessment of entropic functioning as it applies to the question of whether the ultimate fate of the universe will be determined in the future to be "open" (expanding forever to expire in a big chill), "closed" (collapsing to a big crunch), or "flat" (balanced forever between the two). The second law of thermodynamics declares that entropy can only increase and that this principle extends, inevitably, to the universe as a whole. This paper takes the position that this extension is an unwarranted projection based neither on experience nonfact - an extrapolation that ignores the powerful effect of a gravitational force acting within a closed system. Since it was originally presented by Clausius, the thermodynamic concept of entropy has been redefined in terms of "order" and "disorder" - order being equated with a low degree of entropy and disorder with a high degree. This revised terminology more subjective than precise, has generated considerable confusion in cosmology in several critical instances. For example - the chaotic fireball of the big bang, interpreted by Stephen Hawking as a state of disorder (high entropy), is infinitely hot and, thermally, represents zero entropy (order). Hawking, apparently focusing on the disorderly "chaotic" aspect, equated it with a high degree of entropy - overlooking the fact that the universe is a thermodynamic system and that the key factor in evaluating the big-bang phenomenon is the infinitely high temperature at the early universe, which can only be equated with zero entropy. This analysis resolves this confusion and reestablishes entropy as a cosmological function integrally linked to temperature. The paper goes on to show that, while all subsystems contained within the universe require external sources of energization to have their temperatures raised, this requirement does not apply to the universe as a whole. The universe is the only system that, by itself can raise its own

  7. Efficiency of a pendulum appliance for molar distalization related to second and third molar eruption stage.

    PubMed

    Kinzinger, Gero S M; Fritz, Ulrike B; Sander, Franz-Günter; Diedrich, Peter R

    2004-01-01

    A modified pendulum appliance, including a distal screw and special preactivated pendulum springs (built-in straightening activation and toe-in bending), was used for bilateral maxillary molar distalization in 36 adolescent patients in various stages of the molar dentition. The patients were divided into 3 groups (PG 1-3) according to the stage of eruption of their second and third molars. In PG 1 (18 patients), eruption of the second molars had either not yet taken place or was not complete. In PG 2 (15 patients), the second molars had already developed as far as the occlusal plane, with the third molars at the budding stage. In PG 3 (3 patients), germectomy of the wisdom teeth had been carried out, and the first and second molars on both sides had completely erupted. Analysis of cephalograms to identify any changes in the sagittal plane showed that, in the direction of distalization, a tooth bud acts on the mesial neighboring tooth like a fulcrum, and that tipping of the first molars in patients in whom the second molar was still at the budding stage was thus greater. In patients whose second molars had erupted completely, the degree of tipping was greater again when a third molar bud was located in the direction of movement. After previously completed germectomy of the wisdom teeth, almost exclusively bodily distalization of both molars is possible, even without bands being applied to the second molars. However, if the first and second molars are distalized simultaneously with a pendulum appliance, the duration of therapy will be longer, greater forces will have to be applied, and more anchorage will be lost. Statistical analysis of the results of dental-angular measurements showed significant differences in the degree of molar tipping and reciprocal incisor protrusion. The degree of distal tipping of first molars was less in patients with erupted second molars (PG 2 and PG 3) than in those whose second molars were not yet erupted (PG 1). For instance, the

  8. Diffusive mixing and Tsallis entropy

    DOE PAGESBeta

    O'Malley, Daniel; Vesselinov, Velimir V.; Cushman, John H.

    2015-04-29

    Brownian motion, the classical diffusive process, maximizes the Boltzmann-Gibbs entropy. The Tsallis q-entropy, which is non-additive, was developed as an alternative to the classical entropy for systems which are non-ergodic. A generalization of Brownian motion is provided that maximizes the Tsallis entropy rather than the Boltzmann-Gibbs entropy. This process is driven by a Brownian measure with a random diffusion coefficient. In addition, the distribution of this coefficient is derived as a function of q for 1 < q < 3. Applications to transport in porous media are considered.

  9. Renyi entropy as a statistical entropy for complex systems

    NASA Astrophysics Data System (ADS)

    Bashkirov, A. G.

    2006-11-01

    To describe a complex system, we propose using the Renyi entropy depending on the parameter q (0 < q ≤ 1) and passing into the Gibbs-Shannon entropy at q = 1. The maximum principle for the Renyi entropy yields a Renyi distribution that passes into the Gibbs canonical distribution at q = 1. The thermodynamic entropy of the complex system is defined as the Renyi entropy for the Renyi distribution. In contrast to the usual entropy based on the Gibbs-Shannon entropy, the Renyi entropy increases as the distribution deviates from the Gibbs distribution (the deviation is estimated by the parameter η = 1 - q) and reaches its maximum at the maximum possible value ηmax. As this occurs, the Renyi distribution becomes a power-law distribution. The parameter η can be regarded as an order parameter. At η = 0, the derivative of the thermodynamic entropy with respect to η exhibits a jump, which indicates a kind of phase transition into a more ordered state. The evolution of the system toward further order in this phase state is accompanied by an entropy gain. This means that in accordance with the second law of thermodynamics, a natural evolution in the direction of self-organization is preferable.

  10. Caries Management Strategies for Primary Molars

    PubMed Central

    Santamaria, R.M.; Innes, N.P.T.; Machiulskiene, V.; Evans, D.J.P.; Splieth, C.H.

    2014-01-01

    Minimal invasive approaches to managing caries, such as partial caries removal techniques, are showing increasing evidence of improved outcomes over the conventional complete caries removal. There is also increasing interest in techniques where no caries is removed. We present the 1-yr results of clinical efficacy for 3 caries management options for occlusoproximal cavitated lesions in primary molars: conventional restorations (CR; complete caries removal and compomer restoration), Hall technique (HT; no caries removal, sealing in with stainless steel crowns), and nonrestorative caries treatment (NRCT; no caries removal, opening up the cavity, teaching brushing and fluoride application). In sum, 169 children (3-8 yr old; mean, 5.56 ± 1.45 yr) were enrolled in this secondary care–based, 3-arm, parallel-group, randomized clinical trial. Treatments were carried out by specialist pediatric dentists or postgraduate trainees. One lesion per child received CR, HT, or NRCT. Outcome measures were clinical failure rates, grouped as minor failure (restoration loss/need for replacement, reversible pulpitis, caries progression, etc.) and major failure (irreversible pulpitis, abscess, etc.). There were 148 children (87.6%) with a minimum follow-up of 11 mo (mean, 12.23 ± 0.98 mo). Twenty teeth were recorded as having at least 1 minor failure: NRCT, n = 8 (5%); CR, n = 11 (7%); HT, n = 1 (1%) (p = .002, 95% CI = 0.001 to 0.003). Only the comparison between NRCT and CR showed no significant difference (p = .79, 95% CI = 0.78 to 0.80). Nine (6%) experienced at least 1 major failure: NRCT, n = 4 (2%); CR, n = 5 (3%); HT, n = 0 (0%) (p = .002, 95% CI = 0.001 to 0.003). Individual comparison of NRCT and CR showed no statistically significant difference in major failures (p = .75, 95% CI = 0.73 to 0.76). Success and failure rates were not significantly affected by pediatric dentists’ level of experience (p = .13, 95% CI = 0.12 to 0.14). The HT was significantly more successful

  11. Entropy-stabilized oxides

    NASA Astrophysics Data System (ADS)

    Rost, Christina M.; Sachet, Edward; Borman, Trent; Moballegh, Ali; Dickey, Elizabeth C.; Hou, Dong; Jones, Jacob L.; Curtarolo, Stefano; Maria, Jon-Paul

    2015-09-01

    Configurational disorder can be compositionally engineered into mixed oxide by populating a single sublattice with many distinct cations. The formulations promote novel and entropy-stabilized forms of crystalline matter where metal cations are incorporated in new ways. Here, through rigorous experiments, a simple thermodynamic model, and a five-component oxide formulation, we demonstrate beyond reasonable doubt that entropy predominates the thermodynamic landscape, and drives a reversible solid-state transformation between a multiphase and single-phase state. In the latter, cation distributions are proven to be random and homogeneous. The findings validate the hypothesis that deliberate configurational disorder provides an orthogonal strategy to imagine and discover new phases of crystalline matter and untapped opportunities for property engineering.

  12. Negative Entropy of Life

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    2015-10-01

    We modify Newtonian gravity to probabilistic quantum mechanical gravity to derive strong coupling. If this approach is valid, we should be able to extend it to the physical body (life) as follows. Using Boltzmann equation, we get the entropy of the universe (137) as if its reciprocal, the fine structure constant (ALPHA), is the hidden candidate representing the negative entropy of the universe which is indicative of the binary information as its basis (http://www.arXiv.org/pdf/physics0210040v5). Since ALPHA relates to cosmology, it must relate to molecular biology too, with the binary system as the fundamental source of information for the nucleotides of the DNA as implicit in the book by the author: ``Quantum Consciousness - The Road to Reality.'' We debate claims of anthropic principle based on the negligible variation of ALPHA and throw light on thermodynamics. We question constancy of G in multiple ways.

  13. Avoiding the entropy trap

    SciTech Connect

    Weinberg, A.M.

    1982-10-01

    Utopians who use entropy to warn of a vast deterioration of energy and mineral resources seek a self-fulfilling prophesy when they work to deny society access to new energy sources, particularly nuclear power. While theoretically correct, entropy is not the relevant factor for the rest of this century. The more extreme entropists call for a return to an eotechnic society based on decentralized, renewable energy technologies, which rests on the assumptions of a loss in Gibbs Free Energy, a mineral depletion that will lead to OPEC-like manipulation, and a current technology that is destroying the environment. The author challenges these assumptions and calls for an exorcism of public fears over reactor accidents. He foresees a resurgence in public confidence in nuclear power by 1990 that will resolve Western dependence on foreign oil. (DCK)

  14. Entropy-stabilized oxides

    PubMed Central

    Rost, Christina M.; Sachet, Edward; Borman, Trent; Moballegh, Ali; Dickey, Elizabeth C.; Hou, Dong; Jones, Jacob L.; Curtarolo, Stefano; Maria, Jon-Paul

    2015-01-01

    Configurational disorder can be compositionally engineered into mixed oxide by populating a single sublattice with many distinct cations. The formulations promote novel and entropy-stabilized forms of crystalline matter where metal cations are incorporated in new ways. Here, through rigorous experiments, a simple thermodynamic model, and a five-component oxide formulation, we demonstrate beyond reasonable doubt that entropy predominates the thermodynamic landscape, and drives a reversible solid-state transformation between a multiphase and single-phase state. In the latter, cation distributions are proven to be random and homogeneous. The findings validate the hypothesis that deliberate configurational disorder provides an orthogonal strategy to imagine and discover new phases of crystalline matter and untapped opportunities for property engineering. PMID:26415623

  15. Orthodontic extrusion of horizontally impacted mandibular molars

    PubMed Central

    Ma, Zhigui; Yang, Chi; Zhang, Shanyong; Xie, Qianyang; Shen, Yuqing; Shen, Pei

    2014-01-01

    Objective: To introduce and evaluate a novel approach in treating horizontally impacted mandibular second and third molars. Materials and methods: An orthodontic technique was applied for treatment of horizontally impacted mandibular second and third molars, which included a push-type spring for rotation first, and then a cantilever for extrusion. There were 8 mandibular third molars (M3s) and 2 second molars (M2s) in this study. Tooth mobility, extraction time, the inclination and parallelism of the impacted tooth, alveolar bone height of the adjacent tooth, and the relationship of impacted M3 and the inferior alveolar nerve (IAN) were evaluated. Results: Two horizontally impacted M2s could be upright in the arch and good occlusal relationships were obtained after treatment. All impacted M3s were successfully separated from the IAN, without any neurologic consequences. The average extraction time was 5 minutes. There was a significant change in the inclination and parallelism of the impacted tooth after treatment. A new bone apposition with the average height of 3.2 mm was noted distal to the adjacent tooth. Conclusions: This two-step orthodontic technique as presented here may be a safe and feasible alternative in management of severely horizontally impacted mandibular molars, which achieves a successful separation of M3s from the IAN and an excellent position for M2s. PMID:25419364

  16. Oxygen from Hydrogen Peroxide. A Safe Molar Volume-Molar Mass Experiment.

    ERIC Educational Resources Information Center

    Bedenbaugh, John H.; And Others

    1988-01-01

    Describes a molar volume-molar mass experiment for use in general chemistry laboratories. Gives background technical information, procedures for the titration of aqueous hydrogen peroxide with standard potassium permanganate and catalytic decomposition of hydrogen peroxide to produce oxygen, and a discussion of the results obtained in three…

  17. Warped entanglement entropy

    NASA Astrophysics Data System (ADS)

    Anninos, Dionysios; Samani, Joshua; Shaghoulian, Edgar

    2014-02-01

    We study the applicability of the covariant holographic entanglement entropy proposal to asymptotically warped AdS3 spacetimes with an SL(2, ℝ) × U(1) isometry. We begin by applying the proposal to locally AdS3 backgrounds which are written as an ℝ1 fibration over AdS2. We then perturb away from this geometry by considering a warping parameter a = 1 + δ to get an asymptotically warped AdS3 spacetime and compute the dual entanglement entropy perturbatively in δ. We find that for large separation in the fiber coordinate, the entanglement entropy can be computed to all orders in δ and takes the universal form appropriate for two-dimensional CFTs. The warping-dependent central charge thus identified exactly agrees with previous calculations in the literature. Performing the same perturbative calculations for the warped BTZ black hole again gives universal two-dimensional CFT answers, with the left-moving and right-moving temperatures appearing appropriately in the result.

  18. Quanta and entropy generation

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto

    2015-02-01

    Is there a link between the macroscopic description of the irreversibility and microscopic behaviour of the systems? Transfer of the exergy, i.e., consumption of free energy will keep the system away from a stable equilibrium. So entropy generation results from the redistribution of energy, momentum, mass and charge. Moreover, irreversible consumption of free energy was underlined to create time's arrow. This concept represents the essence of the thermodynamic approach to irreversibility. The analysis developed in this paper points out that the principle of maximum of entropy generation and the least action can be recognized as the only single law. Quanta are exchanged between a system and its surroundings. Each quantum carries energy. The natural behaviour of the open systems is ascribed to the decrease of free energy in the least time, which can be related to the extremum entropy generation theorem. Irreversibility is the result of the interaction between systems and their environment with the consequence time symmetry breaking. The fundamental result of this paper is to introduce a link between the global analysis of irreversibility and Noether's results.

  19. Information and Entropy

    NASA Astrophysics Data System (ADS)

    Caticha, Ariel

    2007-11-01

    What is information? Is it physical? We argue that in a Bayesian theory the notion of information must be defined in terms of its effects on the beliefs of rational agents. Information is whatever constrains rational beliefs and therefore it is the force that induces us to change our minds. This problem of updating from a prior to a posterior probability distribution is tackled through an eliminative induction process that singles out the logarithmic relative entropy as the unique tool for inference. The resulting method of Maximum relative Entropy (ME), which is designed for updating from arbitrary priors given information in the form of arbitrary constraints, includes as special cases both MaxEnt (which allows arbitrary constraints) and Bayes' rule (which allows arbitrary priors). Thus, ME unifies the two themes of these workshops—the Maximum Entropy and the Bayesian methods—into a single general inference scheme that allows us to handle problems that lie beyond the reach of either of the two methods separately. I conclude with a couple of simple illustrative examples.

  20. Majorana tunneling entropy

    NASA Astrophysics Data System (ADS)

    Smirnov, Sergey

    2015-11-01

    In thermodynamics a macroscopic state of a system results from a number of its microscopic states. This number is given by the exponent of the system's entropy exp(S ) . In noninteracting systems with discrete energy spectra, such as large scale quantum dots, S as a function of the temperature has usually a plateau shape with integer values of exp(S ) on these plateaus. Plateaus with noninteger values of exp(S ) are fundamentally forbidden and would be thermodynamically infeasible. Here we investigate the entropy of a noninteracting quantum dot coupled via tunneling to normal metals with continuum spectra as well as to topological superconductors. We show that the entropy may have noninteger plateaus if the topological superconductors support weakly overlapping Majorana bound states. This brings a fundamental change in the thermodynamics of the quantum dot whose specific heat cV acquires low-temperature Majorana peaks which should be absent according to the conventional thermodynamics. We also provide a fundamental thermodynamic understanding of the transport properties, such as the linear conductance. In general our results show that the thermodynamics of systems coupled to Majorana modes represents a fundamental physical interest with diverse applications depending on versatility of possible coupling mechanisms.

  1. Quantum information entropy for one-dimensional system undergoing quantum phase transition

    NASA Astrophysics Data System (ADS)

    Xu-Dong, Song; Shi-Hai, Dong; Yu, Zhang

    2016-05-01

    Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic “Landau” potential in a numerical way. Particularly, it is found that the phase transitional behavior of the system can be well expressed by the evolution of quantum information entropy. The calculated results also indicate that the position entropy Sx and the momentum entropy Sp at the critical point of phase transition may vary with the mass parameter M but their sum remains as a constant independent of M for a given excited state. In addition, the entropy uncertainty relation is proven to be robust during the whole process of the phase transition. Project supported by the National Natural Science Foundation of China (Grant No. 11375005) and partially by 20150964-SIP-IPN, Mexico.

  2. Lower third molar eruption following orthodontic treatment.

    PubMed

    Salehi, P; Danaie, S Momene

    2008-01-01

    This study assessed the effect of extraction and preservation of the 1st premolar on lower 3rd molar eruption. Orthodontic clinic records from 1993 to 1995 were evaluated before and after treatment and 8-9 years after treatment for 3 groups of patients: 32 with extraction of 1st premolars in both jaws, 32 with no extraction but orthodontic treatment and 48 controls with no extraction but orthodontic treatment in the upper jaws only. Successful eruption of 3rd molars was evaluated. There was a significant difference in the rates of successful eruptions in the extraction (42%), non-extraction (12%) and control (20%) groups. The findings indicate that 1st premolar extraction may increase the chance of 3rd molar eruption, leading to a lower incidence of health and economic complications. PMID:19161121

  3. Molar and molecular views of choice.

    PubMed

    Baum, William M

    2004-06-30

    The molar and molecular views of behavior are not different theories or levels of analysis; they are different paradigms. The molecular paradigm views behavior as composed of discrete units (responses) occurring at moments in time and strung together in chains to make up complex performances. The discrete pieces are held together as a result of association by contiguity. The molecular view has a long history both in early thought about reflexes and in associationism, and, although it was helpful to getting a science of behavior started, it has outlived its usefulness. The molar view stems from a conviction that behavior is continuous, as argued by John Dewey, Gestalt psychologists, Karl Lashley, and others. The molar paradigm views behavior as inherently extended in time and composed of activities that have integrated parts. In the molar paradigm, activities vary in their scale of organization--i.e., as to whether they are local or extended--and behavior may be controlled sometimes by short-term relations and sometimes by long-term relations. Applied to choice, the molar paradigm rests on two simple principles: (a) all behavior constitutes choice; and (b) all activities take time. Equivalence between choice and behavior occurs because every situation contains more than one alternative activity. The principle that behavior takes time refers not simply to any notion of response duration, but to the necessity that identifying one action or another requires a sample extended in time. The molecular paradigm's momentary responses are inferred from extended samples in retrospect. In this sense, momentary responses constitute abstractions, whereas extended activities constitute concrete particulars. Explanations conceived within the molecular paradigm invariably involve hypothetical constructs, because they require causes to be contiguous with responses. Explanations conceived within the molar paradigm retain direct contact with observable variables. PMID:15157981

  4. Entropy meters and the entropy of non-extensive systems

    PubMed Central

    Lieb, Elliott H.; Yngvason, Jakob

    2014-01-01

    In our derivation of the second law of thermodynamics from the relation of adiabatic accessibility of equilibrium states, we stressed the importance of being able to scale a system's size without changing its intrinsic properties. This leaves open the question of defining the entropy of macroscopic, but unscalable systems, such as gravitating bodies or systems where surface effects are important. We show here how the problem can be overcome, in principle, with the aid of an ‘entropy meter’. An entropy meter can also be used to determine entropy functions for non-equilibrium states and mesoscopic systems. PMID:25002830

  5. 40 CFR Table 1 to Subpart Ja of... - Molar Exhaust Volumes and Molar Heat Content of Fuel Gas Constituents

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Molar Exhaust Volumes and Molar Heat... Exhaust Volumes and Molar Heat Content of Fuel Gas Constituents Constituent MEVa dscf/mol MHCb Btu/mol... Inerts 0.85 0 a MEV = molar exhaust volume, dry standard cubic feet per gram-mole (dscf/g-mol)...

  6. 40 CFR Table 1 to Subpart Ja of... - Molar Exhaust Volumes and Molar Heat Content of Fuel Gas Constituents

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Molar Exhaust Volumes and Molar Heat... Exhaust Volumes and Molar Heat Content of Fuel Gas Constituents Constituent MEVa dscf/mol MHCb Btu/mol... Inerts 0.85 0 a MEV = molar exhaust volume, dry standard cubic feet per gram-mole (dscf/g-mol)...

  7. Quantum chaos: An entropy approach

    NASA Astrophysics Data System (ADS)

    Sl/omczyński, Wojciech; Życzkowski, Karol

    1994-11-01

    A new definition of the entropy of a given dynamical system and of an instrument describing the measurement process is proposed within the operational approach to quantum mechanics. It generalizes other definitions of entropy, in both the classical and quantum cases. The Kolmogorov-Sinai (KS) entropy is obtained for a classical system and the sharp measurement instrument. For a quantum system and a coherent states instrument, a new quantity, coherent states entropy, is defined. It may be used to measure chaos in quantum mechanics. The following correspondence principle is proved: the upper limit of the coherent states entropy of a quantum map as ℏ→0 is less than or equal to the KS-entropy of the corresponding classical map. ``Chaos umpire sits, And by decision more imbroils the fray By which he reigns: next him high arbiter Chance governs all.'' John Milton, Paradise Lost, Book II

  8. Densities, Excess Molar Volumes, and Thermal Expansion Coefficients of Aqueous Aminoethylethanolamine Solutions at Temperatures from 283.15 to 343.15 K.

    PubMed

    Stec, Marcin; Tatarczuk, Adam; Spiewak, Dariusz; Wilk, Andrzej

    2014-01-01

    The densities of aqueous mixtures of aminoethylethanolamine (CAS #000111-41-1) were measured over the entire compositional range at temperatures of 283.15-343.15 K. The results of these measurements were used to calculate excess molar volumes and isobaric thermal expansion coefficients, and partial molar and apparent molar volumes and excess isobaric thermal expansion coefficients were subsequently derived. The excess molar volumes were correlated as a function of the mole fraction using the Redlich-Kister equation. Temperature dependences of the Redlich-Kister coefficients are also presented. The partial molar volumes at infinite dilution of AEEA in water were determined using two different methods. In addition, the solution density was correlated using a Joubian-Acree model. Aqueous solutions of AEEA exhibit similar properties to the aqueous solutions of other alkanolamines (like monoethanolamine) used in acid gas sweetening. PMID:24899753

  9. Entropy of electromyography time series

    NASA Astrophysics Data System (ADS)

    Kaufman, Miron; Zurcher, Ulrich; Sung, Paul S.

    2007-12-01

    A nonlinear analysis based on Renyi entropy is applied to electromyography (EMG) time series from back muscles. The time dependence of the entropy of the EMG signal exhibits a crossover from a subdiffusive regime at short times to a plateau at longer times. We argue that this behavior characterizes complex biological systems. The plateau value of the entropy can be used to differentiate between healthy and low back pain individuals.

  10. Entanglement entropy on fuzzy spaces

    SciTech Connect

    Dou, Djamel; Ydri, Badis

    2006-08-15

    We study the entanglement entropy of a scalar field in 2+1 spacetime where space is modeled by a fuzzy sphere and a fuzzy disc. In both models we evaluate numerically the resulting entropies and find that they are proportional to the number of boundary degrees of freedom. In the Moyal plane limit of the fuzzy disc the entanglement entropy per unite area (length) diverges if the ignored region is of infinite size. The divergence is (interpreted) of IR-UV mixing origin. In general we expect the entanglement entropy per unite area to be finite on a noncommutative space if the ignored region is of finite size.

  11. Entropy Generation in Regenerative Systems

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1995-01-01

    Heat exchange to the oscillating flows in regenerative coolers generates entropy. These flows are characterized by oscillating mass flows and oscillating temperatures. Heat is transferred between the flow and heat exchangers and regenerators. In the former case, there is a steady temperature difference between the flow and the heat exchangers. In the latter case, there is no mean temperature difference. In this paper a mathematical model of the entropy generated is developed for both cases. Estimates of the entropy generated by this process are given for oscillating flows in heat exchangers and in regenerators. The practical significance of this entropy is also discussed.

  12. Pathological (late) fractures of the mandibular angle after lower third molar removal: a case series

    PubMed Central

    2013-01-01

    Introduction Pathological (late) fracture of the mandibular angle after third molar surgery is very rare (0.005% of third molar removals). There are 94 cases reported in the literature; cases associated with osseous pathologies such as osteomyelitis or any local and systemic diseases that may compromise mandibular bone strength have not been included. We describe three new cases of pathological (late) fracture of the mandibular angle after third molar surgery. Case presentations The first patient was a 27-year-old Caucasian man who had undergone surgical removal of a 3.8, mesioangular variety, class II-C third molar 20 days before admission to our clinic. The fracture of his left mandibular angle, complete and composed, occurred during chewing. The second patient was a 32-year-old Caucasian man. He had undergone surgical removal of a 3.8, mesioangular variety, class II-B third molar 22 days before his admission. The fracture, which occurred during mastication, was studied by computed tomography that showed reparative tissue in the fracture site. The third patient was a 36-year-old Caucasian man who had undergone surgical removal of a 3.8, vertical variety, class II-C third molar 25 days before the observation. In this case the fracture of his mandibular angle was oblique (unfavorable), complete and composed. The fracture had occurred during chewing. We studied the fracture by optical projection tomography and computed tomography. All of the surgical removals of the 3.8 third molars, performed by the patients’ dentists who had more than 10 years of experience, were difficult. We treated the fractures with open surgical reduction, internal fixation by titanium miniplates and intermaxillary elastic fixation removed after 6 weeks. Conclusions The literature indicates that the risk of pathological (late) fracture of the mandibular angle after third molar surgery for total inclusions (class II-III, type C) is twice that of partial inclusions due to the necessity of

  13. Quantum-state reconstruction by maximizing likelihood and entropy.

    PubMed

    Teo, Yong Siah; Zhu, Huangjun; Englert, Berthold-Georg; Řeháček, Jaroslav; Hradil, Zdeněk

    2011-07-01

    Quantum-state reconstruction on a finite number of copies of a quantum system with informationally incomplete measurements, as a rule, does not yield a unique result. We derive a reconstruction scheme where both the likelihood and the von Neumann entropy functionals are maximized in order to systematically select the most-likely estimator with the largest entropy, that is, the least-bias estimator, consistent with a given set of measurement data. This is equivalent to the joint consideration of our partial knowledge and ignorance about the ensemble to reconstruct its identity. An interesting structure of such estimators will also be explored. PMID:21797584

  14. Mass versus molar doses, similarities and differences.

    PubMed

    Chmielewska, A; Lamparczyk, H

    2008-11-01

    Generally, they are two systems expressing the amounts of active substance in a given drug product, i.e. mass and molar dose. Currently, the dose system based on the mass is widely used in which doses are expressed in grams or milligrams. On the other hand, the molar dose system is in direct relation to the number of molecules. Hence, the objective of this work was to compare both systems in order to find their advantages and disadvantages. Active substances belonging to the groups of antibiotics, nootropic agents, beta-blockers, vitamins, GABA-analog, COX-2 inhibitors, calcium channel antagonists, benzodiazepine receptor agonists, lipid-modifying agents (fibrates), non-steroidal anti-inflammatory drugs (profens), estrogens, neuroleptics, analgesics and benzodiazepines were considered. Moreover, products containing two active substances were also taken into account. These are mixtures of hydrochlorothiazide with active substances influencing the renin-angiotensin system and combined oral contraceptives. For each active substance, belonging to the groups mentioned above molar doses were calculated from mass doses and molar mass. Hence, groups of drugs with a single active substance, drugs with similar pharmacological activities, pharmaceutical alternatives, and drugs with a single active ingredient manufactured in different doses were compared in order to find which dose system describes more adequately differences between and within the groups mentioned above. Comparisons were supported by a number of equations, which theoretically justify the data, and relationships derived from calculations. PMID:19069248

  15. Selective alveolar corticotomy to intrude overerupted molars.

    PubMed

    Oliveira, Dauro Douglas; de Oliveira, Bruno Franco; de Araújo Brito, Helio Henrique; de Souza, Margareth Maria Gomes; Medeiros, Paulo José

    2008-06-01

    Orthodontic intrusion of overerupted molars in adults is challenging for most clinicians. Efficient intrusion can be achieved by combining selective alveolar corticotomies with a modified full-coverage maxillary splint to reduce surgical risks, treatment time, and costs for both orthodontists and patients. PMID:18538256

  16. Radiographic findings on 3rd molars removed in 20-year-old men.

    PubMed

    Rajasuo, Ari; Peltola, Jaakko; Ventä, Irja; Murtomaa, Heikki

    2003-10-01

    In this study we assess radiographic findings characteristic of mandibular 3rd molars that had required either routine or surgical extraction. X-ray findings relating to acute pericoronitis were also examined. The material was collected by investigating patient records and rotational panoramic radiographs of 20-year-old Finnish male conscripts (n = 738) treated during military service because of 3rd-molar-related problems. The follicle around the crown of mandibular 3rd molars with acute pericoronitis was enlarged in 19% of cases and in 13% of chronic symptom-free pericoronitis cases (not statistically significant difference). Mandibular 3rd molars extracted surgically were more often mesially inclined than those extracted routinely (61% vs. 23%; P < 0.001), partially or totally intrabony impacted (92% vs. 66%; P < 0.001) and deep situated (on average 4.2 mm vs. 2.5 mm under the occlusal plane). Surgical extraction was also associated with the roots completely developed [92% vs. 84% of the teeth routinely extracted, odds ratio (OR) 2.6, 95% confidence interval (CI) 1.2-5.5] and with the absence of radiographic pericoronitis [around 27% vs. 39% of the teeth routinely extracted (OR 0.5, 95% CI 0.3-0.8)]. In 86% of cases the space between 2nd molar and ramus of the mandible was narrower than the 3rd molar extracted surgically, whereas this was 62% in routine extraction cases (P < 0.001). We conclude that there are some typical 3rd-molar findings in rotational panoramic radiographs that show a need for surgical extraction. PMID:14763776

  17. [Application of composite resin inlays to deciduous molars--a clinical observation of the resin onlay].

    PubMed

    Yamamoto, H; Iyori, H; Kanomi, R; Yao, K; Hieda, T

    1990-01-01

    Although composite resin has been used as an aesthetic restorative material, wear and fracture of the resin of fracture of the tooth structure are likely to occur when the size of the dental cavities are large. In addition to the lack of the aesthetic value, clinical results of prefabricated metal crown revealed several problems which were caused by the wear of the metal and the ill-adaptation of the cervical margin. In the present study, 50 devitalized deciduous molars were treated with composite resin onlays which were designed to cover the entire occlusal surface of the deciduous molar, and the clinical results were evaluated for a 6 month period. Additionally, for the purpose of simplification of the laboratory process for making resin onlays, ready-made occlusal shells were fabricated. The variety of the prepared shell size consisted of 7 sizes for the first deciduous molar, 9 sizes for the upper second deciduous molar and 10 sizes for the lower deciduous molar. The following results were obtained. 1) A partial resin fracture at the peripheral area of the mesio-buccal cuspid was found in five cases out of 50. 2) A glossy appearance on the surface of the onlay which was created by coated unfilled resin disappeared after 6 months of observation. 3) In relation to the resin onlay, when the antagonistic tooth was restored with prefabricated metal crowns, holes were made by attrition on all the crowns within a 3-4 month period.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2133972

  18. The Diagnosis of Choriocarcinoma in Molar Pregnancies: A Revised Approach in Clinical Testing

    PubMed Central

    Duffy, Lisa; Zhang, Liangtao; Sheath, Karen; Love, Donald R.; George, Alice M.

    2015-01-01

    Background Hydatidiform moles occur in approximately 1 in 1,500 pregnancies; however, early miscarriages or spontaneous abortions may not be correctly identified as molar pregnancies due to poor differentiation of chorionic villi. Methods The current clinical testing algorithm used for the detection of hydatidiform moles uses a combination of morphological analysis and p57 immunostaining followed by ploidy testing to establish a diagnosis of either a complete or partial molar pregnancy. We review here 198 referrals for fluorescence in situ hybridization (FISH) ploidy testing, where the initial diagnosis based on morphology is compared to the final diagnosis based on a combination of morphology, FISH and p57 immunohistochemical (IHC) staining. Results Approximately 40% of cases were determined to be genetically abnormal, but only 28.8% of cases were diagnosed as molar pregnancies. The underestimation of complete molar pregnancies and those with androgenetic inheritance was also found to be likely using conventional diagnostic methods, as atypical p57 staining was observed in approximately 10% of cases. Conclusions Our findings suggest that a revised approach to testing products of conception is necessary, with cases screened according to their clinical history in order to distinguish molar pregnancy referrals from hydropic pregnancies. PMID:26566410

  19. The entropy in supernova explosions

    SciTech Connect

    Colgate, S.A.

    1990-12-06

    The explosion of a supernova forms because of the collapse to a neutron star. In addition an explosion requires that a region of relatively high entropy be in contact with the neutron star and persisting for a relatively protracted period of time. The high entropy region ensures that the maximum temperature in contact with the neutron star and in hydrostatic equilibrium is less than some maximum. This temperature must be low enough such that neutrino emission cooling is small, otherwise the equilibrium atmosphere will collapse adding a large accretion mass to the neutron star. A so-called normal explosion shock that must reverse the accretion flow corresponding to a typical stellar collapse must have sufficient strength or pressure to reverse this flow and eject the matter with 10{sup 51} ergs for a typical type II supernova. Surprisingly the matter behind such a shock wave has a relatively low entropy low enough such that neutrino cooling would be orders of magnitude faster than the expansion rate. The resulting accretion low would be inside the Bondi radius and result in free-fall accretion inside the expanding rarefaction wave. The accreted mass or reimplosion mass unless stopped by a high entropy bubble could than exceed that of bound neutron star models. In addition the explosion shock would be overtaken by the rarefaction wave and either disappear or at least weaken. Hence, a hot, high entropy bubble is required to support an equilibrium atmosphere in contact with a relatively cold neutron star. Subsequently during the expansion of the high entropy bubble that drives or pushes on the shocked matter, mixing of the matter of the high entropy bubble and lower entropy shock-ejected matter is ensured. The mixing is driven by the negative entropy gradient between the high entropy bubble accelerating the shocked matter and the lower entropy of the matter behind the shock.

  20. Note on entropies for quantum dynamical systems.

    PubMed

    Watanabe, Noboru

    2016-05-28

    Quantum entropy and channel are fundamental concepts for quantum information theory progressed recently in various directions. We will review the fundamental aspects of mean entropy and mean mutual entropy and calculate them for open system dynamics. PMID:27091165

  1. Till Surgery do us Part: Unexpected Bilateral Kissing Molars

    PubMed Central

    Anish, Narayanankutty; Vivek, Velayudhannair; Thomas, Sunila; Daniel, Vineet Alex; Thomas, Jincy; Ranimol, Prasanna

    2015-01-01

    The occurrence impacted teeth, single or multiple is very common. But, phenomenon of kissing molars is an extremely rare phenomenon. Mandibular third molars are the most common impacted teeth. Mandibular first or second molars does not share the same frequency of occurrence. But, there are rare cases in which the occlusal surfaces of impacted molars are united by the same follicular space and the roots point in the opposite direction, and are termed as kissing molars. Sometimes, these teeth will be associated with pathologies. This article reports a rare case of mandibular bilateral kissing molars. PMID:25918627

  2. Approximate entropy of network parameters.

    PubMed

    West, James; Lacasa, Lucas; Severini, Simone; Teschendorff, Andrew

    2012-04-01

    We study the notion of approximate entropy within the framework of network theory. Approximate entropy is an uncertainty measure originally proposed in the context of dynamical systems and time series. We first define a purely structural entropy obtained by computing the approximate entropy of the so-called slide sequence. This is a surrogate of the degree sequence and it is suggested by the frequency partition of a graph. We examine this quantity for standard scale-free and Erdös-Rényi networks. By using classical results of Pincus, we show that our entropy measure often converges with network size to a certain binary Shannon entropy. As a second step, with specific attention to networks generated by dynamical processes, we investigate approximate entropy of horizontal visibility graphs. Visibility graphs allow us to naturally associate with a network the notion of temporal correlations, therefore providing the measure a dynamical garment. We show that approximate entropy distinguishes visibility graphs generated by processes with different complexity. The result probes to a greater extent these networks for the study of dynamical systems. Applications to certain biological data arising in cancer genomics are finally considered in the light of both approaches. PMID:22680542

  3. Approximate entropy of network parameters

    NASA Astrophysics Data System (ADS)

    West, James; Lacasa, Lucas; Severini, Simone; Teschendorff, Andrew

    2012-04-01

    We study the notion of approximate entropy within the framework of network theory. Approximate entropy is an uncertainty measure originally proposed in the context of dynamical systems and time series. We first define a purely structural entropy obtained by computing the approximate entropy of the so-called slide sequence. This is a surrogate of the degree sequence and it is suggested by the frequency partition of a graph. We examine this quantity for standard scale-free and Erdös-Rényi networks. By using classical results of Pincus, we show that our entropy measure often converges with network size to a certain binary Shannon entropy. As a second step, with specific attention to networks generated by dynamical processes, we investigate approximate entropy of horizontal visibility graphs. Visibility graphs allow us to naturally associate with a network the notion of temporal correlations, therefore providing the measure a dynamical garment. We show that approximate entropy distinguishes visibility graphs generated by processes with different complexity. The result probes to a greater extent these networks for the study of dynamical systems. Applications to certain biological data arising in cancer genomics are finally considered in the light of both approaches.

  4. Saturating the holographic entropy bound

    SciTech Connect

    Bousso, Raphael; Freivogel, Ben; Leichenauer, Stefan

    2010-10-15

    The covariant entropy bound states that the entropy, S, of matter on a light sheet cannot exceed a quarter of its initial area, A, in Planck units. The gravitational entropy of black holes saturates this inequality. The entropy of matter systems, however, falls short of saturating the bound in known examples. This puzzling gap has led to speculation that a much stronger bound, S < or approx. A{sup 3/4}, may hold true. In this note, we exhibit light sheets whose entropy exceeds A{sup 3/4} by arbitrarily large factors. In open Friedmann-Robertson-Walker universes, such light sheets contain the entropy visible in the sky; in the limit of early curvature domination, the covariant bound can be saturated but not violated. As a corollary, we find that the maximum observable matter and radiation entropy in universes with positive (negative) cosmological constant is of order {Lambda}{sup -1} ({Lambda}{sup -2}), and not |{Lambda}|{sup -3/4} as had hitherto been believed. Our results strengthen the evidence for the covariant entropy bound, while showing that the stronger bound S < or approx. A{sup 3/4} is not universally valid. We conjecture that the stronger bound does hold for static, weakly gravitating systems.

  5. Trajectory versus probability density entropy.

    PubMed

    Bologna, M; Grigolini, P; Karagiorgis, M; Rosa, A

    2001-07-01

    We show that the widely accepted conviction that a connection can be established between the probability density entropy and the Kolmogorov-Sinai (KS) entropy is questionable. We adopt the definition of density entropy as a functional of a distribution density whose time evolution is determined by a transport equation, conceived as the only prescription to use for the calculation. Although the transport equation is built up for the purpose of affording a picture equivalent to that stemming from trajectory dynamics, no direct use of trajectory time evolution is allowed, once the transport equation is defined. With this definition in mind we prove that the detection of a time regime of increase of the density entropy with a rate identical to the KS entropy is possible only in a limited number of cases. The proposals made by some authors to establish a connection between the two entropies in general, violate our definition of density entropy and imply the concept of trajectory, which is foreign to that of density entropy. PMID:11461383

  6. Trajectory versus probability density entropy

    NASA Astrophysics Data System (ADS)

    Bologna, Mauro; Grigolini, Paolo; Karagiorgis, Markos; Rosa, Angelo

    2001-07-01

    We show that the widely accepted conviction that a connection can be established between the probability density entropy and the Kolmogorov-Sinai (KS) entropy is questionable. We adopt the definition of density entropy as a functional of a distribution density whose time evolution is determined by a transport equation, conceived as the only prescription to use for the calculation. Although the transport equation is built up for the purpose of affording a picture equivalent to that stemming from trajectory dynamics, no direct use of trajectory time evolution is allowed, once the transport equation is defined. With this definition in mind we prove that the detection of a time regime of increase of the density entropy with a rate identical to the KS entropy is possible only in a limited number of cases. The proposals made by some authors to establish a connection between the two entropies in general, violate our definition of density entropy and imply the concept of trajectory, which is foreign to that of density entropy.

