Sample records for particle growing mechanisms

  1. Particles Growing in Solutions: Depletion Forces and Instability of Homogeneous Particle Distribution

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.

    2004-01-01

    Crystallites, droplets and amorphous precipitates growing from supersaturated solution are surrounded by zones, which are depleted with respect to the molecules they are built of. If two such particles of colloidal size are separated by a distance comparable to their diameters, then the depletion within the gap between particles is deeper than that at the outer portion of the particles. This will cause depletion attraction between the particles should appear. It may cause particle coagulation and decay of the originally homogeneous particle distribution into a system of clouds within which the particle number density is higher, separated by the region of the lower number density. Stability criterion, Q = 4 pi R(exp 3)c/3 >> 1, was analytically found along with typical particle density distribution wavevector q = (Q/I)(exp 1/2)(a/R)(exp 1/4). Here, R and a are the particle and molecular radii, respectively, c is the average molecular number density in solution and I is the squared diffusion length covered by a molecule during a typical time characterizing decay of molecular concentration in solution due to consumption of the molecules by the growing particles.

  2. The Use of Mushroom Growing Media Waste for Making Composite Particle Board

    NASA Astrophysics Data System (ADS)

    Tjahjanti, P. H.; Sutarman; Widodo, E.; Kusuma, A. T.

    2017-05-01

    One of the agricultural waste is mushroom growing media, where the number of this waste is huge and accumulated after mushroom harvest. This accumulation is caused by using the new planting medias. Meanwhile, the old planting medias have thrown out and been as solid matter to widen the slope of cliff area. Therefore, this research aims to use mushroom growing media waste (MGMW) as a composite particle board added by polyester resin and mekpo (methyl ethyl ketone peroxides) as catalys. Some physical and mechanic tests which are done, namely: density, moisture content, thickness swelling after immersion in water, strength of absorption water, internal bonding, modulus of elasticity, modulus of rupture and screw holding power. The composition of 75% MGMW + 24% polyester resin + 1% catalyst mekpo suitable to the physical and mechanic tests and accordance with SNI 03-2105-2006 and JIS A 5908-2003.

  3. Speaker box made of composite particle board based on mushroom growing media waste

    NASA Astrophysics Data System (ADS)

    Tjahjanti, P. H.; Sutarman, Widodo, E.; Kurniawan, A. R.; Winarno, A. T.; Yani, A.

    2017-06-01

    This research aimed to use mushroom growing media waste (MGMW) that was added by urea, starch and polyvinyl chloride (PVC) glue as a composite particle board to be used as the material of speaker box manufacture. Physical and mechanical testing of particle board including density, moisture content, thickness swelling after immersion in water, strength in water absorption, internal bonding, modulus of elasticity, modulus of rupture and screw holding power, were carried out in accordance with the Stándar Nasional Indonesia (SNI) 03-2105-2006 and Japanese International Standard (JIS) A 5908-2003. The optimum composition of composite particle boards was 60% MGMW + 39% (50% urea +50% starch) + 1% PVC glue. Furthermore, the optimum composition to create speaker box with hardness values of 14.9 Brinnel Hardness Number and results of vibration test obtained amplitude values of the Z-axis, minimum of 0.032007 and maximum of 0.151575. For the acoustic test, results showed good sound absorption coefficients at frequencies of 500 Hz and it has better damping absorption.

  4. Fast particle ejection by a growing laser-induced bubble

    NASA Astrophysics Data System (ADS)

    Zuo, Zhigang; Wu, Shengji; Stone, Howard; Liu, Shuhong

    2017-11-01

    We document experimentally four different interactions of a laser-induced bubble and a free-settling particle, with different combinations of the geometric and physical parameters of the system. In particular, we also discover the high-speed ejection of the particle, and a cavity behind the particle, in cases when initially the particle is in very close proximity to the bubble. These observations offer new insights into the causal mechanism for the enhanced cavitation erosion in silt-laden water. The work was supported by the National Natural Science Foundation of China (No. 51476083) and the open research project of State Key Laboratory of Hydroscience and Engineering.

  5. Mechanotransduction mechanisms in growing spherically structured tissues

    NASA Astrophysics Data System (ADS)

    Littlejohns, Euan; Dunlop, Carina M.

    2018-04-01

    There is increasing experimental interest in mechanotransduction in multi-cellular tissues as opposed to single cells. This is driven by a growing awareness of the importance of physiologically relevant three-dimensional culture and of cell–cell and cell–gel interactions in directing growth and development. The paradigm biophysical technique for investigating tissue level mechanobiology in this context is to grow model tissues in artificial gels with well-defined mechanical properties. These studies often indicate that the stiffness of the encapsulating gel can significantly alter cellular behaviours. We demonstrate here potential mechanisms linking tissue growth with stiffness-mediated mechanotransduction. We show how tissue growth in gel systems generates points at which there is a significant qualitative change in the cellular stress and strain experienced. We show analytically how these potential switching points depend on the mechanical properties of the constraining gel and predict when they will occur. Significantly, we identify distinct mechanisms that act separately in each of the stress and strain fields at different times. These observations suggest growth as a potential physical mechanism coupling gel stiffness with cellular mechanotransduction in three-dimensional tissues. We additionally show that non-proliferating areas, in the case that the constraining gel is soft compared with the tissue, will expand and contract passively as a result of growth. Central compartment size is thus seen to not be a reliable indicator on its own for growth initiation or active behaviour.

  6. Numerical Study of Particle Damping Mechanism in Piston Vibration System via Particle Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Bai, Xian-Ming; Shah, Binoy; Keer, Leon; Wang, Jane; Snurr, Randall

    2008-03-01

    Mechanical damping systems with granular particles as the damping media have promising applications in extreme temperature conditions. In particle-based damping systems, the mechanical energy is dissipated through the inelastic collision and friction of particles. In the past, many experiments have been performed to investigate the particle damping problems. However, the detailed energy dissipation mechanism is still unclear due to the complex collision and flow behavior of dense particles. In this work, we use 3-D particle dynamics simulation to investigate the damping mechanism of an oscillating cylinder piston immerged in millimeter-size steel particles. The time evolution of the energy dissipation through the friction and inelastic collision is accurately monitored during the damping process. The contribution from the particle-particle interaction and particle-wall interaction is also separated for investigation. The effects of moisture, surface roughness, and density of particles are carefully investigated in the simulation. The comparison between the numerical simulation and experiment is also performed. The simulation results can help us understand the particle damping mechanism and design the new generation of particle damping devices.

  7. Mechanical trapping of particles in granular media

    NASA Astrophysics Data System (ADS)

    Kerimov, Abdulla; Mavko, Gary; Mukerji, Tapan; Al Ibrahim, Mustafa A.

    2018-02-01

    Mechanical trapping of fine particles in the pores of granular materials is an essential mechanism in a wide variety of natural and industrial filtration processes. The progress of invading particles is primarily limited by the network of pore throats and connected pathways encountered by the particles during their motion through the porous medium. Trapping of invading particles is limited to a depth defined by the size, shape, and distribution of the invading particles with respect to the size, shape, and distribution of the host porous matrix. Therefore, the trapping process, in principle, can be used to obtain information about geometrical properties, such as pore throat and particle size, of the underlying host matrix. A numerical framework is developed to simulate the mechanical trapping of fine particles in porous granular media with prescribed host particle size, shape, and distribution. The trapping of invading particles is systematically modeled in host packings with different host particle distributions: monodisperse, bidisperse, and polydisperse distributions of host particle sizes. Our simulation results show quantitatively and qualitatively to what extent trapping behavior is different in the generated monodisperse, bidisperse, and polydisperse packings of spherical particles. Depending on host particle size and distribution, the information about extreme estimates of minimal pore throat sizes of the connected pathways in the underlying host matrix can be inferred from trapping features, such as the fraction of trapped particles as a function of invading particle size. The presence of connected pathways with minimum and maximum of minimal pore throat diameters can be directly obtained from trapping features. This limited information about the extreme estimates of pore throat sizes of the connected pathways in the host granular media inferred from our numerical simulations is consistent with simple geometrical estimates of extreme value of pore and

  8. Mechanical trapping of particles in granular media.

    PubMed

    Kerimov, Abdulla; Mavko, Gary; Mukerji, Tapan; Al Ibrahim, Mustafa A

    2018-02-01

    Mechanical trapping of fine particles in the pores of granular materials is an essential mechanism in a wide variety of natural and industrial filtration processes. The progress of invading particles is primarily limited by the network of pore throats and connected pathways encountered by the particles during their motion through the porous medium. Trapping of invading particles is limited to a depth defined by the size, shape, and distribution of the invading particles with respect to the size, shape, and distribution of the host porous matrix. Therefore, the trapping process, in principle, can be used to obtain information about geometrical properties, such as pore throat and particle size, of the underlying host matrix. A numerical framework is developed to simulate the mechanical trapping of fine particles in porous granular media with prescribed host particle size, shape, and distribution. The trapping of invading particles is systematically modeled in host packings with different host particle distributions: monodisperse, bidisperse, and polydisperse distributions of host particle sizes. Our simulation results show quantitatively and qualitatively to what extent trapping behavior is different in the generated monodisperse, bidisperse, and polydisperse packings of spherical particles. Depending on host particle size and distribution, the information about extreme estimates of minimal pore throat sizes of the connected pathways in the underlying host matrix can be inferred from trapping features, such as the fraction of trapped particles as a function of invading particle size. The presence of connected pathways with minimum and maximum of minimal pore throat diameters can be directly obtained from trapping features. This limited information about the extreme estimates of pore throat sizes of the connected pathways in the host granular media inferred from our numerical simulations is consistent with simple geometrical estimates of extreme value of pore and

  9. Mechanical Stress Induces Remodeling of Vascular Networks in Growing Leaves

    PubMed Central

    Bar-Sinai, Yohai; Julien, Jean-Daniel; Sharon, Eran; Armon, Shahaf; Nakayama, Naomi; Adda-Bedia, Mokhtar; Boudaoud, Arezki

    2016-01-01

    Differentiation into well-defined patterns and tissue growth are recognized as key processes in organismal development. However, it is unclear whether patterns are passively, homogeneously dilated by growth or whether they remodel during tissue expansion. Leaf vascular networks are well-fitted to investigate this issue, since leaves are approximately two-dimensional and grow manyfold in size. Here we study experimentally and computationally how vein patterns affect growth. We first model the growing vasculature as a network of viscoelastic rods and consider its response to external mechanical stress. We use the so-called texture tensor to quantify the local network geometry and reveal that growth is heterogeneous, resembling non-affine deformations in composite materials. We then apply mechanical forces to growing leaves after veins have differentiated, which respond by anisotropic growth and reorientation of the network in the direction of external stress. External mechanical stress appears to make growth more homogeneous, in contrast with the model with viscoelastic rods. However, we reconcile the model with experimental data by incorporating randomness in rod thickness and a threshold in the rod growth law, making the rods viscoelastoplastic. Altogether, we show that the higher stiffness of veins leads to their reorientation along external forces, along with a reduction in growth heterogeneity. This process may lead to the reinforcement of leaves against mechanical stress. More generally, our work contributes to a framework whereby growth and patterns are coordinated through the differences in mechanical properties between cell types. PMID:27074136

  10. Maximum Mass-Particle Velocities in Kantor's Information Mechanics

    NASA Astrophysics Data System (ADS)

    Sverdlik, Daniel I.

    1989-02-01

    Kantor's information mechanics links phenomena previously regarded as not treatable by a single theory. It is used here to calculate the maximum velocities ν m of single particles. For the electron, ν m/c≈1-1.253 814×10-77. The maximum ν m corresponds to ν m/c≈1-1.097864×10-122 for a single mass particle with a rest mass of 3.078 496×10-5g. This is the fastest that matter can move. Either information mechanics or classical mechanics can be used to show that ν m is less for heavier particles. That ν m is less for lighter particles can be deduced from an information mechanics argument alone.

  11. Modeling mechanical interactions in growing populations of rod-shaped bacteria

    NASA Astrophysics Data System (ADS)

    Winkle, James J.; Igoshin, Oleg A.; Bennett, Matthew R.; Josić, Krešimir; Ott, William

    2017-10-01

    Advances in synthetic biology allow us to engineer bacterial collectives with pre-specified characteristics. However, the behavior of these collectives is difficult to understand, as cellular growth and division as well as extra-cellular fluid flow lead to complex, changing arrangements of cells within the population. To rationally engineer and control the behavior of cell collectives we need theoretical and computational tools to understand their emergent spatiotemporal dynamics. Here, we present an agent-based model that allows growing cells to detect and respond to mechanical interactions. Crucially, our model couples the dynamics of cell growth to the cell’s environment: Mechanical constraints can affect cellular growth rate and a cell may alter its behavior in response to these constraints. This coupling links the mechanical forces that influence cell growth and emergent behaviors in cell assemblies. We illustrate our approach by showing how mechanical interactions can impact the dynamics of bacterial collectives growing in microfluidic traps.

  12. Mechanism of formation and nanostructure of Stöber silica particles

    NASA Astrophysics Data System (ADS)

    Masalov, V. M.; Sukhinina, N. S.; Kudrenko, E. A.; Emelchenko, G. A.

    2011-07-01

    The formation of silica nano- and microparticles has been studied during growth by the modified Stöber-Fink-Bohn (SFB) method. It has been experimentally found that the density and fractal structure of particles vary with size as they grow from 70 to 2200 nm. We propose a model of particle structure which is a dense primary particle core and is composed of concentric secondary particle shells terminating in dense primary particle layers.

  13. A new mechanism for relativistic particle acceleration via wave-particle interaction

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Markidis, Stefano; Marocchino, Alberto

    2006-10-01

    Often in laboratory, space and astrophysical plasma, high energy populations are observed. Two puzzling factors still defy our understanding. First, such populations of high energy particles produce power law distributions that are not only ubiquitous but also persistent in time. Such persistence is in direct contradiction to the H theorem that states the ineluctable transition of physical systems towards thermodynamic equilibrium, and ergo Maxwellian distributions. Second, such high energy populations are efficiently produced, much more efficiently than processes that we know can produce. A classic example of such a situation is cosmic rays where power alws extend up to tremendolus energy ranges. In the present work, we identify a new mechanism for particle acceleration via wave-particle interaction. The mechanism is peculiar to special relativity and has no classical equivalent. That explains why it is not observed in most simulation studies of plasma processes, based on classical physics. The mechanism is likely to be active in systems undergoing streaming instabilities and in particular shocked systems. The new mechanism can produce energy increases vastly superior to previously known mechanisms (such as Fermi acceleration) and can hold the promise of explaining at least some of the observed power laws.

  14. Transition from the mechanics of material points to the mechanics of structured particles

    NASA Astrophysics Data System (ADS)

    Somsikov, V. M.

    2016-01-01

    In this paper, necessity of creation of mechanics of structured particles is discussed. The way to create this mechanics within the laws of classical mechanics with the use of energy equation is shown. The occurrence of breaking of time symmetry within the mechanics of structured particles is shown, as well as the introduction of concept of entropy in the framework of classical mechanics. The way to create the mechanics of non-equilibrium systems in the thermodynamic approach is shown. It is also shown that the use of hypothesis of holonomic constraints while deriving the canonical Lagrange equation made it impossible to describe irreversible dynamics. The difference between the mechanics of structured particles and the mechanics of material points is discussed. It is also shown that the matter is infinitely divisible according to the laws of classical mechanics.

  15. Urban cyclist exposure to fine particle pollution in a rapidly growing city

    NASA Astrophysics Data System (ADS)

    Luce, B. W.; Barrett, T. E.; Ponette-González, A.

    2017-12-01

    Urban cyclists are exposed to elevated atmospheric concentrations of fine particulate matter (particles <2.5 µm or PM2.5). Major urban sources of PM2.5 include the incomplete combustion of fossil fuels from vehicle exhaust, which is emitted directly into cyclists' "breathing zone." In cities, human exposure to PM2.5 is a concern because its small size allows it to be inhaled deeper into the lungs than most particles. The aim of this research is to determine "hotspots" (locations with high PM2.5 concentrations) within the Dallas-Fort Worth Metroplex, Texas, where urban cyclists are most exposed to fine particle pollution. Recent research indicates that common exposure hotspots include traffic signals, junctions, bus stations, parking lots, and inclined streets. To identify these and other hotspots, a bicycle equipped with a low-cost, portable, battery-powered particle counter (Dylos 1700) coupled with a Trimble Geo 5T handheld Global Positioning System (GPS; ≤1 m ± resolution) will be used to map and measure particle mass concentrations along predetermined routes. Measurements will be conducted during a consecutive four-month period (Sep-Dec) during morning and evening rush hours when PM2.5 levels are generally highest, as well as during non-rush hour times to determine background concentrations. PM2.5 concentrations will be calculated from particle counts using an equation developed by Steinle et al. (2015). In addition, traffic counts will be conducted along the routes coinciding with the mobile monitoring times. We will present results on identified "hotspots" of high fine particle concentrations and PM2.5 exposure in the City of Denton, where particle pollution puts urban commuters most at risk, as well as average traffic counts from monitoring times. These data can be used to determine pollution mitigation strategies in rapidly growing urban areas.

  16. A Mechanical Model of Brownian Motion for One Massive Particle Including Slow Light Particles

    NASA Astrophysics Data System (ADS)

    Liang, Song

    2018-01-01

    We provide a connection between Brownian motion and a classical mechanical system. Precisely, we consider a system of one massive particle interacting with an ideal gas, evolved according to non-random mechanical principles, via interaction potentials, without any assumption requiring that the initial velocities of the environmental particles should be restricted to be "fast enough". We prove the convergence of the (position, velocity)-process of the massive particle under a certain scaling limit, such that the mass of the environmental particles converges to 0 while the density and the velocities of them go to infinity, and give the precise expression of the limiting process, a diffusion process.

  17. Bacterial flagella grow through an injection-diffusion mechanism

    PubMed Central

    Renault, Thibaud T; Abraham, Anthony O; Bergmiller, Tobias; Paradis, Guillaume; Rainville, Simon; Charpentier, Emmanuelle; Guet, Călin C; Tu, Yuhai; Namba, Keiichi; Keener, James P; Minamino, Tohru; Erhardt, Marc

    2017-01-01

    The bacterial flagellum is a self-assembling nanomachine. The external flagellar filament, several times longer than a bacterial cell body, is made of a few tens of thousands subunits of a single protein: flagellin. A fundamental problem concerns the molecular mechanism of how the flagellum grows outside the cell, where no discernible energy source is available. Here, we monitored the dynamic assembly of individual flagella using in situ labelling and real-time immunostaining of elongating flagellar filaments. We report that the rate of flagellum growth, initially ∼1,700 amino acids per second, decreases with length and that the previously proposed chain mechanism does not contribute to the filament elongation dynamics. Inhibition of the proton motive force-dependent export apparatus revealed a major contribution of substrate injection in driving filament elongation. The combination of experimental and mathematical evidence demonstrates that a simple, injection-diffusion mechanism controls bacterial flagella growth outside the cell. DOI: http://dx.doi.org/10.7554/eLife.23136.001 PMID:28262091

  18. Bacterial flagella grow through an injection-diffusion mechanism.

    PubMed

    Renault, Thibaud T; Abraham, Anthony O; Bergmiller, Tobias; Paradis, Guillaume; Rainville, Simon; Charpentier, Emmanuelle; Guet, Călin C; Tu, Yuhai; Namba, Keiichi; Keener, James P; Minamino, Tohru; Erhardt, Marc

    2017-03-06

    The bacterial flagellum is a self-assembling nanomachine. The external flagellar filament, several times longer than a bacterial cell body, is made of a few tens of thousands subunits of a single protein: flagellin. A fundamental problem concerns the molecular mechanism of how the flagellum grows outside the cell, where no discernible energy source is available. Here, we monitored the dynamic assembly of individual flagella using in situ labelling and real-time immunostaining of elongating flagellar filaments. We report that the rate of flagellum growth, initially ∼1,700 amino acids per second, decreases with length and that the previously proposed chain mechanism does not contribute to the filament elongation dynamics. Inhibition of the proton motive force-dependent export apparatus revealed a major contribution of substrate injection in driving filament elongation. The combination of experimental and mathematical evidence demonstrates that a simple, injection-diffusion mechanism controls bacterial flagella growth outside the cell.

