Science.gov

Sample records for particle beam intensity

  1. Neutral particle beam intensity controller

    DOEpatents

    Dagenhart, W.K.

    1984-05-29

    The neutral beam intensity controller is based on selected magnetic defocusing of the ion beam prior to neutralization. The defocused portion of the beam is dumped onto a beam dump disposed perpendicular to the beam axis. Selective defocusing is accomplished by means of a magnetic field generator disposed about the neutralizer so that the field is transverse to the beam axis. The magnetic field intensity is varied to provide the selected partial beam defocusing of the ions prior to neutralization. The desired focused neutral beam portion passes along the beam path through a defining aperture in the beam dump, thereby controlling the desired fraction of neutral particles transmitted to a utilization device without altering the kinetic energy level of the desired neutral particle fraction. By proper selection of the magnetic field intensity, virtually zero through 100% intensity control of the neutral beam is achieved.

  2. Neutral particle beam intensity controller

    DOEpatents

    Dagenhart, William K.

    1986-01-01

    A neutral beam intensity controller is provided for a neutral beam generator in which a neutral beam is established by accelerating ions from an ion source into a gas neutralizer. An amplitude modulated, rotating magnetic field is applied to the accelerated ion beam in the gas neutralizer to defocus the resultant neutral beam in a controlled manner to achieve intensity control of the neutral beam along the beam axis at constant beam energy. The rotating magnetic field alters the orbits of ions in the gas neutralizer before they are neutralized, thereby controlling the fraction of neutral particles transmitted out of the neutralizer along the central beam axis to a fusion device or the like. The altered path or defocused neutral particles are sprayed onto an actively cooled beam dump disposed perpendicular to the neutral beam axis and having a central open for passage of the focused beam at the central axis of the beamline. Virtually zero therough 100% intensity control is achieved by varying the magnetic field strength without altering the ion source beam intensity or its species yield.

  3. Anisotropy-driven collective instability in intense charged particle beams

    NASA Astrophysics Data System (ADS)

    Startsev, Edward A.; Davidson, Ronald C.; Qin, Hong

    2005-12-01

    The classical electrostatic Harris instability is generalized to the case of a one-component intense charged particle beam with anisotropic temperature including the important effects of finite transverse geometry and beam space charge. For a long, coasting beam, the eigenmode code bEASt have been used to determine detailed 3D stability properties over a wide range of temperature anisotropy and beam intensity. A simple theoretical model is developed which describes the essential features of the linear stage of the instability. Both the simulations and the analytical theory clearly show that moderately intense beams are linearly unstable to short-wavelength perturbations provided the ratio of the longitudinal temperature to the transverse temperature is smaller than some threshold value. The delta-f particle-in-cell code BEST has been used to study the detailed nonlinear evolution and saturation of the instability.

  4. Beams for the Intensity Frontier of Particle Physics

    NASA Astrophysics Data System (ADS)

    Tschirhart, Robert S.

    2014-02-01

    Advances in high intensity beams have driven particle physics forward since the inception of the field. State-of-the-art and next generation high intensity beams will drive experiments searching for ultrarare processes sensitive through quantum corrections to new particle states far beyond the reach of direct production in foreseeable beam colliders. The recent discovery of the ultrarare B meson decay Bs → μμ, with a branching fraction of 3 × 10-9 for example, has set stringent limits on new physics within direct reach of the Large Hadron Collider. Today, even in the context of the Higgs boson discovery, observation of finite neutrino masses is the only laboratory evidence of physics beyond the Standard Model of particle physics. The tiny mass scale of neutrinos may foretell and one day expose physics that connects quarks and leptons together at the "grand unification" scale and may be the portal through which our world came to the matter-dominated state so different from conditions we expect in the early universe. Here we describe next generation neutrino and rare processes experiments that will deeply probe these and other questions central to the field of particle physics.

  5. Collective Temperature Anisotropy Instabilities in Intense Charged Particle Beams

    NASA Astrophysics Data System (ADS)

    Startsev, Edward

    2006-10-01

    Periodic focusing accelerators, transport systems and storage rings have a wide range of applications ranging from basic scientific research in high energy and nuclear physics, to applications such as ion-beam-driven high energy density physics and fusion, and spallation neutron sources. Of particular importance at the high beam currents and charge densities of practical interest, are the effects of the intense self fields produced by the beam space charge and current on determining the detailed equilibrium, stability and transport properties. Charged particle beams confined by external focusing fields represent an example of nonneutral plasma. A characteristic feature of such plasmas is the non-uniformity of the equilibrium density profiles and the nonlinearity of the self fields, which makes detailed analytical investigation very difficult. The development and application of advanced numerical tools such as eigenmode codes [1] and Monte-Carlo particle simulation methods [2] are often the only tractable approach to understand the underlying physics of different instabilities familiar in electrically neutral plasmas which may cause a degradation in beam quality. Two such instabilities are the electrostatic Harris instability [2] and the electromagnetic Weibel instability [1], both driven by a large temperature anisotropy which develops naturally in accelerators. The beam acceleration causes a large reduction in the longitudinal temperature and provides the free energy to drive collective temperature anisotropy instabilities. Such instabilities may lead to an increase in the longitudinal velocity spread, which will make focusing the beam difficult, and may impose a limit on the beam luminosity and the minimum spot size achievable in focusing experiments. This paper reviews recent advances in the theory and simulation of collective instabilities in intense charged particle beams caused by temperature anisotropy. We also describe new simulation tools that have been

  6. Nonlinear Delta-f Particle Simulations of Collective Effects in High Intensity Charged Particle Beams

    NASA Astrophysics Data System (ADS)

    Qin, Hong; Davidson, Ronald C.; Startsev, Edward A.

    2004-11-01

    A wide range of collective effects in high intensity charged particle beams have been numerically studied using the nonlinear delta-f particle simulation method implemented in the Beam Equilibrium Stability and Transport (BEST) code. For the electron-ion two-stream instability in high intensity accelerators and storage rings, the secondary electron yield effects are self-consistently studied by coupling the secondary electron yield library CMEE with the instability simulations. Progress has also been made in applying the delta-f particle simulation method to bunched beams, and a three-dimensional equilibrium solver has been implemented. With the help of recently developed parallel diagnostic techniques, we are able to characterize the chaotic particle dynamics under the influences of collective instabilities as well as three-dimensional equilibrium fields. To further extend the application areas of the delta-f particle simulation method, 2D domain decomposition is being developed using the Message Passing Interface, and three-dimensional equilibria with anisotropic temperature in the transverse and longitudinal directions are being investigated. References: [1] R. C. Davidson and H. Qin, An Introduction to the Physics of Intense Charged Particle Beams in High Energy Accelerators, World Scientific (2001). [2] H. Qin, Physics of Plasmas 10, 2078 (2003). [3] H. Qin, E. A. Startsev, and R. C. Davidson, Physical Review Special Topics on Accelerators and Beams 6, 014401 (2003).

  7. Three-Dimensional Perturbative Particle Simulation of Intense Ion Beams

    NASA Astrophysics Data System (ADS)

    Lee, W. Wei-Li; Stoltz, Peter H.; Davidson, Ronald C.; Qin, Hong

    1998-11-01

    A three-dimensional nonlinear perturbative (δ f) particle simulation scheme is under developement for studying the stability and transport properties of an intense ion beam propagating through background electrons and a periodic focusing lattice,(Q. Qian, W. Lee, and R. C. Davidson, Phys. Plasmas 4), 1915 (1997).^,(P. H. Stoltz, W. W. Lee, R. C. Davidson, this conference.) in which the distribution function is split into equilibrium and perturbed parts. To further facilitate the simulations, a mode expansion scheme (C. Z. Cheng and H. Okuda, J. Comp. Phys. 25), 133 (1977). for the perturbative scheme has been developed, in which only a few long wavelength modes along the direction of propagation are kept. The code will be useful for many applications in beam physics and is an intermediate step toward a fully three-dimensional multi-species code. The algorithm and its applications to the electron-proton instability (R. C. Davidson, P. H. Stoltz, W. W. Lee and T.-S. Wang, this conference.) in proton linacs and storage rings will be reported.

  8. Electron Production and Collective Field Generation in Intense Particle Beams

    SciTech Connect

    Molvik, A W; Vay, J; Cohen, R; Friedman, A; Lee, E; Verboncoeur, J; Covo, M K

    2006-02-09

    Electron cloud effects (ECEs) are increasingly recognized as important, but incompletely understood, dynamical phenomena, which can severely limit the performance of present electron colliders, the next generation of high-intensity rings, such as PEP-II upgrade, LHC, and the SNS, the SIS 100/200, or future high-intensity heavy ion accelerators such as envisioned in Heavy Ion Inertial Fusion (HIF). Deleterious effects include ion-electron instabilities, emittance growth, particle loss, increase in vacuum pressure, added heat load at the vacuum chamber walls, and interference with certain beam diagnostics. Extrapolation of present experience to significantly higher beam intensities is uncertain given the present level of understanding. With coordinated LDRD projects at LLNL and LBNL, we undertook a comprehensive R&D program including experiments, theory and simulations to better understand the phenomena, establish the essential parameters, and develop mitigating mechanisms. This LDRD project laid the essential groundwork for such a program. We developed insights into the essential processes, modeled the relevant physics, and implemented these models in computational production tools that can be used for self-consistent study of the effect on ion beams. We validated the models and tools through comparison with experimental data, including data from new diagnostics that we developed as part of this work and validated on the High-Current Experiment (HCX) at LBNL. We applied these models to High-Energy Physics (HEP) and other advanced accelerators. This project was highly successful, as evidenced by the two paragraphs above, and six paragraphs following that are taken from our 2003 proposal with minor editing that mostly consisted of changing the tense. Further benchmarks of outstanding performance are: we had 13 publications with 8 of them in refereed journals, our work was recognized by the accelerator and plasma physics communities by 8 invited papers and we have 5

  9. Static analysis of possible emittance growth of intense charged particle beams with thermal equilibrium distribution

    SciTech Connect

    Kikuchi, Takashi; Horioka, Kazuhiko

    2009-05-15

    Possible emittance growths of intense, nonuniform beams during a transport in a focusing channel are derived as a function of nonlinear field energy and space charge tune depression factors. The nonlinear field energy of the beam with thermal equilibrium distribution is estimated by considering the particle distribution across the cross section of the beam. The results show that the possible emittance growth can be suppressed by keeping the beam particle in thermal equilibrium distribution during the beam transport.

  10. Laboratory Astrophysics Using High Intensity Particle and Photon Beams

    SciTech Connect

    Chen, Pisin

    2001-12-12

    History has shown that the symbiosis between direct observations and laboratory studies is instrumental in the progress of astrophysics. Recent years have seen growing interests in the laboratory investigation of astrophysical phenomena that can be addressed by high densities and advancement of technologies in lasers as well as high-energy particle beams. We will give examples on how frontier phenomena such as black holes, supernovae, gamma ray bursts, ultra high-energy cosmic rays, etc., can be investigated in the laboratory setting. Finally, we describe a possible laboratory astrophysics facility to be developed at SLAC.

  11. Laboratory Astrophysics Using High Intensity Particle and Photon Beams

    SciTech Connect

    Chen, Pisin

    2009-12-12

    History has shown that the symbiosis between direct observations and laboratory studies is instrumental in the progress of astrophysics. Recent years have seen growing interests in the laboratory investigation of astrophysical phenomena that can be addressed by high densities and advancement of technologies in lasers as well as high-energy particle beams. We will give examples on how frontier phenomena such as black holes, supernovae, gamma ray bursts, ultra high-energy cosmic rays, etc., can be investigated in the laboratory setting. Finally, we describe a possible laboratory astrophysics facility to be developed at SLAC.

  12. In-situ determination of energy species yields of intense particle beams

    DOEpatents

    Kugel, Henry W.; Kaita, Robert

    1987-01-01

    An arrangement is provided for the in-situ determination of energy species yields of intense particle beams. The beam is directed onto a target surface of known composition, such that Rutherford backscattering of the beam occurs. The yield-energy characteristic response of the beam to backscattering from the target is analyzed using Rutherford backscattering techniques to determine the yields of energy species components of the beam.

  13. In-situ determination of energy species yields of intense particle beams

    DOEpatents

    Kugel, Henry W.; Kaita, Robert

    1987-03-03

    An arrangement is provided for the in-situ determination of energy species yields of intense particle beams. The beam is directed onto a target surface of known composition, such that Rutherford backscattering of the beam occurs. The yield-energy characteristic response of the beam to backscattering from the target is analyzed using Rutherford backscattering techniques to determine the yields of energy species components of the beam.

  14. Analytical Solutions for the Nonlinear Longitudinal Drift Compression (Expansion) of Intense Charged Particle Beams

    SciTech Connect

    Edward A. Startsev; Ronald C. Davidson

    2004-04-09

    To achieve high focal spot intensities in heavy ion fusion, the ion beam must be compressed longitudinally by factors of ten to one hundred before it is focused onto the target. The longitudinal compression is achieved by imposing an initial velocity profile tilt on the drifting beam. In this paper, the problem of longitudinal drift compression of intense charged particle beams is solved analytically for the two important cases corresponding to a cold beam, and a pressure-dominated beam, using a one-dimensional warm-fluid model describing the longitudinal beam dynamics.

  15. New and improved apparatus and method for monitoring the intensities of charged-particle beams

    DOEpatents

    Varma, M.N.; Baum, J.W.

    1981-01-16

    Charged particle beam monitoring means are disposed in the path of a charged particle beam in an experimental device. The monitoring means comprise a beam monitoring component which is operable to prevent passage of a portion of beam, while concomitantly permitting passage of another portion thereof for incidence in an experimental chamber, and providing a signal (I/sub m/) indicative of the intensity of the beam portion which is not passed. Caibration means are disposed in the experimental chamber in the path of the said another beam portion and are operable to provide a signal (I/sub f/) indicative of the intensity thereof. Means are provided to determine the ratio (R) between said signals whereby, after suitable calibration, the calibration means may be removed from the experimental chamber and the intensity of the said another beam portion determined by monitoring of the monitoring means signal, per se.

  16. Method and apparatus for measuring the momentum, energy, power, and power density profile of intense particle beams

    DOEpatents

    Gammel, George M.; Kugel, Henry W.

    1992-10-06

    A method and apparatus for determining the power, momentum, energy, and power density profile of high momentum mass flow. Small probe projectiles of appropriate size, shape and composition are propelled through an intense particle beam at equal intervals along an axis perpendicular to the beam direction. Probe projectiles are deflected by collisions with beam particles. The net beam-induced deflection of each projectile is measured after it passes through the intense particle beam into an array of suitable detectors.

  17. Field energy and RMS emittance in intense particle beams

    SciTech Connect

    Wangler, T.P.; Crandall, K.R.; Mills, R.S.; Reiser, M.

    1986-04-25

    An equation is presented for continuous beam with azimuthal symmetry and continuous linear focusing; the equation expresses a relationship between the rate of change for squared rms emittance and the rate of change for a quantity we call the nonlinear field energy. The nonlinear field energy depends on the shape of the charge distribution and corresponds to the residual field energy possessed by beams with nonuniform charge distributions. The equation can be integrated for the case of an rms matched beam to yield a formula for space-charge-induced emittance growth that we have tested numerically for a variety of initial distributions. The results provide a framework for discussing the scaling of rms emittance growth and an explanation for the well-established lower limit on output emittance.

  18. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams

    NASA Astrophysics Data System (ADS)

    Hofmann, K. M.; Schell, S.; Wilkens, J. J.

    2013-07-01

    Laser-accelerated particles can provide a promising opportunity for radiation therapy of cancer. Potential advantages arise from combining a compact, cost-efficient treatment unit with the physical advantages in dose delivery of charged particle beams. We consider different dose delivery schemes and the required devices to design a possible treatment unit. The secondary radiation produced in several beam line elements remains a challenge to be addressed.

  19. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams

    SciTech Connect

    Hofmann, K. M.; Schell, S.; Wilkens, J. J.

    2013-07-26

    Laser-accelerated particles can provide a promising opportunity for radiation therapy of cancer. Potential advantages arise from combining a compact, cost-efficient treatment unit with the physical advantages in dose delivery of charged particle beams. We consider different dose delivery schemes and the required devices to design a possible treatment unit. The secondary radiation produced in several beam line elements remains a challenge to be addressed.

  20. Nonlinear delta(f) Simulations of Collective Effects in Intense Charged Particle Beams

    SciTech Connect

    Hong Qin

    2003-01-21

    A nonlinear delta(f) particle simulation method based on the Vlasov-Maxwell equations has been recently developed to study collective processes in high-intensity beams, where space-charge and magnetic self-field effects play a critical role in determining the nonlinear beam dynamics. Implemented in the Beam Equilibrium, Stability and Transport (BEST) code [H. Qin, R.C. Davidson, and W.W. Lee, Physical Review -- Special Topics on Accelerator and Beams 3 (2000) 084401; 3 (2000) 109901.], the nonlinear delta(f) method provides a low-noise and self-consistent tool for simulating collective interactions and nonlinear dynamics of high-intensity beams in modern and next-generation accelerators and storage rings, such as the Spallation Neutron Source and heavy ion fusion drivers. A wide range of linear eigenmodes of high-intensity charged-particle beams can be systematically studied using the BEST code. Simulation results for the electron-proton two-stream instability in the Proton Storage Ring experiment [R. Macek, et al., in Proc. of the Particle Accelerator Conference, Chicago, 2001 (IEEE, Piscataway, NJ, 2001), Vol. 1, p. 688.] at the Los Alamos National Laboratory agree well with experimental observations. Large-scale parallel simulations have also been carried out for the ion-electron two-stream instability in the very-high-intensity heavy ion beams envisioned for heavy ion fusion applications. In both cases, the simulation results indicate that the dominant two-stream instability has a dipole-mode (hose-like) structure and can be stabilized by a modest axial momentum spread of the beam particles.

  1. Theoretical and Computational Investigation of Periodically Focused Intense Charged-Particle Beams

    SciTech Connect

    Chen, Chiping

    2013-06-26

    The purpose of this report is to summarize results of theoretical and computational investigations of periodically focused intense charged-particle beams in parameter regimes relevant to the development of advanced high-brightness, high-power accelerators for high-energy physics research. The breakthroughs and highlights in our research in the period from April 1, 2010 to March 30, 2013 were: a) Theory and simulation of adiabatic thermal Child-Langmuir flow; b) Particle-in-cell simulations of adiabatic thermal beams in periodic solenoidal focusing field; c)Dynamics of charged particles in an adiabatic thermal beam equilibrium in a periodic solenoidal focusing field; d) Training of undergraduate researchers and graduate student in accelerator and beam physics. A brief introduction and summary is presented. Detailed descriptions of research results are provided in an appendix of publications at the end of the report.

  2. Macroscopic Description of Pressure-anisotropy-driven Collective Instability in Intense Charged Particle Beams

    SciTech Connect

    Sean Strasburg; Ronald C. Davidson

    2000-05-30

    The macroscopic warm-fluid model developed by Lund and Davidson [Phys.Plasmas 5, 3028 (1998)] is used in the smooth-focusing approximation to investigate detailed stability properties of an intense charged particle beam with pressure anisotropy, assuming small-amplitude electrostatic pertubations about a waterbag equilibrium.

  3. Nonlinear d--ta-f Simulation Studies of Intense Charged Particle Beams with Large Temperature Anisotropy

    SciTech Connect

    Edward A. Startsev; Ronald C. Davidson; Hong Qin

    2002-05-07

    In this paper, a 3-D nonlinear perturbative particle simulation code (BEST) [H. Qin, R.C. Davidson and W.W. Lee, Physical Review Special Topics on Accelerators and Beams 3 (2000) 084401] is used to systematically study the stability properties of intense nonneutral charged particle beams with large temperature anisotropy (T{sub {perpendicular}b} >> T{sub {parallel}b}). The most unstable modes are identified, and their eigen frequencies, radial mode structure, and nonlinear dynamics are determined for axisymmetric perturbations with {partial_derivative}/{partial_derivative}{theta} = 0.

  4. Self-consistent simulation studies of periodically focused intense charged-particle beams

    NASA Astrophysics Data System (ADS)

    Chen, C.; Jameson, R. A.

    1995-09-01

    A self-consistent two-dimensional model is used to investigate intense charged-particle beam propagation through a periodic solenoidal focusing channel, particularly in the regime in which there is a mismatch between the beam and the focusing channel. The present self-consistent studies confirm that mismatched beams exhibit nonlinear resonances and chaotic behavior in the envelope evolution, as predicted by an earlier envelope analysis [C. Chen and R. C. Davidson, Phys. Rev. Lett. 72, 2195 (1994)]. Transient effects due to emittance growth are studied, and halo formation is investigated. The halo size is estimated. The halo characteristics for a periodic focusing channel are found to be qualitatively the same as those for a uniform focusing channel. A threshold condition is obtained numerically for halo formation in mismatched beams in a uniform focusing channel, which indicates that relative envelope mismatch must be kept well below 20% to prevent space-charge-dominated beams from developing halos.

  5. Analysis of the dynamic behavior of an intense charged particle beam using the semigroup approach

    NASA Astrophysics Data System (ADS)

    Stafford, M. A.

    1985-05-01

    Dynamic models of a charged particle beam subject to external electromagnetic fields are cast into the abstract Cauchy problem form. Various applications of intense charged particle beams, i.e., beams whose self electromagnetic fields are significant, might require, or be enhanced by, the use of dynamic control constructed from suitably processed measurements of the state of the beam. This research provides a mathematical foundation for future engineering development of estimation and control designs for such beams. Beginning with the Vlasov equation, successively simpler models of intense beams are presented, along with their corresponding assumptions. Expression of a model in abstract Cauchy problem form is useful in determining whether the model is well posed. Solutions of well-posed problems can be expressed in terms of a one-parameter semigroup of linear operators. (The state transition matrix for a system of linear, ordinary, first-order, constant coefficient differential equations is a special case of such a semigroup.) The semigroup point of view allows the application of the rapidly maturing modern control theory of infinite-dimensional systems. An appropriate underlying Banach space is identified for a simple, but non-trivial, single degree of freedom model (the electrostatic approximation model), and the associated one-parameter semigroup of linear operators is characterized.

  6. Numerical studies of the Weibel Instability in Intense Charged Particle Beams with Large Energy Anisotropy

    NASA Astrophysics Data System (ADS)

    Lee, Wei-Li; Startsev, Edward A.; Davidson, Ronald C.

    2004-11-01

    In intense charged particle beams with large temperature anisotropy free energy is available to drive a transverse electromagnetic Weibel-type instability. The finite transverse geometry of the confined beam makes a detailed theoretical investigation difficult. In this paper the newly developed bEASt (beam eigenmode and spectra) code which solves the linearized Vlasov-Maxwell equations is used to investigate the detailed properties of the Weibel instability for a long charge bunch propagating through a cylindrical pipe of radius r_w. The stability analysis is carried out for azimuthally symmetric perturbations about a two-temperature thermal equilibrium distribution in the smooth-focusing approximation. To study the nonlinear stage of the instability, the Darwin model is being developed and incorporated into the Beam Equilibrium Stability and Transport(BEST) code.

  7. Physics of Neutralization of Intense Charged Particle Beam Pulses by a Background Plasma

    SciTech Connect

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.A.; Startsev, E.A.; Sefkow, A.B; Friedman, A.F.; Lee, E.P.

    2009-09-03

    Neutralization and focusing of intense charged particle beam pulses by a background plasma forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self-magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating

  8. Three-dimensional numerical studies of the temperature anisotropy instability in intense charged particle beams

    NASA Astrophysics Data System (ADS)

    Startsev, Edward A.; Davidson, Ronald C.; Qin, Hong

    2005-05-01

    In neutral plasmas with a uniform magnetic field and strongly anisotropic distribution function (T∥/T⊥≪1) an electrostatic Harris-type collective instability may develop if the plasma is sufficiently dense. Such anisotropies develop naturally in accelerators, and a similar instability may lead to a deterioration of the beam quality in a one-component nonneutral charged particle beam. The instability may also lead to an increase in the longitudinal velocity spread, which would make the focusing of the beam difficult and impose a limit on the minimum spot size achievable in heavy ion fusion experiments. This paper reports the results of recent numerical studies of the temperature anisotropy instability using the newly developed Beam Eigenmodes And Spectra (bEASt) code for space-charge-dominated, low-emittance beams with large tune depression (ν/ν0≪1). Such high-intensity beams are relevant to next-step experiments such as the Integrated Beam Experiment (IBX), which would serve as proof-of-principal experiment for heavy-ion fusion.

  9. Thermodynamic Bounds on Nonlinear Electrostatic Perturbations in Intense Charged Particle Beams

    SciTech Connect

    Nikolas C. Logan and Ronald C. Davidson

    2012-07-18

    This paper places a lowest upper bound on the field energy in electrostatic perturbations in single-species charged particle beams with initial temperature anisotropy (TllT⊥ < 1). The result applies to all electrostatic perturbations driven by the natural anisotropies that develop in accelerated particle beams, including Harris-type electrostatic instabilities, known to limit the luminosity and minimum spot size attainable in experiments. The thermodynamic bound on the field perturbation energy of the instabilities is obtained from the nonlinear Vlasov-Poisson equations for an arbitrary initial distribution function, including the effects of intense self-fields, finite geometry and nonlinear processes. This paper also includes analytical estimates of the nonlinear bounds for space-charge-dominated and emittance-dominated anisotropic bi-Maxwellian distributions.

  10. Electromagnetic Weibel instability in intense charged particle beams with large energy anisotropy

    NASA Astrophysics Data System (ADS)

    Startsev, Edward A.; Davidson, Ronald C.

    2003-12-01

    In plasmas with strongly anisotropic distribution functions, collective instabilities may develop if there is sufficient coupling between the transverse and longitudinal degrees of freedom. Our previous numerical and theoretical studies of intense charged particle beams with large temperature anisotropy [E. A. Startsev, R. C. Davidson, and H. Qin, Phys. Rev. ST Accel. Beams 6, 084401 (2003); Phys. Plasmas 9, 3138 (2002)] demonstrated that a fast, electrostatic, Harris-type instability develops, and saturates nonlinearly, for sufficiently large temperature anisotropy (T⊥b/T∥b≫1). The total distribution function after saturation, however, is still far from equipartitioned. In this paper the linearized Vlasov-Maxwell equations are used to investigate detailed properties of the transverse electromagnetic Weibel-type instability for a long charge bunch propagating through a cylindrical pipe of radius rw. The kinetic stability analysis is carried out for azimuthally symmetric perturbations about a two-temperature thermal equilibrium distribution in the smooth-focusing approximation. The most unstable modes are identified, and their eigenfrequencies, radial mode structure and instability thresholds are determined. The stability analysis shows that, although there is free energy available to drive the electromagnetic Weibel instability, the finite transverse geometry of the charged particle beam introduces a large threshold value for the temperature anisotropy [(T⊥b/T∥b)Weibel≫(T⊥b/T∥b)Harris] below which the instability is absent. Hence, unlike the case of an electrically neutral plasma, the Weibel instability is not expected to play as significant a role in the process of energy isotropization of intense unneutralized charged particle beams as the electrostatic Harris-type instability.