  7. Entropy, Its Language, and Interpretation

    NASA Astrophysics Data System (ADS)

    Leff, Harvey S.

    2007-12-01

    The language of entropy is examined for consistency with its mathematics and physics, and for its efficacy as a guide to what entropy means. Do common descriptors such as disorder, missing information, and multiplicity help or hinder understanding? Can the language of entropy be helpful in cases where entropy is not well defined? We argue in favor of the descriptor spreading, which entails space, time, and energy in a fundamental way. This includes spreading of energy spatially during processes and temporal spreading over accessible microstates states in thermodynamic equilibrium. Various examples illustrate the value of the spreading metaphor. To provide further support for this metaphor’s utility, it is shown how a set of reasonable spreading properties can be used to derive the entropy function. A main conclusion is that it is appropriate to view entropy’s symbol S as shorthand for spreading.

  8. Entropy exchange and entanglement in the Jaynes-Cummings model

    NASA Astrophysics Data System (ADS)

    Boukobza, E.; Tannor, D. J.

    2005-06-01

    The Jaynes-Cummings model (JCM) is the simplest fully quantum model that describes the interaction between light and matter. We extend a previous analysis by Phoenix and Knight [Ann. Phys. 186, 381 (1988)] of the JCM by considering mixed states of both the light and matter. We present examples of qualitatively different entropic correlations. In particular, we explore the regime of entropy exchange between light and matter, i.e., where the rate of change of the two are anticorrelated. This behavior contrasts with the case of pure light-matter states in which the rate of change of the two entropies are positively correlated and in fact identical. We give an analytical derivation of the anticorrelation phenomenon and discuss the regime of its validity. Finally, we show a strong correlation between the region of the Bloch sphere characterized by entropy exchange and that characterized by minimal entanglement as measured by the negative eigenvalues of the partially transposed density matrix.

  9. Tight Uniform Continuity Bounds for Quantum Entropies: Conditional Entropy, Relative Entropy Distance and Energy Constraints

    NASA Astrophysics Data System (ADS)

    Winter, Andreas

    2016-03-01

    We present a bouquet of continuity bounds for quantum entropies, falling broadly into two classes: first, a tight analysis of the Alicki-Fannes continuity bounds for the conditional von Neumann entropy, reaching almost the best possible form that depends only on the system dimension and the trace distance of the states. Almost the same proof can be used to derive similar continuity bounds for the relative entropy distance from a convex set of states or positive operators. As applications, we give new proofs, with tighter bounds, of the asymptotic continuity of the relative entropy of entanglement, E R , and its regularization {E_R^{∞}} , as well as of the entanglement of formation, E F . Using a novel "quantum coupling" of density operators, which may be of independent interest, we extend the latter to an asymptotic continuity bound for the regularized entanglement of formation, aka entanglement cost, {E_C=E_F^{∞}} . Second, we derive analogous continuity bounds for the von Neumann entropy and conditional entropy in infinite dimensional systems under an energy constraint, most importantly systems of multiple quantum harmonic oscillators. While without an energy bound the entropy is discontinuous, it is well-known to be continuous on states of bounded energy. However, a quantitative statement to that effect seems not to have been known. Here, under some regularity assumptions on the Hamiltonian, we find that, quite intuitively, the Gibbs entropy at the given energy roughly takes the role of the Hilbert space dimension in the finite-dimensional Fannes inequality.

  10. Patients' anxieties with third molar surgery.

    PubMed

    Earl, P

    1994-10-01

    There has been little study of patients' anxieties about third molar surgery despite its widespread practice. 105 patients were invited to complete questionnaires preoperatively to assess anxieties about the procedure and to assess how well it was explained. They were also asked post operatively to assess differences from expectations, accuracy of the preoperative explanation and which aspect would worry them most should the procedure be repeated. Patients generally found their worries as expected or even better. Few found events worse with only pain (12%) and paraesthesia (13%) of note. Although 88% of patients assessed pain as better than or as expected, 43% would fear it most if the procedure was repeated. Pain is the single most feared factor despite evidence that it is usually no worse than originally feared. Reassurance and adequate pain control are the most important factors to patients in third molar surgery, and this reassurance should start at operation booking rather than on admission. PMID:7999736

  11. Removal of Deeply Impacted Mandibular Molars by Sagittal Split Osteotomy

    PubMed Central

    Isler, Sabri Cemil

    2016-01-01

    Mandibular third molars are the most common impacted teeth. Mandibular first and second molars do not share the same frequency of occurrence. In rare cases the occlusal surfaces of impacted molars are united by the same follicular space and the roots pointing in opposite direction; these are called kissing molars. In some cases, a supernumerary fourth molar can be seen as unerupted and, in this case, such a supernumerary, deeply impacted fourth molar is seen neighboring kissing molars. The extraction of deeply impacted wisdom molars from the mandible may necessitate excessive bone removal and it causes complications such as damage to the inferior alveolar nerve and iatrogenic fractures of the mandible. This case report describes the use of the sagittal split osteotomy technique to avoid extensive bone removal and protect the inferior alveolar nerve during surgical extruction of multiple impacted teeth. PMID:27429810

  12. Revisiting sample entropy analysis

    NASA Astrophysics Data System (ADS)

    Govindan, R. B.; Wilson, J. D.; Eswaran, H.; Lowery, C. L.; Preißl, H.

    2007-03-01

    We modify the definition of sample entropy (SaEn) by incorporating a time delay between the components of the block (from which the densities are estimated) and show that the modified method characterizes the complexity of the system better than the original version. We apply the modified SaEn to the standard deterministic systems and stochastic processes (uncorrelated and long range correlated (LRC) processes) and show that the underlying complexity of the system is better quantified by the modified method. We extend this analysis to the RR intervals of the normal and congestive heart failure (CHF) subjects (available via www.physionet.org) and show that there is a good degree of separation between the two groups.

  13. Topological entanglement entropy.

    PubMed

    Kitaev, Alexei; Preskill, John

    2006-03-24

    We formulate a universal characterization of the many-particle quantum entanglement in the ground state of a topologically ordered two-dimensional medium with a mass gap. We consider a disk in the plane, with a smooth boundary of length L, large compared to the correlation length. In the ground state, by tracing out all degrees of freedom in the exterior of the disk, we obtain a marginal density operator rho for the degrees of freedom in the interior. The von Neumann entropy of rho, a measure of the entanglement of the interior and exterior variables, has the form S(rho) = alphaL - gamma + ..., where the ellipsis represents terms that vanish in the limit L --> infinity. We show that - gamma is a universal constant characterizing a global feature of the entanglement in the ground state. Using topological quantum field theory methods, we derive a formula for gamma in terms of properties of the superselection sectors of the medium. PMID:16605802

  14. Enzyme Molar Fractions: A Powerful Tool for Understanding Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Serra, Juan L.; And Others

    1986-01-01

    Deduces the relationship between reduced velocity and molar fractions for productive enzyme complexes; obtains the mathematical expression of molar fractions for an enzyme with two specific binding sites per molecule; and proposes a useful plot to follow the dependence of enzyme molar fractions with the concentration of one of its ligands. (JN)

  15. Entanglement entropy converges to classical entropy around periodic orbits

    NASA Astrophysics Data System (ADS)

    Asplund, Curtis T.; Berenstein, David

    2016-03-01

    We consider oscillators evolving subject to a periodic driving force that dynamically entangles them, and argue that this gives the linearized evolution around periodic orbits in a general chaotic Hamiltonian dynamical system. We show that the entanglement entropy, after tracing over half of the oscillators, generically asymptotes to linear growth at a rate given by the sum of the positive Lyapunov exponents of the system. These exponents give a classical entropy growth rate, in the sense of Kolmogorov, Sinai and Pesin. We also calculate the dependence of this entropy on linear mixtures of the oscillator Hilbert-space factors, to investigate the dependence of the entanglement entropy on the choice of coarse graining. We find that for almost all choices the asymptotic growth rate is the same.

  16. Entropy distance: New quantum phenomena

    SciTech Connect

    Weis, Stephan; Knauf, Andreas

    2012-10-15

    We study a curve of Gibbsian families of complex 3 Multiplication-Sign 3-matrices and point out new features, absent in commutative finite-dimensional algebras: a discontinuous maximum-entropy inference, a discontinuous entropy distance, and non-exposed faces of the mean value set. We analyze these problems from various aspects including convex geometry, topology, and information geometry. This research is motivated by a theory of infomax principles, where we contribute by computing first order optimality conditions of the entropy distance.

  17. Gravitational entropy and global structure

    NASA Astrophysics Data System (ADS)

    Hawking, S. W.; Hunter, C. J.

    1999-02-01

    The underlying reason for the existence of gravitational entropy is traced to the impossibility of foliating topologically non-trivial Euclidean spacetimes with a time function to give a unitary Hamiltonian evolution. In d dimensions the entropy can be expressed in terms of the d-2 obstructions to foliation, bolts and Misner strings, by a universal formula. We illustrate with a number of examples including spaces with nut charge. In these cases, the entropy is not just a quarter the area of the bolt, as it is for black holes.

  18. Sinus floor augmentation at the time of maxillary molar extraction: technique and report of preliminary results.

    PubMed

    Fugazzotto, P A

    1999-01-01

    A technique is described for accomplishing both localized sinus augmentation and guided bone regeneration at the time of maxillary molar extraction. One hundred nine sites were treated in 92 patients. Of these, 102 procedures (94.0%) were successful and 7 (6.0%) were partially successful. Success was defined as the ability to ideally position an implant at least 10 mm in length and 4.8 mm in width without perforating the floor of the sinus or generating an implant fenestration or dehiscence. Partially successful procedures required an additional osteotome sinus lift at the time of implant placement. PMID:10453669

  19. No evidence for apoptosis of decidual leucocytes in normal and molar pregnancy: implications for immune privilege

    PubMed Central

    PONGCHAROEN, S; BULMER, J N; SEARLE, R F

    2004-01-01

    Complete hydatidiform moles are totally paternally derived and represent complete allografts that might be expected to provoke maternal immune rejection. Our previous and other studies have shown expression of Fas by increased numbers of activated decidual CD4+ T cells in both complete and partial molar pregnancy as well as increased FasL+ expression by molar trophoblasts compared with trophoblasts in normal pregnancies. As the Fas/FasL system represents a major apoptotic pathway that can play a role in immune privilege, the aim of this study was to investigate whether apoptosis of decidual immune cells, particularly T cells, could be responsible for maternal immune tolerance in molar pregnancy. Using terminal deoxynucleotidyl transferase (TdT)-mediated nick end-labelling (TUNEL), a significant increase in TUNEL+ cells was demonstrated in decidua associated with partial (P = 0·0052) and complete (P = 0·0096) hydatidiform mole compared with normal early pregnancy. Co-labelling immunoperoxidase studies showed that the TUNEL+ cells in both normal and molar pregnancies were not activated CD45RO+ immune cells, CD3+ T cells, CD56+ uterine natural killer (NK) cells or CD14+ CD68+ macrophages. Double immunohistochemical labelling with antiactive caspase-3 and leucocyte markers confirmed the lack of leucocyte apoptosis. Double immunostaining with anticytokeratin to detect trophoblast and M30 CytoDeath, which detects a neoepitope of cytokeratin 18 revealed after caspase-mediated cleavage, revealed apoptotic extravillous trophoblast cells within decidual tissue. We conclude that there is no evidence that apoptosis of decidual leucocytes plays a role in maintaining maternal tolerance in either normal or molar pregnancy. PMID:15498045

  20. Holographic entropy increases in quadratic curvature gravity

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Srijit; Sarkar, Sudipta; Wall, Aron C.

    2015-09-01

    Standard methods for calculating the black hole entropy beyond general relativity are ambiguous when the horizon is nonstationary. We fix these ambiguities in all quadratic curvature gravity theories, by demanding that the entropy be increasing at every time, for linear perturbations to a stationary black hole. Our result matches with the entropy formula found previously in holographic entanglement entropy calculations. We explicitly calculate the entropy increase for Vaidya-like solutions in Ricci-tensor gravity to show that (unlike the Wald entropy) the holographic entropy obeys a second law.

  1. Molar tubal ectopic pregnancy: Report of two cases.

    PubMed

    Mbarki, Chaouki; Jerbi, Emna; Hsayaoui, Najeh; Zouari, Fatma; Ben Brahim, Ehsen; Oueslati, Hedhili

    2015-06-01

    Ectopic molar pregnancy is a rare occurrence and consequently not often considered as a diagnostic possibility. We report two cases of molar hydatidiform tubal pregnancy. Diagnosis of ectopic pregnancy was confirmed on clinical biological and sonographic investigations. Diagnosis of molar pregnancy was done on histopathology. The clinical course was favorable for both patients. Although rare, molar changes can occur at any site of an ectopic pregnancy. Clinical diagnosis of a molar pregnancy is difficult but histopathology is the gold standard for diagnosis. PMID:25510265

  2. Entropy generation effects in a hydromagnetic free convection flow past a vertical oscillating plate

    NASA Astrophysics Data System (ADS)

    Butt, A. S.; Ali, A.

    2016-01-01

    An unsteady free convective flow of a viscous fluid past an oscillating plate is considered, and the effects of entropy generation are investigated. The governing partial differential equations are normalized by using suitable transformations, and an exact solution of the problem is obtained by using the Laplace transformation technique. The expressions for the velocity and temperature are then used to compute the skin friction, Nusselt number, local entropy generation number, and Bejan number.

  3. Quantum jumps and entropy production

    SciTech Connect

    Breuer, Heinz-Peter

    2003-09-01

    The irreversible motion of an open quantum system can be represented through an ensemble of state vectors following a stochastic dynamics with piecewise deterministic paths. It is shown that this representation leads to a natural definition of the rate of quantum entropy production. The entropy production rate is expressed in terms of the von Neumann entropy and of the numbers of quantum jumps corresponding to the various decay channels of the open system. The proof of the positivity and of the convexity of the entropy production rate is given. Monte Carlo simulations of the stochastic dynamics of a driven qubit and of a {lambda} configuration involving a dark state are performed in order to illustrate the general theory.

  4. Entropy of quantum states: Ambiguities

    NASA Astrophysics Data System (ADS)

    Balachandran, A. P.; de Queiroz, A. R.; Vaidya, S.

    2013-10-01

    The von Neumann entropy of a generic quantum state is not unique unless the state can be uniquely decomposed as a sum of extremal or pure states. As pointed out to us by Sorkin, this happens if the GNS representation (of the algebra of observables in some quantum state) is reducible, and some representations in the decomposition occur with non-trivial degeneracy. This non-unique entropy can occur at zero temperature. We will argue elsewhere in detail that the degeneracies in the GNS representation can be interpreted as an emergent broken gauge symmetry, and play an important role in the analysis of emergent entropy due to non-Abelian anomalies. Finally, we establish the analogue of an H -theorem for this entropy by showing that its evolution is Markovian, determined by a stochastic matrix.

  5. An adaptable binary entropy coder

    NASA Technical Reports Server (NTRS)

    Kiely, A.; Klimesh, M.

    2001-01-01

    We present a novel entropy coding technique which is based on recursive interleaving of variable-to-variable length binary source codes. We discuss code design and performance estimation methods, as well as practical encoding and decoding algorithms.

  6. Scaling behaviour of entropy estimates

    NASA Astrophysics Data System (ADS)

    Schürmann, Thomas

    2002-02-01

    Entropy estimation of information sources is highly non-trivial for symbol sequences with strong long-range correlations. The rabbit sequence, related to the symbolic dynamics of the nonlinear circle map at the critical point as well as the logistic map at the Feigenbaum point, is known to produce long memory tails. For both dynamical systems the scaling behaviour of the block entropy of order n has been shown to increase ∝log n. In contrast to such probabilistic concepts, we investigate the scaling behaviour of certain non-probabilistic entropy estimation schemes suggested by Lempel and Ziv (LZ) in the context of algorithmic complexity and data compression. These are applied in a sequential manner with the scaling variable being the length N of the sequence. We determine the scaling law for the LZ entropy estimate applied to the case of the critical circle map and the logistic map at the Feigenbaum point in a binary partition.

  7. Theoretical analysis of controllability of interference phenomena between partially coherent fields in the intensity matrix theory

    NASA Astrophysics Data System (ADS)

    Yashiki, Satoshi

    2016-09-01

    We analyze the controllability of interference phenomena between partially coherent fields by introducing the Wigner distribution function (WDF) and entropy, which is defined using the intensity matrix [H. Gamo, J. Opt. Soc. Am. 47, 976 (1957)]. The analytical derivation of the WDF and entropy is presented for a partially coherent imaging system consisting of two pinholes illuminated by a circular source. It is shown that the WDF, defined in the 4D space–spatial frequency region, and entropy can be useful tools to understand how one can freely and quantitatively control the interference when any optical components in the partially coherent imaging system are changed.

  8. Molecular structure, configurational entropy and viscosity of silicate melts: link through the Adam and Gibbs theory of viscous flow

    NASA Astrophysics Data System (ADS)

    Le Losq, Charles; Neuville, Daniel R.

    2016-04-01

    this communication, it is shown that such link is possible. By expressing the residual entropy of the glass as the sum of partial molar entropies of tetrahedral SiO2 units, with known quantities from 29Si NMR spectroscopy, and of a semi-ideal mixing of Na and K, it is possible to model the variations of the configurational entropy with chemical composition. The model reproduces the variations of the viscosity of melts with a standard deviation of 0.2 log unit in the K2O-Na2O-SiO2 ternary system, for SiO2 contents between 60 and 100 mol% SiO2. Such model opens new pathways in order to build semi-empirical viscosity models that provide structural, thermodynamic and rheological information about silicate melts.

  9. Boundary effects in entanglement entropy

    NASA Astrophysics Data System (ADS)

    Berthiere, Clément; Solodukhin, Sergey N.

    2016-09-01

    We present a number of explicit calculations of Renyi and entanglement entropies in situations where the entangling surface intersects the boundary of d-dimensional Minkowski spacetime. When the boundary is a single plane we compute the contribution to the entropy due to this intersection, first in the case of the Neumann and Dirichlet boundary conditions, and then in the case of a generic Robin type boundary condition. The flow in the boundary coupling between the Neumann and Dirichlet phases is analyzed in arbitrary dimension d and is shown to be monotonic, the peculiarity of d = 3 case is noted. We argue that the translational symmetry along the entangling surface is broken due the presence of the boundary which reveals that the entanglement is not homogeneous. In order to characterize this quantitatively, we introduce a density of entanglement entropy and compute it explicitly. This quantity clearly indicates that the entanglement is maximal near the boundary. We then consider the situation where the boundary is composed of two parallel planes at a finite separation and compute the entanglement entropy as well as its density in this case. The complete contribution to entanglement entropy due to the boundaries is shown not to depend on the distance between the planes and is simply twice the entropy in the case of single plane boundary. Additionally, we find how the area law, the part in the entropy proportional to the area of entire entangling surface, depends on the size of the separation between the two boundaries. The latter is shown to appear in the UV finite part of the entropy.

  10. State Ensembles and Quantum Entropy

    NASA Astrophysics Data System (ADS)

    Kak, Subhash

    2016-06-01

    This paper considers quantum communication involving an ensemble of states. Apart from the von Neumann entropy, it considers other measures one of which may be useful in obtaining information about an unknown pure state and another that may be useful in quantum games. It is shown that under certain conditions in a two-party quantum game, the receiver of the states can increase the entropy by adding another pure state.

  11. Periodontal changes following molar intrusion with miniscrews

    PubMed Central

    Bayani, Shahin; Heravi, Farzin; Radvar, Mehrdad; Anbiaee, Najmeh; Madani, Azam Sadat

    2015-01-01

    Background: With the introduction of skeletal anchorage system, recently it is possible to successfully intrude molar teeth. On the other hand, there have been concerns about periodontal changes associated with intrusion and there are few studies on this topic, especially for posterior teeth. Materials and Methods: Ten female patients were enrolled in this study. Maxillary molar intrusion was achieved by inserting two miniscrews and a 17 × 25 titanium molybdenum alloy spring. Crestal height changes were evaluated at three intervals including: Baseline (T0), end of active treatment (T1) and 6 months after retention (T2). Other variables including probing depth, gingival recession, attachment level and bleeding on probing were evaluated by clinical measurements in the three above mentioned intervals. One-sample Kolmogrov-Smirnov test ascertained the normality of the data. For all patients, the changes in tooth position and crestal height were evaluated using one-sample t-test. (P < 0.05) Results: Supra-erupted molars were successfully intruded a mean of 2.1 ± 0.9 mm during active treatment (T0-T1). A mean bone resorption of 0.9 ± 0.9 mm in mesial crest and 1 ± 0.8 mm in distal crest had occurred in total treatment (T0-T2). A mean of 0.6 ± 1.4 mm bone was deposited on mesial crest during the retention period (T1-T2) following tooth relapse. On average, 0.8 ± 0.4 mm attachment gain was obtained. Gingival margin coronalized a mean of 0.8 ± 0.6 mm throughout the entire treatment. Probing depth showed no significant change during treatment. Conclusion: Within the limitations of this study, these results suggest that not only periodontal status was not negatively affected by intrusion, but also there were signs of periodontal improvement including attachment gain and shortening of clinical crown height. PMID:26288629

  12. Configurational entropy in thermoset polymers.

    PubMed

    Jensen, Martin; Jakobsen, Johnny

    2015-04-30

    The configurational entropy describes the atomic structure in a material and controls several material properties. Often the configurational entropy is determined through dielectric or calorimetric measurements where the difference between the entropies of the crystalline state and the amorphous state is determined. Many amorphous materials such as thermoset polymers have a high crystallization barrier, greatly limiting the applicability of the existing methods for determining the configurational entropy. In this work, a novel differential scanning calorimetry (DSC) method, based on measurement of the glass transition temperature at different heating rates, for determination of the configurational entropy is introduced. The theory behind the method has a universal character for amorphous materials, as it solely involves measurement of the glass transition temperature. The temperature dependency of the configurational entropy is determined for epoxy resins and PMMA (poly(methyl methacrylate)) to demonstrate the versatility of the method. On the basis of the findings of the introduced method, the influence of the degree of cross-linking and the chemical structure of the network is discussed. PMID:25844504

  13. Holographic holes and differential entropy

    NASA Astrophysics Data System (ADS)

    Headrick, Matthew; Myers, Robert C.; Wien, Jason

    2014-10-01

    Recently it has been shown that the Bekenstein-Hawking entropy formula evaluated on certain closed surfaces in the bulk of a holographic spacetime has an interpretation as the differential entropy of a particular family of intervals (or strips) in the boundary theory [1, 2]. We first extend this construction to bulk surfaces which vary in time. We then give a general proof of the equality between the gravitational entropy and the differential entropy. This proof applies to a broad class of holographic backgrounds possessing a generalized planar symmetry and to certain classes of higher-curvature theories of gravity. To apply this theorem, one can begin with a bulk surface and determine the appropriate family of boundary intervals by considering extremal surfaces tangent to the given surface in the bulk. Alternatively, one can begin with a family of boundary intervals; as we show, the differential entropy then equals the gravitational entropy of a bulk surface that emerges from the intersection of the neighboring entanglement wedges, in a continuum limit.

  14. Generalized Maximum Entropy

    NASA Technical Reports Server (NTRS)

    Cheeseman, Peter; Stutz, John

    2005-01-01

    A long standing mystery in using Maximum Entropy (MaxEnt) is how to deal with constraints whose values are uncertain. This situation arises when constraint values are estimated from data, because of finite sample sizes. One approach to this problem, advocated by E.T. Jaynes [1], is to ignore this uncertainty, and treat the empirically observed values as exact. We refer to this as the classic MaxEnt approach. Classic MaxEnt gives point probabilities (subject to the given constraints), rather than probability densities. We develop an alternative approach that assumes that the uncertain constraint values are represented by a probability density {e.g: a Gaussian), and this uncertainty yields a MaxEnt posterior probability density. That is, the classic MaxEnt point probabilities are regarded as a multidimensional function of the given constraint values, and uncertainty on these values is transmitted through the MaxEnt function to give uncertainty over the MaXEnt probabilities. We illustrate this approach by explicitly calculating the generalized MaxEnt density for a simple but common case, then show how this can be extended numerically to the general case. This paper expands the generalized MaxEnt concept introduced in a previous paper [3].

  15. Effect of restorative procedures on the strength of endodontically treated molars.

    PubMed

    Linn, J; Messer, H H

    1994-10-01

    Endodontically treated molar teeth are considered susceptible to fracture because of loss of tooth bulk. This study evaluated the significance of retaining intact marginal ridges and selective cusp coverage in preserving tooth stiffness during restoration. Strain gauges were bonded to four cusps of 36 intact extracted human lower molars. Teeth were loaded mesially and distally in a closed-loop servohydraulic system to measure stiffness. Endodontic access was followed by mesio-occlusal or mesio-occluso-distal preparation. Teeth were restored with either amalgam (no overlay), amalgam overlay, or gold overlay with partial or complete cusp coverage. Relative stiffness was calculated for all test conditions. Preserving a marginal ridge in molars did not fully conserve the strength of adjacent cusps; selective cusp coverage reinforced only the capped cusps; full occlusal coverage with gold or amalgam strengthened all cusps, but gold did so more consistently. It is more important to cover cusps than to preserve tooth structure (including a marginal ridge) in endodontically treated molar teeth. PMID:7714419

  16. Evaluating controlling factors to Al(i)/(Ca + Mg) molar ratio in acidic soil water, southern and southwestern China: multivariate approach.

    PubMed

    Guo, Jing-Heng; Zhang, Xiao-Shan; Vogt, Rolf D; Xiao, Jin-Song; Zhao, Da-Wei; Xiang, Ren-Jun; Luo, Jia-Hai

    2007-06-01

    Al(i)/(Ca + Mg) molar ratio in soil water has been used as an indicator to the effects of acid deposition on terrestrial ecosystems. However, the main factors controlling this ratio have not been well documented in southern and southwestern China. In this study, we presented the variation in inorganic aluminum (Al(i)) and Al(i)/(Ca + Mg) molar ratio in different sites and soil horizons based on two to three years monitoring data, and evaluated the main factors controlling Al(i)/(Ca + Mg) molar ratio using principle component analysis (PCA) and partial least square (PLS) regression. Monitoring data showed although Al(i)/(Ca + Mg) molar ratios in most soil water were lower than assumed critical 1.0, higher molar ratios were found in some soil water at TSP and LXH site. Besides acid loading, both soil properties and soil water chemistry affected the value of Al(i)/(Ca + Mg) molar ratio in soil water. Partial least square (PLS) indicated that they had different relative importance in different soil horizons. In A-horizon, soil aluminum saturation (AlS) had higher influence on Al(i)/(Ca + Mg) molar ratio than soil water chemistry did; higher soil aluminum saturation (AlS) led to higher Al(i)/(Ca + Mg) molar ratio in soil water. In the deeper horizons (i.e., B(1)-, B(2)- and BC-horizon), inorganic aluminum (Al(i)) in soil water had more and more important role in regulating Al(i)/(Ca + Mg) molar ratio. On regional scale, soil aluminum saturation (AlS) as well as cation exchange capacity (CEC) was the dominant factor controlling Al(i)/(Ca + Mg) molar ratio. This should be paid enough attention on when making regional acid rain control policy in China. PMID:17057971

  17. Partial hydatidiform mole: ultrasonographic features.

    PubMed

    Woo, J S; Hsu, C; Fung, L L; Ma, H K

    1983-05-01

    Four patients with partial hyatidiform mole managed at the Queen Mary Hospital, Hong Kong, are described. The diagnosis of blighted ovum or missed abortion was made on the sonographic findings prior to suction evacuation. The dominant features in these cases consisted of a relatively large central transonic area bearing the appearance of an empty gestational sac and surrounded by a thick rim of low-level placenta-like echoes; in contrast with the case of the blighted ovum, a well-defined echogenic sac wall is absent. In another 9 patients with molar pregnancy managed during the same period, the more typical 'snow-storm' vesicular appearance was present. It was concluded that the anembryonic appearance described should alert the sonologist and clinician to the possible diagnosis of partial hydatitiform mole. The evacuated material from the uterine cavity should be examined morphologically and if possible cytogenetically. PMID:6578773

  18. Epilepsy (partial)

    PubMed Central

    2011-01-01

    Introduction About 3% of people will be diagnosed with epilepsy during their lifetime, but about 70% of people with epilepsy eventually go into remission. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of starting antiepileptic drug treatment following a single seizure? What are the effects of drug monotherapy in people with partial epilepsy? What are the effects of additional drug treatments in people with drug-resistant partial epilepsy? What is the risk of relapse in people in remission when withdrawing antiepileptic drugs? What are the effects of behavioural and psychological treatments for people with epilepsy? What are the effects of surgery in people with drug-resistant temporal lobe epilepsy? We searched: Medline, Embase, The Cochrane Library, and other important databases up to July 2009 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 83 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: antiepileptic drugs after a single seizure; monotherapy for partial epilepsy using carbamazepine, gabapentin, lamotrigine, levetiracetam, phenobarbital, phenytoin, sodium valproate, or topiramate; addition of second-line drugs for drug-resistant partial epilepsy (allopurinol, eslicarbazepine, gabapentin, lacosamide, lamotrigine, levetiracetam, losigamone, oxcarbazepine, retigabine, tiagabine, topiramate, vigabatrin, or zonisamide); antiepileptic drug withdrawal for people with partial or

  19. Mechanics analysis of molar tooth splitting.

    PubMed

    Barani, Amir; Chai, Herzl; Lawn, Brian R; Bush, Mark B

    2015-03-01

    A model for the splitting of teeth from wedge loading of molar cusps from a round indenting object is presented. The model is developed in two parts: first, a simple 2D fracture mechanics configuration with the wedged tooth simulated by a compact tension specimen; second, a full 3D numerical analysis using extended finite element modeling (XFEM) with an embedded crack. The result is an explicit equation for splitting load in terms of indenter radius and key tooth dimensions. Fracture experiments on extracted human molars loaded axially with metal spheres are used to quantify the splitting forces and thence to validate the model. The XFEM calculations enable the complex crack propagation, initially in the enamel coat and subsequently in the interior dentin, to be followed incrementally with increasing load. The fracture evolution is shown to be stable prior to failure, so that dentin toughness, not strength, is the controlling material parameter. Critical conditions under which tooth splitting in biological and dental settings are likely to be met, however rare, are considered. PMID:25584989

  20. Clinical significance of computed tomography assessment for third molar surgery.

    PubMed

    Nakamori, Kenji; Tomihara, Kei; Noguchi, Makoto

    2014-07-28

    Surgical extraction of the third molar is the most commonly performed surgical procedure in the clinical practice of oral surgery. Third molar surgery is warranted when there is inadequate space for eruption, malpositioning, or risk for cyst or odontogenic tumor formation. Preoperative assessment should include a detailed morphologic analysis of the third molar and its relationship to adjacent structures and surrounding tissues. Due to developments in medical engineering technology, computed tomography (CT) now plays a critical role in providing the clear images required for adequate assessment prior to third molar surgery. Removal of the maxillary third molar is associated with a risk for maxillary sinus perforation, whereas removal of the mandibular third molar can put patients at risk for a neurosensory deficit from damage to the lingual nerve or inferior alveolar nerve. Multiple factors, including demographic, anatomic, and treatment-related factors, influence the incidence of nerve injury during or following removal of the third molar. CT assessment of the third molar prior to surgery can identify some of these risk factors, such as the absence of cortication between the mandibular third molar and the inferior alveolar canal, prior to surgery to reduce the risk for nerve damage. This topic highlight presents an overview of the clinical significance of CT assessment in third molar surgery. PMID:25071882

  1. Clinical significance of computed tomography assessment for third molar surgery

    PubMed Central

    Nakamori, Kenji; Tomihara, Kei; Noguchi, Makoto

    2014-01-01

    Surgical extraction of the third molar is the most commonly performed surgical procedure in the clinical practice of oral surgery. Third molar surgery is warranted when there is inadequate space for eruption, malpositioning, or risk for cyst or odontogenic tumor formation. Preoperative assessment should include a detailed morphologic analysis of the third molar and its relationship to adjacent structures and surrounding tissues. Due to developments in medical engineering technology, computed tomography (CT) now plays a critical role in providing the clear images required for adequate assessment prior to third molar surgery. Removal of the maxillary third molar is associated with a risk for maxillary sinus perforation, whereas removal of the mandibular third molar can put patients at risk for a neurosensory deficit from damage to the lingual nerve or inferior alveolar nerve. Multiple factors, including demographic, anatomic, and treatment-related factors, influence the incidence of nerve injury during or following removal of the third molar. CT assessment of the third molar prior to surgery can identify some of these risk factors, such as the absence of cortication between the mandibular third molar and the inferior alveolar canal, prior to surgery to reduce the risk for nerve damage. This topic highlight presents an overview of the clinical significance of CT assessment in third molar surgery. PMID:25071882

  2. Positional changes of the third molar in orthodontically treated patients

    PubMed Central

    Mihai, AM; Lulache, IR; Grigore, R; Sanabil, AS; Boiangiu, S; Ionescu, E

    2013-01-01

    Objective and Rationale. Over the years, the effects of the third molars eruption on the dental arches have been studied extensively. Still, literature provides less data regarding the effects of the orthodontic treatment on the third molars position. The aim of our study was to assess the positional changes of the third molars relative to the occlusal plane and to the second molar long axis, changes occurred during orthodontic treatment performed with or without premolar extractions. Method. This study included 20 orthodontic treated patients: 10 of them with premolar extractions and 10 without premolar extractions. The pretreatment and post treatment panoramic radiographs were analyzed, and the angles between the third molar long axis and the occlusal plane and between the long axis of the third molar and the long axis of the second molar were measured. Results. Changes in third molar position, from pretreatment to post treatment, for the two groups of patients were evaluated by using the Student’s t-test. The results of the statistical analysis revealed an improvement in third molars position, the best results were seen in the lower third molars, in the group of patients treated with premolar extractions. PMID:23904878

  3. Relative Entropy and Squashed Entanglement

    NASA Astrophysics Data System (ADS)

    Li, Ke; Winter, Andreas

    2014-02-01

    We are interested in the properties and relations of entanglement measures. Especially, we focus on the squashed entanglement and relative entropy of entanglement, as well as their analogues and variants. Our first result is a monogamy-like inequality involving the relative entropy of entanglement and its one-way LOCC variant. The proof is accomplished by exploring the properties of relative entropy in the context of hypothesis testing via one-way LOCC operations, and by making use of an argument resembling that by Piani on the faithfulness of regularized relative entropy of entanglement. Following this, we obtain a commensurate and faithful lower bound for squashed entanglement, in the form of one-way LOCC relative entropy of entanglement. This gives a strengthening to the strong subadditivity of von Neumann entropy. Our result improves the trace-distance-type bound derived in Brandão et al. (Commun Math Phys, 306:805-830, 2011), where faithfulness of squashed entanglement was first proved. Applying Pinsker's inequality, we are able to recover the trace-distance-type bound, even with slightly better constant factor. However, the main improvement is that our new lower bound can be much larger than the old one and it is almost a genuine entanglement measure. We evaluate exactly the relative entropy of entanglement under various restricted measurement classes, for maximally entangled states. Then, by proving asymptotic continuity, we extend the exact evaluation to their regularized versions for all pure states. Finally, we consider comparisons and separations between some important entanglement measures and obtain several new results on these, too.

  4. Histopathology of the pulp of primary molars with active and arrested dentinal caries.

    PubMed

    Di Nicolo, R; Guedes-Pinto, A C; Carvalho, Y R

    2000-01-01

    The purpose of this study was to compare the histological appearance of the pulp of human primary molars with active and arrested lesions. The sample consisted of 36 primary molars (18 with active lesions and 18 with arrested lesions) extracted from 35 children between 5 to 9 years of age. The histological diagnosis was classified in normal pulp, transitional stage, partial pulpitis, total pulpitis and total necrosis, and then subdivided in three subgroups: treatable, untreatable and questionable. Results showed that normal pulp or transitional stage (treatable category) was diagnosed in 50% of teeth with arrested lesions, compared to 11.1% of teeth with active lesions. Partial pulpitis (questionable category) was present in 38.8% with arrested lesions compared to 22.2% with active lesions. Total pulpitis and total necrosis (untreatable category) was diagnosed in 11.2% with arrested lesions compared to 66.7% with active lesions. The observed frequencies of histological categories between both groups were statistically significant (P < 0.05). Histologically, pulp reaction under active and arrested lesions in primary molars revealed the formation of a basophilic calcio-traumatic line at the junction of the primary and reparative dentin, formation of reparative dentin and a regular odontoblastic layer in 60% of the cases. Results indicated that the type of lesion (active or arrested) is a good indicator of the histological status of the pulp. PMID:11314352

  5. Periodontal Effects of a Transposed Versus a Conventional Flap in Mandibular Third Molar Extractions.

    PubMed

    Laurito, Domenica; Lollobrigida, Marco; Graziani, Filippo; Guerra, Fabrizio; Vestri, Annarita; De Biase, Alberto

    2016-05-01

    The aim of this study was to compare a transposed with a repositioned flap by assessing the periodontal effects on the second molar and primary healing after extraction of partially impacted lower third molars. A total of 24 patients requiring partially impacted mandibular wisdom tooth removal were enrolled in the study. The test group (n = 12) underwent a transposed flap procedure, whereas the control group (n = 12) underwent a repositioned flap procedure. Plaque index, probing depth, bleeding on probing, and width of keratinized tissue were recorded the day of surgery (T1) and after 60 days (T4). Wound dehiscence was assessed on the mesio-distal and bucco-lingual directions at days 2 (T2), 7 (T3), and T4. No significant differences have been observed in the periodontal parameters between the groups at T1 and T4 (P > 0.05). Similarly, no difference was found at T2, T3, and T4 in wound dehiscence incidence (P > 0.05). To date, no data exists on the use of transposed flaps in third molar surgery; thus a comparison of results cannot be done. Further studies with larger population are needed to investigate the potential advantages of this type of flap. PMID:27054424

  6. Relative entropies in conformal field theory.

    PubMed

    Lashkari, Nima

    2014-08-01

    Relative entropy is a measure of distinguishability for quantum states, and it plays a central role in quantum information theory. The family of Renyi entropies generalizes to Renyi relative entropies that include, as special cases, most entropy measures used in quantum information theory. We construct a Euclidean path-integral approach to Renyi relative entropies in conformal field theory, then compute the fidelity and the relative entropy of states in one spatial dimension at zero and finite temperature using a replica trick. In contrast to the entanglement entropy, the relative entropy is free of ultraviolet divergences, and is obtained as a limit of certain correlation functions. The relative entropy of two states provides an upper bound on their trace distance. PMID:25126908

  7. Photosynthesis and negative entropy production.

    PubMed

    Jennings, Robert C; Engelmann, Enrico; Garlaschi, Flavio; Casazza, Anna Paola; Zucchelli, Giuseppe

    2005-09-30

    The widely held view that the maximum efficiency of a photosynthetic pigment system is given by the Carnot cycle expression (1-T/Tr) for energy transfer from a hot bath (radiation at temperature Tr) to a cold bath (pigment system at temperature T) is critically examined and demonstrated to be inaccurate when the entropy changes associated with the microscopic process of photon absorption and photochemistry at the level of single photosystems are considered. This is because entropy losses due to excited state generation and relaxation are extremely small (DeltaS < T/Tr) and are essentially associated with the absorption-fluorescence Stokes shift. Total entropy changes associated with primary photochemistry for single photosystems are shown to depend critically on the thermodynamic efficiency of the process. This principle is applied to the case of primary photochemistry of the isolated core of higher plant photosystem I and photosystem II, which are demonstrated to have maximal thermodynamic efficiencies of xi > 0.98 and xi > 0.92 respectively, and which, in principle, function with negative entropy production. It is demonstrated that for the case of xi > (1-T/Tr) entropy production is always negative and only becomes positive when xi < (1-T/Tr). PMID:16139784

  8. Autotransplantation of Mandibular Third Molar: A Case Report

    PubMed Central

    Ravi kumar, Pabbati; Jyothi, Mandava; Sirisha, Kantheti; Racca, Khushboo; Uma, Chalasani

    2012-01-01

    Autogenous transplantation is a feasible, fast, and economical option for the treatment of nonsalvageable teeth when a suitable donor tooth is available. This paper presents successful autotransplantation of a mature mandibular left third molar (38) without anatomical variances is used to replace a mandibular left second molar (37). The mandibular second molar was nonrestorable due to extensive root caries and resorption of distal root. After extraction of mandibular second and third molars, root canal therapy was done for the third molar extraorally, and the tooth was reimplanted into the extracted socket of second molar site. After one year, clinical and radiographic examination revealed satisfactory outcome with no signs or symptoms suggestive of pathology. In selected cases, autogenous tooth transplantation, even after complete root formation of the donor tooth, may be considered as a practical treatment alternative to conventional prosthetic rehabilitation or implant treatment. PMID:23346422

  9. Intrusion of overerupted molars by corticotomy and orthodontic skeletal anchorage.

    PubMed

    Moon, Cheol-Hyun; Wee, Jin-Uk; Lee, Hyun-Sun

    2007-11-01

    This article describes the orthodontic treatment of a 26-year-old female patient with overerupted left maxillary molar teeth. Her chief complaint was that the maxillary left first and the second molar intruded into the space required for the mandibular left first and the second molars, preventing prosthodontic treatment. The authors performed a corticotomy and used orthodontic skeletal anchorage with a miniplate and orthodontic miniscrews with a head modified to provide a specially designed hook. With this approach, they were able to achieve a sufficient amount of molar intrusion without discomfort, root resorption, or extrusion of the adjacent teeth. The first molar was intruded 3.0 mm and second molar was intruded 3.5 mm during 2 months of treatment. These results have been maintained for 11 months. PMID:18004918

  10. Molar mass distribution and solubility modeling of asphaltenes

    SciTech Connect

    Yarranton, H.W.; Masliyah, J.H.

