Science.gov

Sample records for partial wave decompositions

  1. Calculation of the Full Scattering Amplitude without Partial Wave Decomposition. 2; Inclusion of Exchange

    NASA Technical Reports Server (NTRS)

    Shertzer, Janine; Temkin, Aaron

    2004-01-01

    The development of a practical method of accurately calculating the full scattering amplitude, without making a partial wave decomposition is continued. The method is developed in the context of electron-hydrogen scattering, and here exchange is dealt with by considering e-H scattering in the static exchange approximation. The Schroedinger equation in this approximation can be simplified to a set of coupled integro-differential equations. The equations are solved numerically for the full scattering wave function. The scattering amplitude can most accurately be calculated from an integral expression for the amplitude; that integral can be formally simplified, and then evaluated using the numerically determined wave function. The results are essentially identical to converged partial wave results.

  2. Partial-wave decomposition of the finite-range effective tensor interaction

    NASA Astrophysics Data System (ADS)

    Davesne, D.; Becker, P.; Pastore, A.; Navarro, J.

    2016-06-01

    We perform a detailed analysis of the properties of the finite-range tensor term associated with the Gogny and M3Y effective interactions. In particular, by using a partial-wave decomposition of the equation of state of symmetric nuclear matter, we show how we can extract their tensor parameters directly from microscopic results based on bare nucleon-nucleon interactions. Furthermore, we show that the zero-range limit of both finite-range interactions has the form of the next-to-next-to-next-leading-order (N3LO) Skyrme pseudopotential, which thus constitutes a reliable approximation in the density range relevant for finite nuclei. Finally, we use Brueckner-Hartree-Fock results to fix the tensor parameters for the three effective interactions.

  3. Direct Calculation of the Scattering Amplitude Without Partial Wave Decomposition. III; Inclusion of Correlation Effects

    NASA Technical Reports Server (NTRS)

    Shertzer, Janine; Temkin, Aaron

    2007-01-01

    In the first two papers in this series, we developed a method for studying electron-hydrogen scattering that does not use partial wave analysis. We constructed an ansatz for the wave function in both the static and static exchange approximations and calculated the full scattering amplitude. Here we go beyond the static exchange approximation, and include correlation in the wave function via a modified polarized orbital. This correlation function provides a significant improvement over the static exchange approximation: the resultant elastic scattering amplitudes are in very good agreement with fully converged partial wave calculations for electron-hydrogen scattering. A fully variational modification of this approach is discussed in the conclusion of the article Popular summary of Direct calculation of the scattering amplitude without partial wave expansion. III ....." by J. Shertzer and A. Temkin. In this paper we continue the development of In this paper we continue the development of a new approach to the way in which researchers have traditionally used to calculate the scattering cross section of (low-energy) electrons from atoms. The basic mathematical problem is to solve the Schroedinger Equation (SE) corresponding the above physical process. Traditionally it was always the case that the SE was reduced to a sequence of one-dimensional (ordinary) differential equations - called partial waves which were solved and from the solutions "phase shifts" were extracted, from which the scattering cross section was calculated.

  4. Weighted-Residual Methods for the Solution of Two-Particle Lippmann-Schwinger Equation Without Partial-Wave Decomposition

    NASA Astrophysics Data System (ADS)

    Kuruoğlu, Zeki C.

    2014-01-01

    Recently there has been a growing interest in computational methods for quantum scattering equations that avoid the traditional decomposition of wave functions and scattering amplitudes into partial waves. The aim of the present work is to show that the weighted-residual approach in combination with local basis functions give rise to convenient computational schemes for the solution of the multi-variable integral equations without the partial wave expansion. The weighted-residual approach provides a unifying framework for various variational and degenerate-kernel methods for integral equations of scattering theory. Using a direct-product basis of localized quadratic interpolation polynomials, Galerkin, collocation and Schwinger variational realizations of the weighted-residual approach have been implemented for a model potential. It is demonstrated that, for a given expansion basis, Schwinger variational method exhibits better convergence with basis size than Galerkin and collocation methods. A novel hybrid-collocation method is implemented with promising results as well.

  5. Calculation of the Full Scattering Amplitude without Partial Wave Decomposition II

    NASA Technical Reports Server (NTRS)

    Shertzer, J.; Temkin, A.

    2003-01-01

    As is well known, the full scattering amplitude can be expressed as an integral involving the complete scattering wave function. We have shown that the integral can be simplified and used in a practical way. Initial application to electron-hydrogen scattering without exchange was highly successful. The Schrodinger equation (SE) can be reduced to a 2d partial differential equation (pde), and was solved using the finite element method. We have now included exchange by solving the resultant SE, in the static exchange approximation. The resultant equation can be reduced to a pair of coupled pde's, to which the finite element method can still be applied. The resultant scattering amplitudes, both singlet and triplet, as a function of angle can be calculated for various energies. The results are in excellent agreement with converged partial wave results.

  6. Calculation of the Full Scattering Amplitude without Partial Wave Decomposition II: Inclusion of Exchange

    NASA Technical Reports Server (NTRS)

    Shertzer, Janine; Temkin, A.

    2003-01-01

    As is well known, the full scattering amplitude can be expressed as an integral involving the complete scattering wave function. We have shown that the integral can be simplified and used in a practical way. Initial application to electron-hydrogen scattering without exchange was highly successful. The Schrodinger equation (SE), which can be reduced to a 2d partial differential equation (pde), was solved using the finite element method. We have now included exchange by solving the resultant SE, in the static exchange approximation, which is reducible to a pair of coupled pde's. The resultant scattering amplitudes, both singlet and triplet, calculated as a function of energy are in excellent agreement with converged partial wave results.

  7. Solution of the Bethe-Goldstone equation without partial wave decomposition

    NASA Astrophysics Data System (ADS)

    White, Larz

    Nucleon-nucleon scattering is a most fundamental process in nuclear physics. From the theoretical standpoint, its description in momentum space involves the solution of an integral equation in three dimensions, which is typically accomplished with the help of a partial wave expansion of the scattering amplitude. It is the purpose of this work to present a method for solving the nucleon-nucleon scattering equation without the use of such expansion. After verifying the accuracy of our numerical tools by comparing with existing solutions of the nucleon-nucleon scattering amplitude in free space, we proceed to apply the method to the equation describing scattering of two nucleons in the nuclear medium, known as the Bethe-Goldstone equation. An important feature of this equation is the presence of the so-called "Pauli blocking operator", which prevents scattering of two fermions into occupied states, as required by the Pauli principle. In standard solution methods based on partial wave expansions, it is necessary to apply an approximation to this operator, which involves averaging over angular variables and is therefore known as the "spherical approximation". In our method, this approximation can be avoided. Thus, a focal point of this study is a comparison of Pauli blocking effects calculated in the (angle-dependent) three-dimensional formalism as compared to the usual spherical approximation. We present results for nucleon-nucleon amplitudes and observables and discuss their implications.

  8. Coherent-mode decomposition of partially polarized, partially coherent sources

    NASA Astrophysics Data System (ADS)

    Gori, Franco; Santarsiero, Massimo; Simon, Raja; Piquero, Gemma; Borghi, Riccardo; Guattari, Giorgio

    2003-01-01

    It is shown that any partially polarized, partially coherent source can be expressed in terms of a suitable superposition of transverse coherent modes with orthogonal polarization states. Such modes are determined through the solution of a system of two coupled integral equations. An example, for which the modal decomposition is obtained in closed form in terms of fully linearly polarized Hermite Gaussian modes, is given.

  9. Coherent-mode decomposition of partially polarized, partially coherent sources.

    PubMed

    Gori, Franco; Santarsiero, Massimo; Simon, Raja; Piquero, Gemma; Borghi, Riccardo; Guattari, Giorgio

    2003-01-01

    It is shown that any partially polarized, partially coherent source can be expressed in terms of a suitable superposition of transverse coherent modes with orthogonal polarization states. Such modes are determined through the solution of a system of two coupled integral equations. An example, for which the modal decomposition is obtained in closed form in terms of fully linearly polarized Hermite Gaussian modes, is given. PMID:12542320

  10. Are Electron Partial Waves Real

    NASA Astrophysics Data System (ADS)

    Yenen, O.; McLaughlin, K. W.

    2005-05-01

    Experiments determining the partial wave content of electrons are uncommon. The standard approach to partial wave expansion of the wavefunction of electrons often ignores their spin. In this non-relativistic approximation the partial waves are labeled by their orbital angular momentum quantum number, e.g. d-waves. As our previous work has shown, this non-relativistic approximation usually fails for photoelectrons. Partial waves should be further specified by their total angular momentum. With d-waves for example, one would need to distinguish between d3/2 and d5/2 partial waves. Although energetically degenerate, fully relativistic d3/2 and d5/2 partial waves of photoelectrons have fundamentally different angular distributions. Using experimental and theoretical methods we have developed, we obtain partial wave probabilities of photoelectrons from polarization measurements of ionic fluorescence. We found that for selected states of the residual ion, there are energy regions where the photoelectron is in a single partial wave with predictable angular distributions.

  11. How to Compute the Partial Fraction Decomposition without Really Trying

    ERIC Educational Resources Information Center

    Brazier, Richard; Boman, Eugene

    2007-01-01

    For various reasons there has been a recent trend in college and high school calculus courses to de-emphasize teaching the Partial Fraction Decomposition (PFD) as an integration technique. This is regrettable because the Partial Fraction Decomposition is considerably more than an integration technique. It is, in fact, a general purpose tool which…

  12. Remarks on the travelling wave decomposition

    USGS Publications Warehouse

    Pollitz, F.F.

    2001-01-01

    In elastic wave propagation on a spherically symmetric earth model, a normal mode sum is converted into a sum of equivalent travelling waves by means of a travelling wave decomposition (TWD). For two decades, seismologists have assumed that each travelling wave in the TWD is associated with only real phase velocities, that is, no evanescent waves travel on a spherically symmetric earth model. In this paper, this assumption is proven false. By including a countably infinite set of waves travelling as evanescent waves, several conceptual difficulties confronting the TWD are resolved.

  13. Holographic conformal partial waves as gravitational open Wilson networks

    NASA Astrophysics Data System (ADS)

    Bhatta, Atanu; Raman, Prashanth; Suryanarayana, Nemani V.

    2016-06-01

    We propose a method to holographically compute the conformal partial waves in any decomposition of correlation functions of primary operators in conformal field theories using open Wilson network operators in the holographic gravitational dual. The Wilson operators are the gravitational ones where gravity is written as a gauge theory in the first order Hilbert-Palatini formalism. We apply this method to compute the global conformal blocks and partial waves in 2d CFTs reproducing many of the known results.

  14. Pseudopotential Method for Higher Partial Wave Scattering

    SciTech Connect

    Idziaszek, Zbigniew; Calarco, Tommaso

    2006-01-13

    We present a zero-range pseudopotential applicable for all partial wave interactions between neutral atoms. For p and d waves, we derive effective pseudopotentials, which are useful for problems involving anisotropic external potentials. Finally, we consider two nontrivial applications of the p-wave pseudopotential: we solve analytically the problem of two interacting spin-polarized fermions confined in a harmonic trap, and we analyze the scattering of p-wave interacting particles in a quasi-two-dimensional system.

  15. Partial wave analysis using graphics processing units

    NASA Astrophysics Data System (ADS)

    Berger, Niklaus; Beijiang, Liu; Jike, Wang

    2010-04-01

    Partial wave analysis is an important tool for determining resonance properties in hadron spectroscopy. For large data samples however, the un-binned likelihood fits employed are computationally very expensive. At the Beijing Spectrometer (BES) III experiment, an increase in statistics compared to earlier experiments of up to two orders of magnitude is expected. In order to allow for a timely analysis of these datasets, additional computing power with short turnover times has to be made available. It turns out that graphics processing units (GPUs) originally developed for 3D computer games have an architecture of massively parallel single instruction multiple data floating point units that is almost ideally suited for the algorithms employed in partial wave analysis. We have implemented a framework for tensor manipulation and partial wave fits called GPUPWA. The user writes a program in pure C++ whilst the GPUPWA classes handle computations on the GPU, memory transfers, caching and other technical details. In conjunction with a recent graphics processor, the framework provides a speed-up of the partial wave fit by more than two orders of magnitude compared to legacy FORTRAN code.

  16. Chemical decomposition by normalization of millimeter-wave spectra

    SciTech Connect

    Gopalan, K.; Gopalsami, N.

    1996-10-01

    The sharp, distinct absorption spectra of chemicals at low pressures in the mm wave range become broadened at high pressures, so that detecting and quantifying different chemicals at high pressures become difficult. This paper proposes a method of decomposition based on the low pressure spectra. Normalized low pressure spectral amplitudes are used as features to train a neural network. The network is tested using the peak spectra obtained for an unknown plume of chemicals at high pressure. Initial tests conducted on simulated and experimental spectra of selected chemicals show that the decomposition results of the proposed method are dependent on the dominance of the chemicals in the mixture - a characteristic common to conventional methods of decomposition.

  17. Algebraic decomposition of the TU wave morphology patterns.

    PubMed

    Padrini, R; Butrous, G; Camm, A J; Malik, M

    1995-12-01

    In principle, the T wave results from the differences in durations of action potentials (AP) of different ventricular regions. Based on this concept, a mathematical model has been developed that represents the TU wave morphology as a summation of four AP-like functions: TU = S1 - S2 + L1 - L2. The sigmoidal shape of AP-like curves is produced by Hill's equation V(t) = a . tn/(bn + tn). Each of the decomposition functions is characterized by two parameters: the amplitude at the beginning of QRS (Amax), and the duration at 5% of Amax (D95). The set of four decomposition functions leads to eight parameters that provide detailed characteristics of the TU wave morphology. The model was validated using 170 TU wave complexes recorded digitally in leads V2-V6 from 22 normal subjects and 12 patients with abnormal TU wave morphologies (negative, biphasic, and notched T waves). The electrocardiographic signals were sampled at 100 Hz and a best-fit procedure was used to obtain the decomposition. In all cases the coefficients of correlation between original TU patterns and their mathematical models were > or = 0.99. The mean absolute difference between the observed and modeled values of the TU patterns was similar in cases with normal and abnormal TU wave morphologies (4.65 +/- 0.41 microV vs 5.19 +/- 0.48 microV respectively) demonstrating that the model is capable of describing and categorizing various TU patterns by a set of eight numerical parameters. PMID:8771134

  18. Gaussian beam decomposition of high frequency wave fields

    SciTech Connect

    Tanushev, Nicolay M. Engquist, Bjoern; Tsai, Richard

    2009-12-10

    In this paper, we present a method of decomposing a highly oscillatory wave field into a sparse superposition of Gaussian beams. The goal is to extract the necessary parameters for a Gaussian beam superposition from this wave field, so that further evolution of the high frequency waves can be computed by the method of Gaussian beams. The methodology is described for R{sup d} with numerical examples for d=2. In the first example, a field generated by an interface reflection of Gaussian beams is decomposed into a superposition of Gaussian beams. The beam parameters are reconstructed to a very high accuracy. The data in the second example is not a superposition of a finite number of Gaussian beams. The wave field to be approximated is generated by a finite difference method for a geometry with two slits. The accuracy in the decomposition increases monotonically with the number of beams.

  19. Partial Wave Analysis of Coupled Photonic Structures

    NASA Technical Reports Server (NTRS)

    Fuller, Kirk A.; Smith, David D.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The very high quality factors sustained by microcavity optical resonators are relevant to applications in wavelength filtering, routing, switching, modulation, and multiplexing/demultiplexing. Increases in the density of photonic elements require that attention be paid to how electromagnetic (EM) coupling modifies their optical properties. This is especially true when cavity resonances are involved, in which case, their characteristics may be fundamentally altered. Understanding the optical properties of microcavities that are near or in contact with photonic elements---such as other microcavities, nanostructures, couplers, and substrates---can be expected to advance our understanding of the roles that these structures may play in VLSI photonics, biosensors and similar device technologies. Wc present results from recent theoretical studies of the effects of inter- and intracavity coupling on optical resonances in compound spherical particles. Concentrically stratified spheres and bispheres constituted from homogeneous and stratified spheres are subjects of this investigation. A new formulation is introduced for the absorption of light in an arbitrary layer of a multilayered sphere, which is based on multiple reflections of the spherical partial waves of the Lorenz-Mie solution for scattering by a sphere. Absorption efficiencies, which can be used to profile cavity resonances and to infer fluorescence yields or the onset of nonlinear optical processes in the microcavities, are presented. Splitting of resonances in these multisphere systems is paid particular attention, and consequences for photonic device development and possible performance enhancements through carefully designed architectures that exploit EM coupling are considered.

  20. Spin-orbit decomposition of ab initio nuclear wave functions

    NASA Astrophysics Data System (ADS)

    Johnson, Calvin W.

    2015-03-01

    Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum j , leading to j -j coupling, decades ago phenomenological models suggested that a simpler picture for 0 p -shell nuclides can be realized via coupling of the total spin S and total orbital angular momentum L . I revisit this idea with large-basis, no-core shell-model calculations using modern ab initio two-body interactions and dissect the resulting wave functions into their component L - and S -components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly 50 years and six orders of magnitude in basis dimensions. I suggest that L -S decomposition may be a useful tool for analyzing ab initio wave functions of light nuclei, for example, in the case of rotational bands.

  1. Computing the Partial Fraction Decomposition of Rational Functions with Irreducible Quadratic Factors in the Denominators

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2012-01-01

    In this note, a new method for computing the partial fraction decomposition of rational functions with irreducible quadratic factors in the denominators is presented. This method involves polynomial divisions and substitutions only, without having to solve for the complex roots of the irreducible quadratic polynomial or to solve a system of linear…

  2. Asymmetric modes decomposition in an overmoded relativistic backward wave oscillator

    SciTech Connect

    Zhang, Dian; Zhang, Jun Zhong, Huihuang; Jin, Zhenxing; Ju, Jinchuan

    2014-09-15

    Most of the investigated overmoded relativistic backward wave oscillators (RBWOs) are azimuthally symmetric; thus, they are designed through two dimensional (2-D) particle-in-cell (PIC) simulations. However, 2-D PIC simulations cannot reveal the effect of asymmetric modes on beam-wave interaction. In order to investigate whether asymmetric mode competition needs to be considered in the design of overmoded RBWOs, a numerical method of determining the composition of both symmetric and asymmetric modes in three dimensional (3-D) PIC simulations is introduced in this paper. The 2-D and 3-D PIC simulation results of an X-band overmoded RBWO are analyzed. Our analysis indicates that the 2-D and 3-D PIC simulation results of our device are quite different due to asymmetric mode competition. In fact, asymmetric surface waves, especially EH{sub 11} mode, can lead to serious mode competition when electron beam propagates near the surface of slow wave structures (SWSs). Therefore, additional method of suppressing asymmetric mode competition, such as adjusting the reflections at both ends of SWSs to decrease the Q-factor of asymmetric modes, needs to be utilized in the design of overmoded RBWOs. Besides, 3-D PIC simulation and modes decomposition are essential for designing overmoded RBWOs.

  3. Introducing the Improved Heaviside Approach to Partial Fraction Decomposition to Undergraduate Students: Results and Implications from a Pilot Study

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2012-01-01

    Partial fraction decomposition is a useful technique often taught at senior secondary or undergraduate levels to handle integrations, inverse Laplace transforms or linear ordinary differential equations, etc. In recent years, an improved Heaviside's approach to partial fraction decomposition was introduced and developed by the author. An important…

  4. Plane-wave decomposition by spherical-convolution microphone array

    NASA Astrophysics Data System (ADS)

    Rafaely, Boaz; Park, Munhum

    2001-05-01

    Reverberant sound fields are widely studied, as they have a significant influence on the acoustic performance of enclosures in a variety of applications. For example, the intelligibility of speech in lecture rooms, the quality of music in auditoria, the noise level in offices, and the production of 3D sound in living rooms are all affected by the enclosed sound field. These sound fields are typically studied through frequency response measurements or statistical measures such as reverberation time, which do not provide detailed spatial information. The aim of the work presented in this seminar is the detailed analysis of reverberant sound fields. A measurement and analysis system based on acoustic theory and signal processing, designed around a spherical microphone array, is presented. Detailed analysis is achieved by decomposition of the sound field into waves, using spherical Fourier transform and spherical convolution. The presentation will include theoretical review, simulation studies, and initial experimental results.

  5. Fourier transform infrared spectroscopy quantitative analysis of SF6 partial discharge decomposition components.

    PubMed

    Zhang, Xiaoxing; Liu, Heng; Ren, Jiangbo; Li, Jian; Li, Xin

    2015-02-01

    Gas-insulated switchgear (GIS) internal SF6 gas produces specific decomposition components under partial discharge (PD). By detecting these characteristic decomposition components, such information as the type and level of GIS internal insulation deterioration can be obtained effectively, and the status of GIS internal insulation can be evaluated. SF6 was selected as the background gas for Fourier transform infrared spectroscopy (FTIR) detection in this study. SOF2, SO2F2, SO2, and CO were selected as the characteristic decomposition components for system analysis. The standard infrared absorption spectroscopy of the four characteristic components was measured, the optimal absorption peaks were recorded and the corresponding absorption coefficient was calculated. Quantitative detection experiments on the four characteristic components were conducted. The volume fraction variation trend of four characteristic components at different PD time were analyzed. And under five different PD quantity, the quantitative relationships among gas production rate, PD time, and PD quantity were studied. PMID:25459612

  6. Fourier transform infrared spectroscopy quantitative analysis of SF6 partial discharge decomposition components

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxing; Liu, Heng; Ren, Jiangbo; Li, Jian; Li, Xin

    2015-02-01

    Gas-insulated switchgear (GIS) internal SF6 gas produces specific decomposition components under partial discharge (PD). By detecting these characteristic decomposition components, such information as the type and level of GIS internal insulation deterioration can be obtained effectively, and the status of GIS internal insulation can be evaluated. SF6 was selected as the background gas for Fourier transform infrared spectroscopy (FTIR) detection in this study. SOF2, SO2F2, SO2, and CO were selected as the characteristic decomposition components for system analysis. The standard infrared absorption spectroscopy of the four characteristic components was measured, the optimal absorption peaks were recorded and the corresponding absorption coefficient was calculated. Quantitative detection experiments on the four characteristic components were conducted. The volume fraction variation trend of four characteristic components at different PD time were analyzed. And under five different PD quantity, the quantitative relationships among gas production rate, PD time, and PD quantity were studied.

  7. Study on the characteristic decomposition components of air-insulated switchgear cabinet under partial discharge

    NASA Astrophysics Data System (ADS)

    Gui, Yingang; Zhang, Xiaoxing; Zhang, Ying; Qiu, Yinjun; Chen, Lincong

    2016-07-01

    Air-insulated switchgear cabinet plays a critical role in entire power transmission and distribution system. Its stability directly affects the operational reliability of the power system. And the on-line gas detection method, which evaluates the insulation status of insulation equipment by detecting the decomposition components of filled air in cabinet, becomes an innovative way to ensure the running stability of air-insulated switchgear cabinet. In order to study the characteristic gas types and production regularity of decomposition components under partial discharge, three insulation defects: needle-plate, air-gap and impurity defect are proposed to simulate the insulation defects under partial discharge in air-insulated switchgear cabinet. Firstly, the generation pathways and mechanism of composition components are discussed. Then CO and NO2 are selected as the characteristic decomposition components to characterize the partial discharge due to their high concentration and chemical stability. Based on the different change regularity of CO and NO2 concentration under different insulation defect, it provides an effective way to evaluate and predict the insulation defect type and severity in the field.

  8. Partial Wave Dispersion Relations: Application to Electron-Atom Scattering

    NASA Technical Reports Server (NTRS)

    Temkin, A.; Drachman, Richard J.

    1999-01-01

    In this Letter we propose the use of partial wave dispersion relations (DR's) as the way of solving the long-standing problem of correctly incorporating exchange in a valid DR for electron-atom scattering. In particular a method is given for effectively calculating the contribution of the discontinuity and/or poles of the partial wave amplitude which occur in the negative E plane. The method is successfully tested in three cases: (i) the analytically solvable exponential potential, (ii) the Hartree potential, and (iii) the S-wave exchange approximation for electron-hydrogen scattering.

  9. ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA

    SciTech Connect

    Soler, R.; Ballester, J. L.; Terradas, J.; Carbonell, M. E-mail: joseluis.ballester@uib.es E-mail: marc.carbonell@uib.es

    2013-04-20

    Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.

  10. MAGNETOACOUSTIC WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA

    SciTech Connect

    Soler, Roberto; Ballester, Jose Luis; Carbonell, Marc E-mail: joseluis.ballester@uib.es

    2013-11-01

    Compressible disturbances propagate in a plasma in the form of magnetoacoustic waves driven by both gas pressure and magnetic forces. In partially ionized plasmas the dynamics of ionized and neutral species are coupled due to ion-neutral collisions. As a consequence, magnetoacoustic waves propagating through a partially ionized medium are affected by ion-neutral coupling. The degree to which the behavior of the classic waves is modified depends on the physical properties of the various species and on the relative value of the wave frequency compared to the ion-neutral collision frequency. Here, we perform a comprehensive theoretical investigation of magnetoacoustic wave propagation in a partially ionized plasma using the two-fluid formalism. We consider an extensive range of values for the collision frequency, ionization ratio, and plasma β, so that the results are applicable to a wide variety of astrophysical plasmas. We determine the modification of the wave frequencies and study the frictional damping due to ion-neutral collisions. Approximate analytic expressions for the frequencies are given in the limit case of strongly coupled ions and neutrals, while numerically obtained dispersion diagrams are provided for arbitrary collision frequencies. In addition, we discuss the presence of cutoffs in the dispersion diagrams that constrain wave propagation for certain combinations of parameters. A specific application to propagation of compressible waves in the solar chromosphere is given.

  11. Experimental studies on wave interactions of partially perforated wall under obliquely incident waves.

    PubMed

    Lee, Jong-In; Kim, Young-Taek; Shin, Sungwon

    2014-01-01

    This study presents wave height distribution in terms of stem wave evolution phenomena on partially perforated wall structures through three-dimensional laboratory experiments. The plain and partially perforated walls were tested to understand their effects on the stem wave evolution under the monochromatic and random wave cases with the various wave conditions, incident angle (from 10 to 40 degrees), and configurations of front and side walls. The partially perforated wall reduced the relative wave heights more effectively compared to the plain wall structure. Partially perforated walls with side walls showed a better performance in terms of wave height reduction compared to the structure without the side wall. Moreover, the relative wave heights along the wall were relatively small when the relative chamber width is large, within the range of the chamber width in this study. The wave spectra showed a frequency dependency of the wave energy dissipation. In most cases, the existence of side wall is a more important factor than the porosity of the front wall in terms of the wave height reduction even if the partially perforated wall was still effective compared to the plain wall. PMID:25254260

  12. Experimental Studies on Wave Interactions of Partially Perforated Wall under Obliquely Incident Waves

    PubMed Central

    Lee, Jong-In; Kim, Young-Taek; Shin, Sungwon

    2014-01-01

    This study presents wave height distribution in terms of stem wave evolution phenomena on partially perforated wall structures through three-dimensional laboratory experiments. The plain and partially perforated walls were tested to understand their effects on the stem wave evolution under the monochromatic and random wave cases with the various wave conditions, incident angle (from 10 to 40 degrees), and configurations of front and side walls. The partially perforated wall reduced the relative wave heights more effectively compared to the plain wall structure. Partially perforated walls with side walls showed a better performance in terms of wave height reduction compared to the structure without the side wall. Moreover, the relative wave heights along the wall were relatively small when the relative chamber width is large, within the range of the chamber width in this study. The wave spectra showed a frequency dependency of the wave energy dissipation. In most cases, the existence of side wall is a more important factor than the porosity of the front wall in terms of the wave height reduction even if the partially perforated wall was still effective compared to the plain wall. PMID:25254260

  13. Correlations of πN partial waves for multireaction analyses

    DOE PAGESBeta

    Doring, M.; Revier, J.; Ronchen, D.; Workman, R. L.

    2016-06-15

    In the search for missing baryonic resonances, many analyses include data from a variety of pion- and photon-induced reactions. For elastic πN scattering, however, usually the partial waves of the SAID (Scattering Analysis Interactive Database) or other groups are fitted, instead of data. We provide the partial-wave covariance matrices needed to perform correlated χ2 fits, in which the obtained χ2 equals the actual χ2 up to nonlinear and normalization corrections. For any analysis relying on partial waves extracted from elastic pion scattering, this is a prerequisite to assess the significance of resonance signals and to assign any uncertainty on results.more » Lastly, the influence of systematic errors is also considered.« less

  14. Correlations of π N partial waves for multireaction analyses

    NASA Astrophysics Data System (ADS)

    Döring, M.; Revier, J.; Rönchen, D.; Workman, R. L.

    2016-06-01

    In the search for missing baryonic resonances, many analyses include data from a variety of pion- and photon-induced reactions. For elastic π N scattering, however, usually the partial waves of the SAID (Scattering Analysis Interactive Database) or other groups are fitted, instead of data. We provide the partial-wave covariance matrices needed to perform correlated χ2 fits, in which the obtained χ2 equals the actual χ2 up to nonlinear and normalization corrections. For any analysis relying on partial waves extracted from elastic pion scattering, this is a prerequisite to assess the significance of resonance signals and to assign any uncertainty on results. The influence of systematic errors is also considered.

  15. Study of the partial decomposition of GaN layers grown by MOVPE with different coalescence degree

    NASA Astrophysics Data System (ADS)

    Bouazizi, H.; Chaaben, N.; El Gmili, Y.; Bchetnia, A.; Salvestrini, J. P.; El Jani, B.

    2016-01-01

    We investigated the partial decomposition of GaN layers grown with different coalescence degrees by atmospheric pressure metal organic vapor phase epitaxy (AP-MOVPE) on SiN treated sapphire substrate. The decomposition was performed in AP-MOVPE reactor under nitrogen (N2) flow at 1200 °C. The growth and decomposition processes were in-situ monitored by laser reflectometry (LR) at normal incidence. Surface morphology, crystalline and optical properties of GaN layers were examined before and after partial decomposition by scanning electron microscope (SEM) and high resolution X-ray diffraction (HRXRD). Low decomposition rate and low surface degradation were obtained for thick and most coalesced GaN layers. The partial decomposition did not significantly affect the optical and crystalline properties of GaN. In particular, HRXRD showed almost the same full width at halfmaximum (FWHM) of (00.2) and (10.2) rocking curves (RCs) before and after partial decomposition of coalesced GaN layer.

  16. Evanescent wave decomposition in a novel resonator comprising unmagnetized and magnetized plasma layers

    SciTech Connect

    Kong Xiangkun; Liu Shaobin; Bian Borui; Li Haiming; Zhao Xin; Zhang Haifeng

    2013-04-15

    A 4 Multiplication-Sign 4 transfer matrix method has been applied to study the decomposition of any elliptically polarized wave in a magnetized resonator. When the incident elliptically polarized wave passes through the structure, it is orthogonally decomposed into two circular polarizations at two resonance frequencies. Without changing the structure of the resonator, the positions of the resonant frequencies of the right- and left-handed circularly polarized waves can be modulated by changing the external magnetized field. The results show that the proposed magnetized structure can be used to design a novel resonator, which can be applied in the decomposition of polarized electromagnetic waves.

  17. SLAC three-body partial wave analysis system

    SciTech Connect

    Aston, D.; Lasinski, T.A.; Sinervo, P.K.

    1985-10-01

    We present a heuristic description of the SLAC-LBL three-meson partial wave model, and describe how we have implemented it at SLAC. The discussion details the assumptions of the model and the analysis, and emphasizes the methods we have used to prepare and fit the data. 28 refs., 12 figs., 1 tab.

  18. Kullback relative entropy and characterization of partially polarized optical waves.

    PubMed

    Réfrégier, Philippe; Goudail, François

    2006-03-01

    Different properties of partially polarized light are discussed using the Kullback relative entropy, which provides a physically meaningful measure of proximity between probability density functions (PDFs). For optical waves with a Gaussian PDF, the standard degree of polarization is a simple function of the Kullback relative entropy between the considered optical light and a totally depolarized light of the same intensity. It is shown that the Kullback relative entropies between different PDFs allow one to define other properties such as a degree of anisotropy and a degree of non-Gaussianity. It is also demonstrated that, in dimension three, the Kullback relative entropy between a partially polarized light and a totally depolarized light can lead to natural definitions of two degrees of polarization needed to characterize the polarization state. These analyses enlighten the physical meaning of partial polarization of light waves in terms of a measure of disorder provided by the Shannon entropy. PMID:16539066

  19. Numerical method for wave forces acting on partially perforated caisson

    NASA Astrophysics Data System (ADS)

    Jiang, Feng; Tang, Xiao-cheng; Jin, Zhao; Zhang, Li; Chen, Hong-zhou

    2015-04-01

    The perforated caisson is widely applied to practical engineering because of its great advantages in effectively wave energy consumption and cost reduction. The attentions of many scientists were paid to the fluid-structure interaction between wave and perforated caisson studies, but until now, most concerns have been put on theoretical analysis and experimental model set up. In this paper, interaction between the wave and the partial perforated caisson in a 2D numerical wave flume is investigated by means of the renewed SPH algorithm, and the mathematical equations are in the form of SPH numerical approximation based on Navier-Stokes equations. The validity of the SPH mathematical method is examined and the simulated results are compared with the results of theoretical models, meanwhile the complex hydrodynamic characteristics when the water particles flow in or out of a wave absorbing chamber are analyzed and the wave pressure distribution of the perforated caisson is also addressed here. The relationship between the ratio of total horizontal force acting on caisson under regular waves and its influence factors is examined. The data show that the numerical calculation of the ratio of total horizontal force meets the empirical regression equation very well. The simulations of SPH about the wave nonlinearity and breaking are briefly depicted in the paper, suggesting that the advantages and great potentiality of the SPH method is significant compared with traditional methods.

  20. Calculation of the Scattering Amplitude Without Partial Wave Expansion

    NASA Technical Reports Server (NTRS)

    Shertzer, J.; Temkin, Aaron; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Two developments in the direct calculation of the angular differential scattering amplitude have been implemented: (a) The integral expansion of the scattering amplitude is simplified by analytically integration over the azimuthal angle. (b) The resulting integral as a function of scattering angle is calculated by using the numerically generated wave function from a finite element method calculation. Results for electron-hydrogen scattering in the static approximation will be shown to be as accurate as a partial wave expansion with as many l's as is necessary for convergence at the incident energy being calculated.

  1. Advanced Insights into Functional Brain Connectivity by Combining Tensor Decomposition and Partial Directed Coherence

    PubMed Central

    Leistritz, Lutz; Witte, Herbert; Schiecke, Karin

    2015-01-01

    Quantification of functional connectivity in physiological networks is frequently performed by means of time-variant partial directed coherence (tvPDC), based on time-variant multivariate autoregressive models. The principle advantage of tvPDC lies in the combination of directionality, time variance and frequency selectivity simultaneously, offering a more differentiated view into complex brain networks. Yet the advantages specific to tvPDC also cause a large number of results, leading to serious problems in interpretability. To counter this issue, we propose the decomposition of multi-dimensional tvPDC results into a sum of rank-1 outer products. This leads to a data condensation which enables an advanced interpretation of results. Furthermore it is thereby possible to uncover inherent interaction patterns of induced neuronal subsystems by limiting the decomposition to several relevant channels, while retaining the global influence determined by the preceding multivariate AR estimation and tvPDC calculation of the entire scalp. Finally a comparison between several subjects is considerably easier, as individual tvPDC results are summarized within a comprehensive model equipped with subject-specific loading coefficients. A proof-of-principle of the approach is provided by means of simulated data; EEG data of an experiment concerning visual evoked potentials are used to demonstrate the applicability to real data. PMID:26046537

  2. Identification of faulty sensor using relative partial decomposition via independent component analysis

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Quek, S. T.

    2015-07-01

    Performance of any structural health monitoring algorithm relies heavily on good measurement data. Hence, it is necessary to employ robust faulty sensor detection approaches to isolate sensors with abnormal behaviour and exclude the highly inaccurate data in the subsequent analysis. The independent component analysis (ICA) is implemented to detect the presence of sensors showing abnormal behaviour. A normalized form of the relative partial decomposition contribution (rPDC) is proposed to identify the faulty sensor. Both additive and multiplicative types of faults are addressed and the detectability illustrated using a numerical and an experimental example. An empirical method to establish control limits for detecting and identifying the type of fault is also proposed. The results show the effectiveness of the ICA and rPDC method in identifying faulty sensor assuming that baseline cases are available.

  3. Decomposition

    USGS Publications Warehouse

    Middleton, Beth A.

    2014-01-01

    A cornerstone of ecosystem ecology, decomposition was recognized as a fundamental process driving the exchange of energy in ecosystems by early ecologists such as Lindeman 1942 and Odum 1960). In the history of ecology, studies of decomposition were incorporated into the International Biological Program in the 1960s to compare the nature of organic matter breakdown in various ecosystem types. Such studies still have an important role in ecological studies of today. More recent refinements have brought debates on the relative role microbes, invertebrates and environment in the breakdown and release of carbon into the atmosphere, as well as how nutrient cycling, production and other ecosystem processes regulated by decomposition may shift with climate change. Therefore, this bibliography examines the primary literature related to organic matter breakdown, but it also explores topics in which decomposition plays a key supporting role including vegetation composition, latitudinal gradients, altered ecosystems, anthropogenic impacts, carbon storage, and climate change models. Knowledge of these topics is relevant to both the study of ecosystem ecology as well projections of future conditions for human societies.

  4. An application of wavelet transforms and neural networks for decomposition of millimeter-wave spectroscopic signals

    SciTech Connect

    Gopalan, K.; Gopalsami, N.; Bakhtiari, S.; Raptis, A.C.

    1995-07-01

    This paper reports on wavelet-based decomposition methods and neural networks for remote monitoring of airborne chemicals using millimeter wave spectroscopy. Because of instrumentation noise and the presence of untargeted chemicals, direct decomposition of the spectra requires a large number of training data and yields low accuracy. A neural network trained with features obtained from a discrete wavelet transform is demonstrated to have better decomposition with faster training time. Results based on simulated and experimental spectra are presented to show the efficacy of the wavelet-based methods.

  5. Wave Dispersion and Attenuation in Partially Saturated Sandstones

    NASA Astrophysics Data System (ADS)

    Nie, Jian-Xin; Yang, Ding-Hui; Yang, Hui-Zhu

    2004-03-01

    We investigate the wave dispersion and attenuation in partially water-saturated sandstones based on the improved Biot/squirt (BISQ) model in which the saturation is introduced. Numerical experiments indicate that the phase velocity of the fast P-wave decreases as the saturation increases in the low-frequency range (102-104 Hz), and reaches the minimum at the full-saturation state. The behaviour of the phase velocity varying with the saturation in the high-frequency range (104-106 Hz), however, is opposite to that in the low-frequency range. The peak value of P-wave attenuation increases with increasing saturation, and is the maximum at the fully saturated state. Numerical models and experiments show that the improved BISQ model is better than the traditional Gassmann-Biot model.

  6. Teaching a New Method of Partial Fraction Decomposition to Senior Secondary Students: Results and Analysis from a Pilot Study

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong; Leung, Allen

    2012-01-01

    In this paper, we introduce a new approach to compute the partial fraction decompositions of rational functions and describe the results of its trials at three secondary schools in Hong Kong. The data were collected via quizzes, questionnaire and interviews. In general, according to the responses from the teachers and students concerned, this new…

  7. Seismoelectric wave propagation numerical modelling in partially saturated materials

    NASA Astrophysics Data System (ADS)

    Warden, S.; Garambois, S.; Jouniaux, L.; Brito, D.; Sailhac, P.; Bordes, C.

    2013-09-01

    To better understand and interpret seismoelectric measurements acquired over vadose environments, both the existing theory and the wave propagation modelling programmes, available for saturated materials, should be extended to partial saturation conditions. We propose here an extension of Pride's equations aiming to take into account partially saturated materials, in the case of a water-air mixture. This new set of equations was incorporated into an existing seismoelectric wave propagation modelling code, originally designed for stratified saturated media. This extension concerns both the mechanical part, using a generalization of the Biot-Gassmann theory, and the electromagnetic part, for which dielectric permittivity and electrical conductivity were expressed against water saturation. The dynamic seismoelectric coupling was written as a function of the streaming potential coefficient, which depends on saturation, using four different relations derived from recent laboratory or theoretical studies. In a second part, this extended programme was used to synthesize the seismoelectric response for a layered medium consisting of a partially saturated sand overburden on top of a saturated sandstone half-space. Subsequent analysis of the modelled amplitudes suggests that the typically very weak interface response (IR) may be best recovered when the shallow layer exhibits low saturation. We also use our programme to compute the seismoelectric response of a capillary fringe between a vadose sand overburden and a saturated sand half-space. Our first modelling results suggest that the study of the seismoelectric IR may help to detect a sharp saturation contrast better than a smooth saturation transition. In our example, a saturation contrast of 50 per cent between a fully saturated sand half-space and a partially saturated shallow sand layer yields a stronger IR than a stepwise decrease in saturation.

  8. Direct Calculation of the Scattering Amplitude Without Partial Wave Analysis

    NASA Technical Reports Server (NTRS)

    Shertzer, J.; Temkin, A.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Two new developments in scattering theory are reported. We show, in a practical way, how one can calculate the full scattering amplitude without invoking a partial wave expansion. First, the integral expression for the scattering amplitude f(theta) is simplified by an analytic integration over the azimuthal angle. Second, the full scattering wavefunction which appears in the integral expression for f(theta) is obtained by solving the Schrodinger equation with the finite element method (FEM). As an example, we calculate electron scattering from the Hartree potential. With minimal computational effort, we obtain accurate and stable results for the scattering amplitude.

  9. Laboratory monitoring of P-waves in partially saturated sand

    NASA Astrophysics Data System (ADS)

    Barrière, J.; Bordes, C.; Brito, D.; Sénéchal, P.; Perroud, H.

    2011-12-01

    Seismic data depends on a variety of hydrogeological properties of the prospected porous media such as porosity, permeability and fluid saturation. We have performed a laboratory experiment in the kiloHertz range in order to analyze the role of partial saturation on direct propagating P-waves phase velocity and attenuation. The experiment consists of a sand-filled tank 107 cm x 34 cm x 35cm equipped with accelerometers and water capacitance probes. The P-waves seismic propagation is generated by hitting a steel ball on a granite plate on the one lateral side of the container. Several imbibition/drainage cycles are performed between the water residual saturation and the gas residual saturation. The laboratory seismic data are processed by two Continuous Wavelet Transforms using one real mother wavelet (Mexican hat) and one complex (Morlet) to recover velocity and attenuation as a function of frequency. Phase velocity of direct P-wave decreases with an increase of water content and is quite consistent with the low frequency limit of the Biot's theory both for imbibition and drainage. The interpretation of the P-waves attenuation needs to go beyond the macroscopic fluid flow of Biot's theory and to introduce a viscoelastic contribution linked to the grain to grain overall losses which are described by a constant Q-model. A strong hysteresis between imbibition and drainage is observed and explained by introducing an effective permeability depending on water and gas relative permeabilities (Van Genuchten model).

  10. A correlated empirical mode decomposition method for partial discharge signal denoising

    NASA Astrophysics Data System (ADS)

    Tang, Ya-Wen; Tai, Cheng-Chi; Su, Ching-Chau; Chen, Chien-Yi; Chen, Jiann-Fuh

    2010-08-01

    Empirical mode decomposition (EMD) is a signal processing method used to extract intrinsic mode functions (IMFs) from a complicated signal. For a measurement with two or more correlated inputs, finding and capturing the correlated IMFs is a critical challenge that must be confronted. In this paper, a new correlated EMD method is proposed. The cross-correlation method was employed to determine dependence between the IMFs. To verify feasibility, an analysis was performed on simulated test signals and practically measured partial discharge (PD) signals collected from several acoustic emission sensors. At the surface of the gas-insulated transmission line, the PD signal arrived at the AE sensors with varying time delays and unique mechanism vibrations. Following an abnormal detection using the standard-deviation variation, the PD signal and the background signal of each sensor were applied using the correlated-EMD method. A twice correlated-EMD calculation was applied to the signals for the purpose of noise elimination. In addition, the unwanted low-frequency IMFs induced from the EMD calculations were excluded. The experimental results reveal that the correlated-EMD method performs well on both selecting and denoising the correlated IMFs. The results further provide analysis on correlated-input applications with a precise signal completely induced from the disturbance.

  11. A New Pion-Nucleon Partial Wave Analysis

    NASA Astrophysics Data System (ADS)

    Sadler, Michael; Watson, Shon; Stahov, Jugoslav

    2006-10-01

    Existing determinations of the masses, widths and decay modes of low-lying excited states of the nucleon, as compiled in the Review of Particle Physics, are determined from energy-independent partial wave analyses of pion-nucleon scattering data. For the N*(1440) and most other resonances under 2 GeV, the analyses cited are the Karlsruhe-Helsinki, Carnegie Mellon-Berkeley and Kent State analyses, the latter of which used the elastic amplitudes from the other two. The data included in these analyses were published before 1980. Other analyses, notably the recent ones from George Washington University and the Pittsburgh-Argonne group, are ``not used for averages, fits, limits, etc.'' Complete sets of measurements (differential cross sections, analyzing powers and spin rotation parameters) have been measured in the N*(1440) resonance region since 1980, culminating in the Crystal Ball program at BNL to measure all-neutral final states (charge exchange, multiple pi-zero final states, and inverse photoproduction). A new partial wave analysis of the Karlsruhe-Helsinki type has been started by Abilene Christian University, University of Tuzla, and Rudjer Boskovic Institute. The analysis is constrained by fixed-t and interior hyperbolic dispersion relations. Comparisons of the new analysis to modern experimental data and to previous analyses will be presented.

  12. Wave field decomposition of volcanic tremor at Pacaya Volcano, Guatemala

    NASA Astrophysics Data System (ADS)

    Lanza, F.; Waite, G. P.; Kenyon, L. M.

    2013-12-01

    A dense, small-aperture array of 12 short-period seismometers was deployed on the west flank of Pacaya volcano (Guatemala) and operated for 14 days in January 2011. The data were used to investigate the properties of the volcanic tremor wave field at the volcano. Volcanic tremor has been proven to be a powerful tool for eruption forecasting, therefore, identifying its source locations may shed new light on the dynamics of the volcano system. A preliminary spectral analysis highlights that most of the seismic energy is associated with six narrow spectral peaks between 1 and 6 Hz. After taking topography into account, we performed frequency-slowness analyses using the MUSIC algorithm and the semblance technique with the aim to define and locate the different components contributing to the wave field. Results show a complex wave field, with possibly multiple sources. We identify peaks at frequencies < 2 Hz as being related to anthropogenic sources coming from the N- NW direction where the geothermal plant and San Vincente Pacaya village are located. Azimuth measurements indicate that the 3 Hz signal propagates from the SE direction and it has been attributed to the new vent on the southeast flank of Pacaya Volcano. However, the presence of secondary peaks with azimuths of ˜ 200°, 150° and 70° seems to suggest either nonvolcanic sources or perhaps the presence of structural heterogeneities that produce strong scattered waves. At higher frequencies, results show effects of array aliasing, and therefore have not been considered in this study. The dispersive properties of the wave field have been investigated using the Spatial Auto-Correlation Method (SPAC). The dispersion characteristics of Rayleigh waves have been then inverted to find a shallow velocity model beneath the array, which shows a range of velocities from about 0.3 km/s to 2 km/s, in agreement with slowness values of the frequency bands considered. In detail, apparent velocities of 1-2 km/s dominate at

  13. Scattering of acoustic evanescent waves by circular cylinders: Partial wave series solution

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2002-05-01

    Evanescent acoustical waves occur in a variety of situations such as when sound is incident on a fluid interface beyond the critical angle and when flexural waves on a plate are subsonic with respect to the surrounding fluid. The scattering by circular cylinders at normal incidence was calculated to give insight into the consequences on the scattering of the evanescence of the incident wave. To analyze the scattering, it is necessary to express the incident wave using a modified expansion involving cylindrical functions. For plane evanescent waves, the expansion becomes a double summation with products of modified and ordinary Bessel functions. The resulting modified series is found for the scattering by a fluid cylinder in an unbounded medium. The perfectly soft and rigid cases are also examined. Unlike the case of an ordinary incident wave, the counterpropagating partial waves of the same angular order have unequal magnitudes when the incident wave is evanescent. This is a consequence of the exponential dependence of the incident wave amplitude on the transverse coordinate. The associated exponential dependence of the scattering on the location of a scatterer was previously demonstrated [T. J. Matula and P. L. Marston, J. Acoust. Soc. Am. 93, 1192-1195 (1993)].

  14. Spherical Harmonic Decomposition of Gravitational Waves Across Mesh Refinement Boundaries

    NASA Technical Reports Server (NTRS)

    Fiske, David R.; Baker, John; vanMeter, James R.; Centrella, Joan M.

    2005-01-01

    We evolve a linearized (Teukolsky) solution of the Einstein equations with a non-linear Einstein solver. Using this testbed, we are able to show that such gravitational waves, defined by the Weyl scalars in the Newman-Penrose formalism, propagate faithfully across mesh refinement boundaries, and use, for the first time to our knowledge, a novel algorithm due to Misner to compute spherical harmonic components of our waveforms. We show that the algorithm performs extremely well, even when the extraction sphere intersects refinement boundaries.

  15. Search for Higher Flavor Multiplets in Partial Wave Analyses

    SciTech Connect

    Yakov Azimov; Richard Arndt; I.I. Strakovsky; Ron Workman; K. Goeke

    2005-04-01

    The possible existence of higher multi-quark flavor multiplets of baryons is investigated. We argue that the S-matrix should have poles with any quantum numbers, including those which are exotic. This argument provides a novel justification for the existence of hadrons with arbitrary exotic structure. Though it does not constitute a proof, there are still no theoretical arguments against exotics. We then consider KN and piN scattering. Conventional and modified partial-wave analyses provide several sets of candidates for correlated pairs (Theta1, Delta), each of which could label a related 27-plet. Properties of the pairs (masses, mass orderings, spin-parity quantum numbers) do not quite correspond to the current theoretical expectations. Decay widths of the candidates are either wider or narrower than expected. Possible reasons for such disagreements are briefly discussed.

  16. Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction

    ERIC Educational Resources Information Center

    Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.

    2009-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…

  17. Analyzing Tropical Waves Using the Parallel Ensemble Empirical Model Decomposition Method: Preliminary Results from Hurricane Sandy

    NASA Technical Reports Server (NTRS)

    Shen, Bo-Wen; Cheung, Samson; Li, Jui-Lin F.; Wu, Yu-ling

    2013-01-01

    In this study, we discuss the performance of the parallel ensemble empirical mode decomposition (EMD) in the analysis of tropical waves that are associated with tropical cyclone (TC) formation. To efficiently analyze high-resolution, global, multiple-dimensional data sets, we first implement multilevel parallelism into the ensemble EMD (EEMD) and obtain a parallel speedup of 720 using 200 eight-core processors. We then apply the parallel EEMD (PEEMD) to extract the intrinsic mode functions (IMFs) from preselected data sets that represent (1) idealized tropical waves and (2) large-scale environmental flows associated with Hurricane Sandy (2012). Results indicate that the PEEMD is efficient and effective in revealing the major wave characteristics of the data, such as wavelengths and periods, by sifting out the dominant (wave) components. This approach has a potential for hurricane climate study by examining the statistical relationship between tropical waves and TC formation.

  18. A Reconfigurable Sound Wave Decomposition Filterbank for Hearing Aids Based on Nonlinear Transformation.

    PubMed

    Huang, Shaoguang; Tian, Lan; Ma, Xiaojie; Wei, Ying

    2016-04-01

    Hearing impaired people have their own hearing loss characteristics and listening preferences. Therefore hearing aid system should become more natural, humanized and personalized, which requires the filterbank in hearing aids provides flexible sound wave decomposition schemes, so that patients are likely to use the most suitable scheme for their own hearing compensation strategy. In this paper, a reconfigurable sound wave decomposition filterbank is proposed. The prototype filter is first cosine modulated to generate uniform subbands. Then by non-linear transformation the uniform subbands are mapped to nonuniform subbands. By changing the control parameters, the nonlinear transformation changes which leads to different subbands allocations. It provides four different sound wave decomposition schemes without changing the structure of the filterbank. The performance of the proposed reconfigurable filterbank was compared with that of fixed filerbanks, fully customizable filterbanks and other existing reconfigurable filterbanks. It is shown that the proposed filterbank provides satisfactory matching performance as well as low complexity and delay, which make it suitable for real hearing aid applications. PMID:26168447

  19. Applicability of Parallel Computing to Partial Wave Analysis

    NASA Astrophysics Data System (ADS)

    Ruger, Justin; Gilfoyle, Gerard; Weygand, Dennis; CLAS Collaboration

    2013-10-01

    Bound states of Quantum Chromodynamics (QCD) give insights into the nature of confinement, a key element of the strong interaction. States may be identified from weak signals extracted from the analysis of high statistics data from reactions with many final state particles. One of the best tools for the analysis of these reactions is Partial Wave Analysis (PWA). PWA transforms an ensemble of experimental data from a large acceptance detector from free particle eigenstates to angular momentum eigenstates. The PWA program must be fast enough to deal with the large amounts of data available currently, as processing time scales with the number of events. The scope of this research is to study the applicability and scalability of Intel's Xeon Phi using the Many Integrated Core (MIC) architecture when applied to the existing PWA code at Jefferson Laboratory. An algorithm was developed for the Xeon Phi and scaled across 240 available threads, giving parallel functionality to the PWA which was originally written serially. This scaling can make the fitting process fifteen times faster. Supported by the US Department of Energy.

  20. Introducing the improved Heaviside approach to partial fraction decomposition to undergraduate students: results and implications from a pilot study

    NASA Astrophysics Data System (ADS)

    Man, Yiu-Kwong

    2012-10-01

    Partial fraction decomposition is a useful technique often taught at senior secondary or undergraduate levels to handle integrations, inverse Laplace transforms or linear ordinary differential equations, etc. In recent years, an improved Heaviside's approach to partial fraction decomposition was introduced and developed by the author. An important feature of this approach is that there is no need to solve a system of linear equations or to use differentiations to find the unknown coefficients of the partial fractions. In order to study its potential application in mathematics education at the undergraduate level, a pilot study of tryout at the Hong Kong Institute of Education has been conducted. The data are collected via quizzes, questionnaires and face-to-face interviews. In this article, the results and implications will be discussed. In general, according to the responses and feedbacks from the instructors and students concerned, the improved Heaviside approach is suitable to be introduced at the undergraduate level, as an alternative to the method of undetermined coefficients described in common undergraduate mathematics textbooks.

  1. Fringe removal for continuous-wave terahertz imaging based on cartoon-texture decomposition

    NASA Astrophysics Data System (ADS)

    Qiao, Lingbo; Wang, Yingxin; Zhao, Ziran; Chen, Zhiqiang

    2013-08-01

    Continuous-wave (CW) terahertz (THz) imaging system has advantages of high power, compact structure and low cost, thus having been investigated for widespread applications. In typical reflection mode of CW imaging, the obtained image is usually degraded by repeated fringes, which is caused by interference phenomenon. The undesired interference signal originates from the reflection of surfaces of samples and lenses. When the samples are titled placed or their surfaces are uneven, the detected signal intensity is fluctuant even if the same sample lies in different positions. Therefore, small-sized or weekly absorbing objects are hard to be distinguished. Based on cartoon-texture decomposition, we propose a practical method to restore CW THz reflection images. After decomposition, the fringes and the objects are separated. In order to preserve edges, sharpening and fusion steps are employed respectively. The object in the final image is obvious with little loss of information.

  2. Wave-Vortex Decomposition of One-Dimensional Ship Track Data

    NASA Astrophysics Data System (ADS)

    Callies, J.; Buhler, O.; Ferrari, R. M.

    2014-12-01

    Oceanic motions are dominated by geostrophic flows at the mesoscale (order 100 km) and by internal waves at small scales (order 100 m and smaller). It is anticipated that at some intermediate scale, there is a transition from geostrophically dominated flow to wave-dominated flow. Observing the flow at such intermediate scales, the submesoscales, is currently restricted to ship-based measurements. Information is often obtained in one spatial dimension only, with no temporal information available to distinguish between geostrophic flow and internal waves. We present a simple two-step method by which one-dimensional energy spectra can be decomposed into an internal-wave component and a geostrophic component if measurements of velocity along and across the ship track and buoyancy are available. In the first step a Helmholtz decomposition of the horizontal velocity spectra into rotational and divergent components is performed and in the second step an energy equipartition property of hydrostatic internal waves is exploited that allows diagnosing the wave energy spectrum solely from the observed horizontal velocities. The observed buoyancy spectrum can then be used to compute the residual geostrophic energy spectrum. We illustrate the method on two data sets from the eastern North Pacific and the Gulf Stream region. The method is also applicable to atmospheric data obtained by commercial aircraft.

  3. Decomposition of frequency characteristics of acoustic emission signals for different types of partial discharges sources

    NASA Astrophysics Data System (ADS)

    Witos, F.; Gacek, Z.; Paduch, P.

    2006-11-01

    The problem touched in the article is decomposition of frequency characteristic of AE signals into elementary form of three-parametrical Gauss function. At the first stage, for modelled curves in form of sum of three-parametrical Gauss peaks, accordance of modelled curve and a curve resulting from a solutions obtained using method with dynamic windows, Levenberg-Marquardt algorithm, genetic algorithms and differential evolution algorithm are discussed. It is founded that analyses carried out by means differential evolution algorithm are effective and the computer system served an analysis of AE signal frequency characteristics was constructed. Decomposition of frequency characteristics for selected AE signals coming from modelled PD sources using different ends of the bushing, and real PD sources in generator coil bars are carried out.

  4. Dimethyl methylphosphonate decomposition on fully oxidized and partially reduced ceria thin films

    NASA Astrophysics Data System (ADS)

    Chen, Donna A.; Ratliff, Jay S.; Hu, Xiaofeng; Gordon, Wesley O.; Senanayake, Sanjaya D.; Mullins, David R.

    2010-03-01

    The thermal decomposition of dimethyl methylphosphonate (DMMP) on crystalline ceria thin films grown on Ru(0 0 0 1) was studied by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS) and infrared absorption reflection spectroscopy (IRAS). TPD experiments show that methanol and formaldehyde desorb as the two main products at 575 K, while water, formaldehyde and CO are produced above 800 K. IRAS studies demonstrate that DMMP adsorbs via the phosphoryl oxygen at 200 K, but the P dbnd O bond converts to a bridging O sbnd P sbnd O species at 300 K. DMMP decomposition initially occurs via P sbnd OCH 3 bond scission to form methyl methylphosphonate (MMP) and methyl phosphonate (MP) between 300 and 500 K; XPS and IRAS data are consistent with a methoxy intermediate on the surface at these temperatures. The more stable P sbnd CH 3 bonds remain intact up to 700 K, and the only surface intermediate at higher temperatures is believed to be PO x. Although the presence of PO x decreases activity for DMMP decomposition, some activity on the ceria surface remains even after 7 cycles of adsorption and reaction. The ceria films become reduced by multiple DMMP adsorption-reaction cycles, with the Ce +4 content dropping to 30% after seven cycles. Investigations of DMMP reaction on reduced ceria surfaces show that CO and H 2 are produced in addition to methanol and formaldehyde. Furthermore, DMMP decomposition activity on the reduced ceria films is almost completely inhibited after only 3 adsorption-reaction cycles. Similarities between DMMP and methanol chemistry on the ceria films suggest that methoxy is a key surface intermediate in both reactions.

