Quadrupole terms in the Maxwell equations: Born energy, partial molar volume, and entropy of ions
NASA Astrophysics Data System (ADS)
Slavchov, Radomir I.; Ivanov, Tzanko I.
2014-02-01
A new equation of state relating the macroscopic quadrupole moment density {seriesshape Q} to the gradient of the field ∇E in an isotropic fluid is derived: {seriesshape Q} = αQ(∇E - {series U}∇.E/3), where the quadrupolarizability αQ is proportional to the squared molecular quadrupole moment. Using this equation of state, a generalized expression for the Born energy of an ion dissolved in quadrupolar solvent is obtained. It turns out that the potential and the energy of a point charge in a quadrupolar medium are finite. From the obtained Born energy, the partial molar volume and the partial molar entropy of a dissolved ion follow. Both are compared to experimental data for a large number of simple ions in aqueous solutions. From the comparison the value of the quadrupolar length LQ is determined, LQ = (αQ/3ɛ)1/2 = 1-4 Å. Data for ion transfer from aqueous to polar oil solution are analyzed, which allowed for the determination of the quadrupolarizability of nitrobenzene.
Molar heat capacity and entropy of calcium metal
Hemingway, B.S.; Robie, R.A.; Chase, M.W.
1997-01-01
The heat capacity of calcium has been measured at 85 mean temperatures between T ??? 8 K and T ??? 369 K using an adiabatically-shielded calorimeter in an intermittent heating mode. At T = 298.15 K, the recommended values for the molar heat capacity, molar entropy, and molar enthalpy increment referred to T = 0 are (25.77 ?? 0.08) J??K-1??mol-1, (42.90 ?? 0.11) J??K-1??mol-1, and (5811 ?? 12) J??mol-1, respectively. The uncertainties are twice the standard deviation of the mean. ?? 1997 Academic Press Limited.
Partial transfer entropy on rank vectors
NASA Astrophysics Data System (ADS)
Kugiumtzis, D.
2013-06-01
For the evaluation of information flow in bivariate time series, information measures have been employed, such as the transfer entropy (TE), the symbolic transfer entropy (STE), defined similarly to TE but on the ranks of the components of the reconstructed vectors, and the transfer entropy on rank vectors (TERV), similar to STE but forming the ranks for the future samples of the response system with regard to the current reconstructed vector. Here we extend TERV for multivariate time series, and account for the presence of confounding variables, called partial transfer entropy on ranks (PTERV). We investigate the asymptotic properties of PTERV, and also partial STE (PSTE), construct parametric significance tests under approximations with Gaussian and gamma null distributions, and show that the parametric tests cannot achieve the power of the randomization test using time-shifted surrogates. Using simulations on known coupled dynamical systems and applying parametric and randomization significance tests, we show that PTERV performs better than PSTE but worse than the partial transfer entropy (PTE). However, PTERV, unlike PTE, is robust to the presence of drifts in the time series and it is also not affected by the level of detrending.
Determination of partial molar volumes from free energy perturbation theory†
Vilseck, Jonah Z.; Tirado-Rives, Julian
2016-01-01
Partial molar volume is an important thermodynamic property that gives insights into molecular size and intermolecular interactions in solution. Theoretical frameworks for determining the partial molar volume (V°) of a solvated molecule generally apply Scaled Particle Theory or Kirkwood–Buff theory. With the current abilities to perform long molecular dynamics and Monte Carlo simulations, more direct methods are gaining popularity, such as computing V° directly as the difference in computed volume from two simulations, one with a solute present and another without. Thermodynamically, V° can also be determined as the pressure derivative of the free energy of solvation in the limit of infinite dilution. Both approaches are considered herein with the use of free energy perturbation (FEP) calculations to compute the necessary free energies of solvation at elevated pressures. Absolute and relative partial molar volumes are computed for benzene and benzene derivatives using the OPLS-AA force field. The mean unsigned error for all molecules is 2.8 cm3 mol−1. The present methodology should find use in many contexts such as the development and testing of force fields for use in computer simulations of organic and biomolecular systems, as a complement to related experimental studies, and to develop a deeper understanding of solute–solvent interactions. PMID:25589343
Determination of partial molar volumes from free energy perturbation theory.
Vilseck, Jonah Z; Tirado-Rives, Julian; Jorgensen, William L
2015-04-01
Partial molar volume is an important thermodynamic property that gives insights into molecular size and intermolecular interactions in solution. Theoretical frameworks for determining the partial molar volume (V°) of a solvated molecule generally apply Scaled Particle Theory or Kirkwood-Buff theory. With the current abilities to perform long molecular dynamics and Monte Carlo simulations, more direct methods are gaining popularity, such as computing V° directly as the difference in computed volume from two simulations, one with a solute present and another without. Thermodynamically, V° can also be determined as the pressure derivative of the free energy of solvation in the limit of infinite dilution. Both approaches are considered herein with the use of free energy perturbation (FEP) calculations to compute the necessary free energies of solvation at elevated pressures. Absolute and relative partial molar volumes are computed for benzene and benzene derivatives using the OPLS-AA force field. The mean unsigned error for all molecules is 2.8 cm(3) mol(-1). The present methodology should find use in many contexts such as the development and testing of force fields for use in computer simulations of organic and biomolecular systems, as a complement to related experimental studies, and to develop a deeper understanding of solute-solvent interactions. PMID:25589343
Kullback relative entropy and characterization of partially polarized optical waves.
Réfrégier, Philippe; Goudail, François
2006-03-01
Different properties of partially polarized light are discussed using the Kullback relative entropy, which provides a physically meaningful measure of proximity between probability density functions (PDFs). For optical waves with a Gaussian PDF, the standard degree of polarization is a simple function of the Kullback relative entropy between the considered optical light and a totally depolarized light of the same intensity. It is shown that the Kullback relative entropies between different PDFs allow one to define other properties such as a degree of anisotropy and a degree of non-Gaussianity. It is also demonstrated that, in dimension three, the Kullback relative entropy between a partially polarized light and a totally depolarized light can lead to natural definitions of two degrees of polarization needed to characterize the polarization state. These analyses enlighten the physical meaning of partial polarization of light waves in terms of a measure of disorder provided by the Shannon entropy. PMID:16539066
Characterization of Early Partial Seizure Onset: Frequency, Complexity and Entropy
Jouny, Christophe C.; Bergey, Gregory K.
2011-01-01
Objective A clear classification of partial seizures onset features is not yet established. Complexity and entropy have been very widely used to describe dynamical systems, but a systematic evaluation of these measures to characterize partial seizures has never been performed. Methods Eighteen different measures including power in frequency bands up to 300Hz, Gabor atom density (GAD), Higuchi fractal dimension (HFD), Lempel-Ziv complexity, Shannon entropy, sample entropy, and permutation entropy, were selected to test sensitivity to partial seizure onset. Intracranial recordings from forty-five patients with mesial temporal, neocortical temporal and neocortical extratemporal seizure foci were included (331 partial seizures). Results GAD, Lempel-Ziv complexity, HFD, high frequency activity, and sample entropy were the most reliable measures to assess early seizure onset. Conclusions Increases in complexity and occurrence of high-frequency components appear to be commonly associated with early stages of partial seizure evolution from all regions. The type of measure (frequency-based, complexity or entropy) does not predict the efficiency of the method to detect seizure onset. Significance Differences between measures such as GAD and HFD highlight the multimodal nature of partial seizure onsets. Improved methods for early seizure detection may be achieved from a better understanding of these underlying dynamics. PMID:21872526
Entropy and convexity for nonlinear partial differential equations
Ball, John M.; Chen, Gui-Qiang G.
2013-01-01
Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue. PMID:24249768
Kircos, L T; Eakle, W S; Smith, R A
1986-05-01
The radiation-absorbed doses from panoramic radiography, distal molar radiography, and a partial panoramic radiographic technique that exposes only the third molar region to radiation are compared. Doses of radiation to the submandibular salivary gland were comparable by all three techniques, but doses of radiation to the head and neck were reduced greatly by the partial panoramic radiographic technique. Partial panoramic radiography is a diagnostically satisfactory and a radiologically safer technique for evaluation of third molar pathosis than is panoramic or distal molar radiography. PMID:3458783
Kircos, L.T.; Eakle, W.S.; Smith, R.A.
1986-05-01
The radiation-absorbed doses from panoramic radiography, distal molar radiography, and a partial panoramic radiographic technique that exposes only the third molar region to radiation are compared. Doses of radiation to the submandibular salivary gland were comparable by all three techniques, but doses of radiation to the head and neck were reduced greatly by the partial panoramic radiographic technique. Partial panoramic radiography is a diagnostically satisfactory and a radiologically safer technique for evaluation of third molar pathosis than is panoramic or distal molar radiography.
Partial molar volume of L-Valine in water under high pressure
NASA Astrophysics Data System (ADS)
Sawamura, Seiji
2013-06-01
Partial molar volume of L-valine in water was estimated up to 400 MPa from pressure coefficient of the solubility of the solute and molar volume of solid valine. The former was measured in a previous paper and the latter was measured in this article using a piston-cylinder typed cell. The partial molar volume increased with pressure and a maximum was observed around 250 MPa. It was compared with other amino acids.
Prenatal screening tests may be a warning for the partial molar pregnancy? case report
Sargin, Mehmet Akif; Tug, Niyazi; Yassa, Murat; Yavuz, Arzu
2015-01-01
Prenatal screening tests are frequently requested for chromosomal abnormalities. Placental pathologies in early pregnancy may be overlooked, especially in partial molar pregnancy. We are reporting an incorrect preliminary diagnosed case with an increased risk of Down syndrome in her first-trimester screening test due to partial molar pregnancy. PMID:26175814
Entropy Computation in Partially Observed Markov Chains
NASA Astrophysics Data System (ADS)
Desbouvries, François
2006-11-01
Let X = {Xn}n∈N be a hidden process and Y = {Yn}n∈N be an observed process. We assume that (X,Y) is a (pairwise) Markov Chain (PMC). PMC are more general than Hidden Markov Chains (HMC) and yet enable the development of efficient parameter estimation and Bayesian restoration algorithms. In this paper we propose a fast (i.e., O(N)) algorithm for computing the entropy of {Xn}n=0N given an observation sequence {yn}n=0N.
Reynolds, Jacob G.
2013-01-11
Partial molar properties are the changes occurring when the fraction of one component is varied while the fractions of all other component mole fractions change proportionally. They have many practical and theoretical applications in chemical thermodynamics. Partial molar properties of chemical mixtures are difficult to measure because the component mole fractions must sum to one, so a change in fraction of one component must be offset with a change in one or more other components. Given that more than one component fraction is changing at a time, it is difficult to assign a change in measured response to a change in a single component. In this study, the Component Slope Linear Model (CSLM), a model previously published in the statistics literature, is shown to have coefficients that correspond to the intensive partial molar properties. If a measured property is plotted against the mole fraction of a component while keeping the proportions of all other components constant, the slope at any given point on a graph of this curve is the partial molar property for that constituent. Actually plotting this graph has been used to determine partial molar properties for many years. The CSLM directly includes this slope in a model that predicts properties as a function of the component mole fractions. This model is demonstrated by applying it to the constant pressure heat capacity data from the NaOH-NaAl(OH{sub 4}H{sub 2}O system, a system that simplifies Hanford nuclear waste. The partial molar properties of H{sub 2}O, NaOH, and NaAl(OH){sub 4} are determined. The equivalence of the CSLM and the graphical method is verified by comparing results detennined by the two methods. The CSLM model has been previously used to predict the liquidus temperature of spinel crystals precipitated from Hanford waste glass. Those model coefficients are re-interpreted here as the partial molar spinel liquidus temperature of the glass components.
NASA Astrophysics Data System (ADS)
Lerch, P.; Seifert, R.; Malfait, W. J.; Sanchez-Valle, C.
2012-12-01
Carbon dioxide is the second most abundant volatile in magmatic systems and plays an important role in many magmatic processes, e.g. partial melting, volatile saturation, outgassing. Despite this relevance, the volumetric properties of carbon-bearing silicates at relevant pressure and temperature conditions remain largely unknown because of considerable experimental difficulties associated with in situ measurements. Density and elasticity measurements on quenched glasses can provide an alternative source of information. For dissolved water, such measurements indicate that the partial molar volume is independent of compositions at ambient pressure [1], but the partial molar compressibility is not [2, 3]. Thus the partial molar volume of water may depend on melt composition at elevated pressure. For dissolved CO2, no such data is available. In order to constrain the effect of magma composition on the partial molar volume and compressibility of dissolved carbon, we determined the density and elasticity for three series of carbon-bearing basalt, phonolite and rhyolite glasses, quenched from 3.5 GPa and relaxed at ambient pressure. The CO2 content varies between 0 to 3.90 wt% depending on the glass composition. Glass densities were determined using the sink/float method in a diiodomethane (CH2I2) - acetone mixture. Brillouin measurements were conducted on relaxed and unrelaxed silicate glasses in platelet geometry to determine the compressional (VP) and shear (VS) wave velocities and elastic moduli. The partial molar volume of CO2 in rhyolite, phonolite and basalt glasses is 25.4 ± 0.9, 22.1 ± 0.6 and 26.6 ±1.8 cm3/mol, respectively. Thus, unlike for dissolved water, the partial molar volume of CO2 displays a resolvable compositional effect. Although the composition and CO2/carbonate speciation of the phonolite glasses is intermediate between that of the rhyolite and basalt glasses, the molar volume is not. Similar to dissolved water, the partial molar bulk modulus
Partial moment entropy approximation to radiative heat transfer
Frank, Martin . E-mail: frank@mathematik.uni-kl.de; Dubroca, Bruno . E-mail: Bruno.Dubroca@math.u-bordeaux.fr; Klar, Axel . E-mail: klar@mathematik.uni-kl.de
2006-10-10
We extend the half moment entropy closure for the radiative heat transfer equations presented in Dubroca and Klar [B. Dubroca, A. Klar, Half moment closure for radiative transfer equations, J. Comput. Phys. 180 (2002) 584-596] and Turpault et al. [R. Turpault, M. Frank, B. Dubroca, A. Klar, Multigroup half space moment approximations to the radiative heat transfer equations, J. Comput. Phys. 198 (2004) 363-371] to multi-D. To that end, we consider a partial moment system with general partitions of the unit sphere closed by an entropy minimization principle. We give physical and mathematical reasons for this choice of model and study its properties. Several numerical examples in different physical regimes are presented.
NASA Astrophysics Data System (ADS)
Matsuoka, Tatsuro; Nakamura, Shunsuke; Yamaguchi, Tsuyoshi; Koda, Shinobu
2012-01-01
Temperature dependence of partial molar volume of 4-amino-4‧-nitrobiphenyl (ANB) and 4,4‧-dinitrobiphenyl (DNB) in the isotropic phase of 4-n-pentyl-4‧-cyanobiphenyl (5CB) was determined. Addition of ANB to 5CB causes increase of isotropic-nematic phase transition temperature (TIN) [1]. The decrease of partial molar volume of ANB was observed while the increase of partial molar volume of DNB and triphenyl phosphite (TPP) [8] was observed with approaching TIN. The anomalous behavior of partial molar volume was discussed using treatments similar to that of other thermodynamic derivatives in the I-N transition.
Comment on ``Hydrophobic effects on partial molar volume'' [J. Chem. Phys. 122, 094509 (2005)
NASA Astrophysics Data System (ADS)
Graziano, Giuseppe
2005-10-01
It is pointed out that the results obtained by Imai and Hirata [ J. Chem. Phys.122, 094509 (2005)] for the partial molar volume of benzene in a detailed model of water and in a hypothetical nonpolar water model should be interpreted with care. By turning off the electrostatic interactions among water molecules, keeping fixed the molar volume and so the liquid number density, in order to produce the hypothetical nonpolar water without H bonds, the size of water molecules increases from about 2.8 to about 3.2Å. This fact is due to the bunching-up effect of H bonds. The consequences of this fact are clarified by means of calculations performed using the analytical expression of the partial molar volume derived by Lee [J. Phys. Chem.87, 112 (1983)] from the scaled particle theory equation of state for hard-sphere mixtures.
Cooperativity, partially bound states, and enthalpy-entropy compensation.
Hunter, Christopher A; Tomas, Salvador
2003-11-01
Efforts to develop a quantitative understanding of molecular recognition rely on the additivity of individual intermolecular interactions, and cooperativity represents one of the major potential stumbling blocks. A chemical double-mutant cycle has been used to experimentally measure cooperativity between functional group interactions within a complex framework. The interaction between two aromatic groups varies by 0.2 +/- 0.4 kJ mol(-1) in synthetic H-bonded complexes that differ by 8-13 kJ mol(-1) in overall stability. In these systems, the free energies associated with individual intermolecular interactions can therefore be reliably treated in an additive fashion. The results suggest that alternative explanations should be considered for cooperative phenomena observed in other systems, and a rationale based on the population of partially bound states in flexible molecules is proposed to account for the enthalpic chelate effect and enthalpy-entropy compensation. PMID:14652069
Kurhe, Deepti N; Dagade, Dilip H; Jadhav, Jyoti P; Govindwar, Sanjay P; Patil, Kesharsingh J
2009-12-31
Densities and osmotic coefficient measurements for dilute aqueous solutions of glycine, l-leucine, and glycylglycine have been reported at 298.15 K. The partial molar volumes and activity coefficients of solute as well as solvent have been estimated using the density and osmotic coefficient data, respectively. Excess and mixing thermodynamic properties, such as Gibbs free energy, enthalpy, and entropy changes, have been obtained using the activity data from this study and the heat data reported in the literature. The concentration enthalpy-entropy compensation effects have been observed for the studied systems, and the compensation temperatures are reported. It has been observed that the excess free energy change for all the studied systems is almost the same over the studied concentration range, showing that the differences in properties of such solutions are largely decided by the enthalpy-entropy effects. These results, along with partial entropy data, show the effects of the presence of hydrophobic interactions and water structure making effect in the case of aqueous solutions of l-leucine. The application of the Starikov-Norden enthalpy-entropy compensation model yielded information about a "hidden Carnot cycle" and the existence of multiple microphases. Application of the Kirkwood-Buff (KB) theory of solutions for the studied systems yields pair correlation functions between the components. The variation of Kirkwood-Buff integrals with concentration further signifies the concentration dependence of the hydrophobic hydration and interactions in the solution phase. The osmotic second virial coefficients have also been obtained using the KB theory and show good agreement with those obtained using the McMillan-Mayer theory of solutions. The mean square concentration fluctuations is estimated using the KB theory, which gives information about the microheterogeneity in the solution phase, which further reflects the presence of hydration and solute association. PMID
A partial molar volume for ZnO in silicate melts.
NASA Astrophysics Data System (ADS)
Ledda, B.; Potuzak, M.; Dingwell, D. B.; Courtial, P.
2004-12-01
Trace elements in igneous petrology have, in comparison with major elements, a relevance in the petrogenetic modelling of magmatic differentiation that far outweighs their relative abundance. Optimal use of the information contained in trace element variations within igneous phases requires an accurate description of their partitioning behaviour as a function of phase composition and structure, as well as temperature and pressure. In this manner, the partial molar thermodynamic properties of trace elements in silicate melts may contribute to the petrogenetic modelling of such systems. With this in mind, a series of investigations into the partial molar properties of trace elements in silicate melts have been carried out in recent years. Here we extend this work to the analysis of the volumetric properties of ZnO in silicate melts. Densities of 8 Zn-bearing silicate melts have been determined in air in the temperature range of 1363 to 1850 K. The compositional joins investigated (sodium disilicate (NS2) - ZnO; anorthite-diopside 1 bar eutectic (AnDi) - ZnO; and diopside - petedunnite) were chosen based on the pre-existing experimental density data set, their petrological relevance and to provide a test for significant compositionally induced variations in the structural role of ZnO. The ZnO concentrations investigated range up to 25 mol% for sodium disilicate, 20 mol% for the anorthite-diopside 1 atm eutectic and 100 mol% petedunnite. Molar volumes and expansivities of all melts have been derived. The molar volumes of the present liquids all decrease with increasing ZnO content. The partial molar volume of ZnO derived here from the volumetric measurements for each binary system is the same within error. A multicomponent fit to the volumetric data for all compositions yields a value of 14.141(0.730) cm3.mol-1 at 1300 K. We find, herewith, no volumetric evidence for compositionally-induced coordination number variations for ZnO in alkali-bearing versus alkali
Hydrophobic hydration and the anomalous partial molar volumes in ethanol-water mixtures
NASA Astrophysics Data System (ADS)
Tan, Ming-Liang; Miller, Benjamin T.; Te, Jerez; Cendagorta, Joseph R.; Brooks, Bernard R.; Ichiye, Toshiko
2015-02-01
The anomalous behavior in the partial molar volumes of ethanol-water mixtures at low concentrations of ethanol is studied using molecular dynamics simulations. Previous work indicates that the striking minimum in the partial molar volume of ethanol VE as a function of ethanol mole fraction XE is determined mainly by water-water interactions. These results were based on simulations that used one water model for the solute-water interactions but two different water models for the water-water interactions. This is confirmed here by using two more water models for the water-water interactions. Furthermore, the previous work indicates that the initial decrease is caused by association of the hydration shells of the hydrocarbon tails, and the minimum occurs at the concentration where all of the hydration shells are touching each other. Thus, the characteristics of the hydration of the tail that cause the decrease and the features of the water models that reproduce this type of hydration are also examined here. The results show that a single-site multipole water model with a charge distribution that mimics the large quadrupole and the p-orbital type electron density out of the molecular plane has "brittle" hydration with hydrogen bonds that break as the tails touch, which reproduces the deep minimum. However, water models with more typical site representations with partial charges lead to flexible hydration that tends to stay intact, which produces a shallow minimum. Thus, brittle hydration may play an essential role in hydrophobic association in water.
Note: Nonpolar solute partial molar volume response to attractive interactions with water
NASA Astrophysics Data System (ADS)
Williams, Steven M.; Ashbaugh, Henry S.
2014-01-01
The impact of attractive interactions on the partial molar volumes of methane-like solutes in water is characterized using molecular simulations. Attractions account for a significant 20% volume drop between a repulsive Weeks-Chandler-Andersen and full Lennard-Jones description of methane interactions. The response of the volume to interaction perturbations is characterized by linear fits to our simulations and a rigorous statistical thermodynamic expression for the derivative of the volume to increasing attractions. While a weak non-linear response is observed, an average effective slope accurately captures the volume decrease. This response, however, is anticipated to become more non-linear with increasing solute size.
Note: Nonpolar solute partial molar volume response to attractive interactions with water
Williams, Steven M.; Ashbaugh, Henry S.
2014-01-07
The impact of attractive interactions on the partial molar volumes of methane-like solutes in water is characterized using molecular simulations. Attractions account for a significant 20% volume drop between a repulsive Weeks-Chandler-Andersen and full Lennard-Jones description of methane interactions. The response of the volume to interaction perturbations is characterized by linear fits to our simulations and a rigorous statistical thermodynamic expression for the derivative of the volume to increasing attractions. While a weak non-linear response is observed, an average effective slope accurately captures the volume decrease. This response, however, is anticipated to become more non-linear with increasing solute size.
Reynolds, Jacob G.
2013-07-01
Partial molar properties are the changes occurring when the fraction of one component is varied while the fractions of all other component mole fractions change proportionally. They have many practical and theoretical applications in chemical thermodynamics. Partial molar properties of chemical mixtures are difficult to measure because the component mole fractions must sum to one, so a change in fraction of one component must be offset with a change in one or more other components. Given that more than one component fraction is changing at a time, it is difficult to assign a change in measured response to a change in a single component. In this study, the Component Slope Linear Model (CSLM), a model previously published in the statistics literature, is shown to have coefficients that correspond to the intensive partial molar properties. If a measured property is plotted against the mole fraction of a component while keeping the proportions of all other components constant, the slope at any given point on a graph of this curve is the partial molar property for that constituent. Actually plotting this graph has been used to determine partial molar properties for many years. The CSLM directly includes this slope in a model that predicts properties as a function of the component mole fractions. This model is demonstrated by applying it to the constant pressure heat capacity data from the NaOHNaAl(OH){sub 4}-H{sub 2}O system, a system that simplifies Hanford nuclear waste. The partial molar properties of H{sub 2}O, NaOH, and NaAl(OH){sub 4} are determined. The equivalence of the CSLM and the graphical method is verified by comparing results determined by the two methods. The CSLM model has been previously used to predict the liquidus temperature of spinel crystals precipitated from Hanford waste glass. Those model coefficients are re-interpreted here as the partial molar spinel liquidus temperature of the glass components. (authors)
Reynolds, Jacob G.
2013-01-11
Partial molar properties are the changes occurring when the fraction of one component is varied while the fractions of all other component mole fractions change proportionally. They have many practical and theoretical applications in chemical thermodynamics. Partial molar properties of chemical mixtures are difficult to measure because the component mole fractions must sum to one, so a change in fraction of one component must be offset with a change in one or more other components. Given that more than one component fraction is changing at a time, it is difficult to assign a change in measured response to a change in a single component. In this study, the Component Slope Linear Model (CSLM), a model previously published in the statistics literature, is shown to have coefficients that correspond to the intensive partial molar properties. If a measured property is plotted against the mole fraction of a component while keeping the proportions of all other components constant, the slope at any given point on a graph of this curve is the partial molar property for that constituent. Actually plotting this graph has been used to determine partial molar properties for many years. The CSLM directly includes this slope in a model that predicts properties as a function of the component mole fractions. This model is demonstrated by applying it to the constant pressure heat capacity data from the NaOH-NaAl(OH){sub 4}-H{sub 2}O system, a system that simplifies Hanford nuclear waste. The partial molar properties of H{sub 2}O, NaOH, and NaAl(OH){sub 4} are determined. The equivalence of the CSLM and the graphical method is verified by comparing results determined by the two methods. The CSLM model has been previously used to predict the liquidus temperature of spinel crystals precipitated from Hanford waste glass. Those model coefficients are re-interpreted here as the partial molar spinel liquidus temperature of the glass components.
Hydrophobic hydration and the anomalous partial molar volumes in ethanol-water mixtures
Tan, Ming-Liang; Te, Jerez; Cendagorta, Joseph R.; Miller, Benjamin T.; Brooks, Bernard R.; Ichiye, Toshiko
2015-02-14
The anomalous behavior in the partial molar volumes of ethanol-water mixtures at low concentrations of ethanol is studied using molecular dynamics simulations. Previous work indicates that the striking minimum in the partial molar volume of ethanol V{sub E} as a function of ethanol mole fraction X{sub E} is determined mainly by water-water interactions. These results were based on simulations that used one water model for the solute-water interactions but two different water models for the water-water interactions. This is confirmed here by using two more water models for the water-water interactions. Furthermore, the previous work indicates that the initial decrease is caused by association of the hydration shells of the hydrocarbon tails, and the minimum occurs at the concentration where all of the hydration shells are touching each other. Thus, the characteristics of the hydration of the tail that cause the decrease and the features of the water models that reproduce this type of hydration are also examined here. The results show that a single-site multipole water model with a charge distribution that mimics the large quadrupole and the p-orbital type electron density out of the molecular plane has “brittle” hydration with hydrogen bonds that break as the tails touch, which reproduces the deep minimum. However, water models with more typical site representations with partial charges lead to flexible hydration that tends to stay intact, which produces a shallow minimum. Thus, brittle hydration may play an essential role in hydrophobic association in water.
Hydrophobic hydration and the anomalous partial molar volumes in ethanol-water mixtures.