    1996-12-01

    Attempts to model asphaltene solubility with Scatchard-Hildebrand theory were hampered by uncertainty in molar volume and solubility parameter distribution within the asphaltenes. By considering asphaltenes as a series of polyaromatic hydrocarbons with randomly distributed associated functional groups, molar volume and solubility parameter distributions are calculated from experimental measurements of molar mass and density. The molar mass distribution of Athabasca asphaltenes is determined from interfacial tension and vapor pressure osmometry measurements together with plasma desorption mass spectrometry determinations from the literature. Asphaltene densities are calculated indirectly from mixtures of known concentration of asphaltene in toluene. Asphaltene density, molar volume, and solubility parameter are correlated with molar mass. Solid-liquid equilibrium calculations based on solubility theory and the asphaltene property correlations successfully predict experimental data for both the precipitation point and the amount of precipitated asphaltenes in toluene-hexane solvent mixtures.

  11. Ab initio molar volumes and Gaussian radii.

    PubMed

    Parsons, Drew F; Ninham, Barry W

    2009-02-12

    Ab initio molar volumes are calculated and used to derive radii for ions and neutral molecules using a spatially diffuse model of the electron distribution with Gaussian spread. The Gaussian radii obtained can be used for computation of nonelectrostatic ion-ion dispersion forces that underlie Hofmeister specific ion effects. Equivalent hard-sphere radii are also derived, and these are in reasonable agreement with crystalline ionic radii. The Born electrostatic self-energy is derived for a Gaussian model of the electronic charge distribution. It is shown that the ionic volumes used in electrostatic calculations of strongly hydrated cosmotropic ions ought best to include the first hydration shell. Ionic volumes for weakly hydrated chaotropic metal cations should exclude electron overlap (in electrostatic calculations). Spherical radii are calculated as well as nonisotropic ellipsoidal radii for nonspherical ions, via their nonisotropic static polarizability tensors. PMID:19140766

  12. Molar extinction coefficients of some fatty acids

    NASA Astrophysics Data System (ADS)

    Sandhu, G. K.; Singh, Kulwant; Lark, B. S.; Gerward, L.

    2002-10-01

    The attenuation of gamma rays in some fatty acids, viz. formic acid (CH 2O 2), acetic acid (C 2H 4O 2), propionic acid (C 3H 6O 2), butyric acid (C 4H 8O 2), n-hexanoic acid (C 6H 12O 2), n-caprylic acid (C 8H 16O 2), lauric acid (C 12H 24O 2), myristic acid (C 14H 28O 2), palmitic acid (C 16H 32O 2), oleic acid (C 18H 34O 2) and stearic acid (C 18H 36O 2), has been measured at the photon energies 81, 356, 511, 662, 1173 and 1332 keV. Experimental values for the molar extinction coefficient, the effective atomic number and the electron density have been derived and compared with theoretical calculations. There is good agreement between experiment and theory.

  13. Conformational Entropy of Intrinsically Disordered Proteins from Amino Acid Triads

    PubMed Central

    Baruah, Anupaul; Rani, Pooja; Biswas, Parbati

    2015-01-01

    This work quantitatively characterizes intrinsic disorder in proteins in terms of sequence composition and backbone conformational entropy. Analysis of the normalized relative composition of the amino acid triads highlights a distinct boundary between globular and disordered proteins. The conformational entropy is calculated from the dihedral angles of the middle amino acid in the amino acid triad for the conformational ensemble of the globular, partially and completely disordered proteins relative to the non-redundant database. Both Monte Carlo (MC) and Molecular Dynamics (MD) simulations are used to characterize the conformational ensemble of the representative proteins of each group. The results show that the globular proteins span approximately half of the allowed conformational states in the Ramachandran space, while the amino acid triads in disordered proteins sample the entire range of the allowed dihedral angle space following Flory’s isolated-pair hypothesis. Therefore, only the sequence information in terms of the relative amino acid triad composition may be sufficient to predict protein disorder and the backbone conformational entropy, even in the absence of well-defined structure. The predicted entropies are found to agree with those calculated using mutual information expansion and the histogram method. PMID:26138206

  14. Traffic network and distribution of cars: Maximum-entropy approach

    SciTech Connect

    Das, N.C.; Chakrabarti, C.G.; Mazumder, S.K.

    2000-02-01

    An urban transport system plays a vital role in the modeling of the modern cosmopolis. A great emphasis is needed for the proper development of a transport system, particularly the traffic network and flow, to meet possible future demand. There are various mathematical models of traffic network and flow. The role of Shannon entropy in the modeling of traffic network and flow was stressed by Tomlin and Tomlin (1968) and Tomlin (1969). In the present note the authors study the role of maximum-entropy principle in the solution of an important problem associated with the traffic network flow. The maximum-entropy principle initiated by Jaynes is a powerful optimization technique of determining the distribution of a random system in the case of partial or incomplete information or data available about the system. This principle has now been broadened and extended and has found wide applications in different fields of science and technology. In the present note the authors show how the Jaynes' maximum-entropy principle, slightly modified, can be successfully applied in determining the flow or distribution of cars in different paths of a traffic network when incomplete information is available about the network.

  15. Ordering Transformations in High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Singh, Prashant; Johnson, Duane D.

    The high-temperature disordered phase of multi-component alloys, including high-entropy alloys (HEA), generally must experience segregation or else passes through partially-ordered phases to reach the low-temperature, fully-ordered phase. Our first-principles KKR-CPA-based atomic short-range ordering (SRO) calculations (analyzed as concentration-waves) reveal the competing partially and fully ordered phases in HEA, and these phases can be then directly assessed from KKR-CPA results in larger unit cells [Phys. Rev. B 91, 224204 (2015)]. For AlxCrFeNiTi0.25, Liu et al. [J Alloys Compd 619, 610 (2015)] experimentally find FCC+BCC coexistence that changes to BCC with increasing Al (x from 0-to-1), which then exhibits a partially-ordered B2 at low temperatures. CALPHAD (Calculation of Phase Diagrams) predicts a region with L21+B2 coexistence. From KKR-CPA calculations, we find crossover versus Al from FCC+BCC coexistence to BCC, as observed, and regions for partially-order B2+L21 coexistence, as suggest by CALPHAD. Our combined first-principles KKR-CPA method provides a powerful approach in predicting SRO and completing long-range order in HEA and other complex alloys. Supported by the U.S. DOE, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. Work was performed at Ames Laboratory, which is operated by Iowa State University for the U.S. DOE under Contract #DE-AC02-07CH11358.

  16. Fano resonances and entanglement entropy

    SciTech Connect

    Eisler, Viktor; Garmon, Savannah Sterling

    2010-11-01

    We study the entanglement in the ground state of a chain of free spinless fermions with a single side-coupled impurity. We find a logarithmic scaling for the entanglement entropy of a segment neighboring the impurity. The prefactor of the logarithm varies continuously and contains an impurity contribution described by a one-parameter function while the contribution of the unmodified boundary enters additively. The coefficient is found explicitly by pointing out similarities with other models involving interface defects. The proposed formula gives excellent agreement with our numerical data. If the segment has an open boundary, one finds a rapidly oscillating subleading term in the entropy that persists in the limit of large block sizes. The particle-number fluctuation inside the subsystem is also reported. It is analogous with the expression for the entropy scaling, however, with a simpler functional form for the coefficient.

  17. Convex accelerated maximum entropy reconstruction

    NASA Astrophysics Data System (ADS)

    Worley, Bradley

    2016-04-01

    Maximum entropy (MaxEnt) spectral reconstruction methods provide a powerful framework for spectral estimation of nonuniformly sampled datasets. Many methods exist within this framework, usually defined based on the magnitude of a Lagrange multiplier in the MaxEnt objective function. An algorithm is presented here that utilizes accelerated first-order convex optimization techniques to rapidly and reliably reconstruct nonuniformly sampled NMR datasets using the principle of maximum entropy. This algorithm - called CAMERA for Convex Accelerated Maximum Entropy Reconstruction Algorithm - is a new approach to spectral reconstruction that exhibits fast, tunable convergence in both constant-aim and constant-lambda modes. A high-performance, open source NMR data processing tool is described that implements CAMERA, and brief comparisons to existing reconstruction methods are made on several example spectra.

  18. Quantum geometry and gravitational entropy

    SciTech Connect

    Simon, Joan; Balasubramanian, Vijay; Czech, Bart Iomiej; Larjo, Klaus; Marolf, Donald; Simon, Joan

    2007-05-29

    Most quantum states have wavefunctions that are widely spread over the accessible Hilbert space and hence do not have a good description in terms of a single classical geometry. In order to understand when geometric descriptions are possible, we exploit the AdS/CFT correspondence in the half-BPS sector of asymptotically AdS_5 x S5 universes. In this sector we devise a"coarse-grained metric operator" whose eigenstates are well described by a single spacetime topology and geometry. We show that such half-BPS universes have a non-vanishing entropy if and only if the metric is singular, and that the entropy arises from coarse-graining the geometry. Finally, we use our entropy formula to find the most entropic spacetimes with fixed asymptotic moments beyond the global charges.

  19. Gravitational entropy of cosmic expansion

    NASA Astrophysics Data System (ADS)

    Sussman , R. A.

    2014-09-01

    We apply a recent proposal to define ``gravitational entropy'' to the expansion of cosmic voids within the framework of non-perturbative General Relativity. By considering CDM void configurations compatible with basic observational constraints, we show that this entropy grows from post-inflationary conditions towards a final asymptotic value in a late time fully non-linear regime described by the Lemaître- Tolman-Bondi (LTB) dust models. A qualitatively analogous behavior occurs if we assume a positive cosmological constant consistent with a Λ-CDM background model. However, the Λ term introduces a significant suppression of entropy growth with the terminal equilibrium value reached at a much faster rate.

  20. Construction of microcanonical entropy on thermodynamic pillars.

    PubMed

    Campisi, Michele

    2015-05-01

    A question that is currently highly debated is whether the microcanonical entropy should be expressed as the logarithm of the phase volume (volume entropy, also known as the Gibbs entropy) or as the logarithm of the density of states (surface entropy, also known as the Boltzmann entropy). Rather than postulating them and investigating the consequence of each definition, as is customary, here we adopt a bottom-up approach and construct the entropy expression within the microcanonical formalism upon two fundamental thermodynamic pillars: (i) The second law of thermodynamics as formulated for quasistatic processes: δQ/T is an exact differential, and (ii) the law of ideal gases: PV=k(B)NT. The first pillar implies that entropy must be some function of the phase volume Ω. The second pillar singles out the logarithmic function among all possible functions. Hence the construction leads uniquely to the expression S=k(B)lnΩ, that is, the volume entropy. As a consequence any entropy expression other than that of Gibbs, e.g., the Boltzmann entropy, can lead to inconsistencies with the two thermodynamic pillars. We illustrate this with the prototypical example of a macroscopic collection of noninteracting spins in a magnetic field, and show that the Boltzmann entropy severely fails to predict the magnetization, even in the thermodynamic limit. The uniqueness of the Gibbs entropy, as well as the demonstrated potential harm of the Boltzmann entropy, provide compelling reasons for discarding the latter at once. PMID:26066159

  1. Discrete state model and accurate estimation of loop entropy of RNA secondary structures.

    PubMed

    Zhang, Jian; Lin, Ming; Chen, Rong; Wang, Wei; Liang, Jie

    2008-03-28

    Conformational entropy makes important contribution to the stability and folding of RNA molecule, but it is challenging to either measure or compute conformational entropy associated with long loops. We develop optimized discrete k-state models of RNA backbone based on known RNA structures for computing entropy of loops, which are modeled as self-avoiding walks. To estimate entropy of hairpin, bulge, internal loop, and multibranch loop of long length (up to 50), we develop an efficient sampling method based on the sequential Monte Carlo principle. Our method considers excluded volume effect. It is general and can be applied to calculating entropy of loops with longer length and arbitrary complexity. For loops of short length, our results are in good agreement with a recent theoretical model and experimental measurement. For long loops, our estimated entropy of hairpin loops is in excellent agreement with the Jacobson-Stockmayer extrapolation model. However, for bulge loops and more complex secondary structures such as internal and multibranch loops, we find that the Jacobson-Stockmayer extrapolation model has large errors. Based on estimated entropy, we have developed empirical formulae for accurate calculation of entropy of long loops in different secondary structures. Our study on the effect of asymmetric size of loops suggest that loop entropy of internal loops is largely determined by the total loop length, and is only marginally affected by the asymmetric size of the two loops. Our finding suggests that the significant asymmetric effects of loop length in internal loops measured by experiments are likely to be partially enthalpic. Our method can be applied to develop improved energy parameters important for studying RNA stability and folding, and for predicting RNA secondary and tertiary structures. The discrete model and the program used to calculate loop entropy can be downloaded at http://gila.bioengr.uic.edu/resources/RNA.html. PMID:18376982

  2. Whose Entropy: A Maximal Entropy Analysis of Phosphorylation Signaling

    NASA Astrophysics Data System (ADS)

    Remacle, F.; Graeber, T. G.; Levine, R. D.

    2011-07-01

    High throughput experiments, characteristic of studies in systems biology, produce large output data sets often at different time points or under a variety of related conditions or for different patients. In several recent papers the data is modeled by using a distribution of maximal information-theoretic entropy. We pose the question: `whose entropy' meaning how do we select the variables whose distribution should be compared to that of maximal entropy. The point is that different choices can lead to different answers. Due to the technological advances that allow for the system-wide measurement of hundreds to thousands of events from biological samples, addressing this question is now part of the analysis of systems biology datasets. The analysis of the extent of phosphorylation in reference to the transformation potency of Bcr-Abl fusion oncogene mutants is used as a biological example. The approach taken seeks to use entropy not simply as a statistical measure of dispersion but as a physical, thermodynamic, state function. This highlights the dilemma of what are the variables that describe the state of the signaling network. Is what matters Boolean, spin-like, variables that specify whether a particular phosphorylation site is or is not actually phosphorylated. Or does the actual extent of phosphorylation matter. Last but not least is the possibility that in a signaling network some few specific phosphorylation sites are the key to the signal transduction even though these sites are not at any time abundantly phosphorylated in an absolute sense.

  3. Entropy Analyses of Four Familiar Processes.

    ERIC Educational Resources Information Center

    Craig, Norman C.

    1988-01-01

    Presents entropy analysis of four processes: a chemical reaction, a heat engine, the dissolution of a solid, and osmosis. Discusses entropy, the second law of thermodynamics, and the Gibbs free energy function. (MVL)

  4. Autotransplantation of a Buccally Erupted Matured Mandibular Third Molar to Replace a Grossly Decayed Second Molar.

    PubMed

    Yadav, Sukhwant Singh; Bodh, Ranjeet; Kaushik, Aishvarya; Talwar, Sangeeta

    2016-02-01

    Autotransplantation can be a treatment option for tooth loss as an alternative to fixed or implant-supported prostheses. It has predictable results comparable to implants, with reported success rates often greater than 90%. In present case, buccally erupted matured third molar was autotransplanted in extraction socket of grossly carious mandibular second molar. The tooth was splinted for 1 week followed by root canal treatment. After 12 months follow up, tooth was in perfect state of function and aesthetic with healthy periapical and periodontal architecture. High success rate was found in immature tooth transplantation in previous case reports. This case report describes that even matured tooth can also be used as donor if atraumatic extraction is possible and endodontic treatment is well performed. PMID:27042593

  5. Autotransplantation of a Buccally Erupted Matured Mandibular Third Molar to Replace a Grossly Decayed Second Molar

    PubMed Central

    Bodh, Ranjeet; Kaushik, Aishvarya; Talwar, Sangeeta

    2016-01-01

    Autotransplantation can be a treatment option for tooth loss as an alternative to fixed or implant-supported prostheses. It has predictable results comparable to implants, with reported success rates often greater than 90%. In present case, buccally erupted matured third molar was autotransplanted in extraction socket of grossly carious mandibular second molar. The tooth was splinted for 1 week followed by root canal treatment. After 12 months follow up, tooth was in perfect state of function and aesthetic with healthy periapical and periodontal architecture. High success rate was found in immature tooth transplantation in previous case reports. This case report describes that even matured tooth can also be used as donor if atraumatic extraction is possible and endodontic treatment is well performed. PMID:27042593

  6. Anchorage reinforcement with a fixed functional appliance during protraction of the mandibular second molars into the first molar extraction sites.

    PubMed

    Chhibber, Aditya; Upadhyay, Madhur

    2015-07-01

    Protraction of posterior teeth into edentulous spaces is a challenge. This report describes the treatment of a 19-year-old woman with missing mandibular first molars owing to caries. A fixed functional appliance was used for anchorage reinforcement during mandibular second molar protraction. Eight millimeters of bilateral protraction was done with bodily mesial movement of the molars and no lingual tipping of the incisors. PMID:26124039

  7. Entanglement entropy between real and virtual particles in ϕ4 quantum field theory

    NASA Astrophysics Data System (ADS)

    Ardenghi, Juan Sebastián

    2015-04-01

    The aim of this work is to compute the entanglement entropy of real and virtual particles by rewriting the generating functional of ϕ4 theory as a mean value between states and observables defined through the correlation functions. Then the von Neumann definition of entropy can be applied to these quantum states and in particular, for the partial traces taken over the internal or external degrees of freedom. This procedure can be done for each order in the perturbation expansion showing that the entanglement entropy for real and virtual particles behaves as ln (m0). In particular, entanglement entropy is computed at first order for the correlation function of two external points showing that mutual information is identical to the external entropy and that conditional entropies are negative for all the domain of m0. In turn, from the definition of the quantum states, it is possible to obtain general relations between total traces between different quantum states of a ϕr theory. Finally, discussion about the possibility of taking partial traces over external degrees of freedom is considered, which implies the introduction of some observables that measure space-time points where an interaction occurs.

  8. Remainder terms for some quantum entropy inequalities

    SciTech Connect

    Carlen, Eric A.; Lieb, Elliott H.

    2014-04-15

    We consider three von Neumann entropy inequalities: subadditivity; Pinsker's inequality for relative entropy; and the monotonicity of relative entropy. For these we state conditions for equality, and we prove some new error bounds away from equality, including an improved version of Pinsker's inequality.

  9. Quantum Kaniadakis entropy under projective measurement

    NASA Astrophysics Data System (ADS)

    Ourabah, Kamel; Hamici-Bendimerad, Amel Hiba; Tribeche, Mouloud

    2015-09-01

    It is well known that the von Neumann entropy of a quantum state does not decrease with a projective measurement. This property holds for Tsallis and Rényi entropies as well. We show that the recently introduced quantum version of the Kaniadakis entropy preserves this property.

  10. Quantum Kaniadakis entropy under projective measurement.

    PubMed

    Ourabah, Kamel; Hamici-Bendimerad, Amel Hiba; Tribeche, Mouloud

    2015-09-01

    It is well known that the von Neumann entropy of a quantum state does not decrease with a projective measurement. This property holds for Tsallis and Rényi entropies as well. We show that the recently introduced quantum version of the Kaniadakis entropy preserves this property. PMID:26465433

  11. Stokes-Einstein relation and excess entropy in Al-rich Al-Cu melts

    NASA Astrophysics Data System (ADS)

    Pasturel, A.; Jakse, N.

    2016-07-01

    We investigate the conditions for the validity of the Stokes-Einstein relation that connects diffusivity to viscosity in melts using entropy-scaling relationships developed by Rosenfeld. Employing ab initio molecular dynamics simulations to determine transport and structural properties of liquid Al1-xCux alloys (with composition x ≤ 0.4), we first show that reduced self-diffusion coefficients and viscosities, according to Rosenfeld's formulation, scale with the two-body approximation of the excess entropy except the reduced viscosity for x = 0.4. Then, we use our findings to evidence that the Stokes-Einstein relation using effective atomic radii is not valid in these alloys while its validity can be related to the temperature dependence of the partial pair-excess entropies of both components. Finally, we derive a relation between the ratio of the self-diffusivities of the components and the ratio of their pair excess entropies.

  12. Entropy of dynamical social networks

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Karsai, Marton; Bianconi, Ginestra

    2012-02-01

    Dynamical social networks are evolving rapidly and are highly adaptive. Characterizing the information encoded in social networks is essential to gain insight into the structure, evolution, adaptability and dynamics. Recently entropy measures have been used to quantify the information in email correspondence, static networks and mobility patterns. Nevertheless, we still lack methods to quantify the information encoded in time-varying dynamical social networks. In this talk we present a model to quantify the entropy of dynamical social networks and use this model to analyze the data of phone-call communication. We show evidence that the entropy of the phone-call interaction network changes according to circadian rhythms. Moreover we show that social networks are extremely adaptive and are modified by the use of technologies such as mobile phone communication. Indeed the statistics of duration of phone-call is described by a Weibull distribution and is significantly different from the distribution of duration of face-to-face interactions in a conference. Finally we investigate how much the entropy of dynamical social networks changes in realistic models of phone-call or face-to face interactions characterizing in this way different type human social behavior.

  13. Entropy algebras and Birkhoff factorization

    NASA Astrophysics Data System (ADS)

    Marcolli, Matilde; Tedeschi, Nicolas

    2015-11-01

    We develop notions of Rota-Baxter structures and associated Birkhoff factorizations, in the context of min-plus semirings and their thermodynamic deformations, including deformations arising from quantum information measures such as the von Neumann entropy. We consider examples related to Manin's renormalization and computation program, to Markov random fields and to counting functions and zeta functions of algebraic varieties.

  14. Coherent Informational Energy and Entropy.

    ERIC Educational Resources Information Center

    Avramescu, Aurel

    1980-01-01

    Seeks to provide a common theoretical foundation for all known bibliometric laws by assimilating a systemic view of the information transfer process with a thermodynamic process, i.e., the conduction of heat in solids. The resulting diffusion model establishes new definitions for informational energy and entropy consistent with corresponding…

  15. Rigorous entropy-energy arguments

    NASA Astrophysics Data System (ADS)

    Simon, Barry; Sokal, Alan D.

    1981-08-01

    We present a method for making rigorous various arguments which predict that certain situations are unstable because of a balance of energy vs. entropy. As applications, we give yet another proof that the two-dimensional plane rotor has no spontaneous magnetization and we make rigorous Thouless' arguments on the one-dimensional Ising model with coupling J/n 2.

  16. Alternative Multiview Maximum Entropy Discrimination.

    PubMed

    Chao, Guoqing; Sun, Shiliang

    2016-07-01

    Maximum entropy discrimination (MED) is a general framework for discriminative estimation based on maximum entropy and maximum margin principles, and can produce hard-margin support vector machines under some assumptions. Recently, the multiview version of MED multiview MED (MVMED) was proposed. In this paper, we try to explore a more natural MVMED framework by assuming two separate distributions p1( Θ1) over the first-view classifier parameter Θ1 and p2( Θ2) over the second-view classifier parameter Θ2 . We name the new MVMED framework as alternative MVMED (AMVMED), which enforces the posteriors of two view margins to be equal. The proposed AMVMED is more flexible than the existing MVMED, because compared with MVMED, which optimizes one relative entropy, AMVMED assigns one relative entropy term to each of the two views, thus incorporating a tradeoff between the two views. We give the detailed solving procedure, which can be divided into two steps. The first step is solving our optimization problem without considering the equal margin posteriors from two views, and then, in the second step, we consider the equal posteriors. Experimental results on multiple real-world data sets verify the effectiveness of the AMVMED, and comparisons with MVMED are also reported. PMID:26111403

  17. Origin of the 'Extra Entropy'

    NASA Technical Reports Server (NTRS)

    Mushotzky, R.

    2008-01-01

    I will discuss how one can determine the origin of the 'extra entropy' in groups and clusters and the feedback needed in models of galaxy formation. I will stress the use of x-ray spectroscopy and imaging and the critical value that Con-X has in this regard.

  18. Entanglement entropy in particle decay

    NASA Astrophysics Data System (ADS)

    Lello, Louis; Boyanovsky, Daniel; Holman, Richard

    2013-11-01

    The decay of a parent particle into two or more daughter particles results in an entangled quantum state as a consequence of conservation laws in the decay process. Recent experiments at Belle and BaBar take advantage of quantum entanglement and the correlations in the time evolution of the product particles to study CP and T violations. If one (or more) of the product particles are not observed, their degrees of freedom are traced out of the pure state density matrix resulting from the decay, leading to a mixed state density matrix and an entanglement entropy. This entropy is a measure of the loss of information present in the original quantum correlations of the entangled state. We use the Wigner-Weisskopf method to construct an approximation to this state that evolves in time in a manifestly unitary way. We then obtain the entanglement entropy from the reduced density matrix of one of the daughter particles obtained by tracing out the unobserved states, and follow its time evolution. We find that it grows over a time scale determined by the lifetime of the parent particle to a maximum, which when the width of the parent particle is narrow, describes the phase space distribution of maximally entangled Bell-like states. The method is generalized to the case in which the parent particle is described by a wave packet localized in space. Possible experimental avenues to measure the entanglement entropy in the decay of mesons at rest are discussed.

  19. GENERAL: Low-temperature heat capacities and standard molar enthalpy of formation of N-methylnorephedrine C11H17NO(s)

    NASA Astrophysics Data System (ADS)

    Di, You-Ying; Wang, Da-Qi; Shi, Quan; Tan, Zhi-Cheng

    2008-08-01

    This paper reports that low-temperature heat capacities of N-methylnorephedrine C11H17NO(s) have been measured by a precision automated adiabatic calorimeter over the temperature range from T = 78 K to T = 400K. A solid to liquid phase transition of the compound was found in the heat capacity curve in the temperature range of T = 342-364 K. The peak temperature, molar enthalpy and entropy of fusion of the substance were determined. The experimental values of the molar heat capacities in the temperature regions of T = 78-342 K and T = 364-400 K were fitted to two polynomial equations of heat capacities with the reduced temperatures by least squares method. The smoothed molar heat capacities and thermodynamic functions of N-methylnorephedrine C11H17NO(s) relative to the standard reference temperature 298.15 K were calculated based on the fitted polynomials and tabulated with an interval of 5 K. The constant-volume energy of combustion of the compound at T = 298.15K was measured by means of an isoperibol precision oxygen-bomb combustion calorimeter. The standard molar enthalpy of combustion of the sample was calculated. The standard molar enthalpy of formation of the compound was determined from the combustion enthalpy and other auxiliary thermodynamic data through a Hess thermochemical cycle.

  20. Bi-clustering of Gene Expression Data Using Conditional Entropy

    NASA Astrophysics Data System (ADS)

    Olomola, Afolabi; Dua, Sumeet

    The inherent sparseness of gene expression data and the rare exhibition of similar expression patterns across a wide range of conditions make traditional clustering techniques unsuitable for gene expression analysis. Biclustering methods currently used to identify correlated gene patterns based on a subset of conditions do not effectively mine constant, coherent, or overlapping biclusters, partially because they perform poorly in the presence of noise. In this paper, we present a new methodology (BiEntropy) that combines information entropy and graph theory techniques to identify co-expressed gene patterns that are relevant to a subset of the sample. Our goal is to discover different types of biclusters in the presence of noise and to demonstrate the superiority of our method over existing methods in terms of discovering functionally enriched biclusters. We demonstrate the effectiveness of our method using both synthetic and real data.

  1. [Distalization of the upper second molar: clinical case].

    PubMed

    Castaldo, A; Blasi, S; Vettese, P

    1991-01-01

    The Authors showed a clinical case in which has been put on a distalizing system together with a palatal bar between the first upper molars, a sectional placed between the first and the second molar and a 100 g precalibrated Sentalloy coil. PMID:1784297

  2. Early prediction of mandibular third molar eruption/impaction using linear and angular measurements on digital panoramic radiography: A radiographic study

    PubMed Central

    Kaur, Rachninder; Kumar, Anand C.; Garg, Ranjana; Sharma, Sugandha; Rastogi, Trisha; Gupta, Vivek Vijay

    2016-01-01

    Background: The impaction rate is higher for the third molars than for any other tooth in modern human population. This study was conducted with the aim to evaluate the validity of linear and angular measurements on the digital panoramic radiograph as a reference for early prediction of mandibular third molar eruption/impaction. Materials and Methods: Digital panoramic radiographs of 200 subjects were selected based on their status of eruption of mandibular third molars; fully erupted (Group A), partially erupted (Group B), fully developed but not erupted (Group C) and partially developed groups (Group D). Each group comprised 50 subjects with 25 males and 25 females. Nine variables (linear measurements, angles, and ratios) were determined and measured bilaterally by two observers and values were compared between the study groups and genders. Results: The data thus obtained were analyzed for comparison among all the study groups. It was found that the difference in the mean values of lower eruption space (LES) measurements, α-angle (angle between long axis of the third molar and gonial-symphyseal plane) and β-angle (angle between long axis of mandibular second and third molars) were significant (P < 0.05). The mean values of mesiodistal width, LES-ramus, LES-Xi point and β-angle were found more in males than in females. No significant difference was observed between the sides. Conclusion: α- and β-angle together with LES measurements give the accurate information on early prediction of lower third molar eruption or impaction. PMID:27433048

  3. Mandibular third molar autotransplantation--literature review with clinical cases.

    PubMed

    Mendes, Rui Amaral; Rocha, Germano

    2004-12-01

    Autotransplantation of mandibular third molars in a precocious phase of development is indicated when a substitute for adjacent compromised or missing molars is needed, and when mesial movements of the posterior teeth, the resultant loss of space, and overeruption of opposing teeth and consequent changes in the occlusion must be avoided. Provided that the apices of the mandibular third molar are immature, the immediate replacement of a lost or compromised tooth usually ensures a good outcome. Transplantation of third molars helps to maintain alveolar bone and enables endosseous implantation without requiring bone regeneration. We present examples of transplantation of mandibular third molars and review the factors that affect the success or failure of this procedure, such as atraumatic extraction and adequate immobilization of the transplanted tooth and root development after transplantation. Sex or age seem to have no effect on the final outcome. PMID:15588551

  4. q-entropy for symbolic dynamical systems

    NASA Astrophysics Data System (ADS)

    Zhao, Yun; Pesin, Yakov

    2015-12-01

    For symbolic dynamical systems we use the Carathéodory construction as described in (Pesin 1997 Dimension Theory in Dynamical Systems, ConTemporary Views and Applications (Chicago: University of Chicago Press)) to introduce the notions of q-topological and q-metric entropies. We describe some basic properties of these entropies and in particular, discuss relations between q-metric entropy and local metric entropy. Both q-topological and q-metric entropies are new invariants respectively under homeomorphisms and metric isomorphisms of dynamical systems.

  5. Towards information inequalities for generalized graph entropies.

    PubMed

    Sivakumar, Lavanya; Dehmer, Matthias

    2012-01-01

    In this article, we discuss the problem of establishing relations between information measures for network structures. Two types of entropy based measures namely, the Shannon entropy and its generalization, the Rényi entropy have been considered for this study. Our main results involve establishing formal relationships, by means of inequalities, between these two kinds of measures. Further, we also state and prove inequalities connecting the classical partition-based graph entropies and partition-independent entropy measures. In addition, several explicit inequalities are derived for special classes of graphs. PMID:22715375

  6. Negative temperatures and the definition of entropy

    NASA Astrophysics Data System (ADS)

    Swendsen, Robert H.; Wang, Jian-Sheng

    2016-07-01

    The concept of negative temperature has recently received renewed interest in the context of debates about the correct definition of the thermodynamic entropy in statistical mechanics. Several researchers have identified the thermodynamic entropy exclusively with the "volume entropy" suggested by Gibbs, and have further concluded that by this definition, negative temperatures violate the principles of thermodynamics. We disagree with these conclusions. We demonstrate that volume entropy is inconsistent with the postulates of thermodynamics for systems with non-monotonic energy densities, while a definition of entropy based on the probability distributions of macroscopic variables does satisfy the postulates of thermodynamics. Our results confirm that negative temperature is a valid extension of thermodynamics.

  7. Entropy-Corrected Holographic Dark Energy

    NASA Astrophysics Data System (ADS)

    Wei, Hao

    2009-10-01

    The holographic dark energy (HDE) is now an interesting candidate of dark energy, which has been studied extensively in the literature. In the derivation of HDE, the black hole entropy plays an important role. In fact, the entropy-area relation can be modified due to loop quantum gravity or other reasons. With the modified entropy-area relation, we propose the so-called “entropy-corrected holographic dark energy" (ECHDE) in the present work. We consider many aspects of ECHDE and find some interesting results. In addition, we briefly consider the so-called “entropy-corrected agegraphic dark energy" (ECADE).

  8. A violation of the covariant entropy bound?

    NASA Astrophysics Data System (ADS)

    Masoumi, Ali; Mathur, Samir D.

    2015-04-01

    Several arguments suggest that the entropy density at high energy density ρ should be given by the expression s =K √{ρ /G } , where K is a constant of order unity. On the other hand the covariant entropy bound requires that the entropy on a light sheet be bounded by A /4 G , where A is the area of the boundary of the sheet. We find that in a suitably chosen cosmological geometry, the above expression for s violates the covariant entropy bound. We consider different possible explanations for this fact, in particular, the possibility that entropy bounds should be defined in terms of volumes of regions rather than areas of surfaces.

  9. Generalized gravitational entropy from total derivative action

    NASA Astrophysics Data System (ADS)

    Dong, Xi; Miao, Rong-Xin

    2015-12-01

    We investigate the generalized gravitational entropy from total derivative terms in the gravitational action. Following the method of Lewkowycz and Maldacena, we find that the generalized gravitational entropy from total derivatives vanishes. We compare our results with the work of Astaneh, Patrushev, and Solodukhin. We find that if total derivatives produced nonzero entropy, the holographic and the field-theoretic universal terms of entanglement entropy would not match. Furthermore, the second law of thermodynamics could be violated if the entropy of total derivatives did not vanish.

  10. Renyi entropy measures of heart rate Gaussianity.

    PubMed

    Lake, Douglas E

    2006-01-01

    Sample entropy and approximate entropy are measures that have been successfully utilized to study the deterministic dynamics of heart rate (HR). A complementary stochastic point of view and a heuristic argument using the Central Limit Theorem suggests that the Gaussianity of HR is a complementary measure of the physiological complexity of the underlying signal transduction processes. Renyi entropy (or q-entropy) is a widely used measure of Gaussianity in many applications. Particularly important members of this family are differential (or Shannon) entropy (q = 1) and quadratic entropy (q = 2). We introduce the concepts of differential and conditional Renyi entropy rate and, in conjunction with Burg's theorem, develop a measure of the Gaussianity of a linear random process. Robust algorithms for estimating these quantities are presented along with estimates of their standard errors. PMID:16402599

  11. Nonparametric entropy estimation using kernel densities.

    PubMed

    Lake, Douglas E

    2009-01-01

    The entropy of experimental data from the biological and medical sciences provides additional information over summary statistics. Calculating entropy involves estimates of probability density functions, which can be effectively accomplished using kernel density methods. Kernel density estimation has been widely studied and a univariate implementation is readily available in MATLAB. The traditional definition of Shannon entropy is part of a larger family of statistics, called Renyi entropy, which are useful in applications that require a measure of the Gaussianity of data. Of particular note is the quadratic entropy which is related to the Friedman-Tukey (FT) index, a widely used measure in the statistical community. One application where quadratic entropy is very useful is the detection of abnormal cardiac rhythms, such as atrial fibrillation (AF). Asymptotic and exact small-sample results for optimal bandwidth and kernel selection to estimate the FT index are presented and lead to improved methods for entropy estimation. PMID:19897106

  12. Entropy-Based Financial Asset Pricing

    PubMed Central

    Ormos, Mihály; Zibriczky, Dávid

    2014-01-01

    We investigate entropy as a financial risk measure. Entropy explains the equity premium of securities and portfolios in a simpler way and, at the same time, with higher explanatory power than the beta parameter of the capital asset pricing model. For asset pricing we define the continuous entropy as an alternative measure of risk. Our results show that entropy decreases in the function of the number of securities involved in a portfolio in a similar way to the standard deviation, and that efficient portfolios are situated on a hyperbola in the expected return – entropy system. For empirical investigation we use daily returns of 150 randomly selected securities for a period of 27 years. Our regression results show that entropy has a higher explanatory power for the expected return than the capital asset pricing model beta. Furthermore we show the time varying behavior of the beta along with entropy. PMID:25545668

  13. Thermodynamic law from the entanglement entropy bound

    NASA Astrophysics Data System (ADS)

    Park, Chanyong

    2016-04-01

    From black hole thermodynamics, the Bekenstein bound has been proposed as a universal thermal entropy bound. It has been further generalized to an entanglement entropy bound which is valid even in a quantum system. In a quantumly entangled system, the non-negativity of the relative entropy leads to the entanglement entropy bound. When the entanglement entropy bound is saturated, a quantum system satisfies the thermodynamicslike law with an appropriately defined entanglement temperature. We show that the saturation of the entanglement entropy bound accounts for a universal feature of the entanglement temperature proportional to the inverse of the system size. In addition, we show that the deformed modular Hamiltonian under a global quench also satisfies the generalized entanglement entropy boundary after introducing a new quantity called the entanglement chemical potential.

  14. Entropy-based financial asset pricing.

    PubMed

    Ormos, Mihály; Zibriczky, Dávid

    2014-01-01

    We investigate entropy as a financial risk measure. Entropy explains the equity premium of securities and portfolios in a simpler way and, at the same time, with higher explanatory power than the beta parameter of the capital asset pricing model. For asset pricing we define the continuous entropy as an alternative measure of risk. Our results show that entropy decreases in the function of the number of securities involved in a portfolio in a similar way to the standard deviation, and that efficient portfolios are situated on a hyperbola in the expected return-entropy system. For empirical investigation we use daily returns of 150 randomly selected securities for a period of 27 years. Our regression results show that entropy has a higher explanatory power for the expected return than the capital asset pricing model beta. Furthermore we show the time varying behavior of the beta along with entropy. PMID:25545668

  15. Entropy Generation Across Earth's Bow Shock

    NASA Technical Reports Server (NTRS)

    Parks, George K.; McCarthy, Michael; Fu, Suiyan; Lee E. s; Cao, Jinbin; Goldstein, Melvyn L.; Canu, Patrick; Dandouras, Iannis S.; Reme, Henri; Fazakerley, Andrew; Lin, Naiguo; Wilber, Mark

    2011-01-01

    Earth's bow shock is a transition layer that causes an irreversible change in the state of plasma that is stationary in time. Theories predict entropy increases across the bow shock but entropy has never been directly measured. Cluster and Double Star plasma experiments measure 3D plasma distributions upstream and downstream of the bow shock that allow calculation of Boltzmann's entropy function H and his famous H-theorem, dH/dt O. We present the first direct measurements of entropy density changes across Earth's bow shock. We will show that this entropy generation may be part of the processes that produce the non-thermal plasma distributions is consistent with a kinetic entropy flux model derived from the collisionless Boltzmann equation, giving strong support that solar wind's total entropy across the bow shock remains unchanged. As far as we know, our results are not explained by any existing shock models and should be of interests to theorists.

  16. Nonsurgical Endodontic Management of a Molar-Incisor Malformation-affected Mandibular First Molar: A Case Report.

    PubMed

    Yue, Wonyoung; Kim, Euiseong

    2016-04-01

    A molar-incisor malformation (MIM) is a newly reported type of dental anomaly that involves a characteristic root malformation in permanent first molars and deciduous second molars and a crown defect in permanent central incisors. This case report describes a nonsurgical root canal treatment of a MIM-affected molar by aid of a reformatted axial view of the tooth cone-beam computed tomography (CBCT). A MIM-affected molar has calcified canal orifices and a few immature accessory furcal canals. Conventional root canal treatment with the aid of CBCT followed by resin restoration was performed on the tooth. The malformed roots of MIM teeth generally make it difficult to apply conventional endodontic treatment; however, it was possible to do with the aid of the reformatted axial view of the CBCT. PMID:26706790

  17. Universal crossovers between entanglement entropy and thermal entropy

    NASA Astrophysics Data System (ADS)

    Swingle, Brian; Senthil, T.