  5. Dimethyl methylphosphonate Decomposition on fully Oxidized and Partially Reduced ceria Thin Films

    SciTech Connect

    Chen, D.; Ratliff, J; Hu, X; Gordon, W; Senanayake, S; Mullins, D

    2010-01-01

    The thermal decomposition of dimethyl methylphosphonate (DMMP) on crystalline ceria thin films grown on Ru(0 0 0 1) was studied by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS) and infrared absorption reflection spectroscopy (IRAS). TPD experiments show that methanol and formaldehyde desorb as the two main products at 575 K, while water, formaldehyde and CO are produced above 800 K. IRAS studies demonstrate that DMMP adsorbs via the phosphoryl oxygen at 200 K, but the P{double_bond}O bond converts to a bridging O{single_bond}P{single_bond}O species at 300 K. DMMP decomposition initially occurs via P{_}OCH{sub 3} bond scission to form methyl methylphosphonate (MMP) and methyl phosphonate (MP) between 300 and 500 K; XPS and IRAS data are consistent with a methoxy intermediate on the surface at these temperatures. The more stable P{_}CH{sub 3} bonds remain intact up to 700 K, and the only surface intermediate at higher temperatures is believed to be PO{sub x}. Although the presence of PO{sub x} decreases activity for DMMP decomposition, some activity on the ceria surface remains even after 7 cycles of adsorption and reaction. The ceria films become reduced by multiple DMMP adsorption-reaction cycles, with the Ce{sup +4} content dropping to 30% after seven cycles. Investigations of DMMP reaction on reduced ceria surfaces show that CO and H{sub 2} are produced in addition to methanol and formaldehyde. Furthermore, DMMP decomposition activity on the reduced ceria films is almost completely inhibited after only 3 adsorption-reaction cycles. Similarities between DMMP and methanol chemistry on the ceria films suggest that methoxy is a key surface intermediate in both reactions.

  6. Effect of surface acoustic waves on the catalytic decomposition of ethanol employing a comb transducer for ultrasonic generation

    SciTech Connect

    S. J. Reese; D. H. Hurley; H.W. Rollins

    2006-04-01

    The effect of surface acoustic waves, generated on a silver catalyst using a comb transducer, on the catalytic decomposition of ethanol is examined. The comb transducer employs purely mechanical means for surface acoustic wave (SAW) transduction. Unlike interdigital SAW transducers on piezoelectric substrates, the complicating effects of heat generation due to electromechanical coupling, high electric fields between adjacent electrodes, and acoustoelectric currents are avoided. The ethanol decomposition reactions are carried out at 473 K. The rates of acetaldehyde and ethylene production are retarded when acoustic waves are applied. The rates recover to varying degrees when acoustic excitation ceases.

  7. PARAFAC Decomposition for Ultrasonic Wave Sensing of Fiber Bragg Grating Sensors: Procedure and Evaluation.

    PubMed

    Zheng, Rencheng; Nakano, Kimihiko; Ohashi, Rui; Okabe, Yoji; Shimazaki, Mamoru; Nakamura, Hiroki; Wu, Qi

    2015-01-01

    Ultrasonic wave-sensing technology has been applied for the health monitoring of composite structures, using normal fiber Bragg grating (FBG) sensors with a high-speed wavelength interrogation system of arrayed waveguide grating (AWG) filters; however, researchers are required to average thousands of repeated measurements to distinguish significant signals. To resolve this bottleneck problem, this study established a signal-processing strategy that improves the signal-to-noise ratio for the one-time measured signal of ultrasonic waves, by application of parallel factor analysis (PARAFAC) technology that produces unique multiway decomposition without additional orthogonal or independent constraints. Through bandpass processing of the AWG filter and complex wavelet transforms, ultrasonic wave signals are preprocessed as time, phase, and frequency profiles, and then decomposed into a series of conceptual three-way atoms by PARAFAC. While an ultrasonic wave results in a Bragg wavelength shift, antiphase fluctuations can be observed at two adjacent AWG ports. Thereby, concentrating on antiphase features among the three-way atoms, a fitting atom can be chosen and then restored to three-way profiles as a final result. An experimental study has revealed that the final result is consistent with the conventional 1024-data averaging signal, and relative error evaluation has indicated that the signal-to-noise ratio of ultrasonic waves can be significantly improved. PMID:26198232

  8. PARAFAC Decomposition for Ultrasonic Wave Sensing of Fiber Bragg Grating Sensors: Procedure and Evaluation

    PubMed Central

    Zheng, Rencheng; Nakano, Kimihiko; Ohashi, Rui; Okabe, Yoji; Shimazaki, Mamoru; Nakamura, Hiroki; Wu, Qi

    2015-01-01

    Ultrasonic wave-sensing technology has been applied for the health monitoring of composite structures, using normal fiber Bragg grating (FBG) sensors with a high-speed wavelength interrogation system of arrayed waveguide grating (AWG) filters; however, researchers are required to average thousands of repeated measurements to distinguish significant signals. To resolve this bottleneck problem, this study established a signal-processing strategy that improves the signal-to-noise ratio for the one-time measured signal of ultrasonic waves, by application of parallel factor analysis (PARAFAC) technology that produces unique multiway decomposition without additional orthogonal or independent constraints. Through bandpass processing of the AWG filter and complex wavelet transforms, ultrasonic wave signals are preprocessed as time, phase, and frequency profiles, and then decomposed into a series of conceptual three-way atoms by PARAFAC. While an ultrasonic wave results in a Bragg wavelength shift, antiphase fluctuations can be observed at two adjacent AWG ports. Thereby, concentrating on antiphase features among the three-way atoms, a fitting atom can be chosen and then restored to three-way profiles as a final result. An experimental study has revealed that the final result is consistent with the conventional 1024-data averaging signal, and relative error evaluation has indicated that the signal-to-noise ratio of ultrasonic waves can be significantly improved. PMID:26198232

  9. Extracting planetary waves from geomagnetic time series using Empirical Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Frühauff, Dennis; Glassmeier, Karl-Heinz; Lockwood, Michael; Heyner, Daniel

    2015-07-01

    Empirical Mode Decomposition is presented as an alternative to traditional analysis methods to decompose geomagnetic time series into spectral components. Important comments on the algorithm and its variations will be given. Using this technique, planetary wave modes of 5-, 10-, and 16-day mean periods can be extracted from magnetic field components of three different stations in Germany. In a second step, the amplitude modulation functions of these wave modes can be shown to contain significant contribution from solar cycle variation through correlation with smoothed sunspot numbers. Additionally, the data indicate connections with geomagnetic jerk occurrences, supported by a second set of data providing reconstructed near-Earth magnetic field for 150 years. Usually attributed to internal dynamo processes within the Earth's outer core, the question of who is impacting whom will be briefly discussed here.

  10. Quantitative infrared spectroscopic analysis of SF 6 decomposition products obtained by electrical partial discharges and sparks using PLS-calibrations

    NASA Astrophysics Data System (ADS)

    Kurte, R.; Heise, H. M.; Klockow, D.

    2001-05-01

    Infrared spectroscopy is a powerful tool for the analysis of gaseous by-products in sulfur hexafluoride gas used as an insulator in high-voltage equipment. Sparks and electrical partial discharges were generated between different point-plane configurations within a custom-made discharge chamber constructed from stainless steel and Teflon ®. Various electrode materials were used such as stainless steel, copper, aluminium, silver, tungsten and tungsten/copper alloy. Owing to the different electrical conditions, a wide concentration range of the decomposition products existed. The main-products found were the sulfuroxyfluorides SOF 4 and SOF 2, as well as HF following experiments with partial discharges and sparking with energies around 1.0 J/spark. All infrared spectra were recorded using an FTIR-spectrometer equipped with a 10 cm gas cell. Quantification was carried out using classical least-squares and partial least-squares (PLS) with multivariate spectral data from selected intervals. PLS calibration models were also optimised under the constraint of a minimum number of spectral variables with a view to developing simple photometers based on a restricted number of laser wavelengths. Standard errors of prediction obtained by cross-validation of different PLS calibration models are reported for the compounds mentioned, as well as for SF 4, SO 2F 2 and SiF 4.

  11. An application of wavelet transform for decomposition of millimeter-wave spectroscopic signals

    SciTech Connect

    Gopalan, K.; Gopalsami, N.; Bakhtiari, S.; Raptis, A.C.

    1994-08-01

    Millimeter-wave technique, based on rotational energy transitions of molecules, holds promise for remote monitoring of environmentally hazardous effluents from processes. Argonne National Laboratory is developing a millimeter-wave sensor based on active swept-frequency radar technique in the frequency range of 220-320 GHz. Because the line widths of millimeter-wave spectra of molecules at atmospheric pressure are broad ({approximately} 4 GHz half-width at half height), the composite spectrum of multicomponent mixtures of chemicals is generally complex and overlapping. This paper presents an application of discrete wavelet transform for efficient representation and decomposition of millimeter-wave spectral data. A two-layer back propagation neural network is trained using multifrequency wavelet coefficients of the signals as input features and the known composition of different chemicals in the mixture as target output vectors. After training, composition of an unknown mixture of the base chemicals is determined using the wavelet representation of its absorption spectra. Simulated and experimental spectral data were used to test the wavelet transform technique. Accurate values of individual chemical compositions resulted for noise-free laboratory data. In addition, the technique showed more robustness than conventional multivariate techniques under noisy conditions.

  12. Spectral line polarization with angle-dependent partial frequency redistribution. I. A Stokes parameters decomposition for Rayleigh scattering

    NASA Astrophysics Data System (ADS)

    Frisch, H.

    2010-11-01

    Context. The linear polarization of a strong resonance lines observed near the solar limb is created by a multiple-scattering process. Partial frequency redistribution (PRD) effects must be accounted for to explain the polarization profiles. The redistribution matrix describing the scattering process is a sum of terms, each containing a PRD function multiplied by a Rayleigh type phase matrix. A standard approximation made in calculating the polarization is to average the PRD functions over all the scattering angles, because the numerical work needed to take the angle-dependence of the PRD functions into account is large and not always needed for reasonable evaluations of the polarization. Aims: This paper describes a Stokes parameters decomposition method, that is applicable in plane-parallel cylindrically symmetrical media, which aims at simplifying the numerical work needed to overcome the angle-average approximation. Methods: The decomposition method relies on an azimuthal Fourier expansion of the PRD functions associated to a decomposition of the phase matrices in terms of the Landi Degl'Innocenti irreducible spherical tensors for polarimetry T^K_Q(i, Ω) (i Stokes parameter index, Ω ray direction). The terms that depend on the azimuth of the scattering angle are retained in the phase matrices. Results: It is shown that the Stokes parameters I and Q, which have the same cylindrical symmetry as the medium, can be expressed in terms of four cylindrically symmetrical components I_Q^K (K = Q = 0, K = 2, Q = 0, 1, 2). The components with Q = 1, 2 are created by the angular dependence of the PRD functions. They go to zero at disk center, ensuring that Stokes Q also goes to zero. Each component I_Q^K is a solution to a standard radiative transfer equation. The source term S_Q^K are significantly simpler than the source terms corresponding to I and Q. They satisfy a set of integral equations that can be solved by an accelerated lambda iteration (ALI) method.

  13. Directional decomposition of the acoustic wave equation for fluids and metafluids in spherical geometries, with application to transformational acoustics

    NASA Astrophysics Data System (ADS)

    Olsson, Peter

    2016-03-01

    A new directional decomposition of the acoustic 3D wave equation is derived for spherically symmetric geometries, where the wave fields do not need to possess such a symmetry. This provides an alternative basis for various applications of techniques like invariant embedding and time domain Green functions in spherically symmetric geometries. Contrary to previous results on spherical wave splittings, the new decomposition is given in a very explicit form. The wave equation considered incorporates effects from radially varying compressibility and density, but also from anisotropic density, a property of certain so called metafluids. By applying the new spherical wave splitting, we show that all spherically symmetric acoustic metafluid cloaks are diffeomorphic images of a homogeneous and isotropic spherical ball of perfect fluid.

  14. Heating of ions by low-frequency Alfven waves in partially ionized plasmas

    SciTech Connect

    Dong Chuanfei; Paty, Carol S.

    2011-03-15

    In the solar atmosphere, the chromospheric and coronal plasmas are much hotter than the visible photosphere. The heating of the solar atmosphere, including the partially ionized chromosphere and corona, remains largely unknown. In this letter, we demonstrate that the ions can be substantially heated by Alfven waves with very low frequencies in partially ionized low-beta plasmas. This differs from other Alfven wave related heating mechanisms such as ion-neutral collisional damping of Alfven waves and heating described by previous work on resonant Alfven wave heating. We find that the nonresonant Alfven wave heating is less efficient in partially ionized plasmas than when there are no ion-neutral collisions, and the heating efficiency depends on the ratio of the ion-neutral collision frequency to the ion gyrofrequency.

  15. Partial reflections of radio waves from the lower ionosphere

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.; Tanenbaum, S. B.

    1972-01-01

    The addition of phase difference measurements to partial reflection experiments is discussed, and some advantages of measuring electron density this way are pointed out. The additional information obtained reduces the requirement for an accurate predetermination of collision frequency. Calculations are also made to estimate the errors expected in partial-reflection experiments due to the assumption of Fresnel reflection and to the neglect of coupling between modes. In both cases, the errors are found to be of the same order as known errors in the measurements due to current instrumental limitations.

  16. Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Bin; Li, Bo-Wen; Nie, Qiu-Yue; Wang, Xiao-Gang; Kong, Fan-Rong

    2016-05-01

    Propagation characteristics of electromagnetic (EM) waves in partially ionized plasma slabs are studied in this paper. Such features are significant to applications in plasma antennas, blackout of re-entry flying vehicles, wave energy injection to plasmas, and etc. We in this paper developed a theoretical model of EM wave propagation perpendicular to a plasma slab with a one-dimensional density inhomogeneity along propagation direction to investigate essential characteristics of EM wave propagation in nonuniform plasmas. Particularly, the EM wave propagation in sub-wavelength plasma slabs, where the geometric optics approximation fails, is studied and in comparison with thicker slabs where the geometric optics approximation applies. The influences of both plasma and collisional frequencies, as well as the width of the plasma slab, on the EM wave propagation characteristics are discussed. The results can help the further understanding of propagation behaviours of EM waves in nonuniform plasma, and applications of the interactions between EM waves and plasmas.

  17. Shock-wave structure in a partially ionized gas

    NASA Technical Reports Server (NTRS)

    Lu, C. S.; Huang, A. B.

    1974-01-01

    The structure of a steady plane shock in a partially ionized gas has been investigated using the Boltzmann equation with a kinetic model as the governing equation and the discrete ordinate method as a tool. The effects of the electric field induced by the charge separation on the shock structure have also been studied. Although the three species of an ionized gas travel with approximately the same macroscopic velocity, the individual distribution functions are found to be very different. In a strong shock the atom distribution function may have double peaks, while the ion distribution function has only one peak. Electrons are heated up much earlier than ions and atoms in a partially ionized gas. Because the interactions of electrons with atoms and with ions are different, the ion temperature can be different from the atom temperature.

  18. Treatment of ion-atom collisions using a partial-wave expansion of the projectile wavefunction

    SciTech Connect

    Foster, M; Colgan, J; Wong, T G; Madison, D H

    2008-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge scattering quantities. Here we show that such calculations are possible using modern high-performance computing. We demonstrate the utility of our method by examining elastic scattering of protons by hydrogen and helium atoms, problems familiar to undergraduate students of atomic scattering. Application to ionization of helium using partial-wave expansions of the projectile wavefunction, which has long been desirable in heavy-ion collision physics, is thus quite feasible.

  19. Analysis of infragravity waves using Complete Ensemble Empirical Mode Decomposition (CEEMD) on microtidal and macrotidal beaches

    NASA Astrophysics Data System (ADS)

    Montaño Muñoz, Jennifer; Osorio Arias, Andres; Winter, Christian; Didenkulova, Ira; Otero, Luis

    2015-04-01

    Infragravity waves are long waves with periods between ~ 20 s and 300 s, these waves may dominate the hydrodynamics in the surf and swash zones, being the main driver of sediment transport and swash elevation (run-up). Data of pressure sensors at different cross-shore positions and camera systems that capture the swash excursion in a micro-tidal beach (Cartagena, Colombia, Caribbean Sea) and a macro-tidal beach (Norderney, Germany, North Sea) were analyzed to study the occurrence and temporal and spatial variability of infragravity waves. We used the Complete Ensemble Empirical Mode Decomposition (CEEMD) to decompose the time series into a finite set of "intrinsic mode functions" (IMFs). This method overcomes limitations of Fourier-based methods for time series analysis (e.g. FFT and wavelet techniques) that assume linear and stationary data. CEEMD was designed to analyze non-linear and non-stationary phenomena (as those in shallow waters), identifying processes with small amplitudes and low energy hidden in the data. A comparison with the Fourier spectrum shows the superiority of CEEMD to describe the behavior of ingragravity waves. Fourier spectra do not show infragravity energy in deeper waters; additionally, in shallow waters the energy of the spectra is spread in the infragravity band differing among sea states, therefore is not possible identifying a characteristic spectrum. On the other hand, with CEEMD the IMFs in the infragravity frequencies are observed in deeper waters, and the energy evolution cross-shore until the swash zone is shown at both beaches; furthermore, CEEMD shows the frequency clustering of the energy, allowing to see the gains or losses of energy at different frequencies. At the micro-tidal beach (Cartagena), infragravity energy is dominant in surf and swash zones for all analyzed sea states, with dominant energy in the IMF of about 100 s of period, showing infragravity wave selection. On the contrary, at the macro-tidal beach (Norderney

  20. An algorithm for the calculation of the partial wave expansion of the Coulomb-distorted plane wave

    NASA Astrophysics Data System (ADS)

    Hornyak, I.; Kruppa, A. T.

    2015-12-01

    The partial wave expansion of the Coulomb-distorted plane wave is determined by the help of the complex generalized hypergeometric function 2F2(a , a ; a + l + 1 , a - l ; z) . An algorithm for the calculation of 2F2(a , a ; a + l + 1 , a - l ; z) is created and it is implemented as a FORTRAN-90 code. The code is fast and its accuracy is 14 significant decimal digits.

  1. Evaluation of partial widths and branching ratios from resonance wave functions

    SciTech Connect

    Goldzak, Tamar; Gilary, Ido; Moiseyev, Nimrod

    2010-11-15

    A quantum system in a given resonance state has different open channels for decay. Partial widths are the decay rates of the resonance (metastable) state into the different open channels. Here we present a rigorous derivation of the partial widths from the solution of a time-dependent Schroedinger equation with outgoing boundary conditions. We show that the sum of the partial widths obtained from the resonance wave function is equal to the total width. The difference with respect to previous studies on partial widths and branching ratios is discussed.

  2. The Method of Decomposition in Invariant Structures: Exact Solutions for N Internal Waves in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Miroshnikov, Victor

    2015-11-01

    The Navier-Stokes system of PDEs is reduced to a system of the vorticity, continuity, Helmholtz, and Lamb-Helmholtz PDEs. The periodic Dirichlet problems are formulated for conservative internal waves vanishing at infinity in upper and lower domains. Stationary kinematic Fourier (SKF) structures, stationary kinematic Euler-Fourier (SKEF) structures, stationary dynamic Euler-Fourier (SDEF) structures, and SKEF-SDEF structures of three spatial variables and time are constructed to consider kinematic and dynamic problems of the three-dimensional theory of the Newtonian flows with harmonic velocity. Exact solutions for propagation and interaction of N internal waves in the upper and lower domains are developed by the method of decomposition in invariant structures and implemented through experimental and theoretical programming in Maple. Main results are summarized in a global existence theorem for the strong solutions. The SKEF, SDEF, and SKEF-SDEF structures of the cumulative flows are visualized by two-parametric surface plots for six fluid-dynamic variables.

  3. Probing disturbances over canadian ionosphere using advance data analysis of wave decomposition

    NASA Astrophysics Data System (ADS)

    Kherani, Esfhan

    2016-07-01

    Using CHAIN network of GPS receivers, we present disturbances in total electron content (TEC) of the ionosphere on magnetically quiet day of 8 December 2009 and construct travel-time diagram to understand the propagation characteristics of these disturbances. We employ the wave decomposition method to identify the TEC disturbances. We found N-shaped amplified TEC disturbances at higher latitude around 80 N that appear during intensification of ionospheric current at ˜11 UT, suggesting them to be associated with energy input from magnetosphere. These TEC disturbances have spectral peak in between 55-65 minutes, originate in the vicnity of (80N,270W), propagate both southeastward and southwestward with similar velocity ˜80 m/s and arrives at latitude ˜55N around 20 UT. These propagation characteristcs classify them as medium-scale Traveling ionospheric disturbances (MSTIDs) and possibly of gravity wave origin. Noteworthy results of our study are following: (1) presence of dayside MSTIDs whose nightside counterpart is recently reported by Shiokawa et al (2012), (2) long-distance ˜2500 km propagation of dayside MSTIDs that is not reported for the nightside counterpart, (3) dayside MSIDs acquire largest amplitudes in 65-75 during 15-17 UT, similar to the nightside MSTIDs, (4) amplification of amplitudes of MSTIDs in the auroral oval latitudes and (5) identification of driving sources in two latitudes that enable them to propagate long distance.

  4. Experimental methodology for turbocompressor in-duct noise evaluation based on beamforming wave decomposition

    NASA Astrophysics Data System (ADS)

    Torregrosa, A. J.; Broatch, A.; Margot, X.; García-Tíscar, J.

    2016-08-01

    An experimental methodology is proposed to assess the noise emission of centrifugal turbocompressors like those of automotive turbochargers. A step-by-step procedure is detailed, starting from the theoretical considerations of sound measurement in flow ducts and examining specific experimental setup guidelines and signal processing routines. Special care is taken regarding some limiting factors that adversely affect the measuring of sound intensity in ducts, namely calibration, sensor placement and frequency ranges and restrictions. In order to provide illustrative examples of the proposed techniques and results, the methodology has been applied to the acoustic evaluation of a small automotive turbocharger in a flow bench. Samples of raw pressure spectra, decomposed pressure waves, calibration results, accurate surge characterization and final compressor noise maps and estimated spectrograms are provided. The analysis of selected frequency bands successfully shows how different, known noise phenomena of particular interest such as mid-frequency "whoosh noise" and low-frequency surge onset are correlated with operating conditions of the turbocharger. Comparison against external inlet orifice intensity measurements shows good correlation and improvement with respect to alternative wave decomposition techniques.

  5. Analysis of non linear partially standing waves from 3D velocity measurements

    NASA Astrophysics Data System (ADS)

    Drevard, D.; Rey, V.; Svendsen, Ib; Fraunie, P.

    2003-04-01

    Surface gravity waves in the ocean exhibit an energy spectrum distributed in both frequency and direction of propagation. Wave data collection is of great importance in coastal zones for engineering and scientific studies. In particular, partially standing waves measurements near coastal structures and steep or barred beaches may be a requirement, for instance for morphodynamic studies. The aim of the present study is the analysis of partially standing surface waves icluding non-linear effects. According to 1st order Stokes theory, synchronous measurements of horizontal and vertical velocity components allow calculation of rate of standing waves (Drevard et al, 2003). In the present study, it is demonstrated that for deep water conditions, partially standing 2nd order Stokes waves induced velocity field is still represented by the 1st order solution for the velocity potential contrary to the surface elevation which exhibits harmonic components. For intermediate water depth, harmonic components appear not only in the surface elevation but also in the velocity fields, but their weight remains much smaller, because of the vertical decreasing wave induced motion. For irregular waves, the influence of the spectrum width on the non-linear effects in the analysis is discussed. Keywords: Wave measurements ; reflection ; non-linear effects Acknowledgements: This work was initiated during the stay of Prof. Ib Svendsen, as invited Professor, at LSEET in autumn 2002. This study is carried out in the framework of the Scientific French National Programmes PNEC ART7 and PATOM. Their financial supports are acknowledged References: Drevard, D., Meuret, A., Rey, V. Piazzola, J. And Dolle, A.. (2002). "Partially reflected waves measurements using Acoustic Doppler Velocimeter (ADV)", Submitted to ISOPE 03, Honolulu, Hawaii, May 2003.

  6. Partial-wave analysis for elastic p{sup 13}C scattering at astrophysical energies

    SciTech Connect

    Dubovichenko, S. B.

    2012-03-15

    A standard partial-wave analysis was performed on the basis of known measurements of differential cross sections for elastic p{sup 13}C scattering at energies in the range 250-750 keV. This analysis revealed that, in the energy range being considered, it is sufficient to take into account the {sup 3}S{sub 1} wave alone. A potential for the triplet {sup 3}S{sub 1}-wave state of the p{sup 13}C system in the region of the J{sup p}T = 1{sup -1} resonance at 0.55 MeV was constructed on the basis of the phase shifts obtained from the aforementioned partial-wave analysis.

  7. Dynamic mode decomposition identifies internal wave and vortical modes in stably stratified wakes

    NASA Astrophysics Data System (ADS)

    Xiang, Xinjiang; Chen, Kevin; Madison, Trystan; Spedding, Geoffrey

    2015-11-01

    Though detailed information has been assembled to describe the late wakes behind various objects in stably stratified fluids, less is known about the dynamics at early stages, when the flow first interacts with the ambient density gradient, beginning the transition to the late wake regime. Detailed velocity fields (and derivatives) were reported by Xiang et al. (J. Fluid Mech. 775, 149-177, 2015) for the near wake of a towed grid, with Re ∈ { 2700 , 11000 } and Fr ∈ { 0 . 6 , 9 . 1 } . Here using dynamic mode decomposition (DMD), the spatial and temporal evolution of the lee wave and shearing modes are extracted and examined for the same data set. Both dynamic modes show systematic dependence on Fr and Re, consistent with previous analysis. The results show the potential of DMD in analyzing the contribution of different modes in a complex, near wake evolution, including, but not limited to towed grids, and the wakes of more complicated towed geometries. Support from ONR N00014-11-1-0553 is most gratefully acknowledged.

  8. Study of shock wave boundary layer interaction phenonemon using color schlieren and snapshot Proper Orthogonal Decomposition

    NASA Astrophysics Data System (ADS)

    Chaganti Subrahmanya Datta, Narendra

    The flow structure of shockwave boundary layer interaction (SWBLI) has been studied using Rainbow Schlieren Deflectometry (RSD), Ensemble Averaging, Fast Fourier Transform (FFT), and snapshot Proper Orthogonal Decomposition (POD) techniques. The Mach number of the approach free-stream was Mach = 3. Shockwave was generated with a 12° wedge. The color schlieren pictures are used to determine the transverse ray deflections at each pixel of the pictures taken using a high speed camera. The interaction region structure is described statistically with the ensemble average and, root mean square deflections. FFT technique is used to determine the dominant frequencies at different regions of the flow field. Results indicate that low frequency oscillations dominate the flow field. The POD technique results complement the findings of the ensemble averaging technique and show that distinct regions contain most of the energy in the flow field. These distinct regions are located around the reflected shock, around the shock wave reaching into the approach boundary layer and around the separation region over the edge of the separation bubble.

  9. Wave interaction with a partially reflecting vertical wall protected by a submerged porous bar

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Liu, Yong; Li, Huajun

    2016-08-01

    This study gives an analytical solution for wave interaction with a partially reflecting vertical wall protected by a submerged porous bar based on linear potential theory. The whole study domain is divided into multiple sub-regions in relation to the structures. The velocity potential in each sub-region is written as a series solution by the separation of variables. A partially reflecting boundary condition is used to describe the partial reflection of a vertical wall. Unknown expansion coefficients in the series solutions are determined by matching velocity potentials among different sub-regions. The analytical solution is verified by an independently developed multi-domain boundary element method (BEM) solution and experimental data. The wave run-up and wave force on the partially reflecting vertical wall are estimated and examined, which can be effectively reduced by the submerged porous bar. The horizontal space between the vertical wall and the submerged porous bar is a key factor, which affects the sheltering function of the porous bar. The wave resonance between the porous bar and the vertical wall may disappear when the vertical wall has a low reflection coefficient. The present analytical solution may be used to determine the optimum parameters of structures at a preliminary engineering design stage.

  10. Modelling ultrasonic array signals in multilayer anisotropic materials using the angular spectrum decomposition of plane wave responses

    NASA Astrophysics Data System (ADS)

    Humeida, Yousif; Pinfield, Valerie J.; Challis, Richard E.

    2013-08-01

    Ultrasonic arrays have seen increasing use for the characterisation of composite materials. In this paper, ultrasonic wave propagation in multilayer anisotropic materials has been modelled using plane wave and angular spectrum decomposition techniques. Different matrix techniques, such as the stiffness matrix method and the transfer matrix method, are used to calculate the reflection and transmission coefficients of ultrasonic plane waves in the considered media. Then, an angular decomposition technique is used to derive the bounded beams from finite-width ultrasonic array elements from the plane wave responses calculated earlier. This model is considered to be an analytical exact solution for the problem; hence the diffraction of waves in such composite materials can be calculated for different incident angles for a very wide range of frequencies. This model is validated against experimental measurements using the Full-Matrix Capture (FMC) of array data in both a homogeneous isotropic material, i.e. aluminium, and an inhomogeneous multilayer anisotropic material, i.e. a carbon fibre reinforced composite.

  11. Decomposition of methanol on partially alumina-encapsulated Pt nanoclusters supported on thin film Al2O3/NiAl(1 0 0)

    NASA Astrophysics Data System (ADS)

    Chao, C. S.; Li, Y. D.; Liao, T. W.; Hung, T. C.; Luo, M. F.

    2014-08-01

    Various surface probe techniques were applied to investigate the decomposition of methanol on partially alumina-encapsulated Pt nanoclusters on an ordered thin film of Al2O3/NiAl(1 0 0). The alumina-encapsulated Pt clusters were prepared on annealing Pt clusters (grown by vapor deposition onto the Al2O3/NiAl(1 0 0) at 300 K) to 650 K under UHV conditions. The annealed cluster became a Pt1+-Pt2+ state and partially encapsulated with inert alumina. Methanol on the partially encapsulated Pt clusters decomposed only on the uncovered Pt sites, and through both dehydrogenation to CO and scission of the C-O bond. In comparison to the reactions on Pt clusters, the C-O bond scission was altered little on the partially encapsulated clusters whereas the dehydrogenation was hindered to a certain extent. The quantities of CO and hydrogen produced from the dehydrogenation per surface Pt on the partially encapsulated clusters amounted to only half those on Pt clusters. The altered methanol decomposition was correlated to both electronic and ensemble effects.

  12. A poroelastic model for ultrasonic wave attenuation in partially frozen brines

    NASA Astrophysics Data System (ADS)

    Matsushima, Jun; Nibe, Takao; Suzuki, Makoto; Kato, Yoshibumi; Rokugawa, Shuichi

    2011-02-01

    Although there are many possible mechanisms for the intrinsic seismic attenuation in composite materials that include fluids, relative motion between solids and fluids during seismic wave propagation is one of the most important attenuation mechanisms. In our previous study, we conducted ultrasonic wave transmission measurements on an ice-brine coexisting system to examine the influence on ultrasonic waves of the unfrozen brine in the pore microstructure of ice. In order to elucidate the physical mechanism responsible for ultrasonic wave attenuation in the frequency range of 350-600kHz, measured at different temperatures in partially frozen brines, we employed a poroelastic model based on the Biot theory to describe the propagation of ultrasonic waves through partially frozen brines. By assuming that the solid phase is ice and the liquid phase is the unfrozen brine, fluid properties measured by a pulsed nuclear magnetic resonance technique were used to calculate porosities at different temperatures. The computed intrinsic attenuation at 500kHz cannot completely predict the measured attenuation results from the experimental study in an ice-brine coexisting system, which suggests that other attenuation mechanisms such as the squirt-flow mechanism and wave scattering effect should be taken into account.

  13. Simultaneous observations of gravity waves in auroras and partial reflection radar data

    NASA Astrophysics Data System (ADS)

    Roldugin, Valentin; Cherniakov, Sergey; Roldugin, Aleksey

    2016-07-01

    Some events of wave-like patterns of night sky intensity were revealed from the obtained data of the all-sky camera at the observatory "Lovozero" (67.97 N, 35.02 E). Their wave-lengths were about several tens kilometers and their time periods were about 15-30 minutes. We consider the wave-like structures as manifestation of acoustic-gravity waves. Two cases (28 January 2012 and 26 February 2012) were compared with the data of the partial reflection radar at the observatory "Tumanny" (69.0 N, 35.7 E). At these cases peaks of reflection intensity took place at 80-90 km, and the intensity on these altitudes oscillated with periods which were similar to the luminous ones.

  14. Mixing of partial waves near B*B̄* threshold in e⁺e⁻ annihilation

    SciTech Connect

    Li, Xin; Voloshin, M. B.

    2013-05-31

    We consider the production of B*B̄* meson pairs in e⁺e⁻ annihilation near the threshold. The rescattering due to pion exchange between the mesons results in a mixing between three partial wave amplitudes: two P-wave amplitudes with the total spin of the meson pair S=0 and S=2 and an F-wave amplitude. The mixing due to pion exchange with a low momentum transfer is calculable up to c.m. energy E≈15–20 MeV above the threshold. We find that the P–F mixing is numerically quite small in this energy range, while the mixing of the two P-wave amplitudes is rapidly changing with energy and can reach of order one at such low energies.

  15. Mixing of partial waves near B*B̄* threshold in e⁺e⁻ annihilation

    DOE PAGESBeta

    Li, Xin; Voloshin, M. B.

    2013-05-31

    We consider the production of B*B̄* meson pairs in e⁺e⁻ annihilation near the threshold. The rescattering due to pion exchange between the mesons results in a mixing between three partial wave amplitudes: two P-wave amplitudes with the total spin of the meson pair S=0 and S=2 and an F-wave amplitude. The mixing due to pion exchange with a low momentum transfer is calculable up to c.m. energy E≈15–20 MeV above the threshold. We find that the P–F mixing is numerically quite small in this energy range, while the mixing of the two P-wave amplitudes is rapidly changing with energy andmore » can reach of order one at such low energies.« less

  16. Raman rogue waves in a partially mode-locked fiber laser.

    PubMed

    Runge, Antoine F J; Aguergaray, Claude; Broderick, Neil G R; Erkintalo, Miro

    2014-01-15

    We report on an experimental study of spectral fluctuations induced by intracavity Raman conversion in a passively partially mode-locked, all-normal dispersion fiber laser. Specifically, we use dispersive Fourier transformation to measure single-shot spectra of Raman-induced noise-like pulses, demonstrating that for low cavity gain values Raman emission is sporadic and follows rogue-wave-like probability distributions, while a saturated regime with Gaussian statistics is obtained for high pump powers. Our experiments further reveal intracavity rogue waves originating from cascaded Raman dynamics. PMID:24562136

  17. Partial Reflection and Trapping of a Fast-mode Wave in Solar Coronal Arcade Loops

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Innes, D. E.

    2015-04-01

    We report on the first direct observation of a fast-mode wave propagating along and perpendicular to cool (171 Å) arcade loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA). The wave was associated with an impulsive/compact flare near the edge of a sunspot. The EUV wavefront expanded radially outward from the flare center and decelerated in the corona from 1060 to 760 km s-1 within ˜3-4 minutes. Part of the EUV wave propagated along a large-scale arcade of cool loops and was partially reflected back to the flare site. The phase speed of the wave was about 1450 km s-1, which is interpreted as a fast-mode wave. A second overlying loop arcade, orientated perpendicular to the cool arcade, is heated and becomes visible in the AIA hot channels. These hot loops sway in time with the EUV wave, as it propagated to and fro along the lower loop arcade. We suggest that an impulsive energy release at one of the footpoints of the arcade loops causes the onset of an EUV shock wave that propagates along and perpendicular to the magnetic field.

  18. Trapped internal waves over undular topography in a partially mixed estuary

    NASA Astrophysics Data System (ADS)

    Pietrzak, J.; Labeur, R. J.

    The flow of a stratified fluid over small-scale topographic features in an estuary may generate significant internal wave activity. Lee waves and upstream influence generated at isolated topographic features have received considerable attention during the past few decades. Field surveys of a partially mixed estuary, the Rotterdam Waterway, in 1987, also showed a plethora of internal wave activity generated by isolated topography, banks and groynes. Additionally it revealed a spectacular series of resonant internal waves trapped above low-amplitude bed waves. The internal waves reached amplitudes of 3-4 m in an estuary with a mean depth of 16 m. The waves were observed during the decreasing flood tide and are thought to make a significant contribution to turbulence production and mixing. However, while stationary linear and finite amplitude theories can be used to explain the presence of these waves, it is important to further investigate their time-dependent and non-linear behaviour. With the development of advanced non-hydrostatic models it now becomes possible to further investigate these waves through numerical experimentation. This is the focus of the work presented here. The non-hydrostatic finite element numerical model FINEL3D developed by Labeur was used in the experiments presented here. The model has been shown to work well in a number of stratified flow investigations. Here, we first show that the model reproduces the field data and for idealised stationary flow scenarios that the results are in agreement with the resonant response predicted by linear theory. Then we explore the effects of non-linearity and time dependence and consider the importance of resonant internal waves for turbulence production in stratified coastal environments.

  19. Coherent vorticity extraction in resistive drift-wave turbulence: Comparison of orthogonal wavelets versus proper orthogonal decomposition

    NASA Astrophysics Data System (ADS)

    Futatani, Shimpei; Bos, Wouter J. T.; del-Castillo-Negrete, Diego; Schneider, Kai; Benkadda, Sadruddin; Farge, Marie

    2011-03-01

    We assess two techniques for extracting coherent vortices out of turbulent flows: the wavelet based Coherent Vorticity Extraction (CVE) and the Proper Orthogonal Decomposition (POD). The former decomposes the flow field into an orthogonal wavelet representation and subsequent thresholding of the coefficients allows one to split the flow into organized coherent vortices with non-Gaussian statistics and an incoherent random part which is structureless. POD is based on the singular value decomposition and decomposes the flow into basis functions which are optimal with respect to the retained energy for the ensemble average. Both techniques are applied to direct numerical simulation data of two-dimensional drift-wave turbulence governed by Hasegawa-Wakatani equation, considering two limit cases: the quasi-hydrodynamic and the quasi-adiabatic regimes. The results are compared in terms of compression rate, retained energy, retained enstrophy and retained radial flux, together with the enstrophy spectrum and higher order statistics.

  20. A Rosetta Stone Relating Conventions In Photo-Meson Partial Wave Analyses

    SciTech Connect

    A.M. Sandorfi, B. Dey, A. Sarantsev, L. Tiator, R. Workman

    2012-04-01

    A new generation of complete experiments in pseudoscalar meson photo-production is being pursued at several laboratories. While new data are emerging, there is some confusion regarding definitions of asymmetries and the conventions used in partial wave analyses (PWA). We present expressions for constructing asymmetries as coordinate-system independent ratios of cross sections, along with the names used for these ratios by different PWA groups.

  1. O (p6) extension of the large-NC partial wave dispersion relations

    NASA Astrophysics Data System (ADS)

    Guo, Z. H.; Sanz-Cillero, J. J.; Zheng, H. Q.

    2008-04-01

    Continuing our previous work [Z.H. Guo, J.J. Sanz-Cillero, H.Q. Zheng, JHEP 0706 (2007) 030], large-NC techniques and partial wave dispersion relations are used to discuss ππ scattering amplitudes. We get a set of predictions for O (p6) low-energy chiral perturbation theory couplings. They are provided in terms of the masses and decay widths of scalar and vector mesons.

  2. Non-partial wave treatment of reactive and non-reactive scattering Coupled integral equation formalism.

    NASA Technical Reports Server (NTRS)

    Hayes, E. F.; Kouri, D. J.

    1971-01-01

    Coupled integral equations are derived for the full scattering amplitudes for both reactive and nonreactive channels. The equations do not involve any partial wave expansion and are obtained using channel operators for reactive and nonreactive collisions. These coupled integral equations are similar in nature to equations derived for purely nonreactive collisions of structureless particles. Using numerical quadrature techniques, these equations may be reduced to simultaneous algebraic equations which may then be solved.

  3. Phase Transitions and Phase Decomposition of La{1-x}Sr{x}CoO{3-delta} in Low Oxygen Partial Pressures

    SciTech Connect

    Ovenstone,J.; White, J.; Misture, S.

    2008-01-01

    High-temperature X-ray diffraction has been used to investigate the phase stability of lanthanum strontium cobalt oxide (LSC) for a range of materials with the formula La1-xSrxCoO3-{delta} (x = 0.7, 0.4, and 0.2). The stability of LSC increases with La content in low oxygen partial pressures at high temperature. Oxygen vacancy ordering has been observed for all three compositions in either low oxygen pressure or under reducing gas, as evidenced by the formation of the brownmillerite phase. The crystal structure of the vacancy-ordered phase was determined using Rietveld analysis of synchrotron X-ray diffraction data. The decomposition products under low oxygen pressure and in reducing conditions have been identified and characterized, including the phase transition and thermal expansion of the primary decomposition products, LaSrCoO4 and LaSrCoO3.5.

  4. Plateau Waves of Intracranial Pressure and Partial Pressure of Cerebral Oxygen.

    PubMed

    Lang, Erhard W; Kasprowicz, Magdalena; Smielewski, Peter; Pickard, John; Czosnyka, Marek

    2016-01-01

    This study investigates 55 intracranial pressure (ICP) plateau waves recorded in 20 patients after severe traumatic brain injury (TBI) with a focus on a moving correlation coefficient between mean arterial pressure (ABP) and ICP, called PRx, which serves as a marker of cerebrovascular reactivity, and a moving correlation coefficient between ABP and cerebral partial pressure of oxygen (pbtO2), called ORx, which serves as a marker for cerebral oxygen reactivity. ICP and ICPamplitude increased significantly during the plateau waves, whereas CPP and pbtO2 decreased significantly. ABP, ABP amplitude, and heart rate remained unchanged. In 73 % of plateau waves PRx increased during the wave. ORx showed an increase during and a decrease after the plateau waves, which was not statistically significant. Our data show profound cerebral vasoparalysis on top of the wave and, to a lesser extent, impairment of cerebral oxygen reactivity. The different behavior of the indices may be due to the different latencies of the cerebral blood flow and oxygen level control mechanisms. While cerebrovascular reactivity is a rapidly reacting mechanism, cerebral oxygen reactivity is slower. PMID:27165902

  5. Using a partial-wave method for sound-mean-flow scattering problems.

    PubMed

    Berthet, R; Coste, C

    2003-03-01

    We present a semianalytical method, based on a partial-wave expansion and valid in the short wavelength limit for small Mach number flows, to analyze sound-vortical-flow interactions. It is more powerful than ray-tracing methods because it gives both amplitude and phase of the sound wave, and because it is less restrictive on the smallness of the wavelength. In contrast with the Born approximation approach, this method allows the computation of the sound field in the whole interaction domain (including the near field), and preserves energy conservation. Vortical flows with finite circulation are amenable to our analysis, which gives a satisfactory description of wave front dislocation by vorticity, in good agreement with direct numerical simulations. We extend previous versions of this method to the case of smooth vorticity profiles which are observed in aeroacoustics experiments. PMID:12689176

  6. Heating of the Partially Ionized Solar Chromosphere by Waves in Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Shelyag, S.; Khomenko, E.; de Vicente, A.; Przybylski, D.

    2016-03-01

    In this paper, we show a “proof of concept” of the heating mechanism of the solar chromosphere due to wave dissipation caused by the effects of partial ionization. Numerical modeling of non-linear wave propagation in a magnetic flux tube, embedded in the solar atmosphere, is performed by solving a system of single-fluid quasi-MHD equations, which take into account the ambipolar term from the generalized Ohm’s law. It is shown that perturbations caused by magnetic waves can be effectively dissipated due to ambipolar diffusion. The energy input by this mechanism is continuous and shown to be more efficient than dissipation of static currents, ultimately leading to chromospheric temperature increase in magnetic structures.

  7. Shock wave and modeling study of the thermal decomposition reactions of pentafluoroethane and 2-H-heptafluoropropane.

    PubMed

    Cobos, C J; Sölter, L; Tellbach, E; Troe, J

    2014-06-01

    The thermal decomposition reactions of CF3CF2H and CF3CFHCF3 have been studied in shock waves by monitoring the appearance of CF2 radicals. Temperatures in the range 1400-2000 K and Ar bath gas concentrations in the range (2-10) × 10(-5) mol cm(-3) were employed. It is shown that the reactions are initiated by C-C bond fission and not by HF elimination. Differing conclusions in the literature about the primary decomposition products, such as deduced from experiments at very low pressures, are attributed to unimolecular falloff effects. By increasing the initial reactant concentrations in Ar from 60 to 1000 ppm, a retardation of CF2 formation was observed while the final CF2 yields remained close to two CF2 per C2F5H or three CF2 per C3F7H decomposed. This is explained by secondary bimolecular reactions which lead to comparably stable transient species like CF3H, releasing CF2 at a slower rate. Quantum-chemical calculations and kinetic modeling help to identify the reaction pathways and provide estimates of rate constants for a series of primary and secondary reactions in the decomposition mechanism. PMID:24352693

  8. Highly directive Fabry-Perot leaky-wave nanoantennas based on optical partially reflective surfaces

    SciTech Connect

    Lorente-Crespo, M.; Mateo-Segura, C.

    2015-05-04

    Nanoantennas enhance the conversion between highly localized electromagnetic fields and far-field radiation. Here, we investigate the response of a nano-patch partially reflective surface backed with a silver mirror to an optical source embedded at the centre of the structure. Using full wave simulations, we demonstrate a two orders of magnitude increased directivity compared to the isotropic radiator, 50% power confinement to a 13.8° width beam and a ±16 nm bandwidth. Our antenna does not rely on plasmonic phenomena thus reducing non-radiative losses and conserving source coherence.

  9. Partial-wave analysis of all nucleon-nucleon scattering data below 350 MeV

    SciTech Connect

    Stoks, V.G.J.; Klomp, R.A.M.; Rentmeester, M.C.M.; de Swart, J.J. )

    1993-08-01

    We present a multienergy partial-wave analysis of all [ital NN] scattering data below [ital T][sub lab]=350 MeV, published in a regular physics journal between 1955 and 1992. After careful examination, our final database consists of 1787 [ital pp] and 2514 [ital np] scattering data. Our fit to these data results in [chi][sup 2]/[ital N][sub df]=1.08, with [ital N][sub df]=3945 the total number of degrees of freedom. All phase shifts and mixing parameters can be determined accurately.

  10. SAID Partial Wave Analyses from CNS DAC (Center for Nuclear Studies Data Analysis Center)

    DOE Data Explorer

    George Washington University (GW) has one of the largest university-based nuclear-physics groups in the nation. Many of the current and future projects are geared to Thomas Jefferson National Accelerator Facility (JLab) at Newport News, VA. JLab is the world's premier electron accelerator for nuclear physics, and GW is one of the charter members of the governing body of JLab, the Southeastern Universities Research Association (SURA). The George Washington Data Analysis Center (DAC) was created in 1998 by an agreement among the Department of Energy, Jefferson Lab, and the GW Center for Nuclear Studies.The activities of the DAC fall into four distinct categories: 1) Performing partial-wave analyses of fundamental two- and three-body reactions; 2) Maintenance of databases associated with these reactions; 3) Development of software to disseminate DAC results (as well as the results of competing model-independent analyses and potential approaches); and 4) Phenomenological and theoretical investigations which bridge the gap between theory and experiment; in particular, the extraction of N* and D * hadronic and electromagnetic couplings. Partial Wave Analyses (and the associated databases) available at GW are: Pion-Nucleon, Kaon-Nucleon, Nucleon-Nucleon, Pion Photoproduction, Pion Electroproduction, Kaon Photoproduction, Eta Photoproduction, Eta-Prime Photoproduction, Pion-Deuteron (elastic), and Pion-Deuteron to Proton+Proton. [Taken from http://www.gwu.edu/~ndl/dac.htm">http://www.gwu.edu/~ndl/dac.htm

  11. Conditions for invariant spectrum of light generated by scattering of partially coherent wave from quasi-homogeneous medium

    NASA Astrophysics Data System (ADS)

    Li, Jia; Wu, Pinghui; Chang, Liping

    2016-02-01

    Within the first-order Born approximation, the spectrum of light generated by the scattering of a partially coherent wave from a quasi-homogeneous (QH) medium is derived. In particular, the partially coherent incident wave is produced by Young's pinholes. It is shown that the spectrum of the scattered field is identical to the spectrum of incident plane waves if the Fourier transform of the normalized correlation coefficient (NCC) of the scattering potential satisfies a certain scaling law. The scaling law is valid when the medium size is sufficiently small compared with the space between Young' pinholes. Furthermore, comparisons are made between our conditions with the previous results.

  12. Two-atom energy spectrum in a harmonic trap near a Feshbach resonance at higher partial waves

    NASA Astrophysics Data System (ADS)

    Suzuki, Akira; Liang, Yi; Bhaduri, Rajat K.

    2009-09-01

    Two atoms in an optical lattice may be made to interact strongly at higher partial waves near a Feshbach resonance. These atoms, under appropriate constraints, could be bosonic or fermionic. The universal l=2 energy spectrum for such a system, with a caveat, is presented in this paper and checked with the spectrum obtained by direct numerical integration of the Schrödinger equation. The results reported here extend those of Yip for p -wave resonance [S.-K. Yip, Phys. Rev. A 78, 013612 (2008)], while exploring the limitations of a universal expression for the spectrum for the higher partial waves.

  13. Gaussian beam decomposition of high frequency wave fields using expectation-maximization

    SciTech Connect

    Ariel, Gil; Engquist, Bjoern; Tanushev, Nicolay M.; Tsai, Richard

    2011-03-20

    A new numerical method for approximating highly oscillatory wave fields as a superposition of Gaussian beams is presented. The method estimates the number of beams and their parameters automatically. This is achieved by an expectation-maximization algorithm that fits real, positive Gaussians to the energy of the highly oscillatory wave fields and its Fourier transform. Beam parameters are further refined by an optimization procedure that minimizes the difference between the Gaussian beam superposition and the highly oscillatory wave field in the energy norm.

  14. Computation of dispersion relations for axially symmetric guided waves in cylindrical structures by means of a spectral decomposition method.

    PubMed

    Höhne, Christian; Prager, Jens; Gravenkamp, Hauke

    2015-12-01

    In this paper, a method to determine the complex dispersion relations of axially symmetric guided waves in cylindrical structures is presented as an alternative to the currently established numerical procedures. The method is based on a spectral decomposition into eigenfunctions of the Laplace operator on the cross-section of the waveguide. This translates the calculation of real or complex wave numbers at a given frequency into solving an eigenvalue problem. Cylindrical rods and plates are treated as the asymptotic cases of cylindrical structures and used to generalize the method to the case of hollow cylinders. The presented method is superior to direct root-finding algorithms in the sense that no initial guess values are needed to determine the complex wave numbers and that neither starting at low frequencies nor subsequent mode tracking is required. The results obtained with this method are shown to be reasonably close to those calculated by other means and an estimate for the achievable accuracy is given. PMID:26126952

  15. A mixed finite element domain decomposition method for nearly elastic wave equations in the frequency domain

    SciTech Connect

    Feng, Xiaobing

    1996-12-31

    A non-overlapping domain decomposition iterative method is proposed and analyzed for mixed finite element methods for a sequence of noncoercive elliptic systems with radiation boundary conditions. These differential systems describe the motion of a nearly elastic solid in the frequency domain. The convergence of the iterative procedure is demonstrated and the rate of convergence is derived for the case when the domain is decomposed into subdomains in which each subdomain consists of an individual element associated with the mixed finite elements. The hybridization of mixed finite element methods plays a important role in the construction of the discrete procedure.

  16. Coherent vorticity extraction in resistive drift-wave turbulence: Comparison of orthogonal wavelets versus proper orthogonal decomposition

    SciTech Connect

    Futatani, S.; Bos, W.J.T.; Del-Castillo-Negrete, Diego B; Schneider, Kai; Benkadda, S.; Farge, Marie

    2011-01-01

    We assess two techniques for extracting coherent vortices out of turbulent flows: the wavelet based Coherent Vorticity Extraction (CVE) and the Proper Orthogonal Decomposition (POD). The former decomposes the flow field into an orthogonal wavelet representation and subsequent thresholding of the coefficients allows one to split the flow into organized coherent vortices with non-Gaussian statistics and an incoherent random part which is structureless. POD is based on the singular value decomposition and decomposes the flow into basis functions which are optimal with respect to the retained energy for the ensemble average. Both techniques are applied to direct numerical simulation data of two-dimensional drift-wave turbulence governed by Hasegawa Wakatani equation, considering two limit cases: the quasi-hydrodynamic and the quasi-adiabatic regimes. The results are compared in terms of compression rate, retained energy, retained enstrophy and retained radial flux, together with the enstrophy spectrum and higher order statistics. (c) 2010 Published by Elsevier Masson SAS on behalf of Academie des sciences.

  17. Universality in s-wave and higher partial wave Feshbach resonances: an illustration with a single atom near two scattering centers

    NASA Astrophysics Data System (ADS)

    Zhu, Shangguo; Tan, Shina

    2014-03-01

    It is well-known that cold atoms near s-wave Feshbach resonances have universal properties that are insensitive to the short-range details of the interaction. What is less known is that atoms near higher partial wave Feshbach resonances also have remarkable universal properties. We will illustrate this with a single atom interacting resonantly with two fixed static centers. At a Feshbach resonance point with orbital angular momentum L >= 1 , we find 2 L + 1 shallow bound states whose energies behave like 1 /R 2 L + 1 when the distance R between the two centers is large. This sheds additional light on the fundamental question whether Efimov effect exists for higher partial wave resonances. The effects of nonresonant partial-wave channels and the shape parameters in the effective range expansions enter as correction terms. Near p-wave and higher partial wave resonances, the energies can be described by a simple universal formula in terms of a parameter called ``proximity parameter.'' We will also discuss modifications of the low energy physics due to the long range Van der Waals potential. We gratefully acknowledge support by the National Science Foundation under Grant No. PHY-1068511 and by the Alfred P. Sloan Foundation.

  18. Two-fluid modeling of magnetosonic wave propagation in the partially ionized solar chromosphere

    NASA Astrophysics Data System (ADS)

    Maneva, Yana; Alvarez Laguna, Alejandro; Lani, Andrea; Poedts, Stefaan

    2016-04-01

    We perform 2D two-fluid simulations to study the effects of ion-neutral interactions on the propagation of magnetosonic waves in the partially ionized solar chromosphere, where the number density of neutrals significantly exceeds the number density of protons at low heights. Thus modeling the neutral-ion interactions and studying the effect of neutrals on the ambient plasma properties becomes important for better understanding the observed emission lines and the propagation of disturbances from the photosphere to the transition region and the corona. The role of charged particles (electrons and ions) is combined within resistive MHD approach with Coulomb collisions and anisotropic heat flux determined by Braginskii's transport coefficients. The electromagnetic fields are evolved according to the full Maxwell equations, allowing for propagation of higher frequency waves neglected by the standard MHD approximation. Separate mass, momentum and energy conservation equations are considered for the neutrals and the interaction between the different fluids is determined by the chemical reactions, such as impact ionization, radiative recombination and charge exchange, provided as additional source terms. To initialize the system we consider an ideal gas equation of state with equal initial temperatures for the electrons, ions and the neutrals and different density profiles. The initial temperature and density profiles are height-dependent and follow VAL C atmospheric model for the solar chromosphere. We have searched for a chemical and collisional equilibrium between the ions and the neutrals to minimize any unphysical outflows and artificial heating induced by initial pressure imbalances. Including different magnetic field profiles brings new source of plasma heating through Ohmic dissipation. The excitation and propagation of the magnetosonic waves depends on the type of the external velocity driver. As the waves propagate through the gravitationally stratified media

  19. Analysis of the Sensitivity of K-Type Molecular Sieve-Deposited MWNTs for the Detection of SF6 Decomposition Gases under Partial Discharge

    PubMed Central

    Zhang, Xiaoxing; Li, Xin; Luo, Chenchen; Dong, Xingchen; Zhou, Lei

    2015-01-01

    Sulfur hexafluoride (SF6) is widely utilized in gas-insulated switchgear (GIS). However, part of SF6 decomposes into different components under partial discharge (PD) conditions. Previous research has shown that the gas responses of intrinsic and 4 Å-type molecular sieve-deposited multi-wall carbon nanotubes (MWNTs) to SOF2 and SO2F2, two important decomposition components of SF6, are not obvious. In this study, a K-type molecular sieve-deposited MWNTs sensor was developed. Its gas response characteristics and the influence of the mixture ratios of gases on the gas-sensing properties were studied. The results showed that, for sensors with gas mixture ratios of 5:1, 10:1, and 20:1, the resistance change rate increased by nearly 13.0% after SOF2 adsorption, almost 10 times that of MWNTs sensors, while the sensors’ resistance change rate with a mixture ratio of 10:1 reached 17.3% after SO2F2 adsorption, nearly nine times that of intrinsic MWNT sensors. Besides, a good linear relationship was observed between concentration of decomposition components and the resistance change rate of sensors. PMID:26569245

  20. Analysis of the Sensitivity of K-Type Molecular Sieve-Deposited MWNTs for the Detection of SF₆ Decomposition Gases under Partial Discharge.

    PubMed

    Zhang, Xiaoxing; Li, Xin; Luo, Chenchen; Dong, Xingchen; Zhou, Lei

    2015-01-01

    Sulfur hexafluoride (SF6) is widely utilized in gas-insulated switchgear (GIS). However, part of SF6 decomposes into different components under partial discharge (PD) conditions. Previous research has shown that the gas responses of intrinsic and 4 Å-type molecular sieve-deposited multi-wall carbon nanotubes (MWNTs) to SOF2 and SO2F2, two important decomposition components of SF6, are not obvious. In this study, a K-type molecular sieve-deposited MWNTs sensor was developed. Its gas response characteristics and the influence of the mixture ratios of gases on the gas-sensing properties were studied. The results showed that, for sensors with gas mixture ratios of 5:1, 10:1, and 20:1, the resistance change rate increased by nearly 13.0% after SOF2 adsorption, almost 10 times that of MWNTs sensors, while the sensors' resistance change rate with a mixture ratio of 10:1 reached 17.3% after SO2F2 adsorption, nearly nine times that of intrinsic MWNT sensors. Besides, a good linear relationship was observed between concentration of decomposition components and the resistance change rate of sensors. PMID:26569245

  1. Trigonometric Integrals via Partial Fractions

    ERIC Educational Resources Information Center

    Chen, H.; Fulford, M.

    2005-01-01

    Parametric differentiation is used to derive the partial fractions decompositions of certain rational functions. Those decompositions enable us to integrate some new combinations of trigonometric functions.

  2. TE and TM beam decomposition of time-harmonic electromagnetic waves.

    PubMed

    Melamed, Timor

    2011-03-01

    The present contribution is concerned with applying beam-type expansion to planar aperture time-harmonic electromagnetic field distribution in which the propagating elements, the electromagnetic beam-type wave objects, are decomposed into transverse electric (TE) and transverse magnetic (TM) field constituents. This procedure is essential for applying Maxwell's boundary conditions for solving different scattering problems. The propagating field is described as a discrete superposition of tilted and shifted TE and TM electromagnetic beams over the frame-based spatial-directional expansion lattice. These vector wave objects are evaluated either by applying differential operators to scalar beam propagators, or by using plane-wave spectral representations. Explicit asymptotic expressions for scalar, as well as for electromagnetic, Gaussian beam propagators are presented as well. PMID:21383822

  3. PyPWA: A partial-wave/amplitude analysis software framework

    NASA Astrophysics Data System (ADS)

    Salgado, Carlos

    2016-05-01

    The PyPWA project aims to develop a software framework for Partial Wave and Amplitude Analysis of data; providing the user with software tools to identify resonances from multi-particle final states in photoproduction. Most of the code is written in Python. The software is divided into two main branches: one general-shell where amplitude's parameters (or any parametric model) are to be estimated from the data. This branch also includes software to produce simulated data-sets using the fitted amplitudes. A second branch contains a specific realization of the isobar model (with room to include Deck-type and other isobar model extensions) to perform PWA with an interface into the computer resources at Jefferson Lab. We are currently implementing parallelism and vectorization using the Intel's Xeon Phi family of coprocessors.