Tan, Ming-Liang; Miller, Benjamin T; Te, Jerez; Cendagorta, Joseph R; Brooks, Bernard R; Ichiye, Toshiko
2015-02-14
The anomalous behavior in the partial molar volumes of ethanol-water mixtures at low concentrations of ethanol is studied using molecular dynamics simulations. Previous work indicates that the striking minimum in the partial molar volume of ethanol VE as a function of ethanol mole fraction XE is determined mainly by water-water interactions. These results were based on simulations that used one water model for the solute-water interactions but two different water models for the water-water interactions. This is confirmed here by using two more water models for the water-water interactions. Furthermore, the previous work indicates that the initial decrease is caused by association of the hydration shells of the hydrocarbon tails, and the minimum occurs at the concentration where all of the hydration shells are touching each other. Thus, the characteristics of the hydration of the tail that cause the decrease and the features of the water models that reproduce this type of hydration are also examined here. The results show that a single-site multipole water model with a charge distribution that mimics the large quadrupole and the p-orbital type electron density out of the molecular plane has "brittle" hydration with hydrogen bonds that break as the tails touch, which reproduces the deep minimum. However, water models with more typical site representations with partial charges lead to flexible hydration that tends to stay intact, which produces a shallow minimum. Thus, brittle hydration may play an essential role in hydrophobic association in water. PMID:25681917
Partial molar enthalpies and reaction enthalpies from equilibrium molecular dynamics simulation
Schnell, Sondre K.; Skorpa, Ragnhild; Bedeaux, Dick; Kjelstrup, Signe; Vlugt, Thijs J. H.; Simon, Jean-Marc
2014-10-14
We present a new molecular simulation technique for determining partial molar enthalpies in mixtures of gases and liquids from single simulations, without relying on particle insertions, deletions, or identity changes. The method can also be applied to systems with chemical reactions. We demonstrate our method for binary mixtures of Weeks-Chandler-Anderson particles by comparing with conventional simulation techniques, as well as for a simple model that mimics a chemical reaction. The method considers small subsystems inside a large reservoir (i.e., the simulation box), and uses the construction of Hill to compute properties in the thermodynamic limit from small-scale fluctuations. Results obtained with the new method are in excellent agreement with those from previous methods. Especially for modeling chemical reactions, our method can be a valuable tool for determining reaction enthalpies directly from a single MD simulation.
Partial molar enthalpies and reaction enthalpies from equilibrium molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Schnell, Sondre K.; Skorpa, Ragnhild; Bedeaux, Dick; Kjelstrup, Signe; Vlugt, Thijs J. H.; Simon, Jean-Marc
2014-10-01
We present a new molecular simulation technique for determining partial molar enthalpies in mixtures of gases and liquids from single simulations, without relying on particle insertions, deletions, or identity changes. The method can also be applied to systems with chemical reactions. We demonstrate our method for binary mixtures of Weeks-Chandler-Anderson particles by comparing with conventional simulation techniques, as well as for a simple model that mimics a chemical reaction. The method considers small subsystems inside a large reservoir (i.e., the simulation box), and uses the construction of Hill to compute properties in the thermodynamic limit from small-scale fluctuations. Results obtained with the new method are in excellent agreement with those from previous methods. Especially for modeling chemical reactions, our method can be a valuable tool for determining reaction enthalpies directly from a single MD simulation.
How big is the hydrated electron? Thermodynamics of electron solvation and its partial molar volume
NASA Astrophysics Data System (ADS)
Bartels, David
2015-03-01
Several models for the hydrated electron solvation structure have been proposed, which all can do a reasonable job of reproducing the room temperature optical spectrum. As Larsen, Glover and Schwartz demonstrated, tweaking the electron-water pseudopotential can completely change the structure from a cavity to a non-cavity geometry. Deciding between the competing models then requires comparison with other observables. The resonance Raman spectrum and the temperature dependence of the optical spectrum can be cited as evidence in favor of a non-cavity structure. In the present work we will re-examine the thermodynamics of hydration. In particular, we will present new experimental and simulation results for the partial molar volume, which can bear directly on the cavity vs. non-cavity controversy. DMB is supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences under Award Number DE- FC02-04ER1553.
Sealing versus partial caries removal in primary molars: a randomized clinical trial
2014-01-01
Background The resin-based pit and fissure sealant is considered a successful tool in caries prevention, however there is a growing evidence of its use in controlling already established caries in posterior teeth. The aim of this clinical trial is to verify the efficacy of pit and fissure sealants in arresting dentinal caries lesions compared to partial excavation and restorative treatment in primary molar teeth. Methods Thirty six patients with occlusal cavitated primary molar reaching outer half of dentin were selected. The patients were randomly allocated into two groups: sealant application (experimental group – n = 17) and restoration with composite resin (control group – n = 19). Clinical and radiograph evaluation were performed after 6, 12 and 18 months. The chi-square test was used to verify the distribution of characteristics variables of the sample among the groups. The survival rate of treatments was evaluated using Kaplan–Meier survival and log-rank test. Fisher’s Exact and logistic regression tests were calculated in each evaluation period (α = 5%). Results The control group showed significantly better clinical survival after 18 months (p = 0.0025). In both groups, no caries progression was registered on the radiographic evaluations. Conclusions Sealing had similar efficacy in the arrestment of caries progression of cavitated occlusal lesions compared to partial excavation of the lesions, even though the frequency of re-treatments was significantly higher in sealed lesions. Trial registration Registro Brasileiro de Ensaios Clínicos (ReBEC): RBR-9kkv53 PMID:24884684
Fluctuations of entropy production in partially masked electric circuits
NASA Astrophysics Data System (ADS)
Chiang, Kuan-Hsun; Chou, Chia-Wei; Lee, Chi-Lun; Lai, Pik-Yin; Chen, Yung-Fu
2016-02-01
We experimentally investigate fluctuations of entropy production in a coupled driven-RC circuit. In particular, we focus on the hidden-variable problem, where part of the circuit is neglected intentionally. In the two versions of the reduced descriptions we provide for the system, the fluctuation theorem (FT) is valid in all timescales for weak coupling. However, FT fails in the strong-coupling regime, in the short-time limit for one version, and in the long-time limit for the other. In these timescales where FT fails, both descriptions still give FT-like behavior. The failure of FT implies non-Markovian dynamics, meaning there exists a hidden variable that cannot be incorporated into the heat bath. We argue that FT can be restored with the introduction of a timescale-dependent effective noise.
Partial molar volumes and viscous properties of glycine-aqueous urea solutions at 298.15 K
NASA Astrophysics Data System (ADS)
Deosarkar, S. D.; Ban, A. R.; Tawde, P. D.; Sawale, R. T.
2015-07-01
Density (ρ) and viscosity (η) of glycine ( c = 0.02-0.22 mol dm-3) in aqueous urea ( c = 0.5, 1.5, and 3.0 mol dm-3) solutions were measured at 298.15 K. Experimental density data has been used to calculate apparent molar volumes (φv) of glycine in aqueous and aqueous-urea solutions at 298.15 K. The dependence of apparent molar volumes on concentration of glycine was fitted to the Massons relation and apparent molar volume of glycine at infinite dilution (partial molar volume, φ{v/0}) was determined graphically. The partial molar volumes of transfer (Δtrφ{v/0}) of glycine at infinite dilution from pure water to aqueous-urea solutions at 298.15 K were calculated and interpreted in terms of various interactions and structural fittings in studied solutions. The relative viscosity data has been analyzed by Jones-Dole relation and viscosity B-coefficients were determined graphically. Viscosity B-coefficient of transfer (Δ B) was also calculated and compared with Δtrφ{v/0}.
NASA Astrophysics Data System (ADS)
Liu, Q.; Ai, Y.; Lange, R. A.
2005-12-01
Longitudinal acoustic velocities were measured at one bar by an ultrasonic frequency sweep acoustic interferometer for ten Na2O-TiO2-SiO2 (NTS) liquids for which previous density and thermal expansion measurements were made (Liu and Lange, 2001). This previous study showed that the partial molar volume of the TiO2 component varied systematically with composition and reflected changes in the average coordination of Ti4+ from values of ~4.6 to ~5.4. Sound speed data were collected at frequencies of 4.5, 5, and 6 MHz between 1233 and 1896 K; in all cases, the sound speeds decrease with increasing temperature. Six of the liquids share a similar (~25 mol%) TiO2 concentration, so that the effect of varying Na:Si ratio on the partial molar sound speed of the TiO2 component can be evaluated. The results for these ten NTS liquids were combined with sound speed data on Na2O-SiO2 liquids from the literature to derive the partial molar sound speed of the TiO2 component in these liquids. The results show that, at 1573 K, it is inversely correlated with SiO2 concentration, from values as low as 571±56 m/s to those as high as 1235±54 m/s, a variation of more than 100%. Fitted values for the partial molar sound speeds of the SiO2 and Na2O components at 1573 K are constants at 2538±52 and 2713±52 m/s, respectively. When the sound speed data are combined with density data to calculate melt compressibility, the results show that the TiO2 component is 3-15 more compressible than either the Na2O or SiO2 component. The partial molar compressibility of the TiO2 component is also strongly correlated to its partial molar thermal expansivity. It is shown that the TiO2 component is most compressible and most expansive when the average Ti4+ coordination in these sodium silicate liquids is near five, which strongly suggests that the abundance of five-coordinated Ti4+ enhances topological mechanisms of both compression and thermal expansion.
Sergiievskyi, Volodymyr P; Jeanmairet, Guillaume; Levesque, Maximilien; Borgis, Daniel
2014-06-01
Molecular density functional theory (MDFT) offers an efficient implicit-solvent method to estimate molecule solvation free-energies, whereas conserving a fully molecular representation of the solvent. Even within a second-order approximation for the free-energy functional, the so-called homogeneous reference fluid approximation, we show that the hydration free-energies computed for a data set of 500 organic compounds are of similar quality as those obtained from molecular dynamics free-energy perturbation simulations, with a computer cost reduced by 2-3 orders of magnitude. This requires to introduce the proper partial volume correction to transform the results from the grand canonical to the isobaric-isotherm ensemble that is pertinent to experiments. We show that this correction can be extended to 3D-RISM calculations, giving a sound theoretical justification to empirical partial molar volume corrections that have been proposed recently. PMID:26273876
Partial Molar Volumes of Components and Species in O-S-Fe-Ni Oxide and Sulfide Liquids
NASA Astrophysics Data System (ADS)
Kress, V. C.
2007-12-01
High-quality thermochemical models are now available for sulfide liquids at one bar pressure. An accurate description of the volume mixing properties of these liquids is required in order to apply these one-bar models to important problems at elevated pressure, including sulfide-hosted ore formation, sulfur cycling in convergent margin settings and core formation. Our experimental data have been combined with select density data from other laboratories to calibrate a comprehensive model for density and partial molar volumes of liquids in the O-S- Fe-Ni system. Our results indicate significant negative deviation from linear mixing across the Fe-S, Ni-S and Cu-S binaries. This result is in qualitative agreement with those from prior studies. In the context of associated homogeneous speciation models for sulfide liquids (Kress, 2000, 2007), this negative volume of mixing can be interpreted as a strongly negative volume of reaction for the formation for intermediate melt species from end member elemental components (Δ Vf). Our regression yields Δ Vf values of -6.2, -9.4 and -9.1 cc/mol for FeS, NiS and CuS respectively. There is insufficient oxygen in experimental liquids to resolve a composition dependence for v¯O, but the unrealistic negative regressed value for oxygen partial molar volume suggests a negative Δ Vf for FeO and FeO1.5. Partial molar volumes of Fe, Ni and Cu liquid species are calculated from Nash and Steinemann (1995). All other v¯i are assumed to be linear mixtures of component species volumes. This assumption also implies a moderate negative Δ Vf for the species in question. The resulting model reproduces experimental densities from our laboratory with a 3.6% average error. This is comparable to the estimated measurement error. The larger 5.1% error for the full data set can be attributed to lower precision in some of the other studies and the effects of inter-laboratory error. The sulfide volume model can be applied to calculate thermochemical
NASA Astrophysics Data System (ADS)
Sharma, Poonam; Chauhan, S.; Syal, V. K.; Chauhan, M. S.
2008-04-01
Partial molar volumes of the drugs Parvon Spas, Parvon Forte, Tramacip, and Parvodex in aqueous mixtures of methanol (MeOH), ethanol (EtOH), and propan-1-ol (1-PrOH) have been determined. The data have been evaluated using the Masson equation. The parameters, apparent molar volumes {(φ_v)}, partial molar volumes {(φ_v0)}, and S v values (experimental slopes) have been interpreted in terms of solute solvent interactions. In addition, these studies have also been extended to determine the effect of these drugs on the solvation behavior of an electrolyte (sodium chloride), a surfactant (sodium dodecyl sulfate), and a non-electrolyte (sucrose). It can be inferred from these studies that all drug cations can be regarded as structure makers/promoters due to hydrophobic hydration. Furthermore, the results are correlated to understand the solution behavior of drugs in aqueous-alcoholic systems, as a function of the nature of the alcohol and solutes.
NASA Astrophysics Data System (ADS)
Plyasunov, Andrey V.; O'Connell, John P.; Wood, Robert H.
2000-02-01
A semitheoretical expression for partial molar volumes at infinite dilution of aqueous nonelectrolyte solutes has been developed employing the collection of properties from fluctuation solution theory for use over wide ranges of temperature and pressure. The form of the solution expression was suggested by a comparison of solute/solvent and solvent/solvent direct correlation function integrals (DCFI). The selection of solvent density and compressibility as model variables provides a correct description in the critical region while second virial coefficients have been used to give a rigorous expression in the low density region. The formulation has been integrated to obtain analytic expressions for thermodynamic properties of hydration at supercritical temperatures. The equation is limited to solutes for which B12 (the second cross virial coefficient between water and a solute molecule) is known or can be estimated. Regression of the three remaining parameters gives good correlations of the available experimental data. A strategy for estimating these parameters allows prediction from readily available data.
Fultz, B.; Sturhahn, W.; Toellner, T. S.; Alp, E. E.
1999-11-29
Inelastic nuclear resonant scattering spectra were measured on alloys of Fe{sub 3}Al that were chemically disordered, partially-ordered, and DO{sub 3}-ordered. The phonon partial DOS for {sup 57}Fe atoms were extracted from these data, and the change upon disordering in the partial vibrational entropy of Fe atoms was obtained. By comparison to previous calorimetry measurements, it is shown that the contribution of the Fe atoms to the vibrational entropy is a factor of 10 smaller than that of the Al atoms. With the assistance of Born - von Karman model calculations on the ordered alloy, it is shown that differences in the vibrational entropy originate primarily with changes in the optical modes upon disordering. The phonon DOS of {sup 57}Fe was found to change systematically with chemical short range order in the alloy. It is argued that changes in the vibrational entropy originate primarily with changes in the chemical short-range order in the alloy, as opposed to long-range order.
Robie, R.A.; Hemingway, B.S.
1985-01-01
Pyrolusite (MnO2), hausmanite (Mn3O4), and bixbyite (Mn2O3), are important ore minerals of manganese and accurate values for their thermodynamic properties are desirable to understand better the {p(O2), T} conditions of their formation. To provide accurate values for the entropies of these important manganese minerals, we have measured their heat capacities between approximately 5 and 380 K using a fully automatic adiabatically-shielded calorimeter. All three minerals are paramagnetic above 100 K and become antiferromagnetic or ferrimagnetic at lower temperatures. This transition is expressed by a sharp ??-type anomaly in Cpmo for each compound with Ne??el temperatures TN of (92.2??0.2), (43.1??0.2), and (79.45??0.05) K for MnO2, Mn3O4, and Mn2O3, respectively. In addition, at T ??? 308 K, Mn2O3 undergoes a crystallographic transition, from orthorhombic (at low temperatures) to cubic. A significant thermal effect is associated with this change. Hausmanite is ferrimagnetic below TN and in addition to the normal ??-shape of the heat-capacity maxima in MnO2 and Mn2O3, it has a second rounded maximum at 40.5 K. The origin of this subsidiary bump in the heat capacity is unknown but may be related to a similar "anomalous bump" in the curve of magnetization against temperature at about 39 K observed by Dwight and Menyuk.(1) At 298.15 K the standard molar entropies of MnO2, Mn3O4, and Mn2O3, are (52.75??0.07), (164.1??0.2), and (113.7??0.2) J??K-1??mol-1, respectively. Our value for Mn3O4 is greater than that adopted in the National Bureau of Standards tables(2) by 14 per cent. ?? 1985.
Barra, J; Peña, M A; Bustamante, P
2000-04-01
The aim of this study is to propose, for the first time, a set of group molar constants for sodium to calculate the partial solubility parameters of sodium salts. The values were estimated using the few experimental partial solubility parameters of acid/sodium salt series available either from the literature (benzoic acid/Na, ibuprofen acid/Na, diclofenac Na) or determined in this work (salicylic acid/Na, p-aminobenzoic acid/Na, diclofenac), the group contribution method of van Krevelen to calculate the partial parameters of the acids, and three reasonable hypothesis. The experimental method used is a modification of the extended Hansen approach based on a regression analysis of the solubility mole fraction of the drug lnX(2) against models including three- or four-partial solubility parameters of a series of pure solvents ranging from non-polar (heptane) to highly polar (water). The modified method combined with the four-parameter model provided the best results for both acids and sodium derivatives. The replacement of the acidic proton by sodium increased the dipolar and basic partial solubility parameters, whereas the dispersion parameter remained unaltered, thus increasing the overall total solubility parameter of the salt. The proposed group molar constants of sodium are consistent with the experimental results as sodium has a relatively low London dispersion molar constant (identical to that of -OH), a very high Keesom dipolar molar constant (identical to that of -NO(2), two times larger than that of -OH), and a very high hydrogen bonding molar constant (identical to that of -OH). The proposed values are: F((Na)d)=270 (J cm(3))(1/2) mol(-1); F((Na)p)=1030 (J cm(3))(1/2) mol(-1); U((Na)h)=17000 J mol(-1). Like the constants for the other groups, the group molar constants proposed for sodium are certainly not the exact values. However, they are believed to be a fair approximation of the impact of sodium on the partial solubility parameters and, therefore, can
2016-01-01
The flow velocity distribution in partially-filled circular pipe was investigated in this paper. The velocity profile is different from full-filled pipe flow, since the flow is driven by gravity, not by pressure. The research findings show that the position of maximum flow is below the water surface, and varies with the water depth. In the region of near tube wall, the fluid velocity is mainly influenced by the friction of the wall and the pipe bottom slope, and the variation of velocity is similar to full-filled pipe. But near the free water surface, the velocity distribution is mainly affected by the contractive tube wall and the secondary flow, and the variation of the velocity is relatively small. Literature retrieval results show relatively less research has been shown on the practical expression to describe the velocity distribution of partially-filled circular pipe. An expression of two-dimensional (2D) velocity distribution in partially-filled circular pipe flow was derived based on the principle of maximum entropy (POME). Different entropies were compared according to fluid knowledge, and non-extensive entropy was chosen. A new cumulative distribution function (CDF) of partially-filled circular pipe velocity in terms of flow depth was hypothesized. Combined with the CDF hypothesis, the 2D velocity distribution was derived, and the position of maximum velocity distribution was analyzed. The experimental results show that the estimated velocity values based on the principle of maximum Tsallis wavelet entropy are in good agreement with measured values. PMID:26986064
Jiang, Yulin; Li, Bin; Chen, Jie
2016-01-01
The flow velocity distribution in partially-filled circular pipe was investigated in this paper. The velocity profile is different from full-filled pipe flow, since the flow is driven by gravity, not by pressure. The research findings show that the position of maximum flow is below the water surface, and varies with the water depth. In the region of near tube wall, the fluid velocity is mainly influenced by the friction of the wall and the pipe bottom slope, and the variation of velocity is similar to full-filled pipe. But near the free water surface, the velocity distribution is mainly affected by the contractive tube wall and the secondary flow, and the variation of the velocity is relatively small. Literature retrieval results show relatively less research has been shown on the practical expression to describe the velocity distribution of partially-filled circular pipe. An expression of two-dimensional (2D) velocity distribution in partially-filled circular pipe flow was derived based on the principle of maximum entropy (POME). Different entropies were compared according to fluid knowledge, and non-extensive entropy was chosen. A new cumulative distribution function (CDF) of partially-filled circular pipe velocity in terms of flow depth was hypothesized. Combined with the CDF hypothesis, the 2D velocity distribution was derived, and the position of maximum velocity distribution was analyzed. The experimental results show that the estimated velocity values based on the principle of maximum Tsallis wavelet entropy are in good agreement with measured values. PMID:26986064
NASA Astrophysics Data System (ADS)
Courtial, Philippe; Gottsmann, Joachim; Holzheid, Astrid; Dingwell, Donald B.
1999-08-01
Volumetric measurements have been conducted on 7 Ni- and Co-containing sodium disilicate liquids within a compositional range varying from 0 to 9 mol% of NiO and from 0 to 23 mol% of CoO and over a large temperature interval (i.e., above their respective glass transition temperature and up to at least 1473 K). Their molar volumes and thermal expansivities have been determined by combining high-temperature measurements using the Pt-based double-bob Archimedean method and low-temperature measurements using the method described by Webb et al. [S.L. Webb, R. Knoche, D.B. Dingwell, Determination of silicate liquid thermal expansivity using dilatometry and calorimetry, Eur. J. Mineral. 4 (1992) 95-104] based on an assumed equivalence of the relaxation of volume and enthalpy at the glass transition. The molar volume of the present liquids decreases with increasing NiO and CoO contents and the Co-containing liquids exhibit a greater molar volume than the Ni-containing liquids at equivalent molar concentrations. The present results were analysed using a regression equation from which the partial molar volume of NiO and CoO liquids was obtained by the least squares method. This procedure yields partial molar volumes valid over the entire temperature range of 11.506 ± 0.687 and 14.884 ± 0.149 cm 3/mol and temperature derivatives of 2.684 ± 1.6 × 10 -3 and 1.441 ± 0.4 × 10 -3 cm 3/mol K, respectively for NiO and CoO at 800 K. The behavior of M-Fe metal-silicate exchange partition coefficient (M = Ni, Co), based on present molar volume determinations, has been estimated as a function of pressure over a wide temperature range. The metal-silicate exchange partition coefficients of both Ni and Co decrease with increasing pressure within the entire temperature range considered in this study (i.e., 800-3000 K).
Suntsov, A.Yu.; Leonidov, I.A.; Patrakeev, M.V.; Kozhevnikov, V.L.
2014-05-01
The coulometric titration data are utilized in order to calculate changes of oxygen partial entropy and enthalpy in PrBaCo{sub 2}O{sub 5+δ} with variations of oxygen content and temperature. The thermodynamic equilibrium of the cobaltite with the ambient gas phase is analyzed based on the interface of oxygen exchange and oxidation, and the intrinsic reaction of thermal excitation of Co{sup 3+} cations. The partial thermodynamic functions of the movable oxygen in PrBaCo{sub 2}O{sub 5+δ} are shown to be interrelated with the thermodynamic parameters of the defect formation reactions. The existence of a band gap of about 0.4 eV in the electronic spectrum of the cobaltite follows from a favorable comparison of the calculated and experimental dependencies of the partial thermodynamic functions of the movable oxygen. - Graphical abstract: Partial thermodynamic functions of movable oxygen in PrBaCo{sub 2}O{sub 5+δ}. - Highlights: • Thermodynamic functions of oxygen in PrBaCo{sub 2}O{sub 5+δ} are obtained from pO{sub 2}–T–δ diagram. • The defect model is developed to describe changes in thermodynamic functions. • Thermodynamic analysis gives evidence to a band gap in PrBaCo{sub 2}O{sub 5+δ}.
Entropy of adsorption of mixed surfactants from solutions onto the air/water interface
Chen, L.-W.; Chen, J.-H.; Zhou, N.-F.
1995-01-01
The partial molar entropy change for mixed surfactant molecules adsorbed from solution at the air/water interface has been investigated by surface thermodynamics based upon the experimental surface tension isotherms at various temperatures. Results for different surfactant mixtures of sodium dodecyl sulfate and sodium tetradecyl sulfate, decylpyridinium chloride and sodium alkylsulfonates have shown that the partial molar entropy changes for adsorption of the mixed surfactants were generally negative and decreased with increasing adsorption to a minimum near the maximum adsorption and then increased abruptly. The entropy decrease can be explained by the adsorption-orientation of surfactant molecules in the adsorbed monolayer and the abrupt entropy increase at the maximum adsorption is possible due to the strong repulsion between the adsorbed molecules.
Webb, Jonathan N.; Webb, Serena D.; Cleland, Jeffrey L.; Carpenter, John F.; Randolph, Theodore W.
2001-01-01
The equilibrium dissociation of recombinant human IFN-γ was monitored as a function of pressure and sucrose concentration. The partial molar volume change for dissociation was −209 ± 13 ml/mol of dimer. The specific molar surface area change for dissociation was 12.7 ± 1.6 nm2/molecule of dimer. The first-order aggregation rate of recombinant human IFN-γ in 0.45 M guanidine hydrochloride was studied as a function of sucrose concentration and pressure. Aggregation proceeded through a transition-state species, N*. Sucrose reduced aggregation rate by shifting the equilibrium between native state (N) and N* toward the more compact N. Pressure increased aggregation rate through increased solvation of the protein, which exposes more surface area, thus shifting the equilibrium away from N toward N*. The changes in partial molar volume and specific molar surface area between the N* and N were −41 ± 9 ml/mol of dimer and 3.5 ± 0.2 nm2/molecule, respectively. Thus, the structural change required for the formation of the transition state for aggregation is small relative to the difference between N and the dissociated state. Changes in waters of hydration were estimated from both specific molar surface area and partial molar volume data. From partial molar volume data, estimates were 25 and 128 mol H2O/mol dimer for formation of the aggregation transition state and for dissociation, respectively. From surface area data, estimates were 27 and 98 mol H2O/mol dimer. Osmotic stress theory yielded values ≈4-fold larger for both transitions. PMID:11381145
NASA Astrophysics Data System (ADS)
Deosarkar, S. D.; Tawde, P. D.; Zinjade, A. B.; Shaikh, A. I.
2015-09-01
Density (ρ) and viscosity (η) of aqueous hippuric acid (HA) solutions containing LiCl and MnCl2 · 4H2O have been studied at 303.15 K in order to understand volumetric and viscometric behavior of these systems. Apparent molar volume (φv) of salts were calculated from density data and fitted to Massons relation and partial molar volumes (φ{v/0}) at infinite dilution were determined. Relative viscosity data has been used to determine viscosity A and B coefficients using Jones-Dole relation. Partial molar volume and viscosity coefficients have been discussed in terms of ion-solvent interactions and overall structural fittings in solution.
NASA Astrophysics Data System (ADS)
Rajabpour, M. A.
2016-06-01
We calculate analytically the Rényi bipartite entanglement entropy {{S}α} of the ground state of 1 + 1 dimensional conformal field theories (CFT) after performing a projective measurement in part of the system. We show that the entanglement entropy in this setup is dependent on the central charge and the operator content of the system. When the measurement region A separates the two parts B and \\bar{B} , the entanglement entropy between B and \\bar{B} decreases like a power-law with respect to the characteristic distance between the two regions with an exponent which is dependent on the rank α of the Rényi entanglement entropy and the smallest scaling dimension present in the system. We check our findings by making numerical calculations on the Klein–Gordon field theory (coupled harmonic oscillators) after fixing the position (partial measurement) of some of the oscillators. We also comment on the post-measurement entanglement entropy in the massive quantum field theories.
Kawasaki, Kaoru; Kondoh, Eiji; Minamiguchi, Sachiko; Matsuda, Fumihiko; Higasa, Koichiro; Fujita, Kohei; Mogami, Haruta; Chigusa, Yoshitsugu; Konishi, Ikuo
2016-08-01
A partial molar pregnancy almost always ends in miscarriage due to a triploid fetus. We describe a rare case of a singleton, partial molar pregnancy with a seemingly huge placenta, which continued to delivery of a live-born diploid baby. A 27-year-old primigravida suffered from severe pre-eclampsia and progressive anemia. The uterus was enormously enlarged for the gestational age. A cesarean section was performed because of deterioration of maternal status at 25 weeks' gestation, when more than 3000 mL blood spouted concurrently with the delivery of the placenta. The histological examination showed congestion in the decidua, which indicated disturbance of maternal venous return from the intervillous space. The chromosome complement of the placenta and the neonate were 69,XXX and 46,XX, respectively. We also reviewed all published cases of a singleton, partial molar pregnancy. A literature search yielded 18 cases of a singleton, diploid fetus with partial molar pregnancy. The mean gestational age at delivery was 24.5 ± 6.2 weeks, and fetuses survived outside the uterus in only four cases (22.2%). Intriguingly, previous reports numbered 10 cases with diploid placenta as well as five cases with no karyotyping of the placenta, indicating that they may have included a complete mole in a twin pregnancy or placental mesenchymal dysplasia. In conclusion, this was the first case of placentomegaly that presented manifestations of excessive abdominal distension and maternal severe anemia, and the second case of a singleton, partial molar pregnancy confirmed by chromosome analysis resulting in a diploid living baby. PMID:27225660
NASA Astrophysics Data System (ADS)
Klähn, Marco; Martin, Alistair; Cheong, Daniel W.; Garland, Marc V.