  11. Electromagnetic Weibel Instability in Intense Charged Particle Beams with Large Energy Anisotropy

    SciTech Connect

    Edward A. Startsev; Ronald C. Davidson

    2003-10-20

    In plasmas with strongly anisotropic distribution functions, collective instabilities may develop if there is sufficient coupling between the transverse and longitudinal degrees of freedom. Our previous numerical and theoretical studies of intense charged particle beams with large temperature anisotropy [E. A. Startsev, R. C. Davidson and H. Qin, PRSTAB, 6, 084401 (2003); Phys. Plasmas 9, 3138 (2002)] demonstrated that a fast, electrostatic, Harris-like instability develops, and saturates nonlinearly, for sufficiently large temperature anisotropy (T{sub {perpendicular}b}/T{sub {parallel}b} >> 1). The total distribution function after saturation, however, is still far from equipartitioned. In this paper the linearized Vlasov-Maxwell equations are used to investigate detailed properties of the transverse electromagnetic Weibel-type instability for a long charge bunch propagating through a cylindrical pipe of radius r{sub w}. The kinetic stability analysis is carried out for azimuthally symmetric perturbations about a two-temperature thermal equilibrium distribution in the smooth-focusing approximation. The most unstable modes are identified, and their eigenfrequencies, radial mode structure and instability thresholds are determined. The stability analysis shows that, although there is free energy available to drive the electromagnetic Weibel instability, the finite transverse geometry of the charged particle beam introduces a large threshold value for the temperature anisotropy ((T{sub {perpendicular}b}/T{sub {parallel}b}){sup Weibel} >> (T{sub {perpendicular}b}/T{sub {parallel}b}){sup Harris}) below which the instability is absent. Hence, unlike the case of an electrically neutral plasma, the Weibel instability is not expected to play as significant a role in the process of energy isotropization of intense unneutralized charged particle beams as the electrostatic Harris-type instability.

  12. Focusing Intense Charged Particle Beams with Achromatic Effects for Heavy Ion Fusion

    NASA Astrophysics Data System (ADS)

    Mitrani, James; Kaganovich, Igor

    2012-10-01

    Final focusing systems designed to minimize the effects of chromatic aberrations in the Neutralized Drift Compression Experiment (NDCX-II) are described. NDCX-II is a linear induction accelerator, designed to accelerate short bunches at high current. Previous experiments showed that neutralized drift compression significantly compresses the beam longitudinally (˜60x) in the z-direction, resulting in a narrow distribution in z-space, but a wide distribution in pz-space. Using simple lenses (e.g., solenoids, quadrupoles) to focus beam bunches with wide distributions in pz-space results in chromatic aberrations, leading to lower beam intensities (J/cm^2). Therefore, the final focusing system must be designed to compensate for chromatic aberrations. The paraxial ray equations and beam envelope equations are numerically solved for parameters appropriate to NDCX-II. Based on these results, conceptual designs for final focusing systems using a combination of solenoids and/or quadrupoles are optimized to compensate for chromatic aberrations. Lens aberrations and emittance growth will be investigated, and analytical results will be compared with results from numerical particle-in-cell (PIC) simulation codes.

  13. Perturbative Particle Simulation for an Intense Ion Beam in a Periodic Quadrupole Focusing Field

    NASA Astrophysics Data System (ADS)

    Lee, W. W.

    1996-11-01

    footnotetext[1]This work is supported the DOE contract DE-AC02-76-CHO-3073. footnotetext[2]In collaboration with Q. Qian and R. C. Davidson, PPPL. Stability and transport properties of an intense ion beam propagating through an alternating-gradient quadrupole focusing field with initial Kapchinskij-Vladimirskij (KV) distribution(I. M. Kapchinksij and V. V. Vladimirskj, Proceedings of the International Conference on High Energy Accelerators and Instrumentation (CERN Geneva, 1959), p. 274.) are studied using newly-developed perturbative particle simulation techniques. Specifically, two different schemes have been investigated: the first is based on the δ f scheme originally developed for tokamak plasmas,(A. Dimits and W. W. Lee, J. Comput. Phys. 107), 309 (1993); S. Parker and W. W. Lee, Phys. Fluids B 5, 77 (1993). and the other is related to the linearized trajectory scheme.(J. Byers, Proceedings of the 4th Conference on Numerical Simulation of Plasmas, (NRL, Washington D.C., 1970),p.496.) While the former is useful for both linear and nonlinear simulations, the latter can be used for benchmark purpose. Stability properties and associated mode structures are investigated over a wide range of beam current and focusing field strength. The new schemes are found to be highly effective in describing detailed properties of beam stability and propagation over long distances. For example, a stable KV beam can indeed propagate over hundreds of lattice period in the simulation with negligible growth. On the other hand, in the unstable region when the beam current is sufficiently high,(I. Hoffman, L. Laslett, L. Smith, and I. Haber, Particle Accelerators 13), 145 (1983). large-amplitude density perturbations with (δ n)_max/hatn0 ~ 1 with low azimuthal harmonic numbers, concentrated near the beam surface, are observed. The corresponding mode structures are of Gaussian shape in the radial direction. The physics of nonlinear saturation and emittance growth will be discussed

  14. Centroid and Envelope Dynamics of High-intensity Charged Particle Beams in an External Focusing Lattice and Oscillating Wobbler

    SciTech Connect

    Qin, Hong; Davidson, Ronald C.; Logan, B. Grant

    2010-04-28

    The centroid and envelope dynamics of a high-intensity charged particle beam are investigated as a beam smoothing technique to achieve uniform illumination over a suitably chosen region of the target for applications to ion-beam-driven high energy density physics and heavy ion fusion. The motion of the beam centroid projected onto the target follows a smooth pattern to achieve the desired illumination, for improved stability properties during the beam-target interaction. The centroid dynamics is controlled by an oscillating "wobbler", a set of electrically-biased plates driven by RF voltage. __________________________________________________

  15. A spectral method for halo particle definition in intense mismatched beams

    SciTech Connect

    Dorf, Mikhail A.; Davidson, Ronald C.; Startsev, Edward A.

    2011-04-15

    An advanced spectral analysis of a mismatched charged particle beam propagating through a periodic focusing transport lattice is utilized in particle-in-cell (PIC) simulations. It is found that the betatron frequency distribution function of a mismatched space-charge-dominated beam has a bump-on-tail structure attributed to the beam halo particles. Based on this observation, a new spectral method for halo particle definition is proposed that provides the opportunity to carry out a quantitative analysis of halo particle production by a beam mismatch. In addition, it is shown that the spectral analysis of the mismatch relaxation process provides important insights into the emittance growth attributed to the halo formation and the core relaxation processes. Finally, the spectral method is applied to the problem of space-charge transport limits.

  16. New Spectral Method for Halo Particle Definition in Intense Mis-matched Beams

    SciTech Connect

    Dorf, Mikhail A.; Davidson, Ronald C.; Startsev, Edward A.

    2011-04-27

    An advanced spectral analysis of a mis-matched charged particle beam propagating through a periodic focusing transport lattice is utilized in particle-in-cell (PIC) simulations. It is found that the betatron frequency distribution function of a mismatched space-charge-dominated beam has a bump-on-tail structure attributed to the beam halo particles. Based on this observation, a new spectral method for halo particle definition is proposed that provides the opportunity to carry out a quantitative analysis of halo particle production by a beam mismatch. In addition, it is shown that the spectral analysis of the mismatch relaxation process provides important insights into the emittance growth attributed to the halo formation and the core relaxation processes. Finally, the spectral method is applied to the problem of space-charge transport limits.

  17. A Core-Particle Model for Periodically Focused Ion Beams with Intense Space-Charge

    SciTech Connect

    Lund, S M; Barnard, J J; Bukh, B; Chawla, S R; Chilton, S H

    2006-08-02

    A core-particle model is derived to analyze transverse orbits of test particles evolving in the presence of a core ion beam described by the KV distribution. The core beam has uniform density within an elliptical cross-section and can be applied to model both quadrupole and solenoidal focused beams in periodic or aperiodic lattices. Efficient analytical descriptions of electrostatic space-charge fields external to the beam core are derived to simplify model equations. Image charge effects are analyzed for an elliptical beam centered in a round, conducting pipe to estimate model corrections resulting from image charge nonlinearities. Transformations are employed to remove coherent utter motion associated with oscillations of the ion beam core due to rapidly varying, linear applied focusing forces. Diagnostics for particle trajectories, Poincare phase-space projections, and single-particle emittances based on these transformations better illustrate the effects of nonlinear forces acting on particles evolving outside the core. A numerical code has been written based on this model. Example applications illustrate model characteristics. The core-particle model described has recently been applied to identify physical processes leading to space-charge transport limits for an rms matched beam in a periodic quadrupole focusing channel [Lund and Chawla, Nuc. Instr. and Meth. A 561, 203 (2006)]. Further characteristics of these processes are presented here.

  18. A core-particle model for periodically focused ion beams with intense space-charge

    NASA Astrophysics Data System (ADS)

    Lund, Steven M.; Barnard, John J.; Bukh, Boris; Chawla, Sugreev R.; Chilton, Sven H.

    2007-07-01

    A core-particle (CP) model is derived to analyze transverse orbits of test-particles evolving in the presence of a core ion beam that has uniform density within an elliptical cross-section. The model can be applied to both quadrupole and solenoidal focused beams in periodic or aperiodic lattices. Efficient analytical descriptions of electrostatic space-charge fields external to the beam core are derived to simplify model equations. Image-charge effects are analyzed for an elliptical beam centered in a round, conducting pipe to estimate model corrections resulting from image-charge nonlinearities. Transformations are employed in diagnostics to remove coherent flutter motion associated with oscillations of the ion beam core due to rapidly varying, linear applied-focusing forces. Diagnostics for particle trajectories, Poincaré phase-space projections, and single-particle emittances based on these transformations better illustrate the effects of nonlinear forces acting on particles evolving outside the core. A numerical code has been written based on this model. Example applications illustrate model characteristics. The CP model described has recently been applied to identify physical processes leading to space-charge transport limits for an rms-envelope matched beam in a periodic quadrupole focusing-channel [S.M. Lund, S.R. Chawla, Nucl. Instr. and Meth. A 561 (2006) 203]. Further characteristics of these processes are presented here.

  19. In-situ determination of energy species yields of intense particle beams

    DOEpatents

    Kugel, H.W.; Kaita, R.

    1983-09-26

    Objects of the present invention are provided for a particle beam having a full energy component at least as great as 25 keV, which is directed onto a beamstop target, such that Rutherford backscattering, preferably near-surface backscattering occurs. The geometry, material composition and impurity concentration of the beam stop are predetermined, using any suitable conventional technique. The energy-yield characteristic response of backscattered particles is measured over a range of angles using a fast ion electrostatic analyzer having a microchannel plate array at its focal plane. The knee of the resulting yield curve, on a plot of yield versus energy, is analyzed to determine the energy species components of various beam particles having the same mass.

  20. Weibel and Two-Stream Instabilities for Intense Charged Particle Beam Propagation through Neutralizing Background Plasma

    SciTech Connect

    Ronald C. Davidson; Igor Kaganovich; Edward A. Startsev

    2004-04-09

    Properties of the multi-species electromagnetic Weibel and electrostatic two-stream instabilities are investigated for an intense ion beam propagating through background plasma. Assuming that the background plasma electrons provide complete charge and current neutralization, detailed linear stability properties are calculated within the framework of a macroscopic cold-fluid model for a wide range of system parameters.

  1. Sheet beam model for intense space-charge: with application to Debye screening and the distribution of particle oscillation frequencies in a thermal equilibrium beam

    SciTech Connect

    Lund, Steven M.; Friedman, Alex; Bazouin, Guillaume

    2011-01-10

    A one-dimensional Vlasov-Poisson model for sheet beams is reviewed and extended to provide a simple framework for analysis of space-charge effects. Centroid and rms envelope equations including image charge effects are derived and reasonable parameter equivalences with commonly employed 2D transverse models of unbunched beams are established. This sheet beam model is then applied to analyze several problems of fundamental interest. A sheet beam thermal equilibrium distribution in a continuous focusing channel is constructed and shown to have analogous properties to two- d three-dimensional thermal equilibrium models in terms of the equilibrium structure and Deybe screening properties. The simpler formulation for sheet beams is exploited to explicitly calculate the distribution of particle oscillation frequencies within a thermal equilibrium beam. It is shown that as space-charge intensity increases, the frequency distribution becomes broad, suggesting that beams with strong space-charge can have improved stability.

  2. Novel Hamiltonian method for collective dynamics analysis of an intense charged particle beam propagating through a periodic focusing quadrupole lattice

    SciTech Connect

    Startsev, Edward A.; Davidson, Ronald C.

    2011-05-15

    Identifying regimes for quiescent propagation of intense beams over long distances has been a major challenge in accelerator research. In particular, the development of systematic theoretical approaches that are able to treat self-consistently the applied oscillating force and the nonlinear self-field force of the beam particles simultaneously has been a major challenge of modern beam physics. In this paper, the recently developed Hamiltonian averaging technique [E. A. Startsev, R. C. Davidson, and M. Dorf, Phys. Rev. ST Accel. Beams 13, 064402 (2010)] which incorporates both the applied periodic focusing force and the self-field force of the beam particles, is generalized to the case of time-dependent beam distributions. The new formulation allows not only a determination of quasi-equilibrium solutions of the non-linear Vlasov-Poison system of equations but also a detailed study of their stability properties. The corrections to the well-known ''smooth-focusing'' approximation are derived, and the results are applied to a matched beam with thermal equilibrium distribution function. It is shown that the corrections remain small even for moderate values of the vacuum phase advance {sigma}{sub {upsilon}}. Nonetheless, because the corrections to the average self-field potential are non-axisymmetric, the stability properties of the different beam quasi-equilibria can change significantly.

  3. Influence of equipartitioning on the emittance of intense charged-particle beams

    SciTech Connect

    Wangler, T.P.; Guy, F.W.; Hofmann, I.

    1986-01-01

    We combine the ideas of kinetic energy equipartitioning and nonlinear field energy to obtain a quantitative description for rms emittance changes induced in intense beams with two degrees of freedom. We derive equations for emittance change in each plane for continuous elliptical beams and axially symmetric bunched beams, with arbitrary initial charge distributions within a constant focusing channel. The complex details of the mechanisms leading to kinetic energy transfer are not necessary to obtain the formulas. The resulting emittance growth equations contain two separate terms: the first describes emittance changes associated with the transfer of energy between the two planes; the second describes emittance growth associated with the transfer of nonlinear field energy into kinetic energy as the charge distribution changes.

  4. Generation of Initial Kinetic Distributions for Simulation of Long-Pulse Charged Particle Beams with High Space-Charge intensity

    SciTech Connect

    Lund, Steven M.; Kikuchi, Takashi; Davidson, Ronald C.

    2007-04-03

    Self-consistent Vlasov-Poisson simulations of beams with high space-charge intensity often require specification of initial phase-space distributions that reflect properties of a beam that is well adapted to the transport channel--both in terms of low-order rms (envelope) properties as well as the higher-order phase-space structure. Here, we first review broad classes of kinetic distributions commonly in use as initial Vlasov distributions in simulations of unbunched or weakly bunched beams with intense space-charge fields including: the Kapchinskij-Vladimirskij (KV) equilibrium, continuous-focusing equilibria with specific detailed examples, and various non-equilibrium distributions, such as the semi-Gaussian distribution and distributions formed from specified functions of linear-field Courant-Snyder invariants. Important practical details necessary to specify these distributions in terms of usual accelerator inputs are presented in a unified format. Building on this presentation, a new class of approximate initial kinetic distributions are constructed using transformations that preserve linear-focusing single-particle Courant-Snyder invariants to map initial continuous-focusing equilibrium distributions to a form more appropriate for non-continuous focusing channels. Self-consistent particle-in-cell simulations are employed to show that the approximate initial distributions generated in this manner are better adapted to the focusing channels for beams with high space-charge intensity. This improved capability enables simulation applications that more precisely probe intrinsic stability properties and machine performance.

  5. Generation of initial Vlasov distributions for simulation of charged particle beams with high space-charge intensity

    SciTech Connect

    Lund, S M; Kikuchi, T; Davidson, R C

    2007-04-12

    Self-consistent Vlasov simulations of beams with high space-charge intensity often require specification of initial phase-space distributions that reflect properties of a beam that is well adapted to the transport channel, both in terms of low-order rms (envelope) properties as well as the higher-order phase-space structure. Here, we first review broad classes of distributions commonly in use as initial Vlasov distributions in simulations of beams with intense space-charge fields including: the Kapchinskij-Vladimirskij (KV) equilibrium, continuous-focusing equilibria with specific detailed examples, and various non-equilibrium distributions, such as the semi-Gaussian distribution and distributions formed from specified functions of linear-field Courant-Snyder invariants. Important practical details necessary to specify these distributions in terms of usual accelerator inputs are presented in a unified format. Building on this presentation, a new class of approximate initial distributions are constructed using transformations that preserve linear-focusing single-particle Courant-Snyder invariants to map initial continuous-focusing equilibrium distributions to a form more appropriate for non-continuous focusing channels. Self-consistent particle-in-cell simulations are employed to show that the approximate initial distributions generated in this manner are better adapted to the focusing channels for beams with high space-charge intensity. This improved capability enables simulation applications that more precisely probe intrinsic stability properties and machine performance.

  6. Grid dependent noise and entropy growth in anisotropic 3d particle-in-cell simulation of high intensity beams

    NASA Astrophysics Data System (ADS)

    Hofmann, I.; Boine-Frankenheim, O.

    2014-12-01

    The numerical noise inherent to particle-in-cell (PIC) simulation of 3d anisotropic high intensity bunched beams in periodic focusing is compared with the analytical model by Struckmeier [Part. Accel. 45, 229 (1994)]. The latter assumes that entropy growth can be related to Markov type stochastic processes due to temperature anisotropy and the artificial "collisions" caused by using macro-particles and calculating the space charge effect. The PIC simulations are carried out with the tracewin code widely used for high intensity beam simulation. The resulting noise can lead to growth of the six-dimensional rms emittance. The logarithm of the latter is shown to qualify as rms-based entropy. We confirm the dependence of this growth on the bunch temperature anisotropy as predicted by Struckmeier. However, we also find a grid and focusing dependent component of noise not predicted by Struckmeier. Although commonalities exist with well-established models for collision effects in PIC-simulation of extended plasmas, a distinctive feature is the presence of a periodic focusing potential, wherein the beam one-component plasma extends only over relatively few Debye lengths. Our findings are applied in particular to noise in high current linac beam simulation, where they help for optimization of the balance between the number of simulation particles and the grid resolution.

  7. Theoretical Studies on Intense Laser Produced Quasi-Monoenergetic Particle Beams

    SciTech Connect

    Sheng, Z. M.; Zhang, J.; Wang, W. M.; Yan, X. Q.; Chen, M.; Chen, J. E.

    2009-07-25

    A brief review is presented on our recent theoretical studies on the quasi-monoenergetic electron and proton beam generation by intense laser pulses. For the electron beam generation from laser wakefields, the mechanisms of electron injection by a laser pulse in the colliding geometry are investigated. It shows that there exist two mechanisms, which are called collective injection and stochastic injection. The number of injection electrons is studied as a function of the injection pulse intensity, pulse duration, as well as laser polarization. The injection by a transverse intersecting laser pulse is also investigated, which appears relatively easy for experimental setup. The required laser parameters are comparable to the colliding geometry. The proton acceleration by collisionless electrostatic shock waves is investigated and shock wave propagation through the interface of two targets with different ion species is simulated. It is found that ions with a relatively large charge-to-mass ratio can be accelerated successively in two counter-propagating shocks when they are overtaken by shock fronts until their energy is larger than the scalar potential of the shock waves. A scheme of ion acceleration in the new parameter regime called phase stable acceleration is proposed with the use of circularly-polarized laser pulses irradiating on very thin solid targets, which would enable one to obtain quasi-monoenergetic proton beams of multi-100 MeV with 100 TW-class lasers.

  8. Intense low energy positron beams

    SciTech Connect

    Lynn, K.G.; Jacobsen, F.M.

    1993-12-31

    Intense positron beams are under development or being considered at several laboratories. Already today a few accelerator based high intensity, low brightness e{sup +} beams exist producing of the order of 10{sup 8} {minus} 10{sup 9} e{sup +}/sec. Several laboratories are aiming at high intensity, high brightness e{sup +} beams with intensities greater than 10{sup 9} e{sup +}/sec and current densities of the order of 10{sup 13} {minus} 10{sup 14} e{sup +} sec{sup {minus}} {sup 1}cm{sup {minus}2}. Intense e{sup +} beams can be realized in two ways (or in a combination thereof) either through a development of more efficient B{sup +} moderators or by increasing the available activity of B{sup +} particles. In this review we shall mainly concentrate on the latter approach. In atomic physics the main trust for these developments is to be able to measure differential and high energy cross-sections in e{sup +} collisions with atoms and molecules. Within solid state physics high intensity, high brightness e{sup +} beams are in demand in areas such as the re-emission e{sup +} microscope, two dimensional angular correlation of annihilation radiation, low energy e{sup +} diffraction and other fields. Intense e{sup +} beams are also important for the development of positronium beams, as well as exotic experiments such as Bose condensation and Ps liquid studies.

  9. Mitigating chromatic effects for the transverse focusing of intense charged particle beams

    NASA Astrophysics Data System (ADS)

    Mitrani, James; Kaganovich, Igor; Davidson, Ronald

    2013-09-01

    A final focusing scheme designed to minimize chromatic effects is discussed. Solenoids are often used for transverse focusing in accelerator systems that require a charged particle beam with a small focal spot and/or large energy density A sufficiently large spread in axial momentum will reduce the effectiveness of transverse focusing, and result in chromatic effects on the final focal spot. Placing a weaker solenoid upstream of a stronger final focusing solenoid (FFS) mitigates chromatic effects on transverse beam focusing. J.M. Mitrani et al., Nucl. Inst. Meth. Phys. Res. A (2013) http://dx.doi.org/10.1016/j.nima.2013.05.09 This work was supported by DOE contract DE-AC02-09CH11466.

  10. Particle beam injection system

    DOEpatents

    Jassby, Daniel L.; Kulsrud, Russell M.

    1977-01-01

    This invention provides a poloidal divertor for stacking counterstreaming ion beams to provide high intensity colliding beams. To this end, method and apparatus are provided that inject high energy, high velocity, ordered, atomic deuterium and tritium beams into a lower energy, toroidal, thermal equilibrium, neutral, target plasma column that is magnetically confined along an endless magnetic axis in a strong restoring force magnetic field having helical field lines to produce counterstreaming deuteron and triton beams that are received bent, stacked and transported along the endless axis, while a poloidal divertor removes thermal ions and electrons all along the axis to increase the density of the counterstreaming ion beams and the reaction products resulting therefrom. By balancing the stacking and removal, colliding, strong focused particle beams, reaction products and reactions are produced that convert one form of energy into another form of energy.

  11. Intense microwave and particle beams; Proceedings of the Meeting, Los Angeles, CA, Jan. 16-19, 1990

    SciTech Connect

    Brandt, H.E.

    1990-01-01

    Various papers on intense microwave and particle beams are presented. Individual topics addressed include: influence of beam loading on the operation of the relativistic klystron amplifier, gain and efficiency studies of a high-power traveling-wave-tube amplifier, relativistic O-type oscillator-amplifier systems, stability of mutually coupled oscillators, effects of a dense background plasma on the dispersion of backward wave oscillators, scalarized photon analysis of spontaneous emission in the uniform magnetic field FEL, tunable 200-GHz electron cyclotron maser, plasma-filled dielectric Cerenkov maser, MIT 35-GHz cyclotron autoresonance maser amplifier, array feed/reflector antenna design for intense microwave beams, propagation of an intense microwave beam from a phased array. Also discussed are: electromagnetic missile from a nonuniform aperture field, backscattering of electromagnetic missiles, plasma waveguide, electromagnetic missiles from currents on fractal sets, effects of high-power RF fields in the atmosphere and the ionosphere, pulsed sources and currents for acoustic and electromagnetic bullets, digital transmitter array for producing enhanced ionization.

  12. Investigation of the effects of intense pulsed particle beams on the durability of metal-to-plastic interfaces.

    SciTech Connect

    Prasad, Somuri V.; Renk, Timothy J.; Provencio, Paula Polyak; Petersen, Donald W.; Petersen, Thomas D.; Buchheit, Thomas Edward; McNulty, Donald E.; Engelko, Vladimir

    2005-02-01

    We have investigated the potential for intense particle beam surface modification to improve the mechanical properties of materials commonly used in the human body for contact surfaces in, for example, hip and knee implants. The materials studied include Ultra-High Molecular Weight Polyethylene (UHMWPE), Ti-6Al-4Al (titanium alloy), and Co-Cr-Mo alloy. Samples in flat form were exposed to both ion and electron beams (UHMWPE), and to ion beam treatment (metals). Post-analysis indicated a degradation in bulk properties of the UHMWPE, except in the case of the lightest ion fluence tested. A surface-alloyed Hf/Ti layer on the Ti-6Al-4V is found to improve surface wear durability, and have favorable biocompatibility. A promising nanolaminate ceramic coating is applied to the Co-Cr-Mo to improve surface hardness.

  13. Beam Dynamics Comparisons Between Semi-Lagrangian and PIC Techniques for Simulation of the Propagation of Intense Charged Particle Beams in 2D Channels

    SciTech Connect

    Lemaire, J.-L.; Sonnendruecker, E.

    2005-06-08

    We have investigated the dynamical behaviors of intense charged particle beams propagating through continuous and periodic systems using a fully self consistent method based on the direct solution of the Vlasov equation in presence of conducting wall. The simulation code deals either with an axisymetric system (r, vr, v{theta}) or cartesian system (x, vx, y, vy). Several diagnostics have been implemented enabling to display halo generation caused by sources that are driven by nonlinear forces, mismatching, non-stationary beam distributions and its development Comparisons with corresponding PIC technique simulations can be made. Further works are in progress to study in the same manner the propagation of charged particle beams in quadrupole FODO channels.

  14. Intense ion beam generator

    DOEpatents

    Humphries, Jr., Stanley; Sudan, Ravindra N.

    1977-08-30

    Methods and apparatus for producing intense megavolt ion beams are disclosed. In one embodiment, a reflex triode-type pulsed ion accelerator is described which produces ion pulses of more than 5 kiloamperes current with a peak energy of 3 MeV. In other embodiments, the device is constructed so as to focus the beam of ions for high concentration and ease of extraction, and magnetic insulation is provided to increase the efficiency of operation.

  15. Numerical investigations of mismatch induced halos in intense charged particle beams

    SciTech Connect

    Papadopoulos, C.; Haber, I.; Kishek, R. A.; O'Shea, P. G.

    2009-01-22

    In this paper, we discuss the parametric resonance model of halo creation, and compare it with self consistent simulation results. In particular, we employ two different initial distribution functions, and we find agreement with the particle-core model, within the limitations of the latter. Furthermore, using a simple particle tracking algorithm, we are able to follow the trajectories of the halo particles, noting that a large number of them go through the core and re-emerge later.

  16. Relation between field energy and RMS emittance in intense particle beams

    SciTech Connect

    Wangler, T.P.; Crandall, K.R.; Mills, R.S.; Reiser, M.

    1985-10-01

    An equation is presented for continuous beams with azimuthal symmetry and continuous linear focusing, which expresses a relationship between the rate of change for squared rms emittance and the rate of change for a quantity we call the nonlinear field energy. The nonlinear field energy depends on the shape of the charge distribution and corresponds to the residual field energy possessed by beams with nonuniform charge distributions. The equation can be integrated for the case of an rms matched beam to yield a formula for space-charge-induced emittance growth that we have tested numerically for a variety of initial distributions. The results provide a framework for discussing the scaling of rms emittance growth and an explanation for the well-established lower limit on output emittance.

  17. Relation between field energy and RMS emittance in intense particle beams

    SciTech Connect

    Wangler, T.P.; Crandall, K.R.; Mills, R.S.; Reiser, M.