  4. Partial wave analysis of the reaction gamma p -> p omega$ and the search for nucleon resonances

    SciTech Connect

    M. Williams, D. Applegate, M. Bellis, C.A. Meyer

    2009-12-01

    An event-based partial wave analysis (PWA) of the reaction gamma p -> p omega has been performed on a high-statistics dataset obtained using the CLAS at Jefferson Lab for center-of-mass energies from threshold up to 2.4 GeV. This analysis benefits from access to the world's first high precision spin density matrix element measurements, available to the event-based PWA through the decay distribution of omega-> pi+ pi - pi0. The data confirm the dominance of the t-channel pi0 exchange amplitude in the forward direction. The dominant resonance contributions are consistent with the previously identified states F[15](1680) and D[13](1700) near threshold, as well as the G[17](2190) at higher energies. Suggestive evidence for the presence of a J(P)=5/2(+) state around 2 GeV, a "missing" state, has also been found. Evidence for other states is inconclusive.

  5. Decomposition techniques

    USGS Publications Warehouse

    Chao, T.T.; Sanzolone, R.F.

    1992-01-01

    Sample decomposition is a fundamental and integral step in the procedure of geochemical analysis. It is often the limiting factor to sample throughput, especially with the recent application of the fast and modern multi-element measurement instrumentation. The complexity of geological materials makes it necessary to choose the sample decomposition technique that is compatible with the specific objective of the analysis. When selecting a decomposition technique, consideration should be given to the chemical and mineralogical characteristics of the sample, elements to be determined, precision and accuracy requirements, sample throughput, technical capability of personnel, and time constraints. This paper addresses these concerns and discusses the attributes and limitations of many techniques of sample decomposition along with examples of their application to geochemical analysis. The chemical properties of reagents as to their function as decomposition agents are also reviewed. The section on acid dissolution techniques addresses the various inorganic acids that are used individually or in combination in both open and closed systems. Fluxes used in sample fusion are discussed. The promising microwave-oven technology and the emerging field of automation are also examined. A section on applications highlights the use of decomposition techniques for the determination of Au, platinum group elements (PGEs), Hg, U, hydride-forming elements, rare earth elements (REEs), and multi-elements in geological materials. Partial dissolution techniques used for geochemical exploration which have been treated in detail elsewhere are not discussed here; nor are fire-assaying for noble metals and decomposition techniques for X-ray fluorescence or nuclear methods be discussed. ?? 1992.

  6. Fast solution of elliptic partial differential equations using linear combinations of plane waves.

    PubMed

    Pérez-Jordá, José M

    2016-02-01

    Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations Ax=b, where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O(NlogN) memory and executing an iteration in O(Nlog(2)N) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps. PMID:26986436

  7. X-ray standing wave analysis of nanostructures using partially coherent radiation

    SciTech Connect

    Tiwari, M. K. Das, Gangadhar; Bedzyk, M. J.

    2015-09-07

    The effect of longitudinal (or temporal) coherence on total reflection assisted x-ray standing wave (TR-XSW) analysis of nanoscale materials is quantitatively demonstrated by showing how the XSW fringe visibility can be strongly damped by decreasing the spectral resolution of the incident x-ray beam. The correction for nonzero wavelength dispersion (δλ ≠ 0) of the incident x-ray wave field is accounted for in the model computations of TR-XSW assisted angle dependent fluorescence yields of the nanostructure coatings on x-ray mirror surfaces. Given examples include 90 nm diameter Au nanospheres deposited on a Si(100) surface and a 3 nm thick Zn layer trapped on top a 100 nm Langmuir-Blodgett film coating on a Au mirror surface. Present method opens up important applications, such as enabling XSW studies of large dimensioned nanostructures using conventional laboratory based partially coherent x-ray sources.

  8. Fast solution of elliptic partial differential equations using linear combinations of plane waves

    NASA Astrophysics Data System (ADS)

    Pérez-Jordá, José M.

    2016-02-01

    Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations A x =b , where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O (N logN ) memory and executing an iteration in O (N log2N ) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.

  9. Are seismic wave velocities and anisotropies reliable proxies for partial melts?

    NASA Astrophysics Data System (ADS)

    Lee, Amicia; Torvela, Taija; Lloyd, Geoffrey; Walker, Andrew

    2015-04-01

    Partial melts and their segregation weaken mineral crystallographic alignment, resulting in a decrease in seismic anisotropy (AV). Furthermore, introduction of melt induces a drop in seismic wave velocities, especially for shear (Vs) but also compressional (Vp) waves, although some solid-state processes can also lead to velocity drops. Thus, decreases in AV and/or V are often used to infer the presence and even the amount of melt in both the crust and mantle, for example via the Vp/Vs ratio. However, evidence is accumulating that the relationship between melt fraction and seismic properties is not straight-forward. We consider how varying melt fraction (f) might affect crustal seismic properties. Our modelling approach is based on electron backscattered diffraction (EBSD) analysis of crystallographic preferred orientation (CPO) patterns from granulite facies sheared migmatites. The CPO data are used to model the seismic properties of rocks with different solid/melt proportions. Subsequently, melt was simulated via an isotropic elastic stiffness matrix and combined mathematically with the CPO-derived seismic properties, and seismic properties then recalculated to take into account the presence of melt. These melt models, therefore, predict changes in seismic properties at different f. The models show that low (c. f < 0.15) and high (0.7 < f < 1) values affect seismic properties much more than the 'crystal mush' part (0.1 < f < 0.7): velocities (V) and anisotropies (AV) for both low and high f drop rapidly but 'plateau' at intermediate f. Our results imply that V and, especially, AV may not be reliable proxies for the amount of crustal melt present. Seismic wave behaviour in crystal-supported (0.1 < f < 0.7) material may be controlled by the solid rather than the melt phase.

  10. Relationship between partial wave amplitudes and polarization observables in pp. -->. d. pi. /sup +/ and. pi. d. -->. pi. d

    SciTech Connect

    Blankleider, B.; Afnan, I.R.

    1985-04-01

    The polarization observables of the reactions parrow parrow ..-->.. ..pi../sup +/d, parrowp ..-->.. darrow..pi../sup +/, and ..pi..darrow ..-->.. ..pi..darrow are investigated. Expressions relating these observables directly to (LSJ) partial wave amplitudes are derived and tabulations of the partial wave contributions are given for some of the observables. Examples are given of how such tabulations can be useful for optimizing the connection between theory and experiment and in suggesting possible new experiments. All observables are also calculated numerically using a unitary few-body model of the NN-..pi..NN system to generate the amplitudes. Sensitivity to the choice of P/sub 11/ interaction is investigated.

  11. Summation by parts methods for spherical harmonic decompositions of the wave equation in any dimensions

    NASA Astrophysics Data System (ADS)

    Gundlach, Carsten; Martín-García, José M.; Garfinkle, David

    2013-07-01

    We investigate numerical methods for wave equations in n + 2 spacetime dimensions, written in spherical coordinates, decomposed in spherical harmonics on Sn, and finite-differenced in the remaining coordinates r and t. Such an approach is useful when the full physical problem has spherical symmetry, for perturbation theory about a spherical background, or in the presence of boundaries with spherical topology. The key numerical difficulty arises from lower order 1/r terms at the origin r = 0. As a toy model for this, we consider the flat space linear wave equation in the form \\dot{\\pi }=\\psi ^{\\prime }+p\\psi /r, \\dot{\\psi }=\\pi ^{\\prime }, where p = 2l + n and l is the leading spherical harmonic index. We propose a class of summation by parts (SBP) finite-differencing methods that conserve a discrete energy up to boundary terms, thus guaranteeing stability and convergence in the energy norm. We explicitly construct SBP schemes that are second- and fourth-order accurate at interior points and the symmetry boundary r = 0, and first- and second-order accurate at the outer boundary r = R.

  12. Partial Antisymmetry and Approximate Primitive Wave Functions for Interacting Electronic Groups.

    NASA Astrophysics Data System (ADS)

    Vergenz, Robert Allan

    The partial antisymmetry (PA) theorem of W. H. Adams (Chem. Phys. Letters, 68, 511 (1979)) shows that if one can determine an N-electron eigenfunction of a certain non-linear operator, then one can use the eigenfunction, without using full antisymmetry (FA), to calculate an eigenvalue of the Schrodinger Hamiltonian for the system. The operator neither depends on nor commutes with the antisymmetrizer, but involves partial antisymmetrizers. This work provides an initial numerical test of a new approach to calculating approximate interatomic interaction energies based on the PA theorem. Interaction energies were calculated for X ^1Sigma^{+}_ {rm g} Ne_2, Li_2 and Na_2, X^1Sigma^{+} LiNa, X^2Sigma^{+} _{rm g} Li_2 ^{+}, x ^7Sigma ^{+}_{rm u} N_2, x ^3Sigma ^{+}_{rm u} Li_2 and Na_2, x ^3Sigma^{+} LiNa and ionic and covalent configurations of X ^1Sigma^{+} LiF, all at several internuclear distances. Spin-coupled products of single determinants approximated the atomic wave functions, and accurate HF atomic bases were used. Three methods were used: the conventional method based on FA, the PA approach, and a method based on a hybrid set of assumptions. Results were compared with accurate potential curves from the literature. In nine cases of the eleven, including both bonding and repulsive interactions, the PA approximation gave results that were better or roughly the same as those using FA. In these cases there is thus no penalty exacted for the use of PA, though it is shown to be easier to use.

  13. Fully and partially coherent pathways in multiply enhanced odd-order wave-mixing spectroscopy.

    PubMed

    Mathew, Nathan A; Yurs, Lena A; Block, Stephen B; Pakoulev, Andrei V; Kornau, Kathryn M; Sibert, Edwin L; Wright, John C

    2010-01-21

    Nuclear magnetic resonance spectroscopy relies on using multiple excitation pulses to create multiple quantum coherences that provide great specificity for chemical measurements. Coherent multidimensional spectroscopy (CMDS) is the optical analogue of NMR. Current CMDS methods use three excitation pulses and phase matching to create zero, single, and double quantum coherences. In order to create higher order multiple quantum coherences, the number of interactions must be increased by raising the excitation intensities high enough to create Rabi frequencies that are comparable to the dephasing rates of vibrational coherences. The higher Rabi frequencies create multiple, odd-order coherence pathways. The coherence pathways that involve intermediate populations are partially coherent and are sensitive to population relaxation effects. Pathways that are fully coherent involve only coherences and measure the direct coupling between excited quantum states. The fully coherent pathways are related to the multiple quantum coherences created in multiple pulse NMR methods such as heteronuclear multiple quantum coherence (HMQC) spectroscopy with the important difference that HMQC NMR methods have a defined number of interactions and avoid dynamic Stark effects whereas the multiply enhanced odd-order wave-mixing pathways do not. The difference arises because CMDS methods use phase matching to define the interactions and at high intensities, multiple pathways obey the same phase matching conditions. The multiple pathways correspond to the pathways created by dynamic Stark effects. This paper uses rhodium dicarbonyl chelate (RDC) as a model to demonstrate the characteristics of multiply enhanced odd-order wave-mixing (MEOW) methods. Dynamic Stark effects excite vibrational ladders on the symmetric and asymmetric CO stretch modes and create a series of multiple quantum coherences and populations using partially and fully coherent pathways. Vibrational quantum states up to v = 6

  14. Spin dependence of the coherent scattering lengths of /sup 27/Al and admixture of s- and d-partial waves

    SciTech Connect

    Mughab, S.F.

    1985-01-01

    A long standing discrepancy between measurements and calculations of the sign of the incoherent scattering length is attributed to two sources: (1) spin dependence of the potential scattering radius and (2) identification of additional s-wave resonances at higher neutron energies. Detailed examination of the reaction /sup 27/Al (n vector,..gamma..) /sup 28/Al induced by thermal neutrons revealed that R/sub +/ - R/sub -/ = 0.32 +- 0.10 fm. Also shape fit analysis of the total cross section showed the presence of s-wave resonances at neutron energies 280, 386, 422, 491, 523, and 615 keV. One interesting outcome is the demonstration of the admixture of s- and d-wave partial waves in these resonances and the presence of a large d-wave neutron strength in the above energy region.

  15. Laboratory Measurements of Seismic Wave Attenuation in Upper-mantle Materials: the Effect of Partial Melting

    NASA Astrophysics Data System (ADS)

    Jackson, I.; Faul, U. H.; Fitz Gerald, J. D.

    2001-12-01

    The frequency-dependent mechanical behaviour expected of Earth materials at high temperature places a special premium on laboratory measurements of wave speeds and attenuation at seismic frequencies. The symposium in honour of Mervyn Paterson provides a welcome opportunity to acknowledge his vital role in the design of the specialised equipment for this purpose described by Jackson and Paterson (PEPI 45: 349-367, 1987; Pageoph 141: 445-466, 1993). This instrument allows the study of low-strain high-temperature viscoelastic behaviour through the application of torsional forced oscillation/ microcreep techniques within the P-T environment (200 MPa, 1600 K) provided by an internally heated gas apparatus. Application of these techniques to fine-grained synthetic olivine polycrystals is beginning to provide a robust basis for the understanding of seismic wave attenuation (and dispersion) in the upper mantle under sub-solidus conditions. More recently, we have begun to explore the effects of partial melting through the fabrication, characterisation and mechanical testing of a suite of fine-grained olivine polycrystals containing up to 4% basaltic melt. The most striking effect of the added melt is the appearance of a melt-related dissipation peak superimposed upon the dissipation background characteristic of melt-free materials - which varies monotonically with period and temperature. The melt-related dissipation peak is adequately modelled as a Gaussian in log X, where X = To exp(E/RT). The melt-related dissipation peak sweeps across the seismic band from period To > 100 s to To < 1 s as temperature increases across the range 1300 - 1600 K producing pronounced systematic changes in the frequency dependence of 1/Q, that may be seismologically observable. >http://rses.anu.adu.au/petrophysics/PetroHome.html

  16. A reconfigurable digital filterbank for hearing-aid systems with a variety of sound wave decomposition plans.

    PubMed

    Wei, Ying; Liu, Debao

    2013-06-01

    Current hearing-aid systems have fixed sound wave decomposition plans due to the use of fixed filterbanks, thus cannot provide enough flexibility for the compensation of different hearing impairment cases. In this paper, a reconfigurable filterbank that consists of a multiband-generation block and a subband-selection block is proposed. Different subbands can be produced according to the control parameters without changing the structure of the filterbank system. The use of interpolation, decimation, and frequency-response masking enables us to reduce the computational complexity by realizing the entire system with only three prototype filters. Reconfigurability of the proposed filterbank enables hearing-impaired people to customize hearing aids based on their own specific conditions to improve their hearing ability. We show, by means of examples, that the proposed filterbank can achieve a better matching to the audiogram and has smaller complexity compared with the fixed filterbank. The drawback of the proposed method is that the throughput delay is relatively long (>20 ms), which needs to be further reduced before it can be used in a real hearing-aid application. PMID:23335662

  17. Real-time Automatic Detectors of P and S Waves Using Singular Values Decomposition

    NASA Astrophysics Data System (ADS)

    Kurzon, I.; Vernon, F.; Rosenberger, A.; Ben-Zion, Y.

    2013-12-01

    We implement a new method for the automatic detection of the primary P and S phases using Singular Value Decomposition (SVD) analysis. The method is based on a real-time iteration algorithm of Rosenberger (2010) for the SVD of three component seismograms. Rosenberger's algorithm identifies the incidence angle by applying SVD and separates the waveforms into their P and S components. We have been using the same algorithm with the modification that we filter the waveforms prior to the SVD, and then apply SNR (Signal-to-Noise Ratio) detectors for picking the P and S arrivals, on the new filtered+SVD-separated channels. A recent deployment in San Jacinto Fault Zone area provides a very dense seismic network that allows us to test the detection algorithm in diverse setting, such as: events with different source mechanisms, stations with different site characteristics, and ray paths that diverge from the SVD approximation used in the algorithm, (e.g., rays propagating within the fault and recorded on linear arrays, crossing the fault). We have found that a Butterworth band-pass filter of 2-30Hz, with four poles at each of the corner frequencies, shows the best performance in a large variety of events and stations within the SJFZ. Using the SVD detectors we obtain a similar number of P and S picks, which is a rare thing to see in ordinary SNR detectors. Also for the actual real-time operation of the ANZA and SJFZ real-time seismic networks, the above filter (2-30Hz) shows a very impressive performance, tested on many events and several aftershock sequences in the region from the MW 5.2 of June 2005, through the MW 5.4 of July 2010, to MW 4.7 of March 2013. Here we show the results of testing the detectors on the most complex and intense aftershock sequence, the MW 5.2 of June 2005, in which in the very first hour there were ~4 events a minute. This aftershock sequence was thoroughly reviewed by several analysts, identifying 294 events in the first hour, located in a

  18. Partial wave analysis of the Dirac fermions scattered from Schwarzschild black holes

    NASA Astrophysics Data System (ADS)

    Cotăescu, Ion I.; Crucean, Cosmin; Sporea, Ciprian A.

    2016-03-01

    Asymptotic analytic solutions of the Dirac equation, giving the scattering modes (of the continuous energy spectrum, E>mc^2) in Schwarzschild's chart and Cartesian gauge, are used for building the partial wave analysis of Dirac fermions scattered by black holes. In this framework, the analytic expressions of the differential cross section and induced polarization degree are derived in terms of scattering angle, mass of the black hole, and energy and mass of the fermion. Moreover, the closed form of the absorption cross section due to the scattering modes is derived showing that in the high-energy limit this tends to the event horizon area regardless of the fermion mass (including zero). A graphical study presents the differential cross section analyzing the forward/backward scattering (known also as glory scattering) and the polarization degree as functions of scattering angle. The graphical analysis shows the presence of oscillations in scattering intensity around forward/backward directions, phenomena known as spiral scattering. The energy dependence of the differential cross section is also established by using analytical and graphical methods.

  19. High and low frequency unfolded partial least squares regression based on empirical mode decomposition for quantitative analysis of fuel oil samples.

    PubMed

    Bian, Xihui; Li, Shujuan; Lin, Ligang; Tan, Xiaoyao; Fan, Qingjie; Li, Ming

    2016-06-21

    Accurate prediction of the model is fundamental to the successful analysis of complex samples. To utilize abundant information embedded over frequency and time domains, a novel regression model is presented for quantitative analysis of hydrocarbon contents in the fuel oil samples. The proposed method named as high and low frequency unfolded PLSR (HLUPLSR), which integrates empirical mode decomposition (EMD) and unfolded strategy with partial least squares regression (PLSR). In the proposed method, the original signals are firstly decomposed into a finite number of intrinsic mode functions (IMFs) and a residue by EMD. Secondly, the former high frequency IMFs are summed as a high frequency matrix and the latter IMFs and residue are summed as a low frequency matrix. Finally, the two matrices are unfolded to an extended matrix in variable dimension, and then the PLSR model is built between the extended matrix and the target values. Coupled with Ultraviolet (UV) spectroscopy, HLUPLSR has been applied to determine hydrocarbon contents of light gas oil and diesel fuels samples. Comparing with single PLSR and other signal processing techniques, the proposed method shows superiority in prediction ability and better model interpretation. Therefore, HLUPLSR method provides a promising tool for quantitative analysis of complex samples. PMID:27188313

  20. Domain decomposition for aerodynamic and aeroacoustic analyses, and optimization

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay

    1995-01-01

    The overarching theme was the domain decomposition, which intended to improve the numerical solution technique for the partial differential equations at hand; in the present study, those that governed either the fluid flow, or the aeroacoustic wave propagation, or the sensitivity analysis for a gradient-based optimization. The role of the domain decomposition extended beyond the original impetus of discretizing geometrical complex regions or writing modular software for distributed-hardware computers. It induced function-space decompositions and operator decompositions that offered the valuable property of near independence of operator evaluation tasks. The objectives have gravitated about the extensions and implementations of either the previously developed or concurrently being developed methodologies: (1) aerodynamic sensitivity analysis with domain decomposition (SADD); (2) computational aeroacoustics of cavities; and (3) dynamic, multibody computational fluid dynamics using unstructured meshes.

  1. Poles as the only true resonant-state signals extracted from a worldwide collection of partial-wave amplitudes using only one, well controlled pole-extraction method

    SciTech Connect

    Hadzimehmedovic, M.; Osmanovic, H.; Stahov, J.; Ceci, S.; Svarc, A.

    2011-09-15

    Each and every energy-dependent partial-wave analysis is parametrizing the pole positions in a procedure defined by the way the continuous energy dependence is implemented. These pole positions are, henceforth, inherently model dependent. To reduce this model dependence, we use only one, coupled-channel, unitary, fully analytic method based on the isobar approximation to extract the pole positions from each available member of the worldwide collection of partial-wave amplitudes, which are understood as nothing more but a good energy-dependent representation of genuine experimental numbers assembled in a form of partial-wave data. In that way, the model dependence related to the different assumptions on the analytic form of the partial-wave amplitudes is avoided, and the true confidence limit for the existence of a particular resonant state, at least in one model, is established. The way the method works and first results are demonstrated for the S{sub 11} partial wave.

  2. Universality in s-wave and higher partial-wave Feshbach resonances: An illustration with a single atom near two scattering centers

    NASA Astrophysics Data System (ADS)

    Zhu, Shangguo; Tan, Shina

    2013-06-01

    It is well-known that cold atoms near s-wave Feshbach resonances have universal properties that are insensitive to the short-range details of the interaction. What is less known is that atoms near higher partial-wave Feshbach resonances also have remarkable universal properties. We illustrate this with a single atom interacting resonantly with two fixed static centers. At a Feshbach resonance point with orbital angular momentum L≥1, we find 2L+1 shallow bound states whose energies behave like 1/R2L+1 when the distance R between the two centers is large. We then compute corrections to the binding energies due to other parameters in the effective range expansions. For completeness we also compute the binding energies near s-wave Feshbach resonances, taking into account the corrections. Afterwards we turn to the bound states at large but finite scattering volumes. For p-wave and higher partial-wave resonances we derive a simple formula for the energies in terms of a parameter called “proximity parameter.” These results are applicable to a free atom interacting resonantly with two atoms that are localized to two lattice sites of an optical lattice, and to one light atom interacting with two heavy ones in free space. Modifications of the low energy physics due to the long range van der Waals potential are also discussed.

  3. Resolving Difficulties of a Single-Channel Partial-Wave Analysis

    NASA Astrophysics Data System (ADS)

    Hunt, Brian; Manley, D. Mark

    2016-03-01

    The goal of our research is to determine better the properties of nucleon resonances using techniques of a global multichannel partial-wave analysis. Currently, many predicted resonances have not been found, while the properties of several known resonances are relatively uncertain. To resolve these issues, one must analyze many different reactions in a multichannel fit. Other groups generally approach this problem by generating an energy-dependent fit from the start. This is a fit where all channels are analyzed together. The method is powerful, but due to the complex nature of resonances, certain model-dependent assumptions have to be introduced from the start. The current work tries to resolve these issues by first generating single-energy solutions in which experimental data are analyzed in narrow energy bins. The single-energy solutions can then be used to constrain the energy-dependent solution in a comparatively unbiased manner. Our work focuses on adding three new single-energy solutions into the global fit. These reactions are γp --> ηp , γn --> ηn , and γp -->K+ Λ . During this talk, I will discuss the difficulties of this approach, our methods to overcome these difficulties, and a few preliminary results. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Medium Energy Nuclear Physics, under Award Nos. DE-FG02-01ER41194 and DE-SC0014323 and by the Kent State University Department of Physics.

  4. Partial wave spectroscopic microscopy can predict prostate cancer progression and mitigate over-treatment (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Di; Graff, Taylor; Crawford, Susan; Subramanian, Hariharan; Thompson, Sebastian; Derbas, Justin R.; Lyengar, Radha; Roy, Hemant K.; Brendler, Charles B.; Backman, Vadim

    2016-02-01

    Prostate Cancer (PC) is the second leading cause of cancer deaths in American men. While prostate specific antigen (PSA) test has been widely used for screening PC, >60% of the PSA detected cancers are indolent, leading to unnecessary clinical interventions. An alternative approach, active surveillance (AS), also suffer from high expense, discomfort and complications associated with repeat biopsies (every 1-3 years), limiting its acceptance. Hence, a technique that can differentiate indolent from aggressive PC would attenuate the harms from over-treatment. Combining microscopy with spectroscopy, our group has developed partial wave spectroscopic (PWS) microscopy, which can quantify intracellular nanoscale organizations (e.g. chromatin structures) that are not accessible by conventional microscopy. PWS microscopy has previously been shown to predict the risk of cancer in seven different organs (N ~ 800 patients). Herein we use PWS measurement of label-free histologically-normal prostatic epithelium to distinguish indolent from aggressive PC and predict PC risk. Our results from 38 men with low-grade PC indicated that there is a significant increase in progressors compared to non-progressors (p=0.002, effect size=110%, AUC=0.80, sensitivity=88% and specificity=72%), while the baseline clinical characteristics were not significantly different. We further improved the diagnostic power by performing nuclei-specific measurements using an automated system that separates in real-time the cell nuclei from the remaining prostate epithelium. In the long term, we envision that the PWS based prognostication can be coupled with AS without any change to the current procedure to mitigate the harms caused by over-treatment.

  5. On the influence of the hysteretic behavior of the capillary pressure on the wave propagation in partially saturated soils

    NASA Astrophysics Data System (ADS)

    Albers, Bettina

    2016-06-01

    It is well known that the capillary pressure curve of partially saturated soils exhibits a hysteresis. For the same degree of saturation it has different values depending on the initial state of the soil, thus for drying of a wet soil or wetting of a dry soil. The influence of these different values of the capillary pressure on the propagation of sound waves is studied by use of a linear hyperbolic model. Even if the model does not contain a hysteresis operator, the effect of hysteresis in the capillary pressure curve is accounted for. In order to obtain the limits of phase speeds and attenuations for the two processes the correspondent values for main drying and main wetting are inserted into the model separately. This is done for two examples of soils, namely for Del Monte sand and for a silt loam both filled by an air-water mixture. The wave analysis reveals four waves: one transversal wave and three longitudinal waves. The waves which are driven by the immiscible pore fluids are influenced by the hysteresis in the capillary pressure curve while the waves which are mainly driven by the solid are not.

  6. Proper orthogonal decomposition of velocity gradient fields in a simulated stratified turbulent wake: analysis of vorticity and internal waves

    NASA Astrophysics Data System (ADS)

    Gurka, R.; Diamessis, P.; Liberzon, A.

    2009-04-01

    The characterization of three-dimensional space and time-dependent coherent structures and internal waves in stratified environment is one of the most challenging tasks in geophysical fluid dynamics. Proper orthogonal decomposition (POD) is applied to 2-D slices of vorticity and horizontal divergence obtained from 3-D DNS of a stratified turbulent wake of a towed sphere at Re=5x103 and Fr=4. The numerical method employed solves the incompressible Navier-Stokes equations under the Boussinesq approximation. The temporal discretization consists of three fractional steps: an explicit advancement of the nonlinear terms, an implicit solution of the Poisson equation for the pseudo-pressure (which enforces incompressibility), and an implicit solution of the Helmholtz equation for the viscous terms (where boundary conditions are imposed). The computational domain is assumed to be periodic in the horizontal direction and non-periodic in the vertical direction. The 2-D slices are sampled along the stream-depth (Oxz), span-depth (Oyz) and stream-span planes (Oxy) for 231 times during the interval, Nt ∈ [12,35] (N is the stratification frequency). During this interval, internal wave radiation from the wake is most pronounced and the vorticity field in the wake undergoes distinct structural transitions. POD was chosen amongst the available statistical tools due to its advantage in characterization of simulated and experimentally measured velocity gradient fields. The computational procedure, applied to any random vector field, finds the most coherent feature from the given ensemble of field realizations. The decomposed empirical eigenfunctions could be referred to as "coherent structures", since they are highly correlated in an average sense with the flow field. In our analysis, we follow the computationally efficient method of 'snapshots' to find the POD eigenfunctions of the ensemble of vorticity field realizations. The results contains of the separate POD modes, along with

  7. Hyperspherical partial-wave theory applied to electron-hydrogen-atom ionization calculation for equal-energy-sharing kinematics

    SciTech Connect

    Das, J.N.; Paul, S.; Chakrabarti, K.

    2003-04-01

    Hyperspherical partial-wave theory has been applied here in a new way in the calculation of the triple differential cross sections for the ionization of hydrogen atoms by electron impact at low energies for various equal-energy-sharing kinematic conditions. The agreement of the cross section results with the recent absolute measurements of [J. Roeder, M. Baertschy, and I. Bray, Phys. Rev. A 45, 2951 (2002)] and with the latest theoretical results of the ECS and CCC calculations [J. Roeder, M. Baertschy, and I. Bray, Phys. Rev. A (to be published)] for different kinematic conditions at 17.6 eV is very encouraging. The other calculated results, for relatively higher energies, are also generally satisfactory, particularly for large {theta}{sub ab} geometries. In view of the present results, together with the fact that it is capable of describing unequal-energy-sharing kinematics [J. N. Das, J. Phys. B 35, 1165 (2002)], it may be said that the hyperspherical partial-wave theory is quite appropriate for the description of ionization events of electron-hydrogen-type systems. It is also clear that the present approach in the implementation of the hyperspherical partial-wave theory is very appropriate.

  8. Variation and decomposition of the partial molar volume of small gas molecules in different organic solvents derived from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Klähn, Marco; Martin, Alistair; Cheong, Daniel W.; Garland, Marc V.

    2013-12-01

    The partial molar volumes, bar V_i, of the gas solutes H2, CO, and CO2, solvated in acetone, methanol, heptane, and diethylether are determined computationally in the limit of infinite dilution and standard conditions. Solutions are described with molecular dynamics simulations in combination with the OPLS-aa force field for solvents and customized force field for solutes. bar V_i is determined with the direct method, while the composition of bar V_i is studied with Kirkwood-Buff integrals (KBIs). Subsequently, the amount of unoccupied space and size of pre-formed cavities in pure solvents is determined. Additionally, the shape of individual solvent cages is analyzed. Calculated bar V_i deviate only 3.4 cm3 mol-1 (7.1%) from experimental literature values. Experimental bar V_i variations across solutions are reproduced qualitatively and also quantitatively in most cases. The KBI analysis identifies differences in solute induced solvent reorganization in the immediate vicinity of H2 (<0.7 nm) and solvent reorganization up to the third solvation shell of CO and CO2 (<1.6 nm) as the origin of bar V_i variations. In all solutions, larger bar V_i are found in solvents that exhibit weak internal interactions, low cohesive energy density and large compressibility. Weak internal interactions facilitate solvent displacement by thermal solute movement, which enhances the size of solvent cages and thus bar V_i. Additionally, attractive electrostatic interactions of CO2 and the solvents, which do not depend on internal solvent interactions only, partially reversed the bar V_i trends observed in H2 and CO solutions where electrostatic interactions with the solvents are absent. More empty space and larger pre-formed cavities are found in solvents with weak internal interactions, however, no evidence is found that solutes in any considered solvent are accommodated in pre-formed cavities. Individual solvent cages are found to be elongated in the negative direction of solute

  9. Reciprocal links among differential parenting, perceived partiality, and self-worth: a three-wave longitudinal study.

    PubMed

    Shebloski, Barbara; Conger, Katherine J; Widaman, Keith F

    2005-12-01

    This study examined reciprocal links between parental differential treatment, siblings' perception of partiality, and self-worth with 3 waves of data from 384 adolescent sibling dyads. Results suggest that birth-order status was significantly associated with self-worth and perception of maternal and paternal differential treatment. There was a consistent across-time effect of self-worth on perception of parental partiality for later born siblings, but not earlier born siblings, and a consistent effect of differential treatment on perception of partiality for earlier born but not later born siblings. The results contribute new insight into the associations between perception of differential parenting and adolescents' adjustment and the role of birth order. PMID:16402879

  10. Theory of wave propagation in partially saturated double-porosity rocks: a triple-layer patchy model

    NASA Astrophysics Data System (ADS)

    Sun, Weitao; Ba, Jing; Carcione, José M.

    2016-04-01

    Wave-induced local fluid flow is known as a key mechanism to explain the intrinsic wave dissipation in fluid-saturated rocks. Understanding the relationship between the acoustic properties of rocks and fluid patch distributions is important to interpret the observed seismic wave phenomena. A triple-layer patchy (TLP) model is proposed to describe the P-wave dissipation process in a double-porosity media saturated with two immiscible fluids. The double-porosity rock consists of a solid matrix with unique host porosity and inclusions which contain the second type of pores. Two immiscible fluids are considered in concentric spherical patches, where the inner pocket and the outer sphere are saturated with different fluids. The kinetic and dissipation energy functions of local fluid flow (LFF) in the inner pocket are formulated through oscillations in spherical coordinates. The wave propagation equations of the TLP model are based on Biot's theory and the corresponding Lagrangian equations. The P-wave dispersion and attenuation caused by the Biot friction mechanism and the local fluid flow (related to the pore structure and the fluid distribution) are obtained by a plane-wave analysis from the Christoffel equations. Numerical examples and laboratory measurements indicate that P-wave dispersion and attenuation are significantly influenced by the spatial distributions of both, the solid heterogeneity and the fluid saturation distribution. The TLP model is in reasonably good agreement with White's and Johnson's models. However, differences in phase velocity suggest that the heterogeneities associated with double-porosity and dual-fluid distribution should be taken into account when describing the P-wave dispersion and attenuation in partially saturated rocks.

  11. Temperature dependence of shear wave attenuation in partially molten gabbronorite at seismic frequencies

    NASA Astrophysics Data System (ADS)

    Fontaine, Fabrice R.; Ildefonse, Benoit; Bagdassarov, Nickolai S.

    2005-12-01

    Torsion oscillatory deformation experiments have been performed at high temperatures (600-1170°C) and over a wide range of low frequencies (20-2.10-3 Hz) on fine-grained gabbronorite samples from the Oman ophiolite in order to determine the shear wave attenuation as a function of temperature and melt fraction. The specimens have a small and uniform grain size (0.25-0.3 mm) and do not contain secondary, hydrated minerals. Measurements of internal friction (Q-1) were performed using a forced oscillatory torsion apparatus at small strains (~10-7), and with increasing small temperature steps to reduce thermal microcracking. The general dependence of Q-1 to frequency is Q-1~ω-α, where ω is the angular velocity of forced oscillations and α is an empirical exponent. Below the melting temperature (~1050°C), α has average values of ~0.15 at low frequency (<=0.5 Hz) and 0.06 at higher frequency. Above the melting temperature, α has average values of ~0.22 at low frequency and -0.02 at higher frequency. This frequency dependence of Q-1 is attributed to a viscoelastic behaviour due to the diffusion controlled grain boundary sliding, and partially to the squirt flow of the melt-phase wetting grain boundaries. The onset of melting is associated with a markedly higher Q-1 and a stronger dependence of Q-1 on temperature. The melt-related mechanical dissipation process could be a melt squirt flow. The characteristic frequency for the melt squirt flow is ωm~ 0.15-300 Hz when the melt pocket aspect ratio is ~10-3-10-2. Around the melting temperature the internal friction can be approximated by an experimental power law Q-1=A.[ω-1.d-1. exp(-Ea/RT)]α with α~ 0.08, A= 34.72s-αμm-α and Ea~ 873 kJmol-1.

  12. Two-dimensional stationary Schroedinger equation via the {partial_derivative}-dressing method: New exactly solvable potentials, wave functions, and their physical interpretation

    SciTech Connect

    Dubrovsky, V. G.; Topovsky, A. V.; Basalaev, M. Yu.

    2010-09-15

    The classes of exactly solvable multiline soliton potentials and corresponding wave functions of two-dimensional stationary Schroedinger equation via {partial_derivative}-dressing method are constructed and their physical interpretation is discussed.

  13. Topological Septet Pairing with Spin-3/2 Fermions: High-Partial-Wave Channel Counterpart of the 3He -B Phase

    NASA Astrophysics Data System (ADS)

    Yang, Wang; Li, Yi; Wu, Congjun

    2016-08-01

    We systematically generalize the exotic 3He -B phase, which not only exhibits unconventional symmetry but is also isotropic and topologically nontrivial, to arbitrary partial-wave channels with multicomponent fermions. The concrete example with four-component fermions is illustrated including the isotropic f -, p -, and d -wave pairings in the spin septet, triplet, and quintet channels, respectively. The odd partial-wave channel pairings are topologically nontrivial, while pairings in even partial-wave channels are topologically trivial. The topological index reaches the largest value of N2 in the p -wave channel (N is half of the fermion component number). The surface spectra exhibit multiple linear and even high order Dirac cones. Applications to multiorbital condensed matter systems and multicomponent ultracold large spin fermion systems are discussed.

  14. Topological Septet Pairing with Spin-3/2 Fermions: High-Partial-Wave Channel Counterpart of the ^{3}He-B Phase.

    PubMed

    Yang, Wang; Li, Yi; Wu, Congjun

    2016-08-12

    We systematically generalize the exotic ^{3}He-B phase, which not only exhibits unconventional symmetry but is also isotropic and topologically nontrivial, to arbitrary partial-wave channels with multicomponent fermions. The concrete example with four-component fermions is illustrated including the isotropic f-, p-, and d-wave pairings in the spin septet, triplet, and quintet channels, respectively. The odd partial-wave channel pairings are topologically nontrivial, while pairings in even partial-wave channels are topologically trivial. The topological index reaches the largest value of N^{2} in the p-wave channel (N is half of the fermion component number). The surface spectra exhibit multiple linear and even high order Dirac cones. Applications to multiorbital condensed matter systems and multicomponent ultracold large spin fermion systems are discussed. PMID:27563972

  15. Free films of a partially wetting liquid under the influence of a propagating MHz surface acoustic wave

    NASA Astrophysics Data System (ADS)

    Altshuler, Gennady; Manor, Ofer

    2016-07-01

    We use both theory and experiment to study the response of thin and free films of a partially wetting liquid to a MHz vibration, propagating in the solid substrate in the form of a Rayleigh surface acoustic wave (SAW). We generalise the previous theory for the response of a thin fully wetting liquid film to a SAW by including the presence of a small but finite three phase contact angle between the liquid and the solid. The SAW in the solid invokes a convective drift of mass in the liquid and leaks sound waves. The dynamics of a film that is too thin to support the accumulation of the sound wave leakage is governed by a balance between the drift and capillary stress alone. We use theory to demonstrate that a partially wetting liquid film, supporting a weak capillary stress, will spread along the path of the SAW. A partially wetting film, supporting an appreciable capillary stress, will however undergo a concurrent dynamic wetting and dewetting at the front and the rear, respectively, such that the film will displace, rather than spread, along the path of the SAW. The result of the theory for a weak capillary stress is in agreement with the previous experimental and theoretical studies on the response of thin silicon oil films to a propagating SAW. No corresponding previous results exist for the case of an appreciable capillary stress. We thus complement the large capillary limit of our theory by undertaking an experimental procedure where we explore the response of films of water and a surfactant solutions to a MHz SAW, which is found to be in qualitative agreement with the theory at this limit.

  16. Kinetics of the Thermal Decomposition of Tetramethylsilane behind the Reflected Shock Waves in a Single Pulse Shock Tube (SPST) and Modeling Study

    NASA Astrophysics Data System (ADS)

    Parandaman, A.; Sudhakar, G.; Rajakumar, B.

    Thermal reactions of Tetramethylsilane (TMS) diluted in argon were studied behind the reflected shock waves in a single-pulse shock tube (SPST) over the temperature range of 1085-1221 K and pressures varied between 10.6 and 22.8 atm. The stable products resulting from the decomposition of TMS were identified and quantified using gas chromatography and also verified with Fourier Transform Infrared (FTIR) spectrometer. The major reaction products are methane (CH4) and ethylene (C2H4). The minor reaction products are ethane (C2H6) and propylene (C3H6). The initiation of mechanism in the decomposition of TMS takes plays via the Si-C bond scission by ejecting the methyl radicals (CH3) and trimethylsilyl radicals ((CH3)3Si). The measured temperature dependent rate coefficient for the total decomposition of TMS was to be ktotal = 1.66 ×1015 exp (-64.46/RT) s-1 and for the formation of CH4 reaction channel was to be k = 2.20 × 1014 exp (-60.15/RT) s-1, where the activation energies are given in kcal mol-1. A kinetic scheme containing 17 species and 28 elementary reactions was used for the simulation using chemical kinetic simulator over the temperature range of 1085-1221 K. The agreement between the experimental and simulated results was satisfactory.

  17. Resolution of quaternary mixtures of cadaverine, histamine, putrescine and tyramine by the square wave voltammetry and partial least squares method.

    PubMed

    Henao-Escobar, W; Domínguez-Renedo, O; Alonso-Lomillo, M A; Arcos-Martínez, M J

    2015-10-01

    This work presents the simultaneous determination of cadaverine, histamine, putrescine and tyramine by square wave voltammetry using a boron-doped diamond electrode. A multivariate calibration method based on partial least square regressions has allowed the resolution of the very high overlapped voltammetric signals obtained for the analyzed biogenic amines. Prediction errors lower than 9% have been obtained when concentration of quaternary mixtures were calculated. The developed procedure has been applied in the analysis of ham samples, which results are in good agreement with those obtained using the standard HPLC method. PMID:26078134

  18. On the Partial-Wave Analysis of Mesonic Resonances Decaying to Multiparticle Final States Produced by Polarized Photons

    SciTech Connect

    Salgado, Carlos W.; Weygand, Dennis P.

    2014-04-01

    Meson spectroscopy is going through a revival with the advent of high statistics experiments and new advances in the theoretical predictions. The Constituent Quark Model (CQM) is finally being expanded considering more basic principles of field theory and using discrete calculations of Quantum Chromodynamics (lattice QCD). These new calculations are approaching predictive power for the spectrum of hadronic resonances and decay modes. It will be the task of the new experiments to extract the meson spectrum from the data and compare with those predictions. The goal of this report is to describe one particular technique for extracting resonance information from multiparticle final states. The technique described here, partial wave analysis based on the helicity formalism, has been used at Brookhaven National Laboratory (BNL) using pion beams, and Jefferson Laboratory (Jlab) using photon beams. In particular this report broaden this technique to include production experiments using linearly polarized real photons or quasi-real photons. This article is of a didactical nature. We describe the process of analysis, detailing assumptions and formalisms, and is directed towards people interested in starting partial wave analysis.

  19. On the partial-wave analysis of mesonic resonances decaying to multiparticle final states produced by polarized photons

    NASA Astrophysics Data System (ADS)

    Salgado, Carlos W.; Weygand, Dennis P.

    2014-04-01

    Meson spectroscopy is going through a revival with the advent of high statistics experiments and new advances in the theoretical predictions. The Constituent Quark Model (CQM) is finally being expanded considering more basic principles of field theory and using discrete calculations of Quantum Chromodynamics (lattice QCD). These new calculations are approaching predictive power for the spectrum of hadronic resonances and decay modes. It will be the task of the new experiments to extract the meson spectrum from the data and compare with those predictions. The goal of this report is to describe one particular technique for extracting resonance information from multiparticle final states. The technique described here, partial wave analysis based on the helicity formalism, has been used at Brookhaven National Laboratory (BNL) using pion beams, and Jefferson Laboratory (JLab) using photon beams. In particular this report broadens this technique to include production experiments using linearly polarized real photons or quasi-real photons. This article is of a didactical nature. We describe the process of analysis, detailing assumptions and formalisms, and is directed towards people interested in starting partial wave analysis.

  20. Estimation of the propagation characteristics of elastic waves propagating through a partially saturated sand soil

    NASA Astrophysics Data System (ADS)

    Nakayama, M.; Kawakata, H.; Doi, I.; Takahashi, N.

    2015-12-01

    Recently, landslides due to heavy rain and/or earthquakes have been increasing and severe damage occurred in Japan in some cases (e.g., Chigira et al., 2013, Geomorph.). One of the principle factors activating landslides is groundwater. Continuous measurements of moisture in soil and/or pore pressure are performed to investigate the groundwater behavior. However, such measurements give information on only local behavior of the groundwater. To monitor the state of target slope, it is better to measure signals affected by the behavior of groundwater in a widely surrounding region. The elastic waves propagating through the medium under the target slope are one of candidates of such signals. In this study, we measure propagating waves through a sand soil made in laboratory, injecting water into it from the bottom. We investigate the characteristics of the propagating waves. We drop sand particles in a container (750 mm long, 300 mm wide and 400 mm high) freely and made a sand soil. The sand soil consists of two layers. One is made of larger sand particles (0.2-0.4 mm in diameter) and the other is made of smaller sand particles (0.05-0.2 mm in diameter). The dry density of these sand layers is about 1.45 g/cm3. We install a shaker for generating elastic waves, accelerometers and pore pressure gauges in the sand soil. We apply small voltage steps repeatedly, and we continuously measure elastic waves propagating through the sand soil at a sampling rate of 51.2 ksps for a period including the water injection period. We estimate the spatio-temporal variation in the maximum cross-correlation coefficients and the corresponding time lags, using template waveforms recorded in the initial period as references. The coefficient for the waveforms recorded at the accelerometer attached to the tip of the shaker is almost stable in high values with a slight decrease down to 0.94 in the period when the sand particles around the shaker are considered to become wet. On the other hand

  1. Partial wave analysis of J/ψ-->γ(K+K- π0)

    NASA Astrophysics Data System (ADS)

    BES Collaboration; Bai, J. Z.; Bian, J. G.; Chai, Z. W.; Chen, G. P.; Chen, H. F.; Chen, J. C.; Chen, Y.; Chen, Y. B.; Chen, Y. Q.; Cheng, B. S.; Cui, X. Z.; Ding, H. L.; Dong, L. Y.; Du, Z. Z.; Feng, S.; Gao, C. S.; Gao, M. L.; Gao, S. Q.; Gu, J. H.; Gu, S. D.; Gu, W. X.; Gu, Y. F.; Guo, Y. N.; Guo, Z. J.; Han, S. W.; Han, Y.; He, J.; He, J. T.; He, M.; Hu, G. Y.; Hu, H. M.; Hu, J. L.; Hu, Q. H.; Hu, T.; Hu, X. Q.; Huang, J. D.; Huang, Y. Z.; Jiang, C. H.; Jin, Y.; Ke, Z. J.; Lai, Y. F.; Lang, P. F.; Li, C. G.; Li, D.; Li, H. B.; Li, J.; Li, P. Q.; Li, R. B.; Li, W.; Li, W. D.; Li, W. G.; Li, X. H.; Li, X. N.; Liu, H. M.; Liu, J.; Liu, J. H.; Liu, R. G.; Liu, Y.; Lu, F.; Lu, J. G.; Lu, J. Y.; Lu, L. C.; Luo, C. H.; Ma, A. M.; Ma, E. C.; Ma, J. M.; Mao, H. S.; Mao, Z. P.; Meng, X. C.; Nie, J.; Qi, N. D.; Qi, X. R.; Qian, C. D.; Qiu, J. F.; Qu, Y. H.; Que, Y. K.; Rong, G.; Shao, Y. Y.; Shen, B. W.; Shen, D. L.; Shen, H.; Shen, X. Y.; Sheng, H. Y.; Shi, H. Z.; Song, X. F.; Sun, F.; Sun, H. S.; Tang, S. Q.; Tong, G. L.; Wang, F.; Wang, L. S.; Wang, L. Z.; Wang, M.; Wang, Meng; Wang, P.; Wang, P. L.; Wang, S. M.; Wang, T. J.; Wang, Y. Y.; Wei, C. L.; Wu, Y. G.; Xi, D. M.; Xia, X. M.; Xie, P. P.; Xie, Y.; Xie, Y. H.; Xiong, W. J.; Xu, C. C.; Xu, G. F.; Xue, S. T.; Yan, J.; Yan, W. G.; Yang, C. M.; Yang, C. Y.; Yang, J.; Yang, X. F.; Ye, M. H.; Ye, S. W.; Ye, Y. X.; Yi, K.; Yu, C. S.; Yu, C. X.; Yu, Y. H.; Yu, Z. Q.; Yu, Z. T.; Yuan, C. Z.; Yuan, Y.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, Dehong; Zhang, H. L.; Zhang, J.; Zhang, J. L.; Zhang, J. W.; Zhang, L. S.; Zhang, Q. J.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. Y.; Zhao, D. X.; Zhao, H. W.; Zhao, J. W.; Zhao, M.; Zhao, W. R.; Zhao, Z. G.; Zheng, J. P.; Zheng, L. S.; Zheng, Z. P.; Zhou, G. P.; Zhou, H. S.; Zhou, L.; Zhu, Q. M.; Zhu, Y. C.; Zhu, Y. S.; Zhuang, B. A.; Bugg, D. V.; Sarantsev, A. V.; Zou, B. S.

    1998-11-01

    BES data on J/ψ-->γ(K+K-π0) display a strong peak in the K+K-π0 mass spectrum at 1450 MeV. This peak and a corresponding one in J/ψ-->γ(ηπ+π-) at ~1400 MeV may be fitted well by η(1440) with dominant decays to K*(890)K, using an s-dependent width in the Breit-Wigner amplitude. A broad background is also required in KK0 (where K0 stands for the Kπ S-wave) and also in ηππ, but is probably not resonant in this mass range.

  2. On-shell coupled-channel approach to proton-hydrogen collisions without partial-wave expansion

    SciTech Connect

    Kadyrov, A. S.; Bray, I.; Stelbovics, A. T.

    2006-01-15

    A fully quantal approach to proton collisions with hydrogen based on the atomic-orbital close-coupling method is presented. The method leads to a system of coupled three-dimensional momentum-space integral equations for the scattering amplitudes. These equations are reduced to two-dimensional ones using an on-shell approximation. Furthermore, by considering the symmetry of the problem, we demonstrate that these can be reduced to just one dimension. The resulting equations are solved without partial-wave expansion. Cross sections for electron transfer in proton collisions with the ground state of atomic hydrogen are calculated and shown to agree well with experiment over a wide energy range.

  3. Improved Two-Dimensional Millimeter-Wave Imaging for Concealed Weapon Detection Through Partial Fourier Sampling

    NASA Astrophysics Data System (ADS)

    Farsaei, Amir Ashkan; Mokhtari-Koushyar, Farzad; Javad Seyed-Talebi, Seyed Mohammad; Kavehvash, Zahra; Shabany, Mahdi

    2016-03-01

    Active millimeter-wave imaging based on synthetic aperture focusing offers certain unique and practical advantages in nondestructive testing applications. Traditionally, the imaging for this purpose is performed through a long procedure of raster scanning with a single antenna across a two-dimensional grid, leading to a slow, bulky, and expensive scanning platform. In this paper, an improved bistatic structure based on radial compressive sensing is proposed, where one fixed transmitter antenna and a linear array of receiving antennas are used. The main contributions of this paper are (a) reducing the scanning time, (b) improving the output quality, and (c) designing an inexpensive setup. These improvements are the result of the underlying proposed simpler scanning structure and faster reconstruction process.

  4. Effects of partial liquid/gas saturation on extensional wave attenuation in Berea sandstone

    NASA Astrophysics Data System (ADS)

    Yin, C.-S.; Batzle, M. L.; Smith, B. J.

    1992-07-01

    Extensional wave attenuation measurements on Berea sandstone were made during increasing (imbibition) and decreasing (drainage) brine saturations. Measurements on samples with both open-pore and closed-pore surfaces were made using the resonant-bar technique. The frequency dependence was examined using the forced-deformation method. The attenuation was found to be dependent on saturation history as well as degree of saturation and boundary flow conditions. The sample with open-pore surface had a larger attenuation which peaked at greater brine saturations than the sample with closed-pore surface. During drainage, the attenuation reached a maximum at about 90% brine saturation as opposed to about 97% brine saturation during imbibition. The variation of the size and number of air pockets within the rock can account for this discrepancy. The magnitude of the attenuation peak value decreases substantially with decreasing frequency to the extent that no attenuation peak with saturation was apparent at seismic frequencies, say, below 100 Hz.

  5. Analysis of partial-reflection data from the solar eclipse of 10 Jul. 1972. [ground-based experiment using vertical incident radio waves partially reflected from D region

    NASA Technical Reports Server (NTRS)

    Bean, T. A.; Bowhill, S. A.

    1973-01-01

    Partial-reflection data collected for the eclipse of July 10, 1972 as well as for July 9 and 11, 1972, are analyzed to determine eclipse effects on D-region electron densities. The partial-reflection experiment was set up to collect data using an on-line PDP-15 computer and DECtape storage. The electron-density profiles show good agreement with results from other eclipses. The partial-reflection programs were changed after the eclipse data collection to improve the operation of the partial-reflection system. These changes were mainly due to expanded computer hardware and have simplified the operations of the system considerably.

  6. Using the Bi-Orthogonal Decomposition framework to compute the three dimensional Empirical Orthogonal Functions of stratospheric planetary waves from time correlation matrices

    NASA Astrophysics Data System (ADS)

    Rolland, Joran; Domeisen, Daniela I. V.

    2016-04-01

    Many geophysical waves in the atmosphere or in the ocean have a three dimensional structure and contain a range of scales. This is for instance the case of planetary waves in the stratosphere connected to baroclinic eddies in the troposphere [1]. In the study of such waves from reanalysis data or output of numerical simulations, Empirical Orthogonal Functions (EOF) obtained as a Proper Orthogonal Decomposition of the data sets have been of great help. However, most of these computations rely on the diagonalisation of space correlation matrices: this means that the considered data set can only have a limited number of gridpoints. The main consequence is that such analyses are often only performed in planes (as function of height and latitude, or longitude and latitude for instance), which makes the educing of the three dimensional structure of the wave quite difficult. In the case of the afore mentionned waves, the matter of the longitudinal dependence or the proper correlation between modes through the tropopause is an open question. An elegant manner to circumvent this problem is to consider the output of the Orthogonal Decomposition as a whole. Indeed, it has been shown that the normalised time series of the amplitude of each EOF, far from just being decorrelated from one another, are actually another set of orthogonal functions. These can actually be computed through the diagonlisation of the time correlation matrix of the data set, just like the EOF were the result of the diagonalisation of the space correlation matrix. The signal is then fully decomposed in the framework of the Bi-Orthogonal Decomposition as the sum of the nth explained variance, time the nth eigenmode of the time correlation times the nth eigenmode of the spacial correlations [2,3]. A practical consequence of this result is that the EOF can be reconstructed from the projection of the dataset onto the eigenmodes of the time correlation matrix in the so-called snapshot method [4]. This is very

  7. Using the Bi-Orthogonal Decomposition framework to compute the three dimensional Empirical Orthogonal Functions of stratospheric planetary waves from time correlation matrices

    NASA Astrophysics Data System (ADS)

    Rolland, Joran; Domeisen, Daniela I. V.

    2016-04-01

    Many geophysical waves in the atmosphere or in the ocean have a three dimensional structure and contain a range of scales. This is for instance the case of planetary waves in the stratosphere connected to baroclinic eddies in the troposphere [1]. In the study of such waves from reanalysis data or output of numerical simulations, Empirical Orthogonal Functions (EOF) obtained as a Proper Orthogonal Decomposition of the data sets have been of great help. However, most of these computations rely on the diagonalisation of space correlation matrices: this means that the considered data set can only have a limited number of gridpoints. The main consequence is that such analyses are often only performed in planes (as function of height and latitude, or longitude and latitude for instance), which makes the educing of the three dimensional structure of the wave quite difficult. In the case of the afore mentionned waves, the matter of the longitudinal dependence or the proper correlation between modes through the tropopause is an open question. An elegant manner to circumvent this problem is to consider the output of the Orthogonal Decomposition as a whole. Indeed, it has been shown that the normalised time series of the amplitude of each EOF, far from just being decorrelated from one another, are actually another set of orthogonal functions. These can actually be computed through the diagonlisation of the time correlation matrix of the data set, just like the EOF were the result of the diagonalisation of the space correlation matrix. The signal is then fully decomposed in the framework of the Bi-Orthogonal Decomposition as the sum of the nth explained variance, time the nth eigenmode of the time correlation times the nth eigenmode of the spacial correlations [2,3]. A practical consequence of this result is that the EOF can be reconstructed from the projection of the dataset onto the eigenmodes of the time correlation matrix in the so-called snapshot method [4]. This is very

  8. Quantization of wave equations and hermitian structures in partial differential varieties

    PubMed Central

    Paneitz, S. M.; Segal, I. E.

    1980-01-01

    Sufficiently close to 0, the solution variety of a nonlinear relativistic wave equation—e.g., of the form □ϕ + m2ϕ + gϕp = 0—admits a canonical Lorentz-invariant hermitian structure, uniquely determined by the consideration that the action of the differential scattering transformation in each tangent space be unitary. Similar results apply to linear time-dependent equations or to equations in a curved asymptotically flat space-time. A close relation of the Riemannian structure to the determination of vacuum expectation values is developed and illustrated by an explicit determination of a perturbative 2-point function for the case of interaction arising from curvature. The theory underlying these developments is in part a generalization of that of M. G. Krein and collaborators concerning stability of differential equations in Hilbert space and in part a precise relation between the unitarization of given symplectic linear actions and their full probabilistic quantization. The unique causal structure in the infinite symplectic group is instrumental in these developments. PMID:16592923

  9. ELSEPA—Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules

    NASA Astrophysics Data System (ADS)

    Salvat, Francesc; Jablonski, Aleksander; Powell, Cedric J.

    2005-01-01

    The FORTRAN 77 code system ELSEPA for the calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules is presented. These codes perform relativistic (Dirac) partial-wave calculations for scattering by a local central interaction potential V(r). For atoms and ions, the static-field approximation is adopted, with the potential set equal to the electrostatic interaction energy between the projectile and the target, plus an approximate local exchange interaction when the projectile is an electron. For projectiles with kinetic energies up to 10 keV, the potential may optionally include a semiempirical correlation-polarization potential to describe the effect of the target charge polarizability. Also, for projectiles with energies less than 1 MeV, an imaginary absorptive potential can be introduced to account for the depletion of the projectile wave function caused by open inelastic channels. Molecular cross sections are calculated by means of a single-scattering independent-atom approximation in which the electron density of a bound atom is approximated by that of the free neutral atom. Elastic scattering by individual atoms in solids is described by means of a muffin-tin model potential. Partial-wave calculations are feasible on modest personal computers for energies up to about 5 MeV. The ELSEPA code also implements approximate factorization methods that allow the fast calculation of elastic cross sections for much higher energies. The interaction model adopted in the calculations is defined by the user by combining the different options offered by the code. The nuclear charge distribution can be selected among four analytical models (point nucleus, uniformly charged sphere, Fermi's distribution and Helm's uniform-uniform distribution). The atomic electron density is handled in numerical form. The distribution package includes data files with electronic densities of neutral atoms of the elements hydrogen to lawrencium ( Z=1

  10. A pseudo-spectral method for the simulation of poro-elastic seismic wave propagation in 2D polar coordinates using domain decomposition

    NASA Astrophysics Data System (ADS)

    Sidler, Rolf; Carcione, José M.; Holliger, Klaus

    2013-02-01

    We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in 2D polar coordinates. An important application of this method and its extensions will be the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh, which can be arbitrarily heterogeneous, consisting of two or more concentric rings representing the fluid in the center and the surrounding porous medium. The spatial discretization is based on a Chebyshev expansion in the radial direction and a Fourier expansion in the azimuthal direction and a Runge-Kutta integration scheme for the time evolution. A domain decomposition method is used to match the fluid-solid boundary conditions based on the method of characteristics. This multi-domain approach allows for significant reductions of the number of grid points in the azimuthal direction for the inner grid domain and thus for corresponding increases of the time step and enhancements of computational efficiency. The viability and accuracy of the proposed method has been rigorously tested and verified through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently benchmarked solution for 2D Cartesian coordinates. Finally, the proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is adequately handled.

  11. A pseudo-spectral method for the simulation of poro-elastic seismic wave propagation in 2D polar coordinates using domain decomposition

    SciTech Connect

    Sidler, Rolf; Carcione, José M.; Holliger, Klaus

    2013-02-15

    We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in 2D polar coordinates. An important application of this method and its extensions will be the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh, which can be arbitrarily heterogeneous, consisting of two or more concentric rings representing the fluid in the center and the surrounding porous medium. The spatial discretization is based on a Chebyshev expansion in the radial direction and a Fourier expansion in the azimuthal direction and a Runge–Kutta integration scheme for the time evolution. A domain decomposition method is used to match the fluid–solid boundary conditions based on the method of characteristics. This multi-domain approach allows for significant reductions of the number of grid points in the azimuthal direction for the inner grid domain and thus for corresponding increases of the time step and enhancements of computational efficiency. The viability and accuracy of the proposed method has been rigorously tested and verified through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently benchmarked solution for 2D Cartesian coordinates. Finally, the proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is adequately handled.