    2013-01-01

    We postulate the existence of universal crossover functions connecting the universal parts of the entanglement entropy to the low-temperature thermal entropy in gapless quantum many-body systems. These scaling functions encode the intuition that the same low-energy degrees of freedom which control low-temperature thermal physics are also responsible for the long-range entanglement in the quantum ground state. We demonstrate the correctness of the proposed scaling form and determine the scaling function for certain classes of gapless systems whose low-energy physics is described by a conformal field theory. We also use our crossover formalism to argue that local systems which are “natural” can violate the boundary law at most logarithmically. In particular, we show that several non-Fermi-liquid phases of matter have entanglement entropy that is at most of order Ld-1log(L) for a region of linear size L thereby confirming various earlier suggestions in the literature. We also briefly apply our crossover formalism to the study of fluctuations in conserved quantities and discuss some subtleties that occur in systems that spontaneously break a continuous symmetry.

  18. Cross Burg entropy maximization and its application to ringing suppression in image reconstruction.

    PubMed

    Cao, Y; Eggermont, P B; Terebey, S

    1999-01-01

    We present a multiplicative algorithm for image reconstruction, together with a partial convergence proof. The iterative scheme aims to maximize cross Burg entropy between modeled and measured data. Its application to infrared astronomical satellite (IRAS) data shows reduced ringing around point sources, compared to the EM (Richardson-Lucy) algorithm. PMID:18267474

  19. Replacement of a first molar and 3 second molars by the mesial inclination of 4 impacted third molars in an adult with a Class II Division 1 malocclusion.

    PubMed

    Tomonari, Hiroshi; Yagi, Takakazu; Kuninori, Takaharu; Ikemori, Takahiro; Miyawaki, Shouichi

    2015-06-01

    This case report presents the successful replacement of 1 first molar and 3 second molars by the mesial inclination of 4 impacted third molars. A woman, 23 years 6 months old, had a chief complaint of crowding of her anterior teeth and linguoclination of a second molar on the left side. The panoramic radiographic images showed that the maxillary and mandibular third molars on both sides were impacted. Root resorption on the distal surfaces of the maxillary second molars was suspected. The patient was given a diagnosis of Angle Class II Division 1 malocclusion with severe crowding of the anterior teeth and 4 impacted third molars. After we extracted the treated maxillary second premolars and the second molars on both sides, the treated mandibular second premolar and the second molar on the left side, and the root canal-filled mandibular first molar on the right side, the 4 impacted third molars were uprighted and formed part of the posterior functional occlusion. The total active treatment period was 39 months. The maxillary and mandibular third molars on both sides successfully replaced the first and second molars. The replacement of a damaged molar by an impacted third molar is a useful treatment option for using sound teeth. PMID:26038080

  20. Entropy and climate. I - ERBE observations of the entropy production of the earth

    NASA Technical Reports Server (NTRS)

    Stephens, G. L.; O'Brien, D. M.

    1993-01-01

    An approximate method for estimating the global distributions of the entropy fluxes flowing through the upper boundary of the climate system is introduced, and an estimate of the entropy exchange between the earth and space and the entropy production of the planet is provided. Entropy fluxes calculated from the Earth Radiation Budget Experiment measurements show how the long-wave entropy flux densities dominate the total entropy fluxes at all latitudes compared with the entropy flux densities associated with reflected sunlight, although the short-wave flux densities are important in the context of clear sky-cloudy sky net entropy flux differences. It is suggested that the entropy production of the planet is both constant for the 36 months of data considered and very near its maximum possible value. The mean value of this production is 0.68 x 10 exp 15 W/K, and the amplitude of the annual cycle is approximately 1 to 2 percent of this value.

  1. Quantitative prediction and molar description of the environment

    PubMed Central

    Baum, William M.

    1989-01-01

    Molecular explanations of behavior, based on momentary events and variables that can be measured each time an event occurs, can be contrasted with molar explanations, based on aggregates of events and variables that can be measured only over substantial periods of time. Molecular analyses cannot suffice for quantitative accounts of behavior, because the historical variables that determine behavior are inevitably molar. When molecular explanations are attempted, they always depend on hypothetical constructs that stand as surrogates for molar environmental variables. These constructs allow no quantitative predictions when they are vague, and when they are made precise, they become superfluous, because they can be replaced with molar measures. In contrast to molecular accounts of phenomena like higher responding on ratio schedules than interval schedules and free-operant avoidance, molar accounts tend to be simple and straightforward. Molar theory incorporates the notion that behavior produces consequences that in turn affect the behavior, the notion that behavior and environment together constitute a feedback system. A feedback function specifies the dependence of consequences on behavior, thereby describing properties of the environment. Feedback functions can be derived for simple schedules, complex schedules, and natural resources. A complete theory of behavior requires describing the environment's feedback functions and the organism's functional relations. Molar thinking, both in the laboratory and in the field, can allow quantitative prediction, the mark of a mature science. PMID:22478030

  2. Odontoblast response to cavity preparation with Er:YAG laser in rat molars: an immunohistochemical study.

    PubMed

    Shigetani, Yoshimi; Suzuki, Hironobu; Ohshima, Hayato; Yoshiba, Kunihiko; Yoshiba, Nagako; Okiji, Takashi

    2013-07-01

    This study aimed to examine the dynamics of odontoblast-lineage cells following cavity preparation with erbium:yttrium-aluminum-garnet (Er:YAG) laser in rat molars. Cavity preparation was made with Er:YAG laser in the mesial surface of the maxillary left first molar of 8-week-old Wistar rats. Contralateral first molar served as unirradiated control. Immediately, 6 and 12 h and 1, 2, 3, 5 and 7 days after the lasing (n = 5, each), specimens were collected and processed for immunohistochemistry for heat-shock protein (HSP)-25 and nestin as markers for odontoblast-lineage cells. Cell proliferation assay using bromodeoxyuridine (BrdU) labeling was also performed. Unirradiated teeth showed HSP-25- and nestin-immunoreactivity in odontoblasts. At 6-12 h after irradiation, the odontoblastic layer was disorganized and some of odontoblasts lost the immunoreactivity to HSP-25 and nestin. At 1-2 days, however, HSP-25- and nestin-immunoreactivities in the odontoblast layer showed a noticeable recovery, resulting in the rearrangement of odontoblast-like cells intensely immunoreactive to HSP-25 and nestin at 3-7 days. BrdU-positive cells showed a significant increase at 2 days (P < 0.05 vs. immediate previous time point; one-way analysis of variance and Scheffé post hoc test), peaked at 3 days and then decreased significantly (P < 0.05). It was concluded that under the present experimental condition in rat molars, cavity preparation with Er:YAG laser induced mild and reversible damage to odontoblasts. The reparative process was characterized by the rearrangement of HSP-25- and nestin-immunoreactive odontoblast-like cells, which took place subsequent to the odontoblastic layer disorganization with partial loss of these immunoreactivities. PMID:22736273

  3. Entropy favours open colloidal lattices

    NASA Astrophysics Data System (ADS)

    Mao, Xiaoming; Chen, Qian; Granick, Steve

    2013-03-01

    Burgeoning experimental and simulation activity seeks to understand the existence of self-assembled colloidal structures that are not close-packed. Here we describe an analytical theory based on lattice dynamics and supported by experiments that reveals the fundamental role entropy can play in stabilizing open lattices. The entropy we consider is associated with the rotational and vibrational modes unique to colloids interacting through extended attractive patches. The theory makes predictions of the implied temperature, pressure and patch-size dependence of the phase diagram of open and close-packed structures. More generally, it provides guidance for the conditions at which targeted patchy colloidal assemblies in two and three dimensions are stable, thus overcoming the difficulty in exploring by experiment or simulation the full range of conceivable parameters.

  4. Preserved entropy and fragile magnetism

    NASA Astrophysics Data System (ADS)

    Canfield, Paul C.; Bud’ko, Sergey L.

    2016-08-01

    A large swath of quantum critical and strongly correlated electron systems can be associated with the phenomena of preserved entropy and fragile magnetism. In this overview we present our thoughts and plans for the discovery and development of lanthanide and transition metal based, strongly correlated systems that are revealed by suppressed, fragile magnetism, quantum criticality, or grow out of preserved entropy. We will present and discuss current examples such as YbBiPt, YbAgGe, YbFe2Zn20, PrAg2In, BaFe2As2, CaFe2As2, LaCrSb3 and LaCrGe3 as part of our motivation and to provide illustrative examples.

  5. [Multiscale entropy analysis of electrocardiogram].

    PubMed

    Wang, Jun; Ning, Xinbao; Li, Jin; Ma, Qianli; Xu, Yinlin; Bian, Chunhua

    2007-10-01

    Using the algorithm proposed by Costa M, et al., we studied the multiscale entropy (MSE) of electrocardiogram. The sample entropy (SampEn) of the healthy subjects was found to be higher than that of the subjects with coronary heart disease or myocardial infarction. The healthy subjects' complexity was found to be the highest. The SampEn of the subjects with coronary heart disease was noted to be only slightly higher than that of the subjects with myocardial infarction. These findings show that the complexity of the subjects with coronary heart disease or myocardial infarction is distinctly lower than the complexity of the healthy ones, and the subjects suffereing from coronary heart disease are liable to the onset of myocardial infarction. PMID:18027679

  6. Entropy of unimodular lattice triangulations

    NASA Astrophysics Data System (ADS)

    Knauf, Johannes F.; Krüger, Benedikt; Mecke, Klaus

    2015-02-01

    Triangulations are important objects of study in combinatorics, finite element simulations and quantum gravity, where their entropy is crucial for many physical properties. Due to their inherent complex topological structure even the number of possible triangulations is unknown for large systems. We present a novel algorithm for an approximate enumeration which is based on calculations of the density of states using the Wang-Landau flat histogram sampling. For triangulations on two-dimensional integer lattices we achieve excellent agreement with known exact numbers of small triangulations as well as an improvement of analytical calculated asymptotics. The entropy density is C=2.196(3) consistent with rigorous upper and lower bounds. The presented numerical scheme can easily be applied to other counting and optimization problems.

  7. Mixing entropy in Dean flows

    NASA Astrophysics Data System (ADS)

    Fodor, Petru; Vyhnalek, Brian; Kaufman, Miron

    2013-03-01

    We investigate mixing in Dean flows by solving numerically the Navier-Stokes equation for a circular channel. Tracers of two chemical species are carried by the fluid. The centrifugal forces, experienced as the fluid travels along a curved trajectory, coupled with the fluid incompressibility induce cross-sectional rotating flows (Dean vortices). These transversal flows promote the mixing of the chemical species. We generate images for different cross sections along the trajectory. The mixing efficiency is evaluated using the Shannon entropy. Previously we have found, P. S. Fodor and M. Kaufman, Modern Physics Letters B 25, 1111 (2011), this measure to be useful in understanding mixing in the staggered herringbone mixer. The mixing entropy is determined as function of the Reynolds number, the angle of the cross section and the observation scale (number of bins). Quantitative comparison of the mixing in the Dean micromixer and in the staggered herringbone mixer is attempted.

  8. Preserved entropy and fragile magnetism.

    PubMed

    Canfield, Paul C; Bud'ko, Sergey L

    2016-08-01

    A large swath of quantum critical and strongly correlated electron systems can be associated with the phenomena of preserved entropy and fragile magnetism. In this overview we present our thoughts and plans for the discovery and development of lanthanide and transition metal based, strongly correlated systems that are revealed by suppressed, fragile magnetism, quantum criticality, or grow out of preserved entropy. We will present and discuss current examples such as YbBiPt, YbAgGe, YbFe2Zn20, PrAg2In, BaFe2As2, CaFe2As2, LaCrSb3 and LaCrGe3 as part of our motivation and to provide illustrative examples. PMID:27377181

  9. Bacterial chemotaxis and entropy production

    PubMed Central

    Županović, Paško; Brumen, Milan; Jagodič, Marko; Juretić, Davor

    2010-01-01

    Entropy production is calculated for bacterial chemotaxis in the case of a migrating band of bacteria in a capillary tube. It is found that the speed of the migrating band is a decreasing function of the starting concentration of the metabolizable attractant. The experimentally found dependence of speed on the starting concentration of galactose, glucose and oxygen is fitted with power-law functions. It is found that the corresponding exponents lie within the theoretically predicted interval. The effect of the reproduction of bacteria on band speed is considered, too. The acceleration of the band is predicted due to the reproduction rate of bacteria. The relationship between chemotaxis, the maximum entropy production principle and the formation of self-organizing structure is discussed. PMID:20368258

  10. Entropy estimation and Fibonacci numbers

    NASA Astrophysics Data System (ADS)

    Timofeev, Evgeniy A.; Kaltchenko, Alexei

    2013-05-01

    We introduce a new metric on a space of right-sided infinite sequences drawn from a finite alphabet. Emerging from a problem of entropy estimation of a discrete stationary ergodic process, the metric is important on its own part and exhibits some interesting properties. Notably, the number of distinct metric values for a set of sequences of length m is equal to Fm+3 - 1, where Fm is a Fibonacci number.

  11. Coverage-adjusted entropy estimation.

    PubMed

    Vu, Vincent Q; Yu, Bin; Kass, Robert E

    2007-09-20

    Data on 'neural coding' have frequently been analyzed using information-theoretic measures. These formulations involve the fundamental and generally difficult statistical problem of estimating entropy. We review briefly several methods that have been advanced to estimate entropy and highlight a method, the coverage-adjusted entropy estimator (CAE), due to Chao and Shen that appeared recently in the environmental statistics literature. This method begins with the elementary Horvitz-Thompson estimator, developed for sampling from a finite population, and adjusts for the potential new species that have not yet been observed in the sample-these become the new patterns or 'words' in a spike train that have not yet been observed. The adjustment is due to I. J. Good, and is called the Good-Turing coverage estimate. We provide a new empirical regularization derivation of the coverage-adjusted probability estimator, which shrinks the maximum likelihood estimate. We prove that the CAE is consistent and first-order optimal, with rate O(P)(1/log n), in the class of distributions with finite entropy variance and that, within the class of distributions with finite qth moment of the log-likelihood, the Good-Turing coverage estimate and the total probability of unobserved words converge at rate O(P)(1/(log n)(q)). We then provide a simulation study of the estimator with standard distributions and examples from neuronal data, where observations are dependent. The results show that, with a minor modification, the CAE performs much better than the MLE and is better than the best upper bound estimator, due to Paninski, when the number of possible words m is unknown or infinite. PMID:17567838

  12. Entropy from the Foam II

    NASA Astrophysics Data System (ADS)

    Garattini, Remo

    A simple model of space-time foam, made by two different types of wormholes in a semiclassical approximation, is taken under examination: one type is a collection of Nw Schwarzschild wormholes, while the other one is made by Schwarzschild-Anti-de Sitter wormholes. The area quantization related to the entropy via the Bekenstein-Hawking formula hints a possible selection between the two configurations. Application to the charged black hole are discussed.

  13. Modification of uprighting spring for derotation of second molars.

    PubMed

    Mallikarjun, Vankre; Rachala, Madhukar Reddy; Aileni, Kaladhar Reddy; Jaipal, Pyata Reddy

    2013-01-01

    One of the most efficient ways for the correction of rotated upper molars is derotation with a transpalatal arch, but this appliance is usually favourable when the need for correction is same on both sides of the dental arch. Derotation of unilateral upper second molar is a difficult task, especially when there is no accessible tooth/ any attachment is available distal to it for the application of couple forces. We have designed a modification of uprighting spring which is far more convenient than using the conventional method of TPA for derotation of unilateral upper second molar. PMID:24640073

  14. Lingual Guttering Technique for Removal of Impacted Mandibular Third Molars

    PubMed Central

    Kale, Tejraj P; Pandit, Vikram S; Patil, Shankargouda; Pawar, Vivek; Shetty, Nisha

    2014-01-01

    Background: To assess the clinical feasibility of lingual bone guttering technique for surgical extraction of mandibular third molars. Materials and Methods: 20 patients with thick lingual cortical plate were included in the study. Surgical extraction of mandibular third molars by lingual bone guttering technique was performed in all the subjects. These subjects were evaluated for integrity of lingual cortical plate and sensation of lingual nerve postoperatively. Results: All extractions done by lingual bone guttering technique were clinically feasible to perform and no complications were seen. Conclusion: Lingual bone guttering technique can be used safely in extraction of mandibular third molars with thick lingual cortical plate. PMID:25214725

  15. Entropy of random entangling surfaces

    NASA Astrophysics Data System (ADS)

    Solodukhin, Sergey N.

    2012-09-01

    We consider the situation when a globally defined four-dimensional field system is separated on two entangled sub-systems by a dynamical (random) two-dimensional surface. The reduced density matrix averaged over ensemble of random surfaces of fixed area and the corresponding average entropy are introduced. The average entanglement entropy is analyzed for a generic conformal field theory in four dimensions. Two important particular cases are considered. In the first, both the intrinsic metric on the entangling surface and the spacetime metric are fluctuating. An important example of this type is when the entangling surface is a black hole horizon, the fluctuations of which cause necessarily the fluctuations in the spacetime geometry. In the second case, the spacetime is considered to be fixed. The detailed analysis is carried out for the random entangling surfaces embedded in flat Minkowski spacetime. In all cases, the problem reduces to an effectively two-dimensional problem of random surfaces which can be treated by means of the well-known conformal methods. Focusing on the logarithmic terms in the entropy, we predict the appearance of a new ln ln(A) term. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’.

  16. Economics and Maximum Entropy Production

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2003-04-01

    Price differentials, sales volume and profit can be seen as analogues of temperature difference, heat flow and work or entropy production in the climate system. One aspect in which economic systems exhibit more clarity than the climate is that the empirical and/or statistical mechanical tendency for systems to seek a maximum in production is very evident in economics, in that the profit motive is very clear. Noting the common link between 1/f noise, power laws and Self-Organized Criticality with Maximum Entropy Production, the power law fluctuations in security and commodity prices is not inconsistent with the analogy. There is an additional thermodynamic analogy, in that scarcity is valued. A commodity concentrated among a few traders is valued highly by the many who do not have it. The market therefore encourages via prices the spreading of those goods among a wider group, just as heat tends to diffuse, increasing entropy. I explore some empirical price-volume relationships of metals and meteorites in this context.

  17. Post-measurement bipartite entanglement entropy in conformal field theories

    NASA Astrophysics Data System (ADS)

    Rajabpour, M. A.

    2015-08-01

    We derive exact formulas for bipartite von Neumann entanglement entropy after partial projective local measurement in (1 +1 ) -dimensional conformal field theories with periodic and open boundary conditions. After defining the setup we will check numerically the validity of our results in the case of Klein-Gordon field theory (coupled harmonic oscillators) and spin-1 /2 X X chain in a magnetic field. The agreement between analytical results and the numerical calculations is very good. We also find a lower bound for localizable entanglement in coupled harmonic oscillators.

  18. Crowd macro state detection using entropy model

    NASA Astrophysics Data System (ADS)

    Zhao, Ying; Yuan, Mengqi; Su, Guofeng; Chen, Tao

    2015-08-01

    In the crowd security research area a primary concern is to identify the macro state of crowd behaviors to prevent disasters and to supervise the crowd behaviors. The entropy is used to describe the macro state of a self-organization system in physics. The entropy change indicates the system macro state change. This paper provides a method to construct crowd behavior microstates and the corresponded probability distribution using the individuals' velocity information (magnitude and direction). Then an entropy model was built up to describe the crowd behavior macro state. Simulation experiments and video detection experiments were conducted. It was verified that in the disordered state, the crowd behavior entropy is close to the theoretical maximum entropy; while in ordered state, the entropy is much lower than half of the theoretical maximum entropy. The crowd behavior macro state sudden change leads to the entropy change. The proposed entropy model is more applicable than the order parameter model in crowd behavior detection. By recognizing the entropy mutation, it is possible to detect the crowd behavior macro state automatically by utilizing cameras. Results will provide data support on crowd emergency prevention and on emergency manual intervention.

  19. On the Etiology of Molar-Incisor Hypomineralization.

    PubMed

    Vieira, Alexandre R; Kup, Elaine

    2016-01-01

    Molar-incisor hypomineralization (MIH) is a condition that is defined based on its peculiar clinical presentation. Reports on the etiology of the condition and possible risk factors are inconclusive and the original suggestion that MIH is an idiopathic condition is often cited. Our group was the first to suggest MIH has a genetic component that involves genetic variation in genes expressed during dental enamel formation. In this report, we provide a rationale to explain the preferential affection of molars and incisors. We suggest that MIH is a genetic condition based on its prevalence, which varies depending on the geographic location, and the evidence that on occasion second primary molars, permanent canines, and premolars can show signs of hypomineralization of enamel when molars and incisors are affected. PMID:27111773

  20. Determining Molar Combining Ratios Using Radioisotopes--A Student Experiment

    ERIC Educational Resources Information Center

    Sears, Jerry A.

    1976-01-01

    Outlines an experimental procedure in which an iodine radioisotope is used to determine molar combining ratios of lead and silver with the iodine. Tables and graphs show the definitive results that should be attainable. (CP)

  1. A Multidisciplinary Approach for Managing Severely Malaligned Lower Molars.

    PubMed

    Keinan, David; Birnboim-Blaum, Galit; Webber, Mariel

    2016-01-01

    An impacted mandibular molar is a common clinical situation that may damage adjacent teeth and impair periodontal health. Improper treatment brings the risk of damaging adjacent vital tissues. The risk can be reduced by early diagnosis and extraction of the impacted tooth by an experienced clinician. However, in clinical cases of two impacted molars, it may be beneficial for the patient to save at least one molar. This can be achieved by orthodontic alignment of one of the molars, while extracting the other. The decision should be based upon prognosis and risks for each procedure and for both teeth. The case presented here demonstrates a recommended clinical decision-making process before treatment, followed by monitored multidisciplinary treatment with adaptations made as the treatment progresses. PMID:26939154

  2. Reanalysis of the Lukeino molar (KNM-LU 335).

    PubMed

    Ungar, P S; Walker, A; Coffing, K

    1994-06-01

    This paper details a reanalysis of KNM-LU 335, a hominoid mandibular first molar dated to about 6 Ma from the Lukeino Formation, Kenya. Researchers have argued that this molar closely resembles those of modern chimpanzees and may approximate the ancestral morphotype of humans and chimpanzees. The investigation presented here describes a morphometric study of the Lukeino molar and M1s of Homo sapiens, Pan troglodytes, and early australopithecines. Results indicate that KNM-LU 335 differs from both human and chimpanzee M1s in relative distances (measured in three dimensions) between crown fissure termini. Further, the Lukeino molar shares with early australopithecines a pronounced flaring of the buccal surface of the crown not seen for either modern sample. Results of this study do not exclude KNM-LU 335 as a potential ancestral morphotype for Pan and Homo but provide no evidence that this morphotype resembled modern chimpanzees. PMID:8085609

  3. Entropy bounds for hierarchical molecular networks.

    PubMed

    Dehmer, Matthias; Borgert, Stephan; Emmert-Streib, Frank

    2008-01-01

    In this paper we derive entropy bounds for hierarchical networks. More precisely, starting from a recently introduced measure to determine the topological entropy of non-hierarchical networks, we provide bounds for estimating the entropy of hierarchical graphs. Apart from bounds to estimate the entropy of a single hierarchical graph, we see that the derived bounds can also be used for characterizing graph classes. Our contribution is an important extension to previous results about the entropy of non-hierarchical networks because for practical applications hierarchical networks are playing an important role in chemistry and biology. In addition to the derivation of the entropy bounds, we provide a numerical analysis for two special graph classes, rooted trees and generalized trees, and demonstrate hereby not only the computational feasibility of our method but also learn about its characteristics and interpretability with respect to data analysis. PMID:18769487

  4. Treatment of a Maxillary First Molar with Two Palatal Roots

    PubMed Central

    Asghari, Vahideh; Rahimi, Saeed; Ghasemi, Negin; Talebzadeh, Bita; Norlouoni, Ahmad

    2015-01-01

    Thorough knowledge of the morphology and internal anatomy of the root canal system is essential, because it determines the successful outcome of endodontic treatment. The main goal of endodontic treatment is to prevent apical periodontitis and/or to promote the healing of periapical lesion. Presence of two canals or roots on the palatal side of the first maxillary molar has rarely been reported. This case report presents a maxillary first molar with two separate palatal roots. PMID:26523146

  5. Cervicothoracic Subcutaneous Emphysema and Pneumomediastinum After Third Molar Extraction.

    PubMed

    Picard, Maxime; Pham Dang, Nathalie; Mondie, Jean Michel; Barthelemy, Isabelle

    2015-12-01

    Third molar extraction is one of the most common interventions in dental and maxillofacial surgery. Complications are frequent and well documented, with swelling, pain, bleeding, infection, and lingual or alveolar nerve injury being the most common. This report describes a case of subcutaneous extensive emphysema and pneumomediastinum that occurred 4 days after extraction of an impacted right mandibular third molar. The management and etiology of this case and those reported in the literature are discussed. PMID:26341684

  6. Fusion or gemination? An unusual mandibular second molar

    PubMed Central

    Camargo, Angela Jordão; Arita, Emiko Saito; Watanabe, Plauto Christopher Aranha

    2015-01-01

    Fusion and gemination is not an uncommon finding and affected most primary dentition and the permanent maxillary incisors. These changes can develop a series of complication. A 11-year-old male presented radiography finding: an unusual mandibular second molar. A well-documented case brings a challenge for radiologists classify between fusion and gemination. In conclusion, this alteration although common in other regions, there are no case in the literature involving “second and third” molar. PMID:26945485

  7. The orthodontic extraction of permanent molars: a literature review.

    PubMed

    Chua, Emilia S L; Felicita, A Sumathi

    2015-05-01

    The most common cause of dental crowding is the presence of an arch-length--tooth-size discrepancy. Conventional methods of gaining space in orthodontics involve the extraction of teeth, often premolars. However, there are a number of clinical situations in which the extraction of permanent molars might be considered. This paper highlights the indications, advantages, disadvantages and timing of the extraction of the first, second and third permanent molars in the treatment of a crowded malocclusion. PMID:26219149

  8. Fusion or gemination? An unusual mandibular second molar.

    PubMed

    Camargo, Angela Jordão; Arita, Emiko Saito; Watanabe, Plauto Christopher Aranha

    2016-01-01

    Fusion and gemination is not an uncommon finding and affected most primary dentition and the permanent maxillary incisors. These changes can develop a series of complication. A 11-year-old male presented radiography finding: an unusual mandibular second molar. A well-documented case brings a challenge for radiologists classify between fusion and gemination. In conclusion, this alteration although common in other regions, there are no case in the literature involving "second and third" molar. PMID:26945485

  9. Renyi Entropies of a Black Hole

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz, W.

    2008-08-01

    The Renyi entropies, Hl, of Hawking radiation contained in a thin shell surrounding the black hole are evaluated. When the width of the shell is adjusted to the energy content corresponding to the mass defect, the Bekenstein-Hawking formula for the Shannon (S=H1) entropy of a black hole is reproduced. This result does not depend on the distance of the shell from the horizon. The Renyi entropies of higher order, however, are sensitive to it.

  10. Entropy jump across an inviscid shock wave

    NASA Technical Reports Server (NTRS)

    Salas, Manuel D.; Iollo, Angelo

    1995-01-01

    The shock jump conditions for the Euler equations in their primitive form are derived by using generalized functions. The shock profiles for specific volume, speed, and pressure are shown to be the same, however density has a different shock profile. Careful study of the equations that govern the entropy shows that the inviscid entropy profile has a local maximum within the shock layer. We demonstrate that because of this phenomenon, the entropy, propagation equation cannot be used as a conservation law.

  11. Root canal morphology of South Asian Indian maxillary molar teeth

    PubMed Central

    Singh, Shishir; Pawar, Mansing

    2015-01-01

    Objective: The objective was to study the root canal morphology of South Asian Indian Maxillary molars using a tooth clearing technique. Materials and Methods: Hundred teeth each comprising of first, second, and third molars collected from different dental schools and clinics in India were subjected to standard dye penetration, decalcification and clearing procedure before being studied. Results: The first molar mesiobuccal roots exhibited 69% Type I, 24% Type II, 4% Type IV, 2% Type V, and 1% exhibited a Vertuccis Type VIII canal anatomy. In the group with three separate roots the second molar mesiobuccal roots in exhibited 80.6% Type I, 15.3% Type II, 2.7% Type IV, and 1.4% Type V canal anatomy while the third molars mesiobuccal roots exhibited 57.4% Type I, 32% Type II, 2.1% Type III, 8.5% Type IV, 1% had a Type V canal anatomy in the similar group. Conclusion: A varied root canal anatomy was seen in the mesiobuccal root canal of the maxillary molars. PMID:25713497

  12. Kissing molars extraction: Case series and review of the literature

    PubMed Central

    Arjona-Amo, Manuel; Torres-Carranza, Eusebio; Batista-Cruzado, Antonio; Serrera-Figallo, Maria-Angeles; Crespo-Torres, Santos; Belmonte-Caro, Rodolfo; Albisu-Andrade, Claudio; Gutiérrez-Pérez, José-Luis

    2016-01-01

    Kissing molars are a very rare form of inclusion defined as molars included in the same quadrant, with occlusal surfaces contacting each other within a single dental follicle. We present four cases of this pathology: a 35 year-old male, referred to the Oral and Maxillofacial Surgery Department of the Hospital Virgen del Rocio in Seville, and three females of 24, 26, and 31 years, all of which had kissing molars that were treated by tooth extraction. We have found only 10 cases published in the medical literature in which this type of inclusion is briefly described, none of which elaborate on the surgical technique employed. In these cases, the indication for surgery is established when there is a history of recurring infections or cystic lesions associated with dental inclusions. The extraction of kissing molars requires an exhaustive comprehension of the anatomy of the region involved, sufficiently developed surgical abilities, and an extensive planning process. Key words:Impacted molar, kissing molar, surgical extraction. PMID:26855716

  13. Finite Element Reconstruction of a Mandibular First Molar

    PubMed Central

    Ehsani, Sara; Mirhashemi, Fatemeh Sadat; Asgary, Saeed

    2013-01-01

    Introduction Mandibular first molar is the most important tooth with complicated morphology. In finite element (FE) studies, investigators usually prefer to model anterior teeth with a simple and single straight root; it makes the results deviate from the actual case. The most complicated and time-consuming step in FE studies is modeling of the desired tooth, thus this study was performed to establish a finite element method (FEM) of reconstructing a mandibular first molar with the greatest precision. Materials and Methods An extracted mandibular first molar was digitized, and then radiographed from different aspects to achieve its outer and inner morphology. The solid model of tooth and root canals were constructed according to this data as well as the anatomy of mandibular first molar described in the literature. Result A three-dimensional model of mandibular first molar was created, giving special consideration to shape and root canal system dimensions. Conclusion This model may constitute a basis for investigating the effect of different clinical situations on mandibular first molars in vitro, especially on its root canal system. The method described here seems feasible and reasonably precise foundation for investigations. PMID:23717327

  14. Rényi entropy perspective on topological order in classical toric code models

    NASA Astrophysics Data System (ADS)

    Helmes, Johannes; Stéphan, Jean-Marie; Trebst, Simon

    2015-09-01

    Concepts of information theory are increasingly used to characterize collective phenomena in condensed matter systems, such as the use of entanglement entropies to identify emergent topological order in interacting quantum many-body systems. Here, we employ classical variants of these concepts, in particular Rényi entropies and their associated mutual information, to identify topological order in classical systems. Like for their quantum counterparts, the presence of topological order can be identified in such classical systems via a universal, subleading contribution to the prevalent volume and boundary laws of the classical Rényi entropies. We demonstrate that an additional subleading O (1 ) contribution generically arises for all Rényi entropies S(n ) with n ≥2 when driving the system towards a phase transition, e.g., into a conventionally ordered phase. This additional subleading term, which we dub connectivity contribution, tracks back to partial subsystem ordering and is proportional to the number of connected parts in a given bipartition. Notably, the Levin-Wen summation scheme, typically used to extract the topological contribution to the Rényi entropies, does not fully eliminate this additional connectivity contribution in this classical context. This indicates that the distillation of topological order from Rényi entropies requires an additional level of scrutiny to distinguish topological from nontopological O (1 ) contributions. This is also the case for quantum systems, for which we discuss which entropies are sensitive to these connectivity contributions. We showcase these findings by extensive numerical simulations of a classical variant of the toric code model, for which we study the stability of topological order in the presence of a magnetic field and at finite temperatures from a Rényi entropy perspective.

  15. Entropy in an Arc Plasma Source

    SciTech Connect

    Kaminska, A.; Dudeck, M

    2008-03-19

    The entropy properties in a D.C. argon arc plasma source are studied. The local thermodynamical entropy relations are established for a set of uniform sub-systems (Ar, Ar{sup +}, e) in order to deduce the entropy balance equation in presence of dissipative effects and in the case of a thermal non equilibrium. Phenomenological linear laws are deduced in near equilibrium situation. The flow parameters inside the plasma source are calculated by a Navier-Stokes fluid description taking into account a thermal local non equilibrium. The entropy function is calculated in the plasma source using the values of the local variables obtained from the numerical code.

  16. Constructing black hole entropy from gravitational collapse

    NASA Astrophysics Data System (ADS)

    Acquaviva, Giovanni; Ellis, George F. R.; Goswami, Rituparno; Hamid, Aymen I. M.

    2015-03-01

    Based on a recent proposal for the gravitational entropy of free gravitational fields, we investigate the thermodynamic properties of black hole formation through gravitational collapse in the framework of the semitetrad 1 +1 +2 covariant formalism. In the simplest case of an Oppenheimer-Snyder-Datt collapse, we prove that the change in gravitational entropy outside a collapsing body is related to the variation of the surface area of the body itself, even before the formation of horizons. As a result, we are able to relate the Bekenstein-Hawking entropy of the black hole end state to the variation of the vacuum gravitational entropy outside the collapsing body.

  17. Link prediction based on path entropy

    NASA Astrophysics Data System (ADS)

    Xu, Zhongqi; Pu, Cunlai; Yang, Jian

    2016-08-01

    Information theory has been taken as a prospective tool for quantifying the complexity of complex networks. In this paper, first we study the information entropy or uncertainty of a path using the information theory. After that, we apply the path entropy to the link prediction problem in real-world networks. Specifically, we propose a new similarity index, namely Path Entropy (PE) index, which considers the information entropies of shortest paths between node pairs with penalization to long paths. Empirical experiments demonstrate that PE index outperforms the mainstream of link predictors.

  18. Unrestrained Expansion - A Source of Entropy

    NASA Astrophysics Data System (ADS)

    Michaud, L. M.

    2005-12-01

    The paper examines the role of unrestrained expansion in atmospheric entropy production. Lack of mechanical equilibrium is shown to be a far larger producer of internally generated entropy than other internally generated entropy production processes. Isentropic expanders are used to explain atmospheric entropy production. Unrestrained expansion can account for the discrepancy between the energy that would be produced if the heat were carried by Carnot engines and the energy actually produced. Having an expander in more important to mechanical energy production than reducing friction losses. The method of analysis is also applicable to: the solar chimney and to the atmospheric vortex engine.

  19. Standardised studies on Molar Incisor Hypomineralisation (MIH) and Hypomineralised Second Primary Molars (HSPM): a need.

    PubMed

    Elfrink, M E C; Ghanim, A; Manton, D J; Weerheijm, K L

    2015-06-01

    In November 2014, a review of literature concerning prevalence data of Molar Incisor Hypomineralisation (MIH) and Hypomineralised Second Primary Molars (HSPM) was performed. A search of PubMed online databases was conducted for relevant articles published until November 2014. The reference lists of all retrieved articles were hand-searched. Studies were included after assessing the eligibility of the full-text article. Out of 1078 manuscripts, a total of 157 English written publications were selected based on title and abstract. Of these 157, 60 were included in the study and allocated as 52 MIH and 5 HSPM, and 3 for both MIH and HSPM. These studies utilised the European Academy of Paediatric Dentistry judgment criteria, the modified index of developmental defects of enamel (mDDE) and self-devised criteria, and demonstrated a wide variation in the reported prevalence (MIH 2.9-44 %; HSPM 0-21.8 %). Most values mentioned were representative for specific areas. More studies were performed in cities compared with rural areas. A great variation was found in calibration methods, number of participants, number of examiners and research protocols between the studies. The majority of the prevalence studies also investigated possible aetiological factors. To compare MIH and HSPM prevalence and or aetiological data around the world, standardisation of such studies seems essential. Standardisation of the research protocol should include a clearly described sample of children (minimum number of 300 for prevalence and 1000 for aetiology studies) and use of the same calibration sets and methods whereas aetiological studies need to be prospective in nature. A standardised protocol for future MIH and HSPM prevalence and aetiology studies is recommended. PMID:25894247

  20. Entropy bounds and dark energy

    NASA Astrophysics Data System (ADS)

    Hsu, Stephen D. H.

    2004-07-01

    Entropy bounds render quantum corrections to the cosmological constant Λ finite. Under certain assumptions, the natural value of Λ is of order the observed dark energy density ~10-10 eV4, thereby resolving the cosmological constant problem. We note that the dark energy equation of state in these scenarios is w≡p/ρ=0 over cosmological distances, and is strongly disfavored by observational data. Alternatively, Λ in these scenarios might account for the diffuse dark matter component of the cosmological energy density. Permanent address: Institute of Theoretical Science and Department of Physics, University of Oregon, Eugene, OR 97403.

  1. Main occluding area in partially edentulous patients: changes before and after implant treatment.

    PubMed

    Goto, T; Nishinaka, H; Kashiwabara, T; Nagao, K; Ichikawa, T

    2012-09-01

    The 'main occluding area', the location where food crushing occurs during the first stroke of mastication, is reported to be an important concept; however, it is currently limited to findings in individuals with normal dentition. The purpose of this study was to assess the changes in the location, area and bite force of the main occluding area before and after implant treatments. We enrolled 50 partially edentulous and 22 normally dentate subjects. To identify the location of the main occluding area, each subject was instructed to freely bite once on a dental stopping using the partially edentulous side or the normally dentate area. The location, occluding contact area and bite force of the main occluding area before and after the implant treatments were analysed. The main occluding area was located at a reproducible location in the partially edentulous and normally dentate subjects. This location was principally the first molar region, and for the partially edentulous patients with missing teeth in the molar regions, it moved from the premolar region to the first molar region after treatment. The occluding contact area and bite force for the main occluding area increased (P < 0·05) after the implant treatment in the partially edentulous patients with missing teeth in the molar regions. These results suggest that the main occluding area can be restored to the first molar region after implant treatment and may be an important factor in the assessment of prosthodontic treatment. PMID:22672204

  2. Evaluation of tribological behavior of Al-Co-Cr-Fe-Ni high entropy alloy using molecular dynamics simulation.

    PubMed

    Huang, Jen-Ching

    2012-01-01

    High-entropy alloys have been studied extensively for their excellent properties and performance, including outstanding strength and resistance to oxidation at high temperatures. This study employed molecular dynamics simulation to produce a high-entropy alloy containing an equal molar ratio of Al, Co, Cr, Fe, and Ni and investigated the tribological behavior of the material using a diamond tool in a vacuum environment. We also simulated a AlCoCrFeNi high-entropy alloy cooled from a high temperature molten state to 300 K in a high-speed quenching process to produce an amorphous microstructure. In a simulation of nanoscratching, the cutting force-distance curve of high-entropy alloys was used to evaluate work hardening and stick-slip. An increase in temperature was shown to reduce the scratching force and scratching resistance. Nanoscratching the high-entropy alloy at elevated temperatures provided evidence of work hardening; however, the degree of work hardening decreased with an increase in temperature. And it can also be found that when the temperature is higher, the fluctuation of the cutting force curve is greater. PMID:22549875

  3. Time dependence of Hawking radiation entropy

    SciTech Connect

    Page, Don N.

    2013-09-01

    If a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared. Here numerical results are given for an approximation to the time dependence of the radiation entropy under an assumption of fast scrambling, for large nonrotating black holes that emit essentially only photons and gravitons. The maximum of the von Neumann entropy then occurs after about 53.81% of the evaporation time, when the black hole has lost about 40.25% of its original Bekenstein-Hawking (BH) entropy (an upper bound for its von Neumann entropy) and then has a BH entropy that equals the entropy in the radiation, which is about 59.75% of the original BH entropy 4πM{sub 0}{sup 2}, or about 7.509M{sub 0}{sup 2} ≈ 6.268 × 10{sup 76}(M{sub 0}/M{sub s}un){sup 2}, using my 1976 calculations that the photon and graviton emission process into empty space gives about 1.4847 times the BH entropy loss of the black hole. Results are also given for black holes in initially impure states. If the black hole starts in a maximally mixed state, the von Neumann entropy of the Hawking radiation increases from zero up to a maximum of about 119.51% of the original BH entropy, or about 15.018M{sub 0}{sup 2} ≈ 1.254 × 10{sup 77}(M{sub 0}/M{sub s}un){sup 2}, and then decreases back down to 4πM{sub 0}{sup 2} = 1.049 × 10{sup 77}(M{sub 0}/M{sub s}un){sup 2}.