    1985-01-01

    An equation is presented for continuous beams with azimuthal symmetry and continuous linear focusing, which expresses a relationship between the rate of change for squared rms emittance and the rate of change for a quantity we call the nonlinear field energy. The nonlinear field energy depends on the shape of the charge distribution and corresponds to the residual field energy possessed by beams with nonuniform charge distributions. The equation can be integrated for the case of an rms matched beam to yield a formula for space-charge-induced emittance growth that we have tested numerically for a variety of initial distributions. The results provide a framework for discussing the scaling of rms emittance growth and an explanation for the well-established lower limit on output emittance. 15 refs., 4 figs.

  18. A Class Of Generalized Kapchinskij-Vladimirskij Solutions And Associated Envelope Equations For High-intensity Charged Particle Beams

    SciTech Connect

    Hong Qin and Ronald C. Davidson

    2012-04-25

    A class of generalized Kapchinskij-Vladimirskij solutions of the nonlinear Vlasov-Maxwell equations and the associated envelope equations for high-intensity beams in a periodic lattice is derived. It includes the classical Kapchinskij-Vladimirskij solution as a special case. For a given lattice, the distribution functions and the envelope equations are specified by eight free parameters. The class of solutions derived captures a wider range of dynamical envelope behavior for high-intensity beams, and thus provides a new theoretical tool to investigate the dynamics of high-intensity beams.

  19. Traverse Focusing of Intense Charged Particle Beams with Chromatic Effects for Heavy Ion Fusion

    SciTech Connect

    James M. Mitrani, Igor D. Kaganovich, Ronald C. Davidson

    2013-01-28

    A fi nal focusing scheme designed to minimize chromatic effects is discussed. The Neutralized Drift Compression Experiment-II (NDCX-II) will apply a velocity tilt for longitudinal bunch compression, and a fi nal focusing solenoid (FFS) for transverse bunch compression. In the beam frame, neutralized drift compression causes a suffi ciently large spread in axial momentum, pz , resulting in chromatic effects to the fi nal focal spot during transverse bunch compression. Placing a weaker solenoid upstream of a stronger fi nal focusing solenoid (FFS) mitigates chromatic effects and improves transverse focusing by a factor of approximately 2-4 for appropriate NDCX-II parameters.

  20. Particle Beam Radiography

    NASA Astrophysics Data System (ADS)

    Peach, Ken; Ekdahl, Carl

    2014-02-01

    Particle beam radiography, which uses a variety of particle probes (neutrons, protons, electrons, gammas and potentially other particles) to study the structure of materials and objects noninvasively, is reviewed, largely from an accelerator perspective, although the use of cosmic rays (mainly muons but potentially also high-energy neutrinos) is briefly reviewed. Tomography is a form of radiography which uses multiple views to reconstruct a three-dimensional density map of an object. There is a very wide range of applications of radiography and tomography, from medicine to engineering and security, and advances in instrumentation, specifically the development of electronic detectors, allow rapid analysis of the resultant radiographs. Flash radiography is a diagnostic technique for large high-explosive-driven hydrodynamic experiments that is used at many laboratories. The bremsstrahlung radiation pulse from an intense relativistic electron beam incident onto a high-Z target is the source of these radiographs. The challenge is to provide radiation sources intense enough to penetrate hundreds of g/cm2 of material, in pulses short enough to stop the motion of high-speed hydrodynamic shocks, and with source spots small enough to resolve fine details. The challenge has been met with a wide variety of accelerator technologies, including pulsed-power-driven diodes, air-core pulsed betatrons and high-current linear induction accelerators. Accelerator technology has also evolved to accommodate the experimenters' continuing quest for multiple images in time and space. Linear induction accelerators have had a major role in these advances, especially in providing multiple-time radiographs of the largest hydrodynamic experiments.

  1. Beam halo in high-intensity beams

    SciTech Connect

    Wangler, T.P. )

    1993-12-25

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. We describe what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. We present initial results from a study of beam entropy for an intense space-charge dominated beam.

  2. Beam halo in high-intensity beams

    SciTech Connect

    Wangler, T.P.

    1993-06-01

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam.

  3. Beam halo in high-intensity beams

    SciTech Connect

    Wangler, T.P.

    1993-01-01

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam.

  4. PARTICLE BEAM TRACKING CIRCUIT

    DOEpatents

    Anderson, O.A.

    1959-05-01

    >A particle-beam tracking and correcting circuit is described. Beam induction electrodes are placed on either side of the beam, and potentials induced by the beam are compared in a voltage comparator or discriminator. This comparison produces an error signal which modifies the fm curve at the voltage applied to the drift tube, thereby returning the orbit to the preferred position. The arrangement serves also to synchronize accelerating frequency and magnetic field growth. (T.R.H.)

  5. Electron Cooling of Intense Ion Beam

    SciTech Connect

    Dietrich, J.; Kamerdjiev, V.; Maier, R.; Prasuhn, D.; Stein, J.; Stockhorst, H.; Korotaev, Yu.; Meshkov, I.; Sidorin, A.; Smirnov, A.

    2006-03-20

    Results of experimental studies of the electron cooling of a proton beam at COSY (Juelich, Germany) are presented. Intensity of the proton beam is limited by two general effects: particle loss directly after the injection and development of instability in a deep cooled ion beam. Results of the instability investigations performed at COSY during last years are presented in this report in comparison with previous results from HIMAC (Chiba, Japan) CELSIUS (Uppsala, Sweden) and LEAR (CERN). Methods of the instability suppression, which allow increasing the cooled beam intensity, are described. This work is supported by RFBR grant no. 05-02-16320 and INTAS grant no. 03-54-5584.

  6. Beam diagnostics for high intensity hadron accelerators

    NASA Astrophysics Data System (ADS)

    Ausset, Patrick; Gardès, Daniel

    2007-07-01

    High intensity hadron beam accelerators have been recently proposed and developed either for the production of high intensity secondary beams for Nuclear and Particle Physics research (EURISOL, SPIRAL2, FAIR), or Applied Physics in the field of Accelerator Driven System and waste transmutation (EUROTRANS). For these applications, high power Linear Accelerator (LINAC) are planned to produce and accelerate hadron beams up to 1 GeV. Both commissioning and operation of these accelerators require dedicated beam instrumentation able to monitor and characterize on line as completely as possible the produced beams having a power in the range of 1 MW. Beam current, transverse beam centroı¨d position and profiles and beam energy are the most important characteristics that have to be measured. Due to the high average power of the beam, nondestructive or at least minimally intercepting beam sensors are required. Beam instrumentation for IPHI (CEA/DSM and CNRS/IN2P3 collaboration) which is a high intensity proton (3 MeV, 100 mA, CW operation) injector initially designed to be a possible front end for this kind of LINAC is under realization. Beam diagnostics already under operation, developments in progress will be described and will introduce a more general description of high power beam instrumentation.

  7. IMPACT: a facility to study the interaction of low-energy intense particle beams with dynamic heterogeneous surfaces.

    PubMed

    Allain, J P; Nieto, M; Hendricks, M R; Plotkin, P; Harilal, S S; Hassanein, A

    2007-11-01

    The Interaction of Materials with Particles and Components Testing (IMPACT) experimental facility is furnished with multiple ion sources and in situ diagnostics to study the modification of surfaces undergoing physical, chemical, and electronic changes during exposure to energetic particle beams. Ion beams with energies in the range between 20 and 5000 eV can bombard samples at flux levels in the range of 10(10)-10(15) cm(-2) s(-1); parameters such as ion angle of incidence and exposed area are also controllable during the experiment. IMPACT has diagnostics that allow full characterization of the beam, including a Faraday cup, a beam imaging system, and a retarding field energy analyzer. IMPACT is equipped with multiple diagnostics, such as electron (Auger, photoelectron) and ion scattering spectroscopies that allow different probing depths of the sample to monitor compositional changes in multicomponent and/or layered targets. A unique real-time erosion diagnostic based on a dual quartz crystal microbalance measures deposition from an eroding surface with rates smaller than 0.01 nm/s, which can be converted to a sputter yield measurement. The monitoring crystal can be rotated and placed in the target position so that the deposited material on the quartz crystal oscillator surface can be characterized without transfer outside of the vacuum chamber. PMID:18052463

  8. CLASHING BEAM PARTICLE ACCELERATOR

    DOEpatents

    Burleigh, R.J.

    1961-04-11

    A charged-particle accelerator of the proton synchrotron class having means for simultaneously accelerating two separate contra-rotating particle beams within a single annular magnet structure is reported. The magnet provides two concentric circular field regions of opposite magnetic polarity with one field region being of slightly less diameter than the other. The accelerator includes a deflector means straddling the two particle orbits and acting to collide the two particle beams after each has been accelerated to a desired energy. The deflector has the further property of returning particles which do not undergo collision to the regular orbits whereby the particles recirculate with the possibility of colliding upon subsequent passages through the deflector.

  9. Radiative trapping in intense laser beams

    NASA Astrophysics Data System (ADS)

    Kirk, J. G.

    2016-08-01

    The dynamics of electrons in counter-propagating, circularly polarized laser beams are shown to exhibit attractors whose ability to trap particles depends on the ratio of the beam intensities and a single parameter describing radiation reaction. Analytical expressions are found for the underlying limit cycles and the parameter range in which they are stable. In high-intensity optical pulses, where radiation reaction strongly modifies the trajectories, the production of collimated gamma-rays and the initiation of non-linear cascades of electron–positron pairs can be optimized by a suitable choice of the intensity ratio.

  10. Laser steering of particle beams: Refraction and reflection ofparticle beams

    SciTech Connect

    Esarey, Eric; Katsouleas, T.; Mori, W.B.; Dodd, E.; Lee, S.; Hemker, R.; Clayton, C.; Joshi, C.

    1999-11-01

    The co-propagation of an intense particle beam with an ionizing laser beam in a working gas/plasma is considered. When the axes of the laser and particle beam are not aligned, then asymmetric plasma lensing results in a net dipole field acting on the particle beam. The particle beam can be steered or bent (as well as focused) by steering the laser. An analogy is made between the bending of the particle beam by collective effects at a plasma boundary and the refraction or reflection of light at an interface. This mechanism of particle steering may be of interest in applications for which permanent magnets are inconvenient of a fast turn on is required. 3-D particle-in-cell simulations and relevance to a recent experiment are discussed.

  11. Intensity-symmetric Airy beams.

    PubMed

    Vaveliuk, P; Lencina, Alberto; Rodrigo, Jose A; Martnez-Matos, Ó

    2015-03-01

    Theoretical, numerical, and experimental research on a novel family of Airy beams in rectangular coordinates having a symmetric transverse pattern of light intensity is presented. The intensity-symmetric Airy beams include both the symmetric Airy beam whose field amplitude is an even function of the transverse coordinates and the antisymmetric Airy beam whose field amplitude is an odd function of such coordinates. The theoretical foundations are based on the relationship of the symmetries of the spectral phase with the cosine and sine Fourier transforms. These beams are analyzed in a propagation range also including the region preceding the Fourier plane. These beams exhibit autofocusing, collapse, self-bending, and reversal propagation. Moreover, the intensity distribution is strongly asymmetric with respect to the Fourier plane. All these peculiar features were not reported for other classes of paraxial beams in a rectangular frame. The experimental generation of intensity-symmetric Airy beams is demonstrated supporting the theoretical predictions. Possible applications in planar waveguide writing and optical trapping are also discussed. PMID:26366655

  12. Particle motion in crystalline beams

    SciTech Connect

    Haffmans, A.F.; Maletic, D.; Ruggiero, A.G.

    1994-04-20

    Studying the possibility of storing a low emittance (or ``cooled``) beam of charged particles in a storage ring, the authors are faced with the effect of space charge by which particles are repelled and influence each others` motion. The correct evaluation of the space-charge effects is important to determine the attainment and properties of Crystalline Beams, a phase transition which intense beams of ions can undergo when cooling is applied. In this report they derive the equations of motion of a particle moving under the action of external resorting forces generated by the magnets of the storage ring, and of the electromagnetic fields generated by the other particles. The motion in every direction is investigated: in the longitudinal, as well as vertical and horizontal direction. The external forces are assumed to be linear with the particle displacement from the reference orbit. The space-charge forces are comparable in magnitude to the external focusing forces. The equations of motion so derived are then used to determine confinement and stability conditions for the attainment of Crystalline Beams, using transfer matrices.

  13. Intense positron beam at KEK

    NASA Astrophysics Data System (ADS)

    Kurihara, Toshikazu; Yagishita, Akira; Enomoto, Atsushi; Kobayashi, Hitoshi; Shidara, Tetsuo; Shirakawa, Akihiro; Nakahara, Kazuo; Saitou, Haruo; Inoue, Kouji; Nagashima, Yasuyuki; Hyodo, Toshio; Nagai, Yasuyoshi; Hasegawa, Masayuki; Inoue, Yoshi; Kogure, Yoshiaki; Doyama, Masao

    2000-08-01

    A positron beam is a useful probe for investigating the electronic states in solids, especially concerning the surface states. The advantage of utilizing positron beams is in their simpler interactions with matter, owing to the absence of any exchange forces, in contrast to the case of low-energy electrons. However, such studies as low-energy positron diffraction, positron microscopy and positronium (Ps) spectroscopy, which require high intensity slow-positron beams, are very limited due to the poor intensity obtained from a conventional radioactive-isotope-based positron source. In conventional laboratories, the slow-positron intensity is restricted to 10 6 e +/s due to the strength of the available radioactive source. An accelerator based slow-positron source is a good candidate for increasing the slow-positron intensity. One of the results using a high intensity pulsed positron beam is presented as a study of the origins of a Ps emitted from SiO 2. We also describe the two-dimensional angular correlation of annihilation radiation (2D-ACAR) measurement system with slow-positron beams and a positron microscope.

  14. Continuation of full-scale three-dimensional numerical experiments on high-intensity particle and laser beam-matter interactions

    SciTech Connect

    Mori, Warren, B.

    2012-12-01

    We present results from the grant entitled, Continuation of full-scale three-dimensional numerical experiments on high-intensity particle and laser beam-matter interactions. The research significantly advanced the understanding of basic high-energy density science (HEDS) on ultra intense laser and particle beam plasma interactions. This advancement in understanding was then used to to aid in the quest to make 1 GeV to 500 GeV plasma based accelerator stages. The work blended basic research with three-dimensions fully nonlinear and fully kinetic simulations including full-scale modeling of ongoing or planned experiments. The primary tool was three-dimensional particle-in-cell simulations. The simulations provided a test bed for theoretical ideas and models as well as a method to guide experiments. The research also included careful benchmarking of codes against experiment. High-fidelity full-scale modeling provided a means to extrapolate parameters into regimes that were not accessible to current or near term experiments, thereby allowing concepts to be tested with confidence before tens to hundreds of millions of dollars were spent building facilities. The research allowed the development of a hierarchy of PIC codes and diagnostics that is one of the most advanced in the world.

  15. Longitudinal Density Modulation and Energy Conversion in Intense Beams

    SciTech Connect

    Harris, J; Neumann, J; Tian, K; O'Shea, P

    2006-02-17

    Density modulation of charged particle beams may occur as a consequence of deliberate action, or may occur inadvertently because of imperfections in the particle source or acceleration method. In the case of intense beams, where space charge and external focusing govern the beam dynamics, density modulation may under some circumstances be converted to velocity modulation, with a corresponding conversion of potential energy to kinetic energy. Whether this will occur depends on the properties of the beam and the initial modulation. This paper describes the evolution of discrete and continuous density modulations on intense beams, and discusses three recent experiments related to the dynamics of density-modulated electron beams.

  16. Experimental demonstration of an intensity minimum at the focus of a laser beam created by spatial coherence: application to the optical trapping of dielectric particles.

    PubMed

    Raghunathan, Shreyas B; van Dijk, Thomas; Peterman, Erwin J G; Visser, Taco D

    2010-12-15

    In trying to manipulate the intensity distribution of a focused field, one typically uses amplitude or phase masks. Here we explore an approach, namely, varying the state of spatial coherence of the incident field. We experimentally demonstrate that the focusing of a Bessel-correlated beam produces an intensity minimum at the geometric focus rather than a maximum. By varying the spatial coherence width of the field, which can be achieved by merely changing the size of an iris, it is possible to change this minimum into a maximum in a continuous manner. This method can be used, for example, in novel optical trapping schemes, to selectively manipulate particles with either a low or high index of refraction. PMID:21165125

  17. AGS RESONANT EXTRACTION WITH HIGH INTENSITY BEAMS.

    SciTech Connect

    AHRENS,L.; BROWN,K.; GLENN,J.W.; ROSER,T.; TSOUPAS,N.; VANASSELT,W.

    1999-03-29

    The Brookhaven AGS third integer resonant extraction system allows the AGS to provide high quality, high intensity 25.5 GeV/c proton beams simultaneously to four target stations and as many as 8 experiments. With the increasing intensities (over 7 x 10{sup 13} protons/pulse) and associated longer spill periods (2.4 to 3 seconds long), we continue to run with low losses and high quality low modulation continuous current beams.[1] Learning to extract and transport these higher intensity beams has required a process of careful modeling and experimentation. We have had to learn how to correct for various instabilities and how to better match extraction and the transport lines to the higher emittance beams being accelerated in the AGS. Techniques employed include ''RF'' methods to smooth out momentum distributions and fine structure. We will present results of detailed multi-particle tracking modeling studies which enabled us to develop a clear understanding of beam loss mechanisms in the transport and extraction process. We will report on our status, experiences, and the present understanding of the intensity limitations imposed by resonant extraction and transport to fixed target stations.

  18. Transverse beam shape measurements of intense proton beams using optical transition radiation

    SciTech Connect

    Scarpine, Victor E.; /Fermilab

    2012-03-01

    A number of particle physics experiments are being proposed as part of the Department of Energy HEP Intensity Frontier. Many of these experiments will utilize megawatt level proton beams onto targets to form secondary beams of muons, kaons and neutrinos. These experiments require transverse size measurements of the incident proton beam onto target for each beam spill. Because of the high power levels, most beam intercepting profiling techniques will not work at full beam intensity. The possibility of utilizing optical transition radiation (OTR) for high intensity proton beam profiling is discussed. In addition, previous measurements of OTR beam profiles from the NuMI beamline are presented.

  19. Confined energy distribution for charged particle beams

    DOEpatents

    Jason, Andrew J.; Blind, Barbara

    1990-01-01

    A charged particle beam is formed to a relatively larger area beam which is well-contained and has a beam area which relatively uniformly deposits energy over a beam target. Linear optics receive an accelerator beam and output a first beam with a first waist defined by a relatively small size in a first dimension normal to a second dimension. Nonlinear optics, such as an octupole magnet, are located about the first waist and output a second beam having a phase-space distribution which folds the beam edges along the second dimension toward the beam core to develop a well-contained beam and a relatively uniform particle intensity across the beam core. The beam may then be expanded along the second dimension to form the uniform ribbon beam at a selected distance from the nonlinear optics. Alternately, the beam may be passed through a second set of nonlinear optics to fold the beam edges in the first dimension. The beam may then be uniformly expanded along the first and second dimensions to form a well-contained, two-dimensional beam for illuminating a two-dimensional target with a relatively uniform energy deposition.

  20. Fan-beam intensity modulated proton therapy

    PubMed Central

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-01-01

    Purpose: This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques. Methods: A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0–255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets. Results: Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage

  1. Fan-beam intensity modulated proton therapy

    SciTech Connect

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-11-15

    Purpose: This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques.Methods: A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0–255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets.Results: Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage

  2. Adaptive Vlasov Simulations of Intense Beams

    SciTech Connect

    Sonnendruecker, Eric; Gutnic, Michael; Haefele, Matthieu; Lemaire, Jean-Louis

    2005-06-08

    Most simulations of intense particle beams are performed nowadays using Particle In Cell (PIC) techniques. Direct grid based Vlasov methods have also been used but mostly for 1D simulations as they become very costly in higher dimensions when using uniform phase space grids. We have recently introduced adaptive mesh refinement techniques that allow us to automatically concentrate the grid points at places where the distribution function is varying most. In this paper we shall introduce this technique and show how it can be used to improve the efficiency of grid based Vlasov solvers.

  3. Intense diagnostic neutral beam development for ITER

    SciTech Connect

    Rej, D.J.; Henins, I.; Fonck, R.J.; Kim, Y.J.

    1992-05-01

    For the next-generation, burning tokamak plasmas such as ITER, diagnostic neutral beams and beam spectroscopy will continue to be used to determine a variety of plasma parameters such as ion temperature, rotation, fluctuations, impurity content, current density profile, and confined alpha particle density and energy distribution. Present-day low-current, long-pulse beam technology will be unable to provide the required signal intensities because of higher beam attenuation and background bremsstrahlung radiation in these larger, higher-density plasmas. To address this problem, we are developing a short-pulse, intense diagnostic neutral beam. Protons or deuterons are accelerated using magnetic-insulated ion-diode technology, and neutralized in a transient gas cell. A prototype 25-kA, 100-kV, 1-{mu}s accelerator is under construction at Los Alamos. Initial experiments will focus on ITER-related issues of beam energy distribution, current density, pulse length, divergence, propagation, impurity content, reproducibility, and maintenance.

  4. Intense diagnostic neutral beam development for ITER

    SciTech Connect

    Rej, D.J.; Henins, I. ); Fonck, R.J.; Kim, Y.J. . Dept. of Nuclear Engineering and Engineering Physics)

    1992-01-01

    For the next-generation, burning tokamak plasmas such as ITER, diagnostic neutral beams and beam spectroscopy will continue to be used to determine a variety of plasma parameters such as ion temperature, rotation, fluctuations, impurity content, current density profile, and confined alpha particle density and energy distribution. Present-day low-current, long-pulse beam technology will be unable to provide the required signal intensities because of higher beam attenuation and background bremsstrahlung radiation in these larger, higher-density plasmas. To address this problem, we are developing a short-pulse, intense diagnostic neutral beam. Protons or deuterons are accelerated using magnetic-insulated ion-diode technology, and neutralized in a transient gas cell. A prototype 25-kA, 100-kV, 1-{mu}s accelerator is under construction at Los Alamos. Initial experiments will focus on ITER-related issues of beam energy distribution, current density, pulse length, divergence, propagation, impurity content, reproducibility, and maintenance.

  5. Beam intensity upgrade at Fermilab

    SciTech Connect

    Marchionni, A.; /Fermilab

    2006-07-01

    The performance of the Fermilab proton accelerator complex is reviewed. The coming into operation of the NuMI neutrino line and the implementation of slip-stacking to increase the anti-proton production rate has pushed the total beam intensity in the Main Injector up to {approx} 3 x 10{sup 13} protons/pulse. A maximum beam power of 270 kW has been delivered on the NuMI target during the first year of operation. A plan is in place to increase it to 350 kW, in parallel with the operation of the Collider program. As more machines of the Fermilab complex become available with the termination of the Collider operation, a set of upgrades are being planned to reach first 700 kW and then 1.2 MW by reducing the Main Injector cycle time and by implementing proton stacking.

  6. Emittance growth in intense beams

    SciTech Connect

    Wangler, T.P.; Mills, R.S.; Crandall, K.R.

    1987-03-01

    Recent progress in the study of high-current, low-emittance, charged-particle beams may have a significant influence in the design of future linear accelerators and beam-transport systems for higher brightness applications. Three space-charge-induced rms-emittance-growth mechanisms are now well established: (1) charge-density redistribution, (2) kinetic-energy exchange toward equipartitioning, and (3) coherent instabilities driven by periodic focusing systems. We report the results from a numerical simulation study of emittance in a high-current radio-frequency quadrupole (RFQ) linear accelerator, and present a new semiempirical equation for the observed emittance growth, which agrees well with the emittance growth predicted from numerical simulation codes.

  7. Propagation of intense charged-particle beams into vacuum. Annual progress report, 1 April 1984-31 March 1985

    SciTech Connect

    Destler, W.W.; Reiser, M.P.; Rhee, M.J.; Striffler, C.D.

    1985-03-31

    During the past year the experimental facilities have been augmented by the construction of a large-diameter (60cm) vacuum chamber with and array of radial current collectors to support detailed studies of beam-propagation characteristics, and a new pulsed magnetic field coil (surplus) from the Autoresonant Accelerator project. This new coil provides much more uniform fields over a longer axial length than did the previous coils. In addition, a Department of Defense University Instrumentation award is currently being used to construct a completely digital fast data-acquisition system. This system, currently under installation in a special shielded room in the laboratory, will allow much greater flexibility in the manner in which data are acquired and processed and hopefully will eventually reduce the yearly expenditures for Polaroid oscilloscope camera film.

  8. Electron Beam Dump Particle Search

    SciTech Connect

    Crisler, M.; Fenker, H.; Leedom, I.; Pordes, S.; /Fermilab

    1986-05-30

    The debate over the existence of a new particle postulated to explain the narrow positron spectra seen in heavy ion collisions has focused attention on a region of mass/lifetime where such a particle may exist and yet would not have been seen. To obtain the best possible sensitivity to elementary particles coupling to the electron in this unexplored region, we propose an electron beam dump experiment which will make parasitic use of the newly constructed wide band electron beam.

  9. Electrostatic wire stabilizing a charged particle beam

    DOEpatents

    Prono, D.S.; Caporaso, G.J.; Briggs, R.J.

    1983-03-21

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  10. Beam experiments towards high-intensity beams in RHIC

    SciTech Connect

    Montag C.; Ahrens, L.; Brennan, J.M.; Blaskiewicz, M.; Drees, A.; Fischer, W.; Hayes, T.; Huang, H.; Mernick, K.; Robert-Demolaize, G.; Smith, K.; Than, R.; Thieberger, P.; Yip, K.; Zeno, K.; Zhang, S.Y.

    2012-05-20

    Proton bunch intensities in RHIC are planned to be increased from 2 {center_dot} 10{sup 11} to 3 {center_dot} 10{sup 11} protons per bunch to increase the luminosity, together with head-on beam-beam compensation using electron lenses. To study the feasibility of the intensity increase, beam experiments are being performed. Recent experimental results are presented.

  11. Dynamics of Charged Particles in an Adiabatic Thermal Beam Equilibrium

    NASA Astrophysics Data System (ADS)

    Chen, Chiping; Wei, Haofei

    2010-11-01

    Charged-particle motion is studied in the self-electric and self-magnetic fields of a well-matched, intense charged-particle beam and an applied periodic solenoidal magnetic focusing field. The beam is assumed to be in a state of adiabatic thermal equilibrium. The phase space is analyzed and compared with that of the well-known Kapchinskij-Vladimirskij (KV)-type beam equilibrium. It is found that the widths of nonlinear resonances in the adiabatic thermal beam equilibrium are narrower than those in the KV-type beam equilibrium. Numerical evidence is presented, indicating almost complete elimination of chaotic particle motion in the adiabatic thermal beam equilibrium.

  12. Circular, confined distribution for charged particle beams

    DOEpatents

    Garnett, Robert W.; Dobelbower, M. Christian

    1995-01-01

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location.

  13. Circular, confined distribution for charged particle beams

    DOEpatents

    Garnett, R.W.; Dobelbower, M.C.

    1995-11-21

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location. 26 figs.

  14. High intensity muon beam source for neutrino beam experiments

    NASA Astrophysics Data System (ADS)

    Kamal Sayed, Hisham

    2015-09-01

    High intensity muon beams are essential for Muon accelerators like Neutrino Factories and Muon Colliders. In this study we report on a global optimization of the muon beam production and capture based on end-to-end simulations of the Muon Front End. The study includes the pion beam production target geometry, capture field profile, and forming muon beam into microbunches for further acceleration. The interplay between the transverse and longitudinal beam dynamics during the capture and transport of muon beam is evaluated and discussed. The goal of the optimization is to provide a set of design parameters that delivers high intensity muon beam that could be fit within the acceptance of a muon beam accelerator.