  12. Converged cross-section results for double photoionization of helium atoms in hyperspherical partial wave theory at 6 eV above threshold

    SciTech Connect

    Das, J.N.; Paul, S.; Chakrabarti, K.

    2004-04-01

    Here we report a set of converged cross-section results for double photoionization of helium atoms obtained in the hyperspherical partial wave theory for equal energy sharing kinematics at 6 eV energy above threshold. The calculated cross section results are generally in excellent agreement with the absolute measured results of Doerner et al. [Phys. Rev. 57, 1074 (1998)].

  13. Shock wave study and theoretical modeling of the thermal decomposition of c-C4F8.

    PubMed

    Cobos, C J; Hintzer, K; Sölter, L; Tellbach, E; Thaler, A; Troe, J

    2015-12-28

    The thermal dissociation of octafluorocyclobutane, c-C4F8, was studied in shock waves over the range 1150-2300 K by recording UV absorption signals of CF2. It was found that the primary reaction nearly exclusively produces 2 C2F4 which afterwards decomposes to 4 CF2. A primary reaction leading to CF2 + C3F6 is not detected (an upper limit to the yield of the latter channel was found to be about 10 percent). The temperature range of earlier single pulse shock wave experiments was extended. The reaction was shown to be close to its high pressure limit. Combining high and low temperature results leads to a rate constant for the primary dissociation of k1 = 10(15.97) exp(-310.5 kJ mol(-1)/RT) s(-1) in the range 630-1330 K, over which k1 varies over nearly 14 orders of magnitude. Calculations of the energetics of the reaction pathway and the rate constants support the conclusions from the experiments. Also they shed light on the role of the 1,4-biradical CF2CF2CF2CF2 as an intermediate of the reaction. PMID:26577435

  14. Partial wave analysis of the reaction {gamma}p{yields}p{omega} and the search for nucleon resonances

    SciTech Connect

    Williams, M.; Applegate, D.; Bellis, M.; Meyer, C. A.; Dey, B; Dickson, R.; Krahn, Z.; McCracken, M. E.; Moriya, K.; Schumacher, R. A.; Adhikari, K. P.; Careccia, S. L.; Dodge, G. E.; Guler, N.; Klein, A.; Mayer, M.; Nepali, C. S.; Niroula, M. R.; Seraydaryan, H.; Tkachenko, S.

    2009-12-15

    An event-based partial wave analysis (PWA) of the reaction {gamma}p{yields}p{omega} has been performed on a high-statistics dataset obtained using the CLAS at Jefferson Lab for center-of-mass energies from threshold up to 2.4 GeV. This analysis benefits from access to the world's first high-precision spin-density matrix element measurements, available to the event-based PWA through the decay distribution of {omega}{yields}{pi}{sup +}{pi}{sup -}{pi}{sup 0}. The data confirm the dominance of the t-channel {pi}{sup 0} exchange amplitude in the forward direction. The dominant resonance contributions are consistent with the previously identified states F{sub 15}(1680) and D{sub 13}(1700) near threshold, as well as the G{sub 17}(2190) at higher energies. Suggestive evidence for the presence of a J{sup P}=5/2{sup +} state around 2 GeV, a ''missing'' state, has also been found. Evidence for other states is inconclusive.

  15. Partial wave analysis of the reaction γp→pω and the search for nucleon resonances

    DOE PAGESBeta

    Williams, M.; Applegate, D.; Bellis, M.; Meyer, C. A.; Adhikari, K. P.; Anghinolfi, M.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Bedlinskiy, I.; et al

    2009-12-30

    We performed an event-based partial wave analysis (PWA) of the reaction γ p -> p ω on a high-statistics dataset obtained using the CLAS at Jefferson Lab for center-of-mass energies from threshold up to 2.4 GeV. This analysis benefits from access to the world's first high precision spin density matrix element measurements, available to the event-based PWA through the decay distribution of omega-> π+ π - π0. The data confirm the dominance of the t-channel π0 exchange amplitude in the forward direction. The dominant resonance contributions are consistent with the previously identified states F[15](1680) and D[13](1700) near threshold, as wellmore » as the G[17](2190) at higher energies. Suggestive evidence for the presence of a J(P)=5/2+ state around 2 GeV, a "missing" state, has also been found. Evidence for other states is inconclusive.« less

  16. Partial wave analysis of the reaction γp→pω and the search for nucleon resonances

    NASA Astrophysics Data System (ADS)

    Williams, M.; Applegate, D.; Bellis, M.; Meyer, C. A.; Adhikari, K. P.; Anghinolfi, M.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Bedlinskiy, I.; Berman, B. L.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Careccia, S. L.; Carman, D. S.; Cole, P. L.; Collins, P.; Crede, V.; D'Angelo, A.; Daniel, A.; de Vita, R.; de Sanctis, E.; Deur, A.; Dey, B.; Dhamija, S.; Dickson, R.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dugger, M.; Dupre, R.; Alaoui, A. El; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fradi, A.; Gabrielyan, M. Y.; Garçon, M.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Hassall, N.; Hicks, K.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jawalkar, S. S.; Jo, H. S.; Johnstone, J. R.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, W.; Klein, A.; Klein, F. J.; Krahn, Z.; Kubarovsky, V.; Kuleshov, S. V.; Kuznetsov, V.; Livingston, K.; Lu, H. Y.; Mayer, M.; McAndrew, J.; McCracken, M. E.; McKinnon, B.; Mirazita, M.; Mokeev, V.; Moreno, B.; Moriya, K.; Morrison, B.; Munevar, E.; Nadel-Turonski, P.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niroula, M. R.; Niyazov, R. A.; Osipenko, M.; Ostrovidov, A. I.; Paris, M.; Park, K.; Park, S.; Pasyuk, E.; Pereira, S. Anefalos; Perrin, Y.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salamanca, J.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tedeschi, D. J.; Tkachenko, S.; Ungaro, M.; Vineyard, M. F.; Voutier, E.; Watts, D. P.; Weygand, D. P.; Wood, M. H.; Zhang, J.; Zhao, B.

    2009-12-01

    An event-based partial wave analysis (PWA) of the reaction γp→pω has been performed on a high-statistics dataset obtained using the CLAS at Jefferson Lab for center-of-mass energies from threshold up to 2.4 GeV. This analysis benefits from access to the world’s first high-precision spin-density matrix element measurements, available to the event-based PWA through the decay distribution of ω→π+π-π0. The data confirm the dominance of the t-channel π0 exchange amplitude in the forward direction. The dominant resonance contributions are consistent with the previously identified states F15(1680) and D13(1700) near threshold, as well as the G17(2190) at higher energies. Suggestive evidence for the presence of a JP=5/2+ state around 2 GeV, a “missing” state, has also been found. Evidence for other states is inconclusive.

  17. Ozone decomposition

    PubMed Central

    Batakliev, Todor; Georgiev, Vladimir; Anachkov, Metody; Rakovsky, Slavcho

    2014-01-01

    Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers). Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates. PMID:26109880

  18. Ozone decomposition.

    PubMed

    Batakliev, Todor; Georgiev, Vladimir; Anachkov, Metody; Rakovsky, Slavcho; Zaikov, Gennadi E

    2014-06-01

    Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers). Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates. PMID:26109880

  19. Spin-wave propagation and transformation in a thermal gradient

    NASA Astrophysics Data System (ADS)

    Obry, Björn; Vasyuchka, Vitaliy I.; Chumak, Andrii V.; Serga, Alexander A.; Hillebrands, Burkard

    2012-11-01

    The influence of a thermal gradient on the propagation properties of externally excited dipolar spin waves in a magnetic insulator waveguide is investigated. It is shown that spin waves propagating towards a colder region along the magnetization direction continuously reduce their wavelength. The wavelength increase of a wave propagating into a hotter region was utilized to realize its decomposition in the partial waveguide modes which are reflected at different locations. This influence of temperature on spin-wave properties is mainly caused by a change in the saturation magnetization and yields promising opportunities for the manipulation of spin waves in spin-caloritronic applications.

  20. Physics of Partially Ionized Plasmas

    NASA Astrophysics Data System (ADS)

    Krishan, Vinod

    2016-05-01

    Figures; Preface; 1. Partially ionized plasmas here and everywhere; 2. Multifluid description of partially ionized plasmas; 3. Equilibrium of partially ionized plasmas; 4. Waves in partially ionized plasmas; 5. Advanced topics in partially ionized plasmas; 6. Research problems in partially ionized plasmas; Supplementary matter; Index.

  1. Collision-induced Raman scattering from a pair of dissimilar particles: An intriguing mathematical model predicting the suppression of the odd-numbered partial waves

    NASA Astrophysics Data System (ADS)

    Chrysos, Michael

    2016-03-01

    Relying on a simple analytic two-atom model in which the anisotropy of the interaction dipole polarizability obeys an inverse power law as a function of separation, we offer mathematical and numerical evidence that, in a monoatomic gas, the free-free Raman spectrum for a collisional pair of two different isotopes, a-a', may vastly differ from that for a-a. This result is obtained even if a and a' are assumed to have the same mass and zero nuclear spin and even if a-a and a-a' are subject to the same interaction polarizability and potential. The mechanism responsible for this effect is inherent in the parity of the partial-wave rotational quantum number J: given that the contribution of each partial wave to the Raman cross section is controlled by a polarizability-transition matrix-element and that each of those matrix-elements has a radial component with a magnitude slightly smaller than that of the preceding partial wave, a deficit which disfavors the odd-numbered waves is accumulated upon summing over J. In the far high-frequency wing, this deficit tends to generate spectral intensities for a-a' about half as great as the a-a ones, a tendency which becomes all the more effective as temperature is decreased. We show for instance that, for the spectral branch ΔJ = 2, the fractional difference between the free-free differential cross sections for a-a and a-a' is /1 2 /( 1 - x2 ) 3 1 + 3 x 4 , with x = √{ E / E ' } (E (E') being the initial (final) state energy of the pair and E' - E = hcν (ν > 0)). Remarkably, this quantity is zero at ν ≈ 0 but goes to /1 2 for ν ≫ 0. For ΔJ = 0, analogous conclusions may be drawn from the expression ( 1 + /ln ( 1+x/1-x ) 2 arctan x ) - 1 .

  2. Woodland Decomposition.

    ERIC Educational Resources Information Center

    Napier, J.

    1988-01-01

    Outlines the role of the main organisms involved in woodland decomposition and discusses some of the variables affecting the rate of nutrient cycling. Suggests practical work that may be of value to high school students either as standard practice or long-term projects. (CW)

  3. Some nonlinear space decomposition algorithms

    SciTech Connect

    Tai, Xue-Cheng; Espedal, M.

    1996-12-31

    Convergence of a space decomposition method is proved for a general convex programming problem. The space decomposition refers to methods that decompose a space into sums of subspaces, which could be a domain decomposition or a multigrid method for partial differential equations. Two algorithms are proposed. Both can be used for linear as well as nonlinear elliptic problems and they reduce to the standard additive and multiplicative Schwarz methods for linear elliptic problems. Two {open_quotes}hybrid{close_quotes} algorithms are also presented. They converge faster than the additive one and have better parallelism than the multiplicative method. Numerical tests with a two level domain decomposition for linear, nonlinear and interface elliptic problems are presented for the proposed algorithms.

  4. Two-centre partial-wave calculations for the multiply differential cross section of the simple ionization of diatomic lithium Li2 by fast electron impact

    NASA Astrophysics Data System (ADS)

    Elboudali, F.; Joulakian, B.

    2001-12-01

    The (e, 2e) ionization of diatomic lithium Li2 by fast electrons is studied by applying, for the slow ejected electron, an asymptotically exact partial-wave description, which takes into account the diatomic nature of the problem. The ionization is considered as a vertical transition from the lowest vibrational and rotational level of the fundamental electronic state 1Σg+ of Li2 to the fundamental 2Σg+ state of Li2+. After verification of the procedure on the (e, 2e) ionization of diatomic hydrogen H2 for which experimental and theoretical results exist we present the particularities and favourable directions for Li2 targets.

  5. Emergence of extreme events in fiber-based parametric processes driven by a partially incoherent pump wave.

    PubMed

    Hammani, Kamal; Finot, Christophe; Millot, Guy

    2009-04-15

    We present experimental and theoretical results showing efficient emergence of rogue wavelike extreme intensity spikes during the fiber-based induced-modulational instability process driven by a partially incoherent pump. In particular, we show that the rogue event probability can be easily controlled by adjusting the pump-signal detuning. PMID:19370096

  6. Collision-induced Raman scattering from a pair of dissimilar particles: An intriguing mathematical model predicting the suppression of the odd-numbered partial waves.

    PubMed

    Chrysos, Michael

    2016-03-21

    Relying on a simple analytic two-atom model in which the anisotropy of the interaction dipole polarizability obeys an inverse power law as a function of separation, we offer mathematical and numerical evidence that, in a monoatomic gas, the free-free Raman spectrum for a collisional pair of two different isotopes, a-a', may vastly differ from that for a-a. This result is obtained even if a and a' are assumed to have the same mass and zero nuclear spin and even if a-a and a-a' are subject to the same interaction polarizability and potential. The mechanism responsible for this effect is inherent in the parity of the partial-wave rotational quantum number J: given that the contribution of each partial wave to the Raman cross section is controlled by a polarizability-transition matrix-element and that each of those matrix-elements has a radial component with a magnitude slightly smaller than that of the preceding partial wave, a deficit which disfavors the odd-numbered waves is accumulated upon summing over J. In the far high-frequency wing, this deficit tends to generate spectral intensities for a-a' about half as great as the a-a ones, a tendency which becomes all the more effective as temperature is decreased. We show for instance that, for the spectral branch ΔJ = 2, the fractional difference between the free-free differential cross sections for a-a and a-a' is 12(1-x(2))(3)1+3x(4), with x=√[E/E(')] (E (E') being the initial (final) state energy of the pair and E' - E = hcν (ν > 0)). Remarkably, this quantity is zero at ν ≈ 0 but goes to 12 for ν ≫ 0. For ΔJ = 0, analogous conclusions may be drawn from the expression (1+ln(1+x1-x)2arctanx)(-1). PMID:27004860

  7. A model for strong attenuation and dispersion of seismic P-waves in a partially saturated fractured reservoir

    NASA Astrophysics Data System (ADS)

    Brajanovski, Miroslav; Müller, Tobias M.; Parra, Jorge O.

    2010-08-01

    In this work we interpret the data showing unusually strong velocity dispersion of P-waves (up to 30%) and attenuation in a relatively narrow frequency range. The cross-hole and VSP data were measured in a reservoir, which is in the porous zone of the Silurian Kankakee Limestone Formation formed by vertical fractures within a porous matrix saturated by oil, and gas patches. Such a medium exhibits significant attenuation due to wave-induced fluid flow across the interfaces between different types of inclusions (fractures, fluid patches) and background. Other models of intrinsic attenuation (in particular squirt flow models) cannot explain the amount of observed dispersion when using realistic rock properties. In order to interpret data in a satisfactory way we develop a superposition model for fractured porous rocks accounting also for the patchy saturation effect.

  8. Paramagnetic spin splitting of the conductances for tunnel junctions between partially gapped metals with charge density waves and normal metals or ferromagnets

    NASA Astrophysics Data System (ADS)

    Gabovich, A. M.; Li, Mai Suan; Pekala, M.; Szymczak, H.; Voitenko, A. I.

    2005-03-01

    We consider tunnelling between a metal partially gapped by charge density waves (CDWM) and an ordinary metal (M) or a ferromagnet (FM) separated by an insulator (I) in an external magnetic field H. Zeeman paramagnetic splitting is assumed to dominate in the CDWM over orbital magnetic effects. The quasiparticle tunnel current J and relevant differential conductance G are calculated as functions of the bias voltage V. The peaks of G(V), originating from the electron density of states singularities near the charge density wave gap edges, were shown to be split in the magnetic field, each peak having a predominant spin polarization. This effect is analogous to the H-induced splitting of G(V) peaks obtained by Tedrow and Meservey for junctions between normal metals and superconductors (S). Thus, it is possible to electrically measure the polarization of current carriers in such a set-up, although the behaviours of G(V) in the two cases are substantially different. The use of M-I-CDWM junctions instead of M-I-S ones has certain advantages. The absence of the Meissner effect, which weakens the constraints upon the junction geometry and electrode materials, comprises the main benefit. The other advantage is the larger energy range of the charge density wave gaps in comparison to that for superconductors' gaps, so that larger Hs may be applied.

  9. Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet.

    PubMed

    Bliokh, K Yu; Bliokh, Yu P

    2007-06-01

    We present a solution to the problem of partial reflection and refraction of a polarized paraxial Gaussian beam at the interface between two transparent media. The Fedorov-Imbert transverse shifts of the centers of gravity of the reflected and refracted beams are calculated. Our results differ in the general case from those derived previously by other authors. In particular, they obey general conservation law for the beams' total angular momentum but do not obey one-particle conservation laws for individual photons, which have been proposed by [Onoda Phys. Rev. Lett. 93, 083901 (2004)]. We ascertain that these circumstances relate to the artificial model accepted in the literature for the polarized beam; this model does not fit to real beams. The present paper resolves the recent controversy and confirms the results of our previous paper [Bliokh Phys. Rev. Lett. 96, 073903 (2006)]. In addition, a diffraction effect of angular transverse shifts of the reflected and refracted beams is described. PMID:17677378

  10. Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet

    SciTech Connect

    Bliokh, K. Yu.; Bliokh, Yu. P.

    2007-06-15

    We present a solution to the problem of partial reflection and refraction of a polarized paraxial Gaussian beam at the interface between two transparent media. The Fedorov-Imbert transverse shifts of the centers of gravity of the reflected and refracted beams are calculated. Our results differ in the general case from those derived previously by other authors. In particular, they obey general conservation law for the beams' total angular momentum but do not obey one-particle conservation laws for individual photons, which have been proposed by [Onoda et al. Phys. Rev. Lett. 93, 083901 (2004)]. We ascertain that these circumstances relate to the artificial model accepted in the literature for the polarized beam; this model does not fit to real beams. The present paper resolves the recent controversy and confirms the results of our previous paper [Bliokh et al. Phys. Rev. Lett. 96, 073903 (2006)]. In addition, a diffraction effect of angular transverse shifts of the reflected and refracted beams is described.

  11. Mode decomposition evolution equations

    PubMed Central

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2011-01-01

    Partial differential equation (PDE) based methods have become some of the most powerful tools for exploring the fundamental problems in signal processing, image processing, computer vision, machine vision and artificial intelligence in the past two decades. The advantages of PDE based approaches are that they can be made fully automatic, robust for the analysis of images, videos and high dimensional data. A fundamental question is whether one can use PDEs to perform all the basic tasks in the image processing. If one can devise PDEs to perform full-scale mode decomposition for signals and images, the modes thus generated would be very useful for secondary processing to meet the needs in various types of signal and image processing. Despite of great progress in PDE based image analysis in the past two decades, the basic roles of PDEs in image/signal analysis are only limited to PDE based low-pass filters, and their applications to noise removal, edge detection, segmentation, etc. At present, it is not clear how to construct PDE based methods for full-scale mode decomposition. The above-mentioned limitation of most current PDE based image/signal processing methods is addressed in the proposed work, in which we introduce a family of mode decomposition evolution equations (MoDEEs) for a vast variety of applications. The MoDEEs are constructed as an extension of a PDE based high-pass filter (Europhys. Lett., 59(6): 814, 2002) by using arbitrarily high order PDE based low-pass filters introduced by Wei (IEEE Signal Process. Lett., 6(7): 165, 1999). The use of arbitrarily high order PDEs is essential to the frequency localization in the mode decomposition. Similar to the wavelet transform, the present MoDEEs have a controllable time-frequency localization and allow a perfect reconstruction of the original function. Therefore, the MoDEE operation is also called a PDE transform. However, modes generated from the present approach are in the spatial or time domain and can be

  12. A complex Noether approach for variational partial differential equations

    NASA Astrophysics Data System (ADS)

    Naz, R.; Mahomed, F. M.

    2015-10-01

    Scalar complex partial differential equations which admit variational formulations are studied. Such a complex partial differential equation, via a complex dependent variable, splits into a system of two real partial differential equations. The decomposition of the Lagrangian of the complex partial differential equation in the real domain is shown to yield two real Lagrangians for the split system. The complex Maxwellian distribution, transonic gas flow, Maxwellian tails, dissipative wave and Klein-Gordon equations are considered. The Noether symmetries and gauge terms of the split system that correspond to both the Lagrangians are constructed by the Noether approach. In the case of coupled split systems, the same Noether symmetries are obtained. The Noether symmetries for the uncoupled split systems are different. The conserved vectors of the split system which correspond to both the Lagrangians are compared to the split conserved vectors of the complex partial differential equation for the examples. The split conserved vectors of the complex partial differential equation are the same as the conserved vectors of the split system of real partial differential equations in the case of coupled systems. Moreover a Noether-like theorem for the split system is proved which provides the Noether-like conserved quantities of the split system from knowledge of the Noether-like operators. An interesting result on the split characteristics and the conservation laws is shown as well. The Noether symmetries and gauge terms of the Lagrangian of the split system with the split Noether-like operators and gauge terms of the Lagrangian of the given complex partial differential equation are compared. Folklore suggests that the split Noether-like operators of a Lagrangian of a complex Euler-Lagrange partial differential equation are symmetries of the Lagrangian of the split system of real partial differential equations. This is not the case. They are proved to be the same if the

  13. Charge-density-wave partial gap opening in quasi-2D KMo 6O 17 purple bronze studied by angle resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Valbuena, M. A.; Avila, J.; Pantin, V.; Drouard, S.; Guyot, H.; Asensio, M. C.

    2006-05-01

    Low dimensional (LD) metallic oxides have been a subject of continuous interest in the last two decades, mainly due to the electronic instabilities that they present at low temperatures. In particular, charge density waves (CDW) instabilities associated with a strong electron-phonon interaction have been found in Molybdenum metallic oxides such as KMo 6O 17 purple bronze. We report an angle resolved photoemission (ARPES) study from room temperature (RT) to T ˜40 K well below the Peierls transition temperature for this material, with CDW transition temperature TCDW ˜120 K. We have focused on photoemission spectra along ΓM high symmetry direction as well as photoemission measurements were taken as a function of temperature at one representative kF point in the Brillouin zone in order to look for the characteristic gap opening after the phase transition. We found out a pseudogap opening and a decrease in the density of states near the Fermi energy, EF, consistent with the partial removal of the nested portions of the Fermi surface (FS) at temperature below the CDW transition. In order to elucidate possible Fermi liquid (FL) or non-Fermi liquid (NFL) behaviour we have compared the ARPES data with that one reported on quasi-1D K 0.3MoO 3 blue bronze.

  14. Partial wave analysis of the reaction p(3.5 GeV) + p → pK+ Λ to search for the "ppK–" bound state

    DOE PAGESBeta

    Agakishiev, G.; Arnold, O.; Belver, D.; Belyaev, A.; Berger-Chen, J. C.; Blanco, A.; Böhmer, M.; Boyard, J. L.; Cabanelas, P.; Chernenko, S.; et al

    2015-01-26

    Employing the Bonn–Gatchina partial wave analysis framework (PWA), we have analyzed HADES data of the reaction p(3.5GeV) + p → pK+Λ. This reaction might contain information about the kaonic cluster “ppK-” (with quantum numbers JP=0- and total isospin I =1/2) via its decay into pΛ. Due to interference effects in our coherent description of the data, a hypothetical K ¯NN (or, specifically “ppK-”) cluster signal need not necessarily show up as a pronounced feature (e.g. a peak) in an invariant mass spectrum like pΛ. Our PWA analysis includes a variety of resonant and non-resonant intermediate states and delivers a goodmore » description of our data (various angular distributions and two-hadron invariant mass spectra) without a contribution of a K ¯NN cluster. At a confidence level of CLs=95% such a cluster cannot contribute more than 2–12% to the total cross section with a pK+ Λ final state, which translates into a production cross-section between 0.7 μb and 4.2 μb, respectively. The range of the upper limit depends on the assumed cluster mass, width and production process.« less

  15. Rich eight-branch spectrum of the oblique propagating longitudinal waves in partially spin-polarized electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Andreev, Pavel A.; Iqbal, Z.

    2016-03-01

    We consider the separate spin evolution of electrons and positrons in electron-positron and electron-positron-ion plasmas. We consider the oblique propagating longitudinal waves in these systems. Working in a regime of high-density n0˜1027cm-3 and high-magnetic-field B0=1010 G, we report the presence of the spin-electron acoustic waves and their dispersion dependencies. In electron-positron plasmas, similarly to the electron-ion plasmas, we find one spin-electron acoustic wave (SEAW) at the propagation parallel or perpendicular to the external field and two spin-electron acoustic waves at the oblique propagation. At the parallel or perpendicular propagation of the longitudinal waves in electron-positron-ion plasmas, we find four branches: the Langmuir wave, the positron-acoustic wave, and a pair of waves having spin nature, they are the SEAW and the wave discovered in this paper, called the spin-electron-positron acoustic wave (SEPAW). At the oblique propagation we find eight longitudinal waves: the Langmuir wave, the Trivelpiece--Gould wave, a pair of positron-acoustic waves, a pair of SEAWs, and a pair of SEPAWs. Thus, for the first time, we report the existence of the second positron-acoustic wave existing at the oblique propagation and the existence of SEPAWs.

  16. Thermal Decomposition Mechanism of Butyraldehyde

    NASA Astrophysics Data System (ADS)

    Hatten, Courtney D.; Warner, Brian; Wright, Emily; Kaskey, Kevin; McCunn, Laura R.

    2013-06-01

    The thermal decomposition of butyraldehyde, CH_3CH_2CH_2C(O)H, has been studied in a resistively heated SiC tubular reactor. Products of pyrolysis were identified via matrix-isolation FTIR spectroscopy and photoionization mass spectrometry in separate experiments. Carbon monoxide, ethene, acetylene, water and ethylketene were among the products detected. To unravel the mechanism of decomposition, pyrolysis of a partially deuterated sample of butyraldehyde was studied. Also, the concentration of butyraldehyde in the carrier gas was varied in experiments to determine the presence of bimolecular reactions. The results of these experiments can be compared to the dissociation pathways observed in similar aldehydes and are relevant to the processing of biomass, foods, and tobacco.

  17. Scattering of an electromagnetic plane wave by a Luneburg lens. II. Wave theory.

    PubMed

    Lock, James A

    2008-12-01

    The partial wave scattering and interior amplitudes for the interaction of an electromagnetic plane wave with a modified Luneburg lens are derived in terms of the exterior and interior radial functions of the scalar radiation potentials evaluated at the lens surface. A Debye series decomposition of these amplitudes is also performed and discussed. The effective potential inside the lens for the transverse electric polarization is qualitatively examined, and the approximate lens size parameters of morphology-dependent resonances are determined. Finally, the physical optics model is used to calculate wave scattering in the vicinity of the ray theory orbiting condition in order to demonstrate the smoothing of ray theory discontinuities by the diffraction of scattered waves. PMID:19037389

  18. Integrated control/structure optimization by multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Zeiler, Thomas A.; Gilbert, Michael G.

    1990-01-01

    A method for integrated control/structure optimization by multilevel decomposition is presented. It is shown that several previously reported methods were actually partial decompositions wherein only the control was decomposed into a subsystem design. One of these partially decomposed problems was selected as a benchmark example for comparison. The present paper fully decomposes the system into structural and control subsystem designs and produces an improved design. Theory, implementation, and results for the method are presented and compared with the benchmark example.

  19. Integrated control/structure optimization by multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Zeiler, Thomas A.; Gilbert, Michael G.

    1990-01-01

    A method for integrated control/structure optimization by multilevel decomposition is presented. It is shown that several previously reported methods were actually partial decompositions wherein only the control was decomposed into a subsystem design. One of these partially decomposed problems was selected as a benchmark example for comparison. The system is fully decomposed into structural and control subsystem designs and an improved design is produced. Theory, implementation, and results for the method are presented and compared with the benchmark example.

  20. Nested Taylor decomposition in multivariate function decomposition

    NASA Astrophysics Data System (ADS)

    Baykara, N. A.; Gürvit, Ercan

    2014-12-01

    Fluctuationlessness approximation applied to the remainder term of a Taylor decomposition expressed in integral form is already used in many articles. Some forms of multi-point Taylor expansion also are considered in some articles. This work is somehow a combination these where the Taylor decomposition of a function is taken where the remainder is expressed in integral form. Then the integrand is decomposed to Taylor again, not necessarily around the same point as the first decomposition and a second remainder is obtained. After taking into consideration the necessary change of variables and converting the integration limits to the universal [0;1] interval a multiple integration system formed by a multivariate function is formed. Then it is intended to apply the Fluctuationlessness approximation to each of these integrals one by one and get better results as compared with the single node Taylor decomposition on which the Fluctuationlessness is applied.

  1. Nonlinear mode decomposition: A noise-robust, adaptive decomposition method

    NASA Astrophysics Data System (ADS)

    Iatsenko, Dmytro; McClintock, Peter V. E.; Stefanovska, Aneta

    2015-09-01

    The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool—nonlinear mode decomposition (NMD)—which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques—which, together with the adaptive choice of their parameters, make it extremely noise robust—and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download.

  2. Nonlinear mode decomposition: a noise-robust, adaptive decomposition method.

    PubMed

    Iatsenko, Dmytro; McClintock, Peter V E; Stefanovska, Aneta

    2015-09-01

    The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool-nonlinear mode decomposition (NMD)-which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques-which, together with the adaptive choice of their parameters, make it extremely noise robust-and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download. PMID:26465549

  3. Photoelectrocatalytic decomposition of ethylene using TiO2/activated carbon fiber electrode with applied pulsed direct current square-wave potential

    NASA Astrophysics Data System (ADS)

    Ye, Sheng-ying; Zheng, Sen-hong; Song, Xian-liang; Luo, Shu-can

    2015-06-01

    Removing ethylene (C2H4) from the atmosphere of storage facilities for fruits and vegetable is one of the main challenges in their postharvest handling for maximizing their freshness, quality, and shelf life. In this study, we investigated the photoelectrocatalytic (PEC) degradation of ethylene gas by applying a pulsed direct current DC square-wave (PDCSW) potential and by using a Nafion-based PEC cell. The cell utilized a titanium dioxide (TiO2) photocatalyst or γ-irradiated TiO2 (TiO2*) loaded on activated carbon fiber (ACF) as a photoelectrode. The apparent rate constant of a pseudo-first-order reaction (K) was used to describe the PEC degradation of ethylene. Parameters of the potential applied to the PEC cell in a reactor that affect the degradation efficiency in terms of the K value were studied. These parameters were frequency, duty cycle, and voltage. Ethylene degradation by application of a constant PDCSW potential to the PEC electrode of either TiO2/ACF cell or TiO2*/ACF cell enhanced the efficiency of photocatalytic degradation and PEC degradation. Gamma irradiation of TiO2 in the electrode and the applied PDCSW potential synergistically increased the K value. Independent variables (frequency, duty cycle, and voltage) of the PEC cell fabricated from TiO2 subjected 20 kGy γ radiation were optimized to maximize the K value by using response surface methodology with quadratic rotation-orthogonal composite experimental design. Optimized conditions were as follows: 358.36 Hz frequency, 55.79% duty cycle, and 64.65 V voltage. The maximum K value attained was 4.4 × 10-4 min-1.

  4. Circulant states with positive partial transpose

    SciTech Connect

    Chruscinski, Dariusz; Kossakowski, Andrzej

    2007-09-15

    We construct a large class of quantum dxd states which are positive under partial transposition (so called PPT states). The construction is based on certain direct sum decomposition of the total Hilbert space displaying characteristic circular structure - that is why we call them circulant states. It turns out that partial transposition maps any such decomposition into another one and hence both original density matrix and its partially transposed partner share similar cyclic properties. This class contains many well-known examples of PPT states from the literature and gives rise to a huge family of completely new states.

  5. Type-Decomposition of an Effect Algebra

    NASA Astrophysics Data System (ADS)

    Foulis, David J.; Pulmannová, Sylvia

    2010-10-01

    Effect algebras (EAs), play a significant role in quantum logic, are featured in the theory of partially ordered Abelian groups, and generalize orthoalgebras, MV-algebras, orthomodular posets, orthomodular lattices, modular ortholattices, and boolean algebras. We study centrally orthocomplete effect algebras (COEAs), i.e., EAs satisfying the condition that every family of elements that is dominated by an orthogonal family of central elements has a supremum. For COEAs, we introduce a general notion of decomposition into types; prove that a COEA factors uniquely as a direct sum of types I, II, and III; and obtain a generalization for COEAs of Ramsay’s fourfold decomposition of a complete orthomodular lattice.

  6. Determination of partial-wave inelasticities for elastic pion-nucleon scattering with the aid of experimental data on π N → ππ N processes in the beam-momentum range 300 < P beam < 500 MeV/ c

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, V. A.; Sherman, S. G.

    2008-11-01

    The partial-wave inelasticity parameters of the amplitude for elastic pion-nucleon scattering are determined with the aid of the phenomenological amplitude for inelastic π N → ππ N processes in the energy range extending to the threshold for the production of two pions. The resulting inelasticity parameters are compared with their counterparts derived from modern partial-wave analyses. The largest inelastic-scattering cross section in the P11 wave is in excellent agreement with the analogous value from the analysis performed at the George Washington University in 2006. For other waves, however, the present results differ in the majority of cases from respective values given by partial-wave analyses (the distinctions are especially large for the isospin-3/2 amplitudes).

  7. Limits to acoustic sensing and modal decomposition using FBGs

    NASA Astrophysics Data System (ADS)

    Norman, Patrick; Davis, Claire; Rosalie, Cédric; Rajic, Nik

    2016-04-01

    Lamb-wave based structural health monitoring (SHM) approaches are typically constrained to operate below the first cut-off frequency to simplify the interpretation of the wave field in the time-domain. However from a diagnostic perspective, it is desirable to unlock the additional information encoded in the higher-order Lamb wave spectrum. Wave-mode decomposition is necessary for the extraction of useful information from multi-modal acoustic wave fields, which requires spatially dense sampling over the field. The instrument of choice for this task is the laser Doppler vibrometer, which is capable of producing detailed spectral decompositions. However vibrometry is not suited to in-situ measurement for SHM. Fibre Bragg gratings (FBGs) are capable of sensing Lamb waves and detection of higher order modes using FBGs has been previously demonstrated. The ability to multiplex multiple short-length gratings along a single fibre to create an FBG array gives rise to an in-situ sensor with sufficiently dense spatial sampling of an acoustic wave field to perform useful wave-mode decomposition. This paper explores some of the fundamental limits to modal decomposition resolution and bandwidth that exist for such sensors. Potential sources of noise and distortion encountered due to limitations of the sensor fabrication and interrogation methods are also discussed. In addition, modal decomposition of Lamb waves with frequencies up to 1.25 MHz is demonstrated in a laboratory experiment using an array of sixteen ~1 mm long gratings bonded to an aluminium plate. At least four modes are distinguishable in the resulting spectral decomposition.

  8. Orthogonal tensor decompositions

    SciTech Connect

    Tamara G. Kolda

    2000-03-01

    The authors explore the orthogonal decomposition of tensors (also known as multi-dimensional arrays or n-way arrays) using two different definitions of orthogonality. They present numerous examples to illustrate the difficulties in understanding such decompositions. They conclude with a counterexample to a tensor extension of the Eckart-Young SVD approximation theorem by Leibovici and Sabatier [Linear Algebra Appl. 269(1998):307--329].

  9. Partial wave analysis of the {pi}{sup -}{pi}{sup -}{pi}{sup +} and {pi}{sup -}{pi}{sup 0}{pi}{sup 0} systems and the search for a J{sup PC}=1{sup -+} meson

    SciTech Connect

    Dzierba, A.R.; Mitchell, R.; Scott, E.; Shepherd, M.R.; Smith, P.; Swat, M.; Teige, S.; Szczepaniak, A.P.; Denisov, S.P.; Dorofeev, V.; Kachaev, I.; Lipaev, V.; Popov, A.V.; Ryabchikov, D.I.; Bodyagin, V.A.; Demianov, A.

    2006-04-01

    A partial wave analysis (PWA) of the {pi}{sup -}{pi}{sup -}{pi}{sup +} and {pi}{sup -}{pi}{sup 0}{pi}{sup 0} systems produced in the reaction {pi}{sup -}p{yields}(3{pi}){sup -}p at 18 GeV/c was carried out using an isobar model assumption. This analysis is based on 3.0 M {pi}{sup -}{pi}{sup 0}{pi}{sup 0} events and 2.6 M {pi}{sup -}{pi}{sup -}{pi}{sup +} events and shows production of the a{sub 1}(1260), a{sub 2}(1320), {pi}{sub 2}(1670), and a{sub 4}(2040) resonances. Results of detailed studies of the stability of partial wave fits are presented. An earlier analysis of 250 K {pi}{sup -}{pi}{sup -}{pi}{sup +} events from the same experiment showed possible evidence for a J{sup PC}=1{sup -+} exotic meson with a mass of {approx}1.6 GeV/c{sup 2} decaying into {rho}{pi}. In this analysis of a higher statistics sample of the (3{pi}){sup -} system in two charged modes we find no evidence of an exotic meson.

  10. A contact mechanics based model for partially-closed randomly distributed surface microcracks and their effect on acoustic nonlinearity in Rayleigh surface waves

    NASA Astrophysics Data System (ADS)

    Oberhardt, Tobias; Kim, Jin-Yeon; Qu, Jianmin; Jacobs, Laurence J.

    2016-02-01

    This research investigates the modeling of randomly distributed surface-breaking microcracks and the dependency of higher harmonic generation in Rayleigh surface waves on microcrack density. The microcrack model is based on micromechanical considerations of rough surface contact. An effective stress-strain relationship is derived to describe the nonlinear behavior of a single microcrack and implemented into a finite-element model via a hyperelastic constitutive law. Finite-element simulations of nonlinear wave propagation in a solid with distributed surface microcracks are performed for a range of microcrack densities. The evolution of fundamental and second harmonic amplitudes along the propagation distance is studied and the acoustic nonlinearity parameter is calculated. The results show that the nonlinearity parameter increases with crack density. While, for small crack densities (dilute concentration of microcracks) a proportionality between crack density and acoustic nonlinearity is observed, this is not valid for higher crack densities, as the microcracks start to interact.

  11. Measured and calculated elastic wave speeds in partially equilibrated mafic granulite xenoliths: Implications for the properties of an underplated lower continental crust

    NASA Astrophysics Data System (ADS)

    Rudnick, Roberta L.; Jackson, Ian

    1995-06-01

    Ultrasonic compressional wave velocities measured at 1.0 GPa and room temperature are compared with calculated velocities (based on single-crystal data and modal mineralogy) for a suite of mafic granulite xenoliths from the Chudleigh volcanic province, north Queensland, Australia. The xenoliths have nearly constant major element compositions but widely variable modal mineralogy, reflecting recrystallization under variable pressure-temperature conditions at depth in the continental crust (20-45 km). They thus provide an excellent opportunity to investigate velocity variation with depth in a mafic lower crust. Measured P wave velocities, corrected for the decompression-induced breakdown of garnet, range from 6.9 to 7.6 km/sec and correlate with derivation depth. These velocities are 5-12% lower than the calculated velocities (7.5-8.0 km/sec), apparently as a result of grain boundary alteration as well as irreversible changes that occurred in the xenoliths during rapid decompression. Calculated P wave velocities are similar to those estimated by Furlong and Fountain (1986) and Sobolev and Babeyko (1989) for mafic granulites formed through basaltic underplating of the continental crust. Depending upon in situ temperature, P wave velocities in the deepest samples may be interpreted as crustal (e.g., 7.3-7.6 km/sec, if heat flow is high) or mantle (7.7-7.8 km/sec, in areas of low heat flow). The range of velocities in the xenolith suite is larger than predicted for a fully equilibrated underplated basaltic layer, highlighting the importance of kinetic effects in determining the ultimate velocity profile of magmatically underplated crust. Comparison of our results with seismic profiles illustrates that the lower crust rarely reaches such high velocities, suggesting quartz-bearing rocks (country rocks?) are present within magmatically underplated layers of the deep crust.

  12. Decomposition Products of RDX and TNT after Resonant Laser Excitation

    NASA Astrophysics Data System (ADS)

    Monat, Jeremy; Gump, Jared

    2009-06-01

    This presentation describes research on the gas-phase products of decomposition of explosives after resonant laser excitation. We studied RDX, TNT, and formulations containing them after excitation by lasers in the infrared (10.6 4μm continuous-wave [CW]; resonant with ring vibrational modes) and ultraviolet (266 nm CW and pulsed [ca. 5 ns pulsewidth]; resonant with delocalized ring electronic absorptions). The decomposition products in air were identified by infrared spectroscopy and will be described as a function of laser wavelength and energy deposition timescale. Our results will be compared to decomposition pathways in the literature derived from resistive heating techniques.

  13. Decomposition products of TATB under high static pressure

    NASA Astrophysics Data System (ADS)

    Crowhurst, Jonathan; Stavrou, Elissaios; Zaug, Joseph

    We have investigated the decomposition products of 2,4,6-triamino-1,3,5-trinitrobenzene (TATB) at static pressures up to 50 GPa using Raman and IR absorption spectroscopy. Decomposition was driven by various continuous wave and pulsed laser drives. We compare decomposition behavior and products obtained at the different pressures. Preliminary results at lower pressures indicate the formation of carbon dioxide, nitrogen, amorphous carbon and possibly hydrogen. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344

  14. Decomposing Nekrasov decomposition

    NASA Astrophysics Data System (ADS)

    Morozov, A.; Zenkevich, Y.

    2016-02-01

    AGT relations imply that the four-point conformal block admits a decomposition into a sum over pairs of Young diagrams of essentially rational Nekrasov functions — this is immediately seen when conformal block is represented in the form of a matrix model. However, the q-deformation of the same block has a deeper decomposition — into a sum over a quadruple of Young diagrams of a product of four topological vertices. We analyze the interplay between these two decompositions, their properties and their generalization to multi-point conformal blocks. In the latter case we explain how Dotsenko-Fateev all-with-all (star) pair "interaction" is reduced to the quiver model nearest-neighbor (chain) one. We give new identities for q-Selberg averages of pairs of generalized Macdonald polynomials. We also translate the slicing invariance of refined topological strings into the language of conformal blocks and interpret it as abelianization of generalized Macdonald polynomials.

  15. Estimating model parameters for an impact-produced shock-wave simulation: Optimal use of partial data with the extended Kalman filter

    SciTech Connect

    Kao, Jim . E-mail: kao@lanl.gov; Flicker, Dawn; Ide, Kayo; Ghil, Michael

    2006-05-20

    This paper builds upon our recent data assimilation work with the extended Kalman filter (EKF) method [J. Kao, D. Flicker, R. Henninger, S. Frey, M. Ghil, K. Ide, Data assimilation with an extended Kalman filter for an impact-produced shock-wave study, J. Comp. Phys. 196 (2004) 705-723.]. The purpose is to test the capability of EKF in optimizing a model's physical parameters. The problem is to simulate the evolution of a shock produced through a high-speed flyer plate. In the earlier work, we have showed that the EKF allows one to estimate the evolving state of the shock wave from a single pressure measurement, assuming that all model parameters are known. In the present paper, we show that imperfectly known model parameters can also be estimated accordingly, along with the evolving model state, from the same single measurement. The model parameter optimization using the EKF can be achieved through a simple modification of the original EKF formalism by including the model parameters into an augmented state variable vector. While the regular state variables are governed by both deterministic and stochastic forcing mechanisms, the parameters are only subject to the latter. The optimally estimated model parameters are thus obtained through a unified assimilation operation. We show that improving the accuracy of the model parameters also improves the state estimate. The time variation of the optimized model parameters results from blending the data and the corresponding values generated from the model and lies within a small range, of less than 2%, from the parameter values of the original model. The solution computed with the optimized parameters performs considerably better and has a smaller total variance than its counterpart using the original time-constant parameters. These results indicate that the model parameters play a dominant role in the performance of the shock-wave hydrodynamic code at hand.

  16. NTO decomposition studies

    SciTech Connect

    Oxley, J.C.; Smith, J.L.; Yeager, K.E.; Rogers, E.; Dong, X.X.

    1996-07-01

    To examine the thermal decomposition of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO) in detail, isotopic labeling studies were undertaken. NTO samples labeled with {sup 15}N in three different locations [N(1) and N(2), N(4), and N(6)] were prepared. Upon thermolysis, the majority of the NTO condensed-phase product was a brown, insoluble residue, but small quantities of 2,4-dihydro-3H-1,2,4-triazol-3-one (TO) and triazole were detected. Gases comprised the remainder of the NTO decomposition products. The analysis of these gases is reported along with mechanistic implications of these observations.

  17. Study of the high-temperature pyrolysis of propene by determination of H and D atoms formed from partially deuterated propenes heated behind shock waves

    SciTech Connect

    Rao, V.S.; Skinner, G.B. )

    1989-03-09

    Very dilute mixtures of CD{sub 2}CHCH{sub 3}, CH{sub 2}CDCH{sub 3}, and CH{sub 2}CHCD{sub 3} were pyrolyzed at 1500-1800 K behind incident shock waves at an average pressure of 0.42 atm and behind reflected waves at 2.8 atm. Analysis for H and D using resonance absorption spectroscopy showed that propene dissociates partly by formation of hydrogen atoms and allyl radicals, (1), and partly by formation of vinyl and methyl radicals, (2). Both of these unimolecular dissociation reactions of propene are in the intermediate falloff region at our pressures and temperatures. For (1) we find k{sub 1} = 3.5 {times} 10{sup 12} exp(-75 kcal/RT) s{sup {minus}1} at 0.42 atm and k{sub 1} = 3.6 {times} 10{sup 13} exp(-80 kcal/RT) s{sup {minus}1} at 2.8 atm. For (2) we find k{sub 2} = 8.2 {times} 10{sup 12} exp(-80 kcal/RT) s{sup {minus}1} at 0.42 atm and k{sub 2} = 2.3 {times} 10{sup 13} exp(-80 kcal/RT) s{sup {minus}1} at 2.8 atm. Estimated uncertainties are factors of 1.5 in (1) and 2 in (2).

  18. Epilepsy (partial)

    PubMed Central

    2011-01-01

    Introduction About 3% of people will be diagnosed with epilepsy during their lifetime, but about 70% of people with epilepsy eventually go into remission. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of starting antiepileptic drug treatment following a single seizure? What are the effects of drug monotherapy in people with partial epilepsy? What are the effects of additional drug treatments in people with drug-resistant partial epilepsy? What is the risk of relapse in people in remission when withdrawing antiepileptic drugs? What are the effects of behavioural and psychological treatments for people with epilepsy? What are the effects of surgery in people with drug-resistant temporal lobe epilepsy? We searched: Medline, Embase, The Cochrane Library, and other important databases up to July 2009 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 83 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: antiepileptic drugs after a single seizure; monotherapy for partial epilepsy using carbamazepine, gabapentin, lamotrigine, levetiracetam, phenobarbital, phenytoin, sodium valproate, or topiramate; addition of second-line drugs for drug-resistant partial epilepsy (allopurinol, eslicarbazepine, gabapentin, lacosamide, lamotrigine, levetiracetam, losigamone, oxcarbazepine, retigabine, tiagabine, topiramate, vigabatrin, or zonisamide); antiepileptic drug withdrawal for people with partial or

  19. An Alternative Method to the Classical Partial Fraction Decomposition

    ERIC Educational Resources Information Center

    Cherif, Chokri

    2007-01-01

    PreCalculus students can use the Completing the Square Method to solve quadratic equations without the need to memorize the quadratic formula since this method naturally leads them to that formula. Calculus students, when studying integration, use various standard methods to compute integrals depending on the type of function to be integrated.…

  20. Hydrazine decomposition and other reactions

    NASA Technical Reports Server (NTRS)

    Armstrong, Warren E. (Inventor); La France, Donald S. (Inventor); Voge, Hervey H. (Inventor)

    1978-01-01

    This invention relates to the catalytic decomposition of hydrazine, catalysts useful for this decomposition and other reactions, and to reactions in hydrogen atmospheres generally using carbon-containing catalysts.

  1. Odd and even partial waves of ηπ- and η‧π- in π- p →η (‧)π- p at 191 GeV / c

    NASA Astrophysics Data System (ADS)

    Adolph, C.; Akhunzyanov, R.; Alexeev, M. G.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badełek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S. U.; Cicuttin, A.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Geyer, R.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F. H.; Herrmann, F.; Hinterberger, F.; Höppner, Ch.; Horikawa, N.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Jörg, P.; Joosten, R.; Kabuß, E.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Krämer, M.; Kroumchtein, Z. V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G. K.; Marchand, C.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Novy, J.; Nowak, W.-D.; Nunes, A. S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peshekhonov, D. V.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Rocco, E.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Rychter, A.; Samoylenko, V. D.; Sandacz, A.; Sarkar, S.; Savin, I. A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlüter, T.; Schmidt, K.; Schmieden, H.; Schönning, K.; Schopferer, S.; Schott, M.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Uhl, S.; Uman, I.; Virius, M.; Wang, L.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.

    2015-01-01

    Exclusive production of ηπ- and η‧π- has been studied with a 191 GeV / cπ- beam impinging on a hydrogen target at COMPASS (CERN). Partial-wave analyses reveal different odd/even angular momentum (L) characteristics in the inspected invariant mass range up to 3 GeV /c2. A striking similarity between the two systems is observed for the L = 2 , 4 , 6 intensities (scaled by kinematical factors) and the relative phases. The known resonances a2 (1320) and a4 (2040) are in line with this similarity. In contrast, a strong enhancement of η‧π- over ηπ- is found for the L = 1 , 3 , 5 waves, which carry non- q q bar quantum numbers. The L = 1 intensity peaks at 1.7 GeV /c2 in η‧π- and at 1.4 GeV /c2 in ηπ-, the corresponding phase motions with respect to L = 2 are different.

  2. Domain decomposition: A bridge between nature and parallel computers

    NASA Technical Reports Server (NTRS)

    Keyes, David E.

    1992-01-01

    Domain decomposition is an intuitive organizing principle for a partial differential equation (PDE) computation, both physically and architecturally. However, its significance extends beyond the readily apparent issues of geometry and discretization, on one hand, and of modular software and distributed hardware, on the other. Engineering and computer science aspects are bridged by an old but recently enriched mathematical theory that offers the subject not only unity, but also tools for analysis and generalization. Domain decomposition induces function-space and operator decompositions with valuable properties. Function-space bases and operator splittings that are not derived from domain decompositions generally lack one or more of these properties. The evolution of domain decomposition methods for elliptically dominated problems has linked two major algorithmic developments of the last 15 years: multilevel and Krylov methods. Domain decomposition methods may be considered descendants of both classes with an inheritance from each: they are nearly optimal and at the same time efficiently parallelizable. Many computationally driven application areas are ripe for these developments. A progression is made from a mathematically informal motivation for domain decomposition methods to a specific focus on fluid dynamics applications. To be introductory rather than comprehensive, simple examples are provided while convergence proofs and algorithmic details are left to the original references; however, an attempt is made to convey their most salient features, especially where this leads to algorithmic insight.

  3. Multicriteria approximation through decomposition

    SciTech Connect

    Burch, C. |; Krumke, S.; Marathe, M.; Phillips, C.; Sundberg, E. |

    1997-12-01

    The authors propose a general technique called solution decomposition to devise approximation algorithms with provable performance guarantees. The technique is applicable to a large class of combinatorial optimization problems that can be formulated as integer linear programs. Two key ingredients of the technique involve finding a decomposition of a fractional solution into a convex combination of feasible integral solutions and devising generic approximation algorithms based on calls to such decompositions as oracles. The technique is closely related to randomized rounding. The method yields as corollaries unified solutions to a number of well studied problems and it provides the first approximation algorithms with provable guarantees for a number of new problems. The particular results obtained in this paper include the following: (1) The authors demonstrate how the technique can be used to provide more understanding of previous results and new algorithms for classical problems such as Multicriteria Spanning Trees, and Suitcase Packing. (2) They show how the ideas can be extended to apply to multicriteria optimization problems, in which they wish to minimize a certain objective function subject to one or more budget constraints. As corollaries they obtain first non-trivial multicriteria approximation algorithms for problems including the k-Hurdle and the Network Inhibition problems.

  4. Multicriteria approximation through decomposition

    SciTech Connect

    Burch, C.; Krumke, S.; Marathe, M.; Phillips, C.; Sundberg, E.

    1998-06-01

    The authors propose a general technique called solution decomposition to devise approximation algorithms with provable performance guarantees. The technique is applicable to a large class of combinatorial optimization problems that can be formulated as integer linear programs. Two key ingredients of their technique involve finding a decomposition of a fractional solution into a convex combination of feasible integral solutions and devising generic approximation algorithms based on calls to such decompositions as oracles. The technique is closely related to randomized rounding. Their method yields as corollaries unified solutions to a number of well studied problems and it provides the first approximation algorithms with provable guarantees for a number of new problems. The particular results obtained in this paper include the following: (1) the authors demonstrate how the technique can be used to provide more understanding of previous results and new algorithms for classical problems such as Multicriteria Spanning Trees, and Suitcase Packing; (2) they also show how the ideas can be extended to apply to multicriteria optimization problems, in which they wish to minimize a certain objective function subject to one or more budget constraints. As corollaries they obtain first non-trivial multicriteria approximation algorithms for problems including the k-Hurdle and the Network Inhibition problems.

  5. Interpretation of the Isabella High Wave-Speed Anomaly as the Partially Delaminated High-Density Root of the Southern Sierra Nevada Batholith, California

    NASA Astrophysics Data System (ADS)

    Saleeby, J.; Le Pourhiet, L.

    2012-12-01

    runs is a chain of events that initiates with the basal thermal perturbation and load of the arclogite root inducing Rayleigh-Taylor (RT) instability within the peridotitic lithosphere, as well as the development of a lower crustal channel along the eastern margin of root, which draws lower crust into the eastern Sierra region from the adjacent Basin and Range. These lead to a lithospheric break-off event that corresponds to the ca. 10 Ma inception of the Sierra Nevada microplate, and which further promotes the east to west delamination of the arclogite root. Initial topography is shown to influence the asymmetry of delamination. Much of our model experimentation consists of testing the influence of crustal rheology on model results. We find that a relatively weak crust for the entire microplate best reproduces rock uplift and tectonic subsidence observations, as well as the timing and source characteristics of observed volcanism. We apply the findings of our 2-D models to 3-D relationships across the southern Sierra region in order to elucidate the time transgressive patterns in uplift, subsidence, volcanism and shallow thermal anomalies in relation to the 3-D delamination of the root, and the production of the higher Vp core of the anomaly. These relations suggest a significant compositional component to the core area of the anomaly (deformed arclogite slab), while the peridotitic envelope produces a broad thermally-induced wave-speed anomaly.

  6. Fulvenallene decomposition kinetics.

    PubMed

    Polino, Daniela; Cavallotti, Carlo

    2011-09-22

    While the decomposition kinetics of the benzyl radical has been studied in depth both from the experimental and the theoretical standpoint, much less is known about the reactivity of what is likely to be its main decomposition product, fulvenallene. In this work the high temperature reactivity of fulvenallene was investigated on a Potential Energy Surface (PES) consisting of 10 wells interconnected through 11 transition states using a 1 D Master Equation (ME). Rate constants were calculated using RRKM theory and the ME was integrated using a stochastic kinetic Monte Carlo code. It was found that two main decomposition channels are possible, the first is active on the singlet PES and leads to the formation of the fulvenallenyl radical and atomic hydrogen. The second requires intersystem crossing to the triplet PES and leads to acetylene and cyclopentadienylidene. ME simulations were performed calculating the microcanonical intersystem crossing frequency using Landau-Zener theory convoluting the crossing probability with RRKM rates evaluated at the conical intersection. It was found that the reaction channel leading to the cyclopentadienylidene diradical is only slightly faster than that leading to the fulvenallenyl radical, so that it can be concluded that both reactions are likely to be active in the investigated temperature (1500-2000 K) and pressure (0.05-50 bar) ranges. However, the simulations show that intersystem crossing is rate limiting for the first reaction channel, as the removal of this barrier leads to an increase of the rate constant by a factor of 2-3. Channel specific rate constants are reported as a function of temperature and pressure. PMID:21819060

  7. Hydrogen peroxide catalytic decomposition

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2010-01-01

    Nitric oxide in a gaseous stream is converted to nitrogen dioxide using oxidizing species generated through the use of concentrated hydrogen peroxide fed as a monopropellant into a catalyzed thruster assembly. The hydrogen peroxide is preferably stored at stable concentration levels, i.e., approximately 50%-70% by volume, and may be increased in concentration in a continuous process preceding decomposition in the thruster assembly. The exhaust of the thruster assembly, rich in hydroxyl and/or hydroperoxy radicals, may be fed into a stream containing oxidizable components, such as nitric oxide, to facilitate their oxidation.

  8. Tensor decomposition of EEG signals: a brief review.

    PubMed

    Cong, Fengyu; Lin, Qiu-Hua; Kuang, Li-Dan; Gong, Xiao-Feng; Astikainen, Piia; Ristaniemi, Tapani

    2015-06-15

    Electroencephalography (EEG) is one fundamental tool for functional brain imaging. EEG signals tend to be represented by a vector or a matrix to facilitate data processing and analysis with generally understood methodologies like time-series analysis, spectral analysis and matrix decomposition. Indeed, EEG signals are often naturally born with more than two modes of time and space, and they can be denoted by a multi-way array called as tensor. This review summarizes the current progress of tensor decomposition of EEG signals with three aspects. The first is about the existing modes and tensors of EEG signals. Second, two fundamental tensor decomposition models, canonical polyadic decomposition (CPD, it is also called parallel factor analysis-PARAFAC) and Tucker decomposition, are introduced and compared. Moreover, the applications of the two models for EEG signals are addressed. Particularly, the determination of the number of components for each mode is discussed. Finally, the N-way partial least square and higher-order partial least square are described for a potential trend to process and analyze brain signals of two modalities simultaneously. PMID:25840362

  9. Vertebrate decomposition is accelerated by soil microbes.

    PubMed

    Lauber, Christian L; Metcalf, Jessica L; Keepers, Kyle; Ackermann, Gail; Carter, David O; Knight, Rob

    2014-08-01

    Carrion decomposition is an ecologically important natural phenomenon influenced by a complex set of factors, including temperature, moisture, and the activity of microorganisms, invertebrates, and scavengers. The role of soil microbes as decomposers in this process is essential but not well understood and represents a knowledge gap in carrion ecology. To better define the role and sources of microbes in carrion decomposition, lab-reared mice were decomposed on either (i) soil with an intact microbial community or (ii) soil that was sterilized. We characterized the microbial community (16S rRNA gene for bacteria and archaea, and the 18S rRNA gene for fungi and microbial eukaryotes) for three body sites along with the underlying soil (i.e., gravesoils) at time intervals coinciding with visible changes in carrion morphology. Our results indicate that mice placed on soil with intact microbial communities reach advanced stages of decomposition 2 to 3 times faster than those placed on sterile soil. Microbial communities associated with skin and gravesoils of carrion in stages of active and advanced decay were significantly different between soil types (sterile versus untreated), suggesting that substrates on which carrion decompose may partially determine the microbial decomposer community. However, the source of the decomposer community (soil- versus carcass-associated microbes) was not clear in our data set, suggesting that greater sequencing depth needs to be employed to identify the origin of the decomposer communities in carrion decomposition. Overall, our data show that soil microbial communities have a significant impact on the rate at which carrion decomposes and have important implications for understanding carrion ecology. PMID:24907317

  10. Vertebrate Decomposition Is Accelerated by Soil Microbes

    PubMed Central

    Lauber, Christian L.; Metcalf, Jessica L.; Keepers, Kyle; Ackermann, Gail; Carter, David O.

