Sample records for particle explorer sampex

  1. SAMPEX science pointing with velocity avoidance. [solar anomalous and magnetospheric particle explorer

    NASA Technical Reports Server (NTRS)

    Frakes, Joseph P.; Henretty, Debra A.; Flatley, Thomas W.; Markley, F. L.; San, Josephine K.; Lightsey, E. G.

    1992-01-01

    The Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) science pointing mode is presented with the additional constraint of velocity avoidance. This constraint has been added in light of the orbital debris and micrometeoroid fluxes that have been revealed by the Long Duration Exposure Facility (LDEF) recovered in January 1990. These fluxes are 50-100 times higher than the flux tables that were used in the September 1988 proposal to NASA for the SAMPEX mission. The SAMPEX Heavey Ion Large Telescope (HILT) sensor includes a flow-through isobutane proportional counter that is susceptible to penetration by orbital debris and micrometeoroids. Thus, keeping the HILT sensor pointed away from the velocity vector, the direction of maximum flux, will compensate for the higher than expected fluxes. Using an orbital debris model and a micrometeoroid model developed at the Johnson Space Center (JSC), and a SAMPEX dynamic simulator developed by the Guidance and Control Branch at the Goddard Space Flight Center (GSFC), an 'optimal' minimum ram angle (the angle between the HILT boresight and the velocity vector) of 90 degrees has been determined. It is optimal in the sense of minimizing the science pointing performance degradation while providing approximately an 89 percent chance of survival for the HILT sensor over a three year period.

  2. The SAMPEX Data Center and User Interface for the Heliophysics Community

    NASA Astrophysics Data System (ADS)

    Davis, A. J.; Kanekal, S. G.; Looper, M. D.; Mazur, J. E.

    2012-12-01

    The Solar, Anomalous, Magnetospheric Particle Explorer (SAMPEX) was the first of NASA's Small Explorer (SMEX) series. SAMPEX was launched July 3, 1992 into a 520 by 670 km orbit at 82 degrees inclination. SAMPEX carries four instruments designed to study energetic particles of solar, interplanetary, and magnetospheric origin, as well as "anomalous" and galactic cosmic rays. As an outcome of the Senior Review process, the NASA SAMPEX science mission ended on June 30, 2004, leaving a 12-year continuous record of observations. (The spacecraft and instruments are still operating and returning science data under a partnership between NASA and the Aerospace Corporation). SAMPEX was launched before the development of the WWW and implementation of NASA's open data policy. This, and the complexity of the data analysis have made it difficult for the general community to make full use of the SAMPEX science data set. The SAMPEX Data Center remedies the situation. The data center set-up and operation was funded for 3 years by NASA, and it remains in operation. The goals of the data center are to enable community access to the full SAMPEX data set by developing an up-to-date, flexible web-based system, and to provide for the eventual permanent archiving of this version of the SAMPEX data set at the NSSDC. Knowledgeable members of the SAMPEX science team have prepared the data, and members of the ACE Science Center at Caltech are involved in maintaining the data distribution pipeline and user interface. The system is modeled in part on the ACE Science Center, but enhanced to accommodate the more-complex SAMPEX data set. We will describe the current status of the SAMPEX Data Center, the user interface, and the contents of the data that are available.

  3. The SAMPEX Data Center and User Interface for the SEC Community

    NASA Astrophysics Data System (ADS)

    Davis, A. J.; Mason, G. M.; Walpole, P.; von Rosenvinge, T. T.; Looper, M. D.; Blake, J. B.; Mazur, J. E.; Stone, E. C.; Leske, R. A.; Labrador, A. W.; Mewaldt, R. A.; Kanekal, S. G.; Baker, D. N.; Li, X.; Klecker, B.

    2005-05-01

    The Solar, Anomalous, Magnetospheric Particle Explorer (SAMPEX) was the first of NASA's Small Explorer (SMEX) series. SAMPEX was launched July 3, 1992 into a 520 by 670 km orbit at 82 degrees inclination. SAMPEX carries four instruments designed to study energetic particles of solar, interplanetary, and magnetospheric origin, as well as "anomalous" and galactic cosmic rays. As an outcome of the Senior Review process, the NASA SAMPEX science mission ended on June 30, 2004, leaving a 12-year continuous record of observations. (The spacecraft and instruments are still operating and returning science data for a 1-year trial period under a partnership between NASA and the Aerospace Corporation). SAMPEX was launched before the development of the WWW and implementation of NASA's open data policy. This, and the complexity of the data analysis have made it difficult for the general community to make full use of the SAMPEX science data set. The SAMPEX Data Center will remedy the situation. The data center set-up and operation is funded for 3 years by NASA. The goals of the data center are to enable community access to the full SAMPEX data set by developing an up-to-date, flexible web-based system, and to provide for the eventual permanent archiving of this version of the SAMPEX data set at the NSSDC. Knowledgeable members of the SAMPEX science team are preparing the data, and members of the ACE Science Center at Caltech are involved in developing the data distribution pipeline and user interface. The system is modeled in part on the ACE Science Center, but enhanced to accommodate the more-complex SAMPEX data set. We will describe the current status of the SAMPEX Data Center development, the user interface, and the contents of the data that will be made available.

  4. High Latitude Energetic Particle Boundaries: The SAMPEX Database

    NASA Astrophysics Data System (ADS)

    Kanekal, S. G.; Baker, D. N.

    2006-11-01

    The size of the polar cap or the open field line region depends, upon the difference in reconnection rates at the dayside between the IMF and the geomagnetic field, and those occurring in the magnetotail. The dayside merging adds flux to the open field region increasing the polar cap size and the magnetic flux in the lobes of the tail, thereby causing energy to be stored in the magnetosphere. Night side reconnection, geomagnetic storms and substorms dissipate this energy removing flux and shrink the polar cap. The dynamics of the polar cap can therefore be useful in the study of the energy dynamics of the magnetosphere. Energetic particles delineate magnetospheric regions, since their motions are governed by the geomagnetic field. Convection and corotation electric fields control the drift of low energy particles whereas magnetic field gradient and curvature are the dominant factors for higher energy (> ~30 keV) particles. High latitude energetic particle boundaries are related to the polar cap and therefore useful in determining the size of the open field line regions We will provide a long database of energetic particle boundaries in the polar regions using instruments aboard SAMPEX, the first of the Small explorer (SMEX) spacecraft. It was launched on July 3, 1992 into a low earth polar orbit. There are four particle detectors, HILT, LICA, PET and MAST on board which point toward the zenith over the poles of the Earth. These detectors measure electrons, protons and ions ranging in energy from tens of keV to a few MeV. This database will comprise the latitudinal (geographic, magnetic and invariant) and longitudinal (geographic and magnetic local time) positions of energetic particle boundaries in the polar regions. The database will cover a time period from launch to about mid 2004. It will therefore cover a significant portion of the solar cycles 22 and 23. Together with interplanetary data obtainable from public databases, such as the NASA OMNI database the

  5. SAMPEX Spin Stabilized Mode

    NASA Technical Reports Server (NTRS)

    Tsai, Dean C.; Markley, F. Landis; Watson, Todd P.

    2008-01-01

    The Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), the first of the Small Explorer series of spacecraft, was launched on July 3, 1992 into an 82' inclination orbit with an apogee of 670 km and a perigee of 520 km and a mission lifetime goal of 3 years. After more than 15 years of continuous operation, the reaction wheel began to fail on August 18,2007. With a set of three magnetic torquer bars being the only remaining attitude actuator, the SAMPEX recovery team decided to deviate from its original attitude control system design and put the spacecraft into a spin stabilized mode. The necessary operations had not been used for many years, which posed a challenge. However, on September 25, 2007, the spacecraft was successfully spun up to 1.0 rpm about its pitch axis, which points at the sun. This paper describes the diagnosis of the anomaly, the analysis of flight data, the simulation of the spacecraft dynamics, and the procedures used to recover the spacecraft to spin stabilized mode.

  6. The Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) yo-yo despin and solar array deployment mechanism

    NASA Technical Reports Server (NTRS)

    Kellogg, James W.

    1993-01-01

    The SAMPEX spacecraft, successfully launched in July 1992, carried a yo-yo despin system and deployable solar arrays. The despin and solar array mechanisms formed an integral system as the yo-yo cables held the solar array release mechanism in place. The SAMPEX design philosophy was to minimize size and weight through the use of a predominantly single string system. The design challenge was to build a system in a limited space, which was reliable with minimal redundancy. This paper covers the design and development of the SAMPEX yo-yo despin and solar array deployment mechanisms. The problems encountered during development and testing will also be discussed.

  7. GaAs/Ge solar panels for the SAMPEX program

    NASA Technical Reports Server (NTRS)

    Dobson, Rodney; Kukulka, Jerry; Dakermanji, George; Roufberg, Lew; Ahmad, Anisa; Lyons, John

    1992-01-01

    GaAs based solar cells have been developed for spacecraft use for several years. However, acceptance and application of these cells for spacecraft missions has been slow because of their high cost and concerns about their integration onto solar panels. Spectrolab has now completed fabrication of solar panels with GaAs/Ge solar cells for a second space program. This paper will focus on the design, fabrication and test of GaAs/Ge solar panels for the Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) Program.

  8. SAMPEX Measurements of Geomagnetic-Cutoff Variations During the 4/21/02 Solar Energetic Particle Event

    NASA Astrophysics Data System (ADS)

    Labrador, A.; Leske, R.; Kanekal, S.; Klecker, B.; Looper, M.; Mazur, J.; Mewaldt, R.

    2002-12-01

    During large solar energetic particle (SEP) events the entry of solar and interplanetary energetic particles into the upper atmosphere is controlled by the geomagnetic cutoff. We define the cutoff latitude (Λ c) for a given rigidity particle to be effectively the minimum invariant latitude down to which particles can reach the upper atmosphere. The instruments on the polar-orbiting SAMPEX spacecraft have been used to measure geomagnetic cutoffs during a large sample of SEP events from solar cycle 23. During those events in which there is an associated geomagnetic storm, there are often large cutoff variations of as much as 5° to 10° in invariant latitude over the course of the event. This paper will combine measurements from the HILT, MAST, and PET instruments on SAMPEX to provide a comprehensive view of geomagnetic cutoff variations during the large SEP event of 4/21/02. We find that during the first two days of the event the cutoff latitude for ~30 MeV protons was at typical quiet-time levels. On April 23, following the arrival of a strong interplanetary shock, there was a sudden drop in the cutoff that lasted ~12 hours, with sizable local-time differences. During the next two days the cutoff steadily increased, giving a total variation of ~5° over the five days of the event. We combine these measurements of cutoff variations with measurements of the composition and energy spectra in the 4/21/02 event in order to estimate changes in the area of the polar caps over which particles of a given rigidity had access to the upper atmosphere.

  9. Solar Cycle Dynamics of Solar, Magnetospheric, and Heliospheric Particles, and Long-Term Atmospheric Coupling: SAMPEX

    NASA Technical Reports Server (NTRS)

    Mason, G. M.; Blake, J. B.; Mewaldt, R. A.; Stone, E. C.; Baker, D. N.; vonRosenvinge, T. T.; Callis, L. B.; Hamilton, D. C.; Klecker, B.; Hovestadt, D.; hide

    1997-01-01

    This report summarizes science analysis activities by the SAMPEX mission science team during the period during the period July 1, 1997 through July 1, 1997. Bibliographic entries for 1996 and 1997 to date (July 1997) are included. The SAMPEX science team was extremely active, with 27 articles published or submitted to refereed journals, 17 papers published in their entirety in Conference Proceedings, and 74 contributed papers, seminars, and miscellaneous presentations. The bibliography at the end of this report constitutes the primary description of the research activity. Science highlights are given under the major activity headings, as well as other activities of the team.

  10. Solar Anomalous and Magnetospheric Particle Explorer attitude control electronics box design and performance

    NASA Technical Reports Server (NTRS)

    Chamberlin, K.; Clagett, C.; Correll, T.; Gruner, T.; Quinn, T.; Shiflett, L.; Schnurr, R.; Wennersten, M.; Frederick, M.; Fox, S. M.

    1993-01-01

    The attitude Control Electronics (ACE) Box is the center of the Attitude Control Subsystem (ACS) for the Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) satellite. This unit is the single point interface for all of the Attitude Control Subsystem (ACS) related sensors and actuators. Commands and telemetry between the SAMPEX flight computer and the ACE Box are routed via a MIL-STD-1773 bus interface, through the use of an 80C85 processor. The ACE Box consists of the flowing electronic elements: power supply, momentum wheel driver, electromagnet driver, coarse sun sensor interface, digital sun sensor interface, magnetometer interface, and satellite computer interface. In addition, the ACE Box also contains an independent Safehold electronics package capable of keeping the satellite pitch axis pointing towards the sun. The ACE Box has dimensions of 24 x 31 x 8 cm, a mass of 4.3 kg, and an average power consumption of 10.5 W. This set of electronics was completely designed, developed, integrated, and tested by personnel at NASA GSFC. SAMPEX was launched on July 3, 1992, and the initial attitude acquisition was successfully accomplished via the analog Safehold electronics in the ACE Box. This acquisition scenario removed the excess body rates via magnetic control and precessed the satellite pitch axis to within 10 deg of the sun line. The performance of the SAMPEX ACS in general and the ACE Box in particular has been quite satisfactory.

  11. Solar Cycle Dynamics of Solar, Magnetospheric, and Heliospheric Particles, and Long-Term Atmospheric Coupling: SAMPEX

    NASA Technical Reports Server (NTRS)

    Mason, G. M.; Blake, J. B.; Mazur, J. E.; Mewaldt, R. A.; Stone, E. C.; Baker, D. N.; vonRosenvinge, T. T.; Callis, L. B.; Klecker, B.; Hovestadt, D.; hide

    2000-01-01

    This final technical report summarizes science analysis activities by the SAMPEX mission science team during the period July 1, 1995 through September 30, 2000. Bibliographic entries for 1995 to date (October 2000) are included. The SAMPEX science team was extremely active, with 72 articles published or submitted to referred journals, 38 papers published in their entirety in Conference Proceedings, and 260 contributed papers, seminars, and miscellaneous presentations. The bibliography at the end of this report constitutes the primary description of the research activity. Science highlights are given under the major activity headings, as well as other activities of the team. One Ph.D. student, Mr. Daniel Williams, completed his thesis at California Institute of Technology based on data from the MAST instrument.

  12. Precipitating auroral electrons and lower thermospheric nitric oxide densities: SNOE, POLAR, SAMPEX, and NOAA/POES Comparisons for Geomagnetic Storms in 1998-2001

    NASA Astrophysics Data System (ADS)

    Baker, D. N.; Fisher, T. A.; Barth, C. A.; Mankoff, K. D.; Kanekal, S. G.; Bailey, S. M.; Petrinec, S. M.; Luhmann, J. G.; Mason, G. M.; Mazur, J. E.; Evans, D. S.

    2002-05-01

    Nitric oxide (NO) densities measured at altitudes between 97 and 150 km have been acquired using the UVS sensor onboard the Student Nitric Oxide Explorer (SNOE) spacecraft during the years 1998-2001. These data are compared with energetic electron fluxes (E>25 keV) measured concurrently using a sensitive sensor system (LICA) onboard the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) spacecraft. Geomagnetic storm intervals are examined to determine altitude and latitude variations of NO density as it compares to energetic electron precipitation. A broader statistical analysis is then carried out using daily averages of peak NO densities (at 106 km altitudes) and electron intensities measured by SAMPEX/LICA and by the TED sensor system onboard the NOAA/Polar Orbiting Environmental Satellite (POES) spacecraft. We also use the PIXIE instrument onboard POLAR to obtain global views of 2-12 keV x-rays emanating from the upper atmosphere. This gives a broad synoptic measure of relatively low-energy electron precipitation into the atmosphere. Latitude versus time displays of the UVS, PIXIE, LICA and TED data show excellent temporal and spatial correlations of the data sets. More detailed comparisons help us to assess spectral and local time relationships between auroral particle inputs and lower thermospheric chemical responses. These results are potentially quite important since past modeling has shown that particle inputs are significant for changing the chemistry and subsequent dynamics of the atmosphere.

  13. Testing of the on-board attitude determination and control algorithms for SAMPEX

    NASA Technical Reports Server (NTRS)

    Mccullough, Jon D.; Flatley, Thomas W.; Henretty, Debra A.; Markley, F. Landis; San, Josephine K.

    1993-01-01

    Algorithms for on-board attitude determination and control of the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) have been expanded to include a constant gain Kalman filter for the spacecraft angular momentum, pulse width modulation for the reaction wheel command, an algorithm to avoid pointing the Heavy Ion Large Telescope (HILT) instrument boresight along the spacecraft velocity vector, and the addition of digital sun sensor (DSS) failure detection logic. These improved algorithms were tested in a closed-loop environment for three orbit geometries, one with the sun perpendicular to the orbit plane, and two with the sun near the orbit plane - at Autumnal Equinox and at Winter Solstice. The closed-loop simulator was enhanced and used as a truth model for the control systems' performance evaluation and sensor/actuator contingency analysis. The simulations were performed on a VAX 8830 using a prototype version of the on-board software.

  14. Characterizing Relativistic Electrons Flux Enhancement Events using sensors onboard SAMPEX and POLAR

    NASA Astrophysics Data System (ADS)

    Kanekal, S. G.; Selesnick, R. S.; Baker, D. N.; Blake, J. B.

    2004-12-01

    Relativistic electron fluxes in the Earth's outer Van Allen belt are highly variable with flux enhancements of several orders of magnitude occurring on time scales of a few days. Radiation belt electrons often are energized to relativistic energies when the magnetosphere is subjected to high solar wind speed and the southward turning of the interplanetary magnetic field. Characterization of electron acceleration properties such as electron spectra and flux isotropization are important in understanding acceleration models. We use sensors onboard SAMPEX and POLAR to measure and survey systematically these properties. SAMPEX measurements cover the entire outer zone for more than a decade from mid 1992 to mid 2004 and POLAR covers the time period from mid 1996 to the present. We use the pulse height analyzed data from the PET detector onboard SAMPEX to measure electron spectra. Fluxes measured by the HIST detector onboard POLAR together with the PET measurements are used to characterize isotropization times. This paper presents electron spectra and isotropization time scales for a few representative events. We will eventually extend these measurements and survey the entire solar cycle 23.

  15. From Low Altitude to High Altitude: Assimilating SAMPEX Data in Global Radiation Belt Models by Quantifying Precipitation and Loss

    NASA Astrophysics Data System (ADS)

    Tu, W.; Reeves, G. D.; Cunningham, G.; Selesnick, R. S.; Li, X.; Looper, M. D.

    2012-12-01

    Since its launch in 1992, SAMPEX has been continuously providing measurements of radiation belt electrons at low altitude, which are not only ideal for the direct quantification of the electron precipitation loss in the radiation belt, but also provide data coverage in a critical region for global radiation belt data assimilation models. However, quantitatively combining high-altitude and low-earth-orbit (LEO) measurements on the same L-shell is challenging because LEO measurements typically contain a dynamic mixture of trapped and precipitating populations. Specifically, the electrons measured by SAMPEX can be distinguished as trapped, quasi-trapped (in the drift loss cone), and precipitating (in the bounce loss cone). To simulate the low-altitude electron distribution observed by SAMPEX/PET, a drift-diffusion model has been developed that includes the effects of azimuthal drift and pitch angle diffusion. The simulation provides direct quantification of the rates and variations of electron loss to the atmosphere, a direct input to our Dynamic Radiation Environment Assimilation Model (DREAM) as the electron loss lifetimes. The current DREAM uses data assimilation to combine a 1D radial diffusion model with observational data of radiation belt electrons. In order to implement the mixed electron measurements from SAMPEX into DREAM, we need to map the SAMPEX data from low altitude to high altitudes. To perform the mapping, we will first examine the well-known 'global coherence' of radiation belt electrons by comparing SAMPEX electron fluxes with the energetic electron data from LANL GEO and GPS spacecraft. If the correlation is good, we can directly map the SAMPEX fluxes to high altitudes based on the global coherence; if not, we will use the derived pitch angle distribution from the drift-diffusion model to map up the field and test the mapping by comparing to the high-altitude flux measurements. Then the globally mapped electron fluxes can be assimilated into DREAM

  16. Quantification of the Precipitation Loss of Radiation Belt Electrons Observed by SAMPEX

    NASA Astrophysics Data System (ADS)

    Tu, W.; Selesnick, R. S.; Li, X.; Looper, M. D.

    2009-12-01

    Based on SAMPEX/PET observations, the rates and the spatial and temporal variations of electron loss to the atmosphere in the Earth’s radiation belt were quantified using a Drift-Diffusion model that includes the effects of azimuthal drifts and pitch angle diffusion. The measured electrons detected by SAMPEX can be distinguished as trapped, quasi-trapped (in the drift loss cone), and precipitating (in the bounce loss cone). The Drift-Diffusion model simulates the low-altitude electron distribution from SAMPEX. After fitting the model results to the data, the magnitudes and variations of the electron lifetime can be quantitatively determined based on the optimum model parameter values. Three magnetic storms of different types of magnitude were selected to estimate the various loss rates of ~0.5 to 3 MeV electrons during different phases of the storm and at L shells ranging from L=3.5 to L=6.5 (L represents the radial distance in the equatorial plane under a dipole field approximation). They are a small storm and a moderate storm in the current solar minimum and an intense storm right after the previous solar maximum. Model results for the three individual events showed that fast precipitation losses of energetic radiation belt electrons, as short as hours, persistently occurred in the storm main phases and with more efficient loss at higher energies, over wide range of L regions and over all the SAMPEX covered local times. In addition to this newly discovered common feature of the main phase electron lifetimes for all the storm events and at all L locations, some other properties of the electron loss rates that vary with time or locations, were also estimated and discussed. This method combining model with the low-altitude observations provides direct quantification of the electron loss rate, a prerequisite for any comprehensive modeling of the radiation belt electron dynamics.

  17. SAMPEX/PET model of the low altitude trapped proton environment

    NASA Astrophysics Data System (ADS)

    Heynderickx, D.; Looper, M. D.; Blake, J. B.

    The low-altitude trapped proton population exhibits strong time variations related to geomagnetic secular variation and neutral atmosphere conditions. The flux measurements of the Proton Electron Telescope (PET) onboard the polar satellite SAMPEX constitute an adequate data set to distinguish different time scales and to characterise the respective variations. As a first step towards building a dynamic model of the low altitude proton environment we binned the 1995-1996 PET data into a model map with functional dependencies of the proton fluxes on the F10.7 solar radio flux and on the time of year to represent variations on the time scale of the solar cycle and seasonal variations. Now, a full solar cycle of SAMPEX/PET data is available, so that the preliminary model could be extended. The secular variation of the geomagnetic field is included in the model, as it is constructed using Kaufmann's K=I √{B} instead of McIlwain's L as a map coordinate.

  18. Quantification of the precipitation loss of radiation belt electrons observed by SAMPEX

    NASA Astrophysics Data System (ADS)

    Tu, Weichao; Selesnick, Richard; Li, Xinlin; Looper, Mark

    2010-07-01

    Based on SAMPEX/PET observations, the rates and the spatial and temporal variations of electron loss to the atmosphere in the Earth's radiation belt were quantified using a drift diffusion model that includes the effects of azimuthal drift and pitch angle diffusion. The measured electrons by SAMPEX can be distinguished as trapped, quasi-trapped (in the drift loss cone), and precipitating (in the bounce loss cone). The drift diffusion model simulates the low-altitude electron distribution from SAMPEX. After fitting the model results to the data, the magnitudes and variations of the electron lifetime can be quantitatively determined based on the optimum model parameter values. Three magnetic storms of different magnitudes were selected to estimate the various loss rates of ˜0.5-3 MeV electrons during different phases of the storms and at L shells ranging from L = 3.5 to L = 6.5 (L represents the radial distance in the equatorial plane under a dipole field approximation). The storms represent a small storm, a moderate storm from the current solar minimum, and an intense storm right after the previous solar maximum. Model results for the three individual events showed that fast precipitation losses of relativistic electrons, as short as hours, persistently occurred in the storm main phases and with more efficient loss at higher energies over wide range of L regions and over all the SAMPEX-covered local times. In addition to this newly discovered common feature of the main phase electron loss for all the storm events and at all L locations, some other properties of the electron loss rates, such as the local time and energy dependence that vary with time or locations, were also estimated and discussed. This method combining model with the low-altitude observations provides direct quantification of the electron loss rate, a prerequisite for any comprehensive modeling of the radiation belt electron dynamics.

  19. Quantification of the Precipitation Loss of Radiation Belt Electrons Observed by SAMPEX (Invited)

    NASA Astrophysics Data System (ADS)

    Tu, W.; Li, X.; Selesnick, R. S.; Looper, M. D.

    2010-12-01

    Based on SAMPEX/PET observations, the fluxes and the spatial and temporal variations of electron loss to the atmosphere in the Earth’s radiation belt were quantified using a drift-diffusion model that includes the effects of azimuthal drift and pitch angle diffusion. The measured electrons by SAMPEX can be distinguished as trapped, quasi-trapped (in the drift loss cone), or precipitating (in the bounce loss cone), and the model simulates the low-altitude electron distribution from SAMPEX. After fitting the model results to the data, the magnitudes and variations of the electron loss rate can be estimated based on the optimum model parameter values. In this presentation we give an overview of our method and published results, followed by some recent improvements we made on the model, including updating the quantified electron lifetimes more frequently (e.g., every two hours instead of half a day) to achieve smoother variations, estimating the adiabatic effects at SAMPEX’s orbit and their influence on our model results, and calculating the error bar associated with each quantified electron lifetime. This method combining a model with low-altitude observations provides direct quantification of the electron loss rate, as required for any accurate modeling of the radiation belt electron dynamics.

  20. SAMPEX observations of energetic hydrogen isotopes in the inner zone

    NASA Technical Reports Server (NTRS)

    Looper, M. D.; Blake, J. B.; Cummings, J. R.; Mewaldt, R. A.

    1996-01-01

    We report observations of geomagnetically-trapped hydrogen isotopes at low altitudes, near the feet of field lines in the inner zone, made with the PET instrument aboard the SAMPEX satellite. We have mapped protons from 19 to 500 MeV, and have discovered a collocated belt of deuterons, which we have mapped from 18 to 58 MeV/nucleon. We found deuterium at about 1% of the level of the proton flux at the same energy per nucleon, and no tritium at energies of tens of MeV/nucleon with an upper limit of about 0.1% of the proton flux. Protons and deuterons showed similar time dependence, with fluxes approximately tripling from July 1992 to March 1996, and similar pitch-angle dependence. The high-L limits of the proton and deuteron belts as functions of energy were organized by rigidity, as was to be expected if these limits were set for both species by inability of particles to sustain adiabatic motion and stable trapping.

  1. NASA's initial flight missions in the Small Explorer Program

    NASA Technical Reports Server (NTRS)

    Rasch, Nickolus O.; Brown, William W.

    1989-01-01

    A new component of NASA's Explorer Program has been initiated in order to provide research opportunities characterized by small, quick-turn-around, and frequent space missions. Objectives include the launching of one or two payloads per year, depending on mission cost and availability of funds and launch vehicles. The four missions chosen from the proposals solicited by the Small Explorer Announcement Opportunity are discussed in detail. These include the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) designed to carry out energetic particle studies of outstanding questions in the fields of space plasma, solar, heliospheric, cosmic ray, and middle atmospheric physics; the Submillimeter Wave Astronomy Satellite (SWAS), which will conduct both pointed and survey observations of dense galactic molecular clouds; the Fast Auroral Snapshot Explorer (FAST); and the Total Ozone Mapping Spectrometer (TOMS).

  2. The causes of the hardest electron precipitation events seen with SAMPEX

    NASA Astrophysics Data System (ADS)

    Smith, David M.; Casavant, Eric P.; Comess, Max D.; Liang, Xinqing; Bowers, Gregory S.; Selesnick, Richard S.; Clausen, Lasse B. N.; Millan, Robyn M.; Sample, John G.

    2016-09-01

    We studied the geomagnetic, plasmaspheric, and solar wind context of relativistic electron precipitation (REP) events seen with the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), Proton Electron Telescope (PET) to derive an exponential folding energy E0 for each event. Events with E0< 400 keV peak near midnight, and with increasing E0, the peak magnetic local time (MLT) moves earlier but never peaks as early as the MLT distribution of electromagnetic ion cyclotron (EMIC) waves in the outer belt, and a distinct component near midnight remains. Events with E0>750 keV near dusk (1400 < MLT < 2000) show correlations with solar wind dynamic pressure and proton density, AE index, negative Dst index, and an extended plasmasphere, all supporting an EMIC wave interpretation. Events with 500 keV 500 keV ("hard REP"), we estimate that roughly 45% of the whole population has the distributions of geomagnetic and solar wind parameters associated with EMIC waves, while 55% does not. We hypothesize that the latter events may be caused by current sheet scattering (CSS), which can be mistaken for EMIC wave scattering in that both simultaneously precipitate MeV electrons and keV protons. Since a large number of MeV electrons are lost in the near-midnight hard REP events, and in the large number of E0< 400 keV events that show no dusk-like peak at all, we conclude that CSS should be studied further as a possibly important loss channel for MeV electrons.

  3. Relativistic electron microbursts and variations in trapped MeV electron fluxes during the 8-9 October 2012 storm: SAMPEX and Van Allen Probes observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurita, Satoshi; Miyoshi, Yoshizumi; Blake, J. Bernard

    2016-03-06

    It has been suggested that whistler mode chorus is responsible for both acceleration of MeV electrons and relativistic electron microbursts through resonant wave-particle interactions. Relativistic electron microbursts have been considered as an important loss mechanism of radiation belt electrons. Here in this paper we report on the observations of relativistic electron microbursts and flux variations of trapped MeV electrons during the 8–9 October 2012 storm, using the SAMPEX and Van Allen Probes satellites. Observations by the satellites show that relativistic electron microbursts correlate well with the rapid enhancement of trapped MeV electron fluxes by chorus wave-particle interactions, indicating that accelerationmore » by chorus is much more efficient than losses by microbursts during the storm. It is also revealed that the strong chorus wave activity without relativistic electron microbursts does not lead to significant flux variations of relativistic electrons. Thus, effective acceleration of relativistic electrons is caused by chorus that can cause relativistic electron microbursts.« less

  4. Solar cycle dynamics of solar, magnetospheric, and heliospheric particles, and long-term atmospheric coupling: SAMPLEX

    NASA Technical Reports Server (NTRS)

    Mason, G. M. (Principal Investigator); Hamilton, D. C.; Blake, J. B.; Mewaldt, R. A.; Stone, E. C.; Baker, D. N.; VonRosenvinge, T. T.; Callis, L. B.; Klecker, B.; Hovestadt, D.; hide

    1996-01-01

    This report summarizes science analysis activities by the SAMPEX mission science team during the period during the period July 1, 1995 through July 1, 1996. Bibliographic entries for 1995 and 1996 to date (July 1996) are included. The SAMPEX science team was extremely active, with 20 articles published or submitted to refereed journals, 18 papers published in their entirety in Conference Proceedings, and 53 contributed papers, seminars, and miscellaneous presentations. The bibliography at the end of this report constitutes the primary description of the research activity. Science highlights are given under the major activity headings of anomalous cosmic rays, solar energetic particles, magnetospheric precipitating electrons, trapped H and He isotopes, and data analysis activities.

  5. Advantages of estimating rate corrections during dynamic propagation of spacecraft rates: Applications to real-time attitude determination of SAMPEX

    NASA Technical Reports Server (NTRS)

    Challa, M. S.; Natanson, G. A.; Baker, D. F.; Deutschmann, J. K.

    1994-01-01

    This paper describes real-time attitude determination results for the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), a gyroless spacecraft, using a Kalman filter/Euler equation approach denoted the real-time sequential filter (RTSF). The RTSF is an extended Kalman filter whose state vector includes the attitude quaternion and corrections to the rates, which are modeled as Markov processes with small time constants. The rate corrections impart a significant robustness to the RTSF against errors in modeling the environmental and control torques, as well as errors in the initial attitude and rates, while maintaining a small state vector. SAMPLEX flight data from various mission phases are used to demonstrate the robustness of the RTSF against a priori attitude and rate errors of up to 90 deg and 0.5 deg/sec, respectively, as well as a sensitivity of 0.0003 deg/sec in estimating rate corrections in torque computations. In contrast, it is shown that the RTSF attitude estimates without the rate corrections can degrade rapidly. RTSF advantages over single-frame attitude determination algorithms are also demonstrated through (1) substantial improvements in attitude solutions during sun-magnetic field coalignment and (2) magnetic-field-only attitude and rate estimation during the spacecraft's sun-acquisition mode. A robust magnetometer-only attitude-and-rate determination method is also developed to provide for the contingency when both sun data as well as a priori knowledge of the spacecraft state are unavailable. This method includes a deterministic algorithm used to initialize the RTSF with coarse estimates of the spacecraft attitude and rates. The combined algorithm has been found effective, yielding accuracies of 1.5 deg in attitude and 0.01 deg/sec in the rates and convergence times as little as 400 sec.

  6. Mission Operations Report (MOR) for the Solar, Anomalous, and Magnetosphere Particle Explorer (SAMPEX)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    MISSION OPERATIONS REPORTS are published for use by NASA senior management, as required by NASA Headquarters Management Instruction HQMI 8610. lC, effective November 26, 1991. The purpose of these reports is to provide a documentation system that represents an internal discipline to establish critical discriminators selected in advance to measure mission accomplishment, provide a formal written assessment of mission accomplishment, and provide an accountability of technical achievement. Prelaunch reports are prepared and issued for each flight project just prior to launch. Following launch, updating (Post Launch) reports are issued to provide mission status and progress in meeting mission objectives. Primary distribution of these reports is intended for personnel having program/project management responsibilities.

  7. A multimission three-axis stabilized spacecraft flight dynamics ground support system

    NASA Technical Reports Server (NTRS)

    Langston, J.; Krack, K.; Reupke, W.

    1993-01-01

    The Multimission Three-Axis Stabilized Spacecraft (MTASS) Flight Dynamics Support System (FDSS) has been developed in an effort to minimize the costs of ground support systems. Unlike single-purpose ground support systems, which attempt to reduce costs by reusing software specifically developed for previous missions, the multimission support system is an intermediate step in the progression to a fully generalized mission support system in which numerous missions may be served by one general system. The benefits of multimission attitude ground support systems extend not only to the software design and coding process, but to the entire system environment, from specification through testing, simulation, operations, and maintenance. This paper reports the application of an MTASS FDSS to multiple scientific satellite missions. The satellites are the Upper Atmosphere Research Satellite (UARS), the Extreme Ultraviolet Explorer (EUVE), and the Solar Anomalous Magnetospheric Particle Explorer (SAMPEX). Both UARS and EUVE use the multimission modular spacecraft (MMS) concept. SAMPEX is part of the Small Explorer (SMEX) series and uses a much simpler set of attitude sensors. This paper centers on algorithm and design concepts for a multimission system and discusses flight experience from UARS.

  8. Observational constraints on relativistic electron dynamics: temporal evolution of electron spectra and flux isotropization

    NASA Astrophysics Data System (ADS)

    Kanekal, S. G.; Selesnick, R. S.; Baker, D. N.; Blake, J. B.

    2007-05-01

    Models of energization of electrons in the Earth's outer radiation belts invoke two classes of processes, radial transport and in-situ wave-particle interactions. Temporal evolution of electron spectra and flux isotropization during energization events provide useful observational constraints on models of electron energization. Events dominated by radial diffusion result in pancake type pitch angle distributions whereas some in-situ wave-particle energization mechanisms include pitch angle scattering leading to rapid flux isotropization. We present a survey of flux isotrpization time scales and electron spectra during relativstic electron enhancement events. We will use data collected by detectors onboard SAMPEX in low earth orbit and Polar which measures electron fluxes at higher altitude to measure flux isotropization. Electron spectra are obtained by pulse height analyzed data from the PET detector onboard SAMPEX.SAMPEX measurements cover the entire outer zone for more than a decade from mid 1992 to mid 2004 and Polar covers the time period from mid 1996 to the present.

  9. PET - A proton/electron telescope for studies of magnetospheric, solar, and galactic particles

    NASA Technical Reports Server (NTRS)

    Cook, Walter R.; Cummings, Alan C.; Cummings, Jay R.; Garrard, Thomas L.; Kecman, Branislav; Mewaldt, Richard A.; Selesnick, Richard S.; Stone, Edward C.; Baker, Daniel N.; Von Rosenvinge, Tycho T.

    1993-01-01

    The Proton/Electron Telescope (PET) on SAMPEX is designed to provide measurements of energetic electrons and light nuclei from solar, galactic, and magnetospheric sources. PET is an all solid-state system that will measure the differential energy spectra of electrons from about 1 to about 30 MeV and H and He nuclei from about 20 to about 300 MeV/nuc, with isotope resolution of H and He extending from about 20 to about 80 MeV/nuc. As SAMPEX scans all local times and geomagnetic cutoffs over the course of its near-polar orbit, PET will characterize precipitating relativistic electron events during periods of declining solar activity, and it will examine whether the production rate of odd nitrogen and hydrogen molecules in the middle atmosphere by precipitating electrons is sufficient to affect O3 depletion. In addition, PET will complement studies of the elemental and isotopic composition of energetic heavy (Z greater than 2) nuclei on SAMPEX by providing measurements of H, He, and electrons. Finally, PET has limited capability to identify energetic positrons from potential natural and man-made sources.

  10. Integrating a Data Center and Resident Archive into the Emerging Virtual Observatiry System: Practical experience and perspectives

    NASA Astrophysics Data System (ADS)

    Davis, A. J.; Kanekal, S. G.; Looper, M. D.; Mason, G. M.; Mewaldt, R. A.

    2006-12-01

    The SAMPEX Resident Archive is currently under construction, and will be co-hosted at Caltech with the ACE Science Center. With SAMPEX in low earth orbit, and ACE at L1, and a suite of instruments on each spacecraft, the combined data cover a very broad range in species, energy, location, and time. The data include solar wind, solar energetic particle, and galactic cosmic ray intensity and composition data, as well as solar wind and magnetic field parameters on a variety of time scales. We describe our recent efforts to provide enhanced access to these data via the emerging virtual observatory system, including work with the Space Physics Archive Search and Extract (SPASE) Consortium to ensure that the ACE and SAMPEX data can be adequately described using the SPASE data model, development of a SOAP web services interface between the ACE Science Center and the virtual observatories, and ideas for combining the ACE and SAMPEx data in useful ways.

  11. NASA's spacecraft data system

    NASA Technical Reports Server (NTRS)

    Cudmore, Alan; Flanegan, Mark

    1993-01-01

    The NASA Small Explorer Data System (SEDS), a space flight data system developed to support the Small Explorer (SMEX) project, is addressed. The system was flown on the Solar Anomalous Magnetospheric Particle Explorer (SAMPEX) SMEX mission, and with reconfiguration for different requirements will fly on the X-ray Timing Explorer (XTE) and the Tropical Rainfall Measuring Mission (TRMM). SEDS is also foreseen for the Hubble repair mission. Its name was changed to Spacecraft Data System (SDS) in view of expansions. Objectives, SDS hardware, and software are described. Each SDS box contains two computers, data storage memory, uplink (command) reception circuitry, downlink (telemetry) encoding circuitry, Instrument Telemetry Controller (ITC), and spacecraft timing circuitry. The SDS communicates with other subsystems over the MIL-STD-1773 data bus. The SDS software uses a real time Operating System (OS) and the C language. The OS layer, communications and scheduling layer, application task layer, and diagnostic software, are described. Decisions on the use of advanced technologies, such as ASIC's (Application Specific Integrated Circuits) and fiber optics, led to technical improvements, such as lower power and weight, without increasing the risk associated with the data system. The result was a successful SAMPEX development, integration and test, and mission using SEDS, and the upgrading of that system to SDS for TRMM and XTE.

  12. Anomalous cosmic ray oxygen gradients throughout the heliosphere

    NASA Technical Reports Server (NTRS)

    Cummings, A. C.; Mewaldt, R. A.; Blake, J. B.; Cummings, J. R.; Franz, M.; Hovestadt, D.; Klecker, B.; Mason, G. M.; Mazur, J. E.; Stone, E. C.

    1995-01-01

    We have used data from the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), Ulysses, Voyager 1, Voyager 2, and Pioneer 10 spacecraft to determine the radial and latitudinal gradients of anomalous cosmic ray oxygen at 10 MeV/nuc during the last half of 1993. These five spacecraft cover radial distances from 1 AU (SAMPEX) to 58 AU (P10) and latitudes to 41 deg S (Ulysses) and 32 deg N (V1). We find that the radial gradient is a decreasing function of radial distance, approximately r(exp -n), with n = 1.7 +/- 0.7. The large-scale radial gradient between the inner and outer heliosphere is much smaller than it was during the last solar minimum period in approximately 1987. The latitudinal gradient is small and positive, 1.3 +/- 0.4 %/deg, as opposed to the large and negative latitudinal gradients found during 1987, but similar to the small positive latitudinal gradient measured during 1976 for anomalous cosmic ray helium. These observations confirm that effects of curvature and gradient drift in the large scale magnetic field of the Sun are important for establishing the three-dimensional intensity distributions of these particles in the heliosphere during periods of solar minimum conditions.

  13. Assembly of Nanowire Arrays: Exploring Interparticle Interactions, Particle Orientation, and Mixed Particle Arrays

    NASA Astrophysics Data System (ADS)

    Kirby, David J.

    This dissertation explores the fundamental interparticle and particle-substrate forces that contribute to nanowire assembly. Nanowires have a large aspect ratio which has made them favorable materials for applications in energy and sensing technologies. However, this anisotropy means that nanowires must be positioned and oriented during an assembly process. Within this work, the roles of gravity, van der Waals (VDW) attractions, and electrostatic repulsions are explored when different nanowire assemblies are created. Particles were synthesized by the template electrodeposition process so that stripes of different materials and therefore different VDW interactions could be patterned along the particle length. Electrostatic repulsions were provided by a small molecule coating or a porous silica shell to prevent aggregation during the assembly process. Chapters 2, 3, 5, 6, and 8 all used particles whose asymmetry was further adjusted by removal of a sacrificial segment to leave a partially etched nanowire (PEN), a rigid silica shell partially filled with a metal core. For these particles, the role of gravity was amplified due to the drastic density differences between the two segments. Topographic and high VDW surface interactions were patterned onto assembly substrates using photolithographic processing. These forces served as a passive template to direct nanowire assembly. The segment anisotropy of PENs allowed gravity to drive their sedimentation with the long axis perpendicular to the surface. The density difference between the two ends allowed them to convert between the horizontal and vertical orientation as they diffused on the substrate. Vertical arrays formed as particle concentrations increased while VDW attractions from neighboring PENs or the physical barrier of a microwell wall supported this structure. While vertical arrays were typically PENs, microwell walls were also able to enforce a vertical orientation on solid Au nanowires. These particles

  14. Study of Proton cutoffs during geomagnetically disturbed times

    NASA Astrophysics Data System (ADS)

    Kanekal, S. G.; Looper, M. D.; Baker, D. N.; Blake, J. B.

    Solar energetic particles SEP are currently classified into impulsive and gradual events The former are understood be accelerated at solar flares and the latter at interplanetary shocks driven by coronal mass ejections CMEs It is well known that CMEs also cause intense geomagnetic storms during which the geomagnetic field can be highly distorted During these times SEP fluxes penetrate the terrestrial magnetosphere and reach regions which may not be normally accessible to them The SEP access is of course controlled by the geomagnetic field configuration The cutoff latitude is a well defined latitude below which a charged particle of a given rigidity momentum per unit charge arriving from a given direction cannot penetrate SEPs constitute a radiation hazard to spacecraft and humans and measurement and prediction of the cutoff location are an important aspect of space weather This paper reports on the measurements of solar energetic proton cutoffs made by two satellites SAMPEX and Polar during geomagnetically disturbed times We study select SEP events occuring during the period 1996 to 2005 when both SAMPEX and Polar provide high quality data We will compare our measurements with cutoffs calculated by a charged particle tracing code which utilizes several currently used models of the geomagnetic field The measured SEP proton cutoffs cover a range of rigidities and are obtained at high-altitudes by the HIST detector onboard Polar and at low-altitudes by the PET and HILT detctors onboard SAMPEX

  15. A Multi-spacecraft Study of the Magnetospheric Influence on Ionospheric Chemistry - a Detailed Examination of Recent Geomagnetically Active Periods

    NASA Astrophysics Data System (ADS)

    Petrinec, S. M.; Chenette, D. L.; Imhof, W. L.; Baker, D. N.; Barth, C. A.; Mankoff, K. D.; Luhmann, J. G.; Mason, G. M.; Mazur, J. E.; Evans, D. S.

    2001-12-01

    A detailed analysis of the particle precipitation into the auroral regions during specific storm intervals is performed. The global energetic particle input to the ionosphere and lower thermosphere is provided by several monitors; namely the Polar Ionospheric X-ray Experiment (PIXIE) on board the NASA/GGS Polar satellite (for inferred electron energies greater than about 3 keV); the TED sensor system on board the NOAA/Polar Orbiting Environmental Satellite (POES) (particle energies between about 50 eV and 20 keV), and the sensor system (LICA) on board the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) spacecraft (for electron energies greater then 25 keV). Changes in nitric oxide (NO) densities at altitudes between 97 and 150 km during these storm intervals are studied using observations from the Student Nitric Oxide Explorer (SNOE). Solar wind observations are also used to provide important information regarding the external drivers for the magnetospheric input to the upper atmosphere. Specific intervals of examination include the recent large geomagnetic event of March 31-April 1, 2001, and other events from the most recent solar maximum.

  16. A model for the behaviour of the Solar Energetic Particle Events inside Magnetic Clouds

    NASA Astrophysics Data System (ADS)

    Medina, J.; Hidalgo, M. A.

    2006-12-01

    The modulation effects of the solar ejecta over the solar energetic particle event SEPe fluxes (0,5-100 MeV) provided by solar flares have recently been highlighted. Especially important is the behaviour of these fluxes inside MCs where, in spite of the low magnetic field intensities of these interplanetary structures (about 30 nT), a decrease in the population of the energetic particles is observed. In the present work it is shown a simple theoretical model we have developed to analyse the behaviour of those fluxes inside the magnetic clouds (MCs) using, as a starting point, our previous magnetic field model for MCs. The experimental data from ACE, GOES, SAMPEX, SOHO, Ulysses and WIND satellites are presented, both from MC coincident with SEPe and not coincident. This work has been supported by the Spanish Comisión Internacional de Ciencia y Tecnología (CICYT), grant ESP2005-07290-C02-01 and ESP2006-08459 and Madrid Autonomous Community / University of Alcala grant CAM-UAH 2005/007. This work is performed inside COST Action 724.

  17. Study of Proton cutoffs during geomagnetically disturbed times

    NASA Astrophysics Data System (ADS)

    Kanekal, S. G.; Looper, M. D.; Baker, D. N.; Blake, J. B.

    2005-12-01

    It is currently believed that solar energetic particles (SEP) may be accelerated at solar flares and/or at interplanetary shocks driven by coronal mass ejections (CMEs). CMEs also cause intense geomagnetic storms during which the geomagnetic field can be highly distorted.SEP fluxes penetrate the terrestrial magnetosphere and reach specific regions depending upon the geomagnetic field configuration. The cutoff latitude is a well defined latitude below which a charged particle of a given rigidity (momentum per unit charge) arriving from a given direction cannot penetrate. SEP cutoff location can therefore be potentially useful in determining the geomagnetic field configuration. This paper reports on the measurements of solar energetic proton cutoffs made by two satellites, SAMPEX and Polar during geomagnetically disturbed times. We study select SEP events and compare our measurements with cutoffs calculated by a charged particle tracing code which utilizes several currently used models of the geomagnetic field. The measured SEP proton cutoffs cover a wide range of rigidities and are obtained at high-altitudes by the HIST detector onboard Polar and at low-altitudes by the PET detctor onboard SAMPEX.

  18. A PC-based magnetometer-only attitude and rate determination system for gyroless spacecraft

    NASA Technical Reports Server (NTRS)

    Challa, M.; Natanson, G.; Deutschmann, J.; Galal, K.

    1995-01-01

    This paper describes a prototype PC-based system that uses measurements from a three-axis magnetometer (TAM) to estimate the state (three-axis attitude and rates) of a spacecraft given no a priori information other than the mass properties. The system uses two algorithms that estimate the spacecraft's state - a deterministic magnetic-field only algorithm and a Kalman filter for gyroless spacecraft. The algorithms are combined by invoking the deterministic algorithm to generate the spacecraft state at epoch using a small batch of data and then using this deterministic epoch solution as the initial condition for the Kalman filter during the production run. System input comprises processed data that includes TAM and reference magnetic field data. Additional information, such as control system data and measurements from line-of-sight sensors, can be input to the system if available. Test results are presented using in-flight data from two three-axis stabilized spacecraft: Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) (gyroless, Sun-pointing) and Earth Radiation Budget Satellite (ERBS) (gyro-based, Earth-pointing). The results show that, using as little as 700 s of data, the system is capable of accuracies of 1.5 deg in attitude and 0.01 deg/s in rates; i.e., within SAMPEX mission requirements.

  19. Spacecraft control center automation using the generic inferential executor (GENIE)

    NASA Technical Reports Server (NTRS)

    Hartley, Jonathan; Luczak, Ed; Stump, Doug

    1996-01-01

    The increasing requirement to dramatically reduce the cost of mission operations led to increased emphasis on automation technology. The expert system technology used at the Goddard Space Flight Center (MD) is currently being applied to the automation of spacecraft control center activities. The generic inferential executor (GENIE) is a tool which allows pass automation applications to be constructed. The pass script templates constructed encode the tasks necessary to mimic flight operations team interactions with the spacecraft during a pass. These templates can be configured with data specific to a particular pass. Animated graphical displays illustrate the progress during the pass. The first GENIE application automates passes of the solar, anomalous and magnetospheric particle explorer (SAMPEX) spacecraft.

  20. A Versatile Applet to Explore the Wave Behaviour of Particles

    ERIC Educational Resources Information Center

    Fernandez Palop, J. I.

    2009-01-01

    A pedagogical tool that consists of a Java applet has been developed so that undergraduate students in physics can explore the wave behaviour of particles. The applet executes a simulation in which a two-dimensional wave packet moves towards a slit and an obstacle with variable widths. By changing three parameters, slit width, obstacle width and…

  1. Magnetometer-only attitude and rate determination for a gyro-less spacecraft

    NASA Technical Reports Server (NTRS)

    Natanson, G. A.; Challa, M. S.; Deutschmann, J.; Baker, D. F.

    1994-01-01

    Attitude determination algorithms that requires only the earth's magnetic field will be useful for contingency conditions. One way to determine attitude is to use the time derivative of the magnetic field as the second vector in the attitude determination process. When no gyros are available, however, attitude determination becomes difficult because the rates must be propagated via integration of Euler's equation, which in turn requires knowledge of the initial rates. The spacecraft state to be determined must then include not only the attitude but also rates. This paper describes a magnetometer-only attitude determination scheme with no a priori knowledge of the spacecraft state, which uses a deterministic algorithm to initialize an extended Kalman filter. The deterministic algorithm uses Euler's equation to relate the time derivatives of the magnetic field in the reference and body frames and solves the resultant transcendental equations for the coarse attitude and rates. An important feature of the filter is that its state vector also includes corrections to the propagated rates, thus enabling it to generate highly accurate solutions. The method was tested using in-flight data from the Solar, Anomalous, and Magnetospheric Particles Explorer (SAMPEX), a Small Explorer spacecraft. SAMPEX data using several eclipse periods were used to simulate conditions that may exist during the failure of the on-board digital sun sensor. The combined algorithm has been found effective, yielding accuracies of 1.5 deg in attitude (within even nominal mission requirements) and 0.01 degree per second (deg/sec) in the rates.

  2. Exploring results of the possibility on detecting cosmic ray particles by acoustic way

    NASA Technical Reports Server (NTRS)

    Jiang, Y.; Yuan, Y.; Li, Y.; Chen, D.; Zheng, R.; Song, J.

    1985-01-01

    It has been demonstrated experimentally and theoretically that high energy particles produce detectable sounds in water. However, no one has been able to detect an acoustic signal generated by a high energy cosmic ray particle in water. Results show that transient ultrasonic signals in a large lake or reservoir are fairly complex and that the transient signals under water may arise mainly from sound radiation from microbubbles. This field is not explored in detail. Perhaps, the sounds created by cosmic ray particles hide in these ultrasonic signals. In order to develop the technique of acoustic detection, it is most important to make a thorough investigation of these ultrasonic signals in water.

  3. Effect of solar energetic particle (SEP) events on the radiation exposure levels to aircraft passengers and crew: Case study of 14 July 2000 SEP event

    NASA Astrophysics Data System (ADS)

    Iles, R. H. A.; Jones, J. B. L.; Taylor, G. C.; Blake, J. B.; Bentley, R. D.; Hunter, R.; Harra, L. K.; Coates, A. J.

    2004-11-01

    We investigate the circumstances required for aircrew and passengers to experience an increased radiation exposure rate from a solar energetic particle (SEP) event occurring during a flight. The effects of the 14 July 2000 National Oceanic and Atmospheric Administration S3 class SEP event are examined using ground-based and satellite measurements together with coincident measurements made using a tissue equivalent proportional counter (TEPC) on board a Virgin Atlantic Airways flight from London Heathrow to Hong Kong. In this paper we present the first measurements made during a SEP event using a TEPC at flight altitudes. Our results indicate that there were no increased radiation levels detected during the flight due to the SEPs, but the measurements agreed well with the CARI-6 model calculations made using a heliocentric potential value derived immediately prior to the SEP event. In addition, a prolonged increase in the >85 MeV particle flux is observed for up to 2 days after the SEP onset by the SAMPEX spacecraft at latitudes >55°.

  4. The effects of heavy particle irradiation on exploration and response to environmental change

    NASA Astrophysics Data System (ADS)

    Casadesus, G.; Shukitt-Hale, B.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.

    2004-01-01

    Free radicals produced by exposure to heavy particles have been found to produce motor and cognitive behavioral toxicity effects in rats similar to those found during aging. The present research was designed to investigate the effects of exposure to 56Fe particles on the ability of male Sprague-Dawley rats to detect novel arrangements in a given environment. Using a test of spatial memory previously demonstrated to be sensitive to aging, open field activity and reaction to spatial and non-spatial changes were measured in a group that received a dose of 1.5 Gy ( n=10) of 56Fe heavy particle radiation or in non-radiated controls ( n=10). Animals irradiated with 1.5 Gy of 56Fe particles exhibited some age-like effects in rats tested, even though they were, for the most part, subtle. Animals took longer to enter, visited less and spent significantly less time in the middle and the center portions of the open field, independently of total frequency and duration of activity of both groups. Likewise, irradiated subjects spend significantly more time exploring novel objects placed in the open field than did controls. However, irradiated subjects did not vary from controls in their exploration patterns when objects in the open field were spatially rearranged. Thus, irradiation with a dose of 1.5 Gy of 56Fe high-energy particle radiation elicited age-like effects in general open field exploratory behavior, but did not elicit age-like effects during the spatial and non-spatial rearrangement tasks.

  5. The effects of heavy particle irradiation on exploration and response to environmental change

    NASA Technical Reports Server (NTRS)

    Casadesus, G.; Shukitt-Hale, B.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.

    2004-01-01

    Free radicals produced by exposure to heavy particles have been found to produce motor and cognitive behavioral toxicity effects in rats similar to those found during aging. The present research was designed to investigate the effects of exposure to 56Fe particles on the ability of male Sprague-Dawley rats to detect novel arrangements in a given environment. Using a test of spatial memory previously demonstrated to be sensitive to aging, open field activity and reaction to spatial and non-spatial changes were measured in a group that received a dose of 1.5 Gy (n=10) of 56Fe heavy particle radiation or in non-radiated controls (n=10). Animals irradiated with 1.5 Gy of 56Fe particles exhibited some age-like effects in rats tested, even though they were, for the most part, subtle. Animals took longer to enter, visited less and spent significantly less time in the middle and the center portions of the open field, independently of total frequency and duration of activity of both groups. Likewise, irradiated subjects spend significantly more time exploring novel objects placed in the open field than did controls. However, irradiated subjects did not vary from controls in their exploration patterns when objects in the open field were spatially rearranged. Thus, irradiation with a dose of 1.5 Gy of 56Fe high-energy particle radiation elicited age-like effects in general open field exploratory behavior, but did not elicit age-like effects during the spatial and non-spatial rearrangement tasks. Published by Elsevier Ltd on behalf of COSPAR.

  6. Near-earth radiation environment including time variations and secondary radiation; Meetings F2.6 and F2.7, COSPAR Scientific Assembly, 30th, Hamburg, Germany, July 11-21, 1994

    NASA Technical Reports Server (NTRS)

    Shea, M. A. (Editor); Heinrich, W. (Editor); Badhwar, G. D. (Editor)

    1996-01-01

    Both man and technological equipment must survive the near-earth space radiation environment, which can, under specific conditions, be extremely severe. This conference produced 17 papers on the dynamic space radiation environment covering: galactic, solar and trapped particles; nuclear fragmentation; nuclear interactions and transport theory; solar proton events; radiation shielding; and heavy ion fluences. Several papers present results from the recent SAMPEX mission.

  7. Particle Removal by Electrostatic and Dielectrophoretic Forces for Dust Control During Lunar Exploration Missions

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Buhler, C. R.; McFall, J. L.; Snyder, S. J.

    2009-01-01

    Particle removal during lunar exploration activities is of prime importance for the success of robotic and human exploration of the moon. We report on our efforts to use electrostatic and dielectrophoretic forces to develop a dust removal technology that prevents the accumulation of dust on solar panels and removes dust adhering to those surfaces. Testing of several prototypes showed solar shield output above 90% of the initial potentials after dust clearing.

  8. Solar Energetic Particles Events and Human Exploration: Measurements in a Space Habitat

    NASA Astrophysics Data System (ADS)

    Narici, L.; Berrilli, F.; Casolino, M.; Del Moro, D.; Forte, R.; Giovannelli, L.; Martucci, M.; Mergè, M.; Picozza, P.; Rizzo, A.; Scardigli, S.; Sparvoli, R.; Zeitlin, C.

    2016-12-01

    Solar activity is the source of Space Weather disturbances. Flares, CME and coronal holes modulate physical conditions of circumterrestrial and interplanetary space and ultimately the fluxes of high-energy ionized particles, i.e., solar energetic particle (SEP) and galactic cosmic ray (GCR) background. This ionizing radiation affects spacecrafts and biological systems, therefore it is an important issue for human exploration of space. During a deep space travel (for example the trip to Mars) radiation risk thresholds may well be exceeded by the crew, so mitigation countermeasures must be employed. Solar particle events (SPE) constitute high risks due to their impulsive high rate dose. Forecasting SPE appears to be needed and also specifically tailored to the human exploration needs. Understanding the parameters of the SPE that produce events leading to higher health risks for the astronauts in deep space is therefore a first priority issue. Measurements of SPE effects with active devices in LEO inside the ISS can produce important information for the specific SEP measured, relative to the specific detector location in the ISS (in a human habitat with a shield typical of manned space-crafts). Active detectors can select data from specific geo-magnetic regions along the orbits, allowing geo-magnetic selections that best mimic deep space radiation. We present results from data acquired in 2010 - 2012 by the detector system ALTEA inside the ISS (18 SPEs detected). We compare this data with data from the detector Pamela on a LEO satellite, with the RAD data during the Curiosity Journey to Mars, with GOES data and with several Solar physical parameters. While several features of the radiation modulation are easily understood by the effect of the geomagnetic field, as an example we report a proportionality of the flux in the ISS with the energetic proton flux measured by GOES, some features appear more difficult to interpret. The final goal of this work is to find the

  9. Exploration of thermal counterflow in He II using particle tracking velocimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mastracci, Brian; Guo, Wei

    Flow visualization using particle image velocimetry (PIV) and particularly particle tracking velocimetry (PTV) has been applied to thermal counterflow in He II for nearly two decades now, but the results remain difficult to interpret because tracer particle motion can be influenced by both the normal fluid and superfluid components of He II as well as the quantized vortex tangle. For instance, in one early experiment it was observed (using PTV) that tracer particles move at the normal fluid velocity v n, while in another it was observed (using PIV) that particles move at v n/2. Besides the different visualization methods,more » the range of applied heat flux investigated by these experiments differed by an order of magnitude. To resolve this apparent discrepancy and explore the statistics of particle motion in thermal counterflow, we apply the PTV method to a wide range of heat flux at a number of different fluid temperatures. In our analysis, we introduce a scheme for analyzing the velocity of particles presumably moving with the normal fluid separately from those presumably influenced by the quantized vortex tangle. Our results show that for lower heat flux there are two distinct peaks in the streamwise particle velocity probability density function (PDF), with one centered at the normal fluid velocity v n (named G2 for convenience) while the other is centered near v n/2 (G1). For higher heat flux there is a single peak centered near v n/2 (G3). Using our separation scheme, we show quantitatively that there is no size difference between the particles contributing to G1 and G2. We also show that nonclassical features of the transverse particle velocity PDF arise entirely from G1, while the corresponding PDF for G2 exhibits the classical Gaussian form. The G2 transverse velocity fluctuation, backed up by second sound attenuation in decaying counterflow, suggests that large-scale turbulence in the normal fluid is absent from the two-peak region. We offer a brief

  10. Exploration of thermal counterflow in He II using particle tracking velocimetry

    DOE PAGES

    Mastracci, Brian; Guo, Wei

    2018-06-22

    Flow visualization using particle image velocimetry (PIV) and particularly particle tracking velocimetry (PTV) has been applied to thermal counterflow in He II for nearly two decades now, but the results remain difficult to interpret because tracer particle motion can be influenced by both the normal fluid and superfluid components of He II as well as the quantized vortex tangle. For instance, in one early experiment it was observed (using PTV) that tracer particles move at the normal fluid velocity v n, while in another it was observed (using PIV) that particles move at v n/2. Besides the different visualization methods,more » the range of applied heat flux investigated by these experiments differed by an order of magnitude. To resolve this apparent discrepancy and explore the statistics of particle motion in thermal counterflow, we apply the PTV method to a wide range of heat flux at a number of different fluid temperatures. In our analysis, we introduce a scheme for analyzing the velocity of particles presumably moving with the normal fluid separately from those presumably influenced by the quantized vortex tangle. Our results show that for lower heat flux there are two distinct peaks in the streamwise particle velocity probability density function (PDF), with one centered at the normal fluid velocity v n (named G2 for convenience) while the other is centered near v n/2 (G1). For higher heat flux there is a single peak centered near v n/2 (G3). Using our separation scheme, we show quantitatively that there is no size difference between the particles contributing to G1 and G2. We also show that nonclassical features of the transverse particle velocity PDF arise entirely from G1, while the corresponding PDF for G2 exhibits the classical Gaussian form. The G2 transverse velocity fluctuation, backed up by second sound attenuation in decaying counterflow, suggests that large-scale turbulence in the normal fluid is absent from the two-peak region. We offer a brief

  11. Exploring the Standard Model of Particles

    ERIC Educational Resources Information Center

    Johansson, K. E.; Watkins, P. M.

    2013-01-01

    With the recent discovery of a new particle at the CERN Large Hadron Collider (LHC) the Higgs boson could be about to be discovered. This paper provides a brief summary of the standard model of particle physics and the importance of the Higgs boson and field in that model for non-specialists. The role of Feynman diagrams in making predictions for…

  12. The Mysterious Universe - Exploring Our World with Particle Accelerators

    ScienceCinema

    Brau, James E [University of Oregon

    2018-04-24

    The universe is dark and mysterious, more so than even Einstein imagined. While modern science has established deep understanding of ordinary matter, unidentified elements ("Dark Matter" and "Dark Energy") dominate the structure of the universe, its behavior and its destiny. What are these curious elements? We are now working on answers to these and other challenging questions posed by the universe with experiments at particle accelerators on Earth. Results of this research may revolutionize our view of nature as dramatically as the advances of Einstein and other quantum pioneers one hundred years ago. Professor Brau will explain for the general audience the mysteries, introduce facilities which explore them experimentally and discuss our current understanding of the underlying science. The presentation is at an introductory level, appropriate for anyone interested in physics and astronomy.

  13. The Advanced Composition Explorer Shock Database and Application to Particle Acceleration Theory

    NASA Technical Reports Server (NTRS)

    Parker, L. Neergaard; Zank, G. P.

    2015-01-01

    The theory of particle acceleration via diffusive shock acceleration (DSA) has been studied in depth by Gosling et al. (1981), van Nes et al. (1984), Mason (2000), Desai et al. (2003), Zank et al. (2006), among many others. Recently, Parker and Zank (2012, 2014) and Parker et al. (2014) using the Advanced Composition Explorer (ACE) shock database at 1 AU explored two questions: does the upstream distribution alone have enough particles to account for the accelerated downstream distribution and can the slope of the downstream accelerated spectrum be explained using DSA? As was shown in this research, diffusive shock acceleration can account for a large population of the shocks. However, Parker and Zank (2012, 2014) and Parker et al. (2014) used a subset of the larger ACE database. Recently, work has successfully been completed that allows for the entire ACE database to be considered in a larger statistical analysis. We explain DSA as it applies to single and multiple shocks and the shock criteria used in this statistical analysis. We calculate the expected injection energy via diffusive shock acceleration given upstream parameters defined from the ACE Solar Wind Electron, Proton, and Alpha Monitor (SWEPAM) data to construct the theoretical upstream distribution. We show the comparison of shock strength derived from diffusive shock acceleration theory to observations in the 50 keV to 5 MeV range from an instrument on ACE. Parameters such as shock velocity, shock obliquity, particle number, and time between shocks are considered. This study is further divided into single and multiple shock categories, with an additional emphasis on forward-forward multiple shock pairs. Finally with regard to forward-forward shock pairs, results comparing injection energies of the first shock, second shock, and second shock with previous energetic population will be given.

  14. The Advanced Composition Explorer Shock Database and Application to Particle Acceleration Theory

    NASA Technical Reports Server (NTRS)

    Parker, L. Neergaard; Zank, G. P.

    2015-01-01

    The theory of particle acceleration via diffusive shock acceleration (DSA) has been studied in depth by Gosling et al. (1981), van Nes et al. (1984), Mason (2000), Desai et al. (2003), Zank et al. (2006), among many others. Recently, Parker and Zank (2012, 2014) and Parker et al. (2014) using the Advanced Composition Explorer (ACE) shock database at 1 AU explored two questions: does the upstream distribution alone have enough particles to account for the accelerated downstream distribution and can the slope of the downstream accelerated spectrum be explained using DSA? As was shown in this research, diffusive shock acceleration can account for a large population of the shocks. However, Parker and Zank (2012, 2014) and Parker et al. (2014) used a subset of the larger ACE database. Recently, work has successfully been completed that allows for the entire ACE database to be considered in a larger statistical analysis. We explain DSA as it applies to single and multiple shocks and the shock criteria used in this statistical analysis. We calculate the expected injection energy via diffusive shock acceleration given upstream parameters defined from the ACE Solar Wind Electron, Proton, and Alpha Monitor (SWEPAM) data to construct the theoretical upstream distribution. We show the comparison of shock strength derived from diffusive shock acceleration theory to observations in the 50 keV to 5 MeV range from an instrument on ACE. Parameters such as shock velocity, shock obliquity, particle number, and time between shocks are considered. This study is further divided into single and multiple shock categories, with an additional emphasis on forward-forward multiple shock pairs. Finally with regard to forwardforward shock pairs, results comparing injection energies of the first shock, second shock, and second shock with previous energetic population will be given.

  15. The relationships between high latitude convection reversals and the energetic particle morphology observed by the Atmosphere Explorer

    NASA Technical Reports Server (NTRS)

    Heelis, R. A.; Winningham, J. D.; Hanson, W. B.; Burch, J. L.

    1980-01-01

    Simultaneous measurements of the auroral zone particle precipitation and the ion convection velocity by Atmosphere Explorer show a consistent difference between the location of the poleward boundary of the auroral particle precipitation and the ion convection reversal. The difference of about 1.5 degrees of invariant latitude is such that some part of the antisunward convection lies wholly within the auroral particle precipitation region. The nature of the convection reversals within the precipitation region suggests that in this region the convection electric field is generated on closed field lines that connect in the magnetosphere to the low latitude boundary layer.

  16. The Implementation of Satellite Control System Software Using Object Oriented Design

    NASA Technical Reports Server (NTRS)

    Anderson, Mark O.; Reid, Mark; Drury, Derek; Hansell, William; Phillips, Tom

    1998-01-01

    NASA established the Small Explorer (SMEX) program in 1988 to provide frequent opportunities for highly focused and relatively inexpensive space science missions that can be launched into low earth orbit by small expendable vehicles. The development schedule for each SMEX spacecraft was three years from start to launch. The SMEX program has produced five satellites; Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX), Fast Auroral Snapshot Explorer (FAST), Submillimeter Wave Astronomy Satellite (SWAS), Transition Region and Coronal Explorer (TRACE) and Wide-Field Infrared Explorer (WIRE). SAMPEX and FAST are on-orbit, TRACE is scheduled to be launched in April of 1998, WIRE is scheduled to be launched in September of 1998, and SWAS is scheduled to be launched in January of 1999. In each of these missions, the Attitude Control System (ACS) software was written using a modular procedural design. Current program goals require complete spacecraft development within 18 months. This requirement has increased pressure to write reusable flight software. Object-Oriented Design (OOD) offers the constructs for developing an application that only needs modification for mission unique requirements. This paper describes the OOD that was used to develop the SMEX-Lite ACS software. The SMEX-Lite ACS is three-axis controlled, momentum stabilized, and is capable of performing sub-arc-minute pointing. The paper first describes the high level requirements which governed the architecture of the SMEX-Lite ACS software. Next, the context in which the software resides is explained. The paper describes the benefits of encapsulation, inheritance and polymorphism with respect to the implementation of an ACS software system. This paper will discuss the design of several software components that comprise the ACS software. Specifically, Object-Oriented designs are presented for sensor data processing, attitude control, attitude determination and failure detection. The paper addresses

  17. Exploring cytoplasmic dynamics in zebrafish yolk cells by single particle tracking of fluorescent nanodiamonds

    NASA Astrophysics Data System (ADS)

    Chang, Cheng-Chun; Zhang, Bailin; Li, Che-Yu; Hsieh, Chih-Chien; Duclos, Guillaume; Treussart, François; Chang, Huan-Cheng

    2012-02-01

    Fluorescent nanodiamonds (FNDs) have recently developed into an exciting new tool for bioimaging applications. The material possesses several unique features including high biocompatibility, easy bioconjugation, and perfect photostability, making it a promising optical nanoprobe in vitro as well as in vivo. This work explores the potential application of this novel nanomaterial as a photostable, nontoxic tracer in vivo using zebrafish as a model organism. We introduced FNDs into the yolk of a zebrafish embryo by microinjection at the 1-cell stage. Movements of the injected particles were investigated by using single particle tracking techniques. We observed unidirectional and stop-and-go traffic as part of the intricate cytoplasmic movements in the yolk cell. We determined a velocity in the range of 0.19 - 0.40 μm/s for 40 particles moving along with the axial streaming in the early developmental stage (1 to 2 hours post fertilization) of the zebrafish embryos.