  15. Intense electron beam propagation across a magnetic field

    SciTech Connect

    Zhang, X.; Striffler, C.D.; Yao, R.L.; Destler, W.W.; Reiser, M.P.

    1989-01-01

    In this paper we consider the propagation of an intense electron-ion beam across an applied magnetic field. In the absence of the applied field, the beam system is in a Bennett equilibrium state that involves electrons with both large axial and thermal velocities and a cold stationary space-charge neutralizing ion species. Typical parameters under consideration are V{sub o} {approximately} 1 MV, I {approximately} 5 kA, T{sub e} {approximately} 100 keV, and beam radii {approximately} 1 cm. We find that in the intense beam regime, the propagation is limited due to space-charge depression caused by the deflection of the electron beam by the transverse field. This critical field is of the order of the peak self-magnetic field of the electron beam which is substantially higher than the single particle cut-off field. 8 refs., 3 figs.

  16. Solitary waves in particle beams

    SciTech Connect

    Bisognano, J.J.

    1996-07-01

    Since space charge waves on a particle beam exhibit both dispersive and nonlinear character, solitary waves or solitons are possible. Dispersive, nonlinear wave propagation in high current beams is found to be similar to ion-acoustic waves in plasmas with an analogy between Debye screening and beam pipe shielding. Exact longitudinal solitary wave propagation is found for potentials associated with certain transverse distributions which fill the beam pipe. For weak dispersion, the waves satisfy the Korteweg-deVries (KdV) equation, but for strong dispersion they exhibit breaking. More physically realizable distributions which do not fill the beam pipe are investigated and shown to also satisfy a KdV equation for weak dispersion if averaging over rapid transverse motion is physically justified. Scaling laws are presented to explore likely parameter regimes where these phenomena may be observed experimentally.

  17. Means for counteracting charged particle beam divergence

    DOEpatents

    Hooper, Jr., Edwin B.

    1978-01-01

    To counteract charge particle beam divergence, magnetic field-generating means are positioned along the edges of a charged particle beam to be controlled, such as to deflect and redirect particles tending to diverge from a desired beam direction. By selective arrangement of the magnetic field-generating means, the entire beam may be deflected and guided into different directions.

  18. BEAM HALO FORMATION IN HIGH-INTENSITY BEAMS.

    SciTech Connect

    FEDOTOV, A.V.

    2005-03-18

    Studies of beam halo became unavoidable feature of high-intensity machines where uncontrolled beam loss should be kept to extremely small level. For a well controlled stable beam such a loss is typically associated with the low density halo surrounding beam core. In order to minimize uncontrolled beam loss or improve performance of an accelerator, it is very important to understand what are the sources of halo formation in a specific machine of interest. The dominant mechanisms are, in fact, different in linear accelerators, circular machines or Energy Recovering Linacs (ERL). In this paper, we summarize basic mechanisms of halo formation in high-intensity beams and discuss their application to various types of accelerators of interest, such as linacs, rings and ERL.

  19. Short rise time intense electron beam generator

    DOEpatents

    Olson, C.L.

    1984-03-16

    A generator for producing an intense relativisitc electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  20. Short rise time intense electron beam generator

    DOEpatents

    Olson, Craig L.

    1987-01-01

    A generator for producing an intense relativistic electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  1. Final focus system for high intensity beams

    SciTech Connect

    Henestroza, E.; Bieniosek, F.M.; Eylon, S.; Roy, P.K.; Yu, S.S.

    2003-05-01

    The NTX experiment at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high perveance heavy ion beams. The NTX final focus system produces a converging beam at the entrance to the neutralized drift section where it focuses to a small spot. The final focus lattice consists of four pulsed quadrupole magnets. The main issues are the control of emittance growth due to high order fields from magnetic multipoles and image fields. We will present experimental results from NTX on beam envelope and phase space distributions, and compare these results with particle simulations using the particle-in-cell code WARP.

  2. Intense ion beams accelerated by ultra-intense laser pulses

    NASA Astrophysics Data System (ADS)

    Roth, Markus; Cowan, T. E.; Gauthier, J. C.; Vehn, J. Meyer-Ter; Allen, M.; Audebert, P.; Blazevic, A.; Fuchs, J.; Geissel, M.; Hegelich, M.; Karsch, S.; Pukhov, A.; Schlegel, T.

    2002-04-01

    The discovery of intense ion beams off solid targets irradiated by ultra-intense laser pulses has become the subject of extensive international interest. These highly collimated, energetic beams of protons and heavy ions are strongly depending on the laser parameters as well as on the properties of the irradiated targets. Therefore we have studied the influence of the target conditions on laser-accelerated ion beams generated by multi-terawatt lasers. The experiments were performed using the 100 TW laser facility at Laboratoire pour l'Utilisation des Laser Intense (LULI). The targets were irradiated by pulses up to 5×1019 W/cm2 (~300 fs,λ=1.05 μm) at normal incidence. A strong dependence on the surface conditions, conductivity, shape and purity was observed. The plasma density on the front and rear surface was determined by laser interferometry. We characterized the ion beam by means of magnetic spectrometers, radiochromic film, nuclear activation and Thompson parabolas. The strong dependence of the ion beam acceleration on the conditions on the target back surface was confirmed in agreement with predictions based on the target normal sheath acceleration (TNSA) mechanism. Finally shaping of the ion beam has been demonstrated by the appropriate tailoring of the target. .

  3. Intense ion beam neutralization using underdense background plasma

    SciTech Connect

    Berdanier, William; Roy, Prabir K.; Kaganovich, Igor

    2015-01-15

    Producing an overdense background plasma for neutralization purposes with a density that is high compared to the beam density is not always experimentally possible. We show that even an underdense background plasma with a small relative density can achieve high neutralization of intense ion beam pulses. Using particle-in-cell simulations, we show that if the total plasma electron charge is not sufficient to neutralize the beam charge, electron emitters are necessary for effective neutralization but are not needed if the plasma volume is so large that the total available charge in the electrons exceeds that of the ion beam. Several regimes of possible underdense/tenuous neutralization plasma densities are investigated with and without electron emitters or dense plasma at periphery regions, including the case of electron emitters without plasma, which does not effectively neutralize the beam. Over 95% neutralization is achieved for even very underdense background plasma with plasma density 1/15th the beam density. We compare results of particle-in-cell simulations with an analytic model of neutralization and find close agreement with the particle-in-cell simulations. Further, we show experimental data from the National Drift Compression experiment-II group that verifies the result that underdense plasma can neutralize intense heavy ion beams effectively.

  4. High-power radio frequency pulse generation and extration based on wakefield excited by an intense charged particle beam in dielectric-loaded waveguides.

    SciTech Connect

    Gao, F.; High Energy Physics; Illinois Inst. of Tech

    2009-07-24

    Power extraction using a dielectric-loaded (DL) waveguide is a way to generate high-power radio frequency (RF) waves for future particle accelerators, especially for two-beam-acceleration. In a two-beam-acceleration scheme, a low-energy, high-current particle beam is passed through a deceleration section of waveguide (decelerator), where the power from the beam is partially transferred to trailing electromagnetic waves (wakefields); then with a properly designed RF output coupler, the power generated in the decelerator is extracted to an output waveguide, where finally the power can be transmitted and used to accelerate another usually high-energy low-current beam. The decelerator, together with the RF output coupler, is called a power extractor. At Argonne Wakefield Accelerator (AWA), we designed a 7.8GHz power extractor with a circular DL waveguide and tested it with single electron bunches and bunch trains. The output RF frequency (7.8GHz) is the sixth harmonic of the operational frequency (1.3GHz) of the electron gun and the linac at AWA. In single bunch excitation, a 1.7ns RF pulse with 30MW of power was generated by a single 66nC electron bunch passing through the decelerator. In subsequent experiments, by employing different splitting-recombining optics for the photoinjector laser, electron bunch trains were generated and thus longer RF pulses could be successfully generated and extracted. In 16-bunch experiments, 10ns and 22ns RF pulses have been generated and extracted; and in 4-bunch experiments, the maximum power generated was 44MW with 40MW extracted. A 26GHz DL power extractor has also been designed to test this technique in the millimeter-wave range. A power level of 148MW is expected to be generated by a bunch train with a bunch spacing of 769ps and bunch charges of 20nC each. The arrangement for the experiment is illustrated in a diagram. Higher-order-mode (HOM) power extraction has also been explored in a dual-frequency design. By using a bunch

  5. High gradient lens for charged particle beam

    SciTech Connect

    Chen, Yu-Jiuan

    2014-04-29

    Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

  6. Core-halo issues for a very high intensity beam

    SciTech Connect

    Nghiem, P. A. P.; Chauvin, N.; Uriot, D.

    2014-02-17

    The relevance of classical parameters like beam emittance and envelope used to describe a particle beam is questioned in case of a high intensity accelerator. In the presence of strong space charge effects that affect the beam differently following its density, the much less dense halo part behaves differently from the much denser core part. A method for precisely determining the core-halo limit is proposed, that allows characterizing the halo and the core independently. Results in 1D case are given and discussed. Expected developments extending the method to 2D, 4D, or 6D phase spaces are examined.

  7. Beam intensity increases at the intense pulsed neutron source accelerator

    SciTech Connect

    Potts, C.; Brumwell, F.; Norem, J.; Rauchas, A.; Stipp, V.; Volk, G.

    1985-01-01

    The Intense Pulsed Neutron Source (IPNS) accelerator system has managed a 40% increase in time average beam current over the last two years. Currents of up to 15.6..mu..A (3.25 x 10/sup 12/ protons at 30 Hz) have been successfully accelerated and cleanly extracted. Our high current operation demands low loss beam handling to permit hands-on maintenance. Synchrotron beam handling efficiencies of 90% are routine. A new H/sup -/ ion source which was installed in March of 1983 offered the opportunity to get above 8 ..mu..A but an instability caused unacceptable losses when attempting to operate at 10 ..mu..A and above. Simple techniques to control the instabilities were introduced and have worked well. These techniques are discussed below. Other improvements in the regulation of various power supplies have provided greatly improved low energy orbit stability and contributed substantially to the increased beam current.

  8. Nuclear astrophysics with intense photon beam

    SciTech Connect

    Shizuma, Toshiyuki

    2012-07-09

    Quasi-monochromatic photon beams generated by inverse Compton scattering of laser light with high energy electrons can be used for precise measurements of photoneutrons and resonant scattered {gamma} rays. Extremely high intensity and small energy spreading width of the photon beam expected at the ELI Nuclear Physics facility would increase the experimental sensitivities considerably. Possible photonuclear reaction measurements relevant to the p-process nucleosynthesis are discussed.

  9. Space-Charge Waves and Instabilities in Intense Beams

    NASA Astrophysics Data System (ADS)

    Wang, J. G.

    1997-11-01

    Advancced accelerator applications, such as drivers for heavy ion inertial fusion, high-intensity synchrotrons for spallation neutron sources, high energy boosters, free electron lasers, high-power microwave generators, etc., require ever-increasing beam intensity. An important beam dynamics issue in such beams is the collective behavior of charged particles due to their space charge effects. This includes the phenomena of space-charge waves and instabilities excited on beams by external perturbations. It is very crucial to fully understand these phenomena in order to develop advanced accelerators for various applications. At the University of Maryland we have been conducting experimental programs to study space-charge waves and longitudinal instabilities by employing low-energy, high-current, space-charge dominated electron beams. Localized perturbations on the beams are generated from a gridded electron gun. In a conducting transport channel focused by short solenoids, these perturbations evolve into space-charge waves propagating on the beams. The wave speed is measured and many beam parameters are determined with this technique. The reflection of space-charge waves at the shoulder of an initially rectangular beam bunch is also observed. In a resistive-wall channel focused by a uniform long solenoid, the space-charge waves suffer longitudinal instability. The properties of the instabilities are studied in detail in the long wavelength range. In this talk we review our experimental results on the waves and instabilities and compare with theory.

  10. Intense steady state electron beam generator

    DOEpatents

    Hershcovitch, Ady; Kovarik, Vincent J.; Prelec, Krsto

    1990-01-01

    An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source.

  11. Intense steady state electron beam generator

    DOEpatents

    Hershcovitch, A.; Kovarik, V.J.; Prelec, K.

    1990-07-17

    An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source. 2 figs.

  12. BEAM LOSS MECHANISMS IN HIGH INTENSITY LINACS

    SciTech Connect

    Plum, Michael A

    2012-01-01

    In the present operation of the Oak Ridge Spallation Neutron Source, 60-Hz, 825-us H beam pulses are accelerated to 910 MeV, and then compressed to less than a microsecond in the storage ring, to deliver 1 MW of beam power to the spallation target. The beam loss in the superconducting portion of the linac is higher than expected, and it has shown a surprising counter-intuitive correlation with quadrupole magnetic fields, with a loss minimum occurring when the quadrupoles are set to approximately half their design values. This behavior can now be explained by a recent set of experiments that show the beam loss is primarily due to intra-beam stripping. Beam halo is another important beam loss contributor, and collimation in the 2.5 MeV Medium Energy Beam Transport has proven to be an effective mitigation strategy. In this presentation, we will summarize these and other beam loss mechanisms that are important for high intensity linacs.

  13. Focusing and neutralization of intense beams

    SciTech Connect

    Yu, Simon S.; Anders, Andre; Bieniosek, F.M.; Eylon, Shmuel; Henestroza, Enrique; Roy, Prabir; Shuman, Derek; Waldron, William; Sharp, William; Rose, Dave; Welch, Dale; Efthimion, Philip; Gilson, Eric

    2003-05-01

    In heavy ion inertial confinement fusion systems, intense beams of ions must be transported from the exit of the final focus magnet system through the target chamber to hit millimeter spot sizes on the target. Effective plasma neutralization of intense ion beams through the target chamber is essential for the viability of an economically competitive heavy ion fusion power plant. The physics of neutralized drift has been studied extensively with PIC simulations. To provide quantitative comparisons of theoretical predictions with experiment, the Heavy Ion Fusion Virtual National Laboratory has completed the construction and has begun experimentation with the NTX (Neutralized Transport Experiment) as shown in Figure 1. The experiment consists of 3 phases, each with physics issues of its own. Phase 1 is designed to generate a very high brightness potassium beam with variable perveance, using a beam aperturing technique. Phase 2 consists of magnetic transport through four pulsed quadrupoles. Here, beam tuning as well as the effects of phase space dilution through higher order nonlinear fields must be understood. In Phase 3, a converging ion beam at the exit of the magnetic section is transported through a drift section with plasma sources for beam neutralization, and the final spot size is measured under various conditions of neutralization. In this paper, we present first results from all 3 phases of the experiment.

  14. Three dimensional particle-in-cell simulations of electron beams created via reflection of intense laser light from a water target

    NASA Astrophysics Data System (ADS)

    Ngirmang, Gregory K.; Orban, Chris; Feister, Scott; Morrison, John T.; Frische, Kyle D.; Chowdhury, Enam A.; Roquemore, W. M.

    2016-04-01

    We present 3D Particle-in-Cell (PIC) modeling of an ultra-intense laser experiment by the Extreme Light group at the Air Force Research Laboratory using the Large Scale Plasma (LSP) PIC code. This is the first time PIC simulations have been performed in 3D for this experiment which involves an ultra-intense, short-pulse (30 fs) laser interacting with a water jet target at normal incidence. The laser-energy-to-ejected-electron-energy conversion efficiency observed in 2D(3v) simulations were comparable to the conversion efficiencies seen in the 3D simulations, but the angular distribution of ejected electrons in the 2D(3v) simulations displayed interesting differences with the 3D simulations' angular distribution; the observed differences between the 2D(3v) and 3D simulations were more noticeable for the simulations with higher intensity laser pulses. An analytic plane-wave model is discussed which provides some explanation for the angular distribution and energies of ejected electrons in the 2D(3v) simulations. We also performed a 3D simulation with circularly polarized light and found a significantly higher conversion efficiency and peak electron energy, which is promising for future experiments.

  15. Apparatus for irradiation with charged particle beams

    SciTech Connect

    Tamura, H.; Ishitani, T.; Shimase, A.

    1984-10-23

    An apparatus according to the present invention for irradiating a specimen with charged particle beams comprises a single charged particle generating source from which the charged particle beams formed of electrons and negative ions, respectively, can be simultaneously derived; a specimen holder on which the specimen is placed; and charged particle irradiation means which is interposed between the charged particle generating source and the specimen holder in order to focus the charged particle beams and to irradiate the surface of the specimen with the focused beams, and which includes at least one magnetic lens and at least one electrostatic lens that are individually disposed.

  16. Statistical phenomena in particle beams

    SciTech Connect

    Bisognano, J.J.

    1984-09-01

    Particle beams are subject to a variety of apparently distinct statistical phenomena such as intrabeam scattering, stochastic cooling, electron cooling, coherent instabilities, and radiofrequency noise diffusion. In fact, both the physics and mathematical description of these mechanisms are quite similar, with the notion of correlation as a powerful unifying principle. In this presentation we will attempt to provide both a physical and a mathematical basis for understanding the wide range of statistical phenomena that have been discussed. In the course of this study the tools of the trade will be introduced, e.g., the Vlasov and Fokker-Planck equations, noise theory, correlation functions, and beam transfer functions. Although a major concern will be to provide equations for analyzing machine design, the primary goal is to introduce a basic set of physical concepts having a very broad range of applicability.

  17. Precision monitoring of relative beam intensity for Mu2e

    SciTech Connect

    Evans, N.J.; Kopp, S.E.; Prebys, E.; /Fermilab

    2011-04-01

    For future experiments at the intensity frontier, precise and accurate knowledge of beam time structure will be critical to understanding backgrounds. The proposed Mu2e experiment will utilize {approx}200 ns (FW) bunches of 3 x 10{sup 7} protons at 8 GeV with a bunch-to-bunch period of 1695 ns. The out-of-bunch beam must be suppressed by a factor of 10{sup -10} relative to in-bunch beam and continuously monitored. I propose a Cerenkov-based particle telescope to measure secondary production from beam interactions in a several tens of microns thick foil. Correlating timing information with beam passage will allow the determination of relative beam intensity to arbitrary precision given a sufficiently long integration time. The goal is to verify out-of-bunch extinction to the level 10{sup -6} in the span of several seconds. This will allow near real-time monitoring of the initial extinction of the beam resonantly extracted from Fermilabs Debuncher before a system of AC dipoles and collimators, which will provide the final extinction. The effect on beam emittance is minimal, allowing the necessary continuous measurement. I will present the detector design and some concerns about bunch growth during the resonant extraction.

  18. Varying stopping and self-focusing of intense proton beams as they heat solid density matter

    NASA Astrophysics Data System (ADS)

    Kim, J.; McGuffey, C.; Qiao, B.; Wei, M. S.; Grabowski, P. E.; Beg, F. N.

    2016-04-01

    Transport of intense proton beams in solid-density matter is numerically investigated using an implicit hybrid particle-in-cell code. Both collective effects and stopping for individual beam particles are included through the electromagnetic fields solver and stopping power calculations utilizing the varying local target conditions, allowing self-consistent transport studies. Two target heating mechanisms, the beam energy deposition and Ohmic heating driven by the return current, are compared. The dependences of proton beam transport in solid targets on the beam parameters are systematically analyzed, i.e., simulations with various beam intensities, pulse durations, kinetic energies, and energy distributions are compared. The proton beam deposition profile and ultimate target temperature show strong dependence on intensity and pulse duration. A strong magnetic field is generated from a proton beam with high density and tight beam radius, resulting in focusing of the beam and localized heating of the target up to hundreds of eV.

  19. Neutral particle beams for space defense

    NASA Astrophysics Data System (ADS)

    Botwin, Robert; Favale, Anthony

    Neutral particle beam (NPB) weapons direct highly focused high energy streams of electrically neutral atomic particles traveling at nearly the speed of light, escaping deflection from the earth's magnetic field and acting on the subatomic structure of a target, destroying it from within. The beam's brief contact with a reentry vehicle produces a nuclear reaction in the latter that yields particle emissions; by detecting and identifying those particles, it becomes possible to effectively distinguish warheads from decoys. Attention is given to the NPB program roles to be played by the Beam Experiment Aboard Rocket and Neutral Particle Beam Integrated Space Experiment projects.

  20. Operation of the intensity monitors in beam transport lines at Fermilab during Run II¹

    DOE PAGESBeta

    Crisp, J.; Fellenz, B.; Fitzgerald, J.; Heikkinen, D.; Ibrahim, M. A.

    2011-10-06

    The intensity of charged particle beams at Fermilab must be kept within pre-determined safety and operational envelopes in part by assuring all beam within a few percent has been transported from any source to destination. Beam instensity monitors with toroidial pickups provide such beam intensity measurements in the transport lines between accelerators at FNAL. With Run II, much effort was made to continually improve the resolution and accuracy of the system.

  1. Transport of intense ion beams and space charge compensation issues in low energy beam lines (invited)

    SciTech Connect

    Chauvin, N.; Delferriere, O.; Duperrier, R.; Gobin, R.; Nghiem, P. A. P.; Uriot, D.

    2012-02-15

    Over the last few years, the interest of the international scientific community for high power accelerators in the megawatt range has been increasing. For such machines, the ion source has to deliver a beam intensity that ranges from several tens up to a hundred of mA. One of the major challenges is to extract and transport the beam while minimizing the emittance growth and optimizing its injection into the radio frequency quadrupole. Consequently, it is crucial to perform precise simulations and cautious design of the low energy beam transport (LEBT) line. In particular, the beam dynamics calculations have to take into account not only the space charge effects but also the space charge compensation of the beam induced by ionization of the residual gas. The physical phenomena occurring in a high intensity LEBT and their possible effects on the beam are presented, with a particular emphasis on space charge compensation. Then, beam transport issues in different kind of LEBTs are briefly reviewed. The SOLMAXP particle-in-cell code dedicated to the modeling of the transport of charge particles under a space charge compensation regime is described. Finally, beam dynamics simulations results obtained with SOLMAXP are presented in the case of international fusion materials irradiation facility injector.

  2. Particle beam injector system and method

    DOEpatents

    Guethlein, Gary

    2013-06-18

    Methods and devices enable coupling of a charged particle beam to a radio frequency quadrupole accelerator. Coupling of the charged particle beam is accomplished, at least in-part, by relying on of sensitivity of the input phase space acceptance of the radio frequency quadrupole to the angle of the input charged particle beam. A first electric field across a beam deflector deflects the particle beam at an angle that is beyond the acceptance angle of the radio frequency quadrupole. By momentarily reversing or reducing the established electric field, a narrow portion of the charged particle beam is deflected at an angle within the acceptance angle of the radio frequency quadrupole. In another configuration, beam is directed at an angle within the acceptance angle of the radio frequency quadrupole by the first electric field and is deflected beyond the acceptance angle of the radio frequency quadrupole due to the second electric field.

  3. Coherent light in intense spatiospectral twin beams

    NASA Astrophysics Data System (ADS)

    Peřina, Jan

    2016-06-01

    Intense spatio-spectral twin beams generated in the regime with pump depletion are analyzed applying a suggested quantum model that treats the signal, idler, and pump fields in the same way. The model assumes the signal and idler fields in the form of the generalized superposition of signal and noise and reveals nonzero signal coherent components in both fields, contrary to the models developed earlier. The influence of coherent components on the properties of intense twin beams is elucidated. The interference pattern formed in the process of sum-frequency generation and that of the Hong-Ou-Mandel interferometer are shown to be able to experimentally confirm the presence of coherent components.

  4. Positron microanalysis with high intensity beams

    SciTech Connect

    Hulett, L.D. Jr.; Donohue, D.L.

    1990-01-01

    One of the more common applications for a high intensity slow positron facility will be microanalysis of solid materials. In the first section of this paper some examples are given of procedures that can be developed. Since most of the attendees of this workshop are experts in positron spectroscopy, comprehensive descriptions will be omitted. With the exception of positron emission microscopy, most of the procedures will be based on those already in common use with broad beams. The utility of the methods have all been demonstrated, but material scientists use very few of them because positron microbeams are not generally available. A high intensity positron facility will make microbeams easier to obtain and partially alleviate this situation. All microanalysis techniques listed below will have a common requirement, which is the ability to locate the microscopic detail or area of interest and to focus the positron beam exclusively on it. The last section of this paper is a suggestion of how a high intensity positron facility might be designed so as to have this capability built in. The method will involve locating the specimen by scanning it with the microbeam of positrons and inducing a secondary electron image that will immediately reveal whether or not the positron beam is striking the proper portion of the specimen. This scanning positron microscope' will be a somewhat prosaic analog of the conventional SEM. It will, however, be an indispensable utility that will enhance the practicality of positron microanalysis techniques. 6 refs., 1 fig.

  5. Stability of Single Particle Motion with Head-On Beam-Beam Compensation in the RHIC

    SciTech Connect

    Luo,Y.; Fischer, W.; Abreu, N.

    2008-05-01

    To compensate the large tune shift and tune spread generated by the head-on beam-beam interactions in the polarized proton run in the Relativistic Heavy Ion Collider (RHIC), we proposed a low energy electron beam with a Gaussian transverse profiles to collide head-on with the proton beam. In this article, with a weak-strong beam-beam interaction model, we investigate the stability of single particle motion in the presence of head-on beam-beam compensation. Tune footprints, tune diffusion, Lyapunov exponents, and 10{sup 6} turn dynamic apertures are calculated and compared between the cases without and with beam-beam compensation. A tune scan is performed and the possibility of increasing the bunch intensity is studied. The cause of tune footprint foldings is discussed, and the tune diffusion and Lyapunov exponent analysis are compared.

  6. PLASMA WAKE EXCITATION BY LASERS OR PARTICLE BEAMS

    SciTech Connect

    Schroeder, Carl B.; Esarey, Eric; Benedetti, Carlo; Toth, Csaba; Geddes, Cameron; Leemans, Wim

    2011-04-01

    Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. Plasma wake excitation driven by lasers or particle beams is examined, and the implications of the different physical excitation mechanisms for accelerator design are discussed. Plasma-based accelerators have attracted considerable attention owing to the ultrahigh field gradients sustainable in a plasma wave, enabling compact accelerators. These relativistic plasma waves are excited by displacing electrons in a neutral plasma. Two basic mechanisms for excitation of plasma waves are actively being researched: (i) excitation by the nonlinear ponderomotive force (radiation pressure) of an intense laser or (ii) excitation by the space-charge force of a dense charged particle beam. There has been significant recent experimental success using lasers and particle beam drivers for plasma acceleration. In particular, for laser-plasma accelerators (LPAs), the demonstration at LBNL in 2006 of high-quality, 1 GeV electron beams produced in approximately 3 cm plasma using a 40 TW laser. In 2007, for beam-driven plasma accelerators, or plasma-wakefield accelerators (PWFAs), the energy doubling over a meter to 42 GeV of a fraction of beam electrons on the tail of an electron beam by the plasma wave excited by the head was demonstrated at SLAC. These experimental successes have resulted in further interest in the development of plasma-based acceleration as a basis for a linear collider, and preliminary collider designs using laser drivers and beam drivers are being developed. The different physical mechanisms of plasma wave excitation, as well as the typical characteristics of the drivers, have implications for accelerator design. In the following, we identify the similarities and differences between wave excitation by lasers and particle beams. The field structure of the plasma wave driven by lasers or particle beams is discussed, as well as the

  7. Helical tractor beam: analytical solution of Rayleigh particle dynamics.

    PubMed

    Carretero, Luis; Acebal, Pablo; Garcia, Celia; Blaya, Salvador

    2015-08-10

    We analyze particle dynamics in an optical force field generated by helical tractor beams obtained by the interference of a cylindrical beam with a topological charge and a co-propagating temporally de-phased plane wave. We show that, for standard experimental conditions, it is possible to obtain analytical solutions for the trajectories of particles in such force field by using of some approximations. These solutions show that, in contrast to other tractor beams described before, the intensity becomes a key parameter for the control of particle trajectories. Therefore, by tuning the intensity value the particle can describe helical trajectories upstream and downstream, a circular trajectory in a fixed plane, or a linear displacement in the propagation direction. The approximated analytical solutions show good agreement to the corresponding numerical solutions of the exact dynamical differential equations. PMID:26367905

  8. Facility for intense diagnostic neutral beam (IDNB) development

    SciTech Connect

    Kasik, R.J.; Hinckley, W.B.; Bartsch, R.R.; Rej, D.J.; Henins, I.; Greenly, J.B.