  19. Extreme Mechanics of Growing Matter

    NASA Astrophysics Data System (ADS)

    Kuhl, Ellen

    2013-03-01

    Growth is a distinguishing feature of all living things. Unlike standard materials, living matter can autonomously respond to alterations in its environment. As a result of a continuous ultrastructural turnover and renewal of cells and extracellular matrix, living matter can undergo extreme changes in composition, size, and shape within the order of months, weeks, or days. While hard matter typically adapts by increasing its density to grow strong, soft matter adapts by increasing its volume to grow large. Here we provide a state-of-the-art review of growing matter, and compare existing mathematical models for growth and remodeling of living systems. Applications are plentiful ranging from plant growth to tumor growth, from asthma in the lungs to restenosis in the vasculature, from plastic to reconstructive surgery, and from skeletal muscle adaptation to heart failure. Using these examples, we discuss current challenges and potential future directions. We hope to initiate critical discussions around the biophysical modeling of growing matter as a powerful tool to better understand biological systems in health and disease. This research has been supported by the NSF CAREER award CMMI 0952021.

  20. Particle size concentration distribution and influences on exhaled breath particles in mechanically ventilated patients.

    PubMed

    Wan, Gwo-Hwa; Wu, Chieh-Liang; Chen, Yi-Fang; Huang, Sheng-Hsiu; Wang, Yu-Ling; Chen, Chun-Wan

    2014-01-01

    Humans produce exhaled breath particles (EBPs) during various breath activities, such as normal breathing, coughing, talking, and sneezing. Airborne transmission risk exists when EBPs have attached pathogens. Until recently, few investigations had evaluated the size and concentration distributions of EBPs from mechanically ventilated patients with different ventilation mode settings. This study thus broke new ground by not only evaluating the size concentration distributions of EBPs in mechanically ventilated patients, but also investigating the relationship between EBP level and positive expiratory end airway pressure (PEEP), tidal volume, and pneumonia. This investigation recruited mechanically ventilated patients, with and without pneumonia, aged 20 years old and above, from the respiratory intensive care unit of a medical center. Concentration distributions of EBPs from mechanically ventilated patients were analyzed with an optical particle analyzer. This study finds that EBP concentrations from mechanically ventilated patients during normal breathing were in the range 0.47-2,554.04 particles/breath (0.001-4.644 particles/mL). EBP concentrations did not differ significantly between the volume control and pressure control modes of the ventilation settings in the mechanically ventilated patients. The patient EBPs were sized below 5 µm, and 80% of them ranged from 0.3 to 1.0 µm. The EBPs concentrations in patients with high PEEP (> 5 cmH₂O) clearly exceeded those in patients with low PEEP (≤ 5 cmH₂O). Additionally, a significant negative association existed between pneumonia duration and EBPs concentration. However, tidal volume was not related to EBPs concentration.

  1. On the mechanics of growing thin biological membranes

    NASA Astrophysics Data System (ADS)

    Rausch, Manuel K.; Kuhl, Ellen

    2014-02-01

    Despite their seemingly delicate appearance, thin biological membranes fulfill various crucial roles in the human body and can sustain substantial mechanical loads. Unlike engineering structures, biological membranes are able to grow and adapt to changes in their mechanical environment. Finite element modeling of biological growth holds the potential to better understand the interplay of membrane form and function and to reliably predict the effects of disease or medical intervention. However, standard continuum elements typically fail to represent thin biological membranes efficiently, accurately, and robustly. Moreover, continuum models are typically cumbersome to generate from surface-based medical imaging data. Here we propose a computational model for finite membrane growth using a classical midsurface representation compatible with standard shell elements. By assuming elastic incompressibility and membrane-only growth, the model a priori satisfies the zero-normal stress condition. To demonstrate its modular nature, we implement the membrane growth model into the general-purpose non-linear finite element package Abaqus/Standard using the concept of user subroutines. To probe efficiently and robustness, we simulate selected benchmark examples of growing biological membranes under different loading conditions. To demonstrate the clinical potential, we simulate the functional adaptation of a heart valve leaflet in ischemic cardiomyopathy. We believe that our novel approach will be widely applicable to simulate the adaptive chronic growth of thin biological structures including skin membranes, mucous membranes, fetal membranes, tympanic membranes, corneoscleral membranes, and heart valve membranes. Ultimately, our model can be used to identify diseased states, predict disease evolution, and guide the design of interventional or pharmaceutic therapies to arrest or revert disease progression.

  2. Landau's statistical mechanics for quasi-particle models

    NASA Astrophysics Data System (ADS)

    Bannur, Vishnu M.

    2014-04-01

    Landau's formalism of statistical mechanics [following L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon Press, Oxford, 1980)] is applied to the quasi-particle model of quark-gluon plasma. Here, one starts from the expression for pressure and develop all thermodynamics. It is a general formalism and consistent with our earlier studies [V. M. Bannur, Phys. Lett. B647, 271 (2007)] based on Pathria's formalism [following R. K. Pathria, Statistical Mechanics (Butterworth-Heinemann, Oxford, 1977)]. In Pathria's formalism, one starts from the expression for energy density and develop thermodynamics. Both the formalisms are consistent with thermodynamics and statistical mechanics. Under certain conditions, which are wrongly called thermodynamic consistent relation, we recover other formalism of quasi-particle system, like in M. I. Gorenstein and S. N. Yang, Phys. Rev. D52, 5206 (1995), widely studied in quark-gluon plasma.

  3. Mechanical instability and percolation of deformable particles through porous networks

    NASA Astrophysics Data System (ADS)

    Benet, Eduard; Lostec, Guillaume; Pellegrino, John; Vernerey, Franck

    2018-04-01

    The transport of micron-sized particles such as bacteria, cells, or synthetic lipid vesicles through porous spaces is a process relevant to drug delivery, separation systems, or sensors, to cite a few examples. Often, the motion of these particles depends on their ability to squeeze through small constrictions, making their capacity to deform an important factor for their permeation. However, it is still unclear how the mechanical behavior of these particles affects collective transport through porous networks. To address this issue, we present a method to reconcile the pore-scale mechanics of the particles with the Darcy scale to understand the motion of a deformable particle through a porous network. We first show that particle transport is governed by a mechanical instability occurring at the pore scale, which leads to a binary permeation response on each pore. Then, using the principles of directed bond percolation, we are able to link this microscopic behavior to the probability of permeating through a random porous network. We show that this instability, together with network uniformity, are key to understanding the nonlinear permeation of particles at a given pressure gradient. The results are then summarized by a phase diagram that predicts three distinct permeation regimes based on particle properties and the randomness of the pore network.

  4. Magnetic particle translation as a surrogate measure for synovial fluid mechanics.

    PubMed

    Shah, Yash Y; Maldonado-Camargo, Lorena; Patel, Neal S; Biedrzycki, Adam H; Yarmola, Elena G; Dobson, Jon; Rinaldi, Carlos; Allen, Kyle D

    2017-07-26

    The mechanics of synovial fluid vary with disease progression, but are difficult to quantify quickly in a clinical setting due to small sample volumes. In this study, a novel technique to measure synovial fluid mechanics using magnetic nanoparticles is introduced. Briefly, microspheres embedded with superparamagnetic iron oxide nanoparticles, termed magnetic particles, are distributed through a 100μL synovial fluid sample. Then, a permanent magnet inside a protective sheath is inserted into the synovial fluid sample. Magnetic particles translate toward the permanent magnet and the percentage of magnetic particles collected by the magnet in a given time can be related to synovial fluid viscosity. To validate this relationship, magnetic particle translation was demonstrated in three phases. First, magnetic particle translation was assessed in glycerol solutions with known viscosities, demonstrating that as fluid viscosity increased, magnetic particle translation decreased. Next, the relationship between magnetic particle translation and synovial fluid viscosity was assessed using bovine synovial fluid that was progressively degenerated via ultrasonication. Here, particle collection in a given amount of time increased as fluid degenerated, demonstrating that the relationship between particle collection and fluid mechanics holds in non-Newtonian synovial fluid. Finally, magnetic particle translation was used to assess differences between healthy and OA affected joints in equine synovial fluid. Here, particle collection in a given time was higher in OA joints relative to healthy horses (p<0.001). Combined, these data demonstrate potential viability of magnetic particle translation in a clinical setting to evaluate synovial fluid mechanics in limited volumes of synovial fluid sample. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Process for preparation of large-particle-size monodisperse latexes

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; Micale, F. J.; El-Aasser, M. S.; Kornfeld, D. M. (Inventor)

    1981-01-01

    Monodisperse latexes having a particle size in the range of 2 to 40 microns are prepared by seeded emulsion polymerization in microgravity. A reaction mixture containing smaller monodisperse latex seed particles, predetermined amounts of monomer, emulsifier, initiator, inhibitor and water is placed in a microgravity environment, and polymerization is initiated by heating. The reaction is allowed to continue until the seed particles grow to a predetermined size, and the resulting enlarged particles are then recovered. A plurality of particle-growing steps can be used to reach larger sizes within the stated range, with enlarge particles from the previous steps being used as seed particles for the succeeding steps. Microgravity enables preparation of particles in the stated size range by avoiding gravity related problems of creaming and settling, and flocculation induced by mechanical shear that have precluded their preparation in a normal gravity environment.

  6. On the mechanics of growing thin biological membranes

    PubMed Central

    Rausch, Manuel K.; Kuhl, Ellen

    2013-01-01

    Despite their seemingly delicate appearance, thin biological membranes fulfill various crucial roles in the human body and can sustain substantial mechanical loads. Unlike engineering structures, biological membranes are able to grow and adapt to changes in their mechanical environment. Finite element modeling of biological growth holds the potential to better understand the interplay of membrane form and function and to reliably predict the effects of disease or medical intervention. However, standard continuum elements typically fail to represent thin biological membranes efficiently, accurately, and robustly. Moreover, continuum models are typically cumbersome to generate from surface-based medical imaging data. Here we propose a computational model for finite membrane growth using a classical midsurface representation compatible with standard shell elements. By assuming elastic incompressibility and membrane-only growth, the model a priori satisfies the zero-normal stress condition. To demonstrate its modular nature, we implement the membrane growth model into the general-purpose non-linear finite element package Abaqus/Standard using the concept of user subroutines. To probe efficiently and robustness, we simulate selected benchmark examples of growing biological membranes under different loading conditions. To demonstrate the clinical potential, we simulate the functional adaptation of a heart valve leaflet in ischemic cardiomyopathy. We believe that our novel approach will be widely applicable to simulate the adaptive chronic growth of thin biological structures including skin membranes, mucous membranes, fetal membranes, tympanic membranes, corneoscleral membranes, and heart valve membranes. Ultimately, our model can be used to identify diseased states, predict disease evolution, and guide the design of interventional or pharmaceutic therapies to arrest or revert disease progression. PMID:24563551

  7. Mechanism of travelling-wave transport of particles

    NASA Astrophysics Data System (ADS)

    Kawamoto, Hiroyuki; Seki, Kyogo; Kuromiya, Naoyuki

    2006-03-01

    Numerical and experimental investigations have been carried out on transport of particles in an electrostatic travelling field. A three-dimensional hard-sphere model of the distinct element method was developed to simulate the dynamics of particles. Forces applied to particles in the model were the Coulomb force, the dielectrophoresis force on polarized dipole particles in a non-uniform field, the image force, gravity and the air drag. Friction and repulsion between particle-particle and particle-conveyer were included in the model to replace initial conditions after mechanical contacts. Two kinds of experiments were performed to confirm the model. One was the measurement of charge of particles that is indispensable to determine the Coulomb force. Charge distribution was measured from the locus of free-fallen particles in a parallel electrostatic field. The averaged charge of the bulk particle was confirmed by measurement with a Faraday cage. The other experiment was measurements of the differential dynamics of particles on a conveyer consisting of parallel electrodes to which a four-phase travelling electrostatic wave was applied. Calculated results agreed with measurements, and the following characteristics were clarified. (1) The Coulomb force is the predominant force to drive particles compared with the other kinds of forces, (2) the direction of particle transport did not always coincide with that of the travelling wave but changed partially. It depended on the frequency of the travelling wave, the particle diameter and the electric field, (3) although some particles overtook the travelling wave at a very low frequency, the motion of particles was almost synchronized with the wave at the low frequency and (4) the transport of some particles was delayed to the wave at medium frequency; the majority of particles were transported backwards at high frequency and particles were not transported but only vibrated at very high frequency.

  8. Fracture mechanisms of glass particles under dynamic compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew C.

    2017-08-01

    In this study, dynamic fracture mechanisms of single and contacting spherical glass particles were observed using high speed synchrotron X-ray phase contrast imaging. A modified Kolsky bar setup was used to apply controlled dynamic compressive loading on the soda-lime glass particles. Four different configurations of particle arrangements with one, two, three, and five particles were studied. In single particle experiments, cracking initiated near the contact area between the particle and the platen, subsequently fragmenting the particle in many small sub-particles. In multi-particle experiments, a crack was observed to initiate from the point just outside the contact area between two particles.more » The initiated crack propagated at an angle to the horizontal loading direction, resulting in separation of a fragment. However, this fragment separation did not affect the ability of the particle to withstand further contact loading. On further compression, large number of cracks initiated in the particle with the highest number of particle-particle contacts near one of the particle-particle contacts. The initiated cracks roughly followed the lines joining the contact points. Subsequently, the initiated cracks along with the newly developed sub-cracks bifurcated rapidly as they propagated through the particle and fractured the particle explosively into many small fragments, leaving the other particles nearly intact.« less

  9. The Particle Shape of WC Governing the Fracture Mechanism of Particle Reinforced Iron Matrix Composites.

    PubMed

    Li, Zulai; Wang, Pengfei; Shan, Quan; Jiang, Yehua; Wei, He; Tan, Jun

    2018-06-11

    In this work, tungsten carbide particles (WC p , spherical and irregular particles)-reinforced iron matrix composites were manufactured utilizing a liquid sintering technique. The mechanical properties and the fracture mechanism of WC p /iron matrix composites were investigated theoretically and experimentally. The crack schematic diagram and fracture simulation diagram of WC p /iron matrix composites were summarized, indicating that the micro-crack was initiated both from the interface for spherical and irregular WC p /iron matrix composites. However, irregular WC p had a tendency to form spherical WC p . The micro-cracks then expanded to a wide macro-crack at the interface, leading to a final failure of the composites. In comparison with the spherical WC p , the irregular WC p were prone to break due to the stress concentration resulting in being prone to generating brittle cracking. The study on the fracture mechanisms of WC p /iron matrix composites might provide a theoretical guidance for the design and engineering application of particle reinforced composites.

  10. Formation mechanism of shock-induced particle jetting.

    PubMed

    Xue, K; Sun, L; Bai, C

    2016-08-01

    The shock dissemination of granular rings or shells is characterized by the formation of coherent particle jets that have different dimensions from those associated with the constituent grains. In order to identify the mechanisms governing the formation of particle jets, we carry out the simulations of the shock dispersal of quasi-two-dimensional particle rings based on the discrete-element method. The evolution of the particle velocities and contact forces on the time scales ranging from microseconds to milliseconds reveals a two-stage development of particle jets before they are expelled from the outer surface. Much effort is made to understand the particle agglomeration around the inner surface that initiates the jet formation. The shock interaction with the innermost particle layers generates a heterogeneous network of force chains with clusters of strong contacts regularly spaced around the inner surface. Momentum alongside the stresses is primarily transmitted along the strong force chains. Therefore, the clustering of strong force chains renders the agglomeration of fast-moving particles connected by strong force chains. The fast-moving particle clusters subsequently evolve into the incipient particle jets. The following competition among the incipient jets that undergo unbalanced growth leads to substantial elimination of the minor jets and the significant multiplication of the major jets, the number of jets thus varying with time. Moreover, the number of jets is found to increase with the strength of the shock loading due to an increased number of jets surviving the retarding effect of major jets.

  11. Mechanisms and Implications of Air Pollution Particle Associations with Chemokines

    PubMed Central

    Seagrave, JeanClare

    2008-01-01

    Inflammation induced by inhalation of air pollutant particles has been implicated as a mechanism for the adverse health effects associated with exposure to air pollution. The inflammatory response is associated with upregulation of various pro-inflammatory cytokines and chemokines. We have previously shown that diesel exhaust particles (DEP), a significant constituent of air pollution particulate matter in many urban areas, bind and concentrate IL-8, an important human neutrophil-attracting chemokine, and that the chemokine remains biologically active. In this report, we examine possible mechanisms of this association and the effects on clearance of the chemokine. The binding appears to be the result of ionic interactions between negatively charged particles and positively charged chemokine molecules, possibly combined with intercalation into small pores in the particles. The association is not limited to diesel exhaust particles and IL-8: several other particle types also adsorb the chemokine and several other cytokines are adsorbed onto the diesel particles. However, there are wide ranges in the effectiveness of various particle types and various cytokines. Finally, male Fisher 344 rats were intratracheally instilled with chemokine alone or combined with diesel exhaust or silica particles under isofluorane anesthesia. In contrast to silica particles, which do not bind the chemokine, the presence of diesel exhaust particles, which bind the chemokine, prolonged the retention of the chemokine. PMID:18755206

  12. Probing the Mechanical Strength of an Armored Bubble and Its Implication to Particle-Stabilized Foams

    NASA Astrophysics Data System (ADS)

    Taccoen, Nicolas; Lequeux, François; Gunes, Deniz Z.; Baroud, Charles N.

    2016-01-01

    Bubbles are dynamic objects that grow and rise or shrink and disappear, often on the scale of seconds. This conflicts with their uses in foams where they serve to modify the properties of the material in which they are embedded. Coating the bubble surface with solid particles has been demonstrated to strongly enhance the foam stability, although the mechanisms for such stabilization remain mysterious. In this paper, we reduce the problem of foam stability to the study of the behavior of a single spherical bubble coated with a monolayer of solid particles. The behavior of this armored bubble is monitored while the ambient pressure around it is varied, in order to simulate the dissolution stress resulting from the surrounding foam. We find that above a critical stress, localized dislocations appear on the armor and lead to a global loss of the mechanical stability. Once these dislocations appear, the armor is unable to prevent the dissolution of the gas into the surrounding liquid, which translates into a continued reduction of the bubble volume, even for a fixed overpressure. The observed route to the armor failure therefore begins from localized dislocations that lead to large-scale deformations of the shell until the bubble completely dissolves. The critical value of the ambient pressure that leads to the failure depends on the bubble radius, with a scaling of Δ Pcollapse∝R-1 , but does not depend on the particle diameter. These results disagree with the generally used elastic models to describe particle-covered interfaces. Instead, the experimental measurements are accounted for by an original theoretical description that equilibrates the energy gained from the gas dissolution with the capillary energy cost of displacing the individual particles. The model recovers the short-wavelength instability, the scaling of the collapse pressure with bubble radius, and the insensitivity to particle diameter. Finally, we use this new microscopic understanding to predict

  13. Adsorption mechanisms of the nonequilibrium incorporation of admixtures in a growing crystal

    NASA Astrophysics Data System (ADS)

    Franke, V. D.; Punin, Yu. O.; Smetannikova, O. G.; Kenunen, D. S.

    2007-12-01

    The nonequilibrium partition of components between a crystal and solution is mainly controlled by impurity adsorption on the surface of the growing crystal. The specificity of adsorption on the faces of various simple forms leads to the sectorial zoning of crystals. This effect was studied experimentally for several crystallizing systems with different impurities, including isomorphous, 2d-isomorphous, and nonisomorphous, readily adsorbed impurities. In all systems, the sectorial selectivity of impurity incorporation into host crystals has been detected with partition coefficients many times higher than in the case of equilibrium partition. Specific capture of impurities by certain faces is accompanied by inhibition of their growth and modification of habit. The decrease in nonequilibrium partition coefficients with degree of oversaturation provides entrapment of impurities in the growing crystals. Thereby, the adsorption mechanism works in much the same mode for impurities of quite different nature. The behavior of partition coefficient differs drastically from impurity capturing by diffusion mechanism.

  14. Quantum mechanics of a constrained particle

    NASA Astrophysics Data System (ADS)

    da Costa, R. C. T.

    1981-04-01

    The motion of a particle rigidly bounded to a surface is discussed, considering the Schrödinger equation of a free particle constrained to move, by the action of an external potential, in an infinitely thin sheet of the ordinary three-dimensional space. Contrary to what seems to be the general belief expressed in the literature, this limiting process gives a perfectly well-defined result, provided that we take some simple precautions in the definition of the potentials and wave functions. It can then be shown that the wave function splits into two parts: the normal part, which contains the infinite energies required by the uncertainty principle, and a tangent part which contains "surface potentials" depending both on the Gaussian and mean curvatures. An immediate consequence of these results is the existence of different quantum mechanical properties for two isometric surfaces, as can be seen from the bound state which appears along the edge of a folded (but not stretched) plane. The fact that this surface potential is not a bending invariant (cannot be expressed as a function of the components of the metric tensor and their derivatives) is also interesting from the more general point of view of the quantum mechanics in curved spaces, since it can never be obtained from the classical Lagrangian of an a priori constrained particle without substantial modifications in the usual quantization procedures. Similar calculations are also presented for the case of a particle bounded to a curve. The properties of the constraining spatial potential, necessary to a meaningful limiting process, are discussed in some detail, and, as expected, the resulting Schrödinger equation contains a "linear potential" which is a function of the curvature.