  4. Time dependence of Hawking radiation entropy

    NASA Astrophysics Data System (ADS)

    Page, Don N.

    2013-09-01

    If a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared. Here numerical results are given for an approximation to the time dependence of the radiation entropy under an assumption of fast scrambling, for large nonrotating black holes that emit essentially only photons and gravitons. The maximum of the von Neumann entropy then occurs after about 53.81% of the evaporation time, when the black hole has lost about 40.25% of its original Bekenstein-Hawking (BH) entropy (an upper bound for its von Neumann entropy) and then has a BH entropy that equals the entropy in the radiation, which is about 59.75% of the original BH entropy 4πM02, or about 7.509M02 ≈ 6.268 × 1076(M0/Msolar)2, using my 1976 calculations that the photon and graviton emission process into empty space gives about 1.4847 times the BH entropy loss of the black hole. Results are also given for black holes in initially impure states. If the black hole starts in a maximally mixed state, the von Neumann entropy of the Hawking radiation increases from zero up to a maximum of about 119.51% of the original BH entropy, or about 15.018M02 ≈ 1.254 × 1077(M0/Msolar)2, and then decreases back down to 4πM02 = 1.049 × 1077(M0/Msolar)2.

  5. Genetic integration of molar cusp size variation in baboons.

    PubMed

    Koh, Christina; Bates, Elizabeth; Broughton, Elizabeth; Do, Nicholas T; Fletcher, Zachary; Mahaney, Michael C; Hlusko, Leslea J

    2010-06-01

    Many studies of primate diversity and evolution rely on dental morphology for insight into diet, behavior, and phylogenetic relationships. Consequently, variation in molar cusp size has increasingly become a phenotype of interest. In 2007 we published a quantitative genetic analysis of mandibular molar cusp size variation in baboons. Those results provided more questions than answers, as the pattern of genetic integration did not fit predictions from odontogenesis. To follow up, we expanded our study to include data from the maxillary molar cusps. Here we report on these later analyses, as well as inter-arch comparisons with the mandibular data. We analyzed variation in two-dimensional maxillary molar cusp size using data collected from a captive pedigreed breeding colony of baboons, Papio hamadryas, housed at the Southwest National Primate Research Center. These analyses show that variation in maxillary molar cusp size is heritable and sexually dimorphic. We also estimated additive genetic correlations between cusps on the same crown, homologous cusps along the tooth row, and maxillary and mandibular cusps. The pattern for maxillary molars yields genetic correlations of one between the paracone-metacone and protocone-hypocone. Bivariate analyses of cuspal homologues on adjacent teeth yield correlations that are high or not significantly different from one. Between dental arcades, the nonoccluding cusps consistently yield high genetic correlations, especially the metaconid-paracone and metaconid-metacone. This pattern of genetic correlation does not immediately accord with the pattern of development and/or calcification, however these results do follow predictions that can be made from the evolutionary history of the tribosphenic molar. PMID:20034010

  6. Erupted complex odontoma delayed eruption of permanent molar.

    PubMed

    Ohtawa, Yumi; Ichinohe, Saori; Kimura, Eri; Hashimoto, Sadamitsu

    2013-01-01

    Odontomas, benign tumors that develop in the jaw, rarely erupt into the oral cavity. We report an erupted odontoma which delayed eruption of the first molar. The patient was a 10-year-old Japanese girl who came to our hospital due to delayed eruption of the right maxillary first molar. All the deciduous teeth had been shed. The second premolar on the right side had erupted, but not the first molar. Slight inflammation of the alveolar mucosa around the first molar had exposed a tooth-like, hard tissue. Panoramic radiography revealed a radiopaque mass indicating a lesion approximately 1 cm in diameter. The border of the image was clear, and part of the mass was situated close to the occlusal surface of the first molar. The root of the maxillary right first molar was only half-developed. A clinical diagnosis of odontoma was made. The odontoma was subsequently extracted, allowing the crown of the first molar to erupt almost 5 months later. The dental germ of the permanent tooth had been displaced by the odontoma. However, after the odontoma had been extracted, the permanent tooth was still able to erupt spontaneously, as eruptive force still remained. When the eruption of a tooth is significantly delayed, we believe that it is necessary to examine the area radiographically. If there is any radiographic evidence of a physical obstruction that might delay eruption, that obstruction should be removed before any problems can arise. Regular dental checkups at schools might improve our ability to detect evidence of delayed eruption earlier. PMID:24521551

  7. Molar Intrusion in Open-bite Adults Using Zygomatic Miniplates.

    PubMed

    Marzouk, Eiman S; Abdallah, Essam Mohamed; El-Kenany, Walid A

    2015-01-01

    The aim of this study is to evaluate the skeletal, dental and soft tissue changes that arise after intrusion of the maxillary molars using zygomatic miniplates in adult skeletal anterior open bite patients. In addition to measuring the amount and rate of molar intrusion; with special emphasis on changes in the axial inclination of the intruded molars. The study group was composed of 13 anterior open bite patients (mean age 18 years, 8 months ± 2 years, 2 months) with posterior dentoalveolar excess. Mini-plates were placed in the zygomatic buttress bilaterally. The upper arch was segmentally leveled and a double Trans-Palatal Arch (TPA) was bonded. Closed NiTi coil spring was placed bilaterally between the book of the mini-plate just mesial and distal to the first molar buccal tube applying intrusive force of 450 gper side. Lateral and posteroanterior cephalograms were taken before intrusion (T1: post upper segmental leveling) and after intrusion (T2). Comparison between means before and after the intrusion was done using Wilcoxon Signed Ranks test (WSRT). Mandibular autorotation followed the molar intrusion, SNB and SN-Pog angles significantly increased while the ANB, MP-SN angle and N-S-Gn angle significantly decreased. The mean amount of accomplished molar intrusion was 3.1mm ± 0.74mm, with a rate of 0.36mm per month ± 0.08mm per month and a bite closure of 6.55mm ± 1.83mm. There was no significant buccal tip in the right and left molars upon intrusion. Conclusion: Miniplates zygomatic anchorage can be used effectively for skeletal open bite correction through posterior dento-alveolar intrusion. Intrusion of the posterior teeth with skeletal anchorage induced counterclockwise rotation of the mandible and, as a consequence, corrected the anteroposterior intermaxillary relationship with a dramatic improvement in the facial soft tissue convexity. PMID:26349291

  8. Genetic integration of molar cusp size variation in baboons

    PubMed Central

    Koh, Christina; Bates, Elizabeth; Broughton, Elizabeth; Do, Nicholas T.; Fletcher, Zachary; Mahaney, Michael C.; Hlusko, Leslea J.

    2010-01-01

    Many studies of primate diversity and evolution rely on dental morphology for insight into diet, behavior, and phylogenetic relationships. Consequently, variation in molar cusp size has increasingly become a phenotype of interest. In 2007 we published a quantitative genetic analysis of mandibular molar cusp size variation in baboons. Those results provided more questions than answers, as the pattern of genetic integration did not fit predictions from odontogenesis. To follow up, we expanded our study to include data from the maxillary molar cusps. Here we report on these later analyses, as well as inter-arch comparisons with the mandibular data. We analyzed variation in two-dimensional maxillary molar cusp size using data collected from a captive pedigreed breeding colony of baboons, Papio hamadryas, housed at the Southwest National Primate Research Center. These analyses show that variation in maxillary molar cusp size is heritable and sexually dimorphic. We also estimated additive genetic correlations between cusps on the same crown, homologous cusps along the tooth row, and maxillary and mandibular cusps. The pattern for maxillary molars yields genetic correlations of one between the paracone-metacone and protocone-hypocone. Bivariate analyses of cuspal homologues on adjacent teeth yield correlations that are high or not significantly different from one. Between dental arcades, the non-occluding cusps consistently yield high genetic correlations, especially the metaconid-paracone and metaconid-metacone. This pattern of genetic correlation does not immediately accord with the pattern of development and/or calcification, however these results do follow predictions that can be made from the evolutionary history of the tribosphenic molar. PMID:20034010

  9. First molar health status in different craniofacial relationships

    PubMed Central

    Linjawi, Amal I

    2016-01-01

    Objective To investigate the association between the health status of permanent first molars and different craniofacial relationships among adolescents. Study design This is a retrospective study on patients’ records aged 11–15 years. Sex, skeletal relationship, vertical growth pattern, malocclusion, overjet, and overbite were assessed. The health status of permanent first molars was recorded from the orthopantomograms and intraoral photographs as “sound” and “not sound”. Chi-square, Mann–Whitney U and Kruskal–Wallis tests, and Pearson’s correlation coefficient were used to analyze and correlate the assessed variables. Significance level was set at P<0.05. Results A total of 210 records were evaluated; 81 were male, 68 had Class I and 91 had Class II skeletal relationships. More than half of the subjects had normal (n=67) to moderate deep bite (n=72); normal (n=91), moderately increased (n=54), to severely increased (n=50) overjet; and Class I (n=106) and Class II division 1 (n=75) malocclusion. Significant differences were found in the health status of the permanent first molars with respect to sex (P=0.034), vertical growth pattern (P=0.01), and overbite (P=0.047). Strong correlations were only found between the health status of the permanent first molars and the following variables: sex (P=0.036) and vertical growth pattern (P=0.004). Significant correlation was further found between the upper left first molar health status and sex (P=0.019) and the lower right first molar health status and the vertical growth pattern (P=0.001). No significant association was found with the anteroposterior craniofacial relationships (P>0.05). Conclusion Sex difference and vertical growth patterns were found to be potential predictors of the health status of the permanent first molars. No significant association was found with the anteroposterior craniofacial relationships. PMID:27462176

  10. Heat capacity, enthalpy and entropy of ternary bismuth tantalum oxides

    SciTech Connect

    Leitner, J.; Jakes, V.; Sofer, Z.; Sedmidubsky, D.; Ruzicka, K.; Svoboda, P.

    2011-02-15

    Heat capacity and enthalpy increments of ternary bismuth tantalum oxides Bi{sub 4}Ta{sub 2}O{sub 11}, Bi{sub 7}Ta{sub 3}O{sub 18} and Bi{sub 3}TaO{sub 7} were measured by the relaxation time method (2-280 K), DSC (265-353 K) and drop calorimetry (622-1322 K). Temperature dependencies of the molar heat capacity in the form C{sub pm}=445.8+0.005451T-7.489x10{sup 6}/T{sup 2} J K{sup -1} mol{sup -1}, C{sub pm}=699.0+0.05276T-9.956x10{sup 6}/T{sup 2} J K{sup -1} mol{sup -1} and C{sub pm}=251.6+0.06705T-3.237x10{sup 6}/T{sup 2} J K{sup -1} mol{sup -1} for Bi{sub 3}TaO{sub 7}, Bi{sub 4}Ta{sub 2}O{sub 11} and for Bi{sub 7}Ta{sub 3}O{sub 18}, respectively, were derived by the least-squares method from the experimental data. The molar entropies at 298.15 K, S{sup o}{sub m}(298.15 K)=449.6{+-}2.3 J K{sup -1} mol{sup -1} for Bi{sub 4}Ta{sub 2}O{sub 11}, S{sup o}{sub m}(298.15 K)=743.0{+-}3.8 J K{sup -1} mol{sup -1} for Bi{sub 7}Ta{sub 3}O{sub 18} and S{sup o}{sub m}(298.15 K)=304.3{+-}1.6 J K{sup -1} mol{sup -1} for Bi{sub 3}TaO{sub 7}, were evaluated from the low-temperature heat capacity measurements. -- Graphical Abstract: Temperature dependence of {Delta}{sub ox}C{sub pm} for bismuth tantalum mixed oxides. Display Omitted Research highlights: > Heat capacity, enthalpy and entropy of ternary bismuth tantalum oxides Bi{sub 4}Ta{sub 2}O{sub 11}, Bi{sub 7}Ta{sub 3}O{sub 18} and Bi{sub 3}TaO{sub 7}. > Heat capacity by DSC calorimetry and heat-pulsed calorimetry. > Enthalpy increments by drop calorimetry. > Einstein-Debye model for low-temperature dependence of the heat capacity. > Application of Neumann-Kopp rule.

  11. The Origins of the Entropy Concept

    NASA Astrophysics Data System (ADS)

    Darrigol, Olivier

    To this day entropy remains a strange, difficult, and multiform concept. Even the great Henri Poincaré renounced precisely defining energy and entropy. In order to justify the success of the two laws of thermodynamics for his students at the Sorbonne, he turned to history:

  12. Ehrenfest's Lottery--Time and Entropy Maximization

    ERIC Educational Resources Information Center

    Ashbaugh, Henry S.

    2010-01-01

    Successful teaching of the Second Law of Thermodynamics suffers from limited simple examples linking equilibrium to entropy maximization. I describe a thought experiment connecting entropy to a lottery that mixes marbles amongst a collection of urns. This mixing obeys diffusion-like dynamics. Equilibrium is achieved when the marble distribution is…

  13. Campbell's Rule for Estimating Entropy Changes

    ERIC Educational Resources Information Center

    Jensen, William B.

    2004-01-01

    Campbell's rule for estimating entropy changes is discussed in relation to an earlier article by Norman Craig, where it was proposed that the approximate value of the entropy of reaction was related to net moles of gas consumed or generated. It was seen that the average for Campbell's data set was lower than that for Craig's data set and…

  14. Chemical Engineering Students' Ideas of Entropy

    ERIC Educational Resources Information Center

    Haglund, Jesper; Andersson, Staffan; Elmgren, Maja

    2015-01-01

    Thermodynamics, and in particular entropy, has been found to be challenging for students, not least due to its abstract character. Comparisons with more familiar and concrete domains, by means of analogy and metaphor, are commonly used in thermodynamics teaching, in particular the metaphor "entropy is disorder." However, this particular…

  15. Entropy and Certainty in Lossless Data Compression

    ERIC Educational Resources Information Center

    Jacobs, James Jay

    2009-01-01

    Data compression is the art of using encoding techniques to represent data symbols using less storage space compared to the original data representation. The encoding process builds a relationship between the entropy of the data and the certainty of the system. The theoretical limits of this relationship are defined by the theory of entropy in…

  16. Entropy estimation of very short symbolic sequences

    NASA Astrophysics Data System (ADS)

    Lesne, Annick; Blanc, Jean-Luc; Pezard, Laurent

    2009-04-01

    While entropy per unit time is a meaningful index to quantify the dynamic features of experimental time series, its estimation is often hampered in practice by the finite length of the data. We here investigate the performance of entropy estimation procedures, relying either on block entropies or Lempel-Ziv complexity, when only very short symbolic sequences are available. Heuristic analytical arguments point at the influence of temporal correlations on the bias and statistical fluctuations, and put forward a reduced effective sequence length suitable for error estimation. Numerical studies are conducted using, as benchmarks, the wealth of different dynamic regimes generated by the family of logistic maps and stochastic evolutions generated by a Markov chain of tunable correlation time. Practical guidelines and validity criteria are proposed. For instance, block entropy leads to a dramatic overestimation for sequences of low entropy, whereas it outperforms Lempel-Ziv complexity at high entropy. As a general result, the quality of entropy estimation is sensitive to the sequence temporal correlation hence self-consistently depends on the entropy value itself, thus promoting a two-step procedure. Lempel-Ziv complexity is to be preferred in the first step and remains the best estimator for highly correlated sequences.

  17. Generalized Entropic Uncertainty Relations with Tsallis' Entropy

    NASA Technical Reports Server (NTRS)

    Portesi, M.; Plastino, A.

    1996-01-01

    A generalization of the entropic formulation of the Uncertainty Principle of Quantum Mechanics is considered with the introduction of the q-entropies recently proposed by Tsallis. The concomitant generalized measure is illustrated for the case of phase and number operators in quantum optics. Interesting results are obtained when making use of q-entropies as the basis for constructing generalized entropic uncertainty measures.

  18. Entropy Generation in a Chemical Reaction

    ERIC Educational Resources Information Center

    Miranda, E. N.

    2010-01-01

    Entropy generation in a chemical reaction is analysed without using the general formalism of non-equilibrium thermodynamics at a level adequate for advanced undergraduates. In a first approach to the problem, the phenomenological kinetic equation of an elementary first-order reaction is used to show that entropy production is always positive. A…

  19. Descending entropy in expanding the universe

    NASA Astrophysics Data System (ADS)

    Portnov, Yuriy A.

    2015-11-01

    Inter-relation between 1-form of nonmetricity and change of entropy in the course of time is considered in the study. It is shown that change of entropy in expanding universe will be always negative. The obtained result contravenes the second law of thermodynamics, however it explains available ordered macrostructures in the universe.

  20. Entropy and Information: A Multidisciplinary Overview.

    ERIC Educational Resources Information Center

    Shaw, Debora; Davis, Charles H.

    1983-01-01

    Cites representative extensions of concept of entropy (measure of the amount of energy unavailable for useful work; from the second law of thermodynamics) noting basic relationships between entropy, order, information, and meaning in such disciplines as biology, economics, information science, the arts, and religion. Seventy-eight references are…

  1. Invariant of dynamical systems: A generalized entropy

    SciTech Connect

    Meson, A.M.; Vericat, F. |

    1996-09-01

    In this work the concept of entropy of a dynamical system, as given by Kolmogorov, is generalized in the sense of Tsallis. It is shown that this entropy is an isomorphism invariant, being complete for Bernoulli schemes. {copyright} {ital 1996 American Institute of Physics.}

  2. Requirement of alveolar bone formation for eruption of rat molars.

    PubMed

    Wise, Gary E; He, Hongzhi; Gutierrez, Dina L; Ring, Sherry; Yao, Shaomian

    2011-10-01

    Tooth eruption is a localized event that requires a dental follicle (DF) to regulate the resorption of alveolar bone to form an eruption pathway. During the intra-osseous phase of eruption, the tooth moves through this pathway. The mechanism or motive force that propels the tooth through this pathway is controversial but many studies have shown that alveolar bone growth at the base of the crypt occurs during eruption. To determine if this bone growth (osteogenesis) was causal, experiments were designed in which the expression of an osteogenic gene in the DF, bone morphogenetic protein-6 (Bmp6), was inhibited by injection of the first mandibular molar of the rat with a small interfering RNA (siRNA) targeted against Bmp6. The injection was followed by electroporation to promote uptake of the siRNA. In 45 first molars injected, eruption was either delayed or completely inhibited (seven molars). In the impacted molars, an eruption pathway formed but bone growth at the base of the crypt was greatly reduced compared with the erupted first-molar controls. These studies show that alveolar bone growth at the base of the crypt is required for tooth eruption and that Bmp6 may be essential for promoting this growth. PMID:21896048

  3. Requirement of alveolar bone formation for eruption of rat molars

    PubMed Central

    Wise, Gary E.; He, Hongzhi; Gutierrez, Dina L.; Ring, Sherry; Yao, Shaomian

    2011-01-01

    Tooth eruption is a localized event that requires a dental follicle (DF) to regulate the resorption of alveolar bone to form an eruption pathway. During the intra-osseous phase of eruption, the tooth moves through this pathway. The mechanism or motive force that propels the tooth through this pathway is controversial but many studies have shown that alveolar bone growth at the base of the crypt occurs during eruption. To determine if this bone growth (osteogenesis) was causal, experiments were designed in which the expression of an osteogenic gene in the DF, bone morphogenetic protein-6 (BMP6), was inhibited by injection of the 1st mandibular molar of the rat with an siRNA targeted against BMP6. The injection was followed by electroporation to promote uptake of the siRNA. In 45 first molars injected, eruption either was delayed or completely inhibited (7 molars). In the impacted molars, an eruption pathway formed but bone growth at the base of the crypt was greatly reduced as compared to the erupted first molar controls. These studies show that alveolar bone growth at the base of the crypt is required for tooth eruption and that BMP6 may be an essential gene for promoting this growth. PMID:21896048

  4. Orthodontic band retention on primary molar stainless steel crowns.

    PubMed

    Beemer, R L; Ferracane, J L; Howard, H E

    1993-01-01

    The retention of orthodontic bands cemented on primary molar stainless steel crowns (SSC) was studied in vitro. Unitek maxillary and mandibular 1st and 2nd primary molar SSC were fitted with one of four commonly used orthodontic bands (Unitek regular, Unitek narrow, Rocky Mountain, or custom bands made from SSC) using glass ionomer cement. The cemented samples were tested for their resistance to dislodgment on the Instron Universal Testing Machine (Instron Engineering Corp., Canton, MA) in tensile mode. Alpha level for statistical significance was set at alpha = 0.05. Unitek regular bands cemented on the 2nd molar crowns and Unitek narrow bands cemented on the 1st molar crown samples had equivalent or superior resistance to dislodgment compared with the other bands in the study. When the inside of the band and the outside band-bearing surfaces of selected crowns were lightly scored with a diamond bur prior to cementation, samples exhibited significantly superior retention. Subgroup means increased from 107 to 330%, compared to the values obtained in their preroughened state. The mean values obtained using the roughened band/crown interface technique (range 52.9 +/- 7.6 to 73.6 +/- 8.4 lbs) compared favorably with retention values from the literature for orthodontic bands cemented on permanent molar and premolar teeth. PMID:8153003

  5. 3D imaging reconstruction and impacted third molars: case reports

    PubMed Central

    Tuzi, Andrea; Di Bari, Roberto; Cicconetti, Andrea

    2012-01-01

    Summary There is a debate in the literature about the need for Computed Tomagraphy (CT) before removing third molars, even if positive radiographic signs are present. In few cases, the third molar is so close to the inferior alveolar nerve that its extraction might expose patients to the risk of post-operative neuro-sensitive alterations of the skin and the mucosa of the homolateral lower lip and chin. Thus, the injury of the inferior alveolar nerve may represent a serious, though infrequent, neurologic complication in the surgery of the third molars rendering necessary a careful pre-operative evaluation of their anatomical relationship with the inferior alveolar nerve by means of radiographic imaging techniques. This contribution presents two case reports showing positive radiographic signs, which are the hallmarks of a possible close relationship between the inferior alveolar nerve and the third molars. We aim at better defining the relationship between third molars and the mandibular canal using Dental CT Scan, DICOM image acquisition and 3D reconstruction with a dedicated software. By our study we deduce that 3D images are not indispensable, but they can provide a very agreeable assistance in the most complicated cases. PMID:23386934

  6. Low Streamflow Forcasting using Minimum Relative Entropy

    NASA Astrophysics Data System (ADS)

    Cui, H.; Singh, V. P.

    2013-12-01

    Minimum relative entropy spectral analysis is derived in this study, and applied to forecast streamflow time series. Proposed method extends the autocorrelation in the manner that the relative entropy of underlying process is minimized so that time series data can be forecasted. Different prior estimation, such as uniform, exponential and Gaussian assumption, is taken to estimate the spectral density depending on the autocorrelation structure. Seasonal and nonseasonal low streamflow series obtained from Colorado River (Texas) under draught condition is successfully forecasted using proposed method. Minimum relative entropy determines spectral of low streamflow series with higher resolution than conventional method. Forecasted streamflow is compared to the prediction using Burg's maximum entropy spectral analysis (MESA) and Configurational entropy. The advantage and disadvantage of each method in forecasting low streamflow is discussed.

  7. The role of entropy in magnetotail dynamics

    SciTech Connect

    Birn, Joachim; Zaharia, Sorin; Hesse, Michael

    2008-01-01

    The role of entropy conservation and loss in magnetospheric dynamics, particularly in relation to substorm phases, is discussed on the basis of MHD theory and simulations, using comparisons with PIC simulations for validation. Entropy conservation appears to be a crucial element leading to the formation of thin embedded current sheets in the late substorm growth phase and the potential loss of equilibrium. Entropy loss (in the form of plasmoids) is essential in the earthward transport of flux tubes (bubbles, bursty bulk flows). Entropy loss also changes the tail stability properties and may render ballooning modes unstable and thus contribute to cross-tail variability. We illustrate these effects through results from theory and simulations. Entropy conservation also governs the accessibility of final states of evolution and the amount of energy that may be released.

  8. Trends of stellar entropy along stellar evolution

    NASA Astrophysics Data System (ADS)

    de Avellar, Guilherme Bronzato, Marcio; Alvares de Souza, Rodrigo; Horvath, Jorge Ernesto

    2016-02-01

    This paper is devoted to discussing the difference in the thermodynamic entropy budget per baryon in each type of stellar object found in the Universe. We track and discuss the actual decrease of the stored baryonic thermodynamic entropy from the most primitive molecular cloud up to the final fate of matter in black holes, passing through evolved states of matter as found in white dwarfs and neutron stars. We then discuss the case of actual stars with different masses throughout their evolution, clarifying the role of the virial equilibrium condition for the decrease in entropy and related issues. Finally, we discuss the role of gravity in driving the composition and the structural changes of stars with different Main Sequence masses during their evolution up to the final product. Particularly, we discuss the entropy of a black hole in this context arguing that the dramatic increase in its entropy, differently from the other cases, is due to the gravitational field itself.

  9. Entropy of uremia and dialysis technology.

    PubMed

    Ronco, Claudio

    2013-01-01

    The second law of thermodynamics applies with local exceptions to patient history and therapy interventions. Living things preserve their low level of entropy throughout time because they receive energy from their surroundings in the form of food. They gain their order at the expense of disordering the nutrients they consume. Death is the thermodynamically favored state: it represents a large increase in entropy as molecular structure yields to chaos. The kidney is an organ dissipating large amounts of energy to maintain the level of entropy of the organism as low as possible. Diseases, and in particular uremia, represent conditions of rapid increase in entropy. Therapeutic strategies are oriented towards a reduction in entropy or at least a decrease in the speed of entropy increase. Uremia is a process accelerating the trend towards randomness and disorder (increase in entropy). Dialysis is a factor external to the patient that tends to reduce the level of entropy caused by kidney disease. Since entropy can only increase in closed systems, energy and work must be spent to limit the entropy of uremia. This energy should be adapted to the system (patient) and be specifically oriented and personalized. This includes a multidimensional effort to achieve an adequate dialysis that goes beyond small molecular weight solute clearance. It includes a biological plan for recovery of homeostasis and a strategy towards long-term rehabilitation of the patient. Such objectives can be achieved with a combination of technology and innovation to answer specific questions that are still present after 60 years of dialysis history. This change in the individual bioentropy may represent a local exception to natural trends as the patient could be considered an isolated universe responding to the classic laws of thermodynamics. PMID:23343540

  10. Entropy Splitting and Numerical Dissipation

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Vinokur, M.; Djomehri, M. J.

    1999-01-01

    A rigorous stability estimate for arbitrary order of accuracy of spatial central difference schemes for initial-boundary value problems of nonlinear symmetrizable systems of hyperbolic conservation laws was established recently by Olsson and Oliger (1994) and Olsson (1995) and was applied to the two-dimensional compressible Euler equations for a perfect gas by Gerritsen and Olsson (1996) and Gerritsen (1996). The basic building block in developing the stability estimate is a generalized energy approach based on a special splitting of the flux derivative via a convex entropy function and certain homogeneous properties. Due to some of the unique properties of the compressible Euler equations for a perfect gas, the splitting resulted in the sum of a conservative portion and a non-conservative portion of the flux derivative. hereafter referred to as the "Entropy Splitting." There are several potential desirable attributes and side benefits of the entropy splitting for the compressible Euler equations that were not fully explored in Gerritsen and Olsson. The paper has several objectives. The first is to investigate the choice of the arbitrary parameter that determines the amount of splitting and its dependence on the type of physics of current interest to computational fluid dynamics. The second is to investigate in what manner the splitting affects the nonlinear stability of the central schemes for long time integrations of unsteady flows such as in nonlinear aeroacoustics and turbulence dynamics. If numerical dissipation indeed is needed to stabilize the central scheme, can the splitting help minimize the numerical dissipation compared to its un-split cousin? Extensive numerical study on the vortex preservation capability of the splitting in conjunction with central schemes for long time integrations will be presented. The third is to study the effect of the non-conservative proportion of splitting in obtaining the correct shock location for high speed complex shock

  11. Pendulum Therapy of Molar Distalization in Mixed Dentition.

    PubMed

    Patil, Raju Umaji; Prakash, Amit; Agarwal, Anshu

    2016-01-01

    Early and timely pedo-orthodontic treatment is aimed at eliminating the disturbances of skeletal or dentoalveolar development, to harmonize the stomatognathic system before the full eruption of all permanent teeth. The advantages of pendulum appliance are its minimal dependence on patient's compliance (child cooperation), ease of fabrication, onetime activation and adjustment of the springs if necessary to correct minor transverse and vertical molar positions. This article reports a successful treatment method of class II malocclusion with pendulum appliance in mixed dentition phase. Distalization of maxillary molar was done, followed by guidance of canine impaction orthodontically and other dental correction using 0.022 MBT appliances. Posttreatment results were stable and remarkable. How to cite this article: Patil RU, Prakash A, Agarwal A. Pendulum Therapy of Molar Distalization in Mixed Dentition. Int J Clin Pediatr Dent 2016;9(1):67-73. PMID:27274159

  12. Pendulum Therapy of Molar Distalization in Mixed Dentition

    PubMed Central

    Prakash, Amit; Agarwal, Anshu

    2016-01-01

    ABSTRACT Early and timely pedo-orthodontic treatment is aimed at eliminating the disturbances of skeletal or dentoalveolar development, to harmonize the stomatognathic system before the full eruption of all permanent teeth. The advantages of pendulum appliance are its minimal dependence on patient’s compliance (child cooperation), ease of fabrication, onetime activation and adjustment of the springs if necessary to correct minor transverse and vertical molar positions. This article reports a successful treatment method of class II malocclusion with pendulum appliance in mixed dentition phase. Distalization of maxillary molar was done, followed by guidance of canine impaction orthodontically and other dental correction using 0.022 MBT appliances. Posttreatment results were stable and remarkable. How to cite this article: Patil RU, Prakash A, Agarwal A. Pendulum Therapy of Molar Distalization in Mixed Dentition. Int J Clin Pediatr Dent 2016;9(1):67-73. PMID:27274159

  13. Aberration in the palatal root of the maxillary first molar

    PubMed Central

    Rajalbandi, Sandeep; Shingte, Sandhya Narayan; Sundaresh, K J; Mallikarjuna, Rachappa

    2013-01-01

    Thorough knowledge of root canal morphology is essential for the endodontic therapy. Variations in the root and root canal morphology, especially in multirooted teeth, are a constant challenge for diagnosis and management. The dentist needs to be familiar with the various root canal configurations and their variations for successful endodontic therapy. There are rare variations in canal number and configuration in maxillary molars, which could affect treatment outcome. Two lingual root structures are occasionally found on human permanent maxillary molars. One of these is the normal lingual root, which is always present, the other is a supernumerary structure which can be located either mesiolingually (radix mesiolingualis) or distolingually (radix distolingualis). The purpose of this paper is to review the literature and to demonstrate a case report which describes the successful non-surgical endodontic management of an unusual maxillary first molar with four separate roots and four canals. PMID:23632609

  14. Molar enamel thickness and dentine horn height in Gigantopithecus blacki.

    PubMed

    Olejniczak, A J; Smith, T M; Wang, W; Potts, R; Ciochon, R; Kullmer, O; Schrenk, F; Hublin, J-J

    2008-01-01

    Absolutely thick molar enamel is consistent with large body size estimates and dietary inferences about Gigantopithecus blacki, which focus on tough or fibrous vegetation. In this study, 10 G. blacki molars demonstrating various stages of attrition were imaged using high-resolution microtomography. Three-dimensional average enamel thickness and relative enamel thickness measurements were recorded on the least worn molars within the sample (n = 2). Seven molars were also virtually sectioned through the mesial cusps and two-dimensional enamel thickness and dentine horn height measurements were recorded. Gigantopithecus has the thickest enamel of any fossil or extant primate in terms of absolute thickness. Relative (size-scaled) measures of enamel thickness, however, support a thick characterization (i.e., not "hyper-thick"); G. blacki relative enamel thickness overlaps slightly with Pongo and completely with Homo. Gigantopithecus blacki dentine horns are relatively short, similar to (but shorter than) those of Pongo, which in turn are shorter than those of humans and African apes. Gigantopithecus blacki molar enamel (and to a lesser extent, that of Pongo pygmaeus) is distributed relatively evenly across the occlusal surface compared with the more complex distribution of enamel thickness in Homo sapiens. The combination of evenly distributed occlusal enamel and relatively short dentine horns in G. blacki results in a flat and low-cusped occlusal surface suitable to grinding tough or fibrous food objects. This suite of molar morphologies is also found to varying degrees in Pongo and Sivapithecus, but not in African apes and humans, and may be diagnostic of subfamily Ponginae. PMID:17941103

  15. Sex assessment by molar odontometrics in North Indian population

    PubMed Central

    Narang, Ramandeep Singh; Manchanda, Adesh S.; Singh, Balwinder

    2015-01-01

    Introduction: Human identification is based on scientific principles, mainly involving dental records, fingerprints, estimation of age, postmortem reports, differentiation by blood groups, and DNA comparisons. Sex assessment is one of the prime factors employed to assist with the identification of an individual. Aims and Objective: To investigate univariate sex differences in the dimensions of permanent first molars and to assess sex, based on buccolingual (BL) and mesiodistal (MD) dimensions of permanent first molars in a population of north India. In addition, the study intended to evaluate the reliability of dimensional variation of these teeth in assessment of sex among the population. Materials and Methods: The study sample consists of 410 adult individuals (200 males and 210 females), from a north Indian population. The BL and MD diameters of the permanent first molars were measured using digital vernier callipers. Results: It was observed statistically significant difference between males and females with P < 0.05, in maxillary casts in both BL and MD dimensions; but only in the MD dimension in mandibular casts. A high level of sexual dimorphism of 7.7% was found in the BL dimension of the maxillary right first molar. The accuracy of sex assessment by each dimension was deliberated by univariate analyses with an overall accuracy ranging from 67.5 to 88% for various dimensions. Conclusion: Sexual dimorphism of teeth is population specific and among north Indian population, BL and MD dimensions in maxillary first molar and MD dimension in mandibular first molar can be used for sex assessment. PMID:25709321

  16. Relative von Neumann entropy for evaluating amino acid conservation.

    PubMed

    Johansson, Fredrik; Toh, Hiroyuki

    2010-10-01

    The Shannon entropy is a common way of measuring conservation of sites in multiple sequence alignments, and has also been extended with the relative Shannon entropy to account for background frequencies. The von Neumann entropy is another extension of the Shannon entropy, adapted from quantum mechanics in order to account for amino acid similarities. However, there is yet no relative von Neumann entropy defined for sequence analysis. We introduce a new definition of the von Neumann entropy for use in sequence analysis, which we found to perform better than the previous definition. We also introduce the relative von Neumann entropy and a way of parametrizing this in order to obtain the Shannon entropy, the relative Shannon entropy and the von Neumann entropy at special parameter values. We performed an exhaustive search of this parameter space and found better predictions of catalytic sites compared to any of the previously used entropies. PMID:20981889

  17. Urban Transfer Entropy across Scales

    PubMed Central

    Murcio, Roberto

    2015-01-01

    The morphology of urban agglomeration is studied here in the context of information exchange between different spatio-temporal scales. Urban migration to and from cities is characterised as non-random and following non-random pathways. Cities are multidimensional non-linear phenomena, so understanding the relationships and connectivity between scales is important in determining how the interplay of local/regional urban policies may affect the distribution of urban settlements. In order to quantify these relationships, we follow an information theoretic approach using the concept of Transfer Entropy. Our analysis is based on a stochastic urban fractal model, which mimics urban growing settlements and migration waves. The results indicate how different policies could affect urban morphology in terms of the information generated across geographical scales. PMID:26207628

  18. Area terms in entanglement entropy

    NASA Astrophysics Data System (ADS)

    Casini, Horacio; Mazzitelli, F. D.; Testé, Eduardo

    2015-05-01

    We discuss area terms in entanglement entropy and show that a recent formula by Rosenhaus and Smolkin is equivalent to the term involving a correlator of traces of the stress tensor in the Adler-Zee formula for the renormalization of the Newton constant. We elaborate on how to fix the ambiguities in these formulas: Improving terms for the stress tensor of free fields, boundary terms in the modular Hamiltonian, and contact terms in the Euclidean correlation functions. We make computations for free fields and show how to apply these calculations to understand some results for interacting theories which have been studied in the literature. We also discuss an application to the F-theorem.

  19. Measuring anomaly with algorithmic entropy

    NASA Astrophysics Data System (ADS)

    Solano, Wanda M.

    Anomaly detection refers to the identification of observations that are considered outside of normal. Since they are unknown to the system prior to training and rare, the anomaly detection problem is particularly challenging. Model based techniques require large quantities of existing data are to build the model. Statistically based techniques result in the use of statistical metrics or thresholds for determining whether a particular observation is anomalous. I propose a novel approach to anomaly detection using wavelet based algorithmic entropy that does not require modeling or large amounts of data. My method embodies the concept of information distance that rests on the fact that data encodes information. This distance is large when little information is shared, and small when there is greater information sharing. I compare my approach with several techniques in the literature using data obtained from testing of NASA's Space Shuttle Main Engines (SSME)

  20. Maximum entropy and drug absorption.

    PubMed

    Charter, M K; Gull, S F

    1991-10-01

    The application of maximum entropy to the calculation of drug absorption rates was introduced in an earlier paper. Here it is developed further, and the whole procedure is presented as a problem in scientific inference to be solved using Bayes' theorem. Blood samples do not need to be taken at equally spaced intervals, and no smoothing, interpolation, extrapolation, or other preprocessing of the data is necessary. The resulting input rate estimates are smooth and physiologically realistic, even with noisy data, and their accuracy is quantified. Derived quantities such as the proportion of the dose absorbed, and the mean and median absorption times, are also obtained, together with their error estimates. There are no arbitrarily valued parameters in the analysis, and no specific functional form, such as an exponential or polynomial, is assumed for the input rate functions. PMID:1783989

  1. Entropy changes in brain function.

    PubMed

    Rosso, Osvaldo A

    2007-04-01

    The traditional way of analyzing brain electrical activity, on the basis of electroencephalography (EEG) records, relies mainly on visual inspection and years of training. Although it is quite useful, of course, one has to acknowledge its subjective nature that hardly allows for a systematic protocol. In the present work quantifiers based on information theory and wavelet transform are reviewed. The "relative wavelet energy" provides information about the relative energy associated with different frequency bands present in the EEG and their corresponding degree of importance. The "normalized total wavelet entropy" carries information about the degree of order-disorder associated with a multi-frequency signal response. Their application in the analysis and quantification of short duration EEG signals (event-related potentials) and epileptic EEG records are summarized. PMID:17234291

  2. How multiplicity determines entropy and the derivation of the maximum entropy principle for complex systems

    PubMed Central

    Hanel, Rudolf; Thurner, Stefan; Gell-Mann, Murray

    2014-01-01

    The maximum entropy principle (MEP) is a method for obtaining the most likely distribution functions of observables from statistical systems by maximizing entropy under constraints. The MEP has found hundreds of applications in ergodic and Markovian systems in statistical mechanics, information theory, and statistics. For several decades there has been an ongoing controversy over whether the notion of the maximum entropy principle can be extended in a meaningful way to nonextensive, nonergodic, and complex statistical systems and processes. In this paper we start by reviewing how Boltzmann–Gibbs–Shannon entropy is related to multiplicities of independent random processes. We then show how the relaxation of independence naturally leads to the most general entropies that are compatible with the first three Shannon–Khinchin axioms, the -entropies. We demonstrate that the MEP is a perfectly consistent concept for nonergodic and complex statistical systems if their relative entropy can be factored into a generalized multiplicity and a constraint term. The problem of finding such a factorization reduces to finding an appropriate representation of relative entropy in a linear basis. In a particular example we show that path-dependent random processes with memory naturally require specific generalized entropies. The example is to our knowledge the first exact derivation of a generalized entropy from the microscopic properties of a path-dependent random process. PMID:24782541

  3. A Structural Molar Volume Model for Oxide Melts Part III: Fe Oxide-Containing Melts

    NASA Astrophysics Data System (ADS)

    Thibodeau, Eric; Gheribi, Aimen E.; Jung, In-Ho

    2016-04-01

    As part III of this series, the model is extended to iron oxide-containing melts. All available experimental data in the FeO-Fe2O3-Na2O-K2O-MgO-CaO-MnO-Al2O3-SiO2 system were critically evaluated based on the experimental condition. The variations of FeO and Fe2O3 in the melts were taken into account by using FactSage to calculate the Fe2+/Fe3+ distribution. The molar volume model with unary and binary model parameters can be used to predict the molar volume of the molten oxide of the Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-FeO-Fe2O3-Al2O3-SiO2 system in the entire range of compositions, temperatures, and oxygen partial pressures from Fe saturation to 1 atm pressure.