    2014-01-01

    Carrion decomposition is an ecologically important natural phenomenon influenced by a complex set of factors, including temperature, moisture, and the activity of microorganisms, invertebrates, and scavengers. The role of soil microbes as decomposers in this process is essential but not well understood and represents a knowledge gap in carrion ecology. To better define the role and sources of microbes in carrion decomposition, lab-reared mice were decomposed on either (i) soil with an intact microbial community or (ii) soil that was sterilized. We characterized the microbial community (16S rRNA gene for bacteria and archaea, and the 18S rRNA gene for fungi and microbial eukaryotes) for three body sites along with the underlying soil (i.e., gravesoils) at time intervals coinciding with visible changes in carrion morphology. Our results indicate that mice placed on soil with intact microbial communities reach advanced stages of decomposition 2 to 3 times faster than those placed on sterile soil. Microbial communities associated with skin and gravesoils of carrion in stages of active and advanced decay were significantly different between soil types (sterile versus untreated), suggesting that substrates on which carrion decompose may partially determine the microbial decomposer community. However, the source of the decomposer community (soil- versus carcass-associated microbes) was not clear in our data set, suggesting that greater sequencing depth needs to be employed to identify the origin of the decomposer communities in carrion decomposition. Overall, our data show that soil microbial communities have a significant impact on the rate at which carrion decomposes and have important implications for understanding carrion ecology. PMID:24907317

  11. Hydrogen iodide decomposition

    DOEpatents

    O'Keefe, Dennis R.; Norman, John H.

    1983-01-01

    Liquid hydrogen iodide is decomposed to form hydrogen and iodine in the presence of water using a soluble catalyst. Decomposition is carried out at a temperature between about 350.degree. K. and about 525.degree. K. and at a corresponding pressure between about 25 and about 300 atmospheres in the presence of an aqueous solution which acts as a carrier for the homogeneous catalyst. Various halides of the platinum group metals, particularly Pd, Rh and Pt, are used, particularly the chlorides and iodides which exhibit good solubility. After separation of the H.sub.2, the stream from the decomposer is countercurrently extracted with nearly dry HI to remove I.sub.2. The wet phase contains most of the catalyst and is recycled directly to the decomposition step. The catalyst in the remaining almost dry HI-I.sub.2 phase is then extracted into a wet phase which is also recycled. The catalyst-free HI-I.sub.2 phase is finally distilled to separate the HI and I.sub.2. The HI is recycled to the reactor; the I.sub.2 is returned to a reactor operating in accordance with the Bunsen equation to create more HI.

  12. Coxeter decompositions of hyperbolic simplexes

    SciTech Connect

    Felikson, A A

    2002-12-31

    A Coxeter decomposition of a polyhedron in a hyperbolic space H{sup n} is a decomposition of it into finitely many Coxeter polyhedra such that any two tiles having a common facet are symmetric with respect to it. The classification of Coxeter decompositions is closely related to the problem of the classification of finite-index subgroups generated by reflections in discrete hyperbolic groups generated by reflections. All Coxeter decompositions of simplexes in the hyperbolic spaces H{sup n} with n>3 are described in this paper.

  13. Partial wave analysis of the reaction p(3.5 GeV) + p → pK+ Λ to search for the "ppK" bound state

    SciTech Connect

    Agakishiev, G.; Arnold, O.; Belver, D.; Belyaev, A.; Berger-Chen, J. C.; Blanco, A.; Böhmer, M.; Boyard, J. L.; Cabanelas, P.; Chernenko, S.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O.; Finocchiaro, P.; Fonte, P.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gernhäuser, R.; Göbel, K.; Golubeva, M.; González-Díaz, D.; Guber, F.; Gumberidze, M.; Heinz, T.; Hennino, T.; Holzmann, R.; Ierusalimov, A.; Iori, I.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Koenig, I.; Koenig, W.; Kolb, B. W.; Kornakov, G.; Kotte, R.; Krása, A.; Krizek, F.; Krücken, R.; Kuc, H.; Kühn, W.; Kugler, A.; Kunz, T.; Kurepin, A.; Ladygin, V.; Lalik, R.; Lapidus, K.; Lebedev, A.; Lopes, L.; Lorenz, M.; Maier, L.; Mangiarotti, A.; Markert, J.; Metag, V.; Michel, J.; Müntz, C.; Münzer, R.; Naumann, L.; Pachmayer, Y. C.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Pietraszko, J.; Przygoda, W.; Ramstein, B.; Reshetin, A.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Schmah, A.; Schwab, E.; Siebenson, J.; Sobolev, Yu. G.; Spataro, S.; Spruck, B.; Ströbele, H.; Stroth, J.; Sturm, C.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Tsertos, H.; Vasiliev, T.; Wagner, V.; Weber, M.; Wendisch, C.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y.; Sarantsev, A. V.

    2015-01-26

    Employing the Bonn–Gatchina partial wave analysis framework (PWA), we have analyzed HADES data of the reaction p(3.5GeV) + p → pK+Λ. This reaction might contain information about the kaonic cluster “ppK-” (with quantum numbers JP=0- and total isospin I =1/2) via its decay into pΛ. Due to interference effects in our coherent description of the data, a hypothetical K ¯NN (or, specifically “ppK-”) cluster signal need not necessarily show up as a pronounced feature (e.g. a peak) in an invariant mass spectrum like pΛ. Our PWA analysis includes a variety of resonant and non-resonant intermediate states and delivers a good description of our data (various angular distributions and two-hadron invariant mass spectra) without a contribution of a K ¯NN cluster. At a confidence level of CLs=95% such a cluster cannot contribute more than 2–12% to the total cross section with a pK+ Λ final state, which translates into a production cross-section between 0.7 μb and 4.2 μb, respectively. The range of the upper limit depends on the assumed cluster mass, width and production process.

  14. Partial wave analysis of the reaction γppω and the search for nucleon resonances

    SciTech Connect

    Williams, M.; Applegate, D.; Bellis, M.; Meyer, C. A.; Adhikari, K. P.; Anghinolfi, M.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Bedlinskiy, I.; Berman, B. L.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Careccia, S. L.; Carman, D. S.; Cole, P. L.; Collins, P.; Crede, V.; D’Angelo, A.; Daniel, A.; De Vita, R.; De Sanctis, E.; Deur, A.; Dey, B.; Dhamija, S.; Dickson, R.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dugger, M.; Dupre, R.; Alaoui, A. El; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fradi, A.; Gabrielyan, M. Y.; Garçon, M.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Hassall, N.; Hicks, K.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jawalkar, S. S.; Jo, H. S.; Johnstone, J. R.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, W.; Klein, A.; Klein, F. J.; Krahn, Z.; Kubarovsky, V.; Kuleshov, S. V.; Kuznetsov, V.; Livingston, K.; Lu, H. Y.; Mayer, M.; McAndrew, J.; McCracken, M. E.; McKinnon, B.; Mirazita, M.; Mokeev, V.; Moreno, B.; Moriya, K.; Morrison, B.; Munevar, E.; Nadel-Turonski, P.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niroula, M. R.; Niyazov, R. A.; Osipenko, M.; Ostrovidov, A. I.; Paris, M.; Park, K.; Park, S.; Pasyuk, E.; Pereira, S. Anefalos; Perrin, Y.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salamanca, J.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tedeschi, D. J.; Tkachenko, S.; Ungaro, M.; Vineyard, M. F.; Voutier, E.; Watts, D. P.; Weygand, D. P.; Wood, M. H.; Zhang, J.; Zhao, B.

    2009-12-30

    We performed an event-based partial wave analysis (PWA) of the reaction γ p -> p ω on a high-statistics dataset obtained using the CLAS at Jefferson Lab for center-of-mass energies from threshold up to 2.4 GeV. This analysis benefits from access to the world's first high precision spin density matrix element measurements, available to the event-based PWA through the decay distribution of omega-> π+ π - π0. The data confirm the dominance of the t-channel π0 exchange amplitude in the forward direction. The dominant resonance contributions are consistent with the previously identified states F[15](1680) and D[13](1700) near threshold, as well as the G[17](2190) at higher energies. Suggestive evidence for the presence of a J(P)=5/2+ state around 2 GeV, a "missing" state, has also been found. Evidence for other states is inconclusive.

  15. Jellyfish (Cyanea nozakii) decomposition and its potential influence on marine environments studied via simulation experiments.

    PubMed

    Qu, Chang-Feng; Song, Jin-Ming; Li, Ning; Li, Xue-Gang; Yuan, Hua-Mao; Duan, Li-Qin; Ma, Qing-Xia

    2015-08-15

    A growing body of evidence suggests that the jellyfish population in Chinese seas is increasing, and decomposition of jellyfish strongly influences the marine ecosystem. This study investigated the change in water quality during Cyanea nozakii decomposition using simulation experiments. The results demonstrated that the amount of dissolved nutrients released by jellyfish was greater than the amount of particulate nutrients. NH4(+) was predominant in the dissolved matter, whereas the particulate matter was dominated by organic nitrogen and inorganic phosphorus. The high N/P ratios demonstrated that jellyfish decomposition may result in high nitrogen loads. The inorganic nutrients released by C. nozakii decomposition were important for primary production. Jellyfish decomposition caused decreases in the pH and oxygen consumption associated with acidification and hypoxia or anoxia; however, sediments partially mitigated the changes in the pH and oxygen. These results imply that jellyfish decomposition can result in potentially detrimental effects on marine environments. PMID:26088540

  16. Erbium hydride decomposition kinetics.

    SciTech Connect

    Ferrizz, Robert Matthew

    2006-11-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  17. Art of spin decomposition

    SciTech Connect

    Chen Xiangsong; Sun Weimin; Wang Fan; Goldman, T.

    2011-04-01

    We analyze the problem of spin decomposition for an interacting system from a natural perspective of constructing angular-momentum eigenstates. We split, from the total angular-momentum operator, a proper part which can be separately conserved for a stationary state. This part commutes with the total Hamiltonian and thus specifies the quantum angular momentum. We first show how this can be done in a gauge-dependent way, by seeking a specific gauge in which part of the total angular-momentum operator vanishes identically. We then construct a gauge-invariant operator with the desired property. Our analysis clarifies what is the most pertinent choice among the various proposals for decomposing the nucleon spin. A similar analysis is performed for extracting a proper part from the total Hamiltonian to construct energy eigenstates.

  18. Direct Sum Decomposition of Groups

    ERIC Educational Resources Information Center

    Thaheem, A. B.

    2005-01-01

    Direct sum decomposition of Abelian groups appears in almost all textbooks on algebra for undergraduate students. This concept plays an important role in group theory. One simple example of this decomposition is obtained by using the kernel and range of a projection map on an Abelian group. The aim in this pedagogical note is to establish a direct…

  19. Biogeochemistry of Decomposition and Detrital Processing

    NASA Astrophysics Data System (ADS)

    Sanderman, J.; Amundson, R.

    2003-12-01

    Decomposition is a key ecological process that roughly balances net primary production in terrestrial ecosystems and is an essential process in resupplying nutrients to the plant community. Decomposition consists of three concurrent processes: communition or fragmentation, leaching of water-soluble compounds, and microbial catabolism. Decomposition can also be viewed as a sequential process, what Eijsackers and Zehnder (1990) compare to a Russian matriochka doll. Soil macrofauna fragment and partially solubilize plant residues, facilitating establishment of a community of decomposer microorganisms. This decomposer community will gradually shift as the most easily degraded plant compounds are utilized and the more recalcitrant materials begin to accumulate. Given enough time and the proper environmental conditions, most naturally occurring compounds can completely be mineralized to inorganic forms. Simultaneously with mineralization, the process of humification acts to transform a fraction of the plant residues into stable soil organic matter (SOM) or humus. For reference, Schlesinger (1990) estimated that only ˜0.7% of detritus eventually becomes stabilized into humus.Decomposition plays a key role in the cycling of most plant macro- and micronutrients and in the formation of humus. Figure 1 places the roles of detrital processing and mineralization within the context of the biogeochemical cycling of essential plant nutrients. Chapin (1991) found that while the atmosphere supplied 4% and mineral weathering supplied no nitrogen and <1% of phosphorus, internal nutrient recycling is the source for >95% of all the nitrogen and phosphorus uptake by tundra species in Barrow, Alaska. In a cool temperate forest, nutrient recycling accounted for 93%, 89%, 88%, and 65% of total sources for nitrogen, phosphorus, potassium, and calcium, respectively ( Chapin, 1991). (13K)Figure 1. A decomposition-centric biogeochemical model of nutrient cycling. Although there is significant

  20. Biogeochemistry of Decomposition and Detrital Processing

    NASA Astrophysics Data System (ADS)

    Sanderman, J.; Amundson, R.

    2003-12-01

    Decomposition is a key ecological process that roughly balances net primary production in terrestrial ecosystems and is an essential process in resupplying nutrients to the plant community. Decomposition consists of three concurrent processes: communition or fragmentation, leaching of water-soluble compounds, and microbial catabolism. Decomposition can also be viewed as a sequential process, what Eijsackers and Zehnder (1990) compare to a Russian matriochka doll. Soil macrofauna fragment and partially solubilize plant residues, facilitating establishment of a community of decomposer microorganisms. This decomposer community will gradually shift as the most easily degraded plant compounds are utilized and the more recalcitrant materials begin to accumulate. Given enough time and the proper environmental conditions, most naturally occurring compounds can completely be mineralized to inorganic forms. Simultaneously with mineralization, the process of humification acts to transform a fraction of the plant residues into stable soil organic matter (SOM) or humus. For reference, Schlesinger (1990) estimated that only ˜0.7% of detritus eventually becomes stabilized into humus.Decomposition plays a key role in the cycling of most plant macro- and micronutrients and in the formation of humus. Figure 1 places the roles of detrital processing and mineralization within the context of the biogeochemical cycling of essential plant nutrients. Chapin (1991) found that while the atmosphere supplied 4% and mineral weathering supplied no nitrogen and <1% of phosphorus, internal nutrient recycling is the source for >95% of all the nitrogen and phosphorus uptake by tundra species in Barrow, Alaska. In a cool temperate forest, nutrient recycling accounted for 93%, 89%, 88%, and 65% of total sources for nitrogen, phosphorus, potassium, and calcium, respectively ( Chapin, 1991). (13K)Figure 1. A decomposition-centric biogeochemical model of nutrient cycling. Although there is significant

  1. Ammonia decomposition catalysis using lithium-calcium imide.

    PubMed

    Makepeace, Joshua W; Hunter, Hazel M A; Wood, Thomas J; Smith, Ronald I; Murray, Claire A; David, William I F

    2016-07-01

    Lithium-calcium imide is explored as a catalyst for the decomposition of ammonia. It shows the highest ammonia decomposition activity yet reported for a pure light metal amide or imide, comparable to lithium imide-amide at high temperature, with superior conversion observed at lower temperatures. Importantly, the post-reaction mass recovery of lithium-calcium imide is almost complete, indicating that it may be easier to contain than the other amide-imide catalysts reported to date. The basis of this improved recovery is that the catalyst is, at least partially, solid across the temperature range studied under ammonia flow. However, lithium-calcium imide itself is only stable at low and high temperatures under ammonia, with in situ powder diffraction showing the decomposition of the catalyst to lithium amide-imide and calcium imide at intermediate temperatures of 200-460 °C. PMID:27092374

  2. ULF Waves at Mercury

    NASA Astrophysics Data System (ADS)

    Kim, E.-H.; Boardsen, S. A.; Johnson, J. R.; Slavin, J. A.

    2016-02-01

    This chapter provides a brief overview of the observed characteristics of ultra-low-frequency (ULF) waves at Mercury. It shows how field-aligned propagating ULF waves at Mercury can be generated by externally driven fast compressional waves (FWs) via mode conversion at the ion-ion hybrid resonance. Then, the chapter reviews the interpretation that the strong magnetic compressional waves near and its harmonics observed with 20 of Mercury's magnetic equator could be the ion Bernstein wave (IBW) mode. A recent statistical study of ULF waves at Mercury based on MESSENGER data reported the occurrence and polarization of the detected waves. The chapter further introduces the field line resonance and the electromagnetic ion Bernstein waves to explain such waves, and shows that both theories can partially explain the observations.

  3. Singular value decomposition of optically-mapped cardiac rotors and fibrillatory activity

    NASA Astrophysics Data System (ADS)

    Rabinovitch, A.; Biton, Y.; Braunstein, D.; Friedman, M.; Aviram, I.; Yandrapalli, S.; Pandit, S. V.; Berenfeld, O.

    2015-03-01

    Our progress of understanding how cellular and structural factors contribute to arrhythmia is hampered in part because of controversies as to whether a fibrillating heart is driven by a single, several, or multiple number of sources, whether they are focal or reentrant and how to localize them. Here we demonstrate how a novel usage of the neutral singular value decomposition (SVD) method enables the extraction of the governing spatial and temporal modes of excitation from a rotor and fibrillatory waves. Those modes highlight patterns and regions of organization in the midst of the otherwise seemingly random propagating excitation waves. We apply the method to experimental models of cardiac fibrillation in rabbit hearts. We show that SVD analysis is able to enhance the classification of the heart electrical patterns into regions harboring drivers in the form of fast reentrant activity and other regions of by-standing activity. This enhancement is accomplished without any prior assumptions regarding the spatial, temporal or spectral properties of those drivers. The analysis corroborates that the dominant mode has the highest activation rate and further reveals a new feature: a transfer of modes from the driving to passive regions resulting in a partial reaction of the passive region to the driving region.

  4. Singular Value Decomposition of Optically-Mapped Cardiac Rotors and Fibrillatory Activity

    PubMed Central

    Rabinovitch, A.; Biton, Y.; Braunstein, D.; Friedman, M.; Aviram, I.; Yandrapalli, S.; Pandit, S. V.; Berenfeld, O.

    2015-01-01

    Our progress of understanding how cellular and structural factors contribute to the arrhythmia is hampered in part because of controversies whether a fibrillating heart is driven by a single, several, or multiple number of sources, and whether they are focal or reentrant, and how to localize them. Here we demonstrate how a novel usage of the neutral singular value decomposition (SVD) method enables the extraction of the governing spatial and temporal modes of excitation from a rotor and fibrillatory waves. Those modes highlight patterns and regions of organization in the midst of the otherwise seemingly-randomly propagating excitation waves. We apply the method to experimental models of cardiac fibrillation in rabbit hearts. We show that the SVD analysis is able to enhance the classification of the heart electrical patterns into regions harboring drivers in the form of fast reentrant activity and other regions of by-standing activity. This enhancement is accomplished without any prior assumptions regarding the spatial, temporal or spectral properties of those drivers. The analysis corroborates that the dominant mode has the highest activation rate and further reveals a new feature: A transfer of modes from the driving to the passive regions resulting in a partial reaction of the passive region to the driving region. PMID:26668401

  5. Decomposition in northern Minnesota peatlands

    SciTech Connect

    Farrish, K.W.

    1985-01-01

    Decomposition in peatlands was investigated in northern Minnesota. Four sites, an ombrotrophic raised bog, an ombrotrophic perched bog and two groundwater minerotrophic fens, were studied. Decomposition rates of peat and paper were estimated using mass-loss techniques. Environmental and substrate factors that were most likely to be responsible for limiting decomposition were monitored. Laboratory incubation experiments complemented the field work. Mass-loss over one year in one of the bogs, ranged from 11 percent in the upper 10 cm of hummocks to 1 percent at 60 to 100 cm depth in hollows. Regression analysis of the data for that bog predicted no mass-loss below 87 cm. Decomposition estimates on an area basis were 2720 and 6460 km/ha yr for the two bogs; 17,000 and 5900 kg/ha yr for the two fens. Environmental factors found to limit decomposition in these peatlands were reducing/anaerobic conditions below the water table and cool peat temperatures. Substrate factors found to limit decomposition were low pH, high content of resistant organics such as lignin, and shortages of available N and K. Greater groundwater influence was found to favor decomposition through raising the pH and perhaps by introducing limited amounts of dissolved oxygen.

  6. Slow spinodal decomposition in binary liquid mixtures of polymers

    NASA Astrophysics Data System (ADS)

    Izumitani, Tatsuo; Hashimoto, Takeji

    1985-10-01

    Isothermal demixing process of binary polymer mixtures of SBR (styrene-butadiene random copolymer) and polybutadiene at deep quench depths was investigated by time-resolved light scattering technique. The results indicated that the systems undergo extremely slow spinodal decomposition of the type as adequately characterized by Cahn's linearized theory in the early stage and in the small q regime (q≲qmax≂105 cm-1) covered in this experiment where q is wave number of growing fluctuations and qmax is the q value having maximum growth rate. The spinodal decomposition studied in this work was that in the diffusion-control regime, and in the slowest case of the decomposition, the early stage was found to extend up to about 80 min, corresponding to the reduced time τ about 2.7. The shortest reduced time achieved in this experiment is about 0.03.

  7. Domain decomposition methods for solving an image problem

    SciTech Connect

    Tsui, W.K.; Tong, C.S.

    1994-12-31

    The domain decomposition method is a technique to break up a problem so that ensuing sub-problems can be solved on a parallel computer. In order to improve the convergence rate of the capacitance systems, pre-conditioned conjugate gradient methods are commonly used. In the last decade, most of the efficient preconditioners are based on elliptic partial differential equations which are particularly useful for solving elliptic partial differential equations. In this paper, the authors apply the so called covering preconditioner, which is based on the information of the operator under investigation. Therefore, it is good for various kinds of applications, specifically, they shall apply the preconditioned domain decomposition method for solving an image restoration problem. The image restoration problem is to extract an original image which has been degraded by a known convolution process and additive Gaussian noise.

  8. Structural optimization by multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; James, B.; Dovi, A.

    1983-01-01

    A method is described for decomposing an optimization problem into a set of subproblems and a coordination problem which preserves coupling between the subproblems. The method is introduced as a special case of multilevel, multidisciplinary system optimization and its algorithm is fully described for two level optimization for structures assembled of finite elements of arbitrary type. Numerical results are given for an example of a framework to show that the decomposition method converges and yields results comparable to those obtained without decomposition. It is pointed out that optimization by decomposition should reduce the design time by allowing groups of engineers, using different computers to work concurrently on the same large problem.

  9. Perfluoropolyalkylether decomposition on catalytic aluminas

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo

    1994-01-01

    The decomposition of Fomblin Z25, a commercial perfluoropolyalkylether liquid lubricant, was studied using the Penn State Micro-oxidation Test, and a thermal gravimetric/differential scanning calorimetry unit. The micro-oxidation test was conducted using 440C stainless steel and pure iron metal catalyst specimens, whereas the thermal gravimetric/differential scanning calorimetry tests were conducted using catalytic alumina pellets. Analysis of the thermal data, high pressure liquid chromatography data, and x-ray photoelectron spectroscopy data support evidence that there are two different decomposition mechanisms for Fomblin Z25, and that reductive sites on the catalytic surfaces are responsible for the decomposition of Fomblin Z25.

  10. Autonomous Gaussian Decomposition

    NASA Astrophysics Data System (ADS)

    Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian; Heiles, Carl; Hennebelle, Patrick; Goss, W. M.; Dickey, John

    2015-04-01

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes.

  11. A stable elemental decomposition for dynamic process optimization

    NASA Astrophysics Data System (ADS)

    Cervantes, Arturo M.; Biegler, Lorenz T.

    2000-08-01

    In Cervantes and Biegler (A.I.Ch.E.J. 44 (1998) 1038), we presented a simultaneous nonlinear programming problem (NLP) formulation for the solution of DAE optimization problems. Here, by applying collocation on finite elements, the DAE system is transformed into a nonlinear system. The resulting optimization problem, in which the element placement is fixed, is solved using a reduced space successive quadratic programming (rSQP) algorithm. The space is partitioned into range and null spaces. This partitioning is performed by choosing a pivot sequence for an LU factorization with partial pivoting which allows us to detect unstable modes in the DAE system. The system is stabilized without imposing new boundary conditions. The decomposition of the range space can be performed in a single step by exploiting the overall sparsity of the collocation matrix but not its almost block diagonal structure. In order to solve larger problems a new decomposition approach and a new method for constructing the quadratic programming (QP) subproblem are presented in this work. The decomposition of the collocation matrix is now performed element by element, thus reducing the storage requirements and the computational effort. Under this scheme, the unstable modes are considered in each element and a range-space move is constructed sequentially based on decomposition in each element. This new decomposition improves the efficiency of our previous approach and at the same time preserves its stability. The performance of the algorithm is tested on several examples. Finally, some future directions for research are discussed.

  12. Correspondence between Koopman mode decomposition, resolvent mode decomposition, and invariant solutions of the Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Sharma, Ati S.; Mezić, Igor; McKeon, Beverley J.

    2016-07-01

    The relationship between Koopman mode decomposition, resolvent mode decomposition, and exact invariant solutions of the Navier-Stokes equations is clarified. The correspondence rests upon the invariance of the system operators under symmetry operations such as spatial translation. The usual interpretation of the Koopman operator is generalized to permit combinations of such operations, in addition to translation in time. This invariance is related to the spectrum of a spatiotemporal Koopman operator, which has a traveling-wave interpretation. The relationship leads to a generalization of dynamic mode decomposition, in which symmetry operations are applied to restrict the dynamic modes to span a subspace subject to those symmetries. The resolvent is interpreted as the mapping between the Koopman modes of the Reynolds stress divergence and the velocity field. It is shown that the singular vectors of the resolvent (the resolvent modes) are the optimal basis in which to express the velocity field Koopman modes where the latter are not a priori known.

  13. Lignocellulose decomposition by microbial secretions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon storage in terrestrial ecosystems is contingent upon the natural resistance of plant cell wall polymers to rapid biological degradation. Nevertheless, certain microorganisms have evolved remarkable means to overcome this natural resistance. Lignocellulose decomposition by microorganisms com...

  14. Modeling Decomposition of Unconfined Rigid Polyurethane Foam

    SciTech Connect

    CHU,TZE YAO; ERICKSON,KENNETH L.; HOBBS,MICHAEL L.

    1999-11-01

    The decomposition of unconfined rigid polyurethane foam has been modeled by a kinetic bond-breaking scheme describing degradation of a primary polymer and formation of a thermally stable secondary polymer. The bond-breaking scheme is resolved using percolation theory to describe evolving polymer fragments. The polymer fragments vaporize according to individual vapor pressures. Kinetic parameters for the model were obtained from Thermal Gravimetric Analysis (TGA). The chemical structure of the foam was determined from the preparation techniques and ingredients used to synthesize the foam. Scale-up effects were investigated by simulating the response of an incident heat flux of 25 W/cm{sup 2} on a partially confined 8.8-cm diameter by 15-cm long right circular cylinder of foam which contained an encapsulated component. Predictions of center, midradial, and component temperatures, as well as regression of the foam surface, were in agreement with measurements using thermocouples and X-ray imaging.

  15. HCOOH decomposition on Pt(111): A DFT study

    NASA Astrophysics Data System (ADS)

    Scaranto, Jessica; Mavrikakis, Manos

    2016-06-01

    Formic acid (HCOOH) decomposition on transition metal surfaces is important for hydrogen production and for its electro-oxidation in direct HCOOH fuel cells. HCOOH can decompose through dehydrogenation leading to formation of CO2 and H2 or dehydration leading to CO and H2O; because CO can poison metal surfaces, dehydrogenation is typically the desirable decomposition path. Here we report a mechanistic analysis of HCOOH decomposition on Pt(111), obtained from a plane wave density functional theory (DFT-PW91) study. We analyzed the dehydrogenation mechanism by considering the two possible pathways involving the formate (HCOO) or the carboxyl (COOH) intermediate. We also considered several possible dehydration paths leading to CO formation. We studied HCOO and COOH decomposition both on the clean surface and in the presence of other relevant co-adsorbates. The results suggest that COOH formation is energetically more difficult than HCOO formation. In contrast, COOH dehydrogenation is easier than HCOO decomposition. We found that CO2 is the main product through both pathways and that CO is produced mainly through the dehydroxylation of the COOH intermediate.

  16. Optimization by nonhierarchical asynchronous decomposition

    NASA Technical Reports Server (NTRS)

    Shankar, Jayashree; Ribbens, Calvin J.; Haftka, Raphael T.; Watson, Layne T.

    1992-01-01

    Large scale optimization problems are tractable only if they are somehow decomposed. Hierarchical decompositions are inappropriate for some types of problems and do not parallelize well. Sobieszczanski-Sobieski has proposed a nonhierarchical decomposition strategy for nonlinear constrained optimization that is naturally parallel. Despite some successes on engineering problems, the algorithm as originally proposed fails on simple two dimensional quadratic programs. The algorithm is carefully analyzed for quadratic programs, and a number of modifications are suggested to improve its robustness.

  17. Nontraditional tensor decompositions and applications.

    SciTech Connect

    Bader, Brett William

    2010-07-01

    This presentation will discuss two tensor decompositions that are not as well known as PARAFAC (parallel factors) and Tucker, but have proven useful in informatics applications. Three-way DEDICOM (decomposition into directional components) is an algebraic model for the analysis of 3-way arrays with nonsymmetric slices. PARAFAC2 is a related model that is less constrained than PARAFAC and allows for different objects in one mode. Applications of both models to informatics problems will be shown.

  18. Decomposition of indwelling EMG signals

    PubMed Central

    Nawab, S. Hamid; Wotiz, Robert P.; De Luca, Carlo J.

    2008-01-01

    Decomposition of indwelling electromyographic (EMG) signals is challenging in view of the complex and often unpredictable behaviors and interactions of the action potential trains of different motor units that constitute the indwelling EMG signal. These phenomena create a myriad of problem situations that a decomposition technique needs to address to attain completeness and accuracy levels required for various scientific and clinical applications. Starting with the maximum a posteriori probability classifier adapted from the original precision decomposition system (PD I) of LeFever and De Luca (25, 26), an artificial intelligence approach has been used to develop a multiclassifier system (PD II) for addressing some of the experimentally identified problem situations. On a database of indwelling EMG signals reflecting such conditions, the fully automatic PD II system is found to achieve a decomposition accuracy of 86.0% despite the fact that its results include low-amplitude action potential trains that are not decomposable at all via systems such as PD I. Accuracy was established by comparing the decompositions of indwelling EMG signals obtained from two sensors. At the end of the automatic PD II decomposition procedure, the accuracy may be enhanced to nearly 100% via an interactive editor, a particularly significant fact for the previously indecomposable trains. PMID:18483170

  19. Wave propagation in solids and fluids

    SciTech Connect

    Davis, J. L.

    1988-01-01

    The fundamental principles of mathematical analysis for wave phenomena in gases, solids, and liquids are presented in an introduction for scientists and engineers. Chapters are devoted to oscillatory phenomena, the physics of wave propagation, partial differential equations for wave propagation, transverse vibration of strings, water waves, and sound waves. Consideration is given to the dynamics of viscous and inviscid fluids, wave propagation in elastic media, and variational methods in wave phenomena. 41 refs.

  20. Explosive decomposition of hydrazine due to rapid gas compression

    NASA Technical Reports Server (NTRS)

    Briles, O.; Hagemann, D.; Benz, F.; Farkas, T.

    1985-01-01

    Results from tests which attempt to determine conditions which cause explosive decomposition of hydrazine from rapid gas compression are described. Hydrazine was initiated by pressure in combination with shock waves from the pressurant gas. A new test method was developed at the White Sands Test Facility which subjects a gas bubble in contact with liquid hydrazine to pure adiabatic compression. Results from this new test method are compared to those from the U-tube method.

  1. Decompositions of the polyhedral product functor with applications to moment-angle complexes and related spaces.

    PubMed

    Bahri, A; Bendersky, M; Cohen, F R; Gitler, S

    2009-07-28

    This article gives a natural decomposition of the suspension of a generalized moment-angle complex or partial product space which arises as the polyhedral product functor described below. The introduction and application of the smash product moment-angle complex provides a precise identification of the stable homotopy type of the values of the polyhedral product functor. One direct consequence is an analysis of the associated cohomology. For the special case of the complements of certain subspace arrangements, the geometrical decomposition implies the homological decomposition in earlier work of others as described below. Because the splitting is geometric, an analogous homological decomposition for a generalized moment-angle complex applies for any homology theory. Implied, therefore, is a decomposition for the Stanley-Reisner ring of a finite simplicial complex, and natural generalizations. PMID:19620727

  2. Energy-decomposition analysis for viscous free-surface flows.

    PubMed

    Colagrossi, Andrea; Bouscasse, Benjamin; Marrone, Salvatore

    2015-11-01

    This work is dedicated to the energy decomposition analysis of a viscous free-surface flow. In the presence of a free surface, the viscous dissipation for a Newtonian liquid can be decomposed into two terms: an enstrophy component and a free-surface deformation component. The latter requires the evaluation of volume and surface integrals in the meshless framework. The analysis is based on the weakly compressible smoothed particle hydrodynamics formalism. The behavior of the energy terms is studied in standing wave problems by changing the viscosity and the wave amplitude. Finally, an analysis of a complex shallow water breaking wave case is provided. It is shown that in presence of intense breaking phenomena the two energy components are always comparable, whereas generally the free surface component is dominant on the viscous dissipation of gravity waves. PMID:26651775

  3. Partial Fractions in Calculus, Number Theory, and Algebra

    ERIC Educational Resources Information Center

    Yackel, C. A.; Denny, J. K.

    2007-01-01

    This paper explores the development of the method of partial fraction decomposition from elementary number theory through calculus to its abstraction in modern algebra. This unusual perspective makes the topic accessible and relevant to readers from high school through seasoned calculus instructors.

  4. Thermal decomposition products of butyraldehyde

    NASA Astrophysics Data System (ADS)

    Hatten, Courtney D.; Kaskey, Kevin R.; Warner, Brian J.; Wright, Emily M.; McCunn, Laura R.

    2013-12-01

    The thermal decomposition of gas-phase butyraldehyde, CH3CH2CH2CHO, was studied in the 1300-1600 K range with a hyperthermal nozzle. Products were identified via matrix-isolation Fourier transform infrared spectroscopy and photoionization mass spectrometry in separate experiments. There are at least six major initial reactions contributing to the decomposition of butyraldehyde: a radical decomposition channel leading to propyl radical + CO + H; molecular elimination to form H2 + ethylketene; a keto-enol tautomerism followed by elimination of H2O producing 1-butyne; an intramolecular hydrogen shift and elimination producing vinyl alcohol and ethylene, a β-C-C bond scission yielding ethyl and vinoxy radicals; and a γ-C-C bond scission yielding methyl and CH2CH2CHO radicals. The first three reactions are analogous to those observed in the thermal decomposition of acetaldehyde, but the latter three reactions are made possible by the longer alkyl chain structure of butyraldehyde. The products identified following thermal decomposition of butyraldehyde are CO, HCO, CH3CH2CH2, CH3CH2CH=C=O, H2O, CH3CH2C≡CH, CH2CH2, CH2=CHOH, CH2CHO, CH3, HC≡CH, CH2CCH, CH3C≡CH, CH3CH=CH2, H2C=C=O, CH3CH2CH3, CH2=CHCHO, C4H2, C4H4, and C4H8. The first ten products listed are direct products of the six reactions listed above. The remaining products can be attributed to further decomposition reactions or bimolecular reactions in the nozzle.

  5. Updating the singular value decomposition

    NASA Astrophysics Data System (ADS)

    Davies, Philip I.; Smith, M. I. Matthew I.

    2004-09-01

    The spectral decomposition of a symmetric matrix A with small off-diagonal and distinct diagonal elements can be approximated using a direct scheme of R. Davies and Modi (Linear Algebra Appl. 77 (1986) 61). In this paper a generalization of this method for computing the singular value decomposition of close-to-diagonal is presented. When A has repeated or "close" singular values it is possible to apply the direct method to split the problem in two with one part containing the well-separated singular values and one requiring the computation of the "close" singular values.

  6. Cadaver decomposition in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Carter, David O.; Yellowlees, David; Tibbett, Mark

    2007-01-01

    A dead mammal (i.e. cadaver) is a high quality resource (narrow carbon:nitrogen ratio, high water content) that releases an intense, localised pulse of carbon and nutrients into the soil upon decomposition. Despite the fact that as much as 5,000 kg of cadaver can be introduced to a square kilometre of terrestrial ecosystem each year, cadaver decomposition remains a neglected microsere. Here we review the processes associated with the introduction of cadaver-derived carbon and nutrients into soil from forensic and ecological settings to show that cadaver decomposition can have a greater, albeit localised, effect on belowground ecology than plant and faecal resources. Cadaveric materials are rapidly introduced to belowground floral and faunal communities, which results in the formation of a highly concentrated island of fertility, or cadaver decomposition island (CDI). CDIs are associated with increased soil microbial biomass, microbial activity (C mineralisation) and nematode abundance. Each CDI is an ephemeral natural disturbance that, in addition to releasing energy and nutrients to the wider ecosystem, acts as a hub by receiving these materials in the form of dead insects, exuvia and puparia, faecal matter (from scavengers, grazers and predators) and feathers (from avian scavengers and predators). As such, CDIs contribute to landscape heterogeneity. Furthermore, CDIs are a specialised habitat for a number of flies, beetles and pioneer vegetation, which enhances biodiversity in terrestrial ecosystems.

  7. An analysis of scatter decomposition

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Saltz, Joel H.

    1990-01-01

    A formal analysis of a powerful mapping technique known as scatter decomposition is presented. Scatter decomposition divides an irregular computational domain into a large number of equal sized pieces, and distributes them modularly among processors. A probabilistic model of workload in one dimension is used to formally explain why, and when scatter decomposition works. The first result is that if correlation in workload is a convex function of distance, then scattering a more finely decomposed domain yields a lower average processor workload variance. The second result shows that if the workload process is stationary Gaussian and the correlation function decreases linearly in distance until becoming zero and then remains zero, scattering a more finely decomposed domain yields a lower expected maximum processor workload. Finally it is shown that if the correlation function decreases linearly across the entire domain, then among all mappings that assign an equal number of domain pieces to each processor, scatter decomposition minimizes the average processor workload variance. The dependence of these results on the assumption of decreasing correlation is illustrated with situations where a coarser granularity actually achieves better load balance.

  8. The ecology of carrion decomposition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carrion, or the remains of dead animals, is something that most people would like to avoid. It is visually unpleasant, emits foul odors, and may be the source of numerous pathogens. Decomposition of carrion, however, provides a unique opportunity for scientists to investigate how nutrients cycle t...

  9. How Is Morphological Decomposition Achieved?

    ERIC Educational Resources Information Center

    Libben, Gary

    1994-01-01

    Two experiments investigated morphological decomposition in ambiguous novel compounds such as "busheater," which can be parsed as either "bus-heater" or "bush-heater." It was found that subjects' parsing choices for such words are influenced by orthographic constraints but that these constraints do not operate prelexically. (33 references) (MDM)

  10. Microbial interactions during carrion decomposition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This addresses the microbial ecology of carrion decomposition in the age of metagenomics. It describes what is known about the microbial communities on carrion, including a brief synopsis about the communities on other organic matter sources. It provides a description of studies using state-of-the...

  11. Partial (focal) seizure

    MedlinePlus

    ... Jacksonian seizure; Seizure - partial (focal); Temporal lobe seizure; Epilepsy - partial seizures ... Abou-Khalil BW, Gallagher MJ, Macdonald RL. Epilepsies. In: Daroff RB, ... 6th ed. Philadelphia, PA: Elsevier Saunders; 2012:chap 67. ...

  12. Partial (focal) seizure

    MedlinePlus

    ... Jacksonian seizure; Seizure - partial (focal); Temporal lobe seizure; Epilepsy - partial seizures ... Abou-Khalil BW, Gallagher MJ, Macdonald RL. Epilepsies. In: Daroff ... Practice . 7th ed. Philadelphia, PA: Elsevier; 2016:chap 101. ...

  13. Partial tooth gear bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2010-01-01

    A partial gear bearing including an upper half, comprising peak partial teeth, and a lower, or bottom, half, comprising valley partial teeth. The upper half also has an integrated roller section between each of the peak partial teeth with a radius equal to the gear pitch radius of the radially outwardly extending peak partial teeth. Conversely, the lower half has an integrated roller section between each of the valley half teeth with a radius also equal to the gear pitch radius of the peak partial teeth. The valley partial teeth extend radially inwardly from its roller section. The peak and valley partial teeth are exactly out of phase with each other, as are the roller sections of the upper and lower halves. Essentially, the end roller bearing of the typical gear bearing has been integrated into the normal gear tooth pattern.

  14. Spectral decomposition of black-hole perturbations on hyperboloidal slices

    NASA Astrophysics Data System (ADS)

    Ansorg, Marcus; Macedo, Rodrigo Panosso

    2016-06-01

    In this paper, we present a spectral decomposition of solutions to relativistic wave equations described on horizon-penetrating hyperboloidal slices within a given Schwarzschild-black-hole background. The wave equation in question is Laplace transformed, which leads to a spatial differential equation with a complex parameter. For initial data which are analytic with respect to a compactified spatial coordinate, this equation is treated with the help of the Mathematica package in terms of a sophisticated Taylor series analysis. Thereby, all ingredients of the desired spectral decomposition arise explicitly to arbitrarily prescribed accuracy, including quasinormal modes and quasinormal mode amplitudes as well as the jump of the Laplace transform along the branch cut. Finally, all contributions are put together to obtain, via the inverse Laplace transformation, the spectral decomposition in question. The paper explains extensively this procedure and includes detailed discussions of relevant aspects, such as the definition of quasinormal modes and the question regarding the contribution of infinity frequency modes to the early time response of the black hole.

  15. Thermal decomposition of struvite and its phase transition.

    PubMed

    Bhuiyan, M Iqbal H; Mavinic, D S; Koch, F A

    2008-02-01

    Intentional crystallization of struvite, before it forms and accumulates on wastewater treatment equipment, solves an important and costly wastewater treatment problem and on the other hand, provides an environmentally sound and renewable nutrient source to the agricultural industry. Struvite was synthesized in the laboratory; it was also produced as pellets in a pilot-scale, fluidized bed reactor, using real centrate resulting from an anaerobic digester. The thermal decomposition of both synthetic struvite and struvite pellets was studied. The decomposition of struvite was found to be dependent on the rate of heating. Through gradual loss of ammonia and water molecules, ultimately struvite was found to be transformed into amorphous magnesium hydrogen phosphate. When struvite was heated in excess water, it was partially transformed into bobierrite, through the gradual loss of ammonia. It was transformed into monohydrate, dittmarite by losing its five water molecules of crystallization, when boiled in excess water. PMID:18022212

  16. Analysis of structural perturbations in systems via cost decomposition methods

    NASA Technical Reports Server (NTRS)

    Skelton, R. E.

    1983-01-01

    It has long been common practice to analyze linear dynamic systems by decomposing the total response in terms of individual contributions which are easier to analyze. Examples of this philosophy include the expansion of transfer functions using: (1) the superposition principle, (2) residue theory and partial fraction expansions, (3) Markov parameters, Hankel matrices, and (4) regular and singular perturbations. This paper summarizes a new and different kind of expansion designed to decompose the norm of the response vector rather than the response vector itself. This is referred to as "cost-decomposition' of the system. The notable advantages of this type of decomposition are: (a) easy application to multi-input, multi-output systems, (b) natural compatibility with Linear Quadratic Gaussian Theory, (c) applicability to the analysis of more general types of structural perturbations involving inputs, outputs, states, parameters. Property (c) makes the method suitable for problems in model reduction, measurement/actuator selections, and sensitivity analysis.

  17. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    PubMed

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion. PMID:26509428

  18. Investigating hydrogel dosimeter decomposition by chemical methods

    NASA Astrophysics Data System (ADS)

    Jordan, Kevin

    2015-01-01

    The chemical oxidative decomposition of leucocrystal violet micelle hydrogel dosimeters was investigated using the reaction of ferrous ions with hydrogen peroxide or sodium bicarbonate with hydrogen peroxide. The second reaction is more effective at dye decomposition in gelatin hydrogels. Additional chemical analysis is required to determine the decomposition products.

  19. Benign idiopathic partial epilepsy and brain lesion.

    PubMed

    Stephani, U; Doose, H

    1999-03-01

    A 14-year-old girl had severe head trauma from a dog bite at the age of 9 days. This resulted in extensive brain damage, tetraplegia, mental retardation, and epilepsy. The seizures were of rolandic type, and the EEG showed multifocal sharp waves. The course was benign. The initial diagnosis of a pure symptomatic epilepsy was revised after demonstrating typical benign focal sharp waves in the EEG of the healthy sister. Thus a phenocopy of a benign partial epilepsy by the brain lesion could be excluded with sufficient certainty. This observation allows the conclusion that the genetic disposition underlying the sharp-wave trait characteristic of benign partial epilepsies can be involved also in the pathogenesis of seemingly pure symptomatic epilepsies. EEG studies on siblings of such patients are needed to exclude possible phenocopies. PMID:10080522

  20. Decomposition of a depolarizing Mueller matrix into its nondepolarizing components by using symmetry conditions.

    PubMed

    Kuntman, Ertan; Arteaga, Oriol

    2016-04-01

    A procedure for the parallel decomposition of a depolarizing Mueller matrix with an associated rank 2 covariance matrix into its two nondepolarizing components is presented. We show that, if one of the components agrees with certain symmetry conditions, the arbitrary decomposition becomes unique, and its calculation is straightforward. Solutions for six different symmetries, which are relevant for the physical interpretation of polarimetric measurements, are provided. With this procedure, a single polarimetric measurement is sufficient to fully disclose the complete polarimetric response of two different systems and evaluate their weights in the overall response. The decomposition method we propose is illustrated by obtaining the ellipsometric responses of a silicon wafer and a holographic grating from a single measurement in which the light spot illuminates sectors of both materials. In a second example, we use the decomposition to analyze an optical system in which a polarizing film is partially covered by another misaligned film. PMID:27139655

  1. Thermal decomposition of isooctyl nitrate

    SciTech Connect

    Pritchard, H.O.

    1989-03-01

    The diesel ignition improver DII-3, made by Ethyl Corporation, also known as isooctyl nitrate, is a mixture whose principal constituent (about 95%) is 2-ethyl hexyl nitrate. This note describes an investigation of the thermal decomposition that is not exhaustive, but that is intended to provide sufficient information on the rate and the mechanism so as to make possible the educated guesses needed for modeling the effect of isooctyl nitrate on the diesel ignition process. As is the case with other alkyl nitrates, the decomposition of the neat material is a complex one giving a complicated pressure versus time curve, unsuitable for a quick derivation of the rate constant. However, in the presence of toluene, whose intended purpose is to trap reactive free radicals and thereby simplify the overall mechanism, the pressure rises approximately exponentially to a limit; thus, on the assumption that the reaction is homogeneous and of first order, the rate constants can be determined from the half-life.

  2. Variance decomposition in stochastic simulators

    SciTech Connect

    Le Maître, O. P.; Knio, O. M.; Moraes, A.

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  3. Variance decomposition in stochastic simulators

    NASA Astrophysics Data System (ADS)

    Le Maître, O. P.; Knio, O. M.; Moraes, A.

    2015-06-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  4. Azimuthal entanglement and multichannel Schmidt-type decomposition of noncollinear biphotons

    NASA Astrophysics Data System (ADS)

    Fedorov, M. V.

    2016-03-01

    Purely azimuthal entanglement is analyzed for noncollinear frequency-degenerate biphoton states. The degree of azimuthal entanglement is found to be very high, with the Schmidt parameter K on the order of the ratio of the pump waist to its wavelength. A scheme is suggested for partial realization of this high entanglement resource in the form of a multichannel Schmidt-type decomposition.

  5. A Survey of Singular Value Decomposition Methods and Performance Comparison of Some Available Serial Codes

    NASA Technical Reports Server (NTRS)

    Plassman, Gerald E.

    2005-01-01

    This contractor report describes a performance comparison of available alternative complete Singular Value Decomposition (SVD) methods and implementations which are suitable for incorporation into point spread function deconvolution algorithms. The report also presents a survey of alternative algorithms, including partial SVD's special case SVD's, and others developed for concurrent processing systems.

  6. Thermal decomposition of allylbenzene ozonide

    SciTech Connect

    Ewing, J.C.; Church, D.F.; Pryor, W.A. )

    1989-07-19

    Thermal decomposition of allylbenzene ozonide (ABO) at 98{degree}C in the liquid phase yields toluene, bibenzyl, phenylacetaldehyde, formic acid, and (benzyloxy)methyl formate as major products; benzyl chloride is formed when chlorinated solvents are employed. These products, as well as benzyl formate, are formed when ABO is decomposed at 37{degree}C. When the decomposition of ABO is carried out in the presence of 1-butanethiol, the product distribution changes: yields of toluene increase, no bibenzyl is formed, and decreases in yields of (benzyloxy)methyl formate, phenylacetladehyde, and benzyl chloride are observed. The decomposition of 1-octene ozonide (OTO) also was studied for comparison. The activation parameters for both ABO and OTO are similar (28.2 kcal/mol, log A = 13.6 and 26.6 kcal/mol, log A = 12.5, respectively); these data suggest that ozonides decompose by homolysis of the O-O bond, rather than by an alternative synchronous two-bond scission process. When ABO is decomposed at 37{degree}C in the presence of the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO) or 3,3,5,5-tetramethyl-1-pyrroline N-oxide (M{sub 4}PO), ESR signals are observed that are consistent with the trapping of benzyl and other carbon- and oxygen-centered radicals. A mechanism for the thermal decomposition of ABO that involves peroxide bond homolysis and subsequent {beta}-scission is proposed. Thus, Criegee ozonides decompose to give free radicals at quite modest temperatures.

  7. Application of Monochromatic Ocean Wave Forecasts to Prediction of Wave-Induced Currents

    NASA Technical Reports Server (NTRS)

    Poole, L. R.

    1975-01-01

    Stoke's wave-induced currents are compared, for variety of wind conditions resulting in partially developed seas and for two water depths, with currents induced by average and significant monochromatic waves related to Bretschneider spectrum.

  8. Methanethiol decomposition on Ni(100)

    SciTech Connect

    Castro, M.E.; Ahkter, S.; Golchet, A.; White, J.M. ); Sahin, T. )

    1991-01-01

    Static secondary ion mass spectroscopy (SSIMS), temperature programmed desorption (TPD), and Auger electron spectroscopy (AES) were used under ultrahigh vacuum conditions to study the decomposition of CH{sub 3}SH on Ni(100). Only methane, hydrogen, and the parent molecule are observed in TPD. Complete decomposition to C(a), S(a) and desorbing H{sub 2} is the preferred reaction pathway for low exposures, while desorption of methane is observed at higher coverages. Preadsorbed hydrogen promoted methane desorption. Upon adsorption, and for low coverages, SSIMS evidence indicates S-H bond cleavage into CH{sub 3}S and surface hydrogen. S-H bond cleavage is inhibited for high coverages. The TP-SSIMS data are consistent with an activated C-S bond cleavage in CH{sub 3}S, with an activation energy of 8.81 kcal/mol and preexponential factor of 10{sup 6.5}s{sup {minus}1}. The low preexponential factor is taken as indicating a complex decomposition pathway. A mechanism consistent with the observed data is discussed.

  9. Phlogopite Decomposition, Water, and Venus

    NASA Technical Reports Server (NTRS)

    Johnson, N. M.; Fegley, B., Jr.

    2005-01-01

    Venus is a hot and dry planet with a surface temperature of 660 to 740 K and 30 parts per million by volume (ppmv) water vapor in its lower atmosphere. In contrast Earth has an average surface temperature of 288 K and 1-4% water vapor in its troposphere. The hot and dry conditions on Venus led many to speculate that hydrous minerals on the surface of Venus would not be there today even though they might have formed in a potentially wetter past. Thermodynamic calculations predict that many hydrous minerals are unstable under current Venusian conditions. Thermodynamics predicts whether a particular mineral is stable or not, but we need experimental data on the decomposition rate of hydrous minerals to determine if they survive on Venus today. Previously, we determined the decomposition rate of the amphibole tremolite, and found that it could exist for billions of years at current surface conditions. Here, we present our initial results on the decomposition of phlogopite mica, another common hydrous mineral on Earth.

  10. Thermal decomposition mechanism of disilane.

    PubMed

    Yoshida, Kazumasa; Matsumoto, Keiji; Oguchi, Tatsuo; Tonokura, Kenichi; Koshi, Mitsuo

    2006-04-13

    Thermal decomposition of disilane was investigated using time-of-flight (TOF) mass spectrometry coupled with vacuum ultraviolet single-photon ionization (VUV-SPI) at a temperature range of 675-740 K and total pressure of 20-40 Torr. Si(n)H(m) species were photoionized by VUV radiation at 10.5 eV (118 nm). Concentrations of disilane and trisilane during thermal decomposition of disilane were quantitatively measured using the VUV-SPI method. Formation of Si(2)H(4) species was also examined. On the basis of pressure-dependent rate constants of disilane dissociation reported by Matsumoto et al. [J. Phys. Chem. A 2005, 109, 4911], kinetic simulation including gas-phase and surface reactions was performed to analyze thermal decomposition mechanisms of disilane. The branching ratio for (R1) Si(2)H(6) --> SiH(4) + SiH(2)/(R2) Si(2)H(6) --> H(2) + H(3)SiSiH was derived by the pressure-dependent rate constants. Temperature and reaction time dependences of disilane loss and formation of trisilane were well represented by the kinetic simulation. Comparison between the experimental results and the kinetic simulation results suggested that about 70% of consumed disilane was converted to trisilane, which was observed as one of the main reaction products under the present experimental conditions. PMID:16599440

  11. Spinodal decomposition of chemically reactive binary mixtures.

    PubMed

    Lamorgese, A; Mauri, R

    2016-08-01

    We simulate the influence of a reversible isomerization reaction on the phase segregation process occurring after spinodal decomposition of a deeply quenched regular binary mixture, restricting attention to systems wherein material transport occurs solely by diffusion. Our theoretical approach follows a diffuse-interface model of partially miscible binary mixtures wherein the coupling between reaction and diffusion is addressed within the frame of nonequilibrium thermodynamics, leading to a linear dependence of the reaction rate on the chemical affinity. Ultimately, the rate for an elementary reaction depends on the local part of the chemical potential difference since reaction is an inherently local phenomenon. Based on two-dimensional simulation results, we express the competition between segregation and reaction as a function of the Damköhler number. For a phase-separating mixture with components having different physical properties, a skewed phase diagram leads, at large times, to a system converging to a single-phase equilibrium state, corresponding to the absolute minimum of the Gibbs free energy. This conclusion continues to hold for the critical phase separation of an ideally perfectly symmetric binary mixture, where the choice of final equilibrium state at large times depends on the initial mean concentration being slightly larger or less than the critical concentration. PMID:27627358

  12. Spinodal decomposition of chemically reactive binary mixtures

    NASA Astrophysics Data System (ADS)

    Lamorgese, A.; Mauri, R.

    2016-08-01

    We simulate the influence of a reversible isomerization reaction on the phase segregation process occurring after spinodal decomposition of a deeply quenched regular binary mixture, restricting attention to systems wherein material transport occurs solely by diffusion. Our theoretical approach follows a diffuse-interface model of partially miscible binary mixtures wherein the coupling between reaction and diffusion is addressed within the frame of nonequilibrium thermodynamics, leading to a linear dependence of the reaction rate on the chemical affinity. Ultimately, the rate for an elementary reaction depends on the local part of the chemical potential difference since reaction is an inherently local phenomenon. Based on two-dimensional simulation results, we express the competition between segregation and reaction as a function of the Damköhler number. For a phase-separating mixture with components having different physical properties, a skewed phase diagram leads, at large times, to a system converging to a single-phase equilibrium state, corresponding to the absolute minimum of the Gibbs free energy. This conclusion continues to hold for the critical phase separation of an ideally perfectly symmetric binary mixture, where the choice of final equilibrium state at large times depends on the initial mean concentration being slightly larger or less than the critical concentration.

  13. Analysis of generalized Schwarz alternating procedure for domain decomposition

    SciTech Connect

    Engquist, B.; Zhao, Hongkai

    1996-12-31

    The Schwartz alternating method(SAM) is the theoretical basis for domain decomposition which itself is a powerful tool both for parallel computation and for computing in complicated domains. The convergence rate of the classical SAM is very sensitive to the overlapping size between each subdomain, which is not desirable for most applications. We propose a generalized SAM procedure which is an extension of the modified SAM proposed by P.-L. Lions. Instead of using only Dirichlet data at the artificial boundary between subdomains, we take a convex combination of u and {partial_derivative}u/{partial_derivative}n, i.e. {partial_derivative}u/{partial_derivative}n + {Lambda}u, where {Lambda} is some {open_quotes}positive{close_quotes} operator. Convergence of the modified SAM without overlapping in a quite general setting has been proven by P.-L.Lions using delicate energy estimates. The important questions remain for the generalized SAM. (1) What is the most essential mechanism for convergence without overlapping? (2) Given the partial differential equation, what is the best choice for the positive operator {Lambda}? (3) In the overlapping case, is the generalized SAM superior to the classical SAM? (4) What is the convergence rate and what does it depend on? (5) Numerically can we obtain an easy to implement operator {Lambda} such that the convergence is independent of the mesh size. To analyze the convergence of the generalized SAM we focus, for simplicity, on the Poisson equation for two typical geometry in two subdomain case.

  14. Non-conformal domain decomposition methods for time-harmonic Maxwell equations

    PubMed Central

    Shao, Yang; Peng, Zhen; Lim, Kheng Hwee; Lee, Jin-Fa

    2012-01-01

    We review non-conformal domain decomposition methods (DDMs) and their applications in solving electrically large and multi-scale electromagnetic (EM) radiation and scattering problems. In particular, a finite-element DDM, together with a finite-element tearing and interconnecting (FETI)-like algorithm, incorporating Robin transmission conditions and an edge corner penalty term, are discussed in detail. We address in full the formulations, and subsequently, their applications to problems with significant amounts of repetitions. The non-conformal DDM approach has also been extended into surface integral equation methods. We elucidate a non-conformal integral equation domain decomposition method and a generalized combined field integral equation method for modelling EM wave scattering from non-penetrable and penetrable targets, respectively. Moreover, a plane wave scattering from a composite mockup fighter jet has been simulated using the newly developed multi-solver domain decomposition method. PMID:22870061

  15. Teaching Modeling with Partial Differential Equations: Several Successful Approaches

    ERIC Educational Resources Information Center

    Myers, Joseph; Trubatch, David; Winkel, Brian

    2008-01-01

    We discuss the introduction and teaching of partial differential equations (heat and wave equations) via modeling physical phenomena, using a new approach that encompasses constructing difference equations and implementing these in a spreadsheet, numerically solving the partial differential equations using the numerical differential equation…

  16. Spatial parallelism of a 3D finite difference, velocity-stress elastic wave propagation code

    SciTech Connect

    Minkoff, S.E.

    1999-12-01

    Finite difference methods for solving the wave equation more accurately capture the physics of waves propagating through the earth than asymptotic solution methods. Unfortunately, finite difference simulations for 3D elastic wave propagation are expensive. The authors model waves in a 3D isotropic elastic earth. The wave equation solution consists of three velocity components and six stresses. The partial derivatives are discretized using 2nd-order in time and 4th-order in space staggered finite difference operators. Staggered schemes allow one to obtain additional accuracy (via centered finite differences) without requiring additional storage. The serial code is most unique in its ability to model a number of different types of seismic sources. The parallel implementation uses the MPI library, thus allowing for portability between platforms. Spatial parallelism provides a highly efficient strategy for parallelizing finite difference simulations. In this implementation, one can decompose the global problem domain into one-, two-, and three-dimensional processor decompositions with 3D decompositions generally producing the best parallel speedup. Because I/O is handled largely outside of the time-step loop (the most expensive part of the simulation) the authors have opted for straight-forward broadcast and reduce operations to handle I/O. The majority of the communication in the code consists of passing subdomain face information to neighboring processors for use as ghost cells. When this communication is balanced against computation by allocating subdomains of reasonable size, they observe excellent scaled speedup. Allocating subdomains of size 25 x 25 x 25 on each node, they achieve efficiencies of 94% on 128 processors. Numerical examples for both a layered earth model and a homogeneous medium with a high-velocity blocky inclusion illustrate the accuracy of the parallel code.

  17. Spatial Parallelism of a 3D Finite Difference, Velocity-Stress Elastic Wave Propagation Code

    SciTech Connect

    MINKOFF,SUSAN E.