2013-12-01
The partial molar volumes, bar V_i, of the gas solutes H2, CO, and CO2, solvated in acetone, methanol, heptane, and diethylether are determined computationally in the limit of infinite dilution and standard conditions. Solutions are described with molecular dynamics simulations in combination with the OPLS-aa force field for solvents and customized force field for solutes. bar V_i is determined with the direct method, while the composition of bar V_i is studied with Kirkwood-Buff integrals (KBIs). Subsequently, the amount of unoccupied space and size of pre-formed cavities in pure solvents is determined. Additionally, the shape of individual solvent cages is analyzed. Calculated bar V_i deviate only 3.4 cm3 mol-1 (7.1%) from experimental literature values. Experimental bar V_i variations across solutions are reproduced qualitatively and also quantitatively in most cases. The KBI analysis identifies differences in solute induced solvent reorganization in the immediate vicinity of H2 (<0.7 nm) and solvent reorganization up to the third solvation shell of CO and CO2 (<1.6 nm) as the origin of bar V_i variations. In all solutions, larger bar V_i are found in solvents that exhibit weak internal interactions, low cohesive energy density and large compressibility. Weak internal interactions facilitate solvent displacement by thermal solute movement, which enhances the size of solvent cages and thus bar V_i. Additionally, attractive electrostatic interactions of CO2 and the solvents, which do not depend on internal solvent interactions only, partially reversed the bar V_i trends observed in H2 and CO solutions where electrostatic interactions with the solvents are absent. More empty space and larger pre-formed cavities are found in solvents with weak internal interactions, however, no evidence is found that solutes in any considered solvent are accommodated in pre-formed cavities. Individual solvent cages are found to be elongated in the negative direction of solute
NASA Astrophysics Data System (ADS)
Dupuis, Frédéric; Wilde, Mark M.
2016-03-01
This paper introduces "swiveled Rényi entropies" as an alternative to the Rényi entropic quantities put forward in Berta et al. (Phys Rev A 91(2):022333, 2015). What distinguishes the swiveled Rényi entropies from the prior proposal of Berta et al. is that there is an extra degree of freedom: an optimization over unitary rotations with respect to particular fixed bases (swivels). A consequence of this extra degree of freedom is that the swiveled Rényi entropies are ordered, which is an important property of the Rényi family of entropies. The swiveled Rényi entropies are, however, generally discontinuous at α =1 and do not converge to the von Neumann entropy-based measures in the limit as α rightarrow 1, instead bounding them from above and below. Particular variants reduce to known Rényi entropies, such as the Rényi relative entropy or the sandwiched Rényi relative entropy, but also lead to ordered Rényi conditional mutual information and ordered Rényi generalizations of a relative entropy difference. Refinements of entropy inequalities such as monotonicity of quantum relative entropy and strong subadditivity follow as a consequence of the aforementioned properties of the swiveled Rényi entropies. Due to the lack of convergence at α =1, it is unclear whether the swiveled Rényi entropies would be useful in one-shot information theory, so that the present contribution represents partial progress toward this goal.
Ma, Naili; Litkouhi, Babak; Mannion, Ciaran M
2016-03-01
A 36-yr-old, gravida 5 para 4 woman presented with uterine bleeding and was discovered to have a 3.7-cm uterine mass with multiple, bilateral, lung metastases. Six months earlier, the patient was diagnosed with a partial hydatidiform mole that demonstrated a rare chromosomal karyotype 68, XX[12]. The patient's serum β-human chorionic gonadotropin was elevated from baseline to 12,039 mIU/mL before the treatment. A total hysterectomy was performed and revealed a markedly hemorrhagic, extensively necrotic choriocarcinoma. The tumor mass invaded to a depth of 1/3 of the uterine wall thickness. Cytogenetic analysis of the choriocarcinoma revealed the same 68, XX karyotype, as observed in the antecedent partial hydatidiform mole. A clinical diagnosis of advanced stage invasive choriocarcinoma was rendered, with a risk factor score of 5. Following the development of chemoresistance to a single-agent (methotrexate) regimen, the patient subsequently received 5 cycles of chemotherapy (EMA-CO), without any major complication. She is currently >5 yr posttreatment and is asymptomatic. Her most recent imaging studies, including scans of chest and brain, show no evidence of disease, and her serum β-human chorionic gonadotropin level has remained consistently below detectable levels. PMID:26352546
Progress in High-Entropy Alloys
Gao, Michael C
2013-12-01
Strictly speaking, high-entropy alloys (HEAs) refer to single-phase, solid-solution alloys with multiprincipal elements in an equal or a near-equal molar ratio whose configurational entropy is tremendously high. This special topic was organized to reflect the focus and diversity of HEA research topics in the community.
Deciduous molar hypomineralization and molar incisor hypomineralization.
Elfrink, M E C; ten Cate, J M; Jaddoe, V W V; Hofman, A; Moll, H A; Veerkamp, J S J
2012-06-01
This study was embedded in the Generation R Study, a population-based prospective cohort study from fetal life until young adulthood. This study focused on the relationship between Deciduous Molar Hypomineralization (DMH) and Molar Incisor Hypomineralization (MIH). First permanent molars develop during a period similar to that of second primary molars, with possible comparable risk factors for hypomineralization. Children with DMH have a greater risk of developing MIH. Clinical photographs of clean, moist teeth were taken with an intra-oral camera in 6,161 children (49.8% girls; mean age 74.3 mos, SD ± 5.8). First permanent molars and second primary molars were scored with respect to DMH or MIH. The prevalence of DMH and MIH was 9.0% and 8.7% at child level, and 4.0% and 5.4% at tooth level. The Odds Ratio for MIH based on DMH was 4.4 (95% CI, 3.1-6.4). The relationship between the occurrence of DMH and MIH suggests a shared cause and indicates that, clinically, DMH can be used as a predictor for MIH. PMID:22370445
NASA Astrophysics Data System (ADS)
Bin, Fu; Jie, Han
2016-02-01
Magnetic properties and magnetic entropy changes of La(Fe1-xMnx)11.5Si1.5Hy compounds are investigated. Their Curie temperatures are adjusted to room temperature by partial Mn substitution for Fe and hydrogen absorption in 1-atm (1 atm = 1.01325 × 105 Pa) hydrogen gas. Under a field change from 0 T to 2 T, the maximum magnetic entropy change for La(Fe0.99Mn0.01)11.5Si1.5H1.61 is -11.5 J/kg. The suitable Curie temperature and large value of ΔSm make it an attractive potential candidate for the room temperature magnetic refrigeration application. Projct supported by the Science and Technology Development Fund of Higher Education of Tianjin, China (Grant No. 20130301) and the Tianjin Research Program of Application Foundation and Advanced Technology, China (Grant No. 14JCQNJC4000).
Robie, R.A.; Wiggins, L.B.; Barton, P.B., Jr.; Hemingway, B.S.
1985-01-01
The heat capacity of CuFeS2 (chalcopyrite) was measured between 6.3 and 303.5 K. At 298.15 K, Cp,mo and Smo(T) are (95.67??0.14) J??K-1??mol-1 and (124.9??0.2) J??K-1??mol-1, respectively. From a consideration of the results of two sets of equilibrium measurements we conclude that ??fHmo(CuFeS2, cr, 298.15 K) = -(193.6??1.6) kJ??mol-1 and that the recent bomb-calorimetric determination by Johnson and Steele (J. Chem. Thermodynamics 1981, 13, 991) is in error. The standard molar Gibbs free energy of formation of bornite (Cu5FeS4) is -(444.9??2.1) kJ??mol-1 at 748 K. ?? 1985.
NASA Astrophysics Data System (ADS)
Riyazuddeen; Gazal, Umaima
2013-03-01
Speeds of sound of ( l-alanine/ l-glutamine/glycylglycine + 0.512 {mol}\\cdot {kg}^{-1} aqueous {KNO}3/0.512 {mol}\\cdot {kg}^{-1} aqueous {K}2{SO}4) systems have been measured for several molal concentrations of amino acid/peptide at different temperatures: T = (298.15 to 323.15) K. Using the speed-of-sound and density data, the parameters, partial molar isentropic compressibilities φ _{kappa }0 and transfer partial molar isentropic compressibilities Δ _{tr} φ _{kappa }0, have been computed. The trends of variation of φ _{kappa }0 and Δ _{tr} φ _{kappa }0 with changes in molal concentration of the solute and temperature have been discussed in terms of zwitterion-ion, zwitterion-water dipole, ion-water dipole, and ion-ion interactions operative in the systems.
Ruptured tubal molar pregnancy.
Yakasai, I A; Adamu, N; Galadanchi, H S
2012-01-01
Molar pregnancies in most instances develop within the uterine cavity, but may occur at any site. Ectopic molar pregnancy is a rare event. The objective of this study was to present a case of ruptured tubal molar gestation, discuss its clinical features and ways to improve diagnostic accuracy. A 35-year-old woman presented with features suggestive of ruptured tubal ectopic pregnancy. There was neither any evidence at the time of presentation to suspect a molar gestation, nor β human chorionic gonadotrophin (βhCG) hormone estimation was done, but only a clearview pregnancy test was carried out. She had total left salpingectomy and histological evaluation of the specimen revealed complete hydatidiform mole. The hCG level normalized within 3 weeks of follow-up. Clinical features of ectopic molar pregnancy may be indistinguishable from non-molar ectopic pregnancy. We recommend βhCG estimation as well as histological examination of the surgical specimen for all patients coming with features suggestive of ectopic pregnancy. PMID:23238205
Entropy of Mixing of Distinguishable Particles
ERIC Educational Resources Information Center
Kozliak, Evguenii I.
2014-01-01
The molar entropy of mixing yields values that depend only on the number of mixing components rather than on their chemical nature. To explain this phenomenon using the logic of chemistry, this article considers mixing of distinguishable particles, thus complementing the well-known approach developed for nondistinguishable particles, for example,…
Endodontic treatment of molars
Habl, Claudia; Bodenwinkler, Andrea; Stürzlinger, Heidi
2006-01-01
Objective Commissioned by the German Institute of Medical Documentation and Information (DIMDI) the Austrian Health Institute (ÖBIG) prepared a HTA report on the long-term effectiveness of endodontic treatment (root canal treatment, RCT) of molars. The focus is to examine factors influencing the outcome of endodontic treatment and showing their impact on long-term results. Additionally, economic aspects of root canal treatment in Germany are discussed. Methodology By performing a systematic literature search in 29 databases (e.g. MEDLINE), the Cochrane Library and by hand searching two peer-reviewed endodontic journals the authors could identify 750 relevant articles, of which finally 18 qualified for assessment. Results The findings show that the most relevant factor influencing the long-term outcome of endodontic treatment is the preoperative status of a tooth. The lowest success rates are reported for molars with a preoperative devital or necrotic pulp and persisting periapical lesions (so called periapical disease). Discussion Even if there is no positive selection of patients and the RCT is performed by a normal dentist rather than an endodontist - a fact which is very common - long-term success rates of more then 90% are possible. The overall success rates for endodontic treatment of molars therefore seem to be similar to those of other tooth-types. Conclusions Especially primary, conventional (i.e. non-surgical) root canal treatment is an effective and efficient therapy for endodontically ill molars, especially if no large periapical lesion persists. Nonetheless, a long term successful endodontic therapy requires a thorough assessment of the pre-operative status of the molar and treatment according to established guidelines. PMID:21289954
Entropy, materials, and posterity
Cloud, P.
1977-01-01
Materials and energy are the interdependent feedstocks of economic systems, and thermodynamics is their moderator. It costs energy to transform the dispersed minerals of Earth's crust into ordered materials and structures. And it costs materials to collect and focus the energy to perform work - be it from solar, fossil fuel, nuclear, or other sources. The greater the dispersal of minerals sought, the more energy is required to collect them into ordered states. But available energy can be used once only. And the ordered materials of industrial economies become disordered with time. They may be partially reordered and recycled, but only at further costs in energy. Available energy everywhere degrades to bound states and order to disorder - for though entropy may be juggled it always increases. Yet industry is utterly dependent on low entropy states of matter and energy, while decreasing grades of ore require ever higher inputs of energy to convert them to metals, with ever increasing growth both of entropy and environmental hazard. Except as we may prize a thing for its intrinsic qualities - beauty, leisure, love, or gold - low-entropy is the only thing of real value. It is worth whatever the market will bear, and it becomes more valuable as entropy increases. It would be foolish of suppliers to sell it more cheaply or in larger amounts than their own enjoyment of life requires, whatever form it may take. For this reason, and because of physical constraints on the availability of all low-entropy states, the recent energy crises is only the first of a sequence of crises to be expected in energy and materials as long as current trends continue. The apportioning of low-entropy states in a modern industrial society is achieved more or less according to the theory of competitive markets. But the rational powers of this theory suffer as the world grows increasingly polarized into rich, over-industrialized nations with diminishing resource bases and poor, supplier nations
Upper entropy axioms and lower entropy axioms
NASA Astrophysics Data System (ADS)
Guo, Jin-Li; Suo, Qi
2015-04-01
The paper suggests the concepts of an upper entropy and a lower entropy. We propose a new axiomatic definition, namely, upper entropy axioms, inspired by axioms of metric spaces, and also formulate lower entropy axioms. We also develop weak upper entropy axioms and weak lower entropy axioms. Their conditions are weaker than those of Shannon-Khinchin axioms and Tsallis axioms, while these conditions are stronger than those of the axiomatics based on the first three Shannon-Khinchin axioms. The subadditivity and strong subadditivity of entropy are obtained in the new axiomatics. Tsallis statistics is a special case of satisfying our axioms. Moreover, different forms of information measures, such as Shannon entropy, Daroczy entropy, Tsallis entropy and other entropies, can be unified under the same axiomatics.
Upper entropy axioms and lower entropy axioms
Guo, Jin-Li Suo, Qi
2015-04-15
The paper suggests the concepts of an upper entropy and a lower entropy. We propose a new axiomatic definition, namely, upper entropy axioms, inspired by axioms of metric spaces, and also formulate lower entropy axioms. We also develop weak upper entropy axioms and weak lower entropy axioms. Their conditions are weaker than those of Shannon–Khinchin axioms and Tsallis axioms, while these conditions are stronger than those of the axiomatics based on the first three Shannon–Khinchin axioms. The subadditivity and strong subadditivity of entropy are obtained in the new axiomatics. Tsallis statistics is a special case of satisfying our axioms. Moreover, different forms of information measures, such as Shannon entropy, Daroczy entropy, Tsallis entropy and other entropies, can be unified under the same axiomatics.
Tavares, Rubens Rodrigues
2015-01-01
This clinical case reports the treatment of an Angle Class II malocclusion in a young woman with a balanced face affected by agenesis of second and third mandibular molars and subsequent extrusion of second maxillary molars. The atypical and peculiar occlusal anomaly led to individualized treatment proposed in order to normalize dental malpositions, with subsequent rehabilitation of edentulous areas by means of a multidisciplinary approach. This case was presented to the Brazilian Board of Orthodontics and Dentofacial Orthopedics (BBO) in partial fulfillment of the requirements for obtaining the title of certified by the BBO. PMID:25992995
Ectopic molar pregnancy: a case report
Bousfiha, Najoua; Erarhay, Sanaa; Louba, Adnane; Saadi, Hanan; Bouchikhi, Chahrazad; Banani, Abdelaziz; Fatemi, Hind El; Sekkal, Med; Laamarti, Afaf
2012-01-01
The incidence of hydatidiform moles is 1 per 1,000 pregnancies. Ectopic pregnancy occurs in 20 per 1,000 pregnancies. Thus, the incidence of the ectopic molar gestation is very rare. We report a case of tubal molar pregnancy diagnosed at the systematic histology exam of an ectopic pregnancy. We report the case of 32 years old nulliparus women who presented a vaginal bleeding, lower abdominal pain and 6 weeks amenorrhea corresponding to the last menstrual period. At the clinical examination, the arterial pressure was 100/60 mmHG. The gynecological examination was difficult because of lower abdominal pain. Serum gonadotropin activity was 3454 ui/l. Pelvic ultrasound revealed an irregular echogenic mass in the left adnexa. Diagnostic laparoscopy revealed a left-sided unruptured ampullary ectopic pregnancy. A left laparoscopic salpingectomy was performed. The systematic histologic test identified an ectopic partial molar pregnancy, which was confirmed by DNA ploidy image analysis. The patient was followed with weekly quantitative B-hCG titers until three successive B-hCG levels were negative. It is pertinent that clinicians take routine histological examination of tubal specimens in ectopic pregnancy very seriously in order to diagnose cases of ectopic molar gestations early and mount appropriate post treatment surveillance. PMID:22655097
Ectopic molar pregnancy: a case report.
Bousfiha, Najoua; Erarhay, Sanaa; Louba, Adnane; Saadi, Hanan; Bouchikhi, Chahrazad; Banani, Abdelaziz; El Fatemi, Hind; Sekkal, Med; Laamarti, Afaf
2012-01-01
The incidence of hydatidiform moles is 1 per 1,000 pregnancies. Ectopic pregnancy occurs in 20 per 1,000 pregnancies. Thus, the incidence of the ectopic molar gestation is very rare. We report a case of tubal molar pregnancy diagnosed at the systematic histology exam of an ectopic pregnancy. We report the case of 32 years old nulliparus women who presented a vaginal bleeding, lower abdominal pain and 6 weeks amenorrhea corresponding to the last menstrual period. At the clinical examination, the arterial pressure was 100/60 mmHG. The gynecological examination was difficult because of lower abdominal pain. Serum gonadotropin activity was 3454 ui/l. Pelvic ultrasound revealed an irregular echogenic mass in the left adnexa. Diagnostic laparoscopy revealed a left-sided unruptured ampullary ectopic pregnancy. A left laparoscopic salpingectomy was performed. The systematic histologic test identified an ectopic partial molar pregnancy, which was confirmed by DNA ploidy image analysis. The patient was followed with weekly quantitative B-hCG titers until three successive B-hCG levels were negative. It is pertinent that clinicians take routine histological examination of tubal specimens in ectopic pregnancy very seriously in order to diagnose cases of ectopic molar gestations early and mount appropriate post treatment surveillance. PMID:22655097
Correct Expressions of Enthalpy of Mixing and Excess Entropy from MIVM and Their Simplified Forms
NASA Astrophysics Data System (ADS)
Tao, Dong-Ping
2016-02-01
In this work, the author pointed out that empirically to compare the molecular interaction volume model (MIVM) with thermodynamic definition of excess Gibbs energy would result in the incorrect expressions of enthalpy of mixing and excess entropy. The correct expressions of molar and partial molar enthalpies of mixing and excess entropies from the MIVM are consistent thermodynamically and are suggested for replacing their past incorrect ones. The simplification of Z i = Z = 10 is verified to be feasible by the average errors of fitting in the binary liquid alloys M-P (M = Cr, Fe, and Mn) and of predicting in the ternary liquid alloys Fe-Cr-P and Fe-Mn-P by using two coordination numbers of phosphorus Z P = 3.04 and Z P = 8.96. Further, their simplified forms are proposed for predicting easily thermodynamic properties of a multicomponent liquid system and are preliminarily tested to be coordinated mutually in the binary liquid alloys Au-Cu, Cd-Zn, Ca-Zn, and Ni-Pb.
Molar Incisor Hypomineralization.
Rao, Murali H; Aluru, Srikanth C; Jayam, Cheranjeevi; Bandlapalli, Anila; Patel, Nikunj
2016-01-01
Molar incisor hypomineralization (MIH) is a developmental defect affecting teeth. High prevalence rates of MIH and its clinical implications are significant for both the patients and clinicians. A wide variation in defect prevalence (2.4-40.2%) is reported. It seems to differ with regions and various birth cohorts. Some of the recent prevalence studies are tabulated. Patient implications include hypersensitive teeth, rapid progression of caries, mastication impairment due to rapid attrition, and esthetic repercussions. Implications for clinicians include complexity in treatment planning and treatment implementation, poor prognosis of the restorations, difficulty in achieving pain control during treatment, and behavior management problems. Intention of this paper is to review the etio-pathogenesis, prevalence, clinical features, diagnostic features, and eventually present a sequential treatment approach, i.e., in accordance with current clinical practice guidelines. PMID:27595731
Entanglement entropy of scattering particles
NASA Astrophysics Data System (ADS)
Peschanski, Robi; Seki, Shigenori
2016-07-01
We study the entanglement entropy between the two outgoing particles in an elastic scattering process. It is formulated within an S-matrix formalism using the partial wave expansion of two-body states, which plays a significant role in our computation. As a result, we obtain a novel formula that expresses the entanglement entropy in a high energy scattering by the use of physical observables, namely the elastic and total cross sections and a physical bound on the impact parameter range, related to the elastic differential cross-section.
The Maximum Entropy Principle for Generalized Entropies
NASA Astrophysics Data System (ADS)
Tsukada, Makoto
2008-03-01
It is well known that Gibbs states and the Gaussian distribution are characterized by the maximum entropy principle. In this paper we discuss probability distributions which maximize generalized entropies including Rényi's and Tsal-lis's.
Controversy of the third molars.
Pitekova, L; Satko, I
2009-01-01
Third molars are teeth that have little functional value and a relatively high rate of associated pain and disease. Their value as a part of the dentition of modern people is dubious. Our aim is to review the evolution, morbidity and complications of the third molars (Ref. 19). Full Text (Free, PDF) www.bmj.sk. PMID:19408843
The Correlation of Standard Entropy with Enthalpy Supplied from 0 to 298.15 K
ERIC Educational Resources Information Center
Lambert, Frank L.; Leff, Harvey S.
2009-01-01
As a substance is heated at constant pressure from near 0 K to 298 K, each incremental enthalpy increase, dH, alters entropy by dH/T, bringing it from approximately zero to its standard molar entropy S degrees. Using heat capacity data for 32 solids and CODATA results for another 45, we found a roughly linear relationship between S degrees and…
Entropy power inequalities for qudits
NASA Astrophysics Data System (ADS)
Audenaert, Koenraad; Datta, Nilanjana; Ozols, Maris
2016-05-01
Shannon's entropy power inequality (EPI) can be viewed as a statement of concavity of an entropic function of a continuous random variable under a scaled addition rule: f ( √{ a } X + √{ 1 - a } Y ) ≥ a f ( X ) + ( 1 - a ) f ( Y ) ∀ a ∈ [ 0 , 1 ] . Here, X and Y are continuous random variables and the function f is either the differential entropy or the entropy power. König and Smith [IEEE Trans. Inf. Theory 60(3), 1536-1548 (2014)] and De Palma, Mari, and Giovannetti [Nat. Photonics 8(12), 958-964 (2014)] obtained quantum analogues of these inequalities for continuous-variable quantum systems, where X and Y are replaced by bosonic fields and the addition rule is the action of a beam splitter with transmissivity a on those fields. In this paper, we similarly establish a class of EPI analogues for d-level quantum systems (i.e., qudits). The underlying addition rule for which these inequalities hold is given by a quantum channel that depends on the parameter a ∈ [0, 1] and acts like a finite-dimensional analogue of a beam splitter with transmissivity a, converting a two-qudit product state into a single qudit state. We refer to this channel as a partial swap channel because of the particular way its output interpolates between the states of the two qudits in the input as a is changed from zero to one. We obtain analogues of Shannon's EPI, not only for the von Neumann entropy and the entropy power for the output of such channels, but also for a much larger class of functions. This class includes the Rényi entropies and the subentropy. We also prove a qudit analogue of the entropy photon number inequality (EPnI). Finally, for the subclass of partial swap channels for which one of the qudit states in the input is fixed, our EPIs and EPnI yield lower bounds on the minimum output entropy and upper bounds on the Holevo capacity.
NASA Astrophysics Data System (ADS)
de Souza, R. A.; de Avellar, M. G. B.; Horvath, J. E.
2015-11-01
An appraisal of the behavior of stellar entropy along stellar evolution is made. It is shown that the entropy per baryon of a star of a fixed baryon number decreases monotonically with increasing compactness of the star. The same entropy per baryon increases only whenever an irreversible collapse of the star happens. The recent proposals for a gravitational entropy related to curvature may justify the huge increase of the entropy in the ultimate collapse to a black hole.
[Headgear-free molar distalization].
Manhartsberger, C
1994-12-01
The difficulty in treating dentoalveolar class II disharmonies is briefly outlined. An innovative treatment method is presented which makes possible a distalization without the use of headgear. In the treatment method bands are cemented on the first molars, next impressions are made of the upper and lower dental arch, and then the impressions are poured with plaster. Following this the models are mounted in centric relationship in an articulator and the bite is opened 2 mm to 3 mm, so that the molars can be moved without making occlusal contact. The apparatus, an acrylic splint, is constructed in such a fashion as to cover the palatal surfaces from 2nd premolar to 2nd premolar. In addition, the premolars are also covered occlusally and buccally and the canine tips and the incisal edges are covered labially. A headgear tube is attached at the buccal surface in the premolar region of the acrylic splint. This acrylic splint, which is itself retentive, is cemented using glass ionomer cement. Combining this apparatus with a modified Nance Button makes it possible to establish an anchoring segment which is able to retain its position in the face of molar distalization. Molar distalization is then performed using a 0.032 inch stainless steel wire, which is placed between the headgear tube of the acrylic splint and the headgear tube of the band of the first molar. Highly elastic nickel-titanium open coil springs are used as the force elements. PMID:7851830
Generalized entanglement entropy
NASA Astrophysics Data System (ADS)
Taylor, Marika
2016-07-01
We discuss two measures of entanglement in quantum field theory and their holographic realizations. For field theories admitting a global symmetry, we introduce a global symmetry entanglement entropy, associated with the partitioning of the symmetry group. This quantity is proposed to be related to the generalized holographic entanglement entropy defined via the partitioning of the internal space of the bulk geometry. Thesecond measure of quantum field theory entanglement is the field space entanglement entropy, obtained by integrating out a subset of the quantum fields. We argue that field space entanglement entropy cannot be precisely realised geometrically in a holographic dual. However, for holographic geometries with interior decoupling regions, the differential entropy provides a close analogue to the field space entanglement entropy. We derive generic descriptions of such inner throat regions in terms of gravity coupled to massive scalars and show how the differential entropy in the throat captures features of the field space entanglement entropy.
Entropy descriptors and Entropy Stabilized Oxides
NASA Astrophysics Data System (ADS)
Curtarolo, Stefano
In this presentation we will discuss the development of entropy descriptors for the AFLOWLIB.org ab-initio repository and the path leading to the synthesis of the novel entropy stabilized oxides. [Nat. Comm. 6:8485 (2015)]. Research sponsored by DOD-ONR N000141310635 and N000141512863.
Hypomineralized Second Primary Molars as Predictor of Molar Incisor Hypomineralization.
Negre-Barber, A; Montiel-Company, J M; Boronat-Catalá, M; Catalá-Pizarro, M; Almerich-Silla, J M
2016-01-01
Molar incisor hypomineralization (MIH) is a developmental defect of dental enamel that shares features with hypomineralized second primary molars (HSPM). Prior to permanent tooth eruption, second primary molars could have predictive value for permanent molar and incisor hypomineralization. To assess this possible relationship, a cross-sectional study was conducted in a sample of 414 children aged 8 and 9 years from the INMA cohort in Valencia (Spain). A calibrated examiner (linear-weighted Kappa 0.83) performed the intraoral examinations at the University of Valencia between November 2013 and 2014, applying the diagnostic criteria for MIH and HSPM adopted by the European Academy of Paediatric Dentistry. 100 children (24.2%) presented MIH and 60 (14.5%) presented HSPM. Co-occurrence of the two defects was observed in 11.1% of the children examined. The positive predictive value was 76.7% (63.9-86.6) and the negative predictive value 84.7% (80.6-88.3). The positive likelihood ratio (S/1-E) was 10.3 (5.9-17.9) and the negative likelihood ratio (1-S/E) 0.57 (0.47-0.68). The odds ratio was 18.2 (9.39-35.48). It was concluded that while the presence of HSPM can be considered a predictor of MIH, indicating the need for monitoring and control, the absence of this defect in primary dentition does not rule out the appearance of MIH. PMID:27558479
ERIC Educational Resources Information Center
Ben-Naim, Arieh
2011-01-01
Changes in entropy can "sometimes" be interpreted in terms of changes in disorder. On the other hand, changes in entropy can "always" be interpreted in terms of changes in Shannon's measure of information. Mixing and demixing processes are used to highlight the pitfalls in the association of entropy with disorder. (Contains 3 figures.)