  4. Morphological and clinical considerations of first and second permanent molar eruption disorders.

    PubMed

    Proff, Peter; Bayerlein, Thomas; Fanghänel, Jochen; Allegrini, Sergio; Gedrange, Tomas

    2006-07-01

    Tooth eruption is a complex biological process which starts from the site of development in the jaw bone until the teeth reach their final functional position in the chewing plane. Various factors can disturb this process. Besides mechanical obstacles on the eruption path, a pathological position or axial orientation of the tooth germ, morphological aberrations of the tooth or pathological alterations of the periodontium, primary disorders of the eruption mechanism may lead to complete or partial retention of the tooth in the jaw bone. These morphological features bear upon the prognosis of orthodontic correction which is dependent upon the underlying cause. First and second molars are rarely affected by eruption disorders, with a prevalence of 0.01 to 0.08 per cent, however, marked consequences for function such as posterior open bite or elongation of the antagonists may result. Following an overview of pathogenetic factors of tooth eruption disorders, selected cases of impacted first and second permanent molars are presented with respect to their morphological causes. PMID:16856600

  5. Entropy perturbations in N-flation

    SciTech Connect

    Cai Ronggen; Hu Bin; Piao Yunsong

    2009-12-15

    In this paper we study the entropy perturbations in N-flation by using the {delta}N formalism. We calculate the entropy corrections to the power spectrum of the overall curvature perturbation P{sub {zeta}}. We obtain an analytic form of the transfer coefficient T{sub RS}{sup 2}, which describes the correlation between the curvature and entropy perturbations, and investigate its behavior numerically. It turns out that the entropy perturbations cannot be neglected in N-flation because the amplitude of entropy components is approximately in the same order as the adiabatic one at the end of inflation T{sub RS}{sup 2}{approx}O(1). The spectral index n{sub S} is calculated and it becomes smaller after the entropy modes are taken into account, i.e., the spectrum becomes redder, compared to the pure adiabatic case. Finally we study the modified consistency relation of N-flation, and find that the tensor-to-scalar ratio (r{approx_equal}0.006) is greatly suppressed by the entropy modes, compared to the pure adiabatic one (r{approx_equal}0.017) at the end of inflation.

  6. Entropy Convective Flux for Tropical Cyclone Haiyan

    NASA Astrophysics Data System (ADS)

    Pegahfar, Nafiseh; Gharaylou, Maryam; Ghafarian, Parvin

    2016-07-01

    It is well-known that the environmental factors control tropical cyclones (TCs). one of the most considered thermodynamical parameters is entropy that its significant role on tropical cyclogenesis and TC intensification has been professionally focused in some recent research studies. In the current work, two data sets including satellite data and NCEP-GFS data have been used to investigate the entropy parameter and its convective flux, during tropical cyclone Haiyan (TCH) occurred on 3-11 November 2013 and nominated as the strongest TC over Pacific Ocean before 2014. This purpose has been proceeded for three domain areas with different size. These domains cover inner, eyewall and rainbands, and environmental regions of TCH at various pressure levels. Also three terms of entropy vertical flux including dissipative heating, surface entropy flux and difference between entropy values over inner and outer regions have been analyzed. Our obtained results showed relatively similar behavior of averaged entropy over all selected domain, but with a delay and decrease in maximum values for the smaller domains. In addition our findings revealed different considerable contributions for three terms of entropy vertical flux.

  7. Impact of Ions on Individual Water Entropy.

    PubMed

    Saha, Debasis; Mukherjee, Arnab

    2016-08-01

    Solutes determine the properties of a solution. In this study, we probe ionic solutions through the entropy of individual water molecules in the solvation shells around different cations and anions. Using a method recently developed by our group, we show the solvation shell entropy stemming from the individual contributions correlates extremely well with experimental values for both polarizable and nonpolarizable force fields. The behavior of water entropy as a function of distance reveals significant (∼20%) contributions from the second solvation shell even for the low concentration considered here. While for the cations, contributions from both translational and rotational entropy loss are similar in different solvation shells, water around anions loses much more rotational entropy due to their ability to accept hydrogen bonds. Most importantly, while charge density of cations or anions correlates with the translational entropy loss, anions with similar charge density as that of cations has a much stronger and long-range effect on water. We also show how the modulation of water entropy by ions is correlated to the structural modifications of hydration shell. This study thus provides a step toward understanding the entropic behavior of water in molecular recognition processes between proteins and drug molecules. PMID:27404917

  8. On entropy, financial markets and minority games

    NASA Astrophysics Data System (ADS)

    Zapart, Christopher A.

    2009-04-01

    The paper builds upon an earlier statistical analysis of financial time series with Shannon information entropy, published in [L. Molgedey, W. Ebeling, Local order, entropy and predictability of financial time series, European Physical Journal B-Condensed Matter and Complex Systems 15/4 (2000) 733-737]. A novel generic procedure is proposed for making multistep-ahead predictions of time series by building a statistical model of entropy. The approach is first demonstrated on the chaotic Mackey-Glass time series and later applied to Japanese Yen/US dollar intraday currency data. The paper also reinterprets Minority Games [E. Moro, The minority game: An introductory guide, Advances in Condensed Matter and Statistical Physics (2004)] within the context of physical entropy, and uses models derived from minority game theory as a tool for measuring the entropy of a model in response to time series. This entropy conditional upon a model is subsequently used in place of information-theoretic entropy in the proposed multistep prediction algorithm.

  9. Renyi entropy of the XY spin chain

    NASA Astrophysics Data System (ADS)

    Franchini, F.; Its, A. R.; Korepin, V. E.

    2008-01-01

    We consider the one-dimensional XY quantum spin chain in a transverse magnetic field. We are interested in the Renyi entropy of a block of L neighboring spins at zero temperature on an infinite lattice. The Renyi entropy is essentially the trace of some power α of the density matrix of the block. We calculate the asymptotic for L → ∞ analytically in terms of Klein's elliptic λ-function. We study the limiting entropy as a function of its parameter α. We show that up to the trivial addition terms and multiplicative factors, and after a proper rescaling, the Renyi entropy is an automorphic function with respect to a certain subgroup of the modular group; moreover, the subgroup depends on whether the magnetic field is above or below its critical value. Using this fact, we derive the transformation properties of the Renyi entropy under the map α → α-1 and show that the entropy becomes an elementary function of the magnetic field and the anisotropy when α is an integer power of 2; this includes the purity tr ρ2. We also analyze the behavior of the entropy as α → 0 and ∞ and at the critical magnetic field and in the isotropic limit (XX model).

  10. Procedures to recover DNA from pre-molar and molar teeth of decomposed cadavers with different post-mortem intervals.

    PubMed

    Raimann, Paulo E; Picanço, Juliane B; Silva, Deborah S B S; Albuquerque, Trícia C K; Paludo, Francis Jackson O; Alho, Clarice S

    2012-11-01

    A task-force to resolve 26 pending forensic caseworks was carried out. We tested four different protocols to extract DNA from molar and pre-molar teeth from 26 cadavers with post-mortem intervals from 2 months to 12 years. We compared the amount of DNA and DNA profiles with the time elapsed between death and laboratory procedures. Molar or pre-molar teeth were removed from the corpses, cleaned, and DNA was extracted using 2 or 12h of incubation on lysis buffer and filtered using concentration column or precipitated with isopropanol. DNA profiles were obtained using PowerPlex16™ System PCR Amplification Kit, AmpFlSTR(®) Yfiler™ and/or mtDNA sequencing. Complete DNA profiles comparison and statistical evaluation allowed unambiguous identification of the 26 victims. No significant differences were observed in the amount of DNA obtained with the distinct incubation times. The use of concentration column resulted in an increased amount of DNA when compared to isopropanol. However, the lower concentration of DNA obtained with isopropanol seemed to have been compensated by the higher purity. No significant differences in the number of amplified loci were found. A non-significant tendency was found between the amount of total DNA recovered and the time elapsed between death and laboratory procedures. The increase of post-mortem time did not interfere in the analysed autosomal loci. In conclusion, molar and pre-molar teeth were shown to be good candidates to obtain satisfactory DNA profiles, suggesting the high potential of tooth samples as source for DNA typing independently of the decomposed corpse's time or laboratory procedures. PMID:23040740

  11. Pesin's Entropy Formula for Systems Between and

    NASA Astrophysics Data System (ADS)

    Tian, Xueting

    2014-09-01

    In this article we give a new observation of Pesin's entropy formula, motivated from Mañé's proof of (Ergod Theory Dyn Sys 1:95-102, 1981). Let be a compact Riemann manifold and be a diffeomorphism on . If is an -invariant probability measure which is absolutely continuous relative to Lebesgue measure and nonuniformly-Hlder-continuous(see Definition 1.1), then we have Pesin's entropy formula, i.e., the metric entropy satisfies where are the Lyapunov exponents at with respect to Nonuniformly-H lder-continuous is a new notion from probabilistic perspective weaker than

  12. Component analysis of the protein hydration entropy

    NASA Astrophysics Data System (ADS)

    Chong, Song-Ho; Ham, Sihyun

    2012-05-01

    We report the development of an atomic decomposition method of the protein solvation entropy in water, which allows us to understand global change in the solvation entropy in terms of local changes in protein conformation as well as in hydration structure. This method can be implemented via a combined approach based on molecular dynamics simulation and integral-equation theory of liquids. An illustrative application is made to 42-residue amyloid-beta protein in water. We demonstrate how this method enables one to elucidate the molecular origin for the hydration entropy change upon conformational transitions of protein.

  13. Device-independent tests of entropy.

    PubMed

    Chaves, Rafael; Brask, Jonatan Bohr; Brunner, Nicolas

    2015-09-11

    We show that the entropy of a message can be tested in a device-independent way. Specifically, we consider a prepare-and-measure scenario with classical or quantum communication, and develop two different methods for placing lower bounds on the communication entropy, given observable data. The first method is based on the framework of causal inference networks. The second technique, based on convex optimization, shows that quantum communication provides an advantage over classical communication, in the sense of requiring a lower entropy to reproduce given data. These ideas may serve as a basis for novel applications in device-independent quantum information processing. PMID:26406813

  14. Structural complexity and configurational entropy of crystals.

    PubMed

    Krivovichev, Sergey V

    2016-04-01

    Using a statistical approach, it is demonstrated that the complexity of a crystal structure measured as the Shannon information per atom [Krivovichev (2012). Acta Cryst. A68, 393-398] represents a negative contribution to the configurational entropy of a crystalline solid. This conclusion is in full accordance with the general agreement that information and entropy are reciprocal variables. It also agrees well with the understanding that complex structures possess lower entropies relative to their simpler counterparts. The obtained equation is consistent with the Landauer principle and points out that the information encoded in a crystal structure has a physical nature. PMID:27048729

  15. Duality in a maximum generalized entropy model

    NASA Astrophysics Data System (ADS)

    Eguchi, Shinto; Komori, Osamu; Ohara, Atsumi

    2015-01-01

    This paper discusses a possible generalization for the maximum entropy principle. A class of generalized entropy is introduced by that of generator functions, in which the maximum generalized distribution model is explicitly derived including q-Gaussian distributions, Wigner semicircle distributions and Pareto distributions. We define a totally geodesic subspace in the total space of all probability density functions in a framework of information geometry. The model of maximum generalized entropy distributions is shown to be totally geodesic. The duality of the model and the estimation in the maximum generalized principle is elucidated to give intrinsic understandings from the point of information geometry.

  16. Infected Dentigerous Cyst of Maxillary Sinus Arising from an Ectopic Third Molar

    PubMed Central

    Guruprasad, Yadavalli; Chauhan, Dinesh Singh; Kura, Umashankar

    2013-01-01

    A dentigerous cyst or follicular cyst is a form of odontogenic cyst. It is believed that it forms during the development of the tooth and is associated with pressure exerted by the crown of an unerupted (or partially erupted) tooth on the fluid within the follicular space. Typically, dentigerous cysts are painless and discovered during routine radiographic examination. However, they may be large and result in a palpable mass. Additionally, as they grow they displace adjacent teeth. They almost exclusively occur in permanent dentition. The cyst is lined by stratified squamous non-keratinizing epithelium. About 70% of dentigerous cysts occur in the mandible and 30% in the maxilla. Dentigerous cysts associated with ectopic teeth within the maxillary sinus are very rare. We report radiologic and pathologic features in a rare case of infected dentigerous cyst of maxillary sinus arising from an ectopic third molar in a 21-year-old female patient. PMID:24516770

  17. Management of Six Root Canals in Mandibular First Molar

    PubMed Central

    Gomes, Fabio de Almeida; Sousa, Bruno Carvalho

    2015-01-01

    Success in root canal treatment is achieved after thorough cleaning, shaping, and obturation of the root canal system. This clinical case describes conventional root canal treatment of an unusual mandibular first molar with six root canals. The prognosis for endodontic treatment in teeth with abnormal morphology is unfavorable if the clinician fails to recognize extra root canals. PMID:25685156

  18. The effect of dexamethasone on neurapraxia following third molar surgery.

    PubMed

    Von Arx, D P; Simpson, M T

    1989-12-01

    A double blind, controlled trial was undertaken to assess the effect of intra-muscular dexamethasone on neurapraxia following the surgical removal of mandibular third molars. No significant difference was found 24 h post-operatively between a control group and a group given dexamethasone. PMID:2597658

  19. Survival rates of porcelain molar crowns-an update.

    PubMed

    Kassem, Amr Shebl; Atta, Osama; El-Mowafy, Omar

    2010-01-01

    The aim of this study was to identify recent studies that dealt with the clinical performance of porcelain molar crowns and to explore the possibility of grouping the findings from similar studies together to draw overall conclusions. A MEDLINE literature search was conducted in early 2009 covering the preceding 12 years. Seventeen studies were indentified. However, only seven met the specific inclusion criteria and were analyzed. Among seven studies, five European countries were covered. Five studies reported on Procera AllCeram molar crowns while one reported on In-Ceram Alumina and Spinell crowns and another on CEREC crowns. For comparison, one additional study that reported on premolar crowns was included. In the five Procera AllCeram studies, 235 molar crowns were evaluated for 5 or more years, of which 24 failed. When the results of the five studies on the performance of Procera AllCeram molar crowns were considered collectively, an overall failure rate of 10.2% was found at 5 or more years. Int J Prosthodont 2010;23:60-62. PMID:20234895

  20. A cervical ectopic masquerading as a molar pregnancy.

    PubMed

    Masir, N; Tamby, M R; Jamil, M A

    2000-03-01

    We report a case of cervical pregnancy complicated by life threatening hemorrhage. An initial diagnosis of molar pregnancy was made preoperatively. During uterine evacuation she developed profuse hemorrhage which required an emergency hysterectomy for uncontrolled bleeding. Histopathological examination confirmed a cervical pregnancy. The clinical and pathological criteria for the diagnosis and the etiology of cervical pregnancy are discussed. PMID:11072500

  1. Anterior tympanic plate fracture following extraction of the lower molar

    PubMed Central

    2016-01-01

    The present case report describes an external auditory canal injury following extraction of the lower molar. The external auditory canal was torn in the same fashion that occurs in an anterior tympanic plate fracture. This case demonstrates one of the rare complications associated with dental extractions. PMID:26904496

  2. Intrusion of overerupted molars by corticotomy and magnets.

    PubMed

    Hwang, H S; Lee, K H

    2001-08-01

    Although posterior tooth intrusion in an adult patient is a difficult procedure, it can be achieved without extruding the adjacent teeth by performing a corticotomy and using magnets. In carrying out this procedure on 2 adult patients whose molars had overerupted due to the early loss of antagonists, tooth movement was rapidly achieved without discomfort or side effects. PMID:11500664

  3. Lower molar and incisor displacement associated with mandibular remodeling.

    PubMed

    Baumrind, S; Bravo, L A; Ben-Bassat, Y; Curry, S; Korn, E L

    1997-01-01

    The purpose of this study was to quantify the amount of alveolar modeling at the apices of the mandibular incisor and first molar specifically associated with appositional and resorptive changes on the lower border of the mandible during growth and treatment. Cephalometric data from superimpositions on anterior cranial base, mandibular implants of the Björk type, and anatomical "best fit" of mandibular border structures were integrated using a recently developed strategy, which is described. Data were available at annual intervals between 8.5 and 15.5 years for a previously described sample of approximately 30 children with implants. The average magnitudes of the changes at the root apices of the mandibular first molar and central incisor associated with modeling/remodeling of the mandibular border and symphysis were unexpectedly small. At the molar apex, mean values approximated zero in both anteroposterior and vertical directions. At the incisor apex, mean values approximated zero in the anteroposterior direction and averaged less than 0.15 mm/year in the vertical direction. Standard deviations were roughly equal for the molar and the incisor in both the anteroposterior and vertical directions. Dental displacement associated with surface modeling plays a smaller role in final tooth position in the mandible than in the maxilla. It may also be reasonably inferred that anatomical best-fit superimpositions made in the absence of implants give a more complete picture of hard tissue turnover in the mandible than they do in the maxilla. PMID:9107373

  4. A Time for Heresy: A Molar Reading Model.

    ERIC Educational Resources Information Center

    Williamson, Leon E.

    A survey of the literature concerning the mental processes used in reading reveals a proliferation of molecular theories which explain only a small (and frequently neurological) component of the reading act. Enough information exists, however, to sketch an integrated, molar model of the reading process, which stresses the interrelationships…

  5. Non-compliance Appliances for Upper Molar Distalization: An Overview.

    PubMed

    Noorollahian, Saeed; Alavi, Shiva; Shirban, Farinaz

    2015-01-01

    Tooth Size Arch-length Discrepancy (TSALD) is a common problem in orthodontics. Its clinical signs are tooth crowding, impaction and incisor proclination. The treatment options are dental arch expansion or tooth mass reduction (stripping or extraction). The "extraction versus non-extraction" controversy has been widely debated in the orthodontic literature. Distalization is a kind of arch expansion in anetro-posterior dimension. Several studies have evaluated both the therapeutic effectiveness and the side effects of the appliances for this method of space gaining. In some cases molar distalization is preferred, e.g., a patient with acceptable profile and skeletal pattern and half cusp Class II molar malocclusion or even less. In some cases molar distalization is the only way, e.g., the patient with previous upper premolar extraction and excessive overijet, or a skeletal Class III patient with previous upper premolar extraction needed upper anterior teeth retraction to create reverse overjet aspre surgical orthodontic decompensation. In this review article, we described non-compliance upper molar distalizing appliances. PMID:26720949

  6. Temporal extensivity of Tsallis' entropy and the bound on entropy production rate.

    PubMed

    Abe, Sumiyoshi; Nakada, Yutaka

    2006-08-01

    The Tsallis entropy, which is a generalization of the Boltzmann-Gibbs entropy, plays a central role in nonextensive statistical mechanics of complex systems. A lot of efforts have recently been made on establishing a dynamical foundation for the Tsallis entropy. They are primarily concerned with nonlinear dynamical systems at the edge of chaos. Here, it is shown by generalizing a formulation of thermostatistics based on time averages recently proposed by Carati [A. Carati, Physica A 348, 110 (2005)] that, whenever relevant, the Tsallis entropy indexed by q is temporally extensive: linear growth in time, i.e., finite entropy production rate. Then, the universal bound on the entropy production rate is shown to be 1/ absolute value (1-q). The property of the associated probabilistic process, i.e., the sojourn time distribution, determining randomness of motion in phase space is also analyzed. PMID:17025406

  7. Chemical equilibrium. [maximizing entropy of gas system to derive relations between thermodynamic variables

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The entropy of a gas system with the number of particles subject to external control is maximized to derive relations between the thermodynamic variables that obtain at equilibrium. These relations are described in terms of the chemical potential, defined as equivalent partial derivatives of entropy, energy, enthalpy, free energy, or free enthalpy. At equilibrium, the change in total chemical potential must vanish. This fact is used to derive the equilibrium constants for chemical reactions in terms of the partition functions of the species involved in the reaction. Thus the equilibrium constants can be determined accurately, just as other thermodynamic properties, from a knowledge of the energy levels and degeneracies for the gas species involved. These equilibrium constants permit one to calculate the equilibrium concentrations or partial pressures of chemically reacting species that occur in gas mixtures at any given condition of pressure and temperature or volume and temperature.

  8. Quantum statistical entropy of Schwarzchild-de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Zhao, Ren; Zhang, Li-Chun; Zhao, Hui-Hua

    2012-10-01

    Using the quantum statistical method, we calculate quantum statistical entropy between the black hole horizon and the cosmological horizon in Schwarzchild spacetime and derive the expression of quantum statistical entropy in de Sitter spacetime. Under the Unruh-Verlinde temperature of Schwarzchild-de Sitter spacetime in the entropic force views, we obtain the expression of quantum statistical entropy in de Sitter spacetime. It is shown that in de Sitter spacetime quantum statistical entropy is the sum of thermodynamic entropy corresponding black hole horizon and the one corresponding cosmological horizon. And the correction term of de Sitter spacetime entropy is obtained. Therefore, it is confirmed that the black hole entropy is the entropy of quantum field outside the black hole horizon. The entropy of de Sitter spacetime is the entropy of quantum field between the black hole horizon and the cosmological horizon.

  9. Entropy and order in urban street networks

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Agust; Mohajeri, Nahid

    2013-11-01

    Many complex networks erase parts of their geometry as they develop, so that their evolution is difficult to quantify and trace. Here we introduce entropy measures for quantifying the complexity of street orientations and length variations within planar networks and apply them to the street networks of 41 British cities, whose geometric evolution over centuries can be explored. The results show that the street networks of the old central parts of the cities have lower orientation/length entropies - the streets are more tightly ordered and form denser networks - than the outer and more recent parts. Entropy and street length increase, because of spreading, with distance from the network centre. Tracing the 400-year evolution of one network indicates growth through densification (streets are added within the existing network) and expansion (streets are added at the margin of the network) and a gradual increase in entropy over time.

  10. Relative entropy convergence for depolarizing channels

    NASA Astrophysics Data System (ADS)

    Müller-Hermes, Alexander; Stilck França, Daniel; Wolf, Michael M.

    2016-02-01

    We study the convergence of states under continuous-time depolarizing channels with full rank fixed points in terms of the relative entropy. The optimal exponent of an upper bound on the relative entropy in this case is given by the log-Sobolev-1 constant. Our main result is the computation of this constant. As an application, we use the log-Sobolev-1 constant of the depolarizing channels to improve the concavity inequality of the von Neumann entropy. This result is compared to similar bounds obtained recently by Kim and we show a version of Pinsker's inequality, which is optimal and tight if we fix the second argument of the relative entropy. Finally, we consider the log-Sobolev-1 constant of tensor-powers of the completely depolarizing channel and use a quantum version of Shearer's inequality to prove a uniform lower bound.

  11. Quantum entanglement and entropy in particle creation

    SciTech Connect

    Lin, S.-Y.; Chou, C.-H.; Hu, B. L.

    2010-04-15

    We investigate the basic theoretical issues in the quantum entanglement of particle pairs created from the vacuum in a time-dependent background field or spacetime. Similar to entropy generation from these processes which depends on the choice of physical variables and how certain information is coarse grained, entanglement dynamics hinges on the choice of measurable quantities and how the two parties are selected as well as the background dynamics of the field or spacetime. We discuss the conditions of separability of quantum states in particle creation processes and point out the differences in how the von Neumann entropy is used as a measure of entropy generation versus for entanglement dynamics. We show by an explicit construction that adoption of a different set of physical variables yields a different entanglement entropy. As an application of these theoretical considerations we show how the particle number and the quantum phase enter the entanglement dynamics in cosmological particle production.

  12. Charged entanglement entropy of local operators

    NASA Astrophysics Data System (ADS)

    Caputa, Paweł; Nozaki, Masahiro; Numasawa, Tokiro

    2016-05-01

    In this work we consider the time evolution of charged Rényi entanglement entropies after exciting the vacuum with local fermionic operators. In order to explore the information contained in charged Rényi entropies, we perform computations of their excess due to the operator excitation in two-dimensional conformal field theory, free fermionic field theories in various dimensions as well as holography. In the analysis we focus on the dependence on the entanglement charge, the chemical potential and the spacetime dimension. We find that excesses of charged (Rényi) entanglement entropy can be interpreted in terms of charged quasiparticles. Moreover, we show that by appropriately tuning the chemical potential, charged Rényi entropies can be used to extract entanglement in a certain charge sector of the excited state.

  13. On multiscale entropy analysis for physiological data

    NASA Astrophysics Data System (ADS)

    Thuraisingham, Ranjit A.; Gottwald, Georg A.

    2006-07-01

    We perform an analysis of cardiac data using multiscale entropy as proposed in Costa et al. [Multiscale entropy analysis of complex physiological time series, Phys. Rev. Lett. 89 (2002) 068102]. We reproduce the signatures of the multiscale entropy for the three cases of young healthy hearts, atrial fibrillation and congestive heart failure. We show that one has to be cautious how to interpret these signatures in terms of the underlying dynamics. In particular, we show that different dynamical systems can exhibit the same signatures depending on the sampling time, and that similar systems may have different signatures depending on the time scales involved. Besides the total amount of data we identify the sampling time, the correlation time and the period of possible nonlinear oscillations as important time scales which have to be involved in a detailed analysis of the signatures of multiscale entropies. We illustrate our ideas with the Lorenz equation as a simple deterministic chaotic system.

  14. α-z-Rényi relative entropies

    SciTech Connect

    Audenaert, Koenraad M. R.; Datta, Nilanjana

    2015-02-15

    We consider a two-parameter family of Rényi relative entropies D{sub α,z}(ρ ∥ σ) that are quantum generalisations of the classical Rényi divergence D{sub α}(p ∥ q). This family includes many known relative entropies (or divergences) such as the quantum relative entropy, the recently defined quantum Rényi divergences, as well as the quantum Rényi relative entropies. All its members satisfy the quantum generalizations of Rényi’s axioms for a divergence. We consider the range of the parameters α, z for which the data-processing inequality holds. We also investigate a variety of limiting cases for the two parameters, obtaining explicit formulas for each one of them.

  15. Kaluza-Klein nature of entropy function

    NASA Astrophysics Data System (ADS)

    Salti, Mustafa; Aydogdu, Oktay; Yanar, Hilmi

    2015-11-01

    In the present study, we mainly investigate the nature of entropy function in non-flat Kaluza-Klein universe. We prove that the first and generalized second laws of gravitational thermodynamics are valid on the dynamical apparent horizon.

  16. Applications of quantum entropy to statistics

    SciTech Connect

    Silver, R.N.; Martz, H.F.

    1994-07-01

    This paper develops two generalizations of the maximum entropy (ME) principle. First, Shannon classical entropy is replaced by von Neumann quantum entropy to yield a broader class of information divergences (or penalty functions) for statistics applications. Negative relative quantum entropy enforces convexity, positivity, non-local extensivity and prior correlations such as smoothness. This enables the extension of ME methods from their traditional domain of ill-posed in-verse problems to new applications such as non-parametric density estimation. Second, given a choice of information divergence, a combination of ME and Bayes rule is used to assign both prior and posterior probabilities. Hyperparameters are interpreted as Lagrange multipliers enforcing constraints. Conservation principles are proposed to act statistical regularization and other hyperparameters, such as conservation of information and smoothness. ME provides an alternative to heirarchical Bayes methods.

  17. Entropy growth in emotional online dialogues

    NASA Astrophysics Data System (ADS)

    Sienkiewicz, J.; Skowron, M.; Paltoglou, G.; Hołyst, Janusz A.

    2013-02-01

    We analyze emotionally annotated massive data from IRC (Internet Relay Chat) and model the dialogues between its participants by assuming that the driving force for the discussion is the entropy growth of emotional probability distribution.

  18. Joint entropy of quantum damped harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Aguiar, V.; Guedes, I.

    2014-05-01

    We use the dynamical invariant method and a unitary transformation to obtain the exact Schrödinger wave function, ψn(x,t), and calculate for n=0 the time-dependent joint entropy (Leipnik’s entropy) for two classes of quantum damped harmonic oscillators. We observe that the joint entropy does not vary in time for the Caldirola-Kanai oscillator, while it decreases and tends to a constant value (ln({e}/{2})) for asymptotic times for the Lane-Emden ones. This is due to the fact that for the latter, the damping factor decreases as time increases. The results show that the time dependence of the joint entropy is quite complex and does not obey a general trend of monotonously increase with time.

  19. Entropy analysis of natural language written texts

    NASA Astrophysics Data System (ADS)

    Papadimitriou, C.; Karamanos, K.; Diakonos, F. K.; Constantoudis, V.; Papageorgiou, H.

    2010-08-01

    The aim of the present work is to investigate the relative contribution of ordered and stochastic components in natural written texts and examine the influence of text category and language on these. To this end, a binary representation of written texts and the generated symbolic sequences are examined by the standard block entropy analysis and the Shannon and Kolmogorov entropies are obtained. It is found that both entropies are sensitive to both language and text category with the text category sensitivity to follow almost the same trends in both languages (English and Greek) considered. The values of these entropies are compared with those of stochastically generated symbolic sequences and the nature of correlations present in this representation of real written texts is identified.

  20. Tissue Radiation Response with Maximum Tsallis Entropy

    SciTech Connect

    Sotolongo-Grau, O.; Rodriguez-Perez, D.; Antoranz, J. C.; Sotolongo-Costa, Oscar

    2010-10-08

    The expression of survival factors for radiation damaged cells is currently based on probabilistic assumptions and experimentally fitted for each tumor, radiation, and conditions. Here, we show how the simplest of these radiobiological models can be derived from the maximum entropy principle of the classical Boltzmann-Gibbs expression. We extend this derivation using the Tsallis entropy and a cutoff hypothesis, motivated by clinical observations. The obtained expression shows a remarkable agreement with the experimental data found in the literature.

  1. Maximum entropy production - Full steam ahead

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.

    2012-05-01

    The application of a principle of Maximum Entropy Production (MEP, or less ambiguously MaxEP) to planetary climate is discussed. This idea suggests that if sufficiently free of dynamical constraints, the atmospheric and oceanic heat flows across a planet may conspire to maximize the generation of mechanical work, or entropy. Thermodynamic and information-theoretic aspects of this idea are discussed. These issues are also discussed in the context of dust devils, convective vortices found in strongly-heated desert areas.

  2. Entropy analysis of systems exhibiting negative probabilities

    NASA Astrophysics Data System (ADS)

    Tenreiro Machado, J. A.

    2016-07-01

    This paper addresses the concept of negative probability and its impact upon entropy. An analogy between the probability generating functions, in the scope of quasiprobability distributions, and the Grünwald-Letnikov definition of fractional derivatives, is explored. Two distinct cases producing negative probabilities are formulated and their distinct meaning clarified. Numerical calculations using the Shannon entropy characterize further the characteristics of the two limit cases.

  3. Nonrelativistic Shannon information entropy for Kratzer potential

    NASA Astrophysics Data System (ADS)

    S, A. Najafizade; H, Hassanabadi; S, Zarrinkamar

    2016-04-01

    The Shannon information entropy is investigated within the nonrelativistic framework. The Kratzer potential is considered as the interaction and the problem is solved in a quasi-exact analytical manner to discuss the ground and first excited states. Some interesting features of the information entropy densities as well as the probability densities are demonstrated. The Bialynicki–Birula–Mycielski inequality is also tested and found to hold for these cases.

  4. The role of entropy in word ranking

    NASA Astrophysics Data System (ADS)

    Mehri, Ali; Darooneh, Amir H.

    2011-09-01

    Entropy as a measure of complexity in the systems has been applied for ranking the words in the human written texts. We introduce a novel approach to evaluate accuracy for retrieved indices. We also have an illustrative comparison between proposed entropic metrics and some other methods in extracting the keywords. It seems that, some of the discussed metrics apply similar features for word ranking in the text. This work recommend the entropy as a systematic measure in text mining.

  5. Minimum entropy deconvolution and blind equalisation

    NASA Technical Reports Server (NTRS)

    Satorius, E. H.; Mulligan, J. J.

    1992-01-01

    Relationships between minimum entropy deconvolution, developed primarily for geophysics applications, and blind equalization are pointed out. It is seen that a large class of existing blind equalization algorithms are directly related to the scale-invariant cost functions used in minimum entropy deconvolution. Thus the extensive analyses of these cost functions can be directly applied to blind equalization, including the important asymptotic results of Donoho.

  6. Random coding strategies for minimum entropy

    NASA Technical Reports Server (NTRS)

    Posner, E. C.

    1975-01-01

    This paper proves that there exists a fixed random coding strategy for block coding a memoryless information source to achieve the absolute epsilon entropy of the source. That is, the strategy can be chosen independent of the block length. The principal new tool is an easy result on the semicontinuity of the relative entropy functional of one probability distribution with respect to another. The theorem generalizes a result from rate-distortion theory to the 'zero-infinity' case.

  7. Entropies and correlations in classical and quantum systems

    NASA Astrophysics Data System (ADS)

    Man'ko, Margarita A.; Man'ko, Vladimir I.; Marmo, Giuseppe

    2016-09-01

    We present a review of entropy properties for classical and quantum systems including Shannon entropy, von Neumann entropy, Rényi entropy, and Tsallis entropy. We discuss known and new entropic and information inequalities for classical and quantum systems, both composite and noncomposite. We demonstrate matrix inequalities associated with the entropic subadditivity and strong subadditivity conditions and give a new inequality for matrix elements of unitary matrices.

  8. Holographic entanglement entropy of anisotropic minimal surfaces in LLM geometries

    NASA Astrophysics Data System (ADS)

    Kim, Chanju; Kim, Kyung Kiu; Kwon, O.-Kab

    2016-08-01

    We calculate the holographic entanglement entropy (HEE) of the Zk orbifold of Lin-Lunin-Maldacena (LLM) geometries which are dual to the vacua of the mass-deformed ABJM theory with Chern-Simons level k. By solving the partial differential equations analytically, we obtain the HEEs for all LLM solutions with arbitrary M2 charge and k up to μ02 -order where μ0 is the mass parameter. The renormalized entanglement entropies are all monotonically decreasing near the UV fixed point in accordance with the F-theorem. Except the multiplication factor and to all orders in μ0, they are independent of the overall scaling of Young diagrams which characterize LLM geometries. Therefore we can classify the HEEs of LLM geometries with Zk orbifold in terms of the shape of Young diagrams modulo overall size. HEE of each family is a pure number independent of the 't Hooft coupling constant except the overall multiplication factor. We extend our analysis to obtain HEE analytically to μ04 -order for the symmetric droplet case.

  9. Corticotomy-assisted molar protraction with the aid of temporary anchorage device.

    PubMed

    Uribe, Flavio; Janakiraman, Nandakumar; Fattal, Amine N; Schincaglia, Gian Pietro; Nanda, Ravindra

    2013-11-01

    This case report describes the interdisciplinary management of a 58-year-old woman who was missing lower first molars and supraerupted maxillary first molars. The treatment plan included intrusion of the upper first molars and corticotomy-assisted mandibular second molar protraction with the aid of temporary anchorage devices. Miniscrews were effective in intrusion of the maxillary first molars and protraction of the lower second molars. Although good functional outcome was achieved in 41 months, the corticotomy-assisted procedure did not significantly reduce the treatment time. PMID:23834274

  10. On variational definition of quantum entropy

    SciTech Connect

    Belavkin, Roman V.

    2015-01-13

    Entropy of distribution P can be defined in at least three different ways: 1) as the expectation of the Kullback-Leibler (KL) divergence of P from elementary δ-measures (in this case, it is interpreted as expected surprise); 2) as a negative KL-divergence of some reference measure ν from the probability measure P; 3) as the supremum of Shannon’s mutual information taken over all channels such that P is the output probability, in which case it is dual of some transportation problem. In classical (i.e. commutative) probability, all three definitions lead to the same quantity, providing only different interpretations of entropy. In non-commutative (i.e. quantum) probability, however, these definitions are not equivalent. In particular, the third definition, where the supremum is taken over all entanglements of two quantum systems with P being the output state, leads to the quantity that can be twice the von Neumann entropy. It was proposed originally by V. Belavkin and Ohya [1] and called the proper quantum entropy, because it allows one to define quantum conditional entropy that is always non-negative. Here we extend these ideas to define also quantum counterpart of proper cross-entropy and cross-information. We also show inequality for the values of classical and quantum information.

  11. Entanglement entropy and nonabelian gauge symmetry

    NASA Astrophysics Data System (ADS)

    Donnelly, William

    2014-11-01

    Entanglement entropy has proven to be an extremely useful concept in quantum field theory. Gauge theories are of particular interest, but for these systems the entanglement entropy is not clearly defined because the physical Hilbert space does not factor as a tensor product according to regions of space. Here we review a definition of entanglement entropy that applies to abelian and nonabelian lattice gauge theories. This entanglement entropy is obtained by embedding the physical Hilbert space into a product of Hilbert spaces associated to regions with boundary. The latter Hilbert spaces include degrees of freedom on the entangling surface that transform like surface charges under the gauge symmetry. These degrees of freedom are shown to contribute to the entanglement entropy, and the form of this contribution is determined by the gauge symmetry. We test our definition using the example of two-dimensional Yang-Mills theory, and find that it agrees with the thermal entropy in de Sitter space, and with the results of the Euclidean replica trick. We discuss the possible implications of this result for more complicated gauge theories, including quantum gravity.

  12. Hidden entropy production by fast variables

    NASA Astrophysics Data System (ADS)

    Chun, Hyun-Myung; Noh, Jae Dong

    2015-05-01

    We investigate nonequilibrium underdamped Langevin dynamics of Brownian particles that interact through a harmonic potential with coupling constant K and are in thermal contact with two heat baths at different temperatures. The system is characterized by a net heat flow and an entropy production in the steady state. We compare the entropy production of the harmonic system with that of Brownian particles linked with a rigid rod. The harmonic system may be expected to reduce to the rigid rod system in the infinite K limit. However, we find that the harmonic system in the K →∞ limit produces more entropy than the rigid rod system. The harmonic system has the center-of-mass coordinate as a slow variable and the relative coordinate as a fast variable. By identifying the contributions of the degrees of freedom to the total entropy production, we show that the hidden entropy production by the fast variable is responsible for the extra entropy production. We discuss the K dependence of each contribution.

  13. A tetrahedral entropy for water.

    PubMed

    Kumar, Pradeep; Buldyrev, Sergey V; Stanley, H Eugene

    2009-12-29

    We introduce the space-dependent correlation function C (Q)(r) and time-dependent autocorrelation function C (Q)(t) of the local tetrahedral order parameter Q identical with Q(r,t). By using computer simulations of 512 waterlike particles interacting through the transferable interaction potential with five points (TIP5 potential), we investigate C (Q)(r) in a broad region of the phase diagram. We find that at low temperatures C (Q)(t) exhibits a two-step time-dependent decay similar to the self-intermediate scattering function and that the corresponding correlation time tau(Q) displays a dynamic cross-over from non-Arrhenius behavior for T > T (W) to Arrhenius behavior for T < T (W), where T (W) denotes the Widom temperature where the correlation length has a maximum as T is decreased along a constant-pressure path. We define a tetrahedral entropy S (Q) associated with the local tetrahedral order of water molecules and find that it produces a major contribution to the specific heat maximum at the Widom line. Finally, we show that tau(Q) can be extracted from S (Q) by using an analog of the Adam-Gibbs relation. PMID:20018692

  14. Entropy and the Magic Flute

    NASA Astrophysics Data System (ADS)

    Morowitz, Harold J.

    1996-10-01

    Harold Morowitz has long been highly regarded both as an eminent scientist and as an accomplished science writer. The essays in The Wine of Life , his first collection, were hailed by C.P. Snow as "some of the wisest, wittiest and best informed I have ever read," and Carl Sagan called them "a delight to read." In later volumes he established a reputation for a wide-ranging intellect, an ability to see unexpected connections and draw striking parallels, and a talent for communicating scientific ideas with optimism and wit. With Entropy and the Magic Flute , Morowitz once again offers an appealing mix of brief reflections on everything from litmus paper to the hippopotamus to the sociology of Palo Alto coffee shops. Many of these pieces are appreciations of scientists that Morowitz holds in high regard, while others focus on health issues, such as America's obsession with cheese toppings. There is also a fascinating piece on the American Type Culture Collection, a zoo or warehouse for microbes that houses some 11,800 strains of bacteria, and over 3,000 specimens of protozoa, algae, plasmids, and oncogenes. Here then are over forty light, graceful essays in which one of our wisest experimental biologists comments on issues of science, technology, society, philosophy, and the arts.

  15. Maximum entropy production in daisyworld

    NASA Astrophysics Data System (ADS)

    Maunu, Haley A.; Knuth, Kevin H.