  18. Stochastic Set-Based Particle Swarm Optimization Based on Local Exploration for Solving the Carpool Service Problem.

    PubMed

    Chou, Sheng-Kai; Jiau, Ming-Kai; Huang, Shih-Chia

    2016-08-01

    The growing ubiquity of vehicles has led to increased concerns about environmental issues. These concerns can be mitigated by implementing an effective carpool service. In an intelligent carpool system, an automated service process assists carpool participants in determining routes and matches. It is a discrete optimization problem that involves a system-wide condition as well as participants' expectations. In this paper, we solve the carpool service problem (CSP) to provide satisfactory ride matches. To this end, we developed a particle swarm carpool algorithm based on stochastic set-based particle swarm optimization (PSO). Our method introduces stochastic coding to augment traditional particles, and uses three terminologies to represent a particle: 1) particle position; 2) particle view; and 3) particle velocity. In this way, the set-based PSO (S-PSO) can be realized by local exploration. In the simulation and experiments, two kind of discrete PSOs-S-PSO and binary PSO (BPSO)-and a genetic algorithm (GA) are compared and examined using tested benchmarks that simulate a real-world metropolis. We observed that the S-PSO outperformed the BPSO and the GA thoroughly. Moreover, our method yielded the best result in a statistical test and successfully obtained numerical results for meeting the optimization objectives of the CSP.

  19. The effects of heavy particle irradiation on exploration and response to environmental change

    NASA Astrophysics Data System (ADS)

    Casadesus, G.; Shukitt-Hale, B.; Cantuti-Castelvetri, I.; Rabin, B.; Joseph, J.

    Free radicals produced by exposure to heavy particles have been found to produce motor and behavioral toxicity effects in rats similar to those found during aging. The present research was designed to investigate the effects of exposure to 56Fe particles on the ability to detect novel arrangements in a given environment of male Sprague-Dawley rats. Using a test of spatial memory previously demonstrated to be sensitive to aging, open-field activity and reaction to spatial and non-spatial changes were measured in a group that received a dose of 1.5 Gy (n=10) of 56Fe heavy particle radiation or in non- radiated controls. Animals irradiated with 1.5 Gy of56Fe particles exhibited some age-like effects in animals tested, even though they were for the most part, subtle. Animals took longer to enter, visited less and spent significantly less time in the middle and the center portions of the open-field independently of total frequency and duration of activity of both groups. Likewise, irradiated subjects reacted significantly more to novel objects placed in the open-field than did controls. However, irradiated subjects did not vary from controls in their exploration patterns when objects in the open-field were spatially rearranged. Thus, irradiation with a dose of 1.5 Gy of 56Fe high-energy particle radiation elicited age-like effects in general open-field exploratory behavior, but did not elicit age- like effects during the spatial and non-spatial rearrangement tasks. Supported by N.A.S.A. Grant NAG9-1190.

  20. Demonstration of a Particle Impact Monitoring System for Crewed Space Exploration Modules

    NASA Technical Reports Server (NTRS)

    Opiela, J. N.; Liou, J.-C.; Corsaro, R.; Giovane, F.; Anz-Meador, P.

    2011-01-01

    When micrometeorite or debris impacts occur on a space habitat, crew members need to be quickly informed of the likely extent of damage, and be directed to the impact location for possible repairs. The goal of the Habitat Particle Impact Monitoring System (HIMS) is to develop a fully automated, end-to-end particle impact detection system for crewed space exploration modules, both in space and on the surfaces of Solar System bodies. The HIMS uses multiple thin film piezo-polymer vibration sensors to detect impacts on a surface, and computer processing of the acoustical signals to characterize the impacts. Development and demonstration of the HIMS is proceeding in concert with NASA's Habitat Demonstration Unit (HDU) Project. The HDU Project is designed to develop and test various technologies, configurations, and operational concepts for exploration habitats. This paper describes the HIMS development, initial testing, and HDU integration efforts. Initial tests of the system on the HDU were conducted at NASA?s 2010 Desert Research and Technologies Studies (Desert-RATS). Four sensor locations were assigned near the corners of a rectangular pattern. To study the influence of wall thickness, three sets of four sensors were installed at different layer depths: on the interior of the PEM wall, on the exterior of the same wall, and on the exterior of a layer of foam insulation applied to the exterior wall. Once the system was activated, particle impacts were periodically applied by firing a pneumatic pellet gun at the exterior wall section. Impact signals from the sensors were recognized by a data acquisition system when they occurred, and recorded on a computer for later analysis. Preliminary analysis of the results found that the HIMS system located the point of impact to within 8 cm, provided a measure of the impact energy / damage produced, and was insensitive to other acoustic events. Based on this success, a fully automated version of this system will be completed and

  1. Exploring the statistics of magnetic reconnection X-points in kinetic particle-in-cell turbulence

    NASA Astrophysics Data System (ADS)

    Haggerty, C. C.; Parashar, T. N.; Matthaeus, W. H.; Shay, M. A.; Yang, Y.; Wan, M.; Wu, P.; Servidio, S.

    2017-10-01

    Magnetic reconnection is a ubiquitous phenomenon in turbulent plasmas. It is an important part of the turbulent dynamics and heating of space and astrophysical plasmas. We examine the statistics of magnetic reconnection using a quantitative local analysis of the magnetic vector potential, previously used in magnetohydrodynamics simulations, and now employed to fully kinetic particle-in-cell (PIC) simulations. Different ways of reducing the particle noise for analysis purposes, including multiple smoothing techniques, are explored. We find that a Fourier filter applied at the Debye scale is an optimal choice for analyzing PIC data. Finally, we find a broader distribution of normalized reconnection rates compared to the MHD limit with rates as large as 0.5 but with an average of approximately 0.1.

  2. Ultrafine particle libraries for exploring mechanisms of PM2.5-induced toxicity in human cells.

    PubMed

    Bai, Xue; Liu, Yin; Wang, Shenqing; Liu, Chang; Liu, Fang; Su, Gaoxing; Peng, Xiaowu; Yuan, Chungang; Jiang, Yiguo; Yan, Bing

    2018-08-15

    Air pollution worldwide, especially in China and India, has caused serious health issues. Because PM 2.5 particles consist of solid particles of diverse properties with payloads of inorganic, organic and biological pollutants, it is still not known what the major toxic components are and how these components induce toxicities. To explore this complex issue, we apply reductionism principle and an ultrafine particle library approach in this work. From investigation of 63 diversely functionalized ultrafine particles (FUPs) with adsorbed key pollutants, our findings indicate that 1) only certain pollutants in the payloads of PM 2.5 are responsible for causing cellular oxidative stress, cell apoptosis, and cytotoxicity while the particle carriers are much less toxic; 2) pollutant-induced cellular oxidative stress and oxidative stress-triggered apoptosis are identified as one of the dominant mechanisms for PM 2.5 -induced cytotoxicity; 3) each specific toxic component on PM 2.5 (such as As, Pb, Cr or BaP) mainly affects its specific target organ(s) and, adding together, these pollutants may cause synergistic or just additive effects. Our findings demonstrate that reductionism concept and model PM 2.5 particle library approach are very effective in our endeavor to search for a better understanding of PM 2.5 -induced health effects. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. An new MHD/kinetic model for exploring energetic particle production in macro-scale systems

    NASA Astrophysics Data System (ADS)

    Drake, J. F.; Swisdak, M.; Dahlin, J. T.

    2017-12-01

    A novel MHD/kinetic model is being developed to explore magneticreconnection and particle energization in macro-scale systems such asthe solar corona and the outer heliosphere. The model blends the MHDdescription with a macro-particle description. The rationale for thismodel is based on the recent discovery that energetic particleproduction during magnetic reconnection is controlled by Fermireflection and Betatron acceleration and not parallel electricfields. Since the former mechanisms are not dependent on kineticscales such as the Debye length and the electron and ion inertialscales, a model that sheds these scales is sufficient for describingparticle acceleration in macro-systems. Our MHD/kinetic model includesmacroparticles laid out on an MHD grid that are evolved with the MHDfields. Crucially, the feedback of the energetic component on the MHDfluid is included in the dynamics. Thus, energy of the total system,the MHD fluid plus the energetic component, is conserved. The systemhas no kinetic scales and therefore can be implemented to modelenergetic particle production in macro-systems with none of theconstraints associated with a PIC model. Tests of the new model insimple geometries will be presented and potential applications will bediscussed.

  4. Environmental test of the BGO calorimeter for DArk Matter Particle Explorer

    NASA Astrophysics Data System (ADS)

    Hu, Yi-Ming; Chang, Jin; Chen, Deng-Yi; Guo, Jian-Hua; Zhang, Yun-Long; Feng, Chang-Qing

    2016-11-01

    DArk Matter Particle Explorer (DAMPE) is the first Chinese astronomical satellite, successfully launched on Dec. 17 2015. As the most important payload of DAMPE, the BGO calorimeter contains 308 bismuth germanate crystals, with 616 photomultiplier tubes, one coupled to each end of every crystal. Environmental tests have been carried out to explore the environmental adaptability of the flight model of the BGO calorimeter. In this work we report the results of the vibration tests. During the vibration tests, no visible damage occurred in the mechanical assembly. After random or sinusoidal vibrations, the change of the first order natural frequency of BGO calorimeter during the modal surveys is less than 5%. The shift ratio of Most Probable Value of MIPs changes in cosmic-ray tests are shown, the mean value of which is about -4%. The comparison of results of cosmic-ray tests before and after the vibration shows no significant change in the performance of the BGO calorimeter. All these results suggest that the calorimeter and its structure have passed through the environment tests successfully. Supported by National Natural Science Foundation of China (11203090, 11003051, 11273070) and Strategic Priority Research Program on Space Science of Chinese Academy of Sciences (XDA04040202)

  5. Space Earthquake Perturbation Simulation (SEPS) an application based on Geant4 tools to model and simulate the interaction between the Earthquake and the particle trapped on the Van Allen belt

    NASA Astrophysics Data System (ADS)

    Ambroglini, Filippo; Jerome Burger, William; Battiston, Roberto; Vitale, Vincenzo; Zhang, Yu

    2014-05-01

    During last decades, few space experiments revealed anomalous bursts of charged particles, mainly electrons with energy larger than few MeV. A possible source of these bursts are the low-frequency seismo-electromagnetic emissions, which can cause the precipitation of the electrons from the lower boundary of their inner belt. Studies of these bursts reported also a short-term pre-seismic excess. Starting from simulation tools traditionally used on high energy physics we developed a dedicated application SEPS (Space Perturbation Earthquake Simulation), based on the Geant4 tool and PLANETOCOSMICS program, able to model and simulate the electromagnetic interaction between the earthquake and the particles trapped in the inner Van Allen belt. With SEPS one can study the transport of particles trapped in the Van Allen belts through the Earth's magnetic field also taking into account possible interactions with the Earth's atmosphere. SEPS provides the possibility of: testing different models of interaction between electromagnetic waves and trapped particles, defining the mechanism of interaction as also shaping the area in which this takes place,assessing the effects of perturbations in the magnetic field on the particles path, performing back-tracking analysis and also modelling the interaction with electric fields. SEPS is in advanced development stage, so that it could be already exploited to test in details the results of correlation analysis between particle bursts and earthquakes based on NOAA and SAMPEX data. The test was performed both with a full simulation analysis, (tracing from the position of the earthquake and going to see if there were paths compatible with the burst revealed) and with a back-tracking analysis (tracing from the burst detection point and checking the compatibility with the position of associated earthquake).

  6. Medium-Energy Particle experiments (MEPs) for the Exploration of energization and Radiation in Geospace (ERG) mission

    NASA Astrophysics Data System (ADS)

    Kasahara, S.; Yokota, S.; Mitani, T.; Asamura, K.; Hirahara, M.; Shibano, Y.; Yamamoto, K.; Takashima, T.

    2017-12-01

    ERG (Exploration of energization and Radiation in Geospace) is the geospace exploration spacecraft, which was launched on 20 December 2016. The mission goal is to unveil the physics behind the drastic radiation belt variability during space storms. One of key observations is the measurement of ions and electrons in the medium-energy range (10-200 keV), since these particles excite EMIC, magnetosonic, and whistler waves, which are theoretically suggested to play significant roles in the relativistic electron acceleration and loss. Medium-Energy Particle experiments - electron analyser (MEP-e) measures the energy and the direction of each incoming electron in the range of 7 to 87 keV. The sensor covers 2π radian disk-like field-of-view with 16 detectors, and the solid angle coverage is achieved by using spacecraft spin motion. The electron energy is independently measured by an electrostatic analyser and avalanche photodiodes, enabling the significant background reduction. Medium-Energy Particle experiments - ion mass analyzer (MEP-i) measures the energy, mass, and charge state of the direction of each incoming ion in the medium-energy range (<10 to >180 keV/q). MEP-i thus provides the velocity distribution functions of medium-energy ions (e.g., protons and oxygens), from which we can obtain significant information on local ion energization and pitch angle scattering in the inner magnetosphere. Heavy ion measurements can also play an important role to restrict global mass transport including the ionosphere and the plasmasheet. Here we show the technical approaches, data output, and highlights of initial observations.

  7. Exploring dynamics in living cells by tracking single particles.

    PubMed

    Levi, Valeria; Gratton, Enrico

    2007-01-01

    In the last years, significant advances in microscopy techniques and the introduction of a novel technology to label living cells with genetically encoded fluorescent proteins revolutionized the field of Cell Biology. Our understanding on cell dynamics built from snapshots on fixed specimens has evolved thanks to our actual capability to monitor in real time the evolution of processes in living cells. Among these new tools, single particle tracking techniques were developed to observe and follow individual particles. Hence, we are starting to unravel the mechanisms driving the motion of a wide variety of cellular components ranging from organelles to protein molecules by following their way through the cell. In this review, we introduce the single particle tracking technology to new users. We briefly describe the instrumentation and explain some of the algorithms commonly used to locate and track particles. Also, we present some common tools used to analyze trajectories and illustrate with some examples the applications of single particle tracking to study dynamics in living cells.

  8. Exploring the Early Structure of a Rapidly Decompressed Particle Bed

    NASA Astrophysics Data System (ADS)

    Zunino, Heather; Adrian, R. J.; Clarke, Amanda; Johnson, Blair; Arizona State University Collaboration

    2017-11-01

    Rapid expansion of dense, pressurized beds of fine particles subjected to rapid reduction of the external pressure is studied in a vertical shock tube. A near-sonic expansion wave impinges on the particle bed-gas interface and rapidly unloads the particle bed. A high-speed video camera captures events occurring during bed expansion. The particle bed does not expand homogeneously, but breaks down into horizontal slabs and then transforms into a cellular-type structure. There are several key parameters that affect the particle bed evolution, including particle size and initial bed height. Analyses of this bed structure evolution from experiments with varying particle sizes and initial bed heights is presented. This work is supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science and Academic Alliance Program, under Contract No. DE-NA0002378.

  9. FATES: a flexible analysis toolkit for the exploration of single-particle mass spectrometer data

    NASA Astrophysics Data System (ADS)

    Sultana, Camille M.; Cornwell, Gavin C.; Rodriguez, Paul; Prather, Kimberly A.

    2017-04-01

    Single-particle mass spectrometer (SPMS) analysis of aerosols has become increasingly popular since its invention in the 1990s. Today many iterations of commercial and lab-built SPMSs are in use worldwide. However, supporting analysis toolkits for these powerful instruments are outdated, have limited functionality, or are versions that are not available to the scientific community at large. In an effort to advance this field and allow better communication and collaboration between scientists, we have developed FATES (Flexible Analysis Toolkit for the Exploration of SPMS data), a MATLAB toolkit easily extensible to an array of SPMS designs and data formats. FATES was developed to minimize the computational demands of working with large data sets while still allowing easy maintenance, modification, and utilization by novice programmers. FATES permits scientists to explore, without constraint, complex SPMS data with simple scripts in a language popular for scientific numerical analysis. In addition FATES contains an array of data visualization graphic user interfaces (GUIs) which can aid both novice and expert users in calibration of raw data; exploration of the dependence of mass spectral characteristics on size, time, and peak intensity; and investigations of clustered data sets.

  10. Exploration Consequences of Particle Radiation Environments at Airless Planetary Surfaces: Lessons Learned at the Moon by LRO/CRaTER and Scaling to Other Solar System Objects

    NASA Astrophysics Data System (ADS)

    Spence, H. E.

    2017-12-01

    We examine and compare the energetic particle ionizing radiation environments at airless planetary surfaces throughout the solar system. Energetic charged particles fill interplanetary space and bathe the environments of planetary objects with a ceaseless source of sometimes powerful yet ever-present ionizing radiation. In turn, these charged particles interact with planetary bodies in various ways, depending upon the properties of the body as well as upon the nature of the charged particles themselves. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaisance Orbiter (LRO), launched in 2009, continues to provide new insights into the ways by which the lunar surface is influenced by these energetic particles. In this presentation, we briefly review some of these mechanisms and how they operate at the Moon, and then compare and contrast the radiation environments at other atmospherereless planetary objects within our solar system that are potential future human exploration targets. In particular, we explore two primary sources of ionizing radiation, galactic cosmic rays (GCR) and solar energetic particles (SEP), in the environments of planetary objects that have weak or absent atmospheres and intrinsic magnetic fields. We motivate the use of simplified scaling relationships with heliocentric distance to estimate their intensity, which then serves as a basis for estimating the relative importance of various energetic particle and planetary surface physical interactions, in the context of humankind's expanding explorations beyond low-Earth orbit.

  11. Dynamics Explorer measurements of particles, fields, and plasma drifts over a horse-collar auroral pattern

    NASA Technical Reports Server (NTRS)

    Sharber, J. R.; Hones, E. W., Jr.; Heelis, R. A.; Craven, J. D.; Frank, L. A.; Maynard, N. C.; Slavin, J. A.; Birn, J.

    1992-01-01

    As shown from ground-based measurements and satellite-borne imagers, one type of global auroral pattern characteristic of quiet (usually northward IMF) intervals is that of a contracted but thickened emission region of a pattern referred to as 'horse-collar' aurora (Hones et al., 1989). In this report we use the Dynamics Explorer data set to examine a case in which this horse-collar pattern was observed by the DE-1 auroral imager, while at the same time DE-2, at lower altitude, measured precipitating particles, electric and magnetic fields, and plasma drifts. Our analysis shows that, in general, there is close agreement between the optical signatures and the particle precipitation patterns. In many instances, over scales ranging from tens to a few hundred kilometers, electron precipitation features and upward field-aligned currents are observed at locations where the plasma flow gradients indicate negative V-average x E. The particle, plasma, and field measurements made along the satellite track and the 2D perspective of the imager provide a means of determining the configuration of convective flows in the high-latitude ionosphere during this interval of northward IMF. Recent mapping studies are used to relate the low-altitude observations to possible magnetospheric source regions.

  12. Exploring the particle nature of dark matter with the All-sky Medium Energy Gamma-ray Observatory (AMEGO)

    NASA Astrophysics Data System (ADS)

    Caputo, Regina; Meyer, Manuel; Sánchez-Conde, Miguel; AMEGO

    2018-01-01

    The era of precision cosmology has revealed that ~80% of the matter in the universe is dark matter. Two leading candidates, motivated by both particle and astrophysics, are Weakly Interacting Massive Particles (WIMPs) and Weakly Interacting Sub-eV Particles (WISPs) like axions and axionlike particles. Both WIMPs and WISPs have distinct gamma-ray signatures. Data from the Fermi Large Area Telescope (Fermi-LAT) continues to be an integral part of the search for these dark matter signatures spanning the 50 MeV to >300 GeV energy range in a variety of astrophysical targets. Thus far, there are no conclusive detections; however, there is an intriguing excess of gamma rays associated with Galactic center (GCE) that could be explained with WIMP annihilation. The angular resolution of the LAT at lower energies makes source selection challenging and the true nature of the detected signal remains unknown. WISP searches using, e.g. supernova explosions, spectra of blazars, or strongly magnetized environments, would also greatly benefit from increased angular and energy resolution, as well as from polarization measurements. To address these, we are developing AMEGO, the All-sky Medium Energy Gamma-ray Observatory. This instrument has a projected energy and angular resolution that will increase sensitivity by a factor of 20-50 over previous instruments. This will allow us to explore new areas of dark matter parameter space and provide unprecedented access to its particle nature.

  13. LEICA - A low energy ion composition analyzer for the study of solar and magnetospheric heavy ions

    NASA Technical Reports Server (NTRS)

    Mason, Glenn M.; Hamilton, Douglas C.; Walpole, Peter H.; Heuerman, Karl F.; James, Tommy L.; Lennard, Michael H.; Mazur, Joseph E.

    1993-01-01

    The SAMPEX LEICA instrument is designed to measure about 0.5-5 MeV/nucleon solar and magnetospheric ions over the range from He to Ni. The instrument is a time-of-flight mass spectrometer which measures particle time-of-flight over an about 0.5 m path, and the residual energy deposited in an array of Si solid state detectors. Large area microchannel plates are used, resulting in a large geometrical factor for the instrument (0.6 sq cm sr) which is essential for accurate compositional measurements in small solar flares, and in studies of precipitating magnetospheric heavy ions.

  14. The new Athena alpha particle X-ray spectrometer for the Mars Exploration Rovers

    NASA Astrophysics Data System (ADS)

    Rieder, R.; Gellert, R.; Brückner, J.; Klingelhöfer, G.; Dreibus, G.; Yen, A.; Squyres, S. W.

    2003-11-01

    The new alpha particle X-ray spectrometer (APXS) is part of the Athena payload of the two Mars Exploration Rovers (MER). The APXS sensor head is attached to the turret of the instrument deployment device (IDD) of the rover. The APXS is a very light-weight instrument for determining the major and minor elemental composition of Martian soils, rocks, and other geological materials at the MER landing sites. The sensor head has simply to be docked by the IDD on the surface of the selected sample. X-ray radiation, excited by alpha particles and X rays of the radioactive sources, is recorded by a high-resolution X-ray detector. The X-ray spectra show elements starting from sodium up to yttrium, depending on their concentrations. The backscattered alpha spectra, measured by a ring of detectors, provide additional data on carbon and oxygen. By means of a proper calibration, the elemental concentrations are derived. Together with data from the two other Athena instruments mounted on the IDD, the samples under investigation can be fully characterized. Key APXS objectives are the determination of the chemistry of crustal rocks and soils and the examination of water-related deposits, sediments, or evaporates. Using the rock abrasion tool attached to the IDD, issues of weathering can be addressed by measuring natural and abraded surfaces of rocks.

  15. Exploring Kupffer's Vescicle Through Self Propelled Particle Simulations

    NASA Astrophysics Data System (ADS)

    Lundy, Kassidy; Dasgupta, Agnik; Amack, Jeff; Manning, M. Lisa

    Early development is an important stage in the formation of functional, relatively healthy organisms. In zebrafish embryos, a transient organ in the tailbud called Kupffer's Vescicle (KV) is responsible for the initial left-right (L-R) asymmetry that results in asymmetric organ and tissue placement in the adult zebrafish. Originating as a collection of symmetrically organized monociliated cells, the KV experiences a shift in cell shapes over time that leaves more cells on the anterior or top side of the KV. This arrangement helps to generate a stronger counter-clockwise fluid flow across the anterior side of the organ, which is required for L-R asymmetry. In seeking to understand the source of the shape changes occurring within the KV, we simulate a Self Propelled Particle (SPP) model that includes parameters for cell polarization and speed. We model the KV as a large particle moving in a straight line with constant velocity to mimic the physical forces of the notochord acting on this organ, and we model the surrounding tailbud cells as smaller, slower active particles with an orientation that changes over time due to rotational noise. Our goal is to calculate the forces exerted on the KV by the surrounding tissue, to see if they are sufficient to explain the shape changes we observe in the KV that lead to L-R asymmetry.

  16. Exploring Ultrahigh-Intensity Laser-Plasma Interaction Physics with QED Particle-in-Cell Simulations

    NASA Astrophysics Data System (ADS)

    Luedtke, S. V.; Yin, L.; Labun, L. A.; Albright, B. J.; Stark, D. J.; Bird, R. F.; Nystrom, W. D.; Hegelich, B. M.

    2017-10-01

    Next generation high-intensity lasers are reaching intensity regimes where new physics-quantum electrodynamics (QED) corrections to otherwise classical plasma dynamics-becomes important. Modeling laser-plasma interactions in these extreme settings presents a challenge to traditional particle-in-cell (PIC) codes, which either do not have radiation reaction or include only classical radiation reaction. We discuss a semi-classical approach to adding quantum radiation reaction and photon production to the PIC code VPIC. We explore these intensity regimes with VPIC, compare with results from the PIC code PSC, and report on ongoing work to expand the capability of VPIC in these regimes. This work was supported by the U.S. DOE, Los Alamos National Laboratory Science program, LDRD program, NNSA (DE-NA0002008), and AFOSR (FA9550-14-1-0045). HPC resources provided by TACC, XSEDE, and LANL Institutional Computing.

  17. MAST - A mass spectrometer telescope for studies of the isotopic composition of solar, anomalous, and galactic cosmic ray nuclei

    NASA Technical Reports Server (NTRS)

    Cook, Walter R.; Cummings, Alan C.; Cummings, Jay R.; Garrard, Thomas L.; Kecman, Branislav; Mewaldt, Richard A.; Selesnick, Richard S.; Stone, Edward C.; Von Rosenvinge, T. T.

    1993-01-01

    The Mass Spectrometer Telescope (MAST) on SAMPEX is designed to provide high resolution measurements of the isotopic composition of energetic nuclei from He to Ni (Z = 2 to 28) over the energy range from about 10 to several hundred MeV/nuc. During large solar flares MAST will measure the isotopic abundances of solar energetic particles to determine directly the composition of the solar corona, while during solar quiet times MAST will study the isotopic composition of galactic cosmic rays. In addition, MAST will measure the isotopic composition of both interplanetary and trapped fluxes of anomalous cosmic rays, believed to be a sample of the nearby interstellar medium.

  18. Spatial Extent of Relativistic Electron Precipitation from the Radiation Belts

    NASA Astrophysics Data System (ADS)

    Shekhar, Sapna

    spectra for these events obtained by Comess et al. [2013] were folded through NOAA POES geometric factors obtained by Yando et al. [2011] and the predicted count rates in E3 (> 300 keV) were found to be in agreement with the actual data in the MEPED 0° particle telescopes on board NOAA POES. After comparison and validation with SAMPEX an inversion method was developed and applied to the same POES events. Assuming exponential spectra, E3 (> 300 keV)/P6 (> 700 keV) electron count rate ratios along with P3 , P4 and P5 proton count rates of the POES MEPED 0° telescope were used to determine an e-folding energy for the electron spectra and compared with SAMPEX. The e-folding energies obtained from POES were found to be systematically lower but followed a similar trend as SAMPEX, and it was concluded that E3/P6 ratio could be used as a parameter to dene spectral hardness of POES REP events irrespective of spectral shape. Using this parameter, spatial variation of spectral hardness of REP events was investigated. It was found that very soft events were mostly found in the dusk midnight early morning MLT sectors and L 5-7 whereas the hardest events were located in the post noon sectors peaking at L 4-5. The hardest events peaked at lower L shells and less than 10% were coincident with low energy (30-80 keV) proton precipitation which has been previously used as a proxy for EMIC wave particle scattering (e.g. Carson et al. [2012], Sandanger et al. [2007]). The softer midnight events coinciding with proton precipitation were found to be associated with magnetic eld stretching.

  19. A fundamental parameters approach to calibration of the Mars Exploration Rover Alpha Particle X-ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Campbell, J. L.; Lee, M.; Jones, B. N.; Andrushenko, S. M.; Holmes, N. G.; Maxwell, J. A.; Taylor, S. M.

    2009-04-01

    The detection sensitivities of the Alpha Particle X-ray Spectrometer (APXS) instruments on the Mars Exploration Rovers for a wide range of elements were experimentally determined in 2002 using spectra of geochemical reference materials. A flight spare instrument was similarly calibrated, and the calibration exercise was then continued for this unit with an extended set of geochemical reference materials together with pure elements and simple chemical compounds. The flight spare instrument data are examined in detail here using a newly developed fundamental parameters approach which takes precise account of all the physics inherent in the two X-ray generation techniques involved, namely, X-ray fluorescence and particle-induced X-ray emission. The objectives are to characterize the instrument as fully as possible, to test this new approach, and to determine the accuracy of calibration for major, minor, and trace elements. For some of the lightest elements the resulting calibration exhibits a dependence upon the mineral assemblage of the geological reference material; explanations are suggested for these observations. The results will assist in designing the overall calibration approach for the APXS on the Mars Science Laboratory mission.

  20. Exploration of Ultralight Nanofiber Aerogels as Particle Filters: Capacity and Efficiency.

    PubMed

    Deuber, Fabian; Mousavi, Sara; Federer, Lukas; Hofer, Marco; Adlhart, Christian

    2018-03-14

    Ultralight nanofiber aerogels (NFAs) or nanofiber sponges are a truly three-dimensional derivative of the intrinsically flat electrospun nanofiber mats or membranes (NFMs). Here we investigated the potential of such materials for particle or aerosol filtration because particle filtration is a major application of NFMs. Ultralight NFAs were synthesized from electrospun nanofibers using a solid-templating technique. These materials had a tunable hierarchical cellular open-pore structure. We observed high filtration efficiencies of up to 99.999% at the most penetrating particle size. By tailoring the porosity of the NFAs through the processing parameters, we were able to adjust the number of permeated particles by a factor of 1000 and the pressure drop by a factor of 9. These NFAs acted as a deep-bed filter, and they were capable of handling high dust loadings without any indication of performance loss or an increase in the pressure drop. When the face velocity was increased from 0.75 to 6 cm s -1 , the filtration efficiency remained high within a factor of 1.1-10. Both characteristics were in contrast to the behavior of two commercial NFM particle filters, which showed significant increases in the pressure drop with the filtration time as well as a susceptibility against high face velocities by a factor of 105.

  1. Snap-in of particles at curved liquid interfaces

    NASA Astrophysics Data System (ADS)

    Li, Chao; Moradiafrapoli, Momene; Marston, Jeremy

    2016-11-01

    The contact of particles with liquid interfaces constitutes the first stage in the formation of a particle-laden interface, the so-called "snap-in effect". Here, we report on an experimental study using high-speed video to directly visualize the snap-in process and the approach to the equilibrium state of a particle at a curved liquid interface (i.e. droplet surface). We image the evolution of the contact line, which is found to follow a power-law scaling in time, and the dynamic contact angle during the snap-in. Both hydrophilic and hydrophobic particles are explored and we match the lift-off stage of the particles with a simple force balance. We also explore some multi-particle experiments, eluding to the dynamics of particle-laden interface formation.

  2. History of Particle Physics

    Science.gov Websites

    back to history page Back Particle Physics Timeline For over two thousand years people have thought the Standard Model. We invite you to explore this history of particle physics with a focus on the : Quantum Theory 1964 - Present: The Modern View (the Standard Model) back to history page Back Sections of

  3. Exploring the wake of a dust particle by a continuously approaching test grain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Hendrik, E-mail: hjung@physik.uni-kiel.de; Greiner, Franko; Asnaz, Oguz Han

    2015-05-15

    The structure of the ion wake behind a dust particle in the plasma sheath of an rf discharge is studied in a two-particle system. The wake formation leads to attractive forces between the negatively charged dust and can cause a reduction of the charge of a particle. By evaluating the dynamic response of the particle system to small external perturbations, these quantities can be measured. Plasma inherent etching processes are used to achieve a continuous mass loss and hence an increasing levitation height of the lower particle, so that the structure of the wake of the upper particle, which ismore » nearly unaffected by etching, can be probed. The results show a significant modification of the wake structure in the plasma sheath to one long potential tail.« less

  4. Two Years of Chemical Sampling on Meridiani Planum by the Alpha Particle X-Ray Spectrometer Onboard the Mars Exploration Rover Opportunity

    NASA Technical Reports Server (NTRS)

    Bruckner, J.; Gellert, R.; Clark, B.C.; Dreibus, G.; Rieder, R.; Wanke, H.; d'Uston, C.; Economou, T.; Klingelhofer, G.; Lugmair, G.; hide

    2006-01-01

    For over two terrestrial years, the Mars Exploration Rover Opportunity has been exploring the martian surface at Meridiani Planum using the Athena instrument payload [1], including the Alpha Particle X-Ray Spectrometer (APXS). The APXS has a small sensor head that is mounted on the robotic arm of the rover. The chemistry, mineralogy and morphology of selected samples were investigated by the APXS along with the Moessbauer Spectrometer (MB) and the Microscopic Imager (MI). The Rock Abrasion Tool (RAT) provided the possibility to dust and/or abrade rock surfaces down to several millimeters to expose fresh material for analysis. We report here on APXS data gathered along the nearly 6-kilometers long traverse in craters and plains of Meridiani.

  5. Py-SPHViewer: Cosmological simulations using Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Benítez-Llambay, Alejandro

    2017-12-01

    Py-SPHViewer visualizes and explores N-body + Hydrodynamics simulations. The code interpolates the underlying density field (or any other property) traced by a set of particles, using the Smoothed Particle Hydrodynamics (SPH) interpolation scheme, thus producing not only beautiful but also useful scientific images. Py-SPHViewer enables the user to explore simulated volumes using different projections. Py-SPHViewer also provides a natural way to visualize (in a self-consistent fashion) gas dynamical simulations, which use the same technique to compute the interactions between particles.

  6. Effect of particle hardness on the penetration behavior of fabrics intercalated with dry particles and concentrated particle-fluid suspensions.

    PubMed

    Kalman, Dennis P; Merrill, Richard L; Wagner, Norman J; Wetzel, Eric D

    2009-11-01

    The penetration behavior of Kevlar fabric intercalated with dry particles and shear thickening fluids (STF), highly concentrated fluid-particle suspensions, is presented. In particular, the role of particle hardness is explored by comparing fabric treatments containing SiO(2) particles, which are significantly harder than Kevlar, to treatments containing softer poly(methyl methacrylate) (PMMA) particles. The fabric testing includes yarn pull-out, quasi-static spike puncture, and ballistic penetration resistance, performed on single fabric layers. It was found that both dry particle and STF treatments resulted in improvements in fabric properties relative to neat or poly(ethylene glycol) (PEG) treated fabrics. On comparison of treatments with different particle hardness, the SiO(2) materials performed better in all tests than comparable PMMA materials, although the SiO(2) treatments caused yarn failure in pull-out testing, reducing the total pull-out energy. In addition, resistance to yarn pull-out was found to be substantially higher for STF-treated fabrics than for dry particle treated fabrics. However, both dry particle addition and STF treatments exhibited comparable enhancements in puncture and ballistic resistance. These observations suggest that viscous stress transfer, friction, and physical entrainment of hard particles into filaments contribute to the demonstrated improvements in the properties of protective fabrics treated with shear thickening fluids.

  7. Small and large particle limits of single scattering albedo for homogeneous, spherical particles

    NASA Astrophysics Data System (ADS)

    Moosmüller, H.; Sorensen, C. M.

    2018-01-01

    The aerosol single scattering albedo (SSA) is the dominant intensive particle parameter determining aerosols direct radiative forcing. For homogeneous spherical particles and a complex refractive index independent of wavelength, the SSA is solely dependent on size parameter (ratio of particle circumference and wavelength) and complex refractive index of the particle. Here, we explore this dependency for the small and large particle limits with size parameters much smaller and much larger than one. We show that in the small particle limit of Rayleigh scattering, a novel, generalized size parameter can be introduced that unifies the SSA dependence on particle size parameter independent of complex refractive index. In the large particle limit, SSA decreases with increasing product of imaginary part of the refractive index and size parameter, another generalized parameter, until this product becomes about one, then stays fairly constant until the imaginary part of the refractive index becomes comparable with the real part minus one. Beyond this point, particles start to acquire metallic character and SSA quickly increases with the imaginary part of the refractive index and approaches one.

  8. Orbital Anomalies in Goddard Spacecraft for Calendar Year 1994

    NASA Technical Reports Server (NTRS)

    Thomas, Walter B.

    1996-01-01

    This report summarizes and updates the annual on-orbit performance between January I and December 31, 1994, for spacecraft built by or managed by the Goddard Space Flight Center (GSFC). During 1994, GSFC had 27 active orbiting satellites and I Shuttle-launched and retrieved 'free flyer.' There were 310 reported anomalies among 21 satellites and one GSFC instrument (TOMS). GOES-8 accounted for 66 anomalies, and SAMPES reported 155 'anomalies'. Of the 155 anomalies reported for all but SAMPEX, only 4 affected the spacecraft missions 'substantially' or greater, that is, presented a loss of more than 33% of the total missions. The most frequent subsystem anomalies were Instrument/Payload(44), Timing Command and Control(40), and Attitude Control Systems(33). Of the non-SAMPEX anomalies, 29% had no effect on the missions and 28% caused subsystem or instrument degradation and, for another 28%, no anomaly effect on the mission could be determined. Fifty-three percent of non-SAMPEX anomalies could not be classified according to 'type'; the other most common types were 'systemic'(35), 'random'(19), and 'normal or expected operation'(15). Forty percent of the anomalies were not classified according to failure category; the remaining most frequent occurrences were 'design problems'(50) and 'other known problems'(35).

  9. Examining Model Atmospheric Particles Inside and Out

    NASA Astrophysics Data System (ADS)

    Wingen, L. M.; Zhao, Y.; Fairhurst, M. C.; Perraud, V. M.; Ezell, M. J.; Finlayson-Pitts, B. J.

    2017-12-01

    Atmospheric particles scatter incoming solar radiation and act as cloud condensation nuclei (CCN), thereby directly and indirectly affecting the earth's radiative balance and reducing visibility. These atmospheric particles may not be uniform in composition. Differences in the composition of a particle's outer surface from its core can arise during particle growth, (photo)chemical aging, and exchange of species with the gas phase. The nature of the surface on a molecular level is expected to impact growth mechanisms as well as their ability to act as CCN. Model laboratory particle systems are explored using direct analysis in real time-mass spectrometry (DART-MS), which is sensitive to surface composition, and contrasted with average composition measurements using high resolution, time-of-flight aerosol mass spectrometry (HR-ToF-AMS). Results include studies of the heterogeneous reactions of amines with solid dicarboxylic acid particles, which are shown to generate aminium dicarboxylate salts at the particle surface, leaving an unreacted core. Combination of both mass spectrometric techniques reveals a trend in reactivity of C3-C7 dicarboxylic acids with amines and allows calculation of the DART probe depth into the particles. The results of studies on additional model systems that are currently being explored will also be reported.

  10. Medium-energy particle experiments—electron analyzer (MEP-e) for the exploration of energization and radiation in geospace (ERG) mission

    NASA Astrophysics Data System (ADS)

    Kasahara, Satoshi; Yokota, Shoichiro; Mitani, Takefumi; Asamura, Kazushi; Hirahara, Masafumi; Shibano, Yasuko; Takashima, Takeshi

    2018-05-01

    The medium-energy particle experiments—electron analyzer onboard the exploration of energization and radiation in geospace spacecraft measures the energy and direction of each incoming electron in the energy range of 7-87 keV. The sensor covers a 2 π-radian disklike field of view with 16 detectors, and the full solid angle coverage is achieved through the spacecraft's spin motion. The electron energy is independently measured by both an electrostatic analyzer and avalanche photodiodes, enabling significant background reduction. We describe the technical approach, data output, and examples of initial observations.[Figure not available: see fulltext.

  11. Exploring uptake and biodistribution of polystyrene (nano)particles in zebrafish embryos at different developmental stages.

    PubMed

    van Pomeren, M; Brun, N R; Peijnenburg, W J G M; Vijver, M G

    2017-09-01

    In ecotoxicology, it is continuously questioned whether (nano)particle exposure results in particle uptake and subsequent biodistribution or if particles adsorb to the epithelial layer only. To contribute to answering this question, we investigated different uptake routes in zebrafish embryos and how they affect particle uptake into organs and within whole organisms. This is addressed by exposing three different life stages of the zebrafish embryo in order to cover the following exposure routes: via chorion and dermal exposure; dermal exposure; oral and dermal exposure. How different nanoparticle sizes affect uptake routes was assessed by using polystyrene particles of 25, 50, 250 and 700nm. In our experimental study, we showed that particle uptake in biota is restricted to oral exposure, whereas the dermal route resulted in adsorption to the epidermis and gills only. Ingestion followed by biodistribution was observed for the tested particles of 25 and 50nm. The particles spread through the body and eventually accumulated in specific organs and tissues such as the eyes. Particles larger than 50nm were predominantly adsorbed onto the intestinal tract and outer epidermis of zebrafish embryos. Embryos exposed to particles via both epidermis and intestine showed highest uptake and eventually accumulated particles in the eye, whereas uptake of particles via the chorion and epidermis resulted in marginal uptake. Organ uptake and internal distribution should be monitored more closely to provide more in depth information of the toxicity of particles. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. The Orion Exploration Flight Test Post Flight Solid Particle Flight Environment Inspection and Analysis

    NASA Technical Reports Server (NTRS)

    Miller, Joshua E.

    2016-01-01

    Orbital debris in the millimeter size range can pose a hazard to current and planned spacecraft due to the high relative impact speeds in Earth orbit. Fortunately, orbital debris has a relatively short life at lower altitudes due to atmospheric effects; however, at higher altitudes orbital debris can survive much longer and has resulted in a band of high flux around 700 to 1,500 km above the surface of the Earth. While large orbital debris objects are tracked via ground based observation, little information can be gathered about small particles except by returned surfaces, which until the Orion Exploration Flight Test number one (EFT-1), has only been possible for lower altitudes (400 to 500 km). The EFT-1 crew module backshell, which used a porous, ceramic tile system with surface coatings, has been inspected post-flight for potential micrometeoroid and orbital debris (MMOD) damage. This paper describes the pre- and post-flight activities of inspection, identification and analysis of six candidate MMOD impact craters from the EFT-1 mission.

  13. Emergence and Utility of Nonspherical Particles in Biomedicine

    PubMed Central

    Fish, Margaret B.; Thompson, Alex J.; Fromen, Catherine A.; Eniola-Adefeso, Omolola

    2016-01-01

    The importance of the size of targeted, spherical drug carriers has been previously explored and reviewed. Particle shape has emerged as an equally important parameter in determining the in vivo journey and efficiency of drug carrier systems. Researchers have invented techniques to better control the geometry of particles of many different materials, which have allowed for exploration of the role of particle geometry in the phases of drug delivery. The important biological processes include clearance by the immune system, trafficking to the target tissue, margination to the endothelial surface, interaction with the target cell, and controlled release of a payload. The review of current literature herein supports that particle shape can be altered to improve a system’s targeting efficiency. Non-spherical particles can harness the potential of targeted drug carriers by enhancing targeted site accumulation while simultaneously decreasing side effects and mitigating some limitations faced by spherical carriers. PMID:27182109

  14. Dynamics of anisotropic particles under waves

    NASA Astrophysics Data System (ADS)

    Dibenedetto, Michelle; Ouellette, Nicholas; Koseff, Jeffrey

    2017-11-01

    We present results on anisotropic particles in wavy flows in order to gain insight into the transport and mixing of microplastic particles in the near-shore environment. From theory and numerical simulations, we find that the rate of alignment of the particles is not constant and depends strongly on their initial orientation; thus, variations in initial particle orientation result in dispersion of anisotropic-particle plumes. We find that this dispersion is a function of the particle's eccentricity and the ratio of the settling and wave time scales. Experiments in which non-spherical particles of various shapes are released under surface gravity waves were also performed. Our main goal is to explore the effects of particle shape under various wave scenarios. We vary the aspect ratio of the particle in our experiments while holding other variables constant. Our results demonstrate that particle shape can be important when predicting transport.

  15. Tumbling in Turbulence: How much does particle shape effect particle motion?

    NASA Astrophysics Data System (ADS)

    Variano, E. A.; Andersson, H. I.; Zhao, L.; Byron, M.

    2014-12-01

    Natural particles suspended in surface water are often non-spherical. We explore the ways in which particle shape effects particle motion, focusing specifically on how particle rotation is divided into spinning and tumbling components. This, in turn, will effect particle collision, clustering, and settling rates. We focus on idealized axisymmetric particles shaped as rods, discs, and spheroids. They are chosen so as to explain the physics of aspherical-particle motion that will be relevant for natural particles such as plankton, sediment, or aggregates (e.g. oil-mineral aggregates, clay flocs, or bio-sediment aggregates held together by TEP). Our work begins with laboratory measurements of particle motion in a turbulence tank built to mimic the flow found in rivers, estuaries, and the ocean surface mixed layer. We then proceed to direct numerical simulation of particle-flow interactions in sheared turbulence similar to that which is found in the surface water of creeks and rivers. We find that shape has only a very weak effect on particle angular velocity, which is a quantity calculated with respect the global reference frame (i.e. east/north/up). If we analyze rotation in a particle's local frame (i.e. the particle's principle axes of rotation), then particle shape has a strong effect on rotation. In the local frame, rotation is described by two components: tumbling and spinning. We find that rod-shaped particles spin more than they tumble, and we find that disc-shaped particles tumble more than they spin. Such behavior is indicative of how particles respond the the directional influence of vortex tubes in turbulence, and such response has implications for particle motion other than rotation. Understanding particle alignment is relevant for predicting particle-particle collision rates, particle-wall collision rates, and the shear-driven breakup of aggregates. We discuss these briefly in the context of what can be concluded from the rotation data discussed above.

  16. Application of RVA and Time-Lapse Photography to Explore Effects of Extent of Chlorination, Milling Extraction Rate, and Particle-Size Reduction of Flour on Cake-Baking Functionality

    USDA-ARS?s Scientific Manuscript database

    Three factors (extent of chlorination, milling extraction rate and particle-size reduction) in the cake-bakeing functionality of Croplan 594W flour were explored by Rapid Visco-Analyzer (RVA) and time-lapse photography. The extent of chlorination and milling extraction rate showed dramatic effects,...

  17. Exploring one-particle orbitals in large many-body localized systems

    NASA Astrophysics Data System (ADS)

    Villalonga, Benjamin; Yu, Xiongjie; Luitz, David J.; Clark, Bryan K.

    2018-03-01

    Strong disorder in interacting quantum systems can give rise to the phenomenon of many-body localization (MBL), which defies thermalization due to the formation of an extensive number of quasilocal integrals of motion. The one-particle operator content of these integrals of motion is related to the one-particle orbitals (OPOs) of the one-particle density matrix and shows a strong signature across the MBL transition as recently pointed out by Bera et al. [Phys. Rev. Lett. 115, 046603 (2015), 10.1103/PhysRevLett.115.046603; Ann. Phys. 529, 1600356 (2017), 10.1002/andp.201600356]. We study the properties of the OPOs of many-body eigenstates of an MBL system in one dimension. Using shift-and-invert MPS, a matrix product state method to target highly excited many-body eigenstates introduced previously [Phys. Rev. Lett. 118, 017201 (2017), 10.1103/PhysRevLett.118.017201], we are able to obtain accurate results for large systems of sizes up to L =64 . We find that the OPOs drawn from eigenstates at different energy densities have high overlap and their occupations are correlated with the energy of the eigenstates. Moreover, the standard deviation of the inverse participation ratio of these orbitals is maximal at the nose of the mobility edge. Also, the OPOs decay exponentially in real space, with a correlation length that increases at low disorder. In addition, we find that the probability distribution of the strength of the large-range coupling constants of the number operators generated by the OPOs approach a log-uniform distribution at strong disorder.

  18. The Effect of Particle Size on the Biodistribution of Low-modulus Hydrogel PRINT Particles

    PubMed Central

    Merkel, Timothy J.; Chen, Kai; Jones, Stephen W.; Pandya, Ashish A.; Tian, Shaomin; Napier, Mary E.; Zamboni, William E.; DeSimone, Joseph M.

    2012-01-01

    There is a growing recognition that the deformability of particles used for drug delivery plays a significant role on their biodistribution and circulation profile. Understanding these effects would provide a crucial tool for the rational design of drug delivery systems. While particles resembling red blood cells (RBCs) in size, shape and deformability have extended circulation times and altered biodistribution profiles compared to rigid, but otherwise similar particles, the in vivo behavior of such highly deformable particles of varied size has not been explored. We report the fabrication of a series of discoid, monodisperse, low-modulus hydrogel particles with diameters ranging from 0.8 to 8.9 μm, spanning sizes smaller than and larger than RBCs. We injected these particles into healthy mice, and tracked their concentration in the blood and their distribution into major organs. These deformable particles all demonstrated some hold up in filtration tissues like the lungs and spleen, followed by release back into the circulation, characterized by decreases in particles in these tissues with concomitant increases in particle concentration in blood. Particles similar to red blood cells in size demonstrated longer circulation times, suggesting that this size and shape of deformable particle is uniquely suited to avoid clearance. PMID:22705460

  19. Relationships between field-aligned currents, electric fields, and particle precipitation as observed by Dynamics Explorer-2

    NASA Technical Reports Server (NTRS)

    Sugiura, M.; Iyemori, T.; Hoffman, R. A.; Maynard, N. C.; Burch, J. L.; Winningham, J. D.

    1984-01-01

    The relationships between field-aligned currents, electric fields, and particle fluxes are determined using observations from the polar orbiting low-altitude satellite Dynamics Explorer-2. It is shown that the north-south electric field and the east-west magnetic field components are usually highly correlated in the field-aligned current regions. This proportionality observationally proves that the field-aligned current equals the divergence of the height-integrated ionospheric Pedersen current in the meridional plane to a high degree of approximation. As a general rule, in the evening sector the upward field-aligned currents flow in the boundary plasma sheet region and the downward currents flow in the central plasma sheet region. The current densities determined independently from the plasma and magnetic field measurements are compared. Although the current densities deduced from the two methods are in general agreement, the degree and extent of the agreement vary in individual cases.

  20. Relationships between field-aligned currents, electric fields and particle precipitation as observed by dynamics Explorer-2

    NASA Technical Reports Server (NTRS)

    Sugiura, M.; Iyemori, T.; Hoffman, R. A.; Maynard, N. C.; Burch, J. L.; Winningham, J. D.

    1983-01-01

    The relationships between field-aligned currents, electric fields, and particle fluxes are determined using observations from the polar orbiting low-altitude satellite Dynamics Explorer-2. It is shown that the north-south electric field and the east-west magnetic field components are usually highly correlated in the field-aligned current regions. This proportionality observationally proves that the field-aligned current equals the divergence of the height-integrated ionospheric Pedersen current in the meridional plane to a high degree of approximation. As a general rule, in the evening sector the upward field-aligned currents flow in the boundary plasma sheet region and the downward currents flow in the central plasma sheet region. The current densities determined independently from the plasma and magnetic field measurements are compared. Although the current densities deduced from the two methods are in general agreement, the degree and extent of the agreement vary in individual cases.

  1. Particle dark matter: A multimessenger endeavour

    NASA Astrophysics Data System (ADS)

    Regis, M.

    2017-01-01

    The search for dark matter (DM) as a new, yet undiscovered, particle is explored through a complex host of different signals, from collider to direct and indirect searches. A special focus is dedicated to the latter ones, covering the full electromagnetic spectrum (from radio to gamma-rays), charged cosmic-rays and neutrinos. The expected DM signals are by definition faint, but the possibility to exploit a wide-field investigation offers promising prospects. In this brief review, I summarize the state-of-the-art in the search for particle DM signals, exploring some new ideas that are emerging in the effort of the scientific community to understand the elusive nature of DM.

  2. New Estimates of Inferred Ionic Charge States for Solar Energetic Particle Events with ACE and STEREO

    NASA Astrophysics Data System (ADS)

    Labrador, A. W.; Sollitt, L. S.; Cohen, C. M.; Cummings, A. C.; Leske, R. A.; Mason, G. M.; Mewaldt, R. A.; Stone, E.; von Rosenvinge, T. T.; Wiedenbeck, M. E.

    2012-12-01

    Solar energetic particle (SEP) mean ionic charge states can depend on source temperatures and populations (e.g. seed populations) and conditions during acceleration and transport such as stripping. Multi-spacecraft observations of charge states from widely separated spacecraft may reveal evidence for seed populations that vary with longitude. In this presentation, we report new estimates of inferred high energy ionic charge states using the Sollitt et al. (2008) method that fits SEP energy-dependent decay times for SEP event elements to derive mean charge states. In the method, intensity decay times during SEP events are fitted for each element for various energies, and then the energy dependence of the decay times is fitted for each element. Finally, charge-to-mass ratios relative to that of a calibration element (carbon in this case) are obtained, and when Q(C)=5.9 is assumed for calibration, mean charge states for other elements can be inferred. Previously, ACE/SIS and ACE/ULEIS data were applied to three SEP events (Nov. 6, 1997; Nov. 4, 2001; Apr. 21, 2002) with this method, and last year, we reported new results for the Dec. 6, 2006 SEP event compatible with SAMPEX/MAST results. Additional work continues to generalize and extend the software to use publicly available online data from ACE and the two STEREO spacecraft. Energy ranges are those covered by the instruments on ACE (e.g. reference element C at <.1 MeV/nuc from ULEIS to ~64 MeV/nuc from SIS) and on STEREO (e.g. C at 3.2 - 33 MeV/nuc from LET). Initial candidate SEP events for multi-spacecraft charge state estimates are those of Mar. 8, 2011, Mar. 21, 2011, Jan. 24, 2012, and Mar. 4, 2012. Results from events observed by single spacecraft may also be reported.

  3. Self assembly of oppositely charged latex particles at oil-water interface.

    PubMed

    Nallamilli, Trivikram; Ragothaman, Srikanth; Basavaraj, Madivala G

    2017-01-15

    In this study we explore the self assembly of oppositely charged latex particles at decane water interfaces. Two spreading protocols have been proposed in this context. In the first method oppositely charged particles are mixed prior to spreading at the interface, this is called "premixed-mixtures". In the second protocol negatively charged particles are first spread at the interface at known coverage followed by spreading positively charged particles at known coverage and this is called "sequential-mixtures". In premixed mixtures depending on particle mixing ratio (composition) and total surface coverage a number of 2d structures ranging from 2d crystals, aggregate-crystal coexistence and 2d-gels are observed. A detailed phase diagram of this system has been explored. In sequential-mixtures for the first time we observed a new phase in colloidal monolayers called 2d-bi crystalline domains. These structures consisted regions of two crystal phases of oppositely charged particles separated by a one dimensional chain of alternating positive and negative particles. Phase diagram of this system has also been explored at various combinations of first spread and second spread particles. A possible mechanism leading to formation of these 2d bi crystalline structures has been discussed. A direct visualization of breakage and reformation of particle barriers separating the crystal phases has been demonstrated through videos. Effect of salt in the water sub phase and particle hydrophobicity on domain formation is also investigated. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Accurate Quasiparticle Spectra from the T-Matrix Self-Energy and the Particle-Particle Random Phase Approximation.

    PubMed

    Zhang, Du; Su, Neil Qiang; Yang, Weitao

    2017-07-20

    The GW self-energy, especially G 0 W 0 based on the particle-hole random phase approximation (phRPA), is widely used to study quasiparticle (QP) energies. Motivated by the desirable features of the particle-particle (pp) RPA compared to the conventional phRPA, we explore the pp counterpart of GW, that is, the T-matrix self-energy, formulated with the eigenvectors and eigenvalues of the ppRPA matrix. We demonstrate the accuracy of the T-matrix method for molecular QP energies, highlighting the importance of the pp channel for calculating QP spectra.

  5. Fully resolved simulations of expansion waves propagating into particle beds

    NASA Astrophysics Data System (ADS)

    Marjanovic, Goran; Hackl, Jason; Annamalai, Subramanian; Jackson, Thomas; Balachandar, S.

    2017-11-01

    There is a tremendous amount of research that has been done on compression waves and shock waves moving over particles but very little concerning expansion waves. Using 3-D direct numerical simulations, this study will explore expansion waves propagating into fully resolved particle beds of varying volume fractions and geometric arrangements. The objectives of these simulations are as follows: 1) To fully resolve all (1-way coupled) forces on the particles in a time varying flow and 2) to verify state-of-the-art drag models for such complex flows. We will explore a range of volume fractions, from very low ones that are similar to single particle flows, to higher ones where nozzling effects are observed between neighboring particles. Further, we will explore two geometric arrangements: body centered cubic and face centered cubic. We will quantify the effects that volume fraction and geometric arrangement plays on the drag forces and flow fields experienced by the particles. These results will then be compared to theoretical predictions from a model based on the generalized Faxen's theorem. This work was supported in part by the U.S. Department of Energy under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  6. Two component Feebly Interacting Massive Particle (FIMP) dark matter

    NASA Astrophysics Data System (ADS)

    Pandey, Madhurima; Majumdar, Debasish; Prasad Modak, Kamakshya

    2018-06-01

    We explore the idea of an alternative candidate for particle dark matter namely Feebly Interacting Massive Particle (FIMP) in the framework of a two component singlet scalar model. Singlet scalar dark matter has already been demonstrated to be a viable candidate for WIMP (Weakly Interacting Massive Particle) dark matter in literature. In the FIMP scenario, dark matter particles are slowly produced via "thermal freeze-in" mechanism in the early Universe and are never abundant enough to reach thermal equilibrium or to undergo pair annihilation inside the Universe's plasma due to their extremely small couplings. We demonstrate that for smaller couplings too, required for freeze-in process, a two component scalar dark matter model considered here could well be a viable candidate for FIMP . In this scenario, the Standard Model of particle physics is extended by two gauge singlet real scalars whose stability is protected by an unbroken Z2× Z'2 symmetry and they are assumed to acquire no VEV after Spontaneous Symmetry Breaking. We explore the viable mass regions in the present two scalar DM model that is in accordance with the FIMP scenario. We also explore the upper limits of masses of the two components from the consideration of their self interactions.

  7. Exploring Quarks, Gluons and the Higgs Boson

    ERIC Educational Resources Information Center

    Johansson, K. Erik

    2013-01-01

    With real particle collision data available on the web, the amazing dynamics of the fundamental particles of the standard model can be explored in classrooms. Complementing the events from the ATLAS experiment with animations of the fundamental processes on the quark and gluon level makes it possible to better understand the invisible world of…

  8. Fabrication and characterization of non-Brownian particle-based crystals.

    PubMed

    Lash, Melissa H; Fedorchak, Morgan V; Little, Steven R; McCarthy, Joseph J

    2015-01-27

    Particle-based crystals have been explored in the literature for applications in molecular electronics, photonics, sensors, and drug delivery. However, much of the research on these crystals has been focused on particles of nano- and submicrometer dimensions (so-called colloidal crystals) with limited attention directed toward building blocks with dimensions ranging from tens to hundreds of micrometers. This can be attributed, in part, to the fact that the underlying thermal effects in these larger systems typically cannot naturally overcome kinetic barriers at the meso- and macroscales so that many of the methods used for nanoscale particle assembly cannot be directly applied to larger components, as they become kinetically arrested in nonequilibrium states. In this work, ultrasonic agitation is being explored as a means of allowing large, non-Brownian microparticles (18-750 μm) to overcome the kinetic barriers to packing in the creation of close-packed, highly ordered, crystalline structures. In addition, we study how the energy input affects bulk particle behavior and describe several new ways to characterize particle-based crystals made from microparticles.

  9. Particle Acceleration by Cme-driven Shock Waves

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.

    1999-01-01

    In the largest solar energetic particle (SEP) events, acceleration occurs at shock waves driven out from the Sun by coronal mass ejections (CMEs). Peak particle intensities are a strong function of CME speed, although the intensities, spectra, and angular distributions of particles escaping the shock are highly modified by scattering on Alfven waves produced by the streaming particles themselves. Element abundances vary in complex ways because ions with different values of Q/A resonate with different parts of the wave spectrum, which varies with space and time. Just recently, we have begun to model these systematic variations theoretically and to explore other consequences of proton-generated waves.

  10. Using satellite-based measurements to explore spatiotemporal scales and variability of drivers of new particle formation

    EPA Science Inventory

    New particle formation (NPF) can potentially alter regional climate by increasing aerosol particle (hereafter particle) number concentrations and ultimately cloud condensation nuclei. The large scales on which NPF is manifest indicate potential to use satellite-based (inherently ...

  11. Detectors for Particle Radiation

    NASA Astrophysics Data System (ADS)

    Kleinknecht, Konrad

    1999-01-01

    This textbook provides a clear, concise and comprehensive review of the physical principles behind the devices used to detect charged particles and gamma rays, and the construction and performance of these many different types of detectors. Detectors for high-energy particles and radiation are used in many areas of science, especially particle physics and nuclear physics experiments, nuclear medicine, cosmic ray measurements, space sciences and geological exploration. This second edition includes all the latest developments in detector technology, including several new chapters covering micro-strip gas chambers, silicion strip detectors and CCDs, scintillating fibers, shower detectors using noble liquid gases, and compensating calorimeters for hadronic showers. This well-illustrated textbook contains examples from the many areas in science in which these detectors are used. It provides both a coursebook for students in physics, and a useful introduction for researchers in other fields.

  12. Modeling Cell and Tumor-Metastasis Dosimetry with the Particle and Heavy Ion Transport Code System (PHITS) Software for Targeted Alpha-Particle Radionuclide Therapy.

    PubMed

    Lee, Dongyoul; Li, Mengshi; Bednarz, Bryan; Schultz, Michael K

    2018-06-26

    The use of targeted radionuclide therapy for cancer is on the rise. While beta-particle-emitting radionuclides have been extensively explored for targeted radionuclide therapy, alpha-particle-emitting radionuclides are emerging as effective alternatives. In this context, fundamental understanding of the interactions and dosimetry of these emitted particles with cells in the tumor microenvironment is critical to ascertaining the potential of alpha-particle-emitting radionuclides. One important parameter that can be used to assess these metrics is the S-value. In this study, we characterized several alpha-particle-emitting radionuclides (and their associated radionuclide progeny) regarding S-values in the cellular and tumor-metastasis environments. The Particle and Heavy Ion Transport code System (PHITS) was used to obtain S-values via Monte Carlo simulation for cell and tumor metastasis resulting from interactions with the alpha-particle-emitting radionuclides, lead-212 ( 212 Pb), actinium-225 ( 225 Ac) and bismuth-213 ( 213 Bi); these values were compared to the beta-particle-emitting radionuclides yttrium-90 ( 90 Y) and lutetium-177 ( 177 Lu) and an Auger-electron-emitting radionuclide indium-111 ( 111 In). The effect of cellular internalization on S-value was explored at increasing degree of internalization for each radionuclide. This aspect of S-value determination was further explored in a cell line-specific fashion for six different cancer cell lines based on the cell dimensions obtained by confocal microscopy. S-values from PHITS were in good agreement with MIRDcell S-values (cellular S-values) and the values found by Hindié et al. (tumor S-values). In the cellular model, 212 Pb and 213 Bi decay series produced S-values that were 50- to 120-fold higher than 177 Lu, while 225 Ac decay series analysis suggested S-values that were 240- to 520-fold higher than 177 Lu. S-values arising with 100% cellular internalization were two- to sixfold higher for the nucleus

  13. Health effects of residential wood smoke particles: the importance of combustion conditions and physicochemical particle properties

    PubMed Central

    Kocbach Bølling, Anette; Pagels, Joakim; Yttri, Karl Espen; Barregard, Lars; Sallsten, Gerd; Schwarze, Per E; Boman, Christoffer

    2009-01-01

    Background Residential wood combustion is now recognized as a major particle source in many developed countries, and the number of studies investigating the negative health effects associated with wood smoke exposure is currently increasing. The combustion appliances in use today provide highly variable combustion conditions resulting in large variations in the physicochemical characteristics of the emitted particles. These differences in physicochemical properties are likely to influence the biological effects induced by the wood smoke particles. Outline The focus of this review is to discuss the present knowledge on physicochemical properties of wood smoke particles from different combustion conditions in relation to wood smoke-induced health effects. In addition, the human wood smoke exposure in developed countries is explored in order to identify the particle characteristics that are relevant for experimental studies of wood smoke-induced health effects. Finally, recent experimental studies regarding wood smoke exposure are discussed with respect to the applied combustion conditions and particle properties. Conclusion Overall, the reviewed literature regarding the physicochemical properties of wood smoke particles provides a relatively clear picture of how these properties vary with the combustion conditions, whereas particle emissions from specific classes of combustion appliances are less well characterised. The major gaps in knowledge concern; (i) characterisation of the atmospheric transformations of wood smoke particles, (ii) characterisation of the physicochemical properties of wood smoke particles in ambient and indoor environments, and (iii) identification of the physicochemical properties that influence the biological effects of wood smoke particles. PMID:19891791

  14. Europa Explorer: A Mission to Explore Europa and Investigate Its Habitability

    NASA Astrophysics Data System (ADS)

    Pappalardo, Robert T.; Clark, K.; Greeley, R.; Abelson, R.; Bills, B.; Blankenship, D.; Jorgenson, E.; Kahn, P.; Khurana, K.; Kirby, K.; Klaasen, K.; Lock, R.; Man, G.; McCord, T.; Moore, W.; Paranicas, C.; Prockter, L.; Rasmussen, R.; Sogin, M.

    2007-10-01

    Europa is the astrobiological archetype for icy satellite habitability, with a warm, salty, water ocean with plausible chemical energy sources. It is also a geophysical wonderland of interrelated ice shell processes that are intimately related to the ocean and tides, and of complex interactions among its interior, surface, atmosphere, and particles and fields environments. The Europa Explorer is a mature orbiter mission concept to explore Europa and investigate its habitability, fulfilling objectives laid out by the National Research Council's Planetary Science Decadal Survey. The mission examines Europa's ocean, ice shell, chemistry, geology, external environment (fields, particles, and atmosphere), and neighborhood (the Jupiter system). Science questions for Europa are well-honed, yet we anticipate being surprised by discoveries. Europa Explorer would nominally launch in June 2015, on a Venus-Earth-Earth Gravity Assist trajectory with a 6 year flight time to the Jupiter system. It would orbit Jupiter for 2 years using gravity assists of the icy Galilean satellites to lower its energy, providing the opportunity for significant Jupiter system science. It would then enter Europa orbit at an altitude of 100-200 km, where it would perform science investigations for 1 year. A campaign-based operations scenario has been developed which permits return of 5.4 Tbits of science data beginning in July 2021, and emphasizing the highest priority Europa science objectives early in the orbital phase of the mission. The baseline mission concept includes 11 instruments that address high-priority investigations while providing the flexibility to respond to discoveries. The radiation design approach has been independently reviewed and validated, and a statistical lifetime prediction method has been developed. Past technology investments have reduced mission risk, making the Europa Explorer mission ready to move forward in order to address the high-priority astrobiological and

  15. Design and Implementation of Embedded Computer Vision Systems Based on Particle Filters

    DTIC Science & Technology

    2010-01-01

    for hardware/software implementa- tion of multi-dimensional particle filter application and we explore this in the third application which is a 3D...methodology for hardware/software implementation of multi-dimensional particle filter application and we explore this in the third application which is a...and hence multiprocessor implementation of parti- cle filters is an important option to examine. A significant body of work exists on optimizing generic

  16. FAST Spacecraft Battery Design and Performance

    NASA Technical Reports Server (NTRS)

    Jung, David S.; Rao, Gopalakrishna; Ahmad, Anisa

    1997-01-01

    The Fast Auroral Snapshot (FAST) Explorer spacecraft is to study the physical processes that produce the aurora borealis and aurora australis. It is a unique plasma physics experiment that will take fundamental measurements of the magnetic and electrical fields. This investigation will add significantly to our understanding of the near-earth space environments and its effect. The FAST has a 1 year requirement and 3-year goal for its mission life in low earth orbit. The FAST power power system topology is a Direct Energy Transfer (DET) system based on the SAMPEX design. The FAST flight battery supplies power to the satellite during pre-launch operations, the launch phase, the eclipse periods for all mission phases, and when the load is about 50 watts.

  17. Inversion of particle-stabilized emulsions of partially miscible liquids by mild drying of modified silica particles.

    PubMed

    White, Kathryn A; Schofield, Andrew B; Wormald, Philip; Tavacoli, Joseph W; Binks, Bernard P; Clegg, Paul S

    2011-07-01

    Using a system of modified silica particles and mixtures of water and 2,6-lutidine to form particle-stabilized emulsions, we show that subtle alterations to the hydration of the particle surface can cause major shifts in emulsion structure. We use fluorescence confocal microscopy, solid state nuclear magnetic resonance (NMR) and thermo-gravimetric analysis (TGA) to explore this sensitivity, along with other shifts caused by modifications to the silica surface chemistry. The silica particles are prepared by a variant of the Stöber procedure and are modified by the inclusion of 3-(aminopropyl)triethoxysilane and the dye fluorescein isothiocyanate. Treatment prior to emulsification consists of gently drying the particles under carefully controlled conditions. In mixtures of water and 2,6-lutidine of critical composition, the particles stabilize droplet emulsions and bijels. Decreasing particle hydration yields an inversion of the emulsions from lutidine-in-water (L/W) to water-in-lutidine (W/L), with bijels forming around inversion. So dependent is the emulsion behavior on particle hydration that microscopic differences in drying within a particle sample can cause differences in the wetting behavior of that sample, which helps to stabilize multiple emulsions. The formation of bijels at emulsion inversion is also crucially dependent on the surface modification of the silica. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Exploring the role of turbulent acceleration and heating in fractal current sheet of solar flares­ from hybrid particle in cell and lattice Boltzmann virtual test

    NASA Astrophysics Data System (ADS)

    Zhu, B.; Lin, J.; Yuan, X.; Li, Y.; Shen, C.

    2016-12-01

    The role of turbulent acceleration and heating in the fractal magnetic reconnection of solar flares is still not clear, especially at the X-point in the diffusion region. At virtual test aspect, it is hardly to quantitatively analyze the vortex generation, turbulence evolution, particle acceleration and heating in the magnetic islands coalesce in fractal manner, formatting into largest plasmid and ejection process in diffusion region through classical magnetohydrodynamics numerical method. With the development of physical particle numerical method (particle in cell method [PIC], Lattice Boltzmann method [LBM]) and high performance computing technology in recently two decades. Kinetic simulation has developed into an effectively manner to exploring the role of magnetic field and electric field turbulence in charged particles acceleration and heating process, since all the physical aspects relating to turbulent reconnection are taken into account. In this paper, the LBM based lattice DxQy grid and extended distribution are added into charged-particles-to-grid-interpolation of PIC based finite difference time domain scheme and Yee Grid, the hybrid PIC-LBM simulation tool is developed to investigating turbulence acceleration on TIANHE-2. The actual solar coronal condition (L≈105Km,B≈50-500G,T≈5×106K, n≈108-109, mi/me≈500-1836) is applied to study the turbulent acceleration and heating in solar flare fractal current sheet. At stage I, magnetic islands shrink due to magnetic tension forces, the process of island shrinking halts when the kinetic energy of the accelerated particles is sufficient to halt the further collapse due to magnetic tension forces, the particle energy gain is naturally a large fraction of the released magnetic energy. At stage II and III, the particles from the energized group come in to the center of the diffusion region and stay longer in the area. In contract, the particles from non energized group only skim the outer part of the

  19. Electrohydrodynamics of a particle-covered drop

    NASA Astrophysics Data System (ADS)

    Ouriemi, Malika; Vlahovska, Petia

    2014-11-01

    We study the dynamics of a drop nearly-completely covered with a particle monolayer in a uniform DC electric field. The weakly conducting fluid system consists of a silicon oil drop suspended in castor oil. A broad range of particle sizes, conductivities, and shapes is explored. In weak electric fields, the presence of particles increases drop deformation compared to a particle-free drop and suppresses the electrohydrodynamic flow. Very good agreement is observed between the measured drop deformation and the small deformation theory derived for surfactant-laden drops (Nganguia et al., 2013). In stronger electric fields, where drops are expected to undergo Quincke rotation (Salipante and Vlahovska, 2010), the presence of the particles greatly decreases the threshold for rotation and the stationary tilted drop configuration observed for clean drop is replaced by a spinning drop with either a wobbling inclination or a very low inclination. These behaviors resemble the predicted response of rigid ellipsoids in uniform electric fields. At even stronger electric fields, the particles can form dynamic wings or the drop implodes. The similar behavior of particle-covered and surfactant-laden drops provides new insights into understanding stability of Pickering emulsions. Supported by NSF-CBET 1437545.