    1999-12-09

    Finite difference methods for solving the wave equation more accurately capture the physics of waves propagating through the earth than asymptotic solution methods. Unfortunately. finite difference simulations for 3D elastic wave propagation are expensive. We model waves in a 3D isotropic elastic earth. The wave equation solution consists of three velocity components and six stresses. The partial derivatives are discretized using 2nd-order in time and 4th-order in space staggered finite difference operators. Staggered schemes allow one to obtain additional accuracy (via centered finite differences) without requiring additional storage. The serial code is most unique in its ability to model a number of different types of seismic sources. The parallel implementation uses the MP1 library, thus allowing for portability between platforms. Spatial parallelism provides a highly efficient strategy for parallelizing finite difference simulations. In this implementation, one can decompose the global problem domain into one-, two-, and three-dimensional processor decompositions with 3D decompositions generally producing the best parallel speed up. Because i/o is handled largely outside of the time-step loop (the most expensive part of the simulation) we have opted for straight-forward broadcast and reduce operations to handle i/o. The majority of the communication in the code consists of passing subdomain face information to neighboring processors for use as ''ghost cells''. When this communication is balanced against computation by allocating subdomains of reasonable size, we observe excellent scaled speed up. Allocating subdomains of size 25 x 25 x 25 on each node, we achieve efficiencies of 94% on 128 processors. Numerical examples for both a layered earth model and a homogeneous medium with a high-velocity blocky inclusion illustrate the accuracy of the parallel code.

  18. Characteristics of pressure waves

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Air blast characteristics generated by most types of explosions are discussed. Data cover both negative and positive blast load phases and net transverse pressure as a function of time. The effects of partial or total confinement, atmospheric propagation, absorption of energy by ground shock or cratering, and transmission over irregular terrain on blast wave properties were also considered.

  19. Theoretical study of β-HMX decomposition mechanism of the solid phase under shock loadings

    NASA Astrophysics Data System (ADS)

    Ji, Guangfu; Ge, Nina; Chen, Xiangrong

    2015-06-01

    Study material properties under extreme conditions is a fundamental problem in the field of condensed matter physics. The decomposition mechanisms of energetic materials under the shock wave become a hot topic in recent years. In this paper, molecular dynamics simulations combined with multi-scale shock technology (MSST) are used to study the decomposition mechanism, shock sensitivity and electronic structure of β-HMX. First, the decomposition mechanism of β-HMX perfect crystal were studied at different shock speeds. We found that when the shock wave at a speed 8 km / s is loaded, the decomposition reaction start at N-NO2 bond breakage; when the shock wave at a speed of 10 km / s and 11 km / s is loaded, the the first decomposition reaction is CH bond breaking, and accompanied by the formation of five-membered ring and transfer of hydrogen ions. The simulation results also show that when the shock wave velocity is increased, the higher the pressure generated in the high-pressure N-NO2 bond cleavage was inhibited significantly. Secondly, the impact of its initial chemical reaction process along different crystal axis directions were studied, the results showed that along the a-axis and c-axis shock sensitivity is higher, and along the b-axis sensitivity is lower. We believe that the system of all sensitivity of direction is due to the rotation of the friction between the slip plane of crystals and molecules. Finally, we discussed the solid phase β-HMX electronic properties change under the shock wave loadings. We found that in the 11 km/s under the impact load, when the pressure reaches 130 GPa, zero bandgap is reached.

  20. Internal Solitary Wave Tunnelling

    NASA Astrophysics Data System (ADS)

    Sutherland, Bruce; Keating, Scott; Shrivistava, Ishita

    2013-11-01

    In a two-layer fluid, solitary waves of depression (elevation) propagate in a shallow upper (lower) layer. The transition from depressed to elevated is known to occur as a solitary wave of depression passes over a bottom slope. If impacting a coastline the shoaling waves deposit some energy and partially reflect. Here we consider what happens if a solitary wave passes over a sill or the shoulder of an island. Specifically, through lock-release laboratory experiments, we examine the evolution of a solitary wave of depression incident upon a submerged thin vertical barrier and triangular submarine topography. From the measured interface displacement, we determine the available potential energy associated with the wave. The method of Hilbert transforms is used to subdivide the displacement signal into rightward- and leftward-propagating disturbances, from which we measure the available potential energy of the transmitted and reflected waves. These are used to measure the relative transmission, reflection and deposition of energy in terms of the barrier height and slope, the relative depths of the ambient fluid and the amplitude of the incident wave. Implications for internal wave scattering around Dongsha Atoll in the South China Sea are discussed. Research performed while visiting the University of Alberta under the UARE program.

  1. Size dependence of the thermal decomposition kinetics of nano- CaC2O4: A theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Fu, Qingshan; Cui, Zixiang; Xue, Yongqiang

    2015-10-01

    In the processes of preparation and application of nanomaterials, the thermal decomposition of nanoparticles is often involved. An improved general theory of thermal decomposition kinetics of nanoparticles, developed over the past 10 years, was presented in this paper where the relations between reaction kinetic parameters and particle size were derived. Experimentally, the thermal decomposition kinetics of nano-sized calcium oxalate (nano- CaC2O4 with different sizes was studied by means of Thermogravimetry Analysis (TGA) at different heating rates. The values of the apparent activation energy and the logarithm of pre-exponential factor were calculated using the equation of Iterative Kissinger-Akahira-Sunose (IKAS) and its deformations. The influence regularities of particle size on the apparent activation energy and the pre-exponential factor were summarized, which are consistent with the thermal decomposition kinetics theory of nanoparticles. Based on the theory, the method of obtaining the surface thermodynamic properties by the determination of kinetic parameters was presented. Theoretical and experimental results show that the particle size, through the effect on the surface thermodynamic properties, has notable effect on the thermal decomposition kinetics. With the particle size decreasing, the partial molar surface enthalpy and the partial molar surface entropy increases, leading to the decrease of the apparent activation energy and the pre-exponential factor, respectively. Furthermore, the apparent activation energy, the pre-exponential factor, the partial molar surface enthalpy and the partial molar surface entropy are linearly related to the reciprocal of particle diameter, respectively.

  2. Conductimetric determination of decomposition of silicate melts

    NASA Technical Reports Server (NTRS)

    Kroeger, C.; Lieck, K.

    1986-01-01

    A description of a procedure is given to detect decomposition of silicate systems in the liquid state by conductivity measurements. Onset of decomposition can be determined from the temperature curves of resistances measured on two pairs of electrodes, one above the other. Degree of decomposition can be estimated from temperature and concentration dependency of conductivity of phase boundaries. This procedure was tested with systems PbO-B2O3 and PbO-B2O3-SiO2.

  3. Decomposition of Multi-player Games

    NASA Astrophysics Data System (ADS)

    Zhao, Dengji; Schiffel, Stephan; Thielscher, Michael

    Research in General Game Playing aims at building systems that learn to play unknown games without human intervention. We contribute to this endeavour by generalising the established technique of decomposition from AI Planning to multi-player games. To this end, we present a method for the automatic decomposition of previously unknown games into independent subgames, and we show how a general game player can exploit a successful decomposition for game tree search.

  4. Variance decomposition in stochastic simulators.

    PubMed

    Le Maître, O P; Knio, O M; Moraes, A

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models. PMID:26133418

  5. 9 CFR 354.131 - Decomposition.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... CERTIFICATION VOLUNTARY INSPECTION OF RABBITS AND EDIBLE PRODUCTS THEREOF Disposition of Diseased Rabbit Carcasses and Parts § 354.131 Decomposition. Carcasses of rabbits deleteriously affected by...

  6. Why arthroscopic partial meniscectomy?

    PubMed

    Lyu, Shaw-Ruey

    2015-09-01

    "Arthroscopic Partial Meniscectomy versus Sham Surgery for a Degenerative Meniscal Tear" published in the New England Journal of Medicine on December 26, 2013 draws the conclusion that arthroscopic partial medial meniscectomy provides no significant benefit over sham surgery in patients with a degenerative meniscal tear and no knee osteoarthritis. This result argues against the current practice of performing arthroscopic partial meniscectomy (APM) in patients with a degenerative meniscal tear. Since the number of APM performed has been increasing, the information provided by this study should lead to a change in clinical care of patients with a degenerative meniscus tear. PMID:26488013

  7. Methanol Oxidation on Pt3Sn(111) for Direct Methanol Fuel Cells: Methanol Decomposition.

    PubMed

    Lu, Xiaoqing; Deng, Zhigang; Guo, Chen; Wang, Weili; Wei, Shuxian; Ng, Siu-Pang; Chen, Xiangfeng; Ding, Ning; Guo, Wenyue; Wu, Chi-Man Lawrence

    2016-05-18

    PtSn alloy, which is a potential material for use in direct methanol fuel cells, can efficiently promote methanol oxidation and alleviate the CO poisoning problem. Herein, methanol decomposition on Pt3Sn(111) was systematically investigated using periodic density functional theory and microkinetic modeling. The geometries and energies of all of the involved species were analyzed, and the decomposition network was mapped out to elaborate the reaction mechanisms. Our results indicated that methanol and formaldehyde were weakly adsorbed, and the other derivatives (CHxOHy, x = 1-3, y = 0-1) were strongly adsorbed and preferred decomposition rather than desorption on Pt3Sn(111). The competitive methanol decomposition started with the initial O-H bond scission followed by successive C-H bond scissions, (i.e., CH3OH → CH3O → CH2O → CHO → CO). The Brønsted-Evans-Polanyi relations and energy barrier decomposition analyses identified the C-H and O-H bond scissions as being more competitive than the C-O bond scission. Microkinetic modeling confirmed that the vast majority of the intermediates and products from methanol decomposition would escape from the Pt3Sn(111) surface at a relatively low temperature, and the coverage of the CO residue decreased with an increase in the temperature and decrease in partial methanol pressure. PMID:27119198

  8. The Lockheed alternate partial polarizer universal filter

    NASA Technical Reports Server (NTRS)

    Title, A. M.

    1976-01-01

    A tunable birefringent filter using an alternate partial polarizer design has been built. The filter has a transmission of 38% in polarized light. Its full width at half maximum is .09A at 5500A. It is tunable from 4500 to 8500A by means of stepping motor actuated rotating half wave plates and polarizers. Wave length commands and thermal compensation commands are generated by a PPD 11/10 minicomputer. The alternate partial polarizer universal filter is compared with the universal birefringent filter and the design techniques, construction methods, and filter performance are discussed in some detail. Based on the experience of this filter some conclusions regarding the future of birefringent filters are elaborated.

  9. [Capacity of hyperthermophilic Crenarchaeota for decomposition of refractory protiens (α- and β-keratins)].

    PubMed

    Bidzhieva, S Kh; Derbikova, K S; Kublanov, I V; Bonch-Osmolovskaya, E A

    2014-01-01

    Anaerobic thermophilic archaea of the genera Thermogladius and Desulfurococcus capable of a- and P3-keratin decomposition were isolated from hot springs of Kamchatka and Kunashir Island. For two of them (strains 2355k and 3008g), the presence of high-molecular mass, cell-bound endopeptidases active against nonhydrolyzed and partially hydrolyzed proteins at high values of temperature and pH was shown. Capacity for β-keratin decomposition was also found in collection strains (type strains of Desulfurococcus amylolyticus subsp. amylolyticus, D. mucosus subsp. mobilis, and D. fermentans). PMID:25941724

  10. Iterative filtering decomposition based on local spectral evolution kernel

    PubMed Central

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2011-01-01

    The synthesizing information, achieving understanding, and deriving insight from increasingly massive, time-varying, noisy and possibly conflicting data sets are some of most challenging tasks in the present information age. Traditional technologies, such as Fourier transform and wavelet multi-resolution analysis, are inadequate to handle all of the above-mentioned tasks. The empirical model decomposition (EMD) has emerged as a new powerful tool for resolving many challenging problems in data processing and analysis. Recently, an iterative filtering decomposition (IFD) has been introduced to address the stability and efficiency problems of the EMD. Another data analysis technique is the local spectral evolution kernel (LSEK), which provides a near prefect low pass filter with desirable time-frequency localizations. The present work utilizes the LSEK to further stabilize the IFD, and offers an efficient, flexible and robust scheme for information extraction, complexity reduction, and signal and image understanding. The performance of the present LSEK based IFD is intensively validated over a wide range of data processing tasks, including mode decomposition, analysis of time-varying data, information extraction from nonlinear dynamic systems, etc. The utility, robustness and usefulness of the proposed LESK based IFD are demonstrated via a large number of applications, such as the analysis of stock market data, the decomposition of ocean wave magnitudes, the understanding of physiologic signals and information recovery from noisy images. The performance of the proposed method is compared with that of existing methods in the literature. Our results indicate that the LSEK based IFD improves both the efficiency and the stability of conventional EMD algorithms. PMID:22350559

  11. Iterative filtering decomposition based on local spectral evolution kernel.

    PubMed

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2012-03-01

    The synthesizing information, achieving understanding, and deriving insight from increasingly massive, time-varying, noisy and possibly conflicting data sets are some of most challenging tasks in the present information age. Traditional technologies, such as Fourier transform and wavelet multi-resolution analysis, are inadequate to handle all of the above-mentioned tasks. The empirical model decomposition (EMD) has emerged as a new powerful tool for resolving many challenging problems in data processing and analysis. Recently, an iterative filtering decomposition (IFD) has been introduced to address the stability and efficiency problems of the EMD. Another data analysis technique is the local spectral evolution kernel (LSEK), which provides a near prefect low pass filter with desirable time-frequency localizations. The present work utilizes the LSEK to further stabilize the IFD, and offers an efficient, flexible and robust scheme for information extraction, complexity reduction, and signal and image understanding. The performance of the present LSEK based IFD is intensively validated over a wide range of data processing tasks, including mode decomposition, analysis of time-varying data, information extraction from nonlinear dynamic systems, etc. The utility, robustness and usefulness of the proposed LESK based IFD are demonstrated via a large number of applications, such as the analysis of stock market data, the decomposition of ocean wave magnitudes, the understanding of physiologic signals and information recovery from noisy images. The performance of the proposed method is compared with that of existing methods in the literature. Our results indicate that the LSEK based IFD improves both the efficiency and the stability of conventional EMD algorithms. PMID:22350559

  12. Partial knee replacement - slideshow

    MedlinePlus

    ... page: //medlineplus.gov/ency/presentations/100225.htm Partial knee replacement - series To use the sharing features on ... A.M. Editorial team. Related MedlinePlus Health Topics Knee Replacement A.D.A.M., Inc. is accredited ...

  13. Partial knee replacement

    MedlinePlus

    Most people recover quickly and have much less pain than they did before surgery. People who have a partial knee replacement recover faster than those who have a total knee replacement. Many people are able to walk ...

  14. Twisted partially pure spinors

    NASA Astrophysics Data System (ADS)

    Herrera, Rafael; Tellez, Ivan

    2016-08-01

    Motivated by the relationship between orthogonal complex structures and pure spinors, we define twisted partially pure spinors in order to characterize spinorially subspaces of Euclidean space endowed with a complex structure.

  15. Phase Diagram and Decomposition of 1,1-Diamino-2,2-Dinitroethene (FOX-7)

    NASA Astrophysics Data System (ADS)

    Tao, Yuchuan; Dreger, Zbigniew; Gupta, Yogendra

    2015-06-01

    To understand the reactive behavior of 1,1-diamino-2,2-dinitroethene (FOX-7) at the thermo-mechanical conditions relevant to shock-wave initiation, Raman and FTIR measurements were performed at high-pressures (HP) and high-temperatures (HT). Experiments were performed on single crystals of FOX-7 in a diamond anvil cell to 10 GPa and 800 K to provide the phase diagram and to gain insight into the HP decomposition mechanisms. Previous studies have demonstrated that the ambient structure of FOX-7 (alpha) transforms to beta and gamma phases at higher temperatures, and phase I (2 GPa) and II (4.5 GPa) at higher pressures. In this work, we determined the boundaries between these phases and the decomposition/melting curve. In particular, we found that: (i) both beta and gamma phases exist in a limited P-T domain (>386 K and <1 GPa), (ii) the transition between phase-I and phase-II takes place along the isobar, (iii) the decomposition temperature increases significantly with pressure (~ 25 K / GPa), and (iv) pressure inhibits the decomposition. Using FTIR spectroscopy, we observed that CO2 is the first dominating decomposition product, followed by N2O, NO2, HCN, and HNCO. Pressure effects on reaction kinetics will be presented along with the possible mechanisms of decomposition. Work supported by DOE/NNSA and ONR.

  16. Turbulence beneath waves

    NASA Astrophysics Data System (ADS)

    Gemmrich, J.; Farmer, D.

    2003-04-01

    Breaking surface waves are believed to provide a major pathway for the energy input from the atmosphere to the ocean and are a source of enhanced turbulent kinetic energy levels in the near-surface layer. Increased turbulence levels relate to enhanced air-sea exchange processes. The ocean surface is a complex system with a wide range of relevant scales. We use direct measurement of the small-scale velocity field as a first step to evaluate near-surface turbulence. At wind speed up to 14 m/s, velocity profiles were obtained with pulse-to-pulse coherent acoustic Doppler profilers. Based on wavenumber spectra calculated with the empirical mode decomposition, dissipation of turbulent kinetic energy at ~1m beneath the free surface and 1 Hz sampling rate is estimated. In addition, bubble size distributions were obtained from acoustic resonator measurements and whitecap occurrence was monitored with video cameras. High turbulence levels with dissipation rates more than four orders larger than the background dissipation are linked to wave breaking. The decay and depth-dependence of the wave-induced turbulence are examined and implications for turbulence models are discussed. In individual breaking waves, the onset of enhanced dissipation occurs up to a quarter wave period prior to the air entrainment. Magnitude and occurrence of the pre-breaking turbulence are consistent with wave-turbulence interaction in a rotational wave field. The detailed structure of the turbulence and bubble field associated with breaking waves will be presented. Implications for air-sea exchange processes will be discussed.

  17. PARTIAL TORUS INSTABILITY

    SciTech Connect

    Olmedo, Oscar; Zhang Jie

    2010-07-20

    Flux ropes are now generally accepted to be the magnetic configuration of coronal mass ejections (CMEs), which may be formed prior to or during solar eruptions. In this study, we model the flux rope as a current-carrying partial torus loop with its two footpoints anchored in the photosphere, and investigate its stability in the context of the torus instability (TI). Previous studies on TI have focused on the configuration of a circular torus and revealed the existence of a critical decay index of the overlying constraining magnetic field. Our study reveals that the critical index is a function of the fractional number of the partial torus, defined by the ratio between the arc length of the partial torus above the photosphere and the circumference of a circular torus of equal radius. We refer to this finding as the partial torus instability (PTI). It is found that a partial torus with a smaller fractional number has a smaller critical index, thus requiring a more gradually decreasing magnetic field to stabilize the flux rope. On the other hand, a partial torus with a larger fractional number has a larger critical index. In the limit of a circular torus when the fractional number approaches 1, the critical index goes to a maximum value. We demonstrate that the PTI helps us to understand the confinement, growth, and eventual eruption of a flux-rope CME.

  18. Wavefront reconstruction by modal decomposition.

    PubMed

    Schulze, Christian; Naidoo, Darryl; Flamm, Daniel; Schmidt, Oliver A; Forbes, Andrew; Duparré, Michael

    2012-08-27

    We propose a new method to determine the wavefront of a laser beam based on modal decomposition by computer-generated holograms. The hologram is encoded with a transmission function suitable for measuring the amplitudes and phases of the modes in real-time. This yields the complete information about the optical field, from which the Poynting vector and the wavefront are deduced. Two different wavefront reconstruction options are outlined: reconstruction from the phase for scalar beams, and reconstruction from the Poynting vector for inhomogeneously polarized beams. Results are compared to Shack-Hartmann measurements that serve as a reference and are shown to reproduce the wavefront and phase with very high fidelity. PMID:23037024

  19. Metallo-organic decomposition films

    NASA Technical Reports Server (NTRS)

    Gallagher, B. D.

    1985-01-01

    A summary of metallo-organic deposition (MOD) films for solar cells was presented. The MOD materials are metal ions compounded with organic radicals. The technology is evolving quickly for solar cell metallization. Silver compounds, especially silver neodecanoate, were developed which can be applied by thick-film screening, ink-jet printing, spin-on, spray, or dip methods. Some of the advantages of MOD are: high uniform metal content, lower firing temperatures, decomposition without leaving a carbon deposit or toxic materials, and a film that is stable under ambient conditions. Molecular design criteria were explained along with compounds formulated to date, and the accompanying reactions for these compounds. Phase stability and the other experimental and analytic results of MOD films were presented.

  20. Thermal decomposition of HN(3).

    PubMed

    Knyazev, Vadim D; Korobeinichev, Oleg P

    2010-01-21

    The two-channel thermal decomposition of hydrogen azide, HN(3), was studied computationally. The reaction produces triplet or singlet NH and N(2). A model of the reaction was created on the basis of the theoretical study of the reaction potential-energy surface and microscopic reaction rates by Besora and Harvey (Besora, M.; Harvey, J. N. J. Chem. Phys. 2008, 129, 044303) and the experimental data on the energy-dependent rate constants reported by Foy et al. (Foy, B. R.; Casassa, M. P.; Stephenson, J. C.; King, D. S. J. Chem. Phys. 1990, 92, 2782) The properties of the model were adjusted to fit the calculated k(E) dependence to the experimental one. The experiments on thermal decomposition of HN(3) described in the literature were analyzed via kinetic modeling; the results of the analysis demonstrate that all but one of the existing studies were affected by contributions from secondary kinetics. The model of the reaction was then used in master-equation calculations of the pressure effects and the value of the critical energy transfer parameter, DeltaE(down), was adjusted based on agreement with the experimental k(T,P) data. Finally, the model was used to determine pressure- and temperature-dependent rate constants for both channels of reaction 1, which do not conform to the traditional formalism of low-pressure-limit and falloff description. Uncertainties of the model and their influence on the calculated thermal rate constant values were analyzed. Finally, parametrized expression for rate coefficients were provided for a wide range of temperatures and pressures. PMID:19916540

  1. Metallo-Organic Decomposition (MOD) film development

    NASA Technical Reports Server (NTRS)

    Parker, J.

    1986-01-01

    The processing techniques and problems encountered in formulating metallo-organic decomposition (MOD) films used in contracting structures for thin solar cells are described. The use of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques performed at Jet Propulsion Laboratory (JPL) in understanding the decomposition reactions lead to improvements in process procedures. The characteristics of the available MOD films were described in detail.

  2. 9 CFR 381.93 - Decomposition.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Decomposition. 381.93 Section 381.93 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... § 381.93 Decomposition. Carcasses of poultry deleteriously affected by post mortem changes shall...

  3. 9 CFR 354.131 - Decomposition.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Decomposition. 354.131 Section 354.131 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Carcasses and Parts § 354.131 Decomposition. Carcasses of rabbits deleteriously affected by...

  4. 9 CFR 381.93 - Decomposition.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Decomposition. 381.93 Section 381.93 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... § 381.93 Decomposition. Carcasses of poultry deleteriously affected by post mortem changes shall...

  5. 9 CFR 354.131 - Decomposition.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Decomposition. 354.131 Section 354.131 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Carcasses and Parts § 354.131 Decomposition. Carcasses of rabbits deleteriously affected by...

  6. 9 CFR 354.131 - Decomposition.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Decomposition. 354.131 Section 354.131 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Carcasses and Parts § 354.131 Decomposition. Carcasses of rabbits deleteriously affected by...

  7. Chinese Orthographic Decomposition and Logographic Structure

    ERIC Educational Resources Information Center

    Cheng, Chao-Ming; Lin, Shan-Yuan

    2013-01-01

    "Chinese orthographic decomposition" refers to a sense of uncertainty about the writing of a well-learned Chinese character following a prolonged inspection of the character. This study investigated the decomposition phenomenon in a test situation in which Chinese characters were repeatedly presented in a word context and assessed…

  8. English and Turkish Pupils' Understanding of Decomposition

    ERIC Educational Resources Information Center

    Cetin, Gulcan

    2007-01-01

    This study aimed to describe seventh grade English and Turkish students' levels of understanding of decomposition. Data were analyzed descriptively from the students' written responses to four diagnostic questions about decomposition. Results revealed that the English students had considerably higher sound understanding and lower no understanding…

  9. 9 CFR 354.131 - Decomposition.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Decomposition. 354.131 Section 354.131 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Carcasses and Parts § 354.131 Decomposition. Carcasses of rabbits deleteriously affected by...

  10. Sampling Stoichiometry: The Decomposition of Hydrogen Peroxide.

    ERIC Educational Resources Information Center

    Clift, Philip A.

    1992-01-01

    Describes a demonstration of the decomposition of hydrogen peroxide to provide an interesting, quantitative illustration of the stoichiometric relationship between the decomposition of hydrogen peroxide and the formation of oxygen gas. This 10-minute demonstration uses ordinary hydrogen peroxide and yeast that can be purchased in a supermarket.…

  11. Regular Decompositions for H(div) Spaces

    SciTech Connect

    Kolev, Tzanio; Vassilevski, Panayot

    2012-01-01

    We study regular decompositions for H(div) spaces. In particular, we show that such regular decompositions are closely related to a previously studied “inf-sup” condition for parameter-dependent Stokes problems, for which we provide an alternative, more direct, proof.

  12. Thermal decomposition of magnesium and calcium sulfates

    SciTech Connect

    Roche, S L

    1982-04-01

    The effect of catalyst on the thermal decomposition of MgSO/sub 4/ and CaSO/sub 4/ in vacuum was studied as a function of time in Knudsen cells and for MgSO/sub 4/, in open crucibles in vacuum in a Thermal Gravimetric Apparatus. Platinum and Fe/sub 2/O/sub 3/ were used as catalysts. The CaSO/sub 4/ decomposition rate was approximately doubled when Fe/sub 2/O/sub 3/ was present in a Knudsen cell. Platinum did not catalyze the CaSO/sub 4/ decomposition reaction. The initial decomposition rate for MgSO/sub 4/ was approximately 5 times greater than when additives were present in Knudsen cells but only about 1.5 times greater when decomposition was done in an open crucible.

  13. Canonical Huynen decomposition of radar targets

    NASA Astrophysics Data System (ADS)

    Li, Dong; Zhang, Yunhua

    2015-10-01

    Huynen decomposition prefers the world of basic symmetry and regularity (SR) in which we live. However, this preference restricts its applicability to ideal SR scatterer only. As for the complex non-symmetric (NS) and irregular (IR) scatterers such as forest and building, Huynen decomposition fails to analyze their scattering. The canonical Huynen dichotomy is devised to extend Huynen decomposition to the preferences for IR and NS. From the physical realizability conditions of polarimetric scattering description, two other dichotomies of polarimetric radar target are developed, which prefer scattering IR, and NS, respectively, and provide two competent supplements to Huynen decomposition. The canonical Huynen dichotomy is the combination of the two dichotomies and Huynen decomposition. In virtue of an Adaptive selection, the canonical Huynen dichotomy is used in target extraction, and the experiments on AIRSAR San Francisco data demonstrate its high efficiency and excellent discrimination of radar targets.

  14. Multilinear operators for higher-order decompositions.

    SciTech Connect

    Kolda, Tamara Gibson

    2006-04-01

    We propose two new multilinear operators for expressing the matrix compositions that are needed in the Tucker and PARAFAC (CANDECOMP) decompositions. The first operator, which we call the Tucker operator, is shorthand for performing an n-mode matrix multiplication for every mode of a given tensor and can be employed to concisely express the Tucker decomposition. The second operator, which we call the Kruskal operator, is shorthand for the sum of the outer-products of the columns of N matrices and allows a divorce from a matricized representation and a very concise expression of the PARAFAC decomposition. We explore the properties of the Tucker and Kruskal operators independently of the related decompositions. Additionally, we provide a review of the matrix and tensor operations that are frequently used in the context of tensor decompositions.

  15. Management intensity alters decomposition via biological pathways

    USGS Publications Warehouse

    Wickings, Kyle; Grandy, A. Stuart; Reed, Sasha; Cleveland, Cory

    2011-01-01

    Current conceptual models predict that changes in plant litter chemistry during decomposition are primarily regulated by both initial litter chemistry and the stage-or extent-of mass loss. Far less is known about how variations in decomposer community structure (e.g., resulting from different ecosystem management types) could influence litter chemistry during decomposition. Given the recent agricultural intensification occurring globally and the importance of litter chemistry in regulating soil organic matter storage, our objectives were to determine the potential effects of agricultural management on plant litter chemistry and decomposition rates, and to investigate possible links between ecosystem management, litter chemistry and decomposition, and decomposer community composition and activity. We measured decomposition rates, changes in litter chemistry, extracellular enzyme activity, microarthropod communities, and bacterial versus fungal relative abundance in replicated conventional-till, no-till, and old field agricultural sites for both corn and grass litter. After one growing season, litter decomposition under conventional-till was 20% greater than in old field communities. However, decomposition rates in no-till were not significantly different from those in old field or conventional-till sites. After decomposition, grass residue in both conventional- and no-till systems was enriched in total polysaccharides relative to initial litter, while grass litter decomposed in old fields was enriched in nitrogen-bearing compounds and lipids. These differences corresponded with differences in decomposer communities, which also exhibited strong responses to both litter and management type. Overall, our results indicate that agricultural intensification can increase litter decomposition rates, alter decomposer communities, and influence litter chemistry in ways that could have important and long-term effects on soil organic matter dynamics. We suggest that future

  16. Thermal decomposition of 1,1-dimethylhydrazine on Si(100)-2 × 1

    NASA Astrophysics Data System (ADS)

    Armstrong, J. L.; Sun, Y.-M.; White, J. M.

    1997-12-01

    The surface reaction of 1,1-dimethylhydrazine (DMH) with Si(100) has been studied with temperature programmed desorption spectroscopy (TPD), temperature programmed static secondary ion mass spectrometry (TPSSIMS), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES). Adsorption of DMH on Si(100) at 170 K followed by annealing to 1100 K results in significant decomposition to form surface carbide and nitride. TPD results show that the only gas phase desoprtion products are hydrogen and dimethylamine. Furthermore, decomposition occurs over a broad temperature range; XPS and TPSIMS results indicate C sbnd N bond cleavage beginning at 400 K and by 600 K, all the C sbnd N bonds have dissociated. We propose a molecular level mechanism that involves partial decomposition upon adsorption followed by extensive bond cleavage to form surface carbide and nitride.

  17. Partial spread OFDM

    NASA Astrophysics Data System (ADS)

    Elghariani, Ali; Zoltowski, Michael D.

    2012-05-01

    In this paper, partial spread OFDM system has been presented and its performance has been studied when different detection techniques are employed, such as minimum mean square error (MMSE), grouped Maximum Likelihood (ML) and approximated integer quadratic programming (IQP) techniques . The performance study also includes applying two different spreading matrices, Hadamard and Vandermonde. Extensive computer simulation have been implemented and important results show that partial spread OFDM system improves the BER performance and the frequency diversity of OFDM compared to both non spread and full spread systems. The results from this paper also show that partial spreading technique combined with suboptimal detector could be a better solution for applications that require low receiver complexity and high information detectability.

  18. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-17

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  19. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    1999-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  20. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    2001-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  1. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-24

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  2. Oxygen partial pressure sensor

    DOEpatents

    Dees, D.W.

    1994-09-06

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

  3. Oxygen partial pressure sensor

    DOEpatents

    Dees, Dennis W.

    1994-01-01

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.

  4. Conversion of borehole Stoneley waves to channel waves in coal

    SciTech Connect

    Johnson, P.A.; Albright, J.N.

    1987-01-01

    Evidence for the mode conversion of borehole Stoneley waves to stratigraphically guided channel waves was discovered in data from a crosswell acoustic experiment conducted between wells penetrating thin coal strata located near Rifle, Colorado. Traveltime moveout observations show that borehole Stoneley waves, excited by a transmitter positioned at substantial distances in one well above and below a coal stratum at 2025 m depth, underwent partial conversion to a channel wave propagating away from the well through the coal. In an adjacent well the channel wave was detected at receiver locations within the coal, and borehole Stoneley waves, arising from a second partial conversion of channel waves, were detected at locations above and below the coal. The observed channel wave is inferred to be the third-higher Rayleigh mode based on comparison of the measured group velocity with theoretically derived dispersion curves. The identification of the mode conversion between borehole and stratigraphically guided waves is significant because coal penetrated by multiple wells may be detected without placing an acoustic transmitter or receiver within the waveguide. 13 refs., 6 figs., 1 tab.

  5. Electromagnetic wave scattering by Schwarzschild black holes.

    PubMed

    Crispino, Luís C B; Dolan, Sam R; Oliveira, Ednilton S

    2009-06-12

    We analyze the scattering of a planar monochromatic electromagnetic wave incident upon a Schwarzschild black hole. We obtain accurate numerical results from the partial wave method for the electromagnetic scattering cross section and show that they are in excellent agreement with analytical approximations. The scattering of electromagnetic waves is compared with the scattering of scalar, spinor, and gravitational waves. We present a unified picture of the scattering of all massless fields for the first time. PMID:19658920

  6. Wave Phenomena in an Acoustic Resonant Chamber

    ERIC Educational Resources Information Center

    Smith, Mary E.; And Others

    1974-01-01

    Discusses the design and operation of a high Q acoustical resonant chamber which can be used to demonstrate wave phenomena such as three-dimensional normal modes, Q values, densities of states, changes in the speed of sound, Fourier decomposition, damped harmonic oscillations, sound-absorbing properties, and perturbation and scattering problems.…

  7. Efficiently enclosing the compact binary parameter space by singular-value decomposition

    SciTech Connect

    Cannon, Kipp; Hanna, Chad; Keppel, Drew

    2011-10-15

    Gravitational-wave searches for the merger of compact binaries use matched filtering as the method of detecting signals and estimating parameters. Such searches construct a fine mesh of filters covering a signal parameter space at high density. Previously it has been shown that singular-value decomposition can reduce the effective number of filters required to search the data. Here we study how the basis provided by the singular-value decomposition changes dimension as a function of template-bank density. We will demonstrate that it is sufficient to use the basis provided by the singular-value decomposition of a low-density bank to accurately reconstruct arbitrary points within the boundaries of the template bank. Since this technique is purely numerical, it may have applications to interpolating the space of numerical relativity waveforms.

  8. Denoising preterm EEG by signal decomposition and adaptive filtering: a comparative study.

    PubMed

    Navarro, X; Porée, F; Beuchée, A; Carrault, G

    2015-03-01

    Electroencephalography (EEG) from preterm infant monitoring systems is usually contaminated by several sources of noise that have to be removed in order to correctly interpret signals and perform automated analysis reliably. Band-pass and adaptive filters (AF) continue to be systematically applied, but their efficacy may be decreased facing preterm EEG patterns such as the tracé alternant and slow delta-waves. In this paper, we propose the combination of EEG decomposition with AF to improve the overall denoising process. Using artificially contaminated signals from real EEGs, we compared the quality of filtered signals applying different decomposition techniques: the discrete wavelet transform, the empirical mode decomposition (EMD) and a recent improved version, the complete ensemble EMD with adaptive noise. Simulations demonstrate that introducing EMD-based techniques prior to AF can reduce up to 30% the root mean squared errors in denoised EEGs. PMID:25659233

  9. Composite gravitational-wave detection of compact binary coalescence

    SciTech Connect

    Cannon, Kipp; Hanna, Chad; Keppel, Drew; Searle, Antony C.

    2011-04-15

    The detection of gravitational waves from compact binaries relies on a computationally burdensome processing of gravitational-wave detector data. The parameter space of compact-binary-coalescence gravitational waves is large and optimal detection strategies often require nearly redundant calculations. Previously, it has been shown that singular value decomposition of search filters removes redundancy. Here we will demonstrate the use of singular value decomposition for a composite detection statistic. This can greatly improve the prospects for a computationally feasible rapid detection scheme across a large compact binary parameter space.

  10. Effect of temperature on the desorption and decomposition of mustard from activated carbon

    SciTech Connect

    Karwacki, C.J.; Buchanan, J.H.; Mahle, J.J.; Buettner, L.C.; Wagner, G.W.

    1999-12-07

    Experimental data are reported for the desorption of bis-2-chloroethyl sulfide, (a sulfur mustard or HD) and its decomposition products from activated coconut shell carbon (CSC). The results show that under equilibrium conditions changes in the HD partial pressure are affected primarily by its loading and temperature of the adsorbent. The partial pressure of adsorbed HD is found to increase by about a decade for each 25 C increase in temperature for CSC containing 0.01--0.1 g/g HD. Adsorption equilibria of HD appear to be little affected by coadsorbed water. Although complicated by its decomposition, the distribution of adsorbed HD (of known amount) appears to occupy pores of similar energy whether dry or in the presence of adsorbed water. On dry CSC adsorbed HD appears stable, while in the presence of water its decomposition is marked by hydrolysis at low temperature and thermal decomposition at elevated temperatures. The principal volatile products desorbed are 1,4-thioxane, 2-chloroethyl vinyl sulfide and 1,4-dithiane, with the latter favoring elevated temperatures.

  11. Partial Participation Revisited.

    ERIC Educational Resources Information Center

    Ferguson, Dianne L.; Baumgart, Diane

    1991-01-01

    This article reanalyzes the principle of partial participation in integrated educational programing for students with severe or profound disabilities. The article presents four "error patterns" in how the concept has been used, some reasons why such error patterns have occurred, and strategies for avoiding these errors. (Author/JDD)

  12. Partial gravity habitat study

    NASA Technical Reports Server (NTRS)

    Capps, Stephen; Lorandos, Jason; Akhidime, Eval; Bunch, Michael; Lund, Denise; Moore, Nathan; Murakawa, Kiosuke

    1989-01-01

    The purpose of this study is to investigate comprehensive design requirements associated with designing habitats for humans in a partial gravity environment, then to apply them to a lunar base design. Other potential sites for application include planetary surfaces such as Mars, variable-gravity research facilities, and a rotating spacecraft. Design requirements for partial gravity environments include locomotion changes in less than normal earth gravity; facility design issues, such as interior configuration, module diameter, and geometry; and volumetric requirements based on the previous as well as psychological issues involved in prolonged isolation. For application to a lunar base, it is necessary to study the exterior architecture and configuration to insure optimum circulation patterns while providing dual egress; radiation protection issues are addressed to provide a safe and healthy environment for the crew; and finally, the overall site is studied to locate all associated facilities in context with the habitat. Mission planning is not the purpose of this study; therefore, a Lockheed scenario is used as an outline for the lunar base application, which is then modified to meet the project needs. The goal of this report is to formulate facts on human reactions to partial gravity environments, derive design requirements based on these facts, and apply the requirements to a partial gravity situation which, for this study, was a lunar base.

  13. Thermal decomposition of HfCl{sub 4} as a function of its hydration state

    SciTech Connect

    Barraud, E.; Begin-Colin, S. . E-mail: begin@ipcms.u-strasbg.fr; Le Caer, G.; Villieras, F.; Barres, O.

    2006-06-15

    The thermogravimetric behavior of HfCl{sub 4} powders with different hydration states has been compared. Strongly hydrated powders consist of HfOCl{sub 2}.nH{sub 2}O with n>4. Partially hydrated powders consist of particles with a HfCl{sub 4} core and a hydrated outerlayer of HfOCl{sub 2}.nH{sub 2}O with n in the range of 0-8. Hydrated powders decomposed at temperature lower than 200 deg. C whereas the decomposition of partially hydrated powders was completed at a temperature of around 450 deg. C. The observed differences in decomposition temperature is related to the structure of HfOCl{sub 2}.nH{sub 2}O, which is different if n is higher or smaller than 4 and leads to intermediate compounds, which decompose at different temperatures.

  14. Thermal Decomposition Kinetics of HMX

    SciTech Connect

    Burnham, A K; Weese, R K

    2004-05-05

    Nucleation-growth kinetic expressions are derived for thermal decomposition of HMX from a variety of types of data, including mass loss for isothermal and constant rate heating in an open pan, and heat flow for isothermal and constant rate heating in open and closed pans. Conditions are identified in which thermal runaway is small to nonexistent, which typically means temperatures less than 255 C and heating rates less than 1 C/min. Activation energies are typically in the 140 to 150 kJ/mol regime for open pan experiments and about 160 kJ/mol for sealed pan experiments. Our activation energies are about 10% lower than those derived from data supplied by the University of Utah, which we consider the best previous work. The reaction clearly displays more than one process, and most likely three processes, which are most clearly evident in open pan experiments. The reaction is accelerated for closed pan experiments, and one global reaction appears to fit the data well.

  15. Thermal Decomposition Kinetics of HMX

    SciTech Connect

    Burnham, A K; Weese, R K

    2005-03-17

    Nucleation-growth kinetic expressions are derived for thermal decomposition of HMX from a variety of types of data, including mass loss for isothermal and constant rate heating in an open pan, and heat flow for isothermal and constant rate heating in open and closed pans. Conditions are identified in which thermal runaway is small to nonexistent, which typically means temperatures less than 255 C and heating rates less than 1 C/min. Activation energies are typically in the 140 to 165 kJ/mol regime for open pan experiments and about 150-165 kJ/mol for sealed-pan experiments. The reaction clearly displays more than one process, and most likely three processes, which are most clearly evident in open pan experiments. The reaction is accelerated for closed pan experiments, and one global reaction fits the data fairly well. Our A-E values lie in the middle of the values given in a compensation-law plot by Brill et al. (1994). Comparison with additional open and closed low temperature pyrolysis experiments support an activation energy of 165 kJ/mol at 10% conversion.

  16. Thermal Decomposition Kinetics of HMX

    SciTech Connect

    Burnham, A K; Weese, R K

    2004-11-18

    Nucleation-growth kinetic expressions are derived for thermal decomposition of HMX from a variety of thermal analysis data types, including mass loss for isothermal and constant rate heating in an open pan and heat flow for isothermal and constant rate heating in open and closed pans. Conditions are identified in which thermal runaway is small to nonexistent, which typically means temperatures less than 255 C and heating rates less than 1 C/min. Activation energies are typically in the 140 to 165 kJ/mol range for open pan experiments and about 150 to 165 kJ/mol for sealed pan experiments. Our activation energies tend to be slightly lower than those derived from data supplied by the University of Utah, which we consider the best previous thermal analysis work. The reaction clearly displays more than one process, and most likely three processes, which are most clearly evident in open pan experiments. The reaction is accelerated in closed pan experiments, and one global reaction appears to fit the data well. Comparison of our rate measurements with additional literature sources for open and closed low temperature pyrolysis from Sandia gives a likely activation energy of 165 kJ/mol at 10% conversion.

  17. Unimolecular thermal decomposition of dimethoxybenzenes

    NASA Astrophysics Data System (ADS)

    Robichaud, David J.; Scheer, Adam M.; Mukarakate, Calvin; Ormond, Thomas K.; Buckingham, Grant T.; Ellison, G. Barney; Nimlos, Mark R.

    2014-06-01

    The unimolecular thermal decomposition mechanisms of o-, m-, and p-dimethoxybenzene (CH3O-C6H4-OCH3) have been studied using a high temperature, microtubular (μtubular) SiC reactor with a residence time of 100 μs. Product detection was carried out using single photon ionization (SPI, 10.487 eV) and resonance enhanced multiphoton ionization (REMPI) time-of-flight mass spectrometry and matrix infrared absorption spectroscopy from 400 K to 1600 K. The initial pyrolytic step for each isomer is methoxy bond homolysis to eliminate methyl radical. Subsequent thermolysis is unique for each isomer. In the case of o-CH3O-C6H4-OCH3, intramolecular H-transfer dominates leading to the formation of o-hydroxybenzaldehyde (o-HO-C6H4-CHO) and phenol (C6H5OH). Para-CH3O-C6H4-OCH3 immediately breaks the second methoxy bond to form p-benzoquinone, which decomposes further to cyclopentadienone (C5H4=O). Finally, the m-CH3O-C6H4-OCH3 isomer will predominantly follow a ring-reduction/CO-elimination mechanism to form C5H4=O. Electronic structure calculations and transition state theory are used to confirm mechanisms and comment on kinetics. Implications for lignin pyrolysis are discussed.

  18. A new fifth parameter for transverse isotropy II: partial derivatives

    NASA Astrophysics Data System (ADS)

    Kawakatsu, Hitoshi

    2016-07-01

    Kawakatsu et al. and Kawakatsu introduced a new fifth parameter, ηκ, to describe transverse isotropy (TI). Considering that ηκ characterizes the incidence angle dependence of body wave phase velocities for TI models, its relevance for body wave seismology is obvious. Here, we derive expressions for partial derivatives (sensitivity kernels) of surface wave phase velocity and normal mode eigenfrequency for the new set of five parameters. The partial derivative for ηκ is about twice as large as that for the conventional η, indicating that ηκ should be more readily resolved. While partial derivatives for S velocities are not so changed, those for P velocities are significantly modified; the sensitivity for anisotropic P velocities is greatly reduced. In contrary to the suggestion by Dziewonski & Anderson and Anderson & Dziewonski, there is not much control on the anisotropic P velocities. On the other hand, the significance of ηκ for long-period seismology has become clear.

  19. Application of monochromatic ocean wave forecasts to prediction of wave-induced currents

    NASA Technical Reports Server (NTRS)

    Poole, L. R.

    1975-01-01

    The use of monochromatic wind-wave forecasts in prediction of wind-wave-induced currents was assessed. Currents were computed for selected combinations of wind conditions by using a spectrum approach which was developed by using the Bretschneider wave spectrum for partially developed wind seas. These currents were compared with currents computed by using the significant and average monochromatic wave parameters related to the Bretschneider spectrum. Results indicate that forecasts of significant wave parameters can be used to predict surface wind-wave-induced currents. Conversion of these parameters to average wave parameters can furnish reasonable estimates of subsurface current values.

  20. Kinetics of radical-chain decomposition of persulfate in aqueous solutions of organic compounds

    SciTech Connect

    Berlin, A.A

    1986-07-01

    The mechanism of the radical-chain decomposition of persulfate in an aqueous medium in the presence of organic compounds was analyzed in an inert atmosphere. It was found that with variation in the substrate or persulfate concentration over wide limits, there is a regular change in the partial orders of the reaction: The reaction order with respect to persulfate varies from 3/2 to 1, and that with respect to the substrate from 0 to 1.

  1. On the polar decomposition of right linear operators in quaternionic Hilbert spaces

    NASA Astrophysics Data System (ADS)

    G, Ramesh; P, Santhosh Kumar

    2016-04-01

    In this article, we prove the existence of the polar decomposition of densely defined closed right linear operators in quaternionic Hilbert spaces: If T is a densely defined closed right linear operator in a quaternionic Hilbert space H, then there exists a partial isometry U0 such that T = U 0 |" separators=" T | . In fact U0 is unique if N(U0) = N(T). In particular, if H is separable and U is a partial isometry with T = U |" separators=" T | , then we prove that U = U0 if and only if either N(T) = {0} or R(T)⊥ = {0}.

  2. On least-order flow decompositions for aerodynamics and aeroacoustics

    NASA Astrophysics Data System (ADS)

    Schlegel, Michael; Noack, Bernd R.; Jordan, Peter

    2012-11-01

    A generalisation of proper orthogonal decomposition (POD) for optimal flow resolution of linearly related observables is presented, as proposed in the identically named publication of Schlegel, Noack, Jordan, Dillmann, Groeschel, Schroeder, Wei, Freund, Lehmann and Tadmor (Journal of Fluid Mechanics 2012, vol. 697, pp. 367-398). This Galerkin expansion, termed ``observable inferred decomposition'' (OID), addresses a need in aerodynamic and aeroacoustic applications by identifying the modes contributing most to these observables. Thus, OID constitutes a building block for physical understanding, least-biased conditional sampling, state estimation and control design. From a continuum of OID versions, two variants are tailored for purposes of observer and control design, respectively. Three aerodynamic and aeroacoustic observables are studied: (1) lift and drag fluctuation of a two-dimensional cylinder wake flow, (2) aeroacoustic density fluctuations measured by a sensor array and emitted from a two-dimensional compressible mixing layer, and (3) aeroacoustic pressure monitored by a sensor array and emitted from a three-dimensional compressible jet. The most ``drag-related,'' ``lift-related'' and ``loud'' structures are distilled and interpreted in terms of known physical processes. This work was partially funded by the DFG under grants SCHL 586/2-1 and ANR, Chair of Excellence, TUCOROM.

  3. Hydrofluoride decomposition of natural materials including zirconium-containing minerals

    NASA Astrophysics Data System (ADS)

    Laptash, N.; Maslennikova, I.

    2016-01-01

    Recently, interest in ammonium hydrogen difluoride (NH4HF2) as a versatile fluorinating agent for the decomposition of natural materials resumed. It is considered to be a new and more efficient than hydrofluoric acid (HF) reagent in analytical chemistry. Thermodynamically possible fluorination reactions with NH4HF2 are exothermic and proceed even at room temperature with the entropy reserve. The fluorination products are of high symmetry phases (tetragonal or cubic) with partial substitution of fluoride ion for oxide (or hydroxide). The fluorination of refractory silicate zircon (ZrSiO4) is kinetically hindered, and its complete decomposition requires the use of a Teflon autoclave at 200oC. The fluorination products are cubic (NH4)3Zr(OH)xF7-x (x ≤ 0.3) and tetragonal double salt (NH4)3SiF7, which can be separated due to incongruent sublimation of (NH4)2SiF6. The mechanism of the latter process is proposed.

  4. Dynamic mode decomposition for non-uniformly sampled data

    NASA Astrophysics Data System (ADS)

    Leroux, Romain; Cordier, Laurent

    2016-05-01

    We propose an original approach to estimate dynamic mode decomposition (DMD) modes from non-uniformly sampled data. The proposed strategy processes a time-resolved sequence of flow snapshots in three steps. First, a reduced-order modeling of the non-missing data is made by proper orthogonal decomposition to obtain a low-order description of the state space. Second, the missing data are determined with maximum likelihood by coupling a linear dynamical state-space model with the Expectation-Maximization algorithm. Third, the DMD modes are finally estimated on the reconstructed data with a multiple linear regression method called orthonormalized partial least squares regression. This methodology is assessed for the flow past a NACA0012 airfoil at 20° of angle of attack and a Reynolds number of 103. The flow measurements are obtained with time-resolved particle image velocimetry and artificially subsampled at different ratios of missing data. The results show that the proposed method can reproduce the dominant DMD modes and the main structures of the flow fields for 50 and 75 % of missing data.

  5. Unimolecular decomposition of methyltrichlorosilane: RRKM calculations

    SciTech Connect

    Osterheld, T.H.; Allendorf, M.D.; Melius, C.F.

    1993-06-01

    Based on reaction thermochemistry and estimates of Arrhenius A-factors, it is expected that Si-C bond cleavage, C-H bond cleavage, and HCl elimination will be the primary channels for the unimolecular decomposition of methyltrichlorosilane. Using RRKM theory, we calculated rate constants for these three reactions. The calculations support the conclusion that these three reactions are the major decomposition pathways. Rate constants for each reaction were calculated in the high-pressure limit (800--1500 K) and in the falloff regime (1300--1500 K) for bath gases of both helium and hydrogen. These calculations thus provide branching fractions as well as decomposition rates. We also calculated bimolecular rate constants for the overall decomposition in the low-pressure limit. Interesting and surprising kinetic behavior of this system and the individual reactions is discussed. The reactivity of this chlorinated organosilane is compared to that of other organosilanes.

  6. A Decomposition Theorem for Finite Automata.

    ERIC Educational Resources Information Center

    Santa Coloma, Teresa L.; Tucci, Ralph P.

    1990-01-01

    Described is automata theory which is a branch of theoretical computer science. A decomposition theorem is presented that is easier than the Krohn-Rhodes theorem. Included are the definitions, the theorem, and a proof. (KR)

  7. Spinodal Decomposition and Ordering Transformation in U-6 wt% Nb

    SciTech Connect

    Hsiung, L M

    2005-08-15

    Phase stability and aging mechanisms in a water-quenched (WQ) U-6wt% Nb (WQ-U6Nb) alloy artificially aged at 200 C (16 hours) and naturally aged at room temperature for 15 years have been investigated. Age hardening/softening phenomenon is recorded from the artificially aged samples by microhardness measurement. The age hardening can be readily rationalized by the occurrence of spinodal decomposition (or fine-scaled Nb segregation), which results in the formation of a modulated structure in the aged samples. Prolonged aging leads to age softening of the alloy by coarsening of the modulated structure. Disorder-order or chemical ordering transformation is found within the naturally aged alloy according to TEM observations of antiphase domain boundaries (APBs) and superlattice diffraction patterns. The formation of a partially ordered phase in the naturally aged alloy is proposed and identified.

  8. Three-dimensional multistage network applying for facial images decomposition

    NASA Astrophysics Data System (ADS)

    Timchenko, Leonid I.; Chepornyuk, Serge V.; Grudin, Maxim A.; Harvey, David M.; Kutaev, Yuri F.; Gertsiy, Alexander A.; Zahoruiko, Lubov V.

    1997-09-01

    The paper presents a novel three-dimensional network and its application to pattern analysis. This is a multistage architecture which investigates partial correlations between structural image components. Initially the image is partitioned to be processed in parallel channels. In each channel, the structural components are transformed and subsequently separated depending on their informational activity, to be mixed with the components from other channels for further processing. An output result is represented as a pattern vector, whose components are computed one at a time to allow the quickest possible response. The paper presents an algorithm applied to facial images decomposition. The input gray-scale image is transformed so that each pixel contains information about the spatial structure of its neighborhood. A three-level representation of gray-scale image is used in order for each pixel to contain the maximum amount of structural information. The most correlated information is extracted first, making the algorithm tolerant to minor structural changes.

  9. Time-resolved proper orthogonal decomposition of liquid jet dynamics

    NASA Astrophysics Data System (ADS)

    Arienti, Marco; Soteriou, Marios C.

    2009-11-01

    New insight into the mechanism of liquid jet in crossflow atomization is provided by an analysis technique based on proper orthogonal decomposition and spectral analysis. Data are provided in the form of high-speed videos of the jet near field from experiments over a broad range of injection conditions. For each condition, proper orthogonal modes (POMs) are generated and ordered by intensity variation relative to the time average. The feasibility of jet dynamics reduction by truncation of the POM series to the first few modes is then examined as a function of crossflow velocity for laminar and turbulent liquid injection. At conditions where the jet breaks up into large chunks of liquid, the superposition of specific orthogonal modes is observed to track long waves traveling along the liquid column. The temporal coefficients of these modes can be described as a bandpass spectrum that shifts toward higher frequencies as the crossflow velocity is increased. The dynamic correlation of these modes is quantified by their cross-power spectrum density. Based on the frequency and wavelength extracted from the videos, the observed traveling waves are linked to the linearly fastest growing wave of Kelvin-Helmholtz instability. The gas boundary layer thickness at the gas-liquid shear layer emerges at the end of this study as the dominant length scale of jet dynamics at moderate Weber numbers.

  10. Efficient and accurate sound propagation using adaptive rectangular decomposition.

    PubMed

    Raghuvanshi, Nikunj; Narain, Rahul; Lin, Ming C

    2009-01-01

    Accurate sound rendering can add significant realism to complement visual display in interactive applications, as well as facilitate acoustic predictions for many engineering applications, like accurate acoustic analysis for architectural design. Numerical simulation can provide this realism most naturally by modeling the underlying physics of wave propagation. However, wave simulation has traditionally posed a tough computational challenge. In this paper, we present a technique which relies on an adaptive rectangular decomposition of 3D scenes to enable efficient and accurate simulation of sound propagation in complex virtual environments. It exploits the known analytical solution of the Wave Equation in rectangular domains, and utilizes an efficient implementation of the Discrete Cosine Transform on Graphics Processors (GPU) to achieve at least a 100-fold performance gain compared to a standard Finite-Difference Time-Domain (FDTD) implementation with comparable accuracy, while also being 10-fold more memory efficient. Consequently, we are able to perform accurate numerical acoustic simulation on large, complex scenes in the kilohertz range. To the best of our knowledge, it was not previously possible to perform such simulations on a desktop computer. Our work thus enables acoustic analysis on large scenes and auditory display for complex virtual environments on commodity hardware. PMID:19590105

  11. Domain decomposition for the SPN solver MINOS

    SciTech Connect

    Jamelot, Erell; Baudron, Anne-Marie; Lautard, Jean-Jacques

    2012-07-01

    In this article we present a domain decomposition method for the mixed SPN equations, discretized with Raviart-Thomas-Nedelec finite elements. This domain decomposition is based on the iterative Schwarz algorithm with Robin interface conditions to handle communications. After having described this method, we give details on how to optimize the convergence. Finally, we give some numerical results computed in a realistic 3D domain. The computations are done with the MINOS solver of the APOLLO3 (R) code. (authors)

  12. Moisture drives surface decomposition in thawing tundra

    NASA Astrophysics Data System (ADS)

    Hicks Pries, Caitlin E.; Schuur, E. A. G.; Vogel, Jason G.; Natali, Susan M.

    2013-07-01

    Permafrost thaw can affect decomposition rates by changing environmental conditions and litter quality. As permafrost thaws, soils warm and thermokarst (ground subsidence) features form, causing some areas to become wetter while other areas become drier. We used a common substrate to measure how permafrost thaw affects decomposition rates in the surface soil in a natural permafrost thaw gradient and a warming experiment in Healy, Alaska. Permafrost thaw also changes plant community composition. We decomposed 12 plant litters in a common garden to test how changing plant litter inputs would affect decomposition. We combined species' tissue-specific decomposition rates with species and tissue-level estimates of aboveground net primary productivity to calculate community-weighted decomposition constants at both the thaw gradient and warming experiment. Moisture, specifically growing season precipitation and water table depth, was the most significant driver of decomposition. At the gradient, an increase in growing season precipitation from 200 to 300 mm increased mass loss of the common substrate by 100%. At the warming experiment, a decrease in the depth to the water table from 30 to 15 cm increased mass loss by 100%. At the gradient, community-weighted decomposition was 21% faster in extensive than in minimal thaw, but was similar when moss production was included. Overall, the effect of climate change and permafrost thaw on surface soil decomposition are driven more by precipitation and soil environment than by changes to plant communities. Increasing soil moisture is thereby another mechanism by which permafrost thaw can become a positive feedback to climate change.

  13. Hardware Implementation of Singular Value Decomposition

    NASA Astrophysics Data System (ADS)

    Majumder, Swanirbhar; Shaw, Anil Kumar; Sarkar, Subir Kumar

    2016-06-01

    Singular value decomposition (SVD) is a useful decomposition technique which has important role in various engineering fields such as image compression, watermarking, signal processing, and numerous others. SVD does not involve convolution operation, which make it more suitable for hardware implementation, unlike the most popular transforms. This paper reviews the various methods of hardware implementation for SVD computation. This paper also studies the time complexity and hardware complexity in various methods of SVD computation.

  14. High Temperature Decomposition of Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2004-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydropemxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  15. High temperature decomposition of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2005-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  16. Unimolecular thermal decomposition of dimethoxybenzenes

    SciTech Connect

    Robichaud, David J. Mukarakate, Calvin; Nimlos, Mark R.; Scheer, Adam M.; Ormond, Thomas K.; Buckingham, Grant T.; Ellison, G. Barney

    2014-06-21

    The unimolecular thermal decomposition mechanisms of o-, m-, and p-dimethoxybenzene (CH{sub 3}O-C{sub 6}H{sub 4}-OCH{sub 3}) have been studied using a high temperature, microtubular (μtubular) SiC reactor with a residence time of 100 μs. Product detection was carried out using single photon ionization (SPI, 10.487 eV) and resonance enhanced multiphoton ionization (REMPI) time-of-flight mass spectrometry and matrix infrared absorption spectroscopy from 400 K to 1600 K. The initial pyrolytic step for each isomer is methoxy bond homolysis to eliminate methyl radical. Subsequent thermolysis is unique for each isomer. In the case of o-CH{sub 3}O-C{sub 6}H{sub 4}-OCH{sub 3}, intramolecular H-transfer dominates leading to the formation of o-hydroxybenzaldehyde (o-HO-C{sub 6}H{sub 4}-CHO) and phenol (C{sub 6}H{sub 5}OH). Para-CH{sub 3}O-C{sub 6}H{sub 4}-OCH{sub 3} immediately breaks the second methoxy bond to form p-benzoquinone, which decomposes further to cyclopentadienone (C{sub 5}H{sub 4}=O). Finally, the m-CH{sub 3}O-C{sub 6}H{sub 4}-OCH{sub 3} isomer will predominantly follow a ring-reduction/CO-elimination mechanism to form C{sub 5}H{sub 4}=O. Electronic structure calculations and transition state theory are used to confirm mechanisms and comment on kinetics. Implications for lignin pyrolysis are discussed.