    1993-08-01

    An intense, pulsed neutral beam source is under development for use as a probe beam on hot, burning plasmas such as in the international thermonuclear experimental reactor (ITER) which is presently in the planning stage. A pulsed, neutral hydrogen beam of 10s of kilo amperes of current can have an alpha particle, charge-exchange-recombination-spectroscopy (alpha-CHERS) signal-to-noise ratio of {approximately} 10. This beam would allow the measurement, on a single pulse of a few hundred nanoseconds duration, of the local alpha particle distribution function as well as other features of the tokamak plasma such as current density profile, impurity density, and microturbulence spectrum. The cross-sections for the CHERS diagnostic dictate operation with proton energies greater than {approximately}50keV. A pulsed neutral hydrogen source of this voltage and intensity can be achieved by neutralizing the ion flux from a magnetized ion-diode. The cross-sections for attachment and stripping, when coupled with scaling from Child-Langmiur, space-charge-limited, ion-current flow imply operation below - 100keV for maximum neutral fluence. The development of a flashover-anode, ion source for forthcoming evaluation of a neutralizing section is described below. This source operates in the accelerator voltage range 70 to 100keV. Eventually, the flashover-anode, magnetized ion-diode will be replaced with a plasma-anode, magnetized ion-diode.

  9. Optical trapping and manipulation of Mie particles with Airy beam

    NASA Astrophysics Data System (ADS)

    Zhao, Ziyu; Zang, Weiping; Tian, Jianguo

    2016-02-01

    In this paper we calculate the radiation forces and moving trajectories of Mie particles induced by 1D Airy beams using the plane wave spectrum method and arbitrary beam theory. Numerical results show that both the transverse and the longitudinal radiation forces are deeply dependent on the relative refractive index, radii and positions of the scattering particles illuminated by the Airy beam. Due to the radiation forces, Mie particles with different radii and initial positions can be dragged into the nearest main intensity lobes, and move along parabolic trajectories in the direction of the Poynting vector. At the ends of these trajectories, in the presence of Brownian force, the trapped scattering particles show irregular Brownian movement near their equilibrium positions. This characteristic property of Airy beams enables optical sorting to be used more easily in the colloidal and biological sciences.

  10. Intense Pulsed Heavy Ion Beam Technology

    NASA Astrophysics Data System (ADS)

    Masugata, Katsumi; Ito, Hiroaki

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm2 was obtained. The beam consists of aluminum ions (Al(1-3)+) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89 %. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were succesively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm2 was observed in the cathode, which suggests the bipolar pulse acceleration.

  11. Aerodynamic beam generator for large particles

    DOEpatents

    Brockmann, John E.; Torczynski, John R.; Dykhuizen, Ronald C.; Neiser, Richard A.; Smith, Mark F.

    2002-01-01

    A new type of aerodynamic particle beam generator is disclosed. This generator produces a tightly focused beam of large material particles at velocities ranging from a few feet per second to supersonic speeds, depending on the exact configuration and operating conditions. Such generators are of particular interest for use in additive fabrication techniques.

  12. Transverse-longitudinal coupling in intense beams

    SciTech Connect

    Wang, T.S.F.; Smith, L.

    1981-03-01

    The coupling between transverse and longitudinal perturbations is studied self-consistently by considering a beam of K-V distribution. The analysis is carried out within the context of linearized Vlasov-Maxwell equations and electrostatic approximation. The perturbation is assumed to be azimuthally symmetric but axially non-uniform (k/sub z/ is not equal to 0). It is shown that the coupling affects both the longitudinal and transverse modes significantly in the high density and low frequency region. Two new classes of longitudinal modes are found which would not exist if the transverse motions of particles are neglected. The effect of resistive wall impedance on beam stability is also studied. It is found that the longitudinal impedance can cause the transverse modes also to be weakly unstable.

  13. Method of enhancing cyclotron beam intensity

    DOEpatents

    Hudson, Ed D.; Mallory, Merrit L.

    1977-01-01

    When an easily ionized support gas such as xenon is added to the cold cathode in sources of the Oak Ridge Isochronous Cyclotron, large beam enhancements are produced. For example, .sup.20 Ne.sup.7+ is increased from 0.05 enA to 27 enA, and .sup.16 O.sup.5+ intensities in excess of 35 e.mu.A have been extracted for periods up to 30 minutes. Approximately 0.15 cc/min of the easily ionized support gas is supplied to the ion source through a separate gas feed line and the primary gas flow is reduced by about 30%.

  14. Relativistic particle beams for interstellar propulsion

    NASA Astrophysics Data System (ADS)

    Nordley, Gerald D.

    1993-04-01

    The concept of pellet-stream propulsion proposed by Singer (1980) is extended to particle beams and relativistic velocities. A simple relativistic mission study is presented, and it is shown how certain technological developments might enhance the concept. In particular, considerations discussed include beam drivers; beam cooling, steering, and focusing; beam driven mission mechanics; and the radiation problem. The energy issues are also briefly considered.

  15. Electrostatic wire for stabilizing a charged particle beam

    DOEpatents

    Prono, Daniel S.; Caporaso, George J.; Briggs, Richard J.

    1985-01-01

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  16. High Intensity Particle Physics at PW-class laser facilities

    NASA Astrophysics Data System (ADS)

    Bulanov, Stepan; Schroeder, Carl; Esarey, Eric; Esirkepov, Timur; Kando, Masaki; Rosanov, Nikolay; Korn, Georg; Bulanov, Sergey V.; Leemans, Wim P.

    2015-11-01

    The processes typical for high intensity particle physics, i.e., the interactions of charged particles with strong electromagnetic fields, have attracted considerable interest recently. Some of these processes, previously believed to be of theoretical interest only, are now becoming experimentally accessible. High intensity electromagnetic (EM) fields significantly modify the interactions of particles and EM fields, giving rise to the phenomena that are not encountered either in classical or perturbative quantum theory of these interactions. One of such phenomena is the radiation reaction, which radically influences the electron motion in an electromagnetic standing wave formed by two super-intense counter-propagating laser pulses. Depending on the laser intensity and wavelength, either classical or quantum mode of radiation reaction prevail, or both are strong. When radiation reaction dominates, electron motion evolves to limit cycles and strange attractors. This creates a new framework for high energy physics experiments on an interaction of energetic charged particle beams and colliding super-intense laser pulses. Work supported by U.S. DOE under Contract No. DE-AC02-05CH11231.

  17. Energetic particle pressure in intense ESP events

    NASA Astrophysics Data System (ADS)

    Lario, D.; Decker, R. B.; Roelof, E. C.; Viñas, A.-F.

    2015-09-01

    We study three intense energetic storm particle (ESP) events in which the energetic particle pressure PEP exceeded both the pressure of the background thermal plasma Pth and the pressure of the magnetic field PB. The region upstream of the interplanetary shocks associated with these events was characterized by a depression of the magnetic field strength coincident with the increase of the energetic particle intensities and, when plasma measurements were available, a depleted solar wind density. The general feature of cosmic-ray mediated shocks such as the deceleration of the upstream background medium into which the shock propagates is generally observed. However, for those shocks where plasma parameters are available, pressure balance is not maintained either upstream of or across the shock, which may result from the fact that PEP is not included in the calculation of the shock parameters.

  18. Plasma diagnostic techniques using particle beam probes

    SciTech Connect

    Jennings, W C

    1980-07-01

    A brief overview is given of particle beam probing. The fundamental concepts common to all techniques are discussed as well as the design considerations for choosing a particular diagnostic technique. The capabilities of existing and proposed techniques, and the present status of the techniques in major magnetic confinement geometries is also presented. Techniques which involve the injection of a beam of neutral particles into the plasma are then considered. The techniques of beam attenuation, beam scattering, and active charge exchange using a beam of light particles such as hydrogen or helium are first presented. Optical measurements of the Zeeman splitting of the radiation from a neutral lithium beam is then discussed, including a new proposal for significantly improving this technique through the addition of a dye laser. Two techniques involving the injection of heavy neutral particles are then presented, and the section concludes with two proposed techniques for measuring the properties of the alpha particles produced from actual fusion reactions. The diagnostic techniques which are based upon the injection of a beam of charged particles into the plasma are next described. The advantages and limitations of these techniques in comparison with the neutral techniques are discussed, followed by a description of specific techniques.

  19. Autogenerator of beams of charged particles

    DOEpatents

    Adler, R.J.; Mazarakis, M.G.; Miller, R.M.; Shope, S.L.; Smith, D.L.

    1983-10-31

    An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.

  20. Autogenerator of beams of charged particles

    DOEpatents

    Adler, Richard J.; Mazarakis, Michael G.; Miller, Robert B.; Shope, Steven L.; Smith, David L.

    1986-01-01

    An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.

  1. Neutral particle beam sensing and steering

    DOEpatents

    Maier, II, William B.; Cobb, Donald D.; Robiscoe, Richard T.

    1991-01-01

    The direction of a neutral particle beam (NPB) is determined by detecting Ly.alpha. radiation emitted during motional quenching of excited H(2S) atoms in the beam during movement of the atoms through a magnetic field. At least one detector is placed adjacent the beam exit to define an optical axis that intercepts the beam at a viewing angle to include a volume generating a selected number of photons for detection. The detection system includes a lens having an area that is small relative to the NPB area and a pixel array located in the focal plane of the lens. The lens viewing angle and area pixel array are selected to optimize the beam tilt sensitivity. In one embodiment, two detectors are placed coplanar with the beam axis to generate a difference signal that is insensitive to beam variations other than beam tilt.

  2. Intense muon beams and neutrino factories

    SciTech Connect

    Parsa, Z.

    2000-10-05

    High intensity muon sources are needed in exploring neutrino factories, lepton flavor violating muon processes, and lower energy experiments as the stepping phase towards building higher energy {mu}{sup +}{mu}{sup {minus}} colliders. We present a brief overview, sketch of a neutrino source, and an example of a muon storage ring at BNL with detector(s) at Fermilab, Sudan, etc. Physics with low energy neutrino beams based on muon storage rings ({mu}SR) and conventional Horn Facilities are described and compared. CP violation Asymmetries and a new Statistical Figure of Merit to be used for comparison is given. Improvements in the sensitivity of low energy experiments to study Flavor changing neutral currents are also included.

  3. Plasma neutralization models for intense ion beam transport in plasma

    SciTech Connect

    Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.; O'Rourke, Sean; Lee, Edward P.

    2003-05-01

    Plasma neutralization of an intense ion pulse is of interest for many applications, including plasma lenses, heavy ion fusion, cosmic ray propagation, etc. An analytical electron fluid model has been developed based on the assumption of long charge bunches (l{sub b} >> r{sub b}). Theoretical predictions are compared with the results of calculations utilizing a particle-in-cell (PIC) code. The cold electron fluid results agree well with the PIC simulations for ion beam propagation through a background plasma. The analytical predictions for the degree of ion beam charge and current neutralization also agree well with the results of the numerical simulations. The model predicts very good charge neutralization (>99%) during quasi-steady-state propagation, provided the beam pulse duration {tau}{sub b} is much longer than the electron plasma period 2{pi}/{omega}{sub p}, where {omega}{sub p} = (4{pi}e{sup 2}n{sub p}/m){sup 1/2} is the electron plasma frequency, and n{sub p} is the background plasma density. In the opposite limit, the beam pulse excites large-amplitude plasma waves. The analytical formulas derived in this paper can provide an important benchmark for numerical codes, and provide scaling relations for different beam and plasma parameters.

  4. INTENSE NEUTRINO BEAMS AND LEPTONIC CP VIOLATION.

    SciTech Connect

    MARCIANO, W.; PARSA, Z.

    2006-06-13

    Effects of the Leptonic CP violating phase, {delta}, on 3 generation neutrino oscillation rates and asymmetries are discussed. A figure of merit argument is used to show that our ability to measure the phase 6 is rather insensitive to the value of {theta}{sub 13} (for sin{sup 2} 2{theta}{sub 13} {approx}> 0.01) as well as the detector distance (for very long oscillation baselines). Using a study of {nu}{sub {mu}} {yields} {nu}{sub e} oscillations for BNL-Homestake (2540 km) we show that a conventional horn focused wide band neutrino beam generated by an intense 1-2 MW proton source combined with a very large water Cherenkov detector (250-500 kton) should be able to determine {delta} to about {+-}15{sup o} in 5 x 10{sup 7} sec. of running. In addition, such an effort would also measure the other oscillation parameters ({theta}{sub ij}, {Delta}m{sub ij}{sup 2}) with high precision. Similar findings apply to a Fermilab-Homestake (1280 km) baseline. We also briefly discuss features of Superbeams, Neutrino Factories and Beta-Beams.

  5. Materials processing with intense pulsed ion beams

    SciTech Connect

    Rej, D.J.; Davis, H.A.; Olson, J.C.

    1996-12-31

    We review research investigating the application of intense pulsed ion beams (IPIBs) for the surface treatment and coating of materials. The short range (0.1-10 {mu}m) and high-energy density (1-50 J/cm{sup 2}) of these short-pulsed ({le} 1 {mu}s) beams (with ion currents I = 5 - 50 kA, and energies E = 100 - 1000 keV) make them ideal to flash-heat a target surface, similar to the more familiar pulsed laser processes. IPIB surface treatment induces rapid melt and solidification at up to 10{sup 10} K/s to cause amorphous layer formation and the production of non-equilibrium microstructures. At higher energy density the target surface is vaporized, and the ablated vapor is condensed as coatings onto adjacent substrates or as nanophase powders. Progress towards the development of robust, high-repetition rate IPIB accelerators is presented along with economic estimates for the cost of ownership of this technology.

  6. Polymer surface treatment with particle beams

    DOEpatents

    Stinnett, Regan W.; VanDevender, J. Pace

    1999-01-01

    A polymer surface and near surface treatment process produced by irradiation with high energy particle beams. The process is preferably implemented with pulsed ion beams. The process alters the chemical and mechanical properties of the polymer surface in a manner useful for a wide range of commercial applications.

  7. Polymer surface treatment with particle beams

    DOEpatents

    Stinnett, R.W.; VanDevender, J.P.

    1999-05-04

    A polymer surface and near surface treatment process produced by irradiation with high energy particle beams is disclosed. The process is preferably implemented with pulsed ion beams. The process alters the chemical and mechanical properties of the polymer surface in a manner useful for a wide range of commercial applications. 16 figs.

  8. The Particle Beam Optics Interactive Computer Laboratory

    SciTech Connect

    Gillespie, G.H.; Hill, B.W.; Brown, N.A.; Babcock, R.C.; Martono, H.; Carey, D.C. |

    1997-02-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab. {copyright} {ital 1997 American Institute of Physics.}

  9. The Particle Beam Optics Interactive Computer Laboratory

    NASA Astrophysics Data System (ADS)

    Gillespie, George H.; Hill, Barrey W.; Brown, Nathan A.; Babcock, R. Chris; Martono, Hendy; Carey, David C.

    1997-02-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab.

  10. Funnel cone for focusing intense ion beams on a target

    SciTech Connect

    Bieniosek, F.M.; Henestroza, E.; Ni, P.

    2009-10-05

    We describe a funnel cone for concentrating an ion beam on a target. The cone utilizes the reflection characteristic of ion beams on solid walls to focus the incident beam andincrease beam intensity on target. The cone has been modeled with the TRIM code. A prototype has been tested and installed for use in the 350-keV K+ NDCX target chamber.

  11. Radial particle distributions in PARMILA simulation beams

    SciTech Connect

    Boicourt, G.P.

    1984-03-01

    The estimation of beam spill in particle accelerators is becoming of greater importance as higher current designs are being funded. To the present, no numerical method for predicting beam-spill has been available. In this paper, we present an approach to the loss-estimation problem that uses probability distributions fitted to particle-simulation beams. The properties of the PARMILA code's radial particle distribution are discussed, and a broad class of probability distributions are examined to check their ability to fit it. The possibility that the PARMILA distribution is a mixture is discussed, and a fitting distribution consisting of a mixture of two generalized gamma distributions is found. An efficient algorithm to accomplish the fit is presented. Examples of the relative prediction of beam spill are given. 26 references, 18 figures, 1 table.

  12. Intensity Variation of Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2011-01-01

    This paper updates the influence of environmental and source factors of shocks driven by corona) mass ejections (CMEs) that are likely to influence the intensity of solar energetic particle (SEP) events. The intensity variation due to CME interaction reported in Gopalswamy et al. (2004, JGR 109, Al2105) is confirmed by expanding the investigation to all the large SEP events of solar cycle 23. The large SEP events are separated into two groups, one associated with CMEs running into other CMEs, and the other with CMEs running into the ambient solar wind. SEP events with CME interaction generally have a higher intensity. New possibilities such as the influence of corona) holes on the SEP intensity are also discussed. For example, the presence of a large coronal hole between a well-connected eruption and the solar disk center may render the shock poorly connected because of the interaction between the CME and the coronal hole. This point is illustrated using the 2004 December 3 SEP event delayed by about 12 hours from the onset of the associated CME. There is no other event at the Sun that can be associated with the SEP onset. This event is consistent with the possibility that the coronal hole interaction influences the connectivity of the CMEs that produce SEPs, and hence the intensity of the SEP event.

  13. Electron beam driven disordering in small particles

    SciTech Connect

    Vanfleet, R.R.; Mochel, J.

    1997-11-01

    Small metal particles in the range of a few nanometers in diameter are seen to progressively disorder when the 100 keV electron beam of a Scanning Transmission Electron Microscope (STEM) is held stationary on the particle. The diffraction pattern of the individual particle is seen to progress from an initial array of indexable diffraction spots to a mixture of diffraction spots and amorphous-like rings and finally to rings with no persistent diffraction spots. After the electron beam is removed, the particles will recrystallize after minutes or hours. Only particles below a critical size are seen to fully disorder. The authors have observed this in platinum, palladium, rhodium, and iridium and based on the model of disordering process believe it is a universal effect. It has also been observed with a platinum ruthenium alloy. They discuss the mechanism of this disordering and the structure of the resulting disordering particle for the case of platinum clusters.

  14. SIMULATION OF INTENSE BEAMS FOR HEAVY ION FUSION

    SciTech Connect

    Friedman, A

    2004-06-10

    Computer simulations of intense ion beams play a key role in the Heavy Ion Fusion research program. Along with analytic theory, they are used to develop future experiments, guide ongoing experiments, and aid in the analysis and interpretation of experimental results. They also afford access to regimes not yet accessible in the experimental program. The U.S. Heavy Ion Fusion Virtual National Laboratory and its collaborators have developed state-of-the art computational tools, related both to codes used for stationary plasmas and to codes used for traditional accelerator applications, but necessarily differing from each in important respects. These tools model beams in varying levels of detail and at widely varying computational cost. They include moment models (envelope equations and fluid descriptions), particle-in-cell methods (electrostatic and electromagnetic), nonlinear-perturbative descriptions (''{delta}f''), and continuum Vlasov methods. Increasingly, it is becoming clear that it is necessary to simulate not just the beams themselves, but also the environment in which they exist, be it an intentionally-created plasma or an unwanted cloud of electrons and gas. In this paper, examples of the application of simulation tools to intense ion beam physics are presented, including support of present-day experiments, fundamental beam physics studies, and the development of future experiments. Throughout, new computational models are described and their utility explained. These include Mesh Refinement (and its dynamic variant, Adaptive Mesh Refinement); improved electron cloud and gas models, and an electron advance scheme that allows use of larger time steps; and moving-mesh and adaptive-mesh Vlasov methods.

  15. Intense beams: The past, present, and future

    SciTech Connect

    Yonas, G.; Sweeney, M.A.

    1998-06-01

    Nobody could have predicted the circuitous course of the last 30 years of progress in intense beams and pulsed power. There were many discoveries and twists and turns along the way, but the steady flow of understanding and technological advances has sustained the field. Pulsed power research began in the early 1960s with the development of the technology to test the reliability of nuclear weapons in a pulsed radiation environment. Because of the effort in the 1970s on an electron beam approach to inertial confinement fusion (ICF) at Sandia National Laboratories and at the Kurchatov Institute, simulation codes, diagnostics, and innovative pulsed power techniques such as self-magnetic insulation were developed. The electron approach ended in 1979, and the more promising ion approach continued. At the same time, z pinches, used since the early 1970s to evaluate the response of materials to keV X rays, were considered as an alternative to drive ICF capsules. The use of z pinches for ICF was discontinued in 1984 because of budget cuts and the belief that ions offered a route to the standoff requirement for energy applications. Now, in 1998, because of budget limitations and the 1995 discovery that the soft x-ray power achievable in a z-pinch implosion can be greatly enhanced, the ion approach has been suspended, and a new facility, X-1, proposed to achieve high yield in the laboratory with z pinches. In this paper the authors review the research paths that led to these changes, describe the present status of z pinches, and predict what the future holds. Although nobody can predict the future, the past 30 years have taught us some lessons that can be applied to the next 30 years. The paper concludes with some of these lessons learned.

  16. Use of particle beams for lunar prospecting

    NASA Technical Reports Server (NTRS)

    Toepfer, A. J.; Eppler, D.; Friedlander, A.; Weitz, R.

    1993-01-01

    A key issue in choosing the appropriate site for a manned lunar base is the availability of resources, particularly oxygen and hydrogen for the production of water, and ores for the production of fuels and building materials. NASA has proposed two Lunar Scout missions that would orbit the Moon and use, among other instruments, a hard X-ray spectrometer, a neutron spectrometer, and a Ge gamma ray spectrometer to map the lunar surface. This passive instrumentation will have low resolution (tens of kilometers) due to the low signal levels produced by natural radioactivity and the interaction of cosmic rays and the solar wind with the lunar surface. This paper presents the results of a concept definition effort for a neutral particle beam lunar mapper probe. The idea of using particle beam probes to survey asteroids was first proposed by Sagdeev et al., and an ion beam device was fielded on the 1988 Soviet probe to the Mars moon Phobos. During the past five years, significant advances in the technology of neutral particle beams (NPB) have led to a suborbital flight of a neutral hydrogen beam device in the SDIO-sponsored BEAR experiment. An orbital experiment, the Neutral Particle Beam Far Field Optics Experiment (NPB-FOX) is presently in the preliminary design phase. The development of NPB accelerators that are space-operable leads one to consider the utility of these devices for probing the surface of the Moon using gamma ray, X-ray, and optical/UV spectroscopy to locate various elements and compounds. We consider the utility of the NPB-FOX satellite containing a 5-MeV particle beam accelerator as a probe in lunar orbit. Irradiation of the lunar surface by the particle beam will induce secondary and back scattered radiation from the lunar surface to be detected by a sensor that may be co-orbital with or on the particle beam satellite platform, or may be in a separate orbit. The secondary radiation is characteristic of the make-up of the lunar surface. The size of the

  17. Beam Phase Space of an Intense Ion Beam in a Neutralizing Plasma

    NASA Astrophysics Data System (ADS)

    Seidl, Peter A.; Bazouin, Guillaume; Beneytout, Alice; Lidia, Steven M.; Vay, Jean-Luc; Grote, David P.

    2011-10-01

    The Neutralized Drift Compression Experiment (NDCX-I) generates high intensity ion beams to explore warm dense matter physics. Transverse final focusing is accomplished with an 8-Tesla, 10-cm long pulsed solenoid magnet combined with a background neutralizing plasma to effectively cancel the space charge field of the ion beam. We report on phase space measurements of the beam before the neutralization channel and of the focused ion beam at the target plane. These are compared to WARP particle-in-cell simulations of the ion beam propagation through the focusing system and neutralizing plasma. Due to the orientation of the plasma sources with respect to the focusing magnet, the plasma distribution within the final focusing lens is strongly affected by the magnetic field, an effect which can influence the peak intensity at the target and which is included in the model of the experiment. Work performed under auspices of U.S. DoE by LLNL, LBNL under Contracts DE-AC52-07NA27344, DE-AC02-05CH1123.

  18. Designing Neutralized Drift Compression for Focusing of Intense Ion Beam Pulses in a Background Plasma

    SciTech Connect

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.; Startsev, E.A.; Barnard, J.J.; Friedman, A.; Lee, E.P.; Lidia, S.M.; Logan, B.G.; Roy, P.K.; Seidl, P.A.; Welch, D.R.; Sefkow, A.B.

    2009-04-28

    Neutralized drift compression offers an effective method for particle beam focusing and current amplification. In neutralized drift compression, a linear radial and longitudinal velocity drift is applied to a beam pulse, so that the beam pulse compresses as it drifts in the drift-compression section. The beam intensity can increase more than a factor of 100 in both the radial and longitudinal directions, resulting in more than 10,000 times increase in the beam number density during this process. The self-electric and self-magnetic fields can prevent tight ballistic focusing and have to be neutralized by supplying neutralizing electrons. This paper presents a survey of the present theoretical understanding of the drift compression process and plasma neutralization of intense particle beams. The optimal configuration of focusing and neutralizing elements is discussed in this paper.

  19. ASSESSMENT OF A PARTICLE BED BASED BEAM STOP.

    SciTech Connect

    SIMOS,N.; LUDEWIG,H.; MONTANEZ,P.; TODOSOW,M.

    2002-06-03

    Accelerator target/beam stop concepts able to withstand the thermal shock induced by intense, undiluted beams are being assessed in this study. Such conditions normally push target materials beyond their limits leading to limited useful life. A number of ingenious options have been attempted to help reduce the level of stress generated. Attention is paid to a very promising option that calls for a target consisting of a cooled particle bed. In such configuration the ability of the particle bed structure to diffuse and attenuate the generated thermal shock waves is being explored by performing comprehensive dynamic analyses that incorporate anticipated energy depositions, thermal diffusion, and wave propagation and attenuation. Further, options of coolant liquid filling the porous structure of the particle bed, including concerns of pressure drop and heat transfer, are evaluated for maximizing particle yield.

  20. Frontiers of particle beam physics

    SciTech Connect

    Sessler, A.M.

    1989-11-01

    First, a review is given of various highly-developed techniques for particle handling which are, nevertheless, being vigorously advanced at the present time. These include soft superconductor radio frequency cavities, hard superconductor magnets, cooling rings for ions and anti-protons, and damping rings for electrons. Second, attention is focused upon novel devices for particle generation, acceleration, and focusing. These include relativistic klystrons and free electron laser power sources, binary power multipliers, photocathodes, switched-power linacs, plasma beat-wave accelerators, plasma wake-field accelerators, plasma lenses, plasma adiabatic focusers and plasma compensators. 12 refs.

  1. Space–time characterization of ultra-intense femtosecond laser beams

    NASA Astrophysics Data System (ADS)

    Pariente, G.; Gallet, V.; Borot, A.; Gobert, O.; Quéré, F.