Entropy Is Simple, Qualitatively.
ERIC Educational Resources Information Center
Lambert, Frank L.
2002-01-01
Suggests that qualitatively, entropy is simple. Entropy increase from a macro viewpoint is a measure of the dispersal of energy from localized to spread out at a temperature T. Fundamentally based on statistical and quantum mechanics, this approach is superior to the non-fundamental "disorder" as a descriptor of entropy change. (MM)
Partial Pressures of Te2 and Thermodynamic Properties of Ga-Te System
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Curreri, Peter A. (Technical Monitor)
2001-01-01
The partial pressures of Te2 in equilibrium with Ga(1-x)Te(x) samples were measured by optical absorption technique from 450 to 1100 C for compositions, x, between 0.333 and 0.612. To establish the relationship between the partial pressure of Te, and the measured optical absorbance, the calibration runs of a pure Te sample were also conducted to determine the Beer's Law constants. The partial pressures of Te2 in equilibrium with the GaTe(s) and Ga2Te3(s)compounds, or the so-called three-phase curves, were established. These partial pressure data imply the existence of the Ga3Te4(s) compound. From the partial pressures of Te2 over the Ga-Te melts, partial molar enthalpy and entropy of mixing for Te were derived and they agree reasonable well with the published data. The activities of Te in the Ga-Te melts were also derived from the measured partial pressures of Te2. These data agree well with most of the previous results. The possible reason for the high activity of Te measured for x less than 0.60 is discussed.
Complications after third molar surgery.
Pitekova, L; Satko, I; Novotnakova, D
2010-01-01
The authors describe the incidence of postoperative complications after the surgical removal of third molars, most common postoperative complications and their symptoms as well as risk factors leading to greater incidence of postoperative complications (Ref. 17). Full Text (Free, PDF) www.bmj.sk. PMID:20568422
RNA Thermodynamic Structural Entropy
Garcia-Martin, Juan Antonio; Clote, Peter
2015-01-01
Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner’99 and Turner’04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http
Hypomineralized Second Primary Molars as Predictor of Molar Incisor Hypomineralization
Negre-Barber, A.; Montiel-Company, J. M.; Boronat-Catalá, M.; Catalá-Pizarro, M.; Almerich-Silla, J. M.
2016-01-01
Molar incisor hypomineralization (MIH) is a developmental defect of dental enamel that shares features with hypomineralized second primary molars (HSPM). Prior to permanent tooth eruption, second primary molars could have predictive value for permanent molar and incisor hypomineralization. To assess this possible relationship, a cross-sectional study was conducted in a sample of 414 children aged 8 and 9 years from the INMA cohort in Valencia (Spain). A calibrated examiner (linear-weighted Kappa 0.83) performed the intraoral examinations at the University of Valencia between November 2013 and 2014, applying the diagnostic criteria for MIH and HSPM adopted by the European Academy of Paediatric Dentistry. 100 children (24.2%) presented MIH and 60 (14.5%) presented HSPM. Co-occurrence of the two defects was observed in 11.1% of the children examined. The positive predictive value was 76.7% (63.9–86.6) and the negative predictive value 84.7% (80.6–88.3). The positive likelihood ratio (S/1-E) was 10.3 (5.9–17.9) and the negative likelihood ratio (1-S/E) 0.57 (0.47–0.68). The odds ratio was 18.2 (9.39–35.48). It was concluded that while the presence of HSPM can be considered a predictor of MIH, indicating the need for monitoring and control, the absence of this defect in primary dentition does not rule out the appearance of MIH. PMID:27558479
Relative entropy equals bulk relative entropy
NASA Astrophysics Data System (ADS)
Jafferis, Daniel L.; Lewkowycz, Aitor; Maldacena, Juan; Suh, S. Josephine
2016-06-01
We consider the gravity dual of the modular Hamiltonian associated to a general subregion of a boundary theory. We use it to argue that the relative entropy of nearby states is given by the relative entropy in the bulk, to leading order in the bulk gravitational coupling. We also argue that the boundary modular flow is dual to the bulk modular flow in the entanglement wedge, with implications for entanglement wedge reconstruction.
Configurational Entropy Revisited
NASA Astrophysics Data System (ADS)
Lambert, Frank L.
2007-09-01
Entropy change is categorized in some prominent general chemistry textbooks as being either positional (configurational) or thermal. In those texts, the accompanying emphasis on the dispersal of matter—independent of energy considerations and thus in discord with kinetic molecular theory—is most troubling. This article shows that the variants of entropy can be treated from a unified viewpoint and argues that to decrease students' confusion about the nature of entropy change these variants of entropy should be merged. Molecular energy dispersal in space is implicit but unfortunately tacit in the cell models of statistical mechanics that develop the configurational entropy change in gas expansion, fluids mixing, or the addition of a non-volatile solute to a solvent. Two factors are necessary for entropy change in chemistry. An increase in thermodynamic entropy is enabled in a process by the motional energy of molecules (that, in chemical reactions, can arise from the energy released from a bond energy change). However, entropy increase is only actualized if the process results in a larger number of arrangements for the system's energy, that is, a final state that involves the most probable distribution for that energy under the new constraints. Positional entropy should be eliminated from general chemistry instruction and, especially benefiting "concrete minded" students, it should be replaced by emphasis on the motional energy of molecules as enabling entropy change.
Fracture behavior of human molars.
Keown, Amanda J; Lee, James J-W; Bush, Mark B
2012-12-01
Despite the durability of human teeth, which are able to withstand repeated loading while maintaining form and function, they are still susceptible to fracture. We focus here on longitudinal fracture in molar teeth-channel-like cracks that run along the enamel sidewall of the tooth between the gum line (cemento-enamel junction-CEJ) and the occlusal surface. Such fractures can often be painful and necessitate costly restorative work. The following study describes fracture experiments made on molar teeth of humans in which the molars are placed under axial compressive load using a hard indenting plate in order to induce longitudinal cracks in the enamel. Observed damage modes include fractures originating in the occlusal region ('radial-median cracks') and fractures emanating from the margin of the enamel in the region of the CEJ ('margin cracks'), as well as 'spalling' of enamel (the linking of longitudinal cracks). The loading conditions that govern fracture behavior in enamel are reported and observations made of the evolution of fracture as the load is increased. Relatively low loads were required to induce observable crack initiation-approximately 100 N for radial-median cracks and 200 N for margin cracks-both of which are less than the reported maximum biting force on a single molar tooth of several hundred Newtons. Unstable crack growth was observed to take place soon after and occurred at loads lower than those calculated by the current fracture models. Multiple cracks were observed on a single cusp, their interactions influencing crack growth behavior. The majority of the teeth tested in this study were noted to exhibit margin cracks prior to compression testing, which were apparently formed during the functional lifetime of the tooth. Such teeth were still able to withstand additional loading prior to catastrophic fracture, highlighting the remarkable damage containment capabilities of the natural tooth structure. PMID:22956116
Entropy Transfer of Quantum Gravity Information Processing
NASA Astrophysics Data System (ADS)
Gyongyosi, Laszlo; Imre, Sandor
2015-05-01
We introduce the term smooth entanglement entropy transfer, a phenomenon that is a consequence of the causality-cancellation property of the quantum gravity environment. The causality-cancellation of the quantum gravity space removes the causal dependencies of the local systems. We study the physical effects of the causality-cancellation and show that it stimulates entropy transfer between the quantum gravity environment and the independent local systems of the quantum gravity space. The entropy transfer reduces the entropies of the contributing local systems and increases the entropy of the quantum gravity environment. We discuss the space-time geometry structure of the quantum gravity environment and the local quantum systems. We propose the space-time geometry model of the smooth entropy transfer. We reveal on a smooth Cauchy slice that the space-time geometry of the quantum gravity environment dynamically adapts to the vanishing causality. We prove that the Cauchy area expansion, along with the dilation of the Rindler horizon area of the quantum gravity environment, is a corollary of the causality-cancellation of the quantum gravity environment. This work was partially supported by the GOP-1.1.1-11-2012-0092 (Secure quantum key distribution between two units on optical fiber network) project sponsored by the EU and European Structural Fund, and by the COST Action MP1006.
Computing the conformational entropy for RNA folds
NASA Astrophysics Data System (ADS)
Liu, Liang; Chen, Shi-Jie
2010-06-01
We develop a polymer physics-based method to compute the conformational entropy for RNA tertiary folds, namely, conformations consisting of multiple helices connected through (cross-linked) loops. The theory is based on a virtual bond conformational model for the nucleotide chain. A key issue in the calculation of the entropy is how to treat the excluded volume interactions. The weak excluded volume interference between the different loops leads to the decomposition of the whole structure into a number of three-body building blocks, each consisting of a loop and two helices connected to the two ends of the loop. The simple construct of the three-body system allows an accurate computation for the conformational entropy for each building block. The assembly of the building blocks gives the entropy of the whole structure. This approach enables treatment of molten globule-like folds (partially unfolded tertiary structures) for RNAs. Extensive tests against experiments and exact computer enumerations indicate that the method can give accurate results for the entropy. The method developed here provides a solid first step toward a systematic development of a theory for the entropy and free energy landscape for complex tertiary folds for RNAs and proteins.
Mandibular lip bumper for molar torque control.
Celentano, Giuseppe; Longobardi, Annalisa; Cannavale, Rosangela; Perillo, Letizia
2011-01-01
Treatment effects of lip bumpers alone include flaring of the mandibular incisors, distalization and uprighting of the mandibular first molars, and buccal expansion of the canines, premolars, and molar. Lip forces are transmitted through this appliance onto the molars. Moreover the lip bumper is able to derotate, expand or constrict, upright and reinforce the anchorage whereas torque control is lacking. Aim of this paper is the presentation of a new type of lip bumper that allows the molar torque control. PMID:21515237
Molar versus as a paradigm clash.
Baum, W M
2001-01-01
The molar view of behavior arose in response to the demonstrated inadequacy of explanations based on contiguity. Although Dinsmoor's (2001) modifications to two-factor theory render it irrefutable, a more basic criticism arises when we see that the molar and molecular views differ paradigmatically. The molar view has proven more productive. PMID:11453623
[Distalization of the upper second molar: biomechanics].
Castaldo, A
1991-01-01
The Author shows a system to dystalize the second upper molars and, if necessary, the third upper molars. This system, easy to be adapted, is made up by a palatal bar inserted between the first upper molars, by a sectional and a 100 grams precalibrated open Sentalloy coil spring used as an active force. PMID:1784296
NASA Astrophysics Data System (ADS)
Santos, A. P.; Silva, R.; Alcaniz, J. S.; Anselmo, D. H. A. L.
2011-08-01
A deduction of generalized quantum entropies within the Tsallis and Kaniadakis frameworks is derived using a generalization of the ordinary multinomial coefficient. This generalization is based on the respective deformed multiplication and division. We show that the two above entropies are consistent with ones arbitrarily assumed at other contexts.
Bao, Ning; Nezami, Sepehr; Ooguri, Hirosi; Stoica, Bogdan; Sully, James; Walter, Michael
2015-09-21
We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phasemore » space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.« less
ERIC Educational Resources Information Center
Marder, Daniel
The Second Law of Thermodynamics demonstrates the idea of entropy, the tendency of ordered energy to free itself and thus break apart the system that contains it and dissipate that system into chaos. When applied to communications theory, entropy increases not only with noise but with the density of information--particles of possible meaning…
Bao, Ning; Nezami, Sepehr; Ooguri, Hirosi; Stoica, Bogdan; Sully, James; Walter, Michael
2015-09-21
We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phase space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.
NASA Astrophysics Data System (ADS)
Bao, Ning; Nezami, Sepehr; Ooguri, Hirosi; Stoica, Bogdan; Sully, James; Walter, Michael
2015-09-01
We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phase space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.
Charged topological entanglement entropy
NASA Astrophysics Data System (ADS)
Matsuura, Shunji; Wen, Xueda; Hung, Ling-Yan; Ryu, Shinsei
2016-05-01
A charged entanglement entropy is a new measure which probes quantum entanglement between different charge sectors. We study symmetry-protected topological (SPT) phases in (2+1)-dimensional space-time by using this charged entanglement entropy. SPT phases are short-range entangled states without topological order and hence cannot be detected by the topological entanglement entropy. We demonstrate that the universal part of the charged entanglement entropy is nonzero for nontrivial SPT phases and therefore it is a useful measure to detect short-range entangled topological phases. We also discuss that the classification of SPT phases based on the charged topological entanglement entropy is related to that of the braiding statistics of quasiparticles.
Laser assisted high entropy alloy coating on aluminum: Microstructural evolution
Katakam, Shravana; Joshi, Sameehan S.; Mridha, Sanghita; Mukherjee, Sundeep; Dahotre, Narendra B.
2014-09-14
High entropy alloy (Al-Fe-Co-Cr-Ni) coatings were synthesized using laser surface engineering on aluminum substrate. Electron diffraction analysis confirmed the formation of solid solution of body centered cubic high entropy alloy phase along with phases with long range periodic structures within the coating. Evolution of such type of microstructure was a result of kinetics associated with laser process, which generates higher temperatures and rapid cooling resulting in retention of high entropy alloy phase followed by reheating and/or annealing in subsequent passes of the laser track giving rise to partial decomposition. The partial decomposition resulted in formation of precipitates having layered morphology with a mixture of high entropy alloy rich phases, compounds, and long range ordered phases.
Maxillary First Molar with Two Root Canals
Rahimi, Saeed; Ghasemi, Negin
2013-01-01
Knowledge regarding the anatomic morphology of maxillary molars is absolutely essential for the success of endodontic treatment. The morphology of the permanent maxillary first molar has been reviewed extensively; however, the presence of two canals in a two-rooted maxillary first molar has rarely been reported in studies describing tooth and root canal anatomies. This case report presents a patient with a maxillary first molar with two roots and two root canals, who was referred to the Department of Endodontics, Tabriz University of Medical Sciences, Iran. PMID:23862051
Conditional entropy of ordinal patterns
NASA Astrophysics Data System (ADS)
Unakafov, Anton M.; Keller, Karsten
2014-02-01
In this paper we investigate a quantity called conditional entropy of ordinal patterns, akin to the permutation entropy. The conditional entropy of ordinal patterns describes the average diversity of the ordinal patterns succeeding a given ordinal pattern. We observe that this quantity provides a good estimation of the Kolmogorov-Sinai entropy in many cases. In particular, the conditional entropy of ordinal patterns of a finite order coincides with the Kolmogorov-Sinai entropy for periodic dynamics and for Markov shifts over a binary alphabet. Finally, the conditional entropy of ordinal patterns is computationally simple and thus can be well applied to real-world data.
ERIC Educational Resources Information Center
Kyle, Benjamin G.
1988-01-01
Illustrates qualitative and metaphoric applications of entropy in the areas of cosmology, the birth and death of the universe and time; life and evolution; literature and art; and social science. (RT)
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1997-01-01
The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.
Local entropy generation analysis
Drost, M.K.; White, M.D.
1991-02-01
Second law analysis techniques have been widely used to evaluate the sources of irreversibility in components and systems of components but the evaluation of local sources of irreversibility in thermal processes has received little attention. While analytical procedures for evaluating local entropy generation have been developed, applications have been limited to fluid flows with analytical solutions for the velocity and temperature fields. The analysis of local entropy generation can be used to evaluate more complicated flows by including entropy generation calculations in a computational fluid dynamics (CFD) code. The research documented in this report consists of incorporating local entropy generation calculations in an existing CFD code and then using the code to evaluate the distribution of thermodynamic losses in two applications: an impinging jet and a magnetic heat pump. 22 refs., 13 figs., 9 tabs.
Staniek, Matthäus; Lehnertz, Klaus
2008-04-18
We propose to estimate transfer entropy using a technique of symbolization. We demonstrate numerically that symbolic transfer entropy is a robust and computationally fast method to quantify the dominating direction of information flow between time series from structurally identical and nonidentical coupled systems. Analyzing multiday, multichannel electroencephalographic recordings from 15 epilepsy patients our approach allowed us to reliably identify the hemisphere containing the epileptic focus without observing actual seizure activity. PMID:18518155
NASA Astrophysics Data System (ADS)
Staniek, Matthäus; Lehnertz, Klaus
2008-04-01
We propose to estimate transfer entropy using a technique of symbolization. We demonstrate numerically that symbolic transfer entropy is a robust and computationally fast method to quantify the dominating direction of information flow between time series from structurally identical and nonidentical coupled systems. Analyzing multiday, multichannel electroencephalographic recordings from 15 epilepsy patients our approach allowed us to reliably identify the hemisphere containing the epileptic focus without observing actual seizure activity.
Dorogovtsev, Andrei A
2010-06-29
For sets in a Hilbert space the concept of quadratic entropy is introduced. It is shown that this entropy is finite for the range of a stochastic flow of Brownian particles on R. This implies, in particular, the fact that the total time of the free travel in the Arratia flow of all particles that started from a bounded interval is finite. Bibliography: 10 titles.
NASA Astrophysics Data System (ADS)
Bousso, Raphael
2016-07-01
We show that known entropy bounds constrain the information carried off by radiation to null infinity. We consider distant, planar null hypersurfaces in asymptotically flat spacetime. Their focusing and area loss can be computed perturbatively on a Minkowski background, yielding entropy bounds in terms of the energy flux of the outgoing radiation. In the asymptotic limit, we obtain boundary versions of the quantum null energy condition, of the generalized Second Law, and of the quantum Bousso bound.
Anomalies and entanglement entropy
NASA Astrophysics Data System (ADS)
Nishioka, Tatsuma; Yarom, Amos
2016-03-01
We initiate a systematic study of entanglement and Rényi entropies in the presence of gauge and gravitational anomalies in even-dimensional quantum field theories. We argue that the mixed and gravitational anomalies are sensitive to boosts and obtain a closed form expression for their behavior under such transformations. Explicit constructions exhibiting the dependence of entanglement entropy on boosts is provided for theories on spacetimes with non-trivial magnetic fluxes and (or) non-vanishing Pontryagin classes.
Entropy, matter, and cosmology.
Prigogine, I; Géhéniau, J
1986-09-01
The role of irreversible processes corresponding to creation of matter in general relativity is investigated. The use of Landau-Lifshitz pseudotensors together with conformal (Minkowski) coordinates suggests that this creation took place in the early universe at the stage of the variation of the conformal factor. The entropy production in this creation process is calculated. It is shown that these dissipative processes lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Gravitational entropy takes a simple meaning as associated to the entropy that is necessary to produce matter. This leads to an extension of the third law of thermodynamics, as now the zero point of entropy becomes the space-time structure out of which matter is generated. The theory can be put into a convenient form using a supplementary "C" field in Einstein's field equations. The role of the C field is to express the coupling between gravitation and matter leading to irreversible entropy production. PMID:16593747
Lemos, Jose P. S.; Zaslavskii, Oleg B.
2010-03-15
We trace the origin of the black hole entropy S, replacing a black hole by a quasiblack hole. Let the boundary of a static body approach its own gravitational radius, in such a way that a quasihorizon forms. We show that if the body is thermal with the temperature taking the Hawking value at the quasihorizon limit, it follows, in the nonextremal case, from the first law of thermodynamics that the entropy approaches the Bekenstein-Hawking value S=A/4. In this setup, the key role is played by the surface stresses on the quasihorizon and one finds that the entropy comes from the quasihorizon surface. Any distribution of matter inside the surface leads to the same universal value for the entropy in the quasihorizon limit. This can be of some help in the understanding of black hole entropy. Other similarities between black holes and quasiblack holes such as the mass formulas for both objects had been found previously. We also discuss the entropy for extremal quasiblack holes, a more subtle issue.
Entropy, matter, and cosmology
Prigogine, I.; Géhéniau, J.
1986-01-01
The role of irreversible processes corresponding to creation of matter in general relativity is investigated. The use of Landau-Lifshitz pseudotensors together with conformal (Minkowski) coordinates suggests that this creation took place in the early universe at the stage of the variation of the conformal factor. The entropy production in this creation process is calculated. It is shown that these dissipative processes lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Gravitational entropy takes a simple meaning as associated to the entropy that is necessary to produce matter. This leads to an extension of the third law of thermodynamics, as now the zero point of entropy becomes the space-time structure out of which matter is generated. The theory can be put into a convenient form using a supplementary “C” field in Einstein's field equations. The role of the C field is to express the coupling between gravitation and matter leading to irreversible entropy production. PMID:16593747
Fluctuation theorem for partially masked nonequilibrium dynamics.
Shiraishi, Naoto; Sagawa, Takahiro
2015-01-01
We establish a generalization of the fluctuation theorem for partially masked nonequilibrium dynamics. We introduce a partial entropy production with a subset of all possible transitions, and show that the partial entropy production satisfies the integral fluctuation theorem. Our result reveals the fundamental properties of a broad class of autonomous as well as nonautonomous nanomachines. In particular, our result gives a unified fluctuation theorem for both autonomous and nonautonomous Maxwell's demons, where mutual information plays a crucial role. Furthermore, we derive a fluctuation-dissipation theorem that relates nonequilibrium stationary current to two kinds of equilibrium fluctuations. PMID:25679593
Fluctuation theorem for partially masked nonequilibrium dynamics
NASA Astrophysics Data System (ADS)
Shiraishi, Naoto; Sagawa, Takahiro
2015-01-01
We establish a generalization of the fluctuation theorem for partially masked nonequilibrium dynamics. We introduce a partial entropy production with a subset of all possible transitions, and show that the partial entropy production satisfies the integral fluctuation theorem. Our result reveals the fundamental properties of a broad class of autonomous as well as nonautonomous nanomachines. In particular, our result gives a unified fluctuation theorem for both autonomous and nonautonomous Maxwell's demons, where mutual information plays a crucial role. Furthermore, we derive a fluctuation-dissipation theorem that relates nonequilibrium stationary current to two kinds of equilibrium fluctuations.
Molar volumes and densities of minerals
Robie, Richard A.; Bethke, Philip M.
1962-01-01
These tables present critically chosen "best values" for the density and molar volume of selected mineral compounds. No attempt was made to be all-inclusive; rather we have tried to present data for chemically and physically well-defined phases for which the molar volume and/or density was knovvn to the order of 0. 2 percent.
Robinson, G.R., Jr.; Haas, J.L., Jr.
1983-01-01
Through the evaluation of experimental calorimetric data and estimates of the molar isobaric heat capacities, relative enthalpies and entropies of constituent oxides, a procedure for predicting the thermodynamic properties of silicates is developed. Estimates of the accuracy and precision of the technique and examples of its application are also presented. -J.A.Z.
General technique of third molar removal.
Farish, Sam E; Bouloux, Gary F
2007-02-01
The most commonly performed surgical procedure in most oral and maxillofacial surgery practices is the removal of impacted third molars. Extensive training, skill, and experience allow this procedure to be performed in an atraumatic fashion with local anesthesia, sedation, or general anesthesia. The decision to remove symptomatic third molars is not usually difficult, but the decision to remove asymptomatic third molars is sometimes less clear and requires clinical experience. A wide body of literature (discussed elsewhere in this issue) attempts to establish clinical practice guidelines for dealing with impacted teeth. Data is beginning to accumulate from third molar studies, which hopefully will provide surgeons and their patients with evidence-based guidelines regarding elective third molar surgery. PMID:18088862
Histological evaluation of mandibular third molar roots retrieved after coronectomy.
Patel, Vinod; Sproat, Chris; Kwok, Jerry; Beneng, Kiran; Thavaraj, Selvam; McGurk, Mark
2014-05-01
There is a resurgence of interest in coronectomy for the management of mandibular third molars because it has a low risk of injury to the inferior dental nerve. However, there is concern that the root that is left in place will eventually become a source of infection. We describe the histological evaluation of 26 consecutive symptomatic coronectomy roots in 21 patients. All roots had vital tissue in the pulp chamber and there was no evidence of periradicular inflammation. Persistent postoperative symptoms related predominantly to inflammation of the soft tissue, which was caused by partially erupted roots or failure of the socket to heal. PMID:24684971
Expressly fabricated molar tube bases: enhanced adhesion.
Sharma, Tarun; Phull, Tarun Singh; Rana, Tarun; Kumar, Varun
2014-06-01
Clinicians, Orthodontists and their patients' parents often expect the best results in the shortest time span possible. Orthodontic bonding of molar tubes has been an acceptable risk in a modern era of refined biomaterials and instrumentation. Although many orthodontists still prefer banding to bonding, it is the failure rate of the tubes on molars which accounts to an impedance in molar bonding. One of the reasons for molar attachment failures is attributed to improper adaptation of the buccal tube base with or without increased thickness of composite. Merits of banding the second molars especially when these are the terminal teeth for anchorage have been overemphasized in the literature. The present article presents a simple and relatively less time consuming technique of preparing molar tubes to be bonded on tooth surfaces which may be quite difficult to isolate especially for bonding, for example, mandibular second molars. The increased surface area of the composite scaffold helps not only in enhanced bond strength but also serves to reduce the incidence of plaque accumulation given the dexterity of invitro preparation. The removal of the occlusal part of the molar tube scaffold helps in prevention of open / raised bite tendencies. The present innovation, therefore, is not merely serendipity but a structured technique to overcome a common dilemma for the clinical orthodontist. The present dictum of banding being superior to molar tube bonding may prove to be futile with trendsetting molar attachments. It is also an established fact that bonding proves to be a lesser expensive modality when compared to banding procedures. PMID:25121070
Vallverdú, Montserrat; Clariá, Francesc; Melia, Umberto; Bayés de Luna, Antonio; Caminal, Pere
2015-08-01
The Shannon entropy theory was applied to the Choi-Williams time-frequency distribution (CWD) of cardiac time series (RR series) in order to extract entropy information in both time and frequency domains. From this distribution, four indexes were defined: (1) instantaneous partial entropy; (2) spectral partial entropy; (3) instantaneous complete entropy; (4) spectral complete entropy. These indexes were used for analyzing the heart rate variability of ischemic cardiomyopathy patients (ICM) with different sudden cardiac death risk. The results have shown that the values of these indexes tend to decrease, with different proportion, when the severity of pathological condition increases. Statistical differences (p-value < 0.0005) of these indexes were found comparing low risk and high risk of cardiac death during night and between daytime and nighttime periods of ICM patients. Finally, these indexes have demonstrated to be useful tools to quantify the different complex components of the cardiac time series. PMID:26736628
Entanglement entropy on fractals
NASA Astrophysics Data System (ADS)
Faraji Astaneh, Amin
2016-03-01
We use the heat kernel method to calculate the entanglement entropy for a given entangling region on a fractal. The leading divergent term of the entropy is obtained as a function of the fractal dimension as well as the walk dimension. The power of the UV cutoff parameter is (generally) a fractional number, which, indeed, is a certain combination of these two indices. This exponent is known as the spectral dimension. We show that there is a novel log-periodic oscillatory behavior in the expression of entropy which has root in the complex dimension of the fractal. We finally indicate that the holographic calculation in a certain hyperscaling-violating bulk geometry yields the same leading term for the entanglement entropy, if one identifies the effective dimension of the hyperscaling-violating theory with the spectral dimension of the fractal. We provide additional support by comparing the behavior of the thermal entropy in terms of the temperature, computed for two geometries, the fractal geometry and the hyperscaling-violating background.
NASA Astrophysics Data System (ADS)
Farokhi, Saeed; Taghavi, Ray; Keshmiri, Shawn
2015-11-01
Stealth technology is developed for military aircraft to minimize their signatures. The primary attention was focused on radar signature, followed by the thermal and noise signatures of the vehicle. For radar evasion, advanced configuration designs, extensive use of carbon composites and radar-absorbing material, are developed. On thermal signature, mainly in the infra-red (IR) bandwidth, the solution was found in blended rectangular nozzles of high aspect ratio that are shielded from ground detectors. For noise, quiet and calm jets are integrated into vehicles with low-turbulence configuration design. However, these technologies are totally incapable of detecting new generation of revolutionary aircraft. These shall use all electric, distributed, propulsion system that are thermally transparent. In addition, composite skin and non-emitting sensors onboard the aircraft will lead to low signature. However, based on the second-law of thermodynamics, there is no air vehicle that can escape from leaving an entropy trail. Entropy is thus the only inevitable signature of any system, that once measured, can detect the source. By characterizing the entropy field based on its statistical properties, the source may be recognized, akin to face recognition technology. Direct measurement of entropy is cumbersome, however as a derived property, it can be easily measured. The measurement accuracy depends on the probe design and the sensors onboard. One novel air data sensor suite is introduced with promising potential to capture the entropy trail.