  15. Astrophysical particle acceleration mechanisms in colliding magnetized laser-produced plasmas

    DOE PAGES

    Fox, W.; Park, J.; Deng, W.; ...

    2017-08-11

    Significant particle energization is observed to occur in numerous astrophysical environments, and in the standard models, this acceleration occurs alongside energy conversion processes including collisionless shocks or magnetic reconnection. Recent platforms for laboratory experiments using magnetized laser-produced plasmas have opened opportunities to study these particle acceleration processes in the laboratory. Through fully kinetic particle-in-cell simulations, we investigate acceleration mechanisms in experiments with colliding magnetized laser-produced plasmas, with geometry and parameters matched to recent high-Mach number reconnection experiments with externally controlled magnetic fields. 2-D simulations demonstrate significant particle acceleration with three phases of energization: first, a “direct” Fermi acceleration driven bymore » approaching magnetized plumes; second, x-line acceleration during magnetic reconnection of anti-parallel fields; and finally, an additional Fermi energization of particles trapped in contracting and relaxing magnetic islands produced by reconnection. Furthermore, the relative effectiveness of these mechanisms depends on plasma and magnetic field parameters of the experiments.« less

  16. Particles, Waves, and the Interpretation of Quantum Mechanics

    ERIC Educational Resources Information Center

    Christoudouleas, N. D.

    1975-01-01

    Presents an explanation, without mathematical equations, of the basic principles of quantum mechanics. Includes wave-particle duality, the probability character of the wavefunction, and the uncertainty relations. (MLH)

  17. Mechanical excitation of rodlike particles by a vibrating plate.

    PubMed

    Trittel, Torsten; Harth, Kirsten; Stannarius, Ralf

    2017-06-01

    The experimental realization and investigation of granular gases usually require an initial or permanent excitation of ensembles of particles, either mechanically or electromagnetically. One typical method is the energy supply by a vibrating plate or container wall. We study the efficiency of such an excitation of cylindrical particles by a sinusoidally oscillating wall and characterize the distribution of kinetic energies of excited particles over their degrees of freedom. The influences of excitation frequency and amplitude are analyzed.

  18. On the mechanics of continua with boundary energies and growing surfaces

    NASA Astrophysics Data System (ADS)

    Papastavrou, Areti; Steinmann, Paul; Kuhl, Ellen

    2013-06-01

    Many biological systems are coated by thin films for protection, selective absorption, or transmembrane transport. A typical example is the mucous membrane covering the airways, the esophagus, and the intestine. Biological surfaces typically display a distinct mechanical behavior from the bulk; in particular, they may grow at different rates. Growth, morphological instabilities, and buckling of biological surfaces have been studied intensely by approximating the surface as a layer of finite thickness; however, growth has never been attributed to the surface itself. Here, we establish a theory of continua with boundary energies and growing surfaces of zero thickness in which the surface is equipped with its own potential energy and is allowed to grow independently of the bulk. In complete analogy to the kinematic equations, the balance equations, and the constitutive equations of a growing solid body, we derive the governing equations for a growing surface. We illustrate their spatial discretization using the finite element method, and discuss their consistent algorithmic linearization. To demonstrate the conceptual differences between volume and surface growth, we simulate the constrained growth of the inner layer of a cylindrical tube. Our novel approach toward continua with growing surfaces is capable of predicting extreme growth of the inner cylindrical surface, which more than doubles its initial area. The underlying algorithmic framework is robust and stable; it allows to predict morphological changes due to surface growth during the onset of buckling and beyond. The modeling of surface growth has immediate biomedical applications in the diagnosis and treatment of asthma, gastritis, obstructive sleep apnoea, and tumor invasion. Beyond biomedical applications, the scientific understanding of growth-induced morphological instabilities and surface wrinkling has important implications in material sciences, manufacturing, and microfabrication, with applications in

  19. Reaction Mechanisms and Particle Interaction in Burning Two-Phase Systems

    NASA Technical Reports Server (NTRS)

    Dreizin, Edward L.; Shoshin, Yuriy L.; Murdyy, Ruslan S.; Hoffmann, Vern K.

    2001-01-01

    The main objective of this research is to understand the mechanisms by which particle interactions affect ignition and combustion in the two-phase systems. Combustion of metal aerosols representing the two-phase systems is carried out in the microgravity environment enabling one to avoid the buoyant flows that mask the particle motion due to the particle-particle interaction effects. In addition, relatively large, e.g., 100 micron diameter particles can be used, that remain aerosolized (i.e., do not fall down as they would at normal gravity) so that their behavior ahead, behind, and within the propagating flame can be resolved optically. An experimental apparatus exploiting this approach has been designed for the 2.2-s drop tower microgravity experiments. A typical experiment includes fluidizing metal particles under microgravity in an acoustic field, turning off the acoustic exciter, and igniting the created aerosol at a constant pressure using a hot wire igniter. The flame propagation and details of the individual particle combustion and particle interactions are studied using high-speed movie and video cameras coupled with microscope lenses to resolve individual particles. Recorded flame images are digitized and various image processing techniques including flame position tracking, color separation, and pixel by pixel image comparisons are employed to understand the processes occurring in the burning aerosols. Condensed combustion products are collected after each experiment for the phase, composition, and morphology analyses. New experiments described in this paper address combustion of Ti and Al particle clouds in air and combustion of Mg particle clouds in CO2. In addition, microgravity combustion experiments have been conducted with the particles of the newly produced Al-Mg mechanical alloys aerosolized in air.

  20. A mechanism for the production of ultrafine particles from concrete fracture.

    PubMed

    Jabbour, Nassib; Rohan Jayaratne, E; Johnson, Graham R; Alroe, Joel; Uhde, Erik; Salthammer, Tunga; Cravigan, Luke; Faghihi, Ehsan Majd; Kumar, Prashant; Morawska, Lidia

    2017-03-01

    While the crushing of concrete gives rise to large quantities of coarse dust, it is not widely recognized that this process also emits significant quantities of ultrafine particles. These particles impact not just the environments within construction activities but those in entire urban areas. The origin of these ultrafine particles is uncertain, as existing theories do not support their production by mechanical processes. We propose a hypothesis for this observation based on the volatilisation of materials at the concrete fracture interface. The results from this study confirm that mechanical methods can produce ultrafine particles (UFP) from concrete, and that the particles are volatile. The ultrafine mode was only observed during concrete fracture, producing particle size distributions with average count median diameters of 27, 39 and 49 nm for the three tested concrete samples. Further volatility measurements found that the particles were highly volatile, showing between 60 and 95% reduction in the volume fraction remaining by 125 °C. An analysis of the volatile fraction remaining found that different volatile material is responsible for the production of particles between the samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Quantum mechanical expansion of variance of a particle in a weakly non-uniform electric and magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Poh Kam; Kosaka, Wataru; Oikawa, Shun-ichi

    We have solved the Heisenberg equation of motion for the time evolution of the position and momentum operators for a non-relativistic spinless charged particle in the presence of a weakly non-uniform electric and magnetic field. It is shown that the drift velocity operator obtained in this study agrees with the classical counterpart, and that, using the time dependent operators, the variances in position and momentum grow with time. The expansion rate of variance in position and momentum are dependent on the magnetic gradient scale length, however, independent of the electric gradient scale length. In the presence of a weakly non-uniformmore » electric and magnetic field, the theoretical expansion rates of variance expansion are in good agreement with the numerical analysis. It is analytically shown that the variance in position reaches the square of the interparticle separation, which is the characteristic time much shorter than the proton collision time of plasma fusion. After this time, the wavefunctions of the neighboring particles would overlap, as a result, the conventional classical analysis may lose its validity. The broad distribution of individual particle in space means that their Coulomb interactions with other particles become weaker than that expected in classical mechanics.« less

  2. Control and formation mechanism of extended nanochannel geometry in colloidal mesoporous silica particles.

    PubMed

    Sokolov, I; Kalaparthi, V; Volkov, D O; Palantavida, S; Mordvinova, N E; Lebedev, O I; Owens, J

    2017-01-04

    A large class of colloidal multi-micron mesoporous silica particles have well-defined cylindrical nanopores, nanochannels which self-assembled in the templated sol-gel process. These particles are of broad interest in photonics, for timed drug release, enzyme stabilization, separation and filtration technologies, catalysis, etc. Although the pore geometry and mechanism of pore formation of such particles has been widely investigated at the nanoscale, their pore geometry and its formation mechanism at a larger (extended) scale is still under debate. The extended geometry of nanochannels is paramount for all aforementioned applications because it defines accessibility of nanochannels, and subsequently, kinetics of interaction of the nanochannel content with the particle surrounding. Here we present both experimental and theoretical investigation of the extended geometry and its formation mechanism in colloidal multi-micron mesoporous silica particles. We demonstrate that disordered (and consequently, well accessible) nanochannels in the initially formed colloidal particles gradually align and form extended self-sealed channels. This knowledge allows to control the percentage of disordered versus self-sealed nanochannels, which defines accessibility of nanochannels in such particles. We further show that the observed aligning the channels is in agreement with theory; it is thermodynamically favored as it decreases the Gibbs free energy of the particles. Besides the practical use of the obtained results, developing a fundamental understanding of the mechanisms of morphogenesis of complex geometry of nanopores will open doors to efficient and controllable synthesis that will, in turn, further fuel the practical utilization of these particles.

  3. Solid particle erosion mechanisms of protective coatings for aerospace applications

    NASA Astrophysics Data System (ADS)

    Bousser, Etienne

    The main objective of this PhD project is to investigate the material loss mechanisms during Solid Particle Erosion (SPE) of hard protective coatings, including nanocomposite and nanostructured systems. In addition, because of the complex nature of SPE mechanisms, rigorous testing methodologies need to be employed and the effects of all testing parameters need to be fully understood. In this PhD project, the importance of testing methodology is addressed throughout in order to effectively study the SPE mechanisms of brittle materials and coatings. In the initial stage of this thesis, we studied the effect of the addition of silicon (Si) on the microstructure, mechanical properties and, more specifically, on the SPE resistance of thick CrN-based coatings. It was found that the addition of Si significantly improved the erosion resistance and that SPE correlated with the microhardness values, i.e. the coating with the highest microhardness also had the lowest erosion rate (ER). In fact, the ERs showed a much higher dependence on the surface hardness than what has been proposed for brittle erosion mechanisms. In the first article, we study the effects of the particle properties on the SPE behavior of six brittle bulk materials using glass and alumina powders. First, we apply a robust methodology to accurately characterize the elasto-plastic and fracture properties of the studied materials. We then correlate the measured ER to materials' parameters with the help of a morphological study and an analysis of the quasi-static elasto-plastic erosion models. Finally, in order to understand the effects of impact on the particles themselves and to support the energy dissipation-based model proposed here, we study the particle size distributions of the powders before and after erosion testing. It is shown that tests using both powders lead to a material loss mechanism related to lateral fracture, that the higher than predicted velocity exponents point towards a velocity

  4. Experimental Insights into the Mechanisms of Particle Acceleration by Shock Waves

    NASA Astrophysics Data System (ADS)

    Scolamacchia, T.; Scheu, B.; Dingwell, D. B.

    2011-12-01

    The generation of shock waves is common during explosive volcanic eruptions. Particles acceleration following shock wave propagation has been experimentally observed suggesting the potential hazard related to this phenomenon. Experiments and numerical models focused on the dynamics of formation and propagation of different types of shock waves when overpressurized eruptive mixtures are suddenly released in the atmosphere, using a pseudo-gas approximation to model those mixtures. Nevertheless, the results of several studies indicated that the mechanism of coupling between a gas and solid particles is valid for a limited grain-size range, which at present is not well defined. We are investigating particle acceleration mechanisms using a vertical shock tube consisting of a high-pressure steel autoclave (450 mm long, 28 mm in diameter), pressurized with argon, and a low-pressure 140 mm long acrylic glass autoclave, with the same internal diameter of the HP reservoir. Shock waves are generated by Ar decompression at atmospheric pressures at Pres/Pamb 100:1 to 150:1, through the failure of a diaphragm. Experiments were performed either with empty autoclave or suspending solid analogue particles 150 μm in size inside the LP autoclave. Incident Mach number varied from 1.7 to 2.1. Absolute and relative pressure sensors monitored P histories during the entire process, and a high-speed camera recorded particles movement at 20,000 to 30,000 fps. Preliminary results indicate pressure multiplication at the contact between shock waves and the particles in a time lapse of 100s μs, suggesting a possible different mechanism with respect to gas-particle coupling for particle acceleration.

  5. The kinetics of composite particle formation during mechanical alloying

    NASA Technical Reports Server (NTRS)

    Aikin, B. J. M.; Courtney, T. H.

    1993-01-01

    The kinetics of composite particle formation during attritor milling of insoluble binary elemental powders have been examined. The effects of processing conditions (i.e., mill power, temperature, and charge ratio) on these kinetics were studied. Particle size distributions and fractions of elemental and composite particles were determined as functions of milling time and processing conditions. This allowed the deduction of phenomenological rate constants describing the propensity for fracture and welding during processing. For the mill-operating conditions investigated, the number of particles in the mill generally decreased with milling time, indicating a greater tendency for particle welding than fracture. Moreover, a bimodal size distribution is often obtained as a result of preferential welding. Copper and chromium 'alloy' primarily by encapsulation of Cr particles within Cu. This form of alloying also occurs in Cu-Nb alloys processed at low mill power and/or for short milling times. For other conditions, however, Cu-Nb alloys develop a lamellar morphology characteristic of mechanically alloyed two-phase ductile metals. Increasing mill power or charge (ball-to-powder weight) ratio (CR) increases the rate of composite particle formation.

  6. Lagrangian dynamics for classical, Brownian, and quantum mechanical particles

    NASA Astrophysics Data System (ADS)

    Pavon, Michele

    1996-07-01

    In the framework of Nelson's stochastic mechanics [E. Nelson, Dynamical Theories of Brownian Motion (Princeton University, Princeton, 1967); F. Guerra, Phys. Rep. 77, 263 (1981); E. Nelson, Quantum Fluctuations (Princeton University, Princeton, 1985)] we seek to develop the particle counterpart of the hydrodynamic results of M. Pavon [J. Math. Phys. 36, 6774 (1995); Phys. Lett. A 209, 143 (1995)]. In particular, a first form of Hamilton's principle is established. We show that this variational principle leads to the correct equations of motion for the classical particle, the Brownian particle in thermodynamical equilibrium, and the quantum particle. In the latter case, the critical process q satisfies a stochastic Newton law. We then introduce the momentum process p, and show that the pair (q,p) satisfies canonical-like equations.

  7. Kinetic model for the mechanical response of suspensions of sponge-like particles.

    PubMed

    Hütter, Markus; Faber, Timo J; Wyss, Hans M

    2012-01-01

    A dynamic two-scale model is developed that describes the stationary and transient mechanical behavior of concentrated suspensions made of highly porous particles. Particularly, we are interested in particles that not only deform elastically, but also can swell or shrink by taking up or expelling the viscous solvent from their interior, leading to rate-dependent deformability of the particles. The fine level of the model describes the evolution of particle centers and their current sizes, while the shapes are at present not taken into account. The versatility of the model permits inclusion of density- and temperature-dependent particle interactions, and hydrodynamic interactions, as well as to implement insight into the mechanism of swelling and shrinking. The coarse level of the model is given in terms of macroscopic hydrodynamics. The two levels are mutually coupled, since the flow changes the particle configuration, while in turn the configuration gives rise to stress contributions, that eventually determine the macroscopic mechanical properties of the suspension. Using a thermodynamic procedure for the model development, it is demonstrated that the driving forces for position change and for size change are derived from the same potential energy. The model is translated into a form that is suitable for particle-based Brownian dynamics simulations for performing rheological tests. Various possibilities for connection with experiments, e.g. rheological and structural, are discussed.

  8. Silver (Ag) Transport Mechanisms in TRISO Coated Particles: A Critical Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    IJ van Rooyen; ML Dunzik-Gougar; PM van Rooyen

    2014-05-01

    Transport of 110mAg in the intact SiC layer of TRISO coated particles has been studied for approximately 30 years without arriving at a satisfactory explanation of the transport mechanism. In this paper the possible mechanisms postulated in previous experimental studies, both in-reactor and out-of reactor research environment studies are critically reviewed and of particular interest are relevance to very high temperature gas reactor operating and accident conditions. Among the factors thought to influence Ag transport are grain boundary stoichiometry, SiC grain size and shape, the presence of free silicon, nano-cracks, thermal decomposition, palladium attack, transmutation products, layer thinning and coatedmore » particle shape. Additionally new insight to nature and location of fission products has been gained via recent post irradiation electron microscopy examination of TRISO coated particles from the DOE’s fuel development program. The combined effect of critical review and new analyses indicates a direction for investigating possible the Ag transport mechanism including the confidence level with which these mechanisms may be experimentally verified.« less

  9. Silver (Ag) Transport Mechanisms in TRISO coated particles: A Critical Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    I J van Rooyen; J H Neethling; J A A Engelbrecht

    2012-10-01

    Transport of 110mAg in the intact SiC layer of TRISO coated particles has been studied for approximately 30 years without arriving at a satisfactory explanation of the transport mechanism. In this paper the possible mechanisms postulated in previous experimental studies, both in-reactor and out-of reactor research environment studies are critically reviewed and of particular interest are relevance to very high temperature gas reactor operating and accident conditions. Among the factors thought to influence Ag transport are grain boundary stoichiometry, SiC grain size and shape, the presence of free silicon, nano-cracks, thermal decomposition, palladium attack, transmutation products, layer thinning and coatedmore » particle shape. Additionally new insight to nature and location of fission products has been gained via recent post irradiation electron microscopy examination of TRISO coated particles from the DOE’s fuel development program. The combined effect of critical review and new analyses indicates a direction for investigating possible the Ag transport mechanism including the confidence level with which these mechanisms may be experimentally verified.« less

  10. Molecular Mechanisms of Particle Ration Induced Apoptosis in Lymphocyte

    NASA Astrophysics Data System (ADS)

    Shi, Yufang

    Space radiation, composed of high-energy charged nuclei (HZE particles) and protons, has been previously shown to severely impact immune homeostasis in mice. To determine the molecular mechanisms that mediate acute lymphocyte depletion following exposure to HZE particle radiation mice were exposed to particle radiation beams at Brookhaven National Laboratory. We found that mice given whole body 5 6Fe particle irradiation (1GeV /n) had dose-dependent losses in total lymphocyte numbers in the spleen and thymus (using 200, 100 and 50 cGy), with thymocytes being more sensitive than splenocytes. All phenotypic subsets were reduced in number. In general, T cells and B cells were equally sensitive, while CD8+ T cells were more senstive than CD4+ T cells. In the thymus, immature CD4+CD8+ double-positive thymocytes were exquisitely sensitive to radiation-induced losses, single-positive CD4 or CD8 cells were less sensitive, and the least mature double negative cells were resistant. Irradiation of mice deficient in genes encoding essential apoptosis-inducing proteins revealed that the mechanism of lymphocyte depletion is independent of Fas ligand and TRAIL (TNF-ralated apoptosis-inducing ligand), in contrast to γ-radiation-induced lymphocyte losses which require the Fas-FasL pathway. Using inhibitors in vitro, lymphocyte apoptosis induced by HZE particle radiation was found to be caspase dependent, and not involve nitric oxide or oxygen free radicals.

  11. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics.

    PubMed

    Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T; Bohr, Tomas

    2015-07-01

    In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006)] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.

  12. Thiol surface complexation on growing CdS clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swayambunathan, V.; Hayes, D.; Schmidt, K.H.