  20. Progress in the Analysis of Complex Atmospheric Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskin, Alexander; Gilles, Mary K.; Knopf, Daniel A.

    2016-06-16

    This manuscript presents an overview on recent advances in field and laboratory studies of atmospheric particles formed in processes of environmental air-surfaces interactions. The overarching goal of these studies is to advance predictive understanding of atmospheric particle composition, particle chemistry during aging, and their environmental impacts. The diversity between chemical constituents and lateral heterogeneity within individual particles adds to the chemical complexity of particles and their surfaces. Once emitted, particles undergo transformation via atmospheric aging processes that further modify their complex composition. We highlight a range of modern analytical approaches that enable multi-modal chemical characterization of particles with both molecularmore » and lateral specificity. When combined, they provide a comprehensive arsenal of tools for understanding the nature of particles at air-surface interactions and their reactivity and transformations with atmospheric aging. We discuss applications of these novel approaches in recent studies and highlight additional research areas to explore environmental effects of air-surface interactions.« less

  1. Progress in the Analysis of Complex Atmospheric Particles.

    PubMed

    Laskin, Alexander; Gilles, Mary K; Knopf, Daniel A; Wang, Bingbing; China, Swarup

    2016-06-12

    This article presents an overview of recent advances in field and laboratory studies of atmospheric particles formed in processes of environmental air-surface interactions. The overarching goal of these studies is to advance predictive understanding of atmospheric particle composition, particle chemistry during aging, and their environmental impacts. The diversity between chemical constituents and lateral heterogeneity within individual particles adds to the chemical complexity of particles and their surfaces. Once emitted, particles undergo transformation via atmospheric aging processes that further modify their complex composition. We highlight a range of modern analytical approaches that enable multimodal chemical characterization of particles with both molecular and lateral specificity. When combined, these approaches provide a comprehensive arsenal of tools for understanding the nature of particles at air-surface interactions and their reactivity and transformations with atmospheric aging. We discuss applications of these novel approaches in recent studies and highlight additional research areas to explore the environmental effects of air-surface interactions.

  2. Progress in the analysis of complex atmospheric particles

    DOE PAGES

    Laskin, Alexander; Gilles, Mary K.; Knopf, Daniel A.; ...

    2016-06-01

    This study presents an overview of recent advances in field and laboratory studies of atmospheric particles formed in processes of environmental air-surface interactions. The overarching goal of these studies is to advance predictive understanding of atmospheric particle composition, particle chemistry during aging, and their environmental impacts. The diversity between chemical constituents and lateral heterogeneity within individual particles adds to the chemical complexity of particles and their surfaces. Once emitted, particles undergo transformation via atmospheric aging processes that further modify their complex composition. We highlight a range of modern analytical approaches that enable multimodal chemical characterization of particles with both molecularmore » and lateral specificity. When combined, these approaches provide a comprehensive arsenal of tools for understanding the nature of particles at air-surface interactions and their reactivity and transformations with atmospheric aging. We discuss applications of these novel approaches in recent studies and highlight additional research areas to explore the environmental effects of air-surface interactions.« less

  3. Direct Measurements of Interplanetary Dust Particles in the Vicinity of Earth

    NASA Technical Reports Server (NTRS)

    McCracken, C. W.; Alexander, W. M.; Dubin, M.

    1961-01-01

    The direct measurements made by the Explorer VIII satellite provide the first sound basis for analyzing all available direct measurements of the distribution of interplanetary dust particles. The model average distribution curve established by such an analysis departs significantly from that predicted by the (uncertain) extrapolation of results from meteor observations. A consequence of this difference is that the daily accretion of interplanetary particulate matter by the earth is now considered to be mainly dust particles of the direct measurements range of particle size. Almost all the available direct measurements obtained with microphone systems on rockets, satellites, and spacecraft fit directly on the distribution curve defined by Explorer VIII data. The lack of reliable datum points departing significantly from the model average distribution curve means that available direct measurements show no discernible evidence of an appreciable geocentric concentration of interplanetary dust particles.

  4. Inner Radiation Belt Dynamics and Climatology

    NASA Astrophysics Data System (ADS)

    Guild, T. B.; O'Brien, P. P.; Looper, M. D.

    2012-12-01

    We present preliminary results of inner belt proton data assimilation using an augmented version of the Selesnick et al. Inner Zone Model (SIZM). By varying modeled physics parameters and solar particle injection parameters to generate many ensembles of the inner belt, then optimizing the ensemble weights according to inner belt observations from SAMPEX/PET at LEO and HEO/DOS at high altitude, we obtain the best-fit state of the inner belt. We need to fully sample the range of solar proton injection sources among the ensemble members to ensure reasonable agreement between the model ensembles and observations. Once this is accomplished, we find the method is fairly robust. We will demonstrate the data assimilation by presenting an extended interval of solar proton injections and losses, illustrating how these short-term dynamics dominate long-term inner belt climatology.

  5. Cutting Silica Aerogel for Particle Extraction

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Brownlee, D. E.; Glesias, R.; Grigoropoulos, C. P.; Weschler, M.

    2005-01-01

    The detailed laboratory analyses of extraterrestrial particles have revolutionized our knowledge of planetary bodies in the last three decades. This knowledge of chemical composition, morphology, mineralogy, and isotopics of particles cannot be provided by remote sensing. In order to acquire these detail information in the laboratories, the samples need be intact, unmelted. Such intact capture of hypervelocity particles has been developed in 1996. Subsequently silica aerogel was introduced as the preferred medium for intact capturing of hypervelocity particles and later showed it to be particularly suitable for the space environment. STARDUST, the 4th NASA Discovery mission to capture samples from 81P/Wild 2 and contemporary interstellar dust, is the culmination of these new technologies. In early laboratory experiments of launching hypervelocity projectiles into aerogel, there was the need to cut aerogel to isolate or extract captured particles/tracks. This is especially challenging for space captures, since there will be many particles/tracks of wide ranging scales closely located, even collocated. It is critical to isolate and extract one particle without compromising its neighbors since the full significance of a particle is not known until it is extracted and analyzed. To date, three basic techniques have been explored: mechanical cutting, lasers cutting and ion beam milling. We report the current findings.

  6. Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles

    NASA Astrophysics Data System (ADS)

    Linbo, GU; Yixi, CAI; Yunxi, SHI; Jing, WANG; Xiaoyu, PU; Jing, TIAN; Runlin, FAN

    2017-11-01

    To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter (PM), a test bench for diesel engine exhaust purification was constructed, using indirect non-thermal plasma technology. The effects of different gas source flow rates on the quantity concentration, composition, and apparent activation energy of PM were investigated, using an engine exhaust particle sizer and a thermo-gravimetric analyzer. The results show that when the gas source flow rate was large, not only the maximum peak quantity concentrations of particles had a large drop, but also the peak quantity concentrations shifted to smaller particle sizes from 100 nm to 80 nm. When the gas source flow rate was 10 L min-1, the total quantity concentration greatly decreased where the removal rate of particles was 79.2%, and the variation of the different mode particle proportion was obvious. Non-thermal plasma (NTP) improved the oxidation ability of volatile matter as well as that of solid carbon. However, the NTP gas source rate had little effects on oxidation activity of volatile matter, while it strongly influenced the oxidation activity of solid carbon. Considering the quantity concentration and oxidation activity of particles, a gas source flow rate of 10 L min-1 was more appropriate for the purification of particles.

  7. Geospace exploration project: Arase (ERG)

    NASA Astrophysics Data System (ADS)

    Miyoshi, Y.; Kasaba, Y.; Shinohara, I.; Takashima, T.; Asamura, K.; Matsumoto, H.; Higashio, N.; Mitani, T.; Kasahara, S.; Yokota, S.; Wang, S.; Kazama, Y.; Kasahara, Y.; Yagitani, S.; Matsuoka, A.; Kojima, H.; Katoh, Y.; Shiokawa, K.; Seki, K.; Fujimoto, M.; Ono, T.; ERG project Group

    2017-06-01

    The ERG (Exploration of energization and Radiation in Geospace) is Japanese geospace exploration project. The project focuses on relativistic electron acceleration mechanism of the outer belt and dynamics of space storms in the context of the cross-energy coupling via wave-particle interactions. The project consists of the satellite observation team, the ground-based network observation team, and integrated-data analysis/simulation team. The satellite was launched on December 20 2016 and has been nicknamed, “Arase”. This paper describes overview of the project and future plan for observations.

  8. Geochemical Exploration of the Moon.

    ERIC Educational Resources Information Center

    Adler, Isidore

    1984-01-01

    Provides information based on explorations of the Apollo program about the geochemistry of the moon and its importance in developing an understanding of formation/evolution of the solar system. Includes description and some results of orbital remote sensing, lunar x-ray experiments, gamma-ray experiments, alpha-particle experiments, and the Apollo…

  9. Understanding large SEP events with the PATH code: Modeling of the 13 December 2006 SEP event

    NASA Astrophysics Data System (ADS)

    Verkhoglyadova, O. P.; Li, G.; Zank, G. P.; Hu, Q.; Cohen, C. M. S.; Mewaldt, R. A.; Mason, G. M.; Haggerty, D. K.; von Rosenvinge, T. T.; Looper, M. D.

    2010-12-01

    The Particle Acceleration and Transport in the Heliosphere (PATH) numerical code was developed to understand solar energetic particle (SEP) events in the near-Earth environment. We discuss simulation results for the 13 December 2006 SEP event. The PATH code includes modeling a background solar wind through which a CME-driven oblique shock propagates. The code incorporates a mixed population of both flare and shock-accelerated solar wind suprathermal particles. The shock parameters derived from ACE measurements at 1 AU and observational flare characteristics are used as input into the numerical model. We assume that the diffusive shock acceleration mechanism is responsible for particle energization. We model the subsequent transport of particles originated at the flare site and particles escaping from the shock and propagating in the equatorial plane through the interplanetary medium. We derive spectra for protons, oxygen, and iron ions, together with their time-intensity profiles at 1 AU. Our modeling results show reasonable agreement with in situ measurements by ACE, STEREO, GOES, and SAMPEX for this event. We numerically estimate the Fe/O abundance ratio and discuss the physics underlying a mixed SEP event. We point out that the flare population is as important as shock geometry changes during shock propagation for modeling time-intensity profiles and spectra at 1 AU. The combined effects of seed population and shock geometry will be examined in the framework of an extended PATH code in future modeling efforts.

  10. Spatially resolved chemical imaging of individual atmospheric particles using nanoscale imaging mass spectrometry: insight into particle origin and chemistry

    DOE PAGES

    Ghosal, Sutapa; Weber, Peter K.; Laskin, Alexander

    2014-01-14

    Knowledge of the spatially resolved composition of atmospheric particles is essential for differentiating between their surface versus bulk chemistry and understanding particle reactivity and the potential environmental impact. Here, we demonstrate the application of nanometer-scale secondary ion mass spectrometry (CAMECA NanoSIMS 50 ion probe) for 3D chemical imaging of individual atmospheric particles without any sample pre-treatment, such as sectioning of particles. Use of NanoSIMS depth profile analysis enables elemental mapping of particles with nanometer spatial resolution over a broad range of particle sizes. We have used this technique to probe the spatially resolved composition of ambient particles collected during amore » field campaign in Mexico City. Particles collected during this campaign have been extensively characterized in the past using other particle analysis techniques and hence offer a unique opportunity for exploring the utility of depth-resolved chemical imaging in ambient particle research. The particles that we examined in our study include those collected during a pollution episode related to urban waste incineration as well as background particles from the same location before the episode. Particles from the pollution episode show substantial intra-particle compositional variability typical of particles resulting from multiple emission sources. In contrast, the background particles have relatively homogeneous compositions with enhanced presence of nitrogen, oxygen, and chlorine at the particle surface. We also observed the surface enhancement of nitrogen and oxygen species is consistent with the presence of surface nitrates resulting from gas–particle heterogeneous interactions and is indicative of atmospheric ageing of the particles. The results presented here illustrate 3D characterization of ambient particles for insight into their chemical history.« less

  11. Spatially resolved chemical imaging of individual atmospheric particles using nanoscale imaging mass spectrometry: Insighs into particle origin and chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosal, Sutapa; Weber, Peter K.; Laskin, Alexander

    2014-04-21

    Knowledge of the spatially-resolved composition of atmospheric particles is essential for differentiating between their surface versus bulk chemistry, understanding particle reactivity and the potential environmental impact. We demonstrate the application of nanometer-scale secondary ion mass spectrometry (Cameca NanoSIMS 50 ion probe) for 3D chemical imaging of individual atmospheric particles without any sample pre-treatment, such as the sectioning of particles. Use of NanoSIMS depth profile analysis enables elemental mapping of particles with nanometer spatial resolution over a broad of range of particle sizes. We have used this technique to probe spatially resolved composition of ambient particles collected during a field campaignmore » in Mexico City. Particles collected during this campaign have been extensively characterized in the past using other particle analysis techniques and hence offer a unique opportunity for exploring the utility of depth resolved chemical imaging in ambient particle research. 1 Particles examined in this study include those collected during a pollution episode related to urban waste incineration as well as background particles from the same location prior to the episode. Particles from the pollution episode show substantial intra-particle compositional variability typical of particles resulting from multiple emission sources. In contrast, the background particles have relatively homogeneous compositions with enhanced presence of nitrogen, oxygen and chlorine at the particle surface. The observed surface enhancement of nitrogen and oxygen species is consistent with the presence of surface nitrates resulting from gas-particle heterogeneous interactions and is indicative of atmospheric ageing of the particles. The results presented here illustrate 3D characterization of ambient particles for insights into their chemical history.« less

  12. Energetic particle penetrations into the inner magnetosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ejiri, M.; Hoffman, R.A.; Smith, P.H.

    Data from Explorer 45 (S/sup 3/- A) instruments have revealed characteristics of magnetospheric storm or substorm time energetic particle enhancements in the inner magnetosphere (L< or approx. =5). The properties of the ion 'nose' structure in the dusk hemisphere are examined in detail. A statistical study of the local time dependence of noses places the highest probability of occurrence around 2000 MLT, but hey can be observed even near the noon meridian. It also appears that most noses are not isolated events but will appear on successive passes. A geoelectric field enhancement corresponding to a minimum value of AE ofmore » about 205 ..gamma.. seems to be required to convect the particles within the apogee of Explorer 45. The dynamical behavior of the nose characteristics observed along successive orbits is then explained quantitatively by the time-dependent convection theory in a Volland-Stern type geoelectric field (..gamma..=2). These calculations of adiabatic charged particle motions are also applied to expalin the energy spectra and dispersion in penetration distances for both electrons and ions observed in the postmidnight to morning hours. Finally, useful descriptions are given of the dispersion properties of particles penetrating the inter magnetosphere at all local times as a function of time after a sudden enhancement of the geoelectric field.« less

  13. Granular shear flows of flexible rod-like particles

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Curtis, J.; Wassgren, C.; Ketterhagen, W.; Hancock, B.

    2013-06-01

    Flexible particles are widely encountered in nature, e.g., stalks of plants, fiberglass particles, and ceramic nanofibers. Early studies indicated that the deformability of particles has a significant impact on the properties of granular materials and fiber suspensions. In this study, shear flows of flexible particles are simulated using the Discrete Element Method (DEM) to explore the effect of particle flexibility on the flow behavior and constitutive laws. A flexible particle is formed by connecting a number of constituent spheres in a straight line using elastic bonds. The forces/moments due to the normal, tangential, bending, and torsional deformation of a bond resist the relative movement between two bonded constituent spheres. The bond stiffness determines how difficult it is to make a particle deform, and the bond damping accounts for the energy dissipation in the particle vibration process. The simulation results show that elastically bonded particles have smaller coefficients of restitution compared to rigidly connected particles, due to the fact that kinetic energy is partially converted to potential energy in a contact between flexible particles. The coefficient of restitution decreases as the bond stiffness decreases and the bond damping coefficient increases. As a result, smaller stresses are obtained for granular flows of the flexible particles with smaller bond stiffness and larger bond damping coefficient.

  14. HILT - A heavy ion large area proportional counter telescope for solar and anomalous cosmic rays

    NASA Technical Reports Server (NTRS)

    Klecker, Berndt; Hovestadt, Dietrich; Scholer, M.; Arbinger, H.; Ertl, M.; Kaestle, H.; Kuenneth, E.; Laeverenz, P.; Seidenschwang, E.; Blake, J. B.

    1993-01-01

    The HILT sensor has been designed to measure heavy ion elemental abundances, energy spectra, and direction of incidence in the mass range from He to Fe and in the energy range 4 to 250 MeV/nucleon. With its large geometric factor of 60 sq cm sr the sensor is optimized to provide compositional and spectral measurements for low intensity cosmic rays (i.e. for small solar energetic particle events and for the anomalous component of cosmic rays). The instrument combines a large area ion drift chamber-proportional counter system with two arrays of 16 Li-drift solid state detectors and 16 CsI crystals. The multi dE/dx-E technique provides a low background mass and energy determination. The sensor also measures particle direction. Combining these measurements with the information on the spacecraft position and attitude in the low-altitude polar orbit, it will be possible to infer the ionic charge of the ions from the local cutoff of the Earth's magnetic field. The ionic charge in this energy range is of particular interest because it provides unique clues to the origin of these particles and has not been investigated systematically so far. Together with the other instruments on board SAMPEX (LEICA, MAST, and PET), a comprehensive measurement of the entire solar and anomalous particle population will be achieved.

  15. An Overview of Particle Sampling Bias

    NASA Technical Reports Server (NTRS)

    Meyers, James F.; Edwards, Robert V.

    1984-01-01

    The complex relation between particle arrival statistics and the interarrival statistics is explored. It is known that the mean interarrival time given an initial velocity is generally not the inverse of the mean rate corresponding to that velocity. Necessary conditions for the measurement of the conditional rate are given.

  16. Shape effects in the turbulent tumbling of large particles

    NASA Astrophysics Data System (ADS)

    Variano, Evan; Oehmke, Theresa; Pujara, Nimish

    2017-11-01

    We present laboratory results on rotation of finite-sized, neutrally buoyant, anisotropic particles in isotropic turbulence. The isotropic turbulent flow is generated using a randomly-actuated synthetic jet array that minimizes tank scale circulation and measurements are made with stereoscopic particle image velocimetry. By using particles of different shapes, we explore the effects that symmetries have on particle rotation. We add to previous data collected for spheres cylinders and ellipsoids by performing new measurements on cubes, cuboids and cones. The measurement technique and results on mean-square particle rotation will be presented. Preliminary results, at the time of writing this abstract, indicate that symmetry breaking increases the rate of particle rotation. More complete quantitative results will be presented. This work was partially supported by the NSF award ENG-1604026 and by the Army Research Office Biomathematics Program.

  17. Particle sedimentation in a sheared viscoelastic fluid

    NASA Astrophysics Data System (ADS)

    Murch, William L.; Krishnan, Sreenath; Shaqfeh, Eric S. G.; Iaccarino, Gianluca

    2017-11-01

    Particle suspensions are ubiquitous in engineered processes, biological systems, and natural settings. For an engineering application - whether the intent is to suspend and transport particles (e.g., in hydraulic fracturing fluids) or allow particles to sediment (e.g., in industrial separations processes) - understanding and prediction of the particle mobility is critical. This task is often made challenging by the complex nature of the fluid phase, for example, due to fluid viscoelasticity. In this talk, we focus on a fully 3D flow problem in a viscoelastic fluid: a settling particle with a shear flow applied in the plane perpendicular to gravity (referred to as orthogonal shear). Previously, it has been shown that an orthogonal shear flow can reduce the settling rate of particles in viscoelastic fluids. Using experiments and numerical simulations across a wide range of sedimentation and shear Weissenberg number, this talk will address the underlying physical mechanism responsible for the additional drag experienced by a rigid sphere settling in a confined viscoelastic fluid with orthogonal shear. We will then explore multiple particle effects, and discuss the implications and extensions of this work for particle suspensions. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-114747 (WLM).

  18. Dust generation in powders: Effect of particle size distribution

    NASA Astrophysics Data System (ADS)

    Chakravarty, Somik; Le Bihan, Olivier; Fischer, Marc; Morgeneyer, Martin

    2017-06-01

    This study explores the relationship between the bulk and grain-scale properties of powders and dust generation. A vortex shaker dustiness tester was used to evaluate 8 calcium carbonate test powders with median particle sizes ranging from 2μm to 136μm. Respirable aerosols released from the powder samples were characterised by their particle number and mass concentrations. All the powder samples were found to release respirable fractions of dust particles which end up decreasing with time. The variation of powder dustiness as a function of the particle size distribution was analysed for the powders, which were classified into three groups based on the fraction of particles within the respirable range. The trends we observe might be due to the interplay of several mechanisms like de-agglomeration and attrition and their relative importance.

  19. Observation of Relativistic Electron Microbursts in Conjunction with Intense Radiation Belt Whistler-Mode Waves

    NASA Technical Reports Server (NTRS)

    Kersten, K.; Cattell, C. A.; Breneman, A.; Goetz, K.; Kellogg, P. J.; Wygant, J. R.; Wilson, L. B., III; Blake, J. B.; Looper, M. D.; Roth, I.

    2011-01-01

    We present multi-satellite observations of large amplitude radiation belt whistler-mode waves and relativistic electron precipitation. On separate occasions during the Wind petal orbits and STEREO phasing orbits, Wind and STEREO recorded intense whistler-mode waves in the outer nightside equatorial radiation belt with peak-to-peak amplitudes exceeding 300 mV/m. During these intervals of intense wave activity, SAMPEX recorded relativistic electron microbursts in near magnetic conjunction with Wind and STEREO. This evidence of microburst precipitation occurring at the same time and at nearly the same magnetic local time and L-shell with a bursty temporal structure similar to that of the observed large amplitude wave packets suggests a causal connection between the two phenomena. Simulation studies corroborate this idea, showing that nonlinear wave.particle interactions may result in rapid energization and scattering on timescales comparable to those of the impulsive relativistic electron precipitation.

  20. Observation of Asian Mineral Dust Particles in Japan by a Single-Particle Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Matsumoto, J.; Takahashi, K.; Matsumi, Y.; Sugimoto, N.; Matsui, I.; Shimizu, A.

    2005-12-01

    The Asian mineral dust (Kosa) particles, emitted from the desert area of inland China, are characteristic of East Asian aerosols. The Kosa particles are important as regional carriers of various materials, especially in spring when the stormy dusts are transported to Japan and Pacific Ocean. In this study, the chemical mixing state of each atmospheric aerosol was measured individually by a laser-based time-of-flight mass spectrometer (TOFMS) to discuss chemical changes of Kosa particles during the transport. Observation was conducted at Tsukuba (36.05°N, 140.12°E) in April and May 2004. The LIDAR measurement was also carried out to determine the Kosa events. To classify the source of the air mass, the NOAA-HYSPLIT backward trajectory was applied. For the TOFMS instrument, particles with μm and sub-μm diameters were detected. The polarity of ion detection was altered every minute. During 30 days, the numbers of logged mass spectra (MS) were 5993 and 4382 for positive and negative ions, respectively. When the MS of ambient aerosols were compared with that of the standard Kosa sample, sulfate- and nitrate-mixed Kosa particles were found. To explore the mixing state of particles further, classification of the particles by the ART-2a algorithm was adopted. NO2-, NO3-, HSO4-, SiO2-, SiO3-, Cl- and NaCl2- were focused. Finally, particles were classified to 4 categories as A: sulfate and sulfate-rich mineral; B: sulfate-poor mineral; C: sea salt; D: unidentified. The relative fractions of A were 30 % and 1 % for a Kosa event and a maritime air mass, respectively. Note that the air mass for Kosa event case passed over the coast region of China, where SOx emission was intensive. It was reasonable that sulfate was internally mixed with Kosa particles and transported to Japan. Consequently, it was confirmed experimentally that Kosa particles are important as carriers of pollutants in the rim region of Pacific Ocean. Comparison with the observation in 2005 is also shown.

  1. Introduction to Particle Acceleration in the Cosmos

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Horwitz, J. L.; Perez, J.; Quenby, J.

    2005-01-01

    Accelerated charged particles have been used on Earth since 1930 to explore the very essence of matter, for industrial applications, and for medical treatments. Throughout the universe nature employs a dizzying array of acceleration processes to produce particles spanning twenty orders of magnitude in energy range, while shaping our cosmic environment. Here, we introduce and review the basic physical processes causing particle acceleration, in astrophysical plasmas from geospace to the outer reaches of the cosmos. These processes are chiefly divided into four categories: adiabatic and other forms of non-stochastic acceleration, magnetic energy storage and stochastic acceleration, shock acceleration, and plasma wave and turbulent acceleration. The purpose of this introduction is to set the stage and context for the individual papers comprising this monograph.

  2. The Effect of Particle Properties on Hot Particle Spot Fire Ignition

    NASA Astrophysics Data System (ADS)

    Zak, Casey David

    The ignition of natural combustible material by hot metal particles is an important fire ignition pathway by which wildland and wildland-urban-interface spot fires are started. There are numerous cases reported of wild fires started by clashing power-lines or from sparks generated by machines or engines. Similarly there are many cases reported of fires caused by grinding, welding and cutting sparks. Up to this point, research on hot particle spot fire ignition has largely focused on particle generation and transport. A small number of studies have examined what occurs after a hot particle contacts a natural fuel bed, but until recently the process remained poorly understood. This work describes an investigation of the effect of particle size, temperature and thermal properties on the ability of hot particles to cause flaming ignition of cellulosic fuel beds. Both experimental and theoretical approaches are used, with a focus on understanding the physics underlying the ignition process. For the experimental study, spheres of stainless steel, aluminum, brass and copper are heated in a tube furnace and dropped onto a powdered cellulose fuel bed; the occurrence of flaming ignition or lack thereof is visually observed and recorded. This procedure is repeated a large number of times for each metal type, varying particle diameter from 2 to 11 mm and particle temperature between 575 and 1100°C. The results of these experiments are statistically analyzed to find approximate ignition boundaries and identify boundary trends with respect to the particle parameters of interest. Schlieren images recorded during the ignition experiments are also used to more accurately describe the ignition process. Based on these images, a simple theoretical model of hot particle spot fire ignition is developed and used to explore the experimental trends further. The model under-predicts the minimum ignition temperatures required for small spheres, but agrees qualitatively with the experimental

  3. Tomographic PIV: particles versus blobs

    NASA Astrophysics Data System (ADS)

    Champagnat, Frédéric; Cornic, Philippe; Cheminet, Adam; Leclaire, Benjamin; Le Besnerais, Guy; Plyer, Aurélien

    2014-08-01

    We present an alternative approach to tomographic particle image velocimetry (tomo-PIV) that seeks to recover nearly single voxel particles rather than blobs of extended size. The baseline of our approach is a particle-based representation of image data. An appropriate discretization of this representation yields an original linear forward model with a weight matrix built with specific samples of the system’s point spread function (PSF). Such an approach requires only a few voxels to explain the image appearance, therefore it favors much more sparsely reconstructed volumes than classic tomo-PIV. The proposed forward model is general and flexible and can be embedded in a classical multiplicative algebraic reconstruction technique (MART) or a simultaneous multiplicative algebraic reconstruction technique (SMART) inversion procedure. We show, using synthetic PIV images and by way of a large exploration of the generating conditions and a variety of performance metrics, that the model leads to better results than the classical tomo-PIV approach, in particular in the case of seeding densities greater than 0.06 particles per pixel and of PSFs characterized by a standard deviation larger than 0.8 pixels.

  4. Heterogeneous chemistry of atmospheric mineral dust particles and their resulting cloud-nucleation properties

    NASA Astrophysics Data System (ADS)

    Sullivan, Ryan Christopher

    Mineral dust particles are a major component of tropospheric aerosol mass and affect regional and global atmospheric chemistry and climate. Dust particles experience heterogeneous reactions with atmospheric gases that alter the gas and particle-phase chemistry. These in turn influence the warm and cold cloud nucleation ability and optical properties of the dust particles. This dissertation investigates the atmospheric chemistry of mineral dust particles and their role in warm cloud nucleation through a combination of synergistic field measurements, laboratory experiments, and theoretical modeling. In-situ measurements made with a single-particle mass spectrometer during the ACE-Asia field campaign in 2001 provide the motivation for this work. The observed mixing state of the individual ambient particles with secondary organic and inorganic components is described in Chapter 2. A large Asian dust storm occurred during the campaign and produced dramatic changes in the aerosol's composition and mixing state. The effect of particle size and mineralogy on the atmospheric processing of individual dust particles is explored in Chapters 3 & 4. Sulfate was found to accumulate preferentially in submicron iron and aluminosilicate-rich dust particles, while nitrate and chloride were enriched in supermicron calcite-rich dust. The mineral dust (and sea salt particles) were also enriched in oxalic acid, the dominant component of water soluble organic carbon. Chapter 5 explores the roles of gas-phase photochemistry and partitioning of the diacids to the alkaline particles in producing this unique behavior. The effect of the dust's mixing state with secondary organic and inorganic components on the dust particles' solubility, hygroscopicity, and thus warm cloud nucleation properties is explored experimentally and theoretically in Chapter 6. Cloud condensation nucleation (CCN) activation curves revealed that while calcium nitrate and calcium chloride particles were very hygroscopic

  5. Exploring the effects of particle size and shape on ejecta production in response to low-velocity impacts

    NASA Astrophysics Data System (ADS)

    Dove, A.; Barsoum, C.; Colwell, J. E.

    2016-12-01

    Understanding and predicting the complex behavior of granular material on planetary surfaces requires a combination of complementary experimental and numerical simulations. Such an approach allows us to use experimental results to empirically model the behavior of complex systems, and feed these results into simulations that can be run over a broader range of conditions. Studies of the response of granular systems, particularly planetary regolith and regolith simulants, to low-energy impacts is relevant to surface layers on planetary bodies, including asteroids, small moons, planetesimals, and planetary ring particles. Knowledge of the velocities and mass distributions of dust knocked off of planetary surfaces is necessary to understand the evolution of the upper layers of the soil, and to develop mitigation strategies for transported dust. In addition, the fine particles in the regolith pose an engineering and safety hazard for equipment, experiments, and astronauts working in severe environments. We will present the results of extended testing with a number of combinations of impactor and particle composition and morphology. A spherical glass or brass impactor is used for all experiments, which impacts a particle bed at a few m/s. This study includes three main particle material types - acrylic (used for comparison with initial modeling and previous experiments), glass, and stainless steel. We directly compare the results of these experiments by using 2mm spherical particles of each material type. Additionally, we vary the glass particle sizes between 1-3mm in order to analyze the effect of size on the cratering and ejecta properties. Finally, we varied the stainless steel particle shape from spherical to elongated cylinders with 2mm diameter and 2, 4, and 6 mm lengths. Here, we will focus on the experimental portion of this work - future results will elaborate upon the simulation validation. Interpretation of these results was informed by initial comparisons

  6. Four-way coupled simulations of small particles in turbulent channel flow: The effects of particle shape and Stokes number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, F.; Wachem, B. G. M. van, E-mail: berend.van.wachem@gmail.com; George, W. K.

    2015-08-15

    This paper investigates the effects of particle shape and Stokes number on the behaviour of non-spherical particles in turbulent channel flow. Although there are a number of studies concerning spherical particles in turbulent flows, most important applications occurring in process, energy, and pharmaceutical industries deal with non-spherical particles. The computation employs a unique and novel four-way coupling with the Lagrangian point-particle approach. The fluid phase at low Reynolds number (Re{sub τ} = 150) is modelled by direct numerical simulation, while particles are tracked individually. Inter-particle and particle-wall collisions are also taken into account. To explore the effects of particles onmore » the flow turbulence, the statistics of the fluid flow such as the fluid velocity, the terms in the turbulence kinetic energy equation, the slip velocity between the two phases and velocity correlations are analysed considering ellipsoidal particles with different inertia and aspect ratio. The results of the simulations show that the turbulence is considerably attenuated, even in the very dilute regime. The reduction of the turbulence intensity is predominant near the turbulence kinetic energy peak in the near wall region, where particles preferentially accumulate. Moreover, the elongated shape of ellipsoids strengthens the turbulence attenuation. In simulations with ellipsoidal particles, the fluid-particle interactions strongly depend on the orientation of the ellipsoids. In the near wall region, ellipsoids tend to align predominantly within the streamwise (x) and wall-normal (y) planes and perpendicular to the span-wise direction, whereas no preferential orientation in the central region of the channel is observed. Important conclusions from this work include the effective viscosity of the flow is not affected, the direct dissipation by the particles is negligible, and the primary mechanism by which the particles affect the flow is by altering the

  7. Strong fields and neutral particle magnetic moment dynamics

    NASA Astrophysics Data System (ADS)

    Formanek, Martin; Evans, Stefan; Rafelski, Johann; Steinmetz, Andrew; Yang, Cheng-Tao

    2018-07-01

    Interaction of magnetic moment of point particles with external electromagnetic fields experiences unresolved theoretical and experimental discrepancies. In this work we point out several issues within relativistic quantum mechanics and QED and we describe effects related to a new covariant classical model of magnetic moment dynamics. Using this framework we explore the invariant acceleration experienced by neutral particles coupled to an external plane wave field through the magnetic moment: we study the case of ultrarelativistic Dirac neutrinos with magnetic moment in the range of 10‑11 to 10‑20 μ B; and we address the case of slowly moving neutrons. We explore how critical accelerations for neutrinos can be experimentally achieved in laser pulse interactions. The radiation of accelerated neutrinos can serve as an important test distinguishing between Majorana and Dirac nature of neutrinos.

  8. Scaling during capillary thinning of particle-laden drops

    NASA Astrophysics Data System (ADS)

    Thete, Sumeet; Wagoner, Brayden; Basaran, Osman

    2017-11-01

    A fundamental understanding of drop formation is crucial in many applications such as ink-jet printing, microfluidic devices, and atomization. During drop formation, the about-to-form drop is connected to the fluid hanging from the nozzle via a thinning filament. Therefore, the physics of capillary thinning of filaments is key to understanding drop formation and has been thoroughly studied for pure Newtonian fluids using theory, simulations, and experiments. In some of the applications however, the forming drop and hence the thinning filament may contain solid particles. The thinning dynamics of such particle-laden filaments differs radically from that of particle-free filaments. Moreover, our understanding of filament thinning in the former case is poor compared to that in the latter case despite the growing interest in pinch-off of particle-laden filaments. In this work, we go beyond similar studies and experimentally explore the impact of solid particles on filament thinning by measuring both the radial and axial scalings in the neck region. The results are summarized in terms of a phase diagram of capillary thinning of particle-laden filaments.

  9. Enhanced size-dependent trapping of particles using microvortices

    PubMed Central

    Zhou, Jian; Kasper, Susan; Papautsky, Ian

    2013-01-01

    Inertial microfluidics has been attracting considerable interest for size-based separation of particles and cells. The inertial forces can be manipulated by expanding the microchannel geometry, leading to formation of microvortices which selectively isolate and trap particles or cells from a mixture. In this work, we aim to enhance our understanding of particle trapping in such microvortices by developing a model of selective particle trapping. Design and operational parameters including flow conditions, size of the trapping region, and target particle concentration are explored to elucidate their influence on trapping behavior. Our results show that the size dependence of trapping is characterized by a threshold Reynolds number, which governs the selective entry of particles into microvortices from the main flow. We show that concentration enhancement on the order of 100,000× and isolation of targets at concentrations in the 1/mL is possible. Ultimately, the insights gained from our systematic investigation suggest optimization solutions that enhance device performance (efficiency, size selectivity, and yield) and are applicable to selective isolation and trapping of large rare cells as well as other applications. PMID:24187531

  10. The Coming Revolutions in Particle Physics

    ScienceCinema

    Quigg, Chris

    2017-12-09

    Wonderful opportunities await particle physics over the next decade, with new instruments and experiments poised to explore the frontiers of high energy, infinitesimal distances, and exquisite rarity. We look forward to the Large Hadron Collider at CERN to explore the 1-TeV scale (extending efforts at LEP and the Tevatron to unravel the nature of electroweak symmetry breaking) and many initiatives to develop our understanding of the problem of identity: what makes a neutrino a neutrino and a top quark a top quark. We suspect that the detection of proton decay is only a few orders of magnitude away in sensitivity. Astronomical observations should help to tell us what kinds of matter and energy make up the universe. We might even learn to read experiment for clues about the dimensionality of spacetime. If we are inventive enough, we may be able to follow this rich menu with the physics opportunities offered by a linear electron-positron collider and a (muon storage ring) neutrino factory. I expect a remarkable flowering of experimental particle physics, and of theoretical physics that engages with experiment.

  11. Computer Models Simulate Fine Particle Dispersion

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Through a NASA Seed Fund partnership with DEM Solutions Inc., of Lebanon, New Hampshire, scientists at Kennedy Space Center refined existing software to study the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces. The software, EDEM, allows users to import particles and obtain accurate representations of their shapes for modeling purposes, such as simulating bulk solids behavior, and was enhanced to be able to more accurately model fine, abrasive, cohesive particles. These new EDEM capabilities can be applied in many industries unrelated to space exploration and have been adopted by several prominent U.S. companies, including John Deere, Pfizer, and Procter & Gamble.

  12. Capillary Thinning of Particle-laden Drops

    NASA Astrophysics Data System (ADS)

    Wagoner, Brayden; Thete, Sumeet; Jahns, Matt; Doshi, Pankaj; Basaran, Osman

    2015-11-01

    Drop formation is central in many applications such as ink-jet printing, microfluidic devices, and atomization. During drop formation, a thinning filament is created between the about-to-form drop and the fluid hanging from the nozzle. Therefore, the physics of capillary thinning of filaments is key to understanding drop formation and has been thoroughly studied for pure Newtonian fluids. The thinning dynamics is, however, altered completely when the fluid contains particles, the physics of which is not well understood. In this work, we explore the impact of solid particles on filament thinning and drop formation by using a combination of experiments and numerical simulations.

  13. Exploring the SCOAP3 Research Contributions of the United States

    NASA Astrophysics Data System (ADS)

    Marsteller, Matthew

    2016-03-01

    The Sponsoring Consortium for Open Access Publishing in Particle Physics (SCOAP3) is a successful global partnership of libraries, funding agencies and research centers. This presentation will inform the audience about SCOAP3 and also delve into descriptive statistics of the United States' intellectual contribution to particle physics via these open access journals. Exploration of the SCOAP3 particle physics literature using a variety of metrics tools such as Web of Science™, InCites™, Scopus® and SciVal will be shared. ORA or Sci2 will be used to visualize author collaboration networks.

  14. Thermal conduction in particle packs via finite elements

    NASA Astrophysics Data System (ADS)

    Lechman, Jeremy B.; Yarrington, Cole; Erikson, William; Noble, David R.

    2013-06-01

    Conductive transport in heterogeneous materials composed of discrete particles is a fundamental problem for a number of applications. While analytical results and rigorous bounds on effective conductivity in mono-sized particle dispersions are well established in the literature, the methods used to arrive at these results often fail when the average size of particle clusters becomes large (i.e., near the percolation transition where particle contact networks dominate the bulk conductivity). Our aim is to develop general, efficient numerical methods that would allow us to explore this behavior and compare to a recent microstructural description of conduction in this regime. To this end, we present a finite element analysis approach to modeling heat transfer in granular media with the goal of predicting effective bulk thermal conductivities of particle-based heterogeneous composites. Our approach is verified against theoretical predictions for random isotropic dispersions of mono-disperse particles at various volume fractions up to close packing. Finally, we present results for the probability distribution of the effective conductivity in particle dispersions generated by Brownian dynamics, and suggest how this might be useful in developing stochastic models of effective properties based on the dynamical process involved in creating heterogeneous dispersions.

  15. Exploring the variability of aerosol particle composition in the Arctic: a study from the springtime ACCACIA campaign

    NASA Astrophysics Data System (ADS)

    Young, G.; Jones, H. M.; Darbyshire, E.; Baustian, K. J.; McQuaid, J. B.; Bower, K. N.; Connolly, P. J.; Gallagher, M. W.; Choularton, T. W.

    2015-10-01

    Single-particle compositional analysis of filter samples collected on-board the FAAM BAe-146 aircraft is presented for six flights during the springtime Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign (March-April 2013). Scanning electron microscopy was utilised to derive size distributions and size-segregated particle compositions. These data were compared to corresponding data from wing-mounted optical particle counters and reasonable agreement between the calculated number size distributions was found. Significant variability in composition was observed, with differing external and internal mixing identified, between air mass trajectory cases based on HYSPLIT analyses. Dominant particle classes were silicate-based dusts and sea salts, with particles notably rich in K and Ca detected in one case. Source regions varied from the Arctic Ocean and Greenland through to northern Russia and the European continent. Good agreement between the back trajectories was mirrored by comparable compositional trends between samples. Silicate dusts were identified in all cases, and the elemental composition of the dust was consistent for all samples except one. It is hypothesised that long-range, high-altitude transport was primarily responsible for this dust, with likely sources including the Asian arid regions.

  16. Self-organized internal architectures of chiral micro-particles

    NASA Astrophysics Data System (ADS)

    Provenzano, Clementina; Mazzulla, Alfredo; Pagliusi, Pasquale; De Santo, Maria P.; Desiderio, Giovanni; Perrotta, Ida; Cipparrone, Gabriella

    2014-02-01

    The internal architecture of polymeric self-assembled chiral micro-particles is studied by exploring the effect of the chirality, of the particle sizes, and of the interface/surface properties in the ordering of the helicoidal planes. The experimental investigations, performed by means of different microscopy techniques, show that the polymeric beads, resulting from light induced polymerization of cholesteric liquid crystal droplets, preserve both the spherical shape and the internal self-organized structures. The method used to create the micro-particles with controlled internal chiral architectures presents great flexibility providing several advantages connected to the acquired optical and photonics capabilities and allowing to envisage novel strategies for the development of chiral colloidal systems and materials.

  17. Diffraction of entangled particles by light gratings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sancho, Pedro, E-mail: psanchos@aemet.es

    We analyze the diffraction regime of the Kapitza–Dirac effect for particles entangled in momentum. The detection patterns show two-particle interferences. In the single-mode case we identify a discontinuity in the set of joint detection probabilities, associated with the disconnected character of the space of non-separable states. For Gaussian multi-mode states we derive the diffraction patterns, providing an example of the dependence of the light–matter interaction on entanglement. When the particles are identical, we can explore the relation between exchange and entanglement effects. We find a complementary behavior between overlapping and Schmidt’s number. In particular, symmetric entanglement can cancel the exchangemore » effects. - Highlights: • Kapitza–Dirac diffraction of entangled particles shows multiparticle interference. • There is a discontinuity in the set of joint detection patterns of entangled states. • We find a complementary behavior between overlapping and Schmidt’s number. • Symmetric entanglement can cancel the exchange effects.« less

  18. Mix of Particles in "Uchben" Close-up

    NASA Image and Video Library

    2004-11-04

    Close-up examination of a freshly exposed area of a rock called "Uchben" in the "Columbia Hills" of Mars reveals an assortment of particle shapes and sizes in the rock's makeup. NASA's Mars Exploration Rover Spirit used its microscopic imager during the rover's 286th martian day (Oct. 22, 2004) to take the frames assembled into this view. The view covers a circular hole ground into a target spot called "Koolik" on Uchben by the rover's rock abrasion tool. The circle is 4.5 centimeters (1.8 inches) in diameter. Particles in the rock vary in shape from angular to round, and range in size from about 0.5 millimeter (0.2 inch) to too small to be seen. This assortment suggests that the rock originated from particles that had not been transported much by wind or water, because such a transport process would likely have resulted in more sorting of the particles by size and shape. http://photojournal.jpl.nasa.gov/catalog/PIA07023

  19. From Particle Physics to Medical Applications

    NASA Astrophysics Data System (ADS)

    Dosanjh, Manjit

    2017-06-01

    CERN is the world's largest particle physics research laboratory. Since it was established in 1954, it has made an outstanding contribution to our understanding of the fundamental particles and their interactions, and also to the technologies needed to analyse their properties and behaviour. The experimental challenges have pushed the performance of particle accelerators and detectors to the limits of our technical capabilities, and these groundbreaking technologies can also have a significant impact in applications beyond particle physics. In particular, the detectors developed for particle physics have led to improved techniques for medical imaging, while accelerator technologies lie at the heart of the irradiation methods that are widely used for treating cancer. Indeed, many important diagnostic and therapeutic techniques used by healthcare professionals are based either on basic physics principles or the technologies developed to carry out physics research. Ever since the discovery of x-rays by Roentgen in 1895, physics has been instrumental in the development of technologies in the biomedical domain, including the use of ionizing radiation for medical imaging and therapy. Some key examples that are explored in detail in this book include scanners based on positron emission tomography, as well as radiation therapy for cancer treatment. Even the collaborative model of particle physics is proving to be effective in catalysing multidisciplinary research for medical applications, ensuring that pioneering physics research is exploited for the benefit of all.

  20. The rotation and translation of non-spherical particles in homogeneous isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Byron, Margaret

    The motion of particles suspended in environmental turbulence is relevant to many scientific fields, from sediment transport to biological interactions to underwater robotics. At very small scales and simple shapes, we are able to completely mathematically describe the motion of inertial particles; however, the motion of large aspherical particles is significantly more complex, and current computational models are inadequate for large or highly-resolved domains. Therefore, we seek to experimentally investigate the coupling between freely suspended particles and ambient turbulence. A better understanding of this coupling will inform not only engineering and physics, but the interactions between small aquatic organisms and their environments. In the following pages, we explore the roles of shape and buoyancy on the motion of passive particles in turbulence, and allow these particles to serve as models for meso-scale aquatic organisms. We fabricate cylindrical and spheroidal particles and suspend them in homogeneous, isotropic turbulence that is generated via randomly-actuated jet arrays. The particles are fabricated with agarose hydrogel, which is refractive-index-matched to the surrounding fluid (water). Both the fluid and the particle are seeded with passive tracers, allowing us to perform Particle Image Velocimetry (PIV) simultaneously on the particle and fluid phase. To investigate the effects of shape, particles are fabricated at varying aspect ratios; to investigate the effects of buoyancy, particles are fabricated at varying specific gravities. Each particle type is freely suspended at a volume fraction of F=0.1%, for which four-way coupling interactions are negligible. The suspended particles are imaged together with the surrounding fluid and analyzed using stereoscopic PIV, which yields three velocity components in a two-dimensional measurement plane. Using image thresholding, the results are separated into simultaneous fluid-phase and solid-phase velocity

  1. An eastward propagating compressional Pc 5 wave observed by AMPTE/CCE in the postmidnight sector. [Active Magnetospheric Particle Tracer Explorers

    NASA Technical Reports Server (NTRS)

    Takahashi, K.; Mcentire, R. W.; Zanetti, L. J.; Lopez, R. E.; Kistler, L. M.

    1987-01-01

    This paper presents a detailed analysis of a compressional Pc 5 wave observed in the postmidnight sector on July 21, 1986, using data from the magnetometer, the charge-energy-mass spectrometer, and the medium-energy particle analyzer aboard the AMPTE/Charge Composition Explorer (CCE) spacecraft. The Pc 5 wave exhibited harmonically related transverse and compressional magnetic oscillations, modulation of the flux of medium energy protons, and a large azimuthal wave number, i.e., properties that are similar to those of compressional Pc5 waves observed previously at geostationary orbit. The unique observations recorded by the AMPTE/CCE included the occurrence of the wave in the postmidnight sector, its sunward propagation with respect to the spacecraft, and the left-handed polarization of the perturbed magnetic field. In spite of the morphological uniqueness observed, the excitation of the July 21 event is considered to be due to the same type of instability as operates at geostationary orbit.

  2. Health risks of space exploration: targeted and nontargeted oxidative injury by high-charge and high-energy particles.

    PubMed

    Li, Min; Gonon, Géraldine; Buonanno, Manuela; Autsavapromporn, Narongchai; de Toledo, Sonia M; Pain, Debkumar; Azzam, Edouard I

    2014-03-20

    During deep space travel, astronauts are often exposed to high atomic number (Z) and high-energy (E) (high charge and high energy [HZE]) particles. On interaction with cells, these particles cause severe oxidative injury and result in unique biological responses. When cell populations are exposed to low fluences of HZE particles, a significant fraction of the cells are not traversed by a primary radiation track, and yet, oxidative stress induced in the targeted cells may spread to nearby bystander cells. The long-term effects are more complex because the oxidative effects persist in progeny of the targeted and affected bystander cells, which promote genomic instability and may increase the risk of age-related cancer and degenerative diseases. Greater understanding of the spatial and temporal features of reactive oxygen species bursts along the tracks of HZE particles, and the availability of facilities that can simulate exposure to space radiations have supported the characterization of oxidative stress from targeted and nontargeted effects. The significance of secondary radiations generated from the interaction of the primary HZE particles with biological material and the mitigating effects of antioxidants on various cellular injuries are central to understanding nontargeted effects and alleviating tissue injury. Elucidation of the mechanisms underlying the cellular responses to HZE particles, particularly under reduced gravity and situations of exposure to additional radiations, such as protons, should be useful in reducing the uncertainty associated with current models for predicting long-term health risks of space radiation. These studies are also relevant to hadron therapy of cancer.

  3. Particle size reduction of propellants by cryocycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whinnery, L.; Griffiths, S.; Lipkin, J.

    1995-05-01

    Repeated exposure of a propellant to liquid nitrogen causes thermal stress gradients within the material resulting in cracking and particle size reduction. This process is termed cryocycling. The authors conducted a feasibility study, combining experiments on both inert and live propellants with three modeling approaches. These models provided optimized cycle times, predicted ultimate particle size, and allowed crack behavior to be explored. Process safety evaluations conducted separately indicated that cryocycling does not increase the sensitivity of the propellants examined. The results of this study suggest that cryocycling is a promising technology for the demilitarization of tactical rocket motors.

  4. Self-assembly of active amphiphilic Janus particles

    NASA Astrophysics Data System (ADS)

    Mallory, S. A.; Alarcon, F.; Cacciuto, A.; Valeriani, C.

    2017-12-01

    In this article, we study the phenomenology of a two dimensional dilute suspension of active amphiphilic Janus particles. We analyze how the morphology of the aggregates emerging from their self-assembly depends on the strength and the direction of the active forces. We systematically explore and contrast the phenomenologies resulting from particles with a range of attractive patch coverages. Finally, we illustrate how the geometry of the colloids and the directionality of their interactions can be used to control the physical properties of the assembled active aggregates and suggest possible strategies to exploit self-propulsion as a tunable driving force for self-assembly.

  5. Dynamics Explorer measurements of particles, fields, and plasma drifts over a horse-collar auroral pattern

    NASA Technical Reports Server (NTRS)

    Sharber, J. R.; Hones, E. W., Jr.; Heelis, R. A.; Craven, J. D.; Frank, L. A.; Maynard, N. C.; Slavin, J. A.; Birn, J.

    1992-01-01

    As shown from ground-based measurements and satellite-borne imagers, one type of global auroral pattern characteristic of quiet (usually northward IMF) intervals is that of a contracted but thickened emission region in which the dawn and dusk portions can spread poleward to very high latitudes, (the type of a pattern referred to as a 'horse-collar' aurora by Hones et al., 1989). In this report we use a DE data set to examine a case in which this horse-collar pattern was observed by the DE-1 auroral imager while at the same time the DE-2, at lower altitude, measured precipitating particles, electric and magnetic fields, and plasma drifts. There is close agreement between the optical signatures and the particle precipitation patterns. The particle, plasma, and field measurements made along the satellite track and the 2-D perspective of the imager provide a means of determining the configuration of convective flows in the high-latitude ionosphere during this interval of northward IMF. Recent mapping studies are used to relate the low-altitude observations to possible magnetospheric source regions.

  6. Dynamics Explorer guest investigator

    NASA Technical Reports Server (NTRS)

    Sojka, Jan J.

    1991-01-01

    A data base of satellite particle, electric field, image, and plasma data was used to determine correlations between the fields and the particle auroral boundaries. A data base of 8 days of excellent coverage from all instruments was completed. The geomagnetic conditions associated with each of the selected data periods, the number of UV image passes per study day that were obtained, and the total number of UV images for each day are given in tabular form. For each of the days listed in Table 1, both Vector Electric Field Instrument (VEFI) electric potential data and LAPI integrated particle energy fluxes were obtained. On the average, between 8 and 11 passes of useful data per day were obtained. These data are displayed in a format such that either the statistical electric field model potential or the statistical precipitation energy flux could be superimposed. The Heppner and Maynard (1987) and Hardy et al. (1987) models were used for the electric potential and precipitation, respectively. In addition, the auroral image intensity along the Dynamics Explorer-2 satellite pass could be computed and plotted along with the LAPI precipitation data and Hardy et al. (1987) values.

  7. Health Risks of Space Exploration: Targeted and Nontargeted Oxidative Injury by High-Charge and High-Energy Particles

    PubMed Central

    Li, Min; Gonon, Géraldine; Buonanno, Manuela; Autsavapromporn, Narongchai; de Toledo, Sonia M.; Pain, Debkumar

    2014-01-01

    Abstract Significance: During deep space travel, astronauts are often exposed to high atomic number (Z) and high-energy (E) (high charge and high energy [HZE]) particles. On interaction with cells, these particles cause severe oxidative injury and result in unique biological responses. When cell populations are exposed to low fluences of HZE particles, a significant fraction of the cells are not traversed by a primary radiation track, and yet, oxidative stress induced in the targeted cells may spread to nearby bystander cells. The long-term effects are more complex because the oxidative effects persist in progeny of the targeted and affected bystander cells, which promote genomic instability and may increase the risk of age-related cancer and degenerative diseases. Recent Advances: Greater understanding of the spatial and temporal features of reactive oxygen species bursts along the tracks of HZE particles, and the availability of facilities that can simulate exposure to space radiations have supported the characterization of oxidative stress from targeted and nontargeted effects. Critical Issues: The significance of secondary radiations generated from the interaction of the primary HZE particles with biological material and the mitigating effects of antioxidants on various cellular injuries are central to understanding nontargeted effects and alleviating tissue injury. Future Directions: Elucidation of the mechanisms underlying the cellular responses to HZE particles, particularly under reduced gravity and situations of exposure to additional radiations, such as protons, should be useful in reducing the uncertainty associated with current models for predicting long-term health risks of space radiation. These studies are also relevant to hadron therapy of cancer. Antioxid. Redox Signal. 20, 1501–1523. PMID:24111926

  8. A stochastic framework for spot-scanning particle therapy.

    PubMed

    Robini, Marc; Yuemin Zhu; Wanyu Liu; Magnin, Isabelle

    2016-08-01

    In spot-scanning particle therapy, inverse treatment planning is usually limited to finding the optimal beam fluences given the beam trajectories and energies. We address the much more challenging problem of jointly optimizing the beam fluences, trajectories and energies. For this purpose, we design a simulated annealing algorithm with an exploration mechanism that balances the conflicting demands of a small mixing time at high temperatures and a reasonable acceptance rate at low temperatures. Numerical experiments substantiate the relevance of our approach and open new horizons to spot-scanning particle therapy.

  9. Gas and particle motions in a rapidly decompressed flow

    NASA Astrophysics Data System (ADS)

    Johnson, Blair; Zunino, Heather; Adrian, Ronald; Clarke, Amanda

    2017-11-01

    To understand the behavior of a rapidly decompressed particle bed in response to a shock, an experimental study is performed in a cylindrical (D = 4.1 cm) glass vertical shock tube of a densely packed (ρ = 61%) particle bed. The bed is comprised of spherical glass particles, ranging from D50 = 44-297 μm between experiments. High-speed pressure sensors are incorporated to capture shock speeds and strengths. High-speed video and particle image velocimetry (PIV) measurements are collected to examine vertical and radial velocities of both the particles and gas to elucidate features of the shock wave and resultant expansion wave in the lateral center of the tube, away from boundaries. In addition to optically analyzing the front velocity of the rising particle bed, interaction between the particle and gas phases are investigated as the flow accelerates and the particle front becomes more dilute. Particle and gas interactions are also considered in exploring mechanisms through which turbulence develops in the flow. This work is supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science and Academic Alliance Program, under Contract No. DE-NA0002378.

  10. Reducing Development and Operations Costs using NASA's "GMSEC" Systems Architecture

    NASA Technical Reports Server (NTRS)

    Smith, Dan; Bristow, John; Crouse, Patrick

    2007-01-01

    This viewgraph presentation reviews the role of Goddard Mission Services Evolution Center (GMSEC) in reducing development and operation costs in handling the massive data from NASA missions. The goals of GMSEC systems architecture development are to (1) Simplify integration and development, (2)Facilitate technology infusion over time, (3) Support evolving operational concepts, and (4) All for mix of heritage, COTS and new components. First 3 missions (i.e., Tropical Rainforest Measuring Mission (TRMM), Small Explorer (SMEX) missions - SWAS, TRACE, SAMPEX, and ST5 3-Satellite Constellation System) each selected a different telemetry and command system. These results show that GMSEC's message-bus component-based framework architecture is well proven and provides significant benefits over traditional flight and ground data system designs. The missions benefit through increased set of product options, enhanced automation, lower cost and new mission-enabling operations concept options .

  11. About separation and collision of Saturn rings particles

    NASA Astrophysics Data System (ADS)

    Tchernyi, Vladimir

    -tary cloud begin to demonstrate an ideal diamagnetism. Due to appearance of the third force of diamagnetic push-out particles start to interact with the magnetic field and all the orbits of the particles become to be involved in additional azimuth-orbital movement. As a result, eventually, during some time, all orbits of the particles of the protoplanetary cloud should come together to magnetic equator plane and create highly flattening disc around planet. For separa-tion and collision of the particles within the sombrero of rings from solution of electromagnetic problem follows that for two particles which are located on the same plane, both particles will be pushing each other and they will be holding separation distance in between them. Then for another situation both particles are located on the same axis but on the different planes, both particles will be attracting each other, they could even collide or stick together and form bigger pieces or lumps of ice. Both facts have an experimental conformation by Cassini mission. Reference: Tchernyi V.V. Origin of the Saturn rings: electromagnetic model of the sombrero rings formation. Chapter in book: Space Exploration Research. Editors: John H. Denis and Paul D. Aldridge. Series: Space Science, Exploration and Policies. ISBN: 978-1-60692-264-4. Hauppauge, NY, USA, Nova Science Publishers, 2009:

  12. The Nuclear Astrophysics Explorer

    NASA Technical Reports Server (NTRS)

    Matteson, J. L.; Teegarden, B. J.; Gehrels, N.; Mahoney, W. A.

    1989-01-01

    The Nuclear Astrophysics Explorer was proposed in 1986 for NASA's Explorer Concept Study Program by an international collaboration of 25 scientists from nine institutions. The one-year feasibility study began in June 1988. The Nuclear Astrophysics Explorer would obtain high resolution observations of gamma-ray lines, E/Delta E about 1000, at a sensitivity of about 0.000003 ph/sq cm s, in order to study fundamental problems in astrophysics such as nucleosynthesis, supernovae, neutron star and black-hole physics, and particle acceleration and interactions. The instrument would operate from 15 keV to 10 Mev and use a heavily shielded array of nine cooled Ge spectrometers in a very low background configuration. Its 10 deg FWHM field of view would contain a versatile coded mask system which would provide two-dimensional imaging with 4 deg resolution, one-dimensional imaging with 2 deg resolution, and efficiendt measurements of diffuse emission. An unshielded Ge spectrometer would obtain wide-field measurements of transient gamma-ray sources. The earliest possible mission would begin in 1995.

  13. Adhering grains and surface features on two Itokawa particles

    DOE PAGES

    Dobrica, E.; Ogliore, R. C.

    2016-02-13

    We investigated the surface texture and chemical compositions of two ~40-μm particles returned from the surface regolith of asteroid Itokawa (RB-DQ04-0062 and RB-DQ04-0091) by the Japan Aerospace Exploration Agency’s Hayabusa mission. We identified splash melts, surface blistering, and many small adhering particles. Seven focused ion beam sections were extracted from both Itokawa particles, targeting one splash melt and ten adhering particles to investigate their composition and provenance and the role of micrometeoroid impacts on Itokawa’s surface. Based on the particle’s structure, mineralogy, and interface between the adhering particle and host grain, we identified lithic fragments and particles deposited by impact.more » These have morphologies and compositions consistent with impact-generated deposits: two have morphologies and compositions that are consistent with impact-generated silica glass, and one was a Ni-free, metallic Fe, and S-rich assemblage that was likely generated by vapor recondensation during a micrometeoroid impact. Here this study shows that, even though its regolith is young, micrometeoroid impacts have altered the regolith of asteroid Itokawa.« less

  14. Lagrangian and Eulerian description of bed-load particle kinematics

    NASA Astrophysics Data System (ADS)

    Ballio, Francesco; Sadabadi, Seyed Abbas Hosseini; Pokrajac, Dubravka; Radice, Alessio

    2016-04-01

    The motion of bed-load sediment particles transported by a flow can be analyzed within a Lagrangian or an Eulerian framework. In the former case, we consider the particles as individual objects in motion and we study their kinematic properties. The latter approach is instead referred to suitably chosen control volumes. Quantities describing sediment motion in the two frameworks are different, and the relationships among the two approaches are not straightforward. In this work, we intend to discuss the kinematic properties of sediment transport: first, a set of quantities is univocally defined; then, relationships among different representations are explored. Proof-of-concept results presented in the study are from a recent experiment involving weak bed-load sediment transport, where the moving particles were released over a fixed rough bed. The bulk flow velocity was 1.4 times the critical value for incipient particle motion, and particles were mostly moving by rolling and sliding, with limited saltation. The particle motion was filmed from the top and the measurements were conducted by image-based methods, obtaining extensive samples of virtually-instantaneous quantities.

  15. Locating Stardust-like Particles in Aerogel Using X-Ray Techniques

    NASA Technical Reports Server (NTRS)

    Jurewicz, A. J. G.; Jones, S. M.; Tsapin, A.; Mih, D. T.; Connolly, H. C., Jr.; Graham, G. A.

    2003-01-01

    Silica aerogel is the material that the spacecraft STARDUST is using to collect interstellar and cometary silicates. Anticipating the return of the samples to earth in January of 2006, MANY individual investigators and, especially, the investigators in NASA's SRLIDAP program are studying means of both in situ analysis of particles, as well as particle extraction. To help individual PI's with extraction of particles from aerogel in their own laboratories, we are exploring the use of standard laboratory x-ray equipment and commercial techniques for precisely locating specific particles in aerogel. We approached the evaluation of commercial x-ray techniques as follows. First, we determined the most appropriate detector for use with aerogel and particulates. Then, we compared and contrasted techniques useful for university laboratories.

  16. Explore the high-density QCD medium via particle correlations in pPb collisions at CMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei, E-mail: wl33@rice.edu

    2015-01-15

    The observation of a long-range, near-side two-particle correlation (“ridge”) in very high multiplicity proton–proton and proton–lead collisions has opened up new opportunity of studying novel QCD phenomena in small collision systems. In 2013, high luminosity pPb data were collected by the CMS experiment at the LHC. New results of two- and multi-particle correlations in pPb collisions from CMS are presented over a wide event multiplicity and transverse momentum range. A direct comparison of pPb and PbPb systems is provided. Physics implications, especially in the context of color glass condensate and hydrodynamics models are also discussed.

  17. Polydopamine-Coated Magnetic Composite Particles with an Enhanced Photothermal Effect.

    PubMed

    Zheng, Rui; Wang, Sheng; Tian, Ye; Jiang, Xinguo; Fu, Deliang; Shen, Shun; Yang, Wuli

    2015-07-29

    Recently, photothermal therapy (PTT) that utilizes photothermal conversion (PTC) agents to ablate cancer under near-infrared (NIR) irradiation has attracted a growing amount of attention because of its excellent therapeutic efficacy and improved target selectivity. Therefore, exploring novel PTC agents with an outstanding photothermal effect is a current research focus. Herein, we reported a polydopamine-coated magnetic composite particle with an enhanced PTC effect, which was synthesized simply through coating polydopamine (PDA) on the surface of magnetic Fe3O4 particles. Compared with magnetic Fe3O4 particles and PDA nanospheres, the core-shell nanomaterials exhibited an increased NIR absorption, and thus, an enhanced photothermal effect was obtained. We demonstrated the in vitro and in vivo effects of the photothermal therapy using our composite particles and their ability as a contrast agent in the T2-weighted magnetic resonance imaging. These results indicated that the multifunctional composite particles with enhanced photothermal effect are superior to magnetic Fe3O4 particles and PDA nanospheres alone.

  18. Mix of Particles in 'Uchben' Close-up

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1

    Close-up examination of a freshly exposed area of a rock called 'Uchben' in the 'Columbia Hills' of Mars reveals an assortment of particle shapes and sizes in the rock's makeup. NASA's Mars Exploration Rover Spirit used its microscopic imager during the rover's 286th martian day (Oct. 22, 2004) to take the frames assembled into this view. The view covers a circular hole ground into a target spot called 'Koolik' on Uchben by the rover's rock abrasion tool. The circle is 4.5 centimeters (1.8 inches) in diameter. Particles in the rock vary in shape from angular to round, and range in size from about 0.5 millimeter (0.2 inch) to too small to be seen. This assortment suggests that the rock originated from particles that had not been transported much by wind or water, because such a transport process would likely have resulted in more sorting of the particles by size and shape.

  19. Modulation of galactic and anomalous cosmic rays in the inner heliosphere

    NASA Astrophysics Data System (ADS)

    Heber, B.

    Our knowledge on how galactic and anomalous cosmic rays are modulated in the inner heliosphere has been dramatically enlarged due to measurements provided by several missions launched in the past ten years. The current paradigma of singly charged anomalous cosmic rays has been confirmed by recent measurements from the SAMPEX and ACE satelite. Ulysses explored the inner heliosphere at polar regions during the last solar minimum period and is heading again to high heliographic latitudes during the time of the conference in July, 2000. The Sun approaches maximum activity when the spacecraft is at high heliographic latitudes giving us for the first time the possibility to explore modulation of cosmic rays in the inner three-dimensional heliosphere during such conditions. Ulysses electron measurements in addition to the 1 AU ICE electron and IMP helium measurements allows us to investigate charge sign dependent modulation over a full 22-year solar magnetic cycle. Implications of these observations for our understanding of different modulation processes in the inner three-dimensional heliosphere are presented.

  20. Charged Particle Dose Measurements by the Odyssey/MARIE Instrument in Mars Orbit and Model Calculations

    NASA Technical Reports Server (NTRS)

    Cleghorn, T. F.; Saganti, P. B.; Zeitlin, C.; Cucinotta, F. A.

    2004-01-01

    Knowledge of the space radiation environment is crucial both for human space exploration, and robotic space missions. It is likely that human explorers will return to the moon, and then go to Mars within the next thirty years. The radiation environment that they will encounter is a significant obstacle to future exploration, and must be dealt with successfully before longterm human missions outside of the magnetosphere can take place. Shielding technologies and materials must be developed to lower the dose and dose equivalent that human beings will receive on such missions. To begin this development, a fairly complete and accurate understanding of the space environment must be obtained. The major components of the space particle radiation environment that are most hazardous to humans are: galactic cosmic rays (GCR), the particles contained in solar particle events, (SPE), and secondary particles generated in material in the spacecraft itself. The intensity of the GCR varies by roughly a factor of two over the eleven-year solar cycle, inversely with the level of solar activity. These GCR particles are fully stripped nuclei, predominantly protons and helium, but also significant numbers of heavier ions, including carbon, oxygen, and iron. Since the ionization caused by nuclei passing through matter is proportional to the square of its charge (Z=10). The MARIE instrument has been described elsewhere.

  1. Hydrodynamic Capture of Particles by Micro-swimmers under Hele-Shaw Flows

    NASA Astrophysics Data System (ADS)

    Mishler, Grant; Tsang, Alan Cheng Hou; Pak, On Shun

    2017-11-01

    We explore a hydrodynamic capture mechanism of a driven particle by a micro-swimmer in confined microfluidic environments with an idealized model. The capture is mediated by the hydrodynamic interactions between the micro-swimmer, the driven particle, and the background flow. This capture mechanism relies on the existence of attractive stable equilibrium configurations between the driven particle and the micro-swimmer, which occurs when the background flow is larger than a certain critical threshold. Dynamics and stability of capture and non-capture events will be discussed. This study may have potential applications in the study of capture and delivery of therapeutic payloads by micro-swimmers as well as particle self-assembly under confinements.

  2. Determining the refractive index of particles using glare-point imaging technique

    NASA Astrophysics Data System (ADS)

    Meng, Rui; Ge, Baozhen; Lu, Qieni; Yu, Xiaoxue

    2018-04-01

    A method of measuring the refractive index of a particle is presented from a glare-point image. The space of a doublet image of a particle can be determined with high accuracy by using auto-correlation and Gaussian interpolation, and then the refractive index is obtained from glare-point separation, and a factor that may influence the accuracy of glare-point separation is explored. Experiments are carried out for three different kinds of particles, including polystyrene latex particles, glass beads, and water droplets, whose measuring accuracy is improved by the data fitting method. The research results show that the method presented in this paper is feasible and beneficial to applications such as spray and atmospheric composition measurements.

  3. White zein colloidal particles: synthesis and characterization of their optical properties on the single particle level and in concentrated suspensions.

    PubMed

    de Boer, F Y; Kok, R N U; Imhof, A; Velikov, K P

    2018-04-18

    Growing interest in using natural, biodegradable ingredients for food products leads to an increase in research for alternative sources of functional ingredients. One alternative is zein, a water-insoluble protein from corn. Here, a method to investigate the optical properties of white zein colloidal particles is presented in both diluted and concentrated suspensions. The particles are synthesized, after purification of zein, by anti-solvent precipitation. Mean particle diameters ranged from 35 to 135 nm based on dynamic light scattering. The value of these particles as white colorant is examined by measuring their optical properties. Dilute suspensions are prepared to measure the extinction cross section of individual particles and this was combined with Mie theory to determine a refractive index (RI) of 1.49 ± 0.01 for zein particles dispersed in water. This value is used to further model the optical properties of concentrated suspensions. To obtain full opacity of the suspension, comparable to 0.1-0.2 wt% suspensions of TiO2, concentrations of 2 to 3.3 wt% of zein particles are sufficient. The optimal size for maximal scattering efficiency is explored by modeling dilute and concentrated samples with RI's matching those of zein and TiO2 particles in water. The transport mean free path of light was determined experimentally and theoretically and the agreement between the transport mean free path calculated from the model and the measured value is better than 30%. Such particles have the potential to be an all-natural edible alternative for TiO2 as white colorant in wet food products.