Maxillary second molar impaction in the adjacent ectopic third molar: Report of five rare cases.
Souki, Bernardo Q; Cheib, Paula L; de Brito, Gabriela M; Pinto, Larissa S M C
2015-01-01
Maxillary second molar impaction in the adjacent ectopic third molar is a rare condition that practitioners might face in the field of pediatric dentistry and orthodontics. The early diagnosis and extraction of the adjacent ectopic third molar have been advocated, and prior research has reported a high rate of spontaneous eruption following third molar removal. However, some challenges in the daily practice are that the early diagnosis of this type of tooth impaction is difficult with conventional radiographic examination, and sometimes the early surgical removal of the maxillary third molar must be postponed because of the risks of damaging the second molar. The objective of this study is to report a case series of five young patients with maxillary second molar impaction and to discuss the difficulty of early diagnosis with the conventional radiographic examination, and unpredictability of self-correction. PMID:26321848
Causality & holographic entanglement entropy
NASA Astrophysics Data System (ADS)
Headrick, Matthew; Hubeny, Veronika E.; Lawrence, Albion; Rangamani, Mukund
2014-12-01
We identify conditions for the entanglement entropy as a function of spatial region to be compatible with causality in an arbitrary relativistic quantum field theory. We then prove that the covariant holographic entanglement entropy prescription (which relates entanglement entropy of a given spatial region on the boundary to the area of a certain extremal surface in the bulk) obeys these conditions, as long as the bulk obeys the null energy condition. While necessary for the validity of the prescription, this consistency requirement is quite nontrivial from the bulk standpoint, and therefore provides important additional evidence for the prescription. In the process, we introduce a codimension-zero bulk region, named the entanglement wedge, naturally associated with the given boundary spatial region. We propose that the entanglement wedge is the most natural bulk region corresponding to the boundary reduced density matrix.
Holographic entropy production
NASA Astrophysics Data System (ADS)
Tian, Yu; Wu, Xiao-Ning; Zhang, Hongbao
2014-10-01
The suspicion that gravity is holographic has been supported mainly by a variety of specific examples from string theory. In this paper, we propose that such a holography can actually be observed in the context of Einstein's gravity and at least a class of generalized gravitational theories, based on a definite holographic principle where neither is the bulk space-time required to be asymptotically AdS nor the boundary to be located at conformal infinity, echoing Wilson's formulation of quantum field theory. After showing the general equilibrium thermodynamics from the corresponding holographic dictionary, in particular, we provide a rather general proof of the equality between the entropy production on the boundary and the increase of black hole entropy in the bulk, which can be regarded as strong support to this holographic principle. The entropy production in the familiar holographic superconductors/superfluids is investigated as an important example, where the role played by the holographic renormalization is explained.
Casimir entropy for magnetodielectrics
NASA Astrophysics Data System (ADS)
Klimchitskaya, G. L.; Korikov, C. C.
2015-06-01
We find the analytic expressions for the Casimir free energy, entropy and pressure at low temperature in the configuration of two parallel plates made of magnetodielectic material. The cases of constant and frequency-dependent dielectic permittivity and magnetic permeability of the plates are considered. Special attention is paid to the account of dc conductivity. It is shown that in the case of finite static dielectric permittivity and magnetic permeability the Nernst heat theorem for the Casimir entropy is satisfied. If the dc conductivity is taken into account, the Casimir entropy goes to a positive nonzero limit depending on the parameters of a system when the temperature vanishes, i.e. the Nernst theorem is violated. The experimental situation is also discussed.
Generalized gravitational entropy
NASA Astrophysics Data System (ADS)
Lewkowycz, Aitor; Maldacena, Juan
2013-08-01
We consider classical Euclidean gravity solutions with a boundary. The boundary contains a non-contractible circle. These solutions can be interpreted as computing the trace of a density matrix in the full quantum gravity theory, in the classical approximation. When the circle is contractible in the bulk, we argue that the entropy of this density matrix is given by the area of a minimal surface. This is a generalization of the usual black hole entropy formula to euclidean solutions without a Killing vector. A particular example of this set up appears in the computation of the entanglement entropy of a subregion of a field theory with a gravity dual. In this context, the minimal area prescription was proposed by Ryu and Takayanagi. Our arguments explain their conjecture.
EEG entropy measures in anesthesia
Liang, Zhenhu; Wang, Yinghua; Sun, Xue; Li, Duan; Voss, Logan J.; Sleigh, Jamie W.; Hagihira, Satoshi; Li, Xiaoli
2015-01-01
Highlights: ► Twelve entropy indices were systematically compared in monitoring depth of anesthesia and detecting burst suppression.► Renyi permutation entropy performed best in tracking EEG changes associated with different anesthesia states.► Approximate Entropy and Sample Entropy performed best in detecting burst suppression. Objective: Entropy algorithms have been widely used in analyzing EEG signals during anesthesia. However, a systematic comparison of these entropy algorithms in assessing anesthesia drugs' effect is lacking. In this study, we compare the capability of 12 entropy indices for monitoring depth of anesthesia (DoA) and detecting the burst suppression pattern (BSP), in anesthesia induced by GABAergic agents. Methods: Twelve indices were investigated, namely Response Entropy (RE) and State entropy (SE), three wavelet entropy (WE) measures [Shannon WE (SWE), Tsallis WE (TWE), and Renyi WE (RWE)], Hilbert-Huang spectral entropy (HHSE), approximate entropy (ApEn), sample entropy (SampEn), Fuzzy entropy, and three permutation entropy (PE) measures [Shannon PE (SPE), Tsallis PE (TPE) and Renyi PE (RPE)]. Two EEG data sets from sevoflurane-induced and isoflurane-induced anesthesia respectively were selected to assess the capability of each entropy index in DoA monitoring and BSP detection. To validate the effectiveness of these entropy algorithms, pharmacokinetic/pharmacodynamic (PK/PD) modeling and prediction probability (Pk) analysis were applied. The multifractal detrended fluctuation analysis (MDFA) as a non-entropy measure was compared. Results: All the entropy and MDFA indices could track the changes in EEG pattern during different anesthesia states. Three PE measures outperformed the other entropy indices, with less baseline variability, higher coefficient of determination (R2) and prediction probability, and RPE performed best; ApEn and SampEn discriminated BSP best. Additionally, these entropy measures showed an advantage in computation
Unilateral Molar Distalization: A Nonextraction Therapy
Prasad, M. Bhanu; Sreevalli, S.
2012-01-01
In the recent years, nonextraction treatment approaches and noncompliance therapies have become more popular in the correction of space discrepancies. One of the conventional approaches for space gaining in the arches without patient compliance is done by using certain extra oral appliances or intraoral appliance. The greatest advantage of certain appliances like fixed functional and molar distalization appliances is that they minimize the dependence on patient cooperation. Molar distalization appliances like pendulum appliance which distalizes the molar rapidly without the need of head gear can be used in patients as a unilateral space gaining procedure due to buccal segment crowding. PMID:23320203
Role of third molars in orthodontics.
Almpani, Konstantinia; Kolokitha, Olga-Elpis
2015-02-16
The role of third molars in the oral cavity has been extensively studied over the years. Literature includes numerous diagnostic and treatment alternatives regarding the third molars. However, an issue that has not been discussed at the same level is their involvement in orthodontic therapy. The aim of this study is to present a review of the contemporary literature regarding the most broadly discussed aspects of the multifactorial role of third molars in orthodontics and which are of general dental interest too. PMID:25685759
Valence bond entanglement entropy.
Alet, Fabien; Capponi, Sylvain; Laflorencie, Nicolas; Mambrini, Matthieu
2007-09-14
We introduce for SU(2) quantum spin systems the valence bond entanglement entropy as a counting of valence bond spin singlets shared by two subsystems. For a large class of antiferromagnetic systems, it can be calculated in all dimensions with quantum Monte Carlo simulations in the valence bond basis. We show numerically that this quantity displays all features of the von Neumann entanglement entropy for several one-dimensional systems. For two-dimensional Heisenberg models, we find a strict area law for a valence bond solid state and multiplicative logarithmic corrections for the Néel phase. PMID:17930468
NASA Astrophysics Data System (ADS)
Amblard, Pierre-Olivier; Vignat, Christophe
2006-06-01
The aim of the paper is to study the link between non-additivity of some entropies and their boundedness. We propose an axiomatic construction of the entropy relying on the fact that entropy belongs to a group isomorphic to the usual additive group. This allows to show that the entropies that are additive with respect to the addition of the group for independent random variables are nonlinear transforms of the Rényi entropies, including the particular case of the Shannon entropy. As a particular example, we study as a group a bounded interval in which the addition is a generalization of the addition of velocities in special relativity. We show that Tsallis-Havrda-Charvat entropy is included in the family of entropies we define. Finally, a link is made between the approach developed in the paper and the theory of deformed logarithms.
Segura, J J; Jiménez-Rubio, A; Cabrera, R
1998-04-01
Because of clinical signs and symptoms, a diagnosis of pericoronitis in a partially erupted, partially impacted first molar was made. A more thorough diagnosis was made with the help of a periapical radiograph that showed caries and thus revealed an irreversible pulpitis. Appropriate treatment was the result. PMID:9574958
NASA Astrophysics Data System (ADS)
Hansen, Frank
2016-06-01
Incremental information, as measured by the quantum entropy, is increasing when two ensembles are united. This result was proved by Lieb and Ruskai, and it is the foundation for the proof of strong subadditivity of quantum entropy. We present a truly elementary proof of this fact in the context of the broader family of matrix entropies introduced by Chen and Tropp.
Entropy Effects in Chelation Reactions.
ERIC Educational Resources Information Center
Chung, Chung-Sun
1984-01-01
The entropy change for a reaction in aqueous solution can be evaluated as a combination of entropy factors. Valuable insight or understanding can be obtained from a detailed examination of these factors. Several entropy effects of inorganic chemical reactions are discussed as examples. (Author/JN)
Single-rooted primary first mandibular molar
Haridoss, SelvaKumar; Swaminathan, Kavitha; Rajendran, Vijayakumar; Rajendran, Bharathan
2014-01-01
Morphological variations like single-rooted molar in primary dentition are scarce. Understanding the root canal anatomy and variations is necessary for successful root canal therapy. The purpose of the present article is to report successful endodontic treatment of primary left mandibular first molar with an abnormal morphology of a single root. This case report highlights the importance of knowledge and its applications in the management of anomalous anatomic variants which play a crucial role in the success of endodontic treatment. PMID:25150245
Molars and incisors: show your microarray IDs
2013-01-01
Background One of the key questions in developmental biology is how, from a relatively small number of conserved signaling pathways, is it possible to generate organs displaying a wide range of shapes, tissue organization, and function. The dentition and its distinct specific tooth types represent a valuable system to address the issues of differential molecular signatures. To identify such signatures, we performed a comparative transcriptomic analysis of developing murine lower incisors, mandibular molars and maxillary molars at the developmental cap stage (E14.5). Results 231 genes were identified as being differentially expressed between mandibular incisors and molars, with a fold change higher than 2 and a false discovery rate lower than 0.1, whereas only 96 genes were discovered as being differentially expressed between mandibular and maxillary molars. Numerous genes belonging to specific signaling pathways (the Hedgehog, Notch, Wnt, FGF, TGFβ/BMP, and retinoic acid pathways), and/or to the homeobox gene superfamily, were also uncovered when a less stringent fold change threshold was used. Differential expressions for 10 out of 12 (mandibular incisors versus molars) and 9 out of 10 selected genes were confirmed by quantitative reverse transcription-PCR (qRT-PCR). A bioinformatics tool (Ingenuity Pathway Analysis) used to analyze biological functions and pathways on the group of incisor versus molar differentially expressed genes revealed that 143 genes belonged to 9 networks with intermolecular connections. Networks with the highest significance scores were centered on the TNF/NFκB complex and the ERK1/2 kinases. Two networks ERK1/2 kinases and tretinoin were involved in differential molar morphogenesis. Conclusion These data allowed us to build several regulatory networks that may distinguish incisor versus molar identity, and may be useful for further investigations of these tooth-specific ontogenetic programs. These programs may be dysregulated in
NASA Astrophysics Data System (ADS)
Styer, Daniel F.
2008-11-01
Quantitative estimates of the entropy involved in biological evolution demonstrate that there is no conflict between evolution and the second law of thermodynamics. The calculations are elementary and could be used to enliven the thermodynamics portion of a high school or introductory college physics course.
Rescaling Temperature and Entropy
ERIC Educational Resources Information Center
Olmsted, John, III
2010-01-01
Temperature and entropy traditionally are expressed in units of kelvin and joule/kelvin. These units obscure some important aspects of the natures of these thermodynamic quantities. Defining a rescaled temperature using the Boltzmann constant, T' = k[subscript B]T, expresses temperature in energy units, thereby emphasizing the close relationship…
NASA Astrophysics Data System (ADS)
Pougaza, Doriano-Boris; Mohammad-Djafari, Ali
2011-03-01
New families of copulas are obtained in a two-step process: first considering the inverse problem which consists of finding a joint distribution from its given marginals as the constrained maximization of some entropies (Shannon, Rényi, Burg, Tsallis-Havrda-Charvát), and then using Sklar's theorem, to define the corresponding copula.
NASA Astrophysics Data System (ADS)
Sato, Humitaka
2010-06-01
Charles Darwin's calculation of a life of Earth had ignited Kelvin's insight on a life of Sun, which had eventually inherited to the physical study of stellar structure and energy source. Nuclear energy had secured a longevity of the universe and the goal of the cosmic evolution has been secured by the entropy of black holes.
An investigation of combustion and entropy noise
NASA Technical Reports Server (NTRS)
Strahle, W. C.
1977-01-01
The relative importance of entropy and direct combustion noise in turbopropulsion systems and the parameters upon which these noise sources depend were studied. Theory and experiment were employed to determine that at least with the apparatus used here, entropy noise can dominate combustion noise if there is a sufficient pressure gradient terminating the combustor. Measurements included combustor interior fluctuating pressure, near and far field fluctuating pressure, and combustor exit plane fluctuating temperatures, as well as mean pressures and temperatures. Analysis techniques included spectral, cross-correlation, cross power spectra, and ordinary and partial coherence analysis. Also conducted were combustor liner modification experiments to investigate the origin of the frequency content of combustion noise. Techniques were developed to extract nonpropagational pseudo-sound and the heat release fluctuation spectra from the data.
Maxillary molar distalization with first class appliance
Ramesh, Namitha; Palukunnu, Biswas; Ravindran, Nidhi; Nair, Preeti P
2014-01-01
Non-extraction treatment has gained popularity for corrections of mild-to-moderate class II malocclusion over the past few decades. The distalization of maxillary molars is of significant value for treatment of cases with minimal arch discrepancy and mild class II molar relation associated with a normal mandibular arch and acceptable profile. This paper describes our experience with a 16-year-old female patient who reported with irregularly placed upper front teeth and unpleasant smile. The patient was diagnosed to have angles class II malocclusion with moderate maxillary anterior crowding, deep bite of 4 mm on a skeletal class II base with an orthognathic maxilla and retrognathic mandible and normal growth pattern. She presented an ideal profile and so molar distalization was planned with the first-class appliance. Molars were distalised by 8 mm on the right and left quadrants and class I molar relation achieved within 4 months. The space gained was utilised effectively to align the arch and establish a class I molar and canine relation. PMID:24577171
NASA Astrophysics Data System (ADS)
Zucker, M. H.
This paper is a critical analysis and reassessment of entropic functioning as it applies to the question of whether the ultimate fate of the universe will be determined in the future to be "open" (expanding forever to expire in a big chill), "closed" (collapsing to a big crunch), or "flat" (balanced forever between the two). The second law of thermodynamics declares that entropy can only increase and that this principle extends, inevitably, to the universe as a whole. This paper takes the position that this extension is an unwarranted projection based neither on experience nonfact - an extrapolation that ignores the powerful effect of a gravitational force acting within a closed system. Since it was originally presented by Clausius, the thermodynamic concept of entropy has been redefined in terms of "order" and "disorder" - order being equated with a low degree of entropy and disorder with a high degree. This revised terminology more subjective than precise, has generated considerable confusion in cosmology in several critical instances. For example - the chaotic fireball of the big bang, interpreted by Stephen Hawking as a state of disorder (high entropy), is infinitely hot and, thermally, represents zero entropy (order). Hawking, apparently focusing on the disorderly "chaotic" aspect, equated it with a high degree of entropy - overlooking the fact that the universe is a thermodynamic system and that the key factor in evaluating the big-bang phenomenon is the infinitely high temperature at the early universe, which can only be equated with zero entropy. This analysis resolves this confusion and reestablishes entropy as a cosmological function integrally linked to temperature. The paper goes on to show that, while all subsystems contained within the universe require external sources of energization to have their temperatures raised, this requirement does not apply to the universe as a whole. The universe is the only system that, by itself can raise its own
Diffusive mixing and Tsallis entropy
O'Malley, Daniel; Vesselinov, Velimir V.; Cushman, John H.
2015-04-29
Brownian motion, the classical diffusive process, maximizes the Boltzmann-Gibbs entropy. The Tsallis q-entropy, which is non-additive, was developed as an alternative to the classical entropy for systems which are non-ergodic. A generalization of Brownian motion is provided that maximizes the Tsallis entropy rather than the Boltzmann-Gibbs entropy. This process is driven by a Brownian measure with a random diffusion coefficient. In addition, the distribution of this coefficient is derived as a function of q for 1 < q < 3. Applications to transport in porous media are considered.
Kinzinger, Gero S M; Fritz, Ulrike B; Sander, Franz-Günter; Diedrich, Peter R
2004-01-01
A modified pendulum appliance, including a distal screw and special preactivated pendulum springs (built-in straightening activation and toe-in bending), was used for bilateral maxillary molar distalization in 36 adolescent patients in various stages of the molar dentition. The patients were divided into 3 groups (PG 1-3) according to the stage of eruption of their second and third molars. In PG 1 (18 patients), eruption of the second molars had either not yet taken place or was not complete. In PG 2 (15 patients), the second molars had already developed as far as the occlusal plane, with the third molars at the budding stage. In PG 3 (3 patients), germectomy of the wisdom teeth had been carried out, and the first and second molars on both sides had completely erupted. Analysis of cephalograms to identify any changes in the sagittal plane showed that, in the direction of distalization, a tooth bud acts on the mesial neighboring tooth like a fulcrum, and that tipping of the first molars in patients in whom the second molar was still at the budding stage was thus greater. In patients whose second molars had erupted completely, the degree of tipping was greater again when a third molar bud was located in the direction of movement. After previously completed germectomy of the wisdom teeth, almost exclusively bodily distalization of both molars is possible, even without bands being applied to the second molars. However, if the first and second molars are distalized simultaneously with a pendulum appliance, the duration of therapy will be longer, greater forces will have to be applied, and more anchorage will be lost. Statistical analysis of the results of dental-angular measurements showed significant differences in the degree of molar tipping and reciprocal incisor protrusion. The degree of distal tipping of first molars was less in patients with erupted second molars (PG 2 and PG 3) than in those whose second molars were not yet erupted (PG 1). For instance, the
Renyi entropy as a statistical entropy for complex systems
NASA Astrophysics Data System (ADS)
Bashkirov, A. G.
2006-11-01
To describe a complex system, we propose using the Renyi entropy depending on the parameter q (0 < q ≤ 1) and passing into the Gibbs-Shannon entropy at q = 1. The maximum principle for the Renyi entropy yields a Renyi distribution that passes into the Gibbs canonical distribution at q = 1. The thermodynamic entropy of the complex system is defined as the Renyi entropy for the Renyi distribution. In contrast to the usual entropy based on the Gibbs-Shannon entropy, the Renyi entropy increases as the distribution deviates from the Gibbs distribution (the deviation is estimated by the parameter η = 1 - q) and reaches its maximum at the maximum possible value ηmax. As this occurs, the Renyi distribution becomes a power-law distribution. The parameter η can be regarded as an order parameter. At η = 0, the derivative of the thermodynamic entropy with respect to η exhibits a jump, which indicates a kind of phase transition into a more ordered state. The evolution of the system toward further order in this phase state is accompanied by an entropy gain. This means that in accordance with the second law of thermodynamics, a natural evolution in the direction of self-organization is preferable.
Caries Management Strategies for Primary Molars
Santamaria, R.M.; Innes, N.P.T.; Machiulskiene, V.; Evans, D.J.P.; Splieth, C.H.
2014-01-01
Minimal invasive approaches to managing caries, such as partial caries removal techniques, are showing increasing evidence of improved outcomes over the conventional complete caries removal. There is also increasing interest in techniques where no caries is removed. We present the 1-yr results of clinical efficacy for 3 caries management options for occlusoproximal cavitated lesions in primary molars: conventional restorations (CR; complete caries removal and compomer restoration), Hall technique (HT; no caries removal, sealing in with stainless steel crowns), and nonrestorative caries treatment (NRCT; no caries removal, opening up the cavity, teaching brushing and fluoride application). In sum, 169 children (3-8 yr old; mean, 5.56 ± 1.45 yr) were enrolled in this secondary care–based, 3-arm, parallel-group, randomized clinical trial. Treatments were carried out by specialist pediatric dentists or postgraduate trainees. One lesion per child received CR, HT, or NRCT. Outcome measures were clinical failure rates, grouped as minor failure (restoration loss/need for replacement, reversible pulpitis, caries progression, etc.) and major failure (irreversible pulpitis, abscess, etc.). There were 148 children (87.6%) with a minimum follow-up of 11 mo (mean, 12.23 ± 0.98 mo). Twenty teeth were recorded as having at least 1 minor failure: NRCT, n = 8 (5%); CR, n = 11 (7%); HT, n = 1 (1%) (p = .002, 95% CI = 0.001 to 0.003). Only the comparison between NRCT and CR showed no significant difference (p = .79, 95% CI = 0.78 to 0.80). Nine (6%) experienced at least 1 major failure: NRCT, n = 4 (2%); CR, n = 5 (3%); HT, n = 0 (0%) (p = .002, 95% CI = 0.001 to 0.003). Individual comparison of NRCT and CR showed no statistically significant difference in major failures (p = .75, 95% CI = 0.73 to 0.76). Success and failure rates were not significantly affected by pediatric dentists’ level of experience (p = .13, 95% CI = 0.12 to 0.14). The HT was significantly more successful
Weinberg, A.M.
1982-10-01
Utopians who use entropy to warn of a vast deterioration of energy and mineral resources seek a self-fulfilling prophesy when they work to deny society access to new energy sources, particularly nuclear power. While theoretically correct, entropy is not the relevant factor for the rest of this century. The more extreme entropists call for a return to an eotechnic society based on decentralized, renewable energy technologies, which rests on the assumptions of a loss in Gibbs Free Energy, a mineral depletion that will lead to OPEC-like manipulation, and a current technology that is destroying the environment. The author challenges these assumptions and calls for an exorcism of public fears over reactor accidents. He foresees a resurgence in public confidence in nuclear power by 1990 that will resolve Western dependence on foreign oil. (DCK)
NASA Astrophysics Data System (ADS)
Rost, Christina M.; Sachet, Edward; Borman, Trent; Moballegh, Ali; Dickey, Elizabeth C.; Hou, Dong; Jones, Jacob L.; Curtarolo, Stefano; Maria, Jon-Paul
2015-09-01
Configurational disorder can be compositionally engineered into mixed oxide by populating a single sublattice with many distinct cations. The formulations promote novel and entropy-stabilized forms of crystalline matter where metal cations are incorporated in new ways. Here, through rigorous experiments, a simple thermodynamic model, and a five-component oxide formulation, we demonstrate beyond reasonable doubt that entropy predominates the thermodynamic landscape, and drives a reversible solid-state transformation between a multiphase and single-phase state. In the latter, cation distributions are proven to be random and homogeneous. The findings validate the hypothesis that deliberate configurational disorder provides an orthogonal strategy to imagine and discover new phases of crystalline matter and untapped opportunities for property engineering.
NASA Astrophysics Data System (ADS)
Goradia, Shantilal
2015-10-01
We modify Newtonian gravity to probabilistic quantum mechanical gravity to derive strong coupling. If this approach is valid, we should be able to extend it to the physical body (life) as follows. Using Boltzmann equation, we get the entropy of the universe (137) as if its reciprocal, the fine structure constant (ALPHA), is the hidden candidate representing the negative entropy of the universe which is indicative of the binary information as its basis (http://www.arXiv.org/pdf/physics0210040v5). Since ALPHA relates to cosmology, it must relate to molecular biology too, with the binary system as the fundamental source of information for the nucleotides of the DNA as implicit in the book by the author: ``Quantum Consciousness - The Road to Reality.'' We debate claims of anthropic principle based on the negligible variation of ALPHA and throw light on thermodynamics. We question constancy of G in multiple ways.
Rost, Christina M.; Sachet, Edward; Borman, Trent; Moballegh, Ali; Dickey, Elizabeth C.; Hou, Dong; Jones, Jacob L.; Curtarolo, Stefano; Maria, Jon-Paul
2015-01-01
Configurational disorder can be compositionally engineered into mixed oxide by populating a single sublattice with many distinct cations. The formulations promote novel and entropy-stabilized forms of crystalline matter where metal cations are incorporated in new ways. Here, through rigorous experiments, a simple thermodynamic model, and a five-component oxide formulation, we demonstrate beyond reasonable doubt that entropy predominates the thermodynamic landscape, and drives a reversible solid-state transformation between a multiphase and single-phase state. In the latter, cation distributions are proven to be random and homogeneous. The findings validate the hypothesis that deliberate configurational disorder provides an orthogonal strategy to imagine and discover new phases of crystalline matter and untapped opportunities for property engineering. PMID:26415623
Orthodontic extrusion of horizontally impacted mandibular molars
Ma, Zhigui; Yang, Chi; Zhang, Shanyong; Xie, Qianyang; Shen, Yuqing; Shen, Pei
2014-01-01
Objective: To introduce and evaluate a novel approach in treating horizontally impacted mandibular second and third molars. Materials and methods: An orthodontic technique was applied for treatment of horizontally impacted mandibular second and third molars, which included a push-type spring for rotation first, and then a cantilever for extrusion. There were 8 mandibular third molars (M3s) and 2 second molars (M2s) in this study. Tooth mobility, extraction time, the inclination and parallelism of the impacted tooth, alveolar bone height of the adjacent tooth, and the relationship of impacted M3 and the inferior alveolar nerve (IAN) were evaluated. Results: Two horizontally impacted M2s could be upright in the arch and good occlusal relationships were obtained after treatment. All impacted M3s were successfully separated from the IAN, without any neurologic consequences. The average extraction time was 5 minutes. There was a significant change in the inclination and parallelism of the impacted tooth after treatment. A new bone apposition with the average height of 3.2 mm was noted distal to the adjacent tooth. Conclusions: This two-step orthodontic technique as presented here may be a safe and feasible alternative in management of severely horizontally impacted mandibular molars, which achieves a successful separation of M3s from the IAN and an excellent position for M2s. PMID:25419364
Oxygen from Hydrogen Peroxide. A Safe Molar Volume-Molar Mass Experiment.
ERIC Educational Resources Information Center
Bedenbaugh, John H.; And Others
1988-01-01
Describes a molar volume-molar mass experiment for use in general chemistry laboratories. Gives background technical information, procedures for the titration of aqueous hydrogen peroxide with standard potassium permanganate and catalytic decomposition of hydrogen peroxide to produce oxygen, and a discussion of the results obtained in three…
NASA Astrophysics Data System (ADS)
Smirnov, Sergey
2015-11-01
In thermodynamics a macroscopic state of a system results from a number of its microscopic states. This number is given by the exponent of the system's entropy exp(S ) . In noninteracting systems with discrete energy spectra, such as large scale quantum dots, S as a function of the temperature has usually a plateau shape with integer values of exp(S ) on these plateaus. Plateaus with noninteger values of exp(S ) are fundamentally forbidden and would be thermodynamically infeasible. Here we investigate the entropy of a noninteracting quantum dot coupled via tunneling to normal metals with continuum spectra as well as to topological superconductors. We show that the entropy may have noninteger plateaus if the topological superconductors support weakly overlapping Majorana bound states. This brings a fundamental change in the thermodynamics of the quantum dot whose specific heat cV acquires low-temperature Majorana peaks which should be absent according to the conventional thermodynamics. We also provide a fundamental thermodynamic understanding of the transport properties, such as the linear conductance. In general our results show that the thermodynamics of systems coupled to Majorana modes represents a fundamental physical interest with diverse applications depending on versatility of possible coupling mechanisms.