    1990-05-09

    The growth of small CdS colloidal particles has been initiated by pulse radiolytic release of sulfide from thiol (3-mercapto-1,2-propanediol, RSH) in the presence of Cd{sup 2+} ions. The kinetics and stoichiometry of the ensuring reactions were followed by conductivity, absorption spectroscopy, and light-scattering techniques. The final CdS product has been identified by electron diffraction. The formation of Cd-thiolate complexes at the surface of the particles is indicated by conductivity and by energy dispersive analysis of X-ray (EDAX) results. The rate of formation of CdS clusters is strongly pH dependent due to the pH effect on the stability of Dd{sup 2+}/HS{supmore » {minus}} complexes. At low pHs (4.0-5.3) the growth mechanism is proposed to be primarily a cluster-molecule process. At this pH range Cd{sup 2+} ions at the CdS particle surface complex with thiolate ions stronger than in the bulk of the solution. The size control of the particles by thiols is proposed to result from a competition of thiolate ions with HS{sup {minus}} ions for cadmium ions at the surface of the growing particles.« less

  13. Dissipation Mechanisms and Particle Acceleration at the Earth's Bow Shock

    NASA Astrophysics Data System (ADS)

    Desai, M. I.; Burch, J. L.; Fuselier, S. A.; Genestreti, K. J.; Torbert, R. B.; Ergun, R.; Russell, C.; Wei, H.; Phan, T.; Giles, B. L.; Chen, L. J.; Mauk, B.

    2016-12-01

    Collisionless shocks are a major producer of suprathermal and energetic particles throughout space and astrophysical plasma environments. Theoretical studies combined with in-situ observations during the space age have significantly advanced our understanding of how such shocks are formed, the manner in which they evolve and dissipate their energy, and the physical mechanisms by which they heat the local plasma and accelerate the energetic particles. Launched in March 2015, NASA's Magnetospheric Multiscale (MMS) mission has four spacecraft separated between 10-40 km and equipped with identical state-of-the-art instruments that acquire magnetic and electric field, plasma wave, and particle data at unprecedented temporal resolution to study the fundamental physics of magnetic reconnection in the Earth's magnetosphere. Serendipitously, during Phase 1a, the MMS mission also encountered and crossed the Earth's bow shock more than 300 times. In this paper, we combine and analyze the highest available time resolution MMS burst data during 140 bow shock crossings from October 2015 through December 31, 2015 to shed new light on key open questions regarding the formation, evolution, dissipation, and particle injection and energization at collisionless shocks. In particular, we compare and contrast the differences in shock dissipation and particle acceleration mechanisms at quasi-parallel and quasi-perpendicular shocks.

  14. Mechanisms underlying the redistribution of particles among the lung's alveolar macrophages during alveolar phase clearance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehnert, B.E.; Oritz, J.B.; Steinkamp, J.A.

    1991-01-01

    In order to obtain information about the particle redistribution phenomenon following the deposition of inhaled particles, as well as to obtain information about some of the mechanisms that may be operable in the redistribution of particles, lavaged lung free cell analyses and transmission electron microscopic (TEM) analyses of lung tissue and were performed using lungs from rats after they were subchronically exposed to aerosolized dioxide (TiO{sub 2}). TEM analyses indicated that the in situ autolysis of particle-containing Alveolar Macropages (AM) is one important mechanism involved in the redistribution of particles. Evidence was also obtained that indicated that the engulfment ofmore » one particle-containing phagocyte by another phagocyte also occurs. Another prominent mechanism of the particle redistribution phenomenon may be the in situ proliferation of particle-laden AM. We used the macrophage cell line J774A.1 as a surrogate for AM to investigate how different particulate loads in macrophages may affect their abilities to proliferate. These in vitro investigations indicated that the normal rate of proliferation of macrophages is essentially unaffected by the containment of relatively high particulate burdens. Overall, the results of our investigations suggest that in situ autolysis of particle-containing AM and the rephagocytosis of freed particles by other phagocytes, the phagocytosis of effete and disintegrating particle-containing phagocytes by other AM, and the in situ division of particle-containing AM are likely mechanisms that underlie the post-depositional redistribution of particles among the lung's AM during alveolar phase clearance. 19 refs., 8 figs., 2 tabs.« less

  15. Acceleration mechanisms for energetic particles in the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Schiferl, S.; Fan, C. Y.; Hsieh, K. C.; Erickson, K. N.; Gloeckler, G.

    1982-01-01

    By analyzing data on energetic particle fluxes measured simultaneously with detector systems on several earth satellites, signatures of different acceleration mechanisms for these particles were searched for. One of the samples is an event observed on ATS-6 and IMP-7. IMP-7 was in the dusk quarter at 38 earth radii while ATS-6 was located at local midnight at a distance of 6.6 earth radii. Although the flux variations as observed on the two spacecraft both showed 1.5 min periodicity, there was a 40-second time lag with IMP-7 behind. The results indicate that the particles are accelerated by magnetic field line annihilation, with the x-point located at about 10 earth radii.

  16. Decaying and growing eigenmodes in open quantum systems: Biorthogonality and the Petermann factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Soo-Young

    2009-10-15

    We study the biorthogonality between decaying and growing eigenmodes in one-dimensional potential barrier problems. It is shown that Petermann factors K{sub n} of the eigenmodes, a measure of nonorthogonality, are involved in decaying mechanism of an initially confined particle. We also show that the decay tail of the growing modes at an exceptional point (EP), where K{sub n} become infinite, is not exponential, but {approx}t{sup 2}e{sup -{gamma}{sub EP}t}, {gamma}{sub EP} the decay rate of the decaying mode at EP. In addition, the geometrical phase near an EP is illustrated by the evolution of wave function.

  17. Mechanical Characteristics of SiC Coating Layer in TRISO Fuel Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Hosemann; J. N. Martos; D. Frazer

    2013-11-01

    Tristructural isotropic (TRISO) particles are considered as advanced fuel forms for a variety of fission platforms. While these fuel structures have been tested and deployed in reactors, the mechanical properties of these structures as a function of production parameters need to be investigated in order to ensure their reliability during service. Nanoindentation techniques, indentation crack testing, and half sphere crush testing were utilized in order to evaluate the integrity of the SiC coating layer that is meant to prevent fission product release in the coated particle fuel form. The results are complimented by scanning electron microscopy (SEM) of the grainmore » structure that is subject to change as a function of processing parameters and can alter the mechanical properties such as hardness, elastic modulus, fracture toughness and fracture strength. Through utilization of these advanced techniques, subtle differences in mechanical properties that can be important for in-pile fuel performance can be distinguished and optimized in iteration with processing science of coated fuel particle production.« less

  18. ALTERED IRON HOMEOSTATIS AND THE MECHANISM OF BIOLOGIC EFFECT BY PARTICLES

    EPA Science Inventory

    Several features of the clinical presentation and changes in physiology and pathology following exposure to many diverse ambient air pollution particles are comparable, suggesting a common mechanism for their biological effect. We propose that a mechanism of biological effect com...

  19. Effect of Particle Shape on Mechanical Behaviors of Rocks: A Numerical Study Using Clumped Particle Model

    PubMed Central

    Rong, Guan; Liu, Guang; Zhou, Chuang-bing

    2013-01-01

    Since rocks are aggregates of mineral particles, the effect of mineral microstructure on macroscopic mechanical behaviors of rocks is inneglectable. Rock samples of four different particle shapes are established in this study based on clumped particle model, and a sphericity index is used to quantify particle shape. Model parameters for simulation in PFC are obtained by triaxial compression test of quartz sandstone, and simulation of triaxial compression test is then conducted on four rock samples with different particle shapes. It is seen from the results that stress thresholds of rock samples such as crack initiation stress, crack damage stress, and peak stress decrease with the increasing of the sphericity index. The increase of sphericity leads to a drop of elastic modulus and a rise in Poisson ratio, while the decreasing sphericity usually results in the increase of cohesion and internal friction angle. Based on volume change of rock samples during simulation of triaxial compression test, variation of dilation angle with plastic strain is also studied. PMID:23997677

  20. Effect of particle shape on mechanical behaviors of rocks: a numerical study using clumped particle model.

    PubMed

    Rong, Guan; Liu, Guang; Hou, Di; Zhou, Chuang-Bing

    2013-01-01

    Since rocks are aggregates of mineral particles, the effect of mineral microstructure on macroscopic mechanical behaviors of rocks is inneglectable. Rock samples of four different particle shapes are established in this study based on clumped particle model, and a sphericity index is used to quantify particle shape. Model parameters for simulation in PFC are obtained by triaxial compression test of quartz sandstone, and simulation of triaxial compression test is then conducted on four rock samples with different particle shapes. It is seen from the results that stress thresholds of rock samples such as crack initiation stress, crack damage stress, and peak stress decrease with the increasing of the sphericity index. The increase of sphericity leads to a drop of elastic modulus and a rise in Poisson ratio, while the decreasing sphericity usually results in the increase of cohesion and internal friction angle. Based on volume change of rock samples during simulation of triaxial compression test, variation of dilation angle with plastic strain is also studied.

  1. Morphological and Chemical Mechanisms of Elongated Mineral Particle Toxicities

    EPA Science Inventory

    Much of our understanding regarding the mechanisms for induction of disease following inhalation of respirable elongated mineral particles (REMPs) is based on studies involving the biological effects of asbestos fibers. The factors governing the disease potential of an exposure i...

  2. Buckling vs. particle desorption in a particle-covered drop subject to compressive surface stresses: a simulation study.

    PubMed

    Gu, Chuan; Botto, Lorenzo

    2018-01-31

    Predicting the behaviour of particle-covered fluid interfaces under compression has implications in several fields. The surface-tension driven adhesion of particles to drops and bubbles is exploited for example to enhance the stability of foams and emulsion and develop new generation materials. When a particle-covered fluid interface is compressed, one can observe either smooth buckling or particle desorption from the interface. The microscopic mechanisms leading to the buckling-to-desorption transition are not fully understood. In this paper we simulate a spherical drop covered by a monolayer of spherical particles. The particle-covered interface is subject to time-dependent compressive surface stresses that mimic the slow deflation of the drop. The buckling-to-desorption transition depends in a non-trivial way on three non-dimensional parameters: the ratio Π s /γ of particle-induced surface pressure and bare surface tension, the ratio a/R of particle and drop radii, and the parameter f characterising the strength of adhesion of each particle to the interface. Based on the insights from the simulations, we propose a configuration diagram describing the effect of these controlling parameters. We find that particle desorption is highly correlated with a mechanical instability that produces small-scale undulations of the monolayer of the order of the particle size that grow when the surface pressure is sufficiently large. We argue that the large local curvature associated with these small undulations can produce large normal forces, enhancing the probability of desorption.

  3. Wave-Particle Interactions As a Driving Mechanism for the Solar Wind

    NASA Technical Reports Server (NTRS)

    Wagner, William J.

    2004-01-01

    Our research has been focusing on a highly experimentally relevant issue: intermittency of the fluctuating fields in outflowing plasmas. We have contributed to both the theoretical and experimental research of the topic. In particular, we have developed a theoretical model and data analyzing programs to examine the issue of intermittency in space plasma outflows, including the solar wind. As fluctuating electric fields in the solar wind are likely to provide a heating and acceleration mechanism for the ions, our studies of the intermittency in turbulence in space plasma outflows help us toward achieving the goal of comparing major physical mechanisms that contribute to the driving of the fast solar wind. Our new theoretical model extends the utilities of our global hybrid model, which has allowed us to follow the kinetic evolution of the particle distributions along an inhomogeneous field line while the particles are subjected to various physical mechanisms. The physical effects that were considered in the global hybrid model included wave-particle interactions, an ambipolar electric field that was consistent with the particle distributions themselves, and Coulomb collisions. With an earlier version of the global hybrid model, we examined the overall impact on the solar wind flow due to the combination of these physical effects. In particular, we studied the combined effects of two major mechanisms that had been proposed as the drivers of the fast solar wind: (1) velocity filtration effect due to suprathermal electrons; (2) ion cyclotron resonance. Since the approval of this research grant, we have updated the model such that the effects due to these two driving mechanisms can be examined separately, thereby allowing us to compare their contributions to the acceleration of the solar wind. In the next section, we shall demonstrate that the velocity filtration effect is rather insignificant in comparison with that due to ion cyclotron resonance.

  4. Interface effects on mechanical properties of particle-reinforced composites.

    PubMed

    Debnath, S; Ranade, R; Wunder, S L; McCool, J; Boberick, K; Baran, G

    2004-09-01

    Effective bonding between the filler and matrix components typically improves the mechanical properties of polymer composites containing inorganic fillers. The aim of this study was to test the hypothesis that composite flexural modulus, flexure strength, and toughness are directly proportional to filler-matrix interfacial shear strength. The resin matrix component of the experimental composite consisted of a 60:40 blend of BisGMA:TEGDMA. Two levels of photoinitiator components were used: 0.15, and 0.5%. Raman spectroscopy was used to determine degree of cure, and thermogravimetry (TGA) was used to quantify the degree of silane, rubber, or polymer attachment to silica and glass particles. Filler-matrix interfacial shear strengths were measured using a microbond test. Composites containing glass particles with various surface treatments were prepared and the modulus, flexure strength, and fracture toughness of these materials obtained using standard methods. Mechanical properties were measured on dry and soaked specimens. The interfacial strength was greatest for the 5% MPS treated silica, and it increased for polymers prepared with 0.5% initiator compared with 0.15% initiator concentrations. For the mechanical properties measured, the authors found that: (1) the flexural modulus was independent of the type of filler surface treatment, though flexural strength and toughness were highest for the silanated glass; (2) rubber at the interface, whether bonded to the filler and matrix or not, did not improve toughness; (3) less grafting of resin to silanated filler particles was observed when the initiator concentration decreased. These findings suggest that increasing the strength of the bond between filler and matrix will not result in improvements in the mechanical properties of particulate-reinforced composites in contrast to fiber-reinforced composites. Also, contraction stresses in the 0.5 vs 0.15% initiator concentration composites may be responsible for increases

  5. Double Higgs mechanisms, supermassive stable particles and the vacuum energy

    NASA Astrophysics Data System (ADS)

    Santillán, Osvaldo P.; Gabbanelli, Luciano

    2016-07-01

    In the present work, a hidden scenario which cast a long-lived superheavy particle A0 and simultaneously an extremely light particle a with mass ma ˜ 10-32-10-33 eV is presented. The potential energy V (a) of the particle a models the vacuum energy density of the universe ρc ≃ 10-47GeV4. On the other hand, the A0 particle may act as superheavy dark matter at present times and the products of its decay may be observed in high energy cosmic ray events. The hidden sector proposed here include light fermions with masses near the neutrino mass mν ˜ 10-2 eV and superheavy ones with masses of the order of the GUT scale, interacting through a hidden SU(2)L interaction which also affects the ordinary sector. The construction of such combined scenario is nontrivial since the presence of light particles may spoil the stability of the heavy particle A0. However, double Higgs mechanisms may be helpful for overcoming this problem. In this context, the stability of the superheavy particle A0 is ensured due to chiral symmetry arguments elaborated in the text.

  6. Investigation of the Profile Control Mechanisms of Dispersed Particle Gel

    PubMed Central

    Zhao, Guang; Dai, Caili; Zhao, Mingwei

    2014-01-01

    Dispersed particle gel (DPG) particles of nano- to micron- to mm-size have been prepared successfully and will be used for profile control treatment in mature oilfields. The profile control and enhanced oil recovery mechanisms of DPG particles have been investigated using core flow tests and visual simulation experiments. Core flow test results show that DPG particles can easily be injected into deep formations and can effectively plug the high permeability zones. The high profile improvement rate improves reservoir heterogeneity and diverts fluid into the low permeability zone. Both water and oil permeability were reduced when DPG particles were injected, but the disproportionate permeability reduction effect was significant. Water permeability decreases more than the oil permeability to ensure that oil flows in its own pathways and can easily be driven out. Visual simulation experiments demonstrate that DPG particles can pass directly or by deformation through porous media and enter deep formations. By retention, adsorption, trapping and bridging, DPG particles can effectively reduce the permeability of porous media in high permeability zones and divert fluid into a low permeability zone, thus improving formation profiles and enhancing oil recovery. PMID:24950174

  7. Diffusion mechanism of non-interacting Brownian particles through a deformed substrate

    NASA Astrophysics Data System (ADS)

    Arfa, Lahcen; Ouahmane, Mehdi; El Arroum, Lahcen

    2018-02-01

    We study the diffusion mechanism of non-interacting Brownian particles through a deformed substrate. The study is done at low temperature for different values of the friction. The deformed substrate is represented by a periodic Remoissenet-Peyrard potential with deformability parameter s. In this potential, the particles (impurity, adatoms…) can diffuse. We ignore the interactions between these mobile particles consider them merely as non-interacting Brownian particles and this system is described by a Fokker-Planck equation. We solve this equation numerically using the matrix continued fraction method to calculate the dynamic structure factor S(q , ω) . From S(q , ω) some relevant correlation functions are also calculated. In particular, we determine the half-width line λ(q) of the peak of the quasi-elastic dynamic structure factor S(q , ω) and the diffusion coefficient D. Our numerical results show that the diffusion mechanism is described, depending on the structure of the potential, either by a simple jump diffusion process with jump length close to the lattice constant a or by a combination of a jump diffusion model with jump length close to lattice constant a and a liquid-like motion inside the unit cell. It shows also that, for different friction regimes and various potential shapes, the friction attenuates the diffusion mechanism. It is found that, in the high friction regime, the diffusion process is more important through a deformed substrate than through a non-deformed one.

  8. Note: Evaluation of slurry particle size analyzers for chemical mechanical planarization process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Sunjae; Kulkarni, Atul; Qin, Hongyi

    In the chemical mechanical planarization (CMP) process, slurry particle size is important because large particles can cause defects. Hence, selection of an appropriate particle measuring system is necessary in the CMP process. In this study, a scanning mobility particle sizer (SMPS) and dynamic light scattering (DLS) were compared for particle size distribution (PSD) measurements. In addition, the actual particle size and shape were confirmed by transmission electron microscope (TEM) results. SMPS classifies the particle size according to the electrical mobility, and measures the particle concentration (single particle measurement). On the other hand, the DLS measures the particle size distribution bymore » analyzing scattered light from multiple particles (multiple particle measurement). For the slurry particles selected for evaluation, it is observed that SMPS shows bi-modal particle sizes 30 nm and 80 nm, which closely matches with the TEM measurements, whereas DLS shows only single mode distribution in the range of 90 nm to 100 nm and showing incapability of measuring small particles. Hence, SMPS can be a better choice for the evaluation of CMP slurry particle size and concentration measurements.« less

  9. Mechanochemical mechanism for reaction of aluminium nano- and micrometre-scale particles.

    PubMed

    Levitas, Valery I

    2013-11-28

    A recently suggested melt-dispersion mechanism (MDM) for fast reaction of aluminium (Al) nano- and a few micrometre-scale particles during fast heating is reviewed. Volume expansion of 6% during Al melting produces pressure of several GPa in a core and tensile hoop stresses of 10 GPa in an oxide shell. Such stresses cause dynamic fracture and spallation of the shell. After spallation, an unloading wave propagates to the centre of the particle and creates a tensile pressure of 3-8 GPa. Such a tensile pressure exceeds the cavitation strength of liquid Al and disperses the melt into small, bare clusters (fragments) that fly at a high velocity. Reaction of the clusters is not limited by diffusion through a pre-existing oxide shell. Some theoretical and experimental results related to the MDM are presented. Various theoretical predictions based on the MDM are in good qualitative and quantitative agreement with experiments, which resolves some basic puzzles in combustion of Al particles. Methods to control and improve reactivity of Al particles are formulated, which are exactly opposite to the current trends based on diffusion mechanism. Some of these suggestions have experimental confirmation.

  10. Rotation of hard particles in a soft matrix

    NASA Astrophysics Data System (ADS)

    Yang, Weizhu; Liu, Qingchang; Yue, Zhufeng; Li, Xiaodong; Xu, Baoxing

    Soft-hard materials integration is ubiquitous in biological materials and structures in nature and has also attracted growing attention in the bio-inspired design of advanced functional materials, structures and devices. Due to the distinct difference in their mechanical properties, the rotation of hard phases in soft matrixes upon deformation has been acknowledged, yet is lack of theory in mechanics. In this work, we propose a theoretical mechanics framework that can describe the rotation of hard particles in a soft matrix. The rotation of multiple arbitrarily shaped, located and oriented particles with perfectly bonded interfaces in an elastic soft matrix subjected to a far-field tensile loading is established and analytical solutions are derived by using complex potentials and conformal mapping methods. Strong couplings and competitions of the rotation of hard particles among each other are discussed by investigating numbers, relative locations and orientations of particles in the matrix at different loading directions. Extensive finite element analyses are performed to validate theoretical solutions and good agreement of both rotation and stress field between them are achieved. Possible extensions of the present theory to non-rigid particles, viscoelastic matrix and imperfect bonding are also discussed. Finally, by taking advantage of the rotation of hard particles, we exemplify an application in a conceptual design of soft-hard material integrated phononic crystal and demonstrate that phononic band gaps can be successfully tuned with a high accuracy through the mechanical tension-induced rotation of hard particles. The present theory established herein is expected to be of immediate interests to the design of soft-hard materials integration based functional materials, structures and devices with tunable performance via mechanical rotation of hard phases.