  4. Probing the frontiers of particle physics with tabletop-scale experiments.

    PubMed

    DeMille, David; Doyle, John M; Sushkov, Alexander O

    2017-09-08

    The field of particle physics is in a peculiar state. The standard model of particle theory successfully describes every fundamental particle and force observed in laboratories, yet fails to explain properties of the universe such as the existence of dark matter, the amount of dark energy, and the preponderance of matter over antimatter. Huge experiments, of increasing scale and cost, continue to search for new particles and forces that might explain these phenomena. However, these frontiers also are explored in certain smaller, laboratory-scale "tabletop" experiments. This approach uses precision measurement techniques and devices from atomic, quantum, and condensed-matter physics to detect tiny signals due to new particles or forces. Discoveries in fundamental physics may well come first from small-scale experiments of this type. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  5. Particle size distribution control of Pt particles used for particle gun

    NASA Astrophysics Data System (ADS)

    Ichiji, M.; Akiba, H.; Nagao, H.; Hirasawa, I.

    2017-07-01

    The purpose of this study is particle size distribution (PSD) control of submicron sized Pt particles used for particle gun. In this report, simple reaction crystallization is conducted by mixing H2PtCl6 and ascorbic acid. Without the additive, obtained Pt particles have broad PSD and reproducibility of experiment is low. With seeding, Pt particles have narrow PSD and reproducibility improved. Additionally, mean particle diameter of 100-700 nm is controlled by changing seeding amount. Obtained particles are successfully characterized as Pt by XRD results. Moreover, XRD spectra indicate that obtained particles are polycrystals. These experimental results suggest that seeding consumed nucleation, as most nuclei attached on the seed surface. This mechanism virtually restricted nucleation to have narrow PSD can be obtained.

  6. Doing More with Less: Cost-effective, Compact Particle Accelerators (489th Brookhaven Lecture)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trbojevic, Dejan

    2013-10-22

    Replace a 135-ton magnet used for cancer-fighting particle therapies with a magnet that weighs only two tons? Such a swap is becoming possible thanks to new particle accelerator advances being developed by researchers at Brookhaven Lab. With an approach that combines techniques used by synchrotron accelerators with the ability to accept more energy, these new technologies could be used for more than fighting cancer. They could also decrease the lifecycle of byproducts from nuclear power plants and reduce costs for eRHIC—a proposed electron-ion collider for Brookhaven Lab that researchers from around the world would use to explore the glue thatmore » holds together the universe’s most basic building blocks and explore the proton-spin puzzle. During this lecture, Dr. Trbojevic provides an overview of accelerator technologies and techniques—particularly a non-scaling, fixed-focused alternating gradient—to focus particle beams using fewer, smaller magnets. He discusses how these technologies will benefit eRHIC and other applications, including particle therapies being developed to combat cancer.« less

  7. Two-dimensional implosion simulations with a kinetic particle code [2D implosion simulations with a kinetic particle code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagert, Irina; Even, Wesley Paul; Strother, Terrance Timothy

    Here, we perform two-dimensional implosion simulations using a Monte Carlo kinetic particle code. The application of a kinetic transport code is motivated, in part, by the occurrence of nonequilibrium effects in inertial confinement fusion capsule implosions, which cannot be fully captured by hydrodynamic simulations. Kinetic methods, on the other hand, are able to describe both continuum and rarefied flows. We perform simple two-dimensional disk implosion simulations using one-particle species and compare the results to simulations with the hydrodynamics code rage. The impact of the particle mean free path on the implosion is also explored. In a second study, we focusmore » on the formation of fluid instabilities from induced perturbations. We find good agreement with hydrodynamic studies regarding the location of the shock and the implosion dynamics. Differences are found in the evolution of fluid instabilities, originating from the higher resolution of rage and statistical noise in the kinetic studies.« less

  8. Two-dimensional implosion simulations with a kinetic particle code [2D implosion simulations with a kinetic particle code

    DOE PAGES

    Sagert, Irina; Even, Wesley Paul; Strother, Terrance Timothy

    2017-05-17

    Here, we perform two-dimensional implosion simulations using a Monte Carlo kinetic particle code. The application of a kinetic transport code is motivated, in part, by the occurrence of nonequilibrium effects in inertial confinement fusion capsule implosions, which cannot be fully captured by hydrodynamic simulations. Kinetic methods, on the other hand, are able to describe both continuum and rarefied flows. We perform simple two-dimensional disk implosion simulations using one-particle species and compare the results to simulations with the hydrodynamics code rage. The impact of the particle mean free path on the implosion is also explored. In a second study, we focusmore » on the formation of fluid instabilities from induced perturbations. We find good agreement with hydrodynamic studies regarding the location of the shock and the implosion dynamics. Differences are found in the evolution of fluid instabilities, originating from the higher resolution of rage and statistical noise in the kinetic studies.« less

  9. Multielement analysis of interplanetary dust particles using TOF-SIMS

    NASA Technical Reports Server (NTRS)

    Stephan, T.; Kloeck, W.; Jessberger, E. K.; Rulle, H.; Zehnpfenning, J.

    1993-01-01

    Sections of three stratospheric particles (U2015G1, W7029*A27, and L2005P9) were analyzed with TOF-SIMS (Time Of Flight-Secondary Ion Mass Spectrometry) continuing our efforts to investigate the element distribution in interplanetary dust particles (IDP's) with high lateral resolution (approximately 0.2 micron), to examine possible atmospheric contamination effects, and to further explore the abilities of this technique for element analysis of small samples. The samples, previously investigated with SXRF (synchrotron X-ray fluorescence analysis), are highly enriched in Br (Br/Fe: 59 x CI, 9.2 x CI, and 116 x CI, respectively). U2015G1 is the IDP with the by far highest Zn/Fe-ratio (81 x CI) ever reported in chondritic particles.

  10. Effective Dose Equivalent due to Cosmic Ray Particles and Their Secondary Particles on the Moon

    NASA Astrophysics Data System (ADS)

    Hayatsu, Kanako; Hareyama, Makoto; Kobayashi, Shingo; Karouji, Yuzuru; Sakurai, K.; Sihver, Lembit; Hasebe, N.

    Estimation of radiation dose on and under the lunar surface is quite important for human activity on the Moon and for the future lunar bases construction. Radiation environment on the Moon is much different from that on the Earth. Galactic cosmic rays (GCRs) and solar energetic particles (SEPs) directly penetrate the lunar surface because of no atmosphere and no magnetic field around the Moon. Then, they generate many secondary particles such as neutrons, gamma rays and other charged particles by nuclear interactions with soils and regolith breccias under the lunar surface. Therefore, the estimation of radiation dose from them on the surface and the underground of the Moon are essential for safety human activities. In this study, the effective dose equivalents at the surface and various depths of the Moon were estimated using by the latest cosmic rays observation and developed calculation code. The largest contribution to the dose on the surface is primary charged particles in GCRs and SEPs, while in the ground, secondary neutrons are the most dominant. In particular, the dose from neutrons becomes maximal at 70-80 g/cm2 in depth of lunar soil, because fast neutrons with about 1.0 MeV are mostly produced at this depth and give the largest dose. On the lunar surface, the doses originated from large SEPs are very hazardous. We estimated the effective dose equivalents due to such large SEPs and the effects of aluminum shield for the large flare on the human body. In the presentation, we summarize and discuss the improved calculation results of radiation doses due to GCR particles and their secondary particles in the lunar subsurface. These results will provide useful data for the future exploration of the Moon.

  11. Interplay of single particle and collective response in molecular dynamics simulation of dusty plasma system

    NASA Astrophysics Data System (ADS)

    Maity, Srimanta; Das, Amita; Kumar, Sandeep; Tiwari, Sanat Kumar

    2018-04-01

    The collective response of the plasma medium is well known and has been explored extensively in the context of dusty plasma medium. On the other hand, the individual particle response associated with the collisional character giving rise to the dissipative phenomena has not been explored adequately. In this paper, two-dimensional molecular dynamics simulation of dust particles interacting via Yukawa potential has been considered. It has been shown that disturbances induced in a dust crystal elicit both collective and single particle responses. Generation of a few particles moving at speeds considerably higher than acoustic and/or shock speed (excited by the external disturbance) is observed. This is an indication of a single particle response. Furthermore, as these individual energetic particles propagate, the dust crystal is observed to crack along their path. Initially when the energy is high, these particles generate secondary energetic particles by the collisional scattering process. However, ultimately as these particles slow down they excite a collective response in the dust medium at secondary locations in a region which is undisturbed by the primary external disturbance. The condition when the cracking of the crystal stops and collective excitations get initiated has been identified quantitatively. The trailing collective primary disturbances would thus often encounter a disturbed medium with secondary and tertiary collective perturbations, thereby suffering significant modification in its propagation. It is thus clear that there is an interesting interplay (other than mere dissipation) between the single particle and collective response which governs the dynamics of any disturbance introduced in the medium.

  12. Electrostatic Charging of Polymers by Particle Impact at Low Pressures

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.; Mantovani, J. G.; Buhler, C. R.; Hogue, M. D.; Nowicki, A. W.; Groop, E. E.; Thompson, Karen (Technical Monitor)

    2001-01-01

    Studies of the electrostatic interaction between micrometer-sized particles and polymer surfaces are of great interest to NASA's planetary exploration program. The unmanned landing missions to Mars planned for this decade as well as the possible manned missions that might take place during the second decade of this century require a better understanding of the electrostatic response of the materials used in landing crafts and equipment when exposed to wind-blown dust or to surface dust and sand particles. We report on preliminary experiments designed to measure the electrostatic charge developed on five polymer surfaces as they are impacted simultaneously by Mars simulant particles less than 5 micrometers in diameter moving at 20 m/s. Experiments were performed in a CO2 atmosphere at 10 mbars of pressure using a particle delivery method that propels the particles with contact. Experiments were also performed in dry air at atmospheric pressures using a pressurized particle delivery system. The five polymer surfaces, commonly used in space applications, were chosen so that they span the triboelectric series.

  13. Challenges in the development of magnetic particles for therapeutic applications.

    PubMed

    Barry, Stephen E

    2008-09-01

    Certain iron-based particle formulations have useful magnetic properties that, when combined with low toxicity and desirable pharmacokinetics, encourage their development for therapeutic applications. This mini-review begins with background information on magnetic particle use as MRI contrast agents and the influence of material size on pharmacokinetics and tissue penetration. Therapeutic investigations, including (1) the loading of bioactive materials, (2) the use of stationary, high-gradient (HG) magnetic fields to concentrate magnetic particles in tissues or to separate material bound to the particles from the body, and (3) the application of high power alternating magnetic fields (AMF) to generate heat in magnetic particles for hyperthermic therapeutic applications are then surveyed. Attention is directed mainly to cancer treatment, as selective distribution to tumors is well-suited to particulate approaches and has been a focus of most development efforts. While magnetic particles have been explored for several decades, their use in therapeutic products remains minimal; a discussion of future directions and potential ways to better leverage magnetic properties and to integrate their use into therapeutic regimens is discussed.

  14. Particle and nuclear physics instrumentation and its broad connections

    DOE PAGES

    Demarteau, Marcel; Lipton, Ron; Nicholson, Howard; ...

    2016-12-20

    Subatomic physics shares with other basic sciences the need to innovate, invent, and develop tools, techniques, and technologies to carry out its mission to explore the nature of matter, energy, space, and time. In some cases, entire detectors or technologies developed specifically for particle physics research have been adopted by other fields of research or in commercial applications. In most cases, however, the development of new devices and technologies by particle physics for its own research has added value to other fields of research or to applications beneficial to society by integrating them in the existing technologies. Thus, detector researchmore » and development has not only advanced the current state of technology for particle physics, but has often advanced research in other fields of science and has underpinned progress in numerous applications in medicine and national security. At the same time particle physics has profited immensely from developments in industry and applied them to great benefit for the use of particle physics detectors. Finally, this symbiotic relationship has seen strong mutual benefits with sometimes unexpected far reach.« less

  15. Particle and nuclear physics instrumentation and its broad connections

    NASA Astrophysics Data System (ADS)

    Demarteau, M.; Lipton, R.; Nicholson, H.; Shipsey, I.

    2016-10-01

    Subatomic physics shares with other basic sciences the need to innovate, invent, and develop tools, techniques, and technologies to carry out its mission to explore the nature of matter, energy, space, and time. In some cases, entire detectors or technologies developed specifically for particle physics research have been adopted by other fields of research or in commercial applications. In most cases, however, the development of new devices and technologies by particle physics for its own research has added value to other fields of research or to applications beneficial to society by integrating them in the existing technologies. Thus, detector research and development has not only advanced the current state of technology for particle physics, but has often advanced research in other fields of science and has underpinned progress in numerous applications in medicine and national security. At the same time particle physics has profited immensely from developments in industry and applied them to great benefit for the use of particle physics detectors. This symbiotic relationship has seen strong mutual benefits with sometimes unexpected far reach.

  16. Particle and nuclear physics instrumentation and its broad connections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demarteau, Marcel; Lipton, Ron; Nicholson, Howard

    Subatomic physics shares with other basic sciences the need to innovate, invent, and develop tools, techniques, and technologies to carry out its mission to explore the nature of matter, energy, space, and time. In some cases, entire detectors or technologies developed specifically for particle physics research have been adopted by other fields of research or in commercial applications. In most cases, however, the development of new devices and technologies by particle physics for its own research has added value to other fields of research or to applications beneficial to society by integrating them in the existing technologies. Thus, detector researchmore » and development has not only advanced the current state of technology for particle physics, but has often advanced research in other fields of science and has underpinned progress in numerous applications in medicine and national security. At the same time particle physics has profited immensely from developments in industry and applied them to great benefit for the use of particle physics detectors. Finally, this symbiotic relationship has seen strong mutual benefits with sometimes unexpected far reach.« less

  17. Conceptual Change Texts in Chemistry Teaching: A Study on the Particle Model of Matter

    ERIC Educational Resources Information Center

    Beerenwinkel, Anne; Parchmann, Ilka; Grasel, Cornelia

    2011-01-01

    This study explores the effect of a conceptual change text on students' awareness of common misconceptions on the particle model of matter. The conceptual change text was designed based on principles of text comprehensibility, of conceptual change instruction and of instructional approaches how to introduce the particle model. It was evaluated in…

  18. Deposit Structure for Particle-laden Droplets Targeted by Electrospray

    NASA Astrophysics Data System (ADS)

    Ghafouri, Aref; Singler, Timothy; Yong, Xin; Chiarot, Paul

    2017-11-01

    A hybrid printing technique that combines electrospray atomization with inkjet printing provides unique capabilities for exploring transport creating nanoparticle deposits with controlled structures. In this research, we use electrospray to deliver dry nanoparticles to the interface of particle-laden sessile droplets. Upon evaporation of the target sessile droplet, the particles at the interface are mapped to the underlying substrate. Particle locations in the final deposit were observed separately by tagging the particles dispersed inside the droplet and at its interface with different fluorophores. As expected, surfactant-free particles inside the target droplet were transported to its (pinned) contact line, creating a ``coffee ring'' morphology in the final deposit. The transport and final location of the interfacial particles was highly dependent on the presence of surfactant in the electrosprayed solution. If surfactant was present, the interfacial particles were transported to the apex of the target droplet, forming a dense region at the center of the final deposit. If the electrosprayed solution was surfactant-free, the transport of the interfacial particles was arrested and they were distributed uniformly across the final deposit. Similar deposit morphologies were found when experimenting with various surfactants, including Tween and sodium dodecyl sulfate. These results highlight the important of Marangoni flow in governing the final deposit structure for hybrid printing. This research supported by the National Science Foundation (Award 1538090).

  19. PENTACLE: Parallelized particle-particle particle-tree code for planet formation

    NASA Astrophysics Data System (ADS)

    Iwasawa, Masaki; Oshino, Shoichi; Fujii, Michiko S.; Hori, Yasunori

    2017-10-01

    We have newly developed a parallelized particle-particle particle-tree code for planet formation, PENTACLE, which is a parallelized hybrid N-body integrator executed on a CPU-based (super)computer. PENTACLE uses a fourth-order Hermite algorithm to calculate gravitational interactions between particles within a cut-off radius and a Barnes-Hut tree method for gravity from particles beyond. It also implements an open-source library designed for full automatic parallelization of particle simulations, FDPS (Framework for Developing Particle Simulator), to parallelize a Barnes-Hut tree algorithm for a memory-distributed supercomputer. These allow us to handle 1-10 million particles in a high-resolution N-body simulation on CPU clusters for collisional dynamics, including physical collisions in a planetesimal disc. In this paper, we show the performance and the accuracy of PENTACLE in terms of \\tilde{R}_cut and a time-step Δt. It turns out that the accuracy of a hybrid N-body simulation is controlled through Δ t / \\tilde{R}_cut and Δ t / \\tilde{R}_cut ˜ 0.1 is necessary to simulate accurately the accretion process of a planet for ≥106 yr. For all those interested in large-scale particle simulations, PENTACLE, customized for planet formation, will be freely available from https://github.com/PENTACLE-Team/PENTACLE under the MIT licence.

  20. Applications of particle microbeams in space radiation research.

    PubMed

    Durante, Marco

    2009-03-01

    Galactic cosmic radiation is acknowledged as one of the major barriers to human space exploration. In space, astronauts are exposed to charged particles from Z = 1 (H) up to Z = 28 (Ni), but the probability of a hit to a specific single cell in the human body is low. Particle microbeams can deliver single charged particles of different charge and energy to single cells from different tissues, and microbeam studies are therefore very useful for improving current risk estimates for long-term space travel. 2D in vitro cell cultures can be very useful for establishing basic molecular mechanisms, but they are not sufficient to extrapolate risk, given the substantial evidence proving tissue effects are key in determining the response to radiation insult. 3D tissue or animal systems represent a more promising target for space radiobiology using microbeams.

  1. The effect of wall geometry in particle-laden turbulent flow

    NASA Astrophysics Data System (ADS)

    Abdehkakha, Hoora; Iaccarino, Gianluca

    2016-11-01

    Particle-laden turbulent flow plays a significant role in various industrial applications, as turbulence alters the exchange of momentum and energy between particles and fluid flow. In wall-bounded flows, inhomogeneity in turbulent properties is the primary cause of turbophoresis that leads the particles toward the walls. Conversely, shear-induced lift force on the particles can become important if large scale vortical structures are present. The objective of this study is to understand the effects of geometry on fluid flows and consequently on particles transport and concentration. Direct numerical simulations combined with point particle Lagrangian tracking are performed for several geometries such as a pipe, channel, square duct, and squircle (rounded-corners duct). In non-circular ducts, anisotropic and inhomogeneous Reynolds stresses are the most influential phenomena that produce the secondary flows. It has been shown that these motions can have a significant impact on transporting momentum, vorticity, and energy from the core of the duct to the corners. The main focus of the present study is to explore the effects of near the wall structures and secondary flows on turbophoresis, lift, and particle concentration.

  2. Energetic particles flux experiment for ISEE mother/daughter spacecraft

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.

    1981-01-01

    The history of the energetic particle experiments on the International Sun Earth Explorer 1 and 2 spacecraft is outlined, and descriptions of the instruments are given. The inflight performance and data analysis are summarized. The research is completed and ongoing are described and a bibliography is included.

  3. Particle-based simulations of self-motile suspensions

    NASA Astrophysics Data System (ADS)

    Hinz, Denis F.; Panchenko, Alexander; Kim, Tae-Yeon; Fried, Eliot

    2015-11-01

    A simple model for simulating flows of active suspensions is investigated. The approach is based on dissipative particle dynamics. While the model is potentially applicable to a wide range of self-propelled particle systems, the specific class of self-motile bacterial suspensions is considered as a modeling scenario. To mimic the rod-like geometry of a bacterium, two dissipative particle dynamics particles are connected by a stiff harmonic spring to form an aggregate dissipative particle dynamics molecule. Bacterial motility is modeled through a constant self-propulsion force applied along the axis of each such aggregate molecule. The model accounts for hydrodynamic interactions between self-propelled agents through the pairwise dissipative interactions conventional to dissipative particle dynamics. Numerical simulations are performed using a customized version of the open-source software package LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) software package. Detailed studies of the influence of agent concentration, pairwise dissipative interactions, and Stokes friction on the statistics of the system are provided. The simulations are used to explore the influence of hydrodynamic interactions in active suspensions. For high agent concentrations in combination with dominating pairwise dissipative forces, strongly correlated motion patterns and a fluid-like spectral distributions of kinetic energy are found. In contrast, systems dominated by Stokes friction exhibit weaker spatial correlations of the velocity field. These results indicate that hydrodynamic interactions may play an important role in the formation of spatially extended structures in active suspensions.

  4. Downstream energetic proton and alpha particles during quasi-parallel interplanetary shock events

    NASA Technical Reports Server (NTRS)

    Tan, L. C.; Mason, G. M.; Gloeckler, G.; Ipavich, F. M.

    1988-01-01

    This paper considers the energetic particle populations in the downstream region of three quasi-parallel interplanetary shock events, which was explored using the ISEE 3 Ultra Low Energy Charge Analyzer sensor, which unambiguously identifies protons and alpha particles using the electrostatic deflection versus residual energy technique. The downstream particles were found to exhibit anisotropies due largely to convection in the solar wind. The spectral indices of the proton and the alpha-particle distribution functions were found to be remarkably constant during the downstream period, being generally insensitive to changes in particle flux levels, magnetic field direction, and solar wind densities. In two of the three events, the proton and the alpha spectra were the same throughout the entire downstream period, supporting the prediction of diffusive shock acceleration theory.

  5. Symmetry breaking in clogging for oppositely driven particles

    NASA Astrophysics Data System (ADS)

    Glanz, Tobias; Wittkowski, Raphael; Löwen, Hartmut

    2016-11-01

    The clogging behavior of a symmetric binary mixture of colloidal particles that are driven in opposite directions through constrictions is explored by Brownian dynamics simulations and theory. A dynamical state with a spontaneously broken symmetry occurs where one species is flowing and the other is blocked for a long time, which can be tailored by the size of the constrictions. Moreover, we find self-organized oscillations in clogging and unclogging of the two species. Apart from statistical physics, our results are of relevance for fields like biology, chemistry, and crowd management, where ions, microparticles, pedestrians, or other particles are driven in opposite directions through constrictions.

  6. Spatio-temporal patterns of sediment particle movement on 2D and 3D bedforms

    NASA Astrophysics Data System (ADS)

    Tsubaki, Ryota; Baranya, Sándor; Muste, Marian; Toda, Yuji

    2018-06-01

    An experimental study was conducted to explore sediment particle motion in an open channel and its relationship to bedform characteristics. High-definition submersed video cameras were utilized to record images of particle motion over a dune's length scale. Image processing was conducted to account for illumination heterogeneity due to bedform geometric irregularity and light reflection at the water's surface. Identification of moving particles using a customized algorithm was subsequently conducted and then the instantaneous velocity distribution of sediment particles was evaluated using particle image velocimetry. Obtained experimental results indicate that the motion of sediment particles atop dunes differs depending on dune geometry (i.e., two-dimensional or three-dimensional, respectively). Sediment motion and its relationship to dune shape and dynamics are also discussed.

  7. Model predictions and visualization of the particle flux on the surface of Mars.

    PubMed

    Cucinotta, Francis A; Saganti, Premkumar B; Wilson, John W; Simonsen, Lisa C

    2002-12-01

    Model calculations of the particle flux on the surface of Mars due to the Galactic Cosmic Rays (GCR) can provide guidance on radiobiological research and shielding design studies in support of Mars exploration science objectives. Particle flux calculations for protons, helium ions, and heavy ions are reported for solar minimum and solar maximum conditions. These flux calculations include a description of the altitude variations on the Martian surface using the data obtained by the Mars Global Surveyor (MGS) mission with its Mars Orbiter Laser Altimeter (MOLA) instrument. These particle flux calculations are then used to estimate the average particle hits per cell at various organ depths of a human body in a conceptual shelter vehicle. The estimated particle hits by protons for an average location at skin depth on the Martian surface are about 10 to 100 particle-hits/cell/year and the particle hits by heavy ions are estimated to be 0.001 to 0.01 particle-hits/cell/year.

  8. Electrically Guided Assembly of Colloidal Particles

    NASA Astrophysics Data System (ADS)

    Ristenpart, W. D.; Aksay, I. A.; Saville, D. A.

    2002-11-01

    In earlier work it was shown that the strength and frequency of an applied electric field alters the dynamic arrangement of particles on an electrode. Two-dimensional 'gas,' 'liquid' and 'solid' arrangements were formed, depending on the field strength and frequency. Since the particles are similarly charged, yet migrate over large distances under the influence of steady or oscillatory fields, it is clear that both hydrodynamic and electrical processes are involved. Here we report on an extensive study of electrically induced ordering in a parallel electrode cell. First, we discuss the kinetics of aggregation in a DC field as measured using video microscopy and digital image analysis. Rate constants were determined as a function of applied electric field strength and particle zeta potential. The kinetic parameters are compared to models based on electrohydrodynamic and electroosmotic fluid flow mechanisms Second, using monodisperse micron-sized particles, we examined the average interparticle spacing over a wide range of applied frequencies and field strengths. Variation of these parameters allows formation of closely-spaced arrangements and ordered arrays of widely separated particles. We find that there is a strong dependence on frequency, but there is surprisingly little influence of the electric field strength past a small threshold. Last, we present experiments with binary suspensions of similarly sized particles with negative but unequal surface potentials. A long-range lateral attraction is observed in an AC field. Depending on the frequency, this attractive interaction results in a diverse set of aggregate morphologies, including superstructured hexagonal lattices. These results are discussed in terms of induced dipole-dipole interactions and electrohydrodynamic flow. Finally, we explore the implications for practical applications.

  9. Microspectroscopic Analysis of Anthropogenic- and Biogenic-Influenced Aerosol Particles during the SOAS Field Campaign

    NASA Astrophysics Data System (ADS)

    Ault, A. P.; Bondy, A. L.; Nhliziyo, M. V.; Bertman, S. B.; Pratt, K.; Shepson, P. B.

    2013-12-01

    During the summer, the southeastern United States experiences a cooling haze due to the interaction of anthropogenic and biogenic aerosol sources. An objective of the summer 2013 Southern Oxidant and Aerosol Study (SOAS) was to improve our understanding of how trace gases and aerosols are contributing to this relative cooling through light scattering and absorption. To improve understanding of biogenic-anthropogenic interactions through secondary organic aerosol (SOA) formation on primary aerosol cores requires detailed physicochemical characterization of the particles after uptake and processing. Our measurements focus on single particle analysis of aerosols in the accumulation mode (300-1000 nm) collected using a multi orifice uniform deposition impactor (MOUDI) at the Centreville, Alabama SEARCH site. Particles were characterized using an array of microscopic and spectroscopic techniques, including: scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), and Raman microspectroscopy. These analyses provide detailed information on particle size, morphology, elemental composition, and functional groups. This information is combined with mapping capabilities to explore individual particle spatial patterns and how that impacts structural characteristics. The improved understanding will be used to explore how sources and processing (such as SOA coating of soot) change particle structure (i.e. core shell) and how the altered optical properties impact air quality/climate effects on a regional scale.

  10. Controlling Particle Morphologies at Fluid Interfaces: Macro- and Micro- approaches

    NASA Astrophysics Data System (ADS)

    Beesabathuni, Shilpa Naidu

    The controlled generation of varying shaped particles is important for many applications: consumer goods, biomedical diagnostics, food processing, adsorbents and pharmaceuticals which can benefit from the availability of geometrically complex and chemically inhomogeneous particles. This thesis presents two approaches to spherical and non-spherical particle synthesis using macro and microfluidics. In the first approach, a droplet microfluidic technique is explored to fabricate spherical conducting polymer, polyaniline, particles with precise control over morphology and functionality. Microfluidics has recently emerged as an important alternate to the synthesis of complex particles. The conducting polymer, polyaniline, is widely used and known for its stability, high conductivity, and favorable redox properties. In this approach, monodisperse micron-sized polyaniline spherical particles were synthesized using two-phase droplet microfluidics from Aniline and Ammonium persulfate oxidative polymerization in an oil-based continuous phase. The morphology of the polymerized particles is porous in nature which can be used for encapsulation as well as controlled release applications. Encapsulation of an enzyme, glucose oxidase, was also performed using the technique to synthesize microspheres for glucose sensing. The polymer microspheres were characterized using SEM, UV-Vis and EDX to understand the relationship between their microstructure and stability. In the second approach, molten drop impact in a cooling aqueous medium to generate non-spherical particles was explored. Viscoelastic wax based materials are widely used in many applications and their performance and application depends on the particle morphology and size. The deformation of millimeter size molten wax drops as they impacted an immiscible liquid interface was investigated. Spherical molten wax drops impinged on a cooling water bath, then deformed and as a result of solidification were arrested into various

  11. Complete particle-pair annihilation as a dynamical signature of the spectral singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, G.R.; Zhang, X.Z.; Song, Z., E-mail: nkquantum@gmail.com

    2014-10-15

    Motivated by the physical relevance of a spectral singularity of interacting many-particle system, we explore the dynamics of two bosons as well as fermions in one-dimensional system with imaginary delta interaction strength. Based on the exact solution, it shows that the two-particle collision leads to amplitude-reduction of the wave function. For fermion pair, the amplitude-reduction depends on the spin configuration of two particles. In both cases, the residual amplitude can vanish when the relative group velocity of two single-particle Gaussian wave packets with equal width reaches the magnitude of the interaction strength, exhibiting complete particle-pair annihilation at the spectral singularity.more » - Highlights: • We investigate the physical relevance of a spectral singularity. • The two-particle collision leads to amplitude-reduction of the wave function. • There is a singularity spectrum which leads to complete particle-pair annihilation. • Complete particle-pair annihilation can only occur for two distinguishable bosons and singlet fermions. • Pair annihilation provides a detection method of the spectral singularity in the experiment.« less

  12. Exposure to Inhalable, Respirable, and Ultrafine Particles in Welding Fume

    PubMed Central

    Pesch, Beate

    2012-01-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m−3 for inhalable and 1.29 mg m−3 for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m−3). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging. PMID:22539559

  13. Exposure to inhalable, respirable, and ultrafine particles in welding fume.

    PubMed

    Lehnert, Martin; Pesch, Beate; Lotz, Anne; Pelzer, Johannes; Kendzia, Benjamin; Gawrych, Katarzyna; Heinze, Evelyn; Van Gelder, Rainer; Punkenburg, Ewald; Weiss, Tobias; Mattenklott, Markus; Hahn, Jens-Uwe; Möhlmann, Carsten; Berges, Markus; Hartwig, Andrea; Brüning, Thomas

    2012-07-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging.

  14. Interactions between meteoric smoke particles and the stratospheric aerosol layer

    NASA Astrophysics Data System (ADS)

    Mann, G. W.; Marshall, L.; Brooke, J. S. A.; Dhomse, S.; Plane, J. M. C.; Feng, W.; Neely, R.; Bardeen, C.; Bellouin, N.; Dalvi, M.; Johnson, C.; Abraham, N. L.; Schmidt, A.; Carslaw, K. S.; Chipperfield, M.; Deshler, T.; Thomason, L. W.

    2017-12-01

    In-situ measurements in the Arctic, Antarctic and at mid-latitudes suggest a widespread presence of meteoric smoke particles (MSPs), as an inclusion within a distinct class of stratospheric aerosol particles. We apply the UM-UKCA stratosphere-troposphere composition-climate model, with interactive aerosol microphysics, to map the global distribution of these "meteoric-sulphuric particles" and explore the implications of their presence. Comparing to balloon-borne stratospheric aerosol measurements, we indirectly constrain the uncertain MSP flux into the upper mesosphere, and assess whether meteoric inclusion can explain observed refractory/non-volatile particle concentrations. Our experiments suggest meteoric-sulphuric particles are present at all latitudes, the Junge layer transitioning from mostly homogeneously nucleated particles at the bottom, to mostly meteoric-sulphuric particles at the top. We find MSPs exert a major influence on the quiescent Junge layer, with meteoric-sulphuric particles generally bigger than homogeneously nucleated particles, and therefore more rapidly removed into the upper troposphere. Resolving the smoke interactions weakens homogeneous nucleation in polar spring, reduces the quiescent sulphur burden, and improves comparisons to a range of different stratospheric aerosol measurements. The refractory nature of meteoric-sulphuric particles also means they "survive" ascent through the uppermost Junge layer, whereas homogeneously nucleated particles evaporate completely. Simulations through the Pinatubo-perturbed period are more realistic, with greater volcanic enhancement of effective radius, causing faster decay towards quiescent conditions, both effects matching better with observations. Overall, our experiments suggest meteoric-sulphuric particles are an important component of the Junge layer, strongly influential in both quiescent and volcanically perturbed conditions.

  15. Are glass fiber particles released during the use of electronic cigarettes? Development of a semi-quantitative approach to detect glass particle emission due to vaping.

    PubMed

    Shin, Jae-Won; Jo, Sang-Hee; Kim, Ki-Hyun; Song, Hee-Nam; Kang, Chang-Hee; Bolan, Nanthi; Hong, Jongki

    2018-05-04

    This study investigated the emission characteristics of glass particles resulting from smoking electronic cigarettes (ECs). First, the most suitable filter for the collection of glass particles was explored by examining the performance (reliability) of various types of filters. A polycarbonate filter was determined as the optimum choice to collect glass particles in EC aerosol. A cartomizer was filled with EC refill solution composed of an equal volume of propylene glycol (PG) and vegetable glycol (VG). To simulate the potential conditions for glass particle emission, EC vaped aerosols were collected at three distinctive puffing intervals: (1) 0-10 puffs, (2) 101-110 puffs, and (3) 201-210 puffs (flow rate of 1 L min -1 , 2 s per puff, and 10 puffs per sample). Glass particles were observed as early as after 100 times puffing from certain products, while after 200 from others. Thus, glass particles were generated by increasing the number of puffs and usage of the EC cartomizer. The analysis of glass particles collected onto polycarbonate filters by scanning electron microscopy (SEM)/energy dispersive X-ray spectroscopy (EDS) confirmed the presence of glass particles in samples collected after puffing 100-200 times. The study demonstrated that the possibility of glass particle emissions from the EC device increased considerably with the increasing number of total puffs. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Resuspension of particles in an oscillating grid turbulent flow using PIV and 3D-PTV

    NASA Astrophysics Data System (ADS)

    H, Traugott; T, Hayse; A, Liberzon

    2011-12-01

    Description of the mechanisms responsible for the initiation of particle motion from a surface and re-entrainment of particles into suspension remains a challenge, partially due to the technical difficulties to quantify the forces applied on the particles and the collection of high resolution data of particle displacements simultaneously. In this study we explore the process of initial entrainment of spherical particles from smooth beds into zero-mean-shear turbulent flow in an oscillating grid chamber. Particle image velocimetry (PIV) and three-dimensional particle tracking velocimetry (3D-PTV) are used to correlate in a quantitative manner the turbulent flow properties responsible for pick-up, detachment and re-entrainment of particles. The results are compared to the existing models of critical shear velocity and provide further insight into the resuspension process of spherical particles in the transitional range of particle size Reynolds numbers 2 <= Rep <= 500.

  17. Effects of Energetic and Inert Nano Particles on Burning Liquid Ethanol Droplets

    NASA Astrophysics Data System (ADS)

    Plascencia, Miguel; Sim, Hyung Sub; Vargas, Andres; Smith, Owen; Karagozian, Ann

    2017-11-01

    This study explores the effects of nano particulate additives on ethanol fuel droplet combustion in a quiescent environment. Two different types of droplet combustion experiments were performed: one involving the classic single droplet suspended from a quartz fiber and the other involving a burning droplet that has continual fuel delivery via a quartz capillary. Two alternative nano particles were explored here to demonstrate the effect of energetic additives: reactive nano aluminum (nAl) and inert nano silicon dioxide (nSiO2), each with average diameter 80 nm. Simultaneous high speed visible and OH* chemiluminescence images were taken to determine burning rate constants (K) and to study flame and droplet characteristics with varying particulate concentrations. Particle/vapor ejections were seen in continuously fed droplet experiments, while rod-suspended burning droplets showed limited particle ejection. The nSiO2 -laden, rod-suspended droplets formed a porous, shell-like structure resembling the shape of a droplet at higher nSiO2 concentrations, in contrast to smaller residue structures for nAl-laden droplets. Changes in K depended on concentrations of nAl and nSiO2 as well as the method of droplet formation, and TEM images of particle residue revealed additional insights. Supported by AFOSR Grant FA9550-15-1-0339.

  18. TopoDrive and ParticleFlow--Two Computer Models for Simulation and Visualization of Ground-Water Flow and Transport of Fluid Particles in Two Dimensions

    USGS Publications Warehouse

    Hsieh, Paul A.

    2001-01-01

    This report serves as a user?s guide for two computer models: TopoDrive and ParticleFlow. These two-dimensional models are designed to simulate two ground-water processes: topography-driven flow and advective transport of fluid particles. To simulate topography-driven flow, the user may specify the shape of the water table, which bounds the top of the vertical flow section. To simulate transport of fluid particles, the model domain is a rectangle with overall flow from left to right. In both cases, the flow is under steady state, and the distribution of hydraulic conductivity may be specified by the user. The models compute hydraulic head, ground-water flow paths, and the movement of fluid particles. An interactive visual interface enables the user to easily and quickly explore model behavior, and thereby better understand ground-water flow processes. In this regard, TopoDrive and ParticleFlow are not intended to be comprehensive modeling tools, but are designed for modeling at the exploratory or conceptual level, for visual demonstration, and for educational purposes.

  19. Belle2VR: A Virtual-Reality Visualization of Subatomic Particle Physics in the Belle II Experiment.

    PubMed

    Duer, Zach; Piilonen, Leo; Glasson, George

    2018-05-01

    Belle2VR is an interactive virtual-reality visualization of subatomic particle physics, designed by an interdisciplinary team as an educational tool for learning about and exploring subatomic particle collisions. This article describes the tool, discusses visualization design decisions, and outlines our process for collaborative development.

  20. Indirect Charged Particle Detection: Concepts and a Classroom Demonstration

    ERIC Educational Resources Information Center

    Childs, Nicholas B.; Horányi, Mihály; Collette, Andrew

    2013-01-01

    We describe the principles of macroscopic charged particle detection in the laboratory and their connections to concepts taught in the physics classroom. Electrostatic dust accelerator systems, capable of launching charged dust grains at hypervelocities (1-100 km/s), are a critical tool for space exploration. Dust grains in space typically have…

  1. Real-time dynamics of high-velocity micro-particle impact

    NASA Astrophysics Data System (ADS)

    Veysset, David; Hsieh, Alex; Kooi, Steve; Maznev, Alex A.; Tang, Shengchang; Olsen, Bradley D.; Nelson, Keith A.

    High-velocity micro-particle impact is important for many areas of science and technology, from space exploration to the development of novel drug delivery platforms. We present real-time observations of supersonic micro-particle impacts using multi-frame imaging. In an all optical laser-induced projectile impact test, a monolayer of micro-particles is placed on a transparent substrate coated with a laser absorbing polymer layer. Ablation of a laser-irradiated polymer region accelerates the micro-particles into free space with speeds up to 1.0 km/s. The particles are monitored during the impact on the target with an ultrahigh-speed multi-frame camera that can record up to 16 images with time resolution as short as 3 ns. In particular, we investigated the high-velocity impact deformation response of poly(urethane urea) (PUU) elastomers to further the fundamental understanding of the molecular influence on dynamical behaviors of PUUs. We show the dynamic-stiffening response of the PUUs and demonstrate the significance of segmental dynamics in the response. We also present movies capturing individual particle impact and penetration in gels, and discuss the observed dynamics. The results will provide an impetus for modeling high-velocity microscale impact responses and high strain rate deformation in polymers, gels, and other materials.

  2. Particle Scattering in the Resonance Regime: Full-Wave Solution for Axisymmetric Particles with Large Aspect Ratios

    NASA Technical Reports Server (NTRS)

    Zuffada, Cinzia; Crisp, David

    1997-01-01

    Reliable descriptions of the optical properties of clouds and aerosols are essential for studies of radiative transfer in planetary atmospheres. The scattering algorithms provide accurate estimates of these properties for spherical particles with a wide range of sizes and refractive indices, but these methods are not valid for non-spherical particles (e.g., ice crystals, mineral dust, and smoke). Even though a host of methods exist for deriving the optical properties of nonspherical particles that are very small or very large compared with the wavelength, only a few methods are valid in the resonance regime, where the particle dimensions are comparable with the wavelength. Most such methods are not ideal for particles with sharp edges or large axial ratios. We explore the utility of an integral equation approach for deriving the single-scattering optical properties of axisymmetric particles with large axial ratios. The accuracy of this technique is shown for spheres of increasing size parameters and an ensemble of randomly oriented prolate spheroids of size parameter equal to 10.079368. In this last case our results are compared with published results obtained with the T-matrix approach. Next we derive cross sections, single-scattering albedos, and phase functions for cylinders, disks, and spheroids of ice with dimensions extending from the Rayleigh to the geometric optics regime. Compared with those for a standard surface integral equation method, the storage requirement and the computer time needed by this method are reduced, thus making it attractive for generating databases to be used in multiple-scattering calculations. Our results show that water ice disks and cylinders are more strongly absorbing than equivalent volume spheres at most infrared wavelengths. The geometry of these particles also affects the angular dependence of the scattering. Disks and columns with maximum linear dimensions larger than the wavelength scatter much more radiation in the forward

  3. A particle-particle collision strategy for arbitrarily shaped particles at low Stokes numbers

    NASA Astrophysics Data System (ADS)

    Daghooghi, Mohsen; Borazjani, Iman

    2016-11-01

    We present a collision strategy for particles with any general shape at low Stokes numbers. Conventional collision strategies rely upon a short -range repulsion force along particles centerline, which is a suitable choice for spherical particles and may not work for complex-shaped particles. In the present method, upon the collision of two particles, kinematics of particles are modified so that particles have zero relative velocity toward each other along the direction in which they have the minimum distance. The advantage of this novel technique is that it guaranties to prevent particles from overlapping without unrealistic bounce back at low Stokes numbers, which may occur if repulsive forces are used. This model is used to simulate sedimentation of many particles in a vertical channel and suspensions of non-spherical particles under simple shear flow. This work was supported by the American Chemical Society (ACS) Petroleum Research Fund (PRF) Grant Number 53099-DNI9. The computational resources were partly provided by the Center for Computational Research (CCR) at the University at Buffalo.

  4. The Entry of Nano-dust Particles into the Terrestrial Magnetosphere

    NASA Astrophysics Data System (ADS)

    Horanyi, M.; Juhasz, A.

    2016-12-01

    Nano-dust particles have been suggested to be responsible for spurious antenna signals on several spacecraft near 1 AU. Most of these tiny motes are generated in the solar vicinity where the collision-rate between larger inward migrating dust particles increases generating copious amounts of smaller dust grains. The vast majority of the dust grains is predicted to be lost to the Sun, but a fraction of them can be expelled by radiation pressure, and the solar wind plasma flow. Particles in the nano-meter size range can be incorporated in the solar wind, and arrive near 1 AU with characteristic speeds of approximately 400 km/s. Larger, but still submicron sized particles, that are expelled by radiation pressure, represent the so-called beta-meteoroid population. Both of these populations of dust particles can be detected by dedicated dust instruments near 1 AU. A fraction of these particles can also penetrate the terrestrial magnetosphere and possibly bombard spacecraft orbiting the Earth. This talk will explore the dynamics of nano-grains and beta-meteoroids entering the magnetosphere, and predict their spatial, mass and speed distributions as function of solar wind conditions.

  5. The magnetic particle plume solar sail concept

    NASA Astrophysics Data System (ADS)

    Knuth, William H.

    2000-01-01

    A magnetic particle space radiator was proposed in the late 1950s as a means to dissipate waste heat from space nuclear systems. The concept was a plume of hot magnetic particles confined to and traversing a magnetic field produced by super conducting magnets in the space vehicle. The large surface area of the hot particles was expected to effectively radiate away the heat. The cooling particles followed along the lines of the magnetic field and eventually returned to the vehicle where they again picked up a fresh charge of waste heat for return out to the plume. This paper presents a new concept for consideration. The same basic magnetic particle plume idea is proposed in this paper, except the purpose of the plume would be to receive momentum (and possibly electric power) from the solar wind in the manner of a solar sail. Recent nano-technologies allow the magnetic particles to be 2-3 orders of magnitude smaller than envisioned for the heat radiator, and the magnetic field would be stronger than we envisioned in the '50s. The application of the magnetic solar sail would be for propelling space-faring vehicles on long duration exploration of the solar system and possibly beyond. A first look is provided at the elements of the system, together with an estimate of the thrust potential and the approximate weights of the system. The system appears to have the potential to develop on the order of 50lb and 100lb of thrust and weight on the order of 15,000lb .

  6. Multi scale modeling of ignition and combustion of micro and nano aluminum particles

    NASA Astrophysics Data System (ADS)

    Puri, Puneesh

    With renewed interest in nano scale energetic materials like aluminum, many fundamental issues concerning the ignition and combustion characteristics at nano scales, remain to be clarified. The overall aim of the current study is the establishment of a unified theory accommodating the various processes and mechanisms involved in the combustion and ignition of aluminum particles at micro and nano scales. A comprehensive review on the ignition and combustion of aluminum particles at multi scales was first performed identifying various processes and mechanisms involved. Research focus was also placed on the establishment of a Molecular Dynamics (MD) simulation tool to investigate the characteristics of nano-particulate aluminum through three major studies. The general computational framework involved parallelized preprocessing, post-processing and main code with capability to simulate different ensembles using appropriate algorithms. Size dependence of melting temperature of pure aluminum particles was investigated in the first study. Phenomena like dynamic coexistence of solid and liquid phase and effect of surface charges on melting were explored. The second study involved the study of effect of defects in the form of voids on melting of bulk and particulate phase aluminum. The third MD study was used to analyze the thermo-mechanical behavior of nano-sized aluminum particles with total diameter of 5-10 nm and oxide thickness of 1-2.5 nm. The ensuing solid-solid and solid-liquid phase changes in the core and shell, stresses developed within the shell, and the diffusion of aluminum cations in the oxide layer, were explored in depth for amorphous and crystalline oxide layers. In the limiting case, the condition for pyrophoricity/explosivity of nano-particulate aluminum was analyzed and modified. The size dependence of thermodynamic properties at nano scales were considered and incorporated into the existing theories developed for micro and larger scales. Finally, a

  7. NIMROD Modeling of Sawtooth Modes Using Hot-Particle Closures

    NASA Astrophysics Data System (ADS)

    Kruger, Scott; Jenkins, T. G.; Held, E. D.; King, J. R.

    2015-11-01

    In DIII-D shot 96043, RF heating gives rise to an energetic ion population that alters the sawtooth stability boundary, replacing conventional sawtooth cycles by longer-period, larger-amplitude `giant sawtooth' oscillations. We explore the use of particle-in-cell closures within the NIMROD code to numerically represent the RF-induced hot-particle distribution, and investigate the role of this distribution in determining the altered mode onset threshold and subsequent nonlinear evolution. Equilibrium reconstructions from the experimental data are used to enable these detailed validation studies. Effects of other parameters on the sawtooth behavior, such as the plasma Lundquist number and hot-particle beta-fraction, are also considered. The fast energetic particles present many challenges for the PIC closure. We review new algorithm and performance improvements to address these challenges, and provide a preliminary assessment of the efficacy of the PIC closure versus a continuum model for energetic particle modeling. We also compare our results with those of, and discuss plans for a more complete validation campaign for this discharge. Supported by US Department of Energy via the SciDAC Center for Extended MHD Modeling (CEMM).

  8. Particle Acceleration at a Twin CME at 1 AU

    NASA Astrophysics Data System (ADS)

    Parker, L. N.; Li, G.

    2017-12-01

    We present results from both the Particle Acceleration and Transport in the Heliosphere (PATH) and Particle Acceleration at Multiple Shocks (PAMS) models for a twin CME scenario. The PATH model follows a CME using a numerical MHD module and solves the Parker transport equation at the shock yielding the accelerated particle spectrum, while PAMS solves the steady-state cosmic ray transport equation at an individual shock analytically to yield the diffusive shock acceleration (DSA) spectrum. We address the injection of an upstream particle distribution into the acceleration process for a two shock system at 1 AU. Only those particles that exceed a theoretically motivated prescribed injection energy, Einj, and up to a maximum injection energy (Emax) appropriate for quasi-parallel and quasi-perpendicular shocks (Zank et al., 2000, 2006; Dosch and Shalchi, 2010) are injected. Results from PAMS are then compared to observations at 1 AU from the Advanced Composition Explorer (ACE) spacecraft. In addition, we test the concept of electron acceleration at low injection energies for a single and multiple shock system using the same method as in Neergaard Parker and Zank, 2012 and Neergaard Parker et al., 2014.

  9. Particles. Learning in Science Project. Working Paper No. 18.

    ERIC Educational Resources Information Center

    Happs, John

    One area explored in the second (in-depth) phase of the Learning in Science Project was "children's science," defined as views of the world and the meanings for words that children have and bring with them to science lessons. The investigation reported focuses on students' thinking regarding their views on particles and particle…

  10. Stochastic mechanics of loose boundary particle transport in turbulent flow

    NASA Astrophysics Data System (ADS)

    Dey, Subhasish; Ali, Sk Zeeshan

    2017-05-01

    In a turbulent wall shear flow, we explore, for the first time, the stochastic mechanics of loose boundary particle transport, having variable particle protrusions due to various cohesionless particle packing densities. The mean transport probabilities in contact and detachment modes are obtained. The mean transport probabilities in these modes as a function of Shields number (nondimensional fluid induced shear stress at the boundary) for different relative particle sizes (ratio of boundary roughness height to target particle diameter) and shear Reynolds numbers (ratio of fluid inertia to viscous damping) are presented. The transport probability in contact mode increases with an increase in Shields number attaining a peak and then decreases, while that in detachment mode increases monotonically. For the hydraulically transitional and rough flow regimes, the transport probability curves in contact mode for a given relative particle size of greater than or equal to unity attain their peaks corresponding to the averaged critical Shields numbers, from where the transport probability curves in detachment mode initiate. At an inception of particle transport, the mean probabilities in both the modes increase feebly with an increase in shear Reynolds number. Further, for a given particle size, the mean probability in contact mode increases with a decrease in critical Shields number attaining a critical value and then increases. However, the mean probability in detachment mode increases with a decrease in critical Shields number.

  11. From Waves to Particle Tracks and Quantum Probabilities

    NASA Astrophysics Data System (ADS)

    Falkenburg, Brigitte

    Here, the measurement methods for identifying massive charged particles are investigated. They have been used from early cosmic ray studies up to the present day. Laws such as the classical Lorentz force and Einstein's relativistic kinematics were established before the rise of quantum mechanics. Later, it became crucial to measure the energy loss of charged particles in matter. In 1930, Bethe developed a semi-classical model based on the quantum mechanics of scattering. In the early 1930s, he and others calculated the passage of charged particles through matter including pair creation and bremsstrahlung. Due to missing trust in quantum electrodynamics, however, only semi-empirical methods were employed in order to estimate the mass and charge from the features of particle tracks. In 1932, Anderson inserted a lead plate into the cloud chamber in order to determine the flight direction and charge of the `positive electron'. In the 1940s, nuclear emulsions helped to resolve puzzles about particle identification and quantum electrodynamics. Later, the measurement theory was extended in a cumulative process by adding conservation laws for dynamic properties, probabilistic quantum formulas for resonances, scattering cross sections, etc. The measurement method was taken over from cosmic ray studies to the era of particle accelerators, and finally taken back from there to astroparticle physics. The measurement methods remained the same, but in the transition from particle to astroparticle physics the focus of interest shifted. Indeed, the experimental methods of both fields explore the grounds of `new physics' in complementary ways.

  12. Cosmology of Universe Particles and Beyond

    NASA Astrophysics Data System (ADS)

    Xu, Wei

    2016-06-01

    For the first time in history, all properties of cosmology particles are uncovered and described concisely and systematically, known as the elementary particles in contemporary physics.Aligning with the synthesis of the virtual and physical worlds in a hierarchical taxonomy of the universe, this theory refines the topology framework of cosmology, and presents a new perspective of the Yin Yang natural laws that, through the processes of creation and reproduction, the fundamental elements generate an infinite series of circular objects and a Yin Yang duality of dynamic fields that are sequenced and transformed states of matter between the virtual and physical worlds.Once virtual objects are transformed, they embody various enclaves of energy states, known as dark energy, quarks, leptons, bosons, protons, and neutrons, characterized by their incentive oscillations of timestate variables in a duality of virtual realities: energy and time, spin and charge, mass and space, symmetry and antisymmetry.As a consequence, it derives the fully-scaled quantum properties of physical particles in accordance with numerous historical experiments, and has overcome the limitations of uncertainty principle and the Standard Model, towards concisely exploring physical nature and beyond...

  13. Lessons learned from and the future for NASA's Small Explorer Program

    NASA Technical Reports Server (NTRS)

    Newton, George P.

    1991-01-01

    NASA started the Small Explorer Program to provide space scientists with an opportunity to conduct space science research in the Explorer Program using scientific payloads launched on small-class expendable launch vehicles. A series of small payload, scientific missions was envisioned that could be launched at the rate of one to two missions per year. Three missions were selected in April 1989: Solar Anomalous and Magnetospheric Particle Explorer, Fast Auroral Snapshot Explorer, and Sub-millimeter Wave Astronomy. These missions are planned for launch in June 1992, September 1994 and June 1995, respectively. At a program level, this paper presents the history, objectives, status, and lessons learned which may be applicable to similar programs, and discusses future program plans.

  14. Microexplosions and ignition dynamics in engineered aluminum/polymer fuel particles

    DOE PAGES

    Rubio, Mario A.; Gunduz, I. Emre; Groven, Lori J.; ...

    2016-11-11

    Aluminum particles are widely used as a metal fuel in solid propellants. However, poor combustion efficiencies and two-phase flow losses result due in part to particle agglomeration. Engineered composite particles of aluminum (Al) with inclusions of polytetrafluoroethylene (PTFE) or low-density polyethylene (LDPE) have been shown to improve ignition and yield smaller agglomerates in solid propellants, recently. Reductions in agglomeration were attributed to internal pressurization and fragmentation (microexplosions) of the composite particles at the propellant surface. We explore the mechanisms responsible for microexplosions in order to better understand the combustion characteristics of composite fuel particles. Single composite particles of Al/PTFE andmore » Al/LDPE with diameters between 100 and 1200 µm are ignited on a substrate to mimic a burning propellant surface in a controlled environment using a CO 2 laser in the irradiance range of 78–7700 W/cm 2. Furthermore, the effects of particle size, milling time, and inclusion content on the resulting ignition delay, product particle size distributions, and microexplosion tendencies are reported. For example particles with higher PTFE content (30 wt%) had laser flux ignition thresholds as low as 77 W/cm 2, exhibiting more burning particle dispersion due to microexplosions compared to the other materials considered. Composite Al/LDPE particles exhibit relatively high ignition thresholds compared to Al/PTFE particles, and microexplosions were observed only with laser fluxes above 5500 W/cm 2 due to low LDPE reactivity with Al resulting in negligible particle self-heating. However, results show that microexplosions can occur for Al containing both low and high reactivity inclusions (LDPE and PTFE, respectively) and that polymer inclusions can be used to tailor the ignition threshold. Furthermore, this class of modified metal particles shows significant promise for application in many different energetic

  15. Lunar and Planetary Science XXXV: Exploration and Observations

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session, "Exploration and Observations" includes the following topics: 1) Charged Particle dose Measurements by the Odyssey/MARIE Instrument in Mars Orbit and Model Calculations; 2) Earth Thermal Field Variations in Dependence from Lunisolar Tides (by Vorotilovo Deep Well Observations); 3) ASTROHAB: A Modular Construction System for Lunar Bases; and 4) Solar Power Satellites for Orbital and Non-Terrestrial Applications.

  16. SMALL-SCALE MAGNETIC ISLANDS IN THE SOLAR WIND AND THEIR ROLE IN PARTICLE ACCELERATION. II. PARTICLE ENERGIZATION INSIDE MAGNETICALLY CONFINED CAVITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khabarova, Olga V.; Zank, Gary P.; Li, Gang

    2016-08-20

    We explore the role of heliospheric magnetic field configurations and conditions that favor the generation and confinement of small-scale magnetic islands associated with atypical energetic particle events (AEPEs) in the solar wind. Some AEPEs do not align with standard particle acceleration mechanisms, such as flare-related or simple diffusive shock acceleration processes related to interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs). As we have shown recently, energetic particle flux enhancements may well originate locally and can be explained by particle acceleration in regions filled with small-scale magnetic islands with a typical width of ∼0.01 au or less, whichmore » is often observed near the heliospheric current sheet (HCS). The particle energization is a consequence of magnetic reconnection-related processes in islands experiencing either merging or contraction, observed, for example, in HCS ripples. Here we provide more observations that support the idea and the theory of particle energization produced by small-scale-flux-rope dynamics (Zank et al. and Le Roux et al.). If the particles are pre-accelerated to keV energies via classical mechanisms, they may be additionally accelerated up to 1–1.5 MeV inside magnetically confined cavities of various origins. The magnetic cavities, formed by current sheets, may occur at the interface of different streams such as CIRs and ICMEs or ICMEs and coronal hole flows. They may also form during the HCS interaction with interplanetary shocks (ISs) or CIRs/ICMEs. Particle acceleration inside magnetic cavities may explain puzzling AEPEs occurring far beyond ISs, within ICMEs, before approaching CIRs as well as between CIRs.« less

  17. New particle formation and growth from methanesulfonic acid, trimethylamine and water.

    PubMed

    Chen, Haihan; Ezell, Michael J; Arquero, Kristine D; Varner, Mychel E; Dawson, Matthew L; Gerber, R Benny; Finlayson-Pitts, Barbara J

    2015-05-28

    New particle formation from gas-to-particle conversion represents a dominant source of atmospheric particles and affects radiative forcing, climate and human health. The species involved in new particle formation and the underlying mechanisms remain uncertain. Although sulfuric acid is commonly recognized as driving new particle formation, increasing evidence suggests the involvement of other species. Here we study particle formation and growth from methanesulfonic acid, trimethylamine and water at reaction times from 2.3 to 32 s where particles are 2-10 nm in diameter using a newly designed and tested flow system. The flow system has multiple inlets to facilitate changing the mixing sequence of gaseous precursors. The relative humidity and precursor concentrations, as well as the mixing sequence, are varied to explore their effects on particle formation and growth in order to provide insight into the important mechanistic steps. We show that water is involved in the formation of initial clusters, greatly enhancing their formation as well as growth into detectable size ranges. A kinetics box model is developed that quantitatively reproduces the experimental data under various conditions. Although the proposed scheme is not definitive, it suggests that incorporating such mechanisms into atmospheric models may be feasible in the near future.

  18. Particle acceleration magnetic field generation, and emission in Relativistic pair jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Kouveliotou, C.; Fishman, G. J.

    2005-01-01

    Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) are responsible for particle acceleration in relativistic pair jets. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic pair jet propagating through a pair plasma. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. Simulation results show that this instability generates and amplifies highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter' I radiation from deflected electrons can have different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. The growth rate of the Weibel instability and the resulting particle acceleration depend on the magnetic field strength and orientation, and on the initial particle distribution function. In this presentation we explore some of the dependencies of the Weibel instability and resulting particle acceleration on the magnetic field strength and orientation, and the particle distribution function.

  19. Elevated plus-maze performance of Fischer-344 rats as a function of age and of exposure to 56Fe particles

    NASA Astrophysics Data System (ADS)

    Rabin, Bernard M.; Carrihill-Knoll, Kirsty L.; Carey, Amanda N.; Shukitt-Hale, Barbara; Joseph, James A.; Foster, Brian C.

    The aging process is characterized by a series of changes in neurochemical functioning and in motor and cognitive performance. In addition to changes in cognitive/behavioral performance, aged rats also show an increase in baseline anxiety measured using the elevated plus-maze. Exposure to 56Fe particles, a component of cosmic rays, produces neurochemical and behavioral changes in young animals which are characteristic of aged organisms. The present study was designed to determine the relationships between aging and exposure to 56Fe particles on anxiety. Fischer-344 (F-344), which were 2, 7, 12, and 16 months of age at the time of irradiation, were exposed to 56Fe particles (50 200 cGy). Concordant with previous results, the oldest rats spent less time exploring the open arms of the maze. Exposure to 56Fe particles also produced decreased exploration of the open arms of the plus-maze. The dose needed to produce increased levels of anxiety was a function of age at the time of irradiation. The dose of 56Fe particles needed to produce a decrease in open arm exploration was significantly lower in the rats that were irradiated at 7 and 12 months of age than in the rats irradiated at 2 months of age. These results suggest the possibility that exposing middle-aged astronauts to cosmic rays during exploratory class missions outside the magnetosphere, and the resultant effects on exploration-induced anxiety, may affect their ability to successfully complete mission requirements.

  20. Evaluation of different strategies for magnetic particle functionalization with DNA aptamers.

    PubMed

    Pérez-Ruiz, Elena; Lammertyn, Jeroen; Spasic, Dragana

    2016-12-25

    The optimal bio-functionalization of magnetic particles is essential for developing magnetic particle-based bioassays. Whereas functionalization with antibodies is generally well established, immobilization of DNA probes, such as aptamers, is not yet fully explored. In this work, four different types of commercially available magnetic particles, coated with streptavidin, maleimide or carboxyl groups, were evaluated for their surface coverage with aptamer bioreceptors, efficiency in capturing target protein and non-specific protein adsorption on their surface. A recently developed aptamer against the peanut allergen, Ara h 1 protein, was used as a model system. Conjugation of biotinylated Ara h 1 aptamer to the streptavidin particles led to the highest surface coverage, whereas the coverage of maleimide particles was 25% lower. Carboxylated particles appeared to be inadequate for DNA functionalization. Streptavidin particles also showed the greatest target capturing efficiency, comparable to the one of particles functionalized with anti-Ara h 1 antibody. The performance of streptavidin particles was additionally tested in a sandwich assay with the aptamer as a capture receptor on the particle surface. While the limit of detection obtained was comparable to the same assay system with antibody as capture receptor, it was superior to previously reported values using the same aptamer in similar assay schemes with different detection platforms. These results point to the promising application of the Ara h 1 aptamer-functionalized particles in bioassay development. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Lifting degeneracy in holographic characterization of colloidal particles using multi-color imaging.

    PubMed

    Ruffner, David B; Cheong, Fook Chiong; Blusewicz, Jaroslaw M; Philips, Laura A

    2018-05-14

    Micrometer sized particles can be accurately characterized using holographic video microscopy and Lorenz-Mie fitting. In this work, we explore some of the limitations in holographic microscopy and introduce methods for increasing the accuracy of this technique with the use of multiple wavelengths of laser illumination. Large high index particle holograms have near degenerate solutions that can confuse standard fitting algorithms. Using a model based on diffraction from a phase disk, we explain the source of these degeneracies. We introduce multiple color holography as an effective approach to distinguish between degenerate solutions and provide improved accuracy for the holographic analysis of sub-visible colloidal particles.

  2. Optical nanoscopy with contact Mie-particles: Resolution analysis

    NASA Astrophysics Data System (ADS)

    Maslov, Alexey V.; Astratov, Vasily N.

    2017-06-01

    The theoretical limits of resolution available in microspherical nanoscopy are explored using incoherent point emitters in the air. The images are calculated using a two-dimensional model and solving the Maxwell equations which account for the wave effects on the sub-wavelength scale of the emitter-microsphere interaction. Based on our results, we propose to use small dielectric particles with diameters λ ≲ D ≲ 2 λ made of a high-refractive-index material n ˜2 for imaging sub-wavelength objects. It is shown that such particles form virtual images below and real images above them. At wavelengths of the Mie resonances, these images have slightly better than ˜λ/4 resolution that can be attributed to the image magnification in close proximity to the object and contributions of its near field. The resonant super-resolution imaging of various point-like objects, such as dye molecules, fluorophores, or nanoplasmonic particles, can be realized by using narrow bandpass optical filters spectrally aligned with the Mie resonances.

  3. Smoothed Particle Inference Analysis of SNR RCW 103

    NASA Astrophysics Data System (ADS)

    Frank, Kari A.; Burrows, David N.; Dwarkadas, Vikram

    2016-04-01

    We present preliminary results of applying a novel analysis method, Smoothed Particle Inference (SPI), to an XMM-Newton observation of SNR RCW 103. SPI is a Bayesian modeling process that fits a population of gas blobs ("smoothed particles") such that their superposed emission reproduces the observed spatial and spectral distribution of photons. Emission-weighted distributions of plasma properties, such as abundances and temperatures, are then extracted from the properties of the individual blobs. This technique has important advantages over analysis techniques which implicitly assume that remnants are two-dimensional objects in which each line of sight encompasses a single plasma. By contrast, SPI allows superposition of as many blobs of plasma as are needed to match the spectrum observed in each direction, without the need to bin the data spatially. This RCW 103 analysis is part of a pilot study for the larger SPIES (Smoothed Particle Inference Exploration of SNRs) project, in which SPI will be applied to a sample of 12 bright SNRs.

  4. Electrical percolation threshold of magnetostrictive inclusions in a piezoelectric matrix composite as a function of relative particle size

    NASA Astrophysics Data System (ADS)

    Barbero, Ever J.; Bedard, Antoine Joseph

    2018-04-01

    Magnetoelectric composites can be produced by embedding magnetostrictive particles in a piezoelectric matrix derived from a piezoelectric powder precursor. Ferrite magnetostrictive particles, if allowed to percolate, can short the potential difference generated in the piezoelectric phase. Modeling a magnetoelectric composite as an aggregate of bi-disperse hard shells, molecular dynamics was used to explore relationships among relative particle size, particle affinity, and electrical percolation with the goal of maximizing the percolation threshold. It is found that two factors raise the percolation threshold, namely the relative size of magnetostrictive to piezoelectric particles, and the affinity between the magnetostrictive and piezoelectric particles.

  5. Volatile particles measured by vapor-particle separator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Meng -Dawn; Corporan, Edwin

    Vapor-Particle Separator (VPS) is a new technology developed for characterization of the volatile fraction of particulate matter in a combustion aerosol population. VPS incorporates a novel metallic membrane and operates in a cross-flow filtration mode for separation of vapor and solid (i.e. non-volatile) particles. Demonstration of the VPS technology on aircraft engine-emitted particles has led to the improvement of the technology and increased confidence on the robustness of its field performance. In this study, the performance of the VPS was evaluated against the Particle Measurement Programme (PMP) volatile particle remover (VPR), a standardized device used in heavy duty diesel enginesmore » for separation and characterization of non-volatile particulate matter. Using tetracontane particles in the laboratory reveals that the VPS performed reasonably well in removing the volatile species. In the field conditions, a single-mode particle size distribution was found for emitted particles from a T63 turboshaft engine at both idle and cruise engine power conditions. Removal of the volatile T63 engine particles by the VPS was consistent with that of PMP VPR. In tests on an F117 turbofan engine, the size distribution at the idle (4% rated) engine power condition was found to be bimodal, with the first mode consisting of particles smaller than 10nm, which are believed to be mostly semi-volatile particles, while the second mode of larger size was a mixture of semi-volatile and non-volatile particles. The distribution was single modal at the 33% rated engine power with no secondary mode observed. Altogether, for particles emitted by both engines, the removal efficiency of the VPS appears to surpass that of the PMP VPR by 8-10%.« less

  6. Volatile particles measured by vapor-particle separator

    DOE PAGES

    Cheng, Meng -Dawn; Corporan, Edwin

    2016-08-25

    Vapor-Particle Separator (VPS) is a new technology developed for characterization of the volatile fraction of particulate matter in a combustion aerosol population. VPS incorporates a novel metallic membrane and operates in a cross-flow filtration mode for separation of vapor and solid (i.e. non-volatile) particles. Demonstration of the VPS technology on aircraft engine-emitted particles has led to the improvement of the technology and increased confidence on the robustness of its field performance. In this study, the performance of the VPS was evaluated against the Particle Measurement Programme (PMP) volatile particle remover (VPR), a standardized device used in heavy duty diesel enginesmore » for separation and characterization of non-volatile particulate matter. Using tetracontane particles in the laboratory reveals that the VPS performed reasonably well in removing the volatile species. In the field conditions, a single-mode particle size distribution was found for emitted particles from a T63 turboshaft engine at both idle and cruise engine power conditions. Removal of the volatile T63 engine particles by the VPS was consistent with that of PMP VPR. In tests on an F117 turbofan engine, the size distribution at the idle (4% rated) engine power condition was found to be bimodal, with the first mode consisting of particles smaller than 10nm, which are believed to be mostly semi-volatile particles, while the second mode of larger size was a mixture of semi-volatile and non-volatile particles. The distribution was single modal at the 33% rated engine power with no secondary mode observed. Altogether, for particles emitted by both engines, the removal efficiency of the VPS appears to surpass that of the PMP VPR by 8-10%.« less

  7. From the IGY to the IHY: A Changing View of the Van Allen Radiation Belts

    NASA Astrophysics Data System (ADS)

    Hudson, M. K.

    2006-12-01

    Discovery of the Van Allen radiation belts by instrumentation flown on Explorer 1 in 1958 was the first major discovery of the Space Age. A view of the belts as static inner and outer zones of energetic particles with different sources, a double-doughnut encircling the Earth, became iconic to the point that their dynamic behavior and solar connection receded from public awareness and apparent scientific import. Then the Cycle 23 maximum in solar activity arrived in 1989-1991, the first approaching the activity level of the International Geophysical Year of 1957-58, when the Van Allen belts were first discovered. Delay in launch of the NASA-Air Force Combined Radiation Release and Effects Satellite, following the Challenger accident in 1986, led to having the right instruments in the right orbit at the right time to detect prompt injection of outer belt electrons and solar energetic protons into the `slot region' between the inner and outer belts, forming new trapped populations which lasted for years in an otherwise benign location. This event in March 1991, along with the great geomagnetic storm of March 1989, and our increased dependence on space technology since the early Explorer days, led to a resurgence of interest in the Van Allen radiation belts and understanding of their connectivity to the Sun. Additional instrumentation from NASA's International Solar Terrestrial Physics Program, the Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) and IMAGE spacecraft from the Explorer program, NOAA and DOD spacecraft, and improved worldwide linkages of groundbased measurements have contributed much since 1991 to our understanding of the dynamic characteristics of the Van Allen belts. Further, the presence of continuous solar wind measurements beginning with the launch of WIND in 1994, and SOHO images of Coronal Mass Ejections and coronal hole sources of high speed solar wind flow have filled in the connection with solar activity qualitatively anticipated

  8. Model Adaptation for Prognostics in a Particle Filtering Framework

    NASA Technical Reports Server (NTRS)

    Saha, Bhaskar; Goebel, Kai Frank

    2011-01-01

    One of the key motivating factors for using particle filters for prognostics is the ability to include model parameters as part of the state vector to be estimated. This performs model adaptation in conjunction with state tracking, and thus, produces a tuned model that can used for long term predictions. This feature of particle filters works in most part due to the fact that they are not subject to the "curse of dimensionality", i.e. the exponential growth of computational complexity with state dimension. However, in practice, this property holds for "well-designed" particle filters only as dimensionality increases. This paper explores the notion of wellness of design in the context of predicting remaining useful life for individual discharge cycles of Li-ion batteries. Prognostic metrics are used to analyze the tradeoff between different model designs and prediction performance. Results demonstrate how sensitivity analysis may be used to arrive at a well-designed prognostic model that can take advantage of the model adaptation properties of a particle filter.