NASA Astrophysics Data System (ADS)
Lucia, Umberto
2015-02-01
Is there a link between the macroscopic description of the irreversibility and microscopic behaviour of the systems? Transfer of the exergy, i.e., consumption of free energy will keep the system away from a stable equilibrium. So entropy generation results from the redistribution of energy, momentum, mass and charge. Moreover, irreversible consumption of free energy was underlined to create time's arrow. This concept represents the essence of the thermodynamic approach to irreversibility. The analysis developed in this paper points out that the principle of maximum of entropy generation and the least action can be recognized as the only single law. Quanta are exchanged between a system and its surroundings. Each quantum carries energy. The natural behaviour of the open systems is ascribed to the decrease of free energy in the least time, which can be related to the extremum entropy generation theorem. Irreversibility is the result of the interaction between systems and their environment with the consequence time symmetry breaking. The fundamental result of this paper is to introduce a link between the global analysis of irreversibility and Noether's results.
NASA Astrophysics Data System (ADS)
Caticha, Ariel
2007-11-01
What is information? Is it physical? We argue that in a Bayesian theory the notion of information must be defined in terms of its effects on the beliefs of rational agents. Information is whatever constrains rational beliefs and therefore it is the force that induces us to change our minds. This problem of updating from a prior to a posterior probability distribution is tackled through an eliminative induction process that singles out the logarithmic relative entropy as the unique tool for inference. The resulting method of Maximum relative Entropy (ME), which is designed for updating from arbitrary priors given information in the form of arbitrary constraints, includes as special cases both MaxEnt (which allows arbitrary constraints) and Bayes' rule (which allows arbitrary priors). Thus, ME unifies the two themes of these workshops—the Maximum Entropy and the Bayesian methods—into a single general inference scheme that allows us to handle problems that lie beyond the reach of either of the two methods separately. I conclude with a couple of simple illustrative examples.
NASA Astrophysics Data System (ADS)
Anninos, Dionysios; Samani, Joshua; Shaghoulian, Edgar
2014-02-01
We study the applicability of the covariant holographic entanglement entropy proposal to asymptotically warped AdS3 spacetimes with an SL(2, ℝ) × U(1) isometry. We begin by applying the proposal to locally AdS3 backgrounds which are written as an ℝ1 fibration over AdS2. We then perturb away from this geometry by considering a warping parameter a = 1 + δ to get an asymptotically warped AdS3 spacetime and compute the dual entanglement entropy perturbatively in δ. We find that for large separation in the fiber coordinate, the entanglement entropy can be computed to all orders in δ and takes the universal form appropriate for two-dimensional CFTs. The warping-dependent central charge thus identified exactly agrees with previous calculations in the literature. Performing the same perturbative calculations for the warped BTZ black hole again gives universal two-dimensional CFT answers, with the left-moving and right-moving temperatures appearing appropriately in the result.
Quantum information entropy for one-dimensional system undergoing quantum phase transition
NASA Astrophysics Data System (ADS)
Xu-Dong, Song; Shi-Hai, Dong; Yu, Zhang
2016-05-01
Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic “Landau” potential in a numerical way. Particularly, it is found that the phase transitional behavior of the system can be well expressed by the evolution of quantum information entropy. The calculated results also indicate that the position entropy Sx and the momentum entropy Sp at the critical point of phase transition may vary with the mass parameter M but their sum remains as a constant independent of M for a given excited state. In addition, the entropy uncertainty relation is proven to be robust during the whole process of the phase transition. Project supported by the National Natural Science Foundation of China (Grant No. 11375005) and partially by 20150964-SIP-IPN, Mexico.
Lower third molar eruption following orthodontic treatment.
Salehi, P; Danaie, S Momene
2008-01-01
This study assessed the effect of extraction and preservation of the 1st premolar on lower 3rd molar eruption. Orthodontic clinic records from 1993 to 1995 were evaluated before and after treatment and 8-9 years after treatment for 3 groups of patients: 32 with extraction of 1st premolars in both jaws, 32 with no extraction but orthodontic treatment and 48 controls with no extraction but orthodontic treatment in the upper jaws only. Successful eruption of 3rd molars was evaluated. There was a significant difference in the rates of successful eruptions in the extraction (42%), non-extraction (12%) and control (20%) groups. The findings indicate that 1st premolar extraction may increase the chance of 3rd molar eruption, leading to a lower incidence of health and economic complications. PMID:19161121
Molar and molecular views of choice.
Baum, William M
2004-06-30
The molar and molecular views of behavior are not different theories or levels of analysis; they are different paradigms. The molecular paradigm views behavior as composed of discrete units (responses) occurring at moments in time and strung together in chains to make up complex performances. The discrete pieces are held together as a result of association by contiguity. The molecular view has a long history both in early thought about reflexes and in associationism, and, although it was helpful to getting a science of behavior started, it has outlived its usefulness. The molar view stems from a conviction that behavior is continuous, as argued by John Dewey, Gestalt psychologists, Karl Lashley, and others. The molar paradigm views behavior as inherently extended in time and composed of activities that have integrated parts. In the molar paradigm, activities vary in their scale of organization--i.e., as to whether they are local or extended--and behavior may be controlled sometimes by short-term relations and sometimes by long-term relations. Applied to choice, the molar paradigm rests on two simple principles: (a) all behavior constitutes choice; and (b) all activities take time. Equivalence between choice and behavior occurs because every situation contains more than one alternative activity. The principle that behavior takes time refers not simply to any notion of response duration, but to the necessity that identifying one action or another requires a sample extended in time. The molecular paradigm's momentary responses are inferred from extended samples in retrospect. In this sense, momentary responses constitute abstractions, whereas extended activities constitute concrete particulars. Explanations conceived within the molecular paradigm invariably involve hypothetical constructs, because they require causes to be contiguous with responses. Explanations conceived within the molar paradigm retain direct contact with observable variables. PMID:15157981
Entropy meters and the entropy of non-extensive systems
Lieb, Elliott H.; Yngvason, Jakob
2014-01-01
In our derivation of the second law of thermodynamics from the relation of adiabatic accessibility of equilibrium states, we stressed the importance of being able to scale a system's size without changing its intrinsic properties. This leaves open the question of defining the entropy of macroscopic, but unscalable systems, such as gravitating bodies or systems where surface effects are important. We show here how the problem can be overcome, in principle, with the aid of an ‘entropy meter’. An entropy meter can also be used to determine entropy functions for non-equilibrium states and mesoscopic systems. PMID:25002830
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Molar Exhaust Volumes and Molar Heat... Exhaust Volumes and Molar Heat Content of Fuel Gas Constituents Constituent MEVa dscf/mol MHCb Btu/mol... Inerts 0.85 0 a MEV = molar exhaust volume, dry standard cubic feet per gram-mole (dscf/g-mol)...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Molar Exhaust Volumes and Molar Heat... Exhaust Volumes and Molar Heat Content of Fuel Gas Constituents Constituent MEVa dscf/mol MHCb Btu/mol... Inerts 0.85 0 a MEV = molar exhaust volume, dry standard cubic feet per gram-mole (dscf/g-mol)...
Quantum chaos: An entropy approach
NASA Astrophysics Data System (ADS)
Sl/omczyński, Wojciech; Życzkowski, Karol
1994-11-01
A new definition of the entropy of a given dynamical system and of an instrument describing the measurement process is proposed within the operational approach to quantum mechanics. It generalizes other definitions of entropy, in both the classical and quantum cases. The Kolmogorov-Sinai (KS) entropy is obtained for a classical system and the sharp measurement instrument. For a quantum system and a coherent states instrument, a new quantity, coherent states entropy, is defined. It may be used to measure chaos in quantum mechanics. The following correspondence principle is proved: the upper limit of the coherent states entropy of a quantum map as ℏ→0 is less than or equal to the KS-entropy of the corresponding classical map. ``Chaos umpire sits, And by decision more imbroils the fray By which he reigns: next him high arbiter Chance governs all.'' John Milton, Paradise Lost, Book II
Stec, Marcin; Tatarczuk, Adam; Spiewak, Dariusz; Wilk, Andrzej
2014-01-01
The densities of aqueous mixtures of aminoethylethanolamine (CAS #000111-41-1) were measured over the entire compositional range at temperatures of 283.15-343.15 K. The results of these measurements were used to calculate excess molar volumes and isobaric thermal expansion coefficients, and partial molar and apparent molar volumes and excess isobaric thermal expansion coefficients were subsequently derived. The excess molar volumes were correlated as a function of the mole fraction using the Redlich-Kister equation. Temperature dependences of the Redlich-Kister coefficients are also presented. The partial molar volumes at infinite dilution of AEEA in water were determined using two different methods. In addition, the solution density was correlated using a Joubian-Acree model. Aqueous solutions of AEEA exhibit similar properties to the aqueous solutions of other alkanolamines (like monoethanolamine) used in acid gas sweetening. PMID:24899753
Entropy of electromyography time series
NASA Astrophysics Data System (ADS)
Kaufman, Miron; Zurcher, Ulrich; Sung, Paul S.
2007-12-01
A nonlinear analysis based on Renyi entropy is applied to electromyography (EMG) time series from back muscles. The time dependence of the entropy of the EMG signal exhibits a crossover from a subdiffusive regime at short times to a plateau at longer times. We argue that this behavior characterizes complex biological systems. The plateau value of the entropy can be used to differentiate between healthy and low back pain individuals.
Entanglement entropy on fuzzy spaces
Dou, Djamel; Ydri, Badis
2006-08-15
We study the entanglement entropy of a scalar field in 2+1 spacetime where space is modeled by a fuzzy sphere and a fuzzy disc. In both models we evaluate numerically the resulting entropies and find that they are proportional to the number of boundary degrees of freedom. In the Moyal plane limit of the fuzzy disc the entanglement entropy per unite area (length) diverges if the ignored region is of infinite size. The divergence is (interpreted) of IR-UV mixing origin. In general we expect the entanglement entropy per unite area to be finite on a noncommutative space if the ignored region is of finite size.
Entropy Generation in Regenerative Systems
NASA Technical Reports Server (NTRS)
Kittel, Peter
1995-01-01
Heat exchange to the oscillating flows in regenerative coolers generates entropy. These flows are characterized by oscillating mass flows and oscillating temperatures. Heat is transferred between the flow and heat exchangers and regenerators. In the former case, there is a steady temperature difference between the flow and the heat exchangers. In the latter case, there is no mean temperature difference. In this paper a mathematical model of the entropy generated is developed for both cases. Estimates of the entropy generated by this process are given for oscillating flows in heat exchangers and in regenerators. The practical significance of this entropy is also discussed.
Pathological (late) fractures of the mandibular angle after lower third molar removal: a case series
2013-01-01
Introduction Pathological (late) fracture of the mandibular angle after third molar surgery is very rare (0.005% of third molar removals). There are 94 cases reported in the literature; cases associated with osseous pathologies such as osteomyelitis or any local and systemic diseases that may compromise mandibular bone strength have not been included. We describe three new cases of pathological (late) fracture of the mandibular angle after third molar surgery. Case presentations The first patient was a 27-year-old Caucasian man who had undergone surgical removal of a 3.8, mesioangular variety, class II-C third molar 20 days before admission to our clinic. The fracture of his left mandibular angle, complete and composed, occurred during chewing. The second patient was a 32-year-old Caucasian man. He had undergone surgical removal of a 3.8, mesioangular variety, class II-B third molar 22 days before his admission. The fracture, which occurred during mastication, was studied by computed tomography that showed reparative tissue in the fracture site. The third patient was a 36-year-old Caucasian man who had undergone surgical removal of a 3.8, vertical variety, class II-C third molar 25 days before the observation. In this case the fracture of his mandibular angle was oblique (unfavorable), complete and composed. The fracture had occurred during chewing. We studied the fracture by optical projection tomography and computed tomography. All of the surgical removals of the 3.8 third molars, performed by the patients’ dentists who had more than 10 years of experience, were difficult. We treated the fractures with open surgical reduction, internal fixation by titanium miniplates and intermaxillary elastic fixation removed after 6 weeks. Conclusions The literature indicates that the risk of pathological (late) fracture of the mandibular angle after third molar surgery for total inclusions (class II-III, type C) is twice that of partial inclusions due to the necessity of
Quantum-state reconstruction by maximizing likelihood and entropy.
Teo, Yong Siah; Zhu, Huangjun; Englert, Berthold-Georg; Řeháček, Jaroslav; Hradil, Zdeněk
2011-07-01
Quantum-state reconstruction on a finite number of copies of a quantum system with informationally incomplete measurements, as a rule, does not yield a unique result. We derive a reconstruction scheme where both the likelihood and the von Neumann entropy functionals are maximized in order to systematically select the most-likely estimator with the largest entropy, that is, the least-bias estimator, consistent with a given set of measurement data. This is equivalent to the joint consideration of our partial knowledge and ignorance about the ensemble to reconstruct its identity. An interesting structure of such estimators will also be explored. PMID:21797584
Mass versus molar doses, similarities and differences.
Chmielewska, A; Lamparczyk, H
2008-11-01
Generally, they are two systems expressing the amounts of active substance in a given drug product, i.e. mass and molar dose. Currently, the dose system based on the mass is widely used in which doses are expressed in grams or milligrams. On the other hand, the molar dose system is in direct relation to the number of molecules. Hence, the objective of this work was to compare both systems in order to find their advantages and disadvantages. Active substances belonging to the groups of antibiotics, nootropic agents, beta-blockers, vitamins, GABA-analog, COX-2 inhibitors, calcium channel antagonists, benzodiazepine receptor agonists, lipid-modifying agents (fibrates), non-steroidal anti-inflammatory drugs (profens), estrogens, neuroleptics, analgesics and benzodiazepines were considered. Moreover, products containing two active substances were also taken into account. These are mixtures of hydrochlorothiazide with active substances influencing the renin-angiotensin system and combined oral contraceptives. For each active substance, belonging to the groups mentioned above molar doses were calculated from mass doses and molar mass. Hence, groups of drugs with a single active substance, drugs with similar pharmacological activities, pharmaceutical alternatives, and drugs with a single active ingredient manufactured in different doses were compared in order to find which dose system describes more adequately differences between and within the groups mentioned above. Comparisons were supported by a number of equations, which theoretically justify the data, and relationships derived from calculations. PMID:19069248
Selective alveolar corticotomy to intrude overerupted molars.
Oliveira, Dauro Douglas; de Oliveira, Bruno Franco; de Araújo Brito, Helio Henrique; de Souza, Margareth Maria Gomes; Medeiros, Paulo José
2008-06-01
Orthodontic intrusion of overerupted molars in adults is challenging for most clinicians. Efficient intrusion can be achieved by combining selective alveolar corticotomies with a modified full-coverage maxillary splint to reduce surgical risks, treatment time, and costs for both orthodontists and patients. PMID:18538256
Radiographic findings on 3rd molars removed in 20-year-old men.
Rajasuo, Ari; Peltola, Jaakko; Ventä, Irja; Murtomaa, Heikki
2003-10-01
In this study we assess radiographic findings characteristic of mandibular 3rd molars that had required either routine or surgical extraction. X-ray findings relating to acute pericoronitis were also examined. The material was collected by investigating patient records and rotational panoramic radiographs of 20-year-old Finnish male conscripts (n = 738) treated during military service because of 3rd-molar-related problems. The follicle around the crown of mandibular 3rd molars with acute pericoronitis was enlarged in 19% of cases and in 13% of chronic symptom-free pericoronitis cases (not statistically significant difference). Mandibular 3rd molars extracted surgically were more often mesially inclined than those extracted routinely (61% vs. 23%; P < 0.001), partially or totally intrabony impacted (92% vs. 66%; P < 0.001) and deep situated (on average 4.2 mm vs. 2.5 mm under the occlusal plane). Surgical extraction was also associated with the roots completely developed [92% vs. 84% of the teeth routinely extracted, odds ratio (OR) 2.6, 95% confidence interval (CI) 1.2-5.5] and with the absence of radiographic pericoronitis [around 27% vs. 39% of the teeth routinely extracted (OR 0.5, 95% CI 0.3-0.8)]. In 86% of cases the space between 2nd molar and ramus of the mandible was narrower than the 3rd molar extracted surgically, whereas this was 62% in routine extraction cases (P < 0.001). We conclude that there are some typical 3rd-molar findings in rotational panoramic radiographs that show a need for surgical extraction. PMID:14763776
The Diagnosis of Choriocarcinoma in Molar Pregnancies: A Revised Approach in Clinical Testing
Duffy, Lisa; Zhang, Liangtao; Sheath, Karen; Love, Donald R.; George, Alice M.
2015-01-01
Background Hydatidiform moles occur in approximately 1 in 1,500 pregnancies; however, early miscarriages or spontaneous abortions may not be correctly identified as molar pregnancies due to poor differentiation of chorionic villi. Methods The current clinical testing algorithm used for the detection of hydatidiform moles uses a combination of morphological analysis and p57 immunostaining followed by ploidy testing to establish a diagnosis of either a complete or partial molar pregnancy. We review here 198 referrals for fluorescence in situ hybridization (FISH) ploidy testing, where the initial diagnosis based on morphology is compared to the final diagnosis based on a combination of morphology, FISH and p57 immunohistochemical (IHC) staining. Results Approximately 40% of cases were determined to be genetically abnormal, but only 28.8% of cases were diagnosed as molar pregnancies. The underestimation of complete molar pregnancies and those with androgenetic inheritance was also found to be likely using conventional diagnostic methods, as atypical p57 staining was observed in approximately 10% of cases. Conclusions Our findings suggest that a revised approach to testing products of conception is necessary, with cases screened according to their clinical history in order to distinguish molar pregnancy referrals from hydropic pregnancies. PMID:26566410
Yamamoto, H; Iyori, H; Kanomi, R; Yao, K; Hieda, T
1990-01-01
Although composite resin has been used as an aesthetic restorative material, wear and fracture of the resin of fracture of the tooth structure are likely to occur when the size of the dental cavities are large. In addition to the lack of the aesthetic value, clinical results of prefabricated metal crown revealed several problems which were caused by the wear of the metal and the ill-adaptation of the cervical margin. In the present study, 50 devitalized deciduous molars were treated with composite resin onlays which were designed to cover the entire occlusal surface of the deciduous molar, and the clinical results were evaluated for a 6 month period. Additionally, for the purpose of simplification of the laboratory process for making resin onlays, ready-made occlusal shells were fabricated. The variety of the prepared shell size consisted of 7 sizes for the first deciduous molar, 9 sizes for the upper second deciduous molar and 10 sizes for the lower deciduous molar. The following results were obtained. 1) A partial resin fracture at the peripheral area of the mesio-buccal cuspid was found in five cases out of 50. 2) A glossy appearance on the surface of the onlay which was created by coated unfilled resin disappeared after 6 months of observation. 3) In relation to the resin onlay, when the antagonistic tooth was restored with prefabricated metal crowns, holes were made by attrition on all the crowns within a 3-4 month period.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2133972
The entropy in supernova explosions
Colgate, S.A.
1990-12-06
The explosion of a supernova forms because of the collapse to a neutron star. In addition an explosion requires that a region of relatively high entropy be in contact with the neutron star and persisting for a relatively protracted period of time. The high entropy region ensures that the maximum temperature in contact with the neutron star and in hydrostatic equilibrium is less than some maximum. This temperature must be low enough such that neutrino emission cooling is small, otherwise the equilibrium atmosphere will collapse adding a large accretion mass to the neutron star. A so-called normal explosion shock that must reverse the accretion flow corresponding to a typical stellar collapse must have sufficient strength or pressure to reverse this flow and eject the matter with 10{sup 51} ergs for a typical type II supernova. Surprisingly the matter behind such a shock wave has a relatively low entropy low enough such that neutrino cooling would be orders of magnitude faster than the expansion rate. The resulting accretion low would be inside the Bondi radius and result in free-fall accretion inside the expanding rarefaction wave. The accreted mass or reimplosion mass unless stopped by a high entropy bubble could than exceed that of bound neutron star models. In addition the explosion shock would be overtaken by the rarefaction wave and either disappear or at least weaken. Hence, a hot, high entropy bubble is required to support an equilibrium atmosphere in contact with a relatively cold neutron star. Subsequently during the expansion of the high entropy bubble that drives or pushes on the shocked matter, mixing of the matter of the high entropy bubble and lower entropy shock-ejected matter is ensured. The mixing is driven by the negative entropy gradient between the high entropy bubble accelerating the shocked matter and the lower entropy of the matter behind the shock.
Note on entropies for quantum dynamical systems.
Watanabe, Noboru
2016-05-28
Quantum entropy and channel are fundamental concepts for quantum information theory progressed recently in various directions. We will review the fundamental aspects of mean entropy and mean mutual entropy and calculate them for open system dynamics. PMID:27091165
Till Surgery do us Part: Unexpected Bilateral Kissing Molars
Anish, Narayanankutty; Vivek, Velayudhannair; Thomas, Sunila; Daniel, Vineet Alex; Thomas, Jincy; Ranimol, Prasanna
2015-01-01
The occurrence impacted teeth, single or multiple is very common. But, phenomenon of kissing molars is an extremely rare phenomenon. Mandibular third molars are the most common impacted teeth. Mandibular first or second molars does not share the same frequency of occurrence. But, there are rare cases in which the occlusal surfaces of impacted molars are united by the same follicular space and the roots point in the opposite direction, and are termed as kissing molars. Sometimes, these teeth will be associated with pathologies. This article reports a rare case of mandibular bilateral kissing molars. PMID:25918627
Saturating the holographic entropy bound
Bousso, Raphael; Freivogel, Ben; Leichenauer, Stefan
2010-10-15
The covariant entropy bound states that the entropy, S, of matter on a light sheet cannot exceed a quarter of its initial area, A, in Planck units. The gravitational entropy of black holes saturates this inequality. The entropy of matter systems, however, falls short of saturating the bound in known examples. This puzzling gap has led to speculation that a much stronger bound, S < or approx. A{sup 3/4}, may hold true. In this note, we exhibit light sheets whose entropy exceeds A{sup 3/4} by arbitrarily large factors. In open Friedmann-Robertson-Walker universes, such light sheets contain the entropy visible in the sky; in the limit of early curvature domination, the covariant bound can be saturated but not violated. As a corollary, we find that the maximum observable matter and radiation entropy in universes with positive (negative) cosmological constant is of order {Lambda}{sup -1} ({Lambda}{sup -2}), and not |{Lambda}|{sup -3/4} as had hitherto been believed. Our results strengthen the evidence for the covariant entropy bound, while showing that the stronger bound S < or approx. A{sup 3/4} is not universally valid. We conjecture that the stronger bound does hold for static, weakly gravitating systems.
Trajectory versus probability density entropy.
Bologna, M; Grigolini, P; Karagiorgis, M; Rosa, A
2001-07-01
We show that the widely accepted conviction that a connection can be established between the probability density entropy and the Kolmogorov-Sinai (KS) entropy is questionable. We adopt the definition of density entropy as a functional of a distribution density whose time evolution is determined by a transport equation, conceived as the only prescription to use for the calculation. Although the transport equation is built up for the purpose of affording a picture equivalent to that stemming from trajectory dynamics, no direct use of trajectory time evolution is allowed, once the transport equation is defined. With this definition in mind we prove that the detection of a time regime of increase of the density entropy with a rate identical to the KS entropy is possible only in a limited number of cases. The proposals made by some authors to establish a connection between the two entropies in general, violate our definition of density entropy and imply the concept of trajectory, which is foreign to that of density entropy. PMID:11461383
Trajectory versus probability density entropy
NASA Astrophysics Data System (ADS)
Bologna, Mauro; Grigolini, Paolo; Karagiorgis, Markos; Rosa, Angelo
2001-07-01
We show that the widely accepted conviction that a connection can be established between the probability density entropy and the Kolmogorov-Sinai (KS) entropy is questionable. We adopt the definition of density entropy as a functional of a distribution density whose time evolution is determined by a transport equation, conceived as the only prescription to use for the calculation. Although the transport equation is built up for the purpose of affording a picture equivalent to that stemming from trajectory dynamics, no direct use of trajectory time evolution is allowed, once the transport equation is defined. With this definition in mind we prove that the detection of a time regime of increase of the density entropy with a rate identical to the KS entropy is possible only in a limited number of cases. The proposals made by some authors to establish a connection between the two entropies in general, violate our definition of density entropy and imply the concept of trajectory, which is foreign to that of density entropy.
Approximate entropy of network parameters.
West, James; Lacasa, Lucas; Severini, Simone; Teschendorff, Andrew
2012-04-01
We study the notion of approximate entropy within the framework of network theory. Approximate entropy is an uncertainty measure originally proposed in the context of dynamical systems and time series. We first define a purely structural entropy obtained by computing the approximate entropy of the so-called slide sequence. This is a surrogate of the degree sequence and it is suggested by the frequency partition of a graph. We examine this quantity for standard scale-free and Erdös-Rényi networks. By using classical results of Pincus, we show that our entropy measure often converges with network size to a certain binary Shannon entropy. As a second step, with specific attention to networks generated by dynamical processes, we investigate approximate entropy of horizontal visibility graphs. Visibility graphs allow us to naturally associate with a network the notion of temporal correlations, therefore providing the measure a dynamical garment. We show that approximate entropy distinguishes visibility graphs generated by processes with different complexity. The result probes to a greater extent these networks for the study of dynamical systems. Applications to certain biological data arising in cancer genomics are finally considered in the light of both approaches. PMID:22680542
Approximate entropy of network parameters
NASA Astrophysics Data System (ADS)
West, James; Lacasa, Lucas; Severini, Simone; Teschendorff, Andrew
2012-04-01
We study the notion of approximate entropy within the framework of network theory. Approximate entropy is an uncertainty measure originally proposed in the context of dynamical systems and time series. We first define a purely structural entropy obtained by computing the approximate entropy of the so-called slide sequence. This is a surrogate of the degree sequence and it is suggested by the frequency partition of a graph. We examine this quantity for standard scale-free and Erdös-Rényi networks. By using classical results of Pincus, we show that our entropy measure often converges with network size to a certain binary Shannon entropy. As a second step, with specific attention to networks generated by dynamical processes, we investigate approximate entropy of horizontal visibility graphs. Visibility graphs allow us to naturally associate with a network the notion of temporal correlations, therefore providing the measure a dynamical garment. We show that approximate entropy distinguishes visibility graphs generated by processes with different complexity. The result probes to a greater extent these networks for the study of dynamical systems. Applications to certain biological data arising in cancer genomics are finally considered in the light of both approaches.
Entropy, Its Language, and Interpretation
NASA Astrophysics Data System (ADS)
Leff, Harvey S.
2007-12-01
The language of entropy is examined for consistency with its mathematics and physics, and for its efficacy as a guide to what entropy means. Do common descriptors such as disorder, missing information, and multiplicity help or hinder understanding? Can the language of entropy be helpful in cases where entropy is not well defined? We argue in favor of the descriptor spreading, which entails space, time, and energy in a fundamental way. This includes spreading of energy spatially during processes and temporal spreading over accessible microstates states in thermodynamic equilibrium. Various examples illustrate the value of the spreading metaphor. To provide further support for this metaphor’s utility, it is shown how a set of reasonable spreading properties can be used to derive the entropy function. A main conclusion is that it is appropriate to view entropy’s symbol S as shorthand for spreading.
Entropy exchange and entanglement in the Jaynes-Cummings model
NASA Astrophysics Data System (ADS)
Boukobza, E.; Tannor, D. J.
2005-06-01
The Jaynes-Cummings model (JCM) is the simplest fully quantum model that describes the interaction between light and matter. We extend a previous analysis by Phoenix and Knight [Ann. Phys. 186, 381 (1988)] of the JCM by considering mixed states of both the light and matter. We present examples of qualitatively different entropic correlations. In particular, we explore the regime of entropy exchange between light and matter, i.e., where the rate of change of the two are anticorrelated. This behavior contrasts with the case of pure light-matter states in which the rate of change of the two entropies are positively correlated and in fact identical. We give an analytical derivation of the anticorrelation phenomenon and discuss the regime of its validity. Finally, we show a strong correlation between the region of the Bloch sphere characterized by entropy exchange and that characterized by minimal entanglement as measured by the negative eigenvalues of the partially transposed density matrix.