  11. Experimental investigations of mechanical and reaction responses for drop-weight impacted energetic particles

    NASA Astrophysics Data System (ADS)

    Bao, Xiao-Wei; Wu, Yan-Qing; Wang, Ming-Yang; Huang, Feng-Lei

    2017-02-01

    Low-velocity drop-weight impact experiments on individual and multiple Cyclotetramethylene tetranitramine (HMX) energetic particles were performed using a modified drop-weight machine equipped with high-speed photography components. Multiple particles experienced more severe burning reactions than an individual particle. Comparisons between impacted salt and HMX particle show that jetting in HMX is mainly due to the motion of fragmented particles driven by gaseous reaction products. Velocity of jetting, flame propagation, and area expansion were measured via image processing, making it possible to quantify the chemical reaction or mechanical deformation violence at different stages.

  12. Stochastic mechanics of loose boundary particle transport in turbulent flow

    NASA Astrophysics Data System (ADS)

    Dey, Subhasish; Ali, Sk Zeeshan

    2017-05-01

    In a turbulent wall shear flow, we explore, for the first time, the stochastic mechanics of loose boundary particle transport, having variable particle protrusions due to various cohesionless particle packing densities. The mean transport probabilities in contact and detachment modes are obtained. The mean transport probabilities in these modes as a function of Shields number (nondimensional fluid induced shear stress at the boundary) for different relative particle sizes (ratio of boundary roughness height to target particle diameter) and shear Reynolds numbers (ratio of fluid inertia to viscous damping) are presented. The transport probability in contact mode increases with an increase in Shields number attaining a peak and then decreases, while that in detachment mode increases monotonically. For the hydraulically transitional and rough flow regimes, the transport probability curves in contact mode for a given relative particle size of greater than or equal to unity attain their peaks corresponding to the averaged critical Shields numbers, from where the transport probability curves in detachment mode initiate. At an inception of particle transport, the mean probabilities in both the modes increase feebly with an increase in shear Reynolds number. Further, for a given particle size, the mean probability in contact mode increases with a decrease in critical Shields number attaining a critical value and then increases. However, the mean probability in detachment mode increases with a decrease in critical Shields number.

  13. Nano polypeptide particles reinforced polymer composite fibers.

    PubMed

    Li, Jiashen; Li, Yi; Zhang, Jing; Li, Gang; Liu, Xuan; Li, Zhi; Liu, Xuqing; Han, Yanxia; Zhao, Zheng

    2015-02-25

    Because of the intensified competition of land resources for growing food and natural textile fibers, there is an urgent need to reuse and recycle the consumed/wasted natural fibers as regenerated green materials. Although polypeptide was extracted from wool by alkaline hydrolysis, the size of the polypeptide fragments could be reduced to nanoscale. The wool polypeptide particles were fragile and could be crushed down to nano size again and dispersed evenly among polymer matrix under melt extrusion condition. The nano polypeptide particles could reinforce antiultraviolet capability, moisture regain, and mechanical properties of the polymer-polypeptide composite fibers.

  14. Gradients in Wall Mechanics and Polysaccharides along Growing Inflorescence Stems.

    PubMed

    Phyo, Pyae; Wang, Tuo; Kiemle, Sarah N; O'Neill, Hugh; Pingali, Sai Venkatesh; Hong, Mei; Cosgrove, Daniel J

    2017-12-01

    At early stages of Arabidopsis ( Arabidopsis thaliana ) flowering, the inflorescence stem undergoes rapid growth, with elongation occurring predominantly in the apical ∼4 cm of the stem. We measured the spatial gradients for elongation rate, osmotic pressure, cell wall thickness, and wall mechanical compliances and coupled these macroscopic measurements with molecular-level characterization of the polysaccharide composition, mobility, hydration, and intermolecular interactions of the inflorescence cell wall using solid-state nuclear magnetic resonance spectroscopy and small-angle neutron scattering. Force-extension curves revealed a gradient, from high to low, in the plastic and elastic compliances of cell walls along the elongation zone, but plots of growth rate versus wall compliances were strikingly nonlinear. Neutron-scattering curves showed only subtle changes in wall structure, including a slight increase in cellulose microfibril alignment along the growing stem. In contrast, solid-state nuclear magnetic resonance spectra showed substantial decreases in pectin amount, esterification, branching, hydration, and mobility in an apical-to-basal pattern, while the cellulose content increased modestly. These results suggest that pectin structural changes are connected with increases in pectin-cellulose interaction and reductions in wall compliances along the apical-to-basal gradient in growth rate. These pectin structural changes may lessen the ability of the cell wall to undergo stress relaxation and irreversible expansion (e.g. induced by expansins), thus contributing to the growth kinematics of the growing stem. © 2017 American Society of Plant Biologists. All Rights Reserved.

  15. Rebound mechanics of micrometre-scale, spherical particles in high-velocity impacts.

    PubMed

    Yildirim, Baran; Yang, Hankang; Gouldstone, Andrew; Müftü, Sinan

    2017-08-01

    The impact mechanics of micrometre-scale metal particles with flat metal surfaces is investigated for high-velocity impacts ranging from 50 m s -1 to more than 1 km s -1 , where impact causes predominantly plastic deformation. A material model that includes high strain rate and temperature effects on the yield stress, heat generation due to plasticity, material damage due to excessive plastic strain and heat transfer is used in the numerical analysis. The coefficient of restitution e is predicted by the classical work using elastic-plastic deformation analysis with quasi-static impact mechanics to be proportional to [Formula: see text] and [Formula: see text] for the low and moderate impact velocities that span the ranges of 0-10 and 10-100 m s -1 , respectively. In the elastic-plastic and fully plastic deformation regimes the particle rebound is attributed to the elastic spring-back that initiates at the particle-substrate interface. At higher impact velocities (0.1-1 km s -1 ) e is shown to be proportional to approximately [Formula: see text]. In this deeply plastic deformation regime various deformation modes that depend on plastic flow of the material including the time lag between the rebound instances of the top and bottom points of particle and the lateral spreading of the particle are identified. In this deformation regime, the elastic spring-back initiates subsurface, in the substrate.

  16. Macromolecular crystal growing system

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S. (Inventor); Herren, Blair J. (Inventor); Carter, Daniel C. (Inventor); Yost, Vaughn H. (Inventor); Bugg, Charles E. (Inventor); Delucas, Lawrence J. (Inventor); Suddath, Fred L. (Inventor)

    1991-01-01

    A macromolecular crystal growing system especially designed for growing crystals in the low gravity of space as well as the gravity of earth includes at least one tray assembly, a carrier assembly which receives the tray, and a refrigeration-incubation module in which the carrier assembly is received. The tray assembly includes a plurality of sealed chambers with a plastic syringe and a plug means for the double tip of the syringe provided therein. Ganging mechanisms operate the syringes and plugs simultaneously in a precise and smooth operation. Preferably, the tray assemblies are mounted on ball bearing slides for smooth operation in inserting and removing the tray assemblies into the carrier assembly. The plugging mechanism also includes a loading control mechanism. A mechanism for leaving a syringe unplugged is also provided.

  17. Mechanical particle coating using polymethacrylate nanoparticle agglomerates for the preparation of controlled release fine particles: The relationship between coating performance and the characteristics of various polymethacrylates.

    PubMed

    Kondo, Keita; Kato, Shinsuke; Niwa, Toshiyuki

    2017-10-30

    We aimed to understand the factors controlling mechanical particle coating using polymethacrylate. The relationship between coating performance and the characteristics of polymethacrylate powders was investigated. First, theophylline crystals were treated using a mechanical powder processor to obtain theophylline spheres (<100μm). Second, five polymethacrylate latexes were powdered by spray freeze drying to produce colloidal agglomerates. Finally, mechanical particle coating was performed by mixing theophylline spheres and polymethacrylate agglomerates using the processor. The agglomerates were broken under mechanical stress to coat the spheres effectively. The coating performance of polymethacrylate agglomerates tended to increase as their pulverization progressed. Differences in the grindability of the agglomerates were attributed to differences in particle structure, resulting from consolidation between colloidal particles. High-grindability agglomerates exhibited higher pulverization as their glass transition temperature (T g ) increased and the further pulverization promoted coating. We therefore conclude that the minimization of polymethacrylate powder by pulverization is an important factor in mechanical particle coating using polymethacrylate with low deformability. Meanwhile, when product temperature during coating approaches T g of polymer, polymethacrylate was soften to show high coating performance by plastic deformation. The effective coating by this mechanism may be accomplished by adjusting the temperature in the processor to the T g . Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Scaling of cluster growth for coagulating active particles

    NASA Astrophysics Data System (ADS)

    Cremer, Peet; Löwen, Hartmut

    2014-02-01

    Cluster growth in a coagulating system of active particles (such as microswimmers in a solvent) is studied by theory and simulation. In contrast to passive systems, the net velocity of a cluster can have various scalings dependent on the propulsion mechanism and alignment of individual particles. Additionally, the persistence length of the cluster trajectory typically increases with size. As a consequence, a growing cluster collects neighboring particles in a very efficient way and thus amplifies its growth further. This results in unusual large growth exponents for the scaling of the cluster size with time and, for certain conditions, even leads to "explosive" cluster growth where the cluster becomes macroscopic in a finite amount of time.

  19. Interaction mechanisms between ceramic particles and atomized metallic droplets

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Lavernia, Enrique J.

    1992-10-01

    SiC particles occurred during droplet solidification. A comparison of the present results to those anticipated from well-established kinetic and thermodynamic models led to some interesting findings. First, the models proposed by Boiling and Cisse[24] and Chernov et al.[58] predict relative low critical interface velocities necessary for entrapment, inconsistent with the present experimental findings. Second, although the observed correlation between the critical front velocity and droplet diameter was generally consistent with that predicted by Stefanescu et a/.’s model,[27] the dependence on the size of SiC particles was not. In view of this discrepancy, three possible mechanisms were proposed to account for the experimental findings: nucleation of α-Al on SiC particles, entrapment of SiC particles between primary dendrite arms, and entrapment of SiC particles between secondary dendrite arms.

  20. The converter mechanism of particle acceleration and the maximum energy of cosmic rays

    NASA Astrophysics Data System (ADS)

    Kocharovsky, Vl. V.; Aharonian, F. A.; Derishev, E. V.; Kocharovsky, V. V.

    We consider the fundamental limits on the energy of particles accelerated by electromagnetic forces in various astrophysical objects [1]. We show that accelerator's parameters are strongly limited not only by the particle confinement in large-scale magnetic field or by the difference in electric potentials (generalized Hillas criterion) but also by the curvature and other types of radiative losses of accelerated particles. Optimization of these requirements in terms of accelerator's size and the magnetic field strength results in the ultimate lower limit on the overall source energy budget, which scales as the fifth power of attainable particle energy. It is demonstrated that the curvature gamma-rays accompanying the acceleration gives further restrictions for potential acceleration sites. We compare different acceleration mechanisms and show, that the converter mechanism, which we suggested earlier [2], is the least sensitive to the geometry of the magnetic field in accelerators and allows to reach cosmic-ray energies close to the fundamental limit. The converter mechanism works most efficiently in relativistic shocks or shear flows. It utilizes multiple conversions of charged particles into neutral ones (protons to neutrons and electrons/positrons to photons) and back by means of photon-induced reactions or inelastic nucleon- nucleon collisions. We discuss the properties of gamma-ray radiation, which accompanies acceleration of cosmic rays via the converter mechanism and can provide an evidence for the latter. 1. F.A. Aharonian, A.A. Belyanin, E.V. Derishev, V.V. Kocharovsky, and Vl.V. Kocharovsky, Phys. Rev. D 66, 023005 (2002). 2. E.V. Derishev, F.A. Aharonian, V.V. Kocharovsky, and Vl.V. Kocharovsky, Phys. Rev. D 68, 043003 (2003).

  1. Massless charged particles: Cosmic censorship, and the third law of black hole mechanics

    NASA Astrophysics Data System (ADS)

    Fairoos, C.; Ghosh, Avirup; Sarkar, Sudipta

    2017-10-01

    The formulation of the laws of Black hole mechanics assumes the stability of black holes under perturbations in accordance with the "cosmic censorship hypothesis" (CCH). CCH prohibits the formation of a naked singularity by a physical process from a regular black hole solution with an event horizon. Earlier studies show that naked singularities can indeed be formed leading to the violation of CCH if a near-extremal black hole is injected with massive charged particles and the backreaction effects are neglected. We investigate the validity of CCH by considering the infall of charged massless particles as well as a charged null shell. We also discuss the issue of the third law of Black hole mechanics in the presence of null charged particles by considering various possibilities.

  2. The energy dissipative mechanisms of the particle-fiber interface in a textile composite

    NASA Astrophysics Data System (ADS)

    McAllister, Quinn Patrick

    Impact resistant fabrics comprised of woven high performance fibers (e.g., Kevlar) have exhibited improved energy dissipative capability with the inclusion of nano- to micrometer sized particles. Upon impact, the particles embed and gouge adjacent fiber surfaces. While the particle-fiber interactions appear to be a primary mechanism for the increase in energy dissipation, the fundamentals of the nano- to micrometer sized gouging response of high performance fibers and the dissipation of energy due to particle gouging have not been studied previously. In this research, nanoindentation and nanoscratching techniques, which exploit probe sizes in the range of nano- to micrometers, were used to study the particle-fiber contact and develop nanoscale structure-property relationships of single Kevlar fibers. Atomic force microscopy based methods were used to create high resolution stiffness maps of fiber cross-sections, the results of which indicated that the stiffness of Kevlar 49 fibers is independent of radial position, while Kevlar KM2 fibers exhibit a reduced stiffness "shell" region (up to ˜300-350 nm thick). Instrumented indentation was used to evaluate the local response of Kevlar fibers with respect to orientation and contact size. For radial indentation, modifications to the traditional indentation analysis were developed to account for fiber curvature and finite size effects. A critical contact size was established above which the fiber response was independent of indenter size. This "homogeneous" response was used to estimate the local material properties of the Kevlar fibers through the application of an analytical model for indentation of a transversely isotropic material. The local properties of both fibers differed from their previously measured bulk properties, which was likely due, at least in part, to the deformation mechanisms of the fiber microstructure during indentation. Nanoindentation and nanoscratch tests were then conducted to study the

  3. A signed particle formulation of non-relativistic quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sellier, Jean Michel, E-mail: jeanmichel.sellier@parallel.bas.bg

    2015-09-15

    A formulation of non-relativistic quantum mechanics in terms of Newtonian particles is presented in the shape of a set of three postulates. In this new theory, quantum systems are described by ensembles of signed particles which behave as field-less classical objects which carry a negative or positive sign and interact with an external potential by means of creation and annihilation events only. This approach is shown to be a generalization of the signed particle Wigner Monte Carlo method which reconstructs the time-dependent Wigner quasi-distribution function of a system and, therefore, the corresponding Schrödinger time-dependent wave-function. Its classical limit is discussedmore » and a physical interpretation, based on experimental evidences coming from quantum tomography, is suggested. Moreover, in order to show the advantages brought by this novel formulation, a straightforward extension to relativistic effects is discussed. To conclude, quantum tunnelling numerical experiments are performed to show the validity of the suggested approach.« less

  4. Optimization of mechanical performance of oxidative nano-particle electrode nitrile butadiene rubber conducting polymer actuator.

    PubMed

    Kim, Baek-Chul; Park, S J; Cho, M S; Lee, Y; Nam, J D; Choi, H R; Koo, J C

    2009-12-01

    Present work delivers a systematical evaluation of actuation efficiency of a nano-particle electrode conducting polymer actuator fabricated based on Nitrile Butadiene Rubber (NBR). Attempts are made for maximizing mechanical functionality of the nano-particle electrode conducting polymer actuator that can be driven in the air. As the conducting polymer polypyrrole of the actuator is to be fabricated through a chemical oxidation polymerization process that may impose certain limitations on both electrical and mechanical functionality of the actuator, a coordinated study for optimization process of the actuator is necessary for maximizing its performance. In this article actuation behaviors of the nano-particle electrode polypyrrole conducting polymer is studied and an optimization process for the mechanical performance maximization is performed.

  5. Particle interaction of lubricated or unlubricated binary mixtures according to their particle size and densification mechanism.

    PubMed

    Di Martino, Piera; Joiris, Etienne; Martelli, Sante

    2004-09-01

    The aim of this study is to assess an experimental approach for technological development of a direct compression formulation. A simple formula was considered composed by an active ingredient, a diluent and a lubricant. The active ingredient and diluent were selected as an example according to their typical densification mechanism: the nitrofurantoine, a fragmenting material, and the cellulose microcrystalline (Vivapur), which is a typical visco-elastic material, equally displaying good bind and disintegrant properties. For each ingredient, samples of different particle size distribution were selected. Initially, tabletability of pure materials was studied by a rotary press without magnesium stearate. Vivapur tabletability decreases with increase in particle size. The addition of magnesium stearate as lubricant decreases tabletability of Vivapur of greater particle size, while it kept unmodified that of Vivapur of lower particle size. Differences in tabletability can be related to differences in particle-particle interactions; for Vivapur of higher particle size (Vivapur 200, 102 and 101), the lower surface area develops lower surface available for bonds, while for Vivapur of lower particle size (99 and 105) the greater surface area allows high particle proximity favouring particle cohesivity. Nitrofurantoine shows great differences in compression behaviour according to its particle size distribution. Large crystals show poorer tabletability than fine crystals, further decreased by lubricant addition. The large crystals poor tabletability is due to their poor compactibility, in spite of high compressibility and plastic intrinsic deformability; in fact, in spite of the high densification tendency, the nature of the involved bonds is very weak. Nitrofurantoine samples were then mixed with Vivapurs in different proportions. Compression behaviour of binary mixes (tabletability and compressibility) was then evaluated according to diluents proportion in the mixes. The

  6. Theoretical model of the Bergeron-Findeisen mechanism of ice crystal growth in clouds

    NASA Astrophysics Data System (ADS)

    Castellano, N. E.; Avila, E. E.; Saunders, C. P. R.

    A numerical study of growth rate of ice particles in an array of water droplets (Bergeron-Findeisen mechanism) has used the method of electrostatic image charges to determine the vapour field in which a particle grows. Analysis of growth rate in various conditions of relevance to clouds has shown that it is proportional to liquid water content and to ice particle size, while it is inversely proportional to cloud droplet size. The results show that growth rate is enhanced by several percent relative to the usual treatment in which vapour is assumed to diffuse from infinity towards a growing ice particle. The study was performed for ice particles between 25 and 150 μm radii, water droplet sizes between 6 and 20 μm diameter and a wide range of liquid water contents. A study was also made to determine the effect of reducing the vapour source at infinity so that the droplets alone provided the vapour for particle growth. A parameterisation of ice particle growth rate is given as a function of liquid water content and ice particle and droplet sizes. These studies are of importance to considerations in thunderstorm electrification processes, where the mechanism of charge transfer between ice particles and graupel could take place.

  7. From Mechanical Motion to Brownian Motion, Thermodynamics and Particle Transport Theory

    ERIC Educational Resources Information Center

    Bringuier, E.

    2008-01-01

    The motion of a particle in a medium is dealt with either as a problem of mechanics or as a transport process in non-equilibrium statistical physics. The two kinds of approach are often unrelated as they are taught in different textbooks. The aim of this paper is to highlight the link between the mechanical and statistical treatments of particle…

  8. Mechanical Evolution and Dynamics of Decollement Slip in Contractional Systems: Correlating Macro- and Micro-Scale Processes in Particle Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Morgan, J. K.