  9. Anomalous mobility of a driven active particle in a steady laminar flow

    NASA Astrophysics Data System (ADS)

    Cecconi, F.; Puglisi, A.; Sarracino, A.; Vulpiani, A.

    2018-07-01

    We study, via extensive numerical simulations, the force–velocity curve of an active particle advected by a steady laminar flow, in the nonlinear response regime. Our model for an active particle relies on a colored noise term that mimics its persistent motion over a time scale . We find that the active particle dynamics shows non-trivial effects, such as negative differential and absolute mobility (NDM and ANM, respectively). We explore the space of the model parameters and compare the observed behaviors with those obtained for a passive particle () advected by the same laminar flow. Our results show that the phenomena of NDM and ANM are quite robust with respect to the details of the considered noise: in particular for finite a more complex force–velocity relation can be observed.

  10. OSCAR: A new modular device for the identification and correlation of low energy particles

    NASA Astrophysics Data System (ADS)

    Dell'Aquila, D.; Lombardo, I.; Verde, G.; Vigilante, M.; Ausanio, G.; Ordine, A.; Miranda, M.; De Luca, M.; Alba, R.; Augey, L.; Barlini, S.; Bonnet, E.; Borderie, B.; Bougault, R.; Bruno, M.; Camaiani, A.; Casini, G.; Chbihi, A.; Cicerchia, M.; Cinausero, M.; Fabris, D.; Faible, Q.; Francalanza, L.; Frankland, J. D.; Grassi, L.; Gramegna, F.; Gruyer, D.; Kordyasz, A. J.; Kozik, T.; LaTorre, R.; Le Neindre, N.; Lopez, O.; Marchi, T.; Morelli, L.; Ottanelli, P.; Parlog, M.; Pastore, G.; Pasquali, G.; Piantelli, S.; Santonocito, D.; Stefanini, A. A.; Tortone, G.; Valdrè, S.; Vient, E.

    2018-01-01

    A new modular and high versatility hodoscope, OSCAR, has been developed and characterized. The aim of this hodoscope is to work as an ancillary detector of present large acceptance heavy ion detectors in specific angular regions where low thresholds and high granularities are needed. We discuss the capabilities of OSCAR in the ΔE-E identification of very low energy light particles, providing a precise map of the thickness uniformity of the ΔE (SSSSD, 20 μm) stage and showing how the thickness gradient affects the identification of particles. Energy spectra of light identified particles produced in Ca+Ca collisions at 35AMeV are used to investigate isospin transport phenomena involving the emission of low energy particles from the quasi-target (QT) source in semi-peripheral nuclear collisions. The possibility to explore particle-particle correlations are also discussed.

  11. Chromatin dynamics during interphase explored by single-particle tracking.

    PubMed

    Levi, Valeria; Gratton, Enrico

    2008-01-01

    Our view of the structure and function of the interphase nucleus has changed drastically in recent years. It is now widely accepted that the nucleus is a well organized and highly compartmentalized organelle and that this organization is intimately related to nuclear function. In this context, chromatin-initially considered a randomly entangled polymer-has also been shown to be structurally organized in interphase and its organization was found to be very important to gene regulation. Relevant and not completely answered questions are how chromatin organization is achieved and what mechanisms are responsible for changes in the positions of chromatin loci in the nucleus. A significant advance in the field resulted from tagging chromosome sites with bacterial operator sequences, and visualizing these tags using green fluorescent protein fused with the appropriate repressor protein. Simultaneously, fluorescence imaging techniques evolved significantly during recent years, allowing observation of the time evolution of processes in living specimens. In this context, the motion of the tagged locus was observed and analyzed to extract quantitative information regarding its dynamics. This review focuses on recent advances in our understanding of chromatin dynamics in interphase with the emphasis placed on the information obtained from single-particle tracking (SPT) experiments. We introduce the basis of SPT methods and trajectory analysis, and summarize what has been learnt by using this new technology in the context of chromatin dynamics. Finally, we briefly describe a method of SPT in a two-photon excitation microscope that has several advantages over methods based on conventional microscopy and review the information obtained using this novel approach to study chromatin dynamics.

  12. Chromatin dynamics during interphase explored by single particle tracking

    PubMed Central

    Levi, Valeria; Gratton, Enrico

    2009-01-01

    Our view of the structure and function of the interphase nucleus has drastically changed in the last years. It is now widely accepted that the nucleus is a well organized and highly compartmentalized organelle and that this organization is intimately related to nuclear function. In this context, chromatin -initially considered a randomly entangled polymer- has also been shown to be structurally organized in interphase and its organization was found to be very important to gene regulation. Relevant and not completely answered questions are how chromatin organization is achieved and what mechanisms are responsible for changes in the positions of chromatin loci in the nucleus. A significant advance in the field resulted from tagging chromosome sites with bacterial operator sequences, and visualizing these tags using green fluorescent protein fused with the appropriate repressor protein. Simultaneously, fluorescence imaging techniques significantly evolved during the last years allowing the observation of the time evolution of processes in living specimens. In this context, the motion of the tagged locus was observed and analyzed to extract quantitative information regarding its dynamics. This review focuses on recent advances in our understanding of chromatin dynamics in interphase with the emphasis placed on the information obtained from single particle tracking (SPT) experiments. We introduce the basis of SPT methods and trajectories analysis, and summarize what has been learnt by using this new technology in the context of chromatin dynamics. Finally, we briefly describe a method of SPT in a two-photon excitation microscope that has several advantages over methods based on conventional microscopy and review the information obtained by using this novel approach to study chromatin dynamics. PMID:18461483

  13. MD Simulation on Collision Behavior Between Nano-Scale TiO₂ Particles During Vacuum Cold Spraying.

    PubMed

    Yao, Hai-Long; Yang, Guan-Jun; Li, Chang-Jiu

    2018-04-01

    Particle collision behavior influences significantly inter-nano particle bonding formation during the nano-ceramic coating deposition by vacuum cold spraying (or aerosol deposition method). In order to illuminate the collision behavior between nano-scale ceramic particles, molecular dynamic simulation was applied to explore impact process between nano-scale TiO2 particles through controlling impact velocities. Results show that the recoil efficiency of the nano-scale TiO2 particle is decreased with the increase of the impact velocity. Nano-scale TiO2 particle exhibits localized plastic deformation during collision at low velocities, while it is intensively deformed by collision at high velocities. This intensive deformation promotes the nano-particle adhesion rather than rebounding off. A relationship between the adhesion energy and the rebound energy is established for the bonding formation of the nano-scale TiO2 particle. The adhesion energy required to the bonding formation between nano-scale ceramic particles can be produced by high velocity collision.

  14. Interaction of Particles and Turbulence in the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Dacles-Mariani, Jennifer S.; Dobrovolskis, A. R.; Cuzzi, J. N.; DeVincenzi, Donald L. (Technical Monitor)

    1996-01-01

    The most widely accepted theories for the formation of the Solar system claim that small solid particles continue to settle into a thin layer at the midplane of the Solar nebula until it becomes gravitationally unstable and collapses directly into km-sized planetesimals. This scenario has been challenged on at least two grounds: (1) due to turbulence, the particles may not settle into a thin layer, and (2) a thin layer may not be unstable. The Solar nebula contains at least three sources of turbulence: radial shear, vertical shear, and thermal convection. The first of these is small and probably negligible, while the last is poorly understood. However, the second contribution is likely to be substantial. The particle-rich layer rotates at nearly the Keplerian speed, but the surrounding gaseous nebula rotates slower because it is partly supported by pressure. The resulting shear generates a turbulent boundary layer which stirs the particles away from the midplane, and forestalls gravitational instability. Our previous work used a 'zero-equation' (Prandtl) model to predict the intensity of shear-generated turbulence, and enabled us to demonstrate numerically that settling of particles to the midplane is self-limiting. However, we neglected the possibility that mass loading by particles might damp the turbulence. To explore this, we have developed a more sophisticated 'one-equation' model which incorporates local generation, transport, and dissipation of turbulence, as well as explicit damping of turbulence by particles. We also include a background level of global turbulence to represent other sources. Our results indicate that damping flattens the distribution of particles somewhat, but that background turbulence thickens the particle layer.

  15. Biosensing Using Magnetic Particle Detection Techniques

    PubMed Central

    Chen, Yi-Ting; Kolhatkar, Arati G.; Zenasni, Oussama; Xu, Shoujun

    2017-01-01

    Magnetic particles are widely used as signal labels in a variety of biological sensing applications, such as molecular detection and related strategies that rely on ligand-receptor binding. In this review, we explore the fundamental concepts involved in designing magnetic particles for biosensing applications and the techniques used to detect them. First, we briefly describe the magnetic properties that are important for bio-sensing applications and highlight the associated key parameters (such as the starting materials, size, functionalization methods, and bio-conjugation strategies). Subsequently, we focus on magnetic sensing applications that utilize several types of magnetic detection techniques: spintronic sensors, nuclear magnetic resonance (NMR) sensors, superconducting quantum interference devices (SQUIDs), sensors based on the atomic magnetometer (AM), and others. From the studies reported, we note that the size of the MPs is one of the most important factors in choosing a sensing technique. PMID:28994727

  16. Interphase and particle dispersion correlations in polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Senses, Erkan

    Particle dispersion in polymer matrices is a major parameter governing the mechanical performance of polymer nanocomposites. Controlling particle dispersion and understanding aging of composites under large shear and temperature variations determine the processing conditions and lifetime of composites which are very important for diverse applications in biomedicine, highly reinforced materials and more importantly for the polymer composites with adaptive mechanical responses. This thesis investigates the role of interphase layers between particles and polymer matrices in two bulk systems where particle dispersion is altered upon deformation in repulsive composites, and good-dispersion of particles is retained after multiple oscillatory shearing and aging cycles in attractive composites. We demonstrate that chain desorption and re-adsorption processes in attractive composites under shear can effectively enhance the bulk microscopic mechanical properties, and long chains of adsorbed layers lead to a denser entangled interphase layer. We further designed experiments where particles are physically adsorbed with bimodal lengths of homopolymer chains to underpin the entanglement effect in interphases. Bimodal adsorbed chains are shown to improve the interfacial strength and used to modulate the elastic properties of composites without changing the particle loading, dispersion state or polymer conformation. Finally, the role of dynamic asymmetry (different mobilities in polymer blends) and chemical heterogeneity in the interphase layer are explored in systems of poly(methyl methacrylate) adsorbed silica nanoparticles dispersed in poly(ethylene oxide) matrix. Such nanocomposites are shown to exhibit unique thermal-stiffening behavior at temperatures above glass transitions of both polymers. These interesting findings suggest that the mobility of the surface-bound polymer is essential for reinforcement in polymer nanocomposites, contrary to existing glassy layer theories

  17. Effects of variation in coagulation and photochemistry parameters on the particle size distributions in the Venus clouds

    NASA Astrophysics Data System (ADS)

    McGouldrick, Kevin

    2017-12-01

    This paper explores the effects that variation in the coalescence efficiency of the Venus cloud particles can have on the structure of the Venus cloud. It is motivated by the acknowledgment of uncertainties in the measured parameters—and the assumptions made to account for them—that define our present knowledge of the particle characteristics. Specifically, we explore the consequence of allowing the coalescence efficiency of supercooled sulfuric acid in the upper clouds to tend to zero. This produces a cloud that occasionally exhibits an enhancement of small particles at altitude (similar to the upper hazes observed by Pioneer Venus and subsequently shown to be somewhat transient). This simulated cloud occasionally exhibits a rapid growth of particle size near cloud base, exhibiting characteristics similar to those seen in the controversial Mode 3 particles. These results demonstrate that a subset of the variations observed as near-infrared opacity variations in the lower and middle clouds of Venus can be explained by microphysical, in addition to dynamical, variations. Furthermore, the existence of a population of particles exhibiting less efficient coalescence efficiencies would support the likelihood of conditions suitable for charge exchange, hence lightning, in the Venus clouds. We recommend future laboratory studies on the coalescence properties of sulfuric acid under the range of conditions experienced in the Venus clouds. We also recommend future in situ measurements to better characterize the properties of the cloud particles themselves, especially composition and particle habits (shapes).[Figure not available: see fulltext.

  18. Physics in ordered and disordered colloidal matter composed of poly(N-isopropylacrylamide) microgel particles.

    PubMed

    Yunker, Peter J; Chen, Ke; Gratale, Matthew D; Lohr, Matthew A; Still, Tim; Yodh, A G

    2014-05-01

    This review collects and describes experiments that employ colloidal suspensions to probe physics in ordered and disordered solids and related complex fluids. The unifying feature of this body of work is its clever usage of poly(N-isopropylacrylamide) (PNIPAM) microgel particles. These temperature-sensitive colloidal particles provide experimenters with a 'knob' for in situ control of particle size, particle interaction and particle packing fraction that, in turn, influence the structural and dynamical behavior of the complex fluids and solids. A brief summary of PNIPAM particle synthesis and properties is given, followed by a synopsis of current activity in the field. The latter discussion describes a variety of soft matter investigations including those that explore formation and melting of crystals and clusters, and those that probe structure, rearrangement and rheology of disordered (jammed/glassy) and partially ordered matter. The review, therefore, provides a snapshot of a broad range of physics phenomenology which benefits from the unique properties of responsive microgel particles.

  19. Aloe vera Induced Biomimetic Assemblage of Nucleobase into Nanosized Particles

    PubMed Central

    Chauhan, Arun; Zubair, Swaleha; Sherwani, Asif; Owais, Mohammad

    2012-01-01

    Aim Biomimetic nano-assembly formation offers a convenient and bio friendly approach to fabricate complex structures from simple components with sub-nanometer precision. Recently, biomimetic (employing microorganism/plants) synthesis of metal and inorganic materials nano-particles has emerged as a simple and viable strategy. In the present study, we have extended biological synthesis of nano-particles to organic molecules, namely the anticancer agent 5-fluorouracil (5-FU), using Aloe vera leaf extract. Methodology The 5-FU nano- particles synthesized by using Aloe vera leaf extract were characterized by UV, FT-IR and fluorescence spectroscopic techniques. The size and shape of the synthesized nanoparticles were determined by TEM, while crystalline nature of 5-FU particles was established by X-ray diffraction study. The cytotoxic effects of 5-FU nanoparticles were assessed against HT-29 and Caco-2 (human adenocarcinoma colorectal) cell lines. Results Transmission electron microscopy and atomic force microscopic techniques confirmed nano-size of the synthesized particles. Importantly, the nano-assembled 5-FU retained its anticancer action against various cancerous cell lines. Conclusion In the present study, we have explored the potential of biomimetic synthesis of nanoparticles employing organic molecules with the hope that such developments will be helpful to introduce novel nano-particle formulations that will not only be more effective but would also be devoid of nano-particle associated putative toxicity constraints. PMID:22403622

  20. Minimizing Concentration Effects in Water-Based, Laminar-Flow Condensation Particle Counters

    PubMed Central

    Lewis, Gregory S.; Hering, Susanne V.

    2013-01-01

    Concentration effects in water condensation systems, such as used in the water-based condensation particle counter, are explored through numeric modeling and direct measurements. Modeling shows that the condensation heat release and vapor depletion associated with particle activation and growth lowers the peak supersaturation. At higher number concentrations, the diameter of the droplets formed is smaller, and the threshold particle size for activation is higher. This occurs in both cylindrical and parallel plate geometries. For water-based systems we find that condensational heat release is more important than is vapor depletion. We also find that concentration effects can be minimized through use of smaller tube diameters, or more closely spaced parallel plates. Experimental measurements of droplet diameter confirm modeling results. PMID:24436507

  1. Particle separation

    NASA Technical Reports Server (NTRS)

    Arnott, W. Patrick (Inventor); Chakrabarty, Rajan K. (Inventor); Moosmuller, Hans (Inventor)

    2011-01-01

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  2. Particle separation

    DOEpatents

    Moosmuller, Hans [Reno, NV; Chakrabarty, Rajan K [Reno, NV; Arnott, W Patrick [Reno, NV

    2011-04-26

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  3. Dielectrophoretic particle-particle interaction under AC electrohydrodynamic flow conditions.

    PubMed

    Lee, Doh-Hyoung; Yu, Chengjie; Papazoglou, Elisabeth; Farouk, Bakhtier; Noh, Hongseok M

    2011-09-01

    We used the Maxwell stress tensor method to understand dielectrophoretic particle-particle interactions and applied the results to the interpretation of particle behaviors under alternating current (AC) electrohydrodynamic conditions such as AC electroosmosis (ACEO) and electrothermal flow (ETF). Distinct particle behaviors were observed under ACEO and ETF. Diverse particle-particle interactions observed in experiments such as particle clustering, particles keeping a certain distance from each other, chain and disc formation and their rotation, are explained based on the numerical simulation data. The improved understanding of particle behaviors in AC electrohydrodynamic flows presented here will enable researchers to design better particle manipulation strategies for lab-on-a-chip applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Identifying airborne metal particles sources near an optoelectronic and semiconductor industrial park

    NASA Astrophysics Data System (ADS)

    Chen, Ho-Wen; Chen, Wei-Yea; Chang, Cheng-Nan; Chuang, Yen-Hsun; Lin, Yu-Hao

    2016-06-01

    The recently developed Central Taiwan Science Park (CTSP) in central Taiwan is home to an optoelectronic and semiconductor industrial cluster. Therefore, exploring the elemental compositions and size distributions of airborne particles emitted from the CTSP would help to prevent pollution. This study analyzed size-fractionated metal-rich particle samples collected in upwind and downwind areas of CTSP during Jan. and Oct. 2013 by using micro-orifice uniform deposited impactor (MOUDI). Correlation analysis, hierarchical cluster analysis and particle mass-size distribution analysis are performed to identify the source of metal-rich particle near the CTSP. Analyses of elemental compositions and particle size distributions emitted from the CTSP revealed that the CTSP emits some metals (V, As, In Ga, Cd and Cu) in the ultrafine particles (< 1 μm). The statistical analysis combines with the particle mass-size distribution analysis could provide useful source identification information. In airborne particles with the size of 0.32 μm, Ga could be a useful pollution index for optoelectronic and semiconductor emission in the CTSP. Meanwhile, the ratios of As/Ga concentration at the particle size of 0.32 μm demonstrates that humans near the CTSP would be potentially exposed to GaAs ultrafine particles. That is, metals such as Ga and As and other metals that are not regulated in Taiwan are potentially harmful to human health.

  5. On the scattering directionality of a dielectric particle dimer of High Refractive Index.

    PubMed

    Barreda, Ángela I; Saleh, Hassan; Litman, Amélie; González, Francisco; Geffrin, Jean-Michel; Moreno, Fernando

    2018-05-22

    Low-losses and directionality effects exhibited by High Refractive Index Dielectric particles make them attractive for applications where radiation direction control is relevant. For instance, isolated metallo-dielectric core-shell particles or aggregates (dimers) of High Refractive Index Dielectric particles have been proposed for building operational switching devices. Also, the possibility of using isolated High Refractive Index Dielectric particles for optimizing solar cells performance has been explored. Here, we present experimental evidence in the microwave range, that a High Refractive Index Dielectric dimer of spherical particles is more efficient for redirecting the incident radiation in the forward direction than the isolated case. In fact, we report two spectral regions in the dipolar spectral range where the incident intensity is mostly scattered in the forward direction. They correspond to the Zero-Backward condition (also observed for isolated particles) and to a new condition, denoted as "near Zero-Backward" condition, which comes from the interaction effects between the particles. The proposed configuration has implications in solar energy harvesting devices and in radiation guiding.

  6. The design and scale-up of spray dried particle delivery systems.

    PubMed

    Al-Khattawi, Ali; Bayly, Andrew; Phillips, Andrew; Wilson, David

    2018-01-01

    The rising demand for pharmaceutical particles with tailored physicochemical properties has opened new markets for spray drying especially for solubility enhancement, improving inhalation medicines and stabilization of biopharmaceuticals. Despite this, the spray drying literature is scattered and often does not address the principles underpinning robust development of pharmaceuticals. It is therefore necessary to present clearer picture of the field and highlight the factors influencing particle design and scale-up. Areas covered: The review presents a systematic analysis of the trends in development of particle delivery systems using spray drying. This is followed by exploring the mechanisms governing particle formation in the process stages. Particle design factors including those of equipment configurations and feed/process attributes were highlighted. Finally, the review summarises the current industrial approaches for upscaling pharmaceutical spray drying. Expert opinion: Spray drying provides the ability to design particles of the desired functionality. This greatly benefits the pharmaceutical sector especially as product specifications are becoming more encompassing and exacting. One of the biggest barriers to product translation remains one of scale-up/scale-down. A shift from trial and error approaches to model-based particle design helps to enhance control over product properties. To this end, process innovations and advanced manufacturing technologies are particularly welcomed.

  7. Development and Characterization of Embedded Sensory Particles Using Multi-Scale 3D Digital Image Correlation

    NASA Technical Reports Server (NTRS)

    Cornell, Stephen R.; Leser, William P.; Hochhalter, Jacob D.; Newman, John A.; Hartl, Darren J.

    2014-01-01

    A method for detecting fatigue cracks has been explored at NASA Langley Research Center. Microscopic NiTi shape memory alloy (sensory) particles were embedded in a 7050 aluminum alloy matrix to detect the presence of fatigue cracks. Cracks exhibit an elevated stress field near their tip inducing a martensitic phase transformation in nearby sensory particles. Detectable levels of acoustic energy are emitted upon particle phase transformation such that the existence and location of fatigue cracks can be detected. To test this concept, a fatigue crack was grown in a mode-I single-edge notch fatigue crack growth specimen containing sensory particles. As the crack approached the sensory particles, measurements of particle strain, matrix-particle debonding, and phase transformation behavior of the sensory particles were performed. Full-field deformation measurements were performed using a novel multi-scale optical 3D digital image correlation (DIC) system. This information will be used in a finite element-based study to determine optimal sensory material behavior and density.

  8. The Advanced Composition Explorer spacecraft lifts off from Pad 17A, CCAS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A Boeing Delta II expendable launch vehicle lifts off with NASA's Advanced Composition Explorer (ACE) observatory at 10:39 a.m. EDT, on Aug. 25, 1997, from Launch Complex 17A, Cape Canaveral Air Station. This is the second Delta launch under the Boeing name and the first from Cape Canaveral. Launch was scrubbed one day by Air Force range safety personnel because two commercial fishing vessels were within the Delta's launch danger area. The ACE spacecraft will study low-energy particles of solar origin and high-energy galactic particles on its one-million-mile journey. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA. Study of these energetic particles may contribute to our understanding of the formation and evolution of the solar system. ACE has a two-year minimum mission lifetime and a goal of five years of service. ACE was built for NASA by the Johns Hopkins Applied Physics Laboratory and is managed by the Explorer Project Office at NASA's Goddard Space Flight Center. The lead scientific institution is the California Institute of Technology (Caltech) in Pasadena, Calif.

  9. Investigations of charged particle motion on the surfaces of dusty, airless solar system bodies (Invited)

    NASA Astrophysics Data System (ADS)

    Dove, A.; Colwell, J. E.

    2013-12-01

    induced motion such as that due to a spacecraft. The resulting particle dynamics are tracked using high-speed, high-resolution video. Future exploration on or near the surfaces of airless bodies will certainly experience complications arising from these dusty environments, where particles may contaminate or interfere with the operation of almost any mechanical equipment. By exploring the dynamic behavior of charged particles in these environments, we can work towards solutions that will enable exploration.

  10. Inertial Particle Migration in the Presence of a Permeate Flow

    NASA Astrophysics Data System (ADS)

    Garcia, Mike; Singelton, Amanda; Pennathur, Sumita

    2016-11-01

    Tangential Flow Filtration (TFF) is a rapid and efficient method for the filtration and separation of suspensions of particles such as viruses, bacteria or cellular material. Enhancing the efficacy of TFF not only requires a detailed understanding of particle transport mechanisms, but also the interactions between these mechanisms and a porous wall. In this work, we numerically and experimentally explore the mechanisms of inertial particle migration in the presence of a permeate flow through the porous walls of a microchannel. Numerically, we develop a force balance model to understand the competition between permeate and inertial forces and the resultant consequences on the particle equilibrium location. Experimentally, we fabricated MEMS TFF devices to study the migration of 5, 10 and 15 µm fluorescent polystyrene beads in straight channels with perpendicular permeate flow rates up to 90% of the inlet flow rate. We find that the permeate flow directly influences the inertial focusing position of the particles, both as a function of downstream channel position and ratio of inlet to outlet flow rate. Comparing experiments to our model, we can identify inertial, viscous and a co-dominant regimes.

  11. Inertial particles in a shearless mixing layer: direct numerical simulations

    NASA Astrophysics Data System (ADS)

    Ireland, Peter; Collins, Lance

    2010-11-01

    Entrainment, the drawing in of external fluid by a turbulent flow, is present in nearly all turbulent processes, from exhaust plumes to oceanic thermoclines to cumulus clouds. While the entrainment of fluid and of passive scalars in turbulent flows has been studied extensively, comparatively little research has been undertaken on inertial particle entrainment. We explore entrainment of inertial particles in a shearless mixing layer across a turbulent-non-turbulent interface (TNI) and a turbulent-turbulent interface (TTI) through direct numerical simulation (DNS). Particles are initially placed on one side of the interface and are advanced in time in decaying turbulence. Our results show that the TTI is more efficient in mixing droplets than the TNI. We also find that without the influence of gravity, over the range of Stokes numbers present in cumulus clouds, particle concentration statistics are essentially independent of the dissipation scale Stokes number. The DNS data agrees with results from experiments performed in a wind tunnel with close parametric overlap. We anticipate that a better understanding of the role of gravity and turbulence in inertial particle entrainment will lead to improved cloud evolution predictions and more accurate climate models. Sponsored by the U.S. NSF.

  12. Transport of particles, drops, and small organisms in density stratified fluids

    NASA Astrophysics Data System (ADS)

    Ardekani, Arezoo M.; Doostmohammadi, Amin; Desai, Nikhil

    2017-10-01

    Sedimenting particles and motile organisms are ubiquitously found in oceans and lakes, where density stratification naturally occurs due to temperature or salinity gradients. We explore the effects of stratification on the fundamental hydrodynamics of settling particles, rising drops, and small organisms. The results of our direct numerical simulations of the sedimentation of particles show that the presence of vertical density gradients in the water column can substantially affect the settling dynamics of a particle, interaction between a pair of particles, and settling rates and microstructure of suspension of particles. We show that elongation of particles affects both the settling orientation and the settling rate of particles in stratified fluids, which will have direct consequences on the vertical flux of particulate matter and carbon flux in the ocean. We further demonstrate an unexpected effect of buoyancy, potentially affecting a broad range of processes at pycnoclines in oceans and lakes. In particular, stratification has a major effect on the flow field, energy expenditure, and nutrient uptake of small organisms. In addition, the role of stratification in pattern formation of bioconvection plumes of algal cells and in biogenic mixing is investigated. In particular, the numerical approach allows for considering the effects of background turbulence and hydrodynamic perturbations produced by swimming organisms, shedding light on the contribution of organisms in the mixing process in aqueous environments.

  13. Images reveal that atmospheric particles can undergo liquid–liquid phase separations

    PubMed Central

    You, Yuan; Renbaum-Wolff, Lindsay; Carreras-Sospedra, Marc; Hanna, Sarah J.; Hiranuma, Naruki; Kamal, Saeid; Smith, Mackenzie L.; Zhang, Xiaolu; Weber, Rodney J.; Shilling, John E.; Dabdub, Donald; Martin, Scot T.; Bertram, Allan K.

    2012-01-01

    A large fraction of submicron atmospheric aerosol particles contains both organic material and inorganic salts. As the relative humidity cycles in the atmosphere and the water content of the particles correspondingly changes, these mixed particles can undergo a range of phase transitions, possibly including liquid–liquid phase separation. If liquid–liquid phase separation occurs, the gas-particle partitioning of atmospheric semivolatile organic compounds, the scattering and absorption of solar radiation, and the reactive uptake of gas species on atmospheric particles may be affected, with important implications for climate predictions. The actual occurrence of liquid–liquid phase separation within individual atmospheric particles has been considered uncertain, in large part because of the absence of observations for real-world samples. Here, using optical and fluorescence microscopy, we present images that show the coexistence of two noncrystalline phases for real-world samples collected on multiple days in Atlanta, GA as well as for laboratory-generated samples under simulated atmospheric conditions. These results reveal that atmospheric particles can undergo liquid–liquid phase separations. To explore the implications of these findings, we carried out simulations of the Atlanta urban environment and found that liquid–liquid phase separation can result in increased concentrations of gas-phase NO3 and N2O5 due to decreased particle uptake of N2O5. PMID:22847443

  14. Images reveal that atmospheric particles can undergo liquid-liquid phase separations.

    PubMed

    You, Yuan; Renbaum-Wolff, Lindsay; Carreras-Sospedra, Marc; Hanna, Sarah J; Hiranuma, Naruki; Kamal, Saeid; Smith, Mackenzie L; Zhang, Xiaolu; Weber, Rodney J; Shilling, John E; Dabdub, Donald; Martin, Scot T; Bertram, Allan K

    2012-08-14

    A large fraction of submicron atmospheric aerosol particles contains both organic material and inorganic salts. As the relative humidity cycles in the atmosphere and the water content of the particles correspondingly changes, these mixed particles can undergo a range of phase transitions, possibly including liquid-liquid phase separation. If liquid-liquid phase separation occurs, the gas-particle partitioning of atmospheric semivolatile organic compounds, the scattering and absorption of solar radiation, and the reactive uptake of gas species on atmospheric particles may be affected, with important implications for climate predictions. The actual occurrence of liquid-liquid phase separation within individual atmospheric particles has been considered uncertain, in large part because of the absence of observations for real-world samples. Here, using optical and fluorescence microscopy, we present images that show the coexistence of two noncrystalline phases for real-world samples collected on multiple days in Atlanta, GA as well as for laboratory-generated samples under simulated atmospheric conditions. These results reveal that atmospheric particles can undergo liquid-liquid phase separations. To explore the implications of these findings, we carried out simulations of the Atlanta urban environment and found that liquid-liquid phase separation can result in increased concentrations of gas-phase NO(3) and N(2)O(5) due to decreased particle uptake of N(2)O(5).

  15. The Primordial Inflation Polarization Explorer (PIPER)

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2008-01-01

    The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne experiment designed to search for the polarized imprint of gravitational waves from cosmic inflation. The discovery of such a signal would provide direct evidence for inflation, and its characterization would provide a means to explore energy scales orders of magnitude larger than any conceivable particle accelerator. PIPER will consist of two cryogenic telescopes-one for each of the Q and U Stokes parameters. Each will use a variable-delay polarization modulator (VPM) as its first element. This architecture is designed to minimize both T->B and E->B systematics. The detectors will be four 32x40 arrays of BUG detectors, utilizing transition-edge sensors and time-domain multiplexing. Each flight will observe approximately 25% of the sky at a single frequency. Additional flights will increase the frequency coverage.

  16. Primordial Particles; Collisions of Inelastic Particles

    NASA Astrophysics Data System (ADS)

    Sagi, George

    2011-03-01

    Three-dimensional matter is not defined by Euclidian or Cartesian geometries. Newton's and Einstein's laws are related to the motions of elastic masses. The study of collisions of inelastic particles opens up new vistas in physics. The present article reveals how such particles create clusters composed of various numbers of particles. The Probability of each formation, duplets, triplets, etc. can be calculated. The particles are held together by a binding force, and depending upon the angles of collisions they may also rotate around their center of geometry. Because of these unique properties such inelastic particles are referred to as primordial particles, Pp. When a given density of Pp per cubic space is given, then random collisions create a field. The calculation of the properties of such primordial field is very complex and beyond the present study. However, the angles of collisions are infinite in principle, but the probabilities of various cluster sizes are quantum dependent. Consequently, field calculations will require new complex mathematical methods to be discovered yet.

  17. Theoretical Studies of Alfven Waves and Energetic Particle Physics in Fusion Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Liu

    This report summarizes major theoretical findings in the linear as well as nonlinear physics of Alfvén waves and energetic particles in magnetically confined fusion plasmas. On the linear physics, a variational formulation, based on the separation of singular and regular spatial scales, for drift-Alfvén instabilities excited by energetic particles is established. This variational formulation is then applied to derive the general fishbone-like dispersion relations corresponding to the various Alfvén eigenmodes and energetic-particle modes. It is further employed to explore in depth the low-frequency Alfvén eigenmodes and demonstrate the non-perturbative nature of the energetic particles. On the nonlinear physics, new novelmore » findings are obtained on both the nonlinear wave-wave interactions and nonlinear wave-energetic particle interactions. It is demonstrated that both the energetic particles and the fine radial mode structures could qualitatively affect the nonlinear evolution of Alfvén eigenmodes. Meanwhile, a theoretical approach based on the Dyson equation is developed to treat self-consistently the nonlinear interactions between Alfvén waves and energetic particles, and is then applied to explain simulation results of energetic-particle modes. Relevant list of journal publications on the above findings is also included.« less

  18. Simultaneous measurements of bulk moduli and particle dynamics in a sheared colloidal glass

    NASA Astrophysics Data System (ADS)

    Massa, Michael V.; Eisenmann, Christoph; Kim, Chanjoong; Weitz, David A.

    2007-03-01

    We present a novel study of glassy colloidal systems, using a stress-controlled rheometer in conjunction with a confocal microscope. This experimental setup combines the measurement of bulk moduli, using conventional rheology, with the ability to track the motion of individual particles, through confocal microscopy techniques. We explore the response of the system to applied shear, by simultaneously monitoring the macroscopic relaxation and microscopic particle dynamics, under conditions from the quiescent glass to a shear-melted liquid.

  19. Diffusion in Jammed Particle Packs.

    PubMed

    Bolintineanu, Dan S; Grest, Gary S; Lechman, Jeremy B; Silbert, Leonardo E

    2015-08-21

    Using random walk simulations we explore diffusive transport through monodisperse sphere packings over a range of packing fractions ϕ in the vicinity of the jamming transition at ϕ(c). Various diffusion properties are computed over several orders of magnitude in both time and packing pressure. Two well-separated regimes of normal "Fickian" diffusion, where the mean squared displacement is linear in time, are observed. The first corresponds to diffusion inside individual spheres, while the latter is the long-time bulk diffusion. The intermediate anomalous diffusion regime and the long-time value of the diffusion coefficient are both shown to be controlled by particle contacts, which in turn depend on proximity to ϕ(c). The time required to recover normal diffusion t* scales as (ϕ-ϕ(c))(-0.5) and the long-time diffusivity D(∞)∼(ϕ-ϕ(c))0.5, or D(∞)∼1/t*. It is shown that the distribution of mean first passage times associated with the escape of random walkers between neighboring particles controls both t* and D(∞) in the limit ϕ→ϕ(c).

  20. Complex patchy colloids shaped from deformable seed particles through capillary interactions.

    PubMed

    Meester, V; Kraft, D J

    2018-02-14

    We investigate the mechanisms underlying the reconfiguration of random aggregates of spheres through capillary interactions, the so-called "colloidal recycling" method, to fabricate a wide variety of patchy particles. We explore the influence of capillary forces on clusters of deformable seed particles by systematically varying the crosslink density of the spherical seeds. Spheres with a poorly crosslinked polymer network strongly deform due to capillary forces and merge into large spheres. With increasing crosslink density and therefore rigidity, the shape of the spheres is increasingly preserved during reconfiguration, yielding patchy particles of well-defined shape for up to five spheres. In particular, we find that the aspect ratio between the length and width of dumbbells, L/W, increases with the crosslink density (cd) as L/W = B - A·exp(-cd/C). For clusters consisting of more than five spheres, the particle deformability furthermore determines the patch arrangement of the resulting particles. The reconfiguration pathway of clusters of six densely or poorly crosslinked seeds leads to octahedral and polytetrahedral shaped patchy particles, respectively. For seven particles several geometries were obtained with a preference for pentagonal dipyramids by the rigid spheres, while the soft spheres do rarely arrive in these structures. Even larger clusters of over 15 particles form non-uniform often aspherical shapes. We discuss that the reconfiguration pathway is largely influenced by confinement and geometric constraints. The key factor which dominates during reconfiguration depends on the deformability of the spherical seed particles.

  1. Antibacterial activities of amorphous cefuroxime axetil ultrafine particles prepared by high gravity antisolvent precipitation (HGAP).

    PubMed

    Zhao, Hong; Kang, Xu-liang; Chen, Xuan-li; Wang, Jie-xin; Le, Yuan; Shen, Zhi-gang; Chen, Jian-feng

    2009-01-01

    In vitro and in vivo antibacterial activities on the Staphylococcus aureus and Escherichia coli of the amorphous cefuroxime axetil (CFA) ultrafine particles prepared by HGAP method were investigated in this paper. The conventional sprayed CFA particles were studied as the control group. XRD, SEM, BET tests were performed to investigate the morphology changes of the samples before and after sterile. The in vitro dissolution test, minimal inhibitory concentrations (MIC) and the in vivo experiment on mice were explored. The results demonstrated that: (i) The structure, morphology and amorphous form of the particles could be affected during steam sterile process; (ii) CFA particles with different morphologies showed varied antibacterial activities; and (iii) the in vitro and in vivo antibacterial activities of the ultrafine particles prepared by HGAP is markedly stronger than that of the conventional sprayed amorphous particles.

  2. Solar-energetic particles as a probe of the inner heliosphere

    NASA Astrophysics Data System (ADS)

    Chollet, Eileen Emily

    2008-06-01

    In this dissertation, I explore the relationship between solar energetic particles (SEPs) and the interplanetary magnetic field, and I use observations of SEPs to probe the region of space between the Sun and the Earth. After an introduction of major concepts in heliospheric physics, describing some of the history of energetic particles and defining the data sets used in the work, the rest of this dissertation is organized around three major concepts related to energetic particle transport: magnetic field-line length, interplanetary turbulence, and particle scattering and diffusion. In Chapter 2, I discuss how energetic particles can be used to measure the lengths of field lines and how particle scattering complicates the interpretation of these measurements. I then propose applying these measurements to a particular open problem: the origin and properties of heliospheric current sheets. In the next chapter, I move from the large to small scale and apply energetic particle measurements to important problems in interplanetary turbulence. I introduce two energetic- particle features, one of which I discovered in the course of this work, which have size scales roughly that of the correlation scale of the turbulence (the largest scale over which observations are expected to be similar). I discuss how multi-spacecraft measurements of these energetic particle features can provide a measure of the correlation scale independent of the magnetic field measurements. Finally, I consider interplanetary scattering and diffusion in detail. I describe new observations of particle diffusion in the direction perpendicular to the average magnetic field, showing that particles only scatter a few times between their injection at the Sun and observation at the Earth. I also provide numerical simulation results of diffusion parallel to the field which can be used to correct for the effects of transport on the particles. These corrections allow inferences to be made about the particle

  3. Particle-induced osteolysis in three-dimensional micro-computed tomography.

    PubMed

    Wedemeyer, Christian; Xu, Jie; Neuerburg, Carl; Landgraeber, Stefan; Malyar, Nasser M; von Knoch, Fabian; Gosheger, Georg; von Knoch, Marius; Löer, Franz; Saxler, Guido

    2007-11-01

    Small-animal models are useful for the in vivo study of particle-induced osteolysis, the most frequent cause of aseptic loosening after total joint replacement. Microstructural changes associated with particle-induced osteolysis have been extensively explored using two-dimensional (2D) techniques. However, relatively little is known regarding the 3D dynamic microstructure of particle-induced osteolysis. Therefore, we tested micro-computed tomography (micro-CT) as a novel tool for 3D analysis of wear debris-mediated osteolysis in a small-animal model of particle-induced osteolysis. The murine calvarial model based on polyethylene particles was utilized in 14 C57BL/J6 mice randomly divided into two groups. Group 1 received sham surgery, and group 2 was treated with polyethylene particles. We performed 3D micro-CT analysis and histological assessment. Various bone morphometric parameters were assessed. Regression was used to examine the relation between the results achieved by the two methods. Micro-CT analysis provides a fully automated means to quantify bone destruction in a mouse model of particle-induced osteolysis. This method revealed that the osteolytic lesions in calvaria in the experimental group were affected irregularly compared to the rather even distribution of osteolysis in the control group. This is an observation which would have been missed if histomorphometric analysis only had been performed, leading to false assessment of the actual situation. These irregularities seen by micro-CT analysis provide new insight into individual bone changes which might otherwise be overlooked by histological analysis and can be used as baseline information on which future studies can be designed.

  4. GPU accelerated particle visualization with Splotch

    NASA Astrophysics Data System (ADS)

    Rivi, M.; Gheller, C.; Dykes, T.; Krokos, M.; Dolag, K.

    2014-07-01

    Splotch is a rendering algorithm for exploration and visual discovery in particle-based datasets coming from astronomical observations or numerical simulations. The strengths of the approach are production of high quality imagery and support for very large-scale datasets through an effective mix of the OpenMP and MPI parallel programming paradigms. This article reports our experiences in re-designing Splotch for exploiting emerging HPC architectures nowadays increasingly populated with GPUs. A performance model is introduced to guide our re-factoring of Splotch. A number of parallelization issues are discussed, in particular relating to race conditions and workload balancing, towards achieving optimal performances. Our implementation was accomplished by using the CUDA programming paradigm. Our strategy is founded on novel schemes achieving optimized data organization and classification of particles. We deploy a reference cosmological simulation to present performance results on acceleration gains and scalability. We finally outline our vision for future work developments including possibilities for further optimizations and exploitation of hybrid systems and emerging accelerators.

  5. Big Bang Day: 5 Particles - 3. The Anti-particle

    ScienceCinema

    None

    2017-12-09

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 3. The Anti-particle. It appears to be the stuff of science fiction. Associated with every elementary particle is an antiparticle which has the same mass and opposite charge. Should the two meet and combine, the result is annihilation - and a flash of light. Thanks to mysterious processes that occurred after the Big Bang there are a vastly greater number of particles than anti-particles. So how could their elusive existence be proved? At CERN particle physicists are crashing together subatomic particles at incredibly high speeds to create antimatter, which they hope will finally reveal what happened at the precise moment of the Big Bang to create the repertoire of elementary particles and antiparticles in existence today.

  6. Big Bang Day: 5 Particles - 5. The Next Particle

    ScienceCinema

    None

    2017-12-09

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 5. The Next Particle The "sparticle" - a super symmetric partner to all the known particles could be the answer to uniting all the known particles and their interactions under one grand theoretical pattern of activity. But how do researchers know where to look for such phenomena and how do they know if they find them? Simon Singh reviews the next particle that physicists would like to find if the current particle theories are to ring true.

  7. Effective Chern-Simons actions of particles coupled to 3D gravity

    NASA Astrophysics Data System (ADS)

    Trześniewski, Tomasz

    2018-03-01

    Point particles in 3D gravity are known to behave as topological defects, while gravitational field can be expressed as the Chern-Simons theory of the appropriate local isometry group of spacetime. In the case of the Poincaré group, integrating out the gravitational degrees of freedom it is possible to obtain the effective action for particle dynamics. We review the known results, both for single and multiple particles, and attempt to extend this approach to the (anti-)de Sitter group, using the factorizations of isometry groups into the double product of the Lorentz group and AN (2) group. On the other hand, for the de Sitter group one can also perform a contraction to the semidirect product of AN (2) and the translation group. The corresponding effective action curiously describes a Carrollian particle with the AN (2) momentum space. We derive this contraction in a more rigorous manner and further explore its properties, including a generalization to the multiparticle case.

  8. The Interplanetary Meteoroid Environment for eXploration

    NASA Astrophysics Data System (ADS)

    Soja, R.; Sommer, M.; Srama, R.; Strub, P.; Grün, E.; Rodmann, J.; Vaubaillon, J.; Hornig, A.; Bausch, L.

    2014-07-01

    The Interplanetary Meteoroid Environment for eXploration (IMEX) project, funded by the European Space Agency (ESA), aims to characterize dust trails and streams produced by comets in the inner solar system. The goal is to predict meteor showers at any position or time in the solar system, such as at specific spacecraft or planets. This model will allow for the assessment of the dust impact hazard to spacecraft, which is important because hypervelocity impacts of micrometeoroids can damage or destroy spacecraft or their subsystems through physical damage or electromagnetic effects. Such considerations are particularly important in the context of human exploration of the solar system. Additionally, such a model will allow for scientific study of specific trails and their connections to observed dust phenomena, such as cometary trails and new meteor showers at Earth. We have recently expanded the model to include explicit integrations of large numbers of particles from each comet, utilizing the Constellation platform to perform the calculations. This is a distributed computing system, where currently 10,000 users are donating their idle computing time at home and thus generating a virtual supercomputer of 40,000 host PCs connected via the Internet (aerospaceresearch.net). This form of citizen science provides the required computing performance for simulating millions of particles ejected by each of the ˜400 comets, while developing the relationship between scientists and the general public. The result will be a unique set of saved orbital information for a large number of cometary streams, allowing efficient computation of their locations at any point in space and time. Here we will present the results from several test streams and discuss the progress towards obtaining the full set of integrated particles for each of the selected ˜400 short-period comets. individual Constellation users for their computing time.

  9. 2D Implosion Simulations with a Kinetic Particle Code

    NASA Astrophysics Data System (ADS)

    Sagert, Irina; Even, Wesley; Strother, Terrance

    2017-10-01

    Many problems in laboratory and plasma physics are subject to flows that move between the continuum and the kinetic regime. We discuss two-dimensional (2D) implosion simulations that were performed using a Monte Carlo kinetic particle code. The application of kinetic transport theory is motivated, in part, by the occurrence of non-equilibrium effects in inertial confinement fusion (ICF) capsule implosions, which cannot be fully captured by hydrodynamics simulations. Kinetic methods, on the other hand, are able to describe both, continuum and rarefied flows. We perform simple 2D disk implosion simulations using one particle species and compare the results to simulations with the hydrodynamics code RAGE. The impact of the particle mean-free-path on the implosion is also explored. In a second study, we focus on the formation of fluid instabilities from induced perturbations. I.S. acknowledges support through the Director's fellowship from Los Alamos National Laboratory. This research used resources provided by the LANL Institutional Computing Program.

  10. Big Bang Day: 5 Particles - 3. The Anti-particle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-10-07

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 3. The Anti-particle. It appears to be the stuff of science fiction. Associated with every elementary particle is an antiparticle which has the same mass and opposite charge. Should the two meet and combine, the result is annihilation - and a flash of light. Thanks to mysterious processes that occurred after the Big Bang there are a vastly greater number of particles than anti-particles. So how could their elusive existencemore » be proved? At CERN particle physicists are crashing together subatomic particles at incredibly high speeds to create antimatter, which they hope will finally reveal what happened at the precise moment of the Big Bang to create the repertoire of elementary particles and antiparticles in existence today.« less

  11. Particle Swarm Optimization with Double Learning Patterns

    PubMed Central

    Shen, Yuanxia; Wei, Linna; Zeng, Chuanhua; Chen, Jian

    2016-01-01

    Particle Swarm Optimization (PSO) is an effective tool in solving optimization problems. However, PSO usually suffers from the premature convergence due to the quick losing of the swarm diversity. In this paper, we first analyze the motion behavior of the swarm based on the probability characteristic of learning parameters. Then a PSO with double learning patterns (PSO-DLP) is developed, which employs the master swarm and the slave swarm with different learning patterns to achieve a trade-off between the convergence speed and the swarm diversity. The particles in the master swarm and the slave swarm are encouraged to explore search for keeping the swarm diversity and to learn from the global best particle for refining a promising solution, respectively. When the evolutionary states of two swarms interact, an interaction mechanism is enabled. This mechanism can help the slave swarm in jumping out of the local optima and improve the convergence precision of the master swarm. The proposed PSO-DLP is evaluated on 20 benchmark functions, including rotated multimodal and complex shifted problems. The simulation results and statistical analysis show that PSO-DLP obtains a promising performance and outperforms eight PSO variants. PMID:26858747

  12. Particle Swarm Optimization with Double Learning Patterns.

    PubMed

    Shen, Yuanxia; Wei, Linna; Zeng, Chuanhua; Chen, Jian

    2016-01-01

    Particle Swarm Optimization (PSO) is an effective tool in solving optimization problems. However, PSO usually suffers from the premature convergence due to the quick losing of the swarm diversity. In this paper, we first analyze the motion behavior of the swarm based on the probability characteristic of learning parameters. Then a PSO with double learning patterns (PSO-DLP) is developed, which employs the master swarm and the slave swarm with different learning patterns to achieve a trade-off between the convergence speed and the swarm diversity. The particles in the master swarm and the slave swarm are encouraged to explore search for keeping the swarm diversity and to learn from the global best particle for refining a promising solution, respectively. When the evolutionary states of two swarms interact, an interaction mechanism is enabled. This mechanism can help the slave swarm in jumping out of the local optima and improve the convergence precision of the master swarm. The proposed PSO-DLP is evaluated on 20 benchmark functions, including rotated multimodal and complex shifted problems. The simulation results and statistical analysis show that PSO-DLP obtains a promising performance and outperforms eight PSO variants.

  13. Solar Energetic Particle Studies with PAMELA

    NASA Technical Reports Server (NTRS)

    Bravar, U.; Christian, E. R.; deNolfo, Georgia; Ryan, J. M.; Stochaj, S.

    2011-01-01

    The origin of the high-energy solar energetic particles (SEPs) may conceivably be found in composition signatures that reflect the elemental abundances of the low corona and chromosphere vs. the high corona and solar wind. The presence of secondaries, such as neutrons and positrons, could indicate a low coronal origin of these particles. Velocity dispersion of different species and over a wide energy range can be used to determine energetic particle release times at the Sun. Together with multi-wavelength imaging, in- situ observations of a variety of species, and coverage over a wide energy range provide a critical tool in identifying the origin of SEPs, understanding the evolution of these events within the context of solar active regions, and constraining the acceleration mechanisms at play. The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA)instrument, successfully launched in 2006 and expected to remain operational until at least the beginning of 2012, measures energetic particles in the same energy range as ground-based neutron monitors, and lower energies as well. It thus bridges the gap between low energy in-situ observations and ground-based Ground Level Enhancements (GLE) observations. It can measure the charge (up to Z=6) and atomic number of the detected particles, and it can identify and measure positrons and detect neutrons-an unprecedented array of data channels that we can bring to bear on the origin of high-energy SEPs. We present prelimiary results on the for the 2006 December 13 solar flare and GLE and the 2011 March 21 solar flare, both registering proton and helium enhancements in PAMELA. Together with multi- spacecraft contextual data and modeling, we discuss the PAMELA results in the context of the different acceleration mechanisms at play.

  14. Solar Energetic Particle Studies with PAMELA

    NASA Astrophysics Data System (ADS)

    Christian, E. R.; Bravar, U.; de Nolfo, G. A.; Ryan, J. M.; Stochaj, S.

    2011-12-01

    Understanding the origin of the high-energy solar energetic particles (SEPs) is a challanging problem due to the limited information provided by ground-level enhancements (GLEs) and the large energy gap between GLEs and the low-energy in-situ SEPs. These challenges are addressed for the first time with observations from the The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) instrument, successfully launched in 2006 and expected to remain operational until at least the beginning of 2012. PAMELA measures energetic particles in the same energy range as ground-based neutron monitors but also extends to lower energies covered by statistically precise in-situ observations. The near-polar orbit of PAMELA translates to low rigidity cutoffs and thus extends the sensitivity to low-energy particles as low as ~20 MeV. It thus bridges an important gap between low energy in-situ observations and ground-based Ground Level Enhancements (GLE) observations, making it possible to consider the relationship in origin of these two populations. Composition also plays a key role in determining SEP origin (low corona and chromosphere vs. the high corona and solar wind). PAMELA is sensitive for the first time to the composition of the high-energy component of SEPs, measuring the charge (up to Z=6) and atomic number of the detected particles, and identifying and measuring positrons and neutrons-an unprecedented array of data channels that we can bring to bear on the origin of high-energy SEPs. The presence of secondaries, such as neutrons and positrons, could indicate a low coronal origin of these particles. Velocity dispersion of different species and over a wide energy range can be used to determine energetic particle release times at the Sun. We present results for several recent solar flares, registering both proton and helium enhancements in PAMELA. Together with multi-wavelength imaging and in-situ observations of a variety of species, we discuss

  15. Particle Physics at the Cosmic, Intensity, and Energy Frontiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essig, Rouven

    Major efforts at the Intensity, Cosmic, and Energy frontiers of particle physics are rapidly furthering our understanding of the fundamental constituents of Nature and their interactions. The overall objectives of this research project are (1) to interpret and develop the theoretical implications of the data collected at these frontiers and (2) to provide the theoretical motivation, basis, and ideas for new experiments and for new analyses of experimental data. Within the Intensity Frontier, an experimental search for a new force mediated by a GeV-scale gauge boson will be carried out with the $A'$ Experiment (APEX) and the Heavy Photon Searchmore » (HPS), both at Jefferson Laboratory. Within the Cosmic Frontier, contributions are planned to the search for dark matter particles with the Fermi Gamma-ray Space Telescope and other instruments. A detailed exploration will also be performed of new direct detection strategies for dark matter particles with sub-GeV masses to facilitate the development of new experiments. In addition, the theoretical implications of existing and future dark matter-related anomalies will be examined. Within the Energy Frontier, the implications of the data from the Large Hadron Collider will be investigated. Novel search strategies will be developed to aid the search for new phenomena not described by the Standard Model of particle physics. By combining insights from all three particle physics frontiers, this research aims to increase our understanding of fundamental particle physics.« less

  16. Habitat Design Considerations for Implementing Solar Particle Event Radiation Protection

    NASA Technical Reports Server (NTRS)

    Simon, Mathew A.; Clowdsley, Martha S.; Walker, Steven A.

    2013-01-01

    Radiation protection is an important habitat design consideration for human exploration missions beyond Low Earth Orbit. Fortunately, radiation shelter concepts can effectively reduce astronaut exposure for the relatively low proton energies of solar particle events, enabling moderate duration missions of several months before astronaut exposure (galactic cosmic ray and solar particle event) approaches radiation exposure limits. In order to minimize habitat mass for increasingly challenging missions, design of radiation shelters must minimize dedicated, single-purpose shielding mass by leveraging the design and placement of habitat subsystems, accommodations, and consumables. NASA's Advanced Exploration Systems RadWorks Storm Shelter Team has recently designed and performed radiation analysis on several low dedicated mass shelter concepts for a year-long mission. This paper describes habitat design considerations identified during the study's radiation analysis. These considerations include placement of the shelter within a habitat for improved protection, integration of human factors guidance for sizing shelters, identification of potential opportunities for habitat subsystems to compromise on individual subsystem performances for overall vehicle mass reductions, and pre-configuration of shelter components for reduced deployment times.

  17. Using Directional Emissivity as a Probe of Particle Microphysical Properties

    NASA Astrophysics Data System (ADS)

    Pitman, K. M.; Wolff, M. J.; Bandfield, J. L.; Clayton, G. C.

    2002-09-01

    Real surfaces are not expected to be diffuse emitters, thus observed emissivity values are a function of viewing geometry. This fact has strong implications for analyses of the MGS/TES emission phase function (EPF) sequences and the upcoming Mars Exploration Rover mini-TES dataset. As reviewed previously [1], in the absence of strong thermal gradients, directional emissivity may be obtained via a combination of reciprocity and Kirchhoff's Law. Here we focus on the potential utility of directional emissivity as a direct probe of surface particle microphysical properties. We explore the effects of particle size and composition on observed radiances in the TES spectral regime using a combination of multiple scattering radiative transfer and Mie scattering algorithms. Comparisons of these simulated spectra to TES EPF observations of typical surface units (e.g., high and low albedo regions) will also be made. This work is supported through NASA grant NAGS-9820 (MJW) and LSU Board of Regents (KMP). [1] Pitman, K.M., et al. (2001), AAS-DPS meeting # 33, # 36.01.

  18. Big Bang Day: 5 Particles - 5. The Next Particle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-10-08

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 5. The Next Particle The "sparticle" - a super symmetric partner to all the known particles could be the answer to uniting all the known particles and their interactions under one grand theoretical pattern of activity. But how do researchers know where to look for such phenomena and how do they know if they find them? Simon Singh reviews the next particle that physicists would like to find if themore » current particle theories are to ring true.« less

  19. Microstructure and rheology of particle stabilized emulsions: Effects of particle shape and inter-particle interactions.

    PubMed

    Katepalli, Hari; John, Vijay T; Tripathi, Anubhav; Bose, Arijit

    2017-01-01

    Using fumed and spherical silica particles of similar hydrodynamic size, we investigated the effects of particle shape and inter-particle interactions on the formation, stability and rheology of bromohexadecane-in-water Pickering emulsions. The interparticle interactions were varied from repulsive to attractive by modifying the salt concentration in the aqueous phase. Optical microscope images revealed smaller droplet sizes for the fumed silica stabilized emulsions. All the emulsions remained stable for several weeks. Cryo-SEM images of the emulsion droplets showed a hexagonally packed single layer of particles at oil-water interfaces in emulsions stabilized with silica spheres, irrespective of the nature of the inter-particle interactions. Thus, entropic, excluded volume interactions dominate the fate of spherical particles at oil-water interfaces. On the other hand, closely packed layers of particles were observed at oil-water interfaces for the fumed silica stabilized emulsions for both attractive and repulsive interparticle interactions. At the high salt concentrations, attractive inter-particles interactions led to aggregation of fumed silica particles, and multiple layers of these particles were then observed on the droplet surfaces. A network of fumed silica particles was also observed between the emulsion droplets, suggesting that enthalpic interactions are responsible for the determining particle configurations at oil-water interfaces as well as in the aqueous phase. Steady shear viscosity measurements over a range of shear stresses, as well as oscillatory shear measurements at 1Hz confirm the presence of a network in fumed silica suspensions and emulsions, and the lack of such a network when spherical particles are used. The fractal structure of fumed silica leads to several contact points and particle interlocking in the water as well as on the bromohexadecane-water interfaces, with corresponding effects on the structure and rheology of the emulsions

  20. Reducing On-Board Computer Propagation Errors Due to Omitted Geopotential Terms by Judicious Selection of Uploaded State Vector

    NASA Technical Reports Server (NTRS)

    Greatorex, Scott (Editor); Beckman, Mark

    1996-01-01

    Several future, and some current missions, use an on-board computer (OBC) force model that is very limited. The OBC geopotential force model typically includes only the J(2), J(3), J(4), C(2,2) and S(2,2) terms to model non-spherical Earth gravitational effects. The Tropical Rainfall Measuring Mission (TRMM), Wide-field Infrared Explorer (WIRE), Transition Region and Coronal Explorer (TRACE), Submillimeter Wave Astronomy Satellite (SWAS), and X-ray Timing Explorer (XTE) all plan to use this geopotential force model on-board. The Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) is already flying this geopotential force model. Past analysis has shown that one of the leading sources of error in the OBC propagated ephemeris is the omission of the higher order geopotential terms. However, these same analyses have shown a wide range of accuracies for the OBC ephemerides. Analysis was performed using EUVE state vectors that showed the EUVE four day OBC propagated ephemerides varied in accuracy from 200 m. to 45 km. depending on the initial vector used to start the propagation. The vectors used in the study were from a single EUVE orbit at one minute intervals in the ephemeris. Since each vector propagated practically the same path as the others, the differences seen had to be due to differences in the inital state vector only. An algorithm was developed that will optimize the epoch of the uploaded state vector. Proper selection can reduce the previous errors of anywhere from 200 m. to 45 km. to generally less than one km. over four days of propagation. This would enable flight projects to minimize state vector uploads to the spacecraft. Additionally, this method is superior to other methods in that no additional orbit estimates need be done. The definitive ephemeris generated on the ground can be used as long as the proper epoch is chosen. This algorithm can be easily coded in software that would pick the epoch within a specified time range that would

  1. Exploring synchronisation in nonlinear data assimilation

    NASA Astrophysics Data System (ADS)

    Rodrigues-Pinheiro, Flavia; van Leeuwen, Peter Jan

    2016-04-01

    Present-day data assimilation methods are based on linearizations and face serious problems in strongly nonlinear cases such as convection. A promising solution to this problem is a particle filter, which provides a representation of the model probability density function (pdf) by a discrete set of model states, or particles. The basic particle filter uses Bayes's theorem directly, but does not work in high-dimensional cases. The performance can be improved by considering the proposal density freedom. This allows one to change the model equations to bring the particles closer to the observations, resulting in very efficient update schemes at observation times, but extending these schemes between observation times is computationally expensive. Simple solutions like nudging have been shown to be not powerful enough. A potential solution might be synchronization, in which one tries to synchronise the model of a system with the true evolution of the system via the observations. In practice this means that an extra term is added to the model equations that hampers growth of instabilities on the synchronization manifold. Especially the delayed versions, where observations are allowed to influence the state in the past have shown some remarkable successes. Unfortunately, all efforts ignore errors in the observations, and as soon as these are introduced the performance degrades considerably. There is a close connection between time-delayed synchronization and a Kalman Smoother, which does allow for observational (and other) errors. In this presentation we will explore this connection to the full, with a view to extend synchronization to more realistic settings. Specifically performance of the spread of information from observed to unobserved variables is studied in detail. The results indicate that this extended synchronisation is a promising tool to steer the model states towards the observations efficiently. If time permits, we will show initial results of embedding the

  2. Momentum and particle transport in a nonhomogenous canopy

    NASA Astrophysics Data System (ADS)

    Gould, Andrew W.

    Turbulent particle transport through the air plays an important role in the life cycle of many plant pathogens. In this study, data from a field experiment was analyzed to explore momentum and particle transport within a grape vineyard. The overall goal of these experiments was to understand how the architecture of a sparse agricultural canopy interacts with turbulent flow and ultimately determines the dispersion of airborne fungal plant pathogens. Turbulence in the vineyard canopy was measured using an array of four sonic anemometers deployed at heights z/H 0.4, 0.9, 1.45, and 1.95 where z is the height of the each sonic and H is the canopy height. In addition to turbulence measurements from the sonic anemometers, particle dispersion was measured using inert particles with the approximate size and density of powdery mildew spores and a roto-rod impaction trap array. Measurements from the sonic anemometers demonstrate that first and second order statistics of the wind field are dependent on wind direction orientation with respect to vineyard row direction. This dependence is a result of wind channeling which transfers energy between the velocity components when the wind direction is not aligned with the rows. Although the winds have a strong directional dependence, spectra analysis indicates that the structure of the turbulent flow is not fundamentally altered by the interaction between wind direction and row direction. Examination of a limited number of particle release events indicates that the wind turning and channeling observed in the momentum field impacts particle dispersion. For row-aligned flow, particle dispersion in the direction normal to the flow is decreased relative to the plume spread predicted by a standard Gaussian plume model. For flow that is not aligned with the row direction, the plume is found to rotate in the same manner as the momentum field.

  3. Particle Sorting and Motility Out of Equilibrium

    NASA Astrophysics Data System (ADS)

    Sandford, Cato

    The theory of equilibrium statistical physics, formulated over a century ago, provides an excellent description of physical systems which have reached a static, relaxed state. Such systems can be loosely thought of as maximally disordered, in keeping with the Second Law of Thermodynamics which states that a thermal system in equilibrium has reached a state of highest entropy. However, many entities in the world around us maintain themselves in an remarkably ordered and dynamic state, and must pay for this by producing entropy in their surroundings. Organisms, for example, convert chemical energy (food) into heat, which is then dumped into the environment, raising its entropy. Systems which produce entropy through any mechanism must be described by theories of non-equilibrium statistical physics, for which there currently exists no unified framework or ontology. Here we examine two specific cases of non-equilibrium phenomena from a theoretical perspective. First, we explore the behaviour of microscopic particles which continually dissipate energy to propel themselves through their environment. Second, we consider how devices which distinguish between different types of particles can exploit non-equilibrium processes to enhance their performance. For the case of self-propelled particles, we consider a theoretical model where the particle's propulsion force has "memory"--it is a random process whose instantaneous value depends on its past evolution. This introduces a persistence in the particle's motion, and requires the dissipation of energy into its surroundings. These particles are found to exhibit a variety of behaviours forbidden in equilibrium systems: for instance they may cluster around barriers, exert unbalanced forces, and sustain steady flows through space. We develop the understanding of these particles' dynamics through a combination of explicit calculations, approximations and numerical simulation which characterise and quantify their non

  4. Interaction of Multiple Particles with a Solidification Front: From Compacted Particle Layer to Particle Trapping.

    PubMed

    Saint-Michel, Brice; Georgelin, Marc; Deville, Sylvain; Pocheau, Alain

    2017-06-13

    The interaction of solidification fronts with objects such as particles, droplets, cells, or bubbles is a phenomenon with many natural and technological occurrences. For an object facing the front, it may yield various fates, from trapping to rejection, with large implications regarding the solidification pattern. However, whereas most situations involve multiple particles interacting with each other and the front, attention has focused almost exclusively on the interaction of a single, isolated object with the front. Here we address experimentally the interaction of multiple particles with a solidification front by performing solidification experiments of a monodisperse particle suspension in a Hele-Shaw cell with precise control of growth conditions and real-time visualization. We evidence the growth of a particle layer ahead of the front at a close-packing volume fraction, and we document its steady-state value at various solidification velocities. We then extend single-particle models to the situation of multiple particles by taking into account the additional force induced on an entering particle by viscous friction in the compacted particle layer. By a force balance model this provides an indirect measure of the repelling mean thermomolecular pressure over a particle entering the front. The presence of multiple particles is found to increase it following a reduction of the thickness of the thin liquid film that separates particles and front. We anticipate the findings reported here to provide a relevant basis to understand many complex solidification situations in geophysics, engineering, biology, or food engineering, where multiple objects interact with the front and control the resulting solidification patterns.

  5. Testing particle filters on convective scale dynamics

    NASA Astrophysics Data System (ADS)

    Haslehner, Mylene; Craig, George. C.; Janjic, Tijana

    2014-05-01

    Particle filters have been developed in recent years to deal with highly nonlinear dynamics and non Gaussian error statistics that also characterize data assimilation on convective scales. In this work we explore the use of the efficient particle filter (P.v. Leeuwen, 2011) for convective scale data assimilation application. The method is tested in idealized setting, on two stochastic models. The models were designed to reproduce some of the properties of convection, for example the rapid development and decay of convective clouds. The first model is a simple one-dimensional, discrete state birth-death model of clouds (Craig and Würsch, 2012). For this model, the efficient particle filter that includes nudging the variables shows significant improvement compared to Ensemble Kalman Filter and Sequential Importance Resampling (SIR) particle filter. The success of the combination of nudging and resampling, measured as RMS error with respect to the 'true state', is proportional to the nudging intensity. Significantly, even a very weak nudging intensity brings notable improvement over SIR. The second model is a modified version of a stochastic shallow water model (Würsch and Craig 2013), which contains more realistic dynamical characteristics of convective scale phenomena. Using the efficient particle filter and different combination of observations of the three field variables (wind, water 'height' and rain) allows the particle filter to be evaluated in comparison to a regime where only nudging is used. Sensitivity to the properties of the model error covariance is also considered. Finally, criteria are identified under which the efficient particle filter outperforms nudging alone. References: Craig, G. C. and M. Würsch, 2012: The impact of localization and observation averaging for convective-scale data assimilation in a simple stochastic model. Q. J. R. Meteorol. Soc.,139, 515-523. Van Leeuwen, P. J., 2011: Efficient non-linear data assimilation in geophysical

  6. Lunar Surface Charging during Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Halekas, Jasper S.; Delory, G. T.; Mewaldt, R. A.; Lin, R. P.; Fillingim, M. O.; Brain, D. A.; Lee, C. O.; Stubbs, T. J.; Farrell, W. M.; Hudson, M. K.

    2006-09-01

    The surface of the Moon, not protected by any substantial atmosphere, is directly exposed to the impact of both solar UV and solar wind plasma and energetic particles. This creates a complex lunar electrostatic environment, with the surface typically charging slightly positive in sunlight, and negative in shadow. Observations from the Apollo era and theoretical considerations strongly suggest that surface charging leads to dust electrification and transport, posing a potentially significant hazard for exploration. The most significant charging effects should occur when the Moon is exposed to high-temperature plasmas like those encountered in the terrestrial plasmasheet or in solar storms. We now present evidence for kilovolt-scale negative charging of the shadowed lunar surface during solar energetic particle (SEP) events, utilizing data from the Lunar Prospector Electron Reflectometer (LP ER). We find that SEP events are associated with the most extreme lunar surface charging observed during the LP mission - rivaled only by previously reported charging during traversals of the terrestrial plasmasheet. The largest charging event observed by LP is a 4 kV negative surface potential (as compared to typical values of V) during a SEP event in May 1998. We characterize lunar surface charging during several SEP events, and compare to energetic particle measurements from ACE, Wind, and SOHO in order to determine the relationship between SEP events and extreme lunar surface charging. Space weather events are already considered by NASA to be a significant hazard to lunar exploration, due to high-energy ionizing radiation. Our observations demonstrate that plasma interactions with the lunar surface during SEP events, causing extreme surface charging and potentially significant dust electrification and transport, represent an additional hazard associated with space weather.