NASA Astrophysics Data System (ADS)
Winter, Andreas
2016-03-01
We present a bouquet of continuity bounds for quantum entropies, falling broadly into two classes: first, a tight analysis of the Alicki-Fannes continuity bounds for the conditional von Neumann entropy, reaching almost the best possible form that depends only on the system dimension and the trace distance of the states. Almost the same proof can be used to derive similar continuity bounds for the relative entropy distance from a convex set of states or positive operators. As applications, we give new proofs, with tighter bounds, of the asymptotic continuity of the relative entropy of entanglement, E R , and its regularization {E_R^{∞}} , as well as of the entanglement of formation, E F . Using a novel "quantum coupling" of density operators, which may be of independent interest, we extend the latter to an asymptotic continuity bound for the regularized entanglement of formation, aka entanglement cost, {E_C=E_F^{∞}} . Second, we derive analogous continuity bounds for the von Neumann entropy and conditional entropy in infinite dimensional systems under an energy constraint, most importantly systems of multiple quantum harmonic oscillators. While without an energy bound the entropy is discontinuous, it is well-known to be continuous on states of bounded energy. However, a quantitative statement to that effect seems not to have been known. Here, under some regularity assumptions on the Hamiltonian, we find that, quite intuitively, the Gibbs entropy at the given energy roughly takes the role of the Hilbert space dimension in the finite-dimensional Fannes inequality.
Patients' anxieties with third molar surgery.
Earl, P
1994-10-01
There has been little study of patients' anxieties about third molar surgery despite its widespread practice. 105 patients were invited to complete questionnaires preoperatively to assess anxieties about the procedure and to assess how well it was explained. They were also asked post operatively to assess differences from expectations, accuracy of the preoperative explanation and which aspect would worry them most should the procedure be repeated. Patients generally found their worries as expected or even better. Few found events worse with only pain (12%) and paraesthesia (13%) of note. Although 88% of patients assessed pain as better than or as expected, 43% would fear it most if the procedure was repeated. Pain is the single most feared factor despite evidence that it is usually no worse than originally feared. Reassurance and adequate pain control are the most important factors to patients in third molar surgery, and this reassurance should start at operation booking rather than on admission. PMID:7999736
Removal of Deeply Impacted Mandibular Molars by Sagittal Split Osteotomy
Isler, Sabri Cemil
2016-01-01
Mandibular third molars are the most common impacted teeth. Mandibular first and second molars do not share the same frequency of occurrence. In rare cases the occlusal surfaces of impacted molars are united by the same follicular space and the roots pointing in opposite direction; these are called kissing molars. In some cases, a supernumerary fourth molar can be seen as unerupted and, in this case, such a supernumerary, deeply impacted fourth molar is seen neighboring kissing molars. The extraction of deeply impacted wisdom molars from the mandible may necessitate excessive bone removal and it causes complications such as damage to the inferior alveolar nerve and iatrogenic fractures of the mandible. This case report describes the use of the sagittal split osteotomy technique to avoid extensive bone removal and protect the inferior alveolar nerve during surgical extruction of multiple impacted teeth. PMID:27429810
Topological entanglement entropy.
Kitaev, Alexei; Preskill, John
2006-03-24
We formulate a universal characterization of the many-particle quantum entanglement in the ground state of a topologically ordered two-dimensional medium with a mass gap. We consider a disk in the plane, with a smooth boundary of length L, large compared to the correlation length. In the ground state, by tracing out all degrees of freedom in the exterior of the disk, we obtain a marginal density operator rho for the degrees of freedom in the interior. The von Neumann entropy of rho, a measure of the entanglement of the interior and exterior variables, has the form S(rho) = alphaL - gamma + ..., where the ellipsis represents terms that vanish in the limit L --> infinity. We show that - gamma is a universal constant characterizing a global feature of the entanglement in the ground state. Using topological quantum field theory methods, we derive a formula for gamma in terms of properties of the superselection sectors of the medium. PMID:16605802
Revisiting sample entropy analysis
NASA Astrophysics Data System (ADS)
Govindan, R. B.; Wilson, J. D.; Eswaran, H.; Lowery, C. L.; Preißl, H.
2007-03-01
We modify the definition of sample entropy (SaEn) by incorporating a time delay between the components of the block (from which the densities are estimated) and show that the modified method characterizes the complexity of the system better than the original version. We apply the modified SaEn to the standard deterministic systems and stochastic processes (uncorrelated and long range correlated (LRC) processes) and show that the underlying complexity of the system is better quantified by the modified method. We extend this analysis to the RR intervals of the normal and congestive heart failure (CHF) subjects (available via www.physionet.org) and show that there is a good degree of separation between the two groups.
Enzyme Molar Fractions: A Powerful Tool for Understanding Enzyme Kinetics.
ERIC Educational Resources Information Center
Serra, Juan L.; And Others
1986-01-01
Deduces the relationship between reduced velocity and molar fractions for productive enzyme complexes; obtains the mathematical expression of molar fractions for an enzyme with two specific binding sites per molecule; and proposes a useful plot to follow the dependence of enzyme molar fractions with the concentration of one of its ligands. (JN)
Entanglement entropy converges to classical entropy around periodic orbits
NASA Astrophysics Data System (ADS)
Asplund, Curtis T.; Berenstein, David
2016-03-01
We consider oscillators evolving subject to a periodic driving force that dynamically entangles them, and argue that this gives the linearized evolution around periodic orbits in a general chaotic Hamiltonian dynamical system. We show that the entanglement entropy, after tracing over half of the oscillators, generically asymptotes to linear growth at a rate given by the sum of the positive Lyapunov exponents of the system. These exponents give a classical entropy growth rate, in the sense of Kolmogorov, Sinai and Pesin. We also calculate the dependence of this entropy on linear mixtures of the oscillator Hilbert-space factors, to investigate the dependence of the entanglement entropy on the choice of coarse graining. We find that for almost all choices the asymptotic growth rate is the same.
Entropy distance: New quantum phenomena
Weis, Stephan; Knauf, Andreas
2012-10-15
We study a curve of Gibbsian families of complex 3 Multiplication-Sign 3-matrices and point out new features, absent in commutative finite-dimensional algebras: a discontinuous maximum-entropy inference, a discontinuous entropy distance, and non-exposed faces of the mean value set. We analyze these problems from various aspects including convex geometry, topology, and information geometry. This research is motivated by a theory of infomax principles, where we contribute by computing first order optimality conditions of the entropy distance.
Gravitational entropy and global structure
NASA Astrophysics Data System (ADS)
Hawking, S. W.; Hunter, C. J.
1999-02-01
The underlying reason for the existence of gravitational entropy is traced to the impossibility of foliating topologically non-trivial Euclidean spacetimes with a time function to give a unitary Hamiltonian evolution. In d dimensions the entropy can be expressed in terms of the d-2 obstructions to foliation, bolts and Misner strings, by a universal formula. We illustrate with a number of examples including spaces with nut charge. In these cases, the entropy is not just a quarter the area of the bolt, as it is for black holes.
Fugazzotto, P A
1999-01-01
A technique is described for accomplishing both localized sinus augmentation and guided bone regeneration at the time of maxillary molar extraction. One hundred nine sites were treated in 92 patients. Of these, 102 procedures (94.0%) were successful and 7 (6.0%) were partially successful. Success was defined as the ability to ideally position an implant at least 10 mm in length and 4.8 mm in width without perforating the floor of the sinus or generating an implant fenestration or dehiscence. Partially successful procedures required an additional osteotome sinus lift at the time of implant placement. PMID:10453669
PONGCHAROEN, S; BULMER, J N; SEARLE, R F
2004-01-01
Complete hydatidiform moles are totally paternally derived and represent complete allografts that might be expected to provoke maternal immune rejection. Our previous and other studies have shown expression of Fas by increased numbers of activated decidual CD4+ T cells in both complete and partial molar pregnancy as well as increased FasL+ expression by molar trophoblasts compared with trophoblasts in normal pregnancies. As the Fas/FasL system represents a major apoptotic pathway that can play a role in immune privilege, the aim of this study was to investigate whether apoptosis of decidual immune cells, particularly T cells, could be responsible for maternal immune tolerance in molar pregnancy. Using terminal deoxynucleotidyl transferase (TdT)-mediated nick end-labelling (TUNEL), a significant increase in TUNEL+ cells was demonstrated in decidua associated with partial (P = 0·0052) and complete (P = 0·0096) hydatidiform mole compared with normal early pregnancy. Co-labelling immunoperoxidase studies showed that the TUNEL+ cells in both normal and molar pregnancies were not activated CD45RO+ immune cells, CD3+ T cells, CD56+ uterine natural killer (NK) cells or CD14+ CD68+ macrophages. Double immunohistochemical labelling with antiactive caspase-3 and leucocyte markers confirmed the lack of leucocyte apoptosis. Double immunostaining with anticytokeratin to detect trophoblast and M30 CytoDeath, which detects a neoepitope of cytokeratin 18 revealed after caspase-mediated cleavage, revealed apoptotic extravillous trophoblast cells within decidual tissue. We conclude that there is no evidence that apoptosis of decidual leucocytes plays a role in maintaining maternal tolerance in either normal or molar pregnancy. PMID:15498045
Holographic entropy increases in quadratic curvature gravity
NASA Astrophysics Data System (ADS)
Bhattacharjee, Srijit; Sarkar, Sudipta; Wall, Aron C.
2015-09-01
Standard methods for calculating the black hole entropy beyond general relativity are ambiguous when the horizon is nonstationary. We fix these ambiguities in all quadratic curvature gravity theories, by demanding that the entropy be increasing at every time, for linear perturbations to a stationary black hole. Our result matches with the entropy formula found previously in holographic entanglement entropy calculations. We explicitly calculate the entropy increase for Vaidya-like solutions in Ricci-tensor gravity to show that (unlike the Wald entropy) the holographic entropy obeys a second law.
Molar tubal ectopic pregnancy: Report of two cases.
Mbarki, Chaouki; Jerbi, Emna; Hsayaoui, Najeh; Zouari, Fatma; Ben Brahim, Ehsen; Oueslati, Hedhili
2015-06-01
Ectopic molar pregnancy is a rare occurrence and consequently not often considered as a diagnostic possibility. We report two cases of molar hydatidiform tubal pregnancy. Diagnosis of ectopic pregnancy was confirmed on clinical biological and sonographic investigations. Diagnosis of molar pregnancy was done on histopathology. The clinical course was favorable for both patients. Although rare, molar changes can occur at any site of an ectopic pregnancy. Clinical diagnosis of a molar pregnancy is difficult but histopathology is the gold standard for diagnosis. PMID:25510265
Entropy generation effects in a hydromagnetic free convection flow past a vertical oscillating plate
NASA Astrophysics Data System (ADS)
Butt, A. S.; Ali, A.
2016-01-01
An unsteady free convective flow of a viscous fluid past an oscillating plate is considered, and the effects of entropy generation are investigated. The governing partial differential equations are normalized by using suitable transformations, and an exact solution of the problem is obtained by using the Laplace transformation technique. The expressions for the velocity and temperature are then used to compute the skin friction, Nusselt number, local entropy generation number, and Bejan number.
Quantum jumps and entropy production
Breuer, Heinz-Peter
2003-09-01
The irreversible motion of an open quantum system can be represented through an ensemble of state vectors following a stochastic dynamics with piecewise deterministic paths. It is shown that this representation leads to a natural definition of the rate of quantum entropy production. The entropy production rate is expressed in terms of the von Neumann entropy and of the numbers of quantum jumps corresponding to the various decay channels of the open system. The proof of the positivity and of the convexity of the entropy production rate is given. Monte Carlo simulations of the stochastic dynamics of a driven qubit and of a {lambda} configuration involving a dark state are performed in order to illustrate the general theory.
Entropy of quantum states: Ambiguities
NASA Astrophysics Data System (ADS)
Balachandran, A. P.; de Queiroz, A. R.; Vaidya, S.
2013-10-01
The von Neumann entropy of a generic quantum state is not unique unless the state can be uniquely decomposed as a sum of extremal or pure states. As pointed out to us by Sorkin, this happens if the GNS representation (of the algebra of observables in some quantum state) is reducible, and some representations in the decomposition occur with non-trivial degeneracy. This non-unique entropy can occur at zero temperature. We will argue elsewhere in detail that the degeneracies in the GNS representation can be interpreted as an emergent broken gauge symmetry, and play an important role in the analysis of emergent entropy due to non-Abelian anomalies. Finally, we establish the analogue of an H -theorem for this entropy by showing that its evolution is Markovian, determined by a stochastic matrix.
Scaling behaviour of entropy estimates
NASA Astrophysics Data System (ADS)
Schürmann, Thomas
2002-02-01
Entropy estimation of information sources is highly non-trivial for symbol sequences with strong long-range correlations. The rabbit sequence, related to the symbolic dynamics of the nonlinear circle map at the critical point as well as the logistic map at the Feigenbaum point, is known to produce long memory tails. For both dynamical systems the scaling behaviour of the block entropy of order n has been shown to increase ∝log n. In contrast to such probabilistic concepts, we investigate the scaling behaviour of certain non-probabilistic entropy estimation schemes suggested by Lempel and Ziv (LZ) in the context of algorithmic complexity and data compression. These are applied in a sequential manner with the scaling variable being the length N of the sequence. We determine the scaling law for the LZ entropy estimate applied to the case of the critical circle map and the logistic map at the Feigenbaum point in a binary partition.
An adaptable binary entropy coder
NASA Technical Reports Server (NTRS)
Kiely, A.; Klimesh, M.
2001-01-01
We present a novel entropy coding technique which is based on recursive interleaving of variable-to-variable length binary source codes. We discuss code design and performance estimation methods, as well as practical encoding and decoding algorithms.
NASA Astrophysics Data System (ADS)
Yashiki, Satoshi
2016-09-01
We analyze the controllability of interference phenomena between partially coherent fields by introducing the Wigner distribution function (WDF) and entropy, which is defined using the intensity matrix [H. Gamo, J. Opt. Soc. Am. 47, 976 (1957)]. The analytical derivation of the WDF and entropy is presented for a partially coherent imaging system consisting of two pinholes illuminated by a circular source. It is shown that the WDF, defined in the 4D space–spatial frequency region, and entropy can be useful tools to understand how one can freely and quantitatively control the interference when any optical components in the partially coherent imaging system are changed.
NASA Astrophysics Data System (ADS)
Le Losq, Charles; Neuville, Daniel R.
2016-04-01
this communication, it is shown that such link is possible. By expressing the residual entropy of the glass as the sum of partial molar entropies of tetrahedral SiO2 units, with known quantities from 29Si NMR spectroscopy, and of a semi-ideal mixing of Na and K, it is possible to model the variations of the configurational entropy with chemical composition. The model reproduces the variations of the viscosity of melts with a standard deviation of 0.2 log unit in the K2O-Na2O-SiO2 ternary system, for SiO2 contents between 60 and 100 mol% SiO2. Such model opens new pathways in order to build semi-empirical viscosity models that provide structural, thermodynamic and rheological information about silicate melts.
Boundary effects in entanglement entropy
NASA Astrophysics Data System (ADS)
Berthiere, Clément; Solodukhin, Sergey N.
2016-09-01
We present a number of explicit calculations of Renyi and entanglement entropies in situations where the entangling surface intersects the boundary of d-dimensional Minkowski spacetime. When the boundary is a single plane we compute the contribution to the entropy due to this intersection, first in the case of the Neumann and Dirichlet boundary conditions, and then in the case of a generic Robin type boundary condition. The flow in the boundary coupling between the Neumann and Dirichlet phases is analyzed in arbitrary dimension d and is shown to be monotonic, the peculiarity of d = 3 case is noted. We argue that the translational symmetry along the entangling surface is broken due the presence of the boundary which reveals that the entanglement is not homogeneous. In order to characterize this quantitatively, we introduce a density of entanglement entropy and compute it explicitly. This quantity clearly indicates that the entanglement is maximal near the boundary. We then consider the situation where the boundary is composed of two parallel planes at a finite separation and compute the entanglement entropy as well as its density in this case. The complete contribution to entanglement entropy due to the boundaries is shown not to depend on the distance between the planes and is simply twice the entropy in the case of single plane boundary. Additionally, we find how the area law, the part in the entropy proportional to the area of entire entangling surface, depends on the size of the separation between the two boundaries. The latter is shown to appear in the UV finite part of the entropy.
State Ensembles and Quantum Entropy
NASA Astrophysics Data System (ADS)
Kak, Subhash
2016-06-01
This paper considers quantum communication involving an ensemble of states. Apart from the von Neumann entropy, it considers other measures one of which may be useful in obtaining information about an unknown pure state and another that may be useful in quantum games. It is shown that under certain conditions in a two-party quantum game, the receiver of the states can increase the entropy by adding another pure state.
Periodontal changes following molar intrusion with miniscrews
Bayani, Shahin; Heravi, Farzin; Radvar, Mehrdad; Anbiaee, Najmeh; Madani, Azam Sadat
2015-01-01
Background: With the introduction of skeletal anchorage system, recently it is possible to successfully intrude molar teeth. On the other hand, there have been concerns about periodontal changes associated with intrusion and there are few studies on this topic, especially for posterior teeth. Materials and Methods: Ten female patients were enrolled in this study. Maxillary molar intrusion was achieved by inserting two miniscrews and a 17 × 25 titanium molybdenum alloy spring. Crestal height changes were evaluated at three intervals including: Baseline (T0), end of active treatment (T1) and 6 months after retention (T2). Other variables including probing depth, gingival recession, attachment level and bleeding on probing were evaluated by clinical measurements in the three above mentioned intervals. One-sample Kolmogrov-Smirnov test ascertained the normality of the data. For all patients, the changes in tooth position and crestal height were evaluated using one-sample t-test. (P < 0.05) Results: Supra-erupted molars were successfully intruded a mean of 2.1 ± 0.9 mm during active treatment (T0-T1). A mean bone resorption of 0.9 ± 0.9 mm in mesial crest and 1 ± 0.8 mm in distal crest had occurred in total treatment (T0-T2). A mean of 0.6 ± 1.4 mm bone was deposited on mesial crest during the retention period (T1-T2) following tooth relapse. On average, 0.8 ± 0.4 mm attachment gain was obtained. Gingival margin coronalized a mean of 0.8 ± 0.6 mm throughout the entire treatment. Probing depth showed no significant change during treatment. Conclusion: Within the limitations of this study, these results suggest that not only periodontal status was not negatively affected by intrusion, but also there were signs of periodontal improvement including attachment gain and shortening of clinical crown height. PMID:26288629
Configurational entropy in thermoset polymers.
Jensen, Martin; Jakobsen, Johnny
2015-04-30
The configurational entropy describes the atomic structure in a material and controls several material properties. Often the configurational entropy is determined through dielectric or calorimetric measurements where the difference between the entropies of the crystalline state and the amorphous state is determined. Many amorphous materials such as thermoset polymers have a high crystallization barrier, greatly limiting the applicability of the existing methods for determining the configurational entropy. In this work, a novel differential scanning calorimetry (DSC) method, based on measurement of the glass transition temperature at different heating rates, for determination of the configurational entropy is introduced. The theory behind the method has a universal character for amorphous materials, as it solely involves measurement of the glass transition temperature. The temperature dependency of the configurational entropy is determined for epoxy resins and PMMA (poly(methyl methacrylate)) to demonstrate the versatility of the method. On the basis of the findings of the introduced method, the influence of the degree of cross-linking and the chemical structure of the network is discussed. PMID:25844504
Holographic holes and differential entropy
NASA Astrophysics Data System (ADS)
Headrick, Matthew; Myers, Robert C.; Wien, Jason
2014-10-01
Recently it has been shown that the Bekenstein-Hawking entropy formula evaluated on certain closed surfaces in the bulk of a holographic spacetime has an interpretation as the differential entropy of a particular family of intervals (or strips) in the boundary theory [1, 2]. We first extend this construction to bulk surfaces which vary in time. We then give a general proof of the equality between the gravitational entropy and the differential entropy. This proof applies to a broad class of holographic backgrounds possessing a generalized planar symmetry and to certain classes of higher-curvature theories of gravity. To apply this theorem, one can begin with a bulk surface and determine the appropriate family of boundary intervals by considering extremal surfaces tangent to the given surface in the bulk. Alternatively, one can begin with a family of boundary intervals; as we show, the differential entropy then equals the gravitational entropy of a bulk surface that emerges from the intersection of the neighboring entanglement wedges, in a continuum limit.
NASA Technical Reports Server (NTRS)
Cheeseman, Peter; Stutz, John
2005-01-01
A long standing mystery in using Maximum Entropy (MaxEnt) is how to deal with constraints whose values are uncertain. This situation arises when constraint values are estimated from data, because of finite sample sizes. One approach to this problem, advocated by E.T. Jaynes [1], is to ignore this uncertainty, and treat the empirically observed values as exact. We refer to this as the classic MaxEnt approach. Classic MaxEnt gives point probabilities (subject to the given constraints), rather than probability densities. We develop an alternative approach that assumes that the uncertain constraint values are represented by a probability density {e.g: a Gaussian), and this uncertainty yields a MaxEnt posterior probability density. That is, the classic MaxEnt point probabilities are regarded as a multidimensional function of the given constraint values, and uncertainty on these values is transmitted through the MaxEnt function to give uncertainty over the MaXEnt probabilities. We illustrate this approach by explicitly calculating the generalized MaxEnt density for a simple but common case, then show how this can be extended numerically to the general case. This paper expands the generalized MaxEnt concept introduced in a previous paper [3].
Effect of restorative procedures on the strength of endodontically treated molars.
Linn, J; Messer, H H
1994-10-01
Endodontically treated molar teeth are considered susceptible to fracture because of loss of tooth bulk. This study evaluated the significance of retaining intact marginal ridges and selective cusp coverage in preserving tooth stiffness during restoration. Strain gauges were bonded to four cusps of 36 intact extracted human lower molars. Teeth were loaded mesially and distally in a closed-loop servohydraulic system to measure stiffness. Endodontic access was followed by mesio-occlusal or mesio-occluso-distal preparation. Teeth were restored with either amalgam (no overlay), amalgam overlay, or gold overlay with partial or complete cusp coverage. Relative stiffness was calculated for all test conditions. Preserving a marginal ridge in molars did not fully conserve the strength of adjacent cusps; selective cusp coverage reinforced only the capped cusps; full occlusal coverage with gold or amalgam strengthened all cusps, but gold did so more consistently. It is more important to cover cusps than to preserve tooth structure (including a marginal ridge) in endodontically treated molar teeth. PMID:7714419
Guo, Jing-Heng; Zhang, Xiao-Shan; Vogt, Rolf D; Xiao, Jin-Song; Zhao, Da-Wei; Xiang, Ren-Jun; Luo, Jia-Hai
2007-06-01
Al(i)/(Ca + Mg) molar ratio in soil water has been used as an indicator to the effects of acid deposition on terrestrial ecosystems. However, the main factors controlling this ratio have not been well documented in southern and southwestern China. In this study, we presented the variation in inorganic aluminum (Al(i)) and Al(i)/(Ca + Mg) molar ratio in different sites and soil horizons based on two to three years monitoring data, and evaluated the main factors controlling Al(i)/(Ca + Mg) molar ratio using principle component analysis (PCA) and partial least square (PLS) regression. Monitoring data showed although Al(i)/(Ca + Mg) molar ratios in most soil water were lower than assumed critical 1.0, higher molar ratios were found in some soil water at TSP and LXH site. Besides acid loading, both soil properties and soil water chemistry affected the value of Al(i)/(Ca + Mg) molar ratio in soil water. Partial least square (PLS) indicated that they had different relative importance in different soil horizons. In A-horizon, soil aluminum saturation (AlS) had higher influence on Al(i)/(Ca + Mg) molar ratio than soil water chemistry did; higher soil aluminum saturation (AlS) led to higher Al(i)/(Ca + Mg) molar ratio in soil water. In the deeper horizons (i.e., B(1)-, B(2)- and BC-horizon), inorganic aluminum (Al(i)) in soil water had more and more important role in regulating Al(i)/(Ca + Mg) molar ratio. On regional scale, soil aluminum saturation (AlS) as well as cation exchange capacity (CEC) was the dominant factor controlling Al(i)/(Ca + Mg) molar ratio. This should be paid enough attention on when making regional acid rain control policy in China. PMID:17057971
Partial hydatidiform mole: ultrasonographic features.
Woo, J S; Hsu, C; Fung, L L; Ma, H K
1983-05-01
Four patients with partial hyatidiform mole managed at the Queen Mary Hospital, Hong Kong, are described. The diagnosis of blighted ovum or missed abortion was made on the sonographic findings prior to suction evacuation. The dominant features in these cases consisted of a relatively large central transonic area bearing the appearance of an empty gestational sac and surrounded by a thick rim of low-level placenta-like echoes; in contrast with the case of the blighted ovum, a well-defined echogenic sac wall is absent. In another 9 patients with molar pregnancy managed during the same period, the more typical 'snow-storm' vesicular appearance was present. It was concluded that the anembryonic appearance described should alert the sonologist and clinician to the possible diagnosis of partial hydatitiform mole. The evacuated material from the uterine cavity should be examined morphologically and if possible cytogenetically. PMID:6578773
2011-01-01
Introduction About 3% of people will be diagnosed with epilepsy during their lifetime, but about 70% of people with epilepsy eventually go into remission. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of starting antiepileptic drug treatment following a single seizure? What are the effects of drug monotherapy in people with partial epilepsy? What are the effects of additional drug treatments in people with drug-resistant partial epilepsy? What is the risk of relapse in people in remission when withdrawing antiepileptic drugs? What are the effects of behavioural and psychological treatments for people with epilepsy? What are the effects of surgery in people with drug-resistant temporal lobe epilepsy? We searched: Medline, Embase, The Cochrane Library, and other important databases up to July 2009 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 83 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: antiepileptic drugs after a single seizure; monotherapy for partial epilepsy using carbamazepine, gabapentin, lamotrigine, levetiracetam, phenobarbital, phenytoin, sodium valproate, or topiramate; addition of second-line drugs for drug-resistant partial epilepsy (allopurinol, eslicarbazepine, gabapentin, lacosamide, lamotrigine, levetiracetam, losigamone, oxcarbazepine, retigabine, tiagabine, topiramate, vigabatrin, or zonisamide); antiepileptic drug withdrawal for people with partial or
Mechanics analysis of molar tooth splitting.
Barani, Amir; Chai, Herzl; Lawn, Brian R; Bush, Mark B
2015-03-01
A model for the splitting of teeth from wedge loading of molar cusps from a round indenting object is presented. The model is developed in two parts: first, a simple 2D fracture mechanics configuration with the wedged tooth simulated by a compact tension specimen; second, a full 3D numerical analysis using extended finite element modeling (XFEM) with an embedded crack. The result is an explicit equation for splitting load in terms of indenter radius and key tooth dimensions. Fracture experiments on extracted human molars loaded axially with metal spheres are used to quantify the splitting forces and thence to validate the model. The XFEM calculations enable the complex crack propagation, initially in the enamel coat and subsequently in the interior dentin, to be followed incrementally with increasing load. The fracture evolution is shown to be stable prior to failure, so that dentin toughness, not strength, is the controlling material parameter. Critical conditions under which tooth splitting in biological and dental settings are likely to be met, however rare, are considered. PMID:25584989
Clinical significance of computed tomography assessment for third molar surgery.