    2016-08-01

    Femtosecond lasers can now deliver ultrahigh intensities at focus, making it possible to induce relativistic motion of charged particles with light and opening the way to new generations of compact particle accelerators and X-ray sources. With diameters of up to tens of centimetres, ultra-intense laser beams tend to suffer from spatiotemporal distortions, that is, a spatial dependence of their temporal properties that can dramatically reduce their peak intensities. At present, however, these intense electromagnetic fields are characterized and optimized in space and time separately. Here, we present the first complete spatiotemporal experimental reconstruction of the field E(t,r) for a 100 TW peak-power laser, and reveal the spatiotemporal distortions that can affect such beams. This new measurement capability opens the way to in-depth characterization and optimization of ultra-intense lasers and ultimately to the advanced control of relativistic motion of matter with femtosecond laser beams structured in space–time.

  2. Ion Beams in Short-Pulse, High Intensity Laser Matter Interactions.

    NASA Astrophysics Data System (ADS)

    Lasinski, B. F.; Langdon, A. B.; Still, C. H.; Tabak, M.; Town, R. P. J.; Kruer, W. L.; Wilks, S. C.; Welch, D. R.

    2002-11-01

    Experiments on the interaction of short pulse high intensity lasers with thin foils have produced intense ion beams with surprisingly good emittance. We report on explicit PIC and hybrid particle-fluid simulations motivated by these experiments. In addition, we study the focusing of these beams and their possible collective effects. The LSP code footnote D. R. Welch, et al, Nucl. Inst. Meth. Phys. Res. A 242, 134 (2001). uses a direct implicit particle-in-cell algorithm in 2 or 3 dimensions to solve for the beam particles and the background particles are treated as a fluid. Implications for the fast ignitor concept footnote M. Tabak, et al, Phys. Plasmas 1, 1626 (1994). in which energetic fast particles transport energy to the high-density compressed fuel will be discussed.

  3. Fermilab main injector: High intensity operation and beam loss control

    NASA Astrophysics Data System (ADS)

    Brown, Bruce C.; Adamson, Philip; Capista, David; Chou, Weiren; Kourbanis, Ioanis; Morris, Denton K.; Seiya, Kiyomi; Wu, Guan Hong; Yang, Ming-Jen

    2013-07-01

    From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at 400 kW beam power. Transmission was very high except for beam lost at or near the 8 GeV injection energy where 95% beam transmission results in about 1.5 kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the improvements required to achieve high intensity, the impact of various loss control tools and the status and trends in residual radiation in the Main Injector.

  4. Particle beam generator using a radioactive source

    DOEpatents

    Underwood, David G.

    1993-01-01

    The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.

  5. Particle beam generator using a radioactive source

    DOEpatents

    Underwood, D.G.

    1993-03-30

    The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.

  6. Propagation instabilities of high-intensity laser-produced electron beams.

    PubMed

    Tatarakis, M; Beg, F N; Clark, E L; Dangor, A E; Edwards, R D; Evans, R G; Goldsack, T J; Ledingham, K W D; Norreys, P A; Sinclair, M A; Wei, M-S; Zepf, M; Krushelnick, K

    2003-05-01

    Measurements of energetic electron beams generated from ultrahigh intensity laser interactions (I>10(19) W/cm(2)) with dense plasmas are discussed. These interactions have been shown to produce very directional beams, although with a broad energy spectrum. In the regime where the beam density approaches the density of the background plasma, we show that these beams are unstable to filamentation and "hosing" instabilities. Particle-in-cell simulations also indicate the development of such instabilities. This is a regime of particular interest for inertial confinement fusion applications of these beams (i.e., "fast ignition"). PMID:12786076

  7. Doubling Main Injector beam intensity using RF barrier

    SciTech Connect

    King-Yuen Ng

    2002-09-30

    Using rf barriers, 12 booster batches can be injected into the Fermilab Main Injector continuously, thus doubling the usual beam intensity. After that, adiabatic capture of the beam into 53 MHz buckets can be accomplished in about 10 ms. The beam loading voltages in the rf cavities are small and they can be eliminated by a combination of counterphasing and mechanical shorts.

  8. Progress toward a microsecond duration, repetitive, intense-ion beam for active spectroscopic measurements on ITER

    SciTech Connect

    Davis, H.A.; Bartsch, R.R.; Barnes, C.W.

    1996-06-01

    The authors describe the design of an intense, pulsed, repetitive, neutral beam based on magnetically insulated diode technology for injection into ITER for spectroscopic measurements of thermalizing alpha particle and thermal helium density profiles, ion temperature, plasma rotation, and low Z impurity concentrations in the confinement region. The beam is being developed to enhance low signal-to-noise ratios expected with conventional steady-state ion beams because of severe beam attenuation and intense bremstrahlung emission. A 5 GW (e.g., 100 keV, 50 kA) one-microsecond-duration beam would increase the signal by 10{sup 3} compared to a conventional 5 MW beam with signal-to-noise ratios comparable to those from a chopped conventional beam in one second.

  9. Beam diagnostics at high-intensity storage rings

    SciTech Connect

    Plum, M.

    1993-11-01

    Beam diagnostics at high-intensity facilities feature their own special set of problems and characteristics. Issues peculiar to high-intensity storage rings include beam loss, beam halos, extraction efficiency, beam in the gap, clearing electrodes, and beam-profile measurement. The Los Alamos Proton Storage Ring (PSR) is a nice example of a high-intensity storage ring. The author discusses in some detail three diagnostic systems currently in use at the PSR: the beam-loss-monitor system, the electron-clearing system, and the beam-in-the-gap monitor. Much of the discussion is inspired by the problems that were encountered and the useful things learned while commissioning and developing the PSR. Another inspiration is the work on the next-generation neutron-spallation source, also known as the National Center for Neutron Research (NCNR).

  10. Beam diagnostics at high-intensity storage rings

    SciTech Connect

    Plum, M. )

    1994-10-10

    Beam diagnostics at high-intensity facilities feature their own special set of problems and characteristics, issues peculiar to high-intensity storage rings include beam loss, beam halos, extraction efficiency, beam in the gap, clearing electrodes, and beam-profile measurement. The Los Alamos Proton Storage Ring (PSR) is a nice example of a high-intensity storage ring. I will discuss in some detail three diagnostic systems currently in use at the PSR: the beam-loss-monitor system, the electron-clearing system, and the beam-in-the-gap monitor. Much of our discussion is inspired by the problems we have encountered and the useful things we have learned while commissioning and developing the PSR. Another inspiration is our work on the next-generation neutron-spallation source, also known as the National Center for Neutron Research (NCNR).

  11. Intensity dependence of relativistic focusing of intense laser beams propagating in plasmas

    SciTech Connect

    Liu Mingwei; Zhou Bingju; Yi Yougen; Liu Xiaojuan; Tang Liqiang

    2007-10-15

    Optical guiding of an intense laser beam propagating in uniform plasmas is analyzed by means of the variational method. The focusing properties of the beam are shown to be governed by the laser power as well as the laser intensity. An increase in the laser intensity leads to an enhancement of ponderomotive self-channeling but a stronger weakening of relativistic self-focusing. The oscillations of the beam spot size along the propagation distance come from the variability of the focusing force in terms of the laser intensity; and the dependence on the laser intensity is negligible in the weakly relativistic limit.

  12. Intense non-relativistic cesium ion beam

    SciTech Connect

    Lampel, M.C.

    1984-02-01

    The Heavy Ion Fusion group at Lawrence Berkeley Laboratory has constructed the One Ampere Cesium Injector as a proof of principle source to supply an induction linac with a high charge density and high brightness ion beam. This is studied here. An electron beam probe was developed as the major diagnostic tool for characterizing ion beam space charge. Electron beam probe data inversion is accomplished with the EBEAM code and a parametrically adjusted model radial charge distribution. The longitudinal charge distribution was not derived, although it is possible to do so. The radial charge distribution that is derived reveals an unexpected halo of trapped electrons surrounding the ion beam. A charge fluid theory of the effect of finite electron temperature on the focusing of neutralized ion beams (Nucl. Fus. 21, 529 (1981)) is applied to the problem of the Cesium beam final focus at the end of the injector. It is shown that the theory's predictions and assumptions are consistent with the experimental data, and that it accounts for the observed ion beam radius of approx. 5 cm, and the electron halo, including the determination of an electron Debye length of approx. 10 cm.

  13. Development status of an intense beam klystron

    SciTech Connect

    Coleman, P.D.; Lemke, R.W.; Hendricks, K.J.; Arman, M.J.; Bowers, L.A.

    1994-10-01

    Investigations are being performed on a high current (16 kA), mildly relativistic (400kV), L-band klystron source. Experiments are in an early stage, and thus far have progressed to beam modulation studies. This paper discusses general klystron design considerations, beam propagation results, initial modulation results, and various extraction techniques being considered.

  14. Implications of the Electrostatic Approximation in the Beam Frame on the Nonlinear Vlasov-Maxwell Equations for Intense Beam Propagation

    SciTech Connect

    Ronald C. Davidson; W. Wei-li Lee; Hong Qin; Edward Startsev

    2001-11-08

    This paper develops a clear procedure for solving the nonlinear Vlasov-Maxwell equations for a one-component intense charged particle beam or finite-length charge bunch propagating through a cylindrical conducting pipe (radius r = r(subscript)w = const.), and confined by an applied focusing force. In particular, the nonlinear Vlasov-Maxwell equations are Lorentz-transformed to the beam frame ('primed' variables) moving with axial velocity relative to the laboratory. In the beam frame, the particle motions are nonrelativistic for the applications of practical interest, already a major simplification. Then, in the beam frame, we make the electrostatic approximation which fully incorporates beam space-charge effects, but neglects any fast electromagnetic processes with transverse polarization (e.g., light waves). The resulting Vlasov-Maxwell equations are then Lorentz-transformed back to the laboratory frame, and properties of the self-generated fields and resulting nonlinear Vlasov-Maxwell equations in the laboratory frame are discussed.

  15. Particle beam dynamics simulations using the POOMA framework

    SciTech Connect

    Humphrey, W.; Ryne, R.; Cleland, T.; Cummings, J.; Habib, S.; Mark, G.; Ji Qiang

    1998-12-31

    A program for simulation of the dynamics of high intensity charged particle beams in linear particle accelerators has been developed in C++ using the POOMA Framework, for use on serial and parallel architectures. The code models the trajectories of charged particles through a sequence of different accelerator beamline elements such as drift chambers, quadrupole magnets, or RF cavities. An FFT-based particle-in-cell algorithm is used to solve the Poisson equation that models the Coulomb interactions of the particles. The code employs an object-oriented design with software abstractions for the particle beam, accelerator beamline, and beamline elements, using C++ templates to efficiently support both 2D and 3D capabilities in the same code base. The POOMA Framework, which encapsulates much of the effort required for parallel execution, provides particle and field classes, particle-field interaction capabilities, and parallel FFT algorithms. The performance of this application running serially and in parallel is compared to an existing HPF implementation, with the POOMA version seen to run four times faster than the HPF code.

  16. Beam Line: 100 years of elementary particles

    NASA Astrophysics Data System (ADS)

    Pais, A.; Weinberg, S.; Quigg, C.; Riordan, M.; Panofsky, W. K. H.

    1997-04-01

    This issue of Beam Line commemorates the 100th anniversary of the April 30, 1897 report of the discovery of the electron by J.J. Thomson and the ensuing discovery of other subatomic particles. In the first three articles, theorists Abraham Pais, Steven Weinberg, and Chris Quigg provide their perspectives on the discoveries of elementary particles as well as the implications and future directions resulting from these discoveries. In the following three articles, Michael Riordan, Wolfgang Panofsky, and Virginia Trimble apply our knowledge about elementary particles to high-energy research, electronics technology, and understanding the origin and evolution of our Universe.

  17. Gaussian beam photothermal single particle microscopy.

    PubMed

    Selmke, Markus; Braun, Marco; Cichos, Frank

    2012-10-01

    We explore the intuitive lensing picture of laser-heated nanoparticles occurring in single particle photothermal (PT) microscopy. The effective focal length of the thermal lens (TL) is derived from a ray-optics treatment and used to transform the probing focused Gaussian beam with ABCD Gaussian matrix optics. The relative PT signal is obtained from the relative beam-waist change far from the TL. The analytical expression is semiquantitative, capable of describing the entire phenomenology of single particle PT microscopy, and shows that the signal is the product of the point-spread functions of the involved lasers times a linear function of the axial coordinate. The presented particularly simple and intuitive Gaussian beam lensing picture compares favorably to the experimental results for 60 nm gold nanoparticles and provides the prescription for optimum setup calibration. PMID:23201674

  18. Polarization of fast particle beams by collisional pumping

    DOEpatents

    Stearns, J. Warren; Kaplan, Selig N.; Pyle, Robert V.; Anderson, L. Wilmer; Ruby, Lawrence; Schlachter, Alfred S.

    1988-01-01

    Method and apparatus for highly polarizing a fast beam of particles by collisional pumping, including generating a fast beam of particles, and also generating a thick electron-spin-polarized medium positioned as a target for the beam. The target is made sufficiently thick to allow the beam to interact with the medium to produce collisional pumping whereby the beam becomes highly polarized.

  19. Analysis of optical trapping and propulsion of Rayleigh particles using Airy beam.

    PubMed

    Cheng, Hua; Zang, Weiping; Zhou, Wenyuan; Tian, Jianguo

    2010-09-13

    The radiation forces and trajectories of Rayleigh dielectric particles induced by one-dimensional Airy beam were numerically analyzed. Results show that the Airy beam drags particles into the optical intensity peaks, and guides particles vertically along parabolic trajectories. Viscosity of surrounding medium significantly affects the trajectories. Random Brownian force affects the trajectories. Meanwhile, trapping potential depths and minimum trapping particle radii in different potential wells were also discussed. The trapping stability could be improved by increasing either the input peak intensity or the particle radius. PMID:20940930

  20. Particle beam fusion progress report for 1989

    SciTech Connect

    Sweeney, M.A.

    1994-08-01

    This report summarizes the progress on the pulsed power approach to inertial confinement fusion. In 1989, the authors achieved a proton focal intensity of 5 TW/cm{sup 2} on PBFA-II in a 15-cm-radius applied magnetic-field (applied-B) ion diode. This is an improvement by a factor of 4 compared to previous PBFA-II experiments. They completed development of the three-dimensional (3-D), electromagnetic, particle-in-cell code QUICKSILVER and obtained the first 3-D simulations of an applied-B ion diode. The simulations, together with analytic theory, suggest that control of electromagnetic instabilities could reduce ion divergence. In experiments using a lithium fluoride source, they delivered 26 kJ of lithium energy to the diode axis. Rutherford-scattered ion diagnostics have been developed and tested using a conical foil located inside the diode. They can now obtain energy density profiles by using range filters and recording ion images on nuclear track recording film. Timing uncertainties in power flow experiments on PBFA-II have been reduced by a factor of 5. They are investigating three plasma opening switches that use magnetic fields to control and confine the injected plasma. These new switches provide better power flow than the standard plasma erosion switch. Advanced pulsed-power fusion drivers will require extraction-geometry applied-B ion diodes. During this reporting period, progress was made in evaluating the generation, transport, and focus of multiple ion beams in an extraction geometry and in assessing the probable damage to a target chamber first wall.

  1. Investigation of Generation, Acceleration, Transport and Final Focusing of High-Intensity Heavy Ion Beams from Sources to Targets

    SciTech Connect

    Chiping Chen

    2006-10-26

    Under the auspices of the research grant, the Intense Beam Theoretical Research Goup at Massachusetts Institute of Technology's Plasma Science and Fusion Center made significant contributions in a number of important areas in the HIF and HEDP research, including: (a) Derivation of rms envelope equations and study of rms envelope dynamics for high-intensity heavy ion beams in a small-aperture AG focusing transport systems; (b) Identification of a new mechanism for chaotic particle motion, halo formation, and beam loss in high-intensity heavy ion beams in a small-aperture AG focusing systems; Development of elliptic beam theory; (d) Study of Physics Issues in the Neutralization Transport Experiment (NTX).

  2. Design of a compact Faraday cup for low energy, low intensity ion beams

    NASA Astrophysics Data System (ADS)

    Cantero, E. D.; Sosa, A.; Andreazza, W.; Bravin, E.; Lanaia, D.; Voulot, D.; Welsch, C. P.

    2016-01-01

    Beam intensity is one of the key parameters in particle accelerators, in particular during machine commissioning, but also during operation for experiments. At low beam energies and low intensities a number of challenges arise in its measurement as commonly used non-invasive devices are no longer sensitive enough. It then becomes necessary to stop the beam in order to measure its absolute intensity. A very compact Faraday cup for determining ion beam currents from a few nanoamperes down to picoamperes for the HIE-ISOLDE post-accelerator at CERN has been designed, built and tested with beam. It has a large aperture diameter of 30 mm and a total length of only 16 mm, making it one of the most compact designs ever used. In this paper we present the different steps that were involved in the design and optimization of this device, including beam tests with two early prototypes and the final monitor. We also present an analysis of the losses caused by secondary particle emission for different repelling electrode voltages and beam energies. Finally, we show that results obtained from an analytical model for electron loss probability combined with Monte Carlo simulations of particles trajectories provide a very good agreement with experimental data.

  3. Fundamentals of relativistic particle beam optics

    SciTech Connect

    Cornacchia, M.

    1995-12-01

    This lecture introduces the nonaccelerator-specialist to the motion of charged particles in a Storage Ring. The topics of discussion are restricted to the linear and nonlinear dynamics of a single particle in the transverse plane, i.e., the plane perpendicular to the direction of motion. The major omissions for a complete review of accelerator theory, for which a considerable literature exists, are the energy and phase oscillations (1). Other important accelerator physics aspects not treated here are the collective instabilities (2), the role of synchrotron radiation in electron storage rings (3), scattering processes (4), and beam-beam effects in colliding beam facilities (5). Much of the discussion that follows applies equally well to relativistic electron, proton, or ion synchrotrons. In this narrative, we refer to the particle as electron. After a broad overview, the magnetic forces acting on the electrons and the associated differential equations of motion are discussed. Solutions of the equations are given without derivation; the method of solution is outlined. and references for deeper studies are given. In this paper, the word electron is used to signify electron or positron. The dynamics of a single particle are not affected by the sign of its charge when the magnetic field direction is changed accordingly.

  4. Neutralized transport of high intensity beams

    SciTech Connect

    Henestroza, E.; Yu, S.S.; Eylon, S.; Roy, P.K.; Anders, A.; Sharp, W.; Efthimion, P.; Gilson, E.; Welch, D.; Rose, D.

    2003-05-01

    The NTX experiment at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high perveance heavy ion beams. A converging ion beam at the exit of the final focus magnetic system is injected into a neutralized drift section. The neutralization is provided by a metal arc source and an RF plasma source. Effects of a ''plasma plug'', where electrons are extracted from a localized plasma in the upstream end of the drift section, and are then dragged along by the ion potential, as well as the ''volumetric plasma'', where neutralization is provided by the plasma laid down along the ion path, are both studied and their relative effects on the beam spot size are compared. Comparisons with 3-D PIC code predictions will also be presented.

  5. Toward automatic control of particle accelerator beams

    SciTech Connect

    Schultz, D.E.; Silbar, R.R.

    1988-01-01

    We describe a program aiming toward automatic control of particle accelerator beams. A hybrid approach is used, combining knowledge- based system programming techniques and traditional numerical simulations. We use an expert system shell for the symbolic processing and have incorporated the FORTRAN beam optics code TRANSPORT for numerical simulation. The paper discusses the symbolic model we built, the reasoning components, how the knowledge base accesses information from an operating beamline, and the experience gained in merging the two worlds of numeric and symbolic processing. We also discuss plans for a future real-time system. 6 refs., 6 figs.

  6. Gridded Electron Guns and Modulation of Intense Beams

    SciTech Connect

    Harris, J R; O'Shea, P G

    2006-05-02

    Gridded guns are useful for producing modulated electron beams. This modulation is generally limited to simple gating of the beam, but may be used to apply structure to the beam pulse shape. In intense beams, this structure spawns space charge waves whose dynamics depend in part on the relative strengths of the velocity and density variations which comprise the initial current modulation. In this paper, we calculate the strengths of beam current and velocity modulation produced in a gridded electron gun, and show that under normal conditions the initial modulation is dominated by density variation rather than velocity variation.

  7. Method and apparatus for measuring properties of particle beams using thermo-resistive material properties

    DOEpatents

    Degtiarenko, Pavel V.; Dotson, Danny Wayne

    2007-10-09

    A beam position detector for measuring the properties of a charged particle beam, including the beam's position, size, shape, and intensity. One or more absorbers are constructed of thermo-resistive material and positioned to intercept and absorb a portion of the incoming beam power, thereby causing local heating of each absorber. The local temperature increase distribution across the absorber, or the distribution between different absorbers, will depend on the intensity, size, and position of the beam. The absorbers are constructed of a material having a strong dependence of electrical resistivity on temperature. The beam position detector has no moving parts in the vicinity of the beam and is especially suited to beam areas having high ionizing radiation dose rates or poor beam quality, including beams dispersed in the transverse direction and in their time radio frequency structure.

  8. Particle production of a graphite target system for the intensity frontier

    SciTech Connect

    Ding, X.; Kirk, H.; McDonald, K. T.

    2015-05-03

    A solid graphite target system is considered for an intense muon and/or neutrino source in support of physics at the intensity frontier. We previously optimized the geometric parameters of the beam and target to maximize particle production at low energies by incoming protons with kinetic energy of 6.75 GeV and an rms geometric emittance of 5 mm-mrad using the MARS15(2014) code. In this study, we ran MARS15 with ROOT-based geometry and also considered a mercury-jet target as an upgrade option. The optimization was extended to focused proton beams with transverse emittances from 5 to 50 mm-mrad, showing that the particle production decreases slowly with increasing emittance. We also studied beam-dump configurations to suppress the rate of undesirable high-energy secondary particles in the beam.

  9. Beam loss studies in high-intensity heavy-ion linacs

    NASA Astrophysics Data System (ADS)

    Ostroumov, P. N.; Aseev, V. N.; Mustapha, B.

    2004-09-01

    The proposed Rare Isotope Accelerator (RIA) Facility, an innovative exotic-beam facility for the production of high-quality beams of short-lived isotopes, consists of a fully superconducting 1.4GV driver linac and a 140MV postaccelerator. To produce sufficient intensities of secondary beams the driver linac will provide 400kW primary beams of any ion from hydrogen to uranium. Because of the high intensity of the primary beams the beam losses must be minimized to avoid radioactivation of the accelerator equipment. To keep the power deposited by the particles lost on the accelerator structures below 1 W/m, the relative beam losses per unit length should be less than 10-5, especially along the high-energy section of the linac. A new beam dynamics simulation code TRACK has been developed and used for beam loss studies in the RIA driver linac. In the TRACK code, ions are tracked through the three-dimensional electromagnetic fields of every element of the linac starting from the electron cyclotron resonance (ECR) ion source to the production target. The simulation starts with a multicomponent dc ion beam extracted from the ECR. The space charge forces are included in the simulations. They are especially important in the front end of the driver linac. Beam losses are studied by tracking a large number of particles (up to 106) through the whole linac considering all sources of error such us element misalignments, rf field errors, and stripper thickness fluctuations. For each configuration of the linac, multiple sets of error values have been randomly generated and used in the calculations. The results are then combined to calculate important beam parameters, estimate beam losses, and characterize the corresponding linac configuration. To track a large number of particles for a comprehensive number of error sets (up to 500), the code TRACK was parallelized and run on the Jazz computer cluster at ANL.

  10. Beam Charge Asymmetry Monitors for Low Intensity Continuous Electron Beam

    SciTech Connect

    Jean-Claude Denard; Arne P. Freyberger; Youri Sharabian

    2001-05-01

    Experimental Hall B at Jefferson Lab typically operates with CW electron beam currents in the range of 1 - 10 nA. This low beam current coupled with a 30 Hz flip rate of the beam helicity required the development of new devices to measure and monitor the beam charge asymmetry. We have developed four independent devices with sufficient bandwidth for readout at 30 Hz rate: a synchrotron light monitor (SLM), two backward optical transition radiation monitors (OTR) and a Faraday Cup. Photomultipliers operating in current mode provided the readout of the light from the SLM and the OTRs, while high bandwidth electronics provided the readout from the Faraday cup. Using {approximately}6 helicity pairs, we measured the beam charge asymmetry to a statistically accuracy which is better than 0.05%. We present the results from the successful operation of these devices during the fall 2000 physics program. The reliability and the bandwidth of the devices allowed us to control the gain on the source laser by means of a feedback loop.

  11. Pulsed power accelerators for particle beam fusion

    SciTech Connect

    Martin, T.H.; Barr, G.W.; VanDevender, J.P.; White, R.A.; Johnson, D.L.

    1980-01-01

    Sandia National Laboratories is completing the construction phase of the Particle Beam Fusion Accelerator-I (PBFA-I). Testing of the 36 module, 30 TW, 1 MJ output accelerator is in the initial stages. The 4 MJ, PBFA Marx generator has provided 3.6 MA into water-copper sulfate load resistors with a spread from first to last Marx firing between 15 to 25 ns and an output power of 5.7 TW. This accelerator is a modular, lower voltage, pulsed power device that is capable of scaling to power levels exceeding 100 TW. The elements of the PBFA technology and their integration into an accelerator system for particle beam fusion will be discussed.

  12. Drift compression of an intense neutralized ion beam

    SciTech Connect

    Roy, P.K.; Yu, S.S.; Henestroza, E.; Anders, A.; Bieniosek, F.M.; Coleman, J.; Eylon, S.; Greenway, W.G.; Leitner, M.; Logan, B.G.; Waldron, W.L.; Welch, D.R.; Thoma, C.; Sefkow, A.B.; Gilson, E.P.; Efthimion, P.C.; Davidson, R.C.

    2004-10-25

    Longitudinal compression of a tailored-velocity, intense neutralized ion beam has been demonstrated. The compression takes place in a 1-2 m drift section filled with plasma to provide space-charge neutralization. An induction cell produces a head-to-tail velocity ramp that longitudinally compresses the neutralized beam, enhancing the beam peak current by a factor of 50 and producing a pulse duration of about 3 ns. this measurement has been confirmed independently with two different diagnostic systems.

  13. Improving Plating by Use of Intense Acoustic Beams

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Denofrio, Charles

    2003-01-01

    An improved method of selective plating of metals and possibly other materials involves the use of directed high-intensity acoustic beams. The beams, typically in the ultrasonic frequency range, can be generated by fixed-focus transducers (see figure) or by phased arrays of transducers excited, variously, by continuous waves, tone bursts, or single pulses. The nonlinear effects produced by these beams are used to alter plating processes in ways that are advantageous.

  14. Polarization of fast particle beams by collisional pumping

    DOEpatents

    Stearns, J.W.; Kaplan, S.N.; Pyle, R.V.; Anderson, L.W.; Schlachter, A.S.; Ruby, L.

    1984-10-19

    The invention relates to method and apparatus for polarizing a fast beam of particles by collisional pumping, including generating a fast beam of particles, and generating a thick electron-spin-polarized medium positioned as a target for said beam, said medium being sufficiently thick to allow said beam to interact with said medium to produce collisional pumping whereby said particle beam becomes highly polarized.

  15. Straight low energy beam transport for intense uranium beams

    NASA Astrophysics Data System (ADS)

    Xiao, C.; Groening, L.; Vormann, H.; Mickat, S.; Hollinger, R.; Adonin, A.; Orzhekhovskaya, A.; Maier, M.; Al-Omari, H.; Barth, W.; Kester, O. K.; Yaramyshev, S.