    2014-12-01

    Particle-based numerical simulations allow detailed investigations of small-scale processes and mechanisms associated with fault initiation and slip, which emerge naturally in such models. This study investigates the evolving mechanical conditions and associated micro-mechanisms during transient slip on a weak decollement propagating beneath a growing contractional wedge (e.g., accretionary prism, fold and thrust belt). The models serve as analogs of the seismic cycle, although lacking full earthquake dynamics. Nonetheless, the mechanical evolution of both decollement and upper plate can be monitored, and correlated with the particle-scale physical and contact properties, providing insights into changes that accompany such stick-slip behavior. In this study, particle assemblages consolidated under gravity and bonded to impart cohesion, are pushed at a constant velocity above a weak, unbonded decollement surface. Forward propagation of decollement slip occurs in discrete pulses, modulated by heterogeneous stress conditions (e.g., roughness, contact bridging) along the fault. Passage of decollement slip resets the stress along this horizon, producing distinct patterns: shear stress is enhanced in front of the slipped decollement due to local contact bridging and fault locking; shear stress minima occur immediately above the tip, denoting local stress release and contact reorganization following slip; more mature portions of the fault exhibit intermediate shear stress, reflecting more stable contact force distributions and magnitudes. This pattern of shear stress pre-conditions the decollement for future slip events, which must overcome the high stresses at the fault tip. Long-term slip along the basal decollement induces upper plate contraction. When upper plate stresses reach critical strength conditions, new thrust faults break through the upper plate, relieving stresses and accommodating horizontal shortening. Decollement activity retreats back to the newly formed

  9. Geometry and mechanics of growing bacterial colonies

    NASA Astrophysics Data System (ADS)

    You, Zhihong; Pearce, Daniel; Sengupta, Anupam; Giomi, Luca

    Bacterial colonies are abundant on living and non-living surfaces, and are known to mediate a broad range of processes in ecology, medicine and industry. Although extensively researched - from single cells up to the population levels - a comprehensive biophysical picture, highlighting the cell-to-colony dynamics, is still lacking. Here, using numerical and analytical models, we study the mechanics of self-organization leading to the colony morphology of cells growing on a substrate with free boundary. We consider hard rods to mimic the growth of rod-shaped non-motile cells, and show that the colony, as a whole, does not form an ordered nematic phase, nor does it result in a purely disordered (isotropic) phase. Instead, different sizes of domains, in which cells are highly aligned at specific orientations, are found. The distribution of the domain sizes follows an exponential relation - indicating the existence of a characteristic length scale that determines the domain size relative to that of the colony. A continuum theory, based on the hydrodynamics of liquid crystals, is built to account for these phenomena, and is applied to describe the buckling transition from a planar to three-dimensional (3D) colony. The theory supports preliminary experiments conducted with different strains of rod shaped bacterial cells, and reveals that the buckling transition can be regulated by varying the cell stiffness and aspect ratio. This work proposes that, in addition to biochemical pathways, the spatio-temporal organization in microbial colonies is significantly tuned by the biomechanical and geometric properties of the microbes in consideration.

  10. Fast Simulation of Membrane Filtration by Combining Particle Retention Mechanisms and Network Models

    NASA Astrophysics Data System (ADS)

    Krupp, Armin; Griffiths, Ian; Please, Colin

    2016-11-01

    Porous membranes are used for their particle retention capabilities in a wide range of industrial filtration processes. The underlying mechanisms for particle retention are complex and often change during the filtration process, making it hard to predict the change in permeability of the membrane during the process. Recently, stochastic network models have been shown to predict the change in permeability based on retention mechanisms, but remain computationally intensive. We show that the averaged behaviour of such a stochastic network model can efficiently be computed using a simple partial differential equation. Moreover, we also show that the geometric structure of the underlying membrane and particle-size distribution can be represented in our model, making it suitable for modelling particle retention in interconnected membranes as well. We conclude by demonstrating the particular application to microfluidic filtration, where the model can be used to efficiently compute a probability density for flux measurements based on the geometry of the pores and particles. A. U. K. is grateful for funding from Pall Corporation and the Mathematical Institute, University of Oxford. I.M.G. gratefully acknowledges support from the Royal Society through a University Research Fellowship.

  11. Steady-state shear flows via nonequilibrium molecular dynamics and smooth-particle applied mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Posch, H.A.; Hoover, W.G.; Kum, O.

    1995-08-01

    We simulate both microscopic and macroscopic shear flows in two space dimensions using nonequilibrium molecular dynamics and smooth-particle applied mechanics. The time-reversible {ital microscopic} equations of motion are isomorphic to the smooth-particle description of inviscid {ital macroscopic} continuum mechanics. The corresponding microscopic particle interactions are relatively weak and long ranged. Though conventional Green-Kubo theory suggests instability or divergence in two-dimensional flows, we successfully define and measure a finite shear viscosity coefficient by simulating stationary plane Couette flow. The special nature of the weak long-ranged smooth-particle functions corresponds to an unusual kind of microscopic transport. This microscopic analog is mainly kinetic,more » even at high density. For the soft Lucy potential which we use in the present work, nearly all the system energy is potential, but the resulting shear viscosity is nearly all kinetic. We show that the measured shear viscosities can be understood, in terms of a simple weak-scattering model, and that this understanding is useful in assessing the usefulness of continuum simulations using the smooth-particle method. We apply that method to the Rayleigh-Benard problem of thermally driven convection in a gravitational field.« less

  12. Influence of particle size on water absorption capacity and mechanical properties of polyethylene-wood flour composites

    NASA Astrophysics Data System (ADS)

    Zykova, A. K.; Pantyukhov, P. V.; Kolesnikova, N. N.; Popov, A. A.; Olkhov, A. A.

    2015-10-01

    Biocomposites based on low density polyethylene (LDPE) and birch wood flour (WF) were investigated. The mechanical properties and water absorption capacity were examined depending on the particle size of a filler in biocomposites. The aim of the paper is the investigation of composite properties depending on the filler particle size. The filler particle sizes were 0-80 µm, 80-140 µm, 140-200 µm, and 0-200 µm. The tensile strength of composite samples varied within the range 5.7-8.2 MPa. Elongation at break of composites varied within the range 5.1-7.5%. Highest mechanical properties were found in composites with the lowest filler fraction. Highest water absorption was observed in composition with a complex fraction of the filler. The influence of the filler particle size on composite properties was shown. It was found that an increase of the filler particle size decreases mechanical parameters and increases water absorption.

  13. Insight into particle production mechanisms via angular correlations of identified particles in pp collisions at √{s}=7 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; An, M.; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buitron, S. A. I.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; del Valle, Z. Conesa; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crkovská, J.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Di Ruzza, B.; Corchero, M. A. Diaz; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Girard, M. Fusco; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Ducati, M. B. Gay; Germain, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Grull, F. R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hladky, J.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Bustamante, R. T. Jimenez; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Uysal, A. Karasu; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Meethaleveedu, G. Koyithatta; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; Torres, E. López; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Cervantes, I. Maldonado; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Pedreira, M. Martinez; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Mishra, T.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montes, E.; De Godoy, D. A. Moreira; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao De Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira Da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Muñoz, G. Tejeda; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Limón, S. Vergara; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zimmermann, S.; Zinovjev, G.; Zmeskal, J.

    2017-08-01

    Two-particle angular correlations were measured in pp collisions at √{s} = 7 TeV for pions, kaons, protons, and lambdas, for all particle/anti-particle combinations in the pair. Data for mesons exhibit an expected peak dominated by effects associated with mini-jets and are well reproduced by general purpose Monte Carlo generators. However, for baryon-baryon and anti-baryon-anti-baryon pairs, where both particles have the same baryon number, a near-side anti-correlation structure is observed instead of a peak. This effect is interpreted in the context of baryon production mechanisms in the fragmentation process. It currently presents a challenge to Monte Carlo models and its origin remains an open question.

  14. Influence of particle shape on the microstructure evolution and the mechanical properties of granular materials

    NASA Astrophysics Data System (ADS)

    Tian, Jianqiu; Liu, Enlong; Jiang, Lian; Jiang, Xiaoqiong; Sun, Yi; Xu, Ran

    2018-06-01

    In order to study the influence of particle shape on the microstructure evolution and the mechanical properties of granular materials, a two-dimensional DEM analysis of samples with three particle shapes, including circular particles, triangular particles, and elongated particles, is proposed here to simulate the direct shear tests of coarse-grained soils. For the numerical test results, analyses are conducted in terms of particle rotations, fabric evolution, and average path length evolution. A modified Rowe's stress-dilatancy equation is also proposed and successfully fitted onto simulation data.

  15. Particle in a box in PT-symmetric quantum mechanics and an electromagnetic analog

    NASA Astrophysics Data System (ADS)

    Dasarathy, Anirudh; Isaacson, Joshua P.; Jones-Smith, Katherine; Tabachnik, Jason; Mathur, Harsh

    2013-06-01

    In PT-symmetric quantum mechanics a fundamental principle of quantum mechanics, that the Hamiltonian must be Hermitian, is replaced by another set of requirements, including notably symmetry under PT, where P denotes parity and T denotes time reversal. Here we study the role of boundary conditions in PT-symmetric quantum mechanics by constructing a simple model that is the PT-symmetric analog of a particle in a box. The model has the usual particle-in-a-box Hamiltonian but boundary conditions that respect PT symmetry rather than Hermiticity. We find that for a broad class of PT-symmetric boundary conditions the model respects the condition of unbroken PT symmetry, namely, that the Hamiltonian and the symmetry operator PT have simultaneous eigenfunctions, implying that the energy eigenvalues are real. We also find that the Hamiltonian is self-adjoint under the PT-symmetric inner product. Thus we obtain a simple soluble model that fulfills all the requirements of PT-symmetric quantum mechanics. In the second part of this paper we formulate a variational principle for PT-symmetric quantum mechanics that is the analog of the textbook Rayleigh-Ritz principle. Finally we consider electromagnetic analogs of the PT-symmetric particle in a box. We show that the isolated particle in a box may be realized as a Fabry-Perot cavity between an absorbing medium and its conjugate gain medium. Coupling the cavity to an external continuum of incoming and outgoing states turns the energy levels of the box into sharp resonances. Remarkably we find that the resonances have a Breit-Wigner line shape in transmission and a Fano line shape in reflection; by contrast, in the corresponding Hermitian case the line shapes always have a Breit-Wigner form in both transmission and reflection.

  16. Empirical Research of College Students' Alternative Frameworks of Particle Mechanics

    ERIC Educational Resources Information Center

    Wang, Hongmei

    2010-01-01

    Based on the constructive theory, about 300 college students of grade 05 of the electronic information specialty of Dezhou University are surveyed for their alternative frameworks of particle mechanics in college physics in this article. In the survey, the questionnaires are used to find out college students' alternative frameworks, and the…

  17. Diffusion rate limitations in actin-based propulsion of hard and deformable particles.

    PubMed

    Dickinson, Richard B; Purich, Daniel L

    2006-08-15

    The mechanism by which actin polymerization propels intracellular vesicles and invasive microorganisms remains an open question. Several recent quantitative studies have examined propulsion of biomimetic particles such as polystyrene microspheres, phospholipid vesicles, and oil droplets. In addition to allowing quantitative measurement of parameters such as the dependence of particle speed on its size, these systems have also revealed characteristic behaviors such a saltatory motion of hard particles and oscillatory deformation of soft particles. Such measurements and observations provide tests for proposed mechanisms of actin-based motility. In the actoclampin filament end-tracking motor model, particle-surface-bound filament end-tracking proteins are involved in load-insensitive processive insertion of actin subunits onto elongating filament plus-ends that are persistently tethered to the surface. In contrast, the tethered-ratchet model assumes working filaments are untethered and the free-ended filaments grow as thermal ratchets in a load-sensitive manner. This article presents a model for the diffusion and consumption of actin monomers during actin-based particle propulsion to predict the monomer concentration field around motile particles. The results suggest that the various behaviors of biomimetic particles, including dynamic saltatory motion of hard particles and oscillatory vesicle deformations, can be quantitatively and self-consistently explained by load-insensitive, diffusion-limited elongation of (+)-end-tethered actin filaments, consistent with predictions of the actoclampin filament-end tracking mechanism.

  18. Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles

    PubMed Central

    Kononova, Olga; Snijder, Joost; Kholodov, Yaroslav; Marx, Kenneth A.; Wuite, Gijs J. L.; Roos, Wouter H.; Barsegov, Valeri

    2016-01-01

    The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams) modeling the particle structure. The beams’ deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F)-deformation (X) spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young’s moduli for Hertzian and bending deformations, and the structural damage dependent beams’ survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications. PMID:26821264

  19. Turbulent particle transport in streams: can exponential settling be reconciled with fluid mechanics?

    PubMed

    McNair, James N; Newbold, J Denis

    2012-05-07

    Most ecological studies of particle transport in streams that focus on fine particulate organic matter or benthic invertebrates use the Exponential Settling Model (ESM) to characterize the longitudinal pattern of particle settling on the bed. The ESM predicts that if particles are released into a stream, the proportion that have not yet settled will decline exponentially with transport time or distance and will be independent of the release elevation above the bed. To date, no credible basis in fluid mechanics has been established for this model, nor has it been rigorously tested against more-mechanistic alternative models. One alternative is the Local Exchange Model (LEM), which is a stochastic advection-diffusion model that includes both longitudinal and vertical spatial dimensions and is based on classical fluid mechanics. The LEM predicts that particle settling will be non-exponential in the near field but will become exponential in the far field, providing a new theoretical justification for far-field exponential settling that is based on plausible fluid mechanics. We review properties of the ESM and LEM and compare these with available empirical evidence. Most evidence supports the prediction of both models that settling will be exponential in the far field but contradicts the ESM's prediction that a single exponential distribution will hold for all transport times and distances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. A Laboratory Study of the Charging/Discharging Mechanisms of a Dust Particle Exposed to an Electron Beam

    NASA Technical Reports Server (NTRS)

    Venturini, C. C.; Spann, J. F.; Comfort, R. H.

    1999-01-01

    The interaction of micron sized particles or "dust particles" with different space and planetary environments has become an important area of research. One particular area of interest is how dust particles interact with plasmas. Studies have shown that charged dust particles immersed in plasmas can alter plasma characteristics, while ions and electrons in plasmas can affect a particle's potential and thereby, its interaction with other particles. The basis for understanding these phenomena is the charging mechanisms of the dust particle, specifically, how the particle's charge and characteristics are affected when exposed to ions and electrons. At NASA Marshall Space Flight Center, a laboratory experiment has been developed to study the interaction of dust particles with electrons. Using a unique laboratory technique known as electrodynamic suspension, a single charged particle is suspended in a modified quadrupole trap. Once suspended, the particle is then exposed to an electron beam to study the charging/discharging mechanisms due to collisions of energetic electrons. The change in the particle's charge, approximations of the charging/discharging currents, and the charging/discharging yield are calculated.

  1. MECHANISMS OF ACTION OF INHALED FIBERS, PARTICLES AND NANOPARTICLES IN LUNG AND CARDIOVASCULAR DISEASES

    EPA Science Inventory

    ABSTRACT: A symposium on the mechanisms of action of inhaled airborne particulate matter (PM),pathogenic particles and fibers such as silica and asbestos, and nanomaterials, defined as synthetic particles or fibers less than 100 nm in diameter, was held on October 27 and 28,
    ...

  2. Axion like particles and the inverse seesaw mechanism

    DOE PAGES

    Carvajal, C. D. R.; Dias, Alex G.; Nishi, C. C.; ...

    2015-05-13

    Light pseudoscalars known as axion like particles (ALPs) may be behind physical phenomena like the Universe transparency to ultra-energetic photons, the soft -ray excess from the Coma cluster, and the 3.5 keV line. We explore the connection of these particles with the inverse seesaw (ISS) mechanism for neutrino mass generation. We propose a very restrictive setting where the scalar field hosting the ALP is also responsible for generating the ISS mass scales through its vacuum expectation value on gravity induced nonrenormalizable operators. A discrete gauge symmetry protects the theory from the appearance of overly strong gravitational effects and discrete anomalymore » cancellation imposes strong constraints on the order of the group. In conclusion, the anomalous U(1) symmetry leading to the ALP is an extended lepton number and the protective discrete symmetry can be always chosen as a subgroup of a combination of the lepton number and the baryon number.« less

  3. Water regime of mechanical-biological pretreated waste materials under fast-growing trees.

    PubMed

    Rüth, Björn; Lennartz, Bernd; Kahle, Petra

    2007-10-01

    In this study mechanical-biological pre-treated waste material (MBP) was tested for suitability to serve as an alternative surface layer in combination with fast-growing and water-consumptive trees for final covers at landfill sites. The aim was to quantify evapotranspiration and seepage losses by numerical model simulations for two sites in Germany. In addition, the leaf area index (LAI) of six tree species over the growing season as the driving parameter for transpiration calculations was determined experimentally. The maximum LAI varied between 3.8 and 6.1 m2 m(-2) for poplar and willow clones, respectively. The evapotranspiration calculations revealed that the use of MBP waste material for re-cultivation enhanced evapotranspiration by 40 mm year(-1) (10%) over an 11 year calculation period compared to a standard mineral soil. Between 82% (for LAI(max) = 3.8) and 87% (for LAI(max) = 6.1) of the average annual precipitation (506 mm) could be retained from the surface layer assuming eastern German climate conditions, compared with a retention efficiency between 79 and 82% for a mineral soil. Although a MBP layer in conjunction with water-consumptive trees can reduce vertical water losses as compared to mineral substrates, the effect is not sufficient to meet legal regulations.

  4. Comparison of mechanical and tribotechnical properties of UHMWPE reinforced with basalt fibers and particles

    NASA Astrophysics Data System (ADS)

    Panin, S. V.; Kornienko, L. A.; Alexenko, V. O.; Qitao, Huang; Ivanova, L. R.

    2016-11-01

    Mechanical and tribotechnical properties of UHMWPE composites reinforced with basalt fibers and particles under dry sliding friction and abrasion were investigated. It is shown that adding of the basalt particles provides higher wear resistance under the dry sliding friction while at abrasion filling by the basalt fibers is more efficient since the wear resistance of the reinforced UHMWPE composites is by 3.7 times higher in contrast with the neat polymer. Wear mechanisms of the polymeric UHMWPE composites under various types of wear are discussed.

  5. Particle deposition in tracheobronchial airways of an infant, child and adult.

    PubMed

    Deng, Qihong; Ou, Cuiyun; Chen, Jiao; Xiang, Yuguang

    2018-01-15

    Particle deposition in human airways is important for assessing both health effects of inhaled particles and therapeutic efficacy of inhaled drug aerosols, but is not well understood for infants and children. We investigate particle deposition in infants and children by using computational fluid dynamics (CFD), and compare this with particle deposition in adults. We chose three population age groups: 7-month infant, 4-year old child, and 20-year old adult. Both airway structures and breathing conditions are considered to vary as a human grows from infancy to adulthood. We investigated deposition of micron-size particles (1-10μm) in both the upper (G3-G6) and lower (G9-G12) tracheobronchial (TB) airways under sedentary conditions. We found that particle deposition in both upper and lower airways is the highest in an infant, next in a child, and lowest in an adult. As age increases, particle deposition decreases in the upper airways but increases in the lower. For infants, inertial impaction is the dominant deposition mechanism, thus particles are deposited more in the upper airways than in the lower. However, particles are deposited more in the lower airways than in the upper in adults, as gravitational sedimentation is the dominant deposition mechanism. Given the differences in the airway structure and particle deposition mechanisms, particle deposition in infants and children differs from that in adults, not only in the efficiency of deposition but also in the site. Our findings provide evidence that "children are not small adults". Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Particle size distribution and composition in a mechanically ventilated school building during air pollution episodes.

    PubMed

    Parker, J L; Larson, R R; Eskelson, E; Wood, E M; Veranth, J M

    2008-10-01

    Particle count-based size distribution and PM(2.5) mass were monitored inside and outside an elementary school in Salt Lake City (UT, USA) during the winter atmospheric inversion season. The site is influenced by urban traffic and the airshed is subject to periods of high PM(2.5) concentration that is mainly submicron ammonium and nitrate. The school building has mechanical ventilation with filtration and variable-volume makeup air. Comparison of the indoor and outdoor particle size distribution on the five cleanest and five most polluted school days during the study showed that the ambient submicron particulate matter (PM) penetrated the building, but indoor concentrations were about one-eighth of outdoor levels. The indoor:outdoor PM(2.5) mass ratio averaged 0.12 and particle number ratio for sizes smaller than 1 microm averaged 0.13. The indoor submicron particle count and indoor PM(2.5) mass increased slightly during pollution episodes but remained well below outdoor levels. When the building was occupied the indoor coarse particle count was much higher than ambient levels. These results contribute to understanding the relationship between ambient monitoring station data and the actual human exposure inside institutional buildings. The study confirms that staying inside a mechanically ventilated building reduces exposure to outdoor submicron particles. This study supports the premise that remaining inside buildings during particulate matter (PM) pollution episodes reduces exposure to submicron PM. New data on a mechanically ventilated institutional building supplements similar studies made in residences.