    2012-05-01

    Daisyworld was first introduced in 1983 by Watson and Lovelock as a model that illustrates how life can influence a planet's climate. These models typically involve modeling a planetary surface on which black and white daisies can grow thus influencing the local surface albedo and therefore also the temperature distribution. Since then, variations of daisyworld have been applied to study problems ranging from ecological systems to global climate. Much of the interest in daisyworld models is due to the fact that they enable one to study self-regulating systems. These models are nonlinear, and as such they exhibit sensitive dependence on initial conditions, and depending on the specifics of the model they can also exhibit feedback loops, oscillations, and chaotic behavior. Many daisyworld models are thermodynamic in nature in that they rely on heat flux and temperature gradients. However, what is not well-known is whether, or even why, a daisyworld model might settle into a maximum entropy production (MEP) state. With the aim to better understand these systems, this paper will discuss what is known about the role of MEP in daisyworld models.

  16. Entanglement entropy of electronic excitations

    NASA Astrophysics Data System (ADS)

    Plasser, Felix

    2016-05-01

    A new perspective into correlation effects in electronically excited states is provided through quantum information theory. The entanglement between the electron and hole quasiparticles is examined, and it is shown that the related entanglement entropy can be computed from the eigenvalue spectrum of the well-known natural transition orbital (NTO) decomposition. Non-vanishing entanglement is obtained whenever more than one NTO pair is involved, i.e., in the case of a multiconfigurational or collective excitation. An important implication is that in the case of entanglement it is not possible to gain a complete description of the state character from the orbitals alone, but more specific analysis methods are required to decode the mutual information between the electron and hole. Moreover, the newly introduced number of entangled states is an important property by itself giving information about excitonic structure. The utility of the formalism is illustrated in the cases of the excited states of two interacting ethylene molecules, the conjugated polymer para-phenylene vinylene, and the naphthalene molecule.

  17. Entanglement entropy of electronic excitations.

    PubMed

    Plasser, Felix

    2016-05-21

    A new perspective into correlation effects in electronically excited states is provided through quantum information theory. The entanglement between the electron and hole quasiparticles is examined, and it is shown that the related entanglement entropy can be computed from the eigenvalue spectrum of the well-known natural transition orbital (NTO) decomposition. Non-vanishing entanglement is obtained whenever more than one NTO pair is involved, i.e., in the case of a multiconfigurational or collective excitation. An important implication is that in the case of entanglement it is not possible to gain a complete description of the state character from the orbitals alone, but more specific analysis methods are required to decode the mutual information between the electron and hole. Moreover, the newly introduced number of entangled states is an important property by itself giving information about excitonic structure. The utility of the formalism is illustrated in the cases of the excited states of two interacting ethylene molecules, the conjugated polymer para-phenylene vinylene, and the naphthalene molecule. PMID:27208936

  18. Partial (focal) seizure

    MedlinePlus

    ... Jacksonian seizure; Seizure - partial (focal); Temporal lobe seizure; Epilepsy - partial seizures ... Abou-Khalil BW, Gallagher MJ, Macdonald RL. Epilepsies. In: Daroff RB, ... 6th ed. Philadelphia, PA: Elsevier Saunders; 2012:chap 67. ...

  19. Partial (focal) seizure

    MedlinePlus

    ... Jacksonian seizure; Seizure - partial (focal); Temporal lobe seizure; Epilepsy - partial seizures ... Abou-Khalil BW, Gallagher MJ, Macdonald RL. Epilepsies. In: Daroff ... Practice . 7th ed. Philadelphia, PA: Elsevier; 2016:chap 101. ...

  20. Partial tooth gear bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2010-01-01

    A partial gear bearing including an upper half, comprising peak partial teeth, and a lower, or bottom, half, comprising valley partial teeth. The upper half also has an integrated roller section between each of the peak partial teeth with a radius equal to the gear pitch radius of the radially outwardly extending peak partial teeth. Conversely, the lower half has an integrated roller section between each of the valley half teeth with a radius also equal to the gear pitch radius of the peak partial teeth. The valley partial teeth extend radially inwardly from its roller section. The peak and valley partial teeth are exactly out of phase with each other, as are the roller sections of the upper and lower halves. Essentially, the end roller bearing of the typical gear bearing has been integrated into the normal gear tooth pattern.

  1. Piezoelectric Versus Conventional Rotary Techniques for Impacted Third Molar Extraction

    PubMed Central

    Jiang, Qian; Qiu, Yating; Yang, Chi; Yang, Jingyun; Chen, Minjie; Zhang, Zhiyuan

    2015-01-01

    Abstract Impacted third molars are frequently encountered in clinical work. Surgical removal of impacted third molars is often required to prevent clinical symptoms. Traditional rotary cutting instruments are potentially injurious, and piezosurgery, as a new osteotomy technique, has been introduced in oral and maxillofacial surgery. No consistent conclusion has been reached regarding whether this new technique is associated with fewer or less severe postoperative sequelae after third molar extraction. The aim of this study was to compare piezosurgery with rotary osteotomy techniques, with regard to surgery time and the severity of postoperative sequelae, including pain, swelling, and trismus. We conducted a systematic literature search in the Cochrane Library, PubMed, Embase, and Google Scholar. The eligibility criteria of this study included the following: the patients were clearly diagnosed as having impacted mandibular third molars; the patients underwent piezosurgery osteotomy, and in the control group rotary osteotomy techniques, for removing impacted third molars; the outcomes of interest include surgery time, trismus, swelling or pain; the studies are randomized controlled trials. We used random-effects models to calculate the difference in the outcomes, and the corresponding 95% confidence interval. We calculated the weighted mean difference if the trials used the same measurement, and a standardized mean difference if otherwise. A total of seven studies met the eligibility criteria and were included in our analysis. Compared with rotary osteotomy, patients undergoing piezosurgery experienced longer surgery time (mean difference 4.13 minutes, 95% confidence interval 2.75–5.52, P < 0.0001). Patients receiving the piezoelectric technique had less swelling at postoperative days 1, 3, 5, and 7 (all Ps ≤0.023). Additionally, there was a trend of less postoperative pain and trismus in the piezosurgery groups. The number of included randomized controlled

  2. Exploring metameric variation in human molars: a morphological study using morphometric mapping.

    PubMed

    Morita, Wataru; Morimoto, Naoki; Ohshima, Hayato

    2016-09-01

    Human molars exhibit a type of metameric variation, which is the difference in serially repeated morphology within an organism. Various theories have been proposed to explain how this variation is brought about in the molars. Actualistic data that support the theories, however, are still relatively scarce because of methodological limitations. Here we propose new methods to analyse detailed tooth crown morphologies. We applied morphometric mapping to the enamel-dentine junction of human maxillary molars and examined whether odontogenetic models were adaptable to human maxillary molars. Our results showed that the upper first molar is phenotypically distinct among the maxillary molars. The average shape of the upper first molar is characterized by four well-defined cusps and precipitous surface relief of the occlusal table. On the other hand, upper third molar is characterized by smooth surface relief of the occlusal table and shows greater shape variation and distinct distribution patterns in morphospace. The upper second molar represents an intermediate state between first and third molar. Size-related shape variation was investigated by the allometric vector analysis, and it appeared that human maxillary molars tend to converge toward the shape of the upper first molar as the size increases. Differences between the upper first molar and the upper second and third molar can thus be largely explained as an effect of allometry. Collectively, these results indicate that the observed pattern of metameric variation in human molars is consistent with odontogenetic models of molar row structure (inhibitory cascade model) and molar crown morphology (patterning cascade model). This study shows that morphometric mapping is a useful tool to visualize and quantify the morphological features of teeth, which can provide the basis for a better understanding of tooth evolution linking morphology and development. PMID:27098351

  3. Thermal correction to the molar polarizability of a Boltzmann gas

    SciTech Connect

    Jentschura, U. D.; Puchalski, M.; Mohr, P. J.

    2011-12-15

    Metrology in atomic physics has been crucial for a number of advanced determinations of fundamental constants. In addition to very precise frequency measurements, the molar polarizability of an atomic gas has recently also been measured very accurately. Part of the motivation for the measurements is due to ongoing efforts to redefine the International System of Units (SI), for which an accurate value of the Boltzmann constant is needed. Here we calculate the dominant shift of the molar polarizability in an atomic gas due to thermal effects. It is given by the relativistic correction to the dipole interaction, which emerges when the probing electric field is Lorentz transformed into the rest frame of the atoms that undergo thermal motion. While this effect is small when compared to currently available experimental accuracy, the relativistic correction to the dipole interaction is much larger than the thermal shift of the polarizability induced by blackbody radiation.

  4. Thermal correction to the molar polarizability of a Boltzmann gas

    NASA Astrophysics Data System (ADS)

    Jentschura, U. D.; Puchalski, M.; Mohr, P. J.

    2011-12-01

    Metrology in atomic physics has been crucial for a number of advanced determinations of fundamental constants. In addition to very precise frequency measurements, the molar polarizability of an atomic gas has recently also been measured very accurately. Part of the motivation for the measurements is due to ongoing efforts to redefine the International System of Units (SI), for which an accurate value of the Boltzmann constant is needed. Here we calculate the dominant shift of the molar polarizability in an atomic gas due to thermal effects. It is given by the relativistic correction to the dipole interaction, which emerges when the probing electric field is Lorentz transformed into the rest frame of the atoms that undergo thermal motion. While this effect is small when compared to currently available experimental accuracy, the relativistic correction to the dipole interaction is much larger than the thermal shift of the polarizability induced by blackbody radiation.

  5. Ectopic 3rd Molar Tooth in the Maxillary Antrum

    PubMed Central

    Bello, Seidu A.; Oketade, Ifeoluwa O.; Osunde, Otasowie D.

    2014-01-01

    Location of ectopic tooth in a nondentate area like the maxillary antrum is rare. A 17-year-old boy, with one year history of recurrent right facial swelling and radiographic finding of a maxillary third molar tooth located at the posterior wall of the maxillary antrum, is presented. Under endotracheal intubation, the tooth was extracted through a Caldwell-Luc antrostomy approach and patient had an uneventful recovery and has been symptom free for eight months. Ectopic tooth in the maxillary antrum is rare and is commonest with maxillary third molar. It may be symptomless but is more commonly associated with inflammatory symptoms. The treatment of choice is surgical excision which is mostly carried out with Caldwell-Luc approach, even though endoscopic approach is being reported. PMID:25132999

  6. Ectopic 3rd molar tooth in the maxillary antrum.

    PubMed

    Bello, Seidu A; Oketade, Ifeoluwa O; Osunde, Otasowie D

    2014-01-01

    Location of ectopic tooth in a nondentate area like the maxillary antrum is rare. A 17-year-old boy, with one year history of recurrent right facial swelling and radiographic finding of a maxillary third molar tooth located at the posterior wall of the maxillary antrum, is presented. Under endotracheal intubation, the tooth was extracted through a Caldwell-Luc antrostomy approach and patient had an uneventful recovery and has been symptom free for eight months. Ectopic tooth in the maxillary antrum is rare and is commonest with maxillary third molar. It may be symptomless but is more commonly associated with inflammatory symptoms. The treatment of choice is surgical excision which is mostly carried out with Caldwell-Luc approach, even though endoscopic approach is being reported. PMID:25132999

  7. Maximum Entropy Principle for Transportation

    NASA Astrophysics Data System (ADS)

    Bilich, F.; DaSilva, R.

    2008-11-01

    In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utility concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.

  8. Maximum entropy principal for transportation

    SciTech Connect

    Bilich, F.; Da Silva, R.

    2008-11-06

    In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utility concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.

  9. Entropy of balance - some recent results

    PubMed Central

    2010-01-01

    Background Entropy when applied to biological signals is expected to reflect the state of the biological system. However the physiological interpretation of the entropy is not always straightforward. When should high entropy be interpreted as a healthy sign, and when as marker of deteriorating health? We address this question for the particular case of human standing balance and the Center of Pressure data. Methods We have measured and analyzed balance data of 136 participants (young, n = 45; elderly, n = 91) comprising in all 1085 trials, and calculated the Sample Entropy (SampEn) for medio-lateral (M/L) and anterior-posterior (A/P) Center of Pressure (COP) together with the Hurst self-similariy (ss) exponent α using Detrended Fluctuation Analysis (DFA). The COP was measured with a force plate in eight 30 seconds trials with eyes closed, eyes open, foam, self-perturbation and nudge conditions. Results 1) There is a significant difference in SampEn for the A/P-direction between the elderly and the younger groups Old > young. 2) For the elderly we have in general A/P > M/L. 3) For the younger group there was no significant A/P-M/L difference with the exception for the nudge trials where we had the reverse situation, A/P < M/L. 4) For the elderly we have, Eyes Closed > Eyes Open. 5) In case of the Hurst ss-exponent we have for the elderly, M/L > A/P. Conclusions These results seem to be require some modifications of the more or less established attention-constraint interpretation of entropy. This holds that higher entropy correlates with a more automatic and a less constrained mode of balance control, and that a higher entropy reflects, in this sense, a more efficient balancing. PMID:20670457

  10. Fate of the molar dental lamina in the monophyodont mouse.

    PubMed

    Dosedělová, Hana; Dumková, Jana; Lesot, Hervé; Glocová, Kristýna; Kunová, Michaela; Tucker, Abigail S; Veselá, Iva; Krejčí, Pavel; Tichý, František; Hampl, Aleš; Buchtová, Marcela

    2015-01-01

    The successional dental lamina (SDL) plays an essential role in the development of replacement teeth in diphyodont and polyphyodont animals. A morphologically similar structure, the rudimental successional dental lamina (RSDL), has been described in monophyodont (only one tooth generation) lizards on the lingual side of the developing functional tooth. This rudimentary lamina regresses, which has been proposed to play a role in preventing the formation of future generations of teeth. A similar rudimentary lingual structure has been reported associated with the first molar in the monophyodont mouse, and we show that this structure is common to all murine molars. Intriguingly, a lingual lamina is also observed on the non-replacing molars of other diphyodont mammals (pig and hedgehog), initially appearing very similar to the successional dental lamina on the replacing teeth. We have analyzed the morphological as well as ultrastructural changes that occur during the development and loss of this molar lamina in the mouse, from its initiation at late embryonic stages to its disappearance at postnatal stages. We show that loss appears to be driven by a reduction in cell proliferation, down-regulation of the progenitor marker Sox2, with only a small number of cells undergoing programmed cell death. The lingual lamina was associated with the dental stalk, a short epithelial connection between the tooth germ and the oral epithelium. The dental stalk remained in contact with the oral epithelium throughout tooth development up to eruption when connective tissue and numerous capillaries progressively invaded the dental stalk. The buccal side of the dental stalk underwent keratinisation and became part of the gingival epithelium, while most of the lingual cells underwent programmed cell death and the tissue directly above the erupting tooth was shed into the oral cavity. PMID:26010446

  11. Effective molarity in a nucleic acid-controlled reaction.

    PubMed

    Catalano, Michael J; Price, Nathan E; Gates, Kent S

    2016-06-01

    Positioning of reactive functional groups within a DNA duplex can enable chemical reactions that otherwise would not occur to an appreciable extent. However, few studies have quantitatively defined the extent to which the enforced proximity of reaction partners in duplex DNA can favor chemical processes. Here, we measured substantial effective molarities (as high as 25M) afforded by duplex DNA to a reaction involving interstrand cross-link formation between 2'-deoxyadenosine and a 2-deoxyribose abasic (Ap) site. PMID:27117430

  12. Five Canalled and Three-Rooted Primary Second Mandibular Molar

    PubMed Central

    Selvakumar, Haridoss; Kavitha, Swaminathan; Bharathan, Rajendran; Varghese, Jacob Sam

    2014-01-01

    A thorough knowledge of root canal anatomy and its variation is necessary for successful completion of root canal procedures. Morphological variations such as additional root canals in human deciduous dentition are rare. A mandibular second primary molar with more than four canals is an interesting example of anatomic variations, especially when three of these canals are located in the distal root. This case shows a rare anatomic configuration and points out the importance of looking for additional canals. PMID:25147744

  13. The maxillary second molar - anatomical variations (case report).

    PubMed

    Beshkenadze, E; Chipashvili, N

    2015-01-01

    To be acquainted with dental anatomical specificity is of great importance for dental endodontic treatment algorithm. The subject of present publication is 2 clinical cases of upper second molars, detailed characterization of, which is considered very important for enrichment of anatomical knowledge about dental anatomical variations. In one case, the reason for admission to the clinic of a 38-year-old woman was complains as of esthetic character as well as functional misbalance (disturbance of chewing function due to the damage of orthopedic construction). The patient indicated to the existence of coronary defects of large size aesthetic discomforts, damage and discolouration of old orthopedic construction (denture) in maxillary right molar area. According to the data obtained after clinical and visiographical examinations, chronic periodontitis of 17 teeth was identified as a result of incomplete endodontic treatment. According to the data obtained after clinical and visiographical examinations, the diagnosis of chronic periodontitis of 17 teeth was identified, tooth 17 with 2 roots and 2 canals. In the second clinical case, the reason for admission to the clinic of a 39-year-old woman was severe pain in the upper right molar area. The patient indicated to the caries on the tooth 17. After completion of proper survey clinical and visiographical examinations, acute pulpitis (K04.00) - with three roots and 4 canals was diagnosed. In both cases after the proper examinations and agreement with the patients a treatment plan envisaging: 17 teeth endodontic treatment, filling of caries defects and their preparation on one hand for orthopedic construction (denture) and on the other hand for restoration of anatomical integrity by light-cured composite, was scheduled. The present study is designed to prevent complications of endodontic treatment of the second molar, to optimize diagnosis and treatment algorithm, once again proving reliable information indicating to the

  14. Extrusion of impacted mandibular second molar using removable appliance

    PubMed Central

    Karthikeyan, M. K.; Prabhakar, Ramachandran; Saravanan, R.; Vikram, N. Raj; Kumar, R. Vinoth; Prasath, R. Eshwara

    2014-01-01

    The purpose of this article is to review the principles of case management of impacted mandibular molars and to illustrate their potential to respond well to treatment. Although the scope of treatment may be influenced by the patient's age, past dental history, severity of impaction, dentoalveolar development, and root form, the case reports demonstrate the inherent potential for good treatment outcome even in the most unfavorable circumstances. PMID:25210378

  15. Five canalled and three-rooted primary second mandibular molar.

    PubMed

    Selvakumar, Haridoss; Kavitha, Swaminathan; Bharathan, Rajendran; Varghese, Jacob Sam

    2014-01-01

    A thorough knowledge of root canal anatomy and its variation is necessary for successful completion of root canal procedures. Morphological variations such as additional root canals in human deciduous dentition are rare. A mandibular second primary molar with more than four canals is an interesting example of anatomic variations, especially when three of these canals are located in the distal root. This case shows a rare anatomic configuration and points out the importance of looking for additional canals. PMID:25147744

  16. Fate of the Molar Dental Lamina in the Monophyodont Mouse

    PubMed Central

    Dosedělová, Hana; Dumková, Jana; Lesot, Hervé; Glocová, Kristýna; Kunová, Michaela; Tucker, Abigail S.; Veselá, Iva; Krejčí, Pavel; Tichý, František; Hampl, Aleš; Buchtová, Marcela

    2015-01-01

    The successional dental lamina (SDL) plays an essential role in the development of replacement teeth in diphyodont and polyphyodont animals. A morphologically similar structure, the rudimental successional dental lamina (RSDL), has been described in monophyodont (only one tooth generation) lizards on the lingual side of the developing functional tooth. This rudimentary lamina regresses, which has been proposed to play a role in preventing the formation of future generations of teeth. A similar rudimentary lingual structure has been reported associated with the first molar in the monophyodont mouse, and we show that this structure is common to all murine molars. Intriguingly, a lingual lamina is also observed on the non-replacing molars of other diphyodont mammals (pig and hedgehog), initially appearing very similar to the successional dental lamina on the replacing teeth. We have analyzed the morphological as well as ultrastructural changes that occur during the development and loss of this molar lamina in the mouse, from its initiation at late embryonic stages to its disappearance at postnatal stages. We show that loss appears to be driven by a reduction in cell proliferation, down-regulation of the progenitor marker Sox2, with only a small number of cells undergoing programmed cell death. The lingual lamina was associated with the dental stalk, a short epithelial connection between the tooth germ and the oral epithelium. The dental stalk remained in contact with the oral epithelium throughout tooth development up to eruption when connective tissue and numerous capillaries progressively invaded the dental stalk. The buccal side of the dental stalk underwent keratinisation and became part of the gingival epithelium, while most of the lingual cells underwent programmed cell death and the tissue directly above the erupting tooth was shed into the oral cavity. PMID:26010446

  17. Spontaneous emergence of overgrown molar teeth in a colony of Prairie voles (Microtus ochrogaster)

    PubMed Central

    Jheon, Andrew H; Prochazkova, Michaela; Sherman, Michael; Manoli, Devanand S; Shah, Nirao M; Carbone, Lawrence; Klein, Ophir

    2015-01-01

    Continuously growing incisors are common to all rodents, which include the Microtus genus of voles. However, unlike many rodents, voles also possess continuously growing molars. Here, we report spontaneous molar defects in a population of Prairie voles (Microtus ochrogaster). We identified bilateral protuberances on the ventral surface of the mandible in several voles in our colony. In some cases, the protuberances broke through the cortical bone. The mandibular molars became exposed and infected, and the maxillary molars entered the cranial vault. Visualisation upon soft tissue removal and microcomputed tomography (microCT) analyses confirmed that the protuberances were caused by the overgrowth of the apical ends of the molar teeth. We speculate that the unrestricted growth of the molars was due to the misregulation of the molar dental stem cell niche. Further study of this molar phenotype may yield additional insight into stem cell regulation and the evolution and development of continuously growing teeth. PMID:25634121

  18. Spontaneous emergence of overgrown molar teeth in a colony of Prairie voles (Microtus ochrogaster).

    PubMed

    Jheon, Andrew H; Prochazkova, Michaela; Sherman, Michael; Manoli, Devanand S; Shah, Nirao M; Carbone, Lawrence; Klein, Ophir

    2015-03-01

    Continuously growing incisors are common to all rodents, which include the Microtus genus of voles. However, unlike many rodents, voles also possess continuously growing molars. Here, we report spontaneous molar defects in a population of Prairie voles (Microtus ochrogaster). We identified bilateral protuberances on the ventral surface of the mandible in several voles in our colony. In some cases, the protuberances broke through the cortical bone. The mandibular molars became exposed and infected, and the maxillary molars entered the cranial vault. Visualisation upon soft tissue removal and microcomputed tomography (microCT) analyses confirmed that the protuberances were caused by the overgrowth of the apical ends of the molar teeth. We speculate that the unrestricted growth of the molars was due to the misregulation of the molar dental stem cell niche. Further study of this molar phenotype may yield additional insight into stem cell regulation and the evolution and development of continuously growing teeth. PMID:25634121

  19. Substorm onset: A switch on the sequence of transport from decreasing entropy to increasing entropy

    NASA Astrophysics Data System (ADS)

    Chen, C. X.

    2016-05-01

    In this study, we propose a scenario about the trigger for substorm onset. In a stable magnetosphere, entropy is an increasing function tailward. However, in the growth phase of a substorm, a later born bubble has lower entropy than earlier born bubbles. When a bubble arrives at its final destination in the near-Earth region, it will spread azimuthally because of its relatively uniform entropy. The magnetic flux tubes of a dying bubble, which cause the most equatorward aurora thin arc, would block the later coming bubble tailward of them, forming an unstable domain. Therefore, an interchange instability develops, which leads to the collapse of the unstable domain, followed by the collapse of the stretched plasma sheet. We regard the substorm onset as a switch on the sequence of transport, i.e., from a decreasing entropy process to an increasing entropy process. We calculated the most unstable growth rates and the wavelengths of instability, and both are in agreement with observations.

  20. The Use of Narrow Diameter Implants in the Molar Area.

    PubMed

    Saad, M; Assaf, A; Gerges, E

    2016-01-01

    Implant rehabilitations in the posterior jaw are influenced by many factors such as the condition of the remaining teeth, the force factors related to the patient, the quality of the bone, the maintenance of the hygiene, the limited bone height, the type and extent of edentulism, and the nature of the opposing arch. The gold standard is to place a regular diameter implant (>3.7 mm) or a wide one to replace every missing molar. Unfortunately, due to horizontal bone resorption, this option is not possible without lateral bone augmentation. In this situation, narrow diameter implant (NDI < 3.5 mm) could be the alternative to lateral bone augmentation procedures. This paper presents a clinical study where NDIs were used for the replacement of missing molars. They were followed up to 11 years. Special considerations were observed and many parameters were evaluated. NDI could be used to replace missing molar in case of moderate horizontal bone resorption if strict guidelines are respected. Yet, future controlled prospective clinical trials are required to admit their use as scientific evidence. PMID:27293436

  1. Molar tooth carbonates and benthic methane fluxes in Proterozoic oceans

    NASA Astrophysics Data System (ADS)

    Shen, Bing; Dong, Lin; Xiao, Shuhai; Lang, Xianguo; Huang, Kangjun; Peng, Yongbo; Zhou, Chuanming; Ke, Shan; Liu, Pengju

    2016-01-01

    Molar tooth structures are ptygmatically folded and microspar-filled structures common in early- and mid-Proterozoic (~2,500-750 million years ago, Ma) subtidal successions, but extremely rare in rocks <750 Ma. Here, on the basis of Mg and S isotopes, we show that molar tooth structures may have formed within sediments where microbial sulphate reduction and methanogenesis converged. The convergence was driven by the abundant production of methyl sulphides (dimethyl sulphide and methanethiol) in euxinic or H2S-rich seawaters that were widespread in Proterozoic continental margins. In this convergence zone, methyl sulphides served as a non-competitive substrate supporting methane generation and methanethiol inhibited anaerobic oxidation of methane, resulting in the buildup of CH4, formation of degassing cracks in sediments and an increase in the benthic methane flux from sediments. Precipitation of crack-filling microspar was driven by methanogenesis-related alkalinity accumulation. Deep ocean ventilation and oxygenation around 750 Ma brought molar tooth structures to an end.

  2. Molar tooth carbonates and benthic methane fluxes in Proterozoic oceans

    PubMed Central

    Shen, Bing; Dong, Lin; Xiao, Shuhai; Lang, Xianguo; Huang, Kangjun; Peng, Yongbo; Zhou, Chuanming; Ke, Shan; Liu, Pengju

    2016-01-01

    Molar tooth structures are ptygmatically folded and microspar-filled structures common in early- and mid-Proterozoic (∼2,500–750 million years ago, Ma) subtidal successions, but extremely rare in rocks <750 Ma. Here, on the basis of Mg and S isotopes, we show that molar tooth structures may have formed within sediments where microbial sulphate reduction and methanogenesis converged. The convergence was driven by the abundant production of methyl sulphides (dimethyl sulphide and methanethiol) in euxinic or H2S-rich seawaters that were widespread in Proterozoic continental margins. In this convergence zone, methyl sulphides served as a non-competitive substrate supporting methane generation and methanethiol inhibited anaerobic oxidation of methane, resulting in the buildup of CH4, formation of degassing cracks in sediments and an increase in the benthic methane flux from sediments. Precipitation of crack-filling microspar was driven by methanogenesis-related alkalinity accumulation. Deep ocean ventilation and oxygenation around 750 Ma brought molar tooth structures to an end. PMID:26739600

  3. Molar tooth carbonates and benthic methane fluxes in Proterozoic oceans.

    PubMed

    Shen, Bing; Dong, Lin; Xiao, Shuhai; Lang, Xianguo; Huang, Kangjun; Peng, Yongbo; Zhou, Chuanming; Ke, Shan; Liu, Pengju

    2016-01-01

    Molar tooth structures are ptygmatically folded and microspar-filled structures common in early- and mid-Proterozoic (∼2,500-750 million years ago, Ma) subtidal successions, but extremely rare in rocks <750 Ma. Here, on the basis of Mg and S isotopes, we show that molar tooth structures may have formed within sediments where microbial sulphate reduction and methanogenesis converged. The convergence was driven by the abundant production of methyl sulphides (dimethyl sulphide and methanethiol) in euxinic or H2S-rich seawaters that were widespread in Proterozoic continental margins. In this convergence zone, methyl sulphides served as a non-competitive substrate supporting methane generation and methanethiol inhibited anaerobic oxidation of methane, resulting in the buildup of CH4, formation of degassing cracks in sediments and an increase in the benthic methane flux from sediments. Precipitation of crack-filling microspar was driven by methanogenesis-related alkalinity accumulation. Deep ocean ventilation and oxygenation around 750 Ma brought molar tooth structures to an end. PMID:26739600

  4. Variable permanent mandibular first molar: Review of literature

    PubMed Central

    Ballullaya, Srinidhi V; Vemuri, Sayesh; Kumar, Pabbati Ravi

    2013-01-01

    Introduction: The success of root canal therapy depends on the locations of all the canals, thourough debridement and proper sealing. At times the clinicians are challenged with variations in morphology of root canal. This review article attempts to list out all the variations of permanent mandibular first molar published so for in the literature. Materials and Methods: An exhaustive search was undertaken using PUBMED database to identify published literature from 1900 to 2010 relating to the root canal morphology of permanent first molar by using key words. The selected artcles were obtained and reviewed. Results: Total ninty seven articles were selected out of which 50 were original article and forty seven were case reports. The incidence of third canal in mesial root was 0.95% to 15%. The incidence of three rooted mandibular first molar was 3% to 33%. Only ninety cases reported with c-shape canal configuration. Incidence of Taurodintism without congenital disorder was very rare. Conclusion: The root canal treatment requires proper knowlegde of variations in root canal morphology in order to recognise, disinfect and seal all portal of exit. This can be accomplished with proper diagnosis using newer modes, modification in access preparation, use of operating microscope, enhanced methods of disinfecting and sealing of all canals. PMID:23716959

  5. The Use of Narrow Diameter Implants in the Molar Area

    PubMed Central

    Saad, M.; Assaf, A.; Gerges, E.

    2016-01-01

    Implant rehabilitations in the posterior jaw are influenced by many factors such as the condition of the remaining teeth, the force factors related to the patient, the quality of the bone, the maintenance of the hygiene, the limited bone height, the type and extent of edentulism, and the nature of the opposing arch. The gold standard is to place a regular diameter implant (>3.7 mm) or a wide one to replace every missing molar. Unfortunately, due to horizontal bone resorption, this option is not possible without lateral bone augmentation. In this situation, narrow diameter implant (NDI < 3.5 mm) could be the alternative to lateral bone augmentation procedures. This paper presents a clinical study where NDIs were used for the replacement of missing molars. They were followed up to 11 years. Special considerations were observed and many parameters were evaluated. NDI could be used to replace missing molar in case of moderate horizontal bone resorption if strict guidelines are respected. Yet, future controlled prospective clinical trials are required to admit their use as scientific evidence. PMID:27293436

  6. From molecular to molar: a paradigm shift in behavior analysis.

    PubMed Central

    Baum, William M

    2002-01-01

    A paradigm clash is occurring within behavior analysis. In the older paradigm, the molecular view, behavior consists of momentary or discrete responses that constitute instances of classes. Variation in response rate reflects variation in the strength or probability of the response class. The newer paradigm, the molar view, sees behavior as composed of activities that take up varying amounts of time. Whereas the molecular view takes response rate and choice to be "derived" measures and hence abstractions, the molar view takes response rate and choice to be concrete temporally extended behavioral allocations and regards momentary "responses" as abstractions. Research findings that point to variation in tempo, asymmetry in concurrent performance, and paradoxical resistance to change are readily interpretable when seen in the light of reinforcement and stimulus control of extended behavioral allocations or activities. Seen in the light of the ontological distinction between classes and individuals, extended behavioral allocations, like species in evolutionary taxonomy, constitute individuals, entities that change without changing their identity. Seeing allocations as individuals implies that less extended activities constitute parts of larger wholes rather than instances of classes. Both laboratory research and everyday behavior are explained plausibly in the light of concrete extended activities and their nesting. The molecular- view, because it requires discrete responses and contiguous events, relies on hypothetical stimuli and consequences to account for the same phenomena. One may prefer the molar view on grounds of elegance, integrative power, and plausibility. PMID:12144313

  7. Molar Macrowear Reveals Neanderthal Eco-Geographic Dietary Variation

    PubMed Central

    Fiorenza, Luca; Benazzi, Stefano; Tausch, Jeremy; Kullmer, Ottmar; Bromage, Timothy G.; Schrenk, Friedemann

    2011-01-01

    Neanderthal diets are reported to be based mainly on the consumption of large and medium sized herbivores, while the exploitation of other food types including plants has also been demonstrated. Though some studies conclude that early Homo sapiens were active hunters, the analyses of faunal assemblages, stone tool technologies and stable isotopic studies indicate that they exploited broader dietary resources than Neanderthals. Whereas previous studies assume taxon-specific dietary specializations, we suggest here that the diet of both Neanderthals and early Homo sapiens is determined by ecological conditions. We analyzed molar wear patterns using occlusal fingerprint analysis derived from optical 3D topometry. Molar macrowear accumulates during the lifespan of an individual and thus reflects diet over long periods. Neanderthal and early Homo sapiens maxillary molar macrowear indicates strong eco-geographic dietary variation independent of taxonomic affinities. Based on comparisons with modern hunter-gatherer populations with known diets, Neanderthals as well as early Homo sapiens show high dietary variability in Mediterranean evergreen habitats but a more restricted diet in upper latitude steppe/coniferous forest environments, suggesting a significant consumption of high protein meat resources. PMID:21445243

  8. Primate molar crown formation times and life history evolution revisited.

    PubMed

    Macho, G A

    2001-12-01

    Comparative studies have convincingly demonstrated that the pattern and timing of tooth emergence are highly correlated with life-history variables and brain size. Conversely, a firm relationship between molar formation time and life-history variables has not yet been established. It seems counterintuitive that one aspect of dental development should be correlated with life-history variables, whereas the other should not. In order to shed light on this apparent discrepancy this study analyzed all data on primate molar crown formations available in the published literature in relation to life-history variables, brain size, and female body mass. Crown formation times were found to be particularly highly correlated with both female body mass and brain size. Species that depart from the overall brain/body allometry by being relatively large-bodied, e.g., Gorilla gorilla and later Theropithecus oswaldi, also have shorter molar crown formation times than expected. The reverse is not found for species that depart from the overall brain/body allometry due to their larger brains, i.e., Homo sapiens. This finding is interpreted within an evolutionary and ecological framework. Specifically, by focusing on ecological commonalities, a scenario is proposed which may allow predictions to be made about the evolutionary history of other extinct primates also. If confirmed in future studies, crown formation time may again become a powerful tool in evolutionary enquiry. PMID:11748692

  9. Efficacy of Postoperative Prophylactic Antibiotic Therapy in Third Molar Surgery

    PubMed Central

    Reddy B, Praveen

    2014-01-01

    Introduction: Surgical extraction of mandibular third molar is the most frequently performed procedure in oral surgery. This procedure is associated with significant postoperative sequelae such as trismus, swelling, pain and infection. The need of antibiotic therapy during the removal of mandibular third molar has been a contentious issue. Method: This study investigated a regimen by using amoxycillin and metronidazole in one group and without using antibiotics in the other. Both the groups were assessed postoperatively on the 1st, 2nd, 5th, 7th and 10th days by the same observer for post operative mouth opening (interincisal distance), presence of a purulent discharge at the site of surgery, pain and swelling. Result: Overall, no statistically significant difference was seen between both the treatment groups when interincisal distance, pain, swelling and purulent discharge were considered. Conclusion: The results of this study failed to show any advantage which was associated with the routine postoperative use of antibiotics in asymptomatic third molar surgeries. PMID:24995236

  10. Entropy generation of radial rotation convective channels

    NASA Astrophysics Data System (ADS)

    Alić, Fikret

    2012-03-01

    The exchange of heat between two fluids is established by radial rotating pipe or a channel. The hotter fluid flows through the pipe, while the cold fluid is ambient air. Total length of pipe is made up of multiple sections of different shape and position in relation to the common axis of rotation. In such heat exchanger the hydraulic and thermal irreversibility of the hotter and colder fluid occur. Therefore, the total entropy generated within the radial rotating pipe consists of the total entropy of hotter and colder fluid, taking into account all the hydraulic and thermal irreversibility of both fluids. Finding a mathematical model of the total generated entropy is based on coupled mathematical expressions that combine hydraulic and thermal effects of both fluids with the complex geometry of the radial rotating pipe. Mathematical model follows the each section of the pipe and establishes the function between the sections, so the total generated entropy is different from section to section of the pipe. In one section of the pipe thermal irreversibility may dominate over the hydraulic irreversibility, while in another section of the pipe the situation may be reverse. In this paper, continuous analytic functions that connect sections of pipe in geometric meaning are associated with functions that describe the thermo-hydraulic effects of hotter and colder fluid. In this way, the total generated entropy of the radial rotating pipe is a continuous analytic function of any complex geometry of the rotating pipe. The above method of establishing a relationship between the continuous function of entropy with the complex geometry of the rotating pipe enables indirect monitoring of unnecessary hydraulic and thermal losses of both fluids. Therefore, continuous analytic functions of generated entropy enable analysis of hydraulic and thermal irreversibility of individual sections of pipe, as well as the possibility of improving the thermal-hydraulic performance of the rotating

  11. Theory of chromatography of partially cyclic polymers: Tadpole-type and manacle-type macromolecules.

    PubMed

    Vakhrushev, Andrey V; Gorbunov, Alexei A

    2016-02-12

    A theory of chromatography is developed for partially cyclic polymers of tadpole- and manacle-shaped topological structures. We present exact equations for the distribution coefficient K at different adsorption interactions; simpler approximate formulae are also derived, relevant to the conditions of size-exclusion, adsorption, and critical chromatography. Theoretical chromatograms of heterogeneous partially cyclic polymers are simulated, and conditions for good separation by topology are predicted. According to the theory, an effective SEC-radius of tadpoles and manacles is mostly determined by the molar mass M, and by the linear-cyclic composition. In the interactive chromatography, the effect of molecular topology on the retention becomes significant. At the critical interaction point, partial dependences K(Mlin) and K(Mring) are qualitatively different: while being almost independent of Mlin, K increases with Mring. This behavior could be realized in critical chromatography-for separation of partially cyclic polymers by the number and molar mass of cyclic elements. PMID:26803439

  12. Relationship between mandibular condyle and angle fractures and the presence of mandibular third molars

    PubMed Central

    Mah, Deuk-Hyun; Moon, Seong-Yong; Oh, Ji-Su; You, Jae-Seek

    2015-01-01

    Objectives We retrospectively evaluated the impact of mandibular third molars on the occurrence of angle and condyle fractures. Materials and Methods This was a retrospective investigation using patient records and radiographs. The sample set consisted of 440 patients with mandibular fractures. Eruption space, depth and angulation of the third molar were measured. Results Of the 144 angle fracture patients, 130 patients had third molars and 14 patients did not. The ratio of angle fractures when a third molar was present (1.26 : 1) was greater than when no third molar was present (0.19 : 1; odds ratio, 6.58; P<0.001). Of the 141 condyle fractures patients, the third molar was present in 84 patients and absent in 57 patients. The ratio of condyle fractures when a third molar was present (0.56 : 1) was lower than when no third molar was present (1.90 : 1; odds ratio, 0.30; P<0.001). Conclusion The increased ratio of angle fractures with third molars and the ratio of condyle fractures without a third molar were statistically significant. The occurrence of angle and condyle fractures was more affected by the continuity of the cortical bone at the angle than by the depth of a third molar. These results demonstrate that a third molar can be a determining factor in angle and condyle fractures. PMID:25741462

  13. Molar Mass and Second Virial Coefficient of Polyethylene Glycol by Vapor Pressure Osmometry

    ERIC Educational Resources Information Center

    Schwinefus, Jeffrey J.; Checkal, Caleb; Saksa, Brian; Baka, Nadia; Modi, Kalpit; Rivera, Carlos

    2015-01-01

    In this laboratory experiment, students determine the number-average molar masses and second virial coefficients of polyethylene glycol (PEG) polymers ranging in molar mass from 200 to 1500 g mol[superscript -1] using vapor pressure osmometry (VPO). Students assess VPO in relation to accurate molar mass calculations of PEG polymers. Additionally,…

  14. Sub-10-Minute Characterization of an Ultrahigh Molar Mass Polymer by Multi-detector Hydrodynamic Chromatography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molar mass averages, distributions, and architectural information of polymers are routinely obtained using size-exclusion chromatography (SEC). It has previously been shown that ultrahigh molar mass polymers may experience degradation during SEC analysis, leading to inaccurate molar mass averages a...