Nakamori, Kenji; Tomihara, Kei; Noguchi, Makoto
2014-07-28
Surgical extraction of the third molar is the most commonly performed surgical procedure in the clinical practice of oral surgery. Third molar surgery is warranted when there is inadequate space for eruption, malpositioning, or risk for cyst or odontogenic tumor formation. Preoperative assessment should include a detailed morphologic analysis of the third molar and its relationship to adjacent structures and surrounding tissues. Due to developments in medical engineering technology, computed tomography (CT) now plays a critical role in providing the clear images required for adequate assessment prior to third molar surgery. Removal of the maxillary third molar is associated with a risk for maxillary sinus perforation, whereas removal of the mandibular third molar can put patients at risk for a neurosensory deficit from damage to the lingual nerve or inferior alveolar nerve. Multiple factors, including demographic, anatomic, and treatment-related factors, influence the incidence of nerve injury during or following removal of the third molar. CT assessment of the third molar prior to surgery can identify some of these risk factors, such as the absence of cortication between the mandibular third molar and the inferior alveolar canal, prior to surgery to reduce the risk for nerve damage. This topic highlight presents an overview of the clinical significance of CT assessment in third molar surgery. PMID:25071882
Clinical significance of computed tomography assessment for third molar surgery
Nakamori, Kenji; Tomihara, Kei; Noguchi, Makoto
2014-01-01
Surgical extraction of the third molar is the most commonly performed surgical procedure in the clinical practice of oral surgery. Third molar surgery is warranted when there is inadequate space for eruption, malpositioning, or risk for cyst or odontogenic tumor formation. Preoperative assessment should include a detailed morphologic analysis of the third molar and its relationship to adjacent structures and surrounding tissues. Due to developments in medical engineering technology, computed tomography (CT) now plays a critical role in providing the clear images required for adequate assessment prior to third molar surgery. Removal of the maxillary third molar is associated with a risk for maxillary sinus perforation, whereas removal of the mandibular third molar can put patients at risk for a neurosensory deficit from damage to the lingual nerve or inferior alveolar nerve. Multiple factors, including demographic, anatomic, and treatment-related factors, influence the incidence of nerve injury during or following removal of the third molar. CT assessment of the third molar prior to surgery can identify some of these risk factors, such as the absence of cortication between the mandibular third molar and the inferior alveolar canal, prior to surgery to reduce the risk for nerve damage. This topic highlight presents an overview of the clinical significance of CT assessment in third molar surgery. PMID:25071882
Positional changes of the third molar in orthodontically treated patients
Mihai, AM; Lulache, IR; Grigore, R; Sanabil, AS; Boiangiu, S; Ionescu, E
2013-01-01
Objective and Rationale. Over the years, the effects of the third molars eruption on the dental arches have been studied extensively. Still, literature provides less data regarding the effects of the orthodontic treatment on the third molars position. The aim of our study was to assess the positional changes of the third molars relative to the occlusal plane and to the second molar long axis, changes occurred during orthodontic treatment performed with or without premolar extractions. Method. This study included 20 orthodontic treated patients: 10 of them with premolar extractions and 10 without premolar extractions. The pretreatment and post treatment panoramic radiographs were analyzed, and the angles between the third molar long axis and the occlusal plane and between the long axis of the third molar and the long axis of the second molar were measured. Results. Changes in third molar position, from pretreatment to post treatment, for the two groups of patients were evaluated by using the Student’s t-test. The results of the statistical analysis revealed an improvement in third molars position, the best results were seen in the lower third molars, in the group of patients treated with premolar extractions. PMID:23904878
Relative Entropy and Squashed Entanglement
NASA Astrophysics Data System (ADS)
Li, Ke; Winter, Andreas
2014-02-01
We are interested in the properties and relations of entanglement measures. Especially, we focus on the squashed entanglement and relative entropy of entanglement, as well as their analogues and variants. Our first result is a monogamy-like inequality involving the relative entropy of entanglement and its one-way LOCC variant. The proof is accomplished by exploring the properties of relative entropy in the context of hypothesis testing via one-way LOCC operations, and by making use of an argument resembling that by Piani on the faithfulness of regularized relative entropy of entanglement. Following this, we obtain a commensurate and faithful lower bound for squashed entanglement, in the form of one-way LOCC relative entropy of entanglement. This gives a strengthening to the strong subadditivity of von Neumann entropy. Our result improves the trace-distance-type bound derived in Brandão et al. (Commun Math Phys, 306:805-830, 2011), where faithfulness of squashed entanglement was first proved. Applying Pinsker's inequality, we are able to recover the trace-distance-type bound, even with slightly better constant factor. However, the main improvement is that our new lower bound can be much larger than the old one and it is almost a genuine entanglement measure. We evaluate exactly the relative entropy of entanglement under various restricted measurement classes, for maximally entangled states. Then, by proving asymptotic continuity, we extend the exact evaluation to their regularized versions for all pure states. Finally, we consider comparisons and separations between some important entanglement measures and obtain several new results on these, too.
Histopathology of the pulp of primary molars with active and arrested dentinal caries.
Di Nicolo, R; Guedes-Pinto, A C; Carvalho, Y R
2000-01-01
The purpose of this study was to compare the histological appearance of the pulp of human primary molars with active and arrested lesions. The sample consisted of 36 primary molars (18 with active lesions and 18 with arrested lesions) extracted from 35 children between 5 to 9 years of age. The histological diagnosis was classified in normal pulp, transitional stage, partial pulpitis, total pulpitis and total necrosis, and then subdivided in three subgroups: treatable, untreatable and questionable. Results showed that normal pulp or transitional stage (treatable category) was diagnosed in 50% of teeth with arrested lesions, compared to 11.1% of teeth with active lesions. Partial pulpitis (questionable category) was present in 38.8% with arrested lesions compared to 22.2% with active lesions. Total pulpitis and total necrosis (untreatable category) was diagnosed in 11.2% with arrested lesions compared to 66.7% with active lesions. The observed frequencies of histological categories between both groups were statistically significant (P < 0.05). Histologically, pulp reaction under active and arrested lesions in primary molars revealed the formation of a basophilic calcio-traumatic line at the junction of the primary and reparative dentin, formation of reparative dentin and a regular odontoblastic layer in 60% of the cases. Results indicated that the type of lesion (active or arrested) is a good indicator of the histological status of the pulp. PMID:11314352
Laurito, Domenica; Lollobrigida, Marco; Graziani, Filippo; Guerra, Fabrizio; Vestri, Annarita; De Biase, Alberto
2016-05-01
The aim of this study was to compare a transposed with a repositioned flap by assessing the periodontal effects on the second molar and primary healing after extraction of partially impacted lower third molars. A total of 24 patients requiring partially impacted mandibular wisdom tooth removal were enrolled in the study. The test group (n = 12) underwent a transposed flap procedure, whereas the control group (n = 12) underwent a repositioned flap procedure. Plaque index, probing depth, bleeding on probing, and width of keratinized tissue were recorded the day of surgery (T1) and after 60 days (T4). Wound dehiscence was assessed on the mesio-distal and bucco-lingual directions at days 2 (T2), 7 (T3), and T4. No significant differences have been observed in the periodontal parameters between the groups at T1 and T4 (P > 0.05). Similarly, no difference was found at T2, T3, and T4 in wound dehiscence incidence (P > 0.05). To date, no data exists on the use of transposed flaps in third molar surgery; thus a comparison of results cannot be done. Further studies with larger population are needed to investigate the potential advantages of this type of flap. PMID:27054424
Relative entropies in conformal field theory.
Lashkari, Nima
2014-08-01
Relative entropy is a measure of distinguishability for quantum states, and it plays a central role in quantum information theory. The family of Renyi entropies generalizes to Renyi relative entropies that include, as special cases, most entropy measures used in quantum information theory. We construct a Euclidean path-integral approach to Renyi relative entropies in conformal field theory, then compute the fidelity and the relative entropy of states in one spatial dimension at zero and finite temperature using a replica trick. In contrast to the entanglement entropy, the relative entropy is free of ultraviolet divergences, and is obtained as a limit of certain correlation functions. The relative entropy of two states provides an upper bound on their trace distance. PMID:25126908
Photosynthesis and negative entropy production.
Jennings, Robert C; Engelmann, Enrico; Garlaschi, Flavio; Casazza, Anna Paola; Zucchelli, Giuseppe
2005-09-30
The widely held view that the maximum efficiency of a photosynthetic pigment system is given by the Carnot cycle expression (1-T/Tr) for energy transfer from a hot bath (radiation at temperature Tr) to a cold bath (pigment system at temperature T) is critically examined and demonstrated to be inaccurate when the entropy changes associated with the microscopic process of photon absorption and photochemistry at the level of single photosystems are considered. This is because entropy losses due to excited state generation and relaxation are extremely small (DeltaS < T/Tr) and are essentially associated with the absorption-fluorescence Stokes shift. Total entropy changes associated with primary photochemistry for single photosystems are shown to depend critically on the thermodynamic efficiency of the process. This principle is applied to the case of primary photochemistry of the isolated core of higher plant photosystem I and photosystem II, which are demonstrated to have maximal thermodynamic efficiencies of xi > 0.98 and xi > 0.92 respectively, and which, in principle, function with negative entropy production. It is demonstrated that for the case of xi > (1-T/Tr) entropy production is always negative and only becomes positive when xi < (1-T/Tr). PMID:16139784
Intrusion of overerupted molars by corticotomy and orthodontic skeletal anchorage.
Moon, Cheol-Hyun; Wee, Jin-Uk; Lee, Hyun-Sun
2007-11-01
This article describes the orthodontic treatment of a 26-year-old female patient with overerupted left maxillary molar teeth. Her chief complaint was that the maxillary left first and the second molar intruded into the space required for the mandibular left first and the second molars, preventing prosthodontic treatment. The authors performed a corticotomy and used orthodontic skeletal anchorage with a miniplate and orthodontic miniscrews with a head modified to provide a specially designed hook. With this approach, they were able to achieve a sufficient amount of molar intrusion without discomfort, root resorption, or extrusion of the adjacent teeth. The first molar was intruded 3.0 mm and second molar was intruded 3.5 mm during 2 months of treatment. These results have been maintained for 11 months. PMID:18004918
Autotransplantation of Mandibular Third Molar: A Case Report
Ravi kumar, Pabbati; Jyothi, Mandava; Sirisha, Kantheti; Racca, Khushboo; Uma, Chalasani
2012-01-01
Autogenous transplantation is a feasible, fast, and economical option for the treatment of nonsalvageable teeth when a suitable donor tooth is available. This paper presents successful autotransplantation of a mature mandibular left third molar (38) without anatomical variances is used to replace a mandibular left second molar (37). The mandibular second molar was nonrestorable due to extensive root caries and resorption of distal root. After extraction of mandibular second and third molars, root canal therapy was done for the third molar extraorally, and the tooth was reimplanted into the extracted socket of second molar site. After one year, clinical and radiographic examination revealed satisfactory outcome with no signs or symptoms suggestive of pathology. In selected cases, autogenous tooth transplantation, even after complete root formation of the donor tooth, may be considered as a practical treatment alternative to conventional prosthetic rehabilitation or implant treatment. PMID:23346422
Molar mass distribution and solubility modeling of asphaltenes
Yarranton, H.W.; Masliyah, J.H.
1996-12-01
Attempts to model asphaltene solubility with Scatchard-Hildebrand theory were hampered by uncertainty in molar volume and solubility parameter distribution within the asphaltenes. By considering asphaltenes as a series of polyaromatic hydrocarbons with randomly distributed associated functional groups, molar volume and solubility parameter distributions are calculated from experimental measurements of molar mass and density. The molar mass distribution of Athabasca asphaltenes is determined from interfacial tension and vapor pressure osmometry measurements together with plasma desorption mass spectrometry determinations from the literature. Asphaltene densities are calculated indirectly from mixtures of known concentration of asphaltene in toluene. Asphaltene density, molar volume, and solubility parameter are correlated with molar mass. Solid-liquid equilibrium calculations based on solubility theory and the asphaltene property correlations successfully predict experimental data for both the precipitation point and the amount of precipitated asphaltenes in toluene-hexane solvent mixtures.
Conformational Entropy of Intrinsically Disordered Proteins from Amino Acid Triads
Baruah, Anupaul; Rani, Pooja; Biswas, Parbati
2015-01-01
This work quantitatively characterizes intrinsic disorder in proteins in terms of sequence composition and backbone conformational entropy. Analysis of the normalized relative composition of the amino acid triads highlights a distinct boundary between globular and disordered proteins. The conformational entropy is calculated from the dihedral angles of the middle amino acid in the amino acid triad for the conformational ensemble of the globular, partially and completely disordered proteins relative to the non-redundant database. Both Monte Carlo (MC) and Molecular Dynamics (MD) simulations are used to characterize the conformational ensemble of the representative proteins of each group. The results show that the globular proteins span approximately half of the allowed conformational states in the Ramachandran space, while the amino acid triads in disordered proteins sample the entire range of the allowed dihedral angle space following Flory’s isolated-pair hypothesis. Therefore, only the sequence information in terms of the relative amino acid triad composition may be sufficient to predict protein disorder and the backbone conformational entropy, even in the absence of well-defined structure. The predicted entropies are found to agree with those calculated using mutual information expansion and the histogram method. PMID:26138206
Traffic network and distribution of cars: Maximum-entropy approach
Das, N.C.; Chakrabarti, C.G.; Mazumder, S.K.
2000-02-01
An urban transport system plays a vital role in the modeling of the modern cosmopolis. A great emphasis is needed for the proper development of a transport system, particularly the traffic network and flow, to meet possible future demand. There are various mathematical models of traffic network and flow. The role of Shannon entropy in the modeling of traffic network and flow was stressed by Tomlin and Tomlin (1968) and Tomlin (1969). In the present note the authors study the role of maximum-entropy principle in the solution of an important problem associated with the traffic network flow. The maximum-entropy principle initiated by Jaynes is a powerful optimization technique of determining the distribution of a random system in the case of partial or incomplete information or data available about the system. This principle has now been broadened and extended and has found wide applications in different fields of science and technology. In the present note the authors show how the Jaynes' maximum-entropy principle, slightly modified, can be successfully applied in determining the flow or distribution of cars in different paths of a traffic network when incomplete information is available about the network.
Ab initio molar volumes and Gaussian radii.
Parsons, Drew F; Ninham, Barry W
2009-02-12
Ab initio molar volumes are calculated and used to derive radii for ions and neutral molecules using a spatially diffuse model of the electron distribution with Gaussian spread. The Gaussian radii obtained can be used for computation of nonelectrostatic ion-ion dispersion forces that underlie Hofmeister specific ion effects. Equivalent hard-sphere radii are also derived, and these are in reasonable agreement with crystalline ionic radii. The Born electrostatic self-energy is derived for a Gaussian model of the electronic charge distribution. It is shown that the ionic volumes used in electrostatic calculations of strongly hydrated cosmotropic ions ought best to include the first hydration shell. Ionic volumes for weakly hydrated chaotropic metal cations should exclude electron overlap (in electrostatic calculations). Spherical radii are calculated as well as nonisotropic ellipsoidal radii for nonspherical ions, via their nonisotropic static polarizability tensors. PMID:19140766
Molar extinction coefficients of some fatty acids
NASA Astrophysics Data System (ADS)
Sandhu, G. K.; Singh, Kulwant; Lark, B. S.; Gerward, L.
2002-10-01
The attenuation of gamma rays in some fatty acids, viz. formic acid (CH 2O 2), acetic acid (C 2H 4O 2), propionic acid (C 3H 6O 2), butyric acid (C 4H 8O 2), n-hexanoic acid (C 6H 12O 2), n-caprylic acid (C 8H 16O 2), lauric acid (C 12H 24O 2), myristic acid (C 14H 28O 2), palmitic acid (C 16H 32O 2), oleic acid (C 18H 34O 2) and stearic acid (C 18H 36O 2), has been measured at the photon energies 81, 356, 511, 662, 1173 and 1332 keV. Experimental values for the molar extinction coefficient, the effective atomic number and the electron density have been derived and compared with theoretical calculations. There is good agreement between experiment and theory.
Ordering Transformations in High-Entropy Alloys
NASA Astrophysics Data System (ADS)
Singh, Prashant; Johnson, Duane D.
The high-temperature disordered phase of multi-component alloys, including high-entropy alloys (HEA), generally must experience segregation or else passes through partially-ordered phases to reach the low-temperature, fully-ordered phase. Our first-principles KKR-CPA-based atomic short-range ordering (SRO) calculations (analyzed as concentration-waves) reveal the competing partially and fully ordered phases in HEA, and these phases can be then directly assessed from KKR-CPA results in larger unit cells [Phys. Rev. B 91, 224204 (2015)]. For AlxCrFeNiTi0.25, Liu et al. [J Alloys Compd 619, 610 (2015)] experimentally find FCC+BCC coexistence that changes to BCC with increasing Al (x from 0-to-1), which then exhibits a partially-ordered B2 at low temperatures. CALPHAD (Calculation of Phase Diagrams) predicts a region with L21+B2 coexistence. From KKR-CPA calculations, we find crossover versus Al from FCC+BCC coexistence to BCC, as observed, and regions for partially-order B2+L21 coexistence, as suggest by CALPHAD. Our combined first-principles KKR-CPA method provides a powerful approach in predicting SRO and completing long-range order in HEA and other complex alloys. Supported by the U.S. DOE, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. Work was performed at Ames Laboratory, which is operated by Iowa State University for the U.S. DOE under Contract #DE-AC02-07CH11358.
Fano resonances and entanglement entropy
Eisler, Viktor; Garmon, Savannah Sterling
2010-11-01
We study the entanglement in the ground state of a chain of free spinless fermions with a single side-coupled impurity. We find a logarithmic scaling for the entanglement entropy of a segment neighboring the impurity. The prefactor of the logarithm varies continuously and contains an impurity contribution described by a one-parameter function while the contribution of the unmodified boundary enters additively. The coefficient is found explicitly by pointing out similarities with other models involving interface defects. The proposed formula gives excellent agreement with our numerical data. If the segment has an open boundary, one finds a rapidly oscillating subleading term in the entropy that persists in the limit of large block sizes. The particle-number fluctuation inside the subsystem is also reported. It is analogous with the expression for the entropy scaling, however, with a simpler functional form for the coefficient.
Convex accelerated maximum entropy reconstruction
NASA Astrophysics Data System (ADS)
Worley, Bradley
2016-04-01
Maximum entropy (MaxEnt) spectral reconstruction methods provide a powerful framework for spectral estimation of nonuniformly sampled datasets. Many methods exist within this framework, usually defined based on the magnitude of a Lagrange multiplier in the MaxEnt objective function. An algorithm is presented here that utilizes accelerated first-order convex optimization techniques to rapidly and reliably reconstruct nonuniformly sampled NMR datasets using the principle of maximum entropy. This algorithm - called CAMERA for Convex Accelerated Maximum Entropy Reconstruction Algorithm - is a new approach to spectral reconstruction that exhibits fast, tunable convergence in both constant-aim and constant-lambda modes. A high-performance, open source NMR data processing tool is described that implements CAMERA, and brief comparisons to existing reconstruction methods are made on several example spectra.
Quantum geometry and gravitational entropy
Simon, Joan; Balasubramanian, Vijay; Czech, Bart Iomiej; Larjo, Klaus; Marolf, Donald; Simon, Joan
2007-05-29
Most quantum states have wavefunctions that are widely spread over the accessible Hilbert space and hence do not have a good description in terms of a single classical geometry. In order to understand when geometric descriptions are possible, we exploit the AdS/CFT correspondence in the half-BPS sector of asymptotically AdS_5 x S5 universes. In this sector we devise a"coarse-grained metric operator" whose eigenstates are well described by a single spacetime topology and geometry. We show that such half-BPS universes have a non-vanishing entropy if and only if the metric is singular, and that the entropy arises from coarse-graining the geometry. Finally, we use our entropy formula to find the most entropic spacetimes with fixed asymptotic moments beyond the global charges.
Gravitational entropy of cosmic expansion
NASA Astrophysics Data System (ADS)
Sussman , R. A.
2014-09-01
We apply a recent proposal to define ``gravitational entropy'' to the expansion of cosmic voids within the framework of non-perturbative General Relativity. By considering CDM void configurations compatible with basic observational constraints, we show that this entropy grows from post-inflationary conditions towards a final asymptotic value in a late time fully non-linear regime described by the Lemaître- Tolman-Bondi (LTB) dust models. A qualitatively analogous behavior occurs if we assume a positive cosmological constant consistent with a Λ-CDM background model. However, the Λ term introduces a significant suppression of entropy growth with the terminal equilibrium value reached at a much faster rate.
Construction of microcanonical entropy on thermodynamic pillars.
Campisi, Michele
2015-05-01
A question that is currently highly debated is whether the microcanonical entropy should be expressed as the logarithm of the phase volume (volume entropy, also known as the Gibbs entropy) or as the logarithm of the density of states (surface entropy, also known as the Boltzmann entropy). Rather than postulating them and investigating the consequence of each definition, as is customary, here we adopt a bottom-up approach and construct the entropy expression within the microcanonical formalism upon two fundamental thermodynamic pillars: (i) The second law of thermodynamics as formulated for quasistatic processes: δQ/T is an exact differential, and (ii) the law of ideal gases: PV=k(B)NT. The first pillar implies that entropy must be some function of the phase volume Ω. The second pillar singles out the logarithmic function among all possible functions. Hence the construction leads uniquely to the expression S=k(B)lnΩ, that is, the volume entropy. As a consequence any entropy expression other than that of Gibbs, e.g., the Boltzmann entropy, can lead to inconsistencies with the two thermodynamic pillars. We illustrate this with the prototypical example of a macroscopic collection of noninteracting spins in a magnetic field, and show that the Boltzmann entropy severely fails to predict the magnetization, even in the thermodynamic limit. The uniqueness of the Gibbs entropy, as well as the demonstrated potential harm of the Boltzmann entropy, provide compelling reasons for discarding the latter at once. PMID:26066159
Discrete state model and accurate estimation of loop entropy of RNA secondary structures.
Zhang, Jian; Lin, Ming; Chen, Rong; Wang, Wei; Liang, Jie
2008-03-28
Conformational entropy makes important contribution to the stability and folding of RNA molecule, but it is challenging to either measure or compute conformational entropy associated with long loops. We develop optimized discrete k-state models of RNA backbone based on known RNA structures for computing entropy of loops, which are modeled as self-avoiding walks. To estimate entropy of hairpin, bulge, internal loop, and multibranch loop of long length (up to 50), we develop an efficient sampling method based on the sequential Monte Carlo principle. Our method considers excluded volume effect. It is general and can be applied to calculating entropy of loops with longer length and arbitrary complexity. For loops of short length, our results are in good agreement with a recent theoretical model and experimental measurement. For long loops, our estimated entropy of hairpin loops is in excellent agreement with the Jacobson-Stockmayer extrapolation model. However, for bulge loops and more complex secondary structures such as internal and multibranch loops, we find that the Jacobson-Stockmayer extrapolation model has large errors. Based on estimated entropy, we have developed empirical formulae for accurate calculation of entropy of long loops in different secondary structures. Our study on the effect of asymmetric size of loops suggest that loop entropy of internal loops is largely determined by the total loop length, and is only marginally affected by the asymmetric size of the two loops. Our finding suggests that the significant asymmetric effects of loop length in internal loops measured by experiments are likely to be partially enthalpic. Our method can be applied to develop improved energy parameters important for studying RNA stability and folding, and for predicting RNA secondary and tertiary structures. The discrete model and the program used to calculate loop entropy can be downloaded at http://gila.bioengr.uic.edu/resources/RNA.html. PMID:18376982
Whose Entropy: A Maximal Entropy Analysis of Phosphorylation Signaling
NASA Astrophysics Data System (ADS)
Remacle, F.; Graeber, T. G.; Levine, R. D.
2011-07-01
High throughput experiments, characteristic of studies in systems biology, produce large output data sets often at different time points or under a variety of related conditions or for different patients. In several recent papers the data is modeled by using a distribution of maximal information-theoretic entropy. We pose the question: `whose entropy' meaning how do we select the variables whose distribution should be compared to that of maximal entropy. The point is that different choices can lead to different answers. Due to the technological advances that allow for the system-wide measurement of hundreds to thousands of events from biological samples, addressing this question is now part of the analysis of systems biology datasets. The analysis of the extent of phosphorylation in reference to the transformation potency of Bcr-Abl fusion oncogene mutants is used as a biological example. The approach taken seeks to use entropy not simply as a statistical measure of dispersion but as a physical, thermodynamic, state function. This highlights the dilemma of what are the variables that describe the state of the signaling network. Is what matters Boolean, spin-like, variables that specify whether a particular phosphorylation site is or is not actually phosphorylated. Or does the actual extent of phosphorylation matter. Last but not least is the possibility that in a signaling network some few specific phosphorylation sites are the key to the signal transduction even though these sites are not at any time abundantly phosphorylated in an absolute sense.
Entanglement entropy between real and virtual particles in ϕ4 quantum field theory
NASA Astrophysics Data System (ADS)
Ardenghi, Juan Sebastián
2015-04-01
The aim of this work is to compute the entanglement entropy of real and virtual particles by rewriting the generating functional of ϕ4 theory as a mean value between states and observables defined through the correlation functions. Then the von Neumann definition of entropy can be applied to these quantum states and in particular, for the partial traces taken over the internal or external degrees of freedom. This procedure can be done for each order in the perturbation expansion showing that the entanglement entropy for real and virtual particles behaves as ln (m0). In particular, entanglement entropy is computed at first order for the correlation function of two external points showing that mutual information is identical to the external entropy and that conditional entropies are negative for all the domain of m0. In turn, from the definition of the quantum states, it is possible to obtain general relations between total traces between different quantum states of a ϕr theory. Finally, discussion about the possibility of taking partial traces over external degrees of freedom is considered, which implies the introduction of some observables that measure space-time points where an interaction occurs.
Entropy Analyses of Four Familiar Processes.
ERIC Educational Resources Information Center
Craig, Norman C.
1988-01-01
Presents entropy analysis of four processes: a chemical reaction, a heat engine, the dissolution of a solid, and osmosis. Discusses entropy, the second law of thermodynamics, and the Gibbs free energy function. (MVL)
Bodh, Ranjeet; Kaushik, Aishvarya; Talwar, Sangeeta
2016-01-01
Autotransplantation can be a treatment option for tooth loss as an alternative to fixed or implant-supported prostheses. It has predictable results comparable to implants, with reported success rates often greater than 90%. In present case, buccally erupted matured third molar was autotransplanted in extraction socket of grossly carious mandibular second molar. The tooth was splinted for 1 week followed by root canal treatment. After 12 months follow up, tooth was in perfect state of function and aesthetic with healthy periapical and periodontal architecture. High success rate was found in immature tooth transplantation in previous case reports. This case report describes that even matured tooth can also be used as donor if atraumatic extraction is possible and endodontic treatment is well performed. PMID:27042593
Yadav, Sukhwant Singh; Bodh, Ranjeet; Kaushik, Aishvarya; Talwar, Sangeeta
2016-02-01
Autotransplantation can be a treatment option for tooth loss as an alternative to fixed or implant-supported prostheses. It has predictable results comparable to implants, with reported success rates often greater than 90%. In present case, buccally erupted matured third molar was autotransplanted in extraction socket of grossly carious mandibular second molar. The tooth was splinted for 1 week followed by root canal treatment. After 12 months follow up, tooth was in perfect state of function and aesthetic with healthy periapical and periodontal architecture. High success rate was found in immature tooth transplantation in previous case reports. This case report describes that even matured tooth can also be used as donor if atraumatic extraction is possible and endodontic treatment is well performed. PMID:27042593
Chhibber, Aditya; Upadhyay, Madhur
2015-07-01
Protraction of posterior teeth into edentulous spaces is a challenge. This report describes the treatment of a 19-year-old woman with missing mandibular first molars owing to caries. A fixed functional appliance was used for anchorage reinforcement during mandibular second molar protraction. Eight millimeters of bilateral protraction was done with bodily mesial movement of the molars and no lingual tipping of the incisors. PMID:26124039
Quantum Kaniadakis entropy under projective measurement
NASA Astrophysics Data System (ADS)
Ourabah, Kamel; Hamici-Bendimerad, Amel Hiba; Tribeche, Mouloud
2015-09-01
It is well known that the von Neumann entropy of a quantum state does not decrease with a projective measurement. This property holds for Tsallis and Rényi entropies as well. We show that the recently introduced quantum version of the Kaniadakis entropy preserves this property.
Quantum Kaniadakis entropy under projective measurement.
Ourabah, Kamel; Hamici-Bendimerad, Amel Hiba; Tribeche, Mouloud
2015-09-01
It is well known that the von Neumann entropy of a quantum state does not decrease with a projective measurement. This property holds for Tsallis and Rényi entropies as well. We show that the recently introduced quantum version of the Kaniadakis entropy preserves this property. PMID:26465433
Remainder terms for some quantum entropy inequalities
Carlen, Eric A.; Lieb, Elliott H.
2014-04-15
We consider three von Neumann entropy inequalities: subadditivity; Pinsker's inequality for relative entropy; and the monotonicity of relative entropy. For these we state conditions for equality, and we prove some new error bounds away from equality, including an improved version of Pinsker's inequality.