  17. Partially coherent ultrafast spectrography

    NASA Astrophysics Data System (ADS)

    Bourassin-Bouchet, C.; Couprie, M.-E.

    2015-03-01

    Modern ultrafast metrology relies on the postulate that the pulse to be measured is fully coherent, that is, that it can be completely described by its spectrum and spectral phase. However, synthesizing fully coherent pulses is not always possible in practice, especially in the domain of emerging ultrashort X-ray sources where temporal metrology is strongly needed. Here we demonstrate how frequency-resolved optical gating (FROG), the first and one of the most widespread techniques for pulse characterization, can be adapted to measure partially coherent pulses even down to the attosecond timescale. No modification of experimental apparatuses is required; only the processing of the measurement changes. To do so, we take our inspiration from other branches of physics where partial coherence is routinely dealt with, such as quantum optics and coherent diffractive imaging. This will have important and immediate applications, such as enabling the measurement of X-ray free-electron laser pulses despite timing jitter.

  18. Partially integrated exhaust manifold

    DOEpatents

    Hayman, Alan W; Baker, Rodney E

    2015-01-20

    A partially integrated manifold assembly is disclosed which improves performance, reduces cost and provides efficient packaging of engine components. The partially integrated manifold assembly includes a first leg extending from a first port and terminating at a mounting flange for an exhaust gas control valve. Multiple additional legs (depending on the total number of cylinders) are integrally formed with the cylinder head assembly and extend from the ports of the associated cylinder and terminate at an exit port flange. These additional legs are longer than the first leg such that the exit port flange is spaced apart from the mounting flange. This configuration provides increased packaging space adjacent the first leg for any valving that may be required to control the direction and destination of exhaust flow in recirculation to an EGR valve or downstream to a catalytic converter.

  19. Partially coherent ultrafast spectrography

    PubMed Central

    Bourassin-Bouchet, C.; Couprie, M.-E.

    2015-01-01

    Modern ultrafast metrology relies on the postulate that the pulse to be measured is fully coherent, that is, that it can be completely described by its spectrum and spectral phase. However, synthesizing fully coherent pulses is not always possible in practice, especially in the domain of emerging ultrashort X-ray sources where temporal metrology is strongly needed. Here we demonstrate how frequency-resolved optical gating (FROG), the first and one of the most widespread techniques for pulse characterization, can be adapted to measure partially coherent pulses even down to the attosecond timescale. No modification of experimental apparatuses is required; only the processing of the measurement changes. To do so, we take our inspiration from other branches of physics where partial coherence is routinely dealt with, such as quantum optics and coherent diffractive imaging. This will have important and immediate applications, such as enabling the measurement of X-ray free-electron laser pulses despite timing jitter. PMID:25744080

  20. Partial quantum logics revisited

    NASA Astrophysics Data System (ADS)

    Vetterlein, Thomas

    2011-01-01

    Partial Boolean algebras (PBAs) were introduced by Kochen and Specker as an algebraic model reflecting the mutual relationships among quantum-physical yes-no tests. The fact that not all pairs of tests are compatible was taken into special account. In this paper, we review PBAs from two sides. First, we generalise the concept, taking into account also those yes-no tests which are based on unsharp measurements. Namely, we introduce partial MV-algebras, and we define a corresponding logic. Second, we turn to the representation theory of PBAs. In analogy to the case of orthomodular lattices, we give conditions for a PBA to be isomorphic to the PBA of closed subspaces of a complex Hilbert space. Hereby, we do not restrict ourselves to purely algebraic statements; we rather give preference to conditions involving automorphisms of a PBA. We conclude by outlining a critical view on the logico-algebraic approach to the foundational problem of quantum physics.

  1. Critical analysis of nitramine decomposition data: Activation energies and frequency factors for HMX and RDX decomposition

    NASA Technical Reports Server (NTRS)

    Schroeder, M. A.

    1980-01-01

    A summary of a literature review on thermal decomposition of HMX and RDX is presented. The decomposition apparently fits first order kinetics. Recommended values for Arrhenius parameters for HMX and RDX decomposition in the gaseous and liquid phases and for decomposition of RDX in solution in TNT are given. The apparent importance of autocatalysis is pointed out, as are some possible complications that may be encountered in interpreting extending or extrapolating kinetic data for these compounds from measurements carried out below their melting points to the higher temperatures and pressure characteristic of combustion.

  2. Partial spatial coherence and partial polarization in random evanescent fields on lossless interfaces.

    PubMed

    Norrman, Andreas; Setälä, Tero; Friberg, Ari T

    2011-03-01

    We consider partial spatial coherence and partial polarization of purely evanescent optical fields generated in total internal reflection at an interface of two dielectric (lossless) media. Making use of the electromagnetic degree of coherence, we show that, in such fields, the coherence length can be notably shorter than the light's vacuum wavelength, especially at a high-index-contrast interface. Physical explanation for this behavior, analogous to the generation of incoherent light in a multimode laser, is provided. We also analyze the degree of polarization by using a recent three-dimensional formulation and show that the field may be partially polarized at a subwavelength distance from the surface even though it is fully polarized farther away. The degree of polarization can assume values unattainable by beamlike fields, indicating that electromagnetic evanescent waves generally are genuine three-dimensional fields. The results can find applications in near-field optics and nanophotonics. PMID:21383821

  3. Thermal decomposition of carbon tetrachloride

    SciTech Connect

    Michael, J.V.; Lim, K.P. ); Kumaran, S.S.; Kiefer, J.H. )

    1993-03-04

    The first rate measurements of the thermal dissociation of CCl[sub 4] are reported. Three detection techniques were used in monitoring the reaction rate for various dilutions over a wide temperature range: (i) ARAS of product Cl atoms in reflected shock waves using 3.2--6.4 ppM of CCl[sub 4] in Ar over 1084--1705 K and 150--908 Torr, (ii) decay of CCl[sub 4] by molecular absorption of O-atom resonance radiation in reflected shock waves using 48--173 ppM of CCl[sub 4] in Ar over 1192--1733 K and 219--855 Torr, and (iii) laser schlieren density gradients in incident shock waves using 0.5 and 2% CCl[sub 4] in Kr over 1470--2186 K and 90--660 Torr. The second-order rates from ARAS and molecular absorption measurements for the bond fission reaction CCl[sub 4] [yields] CCl[sub 3] + Cl are in complete agreement with the laser schlieren results where they overlap. The temperature and pressure dependence of these rates is well characterized by Gorin model RRKM calculations using current [Delta]H[degrees][sub 0] = 67.71 kcal/mol for E[sub 0], derived from [Delta][sub f]H[degrees][sub 298] = 17.0 kcal/mol for for CCl[sub 3]. The low-pressure rate constant (k[sub 0]) derived from this RRKM fit is log k[sub 0] (cm[sup 3]/(mol s)) = 54.980 [minus] 10.624 log T [minus] 74.796 (kcal/mol)/2.303RT. These low-pressure rates require unusually large [beta][sub c] corresponding to a [l angle][Delta]E[r angle][sub down] = 1200 cm[sup [minus]1]. This may be a general feature of chlorocarbon dissociations. The ARAS data indicate that two Cl atoms are ultimately produced for each CCl[sub 4] that dissociates, with the second Cl atom forming slower than the first. Here all the measurements are consistent with a further dissociation of CCl[sub 3], CCl[sub 3] [yields] CCl[sub 2] + Cl, as the dominant source of secondary Cl-atom at a rate about 0.1 that of the primary fission. 31 refs., 9 figs., 2 tabs.

  4. Aridity and decomposition processes in complex landscapes

    NASA Astrophysics Data System (ADS)

    Ossola, Alessandro; Nyman, Petter

    2015-04-01

    Decomposition of organic matter is a key biogeochemical process contributing to nutrient cycles, carbon fluxes and soil development. The activity of decomposers depends on microclimate, with temperature and rainfall being major drivers. In complex terrain the fine-scale variation in microclimate (and hence water availability) as a result of slope orientation is caused by differences in incoming radiation and surface temperature. Aridity, measured as the long-term balance between net radiation and rainfall, is a metric that can be used to represent variations in water availability within the landscape. Since aridity metrics can be obtained at fine spatial scales, they could theoretically be used to investigate how decomposition processes vary across complex landscapes. In this study, four research sites were selected in tall open sclerophyll forest along a aridity gradient (Budyko dryness index ranging from 1.56 -2.22) where microclimate, litter moisture and soil moisture were monitored continuously for one year. Litter bags were packed to estimate decomposition rates (k) using leaves of a tree species not present in the study area (Eucalyptus globulus) in order to avoid home-field advantage effects. Litter mass loss was measured to assess the activity of macro-decomposers (6mm litter bag mesh size), meso-decomposers (1 mm mesh), microbes above-ground (0.2 mm mesh) and microbes below-ground (2 cm depth, 0.2 mm mesh). Four replicates for each set of bags were installed at each site and bags were collected at 1, 2, 4, 7 and 12 months since installation. We first tested whether differences in microclimate due to slope orientation have significant effects on decomposition processes. Then the dryness index was related to decomposition rates to evaluate if small-scale variation in decomposition can be predicted using readily available information on rainfall and radiation. Decomposition rates (k), calculated fitting single pool negative exponential models, generally

  5. Wave turbulence

    NASA Astrophysics Data System (ADS)

    Nazarenko, Sergey

    2015-07-01

    Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.

  6. The rate of pyrite decomposition on the surface of Venus

    NASA Technical Reports Server (NTRS)

    Fegley, B., Jr.; Lodders, K.; Treiman, A. H.; Klingelhoefer, G.

    1995-01-01

    We report the results of a detailed experiment study of the kinetics and mechanism of pyrite (FeS2) chemical weathering under Venus surface conditions. Pyrite is thermodynamically unstable on the surface of Venus and will spontaneously decompose to pyrrhotite (Fe7S8) because the observed S2 partial pressure in the lower atmosphere of Venus is lower than the S2 vapor pressure over coexisting pyrite and pyrrhotite. Pyrite decomposition kinetics were studied in pure CO2 and CO2 gas mixtures along five isotherms in the temperature range 390-531 C. In all gas mixtures studied, pyrite thermally decomposes to pyrrhotite (Fe7S8), which on continued heating loses sulfur to form more Fe-rich pyrrhotites. During this process the pyrrhotites are also being oxidized to form magnetite (Fe3O4), which converts to maghemite (gamma-Fe2O3), and then to hematite (alpha-Fe2O3). The reaction rates for pyrite thermal decomposition to pyrrhotite were determined by measuring the weight loss. The thickness of the unreacted pyrite in the samples provided a second independent reaction rate measurement. Finally, Mossbauer spectra done on 42 of the 115 experimental samples provided a third set of independent reaction rate data. Pyrite decomposition follows zero-order kinetics and is independent of the amount of pyrite present. The rate of pyrite decomposition is apparently independent of the gas compositions used and of the CO2 number density over a range of a factor of 40. The derived activation energy of approximately 150 kJ/mole is the same in pure CO2, two different CO-CO2 mixtures, and a ternary CO-SO2-CO2 mixture. Based on data for a CO-CO2-SO2 gas mixture with a CO number density approximately 10 times higher than at the surface of Venus and a SO2 number density approximately equal to that at the surface of Venus, the rate of pyrite destruction on the surface of Venus varies from about 1225 +/- 238 days/cm at the top of Maxwell Montes (approximately 660 K) to about 233 +/- 133 days/cm in

  7. Communication: Active space decomposition with multiple sites: Density matrix renormalization group algorithm

    SciTech Connect

    Parker, Shane M.; Shiozaki, Toru

    2014-12-07

    We extend the active space decomposition method, recently developed by us, to more than two active sites using the density matrix renormalization group algorithm. The fragment wave functions are described by complete or restricted active-space wave functions. Numerical results are shown on a benzene pentamer and a perylene diimide trimer. It is found that the truncation errors in our method decrease almost exponentially with respect to the number of renormalization states M, allowing for numerically exact calculations (to a few μE{sub h} or less) with M = 128 in both cases. This rapid convergence is because the renormalization steps are used only for the interfragment electron correlation.

  8. Tapping of Love waves in an isotropic surface waveguide by surface-to-bulk wave transduction.

    NASA Technical Reports Server (NTRS)

    Tuan, H.-S.; Chang, C.-P.

    1972-01-01

    A theoretical study of tapping a Love wave in an isotropic microacoustic surface waveguide is given. The surface Love wave is tapped by partial transduction into a bulk wave at a discontinuity. It is shown that, by careful design of the discontinuity, the converted bulk wave power and the radiation pattern may be controlled. General formulas are derived for the calculation of these important characteristics from a relatively general surface contour deformation.

  9. Decomposition of forest products buried in landfills

    SciTech Connect

    Wang, Xiaoming; Padgett, Jennifer M.; Powell, John S.; Barlaz, Morton A.

    2013-11-15

    Highlights: • This study tracked chemical changes of wood and paper in landfills. • A decomposition index was developed to quantify carbohydrate biodegradation. • Newsprint biodegradation as measured here is greater than previous reports. • The field results correlate well with previous laboratory measurements. - Abstract: The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g{sup −1} dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than

  10. Local decomposition induced by dislocation motions inside tetragonal Al2Cu compound: slip system-dependent dynamics

    NASA Astrophysics Data System (ADS)

    Chen, D.; Ma, X. L.

    2013-11-01

    Dislocations in a crystal are usually classified into several independent slip systems. Motion of a partial dislocation in monometallic crystals may remove or create stacking fault characterized with a partial of a lattice translation vector. However, it is recently known that motion of partial dislocations in complex structure, such as that inside an intermetallic Al2Cu compound, lead to a local composition deviation from its stoichiometric ratio and the resultant structure collapse. Here we report such a local decomposition behaviors are strongly dependent on slip system of dislocations. Under applied external stress, we have studied dislocation motion behaviors in the three independent slip systems of [001](110), [100]() and [110]() within tetragonal Al2Cu crystal by using molecular dynamics method. We found dislocation motions in all these slip systems result in local decomposition but their physical details differ significantly.

  11. Local decomposition induced by dislocation motions inside tetragonal Al(2)Cu compound: slip system-dependent dynamics.

    PubMed

    Chen, D; Ma, X L

    2013-01-01

    Dislocations in a crystal are usually classified into several independent slip systems. Motion of a partial dislocation in monometallic crystals may remove or create stacking fault characterized with a partial of a lattice translation vector. However, it is recently known that motion of partial dislocations in complex structure, such as that inside an intermetallic Al2Cu compound, lead to a local composition deviation from its stoichiometric ratio and the resultant structure collapse. Here we report such a local decomposition behaviors are strongly dependent on slip system of dislocations. Under applied external stress, we have studied dislocation motion behaviors in the three independent slip systems of [001](110), [100]() and [110]() within tetragonal Al2Cu crystal by using molecular dynamics method. We found dislocation motions in all these slip systems result in local decomposition but their physical details differ significantly. PMID:24196169

  12. Local decomposition induced by dislocation motions inside tetragonal Al2Cu compound: slip system-dependent dynamics

    PubMed Central

    Chen, D.; Ma, X. L.

    2013-01-01

    Dislocations in a crystal are usually classified into several independent slip systems. Motion of a partial dislocation in monometallic crystals may remove or create stacking fault characterized with a partial of a lattice translation vector. However, it is recently known that motion of partial dislocations in complex structure, such as that inside an intermetallic Al2Cu compound, lead to a local composition deviation from its stoichiometric ratio and the resultant structure collapse. Here we report such a local decomposition behaviors are strongly dependent on slip system of dislocations. Under applied external stress, we have studied dislocation motion behaviors in the three independent slip systems of [001](110), [100]() and [110]() within tetragonal Al2Cu crystal by using molecular dynamics method. We found dislocation motions in all these slip systems result in local decomposition but their physical details differ significantly. PMID:24196169

  13. Consequences of the angular spectrum decomposition of a focused beam, including slower than c beam propagation

    NASA Astrophysics Data System (ADS)

    Gouesbet, Gérard; Lock, James A.

    2016-07-01

    When dealing with light scattering and propagation of an electromagnetic beam, there are essentially two kinds of expansions which have been used to describe the incident beam (i) a discrete expansion involving beam shape coefficients and (ii) a continuous expansion in terms of an angular spectrum of plane waves. In this paper, we demonstrate that the angular spectrum decomposition readily leads to two important consequences, (i) laser light beams travel in free space with an effective velocity that is smaller than the speed of light c, and (ii) the optical theorem does not hold for arbitrary shaped beams, both in the case of electromagnetic waves and scalar waves, e.g. quantum and acoustical waves.

  14. Revisiting formic acid decomposition on metallic powder catalysts: Exploding the HCOOH decomposition volcano curve

    NASA Astrophysics Data System (ADS)

    Tang, Yadan; Roberts, Charles A.; Perkins, Ryan T.; Wachs, Israel E.

    2016-08-01

    This study revisits the classic volcano curve for HCOOH decomposition by metal catalysts by taking a modern catalysis approach. The metal catalysts (Au, Ag, Cu, Pt, Pd, Ni, Rh, Co and Fe) were prepared by H2 reduction of the corresponding metal oxides. The number of surface active sites (Ns) was determined by formic acid chemisorption. In situ IR indicated that both monodentate and bidentate/bridged surface HCOO* were present on the metals. Heats of adsorption (ΔHads) for surface HCOO* values on metals were taken from recently reported DFT calculations. Kinetics for surface HCOO* decomposition (krds) were determined with TPD spectroscopy. Steady-state specific activity (TOF = activity/Ns) for HCOOH decomposition over the metals was calculated from steady-state activity (μmol/g-s) and Ns (μmol/g). Steady-state TOFs for HCOOH decomposition weakly correlated with surface HCOO* decomposition kinetics (krds) and ΔHads of surface HCOO* intermediates. The plot of TOF vs. ΔHads for HCOOH decomposition on metal catalysts does not reproduce the classic volcano curve, but shows that TOF depends on both ΔHads and decomposition kinetics (krds) of surface HCOO* intermediates. This is the first time that the classic catalysis study of HCOOH decomposition on metallic powder catalysts has been repeated since its original publication.

  15. General classification of partially polarized partially coherent beams

    NASA Astrophysics Data System (ADS)

    Martinez-Herrero, Rosario; Piquero, Gemma; Mejias, Pedro M.

    2003-05-01

    The behavior of the so-called generalized degree of polarization of partially coherent partially polarized beams upon free propagation is investigated. On the basis of this parameter a general classification scheme of partially polarized beams is proposed. The results are applied to certain classes of fields of special interest.

  16. Experts' Understanding of Partial Derivatives Using the Partial Derivative Machine

    ERIC Educational Resources Information Center

    Roundy, David; Weber, Eric; Dray, Tevian; Bajracharya, Rabindra R.; Dorko, Allison; Smith, Emily M.; Manogue, Corinne A.

    2015-01-01

    Partial derivatives are used in a variety of different ways within physics. Thermodynamics, in particular, uses partial derivatives in ways that students often find especially confusing. We are at the beginning of a study of the teaching of partial derivatives, with a goal of better aligning the teaching of multivariable calculus with the needs of…

  17. Partial decomposition of the genetic correlation between forage yield and fiber using semi-hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Voluntary intake potential of a forage crop is generally considered to be the most important feed characteristic regulating animal performance. Efforts to develop forage crops with reduced bulk volume, measured by neutral detergent fiber (NDF) concentration, are associated with reduced plant fitness...

  18. Fourier decomposition of magnetic perturbations in toroidal plasmas using singular value decomposition

    NASA Astrophysics Data System (ADS)

    Hole, M. J.; Appel, L. C.

    2007-12-01

    In this work elements of existing eigenmode identification analysis techniques are combined to yield an improved technique for the extraction of mode numbers in toroidal plasmas. The technique, which involves fitting Fourier-time and Fourier-spatial basis functions to magnetic perturbation data, uses singular value decomposition (SVD) to provide an optimal fit across a realistic subset of the full Fourier transform basis and selects the spatial basis with the least solution residue. The method yields best-fit mode numbers, mode amplitudes and phase. A stochastic analysis provides a null-test, yielding the probability that Gaussian noise would produce the same residue of the fit or mode amplitude. The technique quantifies eigenmode mode fits in toroidally confined magnetic systems. Our approach improves upon earlier techniques in that the frequency or mode number of degenerate modes are resolved, all magnetic coil information is used synchronously, wave-train averaging is performed, and a quantitative measure of fit is generated. In turn, weak magnetic signals with long coherence time, and eigenmodes which are degenerate in mode number or frequency are resolved, and the mode fit statistically quantified by comparison with noise. The latter measure enables automated rejection or acceptance of the mode fit, obtained by comparing the probability of the null hypothesis to the 1% confidence level. Convolution of the frequency-resolved mode amplitudes and residues with a Gaussian is used to improve the confidence of identification, reducing scatter at the expense of frequency resolution. Finally, the method is applied to magnetic fluctuation data from the mega Ampere spherical tokamak outboard Mirnov array for high frequency acquisition (OMAHA) in order to analyse strong low-frequency activity and weaker high frequency Alfvénic activity.

  19. Heat Waves

    MedlinePlus

    Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and spasms due ... that the body is having trouble with the heat. If a heat wave is predicted or happening… - ...

  20. Steganography based on pixel intensity value decomposition

    NASA Astrophysics Data System (ADS)

    Abdulla, Alan Anwar; Sellahewa, Harin; Jassim, Sabah A.

    2014-05-01

    This paper focuses on steganography based on pixel intensity value decomposition. A number of existing schemes such as binary, Fibonacci, Prime, Natural, Lucas, and Catalan-Fibonacci (CF) are evaluated in terms of payload capacity and stego quality. A new technique based on a specific representation is proposed to decompose pixel intensity values into 16 (virtual) bit-planes suitable for embedding purposes. The proposed decomposition has a desirable property whereby the sum of all bit-planes does not exceed the maximum pixel intensity value, i.e. 255. Experimental results demonstrate that the proposed technique offers an effective compromise between payload capacity and stego quality of existing embedding techniques based on pixel intensity value decomposition. Its capacity is equal to that of binary and Lucas, while it offers a higher capacity than Fibonacci, Prime, Natural, and CF when the secret bits are embedded in 1st Least Significant Bit (LSB). When the secret bits are embedded in higher bit-planes, i.e., 2nd LSB to 8th Most Significant Bit (MSB), the proposed scheme has more capacity than Natural numbers based embedding. However, from the 6th bit-plane onwards, the proposed scheme offers better stego quality. In general, the proposed decomposition scheme has less effect in terms of quality on pixel value when compared to most existing pixel intensity value decomposition techniques when embedding messages in higher bit-planes.

  1. Microbial Signatures of Cadaver Gravesoil During Decomposition.

    PubMed

    Finley, Sheree J; Pechal, Jennifer L; Benbow, M Eric; Robertson, B K; Javan, Gulnaz T

    2016-04-01

    Genomic studies have estimated there are approximately 10(3)-10(6) bacterial species per gram of soil. The microbial species found in soil associated with decomposing human remains (gravesoil) have been investigated and recognized as potential molecular determinants for estimates of time since death. The nascent era of high-throughput amplicon sequencing of the conserved 16S ribosomal RNA (rRNA) gene region of gravesoil microbes is allowing research to expand beyond more subjective empirical methods used in forensic microbiology. The goal of the present study was to evaluate microbial communities and identify taxonomic signatures associated with the gravesoil human cadavers. Using 16S rRNA gene amplicon-based sequencing, soil microbial communities were surveyed from 18 cadavers placed on the surface or buried that were allowed to decompose over a range of decomposition time periods (3-303 days). Surface soil microbial communities showed a decreasing trend in taxon richness, diversity, and evenness over decomposition, while buried cadaver-soil microbial communities demonstrated increasing taxon richness, consistent diversity, and decreasing evenness. The results show that ubiquitous Proteobacteria was confirmed as the most abundant phylum in all gravesoil samples. Surface cadaver-soil communities demonstrated a decrease in Acidobacteria and an increase in Firmicutes relative abundance over decomposition, while buried soil communities were consistent in their community composition throughout decomposition. Better understanding of microbial community structure and its shifts over time may be important for advancing general knowledge of decomposition soil ecology and its potential use during forensic investigations. PMID:26748499

  2. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent

    PubMed Central

    WALL, DIANA H; BRADFORD, MARK A; ST JOHN, MARK G; TROFYMOW, JOHN A; BEHAN-PELLETIER, VALERIE; BIGNELL, DAVID E; DANGERFIELD, J MARK; PARTON, WILLIAM J; RUSEK, JOSEF; VOIGT, WINFRIED; WOLTERS, VOLKMAR; GARDEL, HOLLEY ZADEH; AYUKE, FRED O; BASHFORD, RICHARD; BELJAKOVA, OLGA I; BOHLEN, PATRICK J; BRAUMAN, ALAIN; FLEMMING, STEPHEN; HENSCHEL, JOH R; JOHNSON, DAN L; JONES, T HEFIN; KOVAROVA, MARCELA; KRANABETTER, J MARTY; KUTNY, LES; LIN, KUO-CHUAN; MARYATI, MOHAMED; MASSE, DOMINIQUE; POKARZHEVSKII, ANDREI; RAHMAN, HOMATHEVI; SABARÁ, MILLOR G; SALAMON, JOERG-ALFRED; SWIFT, MICHAEL J; VARELA, AMANDA; VASCONCELOS, HERALDO L; WHITE, DON; ZOU, XIAOMING

    2008-01-01

    Climate and litter quality are primary drivers of terrestrial decomposition and, based on evidence from multisite experiments at regional and global scales, are universally factored into global decomposition models. In contrast, soil animals are considered key regulators of decomposition at local scales but their role at larger scales is unresolved. Soil animals are consequently excluded from global models of organic mineralization processes. Incomplete assessment of the roles of soil animals stems from the difficulties of manipulating invertebrate animals experimentally across large geographic gradients. This is compounded by deficient or inconsistent taxonomy. We report a global decomposition experiment to assess the importance of soil animals in C mineralization, in which a common grass litter substrate was exposed to natural decomposition in either control or reduced animal treatments across 30 sites distributed from 43°S to 68°N on six continents. Animals in the mesofaunal size range were recovered from the litter by Tullgren extraction and identified to common specifications, mostly at the ordinal level. The design of the trials enabled faunal contribution to be evaluated against abiotic parameters between sites. Soil animals increase decomposition rates in temperate and wet tropical climates, but have neutral effects where temperature or moisture constrain biological activity. Our findings highlight that faunal influences on decomposition are dependent on prevailing climatic conditions. We conclude that (1) inclusion of soil animals will improve the predictive capabilities of region- or biome-scale decomposition models, (2) soil animal influences on decomposition are important at the regional scale when attempting to predict global change scenarios, and (3) the statistical relationship between decomposition rates and climate, at the global scale, is robust against changes in soil faunal abundance and diversity.

  3. Gravity Waves

    Atmospheric Science Data Center

    2013-04-19

    article title:  Gravity Waves Ripple over Marine Stratocumulus Clouds ... Imaging SpectroRadiometer (MISR), a fingerprint-like gravity wave feature occurs over a deck of marine stratocumulus clouds. Similar ... that occur when a pebble is thrown into a still pond, such "gravity waves" sometimes appear when the relatively stable and stratified air ...

  4. Spinodal decomposition in binary mixtures

    NASA Astrophysics Data System (ADS)

    Mauri, Roberto; Shinnar, Reuel; Triantafyllou, George

    1996-03-01

    We study the early stage of the phase separation of a binary mixture far from its critical point of demixing. Whenever the mixture of two mutually repulsive species is quenched to a temperature below its critical point of miscibility, the effect of the enthalpic repulsive force prevails upon the entropic tendency to mix, so that the system eventually separates itno two coexisting phases. We have developed a highly nonlinear model, in close analogy with the linear theory of Cahn and Hilliard, where a generalized free energy is defined in terms of two parameters ψ and a, the first describing the equilibrium composition of the two phases, ad the second denoting a characteristic length scale that is inversely proportional to the equilibrium surface tension. The linear stability analysis predicts that any perturbation of the initial mixture composition with wave number k smaller than √2ψ /a will grow exponentially in time, with a maximum growth corresponding to kmax= √ψ /a. A numerical solution of the equation shows that nonlinear effects saturate the exponential growth, and that the concentraiton distribution tends to a steady state, peroidic profile with wavelength λ=2πa/ √ψ corresponding to the fastest growing mode of the linear regime. The main result of our theoretical model is that this steady state does not depend on the form of the initial perturbation to the homogeneous composition profile.

  5. The Third Wave: A Position Paper.

    ERIC Educational Resources Information Center

    Dyrud, Marilyn A.

    2000-01-01

    Describes the Third Wave as an "information bomb... exploding in our midst, showering us with a shrapnel of images and drastically changing the way each of us perceives and acts upon our private world." Begins with a description of A. Toffler's Third Wave as an attempt to partially explain what is happening in higher education, especially distance…

  6. Does the Wave Equation Really Work?

    ERIC Educational Resources Information Center

    Armstead, Donald C.; Karls, Michael A.

    2006-01-01

    The wave equation is a classic partial differential equation that one encounters in an introductory course on boundary value problems or mathematical physics, which can be used to describe the vertical displacement of a vibrating string. Using a video camera and Wave-in-Motion software to record displacement data from a vibrating string or spring,…

  7. Multilevel domain decomposition for electronic structure calculations

    SciTech Connect

    Barrault, M. . E-mail: maxime.barrault@edf.fr; Cances, E. . E-mail: cances@cermics.enpc.fr; Hager, W.W. . E-mail: hager@math.ufl.edu; Le Bris, C. . E-mail: lebris@cermics.enpc.fr

    2007-03-01

    We introduce a new multilevel domain decomposition method (MDD) for electronic structure calculations within semi-empirical and density functional theory (DFT) frameworks. This method iterates between local fine solvers and global coarse solvers, in the spirit of domain decomposition methods. Using this approach, calculations have been successfully performed on several linear polymer chains containing up to 40,000 atoms and 200,000 atomic orbitals. Both the computational cost and the memory requirement scale linearly with the number of atoms. Additional speed-up can easily be obtained by parallelization. We show that this domain decomposition method outperforms the density matrix minimization (DMM) method for poor initial guesses. Our method provides an efficient preconditioner for DMM and other linear scaling methods, variational in nature, such as the orbital minimization (OM) procedure.

  8. Thermal decomposition hazard evaluation of hydroxylamine nitrate.

    PubMed

    Wei, Chunyang; Rogers, William J; Mannan, M Sam

    2006-03-17

    Hydroxylamine nitrate (HAN) is an important member of the hydroxylamine family and it is a liquid propellant when combined with alkylammonium nitrate fuel in an aqueous solution. Low concentrations of HAN are used primarily in the nuclear industry as a reductant in nuclear material processing and for decontamination of equipment. Also, HAN has been involved in several incidents because of its instability and autocatalytic decomposition behavior. This paper presents calorimetric measurement for the thermal decomposition of 24 mass% HAN/water. Gas phase enthalpy of formation of HAN is calculated using both semi-empirical methods with MOPAC and high-level quantum chemical methods of Gaussian 03. CHETAH is used to estimate the energy release potential of HAN. A Reactive System Screening Tool (RSST) and an Automatic Pressure Tracking Adiabatic Calorimeter (APTAC) are used to characterize thermal decomposition of HAN and to provide guidance about safe conditions for handling and storing of HAN. PMID:16154263

  9. Isothermal Decomposition of Hydrogen Peroxide Dihydrate

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Baragiola, R. A.

    2011-01-01

    We present a new method of growing pure solid hydrogen peroxide in an ultra high vacuum environment and apply it to determine thermal stability of the dihydrate compound that forms when water and hydrogen peroxide are mixed at low temperatures. Using infrared spectroscopy and thermogravimetric analysis, we quantified the isothermal decomposition of the metastable dihydrate at 151.6 K. This decomposition occurs by fractional distillation through the preferential sublimation of water, which leads to the formation of pure hydrogen peroxide. The results imply that in an astronomical environment where condensed mixtures of H2O2 and H2O are shielded from radiolytic decomposition and warmed to temperatures where sublimation is significant, highly concentrated or even pure hydrogen peroxide may form.

  10. Decomposition of forest products buried in landfills.

    PubMed

    Wang, Xiaoming; Padgett, Jennifer M; Powell, John S; Barlaz, Morton A

    2013-11-01

    The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C+H) loss of up to 38%, while loss for the other wood types was 0-10% in most samples. The C+H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27gOCg(-1) dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than previously reported. PMID:23942265

  11. Vacuum Kundt waves

    NASA Astrophysics Data System (ADS)

    McNutt, David; Milson, Robert; Coley, Alan

    2013-03-01

    We discuss the invariant classification of vacuum Kundt waves using the Cartan-Karlhede algorithm and determine the upper bound on the number of iterations of the Karlhede algorithm to classify the vacuum Kundt waves (Collins (1991 Class. Quantum Grav. 8 1859-69), Machado Ramos (1996 Class. Quantum Grav. 13 1589)). By choosing a particular coordinate system we partially construct the canonical coframe used in the classification to study the functional dependence of the invariants arising at each iteration of the algorithm. We provide a new upper bound, q ⩽ 4, and show that this bound is sharp by analyzing the subclass of Kundt waves with invariant count beginning with (0, 1,…) to show that the class with invariant count (0, 1, 3, 4, 4) exists. This class of vacuum Kundt waves is shown to be unique as the only set of metrics requiring the fourth covariant derivatives of the curvature. We conclude with an invariant classification of the vacuum Kundt waves using a suite of invariants.

  12. Partially segmented deformable mirror

    DOEpatents

    Bliss, Erlan S.; Smith, James R.; Salmon, J. Thaddeus; Monjes, Julio A.

    1991-01-01

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp.

  13. Partially segmented deformable mirror

    DOEpatents

    Bliss, E.S.; Smith, J.R.; Salmon, J.T.; Monjes, J.A.

    1991-05-21

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp. 5 figures.

  14. Partial oxidation catalyst

    DOEpatents

    Krumpelt, Michael; Ahmed, Shabbir; Kumar, Romesh; Doshi, Rajiv

    2000-01-01

    A two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion. The dehydrogenation portion is a group VIII metal and the oxide-ion conducting portion is selected from a ceramic oxide crystallizing in the fluorite or perovskite structure. There is also disclosed a method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

  15. Excess Sodium Tetraphenylborate and Intermediates Decomposition Studies

    SciTech Connect

    Barnes, M.J.

    1998-12-07

    The stability of excess amounts of sodium tetraphenylborate (NaTPB) in the In-Tank Precipitation (ITP) facility depends on a number of variables. Concentration of palladium, initial benzene, and sodium ion as well as temperature provide the best opportunities for controlling the decomposition rate. This study examined the influence of these four variable on the reactivity of palladium-catalyzed sodium tetraphenylborate decomposition. Also, single effects tests investigated the reactivity of simulants with continuous stirring and nitrogen ventilation, with very high benzene concentrations, under washed sodium concentrations, with very high palladium concentrations, and with minimal quantities of excess NaTPB.

  16. Convergence Analysis of a Domain Decomposition Paradigm

    SciTech Connect

    Bank, R E; Vassilevski, P S

    2006-06-12

    We describe a domain decomposition algorithm for use in several variants of the parallel adaptive meshing paradigm of Bank and Holst. This algorithm has low communication, makes extensive use of existing sequential solvers, and exploits in several important ways data generated as part of the adaptive meshing paradigm. We show that for an idealized version of the algorithm, the rate of convergence is independent of both the global problem size N and the number of subdomains p used in the domain decomposition partition. Numerical examples illustrate the effectiveness of the procedure.

  17. A mathematical analysis of the scattered decomposition

    SciTech Connect

    Salmon, J.

    1988-01-01

    A theoretical basis for the scattered decomposition is worked out in some detail. The basic result has been part of the /open quotes/folklore/close quotes/ for some time, but has never been proved. The load imbalance expected from a scattered decomposition of a set of computational tasks is proportional to the number of tasks assigned to each processor, the mean time per task and root mean square deviation timer per task. The constant of proportionality is a very slowly increasing function of the number of processors. 4 refs.

  18. High temperature decomposition of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2011-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO.sub.2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  19. High temperature decomposition of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2004-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO.sub.2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  20. Photoinduced spinodal decomposition in stratifying solutions

    NASA Astrophysics Data System (ADS)

    Bunkin, F. V.; Podgaetskii, V. I.; Semin, V. N.

    1988-01-01

    The effect of photoinduced spinodal decomposition in stratifying solutions is examined with particular reference to experimental results obtained for an aqueous solution of butyl Cellosolve of critical concentration (30.14 percent by mass). At the late stages of spinodal decomposition, the coalescence of similar microheterophase inhomogeneities leads to the formation of small-scale (up to 5 microns) grains of each of the phases, which are then grouped into larger-scale (up to 100 microns) segregations. Such multilevel self-organization of the stratifying phases leads to the formation of a granular-cellular structure. This effect can be used for the quick interruption of chemical reactions in a stratifying solution.

  1. Resonance Regge poles and the state-to-state F + H2 reaction: QP decomposition, parametrized S matrix, and semiclassical complex angular momentum analysis of the angular scattering

    NASA Astrophysics Data System (ADS)

    Connor, J. N. L.

    2013-03-01

    Three new contributions to the complex angular momentum (CAM) theory of differential cross sections (DCSs) for chemical reactions are reported. They exploit recent advances in the Padé reconstruction of a scattering (S) matrix in a region surrounding the {Renolimits} J axis, where J is the total angular momentum quantum variable, starting from the discrete values, J = 0, 1, 2, …. In particular, use is made of Padé continuations obtained by Sokolovski, Castillo, and Tully [Chem. Phys. Lett. 313, 225 (1999), 10.1016/S0009-2614(99)01016-7] for the S matrix of the benchmark F + H2(vi = 0, ji = 0, mi = 0) → FH(vf = 3, jf = 3, mf = 0) + H reaction. Here vi, ji, mi and vf, jf, mf are the initial and final vibrational, rotational, and helicity quantum numbers, respectively. The three contributions are: (1) A new exact decomposition of the partial wave (PW) S matrix is introduced, which is called the QP decomposition. The P part contains information on the Regge poles. The Q part is then constructed exactly by subtracting a rapidly oscillating phase and the PW P matrix from the input PW S matrix. After a simple modification, it is found that the corresponding scattering subamplitudes provide insight into the angular-scattering dynamics using simple partial wave series (PWS) computations. It is shown that the leading n = 0 Regge pole contributes to the small-angle scattering in the centre-of-mass frame. (2) The Q matrix part of the QP decomposition has simpler properties than the input S matrix. This fact is exploited to deduce a parametrized (analytic) formula for the PW S matrix in which all terms have a direct physical interpretation. This is a long sort-after goal in reaction dynamics, and in particular for the state-to-state F + H2 reaction. (3) The first definitive test is reported for the accuracy of a uniform semiclassical (asymptotic) CAM theory for a DCS based on the Watson transformation. The parametrized S matrix obtained in contribution (2) is used in both

  2. Differential phase shift of partially reflected radio waves.

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.

    1971-01-01

    The addition of phase difference measurements to differential absorption experiments is shown to be both feasible and desirable. The phase information can provide a more sensitive measurement of electron density above about 75 km. The differential phase shift is only weakly dependent on collision frequency in this range, and so an accurate collision frequency profile is not a prerequisite. The differential phase shift and differential absorption measurements taken together can provide both electron density and collision frequency data from about 70 to 90 km.

  3. Decentralized modal identification of structures using parallel factor decomposition and sparse blind source separation

    NASA Astrophysics Data System (ADS)

    Sadhu, A.; Hazra, B.; Narasimhan, S.

    2013-12-01

    In this paper, a novel decentralized modal identification method is proposed utilizing the concepts of sparse blind source separation (BSS) and parallel factor decomposition. Unlike popular ambient modal identification methods which require large arrays of simultaneous vibration measurements, the decentralized algorithm presented here operates on partial measurements, utilizing a sub-set of sensors at-a-time. Mathematically, this leads to an underdetermined source separation problem, which is addressed using sparsifying wavelet transforms. The proposed method builds on a previously presented concept by the authors, which utilizes the stationary wavelet packet transform (SWPT) to generate an over-complete dictionary of sparse bases. However, the redundant SWPT can be computationally intensive depending on the bandwidth of the signals and the sampling frequency of the vibration measurements. This issue of computational burden is alleviated through a new method proposed here, which is based on a multi-linear algebra tool called PARAllel FACtor (PARAFAC) decomposition. At the core of this method, the wavelet packet decomposition coefficients are used to form a covariance tensor, followed by PARAFAC tensor decomposition to separate the modal responses. The underdetermined source identifiability of PARAFAC enables source separation in wavelet packet coefficients with considerable mode mixing, thereby relaxing the conditions to generate over-complete bases, thus reducing the computational burden. The proposed method is validated using a series of numerical simulations followed by an implementation on recorded ambient vibration measurements obtained from the UCLA factor building.

  4. Multichannel analysis of surface waves

    USGS Publications Warehouse

    Park, C.B.; Miller, R.D.; Xia, J.

    1999-01-01

    The frequency-dependent properties of Rayleigh-type surface waves can be utilized for imaging and characterizing the shallow subsurface. Most surface-wave analysis relies on the accurate calculation of phase velocities for the horizontally traveling fundamental-mode Rayleigh wave acquired by stepping out a pair of receivers at intervals based on calculated ground roll wavelengths. Interference by coherent source-generated noise inhibits the reliability of shear-wave velocities determined through inversion of the whole wave field. Among these nonplanar, nonfundamental-mode Rayleigh waves (noise) are body waves, scattered and nonsource-generated surface waves, and higher-mode surface waves. The degree to which each of these types of noise contaminates the dispersion curve and, ultimately, the inverted shear-wave velocity profile is dependent on frequency as well as distance from the source. Multichannel recording permits effective identification and isolation of noise according to distinctive trace-to-trace coherency in arrival time and amplitude. An added advantage is the speed and redundancy of the measurement process. Decomposition of a multichannel record into a time variable-frequency format, similar to an uncorrelated Vibroseis record, permits analysis and display of each frequency component in a unique and continuous format. Coherent noise contamination can then be examined and its effects appraised in both frequency and offset space. Separation of frequency components permits real-time maximization of the S/N ratio during acquisition and subsequent processing steps. Linear separation of each ground roll frequency component allows calculation of phase velocities by simply measuring the linear slope of each frequency component. Breaks in coherent surface-wave arrivals, observable on the decomposed record, can be compensated for during acquisition and processing. Multichannel recording permits single-measurement surveying of a broad depth range, high levels of

  5. Local decomposition induced by dislocation motions inside precipitates in an Al-alloy

    PubMed Central

    Yang, B.; Zhou, Y. T.; Chen, D.; Ma, X. L.

    2013-01-01

    Dislocations in crystals are linear crystallographic defects, which move in lattice when crystals are plastically deformed. Motion of a partial dislocation may remove or create stacking fault characterized with a partial of a lattice translation vector. Here we report that motion of partial dislocations inside an intermetallic compound result in a local composition deviation from its stoichiometric ratio, which cannot be depicted with any vectors of the primary crystal. Along dislocation slip bands inside the deformed Al2Cu particles, redistribution of Cu and Al atoms leads to a local decomposition and collapse of the original crystal structure. This finding demonstrates that dislocation slip may induce destabilization in complex compounds, which is fundamentally different from that in monometallic crystals. This phenomenon of chemical unmixing of initially homogeneous multicomponent solids induced by dislocation motion might also have important implications for understanding the geologic evolvement of deep-focus peridotites in the Earth. PMID:23301160

  6. Local decomposition induced by dislocation motions inside precipitates in an Al-alloy.

    PubMed

    Yang, B; Zhou, Y T; Chen, D; Ma, X L

    2013-01-01

    Dislocations in crystals are linear crystallographic defects, which move in lattice when crystals are plastically deformed. Motion of a partial dislocation may remove or create stacking fault characterized with a partial of a lattice translation vector. Here we report that motion of partial dislocations inside an intermetallic compound result in a local composition deviation from its stoichiometric ratio, which cannot be depicted with any vectors of the primary crystal. Along dislocation slip bands inside the deformed Al(2)Cu particles, redistribution of Cu and Al atoms leads to a local decomposition and collapse of the original crystal structure. This finding demonstrates that dislocation slip may induce destabilization in complex compounds, which is fundamentally different from that in monometallic crystals. This phenomenon of chemical unmixing of initially homogeneous multicomponent solids induced by dislocation motion might also have important implications for understanding the geologic evolvement of deep-focus peridotites in the Earth. PMID:23301160

  7. Stochastic Modeling and Generation of Partially Polarized or Partially Coherent Electromagnetic Waves

    NASA Technical Reports Server (NTRS)

    Davis, Brynmor; Kim, Edward; Piepmeier, Jeffrey; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    Many new Earth remote-sensing instruments are embracing both the advantages and added complexity that result from interferometric or fully polarimetric operation. To increase instrument understanding and functionality a model of the signals these instruments measure is presented. A stochastic model is used as it recognizes the non-deterministic nature of any real-world measurements while also providing a tractable mathematical framework. A stationary, Gaussian-distributed model structure is proposed. Temporal and spectral correlation measures provide a statistical description of the physical properties of coherence and polarization-state. From this relationship the model is mathematically defined. The model is shown to be unique for any set of physical parameters. A method of realizing the model (necessary for applications such as synthetic calibration-signal generation) is given and computer simulation results are presented. The signals are constructed using the output of a multi-input multi-output linear filter system, driven with white noise.

  8. Partially supervised speaker clustering.

    PubMed

    Tang, Hao; Chu, Stephen Mingyu; Hasegawa-Johnson, Mark; Huang, Thomas S

    2012-05-01

    Content-based multimedia indexing, retrieval, and processing as well as multimedia databases demand the structuring of the media content (image, audio, video, text, etc.), one significant goal being to associate the identity of the content to the individual segments of the signals. In this paper, we specifically address the problem of speaker clustering, the task of assigning every speech utterance in an audio stream to its speaker. We offer a complete treatment to the idea of partially supervised speaker clustering, which refers to the use of our prior knowledge of speakers in general to assist the unsupervised speaker clustering process. By means of an independent training data set, we encode the prior knowledge at the various stages of the speaker clustering pipeline via 1) learning a speaker-discriminative acoustic feature transformation, 2) learning a universal speaker prior model, and 3) learning a discriminative speaker subspace, or equivalently, a speaker-discriminative distance metric. We study the directional scattering property of the Gaussian mixture model (GMM) mean supervector representation of utterances in the high-dimensional space, and advocate exploiting this property by using the cosine distance metric instead of the euclidean distance metric for speaker clustering in the GMM mean supervector space. We propose to perform discriminant analysis based on the cosine distance metric, which leads to a novel distance metric learning algorithm—linear spherical discriminant analysis (LSDA). We show that the proposed LSDA formulation can be systematically solved within the elegant graph embedding general dimensionality reduction framework. Our speaker clustering experiments on the GALE database clearly indicate that 1) our speaker clustering methods based on the GMM mean supervector representation and vector-based distance metrics outperform traditional speaker clustering methods based on the “bag of acoustic features” representation and statistical

  9. Low Temperature Decomposition Rates for Tetraphenylborate Ion

    SciTech Connect

    Walker, D.D.

    1998-11-18

    Previous studies indicated that palladium is catalyzes rapid decomposition of alkaline tetraphenylborate slurries. Additional evidence suggest that Pd(II) reduces to Pd(0) during catalyst activation. Further use of tetraphenylborate ion in the decontamination of radioactive waste may require removal of the catalyst or cooling to temperatures at which the decomposition reaction proceeds slowly and does not adversely affect processing. Recent tests showed that tetraphenylborate did not react appreciably at 25 degrees Celsius over six months suggesting the potential to avoid the decomposition at low temperatures. The lack of reaction at low temperature could reflect very slow kinetics at the lower temperature, or may indicate a catalyst ''deactivation'' process. Previous tests in the temperature range 35 to 70 degrees Celsius provided a low precision estimate of the activation energy of the reaction with which to predict the rate of reaction at 25 percent Celsius. To understand the observations at 25 degrees Celsius, experiments must separate the catalyst activation step and the subsequent reaction with TPB. Tests described in this report represent an initial attempt to separate the two steps and determine the rate and activation energy of the reaction between active catalyst and TPB. The results of these tests indicate that the absence of reaction at 25 degrees Celsius was caused by failure to activate the catalyst or the presence of a deactivating mechanism. In the presence of activated catalyst, the decomposition reaction rate is significant.

  10. Methodologies in forensic and decomposition microbiology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Culturable microorganisms represent only 0.1-1% of the total microbial diversity of the biosphere. This has severely restricted the ability of scientists to study the microbial biodiversity associated with the decomposition of ephemeral resources in the past. Innovations in technology are bringing...

  11. Decomposition of Prefixed Words in Russian

    ERIC Educational Resources Information Center

    Kazanina, Nina

    2011-01-01

    I examined the nature of morphological decomposition in a series of masked-priming experiments with Russian prefixed nouns. In Experiments 1A and 1B, I tested 3 types of prime-target pairs in which the prime was a morphologically simple word, and a facilitation was found when the prime and the target were truly morphologically related (e.g.,…

  12. Distributed Prognostics based on Structural Model Decomposition

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Bregon, Anibal; Roychoudhury, I.

    2014-01-01

    Within systems health management, prognostics focuses on predicting the remaining useful life of a system. In the model-based prognostics paradigm, physics-based models are constructed that describe the operation of a system and how it fails. Such approaches consist of an estimation phase, in which the health state of the system is first identified, and a prediction phase, in which the health state is projected forward in time to determine the end of life. Centralized solutions to these problems are often computationally expensive, do not scale well as the size of the system grows, and introduce a single point of failure. In this paper, we propose a novel distributed model-based prognostics scheme that formally describes how to decompose both the estimation and prediction problems into independent local subproblems whose solutions may be easily composed into a global solution. The decomposition of the prognostics problem is achieved through structural decomposition of the underlying models. The decomposition algorithm creates from the global system model a set of local submodels suitable for prognostics. Independent local estimation and prediction problems are formed based on these local submodels, resulting in a scalable distributed prognostics approach that allows the local subproblems to be solved in parallel, thus offering increases in computational efficiency. Using a centrifugal pump as a case study, we perform a number of simulation-based experiments to demonstrate the distributed approach, compare the performance with a centralized approach, and establish its scalability. Index Terms-model-based prognostics, distributed prognostics, structural model decomposition ABBREVIATIONS

  13. Morphological Decomposition in Reading Hebrew Homographs

    ERIC Educational Resources Information Center

    Miller, Paul; Liran-Hazan, Batel; Vaknin, Vered

    2016-01-01

    The present work investigates whether and how morphological decomposition processes bias the reading of Hebrew heterophonic homographs, i.e., unique orthographic patterns that are associated with two separate phonological, semantic entities depicted by means of two morphological structures (linear and nonlinear). In order to reveal the nature of…

  14. Autocatalytic Decomposition Mechanisms in Energetic Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Kuklja, Maija; Rashkeev, Sergey

    2009-06-01

    Atomic scale mechanisms of the initiation of chemical processes in energetic molecular crystals, which lead to the decomposition and ultimately to an explosive chain reaction, are still far from being understood. In this work, we investigate the onset of the initiation processes in two high explosive crystals - diamino-dinitroethylene (DADNE) and triamino- trinitrobenzene (TATB). We found that an autocatalytic decomposition mechanism is likely to take place in DADNE crystal that consists of corrugated, dashboard-shaped molecular layers. The presence of a dissociated NO2 group in the interstitial space between two layers induces a significant shear-strain between these layers, which, in turn, facilitates the further dissociation of NO2 groups from surrounding molecules through lowering the C-NO2 decomposition barrier. Unlike this, in TATB (that consists of flat, graphite-like molecular layers), an interstitial NO2 group positioned between two layers tends to produce a tensile stress (rather than a shear-strain), which leads to local molecular disorder in these layers without any significant modification of the C-NO2 decomposition barrier. The observed differences between the two materials are discussed in terms of their structural, electronic, and chemical properties.

  15. Non-isothermal decomposition kinetics of diosgenin

    NASA Astrophysics Data System (ADS)

    Chen, Fei-xiong; Fu, Li; Feng, Lu; Liu, Chuo-chuo; Ren, Bao-zeng

    2013-10-01

    The thermal stability and kinetics of isothermal decomposition of diosgenin were studied by thermogravimetry (TG) and Differential Scanning Calorimeter (DSC). The activation energy of the thermal decomposition process was determined from the analysis of TG curves by the methods of Flynn-Wall-Ozawa, Doyle, Šatava-Šesták and Kissinger, respectively. The mechanism of thermal decomposition was determined to be Avrami-Erofeev equation ( n = 1/3, n is the reaction order) with integral form G(α) = [-ln(1 - α)]1/3 (α = 0.10-0.80). E a and log A [s-1] were determined to be 44.10 kJ mol-1 and 3.12, respectively. Moreover, the thermodynamics properties of Δ H ≠, Δ S ≠, and Δ G ≠ of this reaction were 38.18 kJ mol-1, -199.76 J mol-1 K-1, and 164.36 kJ mol-1 in the stage of thermal decomposition.

  16. Fluidized-Bed Silane-Decomposition Reactor

    NASA Technical Reports Server (NTRS)

    Iya, Sridhar K.

    1991-01-01

    Fluidized-bed pyrolysis reactor produces high-purity polycrystalline silicon from silane or halosilane via efficient heterogeneous deposition of silicon on silicon seed particles. Formation of silicon dust via homogeneous decomposition of silane minimized, and deposition of silicon on wall of reactor effectively eliminated. Silicon used to construct solar cells and other semiconductor products.

  17. Methanol decomposition bottoming cycle for IC engines

    NASA Technical Reports Server (NTRS)

    Purohit, G.; Houseman, J.

    1979-01-01

    This paper presents the concept of methanol decomposition using engine exhaust heat, and examines its potential for use in the operation of passenger cars, diesel trucks, and diesel-electric locomotives. Energy economy improvements of 10-20% are calculated over the representative driving cycles without a net loss in power. Some reductions in exhaust emissions are also projected.

  18. Detailed Chemical Kinetic Modeling of Hydrazine Decomposition

    NASA Technical Reports Server (NTRS)

    Meagher, Nancy E.; Bates, Kami R.

    2000-01-01

    The purpose of this research project is to develop and validate a detailed chemical kinetic mechanism for gas-phase hydrazine decomposition. Hydrazine is used extensively in aerospace propulsion, and although liquid hydrazine is not considered detonable, many fuel handling systems create multiphase mixtures of fuels and fuel vapors during their operation. Therefore, a thorough knowledge of the decomposition chemistry of hydrazine under a variety of conditions can be of value in assessing potential operational hazards in hydrazine fuel systems. To gain such knowledge, a reasonable starting point is the development and validation of a detailed chemical kinetic mechanism for gas-phase hydrazine decomposition. A reasonably complete mechanism was published in 1996, however, many of the elementary steps included had outdated rate expressions and a thorough investigation of the behavior of the mechanism under a variety of conditions was not presented. The current work has included substantial revision of the previously published mechanism, along with a more extensive examination of the decomposition behavior of hydrazine. An attempt to validate the mechanism against the limited experimental data available has been made and was moderately successful. Further computational and experimental research into the chemistry of this fuel needs to be completed.

  19. Leaf litter decomposition in three Adirondack lakes

    SciTech Connect

    Francis, A.J.; Quinby, H.L.; Hendrey, G.R.; Hoogendyk, C.G.

    1983-04-01

    Decomposition of terrestrial leaf litter in three Adirondack lakes with water pH values approximately 5, 6, and 7 was studied. Litter bags containing leaves of American beech, sugar maple, red maple, leather leaf, and red spruce were placed in the lakes. Samples were removed periodically over a 3-year period and analyzed for loss in weight, changes in leaf surface area, carbon, nitrogen, and bacterial populations. The rate of decomposition of litter depended on the leaf species tested as well as on the lake water in which they were incubated. Of the five leaf species tested, red maple decomposed much faster and red spruce more slowly, i.e., red maple > sugar maple > beech > leather leaf > red spruce. Further, the data indicated that the rate of decomposition of the leaves differed among the lakes in the order Woods (pH approx. 5) < Sagamore (pH approx. 6) < Panther (pH approx. 7), and that the microbial colonization of some leaf species was affected. Accumulations of leaf litter in acid lakes due to reduction in microbial decomposition may affect nutrient recycling in lake ecosystems. 8 references, 4 tables.

  20. Layer tracking, asymptotics, and domain decomposition

    NASA Technical Reports Server (NTRS)

    Brown, D. L.; Chin, R. C. Y.; Hedstrom, G. W.; Manteuffel, T. A.

    1991-01-01

    A preliminary report is presented on the work on the tracking of internal layers in a singularly-perturbed convection-diffusion equation. It is shown why such tracking may be desirable, and it is also shown how to do it using domain decomposition based on asymptotic analysis.

  1. Method for initiating decomposition of hydrazine fuels

    SciTech Connect

    Schmidt, E.W.

    1986-11-04

    A method is described for spontaneously initiating the decomposition of a liquid hydrazine fuel, comprising contacting the hydrazine fuel with a nonhydroscopic solid initiator comprising at least one compound selected from the group consisting of heteropoly acids having iodine as their central atom and their salts.

  2. Nanoscale Structure of Organic Matter Could Explain Litter Decomposition

    NASA Astrophysics Data System (ADS)

    Papa, G.; Adani, F.

    2014-12-01

    According to the literature biochemical catalyses are limited in their actions because of the complex macroscopic and, above all, microscopic structures of cell wall that limit mass transportation (i.e. 3D structure). Our study on energy crop showed that plant digestibility increased by modifying the 3D cell wall microstructure. Results obtained were ascribed to the enlargement, such as effectively measured, of the pore spaces between cellulose fibrils. Therefore we postulated that 3 D structure of plant residues drives degradability in soil determining its recalcitrance in short time. Here we focused on the drivers of short-term decomposition of organic matter (plant residues) in soils evaluating the architecture of plant tissues, captured via measurements of the microporosiy of the cell walls. Decomposition rates of a wide variety of biomass types were studied conducting experiments in both aerobic and anaerobic environments. Different analytical approaches were applied in order to characterize biomass at both chemical and physical level. Combined statistical approaches were used to examine the relationships between carbon mineralization and chemical/physical characteristics. The results revealed that degradation was significantly and negatively correlated with the micro-porosity surface (MiS) (surface of pores of 0.3-1.5 nm of diameter). The multiple regressions performed by using partial least square model enabled describing biomass biodegradability under either aerobic and anaerobic condition by using micro-porosity and aromatic-C content (assumed to be representative of lignin) as independent variables (R2 =0.97, R2cv =0.95 for aerobic condition; R2 =0.99, R2cv =0.98 for anaerobic condition, respectively). These results corroborate the hypothesis that plant tissues are physically protected from enzymatic attack by a microporous "sheath" that limit penetration into cell wall, and demonstrate the key role played by aromatic carbon, because of its chemical

  3. Model-based multiple patterning layout decomposition

    NASA Astrophysics Data System (ADS)

    Guo, Daifeng; Tian, Haitong; Du, Yuelin; Wong, Martin D. F.