  7. Understanding the mechanism of proteasome 20S core particle gating

    PubMed Central

    Latham, Michael P.; Sekhar, Ashok; Kay, Lewis E.

    2014-01-01

    The 20S core particle proteasome is a molecular machine playing an important role in cellular function by degrading protein substrates that no longer are required or that have become damaged. Regulation of proteasome activity occurs, in part, through a gating mechanism controlling the sizes of pores at the top and bottom ends of the symmetric proteasome barrel and restricting access to catalytic sites sequestered in the lumen of the structure. Although atomic resolution models of both open and closed states of the proteasome have been elucidated, the mechanism by which gates exchange between these states remains to be understood. Here, this is investigated by using magnetization transfer NMR spectroscopy focusing on the 20S proteasome core particle from Thermoplasma acidophilum. We show from viscosity-dependent proteasome gating kinetics that frictional forces originating from random solvent motions are critical for driving the gating process. Notably, a small effective hydrodynamic radius (EHR; <4Å) is obtained, providing a picture in which gate exchange proceeds through many steps involving only very small segment sizes. A small EHR further suggests that the kinetics of gate interconversion will not be affected appreciably by large viscogens, such as macromolecules found in the cell, so long as they are inert. Indeed, measurements in cell lysate reveal that the gate interconversion rate decreases only slightly, demonstrating that controlled studies in vitro provide an excellent starting point for understanding regulation of 20S core particle function in complex, biologically relevant environments. PMID:24706783

  8. A cellular automaton for the signed particle formulation of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Sellier, J. M.; Kapanova, K. G.; Dimov, I.

    2017-02-01

    Recently, a new formulation of quantum mechanics, based on the concept of signed particles, has been suggested. In this paper, we introduce a cellular automaton which mimics the dynamics of quantum objects in the phase-space in a time-dependent fashion. This is twofold: it provides a simplified and accessible language to non-physicists who wants to simulate quantum mechanical systems, at the same time it enables a different way to explore the laws of Physics. Moreover, it opens the way towards hybrid simulations of quantum systems by combining full quantum models with cellular automata when the former fail. In order to show the validity of the suggested cellular automaton and its combination with the signed particle formalism, several numerical experiments are performed, showing very promising results. Being this article a preliminary study on quantum simulations in phase-space by means of cellular automata, some conclusions are drawn about the encouraging results obtained so far and the possible future developments.

  9. Insight into particle production mechanisms via angular correlations of identified particles in pp collisions at $$\\sqrt{\\mathrm{s}}=7$$ TeV

    DOE PAGES

    Adam, J.; Adamová, D.; Aggarwal, M. M.; ...

    2017-08-24

    We measured two-particle angular correlations in pp collisions at √s=7 TeV for pions, kaons, protons, and lambdas, for all particle/anti-particle combinations in the pair. Data for mesons exhibit an expected peak dominated by effects associated with mini-jets and are well reproduced by general purpose Monte Carlo generators. However, for baryon–baryon and anti-baryon–anti-baryon pairs, where both particles have the same baryon number, a near-side anti-correlation structure is observed instead of a peak. This effect is interpreted in the context of baryon production mechanisms in the fragmentation process. It currently presents a challenge to Monte Carlo models and its origin remains an openmore » question.« less

  10. Plume Mechanics and Particle Growth Processes.

    DTIC Science & Technology

    1981-02-10

    ini- tiated by a critical review, subsequently published (1), of the kinetics of ultrafine particles . This review has had an IA 2 important influence...particles were found in the size range 0.01-0.25 p.m (7). 8 Publications and Technical Reports 1. Brock, J. R., "The Kinetics of Ultrafine Particles ," in...of Ultrafine Particles ," Sub- mitted for publication. 4. Brock, J. R., "On the Growth of Condensation Aerosols," Submitted for publication. 5. Brock

  11. Smoothed-particle-hydrodynamics modeling of dissipation mechanisms in gravity waves.

    PubMed

    Colagrossi, Andrea; Souto-Iglesias, Antonio; Antuono, Matteo; Marrone, Salvatore

    2013-02-01

    The smoothed-particle-hydrodynamics (SPH) method has been used to study the evolution of free-surface Newtonian viscous flows specifically focusing on dissipation mechanisms in gravity waves. The numerical results have been compared with an analytical solution of the linearized Navier-Stokes equations for Reynolds numbers in the range 50-5000. We found that a correct choice of the number of neighboring particles is of fundamental importance in order to obtain convergence towards the analytical solution. This number has to increase with higher Reynolds numbers in order to prevent the onset of spurious vorticity inside the bulk of the fluid, leading to an unphysical overdamping of the wave amplitude. This generation of spurious vorticity strongly depends on the specific kernel function used in the SPH model.

  12. Laser-accelerated particle beams for stress testing of materials.

    PubMed

    Barberio, M; Scisciò, M; Vallières, S; Cardelli, F; Chen, S N; Famulari, G; Gangolf, T; Revet, G; Schiavi, A; Senzacqua, M; Antici, P

    2018-01-25

    Laser-driven particle acceleration, obtained by irradiation of a solid target using an ultra-intense (I > 10 18  W/cm 2 ) short-pulse (duration <1 ps) laser, is a growing field of interest, in particular for its manifold potential applications in different domains. Here, we provide experimental evidence that laser-generated particles, in particular protons, can be used for stress testing materials and are particularly suited for identifying materials to be used in harsh conditions. We show that these laser-generated protons can produce, in a very short time scale, a strong mechanical and thermal damage, that, given the short irradiation time, does not allow for recovery of the material. We confirm this by analyzing changes in the mechanical, optical, electrical, and morphological properties of five materials of interest to be used in harsh conditions.

  13. Impact of Particle Size of Ceramic Granule Blends on Mechanical Strength and Porosity of 3D Printed Scaffolds

    PubMed Central

    Spath, Sebastian; Drescher, Philipp; Seitz, Hermann

    2015-01-01

    3D printing is a promising method for the fabrication of scaffolds in the field of bone tissue engineering. To date, the mechanical strength of 3D printed ceramic scaffolds is not sufficient for a variety of applications in the reconstructive surgery. Mechanical strength is directly in relation with the porosity of the 3D printed scaffolds. The porosity is directly influenced by particle size and particle-size distribution of the raw material. To investigate this impact, a hydroxyapatite granule blend with a wide particle size distribution was fractioned by sieving. The specific fractions and bimodal mixtures of the sieved granule blend were used to 3D print specimens. It has been shown that an optimized arrangement of fractions with large and small particles can provide 3D printed specimens with good mechanical strength due to a higher packing density. An increase of mechanical strength can possibly expand the application area of 3D printed hydroxyapatite scaffolds. PMID:28793467

  14. Effect of microstructure of nano- and micro-particle filled polymer composites on their tribo-mechanical performance

    NASA Astrophysics Data System (ADS)

    Devaprakasam, D.; Hatton, P. V.; Möbus, G.; Inkson, B. J.

    2008-08-01

    In this work we have investigated the influence of nanoscale and microscale structure on the tribo-mechanical performance and failure mechanisms of two biocompatible dental polymer composites, with different reinforcing particulates, using advanced microscopy techniques. Nano- and micro structural analysis reveals the shape, size and distribution of the particles in the composites. In the microparticle filled polymer composite (microcomposite), the particles are of irregular shape with sharp edges with non-uniform distribution in the matrix. However, in the nanoparticle filled composites (nanocomposite), filler particles are spherical in shape with uniform distribution in the matrix. From nanoindentation measurements, hardness and reduced modulus of the microcomposite were found to be heterogeneous. However, the hardness and reduced modulus of the nanocomposite were found to be homogeneous. The nanocomposite shows better tribo-mechanical performance compared to that of the microcomposite.

  15. The experimental investigation of the ignition petrol mechanism at high temperature metal single particles

    NASA Astrophysics Data System (ADS)

    Zakharevich, Arkadiy V.; Osotova, Diana S.

    2015-01-01

    The flammable substance by single "hot" metallic particle ignition mechanism are experimentally investigated. On the basis experimental data it is established that the gasoline ignition occurs only with interaction of the mixture of its vapors with air and "hot" particle with the vapors concentrations, which correspond to the evaporating the gasoline conditions at room temperatures. The probability of gasoline vapors mixture with air igniting rapidly is reduced in proportion to their withdrawal from the evaporation surface. Ignition occurs neither in the vapor phase nor on the gasoline surface, even if particle is immersed in it in full or in partly, if the particle temperature is lower than the critical.

  16. Experimental investigation of particle deposition mechanisms in the lung acinus using microfluidic models.

    NASA Astrophysics Data System (ADS)

    Fishler, Rami; Mulligan, Molly; Dubowski, Yael; Sznitman, Josue; Sznitman Lab-department of Biomedical Engineering Team; Dubowski Lab-faculty of Civil; Environmental Engineering Team

    2014-11-01

    In order to experimentally investigate particle deposition mechanisms in the deep alveolated regions of the lungs, we have developed a novel microfluidic device mimicking breathing acinar flow conditions directly at the physiological scale. The model features an anatomically-inspired acinar geometry with five dichotomously branching airway generations lined with periodically expanding and contracting alveoli. Deposition patterns of airborne polystyrene microspheres (spanning 0.1 μm to 2 μm in diameter) inside the airway tree network compare well with CFD simulations and reveal the roles of gravity and Brownian motion on particle deposition sites. Furthermore, measured trajectories of incense particles (0.1-1 μm) inside the breathing device show a critical role for Brownian diffusion in determining the fate of inhaled sub-micron particles by enabling particles to cross from the acinar ducts into alveolar cavities, especially during the short time lag between inhalation and exhalation phases.

  17. Mechanisms of Current Transfer in Electrodeposited Layers of Submicron Semiconductor Particles

    NASA Astrophysics Data System (ADS)

    Zhukov, N. D.; Mosiyash, D. S.; Sinev, I. V.; Khazanov, A. A.; Smirnov, A. V.; Lapshin, I. V.

    2017-12-01

    Current-voltage ( I- V) characteristics of conductance in multigrain layers of submicron particles of silicon, gallium arsenide, indium arsenide, and indium antimonide have been studied. Nanoparticles of all semiconductors were obtained by processing initial single crystals in a ball mill and applied after sedimentation onto substrates by means of electrodeposition. Detailed analysis of the I- V curves of electrodeposited layers shows that their behavior is determined by the mechanism of intergranular tunneling emission from near-surface electron states of submicron particles. Parameters of this emission process have been determined. The proposed multigrain semiconductor structures can be used in gas sensors, optical detectors, IR imagers, etc.

  18. Intrinsic Size Effect in Scaffolded Porous Calcium Silicate Particles and Mechanical Behavior of Their Self-Assembled Ensembles.

    PubMed

    Hwang, Sung Hoon; Shahsavari, Rouzbeh

    2018-01-10

    Scaffolded porous submicron particles with well-defined diameter, shape, and pore size have profound impacts on drug delivery, bone-tissue replacement, catalysis, sensors, photonic crystals, and self-healing materials. However, understanding the interplay between pore size, particle size, and mechanical properties of such ultrafine particles, especially at the level of individual particles and their ensemble states, is a challenge. Herein, we focus on porous calcium-silicate submicron particles with various diameters-as a model system-and perform extensive 900+ nanoindentations to completely map out their mechanical properties at three distinct structural forms from individual submicron particles to self-assembled ensembles to pressure-induced assembled arrays. Our results demonstrate a notable "intrinsic size effect" for individual porous submicron particles around ∼200-500 nm, induced by the ratio of particle characteristic diameter to pore characteristic size distribution. Increasing this ratio results in a brittle-to-ductile transition where the toughness of the submicron particles increases by 120%. This size effect becomes negligible as the porous particles form superstructures. Nevertheless, the self-assembled arrays collectively exhibit increasing elastic modulus as a function of applied forces, while pressure-induced compacted arrays exhibit no size effect. This study will impact tuning properties of individual scaffolded porous particles and can have implications on self-assembled superstructures exploiting porosity and particle size to impart new functionalities.

  19. SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES

    EPA Science Inventory

    SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES
    Y.M. Kim, A.G. Lenz, R. Silbajoris, I. Jaspers and J.M. Samet. Department of Environmental Sciences and Engineering and Center for Environmental Medicine, University of North Carolina, ...

  20. New Mechanism of Extractive Electrospray Ionization Mass Spectrometry for Heterogeneous Solid Particles.

    PubMed

    Kumbhani, S; Longin, T; Wingen, L M; Kidd, C; Perraud, V; Finlayson-Pitts, B J

    2018-02-06

    Real-time in situ mass spectrometry analysis of airborne particles is important in several applications, including exposure studies in ambient air, industrial settings, and assessing impacts on visibility and climate. However, obtaining molecular and 3D structural information is more challenging, especially for heterogeneous solid or semisolid particles. We report a study of extractive electrospray ionization mass spectrometry (EESI-MS) for the analysis of solid particles with an organic coating. The goal is to elucidate how much of the overall particle content is sampled, and determine the sensitivity of this technique to the surface layers. It is shown that, for NaNO 3 particles coated with glutaric acid (GA), very little of the solid NaNO 3 core is sampled compared to the GA coating, whereas for GA particles coated with malonic acid (MA), significant signals from both the MA coating and the GA core are observed. However, conventional ESI-MS of the same samples collected on a Teflon filter (and then extracted) detects much more core material compared to EESI-MS in both cases. These results show that, for the experimental conditions used here, EESI-MS does not sample the entire particle but, instead, is more sensitive to surface layers. Separate experiments on single-component particles of NaNO 3 , GA, or citric acid show that there must be a kinetics limitation to dissolution that is important in determining EESI-MS sensitivity. We propose a new mechanism of EESI solvent droplet interaction with solid particles that is consistent with the experimental observations. In conjunction with previous EESI-MS studies of organic particles, these results suggest that EESI does not necessarily sample the entire particle when solid, and that not only solubility but also surface energies and the kinetics of dissolution play an important role.

  1. Self Assembled Particles

    NASA Technical Reports Server (NTRS)

    Palacci, Jeremie (Inventor); Pine, David J. (Inventor); Chaikin, Paul Michael (Inventor); Sacanna, Stefano (Inventor)

    2017-01-01

    A self-assembling structure using non-equilibrium driving forces leading to 'living crystals' and other maniputable particles with a complex dynamics. The dynamic self-assembly assembly results from a competition between self-propulsion of particles and an attractive interaction between the particles. As a result of non-equilibrium driving forces, the crystals form, grow, collide, anneal, repair themselves and spontaneously self-destruct, thereby enabling reconfiguration and assembly to achieve a desired property.

  2. Room temperature deformation mechanisms of alumina particles observed from in situ micro-compression and atomistic simulations.

    DOE PAGES

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay D.; ...

    2015-09-22

    Aerosol deposition (AD) is a solid-state deposition technology that has been developed to fabricate ceramic coatings nominally at room temperature. Sub-micron ceramic particles accelerated by pressurized gas impact, deform, and consolidate on substrates under vacuum. Ceramic particle consolidation in AD coatings is highly dependent on particle deformation and bonding; these behaviors are not well understood. In this work, atomistic simulations and in situ micro-compressions in the scanning electron microscope, and the transmission electron microscope (TEM) were utilized to investigate fundamental mechanisms responsible for plastic deformation/fracture of particles under applied compression. Results showed that highly defective micron-sized alumina particles, initially containingmore » numerous dislocations or a grain boundary, exhibited no observable shape change before fracture/fragmentation. Simulations and experimental results indicated that particles containing a grain boundary only accommodate low strain energy per unit volume before crack nucleation and propagation. In contrast, nearly defect-free, sub-micron, single crystal alumina particles exhibited plastic deformation and fracture without fragmentation. Dislocation nucleation/motion, significant plastic deformation, and shape change were observed. Simulation and TEM in situ micro-compression results indicated that nearly defect-free particles accommodate high strain energy per unit volume associated with dislocation plasticity before fracture. As a result, the identified deformation mechanisms provide insight into feedstock design for AD.« less

  3. Alveolar macrophage cytokine response to air pollution particles: oxidant mechanisms.

    PubMed

    Imrich, Amy; Ning, YaoYu; Lawrence, Joy; Coull, Brent; Gitin, Elena; Knutson, Mitchell; Kobzik, Lester

    2007-02-01

    Alveolar macrophages (AMs) primed with LPS and treated with concentrated ambient air particles (CAPs) showed enhanced release of tumor necrosis factor (TNF) and provide an in vitro model for the amplified effects of air pollution particles seen in people with preexisting lung disease. To investigate the mechanism(s) by which CAPs mediate TNF release in primed rat AMs, we first tested the effect of a panel of antioxidants. N-Acetyl-l-cysteine (20 mM), dimethyl thiourea (20 mM) and catalase (5 microM) significantly inhibited TNF release by primed AMs incubated with CAPs. Conversely, when LPS-primed AMs were treated with CAPs in the presence of exogenous oxidants (H(2)O(2) generated by glucose oxidase, 10 microM/h), TNF release and cell toxicity was significantly increased. The soluble fraction of CAPs suspensions caused most of the increased bioactivity in the presence of exogenous H(2)O(2). The metal chelator deferoxamine (DFO) strongly inhibited the interaction of the soluble fraction with H(2)O(2) but had no effect on the bioactivity of the insoluble CAPs fraction. We conclude that CAPs can mediate their effects in primed AMs by acting on oxidant-sensitive cytokine release in at least two distinct ways. In the primed cell, insoluble components of PM mediate enhanced TNF production that is H(2)O(2)-dependent (catalase-sensitive) yet independent of iron (DFO-insensitive). In the presence of exogenous H(2)O(2) released by AMs, PMNs, or other lung cells within an inflamed alveolar milieu, soluble iron released from air particles can also mediate cytokine release and cell toxicity.

  4. Characterization of Inherent Particles and Mechanism of Thermal Stress Induced Particle Formation in HSV-2 Viral Vaccine Candidate.

    PubMed

    Li, Lillian; Kirkitadze, Marina; Bhandal, Kamaljit; Roque, Cristopher; Yang, Eric; Carpick, Bruce; Rahman, Nausheen

    2017-11-10

    Vaccine formulations may contain visible and/or subvisible particles, which can vary in both size and morphology. Extrinsic particles, which are particles not part of the product such as foreign contaminants, are generally considered undesirable and should be eliminated or controlled in injectable products. However, biological products, in particular vaccines, may also contain particles that are inherent to the product. Here we focus on the characterization of visible and subvisible particles in a live, replication-deficient viral vaccine candidate against HSV genital herpes in an early developmental stage. HSV-2 viral vaccine was characterized using a panel of analytical methods, including Fourier transform infrared spectroscopy (FTIR), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Western blot, liquid chromatography-mass spectrometry (LC-MS), light microscopy, transmission electron microscopy (TEM), micro-flow imaging (MFI), dynamic light scattering (DLS), right angle light scattering (RALS), and intrinsic fluorescence. Particles in HSV-2 vaccine typically ranged from hundreds of nanometers to hundreds of micrometers in size and were determined to be inherent to the product. The infectious titer did not correlate with any trend in subvisible particle concentration and size distribution as shown by DLS, MFI, and TEM under stressed conditions. This suggested that particle changes in the submicron range were related to HSV-2 virion structure and had direct impact on biological activity. It was also observed that subvisible and visible particles could induce aggregation in the viral product. The temperature induced aggregation was observed by RALS, intrinsic fluorescence, and DLS. The increase of subvisible particle size with temperature could be fitted to a two-step thermokinetic model. Visible and subvisible particles were found to be inherent to the HSV-2 viral vaccine product. The mechanism of protein aggregation was discussed and a two

  5. Mechanisms related to the genotoxicity of particles in the subway and from other sources.

    PubMed

    Karlsson, Hanna L; Holgersson, Asa; Möller, Lennart

    2008-03-01

    Negative health effects of airborne particles have clearly been shown in epidemiological studies. People get exposed to particles from various sources such as the combustion of, for example, diesel and wood and also from particles arising from tire-road wear. Another source of importance for certain populations is exposure to particles in subway systems. We recently reported that these particles were more genotoxic when compared to that of several other particle types. The aim of this study was to further investigate and compare the toxicity of subway particles and particles from other sources as well as investigate some mechanisms behind the genotoxicity of subway particles. This was done by comparing the ability of subway particles and particles from a street, pure tire-road wear particles, and particles from wood and diesel combustion to cause mitochondrial depolarization and to form intracellular reactive oxygen species (ROS). Furthermore, the genotoxicity and ability to cause oxidative stress was compared to magnetite particles since this is a main component in subway particles. It was concluded that the subway particles and also street particles and particles from wood and diesel combustion caused mitochondrial depolarization. The ability to damage the mitochondria is thus not the only explanation for the high genotoxicity of subway particles. Subway particles also formed intracellular ROS. This effect may be part of the explanation as to why subway particles show such high genotoxicity when compared to that of other particles. Genotoxicity can, however, not be explained by the main component, magnetite, by water-soluble metals, or by intracellular mobilized iron. The genotoxicity is most likely caused by highly reactive surfaces giving rise to oxidative stress.