  15. Enzyme catalysis by entropy without Circe effect.

    PubMed

    Kazemi, Masoud; Himo, Fahmi; Åqvist, Johan

    2016-03-01

    Entropic effects have often been invoked to explain the extraordinary catalytic power of enzymes. In particular, the hypothesis that enzymes can use part of the substrate-binding free energy to reduce the entropic penalty associated with the subsequent chemical transformation has been very influential. The enzymatic reaction of cytidine deaminase appears to be a distinct example. Here, substrate binding is associated with a significant entropy loss that closely matches the activation entropy penalty for the uncatalyzed reaction in water, whereas the activation entropy for the rate-limiting catalytic step in the enzyme is close to zero. Herein, we report extensive computer simulations of the cytidine deaminase reaction and its temperature dependence. The energetics of the catalytic reaction is first evaluated by density functional theory calculations. These results are then used to parametrize an empirical valence bond description of the reaction, which allows efficient sampling by molecular dynamics simulations and computation of Arrhenius plots. The thermodynamic activation parameters calculated by this approach are in excellent agreement with experimental data and indeed show an activation entropy close to zero for the rate-limiting transition state. However, the origin of this effect is a change of reaction mechanism compared the uncatalyzed reaction. The enzyme operates by hydroxide ion attack, which is intrinsically associated with a favorable activation entropy. Hence, this has little to do with utilization of binding free energy to pay the entropic penalty but rather reflects how a preorganized active site can stabilize a reaction path that is not operational in solution. PMID:26755610

  16. Enzyme catalysis by entropy without Circe effect

    PubMed Central

    Kazemi, Masoud; Himo, Fahmi; Åqvist, Johan

    2016-01-01

    Entropic effects have often been invoked to explain the extraordinary catalytic power of enzymes. In particular, the hypothesis that enzymes can use part of the substrate-binding free energy to reduce the entropic penalty associated with the subsequent chemical transformation has been very influential. The enzymatic reaction of cytidine deaminase appears to be a distinct example. Here, substrate binding is associated with a significant entropy loss that closely matches the activation entropy penalty for the uncatalyzed reaction in water, whereas the activation entropy for the rate-limiting catalytic step in the enzyme is close to zero. Herein, we report extensive computer simulations of the cytidine deaminase reaction and its temperature dependence. The energetics of the catalytic reaction is first evaluated by density functional theory calculations. These results are then used to parametrize an empirical valence bond description of the reaction, which allows efficient sampling by molecular dynamics simulations and computation of Arrhenius plots. The thermodynamic activation parameters calculated by this approach are in excellent agreement with experimental data and indeed show an activation entropy close to zero for the rate-limiting transition state. However, the origin of this effect is a change of reaction mechanism compared the uncatalyzed reaction. The enzyme operates by hydroxide ion attack, which is intrinsically associated with a favorable activation entropy. Hence, this has little to do with utilization of binding free energy to pay the entropic penalty but rather reflects how a preorganized active site can stabilize a reaction path that is not operational in solution. PMID:26755610

  17. Fractal Dimensions and Entropies of Meragi Songs

    NASA Astrophysics Data System (ADS)

    Aydemir, Adnan; Gündüz, Güngör

    Melodies can be treated as time series systems with the pitches (or frequencies of the notes) representing the values in subsequent intervals. The pattern of a melody can be revealed in a scattering diagram where pitches represent vertices, and the directed pathways which connect the former pitches to the next ones signify the relations established during the performance. The pathways form a pattern which is called animal diagram (or lattice animal) in the vocabulary of graph theory. The slopes of pathways can be used to characterize an animal diagram and thus to characterize a melody; and the scattering diagram can be used to find out the fractal dimension . In addition, the entropy , the maximum entropy , and the negentropy (or the order) of melodies can be determined. The analysis of Meragi songs in terms of fractal dimension and entropy was carried out in this work. It was found out that there is not a correlation between the fractal dimension and the entropy ; therefore, the fractal dimension and the entropy each characterizes different aspects of Meragi songs.

  18. Approximate von Neumann entropy for directed graphs.

    PubMed

    Ye, Cheng; Wilson, Richard C; Comin, César H; Costa, Luciano da F; Hancock, Edwin R

    2014-05-01

    In this paper, we develop an entropy measure for assessing the structural complexity of directed graphs. Although there are many existing alternative measures for quantifying the structural properties of undirected graphs, there are relatively few corresponding measures for directed graphs. To fill this gap in the literature, we explore an alternative technique that is applicable to directed graphs. We commence by using Chung's generalization of the Laplacian of a directed graph to extend the computation of von Neumann entropy from undirected to directed graphs. We provide a simplified form of the entropy which can be expressed in terms of simple node in-degree and out-degree statistics. Moreover, we find approximate forms of the von Neumann entropy that apply to both weakly and strongly directed graphs, and that can be used to characterize network structure. We illustrate the usefulness of these simplified entropy forms defined in this paper on both artificial and real-world data sets, including structures from protein databases and high energy physics theory citation networks. PMID:25353841

  19. Entropy Measurement for Biometric Verification Systems.

    PubMed

    Lim, Meng-Hui; Yuen, Pong C

    2016-05-01

    Biometric verification systems are designed to accept multiple similar biometric measurements per user due to inherent intrauser variations in the biometric data. This is important to preserve reasonable acceptance rate of genuine queries and the overall feasibility of the recognition system. However, such acceptance of multiple similar measurements decreases the imposter's difficulty of obtaining a system-acceptable measurement, thus resulting in a degraded security level. This deteriorated security needs to be measurable to provide truthful security assurance to the users. Entropy is a standard measure of security. However, the entropy formula is applicable only when there is a single acceptable possibility. In this paper, we develop an entropy-measuring model for biometric systems that accepts multiple similar measurements per user. Based on the idea of guessing entropy, the proposed model quantifies biometric system security in terms of adversarial guessing effort for two practical attacks. Excellent agreement between analytic and experimental simulation-based measurement results on a synthetic and a benchmark face dataset justify the correctness of our model and thus the feasibility of the proposed entropy-measuring approach. PMID:26054080

  20. Entropy current for non-relativistic fluid

    NASA Astrophysics Data System (ADS)

    Banerjee, Nabamita; Dutta, Suvankar; Jain, Akash; Roychowdhury, Dibakar

    2014-08-01

    We study transport properties of a parity-odd, non-relativistic charged fluid in presence of background electric and magnetic fields. To obtain stress tensor and charged current for the non-relativistic system we start with the most generic relativistic fluid, living in one higher dimension and reduce the constituent equations along the light-cone direction. We also reduce the equation satisfied by the entropy current of the relativistic theory and obtain a consistent entropy current for the non-relativistic system (we call it "canonical form" of the entropy current). Demanding that the non-relativistic fluid satisfies the second law of thermodynamics we impose constraints on various first order transport coefficients. For parity even fluid, this is straight forward; it tells us positive definiteness of different transport coefficients like viscosity, thermal conductivity, electric conductivity etc. However for parity-odd fluid, canonical form of the entropy current fails to confirm the second law of thermodynamics. Therefore, we need to add two parity-odd vectors to the entropy current with arbitrary coefficients. Upon demanding the validity of second law, we see that one can fix these two coefficients exactly.

  1. Information entropies of many-electron systems

    SciTech Connect

    Yanez, R.J.; Angulo, J.C.; Dehesa, J.S.

    1995-12-05

    The Boltzmann-Shannon (BS) information entropy S{sub {rho}} = - {integral} {rho}(r)log {rho}(r) dr measures the spread or extent of the one-electron density {rho}(r), which is the basic variable of the density function theory of the many electron systems. This quantity cannot be analytically computed, not even for simple quantum mechanical systems such as, e.g., the harmonic oscillator (HO) and the hydrogen atom (HA) in arbitrary excited states. Here, we first review (i) the present knowledge and open problems in the analytical determination of the BS entropies for the HO and HA systems in both position and momentum spaces and (ii) the known rigorous lower and upper bounds to the position and momentum BS entropies of many-electron systems in terms of the radial expectation values in the corresponding space. Then, we find general inequalities which relate the BS entropies and various density functionals. Particular cases of these results are rigorous relationships of the BS entropies and some relevant density functionals (e.g., the Thomas-Fermi kinetic energy, the Dirac-Slater exchange energy, the average electron density) for finite many-electron systems. 28 refs.

  2. The Gaussian entropy of fermionic systems

    SciTech Connect

    Prokopec, Tomislav; Schmidt, Michael G.; Weenink, Jan

    2012-12-15

    We consider the entropy and decoherence in fermionic quantum systems. By making a Gaussian Ansatz for the density operator of a collection of fermions we study statistical 2-point correlators and express the entropy of a system fermion in terms of these correlators. In a simple case when a set of N thermalised environmental fermionic oscillators interacts bi-linearly with the system fermion we can study its time dependent entropy, which also represents a quantitative measure for decoherence and classicalization. We then consider a relativistic fermionic quantum field theory and take a mass mixing term as a simple model for the Yukawa interaction. It turns out that even in this Gaussian approximation, the fermionic system decoheres quite effectively, such that in a large coupling and high temperature regime the system field approaches the temperature of the environmental fields. - Highlights: Black-Right-Pointing-Pointer We construct the Gaussian density operator for relativistic fermionic systems. Black-Right-Pointing-Pointer The Gaussian entropy of relativistic fermionic systems is described in terms of 2-point correlators. Black-Right-Pointing-Pointer We explicitly show the growth of entropy for fermionic fields mixing with a thermal fermionic environment.

  3. Valence bond and von Neumann entanglement entropy in Heisenberg ladders.

    PubMed

    Kallin, Ann B; González, Iván; Hastings, Matthew B; Melko, Roger G

    2009-09-11

    We present a direct comparison of the recently proposed valence bond entanglement entropy and the von Neumann entanglement entropy on spin-1/2 Heisenberg systems using quantum Monte Carlo and density-matrix renormalization group simulations. For one-dimensional chains we show that the valence bond entropy can be either less or greater than the von Neumann entropy; hence, it cannot provide a bound on the latter. On ladder geometries, simulations with up to seven legs are sufficient to indicate that the von Neumann entropy in two dimensions obeys an area law, even though the valence bond entanglement entropy has a multiplicative logarithmic correction. PMID:19792398

  4. Information entropy of multi-qubit Rabi system

    NASA Astrophysics Data System (ADS)

    Abo-Kahla, D. A. M.; Abdel-Aty, M.

    2015-09-01

    We consider quantum information entropy phenomenon for multi-qubit Rabi system. By introducing different measurements schemes, we establish the relation between information entropy approach and Von Neumann entropy. It is shown that the information entropy is more sensitive to the time development than the Von Neumann entropy. Furthermore, the suggested protocol exhibits excellent scaling of relevant characteristics, with respect to population dynamics, such that more accurate dynamical results may be obtained using information entropy due to variation of the frequency detuning and the coupling constant.

  5. Measuring entanglement entropies in many-body systems

    SciTech Connect

    Klich, Israel; Refael, Gil; Silva, Alessandro

    2006-09-15

    We explore the relation between entanglement entropy of quantum many-body systems and the distribution of corresponding, properly selected, observables. Such a relation is necessary to actually measure the entanglement entropy. We show that, in general, the Shannon entropy of the probability distribution of certain symmetry observables gives a lower bound to the entropy. In some cases this bound is saturated and directly gives the entropy. We also show other cases in which the probability distribution contains enough information to extract the entropy: we show how this is done in several examples including BEC wave functions, the Dicke model, XY spin chain, and chains with strong randomness.

  6. Time Dependence of Joint Entropy of Oscillating Quantum Systems

    NASA Astrophysics Data System (ADS)

    Özcan, Özgür; Aktürk, Ethem; Sever, Ramazan

    2008-12-01

    The time dependent entropy (or Leipnik’s entropy) of harmonic and damped harmonic oscillator systems is studied by using time dependent wave function obtained by the Feynman path integral method. The Leipnik entropy and its envelope change as a function of time, angular frequency and damping factor. Our results for simple harmonic oscillator are in agreement with the literature. However, the joint entropy of damped harmonic oscillator shows remarkable discontinuity with time for certain values of damping factor. The envelope of the joint entropy curve increases with time monotonically. These results show the general properties of the envelope of the joint entropy curve for quantum systems.

  7. Kerr Black Hole Entropy and its Quantization

    NASA Astrophysics Data System (ADS)

    Jiang, Ji-Jian; Li, Chuan-An; Cheng, Xie-Feng

    2016-08-01

    By constructing the four-dimensional phase space based on the observable physical quantity of Kerr black hole and gauge transformation, the Kerr black hole entropy in the phase space was obtained. Then considering the corresponding mechanical quantities as operators and making the operators quantized, entropy spectrum of Kerr black hole was obtained. Our results show that the Kerr black hole has the entropy spectrum with equal intervals, which is in agreement with the idea of Bekenstein. In the limit of large event horizon, the area of the adjacent event horizon of the black hole have equal intervals. The results are in consistent with the results based on the loop quantum gravity theory by Dreyer et al.

  8. Holographic entanglement entropy of surface defects

    NASA Astrophysics Data System (ADS)

    Gentle, Simon A.; Gutperle, Michael; Marasinou, Chrysostomos

    2016-04-01

    We calculate the holographic entanglement entropy in type IIB supergravity solutions that are dual to half-BPS disorder-type surface defects in N=4 supersymmetric Yang-Mills theory. The entanglement entropy is calculated for a ball-shaped region bisected by a surface defect. Using the bubbling supergravity solutions we also compute the expectation value of the defect operator. Combining our result with the previously-calculated one-point function of the stress tensor in the presence of the defect, we adapt the calculation of Lewkowycz and Maldacena [1] to obtain a second expression for the entanglement entropy. Our two expressions agree up to an additional term, whose possible origin and significance is discussed.

  9. Minimum entropy approach to word segmentation problems

    NASA Astrophysics Data System (ADS)

    Wang, Bin

    2001-04-01

    Given a sequence composed of a limited number of characters, we try to “read” it as a “text”. This involves segmenting the sequence into “words”. The difficulty is to distinguish good segmentation from enormous numbers of random ones. Aiming at revealing the nonrandomness of the sequence as strongly as possible, by applying maximum likelihood method, we find a quantity called segmentation entropy that can be used to fulfill the aim. Contrary to commonplace where maximum entropy principle was applied to obtain good solution, we chose to minimize the segmentation entropy to obtain good segmentation. The concept developed in this letter can be used to study the noncoding DNA sequences, e.g., for regulatory elements prediction, in eukaryote genomes.

  10. Entropy production of doubly stochastic quantum channels

    NASA Astrophysics Data System (ADS)

    Müller-Hermes, Alexander; Stilck França, Daniel; Wolf, Michael M.

    2016-02-01

    We study the entropy increase of quantum systems evolving under primitive, doubly stochastic Markovian noise and thus converging to the maximally mixed state. This entropy increase can be quantified by a logarithmic-Sobolev constant of the Liouvillian generating the noise. We prove a universal lower bound on this constant that stays invariant under taking tensor-powers. Our methods involve a new comparison method to relate logarithmic-Sobolev constants of different Liouvillians and a technique to compute logarithmic-Sobolev inequalities of Liouvillians with eigenvectors forming a projective representation of a finite abelian group. Our bounds improve upon similar results established before and as an application we prove an upper bound on continuous-time quantum capacities. In the last part of this work we study entropy production estimates of discrete-time doubly stochastic quantum channels by extending the framework of discrete-time logarithmic-Sobolev inequalities to the quantum case.

  11. Entropy, area, and black hole pairs

    NASA Astrophysics Data System (ADS)

    Hawking, S. W.; Horowitz, Gary T.; Ross, Simon F.

    1995-04-01

    We clarify the relation between gravitational entropy and the area of horizons. We first show that the entropy of an extreme Reissner-Nordström black hole is zero, despite the fact that its horizon has nonzero area. Next, we consider the pair creation of extremal and nonextremal black holes. It is shown that the action which governs the rate of this pair creation is directly related to the area of the acceleration horizon and (in the nonextremal case) the area of the black hole event horizon. This provides a simple explanation of the result that the rate of pair creation of nonextreme black holes is enhanced by precisely the black hole entropy. Finally, we discuss black hole annihilation, and argue that Planck scale remnants are not sufficient to preserve unitarity in quantum gravity.

  12. Adaptive entropy coded subband coding of images.

    PubMed

    Kim, Y H; Modestino, J W

    1992-01-01

    The authors describe a design approach, called 2-D entropy-constrained subband coding (ECSBC), based upon recently developed 2-D entropy-constrained vector quantization (ECVQ) schemes. The output indexes of the embedded quantizers are further compressed by use of noiseless entropy coding schemes, such as Huffman or arithmetic codes, resulting in variable-rate outputs. Depending upon the specific configurations of the ECVQ and the ECPVQ over the subbands, many different types of SBC schemes can be derived within the generic 2-D ECSBC framework. Among these, the authors concentrate on three representative types of 2-D ECSBC schemes and provide relative performance evaluations. They also describe an adaptive buffer instrumented version of 2-D ECSBC, called 2-D ECSBC/AEC, for use with fixed-rate channels which completely eliminates buffer overflow/underflow problems. This adaptive scheme achieves performance quite close to the corresponding ideal 2-D ECSBC system. PMID:18296138

  13. What is the entropy in entropic gravity?

    NASA Astrophysics Data System (ADS)

    Carroll, Sean M.; Remmen, Grant N.

    2016-06-01

    We investigate theories in which gravity arises as a consequence of entropy. We distinguish between two approaches to this idea: holographic gravity, in which Einstein's equation arises from keeping entropy stationary in equilibrium under variations of the geometry and quantum state of a small region, and thermodynamic gravity, in which Einstein's equation emerges as a local equation of state from constraints on the area of a dynamical light sheet in a fixed spacetime background. Examining holographic gravity, we argue that its underlying assumptions can be justified in part using recent results on the form of the modular energy in quantum field theory. For thermodynamic gravity, on the other hand, we find that it is difficult to formulate a self-consistent definition of the entropy, which represents an obstacle for this approach. This investigation points the way forward in understanding the connections between gravity and entanglement.

  14. Zipf's law, power laws and maximum entropy

    NASA Astrophysics Data System (ADS)

    Visser, Matt

    2013-04-01

    Zipf's law, and power laws in general, have attracted and continue to attract considerable attention in a wide variety of disciplines—from astronomy to demographics to software structure to economics to linguistics to zoology, and even warfare. A recent model of random group formation (RGF) attempts a general explanation of such phenomena based on Jaynes' notion of maximum entropy applied to a particular choice of cost function. In the present paper I argue that the specific cost function used in the RGF model is in fact unnecessarily complicated, and that power laws can be obtained in a much simpler way by applying maximum entropy ideas directly to the Shannon entropy subject only to a single constraint: that the average of the logarithm of the observable quantity is specified.

  15. Black Hole Entropy: From Shannon to Bekenstein

    NASA Astrophysics Data System (ADS)

    Ghosh, Subir

    2011-11-01

    In this note we have applied directly the Shannon formula for information theory entropy to derive the Black Hole (Bekenstein-Hawking) entropy. Our analysis is semi-classical in nature since we use the (recently proposed Banerjee in Int. J. Mod. Phys. D 19:2365-2369, 2010 and Banerjee and Majhi in Phys. Rev. D 81:124006, 2010; Phys. Rev. D 79:064024, 2009; Phys. Lett. B 675:243, 2009) quantum mechanical near horizon mode functions to compute the tunneling probability that goes in to the Shannon formula, following the general idea of Brillouin (Science and Information Theory, Dover, New York, 2004). Our framework conforms to the information theoretic origin of Black Hole entropy, as originally proposed by Bekenstein.

  16. Horizon Entropy from Quantum Gravity Condensates

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele; Pranzetti, Daniele; Sindoni, Lorenzo

    2016-05-01

    We construct condensate states encoding the continuum spherically symmetric quantum geometry of a horizon in full quantum gravity, i.e., without any classical symmetry reduction, in the group field theory formalism. Tracing over the bulk degrees of freedom, we show how the resulting reduced density matrix manifestly exhibits a holographic behavior. We derive a complete orthonormal basis of eigenstates for the reduced density matrix of the horizon and use it to compute the horizon entanglement entropy. By imposing consistency with the horizon boundary conditions and semiclassical thermodynamical properties, we recover the Bekenstein-Hawking entropy formula for any value of the Immirzi parameter. Our analysis supports the equivalence between the von Neumann (entanglement) entropy interpretation and the Boltzmann (statistical) one.

  17. Horizon Entropy from Quantum Gravity Condensates.

    PubMed

    Oriti, Daniele; Pranzetti, Daniele; Sindoni, Lorenzo

    2016-05-27

    We construct condensate states encoding the continuum spherically symmetric quantum geometry of a horizon in full quantum gravity, i.e., without any classical symmetry reduction, in the group field theory formalism. Tracing over the bulk degrees of freedom, we show how the resulting reduced density matrix manifestly exhibits a holographic behavior. We derive a complete orthonormal basis of eigenstates for the reduced density matrix of the horizon and use it to compute the horizon entanglement entropy. By imposing consistency with the horizon boundary conditions and semiclassical thermodynamical properties, we recover the Bekenstein-Hawking entropy formula for any value of the Immirzi parameter. Our analysis supports the equivalence between the von Neumann (entanglement) entropy interpretation and the Boltzmann (statistical) one. PMID:27284642

  18. Generalized gravitational entropy without replica symmetry

    NASA Astrophysics Data System (ADS)

    Camps, Joan; Kelly, William R.

    2015-03-01

    We explore several extensions of the generalized entropy construction of Lewkowycz and Maldacena, including a formulation that does not rely on preserving replica symmetry in the bulk. We show that an appropriately general ansatz for the analytically continued replica metric gives us the flexibility needed to solve the gravitational field equations beyond general relativity. As an application of this observation we study EinsteinGauss-Bonnet gravity with a small Gauss-Bonnet coupling and derive the condition that the holographic entanglement entropy must be evaluated on a surface which extremizes the Jacobson-Myers entropy. We find that in both general relativity and Einstein-Gauss-Bonnet gravity replica symmetry breaking terms are permitted by the field equations, suggesting that they do not generically vanish.

  19. Maximum entropy criteria applied to signal recovery

    NASA Astrophysics Data System (ADS)

    MacKinnon, Robert F.; Wilmut, Michael J.

    1988-06-01

    A method based on the minimization of cross-entropy is presented for the recovery of signals from noisy data either in the form of time series or images. Finite Fourier transforms are applied to the data and constraints are placed on the magnitude and phase of the Fourier coefficients based on their statistics for noise-only data. The minimization of cross-entropy is achieved through application of well-established functional minimization techniques which allow for further constraints in the spatial, temporal or frequency domain. Derivatives of the entropy function are obtained analytically and the results applied to the cases of correlated noise and of signal perturbations about a mean. Demonstrations of applications to one-dimensional data are presented.

  20. Entanglement entropy of multipartite pure states

    SciTech Connect

    Bravyi, Sergei

    2003-01-01

    Consider a system consisting of n d-dimensional quantum particles and an arbitrary pure state vertical bar {psi}> of the whole system. Suppose we simultaneously perform complete von Neumann measurements on each particle. The Shannon entropy of the outcomes' joint probability distribution is a functional of the state vertical bar {psi}> and of n measurements chosen for each particle. Denote S[{psi}] the minimum of this entropy over all choices of the measurements. We show that S[{psi}] coincides with the entropy of entanglement for bipartite states. We compute S[{psi}] for some special multipartite states: the hexacode state vertical bar H> (n=6, d=2) and the determinant states vertical bar Det{sub n}> (d=n). The computation yields S[H]=4 log 2 and S[Det{sub n}]=log(n{exclamation_point}). Counterparts of the determinant state defined for d

  1. On the shape dependence of Entanglement Entropy

    NASA Astrophysics Data System (ADS)

    Carmi, Dean

    2015-12-01

    We study the shape dependence of entanglement entropy (EE) by deforming symmetric entangling surfaces. We show that entangling surfaces with a rotational or translational symmetry extremize (locally) the EE with respect to shape deformations that break some of the symmetry (i.e. the 1st order correction vanishes). This result applies to EE and Renyi entropy for any QFT in any dimension. Using Solodukhin's formula in 4 d and holography in any d, we calculate the 2nd order correction to the universal EE for CFTs and simple symmetric entangling surfaces. For several entangling surfaces we find that the 2nd order correction is positive for any perturbation, and thus the corresponding symmetric entangling surface is a local minimum. Some of the results are extended to free massive fields and to 4d Renyi entropy.

  2. Entropy Generation and Human Aging: Lifespan Entropy and Effect of Physical Activity Level

    NASA Astrophysics Data System (ADS)

    Silva, Carlos; Annamalai, Kalyan

    2008-06-01

    The first and second laws of thermodynamics were applied to biochemical reactions typical of human metabolism. An open-system model was used for a human body. Energy conservation, availability and entropy balances were performed to obtain the entropy generated for the main food components. Quantitative results for entropy generation were obtained as a function of age using the databases from the U.S. Food and Nutrition Board (FNB) and Centers for Disease Control and Prevention (CDC), which provide energy requirements and food intake composition as a function of age, weight and stature. Numerical integration was performed through human lifespan for different levels of physical activity. Results were presented and analyzed. Entropy generated over the lifespan of average individuals (natural death) was found to be 11,404 kJ/ºK per kg of body mass with a rate of generation three times higher on infants than on the elderly. The entropy generated predicts a life span of 73.78 and 81.61 years for the average U.S. male and female individuals respectively, which are values that closely match the average lifespan from statistics (74.63 and 80.36 years). From the analysis of the effect of different activity levels, it is shown that entropy generated increases with physical activity, suggesting that exercise should be kept to a “healthy minimum” if entropy generation is to be minimized.

  3. Large field inflation and gravitational entropy

    NASA Astrophysics Data System (ADS)

    Kaloper, Nemanja; Kleban, Matthew; Lawrence, Albion; Sloth, Martin S.

    2016-02-01

    Large field inflation can be sensitive to perturbative and nonperturbative quantum corrections that spoil slow roll. A large number N of light species in the theory, which occur in many string constructions, can amplify these problems. One might even worry that in a de Sitter background, light species will lead to a violation of the covariant entropy bound at large N . If so, requiring the validity of the covariant entropy bound could limit the number of light species and their couplings, which in turn could severely constrain axion-driven inflation. Here we show that there is no such problem when we correctly renormalize models with many light species, taking the physical Planck scale to be Mpl 2≳N MUV2 , where MUV is the cutoff for the quantum field theory coupled to semiclassical quantum gravity. The number of light species then cancels out of the gravitational entropy of de Sitter or near-de Sitter backgrounds at leading order. Working in detail with N scalar fields in de Sitter space, renormalized to one loop order, we show that the gravitational entropy automatically obeys the covariant entropy bound. Furthermore, while the axion decay constant is a strong coupling scale for the axion dynamics, we show that it is not in general the cutoff of 4d semiclassical gravity. After renormalizing the two point function of the inflaton, we note that it is also controlled by scales much below the cutoff. We revisit N -flation and Kachru-Kallosh-Linde-Trivedi-type compactifications in this light, and show that they are perfectly consistent with the covariant entropy bound. Thus, while quantum gravity might yet spoil large field inflation, holographic considerations in the semiclassical theory do not obstruct it.

  4. Autonomous entropy-based intelligent experimental design

    NASA Astrophysics Data System (ADS)

    Malakar, Nabin Kumar

    2011-07-01

    The aim of this thesis is to explore the application of probability and information theory in experimental design, and to do so in a way that combines what we know about inference and inquiry in a comprehensive and consistent manner. Present day scientific frontiers involve data collection at an ever-increasing rate. This requires that we find a way to collect the most relevant data in an automated fashion. By following the logic of the scientific method, we couple an inference engine with an inquiry engine to automate the iterative process of scientific learning. The inference engine involves Bayesian machine learning techniques to estimate model parameters based upon both prior information and previously collected data, while the inquiry engine implements data-driven exploration. By choosing an experiment whose distribution of expected results has the maximum entropy, the inquiry engine selects the experiment that maximizes the expected information gain. The coupled inference and inquiry engines constitute an autonomous learning method for scientific exploration. We apply it to a robotic arm to demonstrate the efficacy of the method. Optimizing inquiry involves searching for an experiment that promises, on average, to be maximally informative. If the set of potential experiments is described by many parameters, the search involves a high-dimensional entropy space. In such cases, a brute force search method will be slow and computationally expensive. We develop an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment. This helps to reduce the number of computations necessary to find the optimal experiment. We also extended the method of maximizing entropy, and developed a method of maximizing joint entropy so that it could be used as a principle of collaboration between two robots. This is a major achievement of this thesis, as it allows the information-based collaboration between two robotic units towards a same

  5. Mandibular third molar development after mantle radiation in long-term survivors of childhood Hodgkin's disease

    SciTech Connect

    McGinnis, J.P. Jr.; Hopkins, K.P.; Thompson, E.I.; Hustu, H.O.

    1987-05-01

    Sequential panoramic radiographs were assessed for mandibular third molar development in 47 long-term survivors of childhood Hodgkin's disease after treatment with 37 Gy mantle field radiation. To make a comparison, panoramic radiographs of 149 healthy, nonirradiated children were reviewed for the presence of mandibular third molars. In children between the ages of 7 and 12 years, bilateral agenesis of mandibular third molars was more frequent in patients who had been treated with mantle radiation than in nonirradiated patients. Unilateral agenesis, crown hypoplasia, and root growth impairment of mandibular third molars were also found. Similar, apparent, radiation-induced developmental anomalies were noted in maxillary third molars of the irradiated patients.

  6. Entropy spectrum of dimensional stringy black holes

    NASA Astrophysics Data System (ADS)

    Suresh, Jishnu; Kuriakose, V. C.

    2015-05-01

    We explore the entropy spectrum of dimensional dilatonic stringy black holes via the adiabatic invariant integral method known as Jiang and Han's method (Phys Lett B 718:584, 2012) and the Bohr-Sommerfeld quantization rule. It is found that the corresponding spectrum depends on black hole parameters like charge, ADM mass, and, more interestingly, on the dilatonic field. We calculate the entropy of the present black hole system via the Euclidean treatment of quantum gravity and study the thermodynamics of the black hole and find that the system does not undergo any phase transition.

  7. Entropy production in irreversible processes with friction.

    PubMed

    Bizarro, João P S

    2008-08-01

    Established expressions for entropy production in irreversible processes are generalized to include friction explicitly, as a source of irreversibility in the interaction between a system and its surroundings. The net amount of heat delivered to the system does not come now only from the reservoir, but may have an additional component coming from the work done against friction forces and dissipated as heat. To avoid ambiguities in interpreting the different contributions to entropy increase, the latter is also written in terms of the heat directly exchanged between the system and surroundings and of the fraction of frictional work that is lost in the system. PMID:18850816

  8. Pattern Recognition via PCNN and Tsallis Entropy

    PubMed Central

    Zhang, YuDong; Wu, LeNan

    2008-01-01

    In this paper a novel feature extraction method for image processing via PCNN and Tsallis entropy is presented. We describe the mathematical model of the PCNN and the basic concept of Tsallis entropy in order to find a recognition method for isolated objects. Experiments show that the novel feature is translation and scale independent, while rotation independence is a bit weak at diagonal angles of 45° and 135°. Parameters of the application on face recognition are acquired by bacterial chemotaxis optimization (BCO), and the highest classification rate is 72.5%, which demonstrates its acceptable performance and potential value.

  9. Distribution entropy analysis of epileptic EEG signals.

    PubMed

    Li, Peng; Yan, Chang; Karmakar, Chandan; Liu, Changchun

    2015-08-01

    It is an open-ended challenge to accurately detect the epileptic seizures through electroencephalogram (EEG) signals. Recently published studies have made elaborate attempts to distinguish between the normal and epileptic EEG signals by advanced nonlinear entropy methods, such as the approximate entropy, sample entropy, fuzzy entropy, and permutation entropy, etc. Most recently, a novel distribution entropy (DistEn) has been reported to have superior performance compared with the conventional entropy methods for especially short length data. We thus aimed, in the present study, to show the potential of DistEn in the analysis of epileptic EEG signals. The publicly-accessible Bonn database which consisted of normal, interictal, and ictal EEG signals was used in this study. Three different measurement protocols were set for better understanding the performance of DistEn, which are: i) calculate the DistEn of a specific EEG signal using the full recording; ii) calculate the DistEn by averaging the results for all its possible non-overlapped 5 second segments; and iii) calculate it by averaging the DistEn values for all the possible non-overlapped segments of 1 second length, respectively. Results for all three protocols indicated a statistically significantly increased DistEn for the ictal class compared with both the normal and interictal classes. Besides, the results obtained under the third protocol, which only used very short segments (1 s) of EEG recordings showed a significantly (p <; 0.05) increased DistEn for the interictal class in compassion with the normal class, whereas both analyses using relatively long EEG signals failed in tracking this difference between them, which may be due to a nonstationarity effect on entropy algorithm. The capability of discriminating between the normal and interictal EEG signals is of great clinical relevance since it may provide helpful tools for the detection of a seizure onset. Therefore, our study suggests that the Dist

  10. Integrals, Expectation-Values and Entropy.

    NASA Astrophysics Data System (ADS)

    Barron, Arthur Randall

    1982-03-01

    The maximum entropy principle, one of the cornerstones of equilibrium statistical mechanics, has been introduced into probability theory by E. T. JAYNES as part of a rational strategy for making plausible inferences from incomplete information. The conventional maximum entropy formalism, involving the familiar machinery of partition functions, is practically the same in both classical and quantum mechanical formulations of statistical mechanics. The present work undertakes to extend the maximum entropy principle to a generalized abstract formulation of probability theory, encompassing the familiar classical and quantal models as well as certain more exotic models uncovered by G. W. MACKEY in his axiomatization of quantum mechanics--the so-called quantum logics. In this more general approach, the conventional machinery of partition functions is not available. Instead, one makes use of a family of conditional entropy functions. In its dependence on the constraint conditions, the conditional entropy enjoys concavity and monotonicity properties analogous to those of the phenomenological entropy in equilibrium thermodynamics. The new formalism is able to take in stride the possibility that the constraints, although consistent, may fail to determine a unique maximum entropy state (probability distribution). Examples which demonstrate this possibility are readily constructed in both classical and quantal models of probability theory. One observes that, in the convex set of states compatible with the constraints, there is none of greatest entropy; typically this happens at or beyond a "barrier" where the conventional partition function becomes singular. Such examples should not simply be dismissed as "pathological"; they may perhaps have interesting physical interpretations (e.g., turbulence, disorder, chaos). In carrying out the above program it is essential to recognize that the expectation-values of an unbounded observable (real random variable) need not be finite: they

  11. Aspects of entanglement entropy for gauge theories

    NASA Astrophysics Data System (ADS)

    Soni, Ronak M.; Trivedi, Sandip P.

    2016-01-01

    A definition for the entanglement entropy in a gauge theory was given recently in arXiv:1501.02593. Working on a spatial lattice, it involves embedding the physical state in an extended Hilbert space obtained by taking the tensor product of the Hilbert space of states on each link of the lattice. This extended Hilbert space admits a tensor product decomposition by definition and allows a density matrix and entanglement entropy for the set of links of interest to be defined. Here, we continue the study of this extended Hilbert space definition with particular emphasis on the case of Non-Abelian gauge theories.

  12. Entropy and predictability of information carriers.

    PubMed

    Ebeling, W; Frömmel, C

    1998-04-01

    The structure of linear strings carrying information is investigated by means of entropy concepts. First conditional entropy and transinformation are introduced and several generalizations are discussed. The capability to describe the structure of information carriers as DNA, proteins, texts and musical strings is investigated. The relation between order and the predictability of informational strings is discussed. As examples we study the mutual information function of virus DNA and several long proteins. Further we show some (rather formal) analogies to the structure of texts, and strings generated by musical melodies. It is shown that several information carriers show long-range correlations. PMID:9648674

  13. Entropy Inequality Violations from Ultraspinning Black Holes.

    PubMed

    Hennigar, Robie A; Mann, Robert B; Kubizňák, David

    2015-07-17

    We construct a new class of rotating anti-de Sitter (AdS) black hole solutions with noncompact event horizons of finite area in any dimension and study their thermodynamics. In four dimensions these black holes are solutions to gauged supergravity. We find that their entropy exceeds the maximum implied from the conjectured reverse isoperimetric inequality, which states that for a given thermodynamic volume, the black hole entropy is maximized for Schwarzschild-AdS space. We use this result to suggest more stringent conditions under which this conjecture may hold. PMID:26230779

  14. A logarithmic correction in the entropy functional formalism

    NASA Astrophysics Data System (ADS)

    Hammad, Fayçal; Faizal, Mir

    2016-04-01

    The entropy functional formalism allows one to recover general relativity, modified gravity theories, as well as the Bekenstein-Hawking entropy formula. In most approaches to quantum gravity, the Bekenstein-Hawking’s entropy formula acquires a logarithmic correction term. As such terms occur almost universally in most approaches to quantum gravity, we analyze the effect of such terms on the entropy functional formalism. We demonstrate that the leading correction to the micro-canonical entropy in the entropy functional formalism can be used to recover modified theories of gravity already obtained with an uncorrected micro-canonical entropy. Furthermore, since the entropy functional formalism reproduces modified gravity, the rise of gravity-dependent logarithmic corrections turns out to be one way to impose constraints on these theories of modified gravity. The constraints found here for the simple case of an ℱ(R)-gravity are the same as those obtained in the literature from cosmological considerations.

  15. Tomographic Rényi entropy of multimode Gaussian states

    NASA Astrophysics Data System (ADS)

    Man'ko, Margarita A.

    2013-03-01

    The Rényi and Shannon entropies associated with optical and symplectic tomograms of multimode photon states are obtained in explicit form. Some new inequalities for the tomographic entropies are studied.

  16. Gacs quantum algorithmic entropy in infinite dimensional Hilbert spaces

    SciTech Connect

    Benatti, Fabio; Oskouei, Samad Khabbazi Deh Abad, Ahmad Shafiei

    2014-08-15

    We extend the notion of Gacs quantum algorithmic entropy, originally formulated for finitely many qubits, to infinite dimensional quantum spin chains and investigate the relation of this extension with two quantum dynamical entropies that have been proposed in recent years.

  17. A Study of Turkish Chemistry Undergraduates' Understandings of Entropy

    ERIC Educational Resources Information Center

    Sozbilir, Mustafa; Bennett, Judith M.

    2007-01-01

    Entropy is that fundamental concept of chemical thermodynamics, which explains the natural tendency of matter and energy in the Universe. The analysis presents the description of entropy, as understood by the Turkish chemistry undergraduates.

  18. Entropy analysis in foreign exchange markets and economic crisis

    NASA Astrophysics Data System (ADS)

    Ha, Jin-Gi; Yim, Kyubin; Kim, Seunghwan; Jung, Woo-Sung

    2012-08-01

    We investigate the relative market efficiency in 11 foreign exchange markets by using the Lempel-Ziv (LZ) complexity algorithm and several entropy values such as the Shannon entropy, the approximate entropy, and the sample entropy. With daily data in 11 foreign exchange markets from Jan. 2000 to Sep. 2011, we observe that mature markets have higher LZ complexities and entropy values than emerging markets. Furthermore, with sliding time windows, we also investigate the temporal evolutions of those entropies from Jan. 1994 to Sep. 2011, and we find that, after an economic crisis, the approximate entropy and the sample entropy of mature markets such as Japan, Europe and the United Kingdom suddenly become lower.

  19. Quantum Statistical Entropy of Five-Dimensional Black Hole

    NASA Astrophysics Data System (ADS)

    Zhao, Ren; Wu, Yue-Qin; Zhang, Sheng-Li

    2006-05-01

    The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of the five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is not the divergent logarithmic term as in the original brick-wall method. And it is obtained that the quantum statistic entropy corresponding to black hole horizon is proportional to the area of the horizon. Further it is shown that the entropy of black hole is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. It makes people further understand the quantum statistic entropy.

  20. Electronic structure and vibrational entropies of fcc Au-Fe alloys

    SciTech Connect

    Munoz, Jorge A.; Lucas, Matthew; Mauger, L; Halevy, I; Horwath, J; Semiatin, S L; Xiao, Yuming; Stone, Matthew B; Abernathy, Douglas L; Fultz, B.

    2013-01-01

    Phonon density of states (DOS) curves were measured on alloys of face-centered-cubic (fcc) Au-Fe using nuclear resonant inelastic x-ray scattering (NRIXS) and inelastic neutron scattering (INS). The NRIXS and INS results were combined to obtain the total phonon DOS and the partial phonon DOS curves of Au and Fe atoms. The 57Fe partial phonon DOS of the dilute alloy Au0.97 57Fe0.03 shows a localized mode centered 4.3% above the cutoff energy of the phonons in pure Au. The Mannheim model for impurity modes accurately reproduced this partial phonon DOS using the fcc Au phonon DOS with a ratio of host-host to impurity-host force constants of 1.55. First-principles calculations validated the assumption of first-nearest-neighbor forces in the Mannheim model and gave a similar ratio of force constants. The high energy local mode broadens with increasing Fe composition, but this has a small effect on the composition dependence of the vibrational entropy. The main effect on the vibrational entropy of alloying comes from a stiffening of the Au partial phonon DOS with Fe concentration. This stiffening is attributed to two main effects: 1) an increase in electron density in the free-electron-like states, and 2) stronger sd-hybridization. These two effects are comparable in magnitude.