  7. Human Exploration of Phobos

    NASA Technical Reports Server (NTRS)

    Abercromby, Andrew F. J.; Chappell, Steven P.; Gernhardt, Michael L.; Lee, David E.; Howe, A. Scott

    2015-01-01

    This study developed, analyzed, and compared mission architectures for human exploration of Mars' Moons within the context of an Evolvable Mars Campaign. METHODS: All trades assumed conjunction class missions to Phobos (approximately 500 days in Mars system) as it was considered the driving case for the transportation architecture. All architectures assumed that the Mars Transit Habitat would remain in a High Mars Orbit with crewmembers transferring between HMO and Phobos in a small crew taxi vehicle. A reference science / exploration program was developed including performance of a standard set of tasks at 55 locations on the Phobos surface. Detailed EVA timelines were developed using realistic flight rules to accomplish the reference science tasks using exploration systems ranging from jetpacks to multi-person pressurized excursion vehicles combined with Phobos surface and orbital (L1, L4/L5, 20km Distant Retrograde Orbit) habitat options. Detailed models of propellant mass, crew time, science productivity, radiation exposure, systems and consumables masses, and other figures of merit were integrated to enable quantitative comparison of different architectural options. Options for pre-staging assets using solar electric propulsion (SEP) vs. delivering all systems with the crew were also evaluated. Seven discrete mission architectures were evaluated. RESULTS: The driving consideration for habitat location (Phobos surface vs. orbital) was radiation exposure, with an estimated reduction in cumulative mission radiation exposure of up to 34% (vs. Mars orbital mission) when the habitat is located on the Phobos surface, compared with only 3-6% reduction for a habitat in a 20km DRO. The exploration utility of lightweight unpressurized excursion vehicles was limited by the need to remain within 20 minutes of Solar Particle Event radiation protection combined with complex GN&C systems required by the non-intuitive and highly-variable gravitational environment. Two

  8. Acoustically mediated long-range interaction among multiple spherical particles exposed to a plane standing wave

    NASA Astrophysics Data System (ADS)

    Zhang, Shenwei; Qiu, Chunyin; Wang, Mudi; Ke, Manzhu; Liu, Zhengyou

    2016-11-01

    In this work, we study the acoustically mediated interaction forces among multiple well-separated spherical particles trapped in the same node or antinode plane of a standing wave. An analytical expression of the acoustic interaction force is derived, which is accurate even for the particles beyond the Rayleigh limit. Interestingly, the multi-particle system can be decomposed into a series of independent two-particle systems described by pairwise interactions. Each pairwise interaction is a long-range interaction, as characterized by a soft oscillatory attenuation (at the power exponent of n = -1 or -2). The vector additivity of the acoustic interaction force, which is not well expected considering the nonlinear nature of the acoustic radiation force, is greatly useful for exploring a system consisting of a large number of particles. The capability of self-organizing a big particle cluster can be anticipated through such acoustically controllable long-range interaction.

  9. Laser-Induced Linear-Field Particle Acceleration in Free Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Liang Jie; Hong, Kyung -Han; Carbajo, Sergio

    Linear-field particle acceleration in free space (which is distinct from geometries like the linac that requires components in the vicinity of the particle) has been studied for over 20 years, and its ability to eventually produce high-quality, high energy multi-particle bunches has remained a subject of great interest. Arguments can certainly be made that linear-field particle acceleration in free space is very doubtful given that first-order electron-photon interactions are forbidden in free space. Nevertheless, we chose to develop an accurate and truly predictive theoretical formalism to explore this remote possibility when intense, few-cycle electromagnetic pulses are used in a computationalmore » experiment. The formalism includes exact treatment of Maxwell’s equations and exact treatment of the interaction among the multiple individual particles at near and far field. Several surprising results emerge. We find that electrons interacting with intense laser pulses in free space are capable of gaining substantial amounts of energy that scale linearly with the feld amplitude. For example, 30keV electrons (2.5% energy spread) are accelerated to 61MeV (0.5% spread) and to 205MeV (0.25% spread) using 250 mJ and 2.5J lasers respectively. Furthermore, these findings carry important implications for our understanding of ultrafast electron-photon interactions in strong fields.« less

  10. Laser-Induced Linear-Field Particle Acceleration in Free Space

    DOE PAGES

    Wong, Liang Jie; Hong, Kyung -Han; Carbajo, Sergio; ...

    2017-09-11

    Linear-field particle acceleration in free space (which is distinct from geometries like the linac that requires components in the vicinity of the particle) has been studied for over 20 years, and its ability to eventually produce high-quality, high energy multi-particle bunches has remained a subject of great interest. Arguments can certainly be made that linear-field particle acceleration in free space is very doubtful given that first-order electron-photon interactions are forbidden in free space. Nevertheless, we chose to develop an accurate and truly predictive theoretical formalism to explore this remote possibility when intense, few-cycle electromagnetic pulses are used in a computationalmore » experiment. The formalism includes exact treatment of Maxwell’s equations and exact treatment of the interaction among the multiple individual particles at near and far field. Several surprising results emerge. We find that electrons interacting with intense laser pulses in free space are capable of gaining substantial amounts of energy that scale linearly with the feld amplitude. For example, 30keV electrons (2.5% energy spread) are accelerated to 61MeV (0.5% spread) and to 205MeV (0.25% spread) using 250 mJ and 2.5J lasers respectively. Furthermore, these findings carry important implications for our understanding of ultrafast electron-photon interactions in strong fields.« less

  11. Laser-Induced Linear-Field Particle Acceleration in Free Space.

    PubMed

    Wong, Liang Jie; Hong, Kyung-Han; Carbajo, Sergio; Fallahi, Arya; Piot, Philippe; Soljačić, Marin; Joannopoulos, John D; Kärtner, Franz X; Kaminer, Ido

    2017-09-11

    Linear-field particle acceleration in free space (which is distinct from geometries like the linac that requires components in the vicinity of the particle) has been studied for over 20 years, and its ability to eventually produce high-quality, high energy multi-particle bunches has remained a subject of great interest. Arguments can certainly be made that linear-field particle acceleration in free space is very doubtful given that first-order electron-photon interactions are forbidden in free space. Nevertheless, we chose to develop an accurate and truly predictive theoretical formalism to explore this remote possibility when intense, few-cycle electromagnetic pulses are used in a computational experiment. The formalism includes exact treatment of Maxwell's equations and exact treatment of the interaction among the multiple individual particles at near and far field. Several surprising results emerge. We find that electrons interacting with intense laser pulses in free space are capable of gaining substantial amounts of energy that scale linearly with the field amplitude. For example, 30 keV electrons (2.5% energy spread) are accelerated to 61 MeV (0.5% spread) and to 205 MeV (0.25% spread) using 250 mJ and 2.5 J lasers respectively. These findings carry important implications for our understanding of ultrafast electron-photon interactions in strong fields.

  12. Modeling of Particle Acceleration at Multiple Shocks via Diffusive Shock Acceleration: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Parker, L. Neergaard; Zank, G. P.

    2013-01-01

    Successful forecasting of energetic particle events in space weather models require algorithms for correctly predicting the spectrum of ions accelerated from a background population of charged particles. We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box. We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (E(sub max)) appropriate for quasi-parallel and quasi-perpendicular shocks and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).

  13. The rate of equilibration of viscous aerosol particles

    NASA Astrophysics Data System (ADS)

    O'Meara, Simon; Topping, David O.; McFiggans, Gordon

    2016-04-01

    The proximity of atmospheric aerosol particles to equilibrium with their surrounding condensable vapours can substantially impact their transformations, fate and impacts and is the subject of vibrant research activity. In this study we first compare equilibration timescales estimated by three different models for diffusion through aerosol particles to assess any sensitivity to choice of model framework. Equilibration times for diffusion coefficients with varying dependencies on composition are compared for the first time. We show that even under large changes in the saturation ratio of a semi-volatile component (es) of 1-90 % predicted equilibration timescales are in agreement, including when diffusion coefficients vary with composition. For condensing water and a diffusion coefficient dependent on composition, a plasticising effect is observed, leading to a decreased estimated equilibration time with increasing final es. Above 60 % final es maximum equilibration times of around 1 s are estimated for comparatively large particles (10 µm) containing a relatively low diffusivity component (1 × 10-25 m2 s-1 in pure form). This, as well as other results here, questions whether particle-phase diffusion through water-soluble particles can limit hygroscopic growth in the ambient atmosphere. In the second part of this study, we explore sensitivities associated with the use of particle radius measurements to infer diffusion coefficient dependencies on composition using a diffusion model. Given quantified similarities between models used in this study, our results confirm considerations that must be taken into account when designing such experiments. Although quantitative agreement of equilibration timescales between models is found, further work is necessary to determine their suitability for assessing atmospheric impacts, such as their inclusion in polydisperse aerosol simulations.

  14. Size-exclusion chromatography using core-shell particles.

    PubMed

    Pirok, Bob W J; Breuer, Pascal; Hoppe, Serafine J M; Chitty, Mike; Welch, Emmet; Farkas, Tivadar; van der Wal, Sjoerd; Peters, Ron; Schoenmakers, Peter J

    2017-02-24

    Size-exclusion chromatography (SEC) is an indispensable technique for the separation of high-molecular-weight analytes and for determining molar-mass distributions. The potential application of SEC as second-dimension separation in comprehensive two-dimensional liquid chromatography demands very short analysis times. Liquid chromatography benefits from the advent of highly efficient core-shell packing materials, but because of the reduced total pore volume these materials have so far not been explored in SEC. The feasibility of using core-shell particles in SEC has been investigated and contemporary core-shell materials were compared with conventional packing materials for SEC. Columns packed with very small core-shell particles showed excellent resolution in specific molar-mass ranges, depending on the pore size. The analysis times were about an order of magnitude shorter than what could be achieved using conventional SEC columns. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Spontaneously Flowing Crystal of Self-Propelled Particles

    NASA Astrophysics Data System (ADS)

    Briand, Guillaume; Schindler, Michael; Dauchot, Olivier

    2018-05-01

    We experimentally and numerically study the structure and dynamics of a monodisperse packing of spontaneously aligning self-propelled hard disks. The packings are such that their equilibrium counterparts form perfectly ordered hexagonal structures. Experimentally, we first form a perfect crystal in a hexagonal arena which respects the same crystalline symmetry. Frustration of the hexagonal order, obtained by removing a few particles, leads to the formation of a rapidly diffusing "droplet." Removing more particles, the whole system spontaneously forms a macroscopic sheared flow, while conserving an overall crystalline structure. This flowing crystalline structure, which we call a "rheocrystal," is made possible by the condensation of shear along localized stacking faults. Numerical simulations very well reproduce the experimental observations and allow us to explore the parameter space. They demonstrate that the rheocrystal is induced neither by frustration nor by noise. They further show that larger systems flow faster while still remaining ordered.

  16. Chemical composition of individual aerosol particles from working areas in a nickel refinery.

    PubMed

    Höflich, B L; Wentzel, M; Ortner, H M; Weinbruch, S; Skogstad, A; Hetland, S; Thomassen, Y; Chaschin, V P; Nieboer, E

    2000-06-01

    Individual aerosol particles (n = 1170) collected at work stations in a nickel refinery were analyzed by wavelength-dispersive electron-probe microanalysis. By placing arbitrary restrictions on the contents of sulfur and silicon, the particles could be divided into four main groups. Scanning electron images indicated that most of the particles examined were relatively small (< or = 2 microm, equivalent projected area diameter), and that their morphology suggested formation from a melt. There was an absence of well-defined phases and simple stoichiometries, indicating that exposures to pure substances such as nickel subsulfide or specific oxides appeared not to occur. Although the elemental composition of particles varied greatly, a rough association was evident with the known elemental content of the refinery intermediates. The implications of the findings for aerosol speciation measurements, toxicological studies and interpretation of adverse health effects are explored.

  17. The Radiation Belt Storm Probes (RBSP) Energetic Particle, Composition, and Thermal plasma (ECT) Suite: Upcoming Opportunties for Testing Radiation Belt Acceleration Mechanisms

    NASA Astrophysics Data System (ADS)

    Spence, Harlan; Reeves, Geoffrey

    2012-07-01

    The Radiation Belt Storm Probes (RBSP) mission will launch in late summer 2012 and begin its exploration of acceleration and dynamics of energetic particles in the inner magnetosphere. In this presentation, we discuss opportunities afforded by the RBSP Energetic Particle, Composition, and Thermal plasma (ECT) instrument suite to advance our understanding of acceleration processes in the radiation belts. The RBSP-ECT instrument suite comprehensively measures the electron and major ion populations of the inner magnetosphere, from the lowest thermal plasmas of the plasmasphere, to the hot plasma of the ring current, to the relativistic populations of the radiation belts. Collectively, the ECT measurements will reveal the complex cross-energy coupling of these colocated particle populations, which along with concurrent RBSP wave measurements, will permit various wave-particle acceleration mechanisms to be tested. We review the measurement capabilities of the RBSP-ECT instrument suite, and demonstrate several examples of how these measurements will be used to explore candidate acceleration mechanisms and dynamics of radiation belt particles.

  18. Origin of accelerated and hindered sedimentation of two particles in wet foam.

    PubMed

    Jing, Zefeng; Feng, Chenchen; Wang, Shuzhong; Xu, Donghai

    2018-03-20

    To explore the origin of interactional settling behaviors of multi-particles in wet foam, the sedimentation of two particles placed one above the other as well as placed side by side is studied. According to the average settling velocity in experiment and the average settling drag force of the two particles in numerical simulation, we show that the particles display accelerated sedimentation as placed one above the other while they display hindered sedimentation in the case of the ones positioned side by side. Furthermore, the evolution of structure and force parameters of the bubbles, such as T1 topological events, displacement vector and principal stress fields, shows that the reciprocal action between the foam and the settling particles placed side by side is more significant. The different levels of interplay for these two settling cases also give rise to the diverse changes of bubble pressure response. The bubble pressure component of the average drag force is higher for the particles placed side by side. Especially, for the first time, it reveals that these interactional sedimentation behaviors in the foam are mainly attributed to the changed pressure of bubbles caused by these settling particles at the mesoscopic level. The present results may suggest potential explanations to the cause of the complex accelerated or hindered sedimentation of more particles in wet foam.

  19. Impact of ozonation on particle aggregation in mature fine tailings.

    PubMed

    Liang, Jiaming; Tumpa, Fahmida; Pérez Estrada, Leonidas; Gamal El-Din, Mohamed; Liu, Yang

    2014-12-15

    The extraction of bitumen from the oil sands in Canada generates tonnes of mature fine tailings (MFT), consisting of a mineral matrix of sand, clay, and water, which without treatment requires thousands of years to fully consolidate. We assessed the performance of a novel ozonation method designed to enhance the settling of MFT and explored the mechanisms involved. The solid content of MFT obtained from oil sands tailings was adjusted to 1, 3, 5 wt % with water before applying 15, 30, and 60 min of ozonation. MFT settled after a short (15 min) ozonation treatment, resulting in a sample with clear released water on the top and condensed sludge at the bottom. The water chemistry characteristics, particles' surface charge and chemical bonding were measured. Ozonation led to the increased organic acids concentrations in MFT suspension through converting of organic matter from high to low molecular weight, and detaching organic coating on MFT particles. The pH and the concentrations of ions in the MFT suspension were changed significantly, an association of metal ions with MFT particles was promoted, and the surface charges of MFT particles were neutralized. Consequently, the MFT suspension was destabilized and MFT particle precipitation was observed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Particle Theory & Cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafi, Qaisar; Barr, Steven; Gaisser, Thomas

    investigations in cosmology, specifically on supergravity and GUT infl models, primordial gravity waves, dark matter models. The origin of baryon and dark matter in the universe has been explored by Professors Barr and Shafi The research program of Professors Gaisser and Stanev address current research topics in Particle Astrophysics, in particular atmospheric and cosmogenic neutrinos and ultra-high energy cosmic rays. Work also included use of LHC data to improve tools for interpreting cascades generated in the atmosphere by high-energy particles from the cosmos. Cosmogenic neutrinos produced by interactions of ultra-high energy cosmic rays as they propagate through the cosmic microwave background radiation provides insight into the origin of the highest energy particles in nature. Overall, the research covered topics in the energy, cosmic and intensity frontiers.« less

  1. Movement of particles using sequentially activated dielectrophoretic particle trapping

    DOEpatents

    Miles, Robin R.

    2004-02-03

    Manipulation of DNA and cells/spores using dielectrophoretic (DEP) forces to perform sample preparation protocols for polymerized chain reaction (PCR) based assays for various applications. This is accomplished by movement of particles using sequentially activated dielectrophoretic particle trapping. DEP forces induce a dipole in particles, and these particles can be trapped in non-uniform fields. The particles can be trapped in the high field strength region of one set of electrodes. By switching off this field and switching on an adjacent electrodes, particles can be moved down a channel with little or no flow.

  2. Dynamics explorer interdisciplinary scientist investigations

    NASA Technical Reports Server (NTRS)

    Kozyra, Janet U.; Nagy, A. F.

    1994-01-01

    This document is a final report on research activities and accomplishments that occurred during the funding period of 10-1-90 through 1-30-94. The focus of our interdisciplinary investigation during the Dynamics Explorer Mission was on the complex coupling processes that tap the magnetic-storm energy, stored in the ring current particle reservoir, and transport this energy into the subauroral, midlatitude and even equatorial ionospheric regions. The transport of energy through the inner magnetosphere and into the underlying ionospheric regions is a critical element in our understanding of the impact of solar and magnetic disturbances on upper atmospheric and ionospheric regions equatorward of the auroral zone.

  3. The Advanced Composition Explorer spacecraft lifts off from Pad 17A, CCAS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Photographers and other onlookers watch as a Boeing Delta II expendable launch vehicle lifts off with NASA's Advanced Composition Explorer (ACE) observatory at 10:39 a.m. EDT, on Aug. 25, 1997, from Launch Complex 17A, Cape Canaveral Air Station. This is the second Delta launch under the Boeing name and the first from Cape Canaveral. Liftoff had been scheduled for Aug. 24, but was scrubbed one day by Air Force range safety personnel because two commercial fishing vessels were within the Delta's launch danger area. The ACE spacecraft will study low-energy particles of solar origin and high-energy galactic particles on its one-million-mile journey. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA. Study of these energetic particles may contribute to our understanding of the formation and evolution of the solar system. ACE has a two-year minimum mission lifetime and a goal of five years of service. ACE was built for NASA by the Johns Hopkins Applied Physics Laboratory and is managed by the Explorer Project Office at NASA's Goddard Space Flight Center. The lead scientific institution is the California Institute of Technology (Caltech) in Pasadena, Calif.

  4. Physical Investigations of Small Particles: (I) Aerosol Particle Charging and Flux Enhancement and (II) Whispering Gallery Mode Sensing

    NASA Astrophysics Data System (ADS)

    Lopez-Yglesias, Xerxes

    of the molecule and the electromagnetic interaction between the molecule and particle, especially for the neutral particle case, are completely ignored, or, as is often the case for a permanent dipole vapor species, strongly underestimated. Comparing our model to these classical models we determine an "enhancement factor" to characterize how important the addition of these physical parameters and processes is to the understanding of particle nucleation and growth. Part II: Whispering gallery mode (WGM) optical biosensors are capable of extraordinarily sensitive specific and non-specific detection of species suspended in a gas or fluid. Recent experimental results suggest that these devices may attain single-molecule sensitivity to protein solutions in the form of stepwise shifts in their resonance wavelength, lambdaR, but present sensor models predict much smaller steps than were reported. This study examines the physical interaction between a WGM sensor and a molecule adsorbed to its surface, exploring assumptions made in previous efforts to model WGM sensor behavior, and describing computational schemes that model the experiments for which single protein sensitivity was reported. The resulting model is used to simulate sensor performance, within constraints imposed by the limited material property data. On this basis, we conclude that nonlinear optical effects would be needed to attain the reported sensitivity, and that, in the experiments for which extreme sensitivity was reported, a bound protein experiences optical energy fluxes too high for such effects to be ignored.

  5. Individual Differences in L2 Acquisition of Japanese Particles "WA" and "GA"

    ERIC Educational Resources Information Center

    Mori, Sachiho

    2008-01-01

    Although the L2 acquisition studies of Japanese particles "WA" and "GA" were investigated by many researchers (Sakamoto, 2000), they completely ignored learners' individual differences. Indeed, learners' individualities are important factors for the L2 learning (Lightbrown & Spada, 1999). Thus, this research explored whether learners' individual…

  6. Update on the Worsening Particle Radiation Environment Observed by CRaTER and Implications for Future Human Deep-Space Exploration

    NASA Astrophysics Data System (ADS)

    Schwadron, N. A.; Rahmanifard, F.; Wilson, J.; Jordan, A. P.; Spence, H. E.; Joyce, C. J.; Blake, J. B.; Case, A. W.; de Wet, W.; Farrell, W. M.; Kasper, J. C.; Looper, M. D.; Lugaz, N.; Mays, L.; Mazur, J. E.; Niehof, J.; Petro, N.; Smith, C. W.; Townsend, L. W.; Winslow, R.; Zeitlin, C.

    2018-03-01

    Over the last decade, the solar wind has exhibited low densities and magnetic field strengths, representing anomalous states that have never been observed during the space age. As discussed by Schwadron, Blake, et al. (2014, https://doi.org/10.1002/2014SW001084), the cycle 23-24 solar activity led to the longest solar minimum in more than 80 years and continued into the "mini" solar maximum of cycle 24. During this weak activity, we observed galactic cosmic ray fluxes that exceeded theERobserved small solar energetic particle events. Here we provide an update to the Schwadron, Blake, et al. (2014, https://doi.org/10.1002/2014SW001084) observations from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter. The Schwadron, Blake, et al. (2014, https://doi.org/10.1002/2014SW001084) study examined the evolution of the interplanetary magnetic field and utilized a previously published study by Goelzer et al. (2013, https://doi.org/10.1002/2013JA019404) projecting out the interplanetary magnetic field strength based on the evolution of sunspots as a proxy for the rate that the Sun releases coronal mass ejections. This led to a projection of dose rates from galactic cosmic rays on the lunar surface, which suggested a ˜20% increase of dose rates from one solar minimum to the next and indicated that the radiation environment in space may be a worsening factor important for consideration in future planning of human space exploration. We compare the predictions of Schwadron, Blake, et al. (2014, https://doi.org/10.1002/2014SW001084) with the actual dose rates observed by CRaTER in the last 4 years. The observed dose rates exceed the predictions by ˜10%, showing that the radiation environment is worsening more rapidly than previously estimated. Much of this increase is attributable to relatively low-energy ions, which can be effectively shielded. Despite the continued paucity of solar activity, one of the hardest solar events in

  7. Zooplankton Grazing Effects on Particle Size Spectra under Different Seasonal Conditions

    NASA Astrophysics Data System (ADS)

    Stamieszkin, K.; Poulton, N.; Pershing, A. J.

    2016-02-01

    Oceanic particle size spectra can be used to explain and predict variability in carbon export efficiency, since larger particles are more likely to sink to depth than small particles. The distribution of biogenic particle size in the surface ocean is the result of many variables and processes, including nutrient availability, primary productivity, aggregation, remineralization, and grazing. We conducted a series of grazing experiments to test the hypothesis that mesozooplankton shift particle size spectra toward larger particles, via grazing and egestion of relatively large fecal pellets. These experiments were carried out over several months, and used natural communities of mesozooplankton and their microbial prey, collected offshore of the Damariscotta River in the Gulf of Maine. We analyzed the samples using Fluid Imaging Technologies' FlowCam®, a particle imaging system. With this equipment, we processed live samples, decreasing the likelihood of losing or damaging fragile particles, and thereby lessening sources of error in commonly used preservation and enumeration protocols. Our results show how the plankton size spectrum changes as the Gulf of Maine progresses through a seasonal cycle. We explore the relationship of grazing community size structure to its effect on the overall biogenic particle size spectrum. At some times of year, mesozooplankton grazing does not alter the particle size spectrum, while at others it significantly does, affecting the potential for biogenic flux. We also examine prey selectivity, and find that chain diatoms are the only prey group preferentially consumed. Otherwise, we find that complete mesozooplankton communities are "evolved" to fit their prey such that most prey groups are grazed evenly. We discuss a metabolic numerical model which could be used to universalize the relationships between whole gazer and whole microbial communities, with respect to effects on particle size spectra.

  8. Blowing in the Wind: I. Velocities of Chondrule-sized Particles in a Turbulent Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Hogan, Robert C.; Fonda, Mark (Technical Monitor)

    2003-01-01

    Small but macroscopic particles - chondrules, higher temperature mineral inclusions, metal grains, and their like - dominate the fabric of primitive meteorites. The properties of these constituents, and their relationship to the fine dust grains which surround them, suggest that they led an extended existence in a gaseous protoplanetary nebula prior to their incorporation into their parent primitive bodies. In this paper we explore in some detail the velocities acquired by such particles in a turbulent nebula. We treat velocities in inertial space (relevant to diffusion), velocities relative to the gas and entrained microscopic dust (relevant to accretion of dust rims), and velocities relative to each other (relevant to collisions). We extend previous work by presenting explicit, closed-form solutions for the magnitude and size dependence of these velocities in this important particle size regime, and compare these expressions with new numerical calculations. The magnitude and size dependence of these velocities have immediate applications to chondrule and CAI rimming by fine dust, and to their diffusion in the nebula, which we explore separately.

  9. Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques

    NASA Astrophysics Data System (ADS)

    Worringen, A.; Kandler, K.; Benker, N.; Dirsch, T.; Weinbruch, S.; Mertes, S.; Schenk, L.; Kästner, U.; Frank, F.; Nillius, B.; Bundke, U.; Rose, D.; Curtius, J.; Kupiszewski, P.; Weingartner, E.; Schneider, J.; Schmidt, S.; Ebert, M.

    2014-09-01

    In the present work, three different techniques are used to separate ice-nucleating particles (INP) and ice particle residuals (IPR) from non-ice-active particles: the Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI), which sample ice particles from mixed phase clouds and allow for the analysis of the residuals, as well as the combination of the Fast Ice Nucleus Chamber (FINCH) and the Ice Nuclei Pumped Virtual Impactor (IN-PCVI), which provides ice-activating conditions to aerosol particles and extracts the activated ones for analysis. The collected particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine their size, chemical composition and mixing state. Samples were taken during January/February 2013 at the High Alpine Research Station Jungfraujoch. All INP/IPR-separating techniques had considerable abundances (median 20-70%) of contamination artifacts (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH + IN-PCVI: steel particles). Also, potential measurement artifacts (soluble material) occurred (median abundance < 20%). After removal of the contamination particles, silicates and Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types separated by all three techniques. Minor types include soot and Pb-bearing particles. Sea-salt and sulfates were identified by all three methods as INP/IPR. Lead was identified in less than 10% of the INP/IPR. It was mainly present as an internal mixture with other particle types, but also external lead-rich particles were found. Most samples showed a maximum of the INP/IPR size distribution at 400 nm geometric diameter. In a few cases, a second super-micron maximum was identified. Soot/carbonaceous material and metal oxides were present mainly in the submicron range. ISI and FINCH yielded silicates and Ca-rich particles mainly with diameters above 1 μm, while the Ice-CVI also

  10. Dislodgement and removal of dust-particles from a surface by a technique combining acoustic standing wave and airflow.

    PubMed

    Chen, Di; Wu, Junru

    2010-01-01

    It is known that there are many fine particles on the moon and Mars. Their existence may cause risk for the success of a long-term project for NASA, i.e., exploration and habitation of the moon and Mars. These dust-particles might cover the solar panels, making them fail to generate electricity, and they might also penetrate through seals on space suits, hatches, and vehicle wheels causing many incidents. The fine particles would be hazardous to human health if they were inhaled. Development of robust dust mitigation technology is urgently needed for the viable long-term exploration and habilitation of either the moon or Mars. A feasibility study to develop a dust removal technique, which may be used in space-stations or other enclosures for habitation, is reported. It is shown experimentally that the acoustic radiation force produced by a 13.8 kHz 128 dB sound-level standing wave between a 3 cm-aperture tweeter and a reflector separated by 9 cm is strong enough to overcome the van der Waals adhesive force between the dust-particles and the reflector-surface. Thus the majority of fine particles (>2 microm diameter) on a reflector-surface can be dislodged and removed by a technique combining acoustic levitation and airflow methods. The removal efficiency deteriorates for particles of less than 2 microm in size.

  11. Oil biodegradation: Interactions of artificial marine snow, clay particles, oil and Corexit.

    PubMed

    Rahsepar, Shokouh; Langenhoff, Alette A M; Smit, Martijn P J; van Eenennaam, Justine S; Murk, Albertinka J; Rijnaarts, Huub H M

    2017-12-15

    During the Deepwater Horizon (DwH) oil spill, interactions between oil, clay particles and marine snow lead to the formation of aggregates. Interactions between these components play an important, but yet not well understood, role in biodegradation of oil in the ocean water. The aim of this study is to explore the effect of these interactions on biodegradation of oil in the water. Laboratory experiments were performed, analyzing respiration and n-alkane and BTEX biodegradation in multiple conditions containing Corexit, alginate particles as marine snow, and kaolin clay. Two oil degrading bacterial pure cultures were added, Pseudomonas putida F1 and Rhodococcus qingshengii TUHH-12. Results show that the presence of alginate particles enhances oil biodegradation. The presence of Corexit alone or in combination with alginate particles and/or kaolin clay, hampers oil biodegradation. Kaolin clay and Corexit have a synergistic effect in increasing BTEX concentrations in the water and cause delay in oil biodegradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Trapped particle and solar proton radiation prediction for ISEE (IME): Mother-daughter mission

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1974-01-01

    The charged particle fluxes incident on spacecrafts in very eccentric orbits were investigated in support of the International Sun-Earth Explorer (International Magnetospheric Explorer) For this purpose, two flightpaths were considered having identical inclinations but different perigee altitudes (240 and 1364 kilometers, respectively). Apogee altitude was approximately the same for both cases (about 22 earth radii). For each of the two perigee altitudes investigated, two nominal trajectories were generated, having identical orbital configurations but with their major axes rotated by 180 deg in the plane of orbit, which resulted in placing the initial apogee into into opposite hemispheres. This was done in order to determine the corresponding variation in the vehicle-encountered particle intensities. Estimates of average energetic solar proton fluxes are given for a one year mission duration at selected integranlenergies ranging from E 10 to E 100 MeV. Results are summarized and discussed.

  13. The role of ions in the self-healing behavior of soft particle suspensions

    PubMed Central

    Scotti, Andrea; Gasser, Urs; Herman, Emily S.; Pelaez-Fernandez, Miguel; Han, Jun; Menzel, Andreas; Lyon, L. Andrew; Fernández-Nieves, Alberto

    2016-01-01

    Impurities in crystals generally cause point defects and can even suppress crystallization. This general rule, however, does not apply to colloidal crystals formed by soft microgel particles [Iyer ASJ, Lyon LA (2009) Angew Chem Int Ed 48:4562–4566], as, in this case, the larger particles are able to shrink and join the crystal formed by a majority of smaller particles. Using small-angle X-ray scattering, we find the limit in large-particle concentration for this spontaneous deswelling to persist. We rationalize our data in the context of those counterions that are bound to the microgel particles as a result of the electrostatic attraction exerted by the fixed charges residing on the particle periphery. These bound counterions do not contribute to the suspension osmotic pressure in dilute conditions, as they can be seen as internal degrees of freedom associated with each microgel particle. In contrast, at sufficiently high particle concentrations, the counterion cloud of each particle overlaps with that of its neighbors, allowing these ions to freely explore the space outside the particles. We confirm this scenario by directly measuring the osmotic pressure of the suspension. Because these counterions are then no longer bound, they create an osmotic pressure difference between the inside and outside of the microgels, which, if larger than the microgel bulk modulus, can cause deswelling, explaining why large, soft microgel particles feel the squeeze when suspended with a majority of smaller particles. We perform small-angle neutron scattering measurements to further confirm this remarkable behavior. PMID:27125854

  14. The notions of mass in gravitational and particle physics

    NASA Astrophysics Data System (ADS)

    Castellani, Gianluca

    It is presently thought that the mass of all of the elementary particles is determined by the Higgs field. This scalar field couples directly into the trace of the energy momentum tensor of the elementary particles. The attraction between two or more masses arises from the exchange of gravitational quantum particles of spin 2, called gravitons. The gravitational field couples directly into the energy momentum tensor. Then there is a close connection between the Higgs field, that originates the mass, and the gravitational field that dictates how the masses interact. Our purpose in this thesis is to discuss this close connection in terms of fundamental definitions of inertial and gravitational masses. On a practical level we explore two properties of mass from the viewpoint of coupling into the Higgs field: (i) The coupling of the both the Higgs and gravity to the energy-pressure tensor allows for the decay of the Higgs particle into two gravitons. We use the self energy part of the Higgs propagator to calculate the electromagnetic, weak, fermionic and gravitational decay rate of the Higgs particle. We show that the former process appears to dominate the other decay modes. Since the gravitons are detectable with virtually zero probability, the number of Higgs particles with observable decay products will be much less than previously expected. (ii) Some new experimental results seem to indicate that the mass of the heavy elementary particles like the Z,W+,W- and especially the top quark, depends on the particle environment in which these particles are produced. The presence of a Higgs field due to neighboring particles could be responsible for induced mass shifts. Further measurements of mass shift effects might give an indirect proof of the Higgs particle. Such can be in principle done by re-analyzing some of the production data e +e- → ZZ (or W+W-) already collected at the LEP experiment. About the physical property of the top quark, it is too early to arrive at

  15. Particle dynamics and particle-cell interaction in microfluidic systems

    NASA Astrophysics Data System (ADS)

    Stamm, Matthew T.

    Particle-laden flow in a microchannel resulting in aggregation of microparticles was investigated to determine the dependence of the cluster growth rate on the following parameters: suspension void fraction, shear strain rate, and channel-height to particle-diameter ratio. The growth rate of an average cluster was found to increase linearly with suspension void fraction, and to obey a power-law relationships with shear strain rate as S 0.9 and channel-height to particle-diameter ratio as (h/d )--3.5. Ceramic liposomal nanoparticles and silica microparticles were functionalized with antibodies that act as targeting ligands. The bio-functionality and physical integrity of the cerasomes were characterized. Surface functionalization allows cerasomes to deliver drugs with selectivity and specificity that is not possible using standard liposomes. The functionalized particle-target cell binding process was characterized using BT-20 breast cancer cells. Two microfluidic systems were used; one with both species in suspension, the other with cells immobilized inside a microchannel and particle suspension as the mobile phase. Effects of incubation time, particle concentration, and shear strain rate on particle-cell binding were investigated. With both species in suspension, the particle-cell binding process was found to be reasonably well-described by a first-order model. Particle desorption and cellular loss of binding affinity in time were found to be negligible; cell-particle-cell interaction was identified as the limiting mechanism in particle-cell binding. Findings suggest that separation of a bound particle from a cell may be detrimental to cellular binding affinity. Cell-particle-cell interactions were prevented by immobilizing cells inside a microchannel. The initial stage of particle-cell binding was investigated and was again found to be reasonably well-described by a first-order model. For both systems, the time constant was found to be inversely proportional to

  16. Particle preconcentrator

    DOEpatents

    Linker, Kevin L.; Conrad, Frank J.; Custer, Chad A.; Rhykerd, Jr., Charles L.

    1998-01-01

    An apparatus and method for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents.

  17. Particle preconcentrator

    DOEpatents

    Linker, Kevin L.; Conrad, Frank J.; Custer, Chad A.; Rhykerd, Jr., Charles L.

    2005-09-20

    An apparatus and method for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents.

  18. Particle preconcentrator

    DOEpatents

    Linker, Kevin L.; Conrad, Frank J.; Custer, Chad A.; Rhykerd, Jr., Charles L.

    2000-01-01

    An apparatus and method for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents.

  19. Particle preconcentrator

    DOEpatents

    Linker, K.L.; Conrad, F.J.; Custer, C.A.; Rhykerd, C.L. Jr.

    1998-12-29

    An apparatus and method are disclosed for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents. 3 figs.

  20. Lunar Dust Characterization for Exploration Life Support Systems

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.

    2007-01-01

    Lunar dust effects can have a significant impact on the performance and maintenance of future exploration life support systems. Filtration systems will be challenged by the additional loading from lunar dust, and mitigation technology and strategies have to be adapted to protect sensitive equipment. An initial characterization of lunar dust and simulants was undertaken. The data emphasize the irregular morphology of the dust particles and the frequency dependence of lunar dust layer detachment from shaken surfaces.

  1. Accelerating a Particle-in-Cell Simulation Using a Hybrid Counting Sort

    NASA Astrophysics Data System (ADS)

    Bowers, K. J.

    2001-11-01

    In this article, performance limitations of the particle advance in a particle-in-cell (PIC) simulation are discussed. It is shown that the memory subsystem and cache-thrashing severely limit the speed of such simulations. Methods to implement a PIC simulation under such conditions are explored. An algorithm based on a counting sort is developed which effectively eliminates PIC simulation cache thrashing. Sustained performance gains of 40 to 70 percent are measured on commodity workstations for a minimal 2d2v electrostatic PIC simulation. More complete simulations are expected to have even better results as larger simulations are usually even more memory subsystem limited.

  2. Challenges in Clinical Management of Radiation-Induced Illnesses in Exploration Spaceflight

    NASA Technical Reports Server (NTRS)

    Blue, Rebecca; Chancellor, Jeffery; Suresh, Rahul; Carnell, Lisa; Reyes, David; Nowadly, Craig; Antonsen, Erik

    2018-01-01

    Historical solar particle events (SPEs) provide context for some understanding of acute radiation exposure risk to astronauts traveling outside of low Earth orbit. Modeling of potential doses delivered to exploration crewmembers anticipates limited radiation-induced health impacts, including prodromal symptoms of nausea, emesis, and fatigue, but suggests that more severe clinical manifestations are unlikely. Recent large animal-model research in space-analogs closely mimicking SPEs has identified coagulopathic events independent of the hematopoietic sequelae of higher radiation doses, similar in manifestation to disseminated intravascular coagulation (DIC). We explored the challenges of clinical management of radiation-related clinical manifestations, using currently accepted modeling techniques and anticipated physiological sequelae, to identify medical capabilities needed to successfully manage SPE-induced radiation illnesses during exploration spaceflight.

  3. Steady-state and dynamic models for particle engulfment during solidification

    NASA Astrophysics Data System (ADS)

    Tao, Yutao; Yeckel, Andrew; Derby, Jeffrey J.

    2016-06-01

    Steady-state and dynamic models are developed to study the physical mechanisms that determine the pushing or engulfment of a solid particle at a moving solid-liquid interface. The mathematical model formulation rigorously accounts for energy and momentum conservation, while faithfully representing the interfacial phenomena affecting solidification phase change and particle motion. A numerical solution approach is developed using the Galerkin finite element method and elliptic mesh generation in an arbitrary Lagrangian-Eulerian implementation, thus allowing for a rigorous representation of forces and dynamics previously inaccessible by approaches using analytical approximations. We demonstrate that this model accurately computes the solidification interface shape while simultaneously resolving thin fluid layers around the particle that arise from premelting during particle engulfment. We reinterpret the significance of premelting via the definition an unambiguous critical velocity for engulfment from steady-state analysis and bifurcation theory. We also explore the complicated transient behaviors that underlie the steady states of this system and posit the significance of dynamical behavior on engulfment events for many systems. We critically examine the onset of engulfment by comparing our computational predictions to those obtained using the analytical model of Rempel and Worster [29]. We assert that, while the accurate calculation of van der Waals repulsive forces remains an open issue, the computational model developed here provides a clear benefit over prior models for computing particle drag forces and other phenomena needed for the faithful simulation of particle engulfment.

  4. Adhesive loose packings of small dry particles.

    PubMed

    Liu, Wenwei; Li, Shuiqing; Baule, Adrian; Makse, Hernán A

    2015-08-28

    We explore adhesive loose packings of small dry spherical particles of micrometer size using 3D discrete-element simulations with adhesive contact mechanics and statistical ensemble theory. A dimensionless adhesion parameter (Ad) successfully combines the effects of particle velocities, sizes and the work of adhesion, identifying a universal regime of adhesive packings for Ad > 1. The structural properties of the packings in this regime are well described by an ensemble approach based on a coarse-grained volume function that includes the correlation between bulk and contact spheres. Our theoretical and numerical results predict: (i) an equation of state for adhesive loose packings that appear as a continuation from the frictionless random close packing (RCP) point in the jamming phase diagram and (ii) the existence of an asymptotic adhesive loose packing point at a coordination number Z = 2 and a packing fraction ϕ = 1/2(3). Our results highlight that adhesion leads to a universal packing regime at packing fractions much smaller than the random loose packing (RLP), which can be described within a statistical mechanical framework. We present a general phase diagram of jammed matter comprising frictionless, frictional, adhesive as well as non-spherical particles, providing a classification of packings in terms of their continuation from the spherical frictionless RCP.

  5. Test-particle simulations in increasingly strong turbulence

    NASA Technical Reports Server (NTRS)

    Pontius, D. H., Jr.; Gray, P. C.; Matthaeus, W. H.

    1995-01-01

    Quasi-linear theory supposes that the energy in resonant fluctuations is small compared to that in the mean magnetic field. This is evident in the fact that the zeroth-order particle trajectories are helices about a mean field B(sub o) that is spatially uniform over many correlation lengths. However, in the solar wind it is often the case that the fluctuating part of the field is comparable in magnitude to the mean part. It is generally expected that quasi-linear theory remains viable for particles that are in resonance with a region of the fluctuation spectrum having only small energy density, but even so, care must be taken when comparing simulations to theoretical predictions. We have performed a series of test-particle simulations to explore the evolution of ion distributions in turbulent situations with varying levels of magnetic fluctuations. As delta-B/B(sub o) is increased the distinctions among absolute pitch angle (defined relative to B(sub o)), local pitch angle (defined relative to B(x)), and magnetic moment become important, some of them exhibiting periodic sloshing unrelated to the nonadiabatic processes of interest. Comparing and contrasting the various runs illustrates the phenomena that must be considered when the premise underlying quasi-linear theory are relaxed.

  6. Complete and Incomplete Hepatitis B Virus Particles: Formation, Function, and Application.

    PubMed

    Hu, Jianming; Liu, Kuancheng

    2017-03-21

    Hepatitis B virus (HBV) is a para-retrovirus or retroid virus that contains a double-stranded DNA genome and replicates this DNA via reverse transcription of a RNA pregenome. Viral reverse transcription takes place within a capsid upon packaging of the RNA and the viral reverse transcriptase. A major characteristic of HBV replication is the selection of capsids containing the double-stranded DNA, but not those containing the RNA or the single-stranded DNA replication intermediate, for envelopment during virion secretion. The complete HBV virion particles thus contain an outer envelope, studded with viral envelope proteins, that encloses the capsid, which, in turn, encapsidates the double-stranded DNA genome. Furthermore, HBV morphogenesis is characterized by the release of subviral particles that are several orders of magnitude more abundant than the complete virions. One class of subviral particles are the classical surface antigen particles (Australian antigen) that contain only the viral envelope proteins, whereas the more recently discovered genome-free (empty) virions contain both the envelope and capsid but no genome. In addition, recent evidence suggests that low levels of RNA-containing particles may be released, after all. We will summarize what is currently known about how the complete and incomplete HBV particles are assembled. We will discuss briefly the functions of the subviral particles, which remain largely unknown. Finally, we will explore the utility of the subviral particles, particularly, the potential of empty virions and putative RNA virions as diagnostic markers and the potential of empty virons as a vaccine candidate.

  7. [Preparation and characterization of magnetic nano-particles with radiofrequency-induced hyperthermia for cancer treatment].

    PubMed

    Fan, Xiangshan; Zhang, Dongsheng; Zheng, Jie; Gu, Ning; Ding, Anwei; Jia, Xiupeng; Qing, Hongyun; Jin, Liqiang; Wan, Meiling; Li, Qunhui

    2006-08-01

    Mn0.5Zn0.5Fe2O4 nano-particles were prepared by the chemical co-precipitation, their characteristics were observed with transmission electron microscope (TEM), X-ray diffractometer (XRD) and thermal analysis system, and etc. The temperature changes of the nano-particles of Mn0.5Zn0.5Fe2O4 and its magnetic fluid explored in radiofrequency(RF,200 KHz, 4 KW) were measured. The proliferation ratio of L929 cells cultured in soak of Mn0.5Zn0.5Fe2O4 nano-particles were observed. The experiment indicates that the magnetic particles were about 40 nm diameter in average, round, had strong magnetism, and were proved to be consistent with the standard data of chart of XRD. Its magnetic fluid exposed to RF could be heated up to temperature range from 40 degrees C to 51 degrees C due to the amount of the magnetic nano-particles and intensity of the alternating magnetic field. Magnetic nano-particles were found to have no obvious cytotoxicity to L929 cells.

  8. An Improved Quantum-Behaved Particle Swarm Optimization Algorithm with Elitist Breeding for Unconstrained Optimization.

    PubMed

    Yang, Zhen-Lun; Wu, Angus; Min, Hua-Qing

    2015-01-01

    An improved quantum-behaved particle swarm optimization with elitist breeding (EB-QPSO) for unconstrained optimization is presented and empirically studied in this paper. In EB-QPSO, the novel elitist breeding strategy acts on the elitists of the swarm to escape from the likely local optima and guide the swarm to perform more efficient search. During the iterative optimization process of EB-QPSO, when criteria met, the personal best of each particle and the global best of the swarm are used to generate new diverse individuals through the transposon operators. The new generated individuals with better fitness are selected to be the new personal best particles and global best particle to guide the swarm for further solution exploration. A comprehensive simulation study is conducted on a set of twelve benchmark functions. Compared with five state-of-the-art quantum-behaved particle swarm optimization algorithms, the proposed EB-QPSO performs more competitively in all of the benchmark functions in terms of better global search capability and faster convergence rate.

  9. Effect of Particle Morphology on the Reactivity of Explosively Dispersed Titanium Particles

    NASA Astrophysics Data System (ADS)

    Frost, David; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan

    2009-06-01

    The effect of particle morphology on the reaction of titanium (Ti) particles explosively dispersed during the detonation of either cylindrical or spherical charges has been investigated experimentally. The explosive charges consisted of packed beds of Ti particles saturated with nitromethane. The reaction behavior of irregularly-shaped Ti particles in three size ranges is compared with tests with spherical Ti particles. The particle reaction is strongly dependent on particle morphology, e.g., 95 μm spherical Ti particles failed to ignite (in cylinders up to 49 mm in dia), whereas similarly sized irregular Ti particles readily ignited. For irregular particles, the uniformity of ignition on the particle cloud surface was almost independent of particle size, but depended on charge diameter. As the charge diameter was reduced, ignition in the conically expanding particle cloud occurred only at isolated spots or bands. For spherical charges, although large irregular Ti particles ignited promptly and uniformly throughout the particle cloud, the smallest particles dispersed nonuniformly and ignition occurred at isolated locations. In general, particle ignition is a competition between particle heating (which is influenced by particle morphology, size, number density and the local thermodynamic history) and expansion cooling of the products.

  10. The Advanced Composition Explorer is placed atop its Delta II launcher at Pad 17A, CCAS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Advanced Composition Explorer (ACE) spacecraft is placed atop its launch vehicle at Launch Complex 17A. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 24, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA.

  11. Parallel particle impactor - novel size-selective particle sampler for accurate fractioning of inhalable particles

    NASA Astrophysics Data System (ADS)

    Trakumas, S.; Salter, E.

    2009-02-01

    Adverse health effects due to exposure to airborne particles are associated with particle deposition within the human respiratory tract. Particle size, shape, chemical composition, and the individual physiological characteristics of each person determine to what depth inhaled particles may penetrate and deposit within the respiratory tract. Various particle inertial classification devices are available to fractionate airborne particles according to their aerodynamic size to approximate particle penetration through the human respiratory tract. Cyclones are most often used to sample thoracic or respirable fractions of inhaled particles. Extensive studies of different cyclonic samplers have shown, however, that the sampling characteristics of cyclones do not follow the entire selected convention accurately. In the search for a more accurate way to assess worker exposure to different fractions of inhaled dust, a novel sampler comprising several inertial impactors arranged in parallel was designed and tested. The new design includes a number of separated impactors arranged in parallel. Prototypes of respirable and thoracic samplers each comprising four impactors arranged in parallel were manufactured and tested. Results indicated that the prototype samplers followed closely the penetration characteristics for which they were designed. The new samplers were found to perform similarly for liquid and solid test particles; penetration characteristics remained unchanged even after prolonged exposure to coal mine dust at high concentration. The new parallel impactor design can be applied to approximate any monotonically decreasing penetration curve at a selected flow rate. Personal-size samplers that operate at a few L/min as well as area samplers that operate at higher flow rates can be made based on the suggested design. Performance of such samplers can be predicted with high accuracy employing well-established impaction theory.

  12. Particle Based Simulations of Complex Systems with MP2C : Hydrodynamics and Electrostatics

    NASA Astrophysics Data System (ADS)

    Sutmann, Godehard; Westphal, Lidia; Bolten, Matthias

    2010-09-01

    Particle based simulation methods are well established paths to explore system behavior on microscopic to mesoscopic time and length scales. With the development of new computer architectures it becomes more and more important to concentrate on local algorithms which do not need global data transfer or reorganisation of large arrays of data across processors. This requirement strongly addresses long-range interactions in particle systems, i.e. mainly hydrodynamic and electrostatic contributions. In this article, emphasis is given to the implementation and parallelization of the Multi-Particle Collision Dynamics method for hydrodynamic contributions and a splitting scheme based on Multigrid for electrostatic contributions. Implementations are done for massively parallel architectures and are demonstrated for the IBM Blue Gene/P architecture Jugene in Jülich.

  13. Particle astrophysics

    NASA Technical Reports Server (NTRS)

    Sadoulet, Bernard; Cronin, James; Aprile, Elena; Barish, Barry C.; Beier, Eugene W.; Brandenberger, Robert; Cabrera, Blas; Caldwell, David; Cassiday, George; Cline, David B.

    1991-01-01

    The following scientific areas are reviewed: (1) cosmology and particle physics (particle physics and the early universe, dark matter, and other relics); (2) stellar physics and particles (solar neutrinos, supernovae, and unconventional particle physics); (3) high energy gamma ray and neutrino astronomy; (4) cosmic rays (space and ground observations). Highest scientific priorities for the next decade include implementation of the current program, new initiatives, and longer-term programs. Essential technological developments, such as cryogenic detectors of particles, new solar neutrino techniques, and new extensive air shower detectors, are discussed. Also a certain number of institutional issues (the funding of particle astrophysics, recommended funding mechanisms, recommended facilities, international collaborations, and education and technology) which will become critical in the coming decade are presented.

  14. Continuous time random walk with local particle-particle interaction

    NASA Astrophysics Data System (ADS)

    Xu, Jianping; Jiang, Guancheng

    2018-05-01

    The continuous time random walk (CTRW) is often applied to the study of particle motion in disordered media. Yet most such applications do not allow for particle-particle (walker-walker) interaction. In this paper, we consider a CTRW with particle-particle interaction; however, for simplicity, we restrain the interaction to be local. The generalized Chapman-Kolmogorov equation is modified by introducing a perturbation function that fluctuates around 1, which models the effect of interaction. Subsequently, a time-fractional nonlinear advection-diffusion equation is derived from this walking system. Under the initial condition of condensed particles at the origin and the free-boundary condition, we numerically solve this equation with both attractive and repulsive particle-particle interactions. Moreover, a Monte Carlo simulation is devised to verify the results of the above numerical work. The equation and the simulation unanimously predict that this walking system converges to the conventional one in the long-time limit. However, for systems where the free-boundary condition and long-time limit are not simultaneously satisfied, this convergence does not hold.

  15. Particle capture device

    DOEpatents

    Jayne, John T.; Worsnop, Douglas R.

    2016-02-23

    In example embodiments, particle collection efficiency in aerosol analyzers and other particle measuring instruments is improved by a particle capture device that employs multiple collisions to decrease momentum of particles until the particles are collected (e.g., vaporized or come to rest). The particle collection device includes an aperture through which a focused particle beam enters. A collection enclosure is coupled to the aperture and has one or more internal surfaces against which particles of the focused beam collide. One or more features are employed in the collection enclosure to promote particles to collide multiple times within the enclosure, and thereby be vaporized or come to rest, rather than escape through the aperture.

  16. Factors governing particle number emissions in a waste-to-energy plant.

    PubMed

    Ozgen, Senem; Cernuschi, Stefano; Giugliano, Michele

    2015-05-01

    Particle number concentration and size distribution measurements were performed on the stack gas of a waste-to-energy plant which co-incinerates municipal solid waste, sewage sludge and clinical waste in two lines. Average total number of particles was found to be 4.0·10(5)cm(-3) and 1.9·10(5)cm(-3) for the line equipped with a wet flue gas cleaning process and a dry cleaning system, respectively. Ultrafine particles (dp<100nm) accounted for about 97% of total number concentration for both lines, whereas the nanoparticle (dp<50nm) contribution differed slightly between the lines (87% and 84%). The experimental data is explored statistically through some multivariate pattern identifying methods such as factor analysis and cluster analysis to help the interpretation of the results regarding the origin of the particles in the flue gas with the objective of determining the factors governing the particle number emissions. The higher moisture of the flue gas in the wet cleaning process was found to increase the particle number emissions on average by a factor of about 2 due to increased secondary formation of nanoparticles through nucleation of gaseous precursors such as sulfuric acid, ammonia and water. The influence of flue gas dilution and cooling monitored through the variation of the sampling conditions also confirms the potential effect of the secondary new particle formation in increasing the particle number emissions. This finding shows the importance of reporting the experimental conditions in detail to enable the comparison and interpretation of particle number emissions. Regarding the fuel characteristics no difference was observed in terms of particle number concentration and size distributions between the clinical waste feed and the municipal solid waste co-incineration with sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Experimental studies of tuned particle damper: Design and characterization

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Xi, Yanhui; Chen, Tianning; Ma, Zhihao

    2018-01-01

    To better suppress the structural vibration in the micro vibration and harsh environment, a new type of damper, tuned particle damper (TPD), was designed by combining the advantage of classical dynamic vibration absorber (DVA) and particle damper (PD). An equivalent theoretical model was established to describe the dynamic behavior of a cantilever system treated with TPD. By means of a series of sine sweep tests, the dynamic characteristic of TPD under different excitation intensity was explored and the damping performance of TPD was investigated by comparing with classical DVA and PD with the same mass ratio. Experimental results show that with the increasing of excitation intensity TPD shows two different dynamic characteristics successively, i.e., PD-like and DVA-like. TPD shows a wider suppression frequency band than classical DVA and better practicability than PD in the micro vibration environment. Moreover, to characterize the dynamic characteristic of TPD, a simple evaluation of the equivalent dynamic mass and equivalent dynamic damping of the cantilever system treated with TPD was performed by fitting the experimental data to the presented theoretical model. Finally, based on the rheology behaviors of damping particles reported by the previous research results, an approximate phase diagram which shows the motion states of damping particles in TPD was employed to analyze the dynamic characteristic of TPD and several motion states of damping particles in TPD were presented via a high-speed camera.

  18. Method for coating ultrafine particles, system for coating ultrafine particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jie; Liu, Yung

    The invention provides a method for dispersing particles within a reaction field, the method comprising confining the particles to the reaction field using a standing wave. The invention also provides a system for coating particles, the system comprising a reaction zone; a means for producing fluidized particles within the reaction zone; a fluid to produce a standing wave within the reaction zone; and a means for introducing coating moieties to the reaction zone. The invention also provides a method for coating particles, the method comprising fluidizing the particles, subjecting the particles to a standing wave; and contacting the subjected particlesmore » with a coating moiety.« less

  19. Effect of Particle Morphology on the Reactivity of Explosively Dispersed Titanium Particles

    NASA Astrophysics Data System (ADS)

    Frost, David L.; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan

    2009-12-01

    The effect of particle morphology on the reaction of titanium (Ti) particles explosively dispersed during the detonation of either cylindrical or spherical charges has been investigated experimentally. The explosive charges consisted of packed beds of Ti particles saturated with nitromethane. The reaction behaviour of irregularly-shaped Ti particles in three size ranges is compared with tests with spherical Ti particles. The particle reaction is strongly dependent on particle morphology, e.g., 95 μm spherical Ti particles failed to ignite (in cylinders up to 49 mm in dia), whereas similarly sized irregular Ti particles readily ignited. For irregular particles, the uniformity of ignition on the particle cloud surface was almost independent of particle size, but depended on charge diameter. As the charge diameter was reduced, ignition in the conically expanding particle cloud occurred only at isolated spots or bands. For spherical charges, whereas large irregular Ti particles ignited promptly and uniformly throughout the particle cloud, the smallest particles dispersed nonuniformly and ignition occurred at isolated locations after a delay. Hence the charge geometry, as well as particle morphology, influences the reaction behaviour of the particles.

  20. Seasonal Atmospheric Argon Variability Measured in the Equatorial Region of Mars by the Mars Exploration Rover Alpha Particle X-Ray Spectrometers: Evidence for an Annual Argon-Enriched Front

    NASA Astrophysics Data System (ADS)

    VanBommel, S. J.; Gellert, R.; Clark, B. C.; Ming, D. W.

    2018-02-01

    The Mars Exploration Rover Opportunity (MER-B) has been exploring the surface of Mars since landing in 2004. Its Alpha Particle X-ray Spectrometer (APXS) is primarily used to interrogate the chemical composition of rocks and soil samples in situ. Additionally, the APXS has measured the atmosphere of Mars with a regular cadence, monitoring the change in relative atmospheric argon density. Atmospheric measurements with the MER-B APXS span over six Mars years providing an unprecedented level of statistics for careful study of the ubiquitous APXS spectral background. Several models were applied to high-frequency long-duration Spirit rover atmospheric APXS measurements. The most stable model with the least uncertainty was applied to the MER-B data set. Seasonal variation of 10-15% in equatorial atmospheric argon density was observed - in agreement with existing literature and global climate models. Unseen in previous work and global climate models, an abrupt deviation from the model-predicted annual mixing ratio was measured by the MER-B APXS around Ls 150. The sharp change, 10% over 10° Ls, provides strong evidence for a northward migrating front, enriched in argon, sourced from the south pole at the end of southern winter. A similar weaker front is possibly observed around Ls 325, sourced from the northern polar region.

  1. Particle scattering by harmonically trapped Bose and Fermi gases

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Ankita; Das, Samir; Biswas, Shyamal

    2018-04-01

    We have analytically explored the quantum phenomenon of particle scattering by harmonically trapped Bose and Fermi gases with the short ranged Fermi–Huang {δ }p3 interactions (Fermi 1936 Ric. Sci. 7 13; Huang and Yang 1957 Phys. Rev. 105 767) interactions among the incident particle and the scatterers. We have predicted differential scattering cross-sections and their temperature dependence in this regard. Coherent scattering even by a single boson or fermion in the finite geometry gives rise to new tool of determining energy eigenstate of the scatterer. Our predictions on the differential scattering cross-sections can be tested within the present day experimental setups, specially, for (i) 3D harmonically trapped interacting Bose–Einstein condensate (BEC), (ii) BECs in a double well, and (iii) BECs in an optical lattice.

  2. Particle Detectors

    NASA Astrophysics Data System (ADS)

    Grupen, Claus; Shwartz, Boris

    2011-09-01

    Preface to the first edition; Preface to the second edition; Introduction; 1. Interactions of particles and radiation with matter; 2. Characteristic properties of detectors; 3. Units of radiation measurements and radiation sources; 4. Accelerators; 5. Main physical phenomena used for particle detection and basic counter types; 6. Historical track detectors; 7. Track detectors; 8. Calorimetry; 9. Particle identification; 10. Neutrino detectors; 11. Momentum measurement and muon detection; 12. Ageing and radiation effects; 13. Example of a general-purpose detector: Belle; 14. Electronics; 15. Data analysis; 16. Applications of particle detectors outside particle physics; 17. Glossary; 18. Solutions; 19. Resumé; Appendixes; Index.

  3. Hygroscopic properties of atmospheric particles emitted during wintertime biomass burning episodes in Athens

    NASA Astrophysics Data System (ADS)

    Psichoudaki, Magda; Nenes, Athanasios; Florou, Kalliopi; Kaltsonoudis, Christos; Pandis, Spyros N.

    2018-04-01

    This study explores the Cloud Condensation Nuclei (CCN) activity of atmospheric particles during intense biomass burning periods in an urban environment. During a one-month campaign in the center of Athens, Greece, a CCN counter coupled with a Scanning Mobility Particle Sizer (SMPS) and a high resolution Aerosol Mass Spectrometer (HR-AMS) were used to measure the size-resolved CCN activity and composition of the atmospheric aerosols. During the day, the organic fraction of the particles was more than 50%, reaching almost 80% at night, when the fireplaces were used. Positive Matrix Factorization (PMF) analysis revealed 4 factors with biomass burning being the dominant source after 18:00 until the early morning. The CCN-based overall hygroscopicity parameter κ ranged from 0.15 to 0.25. During the night, when the biomass burning organic aerosol (bbOA) dominated, the hygroscopicity parameter for the mixed organic/inorganic particles was on average 0.16. The hygroscopicity of the biomass-burning organic particles was 0.09, while the corresponding average value for all organic particulate matter during the campaign was 0.12.

  4. Engineering ellipsoidal cap-like hydrogel particles as building blocks or sacrificial templates for three-dimensional cell culture.

    PubMed

    Zhang, Weiwei; Huang, Guoyou; Ng, Kelvin; Ji, Yuan; Gao, Bin; Huang, Liqing; Zhou, Jinxiong; Lu, Tian Jian; Xu, Feng

    2018-03-26

    Hydrogel particles that can be engineered to compartmentally culture cells in a three-dimensional (3D) and high-throughput manner have attracted increasing interest in the biomedical area. However, the ability to generate hydrogel particles with specially designed structures and their potential biomedical applications need to be further explored. This work introduces a method for fabricating hydrogel particles in an ellipsoidal cap-like shape (i.e., ellipsoidal cap-like hydrogel particles) by employing an open-pore anodic aluminum oxide membrane. Hydrogel particles of different sizes are fabricated. The ability to produce ellipsoidal cap-like magnetic hydrogel particles with controlled distribution of magnetic nanoparticles is demonstrated. Encapsulated cells show high viability, indicating the potential for using these hydrogel particles as structure- and remote-controllable building blocks for tissue engineering application. Moreover, the hydrogel particles are also used as sacrificial templates for fabricating ellipsoidal cap-like concave wells, which are further applied for producing size controllable cell aggregates. The results are beneficial for the development of hydrogel particles and their applications in 3D cell culture.

  5. The immersion freezing behavior of mineral dust particles mixed with biological substances

    NASA Astrophysics Data System (ADS)

    Augustin-Bauditz, S.; Wex, H.; Denjean, C.; Hartmann, S.; Schneider, J.; Schmidt, S.; Ebert, M.; Stratmann, F.

    2015-10-01

    Biological particles such as bacteria, fungal spores or pollen are known to be efficient ice nucleating particles. Their ability to nucleate ice is due to ice nucleation active macromolecules (INM). It has been suggested that these INM maintain their nucleating ability even when they are separated from their original carriers. This opens the possibility of an accumulation of such INM in e.g., soils, resulting in an internal mixture of mineral dust and INM. If particles from such soils which contain biological INM are then dispersed into the atmosphere due to wind erosion or agricultural processes, they could induce ice nucleation at temperatures typical for biological substances, i.e., above -20 up to almost 0 °C. To explore this hypothesis, we performed a measurement campaign within the research unit INUIT, where we investigated the ice nucleation behavior of mineral dust particles internally mixed with INM. Specifically, we mixed a pure mineral dust sample (illite-NX) with ice active biological material (birch pollen washing water) and quantified the immersion freezing behavior of the resulting particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS). To characterize the mixing state of the generated aerosol we used different methods which will also be discussed. We found that internally mixed particles, containing ice active biological material, follow the ice nucleation behavior observed for the purely biological particles, i.e. freezing occurs at temperatures at which mineral dusts themselves are not yet ice active. It can be concluded that INM located on a mineral dust particle determine the freezing behavior of that particle.

  6. Determination of silica coating efficiency on metal particles using multiple digestion methods.

    PubMed

    Wang, Jun; Topham, Nathan; Wu, Chang-Yu

    2011-10-15

    Nano-sized metal particles, including both elemental and oxidized metals, have received significant interest due to their biotoxicity and presence in a wide range of industrial systems. A novel silica technology has been recently explored to minimize the biotoxicity of metal particles by encapsulating them with an amorphous silica shell. In this study, a method to determine silica coating efficiency on metal particles was developed. Metal particles with silica coating were generated using gas metal arc welding (GMAW) process with a silica precursor tetramethylsilane (TMS) added to the shielding gas. Microwave digestion and Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) were employed to solubilize the metal content in the particles and analyze the concentration, respectively. Three acid mixtures were tested to acquire the appropriate digestion method targeting at metals and silica coating. Metal recovery efficiencies of different digestion methods were compared through analysis of spiked samples. HNO(3)/HF mixture was found to be a more aggressive digestion method for metal particles with silica coating. Aqua regia was able to effectively dissolve metal particles not trapped in the silica shell. Silica coating efficiencies were thus calculated based on the measured concentrations following digestion by HNO(3)/HF mixture and aqua regia. The results showed 14-39% of welding fume particles were encapsulated in silica coating under various conditions. This newly developed method could also be used to examine the silica coverage on particles of silica shell/metal core structure in other nanotechnology areas. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques

    NASA Astrophysics Data System (ADS)

    Worringen, A.; Kandler, K.; Benker, N.; Dirsch, T.; Mertes, S.; Schenk, L.; Kästner, U.; Frank, F.; Nillius, B.; Bundke, U.; Rose, D.; Curtius, J.; Kupiszewski, P.; Weingartner, E.; Vochezer, P.; Schneider, J.; Schmidt, S.; Weinbruch, S.; Ebert, M.

    2015-04-01

    In the present work, three different techniques to separate ice-nucleating particles (INPs) as well as ice particle residuals (IPRs) from non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed-phase clouds and allow after evaporation in the instrument for the analysis of the residuals. The Fast Ice Nucleus Chamber (FINCH) coupled with the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated particles for analysis. The instruments were run during a joint field campaign which took place in January and February 2013 at the High Alpine Research Station Jungfraujoch (Switzerland). INPs and IPRs were analyzed offline by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine their size, chemical composition and mixing state. Online analysis of the size and chemical composition of INP activated in FINCH was performed by laser ablation mass spectrometry. With all three INP/IPR separation techniques high abundances (median 20-70%) of instrumental contamination artifacts were observed (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH + IN-PCVI: steel particles). After removal of the instrumental contamination particles, silicates, Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types obtained by all three techniques. In addition, considerable amounts (median abundance mostly a few percent) of soluble material (e.g., sea salt, sulfates) were observed. As these soluble particles are often not expected to act as INP/IPR, we consider them as potential measurement artifacts. Minor types of INP/IPR include soot and Pb-bearing particles. The Pb-bearing particles are mainly present as an internal mixture with other particle types. Most samples showed a maximum of the INP/IPR size distribution at 200

  8. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    DOEpatents

    Kaduchak, Gregory; Ward, Michael D

    2014-10-21

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.

  9. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    DOEpatents

    Kaduchak, Gregory [Los Alamos, NM; Ward, Michael D [Los Alamos, NM

    2011-12-27

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.

  10. Analog cosmological particle generation in a superconducting circuit

    NASA Astrophysics Data System (ADS)

    Tian, Zehua; Jing, Jiliang; Dragan, Andrzej

    2017-06-01

    We propose the use of a waveguidelike transmission line based on direct-current superconducting quantum interference devices (dc-SQUID) and demonstrate that the node flux in this transmission line behaves in the same way as quantum fields in an expanding (or contracting) universe. We show how to detect the analog cosmological particle generation and analyze its feasibility with current circuit quantum electrodynamics (cQED) technology. Our setup in principle paves a new way for the exploration of analog quantum gravitational effects.

  11. Correlational approach to study interactions between dust Brownian particles in a plasma

    NASA Astrophysics Data System (ADS)

    Lisin, E. A.; Vaulina, O. S.; Petrov, O. F.

    2018-01-01

    A general approach to the correlational analysis of Brownian motion of strongly coupled particles in open dissipative systems is described. This approach can be applied to the theoretical description of various non-ideal statistically equilibrium systems (including non-Hamiltonian systems), as well as for the analysis of experimental data. In this paper, we consider an application of the correlational approach to the problem of experimental exploring the wake-mediated nonreciprocal interactions in complex plasmas. We derive simple analytic equations, which allows one to calculate the gradients of forces acting on a microparticle due to each of other particles as well as the gradients of external field, knowing only the information on time-averaged correlations of particles displacements and velocities. We show the importance of taking dissipative and random processes into account, without which consideration of a system with a nonreciprocal interparticle interaction as linearly coupled oscillators leads to significant errors in determining the characteristic frequencies in a system. In the examples of numerical simulations, we demonstrate that the proposed original approach could be an effective instrument in exploring the longitudinal wake structure of a microparticle in a plasma. Unlike the previous attempts to study the wake-mediated interactions in complex plasmas, our method does not require any external perturbations and is based on Brownian motion analysis only.

  12. A new perspective of particle adsorption: Dispersed oil and granular materials interactions in simulated coastal environment.

    PubMed

    Meng, Long; Bao, Mutai; Sun, Peiyan

    2017-09-15

    This study, adsorption behaviors of dispersed oil in seawaters by granular materials were explored in simulation environment. We quantitatively demonstrated the dispersed oil adsorbed by granular materials were both dissolved petroleum hydrocarbons (DPHs) and oil droplets. Furthermore, DPHs were accounted for 42.5%, 63.4%, and 85.2% (35.5% was emulsion adsorption) in the adsorption of dispersed oil by coastal rocks, sediments, and bacterial strain particles respectively. Effects of controlling parameters, such as temperature, particle size and concentration on adsorption of petroleum hydrocarbons were described in detail. Most strikingly, adsorption concentration was followed a decreasing order of bacterial strain (0.5-2μm)>sediments (0.005-0.625mm)>coastal rocks (0.2-1cm). With particle concentration or temperature increased, adsorption concentration increased for coastal rocks particle but decreased for sediments particle. Besides, particle adsorption rate of petroleum hydrocarbons (n-alkanes and PAHs) was different among granular materials during 60 days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Particle nonuniformity effects on particle cloud flames in low gravity

    NASA Technical Reports Server (NTRS)

    Berlad, A. L.; Tangirala, V.; Seshadri, K.; Facca, L. T.; Ogrin, J.; Ross, H.

    1991-01-01

    Experimental and analytical studies of particle cloud combustion at reduced gravity reveal the substantial roles that particle cloud nonuniformities may play in particle cloud combustion. Macroscopically uniform, quiescent particle cloud systems (at very low gravitational levels and above) sustain processes which can render them nonuniform on both macroscopic and microscopic scales. It is found that a given macroscopically uniform, quiescent particle cloud flame system can display a range of microscopically nonuniform features which lead to a range of combustion features. Microscopically nonuniform particle cloud distributions are difficult experimentally to detect and characterize. A uniformly distributed lycopodium cloud of particle-enriched microscopic nonuniformities in reduced gravity displays a range of burning velocities for any given overall stoichiometry. The range of observed and calculated burning velocities corresponds to the range of particle enriched concentrations within a characteristic microscopic nonuniformity. Sedimentation effects (even in reduced gravity) are also examined.

  14. Structurally coloured secondary particles composed of black and white colloidal particles.

    PubMed

    Takeoka, Yukikazu; Yoshioka, Shinya; Teshima, Midori; Takano, Atsushi; Harun-Ur-Rashid, Mohammad; Seki, Takahiro

    2013-01-01

    This study investigated the colourful secondary particles formed by controlling the aggregation states of colloidal silica particles and the enhancement of the structural colouration of the secondary particles caused by adding black particles. We obtained glossy, partially structurally coloured secondary particles in the absence of NaCl, but matte, whitish secondary particles were obtained in the presence of NaCl. When a small amount of carbon black was incorporated into both types of secondary particles, the incoherent multiple scattering of light from the amorphous region was considerably reduced. However, the peak intensities in the reflection spectra, caused by Bragg reflection and by coherent single wavelength scattering, were only slightly decreased. Consequently, a brighter structural colour of these secondary particles was observed with the naked eye. Furthermore, when magnetite was added as a black particle, the coloured secondary particles could be moved and collected by applying an external magnetic field.