    2015-10-01

    As one of the most promising next generation lithography technologies, multiple patterning lithography (MPL) plays an important role in the attempts to keep in pace with 10 nm technology node and beyond. With feature size keeps shrinking, it has become impossible to print dense layouts within one single exposure. As a result, MPL such as double patterning lithography (DPL) and triple patterning lithography (TPL) has been widely adopted. There is a large volume of literature on DPL/TPL layout decomposition, and the current approach is to formulate the problem as a classical graph-coloring problem: Layout features (polygons) are represented by vertices in a graph G and there is an edge between two vertices if and only if the distance between the two corresponding features are less than a minimum distance threshold value dmin. The problem is to color the vertices of G using k colors (k = 2 for DPL, k = 3 for TPL) such that no two vertices connected by an edge are given the same color. This is a rule-based approach, which impose a geometric distance as a minimum constraint to simply decompose polygons within the distance into different masks. It is not desired in practice because this criteria cannot completely capture the behavior of the optics. For example, it lacks of sufficient information such as the optical source characteristics and the effects between the polygons outside the minimum distance. To remedy the deficiency, a model-based layout decomposition approach to make the decomposition criteria base on simulation results was first introduced at SPIE 2013.1 However, the algorithm1 is based on simplified assumption on the optical simulation model and therefore its usage on real layouts is limited. Recently AMSL2 also proposed a model-based approach to layout decomposition by iteratively simulating the layout, which requires excessive computational resource and may lead to sub-optimal solutions. The approach2 also potentially generates too many stiches. In this

  4. Scheme For Finite-Difference Computations Of Waves

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1992-01-01

    Compact algorithms generating and solving finite-difference approximations of partial differential equations for propagation of waves obtained by new method. Based on concept of discrete dispersion relation. Used in wave propagation to relate frequency to wavelength and is key measure of wave fidelity.

  5. Partial hepatectomy in mice.

    PubMed

    Nevzorova, Y A; Tolba, R; Trautwein, C; Liedtke, C

    2015-04-01

    The surgical procedure of two-thirds partial hepatectomy (PH) in rodents was first described more than 80 years ago by Higgins and Anderson. Nevertheless, this technique is still a state-of-the-art method for the community of liver researchers as it allows the in-depth analysis of signalling pathways involved in liver regeneration and hepatocarcinogenesis. The importance of PH as a key method in experimental hepatology has even increased in the last decade due to the increasing availability of genetically-modified mouse strains. Here, we propose a standard operating procedure (SOP) for the implementation of PH in mice, which is based on our experience of more than 10 years. In particular, the SOP offers all relevant background information on the PH model and provides comprehensive guidelines for planning and performing PH experiments. We provide established recommendations regarding optimal age and gender of animals, use of appropriate anaesthesia and biometric calculation of the experiments. We finally present an easy-to-follow step-by-step description of the complete surgical procedure including required materials, critical steps and postoperative management. This SOP especially takes into account the latest changes in animal welfare rules in the European Union but is still in agreement with current international regulations. In summary, this article provides comprehensive information for the legal application, design and implementation of PH experiments. PMID:25835741

  6. Partial covariate adjusted regression

    PubMed Central

    Şentürk, Damla; Nguyen, Danh V.

    2008-01-01

    Covariate adjusted regression (CAR) is a recently proposed adjustment method for regression analysis where both the response and predictors are not directly observed (Şentürk and Müller, 2005). The available data has been distorted by unknown functions of an observable confounding covariate. CAR provides consistent estimators for the coefficients of the regression between the variables of interest, adjusted for the confounder. We develop a broader class of partial covariate adjusted regression (PCAR) models to accommodate both distorted and undistorted (adjusted/unadjusted) predictors. The PCAR model allows for unadjusted predictors, such as age, gender and demographic variables, which are common in the analysis of biomedical and epidemiological data. The available estimation and inference procedures for CAR are shown to be invalid for the proposed PCAR model. We propose new estimators and develop new inference tools for the more general PCAR setting. In particular, we establish the asymptotic normality of the proposed estimators and propose consistent estimators of their asymptotic variances. Finite sample properties of the proposed estimators are investigated using simulation studies and the method is also illustrated with a Pima Indians diabetes data set. PMID:20126296

  7. Wood decomposition as influenced by invertebrates.

    PubMed

    Ulyshen, Michael D

    2016-02-01

    The diversity and habitat requirements of invertebrates associated with dead wood have been the subjects of hundreds of studies in recent years but we still know very little about the ecological or economic importance of these organisms. The purpose of this review is to examine whether, how and to what extent invertebrates affect wood decomposition in terrestrial ecosystems. Three broad conclusions can be reached from the available literature. First, wood decomposition is largely driven by microbial activity but invertebrates also play a significant role in both temperate and tropical environments. Primary mechanisms include enzymatic digestion (involving both endogenous enzymes and those produced by endo- and ectosymbionts), substrate alteration (tunnelling and fragmentation), biotic interactions and nitrogen fertilization (i.e. promoting nitrogen fixation by endosymbiotic and free-living bacteria). Second, the effects of individual invertebrate taxa or functional groups can be accelerative or inhibitory but the cumulative effect of the entire community is generally to accelerate wood decomposition, at least during the early stages of the process (most studies are limited to the first 2-3 years). Although methodological differences and design limitations preclude meta-analysis, studies aimed at quantifying the contributions of invertebrates to wood decomposition commonly attribute 10-20% of wood loss to these organisms. Finally, some taxa appear to be particularly influential with respect to promoting wood decomposition. These include large wood-boring beetles (Coleoptera) and termites (Termitoidae), especially fungus-farming macrotermitines. The presence or absence of these species may be more consequential than species richness and the influence of invertebrates is likely to vary biogeographically. PMID:25424353

  8. Decomposition of Amino Diazeniumdiolates (NONOates): Molecular Mechanisms

    SciTech Connect

    Shaikh, Nizamuddin; Valiev, Marat; Lymar, Sergei V.

    2014-08-23

    Although diazeniumdiolates (X[N(O)NO]-) are extensively used in biochemical, physiological, and pharmacological studies due to their ability to slowly release NO and/or its congeneric nitroxyl, the mechanisms of these processes remain obscure. In this work, we used a combination of spectroscopic, kinetic, and computational techniques to arrive at a qualitatively consistent molecular mechanism for decomposition of amino diazeniumdiolates (amino NONOates: R2N[N(O)NO]-, where R = -N(C2H5)2 (1), -N(C3H4NH2)2 (2), or -N(C2H4NH2)2 (3)). Decomposition of these NONOates is triggered by protonation of their [NN(O)NO]- group with apparent pKa and decomposition rate constants of 4.6 and 1 s-1 for 1-H, 3.5 and 83 x 10-3 s-1 for 2-H, and 3.8 and 3.3 x 10-3 s-1 for 3-H. Although protonation occurs mainly on the O atoms of the functional group, only the minor R2N(H)N(O)NO tautomer (population ~0.01%, for 1) undergoes the N-N heterolytic bond cleavage (k ~102 s-1 for 1) leading to amine and NO. Decompositions of protonated amino NONOates are strongly temperature-dependent; activation enthalpies are 20.4 and 19.4 kcal/mol for 1 and 2, respectively, which includes contributions from both the tautomerization and bond cleavage. The bond cleavage rates exhibit exceptional sensitivity to the nature of R substituents which strongly modulate activation entropy. At pH < 2, decompositions of all these NONOates are subject to additional acid catalysis that occurs through di-protonation of the [NN(O)NO]- group.

  9. Decomposition of amino diazeniumdiolates (NONOates): Molecular mechanisms

    DOE PAGESBeta

    Shaikh, Nizamuddin; Valiev, Marat; Lymar, Sergei V.

    2014-08-23

    Although diazeniumdiolates (X[N(O)NO]-) are extensively used in biochemical, physiological, and pharmacological studies due to their ability to release NO and/or its congeneric nitroxyl, the mechanisms of these processes remain obscure. In this work, we used a combination of spectroscopic, kinetic, and computational techniques to arrive at a quantitatively consistent molecular mechanism for decomposition of amino diazeniumdiolates (amino NONOates: R2N[N(O)NO]-, where R = —N(C2H5)2(1), —N(C3H4NH2)2(2), or —N(C2H4NH2)2(3)). Decomposition of these NONOates is triggered by protonation of their [NN(O)NO]- group with the apparent pKa and decomposition rate constants of 4.6 and 1 s-1 for 1; 3.5 and 0.083 s-1 for 2; andmore » 3.8 and 0.0033 s-1 for 3. Although protonation occurs mainly on the O atoms of the functional group, only the minor R2N(H)N(O)NO tautomer (population ~ 10-7, for 1) undergoes the N—N heterolytic bond cleavage (kd ~ 107 s-1 for 1) leading to amine and NO. Decompositions of protonated amino NONOates are strongly temperature-dependent; activation enthalpies are 20.4 and 19.4 kcal/mol for 1 and 2, respectively, which includes contributions from both the tautomerization and bond cleavage. Thus, the bond cleavage rates exhibit exceptional sensitivity to the nature of R substituents which strongly modulate activation entropy. At pH < 2, decompositions of all three NONOates that have been investigated are subject to additional acid catalysis that occurs through di-protonation of the [NN(O)NO]- group.« less

  10. TRIANGLE-SHAPED DC CORONA DISCHARGE DEVICE FOR MOLECULAR DECOMPOSITION

    EPA Science Inventory

    The paper discusses the evaluation of electrostatic DC corona discharge devices for the application of molecular decomposition. A point-to-plane geometry corona device with a rectangular cross section demonstrated low decomposition efficiencies in earlier experimental work. The n...

  11. Decomposition of Phragmites australis litter retarded by invasive Solidago canadensis in mixtures: an antagonistic non-additive effect

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Zhang, Yaojun; Zou, Jianwen; Siemann, Evan

    2014-06-01

    Solidago canadensis is an aggressive invader in China. Solidago invasion success is partially attributed to allelopathic compounds release and more benefits from AM fungi, which potentially makes the properties of Solidago litter different from co-occurring natives. These properties may comprehensively affect litter decomposition of co-occurring natives. We conducted a field experiment to examine litter mixing effects in a Phragmites australis dominated community invaded by Solidago in southeast China. Solidago had more rapid mass and N loss rate than Phragmites when they decomposed separately. Litter mixing decreased N loss rate in Phragmites litter and increased that of Solidago. Large decreases in Phragmites mass loss and smaller increases in Solidago mass loss caused negative non-additive effect. Solidago litter extracts reduced soil C decomposition and N processes, suggested an inhibitory effect of Solidago secondary compounds. These results are consistent with the idea that nutrient transfer and secondary compounds both affected litter mixtures decomposition.

  12. Decomposition of Phragmites australis litter retarded by invasive Solidago canadensis in mixtures: an antagonistic non-additive effect

    PubMed Central

    Zhang, Ling; Zhang, Yaojun; Zou, Jianwen; Siemann, Evan

    2014-01-01

    Solidago canadensis is an aggressive invader in China. Solidago invasion success is partially attributed to allelopathic compounds release and more benefits from AM fungi, which potentially makes the properties of Solidago litter different from co-occurring natives. These properties may comprehensively affect litter decomposition of co-occurring natives. We conducted a field experiment to examine litter mixing effects in a Phragmites australis dominated community invaded by Solidago in southeast China. Solidago had more rapid mass and N loss rate than Phragmites when they decomposed separately. Litter mixing decreased N loss rate in Phragmites litter and increased that of Solidago. Large decreases in Phragmites mass loss and smaller increases in Solidago mass loss caused negative non-additive effect. Solidago litter extracts reduced soil C decomposition and N processes, suggested an inhibitory effect of Solidago secondary compounds. These results are consistent with the idea that nutrient transfer and secondary compounds both affected litter mixtures decomposition. PMID:24976274

  13. Factors influencing leaf litter decomposition: An intersite decomposition experiment across China

    USGS Publications Warehouse

    Zhou, G.; Guan, L.; Wei, X.; Tang, X.; Liu, S.; Liu, J.; Zhang, Dongxiao; Yan, J.

    2008-01-01

    The Long-Term Intersite Decomposition Experiment in China (hereafter referred to as LTIDE-China) was established in 2002 to study how substrate quality and macroclimate factors affect leaf litter decomposition. The LTIDE-China includes a wide variety of natural and managed ecosystems, consisting of 12 forest types (eight regional broadleaf forests, three needle-leaf plantations and one broadleaf plantation) at eight locations across China. Samples of mixed leaf litter from the south subtropical evergreen broadleaf forest in Dinghushan (referred to as the DHS sample) were translocated to all 12 forest types. The leaf litter from each of other 11 forest types was placed in its original forest to enable comparison of decomposition rates of DHS and local litters. The experiment lasted for 30 months, involving collection of litterbags from each site every 3 months. Our results show that annual decomposition rate-constants, as represented by regression fitted k-values, ranged from 0.169 to 1.454/year. Climatic factors control the decomposition rate, in which mean annual temperature and annual actual evapotranspiration are dominant and mean annual precipitation is subordinate. Initial C/N and N/P ratios were demonstrated to be important factors of regulating litter decomposition rate. Decomposition process may apparently be divided into two phases controlled by different factors. In our study, 0.75 years is believed to be the dividing line of the two phases. The fact that decomposition rates of DHS litters were slower than those of local litters may have been resulted from the acclimation of local decomposer communities to extraneous substrate. ?? 2008 Springer Science+Business Media B.V.

  14. Scattering of plane evanescent waves by buried cylinders: Modeling the coupling to guided waves and resonances

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2003-04-01

    The coupling of sound to buried targets can be associated with acoustic evanescent waves when the sea bottom is smooth. To understand the excitation of guided waves on buried fluid cylinders and shells by acoustic evanescent waves and the associated target resonances, the two-dimensional partial wave series for the scattering is found for normal incidence in an unbounded medium. The shell formulation uses the simplifications of thin-shell dynamics. The expansion of the incident wave becomes a double summation with products of modified and ordinary Bessel functions [P. L. Marston, J. Acoust. Soc. Am. 111, 2378 (2002)]. Unlike the case of an ordinary incident wave, the counterpropagating partial waves of the same angular order have unequal magnitudes when the incident wave is evanescent. This is a consequence of the exponential dependence of the incident wave amplitude on depth. Some consequences of this imbalance of partial-wave amplitudes are given by modifying previous ray theory for the scattering [P. L. Marston and N. H. Sun, J. Acoust. Soc. Am. 97, 777-783 (1995)]. The exponential dependence of the scattering on the location of a scatterer was previously demonstrated in air [T. J. Matula and P. L. Marston, J. Acoust. Soc. Am. 93, 1192-1195 (1993)].

  15. Partial lipodystrophy in coeliac disease.

    PubMed Central

    O'Mahony, D; O'Mahony, S; Whelton, M J; McKiernan, J

    1990-01-01

    The association of coeliac disease and partial lipodystrophy is described. The patient also had deficiencies of serum IgA and C3 complement (the latter associated with partial lipodystrophy). In addition, there was subclinical dermatitis herpetiformis confirmed by skin biopsy. The facial wasting of fully developed partial lipodystrophy may be misinterpreted as a sign of malabsorption but the facial, upper limb, and truncal lipodystrophy contrasts with normal pelvic and lower limb appearances. Images Figure 1 Figure 2 PMID:2379878

  16. Tensor-based detection of T wave alternans using ECG.

    PubMed

    Goovaerts, Griet; Vandenberk, Bert; Willems, Rik; Van Huffel, Sabine

    2015-08-01

    T wave alternans is defined as changes in the T wave amplitude in an ABABAB-pattern. It can be found in ECG signals of patients with heart diseases and is a possible indicator to predict the risk on sudden cardiac death. Due to its low amplitude, robust automatic T wave alternans detection is a difficult task. We present a new method to detect T wave alternans in multichannel ECG signals. The use of tensors (multidimensional matrices) permits the combination of the information present in different channels, making detection more reliable. The possibility of decomposition of incomplete tensors is exploited to deal with noisy ECG segments. Using a sliding window of 128 heartbeats, a tensor is constructed of the T waves of all channels. Canonical Polyadic Decomposition is applied to this tensor and the resulting loading vectors are examined for information about the T wave behavior in three dimensions. T wave alternans is detected using a sign change counting method that is able to extract both the T wave alternans length and magnitude. When applying this novel method to a database of patients with multiple positive T wave alternans tests using the clinically available spectral method tests, both the length and the magnitude of the detected T wave alternans is larger for these subjects than for subjects in a control group. PMID:26737901

  17. Low partial discharge vacuum feedthrough

    NASA Technical Reports Server (NTRS)

    Benham, J. W.; Peck, S. R.

    1979-01-01

    Relatively discharge free vacuum feedthrough uses silver-plated copper conductor jacketed by carbon filled silicon semiconductor to reduce concentrated electric fields and minimize occurrence of partial discharge.

  18. Exploring Patterns of Soil Organic Matter Decomposition with Students through the Global Decomposition Project (GDP) and the Interactive Model of Leaf Decomposition (IMOLD)

    NASA Astrophysics Data System (ADS)

    Steiner, S. M.; Wood, J. H.

    2015-12-01

    As decomposition rates are affected by climate change, understanding crucial soil interactions that affect plant growth and decomposition becomes a vital part of contributing to the students' knowledge base. The Global Decomposition Project (GDP) is designed to introduce and educate students about soil organic matter and decomposition through a standardized protocol for collecting, reporting, and sharing data. The Interactive Model of Leaf Decomposition (IMOLD) utilizes animations and modeling to learn about the carbon cycle, leaf anatomy, and the role of microbes in decomposition. Paired together, IMOLD teaches the background information and allows simulation of numerous scenarios, and the GDP is a data collection protocol that allows students to gather usable measurements of decomposition in the field. Our presentation will detail how the GDP protocol works, how to obtain or make the materials needed, and how results will be shared. We will also highlight learning objectives from the three animations of IMOLD, and demonstrate how students can experiment with different climates and litter types using the interactive model to explore a variety of decomposition scenarios. The GDP demonstrates how scientific methods can be extended to educate broader audiences, and data collected by students can provide new insight into global patterns of soil decomposition. Using IMOLD, students will gain a better understanding of carbon cycling in the context of litter decomposition, as well as learn to pose questions they can answer with an authentic computer model. Using the GDP protocols and IMOLD provide a pathway for scientists and educators to interact and reach meaningful education and research goals.

  19. Design of channeled partial Mueller matrix polarimeters.

    PubMed

    Alenin, Andrey S; Scott Tyo, J

    2016-06-01

    In this paper, we introduce a novel class of systems called channeled partial Mueller matrix polarimeters (c-pMMPs). Their analysis benefits greatly by drawing from the concepts of generalized construction of channeled polarimeters as described by the modulation matrix. The modulation matrix resembles that of the data reduction method of a conventional polarimeter, but instead of using Mueller vectors as the bases, attention is focused on the Fourier properties of the measurement conditions. By leveraging the understanding of the measurement's structure, its decomposition can be manipulated to reveal noise resilience and information about the polarimeter's ability to measure the aspect of polarization that are important for any given task. We demonstrate the theory with a numerical optimization that designs c-pMMPs for the task of monitoring the damage state of a material as presented earlier by Hoover and Tyo [Appl. Opt.46, 8364 (2007)APOPAI0003-693510.1364/AO.46.008364]. We select several example systems that produce a fewer-than-full-system number of channels yet retain the ability to discriminate objects of interest. Their respective trade-offs are discussed. PMID:27409432

  20. ADVANCED OXIDATION: OXALATE DECOMPOSITION TESTING WITH OZONE

    SciTech Connect

    Ketusky, E.; Subramanian, K.

    2012-02-29

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration) after nearing

  1. Experts' understanding of partial derivatives using the partial derivative machine

    NASA Astrophysics Data System (ADS)

    Roundy, David; Weber, Eric; Dray, Tevian; Bajracharya, Rabindra R.; Dorko, Allison; Smith, Emily M.; Manogue, Corinne A.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] Partial derivatives are used in a variety of different ways within physics. Thermodynamics, in particular, uses partial derivatives in ways that students often find especially confusing. We are at the beginning of a study of the teaching of partial derivatives, with a goal of better aligning the teaching of multivariable calculus with the needs of students in STEM disciplines. In this paper, we report on an initial study of expert understanding of partial derivatives across three disciplines: physics, engineering, and mathematics. We report on the central research question of how disciplinary experts understand partial derivatives, and how their concept images of partial derivatives differ, with a focus on experimentally measured quantities. Using the partial derivative machine (PDM), we probed expert understanding of partial derivatives in an experimental context without a known functional form. In particular, we investigated which representations were cued by the experts' interactions with the PDM. Whereas the physicists and engineers were quick to use measurements to find a numeric approximation for a derivative, the mathematicians repeatedly returned to speculation as to the functional form; although they were comfortable drawing qualitative conclusions about the system from measurements, they were reluctant to approximate the derivative through measurement. On a theoretical front, we found ways in which existing frameworks for the concept of derivative could be expanded to include numerical approximation.

  2. Decompositions and Biplots in Three-Way Correspondence Analysis.

    ERIC Educational Resources Information Center

    Carlier, Andre; Kroonenberg, Pieter M.

    1996-01-01

    Correspondence analysis for three-way contingency tables is presented using three-way generalizations of the singular value decomposition. It is shown that, in combination with the additive decomposition of interactions in three-way tables proposed by H. O. Lancaster, a detailed analysis of decomposition of dependence is possible. (SLD)

  3. Solitary Waves of the MRLW Equation by Variational Iteration Method

    SciTech Connect

    Hassan, Saleh M.; Alamery, D. G.

    2009-09-09

    In a recent publication, Soliman solved numerically the modified regularized long wave (MRLW) equation by using the variational iteration method (VIM). In this paper, corrected numerical results have been computed, plotted, tabulated, and compared with not only the exact analytical solutions but also the Adomian decomposition method results. Solitary wave solutions of the MRLW equation are exactly obtained as a convergent series with easily computable components. Propagation of single solitary wave, interaction of two and three waves, and also birth of solitons have been discussed. Three invariants of motion have been evaluated to determine the conservation properties of the problem.

  4. Three-dimensional freak waves and higher-order wave-wave resonances

    NASA Astrophysics Data System (ADS)

    Badulin, S. I.; Ivonin, D. V.; Dulov, V. A.

    2012-04-01

    Quite often the freak wave phenomenon is associated with the mechanism of modulational (Benjamin-Feir) instability resulted from resonances of four waves with close directions and scales. This weakly nonlinear model reflects some important features of the phenomenon and is discussing in a great number of studies as initial stage of evolution of essentially nonlinear water waves. Higher-order wave-wave resonances attract incomparably less attention. More complicated mathematics and physics explain this disregard partially only. The true reason is a lack of adequate experimental background for the study of essentially three-dimensional water wave dynamics. We start our study with the classic example of New Year Wave. Two extreme events: the famous wave 26.5 meters and one of smaller 18.5 meters height (formally, not freak) of the same record, are shown to have pronounced features of essentially three-dimensional five-wave resonant interactions. The quasi-spectra approach is used for the data analysis in order to resolve adequately frequencies near the spectral peak fp ≈ 0.057Hz and, thus, to analyze possible modulations of the dominant wave component. In terms of the quasi-spectra the above two anomalous waves show co-existence of the peak harmonic and one at frequency f5w = 3/2fp that corresponds to maximum of five-wave instability of weakly nonlinear waves. No pronounced marks of usually discussed Benjamin-Feir instability are found in the record that is easy to explain: the spectral peak frequency fp corresponds to the non-dimensional depth parameter kD ≈ 0.92 (k - wavenumber, D ≈ 70 meters - depth at the Statoil platform Draupner site) that is well below the shallow water limit of the instability kD = 1.36. A unique data collection of wave records of the Marine Hydrophysical Institute in the Katsiveli platform (Black Sea) has been analyzed in view of the above findings of possible impact of the five-wave instability on freak wave occurrence. The data cover

  5. Theoretical Study of Decomposition Pathways for HArF and HKrF

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Lundell, Jan; Gerber, R. Benny; Kwak, Donchan (Technical Monitor)

    2002-01-01

    To provide theoretical insights into the stability and dynamics of the new rare gas compounds HArF and HKrF, reaction paths for decomposition processes HRgF to Rg + HF and HRgF to H + Rg + F (Rg = Ar, Kr) are calculated using ab initio electronic structure methods. The bending channels, HRgF to Rg + HF, are described by single-configurational MP2 and CCSD(T) electronic structure methods, while the linear decomposition paths, HRgF to H + Rg + F, require the use of multi-configurational wave functions that include dynamic correlation and are size extensive. HArF and HKrF molecules are found to be energetically stable with respect to atomic dissociation products (H + Rg + F) and separated by substantial energy barriers from Rg + HF products, which ensure their kinetic stability. The results are compatible with experimental data on these systems.

  6. Third Wave.

    ERIC Educational Resources Information Center

    Reed, Chris

    2000-01-01

    Third Wave is a Christian charity based in Derby (England) that offers training in vocational skills, preindustrial crafts, horticultural and agricultural skills, environmental education, and woodland survival skills to disadvantaged people at city and farm locations. Third Wave employs a holistic approach to personal development in a community…

  7. Microfluidic waves.

    PubMed

    Utz, Marcel; Begley, Matthew R; Haj-Hariri, Hossein

    2011-11-21

    The propagation of pressure waves in fluidic channels with elastic covers is discussed in view of applications to flow control in microfluidic devices. A theory is presented which describes pressure waves in the fluid that are coupled to bending waves in the elastic cover. At low frequencies, the lateral bending of the cover dominates over longitudinal bending, leading to propagating, non-dispersive longitudinal pressure waves in the channel. The theory addresses effects due to both the finite viscosity and compressibility of the fluid. The coupled waves propagate without dispersion, as long as the wave length is larger than the channel width. It is shown that in channels of typical microfluidic dimensions, wave velocities in the range of a few 10 m s(-1) result if the channels are covered by films of a compliant material such as PDMS. The application of this principle to design microfluidic band pass filters based on standing waves is discussed. Characteristic frequencies in the range of a few kHz are readily achieved with quality factors above 30. PMID:21966667

  8. Thermal decomposition and oxidation of CH3OH.

    PubMed

    Lee, Pei-Fang; Matsui, Hiroyuki; Xu, Ding-Wei; Wang, Niann-Shiah

    2013-01-24

    Thermal decomposition of CH(3)OH diluted in Ar has been studied by monitoring H atoms behind reflected shock waves of 100 ppm CH(3)OH + Ar. The total decomposition rate k(1) for CH(3)OH + M → products obtained in this study is expressed as, ln(k(1)/cm(3) molecule(-1) s(-1)) = -(14.81 ± 1.22) - (38.86 ± 1.82) × 10(3)/T, over 1359-1644 K. The present result on k(1) is indicated to be substantially smaller than the extrapolation of the most of the previous experimental data but consistent with the published theoretical results [Faraday Discuss. 2002, 119, 191-205 and J. Phys. Chem. A 2007, 111, 3932-3950]. Oxidation of CH(3)OH has been studied also by monitoring H atoms behind shock waves of (0.35-100) ppm CH(3)OH + (100-400) ppm O(2) + Ar. For the low concentration CH(3)OH (below 10 ppm) + O(2) mixtures, the initial concentration of CH(3)OH is evaluated by comparing evolutions of H atoms in the same concentration of CH(3)OH with addition of 300 ppm H(2) diluted in Ar. The branching fraction for CH(3)OH + Ar → (1)CH(2) + H(2)O + Ar has been quantitatively evaluated from this comparative measurements with using recent experimental result on the yield of H atoms in the reaction of (1,3)CH(2) + O(2) [J. Phys. Chem. A 2012, 116, 9245-9254]; i.e., the branching fraction for the above reaction is evaluated as, φ(1a) = 0.20 ± 0.04 at T = 1880-2050 K, in the 1.3 and 3.5 ppm CH(3)OH + 100 ppm O(2) samples. An extended reaction mechanism for the pyrolysis and oxidation of CH(3)OH is constructed based on the results of the present study combined with the oxidation mechanism of natural gas [GRI-Mech 3.0]; evolution of H atoms can be predicted very well with this new reaction scheme over a wide concentration range for the pyrolysis (0.36-100 ppm CH(3)OH), and oxidation (0.36-100 ppm CH(3)OH + 100/400 ppm O(2)) of methanol. PMID:23244587

  9. Nucleon spin decomposition and orbital angular momentum in the nucleon

    NASA Astrophysics Data System (ADS)

    Wakamatsu, Masashi

    2014-09-01

    To get a complete decomposition of nucleon spin is a fundamentally important homework of QCD. In fact, if our researches end up without accomplishing this task, a tremendous efforts since the 1st discovery of the nucleon spin crisis would end in the air. We now have a general agreement that there are at least two physically inequivalent gauge-invariant decompositions of the nucleon. In these two decompositions, the intrinsic spin parts of quarks and gluons are just common. What discriminate these two decompositions are the orbital angular momentum (OAM) parts. The OAMs of quarks and gluons appearing in the first decomposition are the so-called ``mechanical'' OAMs, while those appearing in the second decomposition are the generalized (gauge-invariant) ``canonical'' ones. By this reason, these decompositions are broadly called the ``mechanical'' and ``canonical'' decompositions of the nucleon spin. Still, there remains several issues, which have not reached a complete consensus among the experts. (See the latest recent). In the present talk, I will mainly concentrate on the practically most important issue, i.e. which decomposition is more favorable from the observational viewpoint. There are two often-claimed advantages of canonical decomposition. First, each piece of this decomposition satisfies the SU(2) commutation relation or angular momentum algebra. Second, the canonical OAM rather than the mechanical OAM is compatible with free partonic picture of constituent orbital motion. In the present talk, I will show that both these claims are not necessarily true, and push forward a viewpoint that the ``mechanical'' decomposition is more physical in that it has more direct connection with observables. I also emphasize that the nucleon spin decomposition accessed by the lattice QCD analyses is the ``mechanical'' decomposition not the ``canonical'' one. The recent lattice QCD studies of the nucleon spin decomposition are also briefly overviewed.

  10. Waves in Turbulent Stably Stratified Shear Flow

    NASA Technical Reports Server (NTRS)

    Jacobitz, F. G.; Rogers, M. M.; Ferziger, J. H.; Parks, John W. (Technical Monitor)

    2002-01-01

    Two approaches for the identification of internal gravity waves in sheared and unsheared homogeneous stratified turbulence are investigated. First, the phase angle between the vertical velocity and density fluctuations is considered. It was found, however, that a continuous distribution of the phase angle is present in weakly and strongly stratified flow. Second, a projection onto the solution of the linearized inviscid equations of motion of unsheared stratified flow is investigated. It was found that a solution of the fully nonlinear viscous Navier-Stokes equations can be represented by the linearized inviscid solution. The projection yields a decomposition into vertical wave modes and horizontal vortical modes.

  11. Decomposition of ethylene on small Pd particles

    NASA Technical Reports Server (NTRS)

    Durrer, W. G.; Poppa, H.; Dickinson, J. T.; Park, C.

    1985-01-01

    New results have been obtained which contribute to the understanding of hydrocarbon reactions on the surface of highly dispersed metal systems. Small particle of Pd were grown by electron beam evaporation on cleavage planes of high purity natural mica under ultrahigh vacuum conditions. Samples were subsequently characterized by transmission electron microscopy. Average particle sizes ranged from about 1 to 10 nm diameter. The chemisoption and decomposition of C2H4 on the Pd particles was studied using Auger electron spectroscopy and flash thermal desorption. It is shown that (a) C2H4 decomposes on Pd particles at room temperature, (b) specific surface sites are causing decomposition, and (c) the proportion of such active sites is significantly greater for the smaller metal particles. This enhanced reactivity may be due to an increase in the density of step, corner, and edge sites with a decrease in particle size.

  12. Sparse decomposition learning based dynamic MRI reconstruction

    NASA Astrophysics Data System (ADS)

    Zhu, Peifei; Zhang, Qieshi; Kamata, Sei-ichiro

    2015-02-01

    Dynamic MRI is widely used for many clinical exams but slow data acquisition becomes a serious problem. The application of Compressed Sensing (CS) demonstrated great potential to increase imaging speed. However, the performance of CS is largely depending on the sparsity of image sequence in the transform domain, where there are still a lot to be improved. In this work, the sparsity is exploited by proposed Sparse Decomposition Learning (SDL) algorithm, which is a combination of low-rank plus sparsity and Blind Compressed Sensing (BCS). With this decomposition, only sparsity component is modeled as a sparse linear combination of temporal basis functions. This enables coefficients to be sparser and remain more details of dynamic components comparing learning the whole images. A reconstruction is performed on the undersampled data where joint multicoil data consistency is enforced by combing Parallel Imaging (PI). The experimental results show the proposed methods decrease about 15~20% of Mean Square Error (MSE) compared to other existing methods.

  13. Hierarchical decomposition model for reconfigurable architecture

    NASA Astrophysics Data System (ADS)

    Erdogan, Simsek; Wahab, Abdul

    1996-10-01

    This paper introduces a systematic approach for abstract modeling of VLSI digital systems using a hierarchical decomposition process and HDL. In particular, the modeling of the back propagation neural network on a massively parallel reconfigurable hardware is used to illustrate the design process rather than toy examples. Based on the design specification of the algorithm, a functional model is developed through successive refinement and decomposition for execution on the reconfiguration machine. First, a top- level block diagram of the system is derived. Then, a schematic sheet of the corresponding structural model is developed to show the interconnections of the main functional building blocks. Next, the functional blocks are decomposed iteratively as required. Finally, the blocks are modeled using HDL and verified against the block specifications.

  14. Gamma-ray decomposition of PCBs

    SciTech Connect

    Mincher, B.J.; Meikrantz, D.H.; Arbon, R.E.; Murphy, R.J.

    1991-12-01

    This program is the Idaho National Engineering Laboratory (INEL) component of a joint collaborative effort with Lawrence Livermore National Laboratory (LLNL). The purpose of this effort is to demonstrate a viable process for breaking down hazardous halogenated organic wastes to simpler, non-hazardous wastes using high energy ionizing radiation. The INEL effort focuses on the use of spent reactor fuel gamma radiation sources to decompose complex wastes such as PCBs. At LLNL, halogenated solvents such as carbon tetrachloride and trichloroethylene are being studied using accelerator radiation sources. The INEL irradiation experiments concentrated on a single PCB congener so that a limited set of decomposition reactions could be studied. The congener 2, 2{prime}, 3, 3{prime}, 4, 5{prime}, 6, 6{prime}-octachlorobiphenyl was examined following exposure to various gamma doses at the Advanced Test Reactor (ATR) spent fuel pool. The decomposition rates and products in several solvents. are discussed. 7 refs., 13 figs., 1 tab.

  15. Gamma-ray decomposition of PCBs

    SciTech Connect

    Mincher, B.J.; Meikrantz, D.H.; Arbon, R.E.; Murphy, R.J.

    1991-01-01

    This program is the Idaho National Engineering Laboratory (INEL) component of a joint collaborative effort with Lawrence Livermore National Laboratory (LLNL). The purpose of this effort is to demonstrate a viable process for breaking down hazardous halogenated organic wastes to simpler, non-hazardous wastes using high energy ionizing radiation. The INEL effort focuses on the use of spent reactor fuel gamma radiation sources to decompose complex wastes such as PCBs. At LLNL, halogenated solvents such as carbon tetrachloride and trichloroethylene are being studied using accelerator radiation sources. The INEL irradiation experiments concentrated on a single PCB congener so that a limited set of decomposition reactions could be studied. The congener 2, 2{prime}, 3, 3{prime}, 4, 5{prime}, 6, 6{prime}-octachlorobiphenyl was examined following exposure to various gamma doses at the Advanced Test Reactor (ATR) spent fuel pool. The decomposition rates and products in several solvents. are discussed. 7 refs., 13 figs., 1 tab.

  16. Heuristic decomposition for non-hierarchic systems

    NASA Technical Reports Server (NTRS)

    Bloebaum, Christina L.; Hajela, P.

    1991-01-01

    Design and optimization is substantially more complex in multidisciplinary and large-scale engineering applications due to the existing inherently coupled interactions. The paper introduces a quasi-procedural methodology for multidisciplinary optimization that is applicable for nonhierarchic systems. The necessary decision-making support for the design process is provided by means of an embedded expert systems capability. The method employs a decomposition approach whose modularity allows for implementation of specialized methods for analysis and optimization within disciplines.

  17. Grandchild of the frequency: Decomposition multigrid method

    SciTech Connect

    Dendy, J.E. Jr.; Tazartes, C.C.

    1994-12-31

    Previously the authors considered the frequency decomposition multigrid method and rejected it because it was not robust for problems with discontinuous coefficients. In this paper they show how to modify the method so as to obtain such robustness while retaining robustness for problems with anisotropic coefficients. They also discuss application of this method to a problem arising in global ocean modeling on the CM-5.

  18. Monte Carlo Simulations for Spinodal Decomposition

    NASA Astrophysics Data System (ADS)

    Sander, Evelyn; Wanner, Thomas

    1999-06-01

    This paper addresses the phenomenon of spinodal decomposition for the Cahn-Hilliard equation. Namely, we are interested in why most solutions to the Cahn-Hilliard equation which start near a homogeneous equilibrium u 0≡ μ in the spinodal interval exhibit phase separation with a characteristic wavelength when exiting a ball of radius R in a Hilbert space centered at u 0. There are two mathematical explanations for spinodal decomposition, due to Grant and to Maier-Paape and Wanner. In this paper, we numerically compare these two mathematical approaches. In fact, we are able to synthesize the understanding we gain from our numerics with the approach of Maier-Paape and Wanner, leading to a better understanding of the underlying mechanism for this behavior. With this new approach, we can explain spinodal decomposition for a longer time and larger radius than either of the previous two approaches. A rigorous mathematical explanation is contained in a separate paper. Our approach is to use Monte Carlo simulations to examine the dependence of R, the radius to which spinodal decomposition occurs, as a function of the parameter ɛ of the governing equation. We give a description of the dominating regions on the surface of the ball by estimating certain densities of the distributions of the exit points. We observe, and can show rigorously, that the behavior of most solutions originating near the equilibrium is determined completely by the linearization for an unexpectedly long time. We explain the mechanism for this unexpectedly linear behavior, and show that for some exceptional solutions this cannot be observed. We also describe the dynamics of these exceptional solutions.

  19. Monte Carlo simulations for spinodal decomposition

    SciTech Connect

    Sander, E.; Wanner, T.

    1999-06-01

    This paper addresses the phenomenon of spinodal decomposition for the Cahn-Hilliard equation. Namely, the authors are interested in why most solutions to the Cahn-Hilliard equation which start near a homogeneous equilibrium u{sub 0} {equivalent_to} {mu} in the spinodal interval exhibit phase separation with a characteristic wavelength when exiting a ball of radius R in a Hilbert space centered at u{sub 0}. There are two mathematical explanations for spinodal decomposition, due to Grant and to Maier-Paape and Wanner. In this paper, the authors numerically compare these two mathematical approaches. In fact, they are able to synthesize the understanding they gain from the numerics with the approach of Maier-Paape and Wanner, leading to a better understanding of the underlying mechanism for this behavior. With this new approach, they can explain spinodal decomposition for a longer time and larger radius than either of the previous two approaches. A rigorous mathematical explanation is contained in a separate paper. The approach is to use Monte Carlo simulations to examine the dependence of R, the radius to which spinodal decomposition occurs, as a function of the parameter {var_epsilon} of the governing equation. The authors give a description of the dominating regions on the surface of the ball by estimating certain densities of the distributions of the exit points. They observe, and can show rigorously, that the behavior of most solutions originating near the equilibrium is determined completely by the linearization for an unexpectedly long time. They explain the mechanism for this unexpectedly linear behavior, and show that for some exceptional solutions this cannot be observed. They also describe the dynamics of these exceptional solutions.

  20. Domain decomposition methods for mortar finite elements

    SciTech Connect

    Widlund, O.

    1996-12-31

    In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.

  1. Domain decomposition multigrid for unstructured grids

    SciTech Connect

    Shapira, Yair

    1997-01-01

    A two-level preconditioning method for the solution of elliptic boundary value problems using finite element schemes on possibly unstructured meshes is introduced. It is based on a domain decomposition and a Galerkin scheme for the coarse level vertex unknowns. For both the implementation and the analysis, it is not required that the curves of discontinuity in the coefficients of the PDE match the interfaces between subdomains. Generalizations to nonmatching or overlapping grids are made.

  2. Axisymmetric scattering of scalar waves by spheroids.

    PubMed

    Lekner, John; Boyack, Rufus

    2011-06-01

    A phase shift formulation of scattering by oblate and prolate spheroids is presented, in parallel with the partial-wave theory of scattering by spherical obstacles. The crucial step is application of a finite Legendre transform to the Helmholtz equation in spheroidal coordinates. In the long-wavelength limit the spheroidal analog of the spherical scattering length immediately gives the cross section. Analytical results are readily obtained for scattering of Schrödinger particle waves by impenetrable spheroids, and for scattering of sound waves by acoustically soft spheroidal objects. The method is restricted to scattering by spheroids whose symmetry axis is coincident with the direction of the incident plane wave. PMID:21682372

  3. Relic Gravitational Waves and Their Detection

    NASA Astrophysics Data System (ADS)

    Grishchuk, Leonid P.

    The range of expected amplitudes and spectral slopes of relic (squeezed) gravitational waves, predicted by theory and partially supported by observations, is within the reach of sensitive gravity-wave detectors. In the most favorable case, the detection of relic gravitational waves can be achieved by the cross-correlation of outputs of the initial laser interferometers in LIGO, VIRGO, GEO600. In the more realistic case, the sensitivity of advanced ground-based and space-based laser interferometers will be needed. The specific statistical signature of relic gravitational waves, associated with the phenomenon of squeezing, is a potential reserve for further improvement of the signal to noise ratio.

  4. Autocatalytic Decomposition at Shear-Strain Interfaces

    NASA Astrophysics Data System (ADS)

    Kuklja, M. M.; Rashkeev, Sergey N.

    2009-12-01

    Atomic scale mechanisms of the initiation of chemical processes in energetic molecular crystals leading to the decomposition and ultimately to an explosive chain reaction, are far from being completely understood. We investigated the onset of the initiation processes in two energetic crystals—diamino-dinitroethylene (DADNE, C2H4N4O4) and triamino-trinitrobenzene (TATB, C6H6N6O6). We suggest that an autocatalytic decomposition mechanism is likely to take place in DADNE crystal that is built out of corrugated, dashboard-shaped molecular layers, and the level of the induced shear-strain perturbation between the layers strongly depends upon the presence of interstitial NO2 groups. Unlike this, in TATB, which consists of flat, graphite-like molecular layers, an interstitial NO2 group positioned between two layers produces a local molecular orientation disorder and barely affects the C-NO2 decomposition barrier. Split off NO2 groups in the interstitial exhibit a series of exothermic reactions. In DADNE, these reactions start at a lower concentration of interstitial nitro-groups which may be correlated to the higher sensitivity of this material to the initiation as compared to TATB.

  5. High energy decomposition of halogenated hydrocarbons

    SciTech Connect

    Mincher, B.J.; Arbon, R.E.; Meikrantz, D.H.

    1992-09-01

    This program is the INEL component of a joint collaborative effort with Lawrence Livermore National Laboratory (LLNL). Purpose is to demonstrate a viable process for breaking down hazardous halogenated organic wastes to simpler, nonhazardous wastes using high energy ionizing radiation. The INEL effort focuses on the use of spent reactor fuel gamma radiation sources to decompose complex wastes such as PCBS. Work in FY92 expanded upon that reported for FY91. During FY91 it was reported that PCBs were susceptible to radiolytic decomposition in alcoholic solution, but that only a small percentage of decomposition products could be accounted for. It was shown that decomposition was more efficient in methanol than in isopropanol and that the presence of a copper-zinc couple catalyst did not affect the reaction rate. Major goals of FY92 work were to determine the reaction mechanism, to identify further reaction products, and to select a more appropriate catalyst. Described in this report are results of mechanism specific experiments, mass balance studies, transformer oil irradiations, the use of hydrogen peroxide as a potential catalyst, and the irradiation of pure PCB crystals in the absence of diluent.

  6. Hydroxyl radical formation during peroxynitrous acid decomposition

    SciTech Connect

    Coddington, J.W.; Hurst, J.K.; Lymar, S.V.

    1999-03-24

    Yields of O{sub 2} formed during decomposition of peroxynitrous acid (ONOOH) under widely varying medium conditions are compared to predictions based upon the assumption that the reaction involves formation of discrete {sm{underscore}bullet}OH and {sm{underscore}bullet}NO{sub 2} radicals as oxidizing intermediates. The kinetic model used includes all reactions of {sm{underscore}bullet}OH, {sm{underscore}bullet}O{sub 2}{sup {minus}}, and reactive nitrogen species known to be important under the prevailing conditions; because the rate constants for all of these reactions have been independently measured, the calculations contain no adjustable fitting parameters. The model quantitatively accounts for (1) the complex pH dependence of the O{sub 2} yields and (2) the unusual effects of NO{sub 2} {sup {minus}}, which inhibits O{sub 2} formation in neutral, but not alkaline, solutions and also reverses inhibition by organic {sm{underscore}bullet}OH scavengers in alkaline media. Other observations, including quenching of O{sub 2} yields by ferrocyanide and bicarbonate, the pressure dependence of the decomposition rate, and the reported dynamic behavior for O{sub 2} generation in the presence of H{sub 2}O{sub 2}, also appear to be in accord with the suggested mechanism. Overall, the close correspondence between observed and calculated O{sub 2} yields provides strong support for decomposition via homolysis of the ONOOH peroxo bond.

  7. Spark decomposition studies of dielectric gas mixtures

    NASA Astrophysics Data System (ADS)

    Sauers, I.; Christophorou, L. G.

    The ultimate usefulness of a high voltage insulating gas depends not only on the ability of the gas to withstand high voltages, but also on the degradation of the gas resulting from spark discharges, corona or prolonged electrical stress and the effect(s) of the by-products on the equipment and, possibly, the environment. In view of these considerations, the study of long-range spark decomposition was undertaken in an effort to improve the decomposition characteristics of dielectric gases through proper tailoring of gas mixtures while maintaining high breakdown strengths. The data reported are on the analyses of gases sparked by capactive (0.1 micro F) discharge into a 0.5-mm gap, resulting in an energy input of approximately 5 J per spark. The nature of the decomposition products of SF6 formed by high voltage discharges observed is found to be critically dependent on impurities (particularly H2O), electrode material and insulating materials present in the system.

  8. Faster Algorithms on Branch and Clique Decompositions

    NASA Astrophysics Data System (ADS)

    Bodlaender, Hans L.; van Leeuwen, Erik Jan; van Rooij, Johan M. M.; Vatshelle, Martin

    We combine two techniques recently introduced to obtain faster dynamic programming algorithms for optimization problems on graph decompositions. The unification of generalized fast subset convolution and fast matrix multiplication yields significant improvements to the running time of previous algorithms for several optimization problems. As an example, we give an O^{*}(3^{ω/2k}) time algorithm for Minimum Dominating Set on graphs of branchwidth k, improving on the previous O *(4 k ) algorithm. Here ω is the exponent in the running time of the best matrix multiplication algorithm (currently ω< 2.376). For graphs of cliquewidth k, we improve from O *(8 k ) to O *(4 k ). We also obtain an algorithm for counting the number of perfect matchings of a graph, given a branch decomposition of width k, that runs in time O^{*}(2^{ω/2k}). Generalizing these approaches, we obtain faster algorithms for all so-called [ρ,σ]-domination problems on branch decompositions if ρ and σ are finite or cofinite. The algorithms presented in this paper either attain or are very close to natural lower bounds for these problems.

  9. Randomized interpolative decomposition of separated representations

    NASA Astrophysics Data System (ADS)

    Biagioni, David J.; Beylkin, Daniel; Beylkin, Gregory

    2015-01-01

    We introduce an algorithm to compute tensor interpolative decomposition (dubbed CTD-ID) for the reduction of the separation rank of Canonical Tensor Decompositions (CTDs). Tensor ID selects, for a user-defined accuracy ɛ, a near optimal subset of terms of a CTD to represent the remaining terms via a linear combination of the selected terms. CTD-ID can be used as an alternative to or in combination with the Alternating Least Squares (ALS) algorithm. We present examples of its use within a convergent iteration to compute inverse operators in high dimensions. We also briefly discuss the spectral norm as a computational alternative to the Frobenius norm in estimating approximation errors of tensor ID. We reduce the problem of finding tensor IDs to that of constructing interpolative decompositions of certain matrices. These matrices are generated via randomized projection of the terms of the given tensor. We provide cost estimates and several examples of the new approach to the reduction of separation rank.

  10. Perspectives on Pentaerythritol Tetranitrate (PETN) Decomposition

    SciTech Connect

    Chambers, D; Brackett, C; Sparkman, D O

    2002-07-01

    This report evaluates the large body of work involving the decomposition of PETN and identifies the major decomposition routes and byproducts. From these studies it becomes apparent that the PETN decomposition mechanisms and the resulting byproducts are primarily determined by the chemical environment. In the absence of water, PETN can decompose through the scission of the O-NO{sup 2} bond resulting in the formation of an alkoxy radical and NO{sub 2}. Because of the relatively high reactivity of both these initial byproducts, they are believed to drive a number of autocatalytic reactions eventually forming (NO{sub 2}OCH{sub 2}){sub 3}CCHO, (NO{sub 2}OCH{sub 2}){sub 2}C=CHONO{sub 2}, NO{sub 2}OCH=C=CHONO{sub 2}, (NO{sub 2}OCH{sub 2}){sub 3}C-NO{sub 2}, (NO{sub 2}OCH{sub 2}){sub 2}C(NO{sub 2}){sub 2}, NO{sub 2}OCH{sub 2}C(NO{sub 2}){sub 3}, and C(NO{sub 2}){sub 4} as well as polymer-like species such as di-PEHN and tri-PEON. Surprisingly, the products of many of these proposed autocatalytic reactions have never been analytically validated. Conversely, in the presence of water, PETN has been shown to decompose primarily to mono, di, and tri nitrates of pentaerythritol.

  11. The quantile score and its decomposition

    NASA Astrophysics Data System (ADS)

    Bentzien, Sabrina; Friederichs, Petra

    2014-05-01

    Forecast verification for probabilistic weather and climate predictions gain more and more importance due to the increasing number of ensemble prediction systems. The predictive performance of probabilistic forecasts is generally assessed using proper score functions, which are applied to a set of forecast-observation pairs. The propriety of a score guarantees honesty and prevents hedging. A variety of proper scores exist for different types of probabilistic forecasts. Moreover, proper scoring functions can be decomposed into the three parts reliability, resolution, and uncertainty, which describe main characteristics of a forecasting scheme. This decomposition is well known for the Brier score and the continuous ranked probability score. This study expands the pool of verification methods for probabilistic forecasts by a decomposition of the quantile score (QS). Quantiles are suitable probabilistic measures especially for extreme forecast events, since they do not depend on an apriori defined threshold. The QS is a weighted absolute error between quantile forecasts and observations. We derive a decomposition of the QS in reliability, resolution, and uncertainty, and give a brief description of potential biases. A quantile reliability plot is presented. The quantile verification within this framework is illustrated on precipitation forecasts derived from the mesoscale ensemble prediction system COSMO-DE-EPS of the German Meteorological Service.

  12. Decomposition of Furan on Pd(111)

    SciTech Connect

    Xu, Ye

    2012-01-01

    Periodic density functional theory calculations (GGA-PBE) have been performed to investigate the mechanism for the decomposition of furan up to CO formation on the Pd(111) surface. At 1/9 ML coverage, furan adsorbs with its molecular plane parallel to the surface in several states with nearly identical adsorption energies of -1.0 eV. The decomposition of furan begins with the opening of the ring at the C-O position with an activation barrier of E{sub a} = 0.82 eV, which yields a C{sub 4}H{sub 4}O aldehyde species that rapidly loses the {alpha} H to form C{sub 4}H{sub 3}O (E{sub a} = 0.40 eV). C{sub 4}H{sub 3}O further dehydrogenates at the {delta} position to form C{sub 4}H{sub 2}O (E{sub a} = 0.83 eV), before the {alpha}-{beta} C-C bond dissociates (E{sub a} = 1.08 eV) to form CO. Each step is the lowest-barrier dissociation step in the respective species. A simple kinetic analysis suggests that furan decomposition begins at 240-270 K and is mostly complete by 320 K, in close agreement with previous experiments. It is suggested that the C{sub 4}H{sub 2}O intermediate delays the decarbonylation step up to 350 K.

  13. Input-output dynamic mode decomposition

    NASA Astrophysics Data System (ADS)

    Annoni, Jennifer; Jovanovic, Mihailo; Nichols, Joseph; Seiler, Peter

    2015-11-01

    The objective of this work is to obtain reduced-order models for fluid flows that can be used for control design. High-fidelity computational fluid dynamic models provide accurate characterizations of complex flow dynamics but are not suitable for control design due to their prohibitive computational complexity. A variety of methods, including proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD), can be used to extract the dominant flow structures and obtain reduced-order models. In this presentation, we introduce an extension to DMD that can handle problems with inputs and outputs. The proposed method, termed input-output dynamic mode decomposition (IODMD), utilizes a subspace identification technique to obtain models of low-complexity. We show that, relative to standard DMD, the introduction of the external forcing in IODMD provides robustness with respect to small disturbances and noise. We use the linearized Navier-Stokes equations in a channel flow to demonstrate the utility of the proposed approach and to provide a comparison with standard techniques for obtaining reduced-order dynamical representations. NSF Career Grant No. NSFCMMI-1254129.

  14. Decomposition of the swirling flow field downstream of Francis turbine runner

    NASA Astrophysics Data System (ADS)

    Rudolf, P.; Štefan, D.

    2012-11-01

    Practical application of proper orthogonal decomposition (POD) is presented. Spatio-temporal behaviour of the coherent vortical structures in the draft tube of hydraulic turbine is studied for two partial load operating points. POD enables to identify the eigen modes, which compose the flow field and rank the modes according to their energy. Swirling flow fields are decomposed, which provides information about their streamwise and crosswise development and the energy transfer among modes. Presented methodology also assigns frequencies to the particular modes, which helps to identify the spectral properties of the flow with concrete mode shapes. Thus POD offers a complementary view to current time domain simulations or measurements.

  15. Wave-based signal processing

    NASA Astrophysics Data System (ADS)

    McClure, Mark Richard

    The efficacy of imbedding knowledge of wave-scattering phenomenology into the processing of remote-sensing data is examined. In particular, the processing of radar and sonar phase history and synthetic-aperture imagery is considered. Algorithms are developed for effecting signal denoising, feature extraction (for use in target identification/classification) and detection. Three classes of algorithms are presented: (1) superresolution, (2) adaptive-signal decomposition, and (3) template matching. A superresolution signal-processing algorithm is used for the identification of wavefronts from the fields scattered from several canonical targets. Particular wave objects that are examined are single and multiple edge diffraction, scattering from flat and curved surfaces, cone diffraction, and creeping waves. General properties of superresolution processing of such data--independent of the particular algorithm used--are assessed through examination of the Cramer-Rao bounds. The method of matching pursuits is used to effect data-adaptive signal decomposition. This algorithm utilizes a nonlinear iterative procedure to project a given waveform onto a particular dictionary. For scattering problems, the most appropriate dictionary is composed of waveobjects consistent with the underlying wave phenomenology. A signal scattered from most targets of interest can be decomposed in terms of wavefronts, resonances, and chirps--and each of these subclasses can be further subdivided based on characteristic wave physics. Here the efficacy of applying the method of matching pursuits with a wave-based dictionary is examined, for the processing of scattering data. Detection test statistics are derived based on matching-pursuits results from each dictionary separately as well as with the cumulative results from multiple dictionaries. Examples are presented using measured data, for wideband, time-domain acoustic scattering from a submerged elastic shell. Finally, a full-wave electromagnetic

  16. Atmospheric Waves

    NASA Technical Reports Server (NTRS)

    2007-01-01

    With its Multispectral Visible Imaging Camera (MVIC), half of the Ralph instrument, New Horizons captured several pictures of mesoscale gravity waves in Jupiter's equatorial atmosphere. Buoyancy waves of this type are seen frequently on Earth - for example, they can be caused when air flows over a mountain and a regular cloud pattern forms downstream. In Jupiter's case there are no mountains, but if conditions in the atmosphere are just right, it is possible to form long trains of these small waves. The source of the wave excitation seems to lie deep in Jupiter's atmosphere, below the visible cloud layers at depths corresponding to pressures 10 times that at Earth's surface. The New Horizons measurements showed that the waves move about 100 meters per second faster than surrounding clouds; this is about 25% of the speed of sound on Earth and is much greater than current models of these waves predict. Scientists can 'read' the speed and patterns these waves to learn more about activity and stability in the atmospheric layers below.

  17. Quasitravelling waves

    SciTech Connect

    Beklaryan, Leva A

    2011-02-11

    A finite difference analogue of the wave equation with potential perturbation is investigated, which simulates the behaviour of an infinite rod under the action of an external longitudinal force field. For a homogeneous rod, describing solutions of travelling wave type is equivalent to describing the full space of classical solutions to an induced one-parameter family of functional differential equations of point type, with the characteristic of the travelling wave as parameter. For an inhomogeneous rod, the space of solutions of travelling wave type is trivial, and their 'proper' extension is defined as solutions of 'quasitravelling' wave type. By contrast to the case of a homogeneous rod, describing the solutions of quasitravelling wave type is equivalent to describing the quotient of the full space of impulsive solutions to an induced one-parameter family of point-type functional differential equations by an equivalence relation connected with the definition of solutions of quasitravelling wave type. Stability of stationary solutions is analyzed. Bibliography: 9 titles.

  18. Moreton Waves

    NASA Technical Reports Server (NTRS)

    Thompson, B. J.

    1999-01-01

    "Moreton waves," named for the observer who popularized them, are a solar phenomenon also known in scientific literature as "Moreton-Ramsey wave," "flare waves," "flare-associated waves," "MHD blast waves," "chromospheric shock fronts" and various other combinations of terms which connote violently propagating impulsive disturbances. It is unclear whether all of the observations to which these terms have been applied pertain to a single physical phenomenon: there has perhaps been some overlap between the observations and the assumed physical properties of the observed occurrence. Moreton waves are ideally observed in the wings of H alpha, and appear as semi-circular fronts propagating at speeds ranging from several hundred to over a thousand km/sec. They form an arc, or "brow shape" which can span up to 180 degrees. Extrapolating the speed and locations of the arc indicates that the phenomenon's origin intersects well with the impulsive phase of the associated H alpha flare (if the flare exhibits an impulsive phase). However, the arc may not form or may not be observable until it is tens of megameters from the flaring region, and subsequently can propagate to distances exceeding 100 megameters. The high speeds and distances of propagation, plus the associated radio and energetic particle observations, provided strong evidence of a coronal, rather than a chromospheric origin. The H alpha manifestation of the wave is assumed to be the "ground track" or "skirt" of a three-dimensional disturbance.

  19. Ship waves and lee waves

    NASA Technical Reports Server (NTRS)

    Sharman, R. D.; Wurtele, M. G.

    1983-01-01

    Dynamics analogous to those of surface ship waves on water of finite depth are noted for the three-dimensional trapped lee wave modes produced by an isolated obstacle in a stratified fluid. This vertical trapping of wave energy is modeled by uniform upstream flow and stratification, bounded above by a rigid lid, and by a semiinfinite fluid of uniform stability whose wind velocity increases exponentially with height, representing the atmosphere. While formal asymptotic solutions are produced, limited quantitative usefulness is obtained through them because of the limitations of the approximations and the infinity of modes in the solution. Time-dependent numerical models are accordingly developed for both surface ship waves and internal and atmospheric ship waves, yielding a variety of results.

  20. [Subacute sclerosing panencephalitis with partial remission].

    PubMed

    Villaca, L M; de Macedo, D D

    1979-12-01

    Subacute progressive panencephalitis is usually a progressive and fatal disease, being uncommon temporary or definitive remissions. A three years old boy, previously vaccinated against measles, developed trembling, progressive and severe mental deterioration, partial seizures and myoclonic jerks. The electroencephalogram showed periodic high amplitude waves concomitantly with myoclonic jerks and the cerebrospinal fluid revealed an increase of the gammaglobulin fraction (16,8), benjoin coloidal reaction shifted to the left and the antimeasles antibody titres were positive (complement fixation text 1:16; neutralization test 1:32). In spite of that, two months after the beginning of the illness the patient showed mental and motor improvement and similar modifications of the electroencephalographic aspects and now, eleven months later, is well, remaining only a slight motor and mental deficiency. PMID:533390