    2015-07-01

    A new high current uranium ion source and dedicated Low Energy Beam Transport (LEBT) will be built at the GSI High Current Injector (HSI). This LEBT will be integrated into the existing complex which already comprises two branches. The paper presents the design and dynamics simulation using the TRACE-3D and TRACK code. The simulation results illustrate that this straight LEBT can transport uranium beams over a wide range of space-charge compensation, and can provide 15.4 (14.2) mA U4+ inside of the effective acceptance of the subsequent RFQ assuming the space-charge is compensated to 100% (95%).

  16. Truncated Thermal Equilibrium Distribution for Intense Beam Propagation

    SciTech Connect

    Ronald C. Davidson; Hong Qin; Steven M. Lund

    2003-02-26

    An intense charged-particle beam with directed kinetic energy ({lambda}{sub b}-1)m{sub b}c{sup 2} propagates in the z-direction through an applied focusing field with transverse focusing force modeled by F{sub foc} = -{lambda}{sub b}m{sub b}{omega}{sub beta}{sup 2} {perpendicular} x {perpendicular} in the smooth focusing approximation. This paper examines properties of the axisymmetric, truncated thermal equilibrium distribution F(sub)b(r,p perpendicular) = A exp (-H Perpendicular/T perpendicular (sub)b) = (H perpendicular-E(sub)b), where A, T perpendicular (sub)b, and E (sub)b are positive constants, and H perpendicular is the Hamiltonian for transverse particle motion. The equilibrium profiles for beam number density, n(sub)b(r) = * d{sup 2}pF(sub)b(r,p perpendicular), and transverse temperature, T perpendicular (sub)b(r) = * d{sup 2}p(p{sup 2} perpendicular/2 lambda (sbu)bm (sub)b)F(sub)b(r,p perpendicular), are calculated self-consistently including space-charge effects. Several properties of the equilibrium profiles are noteworthy. For example, the beam has a sharp outer edge radius r(sub)b with n(sub)b(r greater than or equal to rb) = 0, where r(sub)b depends on the value of E(sub)b/T (sub)perpendicular(sub)b. In addition, unlike the choice of a semi-Gaussian distribution, F{sup SG}(sub)b = A exp (-p{sup 2}(sub)perpendicular/2lambda(sub)bm(sub)bTperpendicular(sub)b) = (r-r(sub)b), the truncated thermal equilibrium distribution F(sub)b(r,p) depends on (r,p) only through the single-particle constant of the motion Hperpendiuclar and is therefore a true steady-state solution (*/*t = 0) of the nonlinear Vlasov-Maxwell equations.

  17. Plasma-parameter measurements using neutral-particle-beam attenuation

    SciTech Connect

    Foote, J H; Molvik, A W; Turner, W C

    1982-07-07

    Intense and energetic neutral-particle-beam injection used for fueling or heating magnetically confined, controlled-fusion experimental plasmas can also provide diagnostic measurements of the plasmas. The attenuation of an atomic beam (mainly from charge-exchange and ionization interactions) when passing through a plasma gives the plasma line density. Orthogonal arrays of highly collimated detectors of the secondary-electron-emission type have been used in magnetic-mirror experiments to measure neutral-beam attenuation along chords through the plasma volume at different radial and axial positions. The radial array is used to infer the radial plasma-density profile; the axial array, to infer the axial plasma-density profile and the ion angular distribution at the plasma midplane.

  18. Raman conversion in intense femtosecond Bessel beams in air

    NASA Astrophysics Data System (ADS)

    Scheller, Maik; Chen, Xi; Ariunbold, Gombojav O.; Born, Norman; Moloney, Jerome; Kolesik, Miroslav; Polynkin, Pavel

    2014-05-01

    We demonstrate experimentally that bright and nearly collimated radiation can be efficiently generated in air pumped by an intense femtosecond Bessel beam. We show that this nonlinear conversion process is driven by the rotational Raman response of air molecules. Under optimum conditions, the conversion efficiency from the Bessel pump into the on-axis propagating beam exceeds 15% and is limited by the onset of intensity clamping and plasma refraction on the beam axis. Our experimental findings are in excellent agreement with numerical simulations based on the standard model for the ultrafast nonlinear response of air.

  19. Aperture Effects and Mismatch Oscillations in an Intense Electron Beam

    SciTech Connect

    Harris, J R; O'Shea, P G

    2008-05-12

    When an electron beam is apertured, the transmitted beam current is the product of the incident beam current density and the aperture area. Space charge forces generally cause an increase in incident beam current to result in an increase in incident beam spot size. Under certain circumstances, the spot size will increase faster than the current, resulting in a decrease in current extracted from the aperture. When using a gridded electron gun, this can give rise to negative transconductance. In this paper, we explore this effect in the case of an intense beam propagating in a uniform focusing channel. We show that proper placement of the aperture can decouple the current extracted from the aperture from fluctuations in the source current, and that apertures can serve to alter longitudinal space charge wave propagation by changing the relative contribution of velocity and current modulation present in the beam.

  20. Cryogenic gas target system for intense RI beam productions in nuclear astrophysics

    SciTech Connect

    Wakabayashi, Y.; Yamaguchi, H.; Hayakawa, S.; Kurihara, Y.; Amadio, G.; Fujikawa, H.; Kubono, S.; Binh, D. N.; He, J. J.; Kim, A.

    2008-05-21

    A cryogenic gas target system was newly developed to produce intense RI beams at the low-energy in-flight radio-isotope beam separator (CRIB) of the University of Tokyo. The main features of the cryogenic gas target system are the direct cooling of the target cell by a liquid N{sub 2} finger and the circulation of the target gas that goes through the liquid N{sub 2} tank. Hydrogen gas was cooled down to 85-90 K by liquid nitrogen and used as a secondary beam production target which has a thickness of 2.3 mg/cm{sup 2} at the gas pressure of 760 Torr. Intense RI beams, such as a {sup 7}Be beam of 2x10{sup 8} particles per second, were successfully produced using the target.

  1. A new luminescence beam profile monitor for intense proton and heavy ion beams

    SciTech Connect

    Tsang,T.; Bellavia, S.; Connolly, R.; Gassner, D.; Makdisi, Y.; Russo, T.; Thieberger, P.; Trbojevic, D.; Zelenski, A.

    2008-10-01

    A new luminescence beam profile monitor is realized in the polarized hydrogen gas jet target at the Relativistic Heavy Ion Collider (RHIC) facility. In addition to the spin polarization of the proton beam being routinely measured by the hydrogen gas jet, the luminescence produced by beam-hydrogen excitation leads to a strong Balmer series lines emission. A selected hydrogen Balmer line is spectrally filtered and imaged to produce the transverse RHIC proton beam shape with unprecedented details on the RHIC beam profile. Alternatively, when the passage of the high energy RHIC gold ion beam excited only the residual gas molecules in the beam path, sufficient ion beam induced luminescence is produced and the transverse gold ion beam profile is obtained. The measured transverse beam sizes and the calculated emittances provide an independent confirmation of the RHIC beam characteristics and to verify the emittance conservation along the RHIC accelerator. This optical beam diagnostic technique by making use of the beam induced fluorescence from injected or residual gas offers a truly noninvasive particle beam characterization, and provides a visual observation of proton and heavy ion beams. Combined with a longitudinal bunch measurement system, a 3-dimensional spatial particle beam profile can be reconstructed tomographically.

  2. Stopping intense beams of internally cold molecules via centrifugal forces

    NASA Astrophysics Data System (ADS)

    Wu, Xing; Gantner, Thomas; Zeppenfeld, Martin; Chervenkov, Sotir; Rempe, Gerhard

    2016-05-01

    Cryogenic buffer-gas cooling produces intense beams of internally cold molecules. It offers a versatile source for studying collision dynamics and reaction pathways in the cold regime, and could open new avenues for controlled chemistry, precision spectroscopy, and exploration of fundamental physics. However, an efficient deceleration of these beams still presents a challenge. Here, we demonstrate that intense and continuous beams of electrically guided molecules produced by a cryogenic buffer-gas cell can be brought to a halt by the centrifugal force in a rotating frame. Various molecules (e.g. CH3F and CF3CCH) are decelerated to below 20m /s at a corresponding output intensity of ~ 6 ×109mm-2 .s-1 . In addition, our RF-resonant depletion detection shows that up to 90 % rotational-state purity can be achieved in the so-produced slow molecular beams.

  3. Limiting current of intense electron beams in a decelerating gap

    NASA Astrophysics Data System (ADS)

    Nusinovich, G. S.; Beaudoin, B. L.; Thompson, C.; Karakkad, J. A.; Antonsen, T. M.

    2016-02-01

    For numerous applications, it is desirable to develop electron beam driven efficient sources of electromagnetic radiation that are capable of producing the required power at beam voltages as low as possible. This trend is limited by space charge effects that cause the reduction of electron kinetic energy and can lead to electron reflection. So far, this effect was analyzed for intense beams propagating in uniform metallic pipes. In the present study, the limiting currents of intense electron beams are analyzed for the case of beam propagation in the tubes with gaps. A general treatment is illustrated by an example evaluating the limiting current in a high-power, tunable 1-10 MHz inductive output tube (IOT), which is currently under development for ionospheric modification. Results of the analytical theory are compared to results of numerical simulations. The results obtained allow one to estimate the interaction efficiency of IOTs.

  4. An improved high intensity recycling helium-3 beam source

    SciTech Connect

    Hedgeland, H.; Kole, P. R.; Allison, W.; Ellis, J.; Jardine, A. P.

    2009-07-15

    We describe an improved high intensity, recycling, supersonic atomic beam source. Changes address several issues previously limiting performance and reliability of the apparatus, including the use of newly available vacuum pumps and modifications to the recycling system. We achieve a source intensity of 2.5x10{sup 19} atoms/s/sr, almost twice that previously achievable during recycling. Current limits on intensity are discussed.

  5. An improved high intensity recycling helium-3 beam source.

    PubMed

    Hedgeland, H; Kole, P R; Allison, W; Ellis, J; Jardine, A P

    2009-07-01

    We describe an improved high intensity, recycling, supersonic atomic beam source. Changes address several issues previously limiting performance and reliability of the apparatus, including the use of newly available vacuum pumps and modifications to the recycling system. We achieve a source intensity of 2.5 x 10(19) atoms/s/sr, almost twice that previously achievable during recycling. Current limits on intensity are discussed. PMID:19655995

  6. Measurement of the intensity of the beam in the abort gap at the Tevatron utilizing synchrotron light

    SciTech Connect

    Thurman-Keup, R.; Lorman, E.; Meyer, T.; Pordes, S.; De Santis, S.; /LBL, Berkeley

    2005-05-01

    This paper discusses the implementation of abort gap beam intensity monitoring at the Tevatron collider at Fermilab. There are two somewhat independent monitors which measure the intensity of the synchrotron light emitted by particles in the abort gaps. One system uses a gated Photomultiplier Tube (PMT) to measure the light intensity, and the other system uses a single lens telescope, gated image intensifier, and Charge Injection Device (CID) camera to image the beam.

  7. Beam instrumentation for future high intense hadron accelerators at Fermilab

    SciTech Connect

    Wendt, M.; Hu, M.; Tassotto, G.; Thurman-Keup, R.; Scarpine, V.; Shin, S.; Zagel, J.; /Fermilab

    2008-08-01

    High intensity hadron beams of up to 2 MW beam power are a key element of new proposed experimental facilities at Fermilab. Project X, which includes a SCRF 8 GeV H{sup -} linac, will be the centerpiece of future HEP activities in the neutrino sector. After a short overview of this, and other proposed projects, we present the current status of the beam instrumentation activities at Fermilab with a few examples. With upgrades and improvements they can meet the requirements of the new beam facilities, however design and development of new instruments is needed, as shown by the prototype and conceptual examples in the last section.

  8. Acceleration of electrons by a tightly focused intense laser beam.

    PubMed

    Li, Jian-Xing; Zang, Wei-Ping; Li, Ya-Dong; Tian, Jian-Guo

    2009-07-01

    The recent proposal to use Weinger transformation field (WTF) [Opt. Express 17, 4959-4969 (2009)] for describing tightly focused laser beams is investigated here in detail. In order to validate the accuracy of WTF, we derive the numerical field (NF) from the plane wave spectrum method. WTF is compared with NF and Lax series field (LSF). Results show that LSF is accurate close to the beam axis and divergent far from the beam axis, and WTF is always accurate. Moreover, electron dynamics in a tightly focused intense laser beam are simulated by LSF, WTF and NF, respectively. The results obtained by WTF are shown to be accurate. PMID:19582099

  9. Dose conformation of intensity-modulated stereotactic photon beams, proton beams, and intensity-modulated proton beams for intracranial lesions

    SciTech Connect

    Baumert, Brigitta G. . E-mail: brigitta.baumert@maastro.nl; Norton, Ian A.; Lomax, Antony J.; Davis, J.B.

    2004-11-15

    Purpose: This study evaluates photon beam intensity-modulated stereotactic radiotherapy (IMSRT) based on dynamic leaf motion of a micromultileaf collimator (mMLC), proton beams, and intensity-modulated proton therapy (IMPT) with respect to target coverage and organs at risk. Methods and materials: Dose plans of 6 stereotactically treated patients were recalculated for IMSRT by use of the same field setup and an inverse planning algorithm. Proton and IMPT plans were calculated anew. Three different tumor shapes, multifocal, ovoid, and irregular, were analyzed, as well as dose to organs-at-risk (OAR) in the vicinity of the planning target volume (PTV). Dose distributions were calculated from beam-setup data for a manual mMLC for stereotactically guided conformal radiotherapy (SCRT), a dynamic mMLC for IMSRT, the spot-scanning technique for protons, and a modified spot-scanning technique for IMPT. SCRT was included for a part of the comparison. Criteria for assessment were PTV coverage, dose-volume histograms (DVH), volumes of specific isodoses, and the dose to OAR. Results: Dose conformation to the PTV is equally good for all three techniques and tumor shapes considered. The volumes of the 90% and 80% isodose were comparable for all techniques. For the 50% isodose volume, a divergence between the two modes was seen. In 3 cases, this volume is smaller for IMSRT, and in the 3 other cases, it is smaller for IMPT. This difference was even more pronounced for the volumes of the 30% isodose; IMPT shows further improvement over conventional protons. OAR in concavities (e.g., the brainstem) were similarly well spared by protons and IMSRT. IMPT spares critical organs best. Fewer proton beams are required to achieve similar results. Conclusions: The addition of intensity modulation improves the conformality of mMLC-based SCRT. Conformation of dose to the PTV is comparable for IMSRT, protons, and IMPT. Concerning the sparing of OAR, IMSRT is equivalent to IMPT, and IMPT is

  10. Emittance Growth in Intense Non-Circular Beams

    NASA Astrophysics Data System (ADS)

    Anderson, O. A.

    1997-05-01

    The electrostatic energy of intense beams in linear uniform focusing channels is minimized when the initial beam configuration is both uniform and round.(In the case of quadrupole focusing, this means round on the average.) Deviations from either uniformity or roundness produce free energy and emittance growth. Over the past 25 years, the consequences of beam nonuniformity have been thoroughly investigated for the case of round beams. Recently, there has been interest in more complex beam configurations such as those that occur in Heavy Ion Fusion (HIF) combiners or splitters. We discuss free energy and emittance growth for a variety of cases: (a) square beams, (b) hexagonal beams, (c) beams bounded by a quadrant or sextant of a circle, (d) rectangular beams, (e) elliptical beams, (f) pairs of beamlets, and (g) arrays of many beamlets. Cases (a) and (b) are approximations for large arrays of beamlets as proposed for HIF combiners or for negative-ion sources. Beam splitting, suggested for a particular HIF final focus scheme, leads to (c). The large emittance growth in cases (d)-(f), calculated by a new method,(O.A. Anderson, Proceedings of EPAC 96 conference.) illustrates the importance of maintaining symmetry. Practical examples are given for several cases.

  11. Theory of longitudinal beam halo in RF linacs: I. core/test-particle formulation

    SciTech Connect

    Barnard, J.J.; Lund, S.M.

    1997-05-01

    For intense beams, the analysis of tenuous halo components of the particle distribution that surround the main core of the distribution can be challenging. So-called core/test particle models in which a test particle is evolved in the applied and space-charge forces of the beam core have been instrumental in understanding the structure and extent of transverse beam halo produced by resonant particle interactions with the oscillating space-charge forces of a mismatched beam core. Here we present a core/test particle model developed for the analysis of longitudinal beam halo in intense, ion-beam rf linacs. Equations of motion are derived for a test particle moving interior to, and exterior to, a uniform density ellipsoidal beam bunch. Coupled transverse-longitudinal mismatch modes of the ellipsoidal beam envelope are analyzed. Typical parameters suggest the possibility of a low-order resonant interaction between longitudinal particle oscillations and a low-frequency envelope mode. Properties of this resonance are in an accompanying paper by the authors in these proceedings.

  12. A non-invasive beam profile monitor for charged particle beams

    SciTech Connect

    Tzoganis, Vasilis; Welsch, Carsten P.

    2014-05-19

    Non-interceptive beam profile monitors are highly desirable in almost all particle accelerators. Such techniques are especially valuable in applications where real time monitoring of the beam properties is required while beam preservation and minimal influence on the vacuum are of the greatest importance. This applies to many kinds of accelerators such as high energy machines where the normal diagnostics cannot withstand the beam's power, medical machines where treatment time is valuable and cannot be allocated to diagnostics and also low energy, low intensity accelerators where the beam's properties are difficult to measure. This paper presents the design of a gas-jet based beam profile monitor which was developed and commissioned at the Cockcroft Institute and can operate in a very large background pressure range from 10{sup −7} down to below 10{sup −11} millibars. The functioning principle of the monitor is described and the first experimental results obtained using a 5 keV electron beam are discussed.

  13. The generation and application of intense pulsed ion beams

    NASA Astrophysics Data System (ADS)

    Golden, J.; Kapetanakos, C. A.; Pasour, J. A.; Mahaffey, R. A.

    1981-04-01

    Means for the generation of pulsed, ultrahigh power beams of low-atomic-mass ions are considered, and potential applications of the beams in thermonuclear fusion and other applications are discussed. The intense ion beam sources represent an extension of the pulsed-power technology of relativistic electron beams, employing transmission lines powered by Marx generators to produce pulses of 25-100 nsec duration, energies of 0.1-2 MV, currents of 1 kA to 1 MA, and power levels above 1 GW. The most successful approach to intense pulsed beam generation is based on the acceleration of plasma ions within vacuum-diode-like sources involving the processes of plasma generation, ion extraction, and the suppression of the electron current, which may be accomplished by reflexing, pinching or magnetic insulation. Ion beams thus generated have been used to form transient, field-reversed ion layers and to excite high-power gas lasers. Intense ion beams are also under investigation as drivers of inertial confinement in thermonuclear reactors.

  14. Development of CNS Active Target for Deuteron Induced Reactions with High Intensity Exotic Beam

    NASA Astrophysics Data System (ADS)

    Ota, Shinsuke; Tokieda, H.; Lee, C. S.; Kojima, R.; Watanabe, Y. N.; Corsi, A.; Dozono, M.; Gibelin, J.; Hashimoto, T.; Kawabata, T.; Kawase, S.; Kubono, S.; Kubota, Y.; Maeda, Y.; Matsubara, H.; Matsuda, Y.; Michimasa, S.; Nakao, T.; Nishi, T.; Obertelli, A.; Otsu, H.; Santamaria, C.; Sasano, M.; Takaki, M.; Tanaka, Y.; Leung, T.; Uesaka, T.; Yako, K.; Yamaguchi, H.; Zenihiro, J.; Takada, E.

    An active target system called CAT, has been developed aiming at the measurement of deuteron induced reactions with high intensity beams in inverse kinematics. The CAT consists of a time projection chamber using THGEM and an array of Si detectors or NaI scintilators. The effective gain for the recoil particle is deisgned to be 5 - 10 × 103, while one for the beam is reduced by 102 using mesh grid to match the amplified signal to the dynamic range same as the one for recoil particle. The structure of CAT and the effect of the mesh grid are reported.

  15. Paul Trap Simulator Experiment to Model Intense Beam Propagation in Alternating-gradient Transport Systems

    SciTech Connect

    Erik P. Gilson; Ronald C. Davidson; Philip C. Efthimion; Richard Majeski

    2004-01-29

    The results presented here demonstrate that the Paul Trap Simulator Experiment (PTSX) simulates the propagation of intense charged particle beams over distances of many kilometers through magnetic alternating-gradient (AG) transport systems by making use of the similarity between the transverse dynamics of particles in the two systems. Plasmas have been trapped that correspond to normalized intensity parameters s = wp2 (0)/2wq2 * 0.8, where wp(r) is the plasmas frequency and wq is the average transverse focusing frequency in the smooth-focusing approximation. The measured root-mean-squared (RMS) radius of the beam is consistent with a model, equally applicable to both PTSX and AG systems that balances the average inward confining force against the outward pressure-gradient and space-charge forces. The PTSX device confines one-component cesium ion plasmas for hundreds of milliseconds, which is equivalent to over 10 km of beam propagation.

  16. Hose instability and wake generation by an intense electron beam in a self-ionized gas.

    PubMed

    Deng, S; Barnes, C D; Clayton, C E; O'Connell, C; Decker, F J; Fonseca, R A; Huang, C; Hogan, M J; Iverson, R; Johnson, D K; Joshi, C; Katsouleas, T; Krejcik, P; Lu, W; Mori, W B; Muggli, P; Oz, E; Tsung, F; Walz, D; Zhou, M

    2006-02-01

    The propagation of an intense relativistic electron beam through a gas that is self-ionized by the beam's space charge and wakefields is examined analytically and with 3D particle-in-cell simulations. Instability arises from the coupling between a beam and the offset plasma channel it creates when it is perturbed. The traditional electron hose instability in a preformed plasma is replaced with this slower growth instability depending on the radius of the ionization channel compared to the electron blowout radius. A new regime for hose stable plasma wakefield acceleration is suggested. PMID:16486834

  17. Hose Instability and Wake Generation By An Intense Electron Beam in a Self-Ionized Gas

    SciTech Connect

    Deng, S.; Barnes, C.D.; Clayton, C.E.; O'Connell, C.; Decker, F.J.; Fonseca, R.A.; Huang, C.; Hogan, M.J.; Iverson, R.; Johnson, D.K.; Joshi, C.; Katsouleas, T.; Krejcik, P.; Lu, W.; Mori, W.B.; Muggli, P.; Oz, E.; Tsung, F.; Walz, D.; Zhou, M.; /Southern California U. /UCLA /SLAC

    2006-04-12

    The propagation of an intense relativistic electron beam through a gas that is self-ionized by the beam's space charge and wakefields is examined analytically and with 3D particle-in-cell simulations. Instability arises from the coupling between a beam and the offset plasma channel it creates when it is perturbed. The traditional electron hose instability in a preformed plasma is replaced with this slower growth instability depending on the radius of the ionization channel compared to the electron blowout radius. A new regime for hose stable plasma wakefield acceleration is suggested.

  18. Long path-length experimental studies of longitudinal phenomena in intense beams

    NASA Astrophysics Data System (ADS)

    Beaudoin, B. L.; Haber, I.; Kishek, R. A.; Bernal, S.; Koeth, T. W.

    2016-05-01

    Intense charged particle beams are nonneutral plasmas as they can support a host of plasma waves and instabilities. The longitudinal physics, for a long beam, can often be reasonably described by a 1-D cold-fluid model with a geometry factor to account for the transverse effects. The plasma physics of such beams has been extensively studied theoretically and computationally for decades, but until recently, the only experimental measurements were carried out on relatively short linacs. This work reviews experimental studies over the past five years on the University of Maryland Electron Ring, investigating longitudinal phenomena over time scales of thousands of plasma periods, illustrating good agreement with simulations.

  19. Observations of the filamentation of high-intensity laser-produced electron beams

    SciTech Connect

    Wei, M.S.; Beg, F.N.; Dangor, A.E.; Gopal, A.; Tatarakis, M.; Krushelnick, K.; Clark, E.L.; Evans, R.G.; Ledingham, K.W.D.; McKenna, P.; Norreys, P.A.; Zepf, M.

    2004-11-01

    Filamented electron beams have been observed to be emitted from the rear of thin solid targets irradiated by a high-intensity short-pulse laser when there is low-density plasma present at the back of the target. These observations are consistent with a laser-generated beam of relativistic electrons propagating through the target, which is subsequently fragmented by a Weibel-like instability in the low-density plasma at the rear. These measurements are in agreement with particle-in-cell simulations and theory, since the filamentation instability is predicted to be dramatically enhanced when the electron beam density approaches that of the background plasma.

  20. Vacuum chamber for containing particle beams

    DOEpatents

    Harvey, A.

    1985-11-26

    A vacuum chamber for containing a charged particle beam in a rapidly changing magnetic environment comprises a ceramic pipe with conducting strips oriented along the longitudinal axis of the pipe and with circumferential conducting bands oriented perpendicular to the longitudinal axis but joined with a single longitudinal electrical connection. When both strips and bands are on the outside of the ceramic pipe, insulated from each other, a high-resistance conductive layer such as nickel can be coated on the inside of the pipe.

  1. Vacuum chamber for containing particle beams

    DOEpatents

    Harvey, Alexander

    1987-01-01

    A vacuum chamber for containing a charged particle beam in a rapidly changing magnetic environment comprises a ceramic pipe with conducting strips oriented along the longitudinal axis of the pipe and with circumferential conducting bands oriented perpendicular to the longitudinal axis but joined with a single longitudinal electrical connection. When both strips and bands are on the outside of the ceramic pipe, insulated from each other, a high-resistance conductive layer, such as nickel can be coated on the inside of the pipe.

  2. Charged particle beam current monitoring tutorial

    SciTech Connect

    Webber, R.C.

    1994-10-01

    A tutorial presentation is made on topics related to the measurement of charged particle beam currents. The fundamental physics of electricity and magnetism pertinent to the problem is reviewed. The physics is presented with a stress on its interpretation from an electrical circuit theory point of view. The operation of devices including video pulse current transformers, direct current transformers, and gigahertz bandwidth wall current style transformers is described. Design examples are given for each of these types of devices. Sensitivity, frequency response, and physical environment are typical parameters which influence the design of these instruments in any particular application. Practical engineering considerations, potential pitfalls, and performance limitations are discussed.

  3. High intensity ion beam injection into the 88-inch cyclotron

    SciTech Connect

    Wutte, Daniela; Clark, Dave J.; Laune, Bernard; Leitner,Matthaeus A.; Lyneis, Claude M.

    2000-05-31

    Low cross section experiments to produce super-heavyelements have increased the demand for high intensity heavy ion beams atenergies of about 5 MeV/nucleon at the 88-Inch Cyclotron at the LawrenceBerkeley National Laboratory. Therefore, efforts are underway to increasethe overall ion beam transmission through the axial injection line andthe cyclotron. The ion beam emittance has been measured for various ionmasses and charge states. Beam transport simulations including spacecharge effects were performed for both of the injection line and the ionsource extraction. The relatively low nominal injection voltage of 10 kVwas found to be the main factor for ion beam losses, because of beam blowup due to space charge forces at higher intensities. Consequently,experiments and simulations have been performed at higherinjectionenergies, and it was demonstrated that the ion beams could still becentered in the cyclotron at these energies. Therefore, the new injectorion source VENUS and its ion beam transport system (currently underconstruction at the 88-Inch Cyclotron) are designed for extractionvoltages up to 30 kV.

  4. Point Scanning Microscope with Adaptive Illumination Beam Intensity

    NASA Astrophysics Data System (ADS)

    Das, Abhijit; Boruah, B. R.