  15. Structurally Coloured Secondary Particles Composed of Black and White Colloidal Particles

    PubMed Central

    Takeoka, Yukikazu; Yoshioka, Shinya; Teshima, Midori; Takano, Atsushi; Harun-Ur-Rashid, Mohammad; Seki, Takahiro

    2013-01-01

    This study investigated the colourful secondary particles formed by controlling the aggregation states of colloidal silica particles and the enhancement of the structural colouration of the secondary particles caused by adding black particles. We obtained glossy, partially structurally coloured secondary particles in the absence of NaCl, but matte, whitish secondary particles were obtained in the presence of NaCl. When a small amount of carbon black was incorporated into both types of secondary particles, the incoherent multiple scattering of light from the amorphous region was considerably reduced. However, the peak intensities in the reflection spectra, caused by Bragg reflection and by coherent single wavelength scattering, were only slightly decreased. Consequently, a brighter structural colour of these secondary particles was observed with the naked eye. Furthermore, when magnetite was added as a black particle, the coloured secondary particles could be moved and collected by applying an external magnetic field. PMID:23917891

  16. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaduchak, Gregory; Ward, Michael D

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minimamore » for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.« less

  17. Large deviation function for a driven underdamped particle in a periodic potential

    NASA Astrophysics Data System (ADS)

    Fischer, Lukas P.; Pietzonka, Patrick; Seifert, Udo

    2018-02-01

    Employing large deviation theory, we explore current fluctuations of underdamped Brownian motion for the paradigmatic example of a single particle in a one-dimensional periodic potential. Two different approaches to the large deviation function of the particle current are presented. First, we derive an explicit expression for the large deviation functional of the empirical phase space density, which replaces the level 2.5 functional used for overdamped dynamics. Using this approach, we obtain several bounds on the large deviation function of the particle current. We compare these to bounds for overdamped dynamics that have recently been derived, motivated by the thermodynamic uncertainty relation. Second, we provide a method to calculate the large deviation function via the cumulant generating function. We use this method to assess the tightness of the bounds in a numerical case study for a cosine potential.

  18. Single-particle characterization of ice-nucleating particles and ice particles residuals sampled by three different techniques

    NASA Astrophysics Data System (ADS)

    Kandler, Konrad; Worringen, Annette; Benker, Nathalie; Dirsch, Thomas; Mertes, Stephan; Schenk, Ludwig; Kästner, Udo; Frank, Fabian; Nillius, Björn; Bundke, Ulrich; Rose, Diana; Curtius, Joachim; Kupiszewski, Piotr; Weingartner, Ernest; Vochezer, Paul; Schneider, Johannes; Schmidt, Susan; Weinbruch, Stephan; Ebert, Martin

    2015-04-01

    During January/February 2013, at the High Alpine Research Station Jungfraujoch a measurement campaign was carried out, which was centered on atmospheric ice-nucleating particles (INP) and ice particle residuals (IPR). Three different techniques for separation of INP and IPR from the non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed phase clouds and allow for the analysis of the residuals. The combination of the Fast Ice Nucleus Chamber (FINCH) and the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated INP for analysis. Collected particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine size, chemical composition and mixing state. All INP/IPR-separating techniques had considerable abundances (median 20 - 70 %) of instrumental contamination artifacts (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH+IN-PCVI: steel particles). Also, potential sampling artifacts (e.g., pure soluble material) occurred with a median abundance of < 20 %. While these could be explained as IPR by ice break-up, for INP their IN-ability pathway is less clear. After removal of the contamination artifacts, silicates and Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types separated by all three techniques. Soot was a minor contributor. Lead was detected in less than 10 % of the particles, of which the majority were internal mixtures with other particle types. Sea-salt and sulfates were identified by all three methods as INP/IPR. Most samples showed a maximum of the INP/IPR size distribution at 400 nm geometric diameter. In a few cases, a second super-micron maximum was identified. Soot/carbonaceous material and metal oxides were present mainly in the submicron range. ISI and FINCH

  19. Particle separator

    DOEpatents

    Hendricks, Charles D.

    1990-01-01

    Method and apparatus (10) are provided for separating and classifying particles (48,50,56) by dispersing the particles within a fluid (52) that is upwardly flowing within a cone-shaped pipe (12) that has its large end (20) above its small end (18). Particles of similar size and shape (48,50) migrate to individual levels (A,B) within the flowing fluid. As the fluid is deflected by a plate (42) at the top end of the pipe (12), the smallest particles are collected on a shelf-like flange (40). Ever larger particles are collected as the flow rate of the fluid is increased. To prevent particle sticking on the walls (14) of the pipe (12), additional fluid is caused to flow into the pipe (12) through holes (68) that are specifically provided for that purpose. Sticking is further prevented by high frequency vibrators (70) that are positioned on the apparatus (10).

  20. Laser particle sorter

    DOEpatents

    Martin, John C.; Buican, Tudor N.

    1989-01-01

    Method and apparatus for sorting particles, such as biological particles. A first laser defines an optical path having an intensity gradient which is effective to propel the particles along the path but which is sufficiently weak that the particles are not trapped in an axial direction. A probe laser beam interrogates the particles to identify predetermined phenotypical characteristics of the particles. A second laser beam intersects the driving first laser beam, wherein the second laser beam is activated by an output signal indicative of a predetermined characteristic. The second laser beam is switchable between a first intensity and a second intensity, where the first intensity is effective to displace selected particles from the driving laser beam and the second intensity is effective to propel selected particles along the deflection laser beam. The selected particles may then be propelled by the deflection beam to a location effective for further analysis.

  1. Particle transport and deposition: basic physics of particle kinetics.

    PubMed

    Tsuda, Akira; Henry, Frank S; Butler, James P

    2013-10-01

    The human body interacts with the environment in many different ways. The lungs interact with the external environment through breathing. The enormously large surface area of the lung with its extremely thin air-blood barrier is exposed to particles suspended in the inhaled air. The particle-lung interaction may cause deleterious effects on health if the inhaled pollutant aerosols are toxic. Conversely, this interaction can be beneficial for disease treatment if the inhaled particles are therapeutic aerosolized drugs. In either case, an accurate estimation of dose and sites of deposition in the respiratory tract is fundamental to understanding subsequent biological response, and the basic physics of particle motion and engineering knowledge needed to understand these subjects is the topic of this article. A large portion of this article deals with three fundamental areas necessary to the understanding of particle transport and deposition in the respiratory tract. These are: (i) the physical characteristics of particles, (ii) particle behavior in gas flow, and (iii) gas-flow patterns in the respiratory tract. Other areas, such as particle transport in the developing lung and in the diseased lung are also considered. The article concludes with a summary and a brief discussion of areas of future research. © 2013 American Physiological Society. Compr Physiol 3:1437-1471, 2013.

  2. Particle transport and deposition: basic physics of particle kinetics

    PubMed Central

    Tsuda, Akira; Henry, Frank S.; Butler, James P.

    2015-01-01

    The human body interacts with the environment in many different ways. The lungs interact with the external environment through breathing. The enormously large surface area of the lung with its extremely thin air-blood barrier is exposed to particles suspended in the inhaled air. Whereas the particle-lung interaction may cause deleterious effects on health if the inhaled pollutant aerosols are toxic, this interaction can be beneficial for disease treatment if the inhaled particles are therapeutic aerosolized drug. In either case, an accurate estimation of dose and sites of deposition in the respiratory tract is fundamental to understanding subsequent biological response, and the basic physics of particle motion and engineering knowledge needed to understand these subjects is the topic of this chapter. A large portion of this chapter deals with three fundamental areas necessary to the understanding of particle transport and deposition in the respiratory tract. These are: 1) the physical characteristics of particles, 2) particle behavior in gas flow, and 3) gas flow patterns in the respiratory tract. Other areas, such as particle transport in the developing lung and in the diseased lung are also considered. The chapter concludes with a summary and a brief discussion of areas of future research. PMID:24265235

  3. Capabilities of a FOXSI Small Explorer

    NASA Astrophysics Data System (ADS)

    Inglis, A. R.; Christe, S.; Glesener, L.; Krucker, S.; Dennis, B. R.; Shih, A.; Wilson-Hodge, C.; Gubarev, M.; Hudson, H. S.; Kontar, E.; Buitrago Casas, J. C.; Drake, J. F.; Caspi, A.; Holman, G.; Allred, J. C.; Ryan, D.; Alaoui, M.; White, S. M.; Saint-Hilaire, P.; Klimchuk, J. A.; Hannah, I. G.; Antiochos, S. K.; Grefenstette, B.; Ramsey, B.; Jeffrey, N. L. S.; Reep, J. W.; Schwartz, R. A.; Ireland, J.

    2015-12-01

    We present the FOXSI (Focusing Optics X-ray Solar Imager) small explorer (SMEX) concept, a mission dedicated to studying particle acceleration and energy release on the Sun. FOXSI is designed as a 3-axis stabilized spacecraft in low-Earth orbit making use of state-of-the-art grazing incidence focusing optics, allowing for direct imaging of solar X-rays. The current design being studied features three telescope modules deployed in a low-inclination low-earth orbit (LEO). With a 15 meter focal length enabled by a deployable boom, FOXSI will observe the Sun in the 3-50 keV energe range. The FOXSI imaging concept has already been tested on two sounding rocket flights, in 2012 and 2014 and on the HEROES balloon payload flight in 2013. FOXSI will image the Sun with an angular resolution of 5'', a spectral resolution of 0.5 keV, and sub-second temporal resolution using CdTe detectors. In this presentation we investigate the science objectives and targets which can be accessed from this mission. Because of the defining characteristic of FOXSI is true imaging spectroscopy with high dynamic range and sensitivity, a brand-new perspective on energy release on the Sun is possible. Some of the science targets discussed here include; flare particle acceleration processes, electron beams, return currents, sources of solar energetic particles (SEPs), as well as understanding X-ray emission from active region structures and the quiescent corona.

  4. Characteristics of turbulence transport for momentum and heat in particle-laden turbulent vertical channel flows

    NASA Astrophysics Data System (ADS)

    Liu, Caixi; Tang, Shuai; Shen, Lian; Dong, Yuhong

    2017-10-01

    The dynamic and thermal performance of particle-laden turbulent flow is investigated via direction numerical simulation combined with the Lagrangian point-particle tracking under the condition of two-way coupling, with a focus on the contributions of particle feedback effect to momentum and heat transfer of turbulence. We take into account the effects of particles on flow drag and Nusselt number and explore the possibility of drag reduction in conjunction with heat transfer enhancement in particle-laden turbulent flows. The effects of particles on momentum and heat transfer are analyzed, and the possibility of drag reduction in conjunction with heat transfer enhancement for the prototypical case of particle-laden turbulent channel flows is addressed. We present results of turbulence modification and heat transfer in turbulent particle-laden channel flow, which shows the heat transfer reduction when large inertial particles with low specific heat capacity are added to the flow. However, we also found an enhancement of the heat transfer and a small reduction of the flow drag when particles with high specific heat capacity are involved. The present results show that particles, which are active agents, interact not only with the velocity field, but also the temperature field and can cause a dissimilarity in momentum and heat transport. This demonstrates that the possibility to increase heat transfer and suppress friction drag can be achieved with addition of particles with different thermal properties.

  5. Synthesis and self-assembly of Janus and patchy colloidal particles

    NASA Astrophysics Data System (ADS)

    Jiang, Shan

    Colloidal particles are considered classically as spherical particles with homogeneous surface chemistry. When this is so, the interactions between particles are isotropic and governed only by their separations. One can take advantage of this to simulate atoms, visualizing them one-by-one in a microscope, albeit at a larger length scale and longer time scale than for true atoms. However if the particles are not homogeneous, but Janus or patchy instead, with different surface chemistry on different hemispheres or otherwise different surface sites that are addressably controlled, the interactions between these particles depend not only on their separation, but also on their orientation. Research on Janus and patchy colloidal particles has opened a new chapter in the colloid research field, allowing us to mimic the behavior of these colloidal analogues of molecules, and in this way to ask new and exciting questions of condensed matter physics. In this dissertation, I investigated the synthesis and self-assembly of Janus and patchy colloidal particles with emphasis on Janus amphiphilic particles, which are the colloidal counterpart of surfactant molecules. Improving the scale-up capability, and also the capacity to control the geometry of Janus particles, I developed a simple and versatile method to synthesize Janus particles using an approach based on Pickering emulsions with particles adsorbed at the liquid-liquid interface. I showed that this method can be scaled up to synthesize Janus particles in large quantity. Also, the Janus balance can be predictably controlled by adding surfactant molecules during emulsification. In addition, going beyond the Janus geometry, I developed another synthetic method to fabricate trivalent patchy colloidal particles using micro-contact printing. With these synthetic methods in hand, I explored the self-assembly of Janus amphiphilic particles in aqueous solutions, while controlling systematically the salt concentration, the particle

  6. Magnetic field drift shell splitting - Cause of unusual dayside particle pitch angle distributions during storms and substorms

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.; Mcentire, R. W.; Lui, A. T. Y.; Lopez, R. E.; Krimigis, S. M.

    1987-01-01

    This paper presents a magnetic field drift shell-splitting model for the unusual butterfly and head-and-shoulder energetic (E greater than 25 keV) particle pitch angle distributions (PADs) which appear deep within the dayside magnetosphere during the course of storms and substorms. Drift shell splitting separates the high and low pitch angle particles in nightside injections as they move to the dayside magnetosphere, so that the higher pitch angle particles move radially away from earth. Consequently, butterfly PADs with a surplus of low pitch angle particles form on the inner edge of the injection, but head-and-shoulder PADs with a surplus of high pitch angle particles form on the outer edge. A similar process removes high pitch angle particles from the inner dayside magnetosphere during storms, leaving the remaining lower pitch angle particles to form butterfly PADs on the inner edge of the ring current. A detailed case and statistical study of Charge Composition Explorer/Medium-energy Particle Analyzer observations, as well as a review of previous work, shows most examples of unusual PADs to be consistent with the model.

  7. Collaborative Project: Understanding the Chemical Processes tat Affect Growth rates of Freshly Nucleated Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMurry, Peter; Smuth, James

    This final technical report describes our research activities that have, as the ultimate goal, the development of a model that explains growth rates of freshly nucleated particles. The research activities, which combine field observations with laboratory experiments, explore the relationship between concentrations of gas-phase species that contribute to growth and the rates at which those species are taken up. We also describe measurements of the chemical composition of freshly nucleated particles in a variety of locales, as well as properties (especially hygroscopicity) that influence their effects on climate.

  8. Laser particle sorter

    DOEpatents

    Martin, J.C.; Buican, T.N.

    1987-11-30

    Method and apparatus are provided for sorting particles, such as biological particles. A first laser is used to define an optical path having an intensity gradient which is effective to propel the particles along the path but which is sufficiently weak that the particles are not trapped in an axial direction. A probe laser beam is provided for interrogating the particles to identify predetermined phenotypical characteristics of the particles. A second laser beam is provided to intersect the driving first laser beam, wherein the second laser beam is activated by an output signal indicative of a predetermined characteristic. The second laser beam is switchable between a first intensity and a second intensity, where the first intensity is effective to displace selected particles from the driving laser beam and the second intensity is effective to propel selected particles along the deflection laser beam. The selected particles may then be propelled by the deflection beam to a location effective for further analysis. 2 figs.

  9. Chemical Composition and Oxidation State of Iron-Containing Aerosol Particles Over West Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Fan, S.; Yu, S.; Lai, B.; Gao, Y.

    2017-12-01

    Iron is a limiting micronutrient element critical for the marine ecosystem. In the extensive high-nutrient low-chlorophyll (HNLC) regions of the Southern Ocean, the activities of phytoplankton are partly controlled by iron (Fe) from different sources, including atmospheric deposition. Among important properties of atmospheric Fe are the elemental composition and Fe oxidation state of Fe-containing aerosol particles, as these properties affect aerosol Fe solubility. To explore these issues, aerosol samples were collected at Palmer Station in West Antarctic Peninsula. Samples were analyzed by submicron synchrotron-based X-ray fluorescence (XRF) and X-ray absorption near edge structure (XANES) spectroscopy for the Fe oxidation state and elemental composition of aerosol particles. The morphological information of aerosol particles was also observed by the high-resolution fluorescence microscopy, revealing possible sources and formation processes of iron-containing particles. More detailed results will be discussed in this presentation.

  10. Nonequilibrium self-organization of colloidal particles on substrates: adsorption, relaxation, and annealing.

    PubMed

    Araújo, Nuno A M; Dias, Cristóvão S; Telo da Gama, Margarida M

    2017-01-11

    Colloidal particles are considered ideal building blocks to produce materials with enhanced physical properties. The state-of-the-art techniques for synthesizing these particles provide control over shape, size, and directionality of the interactions. In spite of these advances, there is still a huge gap between the synthesis of individual components and the management of their spontaneous organization towards the desired structures. The main challenge is the control over the dynamics of self-organization. In their kinetic route towards thermodynamically stable structures, colloidal particles self-organize into intermediate (mesoscopic) structures that are much larger than the individual particles and become the relevant units for the dynamics. To follow the dynamics and identify kinetically trapped structures, one needs to develop new theoretical and numerical tools. Here we discuss the self-organization of functionalized colloids (also known as patchy colloids) on attractive substrates. We review our recent results on the adsorption and relaxation and explore the use of annealing cycles to overcome kinetic barriers and drive the relaxation towards the targeted structures.

  11. Decoupling the Role of Particle Inertia and Gravity on Particle Dispersion

    NASA Technical Reports Server (NTRS)

    Squires, Kyle D.

    2002-01-01

    Particle dispersion and the influence that particle momentum exchange has on the properties of a turbulent carrier flow in micro-gravity environments challenge present understanding and predictive schemes. The objective of this effort has been to develop and assess high-fidelity simulation tools for predicting particle transport within micro-gravity environments suspended in turbulent flows. The computational technique is based on Direct Numerical Simulation (DNS) of the incompressible Navier-Stokes equations. The particular focus of the present work is on the class of dilute flows in which particle volume fractions and inter-particle collisions are negligible. Particle motion is assumed to be governed by drag with particle relaxation times ranging from the Kolmogorov scale to the Eulerian timescale of the turbulence and particle mass loadings up to one. The velocity field was made statistically stationary by forcing the low wavenumbers of the flow. The calculations were performed using 96(exp 3) collocation points and the Taylor-scale Reynolds number for the stationary flow was 62. The effect of particles on the turbulence was included in the Navier-Stokes equations using the point-force approximation in which 96(exp 3) particles were used in the calculations. DNS results show that particles increasingly dissipate fluid kinetic energy with increased loading, with the reduction in kinetic energy being relatively independent of the particle relaxation time. Viscous dissipation in the fluid decreases with increased loading and is larger for particles with smaller relaxation times. Fluid energy spectra show that there is a non-uniform distortion of the turbulence with a relative increase in small-scale energy. The non-uniform distortion significantly affects the transport of the dissipation rate, with the production and destruction of dissipation exhibiting completely different behaviors. The spectrum of the fluid-particle energy exchange rate shows that the fluid

  12. Auroral particles

    NASA Technical Reports Server (NTRS)

    Evans, David S.

    1987-01-01

    The problems concerning the aurora posed prior to the war are now either solved in principle or were restated in a more fundamental form. The pre-war hypothesis concerning the nature of the auroral particles and their energies was fully confirmed, with the exception that helium and oxygen ions were identified as participating in the auroral particle precipitation in addition to the protons. The nature of the near-Earth energization processes affecting auroral particles was clarified. Charged particle trajectories in various electric field geometries were modeled. The physical problems have now moved from determining the nature and geometry of the electric fields, which accelerate charged particles near the Earth, to accounting for the existence of these electric fields as a natural consequence of the solar wind's interaction with Earth. Ultimately the reward in continuing the work in auroral and magnetospheric particle dynamics will be a deeper understanding of the subtleties of classical electricity and magnetism as applied to situations not blessed with well-defined and invariant geometries.

  13. Enhanced settling of nonheavy inertial particles in homogeneous isotropic turbulence: The role of the pressure gradient and the Basset history force.

    PubMed

    van Hinsberg, M A T; Clercx, H J H; Toschi, F

    2017-02-01

    The Stokes drag force and the gravity force are usually sufficient to describe the behavior of sub-Kolmogorov-size (or pointlike) heavy particles in turbulence, in particular when the particle-to-fluid density ratio ρ_{p}/ρ_{f}≳10^{3} (with ρ_{p} and ρ_{f} the particle and fluid density, respectively). This is, in general, not the case for smaller particle-to-fluid density ratios, in particular not for ρ_{p}/ρ_{f}≲10^{2}. In that case the pressure gradient force, added mass effects, and the Basset history force also play important roles. In this study we focus on the understanding of the role of these additional forces, all of hydrodynamic origin, in the settling of particles in turbulence. In order to qualitatively elucidate the complex dynamics of such particles in homogeneous isotropic turbulence, we first focus on the case of settling of such particles in the flow field of a single vortex. After having explored this simplified case we extend our analysis to homogeneous isotropic turbulence. In general, we found that the pressure gradient force leads to a decrease in the settling velocity. This can be qualitatively understood by the fact that this force prevents the particles from sweeping out of vortices, a mechanism known as preferential sweeping which causes enhanced settling. Additionally, we found that the Basset history force can both increase and decrease the enhanced settling, depending on the particle Stokes number. Finally, the role of the nonlinear Stokes drag has been explored, confirming that it affects settling of inertial particles in turbulence, but only in a limited way for the parameter settings used in this investigation.

  14. Real-time explosive particle detection using a cyclone particle concentrator.

    PubMed

    Hashimoto, Yuichiro; Nagano, Hisashi; Takada, Yasuaki; Kashima, Hideo; Sugaya, Masakazu; Terada, Koichi; Sakairi, Minoru

    2014-06-30

    There is a need for more rapid methods for the detection of explosive particles. We have developed a novel real-time analysis technique for explosive particles that uses a cyclone particle concentrator. This technique can analyze sample surfaces for the presence of particles from explosives such as TNT and RDX within 3 s, which is much faster than is possible by conventional methods. Particles are detached from the sample surface with air jet pulses, and then introduced into a cyclone particle concentrator with a high pumping speed of about 80 L/min. A vaporizer placed at the bottom of the cyclone particle concentrator immediately converts the particles into a vapor. The vapor is then ionized in the atmospheric pressure chemical ionization (APCI) source of a linear ion trap mass spectrometer. An online connection between the vaporizer and a mass spectrometer enables high-speed detection within a few seconds, compared with the conventional off-line heating method that takes more than 10 s to raise the temperature of a sample filter unit. Since the configuration enriched the number density of explosive particles by about 80 times compared with that without the concentrator, a sub-ng amount of TNT particles on a surface was detectable. The detection limit of our technique is comparable with that of an explosives trace detector using ion mobility spectrometry. The technique will be beneficial for trace detection in security applications, because it detects explosive particles on the surface more speedily than conventional methods. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Thermodynamics of phase-separating nanoalloys: Single particles and particle assemblies

    NASA Astrophysics Data System (ADS)

    Fèvre, Mathieu; Le Bouar, Yann; Finel, Alphonse

    2018-05-01

    The aim of this paper is to investigate the consequences of finite-size effects on the thermodynamics of nanoparticle assemblies and isolated particles. We consider a binary phase-separating alloy with a negligible atomic size mismatch, and equilibrium states are computed using off-lattice Monte Carlo simulations in several thermodynamic ensembles. First, a semi-grand-canonical ensemble is used to describe infinite assemblies of particles with the same size. When decreasing the particle size, we obtain a significant decrease of the solid/liquid transition temperatures as well as a growing asymmetry of the solid-state miscibility gap related to surface segregation effects. Second, a canonical ensemble is used to analyze the thermodynamic equilibrium of finite monodisperse particle assemblies. Using a general thermodynamic formulation, we show that a particle assembly may split into two subassemblies of identical particles. Moreover, if the overall average canonical concentration belongs to a discrete spectrum, the subassembly concentrations are equal to the semi-grand-canonical equilibrium ones. We also show that the equilibrium of a particle assembly with a prescribed size distribution combines a size effect and the fact that a given particle size assembly can adopt two configurations. Finally, we have considered the thermodynamics of an isolated particle to analyze whether a phase separation can be defined within a particle. When studying rather large nanoparticles, we found that the region in which a two-phase domain can be identified inside a particle is well below the bulk phase diagram, but the concentration of the homogeneous core remains very close to the bulk solubility limit.

  16. Potential for application of an acoustic camera in particle tracking velocimetry.

    PubMed

    Wu, Fu-Chun; Shao, Yun-Chuan; Wang, Chi-Kuei; Liou, Jim

    2008-11-01

    We explored the potential and limitations for applying an acoustic camera as the imaging instrument of particle tracking velocimetry. The strength of the acoustic camera is its usability in low-visibility environments where conventional optical cameras are ineffective, while its applicability is limited by lower temporal and spatial resolutions. We conducted a series of experiments in which acoustic and optical cameras were used to simultaneously image the rotational motion of tracer particles, allowing for a comparison of the acoustic- and optical-based velocities. The results reveal that the greater fluctuations associated with the acoustic-based velocities are primarily attributed to the lower temporal resolution. The positive and negative biases induced by the lower spatial resolution are balanced, with the positive ones greater in magnitude but the negative ones greater in quantity. These biases reduce with the increase in the mean particle velocity and approach minimum as the mean velocity exceeds the threshold value that can be sensed by the acoustic camera.

  17. Dry particle coating of polymer particles for tailor-made product properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blümel, C., E-mail: karl-ernst.wirth@fau.de; Schmidt, J., E-mail: karl-ernst.wirth@fau.de; Dielesen, A., E-mail: karl-ernst.wirth@fau.de

    2014-05-15

    Disperse polymer powders with tailor-made particle properties are of increasing interest in industrial applications such as Selective Laser Beam Melting processes (SLM). This study focuses on dry particle coating processes to improve the conductivity of the insulating polymer powder in order to assemble conductive devices. Therefore PP particles were coated with Carbon Black nanoparticles in a dry particle coating process. This process was investigated in dependence of process time and mass fraction of Carbon Black. The conductivity of the functionalized powders was measured by impedance spectroscopy. It was found that there is a dependence of process time, respectively coating ratiomore » and conductivity. The powder shows higher conductivities with increasing number of guest particles per host particle surface area, i.e. there is a correlation between surface functionalization density and conductivity. The assembled composite particles open new possibilities for processing distinct polymers such as PP in SLM process. The fundamentals of the dry particle coating process of PP host particles with Carbon Black guest particles as well as the influence on the electrical conductivity will be discussed.« less

  18. Magnetic particle tracking for nonspherical particles in a cylindrical fluidized bed.

    PubMed

    Buist, Kay A; Jayaprakash, Pavithra; Kuipers, J A M; Deen, Niels G; Padding, Johan T

    2017-12-01

    In granular flow operations, often particles are nonspherical. This has inspired a vast amount of research in understanding the behavior of these particles. Various models are being developed to study the hydrodynamics involving nonspherical particles. Experiments however are often limited to obtain data on the translational motion only. This paper focusses on the unique capability of Magnetic Particle Tracking to track the orientation of a marker in a full 3-D cylindrical fluidized bed. Stainless steel particles with the same volume and different aspect ratios are fluidized at a range of superficial gas velocities. Spherical and rod-like particles show distinctly different fluidization behavior. Also, the distribution of angles for rod-like particles changes with position in the fluidized bed as well as with the superficial velocity. Magnetic Particle Tracking shows its unique capability to study both spatial distribution and orientation of the particles allowing more in-depth validation of Discrete Particle Models. © 2017 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers , 63: 5335-5342, 2017.

  19. Preferential particle concentration in wall-bounded turbulence with zero skin friction

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Zhao, Lihao; Andersson, Helge I.

    2017-11-01

    Inertial particles dispersed in turbulence distribute themselves unevenly. Besides their tendency to segregate near walls, they also concentrate preferentially in wall-parallel planes. We explore the latter phenomenon in a tailor-made flow with the view to examine the homogeneity and anisotropy of particle clustering in the absence of mean shear as compared with conventional, i.e., sheared, wall turbulence. Inertial particles with some different Stokes numbers are suspended in a turbulent Couette-Poiseuille flow, in which one of the walls moves such that the shear rate vanishes at that wall. The anisotropies of the velocity and vorticity fluctuations are therefore qualitatively different from those at the opposite non-moving wall, along which quasi-coherent streaky structures prevail, similarly as in turbulent pipe and channel flows. Preferential particle concentration is observed near both walls. The inhomogeneity of the concentration is caused by the strain-vorticity selection mechanism, whereas the anisotropy originates from coherent flow structures. In order to analyse anisotropic clustering, a two-dimensional Shannon entropy method is developed. Streaky particle structures are observed near the stationary wall where the flow field resembles typical wall-turbulence, whereas particle clusters near the moving friction-free wall are similar to randomly oriented clusters in homogeneous isotropic turbulence, albeit with a modest streamwise inclination. In the absence of mean-shear and near-wall streaks, the observed anisotropy is ascribed to the imprint of large-scale flow structures which reside in the bulk flow and are global in nature.

  20. Modeling the dynamical sinking of biogenic particles in eastern-boundary upwelling systems

    NASA Astrophysics Data System (ADS)

    Rossi, Vincent; Monroy, Pedro; López, Cristobal; Hernández-García, Emilio; Dewitte, Boris; Paulmier, Aurélien; Garçon, Véronique

    2017-04-01

    Although most of the organic material produced by photosynthesis in the upper ocean is recycled in surface waters, a significant portion sinks into the deep ocean where it is stored for long time-scales. Knowledge of the export flux of organic carbon from the sea surface to depths is needed to estimate the efficiency of the biological carbon pump, a key process of global carbon cycling. We study how the sinking of biogenic particles produced in the euphotic layer is affected by subsurface ocean currents as derived from a regional dynamical model. In the range of sizes and densities appropriate for marine biogenic particles, the sinking trajectories are given by the equation of motion of small particles in a fluid flow (Maxey-Riley equation). We use a modelled 3-dimensional velocity field with major energetic structures in the mesoscale and we assess the influence of physical processes such as the Coriolis force and the inertia of the particles. We find that the latter forces are negligible as compared to the most important terms, which are passive motion with the velocity of the flow and a constant added vertical velocity due to gravity. Horizontal two-dimensional clustering is observed at depth, similar to the inhomogeneities observed in sinking ocean particles. Based on ensemble experiments, we explore the influence of the mean flow and the mesoscale eddy field on particles lateral advection and size fractionation. This modeling framework allows us to extend the concept of particle source funnels and helps interpreting particles fluxes estimated from sediment traps deployed in upwelling systems, informing the spatial mismatch between surface production and particle export.

  1. Unmagnetized diffusion for azimuthally symmetric wave and particle distributions

    NASA Technical Reports Server (NTRS)

    Dusenbery, P. B.; Lyons, L. R.

    1988-01-01

    The quasi-linear diffusion of particles from resonant interactions with a spectrum of electrostatic waves is investigated theoretically, extending results obtained for no magnetic field and for strong magnetic fields to cases where the ambient magnetic field which organizes azimuthally symmetric wave and particle distributions does not have to be taken into consideration in evaluating the local interaction. The derivation of the governing equations is explained, and numerical results are presented in extensive graphs and characterized in detail. Slow-mode ion-acoustic waves are shown to be unstable under the plasma conditions studied, and the dependence of resonant-ion diffusion rates with pitch angle, speed, and the distribution of wave energy in wavenumber space is explored. The implications of the present findings for theoretical models of the earth bow shock and plasma-sheet boundary layer are indicated.

  2. Anomalous segregation dynamics of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Mones, Enys; Czirók, András; Vicsek, Tamás

    2015-06-01

    A number of novel experimental and theoretical results have recently been obtained on active soft matter, demonstrating the various interesting universal and anomalous features of this kind of driven systems. Here we consider the adhesion difference-driven segregation of actively moving units, a fundamental but still poorly explored aspect of collective motility. In particular, we propose a model in which particles have a tendency to adhere through a mechanism which makes them both stay in touch and synchronize their direction of motion—but the interaction is limited to particles of the same kind. The calculations corresponding to the related differential equations can be made in parallel, thus a powerful GPU card allows large scale simulations. We find that in a very large system of particles, interacting without explicit alignment rule, three basic segregation regimes seem to exist as a function of time: (i) at the beginning the time dependence of the correlation length is analogous to that predicted by the Cahn-Hilliard theory, (ii) next rapid segregation occurs characterized with a separation of the different kinds of units being faster than any previously suggested speed, finally, (iii) the growth of the characteristic sizes in the system slows down due to a new regime in which self-confined, rotating, splitting and re-joining clusters appear. Our results can explain recent observations of segregating tissue cells in vitro.

  3. SEPEM: A tool for statistical modeling the solar energetic particle environment

    NASA Astrophysics Data System (ADS)

    Crosby, Norma; Heynderickx, Daniel; Jiggens, Piers; Aran, Angels; Sanahuja, Blai; Truscott, Pete; Lei, Fan; Jacobs, Carla; Poedts, Stefaan; Gabriel, Stephen; Sandberg, Ingmar; Glover, Alexi; Hilgers, Alain

    2015-07-01

    Solar energetic particle (SEP) events are a serious radiation hazard for spacecraft as well as a severe health risk to humans traveling in space. Indeed, accurate modeling of the SEP environment constitutes a priority requirement for astrophysics and solar system missions and for human exploration in space. The European Space Agency's Solar Energetic Particle Environment Modelling (SEPEM) application server is a World Wide Web interface to a complete set of cross-calibrated data ranging from 1973 to 2013 as well as new SEP engineering models and tools. Both statistical and physical modeling techniques have been included, in order to cover the environment not only at 1 AU but also in the inner heliosphere ranging from 0.2 AU to 1.6 AU using a newly developed physics-based shock-and-particle model to simulate particle flux profiles of gradual SEP events. With SEPEM, SEP peak flux and integrated fluence statistics can be studied, as well as durations of high SEP flux periods. Furthermore, effects tools are also included to allow calculation of single event upset rate and radiation doses for a variety of engineering scenarios.

  4. Modeling of Particle Acceleration at Multiple Shocks Via Diffusive Shock Acceleration: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Parker, L. N.; Zank, G. P.

    2013-12-01

    Successful forecasting of energetic particle events in space weather models require algorithms for correctly predicting the spectrum of ions accelerated from a background population of charged particles. We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al., 1999) in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box (Melrose and Pope, 1993; Zank et al., 2000). We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (Emax) appropriate for quasi-parallel and quasi-perpendicular shocks (Zank et al., 2000, 2006; Dosch and Shalchi, 2010) and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).

  5. An Advanced Neutron Spectrometer for Future Manned Exploration Missions

    NASA Technical Reports Server (NTRS)

    Christl, Mark; Apple, Jeffrey A.; Cox, Mark D.; Dietz, Kurtis L.; Dobson, Christopher C.; Gibson, Brian F.; Howard, David E.; Jackson, Amanda C.; Kayatin, Mathew J.; Kuznetsov, Evgeny N.; hide

    2014-01-01

    An Advanced Neutron Spectrometer (ANS) is being developed to support future manned exploration missions. This new instrument uses a refined gate and capture technique that significantly improves the identification of neutrons in mixed radiation fields found in spacecraft, habitats and on planetary surfaces. The new instrument is a composite scintillator comprised of PVT loaded with litium-6 glass scintillators. We will describe the detection concept and show preliminary results from laboratory tests and exposures at particle accelerators

  6. Visualization of particle flux in the human body on the surface of Mars

    NASA Technical Reports Server (NTRS)

    Saganti, Premkumar B.; Cucinotta, Francis A.; Wilson, John W.; Schimmerling, Walter

    2002-01-01

    For a given galactic cosmic ray (GCR) environment, information on the particle flux of protons, alpha particles, and heavy ions, that varies with respect to the topographical altitude on the Martian surface, are needed for planning exploration missions to Mars. The Mars Global Surveyor (MGS) mission with its Mars Orbiter Laser Altimeter (MOLA) instrument has been providing precise topographical surface map of the Mars. With this topographical data, the particle flux at the Martian surface level through the CO2 atmospheric shielding for solar minimum and solar maximum conditions are calculated. These particle flux calculations are then transported first through an anticipated shielding of a conceptual shelter with several water equivalent shield values (up to 50 g/cm2 of water in steps of 5 g/cm2) considered to represent a surface habitat, and then into the human body. Model calculations are accomplished utilizing the HZETRN, QMSFRG, and SUM-MARS codes. Particle flux calculations for 12 different locations in the human body were considered from skin depth to the internal organs including the blood-forming organs (BFO). Visualization of particle flux in the human body at different altitudes on the Martian surface behind a known shielding is anticipated to provide guidance for assessing radiation environment risk on the Martian surface for future human missions.

  7. Visualization of particle flux in the human body on the surface of Mars.

    PubMed

    Saganti, Premkumar B; Cucinotta, Francis A; Wilson, John W; Schimmerling, Walter

    2002-12-01

    For a given galactic cosmic ray (GCR) environment, information on the particle flux of protons, alpha particles, and heavy ions, that varies with respect to the topographical altitude on the Martian surface, are needed for planning exploration missions to Mars. The Mars Global Surveyor (MGS) mission with its Mars Orbiter Laser Altimeter (MOLA) instrument has been providing precise topographical surface map of the Mars. With this topographical data, the particle flux at the Martian surface level through the CO2 atmospheric shielding for solar minimum and solar maximum conditions are calculated. These particle flux calculations are then transported first through an anticipated shielding of a conceptual shelter with several water equivalent shield values (up to 50 g/cm2 of water in steps of 5 g/cm2) considered to represent a surface habitat, and then into the human body. Model calculations are accomplished utilizing the HZETRN, QMSFRG, and SUM-MARS codes. Particle flux calculations for 12 different locations in the human body were considered from skin depth to the internal organs including the blood-forming organs (BFO). Visualization of particle flux in the human body at different altitudes on the Martian surface behind a known shielding is anticipated to provide guidance for assessing radiation environment risk on the Martian surface for future human missions.

  8. Measurements of the Charged and Neutral Particle Spectra on the Martian Surface with MSL/RAD

    NASA Astrophysics Data System (ADS)

    Koehler, Jan

    The Radiation Assessment Detector (RAD) onboard Mars Science Laboratory’s rover Curiosity is the first ever instrument to measure the energetic particle radiation environment on the surface of Mars. Charged particles are a major component of this environment, both galactic cosmic rays propagating to the Martian surface and secondary particles created by interactions of these cosmic rays with the atoms of the Martian atmosphere and soil. Another important factor for determining the biological impact of the Martian surface radiation is the specific contribution of neutrons, which possess a high biological effectiveness. In contrast to charged particles, neutrons and gamma rays are generally only measured indirectly. Their measurement is the result of a complex convolution of the incident particle spectrum with the measurement process. We apply an inversion method to calculate the gamma/neutron spectra from the RAD neutral particle measurements. Here we show first surface measurements of the Martian particle spectra and compare them to theoretical predictions. Measuring the Martian particle spectra is an essential step for determining the mutagenic influences to past or present life at or beneath the Martian surface as well as the radiation hazard for future human exploration, including the shielding design of a potential habitat.

  9. A class of multi-period semi-variance portfolio for petroleum exploration and development

    NASA Astrophysics Data System (ADS)

    Guo, Qiulin; Li, Jianzhong; Zou, Caineng; Guo, Yujuan; Yan, Wei

    2012-10-01

    Variance is substituted by semi-variance in Markowitz's portfolio selection model. For dynamic valuation on exploration and development projects, one period portfolio selection is extended to multi-period. In this article, a class of multi-period semi-variance exploration and development portfolio model is formulated originally. Besides, a hybrid genetic algorithm, which makes use of the position displacement strategy of the particle swarm optimiser as a mutation operation, is applied to solve the multi-period semi-variance model. For this class of portfolio model, numerical results show that the mode is effective and feasible.

  10. Online single particle analysis of ice particle residuals from mountain-top mixed-phase clouds using laboratory derived particle type assignment

    NASA Astrophysics Data System (ADS)

    Schmidt, Susan; Schneider, Johannes; Klimach, Thomas; Mertes, Stephan; Schenk, Ludwig Paul; Kupiszewski, Piotr; Curtius, Joachim; Borrmann, Stephan

    2017-01-01

    In situ single particle analysis of ice particle residuals (IPRs) and out-of-cloud aerosol particles was conducted by means of laser ablation mass spectrometry during the intensive INUIT-JFJ/CLACE campaign at the high alpine research station Jungfraujoch (3580 m a.s.l.) in January-February 2013. During the 4-week campaign more than 70 000 out-of-cloud aerosol particles and 595 IPRs were analyzed covering a particle size diameter range from 100 nm to 3 µm. The IPRs were sampled during 273 h while the station was covered by mixed-phase clouds at ambient temperatures between -27 and -6 °C. The identification of particle types is based on laboratory studies of different types of biological, mineral and anthropogenic aerosol particles. The outcome of these laboratory studies was characteristic marker peaks for each investigated particle type. These marker peaks were applied to the field data. In the sampled IPRs we identified a larger number fraction of primary aerosol particles, like soil dust (13 ± 5 %) and minerals (11 ± 5 %), in comparison to out-of-cloud aerosol particles (2.4 ± 0.4 and 0.4 ± 0.1 %, respectively). Additionally, anthropogenic aerosol particles, such as particles from industrial emissions and lead-containing particles, were found to be more abundant in the IPRs than in the out-of-cloud aerosol. In the out-of-cloud aerosol we identified a large fraction of aged particles (31 ± 5 %), including organic material and secondary inorganics, whereas this particle type was much less abundant (2.7 ± 1.3 %) in the IPRs. In a selected subset of the data where a direct comparison between out-of-cloud aerosol particles and IPRs in air masses with similar origin was possible, a pronounced enhancement of biological particles was found in the IPRs.

  11. Magnetic particles

    NASA Technical Reports Server (NTRS)

    Chang, Manchium (Inventor); Colvin, Michael S. (Inventor)

    1989-01-01

    Magnetic polymer particles are formed by swelling porous, polymer particles and impregnating the particles with an aqueous solution of precursor magnetic metal salt such as an equimolar mixture of ferrous chloride and ferric chloride. On addition of a basic reagent such as dilute sodium hydroxide, the metal salts are converted to crystals of magnetite which are uniformly contained througout the pores of the polymer particle. The magnetite content can be increased and neutral buoyancy achieved by repetition of the impregnaton and neutralization steps to adjust the magnetite content to a desired level.

  12. Cardiovascular Risks Associated with Low Dose Ionizing Particle Radiation

    DOE PAGES

    Yan, Xinhua; Sasi, Sharath P.; Gee, Hannah; ...

    2014-10-22

    Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton ( 1H; 0.5 Gy, 1 GeV) and iron ion ( 56Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiatedmore » mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in 56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, 56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Finally, understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy.« less

  13. Cardiovascular Risks Associated with Low Dose Ionizing Particle Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Xinhua; Sasi, Sharath P.; Gee, Hannah

    Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton ( 1H; 0.5 Gy, 1 GeV) and iron ion ( 56Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiatedmore » mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in 56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, 56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Finally, understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy.« less

  14. Acoustic particle separation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Stoneburner, J. D.; Jacobi, N.; Wang, T. (Inventor)

    1985-01-01

    A method is described which uses acoustic energy to separate particles of different sizes, densities, or the like. The method includes applying acoustic energy resonant to a chamber containing a liquid of gaseous medium to set up a standing wave pattern that includes a force potential well wherein particles within the well are urged towards the center, or position of minimum force potential. A group of particles to be separated is placed in the chamber, while a non-acoustic force such as gravity is applied, so that the particles separate with the larger or denser particles moving away from the center of the well to a position near its edge and progressively smaller lighter particles moving progressively closer to the center of the well. Particles are removed from different positions within the well, so that particles are separated according to the positions they occupy in the well.

  15. The terrestrial plasma source - A new perspective in solar-terrestrial processes from Dynamics Explorer

    NASA Technical Reports Server (NTRS)

    Chappell, Charles R.

    1988-01-01

    The geospace environment has been viewed as a mixing bowl for plasmas of both solar and terrestrial origin. The present perspective on the nature of the supply mechanisms has undergone a radical evolution over the past decade, particularly during the five years of the Dynamics Explorer mission. During this period, the terrestrial source has increased in importance in both magnitude and character of ionospheric outflow. These outflows include the classical polar wind, the cleft ion fountain, the auroral ion fountain, and the polar cap. The earth can be envisioned as a multifaceted fountain which ejects particles from different spatial locations spread around the globe. These particles exhibit a range of masses from 1 to 32 amu and a range of energies from 1 eV to 10 keV. The total flux of this ionospheric outflow is very large: adequate to supply the entire magnetospheric particle population. And the implications of the outflow are significant across a broad spectrum of solar-terrestrial processes ranging from sources of magnetospheric plasmas, to influences on ionospheric density and temperature structure, to energy transfer in phenomena such as stable auroral red arcs. The Dynamics Explorer mission has made a major contribution in the characterization of the terrestrial plasma source.

  16. Adhesive particle shielding

    DOEpatents

    Klebanoff, Leonard Elliott [Dublin, CA; Rader, Daniel John [Albuquerque, NM; Walton, Christopher [Berkeley, CA; Folta, James [Livermore, CA

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  17. Particle astronomy and particle physics from the moon - The particle observatory

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.

    1990-01-01

    Promising experiments from the moon using particle detectors are discussed, noting the advantage of the large flux collecting power Pc offered by the remote, stable environment of a lunar base. An observatory class of particle experiments is presented, based upon proposals at NASA's recent Stanford workshop. They vary from neutrino astronomy, particle astrophysics, and cosmic ray experiments to space physics and fundamental physics experiments such as proton decay and 'table-top' arrays. This research is background-limited on earth, and it is awkward and unrealistic in earth orbit, but is particularly suited for the moon where Pc can be quite large and the instrumentation is not subject to atmospheric erosion as it is (for large t) in low earth orbit.

  18. Solar High-energy Astrophysical Plasmas Explorer (SHAPE). Volume 1: Proposed concept, statement of work and cost plan

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Martin, Franklin D.; Prince, T.; Lin, R.; Bruner, M.; Culhane, L.; Ramaty, R.; Doschek, G.; Emslie, G.; Lingenfelter, R.

    1986-01-01

    The concept of the Solar High-Energy Astrophysical Plasmas Explorer (SHAPE) is studied. The primary goal is to understand the impulsive release of energy, efficient acceleration of particles to high energies, and rapid transport of energy. Solar flare studies are the centerpieces of the investigation because in flares these high energy processes can be studied in unmatched detail at most wavelenth regions of the electromagnetic spectrum as well as in energetic charged particles and neutrons.

  19. NEUDOSE: A CubeSat Mission for Dosimetry of Charged Particles and Neutrons in Low-Earth Orbit.

    PubMed

    Hanu, A R; Barberiz, J; Bonneville, D; Byun, S H; Chen, L; Ciambella, C; Dao, E; Deshpande, V; Garnett, R; Hunter, S D; Jhirad, A; Johnston, E M; Kordic, M; Kurnell, M; Lopera, L; McFadden, M; Melnichuk, A; Nguyen, J; Otto, A; Scott, R; Wagner, D L; Wiendels, M

    2017-01-01

    During space missions, astronauts are exposed to a stream of energetic and highly ionizing radiation particles that can suppress immune system function, increase cancer risks and even induce acute radiation syndrome if the exposure is large enough. As human exploration goals shift from missions in low-Earth orbit (LEO) to long-duration interplanetary missions, radiation protection remains one of the key technological issues that must be resolved. In this work, we introduce the NEUtron DOSimetry & Exploration (NEUDOSE) CubeSat mission, which will provide new measurements of dose and space radiation quality factors to improve the accuracy of cancer risk projections for current and future space missions. The primary objective of the NEUDOSE CubeSat is to map the in situ lineal energy spectra produced by charged particles and neutrons in LEO where most of the preparatory activities for future interplanetary missions are currently taking place. To perform these measurements, the NEUDOSE CubeSat is equipped with the Charged & Neutral Particle Tissue Equivalent Proportional Counter (CNP-TEPC), an advanced radiation monitoring instrument that uses active coincidence techniques to separate the interactions of charged particles and neutrons in real time. The NEUDOSE CubeSat, currently under development at McMaster University, provides a modern approach to test the CNP-TEPC instrument directly in the unique environment of outer space while simultaneously collecting new georeferenced lineal energy spectra of the radiation environment in LEO.

  20. First star formation in ultralight particle dark matter cosmology

    NASA Astrophysics Data System (ADS)

    Hirano, Shingo; Sullivan, James M.; Bromm, Volker

    2018-01-01

    The formation of the first stars in the high-redshift Universe is a sensitive probe of the small-scale, particle physics nature of dark matter (DM). We carry out cosmological simulations of primordial star formation in ultralight, axion-like particle DM cosmology, with masses of 10-22 and 10-21 eV, with de Broglie wavelengths approaching galactic scales (˜ kpc). The onset of star formation is delayed, and shifted to more massive host structures. For the lightest DM particle mass explored here, first stars form at z ˜ 7 in structures with ˜109 M⊙, compared to the standard minihalo environment within the Λ cold dark matter (ΛCDM) cosmology, where z ˜ 20-30 and ˜105-106 M⊙. Despite this greatly altered DM host environment, the thermodynamic behaviour of the metal-free gas as it collapses into the DM potential well asymptotically approaches a very similar evolutionary track. Thus, the fragmentation properties are predicted to remain the same as in ΛCDM cosmology, implying a similar mass scale for the first stars. These results predict intense starbursts in the axion cosmologies, which may be amenable to observations with the James Webb Space Telescope.

  1. Effects of compressibility on turbulent relative particle dispersion

    NASA Astrophysics Data System (ADS)

    Shivamoggi, Bhimsen K.

    2016-08-01

    In this paper, phenomenological developments are used to explore the effects of compressibility on the relative particle dispersion (RPD) in three-dimensional (3D) fully developed turbulence (FDT). The role played by the compressible FDT cascade physics underlying this process is investigated. Compressibility effects are found to lead to reduction of RPD, development of the ballistic regime and particle clustering, corroborating the laboratory experiment and numerical simulation results (Cressman J. R. et al., New J. Phys., 6 (2004) 53) on the motion of Lagrangian tracers on a surface flow that constitutes a 2D compressible subsystem. These formulations are developed from the scaling relations for compressible FDT and are validated further via an alternative dimensional/scaling development for compressible FDT similar to the one given for incompressible FDT by Batchelor and Townsend (Surveys in Mechanics (Cambridge University Press) 1956, p. 352). The rationale for spatial intermittency effects is legitimized via the nonlinear scaling dependence of RPD on the kinetic-energy dissipation rate.

  2. Axion like particles and the inverse seesaw mechanism

    DOE PAGES

    Carvajal, C. D. R.; Dias, Alex G.; Nishi, C. C.; ...

    2015-05-13

    Light pseudoscalars known as axion like particles (ALPs) may be behind physical phenomena like the Universe transparency to ultra-energetic photons, the soft -ray excess from the Coma cluster, and the 3.5 keV line. We explore the connection of these particles with the inverse seesaw (ISS) mechanism for neutrino mass generation. We propose a very restrictive setting where the scalar field hosting the ALP is also responsible for generating the ISS mass scales through its vacuum expectation value on gravity induced nonrenormalizable operators. A discrete gauge symmetry protects the theory from the appearance of overly strong gravitational effects and discrete anomalymore » cancellation imposes strong constraints on the order of the group. In conclusion, the anomalous U(1) symmetry leading to the ALP is an extended lepton number and the protective discrete symmetry can be always chosen as a subgroup of a combination of the lepton number and the baryon number.« less

  3. Particle Morphology and Elemental Composition of Smoke Generated by Overheating Common Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Meyer, Marit E.

    2015-01-01

    Fire safety in the indoor spacecraft environment is concerned with a unique set of fuels which are designed to not combust. Unlike terrestrial flaming fires, which often can consume an abundance of wood, paper and cloth, spacecraft fires are expected to be generated from overheating electronics consisting of flame resistant materials. Therefore, NASA prioritizes fire characterization research for these fuels undergoing oxidative pyrolysis in order to improve spacecraft fire detector design. A thermal precipitator designed and built for spacecraft fire safety test campaigns at the NASA White Sands Test Facility (WSTF) successfully collected an abundance of smoke particles from oxidative pyrolysis. A thorough microscopic characterization has been performed for ten types of smoke from common spacecraft materials or mixed materials heated at multiple temperatures using the following techniques: SEM, TEM, high resolution TEM, high resolution STEM and EDS. Resulting smoke particle morphologies and elemental compositions have been observed which are consistent with known thermal decomposition mechanisms in the literature and chemical make-up of the spacecraft fuels. Some conclusions about particle formation mechanisms are explored based on images of the microstructure of Teflon smoke particles and tar ball-like particles from Nomex fabric smoke.

  4. Modeling of Particle Acceleration at Multiple Shocks Via Diffusive Shock Acceleration: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Parker, Linda Neergaard; Zank, Gary P.

    2013-01-01

    We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al., 1999) in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box (Melrose and Pope, 1993; Zank et al., 2000). We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (Emax) appropriate for quasi-parallel and quasi-perpendicular shocks (Zank et al., 2000, 2006; Dosch and Shalchi, 2010) and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).

  5. Diffusive vs. impulsive energetic electron transport during radiation belt storms

    NASA Astrophysics Data System (ADS)

    Vassiliadis, D.; Koepke, M.; Tornquist, M.

    2008-12-01

    Earth's electron radiation belts are continually replenished by inward particle transport (as well as other, local acceleration processes) taking place during radiation belt storms. For some storms the radial transport is primarily diffusive while for others it is impulsive, or characterized by injections. To distinguish between these types of inward transport, we first use a dynamic model of the phase-space density as measured by POLAR/HIST and expressed in terms of adiabatic invariants [Green and Kivelson, 2004]. In a review of storms from 1997 to 2004 the coefficients of the model are peaked at characteristic temporal and phase- space (mu, k, L*) scales during specific storms. The transport is quantified in terms of those invariants which are violated and identified with peaks of the electron distribution in invariant space. Second, we run guiding- center simulations in wave fields fitted to in situ measurements complemented at low and high L by ground ULF pulsations. The modes of response identified in earlier studies from SAMPEX and POLAR electron flux measurements are now associated with primarily diffusive transport in the central range of the outer belt, L=4-8, and primarily impulsive transport near the plasmapause boundary, L=3-4.

  6. Ultrafine particle concentration and new particle formation in a coastal arid environment

    NASA Astrophysics Data System (ADS)

    Alfoldy, Balint; Kotob, Mohamed; Obbard, Jeffrey P.

    2017-04-01

    Arid environments can be generally characterised by high coarse aerosol load due to the wind-driven erosion of the upper earth crust (i.e. Aeolian dust). On the other hand, anthropogenic activities and/or natural processes also generate significant numbers of particles in the ultrafine size range. Ultrafine particles (also referred as nano-particles) is considered as aerosol particles with the diameter less than 100 nm irrespectively their chemical composition. Due to their small size, these particles represent negligible mass portion in the total atmospheric particulate mass budget. On the other hand, these particles represent the majority of the total particle number budget and have the major contribution in the total aerosol surface distribution. Ultrafine particles are characterised by high mobility (diffusion) and low gravitational settling velocity. Consequently, these particles can be transported long distances and their atmospheric lifetime is relatively high (i.e. in the Accumulation Mode). Ultrafine particles play important role in the atmosphere as they take part in the atmospheric chemistry (high surface), impact the climate (sulphate vs. black carbon), and implies significant health effects due to their deep lung penetration and high mobility in the body. The Atmospheric Laboratory of Qatar University is conducting real-time monitoring of ultrafine particles and regularly taking aerosol samples for chemical analysis at the university campus. In this paper, recent results are presented regarding the size distribution and chemical composition of the ultrafine aerosol particles. Based on the concentration variation in time, sources of ultrafine particles can be clearly separated from the sources of fine or coarse particles. Several cases of new particle formation events have been observed and demonstrated in the paper, however, the precursors of the secondary aerosol particles are still unknown. Literature references suggest that among the sulphuric acid

  7. Scaling Properties of Particle Density Fields Formed in Simulated Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Hogan, Robert C.; Cuzzi, Jeffrey N.; Dobrovolskis, Anthony R.; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    Direct numerical simulations (DNS) of particle concentrations in fully developed 3D turbulence were carried out in order to study the nonuniform structure of the particle density field. Three steady-state turbulent fluid fields with Taylor microscale Reynolds numbers (Re(sub lambda)) of 40, 80 and 140 were generated by solving the Navier-Stokes equations with pseudospectral methods. Large scale forcing was used to drive the turbulence and maintain temporal stationarity. The response of the particles to the fluid was parameterized by the particle Stokes number St, defined as the ratio of the particle's stopping time to the mean period of eddies on the Kolmogorov scale (eta). In this paper, we consider only passive particles optimally coupled to these eddies (St approx. = 1) because of their tendency to concentrate more than particles with lesser or greater St values. The trajectories of up to 70 million particles were tracked in the equilibrated turbulent flows until the particle concentration field reached a statistically stationary state. The nonuniform structure of the concentration fields was characterized by the multifractal singularity spectrum, f(alpha), derived from measures obtained after binning particles into cells ranging from 2(eta) to 15(eta) in size. We observed strong systematic variations of f(alpha) across this scale range in all three simulations and conclude that the particle concentration field is not statistically self similar across the scale range explored. However, spectra obtained at the 2(eta), 4(eta), and 8(eta) scales of each flow case were found to be qualitatively similar. This result suggests that the local structure of the particle concentration field may be flow-Independent. The singularity spectra found for 2n-sized cells were used to predict concentration distributions in good agreement with those obtained directly from the particle data. This Singularity spectrum has a shape similar to the analogous spectrum derived for the

  8. Airborne dust and soil particles at the Phoenix landing site, Mars

    NASA Astrophysics Data System (ADS)

    Madsen, M. B.; Drube, L.; Goetz, W.; Leer, K.; Falkenberg, T. V.; Gunnlaugsson, H. P.; Haspang, M. P.; Hviid, S. F.; Ellehøj, M. D.; Lemmon, M. T.

    2009-04-01

    The three iSweep targets on the Phoenix lander instrument deck utilize permanent magnets and 6 different background colors for studies of airborne dust [1]. The name iSweep is short for Improved Sweep Magnet experiments and derives from MER heritage [2, 3] as the rovers carried a sweep magnet, which is a very strong ring magnet built into an aluminum structure. Airborne dust is attracted and held by the magnet and the pattern formed depends on magnetic properties of the dust. The visible/near-infrared spectra acquired of the iSweep are rather similar to typical Martian dust and soil spectra. Because of the multiple background colors of the iSweeps the effect of the translucence of thin dust layers can be studied. This is used to estimate the rate of dust accumulation and will be used to evaluate light scattering properties of the particles. Some particles raised by the retro-rockets during the final descent came to rest on the lander deck and spectra of these particles are studied and compared with those of airborne dust and with spectra obtained from other missions. High resolution images acquired by the Optical Microscope (OM) [4] showed subtle differences between different Phoenix soil samples in terms of particle size and color. Most samples contain orange dust (particles smaller than 10 micrometer) as their major component and silt-sized (50-80 micrometer large) subrounded particles. Both particle types are substantially magnetic. Based on results from the Mars Exploration Rovers, the magnetization of the silt-sized particles is believed to be caused by magnetite. Morphology, texture and color of these particles (ranging from colorless, red-brown to almost black) suggest a multiple origin: The darkest particles probably represent lithic fragments, while the brighter ones could be impact or volcanic glasses. [1] Leer K. et al. (2008) JGR, 113, E00A16. [2] Madsen M.B. et al. (2003) JGR, 108, 8069. [3] Madsen M.B. et al. (2008) JGR (in print). [4] Hecht M.H. et

  9. Particle generator

    DOEpatents

    Hess, Wayne P.; Joly, Alan G.; Gerrity, Daniel P.; Beck, Kenneth M.; Sushko, Peter V.; Shlyuger, Alexander L.

    2005-06-28

    Energy tunable solid state sources of neutral particles are described. In a disclosed embodiment, a halogen particle source includes a solid halide sample, a photon source positioned to deliver photons to a surface of the halide, and a collimating means positioned to accept a spatially defined plume of hyperthermal halogen particles emitted from the sample surface.

  10. Carbon Explorer Assessment of Carbon Biomass Variability and Carbon Flux Systematics in the Upper Ocean During SOFEX

    NASA Astrophysics Data System (ADS)

    Bishop, J. K.; Wood, T. J.; Sherman, J. T.

    2002-12-01

    Three autonomous Carbon Explorers built on SIO's Orbcomm/GPS enhanced Sounding Oceanographic Lagrangian Observer were launched near 55S 172W in the "North" SOFEX experiment area in early January 2002. All Explorers at 55S were programmed to perform profiles from 1000, 300, and 300 m with surfacings, GPS position, and telemetry of profile data initiating at local 0600, 1200, and 1800 hours. The floats were programmed to 'sleep' at 100 m depth between profiles to maximize tracking of the surface layer. Each Explorer carried SeaBird T and S sensors and was additionally fitted with a WETLabs transmissometer based "POC" sensor and a Seapoint scattering meter to assess particulate matter variability. A carbon flux "index" obtained during the 100 m sleep periods was also derived from the POC sensor readings. Explorer 1177 was deployed as a control outside of Fe treated waters on Jan 11 2002 (UTC) and drifted initially to the North East at 10 cm/sec. Explorer 2104, deployed on Jan 19 2002 after the 3rd Fe infusion, advected with the patch to the NE on a course that closely paralleled that of the "control". By Feb 8 2002, the two floats had drifted with the circumpolar current nearly 200 km; Explorer 2104 had recorded a 4-fold build-up of of particles in the upper 60 m whereas records from the nearby control Explorer 1177 showed little change. Ship survey data (Revelle) indicated that Explorer 2104 was near but "in" the trailing edge of the patch. Beginning Feb 14 (several days after the 4th infusion of Fe) and ending on Feb 24 2002, Explorer 2104 data showed isolines of POC concentration beginning to deepen in waters below 60 m and a coincident loss of POC from above; the POC flux index also began to show clearly different and enhanced 'spikes' compared to that recorded by the control. The spikes either reflected temporal variability of particle export from the patch or the intermingled sampling of the "in patch" settling plume of particles and "out-of-patch" background

  11. Time-dependent transport of energetic particles in magnetic turbulence: computer simulations versus analytical theory

    NASA Astrophysics Data System (ADS)

    Arendt, V.; Shalchi, A.

    2018-06-01

    We explore numerically the transport of energetic particles in a turbulent magnetic field configuration. A test-particle code is employed to compute running diffusion coefficients as well as particle distribution functions in the different directions of space. Our numerical findings are compared with models commonly used in diffusion theory such as Gaussian distribution functions and solutions of the cosmic ray Fokker-Planck equation. Furthermore, we compare the running diffusion coefficients across the mean magnetic field with solutions obtained from the time-dependent version of the unified non-linear transport theory. In most cases we find that particle distribution functions are indeed of Gaussian form as long as a two-component turbulence model is employed. For turbulence setups with reduced dimensionality, however, the Gaussian distribution can no longer be obtained. It is also shown that the unified non-linear transport theory agrees with simulated perpendicular diffusion coefficients as long as the pure two-dimensional model is excluded.

  12. Colloids exposed to random potential energy landscapes: From particle number density to particle-potential and particle-particle interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bewerunge, Jörg; Capellmann, Ronja F.; Platten, Florian

    2016-07-28

    Colloidal particles were exposed to a random potential energy landscape that has been created optically via a speckle pattern. The mean particle density as well as the potential roughness, i.e., the disorder strength, were varied. The local probability density of the particles as well as its main characteristics were determined. For the first time, the disorder-averaged pair density correlation function g{sup (1)}(r) and an analogue of the Edwards-Anderson order parameter g{sup (2)}(r), which quantifies the correlation of the mean local density among disorder realisations, were measured experimentally and shown to be consistent with replica liquid state theory results.

  13. Effects of Initial Particle Distribution on an Energetic Dispersal of Particles

    NASA Astrophysics Data System (ADS)

    Rollin, Bertrand; Ouellet, Frederick; Koneru, Rahul; Garno, Joshua; Durant, Bradford

    2017-11-01

    Accurate predictions of the late time solid particle cloud distribution ensuing an explosive dispersal of particles is an extremely challenging problem for compressible multiphase flow simulations. The source of this difficulty is twofold: (i) The complex sequence of events taking place. Indeed, as the blast wave crosses the surrounding layer of particles, compaction occurs shortly before particles disperse radially at high speed. Then, during the dispersion phase, complex multiphase interactions occurs between particles and detonation products. (ii) Precise characterization of the explosive and particle distribution is virtually impossible. In this numerical experiment, we focus on the sensitivity of late time particle cloud distributions relative to carefully designed initial distributions, assuming the explosive is well described. Using point particle simulations, we study the case of a bed of glass particles surrounding an explosive. Constraining our simulations to relatively low initial volume fractions to prevent reaching of the close packing limit, we seek to describe qualitatively and quantitatively the late time dependency of a solid particle cloud on its distribution before the energy release of an explosive. This work was supported by the U.S. DoE, NNSA, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  14. Smoke Detection for the Orion Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Sutin, Brian M.; Niu, William; Steiner, George; O'Hara, William; Lewis, John F.

    2009-01-01

    The Orion Crew Exploration Vehicle (CEV) requires a smoke detector for the detection of particulate smoke products as part of the Fire Detection and Suppression (FDS) system. The smoke detector described in this paper is an adaptation of a mature commercial aircraft design for manned spaceflight. Changes made to the original design include upgrading the materials and electronic to space-qualified parts, and modifying the mechanical design to withstand launch and landing loads. The results of laboratory characterization of the response of the new design to test particles are presented.

  15. Joint global optimization of tomographic data based on particle swarm optimization and decision theory

    NASA Astrophysics Data System (ADS)

    Paasche, H.; Tronicke, J.

    2012-04-01

    In many near surface geophysical applications multiple tomographic data sets are routinely acquired to explore subsurface structures and parameters. Linking the model generation process of multi-method geophysical data sets can significantly reduce ambiguities in geophysical data analysis and model interpretation. Most geophysical inversion approaches rely on local search optimization methods used to find an optimal model in the vicinity of a user-given starting model. The final solution may critically depend on the initial model. Alternatively, global optimization (GO) methods have been used to invert geophysical data. They explore the solution space in more detail and determine the optimal model independently from the starting model. Additionally, they can be used to find sets of optimal models allowing a further analysis of model parameter uncertainties. Here we employ particle swarm optimization (PSO) to realize the global optimization of tomographic data. PSO is an emergent methods based on swarm intelligence characterized by fast and robust convergence towards optimal solutions. The fundamental principle of PSO is inspired by nature, since the algorithm mimics the behavior of a flock of birds searching food in a search space. In PSO, a number of particles cruise a multi-dimensional solution space striving to find optimal model solutions explaining the acquired data. The particles communicate their positions and success and direct their movement according to the position of the currently most successful particle of the swarm. The success of a particle, i.e. the quality of the currently found model by a particle, must be uniquely quantifiable to identify the swarm leader. When jointly inverting disparate data sets, the optimization solution has to satisfy multiple optimization objectives, at least one for each data set. Unique determination of the most successful particle currently leading the swarm is not possible. Instead, only statements about the Pareto

  16. Particle-Surface Interaction Model and Method of Determining Particle-Surface Interactions

    NASA Technical Reports Server (NTRS)

    Hughes, David W. (Inventor)

    2012-01-01

    A method and model of predicting particle-surface interactions with a surface, such as the surface of a spacecraft. The method includes the steps of: determining a trajectory path of a plurality of moving particles; predicting whether any of the moving particles will intersect a surface; predicting whether any of the particles will be captured by the surface and/or; predicting a reflected trajectory and velocity of particles reflected from the surface.

  17. Polymer-Particle Nanocomposites: Size and Dispersion Effects

    NASA Astrophysics Data System (ADS)

    Moll, Joseph

    also addresses the interfacial, rigid polymer layer, or 'bound layer' which has long been of interest in polymer nanocomposites and polymer thin films. The divergent properties of the 'bound layer' as compared to the bulk material can have very important effects on properties, including mechanical properties. This is especially true in polymer nanocomposites, where at high weight fractions, 'bound layer' polymer can easily make up 20% or more of total material! Here we quantify this layer of bound polymer as a function of particle size, polymer molecular weight and other variables, primarily using thermogravimetric analysis but also dynamic light scattering and differential scanning calorimetry. We find that as nanoparticles become smaller, the 'bound layer' systematically decreases in thickness. This result is quite relevant to explanations of many polymer nanocomposite properties that depend on size, including mechanical and barrier properties. Many additional important and new results are reported herein. These include the importance of dispersion state in the resulting mechanical properties of polymer-particle nanocomposites, where a systematic study showed an optimal dispersion state of a connected particle network. An additional and unexpected finding in this system was the critical dependence of composite properties on grafted chain length of particles. As the grafted chain length is increased, the strain which leads to yielding in a steady shear experiment is increased in a linear relationship. At very high rates, this yielding process completely switches mechanisms, from yielding of the particle network to yielding of the entangled polymer network! A surprising correlation between the amount of bound polymer in solution and in the bulk was also found and is interpreted herein. Self-assembly was further explored in a range of different systems and it was found that grafted particles and there mimics have vast potential in the creation of a wide array of

  18. Constraining the mass of dark photons and axion-like particles through black-hole superradiance

    NASA Astrophysics Data System (ADS)

    Cardoso, Vitor; Dias, Óscar J. C.; Hartnett, Gavin S.; Middleton, Matthew; Pani, Paolo; Santos, Jorge E.

    2018-03-01

    Ultralight bosons and axion-like particles appear naturally in different scenarios and could solve some long-standing puzzles. Their detection is challenging, and all direct methods hinge on unknown couplings to the Standard Model of particle physics. However, the universal coupling to gravity provides model-independent signatures for these fields. We explore here the superradiant instability of spinning black holes triggered in the presence of such fields. The instability taps angular momentum from and limits the maximum spin of astrophysical black holes. We compute, for the first time, the spectrum of the most unstable modes of a massive vector (Proca) field for generic black-hole spin and Proca mass. The observed stability of the inner disk of stellar-mass black holes can be used to derive direct constraints on the mass of dark photons in the mass range 10‑13 eVlesssim mV lesssim 3× 10‑12 eV. By including also higher azimuthal modes, similar constraints apply to axion-like particles in the mass range 6×10‑13 eVlesssim mALP lesssim 10‑11 eV. Likewise, mass and spin distributions of supermassive BHs—as measured through continuum fitting, Kα iron line, or with the future space-based gravitational-wave detector LISA – imply indirect bounds in the mass range approximately 10‑19 eVlesssim mV, mALP lesssim 10‑13 eV, for both axion-like particles and dark photons. Overall, superradiance allows to explore a region of approximately 8 orders of magnitude in the mass of ultralight bosons.

  19. Novel Optical Diagnostic Techniques for Studying Particle Deposition Upon Large Cylinders in a Sheared Suspension

    NASA Technical Reports Server (NTRS)

    Yoda, M.; Bailey, B. C.