    2011-10-01

    In this paper we describe a point scanning optical microscope where the illumination beam can be programmably controlled in real time using a liquid crystal spatial light modulator (LCSLM). With an appropriate pattern displayed on the LCSLM, the device can be made to act as a binary diffraction hologram. In the proposed microscope the illumination beam is in fact the +1 order beam diffracted from the binary hologram. By displaying a sequence of binary holograms it is possible to make a beam scanning, similar to a conventional scanning microscope. Here we use a computer generated holography technique to compute the binary holograms which facilitate complete control of the amplitude and phase profile of the illumination beam. In a number of microscopy applications using reflected light, the reflectivity of the sample plane may differ from region to region. Therefore if a single illumination beam intensity is used for the whole sample plane, then the regions with less reflectivity will be imaged with poor signal to noise ratio. In our proposed microscope the sample plane is first imaged to determine the regions of weak reflectivity. Holograms are then computed to make the illumination beam adapt to the reflectivity variations in the given sample plane. The image obtained with the modified set of holograms have superior signal to noise ratio all over, relative to a conventional point scanning microscope with a fixed intensity illumination beam. In this paper we present some preliminary results using the proposed setup.

  5. Nonlinear dynamics of optical absorption of intense beams

    NASA Astrophysics Data System (ADS)

    Corbett, D.; van Oosten, C. L.; Warner, M.

    2008-07-01

    On traversing materials with absorbing dyes, weak optical beams decay exponentially (a Beer profile), while intense beams develop in time a profile that is spatially linear until at great depth it becomes spatially exponential. This anomalous, deep penetration, due to photobleaching of surface layers, is important for heavy dye loading and intense beams, for instance in photo-actuation. We address the problem of the evolution in time from initial Beer’s Law to a finally deeply-penetrating optical profile in dyes. Our largely analytic solution of the coupled, nonlinear, partial differential equations governing the spatiotemporal decay of the Poynting flux and the nonlinear population dynamics of the photo-active molecules under intense irradiation has application to optomechanical devices.

  6. The WARP Code: Modeling High Intensity Ion Beams

    SciTech Connect

    Grote, D P; Friedman, A; Vay, J L; Haber, I

    2004-12-09

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse ''slice'' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand. Additional information can be found on the web page http://hif.lbl.gov/theory/WARP{_}summary.html.

  7. EBIS/T charge breeding for intense rare isotope beams at MSU

    SciTech Connect

    Schwarz, S.; Bollen, Georg; Kester, O.; Kittimanapun, K.; Lapierre, A.; Lopez-Urrutia, J. R. Crespo; Dilling, J.; Ames, F.; Ahle, Larry; Beiersdorfer, P.; Marrs, R. E.; Beene, James R; Mendez, II, Anthony J; Stracener, Daniel W; Lindroos, M.; Wenander, F.

    2010-01-01

    Experiments with reaccelerated beams are an essential component of the science program of existing and future rare isotope beam facilities. NSCL is currently constructing ReA3, a reaccelerator for rare isotopes that have been produced by projectile fragmentation and in-flight fission and that have been thermalized in a gas stopper. The resulting low-energy beam will be brought to an Electron Beam Ion Source/Trap (EBIS/T) in order to obtain highly charged ions at an energy of 12 keV/u. This charge breeder is followed by a compact linear accelerator with a maximum beam energy of 3MeV/u for U-238 and higher energies for lighter isotopes. Next-generation rare isotope beam facilities like the Facility for Rare Isotope Beams FRIB, but also existing Isotope Separator On-line (ISOL) facilities are expected to provide rare-isotope beam rates in the order of 10(11) particles per second for reacceleration. At present the most promising scheme to efficiently start the reacceleration of these intense beams is the use of a next-generation high-current charge-breeder based on an EBIS/T. MSU has formed a collaboration to develop an EBIT for this purpose. A new high-current EBIS/T breeder will be developed and constructed at MSU, where also first tests on achievable beam rate capability will be performed. The EBIT is planned to be installed at the Isotope Separator and Accelerator facility ISAC at TRIUMF laboratory for on-line tests with rare isotope beams and to provide intense energetic reaccelerated radioactive beams. The status of the ReA3-EBIS/T in the NSCL reaccelerator project is given with a brief summary of results, followed by a discussion of plans for the future high-intensity EBIS/T charge breeder.

  8. Physics design of linear accelerators for intense ion beams

    SciTech Connect

    Wangler, T.P.

    1988-01-01

    Advances in the physics and technology of linear accelerators for intense ion beams are leading to new methods for the design of such machines. The physical effects that limit beam current and brightness are better understood and provide the criteria for choosing the rf frequency and for determining optimum focusing configurations to control longitudinal and transverse emittances. During the past decade, the use of developments such as the radio-frequency quadrupole, multiple beams, funneling, ramped-field linac tanks, and self-matching linac tanks is leading to greater design flexibility and improved performance capabilities. 39 refs., 3 tabs., 1 fig.

  9. Suppression of current fluctuations in an intense electron beam

    SciTech Connect

    Harris, J. R.; Lewellen, J. W.

    2010-10-15

    When an intense beam encounters an aperture, the transmitted current depends on the properties of the beam and the transport channel, as well as those of the aperture itself. In some cases, an increase in the incident beam current will be exactly compensated by an increase in the incident beam area, so that the current density at the aperture remains unchanged. When this occurs, the transmitted beam current becomes independent of changes in the incident beam current, providing a passive means for suppressing current fluctuations in the beam. In this article, a key requirement for the existence of this condition is derived. This requirement is shown to be fulfilled in the case of an idealized uniform focusing channel in the small-signal limit, but to be violated when the current fluctuations are not small. Even in this case, the apertured transport system retains the ability to suppress--but not totally eliminate--fluctuations in the transmitted beam current for a wide range of incident beam currents.

  10. Energy Loss of High Intensity Focused Proton Beams Penetrating Metal Foils

    NASA Astrophysics Data System (ADS)

    McGuffey, C.; Qiao, B.; Kim, J.; Beg, F. N.; Wei, M. S.; Evans, M.; Fitzsimmons, P.; Stephens, R. B.; Chen, S. N.; Fuchs, J.; Nilson, P. M.; Canning, D.; Mastrosimone, D.; Foord, M. E.

    2014-10-01

    Shortpulse-laser-driven intense ion beams are appealing for applications in probing and creating high energy density plasmas. Such a beam isochorically heats and rapidly ionizes any target it enters into warm dense matter with uncertain transport and stopping properties. Here we present experimental measurements taken with the 1.25 kJ, 10 ps OMEGA EP BL shortpulse laser of the proton and carbon spectra after passing through metal foils. The laser irradiated spherically curved C targets with intensity 4×1018 W/cm2, producing proton beams with 3 MeV slope temperature and a sharp low energy cutoff at 5 MeV which has not been observed on lower energy, shorter pulse intense lasers. The beam either diverged freely or was focused to estimated 1016 p +/cm2 ps by a surrounding structure before entering the metal foils (Al or Ag and a Cu tracer layer). The proton and ion spectra were altered by the foil depending on material and whether or not the beam was focused. Transverse proton radiography probed the target with ps temporal and 10 micron spatial resolution, indicating an electrostatic field on the foil may also have affected the beam. We present complementary particle-in-cell simulations of the beam generation and transport to the foils. This work was supported by the DOE/NNSA National Laser User Facility program, Contract DE-SC0001265.

  11. Shaped beam scattering by an aggregate of particles using generalized Lorenz-Mie theory

    NASA Astrophysics Data System (ADS)

    Briard, Paul; Wang, Jia jie; Han, Yi Ping

    2016-04-01

    In this paper, the light scattering by an aggregate of particles illuminated by an arbitrary shaped beam is analyzed within the framework of generalized Lorenz-Mie theory (GLMT). The theoretical derivations of aggregated particles illuminated by an arbitrary shaped beam are revisited, with special attention paid to the computation of beam shape coefficients of a shaped beam for aggregated particles. The theoretical treatments as well as a home-made code are then verified by making comparisons between our numerical results and those calculated using a public available T-Matrix code MSTM. Good agreements are achieved which partially indicate the correctness of both codes. Additionally, more numerical results are presented to study the scattered fields of aggregated particles illuminated by a focused Gaussian beam. Several large enhancements in the scattered intensity distributions are found which are believed to be due to the Bragg's scattering by a linear chain of spheres.

  12. A mask for high-intensity heavy-ion beams in the MAYA active target

    NASA Astrophysics Data System (ADS)

    Rodríguez-Tajes, C.; Pancin, J.; Damoy, S.; Roger, T.; Babo, M.; Caamaño, M.; Farget, F.; Grinyer, G. F.; Jacquot, B.; Pérez-Loureiro, D.; Ramos, D.; Suzuki, D.

    2014-12-01

    The use of high-intensity and/or heavy-ion beams in active targets and time-projection chambers is often limited by the strong ionization produced by the beam. Besides the difficulties associated with the saturation of the detector and electronics, beam-related signals may hide the physical events of interest or reduce the detector performance. In addition, space-charge effects may deteriorate the homogeneity of the electric drift field and distort the subsequent reconstruction of particle trajectories. In anticipation of future projects involving such conditions, a dedicated beam mask has been developed and tested in the MAYA active target. Experimental results with a 136Xe beam are presented.

  13. Focusing of short-pulse high-intensity laser-accelerated proton beams

    NASA Astrophysics Data System (ADS)

    Bartal, Teresa; Foord, Mark E.; Bellei, Claudio; Key, Michael H.; Flippo, Kirk A.; Gaillard, Sandrine A.; Offermann, Dustin T.; Patel, Pravesh K.; Jarrott, Leonard C.; Higginson, Drew P.; Roth, Markus; Otten, Anke; Kraus, Dominik; Stephens, Richard B.; McLean, Harry S.; Giraldez, Emilio M.; Wei, Mingsheng S.; Gautier, Donald C.; Beg, Farhat N.

    2012-02-01

    Recent progress in generating high-energy (>50MeV) protons from intense laser-matter interactions (1018-1021Wcm-2 refs , , , , , , ) has opened up new areas of research, with applications in radiography, oncology, astrophysics, medical imaging, high-energy-density physics, and ion-proton beam fast ignition. With the discovery of proton focusing with curved surfaces, rapid advances in these areas will be driven by improved focusing technologies. Here we report on the first investigation of the generation and focusing of a proton beam using a cone-shaped target. We clearly show that the focusing is strongly affected by the electric fields in the beam in both open and enclosed (cone) geometries, bending the trajectories near the axis. Also in the cone geometry, a sheath electric field effectively `channels' the proton beam through the cone tip, substantially improving the beam focusing properties. These results agree well with particle simulations and provide the physics basis for many future applications.

  14. Internal dynamics of intense twin beams and their coherence

    PubMed Central

    Peřina, Jan; Haderka, Ondřej; Allevi, Alessia; Bondani, Maria

    2016-01-01

    The dynamics of intense twin beams in pump-depleted parametric down-conversion is studied. A generalized parametric approximation is suggested to solve the quantum model. Its comparison with a semiclassical model valid for larger twin-beam intensities confirms its applicability. The experimentally observed maxima in the spectral and spatial intensity auto- and cross- correlation functions depending on pump power are explained in terms of different speeds of the (back-) flow of energy between the individual down-converted modes and the corresponding pump modes. This effect is also responsible for the gradual replacement of the initial exponential growth of the down-converted fields by the linear one. Furthermore, it forms a minimum in the curve giving the effective number of twin-beam modes. These effects manifest a tight relation between the twin-beam coherence and its internal structure, as clearly visible in the model. Multiple maxima in the intensity correlation functions originating in the oscillations of energy flow between the pump and down-converted modes are theoretically predicted. PMID:26924749

  15. Experimental and numerical study of high intensity argon cluster beams

    SciTech Connect

    Korobeishchikov, N. G.; Kalyada, V. V.; Shmakov, A. A.; Zarvin, A. E.; Skovorodko, P. A.

    2014-12-09

    Experimental and numerical investigations of expansion of argon with homogeneous condensation in supersonic conical nozzle and in free jet behind it were carried out. Optimal parameters (stagnation pressure, nozzle-skimmer distance) for the formation of cluster beam with maximum intensity were determined. Two available models for nonequilibrium nucleation were tested. The numerical results are in satisfactory agreement with the measured data.

  16. Internal dynamics of intense twin beams and their coherence.

    PubMed

    Peřina, Jan; Haderka, Ondřej; Allevi, Alessia; Bondani, Maria

    2016-01-01

    The dynamics of intense twin beams in pump-depleted parametric down-conversion is studied. A generalized parametric approximation is suggested to solve the quantum model. Its comparison with a semiclassical model valid for larger twin-beam intensities confirms its applicability. The experimentally observed maxima in the spectral and spatial intensity auto- and cross- correlation functions depending on pump power are explained in terms of different speeds of the (back-) flow of energy between the individual down-converted modes and the corresponding pump modes. This effect is also responsible for the gradual replacement of the initial exponential growth of the down-converted fields by the linear one. Furthermore, it forms a minimum in the curve giving the effective number of twin-beam modes. These effects manifest a tight relation between the twin-beam coherence and its internal structure, as clearly visible in the model. Multiple maxima in the intensity correlation functions originating in the oscillations of energy flow between the pump and down-converted modes are theoretically predicted. PMID:26924749

  17. Nonlinear dynamics of inhomogeneous mismatched charged particle beams

    SciTech Connect

    Nunes, R. P.; Rizzato, F. B.

    2012-08-13

    This work analyzes the transversal dynamics of an inhomogeneous and mismatched charged particle beam. The beam is azimuthally symmetric, initially cold, and evolves in a linear channel permeated by an external constant magnetic field. Based on a Lagrangian approach, a low-dimensional model for the description of the beam dynamics has been obtained. The small set of nonlinear dynamical equations provided results that are in reasonable agreement with that ones observed in full self-consistent N-particle beam numerical simulations.

  18. Full characterization of an intense pulsed hyperthermal molecular beam

    SciTech Connect

    Watanabe, D.; Che, D.-C.; Fukuyama, T.; Hashinokuchi, M.; Teraoka, Y.; Kasai, T.

    2005-05-15

    A molecular beam technique for generating an intense pulsed hyperthermal molecular beam (pulsed HTMB) was developed. The beam source consists of a pulse valve, a cooling-water bottle that protects the pulse valve from heat transfer of the high temperature nozzle, and a nozzle with a heater. The point was a pulse-valve operation with the high temperature nozzle which was 30-mm long and was made of pyrolytic boron nitride. The pulsed HTMB of HCl was practically generated. The total beam intensity of the pulsed HTMB was measured by a quadrupole mass spectrometer. It was determined that the beam intensity of the pulsed HTMB was two orders of magnitude larger than that obtained in continuous-HTMB conditions. The pulsed HTMB of HCl was fully characterized by means of (2+1) resonance-enhanced multiphoton ionization and ion time-of-flight techniques. We found that the velocity distribution of the pulsed HTMB was well expressed as supersonic molecular beams. At the highest nozzle temperature of 1400 K, the mean translational energy value of HCl molecules was 1.38 eV. The translational energy distribution of the pulsed HTMB covered a range from 0.8 to 1.6 eV. The fraction of higher translational energy molecules greater than 1.0 eV was 80% in the 1400 K nozzle. The rotational state distributions of HCl molecules in the pulsed HTMB were expressed as the Boltzmann distribution. While the rotational temperature decreased by an adiabatic expansion of the beam, the vibrational temperature, which was determined by the ratio of the ground-state population to the excited state one, almost equaled the nozzle temperature.

  19. Intense Muon Beams for Experiments at Project X

    SciTech Connect

    C.M. Ankenbrandt, R.P. Johnson, C. Y. Yoshikawa, V.S. Kashikhin, D.V. Neuffer, J. Miller, R.A. Rimmer

    2011-03-01

    A coherent approach for providing muon beams to several experiments for the intensity-frontier program at Project X is described. Concepts developed for the front end of a muon collider/neutrino factory facility, such as phase rotation and ionization cooling, are applied, but with significant differences. High-intensity experiments typically require high-duty-factor beams pulsed at a time interval commensurate with the muon lifetime. It is challenging to provide large RF voltages at high duty factor, especially in the presence of intense radiation and strong magnetic fields, which may preclude the use of superconducting RF cavities. As an alternative, cavities made of materials such as ultra-pure Al and Be, which become very good –but not super– conductors at cryogenic temperatures, can be used.

  20. Numerical phase retrieval from beam intensity measurements in three planes

    NASA Astrophysics Data System (ADS)

    Bruel, Laurent

    2003-05-01

    A system and method have been developed at CEA to retrieve phase information from multiple intensity measurements along a laser beam. The device has been patented. Commonly used devices for beam measurement provide phase and intensity information separately or with a rather poor resolution whereas the MIROMA method provides both at the same time, allowing direct use of the results in numerical models. Usual phase retrieval algorithms use two intensity measurements, typically the image plane and the focal plane (Gerschberg-Saxton algorithm) related by a Fourier transform, or the image plane and a lightly defocus plane (D.L. Misell). The principal drawback of such iterative algorithms is their inability to provide unambiguous convergence in all situations. The algorithms can stagnate on bad solutions and the error between measured and calculated intensities remains unacceptable. If three planes rather than two are used, the data redundancy created confers to the method good convergence capability and noise immunity. It provides an excellent agreement between intensity determined from the retrieved phase data set in the image plane and intensity measurements in any diffraction plane. The method employed for MIROMA is inspired from GS algorithm, replacing Fourier transforms by a beam-propagating kernel with gradient search accelerating techniques and special care for phase branch cuts. A fast one dimensional algorithm provides an initial guess for the iterative algorithm. Applications of the algorithm on synthetic data find out the best reconstruction planes that have to be chosen. Robustness and sensibility are evaluated. Results on collimated and distorted laser beams are presented.

  1. Probability density function of the intensity of a laser beam propagating in the maritime environment.

    PubMed

    Korotkova, Olga; Avramov-Zamurovic, Svetlana; Malek-Madani, Reza; Nelson, Charles

    2011-10-10

    A number of field experiments measuring the fluctuating intensity of a laser beam propagating along horizontal paths in the maritime environment is performed over sub-kilometer distances at the United States Naval Academy. Both above the ground and over the water links are explored. Two different detection schemes, one photographing the beam on a white board, and the other capturing the beam directly using a ccd sensor, gave consistent results. The probability density function (pdf) of the fluctuating intensity is reconstructed with the help of two theoretical models: the Gamma-Gamma and the Gamma-Laguerre, and compared with the intensity's histograms. It is found that the on-ground experimental results are in good agreement with theoretical predictions. The results obtained above the water paths lead to appreciable discrepancies, especially in the case of the Gamma-Gamma model. These discrepancies are attributed to the presence of the various scatterers along the path of the beam, such as water droplets, aerosols and other airborne particles. Our paper's main contribution is providing a methodology for computing the pdf function of the laser beam intensity in the maritime environment using field measurements. PMID:21997043

  2. Low-emittance monoenergetic electron and ion beams from ultra-intense laser-solid interactions

    SciTech Connect

    Cowan, T E; Roth, M; Allen, M M; Johnson, J; Hatchett, S P; Le Sage, G P; Wilks, S C

    2000-03-03

    Recent experiments at the LLNL Petawatt Laser have demonstrated the generation of intense, high energy beams of electrons and ions from the interaction of ultra-intense laser light with solid targets. Focused laser intensities as high as 6 x 10{sup 20} W/cm{sup 2} are achieved, at which point the quiver energies of the target electrons extend to {approx}10 MeV. In this new, fully relativistic regime of laser-plasma interactions, nuclear processes become important and nuclear techniques are required to diagnose the high-energy particle production. In recent experiments we have observed electrons accelerated to 100 MeV, up to 60 MeV brehmsstrahlung generation, photo-nuclear fission and positron-electron pair creation. We also have observed monoenergetic jets of electrons having sufficiently small emittance to be interesting as a laser-accelerated beam, if the production mechanism could be understood and controlled. The huge flux of multi-MeV ponderomotively accelerated electrons produced in the laser-solid interaction is also observed to accelerate contaminant ions from the rear surface of the solid target up to 50 MeV. We describe spectroscopic measurements which reveal intense monoenergetic beam features in the proton energy spectrum. The total spectrum contains >10{sup 13} protons, while the monoenergetic beam pulses contain {approx}1 nC of protons, and exhibits a longitudinal and transverse emittance smaller than conventional RF proton accelerator beams.

  3. Intense Ion Beam for Warm Dense Matter Physics

    SciTech Connect

    Coleman, Joshua Eugene

    2008-05-23

    The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory is exploring the physical limits of compression and focusing of ion beams for heating material to warm dense matter (WDM) and fusion ignition conditions. The NDCX is a beam transport experiment with several components at a scale comparable to an inertial fusion energy driver. The NDCX is an accelerator which consists of a low-emittance ion source, high-current injector, solenoid matching section, induction bunching module, beam neutralization section, and final focusing system. The principal objectives of the experiment are to control the beam envelope, demonstrate effective neutralization of the beam space-charge, control the velocity tilt on the beam, and understand defocusing effects, field imperfections, and limitations on peak intensity such as emittance and aberrations. Target heating experiments with space-charge dominated ion beams require simultaneous longitudinal bunching and transverse focusing. A four-solenoid lattice is used to tune the beam envelope to the necessary focusing conditions before entering the induction bunching module. The induction bunching module provides a head-to-tail velocity ramp necessary to achieve peak axial compression at the desired focal plane. Downstream of the induction gap a plasma column neutralizes the beam space charge so only emittance limits the focused beam intensity. We present results of beam transport through a solenoid matching section and simultaneous focusing of a singly charged K{sup +} ion bunch at an ion energy of 0.3 MeV. The results include a qualitative comparison of experimental and calculated results after the solenoid matching section, which include time resolved current density, transverse distributions, and phase-space of the beam at different diagnostic planes. Electron cloud and gas measurements in the solenoid lattice and in the vicinity of intercepting diagnostics are also presented. Finally, comparisons

  4. Transport of intense beams of highly charged ions

    NASA Astrophysics Data System (ADS)

    Winkler, M.; Gammino, S.; Ciavola, G.; Celona, L.; Spadtke, P.; Tinschert, K.

    2005-10-01

    The new generation of ion sources delivers beams with intensities of several mA. This requires a careful design of the analysing system and the low-energy beam transport (LEBT) from the source to the subsequent systems. At INFN-LNS, high intensity proton sources (TRIPS [L. Celona, G. Ciavola, S. Gammino et al ., Rev. Sci. Instrum. 75(5) 1423 (2004)], PM-TRIPS [G. Ciavola, L. Celona, S. Gammino et al ., Rev. Sci. Instrum. 75(5) 1453 (2004)]) as well as ECR ion sources for the production of highly charged high-intensity heavy ion beams are developed (SERSE [S. Gammino, G. Ciavola, L. Celona et al ., Rev. Sci. Instrum. 72(11) 4090 (2001), and references therein], GyroSERSE [S. Gammino et al ., Rev. Sci. Instrum. 75(5) 1637 (2004)], MS-ECRIS [G. Ciavola et al ., (2005), 11th Int. Conf. on Ion Sources, Caen, (in press)]). In this paper, we present ion-optical design studies of various LEBT systems for ion-sources devoted to the production of intense beams. Calculations were performed using the computer codes GIOS [H. Wollnik, J. Brezina and M. Berz, NIM A 258 (1987)], GICO [M. Berz, H.C. Hoffmann, and H. Wollnik, NIM A 258 (1987)], and TRANSPORT [K.L. Brown, F. Rothacker and D.C. Carey, SLAC-R-95-462, Fermilab-Pub-95/069, UC-414 (1995)]. Simulations take into account the expected phase space growth of the beam emittance due to space-charge effects and image aberrations introduced by the magnetic elements.

  5. The University of Maryland Electron Ring: A Model Recirculator for Intense Beam Physics Research

    SciTech Connect

    Bernal, S.; Li, H.; Cui, Y.; Feldman, D.; Godlove, T.; Haber, I.; Huo, Y.; Harris, J.; Kishek, R.A.; Quinn, B.; Reiser, M.; Walter, M.; Wilson, M.; Zou, Y.; O'Shea, P.G.

    2004-12-07

    The University of Maryland Electron Ring (UMER), designed for transport studies of space-charge dominated beams in a strong focusing lattice, is nearing completion. Low energy, high intensity electron beams provide an excellent model system for experimental studies with relevance to all areas that require high quality, intense charged-particle beams. In addition, UMER constitutes an important tool for benchmarking of computer codes. When completed, the UMER lattice will consist of 36 alternating-focusing (FODO) periods over an 11.5-m circumference. Current studies in UMER over about 2/3 of the ring include beam-envelope matching, halo formation, asymmetrical focusing, and longitudinal dynamics (beam bunch erosion and wave propagation.) Near future, multi-turn operation of the ring will allow us to address important additional issues such as resonance-traversal, energy spread and others. The main diagnostics are phosphor screens and capacitive beam position monitors placed at the center of each 200 bending section. In addition, pepper-pot and slit-wire emittance meters are in operation. The range of beam currents used corresponds to space charge tune depressions from 0.2 to 0.8, which is unprecedented for a circular machine.

  6. New Capabilities for Modeling Intense Beams in Heavy Ion Fusion Drivers

    SciTech Connect

    Friedman, A; Barnard, J J; Bieniosek, F M; Celata, C M; Cohen, R H; Davidson, R C; Grote, D P; Haber, I; Henestroza, E; Lee, E P; Lund, S M; Qin, H; Sharp, W M; Startsev, E; Vay, J L

    2003-09-09

    Significant advances have been made in modeling the intense beams of heavy-ion beam-driven Inertial Fusion Energy (Heavy Ion Fusion). In this paper, a roadmap for a validated, predictive driver simulation capability, building on improved codes and experimental diagnostics, is presented, as are examples of progress. The Mesh Refinement and Particle-in-Cell methods were integrated in the WARP code; this capability supported an injector experiment that determined the achievable current rise time, in good agreement with calculations. In a complementary effort, a new injector approach based on the merging of {approx}100 small beamlets was simulated, its basic feasibility established, and an experimental test designed. Time-dependent 3D simulations of the High Current Experiment (HCX) were performed, yielding voltage waveforms for an upcoming study of bunch-end control. Studies of collective beam modes which must be taken into account in driver designs were carried out. The value of using experimental data to tomographically ''synthesize'' a 4D beam particle distribution and so initialize a simulation was established; this work motivated further development of new diagnostics which yield 3D projections of the beam phase space. Other developments, including improved modeling of ion beam focusing and transport through the fusion chamber environment and onto the target, and of stray electrons and their effects on ion beams, are briefly noted.

  7. High intensity positron beam and angular correlation experiments at Livermore

    SciTech Connect

    Howell, R.H.; Rosenberg, I.J.; Meyer, P.; Fluss, M.J.

    1985-03-01

    A positron beam apparatus that produces a variable energy positron beam with sufficient intensity to perform new positron experiments in an ultrahigh vacuum environment has been installed at the Lawrence Livermore 100 MeV electron linac. We have installed two large area position sensitive gamma-ray detectors to measure angular correlations in two dimensions and a separate highly collimated detector to measure positronium energy distributions by time-of-flight velocity determination. Data from measurements on single crystals of Cu will be described.

  8. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect

    Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2010-03-16

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  9. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-08-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  10. Intense alpha-particle emitting crystallites in uranium mill wastes

    USGS Publications Warehouse

    Landa, E.R.; Stieff, L.R.; Germani, M.S.; Tanner, A.B.; Evans, J.R.

    1994-01-01

    Nuclear emulsion microscopy has demonstrated the presence of small, intense ??-particle emitting crystallites in laboratory-produced tailings derived from the sulfuric acid milling of uranium ores. The ??-particle activity is associated with the isotope pair 210Pb 210Po, and the host mineral appears to be PbSO4 occurring as inclusions in gypsum laths. These particles represent potential inhalation hazards at uranium mill tailings disposal areas. ?? 1994.