    2000-01-01

    On a twelve-month voyage to Mars, one astronaut will require at least two tons of potable water and two tons of pure oxygen. Efficient, reliable fluid reclamation is therefore necessary for manned space exploration. Space habitats require a compact, flexible, and robust apparatus capable of solid-fluid mechanical separation over a wide range of fluid and particle densities and particle sizes. In space, centrifugal filtration, where particles suspended in fluid are captured by rotating fixed-fiber mat filters, is a logical candidate for mechanical separation. Non-colloidal particles are deposited on the fibers due to inertial impaction or direct interception. Since rotation rates are easily adjustable, inertial effects are the most practical way to control separation rates for a wide variety of multiphase mixtures in variable gravity environments. Understanding how fluid inertia and differential fluid-particle inertia, characterized by the Reynolds and Stokes numbers, respectively, affect deposition is critical in optimizing filtration in a microgravity environment. This work will develop non-intrusive optical diagnostic techniques for directly visualizing where and when non-colloidal particles deposit upon, or contact, solid surfaces: 'particle proximity sensors'. To model particle deposition upon a single filter fiber, these sensors will be used in ground-based experiments to study particle dynamics as in the vicinity of a large (compared with the particles) cylinder in a simply sheared (i.e., linearly-varying, zero-mean velocity profile) neutrally-buoyant, refractive-index matched solid-liquid suspension.

  20. Collider probes of axion-like particles

    NASA Astrophysics Data System (ADS)

    Bauer, Martin; Neubert, Matthias; Thamm, Andrea

    2017-12-01

    Axion-like particles (ALPs), which are gauge-singlets under the Standard Model (SM), appear in many well-motivated extensions of the SM. Describing the interactions of ALPs with SM fields by means of an effective Lagrangian, we discuss ALP decays into SM particles at one-loop order, including for the first time a calculation of the a → πππ decay rates for ALP masses below a few GeV. We argue that, if the ALP couples to at least some SM particles with couplings of order (0.01 - 1) TeV-1, its mass must be above 1 MeV. Taking into account the possibility of a macroscopic ALP decay length, we show that large regions of so far unconstrained parameter space can be explored by searches for the exotic, on-shell Higgs and Z decays h → Za, h → aa and Z → γa in Run-2 of the LHC with an integrated luminosity of 300 fb-1. This includes the parameter space in which ALPs can explain the anomalous magnetic moment of the muon. Considering subsequent ALP decays into photons and charged leptons, we show that the LHC provides unprecedented sensitivity to the ALP-photon and ALP-lepton couplings in the mass region above a few MeV, even if the relevant ALP couplings are loop suppressed and the a → γγ and a → ℓ+ℓ- branching ratios are significantly less than 1. We also discuss constraints on the ALP parameter space from electroweak precision tests.

  1. Aberration correction for charged particle lithography

    NASA Astrophysics Data System (ADS)

    Munro, Eric; Zhu, Xieqing; Rouse, John A.; Liu, Haoning

    2001-12-01

    At present, the throughput of projection-type charge particle lithography systems, such as PREVAIL and SCALPEL, is limited primarily by the combined effects of field curvature in the projection lenses and Coulomb interaction in the particle beam. These are fundamental physical limitations, inherent in charged particle optics, so there seems little scope for significantly improving the design of such systems, using conventional rotationally symmetric electron lenses. This paper explores the possibility of overcoming the field aberrations of round electron lense, by using a novel aberration corrector, proposed by Professor H. Rose of University of Darmstadt, called a hexapole planator. In this scheme, a set of round lenses is first used to simultaneously correct distortion and coma. The hexapole planator is then used to correct the field curvature and astigmatism, and to create a negative spherical aberration. The size of the transfer lenses around the planator can then be adjusted to zero the residual spherical aberration. In a way, an electron optical projection system is obtained that is free of all primary geometrical aberrations. In this paper, the feasibility of this concept has been studied with a computer simulation. The simulations verify that this scheme can indeed work, for both electrostatic and magnetic projection systems. Two design studies have been carried out. The first is for an electrostatic system that could be used for ion beam lithography, and the second is for a magnetic projection system for electron beam lithography. In both cases, designs have been achieved in which all primary third-order geometrical aberrations are totally eliminated.

  2. EFFECT OF COHERENT STRUCTURES ON ENERGETIC PARTICLE INTENSITY IN THE SOLAR WIND AT 1 AU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tessein, Jeffrey A.; Matthaeus, William H.; Wan, Minping

    2015-10-10

    We present results from an analysis of Advanced Composition Explorer (ACE) observations of energetic particles in the 0.047–4.78 MeV range associated with shocks and discontinuities in the solar wind. Previous work found a strong correlation between coherent structures and energetic particles measured by ACE/EPAM. Coherent structures are identified using the Partial Variance of Increments (PVI) method, which is essentially a normalized vector increment. The correlation was based on a superposed epoch analysis using over 12 years of data. Here, we examine many individual high-PVI events to better understand this association emphasizing intervals selected from data with shock neighborhoods removed. Wemore » find that in many cases the local maximum in PVI is in a region of rising or falling energetic particle intensity, which suggests that magnetic discontinuities may act as barriers inhibiting the motion of energetic particles across them.« less

  3. Biking with Particles: Junior Triathletes' Learning about Drafting through Exploring Agent-Based Models and Inventing New Tactics

    ERIC Educational Resources Information Center

    Hirsh, Alon; Levy, Sharona T.

    2013-01-01

    The present research addresses a curious finding: how learning physical principles enhanced athletes' biking performance but not their conceptual understanding. The study involves a model-based triathlon training program, Biking with Particles, concerning aerodynamics of biking in groups (drafting). A conceptual framework highlights several…

  4. Natural gold particles in Eucalyptus leaves and their relevance to exploration for buried gold deposits

    PubMed Central

    Lintern, Melvyn; Anand, Ravi; Ryan, Chris; Paterson, David

    2013-01-01

    Eucalyptus trees may translocate Au from mineral deposits and support the use of vegetation (biogeochemical) sampling in mineral exploration, particularly where thick sediments dominate. However, biogeochemistry has not been routinely adopted partly because biotic mechanisms of Au migration are poorly understood. For example, although Au has been previously measured in plant samples, there has been doubt as to whether it was truly absorbed rather than merely adsorbed on the plant surface as aeolian contamination. Here we show the first evidence of particulate Au within natural specimens of living biological tissue (not from laboratory experimentation). This observation conclusively demonstrates active biogeochemical adsorption of Au and provides insight into its behaviour in natural samples. The confirmation of biogeochemical adsorption of Au, and of a link with abiotic processes, promotes confidence in an emerging technique that may lead to future exploration success and maintain continuity of supply. PMID:24149278

  5. Microscopic Phase-Space Exploration Modeling of ^{258}Fm Spontaneous Fission.

    PubMed

    Tanimura, Yusuke; Lacroix, Denis; Ayik, Sakir

    2017-04-14

    We show that the total kinetic energy (TKE) of nuclei after the spontaneous fission of ^{258}Fm can be well reproduced using simple assumptions on the quantum collective phase space explored by the nucleus after passing the fission barrier. Assuming energy conservation and phase-space exploration according to the stochastic mean-field approach, a set of initial densities is generated. Each density is then evolved in time using the nuclear time-dependent density-functional theory with pairing. This approach goes beyond the mean-field theory by allowing spontaneous symmetry breaking as well as a wider dynamical phase-space exploration leading to larger fluctuations in collective space. The total kinetic energy and mass distributions are calculated. New information on the fission process: fluctuations in scission time, strong correlation between TKE and collective deformation, as well as prescission particle emission, are obtained. We conclude that fluctuations of the TKE and mass are triggered by quantum fluctuations.

  6. Application of ant colony Algorithm and particle swarm optimization in architectural design

    NASA Astrophysics Data System (ADS)

    Song, Ziyi; Wu, Yunfa; Song, Jianhua

    2018-02-01

    By studying the development of ant colony algorithm and particle swarm algorithm, this paper expounds the core idea of the algorithm, explores the combination of algorithm and architectural design, sums up the application rules of intelligent algorithm in architectural design, and combines the characteristics of the two algorithms, obtains the research route and realization way of intelligent algorithm in architecture design. To establish algorithm rules to assist architectural design. Taking intelligent algorithm as the beginning of architectural design research, the authors provide the theory foundation of ant colony Algorithm and particle swarm algorithm in architectural design, popularize the application range of intelligent algorithm in architectural design, and provide a new idea for the architects.

  7. Discrete mathematical physics and particle modeling

    NASA Astrophysics Data System (ADS)

    Greenspan, D.

    The theory and application of the arithmetic approach to the foundations of both Newtonian and special relativistic mechanics are explored. Using only arithmetic, a reformulation of the Newtonian approach is given for: gravity; particle modeling of solids, liquids, and gases; conservative modeling of laminar and turbulent fluid flow, heat conduction, and elastic vibration; and nonconservative modeling of heat convection, shock-wave generation, the liquid drop problem, porous flow, the interface motion of a melting solid, soap films, string vibrations, and solitons. An arithmetic reformulation of special relativistic mechanics is given for theory in one space dimension, relativistic harmonic oscillation, and theory in three space dimensions. A speculative quantum mechanical model of vibrations in the water molecule is also discussed.

  8. Trade Study of System Level Ranked Radiation Protection Concepts for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Cerro, Jeffrey A

    2013-01-01

    A strategic focus area for NASA is to pursue the development of technologies which support exploration in space beyond the current inhabited region of low earth orbit. An unresolved issue for crewed deep space exploration involves limiting crew radiation exposure to below acceptable levels, considering both solar particle events and galactic cosmic ray contributions to dosage. Galactic cosmic ray mitigation is not addressed in this paper, but by addressing credible, easily implemented, and mass efficient solutions for the possibility of solar particle events, additional margin is provided that can be used for cosmic ray dose accumulation. As a result, NASA s Advanced Engineering Systems project office initiated this Radiation Storm Shelter design activity. This paper reports on the first year results of an expected 3 year Storm Shelter study effort which will mature concepts and operational scenarios that protect exploration astronauts from solar particle radiation events. Large trade space definition, candidate concept ranking, and a planned demonstration comprised the majority of FY12 activities. A system key performance parameter is minimization of the required increase in mass needed to provide a safe environment. Total system mass along with operational assessments and other defined protection system metrics provide the guiding metrics to proceed with concept developments. After a downselect to four primary methods, the concepts were analyzed for dosage severity and the amount of shielding mass necessary to bring dosage to acceptable values. Besides analytical assessments, subscale models of several concepts and one full scale concept demonstrator were created. FY12 work terminated with a plan to demonstrate test articles of two selected approaches. The process of arriving at these selections and their current envisioned implementation are presented in this paper.

  9. Magnetic particles

    NASA Technical Reports Server (NTRS)

    Chang, Manchium (Inventor); Colvin, Michael S. (Inventor); Rembaum, Alan (Inventor); Richards, Gil F. (Inventor)

    1987-01-01

    Metal oxide containing polymers and particularly styrene, acrylic or protein polymers containing fine, magnetic iron oxide particles are formed by combining a NO.sub.2 -substituted polymer with an acid such as hydrochloric acid in the presence of metal, particularly iron particles. The iron is oxidized to fine, black Fe.sub.3 O.sub.4 particles which deposit selectively on the polymer particles. Nitrated polymers are formed by reacting functionally substituted, nitrated organic compounds such as trinitrobenzene sulfonate or dinitrofluoro benzene with a functionally coreactive polymer such as an amine modified acrylic polymer or a protein. Other transition metals such as cobalt can also be incorporated into polymers using this method.

  10. Study of resonances produced in light nuclei through two and multi particle correlations

    NASA Astrophysics Data System (ADS)

    Quattrocchi, L.; Acosta, L.; Amorini, F.; Anzalone, A.; Auditore, L.; Berceanu, I.; Cardella, G.; Chbihi, A.; De Filippo, E.; De Luca, S.; Dell' Aquila, D.; Francalanza, L.; Gnoffo, B.; Grzeszczuk, A.; Lanzalone, G.; Lombardo, I.; Martel, I.; Martorana, N. S.; Minniti, T.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Porto, F.; Rizzo, F.; Rosato, E.; Russotto, P.; Trifirò, A.; Trimarchi, M.; Verde, G.; Veselsky, M.; Vigilante, M.

    2017-06-01

    CORRELATION experiment has been performed at INFN-LNS of Catania, using the 4π multi-detector CHIMERA, with the aim of exploring correlations between two and multi light particle produced in 12C+24Mg collisions at 35 AMeV. Particular attention has been paid to the decay mechanisms of Hoyle state, an excited resonant state of 12C produced via the triple-α process and characterized by a pronounced molecular like structure with three α particles. The study of the Hoyle state is essential for nucleosynthesis, but it also represents a clearly isolated state that can be studied as a three-α cluster system.

  11. Particle acceleration due to shocks in the interplanetary field: High time resolution data and simulation results

    NASA Technical Reports Server (NTRS)

    Kessel, R. L.; Armstrong, T. P.; Nuber, R.; Bandle, J.

    1985-01-01

    Data were examined from two experiments aboard the Explorer 50 (IMP 8) spacecraft. The Johns Hopkins University/Applied Lab Charged Particle Measurement Experiment (CPME) provides 10.12 second resolution ion and electron count rates as well as 5.5 minute or longer averages of the same, with data sampled in the ecliptic plane. The high time resolution of the data allows for an explicit, point by point, merging of the magnetic field and particle data and thus a close examination of the pre- and post-shock conditions and particle fluxes associated with large angle oblique shocks in the interplanetary field. A computer simulation has been developed wherein sample particle trajectories, taken from observed fluxes, are allowed to interact with a planar shock either forward or backward in time. One event, the 1974 Day 312 shock, is examined in detail.

  12. Size-Fractionated Particle Number Concentrations and Daily Mortality in a Chinese City

    PubMed Central

    Meng, Xia; Ma, Yanjun; Chen, Renjie; Zhou, Zhijun; Chen, Bingheng

    2013-01-01

    Background: Associations between airborne particles and health outcomes have been documented worldwide; however, there is limited information regarding health effects associated with different particle sizes. Objectives: We explored the association between size-fractionated particle number concentrations (PNCs) and daily mortality in Shenyang, China. Methods: We collected daily data on cause-specific mortality and PNCs for particles measuring 0.25–10 μm in diameter between 1 December 2006 and 30 November 2008. We used quasi-Poisson regression generalized additive models to estimate associations between PNCs and mortality, and we used natural spline smoothing functions to adjust for time-varying covariates and long-term and seasonal trends. Results: Mean numbers of daily deaths were 67, 32, and 7 for all natural causes, cardiovascular diseases, and respiratory diseases, respectively. Interquartile range (IQR) increases in PNCs for particles measuring 0.25–0.50 μm were significantly associated with total and cardiovascular mortality, but not respiratory mortality. Effect estimates were larger for PNCs during the warm season than the cool season, and increased with decreasing particle size. IQR increases in PNCs of 0.25–0.28 μm, 0.35–0.40 μm, and 0.45–0.50 μm particles were associated with 2.41% (95% CI: 1.23, 3.58%), 1.31% (95% CI: 0.52, 2.09%), and 0.45% (95% CI: 0.04, 0.87%) higher total mortality, respectively. Associations were generally stable after adjustment for mass concentrations of ambient particles and gaseous pollutants. Conclusions: Our findings suggest that particles < 0.5 μm in diameter may be most responsible for adverse health effects of particulate air pollution and that adverse health effects may increase with decreasing particle size. Citation: Meng X, Ma Y, Chen R, Zhou Z, Chen B, Kan H. 2013. Size-fractionated particle number concentrations and daily mortality in a Chinese city. Environ Health Perspect 121:1174–1178;

  13. Ice particle collisions

    NASA Astrophysics Data System (ADS)

    Sampara, Naresh; Turnbull, Barbara; Hill, Richard; Swift, Michael

    2017-04-01

    Granular interactions of ice occur in a range of geophysical, astrophysical and industrial applications. For example, Saturn's Rings are composed of icy particles from micrometers to kilometres in size - inertial and yet too small to interact gravitationally. In clouds, ice crystals are smashed to pieces before they re-aggregate to for snow floccules in a process that is very much open to interpretation. In a granular flow of ice particles, the energy spent in collisions can lead to localized surface changes and wetting, which in turn can promote aggregation. To understand the induced wetting and its effects, we present two novel experimental methods which provide snippets of insight into the collisional behaviour of macroscopic ice particles. Experiment 1: Microgravity experiments provide minute details of the contact between the ice particles during the collision. A diamagnetic levitation technique, as alternative to the parabolic flight or falling tower experiments, was used to understand the collisional behaviour of individual macroscopic icy bodies. A refrigerated cylinder, that can control ambient conditions, was inserted into the bore of an 18 Tesla superconducting magnet and cooled to -10°C. Initial binary collisions were created, where one 4 mm ice particle was levitated in the magnet bore whilst another particle was dropped vertically from the top of the bore. The trajectories of both particles were captured by high speed video to provide the three-dimensional particle velocities and track the collision outcome. Introducing complexity, multiple particles were levitated in the bore and an azimuthal turbulent air flow introduced, allowing the particles to collide with other particles within a coherent fluid structure (mimicking Saturn's rings, or an eddy in a cloud). In these experiments, a sequence of collisions occur, each one different to the previous one due to the changes in surface characteristics created by the collisions themselves. Aggregation

  14. Microfabricated particle focusing device

    DOEpatents

    Ravula, Surendra K.; Arrington, Christian L.; Sigman, Jennifer K.; Branch, Darren W.; Brener, Igal; Clem, Paul G.; James, Conrad D.; Hill, Martyn; Boltryk, Rosemary June

    2013-04-23

    A microfabricated particle focusing device comprises an acoustic portion to preconcentrate particles over large spatial dimensions into particle streams and a dielectrophoretic portion for finer particle focusing into single-file columns. The device can be used for high throughput assays for which it is necessary to isolate and investigate small bundles of particles and single particles.

  15. Effect of particle size distribution on 3D packings of spherical particles

    NASA Astrophysics Data System (ADS)

    Taiebat, Mahdi; Mutabaruka, Patrick; Pellenq, Roland; Radjai, Farhang

    2017-06-01

    We use molecular dynamics simulations of frictionless spherical particles to investigate a class of polydisperse granular materials in which the particle size distribution is uniform in particle volumes. The particles are assembled in a box by uniaxial compaction under the action of a constant stress. Due to the absence of friction and the nature of size distribution, the generated packings have the highest packing fraction at a given size span, defined as the ratio α of the largest size to the smallest size. We find that, up to α = 5, the packing fraction is a nearly linear function of α. While the coordination number is nearly constant due to the isostatic nature of the packings, we show that the connectivity of the particles evolves with α. In particular, the proportion of particles with 4 contacts represents the largest proportion of particles mostly of small size. We argue that this particular class of particles occurs as a result of the high stability of local configurations in which a small particle is stuck by four larger particles.

  16. Multifield stochastic particle production: beyond a maximum entropy ansatz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amin, Mustafa A.; Garcia, Marcos A.G.; Xie, Hong-Yi

    2017-09-01

    We explore non-adiabatic particle production for N {sub f} coupled scalar fields in a time-dependent background with stochastically varying effective masses, cross-couplings and intervals between interactions. Under the assumption of weak scattering per interaction, we provide a framework for calculating the typical particle production rates after a large number of interactions. After setting up the framework, for analytic tractability, we consider interactions (effective masses and cross couplings) characterized by series of Dirac-delta functions in time with amplitudes and locations drawn from different distributions. Without assuming that the fields are statistically equivalent, we present closed form results (up to quadratures) formore » the asymptotic particle production rates for the N {sub f}=1 and N {sub f}=2 cases. We also present results for the general N {sub f} >2 case, but with more restrictive assumptions. We find agreement between our analytic results and direct numerical calculations of the total occupation number of the produced particles, with departures that can be explained in terms of violation of our assumptions. We elucidate the precise connection between the maximum entropy ansatz (MEA) used in Amin and Baumann (2015) and the underlying statistical distribution of the self and cross couplings. We provide and justify a simple to use (MEA-inspired) expression for the particle production rate, which agrees with our more detailed treatment when the parameters characterizing the effective mass and cross-couplings between fields are all comparable to each other. However, deviations are seen when some parameters differ significantly from others. We show that such deviations become negligible for a broad range of parameters when N {sub f}>> 1.« less

  17. Exploring the mechanism and kinetics of Fe-Cu-Ag trimetallic particles for p-nitrophenol reduction.

    PubMed

    Yuan, Yue; Yuan, Donghai; Zhang, Yunhong; Lai, Bo

    2017-11-01

    Preparation conditions of Fe-Cu-Ag trimetallic particles were optimized by single-factor and response surface methodology (RSM) batch experiments to obtain high-reactive Fe 0 -based materials for p-nitrophenol (PNP) removal. Under the optimal conditions (i.e., Fe 0 dosage of 34.86 g L -1 , theoretical Cu mass loading of 81.87 mg Cu/g Fe, theoretical Ag mass loading of 1.15 mg Ag/g Fe, and preparation temperature of 52.1 °C), the actual rate constant (k obs ) of PNP reduction in 5 min was 1.64 min -1 , which shows a good agreement between the model prediction (1.85 min -1 ) of RSM and the experimental data. Furthermore, the high reactivity of Fe 0 -based trimetals was mainly attributed to the plating order of transition metals (i.e., Ag and Cu). Furthermore, we propose a new theory that the pyramid trimetallic structure of Fe-Cu-Ag could improve the electron transport and create active sites with high electron density at the surface (Ag layer) that could enhance the generation of surface-bonded atomic hydrogen ([H] abs ) or the direct reduction of pollutant. Moreover, Fe-Cu-Ag trimetallic particles were characterized by SEM, EDS, and XPS, which also could confirm the proposed theory. In addition, the leached Cu 2+ (<10 μg L -1 ) and Ag + (below detection limits) in Fe-Cu-Ag system could be neglected completely, which suggests that Fe-Cu-Ag is reliable, safe, and environment friendly. Therefore, Fe-Cu-Ag trimetallic system would be promising for the removal of pollutants from industrial wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Three- α particle correlations in quasi-projectile decay in 12C + 24Mg collisions at 35A MeV

    NASA Astrophysics Data System (ADS)

    Quattrocchi, L.; Acosta, L.; Amorini, F.; Anzalone, A.; Auditore, L.; Berceanu, I.; Cardella, G.; Chbihi, A.; De Filippo, E.; De Luca, S.; Dell'Aquila, D.; Francalanza, L.; Gnoffo, B.; Grzeszczuk, A.; Lanzalone, G.; Lombardo, I.; Martel, I.; Martorana, N. S.; Minniti, T.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Porto, F.; Rizzo, F.; Rosato, E.; Russotto, P.; Trifirò, A.; Trimarchi, M.; Verde, G.; Veselsky, M.; Vigilante, M.

    2017-11-01

    Two and multi particle correlations have been studied in peripheral 12C + 24Mg collisions at 35A MeV with CHIMERA 4 π multi detector, in order to explore resonances produced in light nuclei. Correlations techniques have become a tool to explore nuclear structure properties but also to evaluate the competition between simultaneous and sequential channels in decay of light isotopes. The exploration of features such as branching ratios with respect to different decay channels (sequential vs. simultaneous) could provide information on in-medium effects on nuclear structure properties, an important perspective for research on the nuclear interaction. The performed experiment is preliminary to further studies to be performed by coupling of CHIMERA to FARCOS (Femtoscope ARray for COrrelations and Spectroscopy, FARCOS TDR available at https://drive.google.com/file/d/0B5CgGWz8LpOOc3pGTWdOcDBoWFE) array devoted to measurements of two and multi particle correlations with high energy and angular resolutions.

  19. Coarse-grained discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers [Discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers

    DOE PAGES

    Verma, Vikrant; Li, Tingwen; De Wilde, Juray

    2017-05-26

    Vortex chambers allow the generation of rotating fluidized beds, offering high-G intensified gas-solid contact, gas-solids separation and solids-solids segregation. Focusing on binary particle mixtures and fixing the density and diameter of the heavy/large particles, transient batch CFD-coarse-grained DPM simulations were carried out with varying densities or sizes of the light/small particles to evaluate to what extent combining these three functionalities is possible within a vortex chamber of given design. Both the rate and quality of segregation were analyzed. Within a relatively wide density and size range, fast and efficient segregation takes place, with an inner and slower rotating bed ofmore » the lighter/small particles forming within the outer and faster rotating bed of the heavier/large particles. Simulations show that the contamination of the outer bed with lighter particles occurs more easily than contamination of the inner bed with heavier particles and increases with decreasing difference in size or density of the particles. Bubbling in the inner bed is observed with an inner bed of very low density or small particles. Porosity plots show that vortex chambers with a sufficient number of gas inlet slots have to be used to guarantee a uniform gas distribution and particle bed. Lastly, the flexibility of particle segregation in vortex chambers with respect to the gas flow rate is demonstrated.« less

  20. Coarse-grained discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers [Discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Vikrant; Li, Tingwen; De Wilde, Juray

    Vortex chambers allow the generation of rotating fluidized beds, offering high-G intensified gas-solid contact, gas-solids separation and solids-solids segregation. Focusing on binary particle mixtures and fixing the density and diameter of the heavy/large particles, transient batch CFD-coarse-grained DPM simulations were carried out with varying densities or sizes of the light/small particles to evaluate to what extent combining these three functionalities is possible within a vortex chamber of given design. Both the rate and quality of segregation were analyzed. Within a relatively wide density and size range, fast and efficient segregation takes place, with an inner and slower rotating bed ofmore » the lighter/small particles forming within the outer and faster rotating bed of the heavier/large particles. Simulations show that the contamination of the outer bed with lighter particles occurs more easily than contamination of the inner bed with heavier particles and increases with decreasing difference in size or density of the particles. Bubbling in the inner bed is observed with an inner bed of very low density or small particles. Porosity plots show that vortex chambers with a sufficient number of gas inlet slots have to be used to guarantee a uniform gas distribution and particle bed. Lastly, the flexibility of particle segregation in vortex chambers with respect to the gas flow rate is demonstrated.« less

  1. Computation of Cosmic Ray Ionization and Dose at Mars: a Comparison of HZETRN and Planetocosmics for Proton and Alpha Particles

    NASA Technical Reports Server (NTRS)

    Gronoff, Guillaume; Norman, Ryan B.; Mertens, Christopher J.

    2014-01-01

    The ability to evaluate the cosmic ray environment at Mars is of interest for future manned exploration. To support exploration, tools must be developed to accurately access the radiation environment in both free space and on planetary surfaces. The primary tool NASA uses to quantify radiation exposure behind shielding materials is the space radiation transport code, HZETRN. In order to build confidence in HZETRN, code benchmarking against Monte Carlo radiation transport codes is often used. This work compares the dose calculations at Mars by HZETRN and the Geant4 application Planetocosmics. The dose at ground and the energy deposited in the atmosphere by galactic cosmic ray protons and alpha particles has been calculated for the Curiosity landing conditions. In addition, this work has considered Solar Energetic Particle events, allowing for the comparison of varying input radiation environments. The results for protons and alpha particles show very good agreement between HZETRN and Planetocosmics.

  2. Search for massive long-lived particles decaying semileptonically in the LHCb detector.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baszczyk, M; Batozskaya, V; Batsukh, B; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Betancourt, C; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bitadze, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Bordyuzhin, I; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Chamont, D; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S-F; Chobanova, V; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Déléage, N; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Funk, W; Furfaro, E; Färber, C; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Gándara, M Grabalosa; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Griffith, P; Grillo, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hatch, M; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, H; Hulsbergen, W; Humair, T; Hushchyn, M; Hussain, N; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Kariuki, J M; Karodia, S; Kecke, M; Kelsey, M; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Koliiev, S; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kosmyntseva, A; Kozachuk, A; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, T; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Mussini, M; Muster, B; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Popov, A; Popov, D; Popovici, B; Poslavskii, S; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Soares Lavra, L; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Toriello, F; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Vernet, M; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Viemann, H; Vilasis-Cardona, X; Vitti, M; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yao, Y; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhang, Y; Zhelezov, A; Zheng, Y; Zhu, X; Zhukov, V; Zucchelli, S

    2017-01-01

    A search is presented for massive long-lived particles decaying into a muon and two quarks. The dataset consists of proton-proton interactions at centre-of-mass energies of 7 and 8 TeV, corresponding to integrated luminosities of 1 and 2[Formula: see text], respectively. The analysis is performed assuming a set of production mechanisms with simple topologies, including the production of a Higgs-like particle decaying into two long-lived particles. The mass range from 20 to 80 [Formula: see text] and lifetimes from 5 to 100[Formula: see text] are explored. Results are also interpreted in terms of neutralino production in different R-Parity violating supersymmetric models, with masses in the 23-198 GeV/[Formula: see text] range. No excess above the background expectation is observed and upper limits are set on the production cross-section for various points in the parameter space of theoretical models.

  3. Search for massive long-lived particles decaying semileptonically in the LHCb detector

    DOE PAGES

    Aaij, R.; Adeva, B.; Adinolfi, M.; ...

    2017-04-10

    A search is presented for massive long-lived particles decaying into a muon and two quarks. The dataset consists of proton-proton interactions at centre-of-mass energies of 7 and 8 TeV, corresponding to integrated luminosities of 1 and 2 fb -1, respectively. The analysis is performed assuming a set of production mechanisms with simple topologies, including the production of a Higgs-like particle decaying into two long-lived particles. The mass range from 20 to 80 GeV/c 2 and lifetimes from 5 to 100ps are explored. Results are also interpreted in terms of neutralino production in different R-Parity violating supersymmetric models, with masses in the 23–198 GeV/cmore » 2 range. No excess above the background expectation is observed and upper limits are set on the production cross-section for various points in the parameter space of theoretical models.« less

  4. Numerical investigation of compaction of deformable particles with bonded-particle model

    NASA Astrophysics Data System (ADS)

    Dosta, Maksym; Costa, Clara; Al-Qureshi, Hazim

    2017-06-01

    In this contribution, a novel approach developed for the microscale modelling of particles which undergo large deformations is presented. The proposed method is based on the bonded-particle model (BPM) and multi-stage strategy to adjust material and model parameters. By the BPM, modelled objects are represented as agglomerates which consist of smaller ideally spherical particles and are connected with cylindrical solid bonds. Each bond is considered as a separate object and in each time step the forces and moments acting in them are calculated. The developed approach has been applied to simulate the compaction of elastomeric rubber particles as single particles or in a random packing. To describe the complex mechanical behaviour of the particles, the solid bonds were modelled as ideally elastic beams. The functional parameters of solid bonds as well as material parameters of bonds and primary particles were estimated based on the experimental data for rubber spheres. Obtained results for acting force and for particle deformations during uniaxial compression are in good agreement with experimental data at higher strains.

  5. Distribution of pesticides in dust particles in urban environments.

    PubMed

    Richards, Jaben; Reif, Ruben; Luo, Yuzhuo; Gan, Jay

    2016-07-01

    In regions with a mild climate, pesticides are often used around homes for pest control. Recent monitoring studies have linked pesticide use in residential areas to aquatic toxicity in urban surface water ecosystems, and suggested dust particles on paved surfaces as an important source of pesticides. To test the hypothesis that dust on hard surfaces is a significant source of pesticides, we evaluated spatial and temporal patterns of current-use insecticides in Southern California, and further explored their distribution as a function of particle sizes. Pyrethroid insecticides were detected in dust from the driveway, curb gutter and street at 53.5-94.8%, with median concentrations of 1-46 ng g(-1). Pyrethroid residues were uniformly distributed in areas adjacent to a house, suggesting significant redistribution. The total levels of pyrethroids in dust significantly (p < 0.01) decreased from October to February, suggesting rainfalls as a major mechanism to move pesticide residues offsite. Fipronil as well as its degradation products, were detected at 50.6-75.5%, and spatial and temporal patterns of fipronil residues suggested rapid transformations of fipronil to its biologically active intermediates. Moreover, pyrethroids were found to be enriched in fine particles that have a higher mobility in runoff than coarse particles. Results from this study highlight the widespread occurrence of pesticides in outdoor dust around homes and the potential contribution to downstream surface water contamination via rain-induced runoff. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Effect of particle-particle shearing on the bioleaching of sulfide minerals.

    PubMed

    Chong, N; Karamanev, D G; Margaritis, A

    2002-11-05

    The biological leaching of sulfide minerals, used for the production of gold, copper, zinc, cobalt, and other metals, is very often carried out in slurry bioreactors, where the shearing between sulfide particles is intensive. In order to be able to improve the efficiency of the bioleaching, it is of significant importance to know the effect of particle shearing on the rate of leaching. The recently proposed concept of ore immobilization allowed us to study the effect of particle shearing on the rate of sulfide (pyrite) leaching by Thiobacillus ferrooxidans. Using this concept, we designed two very similar bioreactors, the main difference between which was the presence and absence of particle-particle shearing. It was shown that when the oxygen mass transfer was not the rate-limiting step, the rate of bioleaching in the frictionless bioreactor was 2.5 times higher than that in a bioreactor with particle friction (shearing). The concentration of free suspended cells in the frictionless bioreactor was by orders of magnitude lower than that in the frictional bioreactor, which showed that particle friction strongly reduces the microbial attachment to sulfide surface, which, in turn, reduces the rate of bioleaching. Surprisingly, it was found that formation of a layer of insoluble iron salts on the surface of sulfide particles is much slower under shearless conditions than in the presence of particle-particle shearing. This was explained by the effect of particle friction on liquid-solid mass transfer rate. The results of this study show that reduction of the particle friction during bioleaching of sulfide minerals can bring important advantages not only by increasing significantly the bioleaching rate, but also by increasing the rate of gas-liquid oxygen mass transfer, reducing the formation of iron precipitates and reducing the energy consumption. One of the efficient methods for reduction of particle friction is ore immobilization in a porous matrix. Copyright 2002

  7. Studies On Particle-Accompanied Fission Of 252Cf(sf) And 235U(nth,f)

    NASA Astrophysics Data System (ADS)

    Kopatch, Yu N.; Tishchenko, V.; Speransky, M.; Mutterer, M.; Gönnenwein, F.; Jesinger, P.; Gagarski, A. M.; von Kalben, J.; Kojouharov, I.; Lubkiewics, E.; Mezentseva, Z.; Nezvishevsky, V.; Petrov, G. A.; Schaffner, H.; Scharma, H.; Trzaska, W. H.; Wollersheim, H.-J.

    2005-11-01

    In recent multi-parameter studies of spontaneous and thermal neutron induced fission, 252Cf(sf) and 235U(nth,f) respectively, the energies and emission angles of fission fragments and light charged particles were measured. Fragments were detected by an energy and angle sensitive twin ionization chamber while the light charged particles were identified by a series of ΔE-Erest telescopes. Up to Be the light particle isotopes could be disentangled. In addition, in the 252Cf(sf) experiment, gammas emitted by the fragments were analyzed by a pair of large-volume segmented clover Ge detectors. Here the main interest is to study the γ-decay and the anisotropy of gammas emitted by fragments and light particles. On the other hand, the high count rates achieved in the U-experiment performed at the high flux reactor of the ILL, Grenoble, should allow to explore fragment-particle correlations in very rare events like quaternary fission. At the present stage of data evaluation, yields and energy distributions of light particles are available. For the present contribution in particular the yields of Be-isotopes for the two reactions studied are compared and discussed. For 252Cf(sf) these isotopic yields were hitherto not known.

  8. Metal release from stainless steel particles in vitro-influence of particle size.

    PubMed

    Midander, K; Pan, J; Wallinder, I Odnevall; Leygraf, C

    2007-01-01

    Human inhalation of airborne metallic particles is important for health risk assessment. To study interactions between metallic particles and the human body, metal release measurements of stainless steel powder particles were performed in two synthetic biological media simulating lung-like environments. Particle size and media strongly influence the metal release process. The release rate of Fe is enhanced compared with Cr and Ni. In artificial lysosomal fluid (ALF, pH 4.5), the accumulated amounts of released metal per particle loading increase drastically with decreasing particle size. The release rate of Fe per unit surface area increases with decreasing particle size. Compared with massive sheet metal, fine powder particles (<4 microm) show similar release rates of Cr and Ni, but a higher release rate of Fe. Release rates in Gamble's solution (pH 7.4), for all powders investigated, are significantly lower compared to ALF. No clear trend is seen related to particle size in Gamble's solution.

  9. Gene Expression Profiling of Lung Tissue of Rats Exposed to Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Feiveson, Alan H.; Lam, Chiu-Wing; Kidane, Yared H.; Ploutz-Snyder Robert; Yeshitla, Samrawit; Zalesak, Selina M.; Scully, Robert R.; Wu, Honglu; James, John T.

    2014-01-01

    The purpose of the study is to analyze the dynamics of global gene expression changes in the lung tissue of rats exposed to lunar dust particles. Multiple pathways and transcription factors were identified using the Ingenuity Pathway Analysis tool, showing the potential networks of these signaling regulations involved in lunar dust-induced prolonged proflammatory response and toxicity. The data presented in this study, for the first time, explores the molecular mechanisms of lunar dust induced toxicity. This work contributes not only to the risk assessment for future space exploration, but also to the understanding of the dust-induced toxicity to humans on earth.

  10. Airborne Single Particle Mass Spectrometers (SPLAT II & miniSPLAT) and New Software for Data Visualization and Analysis in a Geo-Spatial Context

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelenyuk, Alla; Imre, D.; Wilson, Jacqueline M.

    2015-02-01

    Understanding the effect of aerosols on climate requires knowledge of the size and chemical composition of individual aerosol particles - two fundamental properties that determine an aerosol’s optical properties and ability to serve as cloud condensation or ice nuclei. Here we present miniSPLAT, our new aircraft compatible single particle mass spectrometer, that measures in-situ and in real-time size and chemical composition of individual aerosol particles with extremely high sensitivity, temporal resolution, and sizing precision on the order of a monolayer. miniSPLAT operates in dual data acquisition mode to measure, in addition to single particle size and composition, particle number concentrations,more » size distributions, density, and asphericity with high temporal resolution. When compared to our previous instrument, SPLAT II, miniSPLAT has been significantly reduced in size, weight, and power consumption without loss in performance. We also present ND-Scope, our newly developed interactive visual analytics software package. ND-Scope is designed to explore and visualize the vast amount of complex, multidimensional data acquired by our single particle mass spectrometers, along with other aerosol and cloud characterization instruments on-board aircraft. We demonstrate that ND-Scope makes it possible to visualize the relationships between different observables and to view the data in a geo-spatial context, using the interactive and fully coupled Google Earth and Parallel Coordinates displays. Here we illustrate the utility of ND-Scope to visualize the spatial distribution of atmospheric particles of different compositions, and explore the relationship between individual particle composition and their activity as cloud condensation nuclei.« less

  11. Airborne single particle mass spectrometers (SPLAT II & miniSPLAT) and new software for data visualization and analysis in a geo-spatial context.

    PubMed

    Zelenyuk, Alla; Imre, Dan; Wilson, Jacqueline; Zhang, Zhiyuan; Wang, Jun; Mueller, Klaus

    2015-02-01

    Understanding the effect of aerosols on climate requires knowledge of the size and chemical composition of individual aerosol particles-two fundamental properties that determine an aerosol's optical properties and ability to serve as cloud condensation or ice nuclei. Here we present our aircraft-compatible single particle mass spectrometers, SPLAT II and its new, miniaturized version, miniSPLAT that measure in-situ and in real-time the size and chemical composition of individual aerosol particles with extremely high sensitivity, temporal resolution, and sizing precision on the order of a monolayer. Although miniSPLAT's size, weight, and power consumption are significantly smaller, its performance is on par with SPLAT II. Both instruments operate in dual data acquisition mode to measure, in addition to single particle size and composition, particle number concentrations, size distributions, density, and asphericity with high temporal resolution. We also present ND-Scope, our newly developed interactive visual analytics software package. ND-Scope is designed to explore and visualize the vast amount of complex, multidimensional data acquired by our single particle mass spectrometers, along with other aerosol and cloud characterization instruments on-board aircraft. We demonstrate that ND-Scope makes it possible to visualize the relationships between different observables and to view the data in a geo-spatial context, using the interactive and fully coupled Google Earth and Parallel Coordinates displays. Here we illustrate the utility of ND-Scope to visualize the spatial distribution of atmospheric particles of different compositions, and explore the relationship between individual particle compositions and their activity as cloud condensation nuclei.

  12. Modeling Optical Properties of Mineral Aerosol Particles by Using Nonsymmetric Hexahedra

    NASA Technical Reports Server (NTRS)

    Bi, Lei; Yang, Ping; Kattawar, George W.; Kahn, Ralph

    2010-01-01

    We explore the use of nonsymmetric geometries to simulate the single-scattering properties of airborne dust particles with complicated morphologies. Specifically, the shapes of irregular dust particles are assumed to be nonsymmetric hexahedra defined by using the Monte Carlo method. A combination of the discrete dipole approximation method and an improved geometric optics method is employed to compute the single-scattering properties of dust particles for size parameters ranging from 0.5 to 3000. The primary optical effect of eliminating the geometric symmetry of regular hexahedra is to smooth the scattering features in the phase function and to decrease the backscatter. The optical properties of the nonsymmetric hexahedra are used to mimic the laboratory measurements. It is demonstrated that a relatively close agreement can be achieved by using only one shape of nonsymmetric hexahedra. The agreement between the theoretical results and their measurement counterparts can be further improved by using a mixture of nonsymmetric hexahedra. It is also shown that the hexahedron model is much more appropriate than the "equivalent sphere" model for simulating the optical properties of dust particles, particularly, in the case of the elements of the phase matrix that associated with the polarization state of scattered light.

  13. Particles Growing in Solutions: Depletion Forces and Instability of Homogeneous Particle Distribution

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.

    2004-01-01

    Crystallites, droplets and amorphous precipitates growing from supersaturated solution are surrounded by zones, which are depleted with respect to the molecules they are built of. If two such particles of colloidal size are separated by a distance comparable to their diameters, then the depletion within the gap between particles is deeper than that at the outer portion of the particles. This will cause depletion attraction between the particles should appear. It may cause particle coagulation and decay of the originally homogeneous particle distribution into a system of clouds within which the particle number density is higher, separated by the region of the lower number density. Stability criterion, Q = 4 pi R(exp 3)c/3 >> 1, was analytically found along with typical particle density distribution wavevector q = (Q/I)(exp 1/2)(a/R)(exp 1/4). Here, R and a are the particle and molecular radii, respectively, c is the average molecular number density in solution and I is the squared diffusion length covered by a molecule during a typical time characterizing decay of molecular concentration in solution due to consumption of the molecules by the growing particles.

  14. THE IMPLICIT CONTRIBUTION OF SLAB MODES TO THE PERPENDICULAR DIFFUSION COEFFICIENT OF PARTICLES INTERACTING WITH TWO-COMPONENT TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalchi, A., E-mail: andreasm4@yahoo.com

    2016-10-20

    We explore the transport of energetic particles in two-component turbulence in which the stochastic magnetic field is assumed to be a superposition of slab and two-dimensional modes. It is known that in magnetostatic slab turbulence, the motion of particles across the mean magnetic field is subdiffusive. If a two-dimensional component is added, diffusion is recovered. It was also shown before that in two-component turbulence, the slab modes do not explicitly contribute to the perpendicular diffusion coefficient. In the current paper, the implicit contribution of slab modes is explored and it is shown that this contribution leads to a reduction ofmore » the perpendicular diffusion coefficient. This effect improves the agreement between simulations and analytical theory. Furthermore, the obtained results are relevant for investigations of diffusive shock acceleration.« less

  15. Development and application of a particle-particle particle-mesh Ewald method for dispersion interactions.

    PubMed

    Isele-Holder, Rolf E; Mitchell, Wayne; Ismail, Ahmed E

    2012-11-07

    For inhomogeneous systems with interfaces, the inclusion of long-range dispersion interactions is necessary to achieve consistency between molecular simulation calculations and experimental results. For accurate and efficient incorporation of these contributions, we have implemented a particle-particle particle-mesh Ewald solver for dispersion (r(-6)) interactions into the LAMMPS molecular dynamics package. We demonstrate that the solver's O(N log N) scaling behavior allows its application to large-scale simulations. We carefully determine a set of parameters for the solver that provides accurate results and efficient computation. We perform a series of simulations with Lennard-Jones particles, SPC/E water, and hexane to show that with our choice of parameters the dependence of physical results on the chosen cutoff radius is removed. Physical results and computation time of these simulations are compared to results obtained using either a plain cutoff or a traditional Ewald sum for dispersion.

  16. Development of a semiclassical method to compute mobility and diffusion coefficient of a Brownian particle in a nonequilibrium environment.

    PubMed

    Shit, Anindita; Ghosh, Pradipta; Chattopadhyay, Sudip; Chaudhuri, Jyotipratim Ray

    2011-03-01

    We explore the issue of a quantum-noise-induced directed transport of an overdamped Brownian particle that is allowed to move in a spatially periodic potential. The established system-reservoir model has been employed here to study the quantum-noise-induced transport of a Brownian particle in a periodic potential, where the reservoir is being modulated externally by a Gaussian-colored noise. The mobility of the Brownian particle in the linear response regime has been calculated. Then, using Einstein's relation, the analytical expression for the diffusion rate is evaluated for any arbitrary periodic potential for the high-temperature quantum regime.

  17. Wave Propagation in 2-D Granular Matrix and Dust Mitigation of Fabrics for Space Exploration Mission

    NASA Technical Reports Server (NTRS)

    Thanh, Phi Hung X.

    2004-01-01

    Wave Propagation study is essential to exploring the soil on Mars or Moon and Dust Mitigation is a necessity in terms of crew's health in exploration missions. The study of Dust Mitigation has a significant impact on the crew s health when astronauts track dust back into their living space after exploration trips. We are trying to use piezoelectric fiber to create waves and vibrations at certain critical frequencies and amplitudes so that we can shake the particles off from the astronaut s fabrics. By shaking off the dust and removing it, the astronauts no longer have to worry about breathing in small and possibly hazardous materials, when they are back in their living quarters. The Wave Propagation in 2-D Granular Matrix studies how the individual particles interact with each other when a pressure wave travels through the matrix. This experiment allows us to understand how wave propagates through soils and other materials. By knowing the details about the interactions of particles when they act as a medium for waves, we can better understand how wave propagates through soils and other materials. With this experiment, we can study how less gravity effects the wave propagation and hence device a way to study soils in space and on Moon or Mars. Some scientists treat the medium that waves travel through as a "black box", they did not pay much attention to how individual particles act as wave travels through them. With this data, I believe that we can use it to model ways to measure the properties of different materials such as density and composition. In order to study how the particles interact with each other, I have continued Juan Agui's experiment of the effects of impacts on a 2-D matrix. By controlling the inputs and measuring the outputs of the system, I will be able to study now the particles in that system interact with each other. I will also try to model this with the software called PFC2D in order to obtain theoretical data to compare with the experiment

  18. On improving the algorithm efficiency in the particle-particle force calculations

    NASA Astrophysics Data System (ADS)

    Kozynchenko, Alexander I.; Kozynchenko, Sergey A.

    2016-09-01

    The problem of calculating inter-particle forces in the particle-particle (PP) simulation models takes an important place in scientific computing. Such simulation models are used in diverse scientific applications arising in astrophysics, plasma physics, particle accelerators, etc., where the long-range forces are considered. The inverse-square laws such as Coulomb's law of electrostatic forces and Newton's law of universal gravitation are the examples of laws pertaining to the long-range forces. The standard naïve PP method outlined, for example, by Hockney and Eastwood [1] is straightforward, processing all pairs of particles in a double nested loop. The PP algorithm provides the best accuracy of all possible methods, but its computational complexity is O (Np2), where Np is a total number of particles involved. Too low efficiency of the PP algorithm seems to be the challenging issue in some cases where the high accuracy is required. An example can be taken from the charged particle beam dynamics where, under computing the own space charge of the beam, so-called macro-particles are used (see e.g., Humphries Jr. [2], Kozynchenko and Svistunov [3]).

  19. Dusty-Plasma Particle Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2005-01-01

    A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the

  20. Exploring the Explorers Using Internet Resources

    ERIC Educational Resources Information Center

    Torrez, Cheryl Franklin; Bush, Gina

    2009-01-01

    The topic of explorers and exploration is commonly taught in the upper elementary grades. Depending on state and local social studies content standards, teachers will develop a curriculum unit on Explorers of Our State for fourth grade students, a unit on Explorers of the United States for fifth graders, and one on World Explorers for sixth…

  1. Compressible Flow Phenomena at Inception of Lateral Density Currents Fed by Collapsing Gas-Particle Mixtures

    NASA Astrophysics Data System (ADS)

    Valentine, Greg A.; Sweeney, Matthew R.

    2018-02-01

    Many geological flows are sourced by falling gas-particle mixtures, such as during collapse of lava domes, and impulsive eruptive jets, and sustained columns, and rock falls. The transition from vertical to lateral flow is complex due to the range of coupling between particles of different sizes and densities and the carrier gas, and due to the potential for compressible flow phenomena. We use multiphase modeling to explore these dynamics. In mixtures with small particles, and with subsonic speeds, particles follow the gas such that outgoing lateral flows have similar particle concentration and speed as the vertical flows. Large particles concentrate immediately upon impact and move laterally away as granular flows overridden by a high-speed jet of expelled gas. When a falling flow is supersonic, a bow shock develops above the impact zone, and this produces a zone of high pressure from which lateral flows emerge as overpressured wall jets. The jets form complex structures as the mixtures expand and accelerate and then recompress through a recompression zone that mimics a Mach disk shock in ideal gas jets. In mixtures with moderate to high ratios of fine to coarse particles, the latter tend to follow fine particles through the expansion-recompression flow fields because of particle-particle drag. Expansion within the flow fields can lead to locally reduced gas pressure that could enhance substrate erosion in natural flows. The recompression zones form at distances, and have peak pressures, that are roughly proportional to the Mach numbers of impacting flows.

  2. Animating Wall-Bounded Turbulent Smoke via Filament-Mesh Particle-Particle Method.

    PubMed

    Liao, Xiangyun; Si, Weixin; Yuan, Zhiyong; Sun, Hanqiu; Qin, Jing; Wang, Qiong; Heng, Pheng-Ann; Xiangyun Liao; Weixin Si; Zhiyong Yuan; Hanqiu Sun; Jing Qin; Qiong Wang; Pheng-Ann Heng

    2018-03-01

    Turbulent vortices in smoke flows are crucial for a visually interesting appearance. Unfortunately, it is challenging to efficiently simulate these appealing effects in the framework of vortex filament methods. The vortex filaments in grids scheme allows to efficiently generate turbulent smoke with macroscopic vortical structures, but suffers from the projection-related dissipation, and thus the small-scale vortical structures under grid resolution are hard to capture. In addition, this scheme cannot be applied in wall-bounded turbulent smoke simulation, which requires efficiently handling smoke-obstacle interaction and creating vorticity at the obstacle boundary. To tackle above issues, we propose an effective filament-mesh particle-particle (FMPP) method for fast wall-bounded turbulent smoke simulation with ample details. The Filament-Mesh component approximates the smooth long-range interactions by splatting vortex filaments on grid, solving the Poisson problem with a fast solver, and then interpolating back to smoke particles. The Particle-Particle component introduces smoothed particle hydrodynamics (SPH) turbulence model for particles in the same grid, where interactions between particles cannot be properly captured under grid resolution. Then, we sample the surface of obstacles with boundary particles, allowing the interaction between smoke and obstacle being treated as pressure forces in SPH. Besides, the vortex formation region is defined at the back of obstacles, providing smoke particles flowing by the separation particles with a vorticity force to simulate the subsequent vortex shedding phenomenon. The proposed approach can synthesize the lost small-scale vortical structures and also achieve the smoke-obstacle interaction with vortex shedding at obstacle boundaries in a lightweight manner. The experimental results demonstrate that our FMPP method can achieve more appealing visual effects than vortex filaments in grids scheme by efficiently simulating

  3. Systems and methods for separating particles utilizing engineered acoustic contrast capture particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaduchak, Gregory; Ward, Michael D.

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minimamore » for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.« less

  4. Investigating the settling dynamics of cohesive silt particles with particle-resolving simulations

    NASA Astrophysics Data System (ADS)

    Sun, Rui; Xiao, Heng; Sun, Honglei

    2018-01-01

    The settling of cohesive sediment is ubiquitous in aquatic environments, and the study of the settling process is important for both engineering and environmental reasons. In the settling process, the silt particles show behaviors that are different from non-cohesive particles due to the influence of inter-particle cohesive force. For instance, the flocs formed in the settling process of cohesive silt can loosen the packing, and thus the structural densities of cohesive silt beds are much smaller than that of non-cohesive sand beds. While there is a consensus that cohesive behaviors depend on the characteristics of sediment particles (e.g., Bond number, particle size distribution), little is known about the exact influence of these characteristics on the cohesive behaviors. In addition, since the cohesive behaviors of the silt are caused by the inter-particle cohesive forces, the motions of and the contacts among silt particles should be resolved to study these cohesive behaviors in the settling process. However, studies of the cohesive behaviors of silt particles in the settling process based on particle-resolving approach are still lacking. In the present work, three-dimensional settling process is investigated numerically by using CFD-DEM (Computational Fluid Dynamics-Discrete Element Method). The inter-particle collision force, the van der Waals force, and the fluid-particle interaction forces are considered. The numerical model is used to simulate the hindered settling process of silt based on the experimental setup in the literature. The results obtained in the simulations, including the structural densities of the beds, the characteristic lines, and the particle terminal velocity, are in good agreement with the experimental observations in the literature. To the authors' knowledge, this is the first time that the influences of non-dimensional Bond number and particle polydispersity on the structural densities of silt beds have been investigated separately

  5. A Kinetic-MHD Theory for the Self-Consistent Energy Exchange Between Energetic Particles and Active Small-scale Flux Ropes

    NASA Astrophysics Data System (ADS)

    le Roux, J. A.

    2017-12-01

    We developed previously a focused transport kinetic theory formalism with Fokker-plank coefficients (and its Parker transport limit) to model large-scale energetic particle transport and acceleration in solar wind regions with multiple contracting and merging small-scale flux ropes on MHD (inertial) scales (Zank et al. 2014; le Roux et al. 2015). The theory unifies the main acceleration mechanisms identified in particle simulations for particles temporarily trapped in such active flux rope structures, such as acceleration by the parallel electric field in reconnection regions between merging flux ropes, curvature drift acceleration in incompressible/compressible contracting and merging flux ropes, and betatron acceleration (e.g., Dahlin et al 2016). Initial analytical solutions of the Parker transport equation in the test particle limit showed that the energetic particle pressure from efficient flux-rope energization can potentially be high in turbulent solar wind regions containing active flux-rope structures. This requires taking into account the back reaction of energetic particles on flux ropes to more accurately determine the efficiency of energetic particles acceleration by small-scale flux ropes. To accomplish this goal we developed recently an extension of the kinetic theory to a kinetic-MHD level. We will present the extended theory showing the focused transport equation to be coupled to a solar wind MHD transport equation for small-scale flux-rope energy density extracted from a recently published nearly incompressible theory for solar wind MHD turbulence with a plasma beta of 1 (Zank et al. 2017). In the flux-rope transport equation appears new expressions for the damping/growth rates of flux-rope energy derived from assuming energy conservation in the interaction between energetic particles and small-scale flux ropes for all the main flux-rope acceleration mechanisms, whereas previous expressions for average particle acceleration rates have been

  6. Functional Group Analysis of Biomass Burning Particles Using Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Horrell, K.; Lau, A.; Bond, T.; Iraci, L. T.

    2008-12-01

    Biomass burning is a significant source of particulate organic carbon in the atmosphere. These particles affect the energy balance of the atmosphere directly by absorbing and scattering solar radiation, and indirectly through their ability to act as cloud condensation nuclei (CCN). The chemical composition of biomass burning particles influences their ability to act as CCN, thus understanding the chemistry of these particles is required for understanding their effects on climate and air quality. As climate change influences the frequency and severity of boreal forest fires, the influence of biomass burning aerosols on the atmosphere may become significantly greater. Only a small portion of the organic carbon (OC) fraction of these particles has been identified at the molecular level, although several studies have explored the general chemical classes found in biomass burning smoke. To complement those studies and provide additional information about the reactive functional groups present, we are developing a method for polarity-based separation of compound classes found in the OC fraction, followed by infrared (IR) spectroscopic analysis of each polarity fraction. It is our goal to find a simple, relatively low-tech method which will provide a moderate chemical understanding of the entire suite of compounds present in the OC fraction of biomass burning particles. Here we present preliminary results from pine and oak samples representative of Midwestern United States forests burned at several different temperatures. Wood type and combustion temperature are both seen to affect the composition of the particles. The latter seems to affect relative contributions of certain functional groups, while oak demonstrates at least one additional chemical class of compounds, particularly at lower burning temperatures, where gradual solid-gas phase reactions can produce relatively large amounts of incompletely oxidized products.

  7. Atmospheric gas-to-particle conversion: why NPF events are observed in megacities?

    PubMed

    Kulmala, M; Kerminen, V-M; Petäjä, T; Ding, A J; Wang, L

    2017-08-24

    In terms of the global aerosol particle number load, atmospheric new particle formation (NPF) dominates over primary emissions. The key for quantifying the importance of atmospheric NPF is to understand how gas-to-particle conversion (GTP) takes place at sizes below a few nanometers in particle diameter in different environments, and how this nano-GTP affects the survival of small clusters into larger sizes. The survival probability of growing clusters is tied closely to the competition between their growth and scavenging by pre-existing aerosol particles, and the key parameter in this respect is the ratio between the condensation sink (CS) and the cluster growth rate (GR). Here we define their ratio as a dimensionless survival parameter, P, as P = (CS/10 -4 s -1 )/(GR/nm h -1 ). Theoretical arguments and observations in clean and moderately-polluted conditions indicate that P needs to be smaller than about 50 for a notable NPF to take place. However, the existing literature shows that in China, NPF occurs frequently in megacities such as in Beijing, Nanjing and Shanghai, and our analysis shows that the calculated values of P are even larger than 200 in these cases. By combining direct observations and conceptual modelling, we explore the variability of the survival parameter P in different environments and probe the reasons for NPF occurrence under highly-polluted conditions.

  8. A source to deliver mesoscopic particles for laser plasma studies

    NASA Astrophysics Data System (ADS)

    Gopal, R.; Kumar, R.; Anand, M.; Kulkarni, A.; Singh, D. P.; Krishnan, S. R.; Sharma, V.; Krishnamurthy, M.

    2017-02-01

    Intense ultrashort laser produced plasmas are a source for high brightness, short burst of X-rays, electrons, and high energy ions. Laser energy absorption and its disbursement strongly depend on the laser parameters and also on the initial size and shape of the target. The ability to change the shape, size, and material composition of the matter that absorbs light is of paramount importance not only from a fundamental physics point of view but also for potentially developing laser plasma sources tailored for specific applications. The idea of preparing mesoscopic particles of desired size/shape and suspending them in vacuum for laser plasma acceleration is a sparsely explored domain. In the following report we outline the development of a delivery mechanism of microparticles into an effusive jet in vacuum for laser plasma studies. We characterise the device in terms of particle density, particle size distribution, and duration of operation under conditions suitable for laser plasma studies. We also present the first results of x-ray emission from micro crystals of boric acid that extends to 100 keV even under relatively mild intensities of 1016 W/cm2.

  9. Development of a multifunctional particle spectrometer for space radiation imaging

    NASA Astrophysics Data System (ADS)

    Maddox, Erik; Palacios, Alex; Lampridis, Dimitris; Kraft, Stefan; Owens, Alan; Tomuta, Dana; Ostendorf, Reint

    2008-06-01

    For future exploration of the solar system, the European Space Agency (ESA) is planning missions to Mercury (BepiColombo), the Sun (SolarOrbiter) and to the moons of Jupiter and Saturn. The expected intensity of radiation during such missions is hazardous for the scientific instruments and the satellite. To extend the lifetime of the satellite and its payload a multifunctional particle spectrometer (MPS) is being developed. The basic function of the MPS is to send an alarm signal to the satellite control system during periods of high radiation. In addition the MPS is a scientific instrument that will unfold the composition of the different contributing particles on-line by the dE/dx versus E method. The energy spectrum and angular distribution of the particles will be recorded as well. This article describes the main requirements and the base line design for the MPS. A readout scheme consisting of a 32 channel ASIC from IDEAS is proposed and the signal filtering algorithm will run on a digital signal processor based on FPGA technology. Results are shown from prototype calibration studies with a proton beam.

  10. Pairwise Interaction Extended Point-Particle (PIEP) model for multiphase jets and sedimenting particles

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Balachandar, S.

    2017-11-01

    We perform a series of Euler-Lagrange direct numerical simulations (DNS) for multiphase jets and sedimenting particles. The forces the flow exerts on the particles in these two-way coupled simulations are computed using the Basset-Bousinesq-Oseen (BBO) equations. These forces do not explicitly account for particle-particle interactions, even though such pairwise interactions induced by the perturbations from neighboring particles may be important especially when the particle volume fraction is high. Such effects have been largely unaddressed in the literature. Here, we implement the Pairwise Interaction Extended Point-Particle (PIEP) model to simulate the effect of neighboring particle pairs. A simple collision model is also applied to avoid unphysical overlapping of solid spherical particles. The simulation results indicate that the PIEP model provides a more elaborative and complicated movement of the dispersed phase (droplets and particles). Office of Naval Research (ONR) Multidisciplinary University Research Initiative (MURI) project N00014-16-1-2617.

  11. Space Applications of the FLUKA Monte-Carlo Code: Lunar and Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Anderson, V.; Ballarini, F.; Battistoni, G.; Campanella, M.; Carboni, M.; Cerutti, F.; Elkhayari, N.; Empl, A.; Fasso, A.; Ferrari, A.; hide

    2004-01-01

    NASA has recognized the need for making additional heavy-ion collision measurements at the U.S. Brookhaven National Laboratory in order to support further improvement of several particle physics transport-code models for space exploration applications. FLUKA has been identified as one of these codes and we will review the nature and status of this investigation as it relates to high-energy heavy-ion physics.

  12. The influence of non-Gaussian distribution functions on the time-dependent perpendicular transport of energetic particles

    NASA Astrophysics Data System (ADS)

    Lasuik, J.; Shalchi, A.

    2018-06-01

    In the current paper we explore the influence of the assumed particle statistics on the transport of energetic particles across a mean magnetic field. In previous work the assumption of a Gaussian distribution function was standard, although there have been known cases for which the transport is non-Gaussian. In the present work we combine a kappa distribution with the ordinary differential equation provided by the so-called unified non-linear transport theory. We then compute running perpendicular diffusion coefficients for different values of κ and turbulence configurations. We show that changing the parameter κ slightly increases or decreases the perpendicular diffusion coefficient depending on the considered turbulence configuration. Since these changes are small, we conclude that the assumed statistics is less significant in particle transport theory. The results obtained in the current paper support to use a Gaussian distribution function as usually done in particle transport theory.

  13. Particle-wall tribology of slippery hydrogel particle suspensions.

    PubMed

    Shewan, Heather M; Stokes, Jason R; Cloitre, Michel

    2017-03-08

    Slip is an important phenomenon that occurs during the flow of yield stress fluids like soft materials and pastes. Densely packed suspensions of hydrogel microparticles are used to show that slip is governed by the tribological interactions occurring between the samples and shearing surfaces. Both attractive/repulsive interactions between the dispersed particles and surface, as well as the viscoelasticity of the suspension, are found to play key roles in slip occurring within rheometric flows. We specifically discover that for two completely different sets of microgels, the sliding stress at which slip occurs scales with both the modulus of the particles and the bulk suspension modulus. This suggests that hysteresis losses within the viscoelastic particles contribute to friction forces and thus slip at the particle-surface tribo-contact. It is also found that slip during large amplitude oscillatory shear and steady shear flows share the same generic features.

  14. Indirect Charged Particle Detection: Concepts and a Classroom Demonstration

    NASA Astrophysics Data System (ADS)

    Childs, Nicholas B.; Horányi, Mihály; Collette, Andrew

    2013-11-01

    We describe the principles of macroscopic charged particle detection in the laboratory and their connections to concepts taught in the physics classroom. Electrostatic dust accelerator systems, capable of launching charged dust grains at hypervelocities (1-100 km/s), are a critical tool for space exploration. Dust grains in space typically have large speeds relative to the probes or satellites that encounter them. Development and testing of instruments that look for dust in space therefore depends critically on the availability of fast, well-characterized dust grains in the laboratory. One challenge for the experimentalist is to precisely measure the speed and mass of laboratory dust particles without disturbing them. Detection systems currently in use exploit the well-known effect of image charge to register the passage of dust grains without changing their speed or mass. We describe the principles of image charge detection and provide a simple classroom demonstration of the technique using soup cans and pith balls.

  15. Multiscale structure, interfacial cohesion, adsorbed layers, miscibility and properties in dense polymer-particle mixtures

    NASA Astrophysics Data System (ADS)

    Schweizer, Ken

    2012-02-01

    A major goal in polymer nanocomposite research is to understand and predict how the chemical and physical nature of individual polymers and nanoparticles, and thermodynamic state (temperature, composition, solvent dilution, filler loading), determine bulk assembly, miscibility and properties. Microscopic PRISM theory provides a route to this goal for equilibrium disordered mixtures. A major prediction is that by manipulating the net polymer-particle interfacial attraction, miscibility is realizable via the formation of thin thermodynamically stable adsorbed layers, which, however, are destroyed by entropic depletion and bridging attraction effects if interface cohesion is too weak or strong, respectively. This and related issues are quantitatively explored for miscible mixtures of hydrocarbon polymers, silica nanospheres, and solvent using x-ray scattering, neutron scattering and rheology. Under melt conditions, quantitative agreement between theory and silica scattering experiments is achieved under both steric stabilization and weak depletion conditions. Using contrast matching neutron scattering to characterize the collective structure factors of polymers, particles and their interface, the existence and size of adsorbed polymer layers, and their consequences on microstructure, is determined. Failure of the incompressible RPA, accuracy of PRISM theory, the nm thickness of adsorbed layers, and qualitative sensitivity of the bulk modulus to interfacial cohesion and particle size are demonstrated for concentrated PEO-silica-ethanol nanocomposites. Temperature-dependent complexity is discovered when water is the solvent, and nonequilibrium effects emerge for adsorbing entangled polymers that strongly impact structure. By varying polymer chemistry, the effect of polymer-particle attraction on the intrinsic viscosity is explored with striking non-classical effects observed. This work was performed in collaboration with S.Y.Kim, L.M.Hall, C.Zukoski and B.Anderson.

  16. EVOLUTION OF HIGH-ENERGY PARTICLE DISTRIBUTION IN MATURE SHELL-TYPE SUPERNOVA REMNANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Houdun; Xin, Yuliang; Liu, Siming

    Multi-wavelength observations of mature supernova remnants (SNRs), especially with recent advances in γ -ray astronomy, make it possible to constrain energy distribution of energetic particles within these remnants. In consideration of the SNR origin of Galactic cosmic rays and physics related to particle acceleration and radiative processes, we use a simple one-zone model to fit the nonthermal emission spectra of three shell-type SNRs located within 2° on the sky: RX J1713.7−3946, CTB 37B, and CTB 37A. Although radio images of these three sources all show a shell (or half-shell) structure, their radio, X-ray, and γ -ray spectra are quite different,more » offering an ideal case to explore evolution of energetic particle distribution in SNRs. Our spectral fitting shows that (1) the particle distribution becomes harder with aging of these SNRs, implying a continuous acceleration process, and the particle distributions of CTB 37A and CTB 37B in the GeV range are harder than the hardest distribution that can be produced at a shock via the linear diffusive shock particle acceleration process, so spatial transport may play a role; (2) the energy loss timescale of electrons at the high-energy cutoff due to synchrotron radiation appears to be always a bit (within a factor of a few) shorter than the age of the corresponding remnant, which also requires continuous particle acceleration; (3) double power-law distributions are needed to fit the spectra of CTB 37B and CTB 37A, which may be attributed to shock interaction with molecular clouds.« less

  17. Analysis of radiation risk from alpha particle component of solar particle events

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Golightly, M. J.; Weyland, M.

    1994-01-01

    The solar particle events (SPE) will contain a primary alpha particle component, representing a possible increase in the potential risk to astronauts during an SPE over the often studied proton component. We discuss the physical interactions of alpha particles important in describing the transport of these particles through spacecraft and body shielding. Models of light ion reactions are presented and their effects on energy and linear energy transfer (LET) spectra in shielding discussed. We present predictions of particle spectra, dose, and dose equivalent in organs of interest for SPE spectra typical of those occurring in recent solar cycles. The large events of solar cycle 19 are found to have substantial increase in biological risk from alpha particles, including a large increase in secondary neutron production from alpha particle breakup.

  18. Numerical Study of Particle Damping Mechanism in Piston Vibration System via Particle Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Bai, Xian-Ming; Shah, Binoy; Keer, Leon; Wang, Jane; Snurr, Randall

    2008-03-01

    Mechanical damping systems with granular particles as the damping media have promising applications in extreme temperature conditions. In particle-based damping systems, the mechanical energy is dissipated through the inelastic collision and friction of particles. In the past, many experiments have been performed to investigate the particle damping problems. However, the detailed energy dissipation mechanism is still unclear due to the complex collision and flow behavior of dense particles. In this work, we use 3-D particle dynamics simulation to investigate the damping mechanism of an oscillating cylinder piston immerged in millimeter-size steel particles. The time evolution of the energy dissipation through the friction and inelastic collision is accurately monitored during the damping process. The contribution from the particle-particle interaction and particle-wall interaction is also separated for investigation. The effects of moisture, surface roughness, and density of particles are carefully investigated in the simulation. The comparison between the numerical simulation and experiment is also performed. The simulation results can help us understand the particle damping mechanism and design the new generation of particle damping devices.

  19. Motions of charged particles in the Magnetosphere under the influence of a time-varying large scale convection electric field

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Bewtra, N. K.; Hoffman, R. A.

    1979-01-01

    The motions of charged particles under the influence of the geomagnetic and electric fields were quite complex in the region of the inner magnetosphere. The Volland-Stern type large scale convection electric field was used successfully to predict both the plasmapause location and particle enhancements determined from Explorer 45 measurements. A time dependence in this electric field was introduced based on the variation in Kp for actual magnetic storm conditions. The particle trajectories were computed as they change in this time-varying electric field. Several storm fronts of particles of different magnetic moments were allowed to be injected into the inner magnetosphere from L = 10 in the equatorial plane. The motions of these fronts are presented in a movie format.

  20. Focusing particle concentrator with application to ultrafine particles

    DOEpatents

    Hering, Susanne; Lewis, Gregory; Spielman, Steven R.

    2013-06-11

    Technology is presented for the high efficiency concentration of fine and ultrafine airborne particles into a small fraction of the sampled airflow by condensational enlargement, aerodynamic focusing and flow separation. A nozzle concentrator structure including an acceleration nozzle with a flow extraction structure may be coupled to a containment vessel. The containment vessel may include a water condensation growth tube to facilitate the concentration of ultrafine particles. The containment vessel may further include a separate carrier flow introduced at the center of the sampled flow, upstream of the acceleration nozzle of the nozzle concentrator to facilitate the separation of particle and vapor constituents.