  6. Adhesion mechanisms on solar glass: Effects of relative humidity, surface roughness, and particle shape and size

    DOE PAGES

    Moutinho, Helio R.; Jiang, Cun -Sheng; To, Bobby; ...

    2017-07-27

    To better understand and quantify soiling rates on solar panels, we are investigating the adhesion mechanisms between dust particles and solar glass. In this work, we report on two of the fundamental adhesion mechanisms: van der Waals and capillary adhesion forces. The adhesion was determined using force versus distance (F-z) measurements performed with an atomic force microscope (AFM). To emulate dust interacting with the front surface of a solar panel, we measured how oxidized AFM tips, SiO 2 glass spheres, and real dust particles adhered to actual solar glass. The van der Waals forces were evaluated by measurements performed withmore » zero relative humidity in a glove box, and the capillary forces were measured in a stable environment created inside the AFM enclosure with relative humidity values ranging from 18% to 80%. To simulate topographic features of the solar panels caused by factors such as cleaning and abrasion, we induced different degrees of surface roughness in the solar glass. As a result, we were able to 1) identify and quantify both the van der Waals and capillary forces, 2) establish the effects of surface roughness, relative humidity, and particle size on the adhesion mechanisms, and 3) compare adhesion forces between well-controlled particles (AFM tips and glass spheres) and real dust particles.« less

  7. Particle Trapping Mechanisms Are Different in Spatially Ordered and Disordered Interacting Gels.

    PubMed

    Hansing, Johann; Netz, Roland R

    2018-06-05

    Using stochastic simulations, we study the influence of spatial disorder on the diffusion of a single particle through a gel that consists of rigid, straight fibers. The interaction between the particle and the gel fibers consists of an invariant short-range repulsion, the steric part, and an interaction part that can be attractive or repulsive and of varying range. The effect that spatial disorder of the gel structure has on the particle diffusivity depends crucially on the presence of nonsteric interactions. For attractive interactions, disorder slows down diffusion, because in disordered gels, the particle becomes strongly trapped in regions of locally increased fiber density. For repulsive interactions, the diffusivity is minimal for intermediate disorder strength, because highly disordered lattices exhibit abundant passageways of locally low fiber density. The comparison with experimental data on protein and fluorophore diffusion through various hydrogels is favorable. Our findings shed light on particle-diffusion mechanisms in biogels and thus on biological barrier properties, which can be helpful for the optimal design of synthetic diffusors as well as synthetic mucus constructs. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Selecting the swimming mechanisms of colloidal particles: bubble propulsion versus self-diffusiophoresis.

    PubMed

    Wang, Sijia; Wu, Ning

    2014-04-01

    Bubble propulsion and self-diffusiophoresis are two common mechanisms that can drive autonomous motion of microparticles in hydrogen peroxide. Although microtubular particles, when coated with platinum in their interior concave surfaces, can propel due to the formation and release of bubbles from one end, the convex Janus particles usually do not generate any visible bubble. They move primarily due to the self-diffusiophoresis. Coincidentally, the platinum films on those particles were typically coated by physical evaporation. In this paper, we use a simple chemical deposition method to make platinum-polystyrene Janus dimers. Surprisingly, those particles are propelled by periodic growth and collapse of bubbles on the platinum-coated lobes. We find that both high catalytic activity and rough surface are necessary to change the propulsion mode from self-diffusiophoresis to bubble propulsion. Our Janus dimers, with combined geometric and interfacial anisotropy, also exhibit distinctive motions at the respective stages of bubble growth and collapse, which differ by 5-6 orders of magnitude in time. Our study not only provides insight into the link between self-diffusiophoresis and bubble propulsion but also reveals the intriguing impacts of the combined geometric and interfacial anisotropy on self-propulsion of particles.

  9. Convection in deep vertically shaken particle beds. III. Convection mechanisms

    NASA Astrophysics Data System (ADS)

    Klongboonjit, Sakon; Campbell, Charles S.

    2008-10-01

    Convection in a deep vertically vibrated two-dimensional cell of granular material occurs in the form of counter-rotating cells that move material from the walls to the center of the channel and back again. At least for deep beds, where for much of the cycle, particles are in long duration contact with their neighbors, convection only appears for a short potion of every third vibrational period. That period is delimited by the interaction of three types of internal waves, a compression wave, and two types of expansion waves. Four mechanisms are identified that drive the four basic motions of convection: (1) particles move upward at the center as the result of compression wave, (2) downward at the wall as a combined effect of frictional holdback by the walls and the downward pull of gravity, (3) from the center to the walls along the free surface due to the heaping of the bed generated by the compression wave, and (4) toward the center in the interior of the box to form the bottom of convection rolls due to the relaxation of compressive stresses caused by an expansion wave. Convection only occurs when the conditions are right for all four mechanisms to be active simultaneously.

  10. Mechanisms for the clustering of inertial particles in the inertial range of isotropic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bragg, Andrew D.; Ireland, Peter J.; Collins, Lance R.

    2015-08-27

    In this study, we consider the physical mechanism for the clustering of inertial particles in the inertial range of isotropic turbulence. We analyze the exact, but unclosed, equation governing the radial distribution function (RDF) and compare the mechanisms it describes for clustering in the dissipation and inertial ranges. We demonstrate that in the limit St r <<1, where St r is the Stokes number based on the eddy turnover time scale at separation r, the clustering in the inertial range can be understood to be due to the preferential sampling of the coarse-grained fluid velocity gradient tensor at that scale.more » When St r≳O(1) this mechanism gives way to a nonlocal clustering mechanism. These findings reveal that the clustering mechanisms in the inertial range are analogous to the mechanisms that we identified for the dissipation regime. Further, we discuss the similarities and differences between the clustering mechanisms we identify in the inertial range and the “sweep-stick” mechanism developed by Coleman and Vassilicos. We show that the idea that initial particles are swept along with acceleration stagnation points is only approximately true because there always exists a finite difference between the velocity of the acceleration stagnation points and the local fluid velocity. This relative velocity is sufficient to allow particles to traverse the average distance between the stagnation points within the correlation time scale of the acceleration field. We also show that the stick part of the mechanism is only valid for St r<<1 in the inertial range. We emphasize that our clustering mechanism provides the more fundamental explanation since it, unlike the sweep-stick mechanism, is able to explain clustering in arbitrary spatially correlated velocity fields. We then consider the closed, model equation for the RDF given in Zaichik and Alipchenkov and use this, together with the results from our analysis, to predict the analytic form of the RDF in the

  11. Improving the particle distribution and mechanical properties of friction-stir-welded composites by using a smooth pin tool

    NASA Astrophysics Data System (ADS)

    Liu, Huijie; Hu, Yanying; Zhao, Yunqiang; Fujii, Hidetoshi

    2017-09-01

    Friction stir welding (FSW) is a very promising technique for joining particle-reinforced aluminum-matrix composites (PRAMCs), but with increase in the volume fraction of reinforcing particles, their distribution in welds becomes inhomogeneous. This leads to an inconsistent deformation of welds and their destruction at low stresses. In order to improve the weld microstructure, a smooth pin tool was used for the friction stir welding of AC4A + 30 vol.% SiC particle-reinforced aluminum-matrix composites. The present work describes the effect of welding parameters on the characteristics of particle distribution and the mechanical properties of welds. The ultimate strength of weld reached, 309 MPa, was almost 190% of that of the basic material. The mechanism of SiC particle conglomeration is clearly illustrated by means of schematic illustrations.

  12. Particle trajectories and clearing times after mechanical door openings on the MSX satellite

    NASA Astrophysics Data System (ADS)

    Green, B. David; Galica, Gary E.; Mulhall, Phillip A.; Dyer, James S.; Uy, O. Manuel

    1996-11-01

    Particles generated from spacecraft surfaces will interfere with the remote sensing of emissions from objects in space, the earth, and its upper atmosphere. We have previously reviewed the sources, sizes, and composition of particles observed in local spacecraft environments and presented predictions of the optical signatures these particles would generate and presented predictions of the signatures of these nearfield particles as detected by spacecraft optical systems. Particles leaving spacecraft surfaces will be accelerated by atmospheric drag (and magnetic forces if charged). Velocities and accelerations relative to the spacecraft x,y,z, coordinate system allow the particle to move through the optical sensors' field-of-view after they leave the spacecraft surfaces. The particle's trajectory during the optical system integration time gives rise to a particle track in the detected image. Particles can be remotely detected across the UV-IR spectral region by their thermal emission, scattered sunlight, and earthshine. The spectral-bandpass-integrated signatures of these particles (dependent upon size and composition) is then mapped back onto the UV, visible, and IR sensor systems. At distances less than kilometers, these particles are out of focus for telescoped imaging systems. The image produced is blurred over several pixels. We present here data on the optical signatures observed after the mechanical doors covering the MSX primary optical sensors are removed. This data represents the first observations by these sensors on-orbit, and must be treated as preliminary until a more careful review and calibration is completed. Within these constraints, we have analyzed the data to derive preliminarily positions and trajectories.

  13. Fast-match on particle swarm optimization with variant system mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Yuehuang; Fang, Xin; Chen, Jie

    2018-03-01

    Fast-Match is a fast and effective algorithm for approximate template matching under 2D affine transformations, which can match the target with maximum similarity without knowing the target gesture. It depends on the minimum Sum-of-Absolute-Differences (SAD) error to obtain the best affine transformation. The algorithm is widely used in the field of matching images because of its fastness and robustness. In this paper, our approach is to search an approximate affine transformation over Particle Swarm Optimization (PSO) algorithm. We treat each potential transformation as a particle that possesses memory function. Each particle is given a random speed and flows throughout the 2D affine transformation space. To accelerate the algorithm and improve the abilities of seeking the global excellent result, we have introduced the variant system mechanism on this basis. The benefit is that we can avoid matching with huge amount of potential transformations and falling into local optimal condition, so that we can use a few transformations to approximate the optimal solution. The experimental results prove that our method has a faster speed and a higher accuracy performance with smaller affine transformation space.

  14. Nanosized-Particle Dispersion-Strengthened Al Matrix Composites Fabricated by the Double Mechanical Alloying Process.

    PubMed

    Kim, Chungseok

    2018-03-01

    The objective of this study was to fabricate an Al metal matrix composite strengthened by nanosized Al3Ti particles via double mechanical alloying process. Several Al-xTi alloys were fabricated, including Al-12%Ti, Al-15%Ti, and Al-12%Ti-1%Y2O3. The lattice parameter of as-milled state was calculated to be 4.0485 Å; after a milling time of 540 min, it was 4.0401 Å. This decrease was induced by Ti solutionizing into the Al matrix. The equivalent size of a coarse Al3Ti particle was 200-500 nm after the heat treatment; however, the particles were uniformly distributed and were refined through the MA2 process. The particle size of a Al3Ti phase was 30 nm or less, and the particles were uniformly distributed. These particles remained in a fine state in the matrix without growth and coarsening, even after the hot extrusion process. The microstructure of hot extruded alloys consisted of a uniform distribution of Al3Ti particles and other dispersoids in the Al matrix.

  15. Primary Surface Particle Motion as a Mechanism for YORP-Driven Binary Asteroid Evolution

    NASA Astrophysics Data System (ADS)

    Fahnestock, Eugene G.; Scheeres, D. J.

    2008-09-01

    Within the largest class of binary asteroid systems -- asynchronous binaries typified by 1999 KW4 -- we hypothesize continued YORP spin-up of the rapidly rotating primary leads to recurring episodic lofting motion of primary equator regolith. We theorize this is a mechanism for transporting YORP-injected angular momentum from primary spin into the mutual orbit. This both enables binary primaries to continue to spin at near surface fission rates and produces continued orbit expansion on time scales several times faster than expansion predicted by tidal dissipation alone. This is distinct from the Binary Yorp (BYORP) phenomenon, not studied in this work but to be added to it later. We evaluate our hypotheses using a combination of techniques for an example binary system. First high-fidelity dynamic simulation of surface-originating particles in the full-detail gravity field of the binary components, themselves propagated according to the full two body problem, gives particle final disposition (return impact, transfer impact, escape). Trajectory end states found for regolith lofted at different initial primary spin rates and relative poses are collected into probability matrices, allowing probabilistic propagation of surface particles for long durations at low computational cost. We track changes to mass, inertia dyad, rotation state, and centroid position and velocity for each component in response to this mapped particle motion. This allows tracking of primary, secondary, and mutual orbit angular momenta over time, clearly demonstrating the angular momentum transfer mechanism and validating our hypotheses. We present current orbit expansion rates and estimated orbit size doubling times consistent with this mechanism, for a few binary systems. We also discuss ramifications of this type of rapid binary evolution towards separation, including the frequency with which "divorced binaries" on similar heliocentric orbits are produced, formation of triple systems such as

  16. Mechanisms of algal and microplastic particle motion in the feeding current of Pseudodiaptamus pelagicus

    NASA Astrophysics Data System (ADS)

    Spang, Aletha; Kreft Pearce, Jennifer

    Plastic pollution and degradation are major problems for the health of marine food webs, due to the accumulation of microplastics in zooplankton biomass and magnification in successive trophic levels. As the amount of plastic pollution in marine ecosystems increases, calanoid copepods have been observed ingesting microplastic particles trapped in their feeding currents, resulting in reduced amounts of nutrients available per energy expended (Desforges et al. 2015). In this study, the copepod Pseudodiaptamus pelagicus will be filmed feeding on similarly sized unicellular algae and polystyrene beads. Particles will be tracked and analyzed for retention times, average speeds, and motion patterns. This technique will investigate the specific mechanics of particle motion close to the mouthparts of the copepod, and whether significant differences exist between food and non-food particles.

  17. Mechanical properties and strengthening mechanism of epoxy resin reinforced with nano-SiO2 particles and multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Xiao, Chufan; Tan, Yefa; Yang, Xupu; Xu, Ting; Wang, Lulu; Qi, Zehao

    2018-03-01

    Nano-SiO2 particles and MWCNTs were used to reinforce the EPs. The mechanical properties of the composites and the strengthening mechanisms of nano-SiO2 and MWCNTs on the mechanical properties of epoxy composites were studied. The results show that the mechanical properties of the reinforced epoxy composites are greatly improved. Especially, nano-SiO2/MWCNTs/EP composites exhibit the most excellent mechanical properties. The synergistic strengthening mechanisms of nano-SiO2 and MWCNTs on the EP are the micro plastic deformation effect, micro-cracks and their divarication effect, and the pull-out effect of MWCNTs in EP matrix, which can reduce the extent of stress concentration and absorb more energy.

  18. Surface transport mechanisms in molecular glasses probed by the exposure of nano-particles

    NASA Astrophysics Data System (ADS)

    Ruan, Shigang; Musumeci, Daniele; Zhang, Wei; Gujral, Ankit; Ediger, M. D.; Yu, Lian

    2017-05-01

    For a glass-forming liquid, the mechanism by which its surface contour evolves can change from bulk viscous flow at high temperatures to surface diffusion at low temperatures. We show that this mechanistic change can be conveniently detected by the exposure of nano-particles native in the material. Despite its high chemical purity, the often-studied molecular glass indomethacin contains low-concentration particles approximately 100 nm in size and 0.3% in volume fraction. Similar particles are present in polystyrene, another often-used model. In the surface-diffusion regime, particles are gradually exposed in regions vacated by host molecules, for example, the peak of a surface grating and the depletion zone near a surface crystal. In the viscous-flow regime, particle exposure is not observed. The surface contour around an exposed particle widens over time in a self-similar manner as 3 (Bt)1/4, where B is a surface mobility constant and the same constant obtained by surface grating decay. This work suggests that in a binary system composed of slow- and fast-diffusing molecules, slow-diffusing molecules can be stranded in surface regions vacated by fast-diffusing molecules, effectively leading to phase separation.

  19. Cyclic Polyynes as Examples of the Quantum Mechanical Particle on a Ring

    ERIC Educational Resources Information Center

    Anderson, Bruce D.

    2012-01-01

    Many quantum mechanical models are discussed as part of the undergraduate physical chemistry course to help students understand the connection between eigenvalue expressions and spectroscopy. Typical examples covered include the particle in a box, the harmonic oscillator, the rigid rotor, and the hydrogen atom. This article demonstrates that…

  20. Component-specific, cigarette particle deposition modeling in the human respiratory tract

    PubMed Central

    Price, Owen T.; Yurteri, Caner U.; Dickens, Colin; McAughey, John

    2014-01-01

    Inhalation of cigarette smoke particles (CSP) leads to adverse health effects in smokers. Determination of the localized dose to the lung of the inhaled smoke aids in determining vulnerable sites, and identifying components of the smoke that may be responsible for the adverse effects; thus providing a roadmap for harm reduction of cigarette smoking. A particle deposition model specific to CSP was developed for the oral cavity and the lung by accounting for cigarette particle size growth by hygroscopicity, phase change and coagulation. In addition, since the cigarette puff enters the respiratory tract as a dense cloud, the cloud effect on particle drag and deposition was accounted for in the deposition model. Models of particle losses in the oral cavities were developed during puff drawing and subsequent mouth-hold. Cigarette particles were found to grow by hygroscopicity and coagulation, but to shrink as a result of nicotine evaporation. The particle size reached a plateau beyond which any disturbances in the environmental conditions caused the various mechanisms to balance each other out and the particle size remain stable. Predicted particle deposition considering the cloud effects was greater than when treated as a collection of non-interacting particles (i.e. no cloud effects). Accounting for cloud movement provided the necessary physical mechanism to explain the greater than expected, experimentally observed and particle deposition. The deposition model for CSP can provide the necessary input to determine the fate of inhaled CSP in the lung. The knowledge of deposition will be helpful for health assessment and identification and reduction of harmful components of CSP. PMID:24354791

  1. Two size-selective mechanisms specifically trap bacteria-sized food particles in Caenorhabditis elegans.

    PubMed

    Fang-Yen, Christopher; Avery, Leon; Samuel, Aravinthan D T

    2009-11-24

    Caenorhabditis elegans is a filter feeder: it draws bacteria suspended in liquid into its pharynx, traps the bacteria, and ejects the liquid. How pharyngeal pumping simultaneously transports and filters food particles has been poorly understood. Here, we use high-speed video microscopy to define the detailed workings of pharyngeal mechanics. The buccal cavity and metastomal flaps regulate the flow of dense bacterial suspensions and exclude excessively large particles from entering the pharynx. A complex sequence of contractions and relaxations transports food particles in two successive trap stages before passage into the terminal bulb and intestine. Filtering occurs at each trap as bacteria are concentrated in the central lumen while fluids are expelled radially through three apical channels. Experiments with microspheres show that the C. elegans pharynx, in combination with the buccal cavity, is tuned to specifically catch and transport particles of a size range corresponding to most soil bacteria.

  2. Two size-selective mechanisms specifically trap bacteria-sized food particles in Caenorhabditis elegans

    PubMed Central

    Fang-Yen, Christopher; Avery, Leon; Samuel, Aravinthan D. T.

    2009-01-01

    Caenorhabditis elegans is a filter feeder: it draws bacteria suspended in liquid into its pharynx, traps the bacteria, and ejects the liquid. How pharyngeal pumping simultaneously transports and filters food particles has been poorly understood. Here, we use high-speed video microscopy to define the detailed workings of pharyngeal mechanics. The buccal cavity and metastomal flaps regulate the flow of dense bacterial suspensions and exclude excessively large particles from entering the pharynx. A complex sequence of contractions and relaxations transports food particles in two successive trap stages before passage into the terminal bulb and intestine. Filtering occurs at each trap as bacteria are concentrated in the central lumen while fluids are expelled radially through three apical channels. Experiments with microspheres show that the C. elegans pharynx, in combination with the buccal cavity, is tuned to specifically catch and transport particles of a size range corresponding to most soil bacteria. PMID:19903886

  3. COMPARATIVE IN VITRO CARDIAC TOXICITY OF PRIMARY COMBUSTION PARTICLES: IDENTIFICATION OF CAUSAL CONSTITUENTS AND MECHANISMS OF INJURY

    EPA Science Inventory

    Identification of causal particle characteristics and mechanisms of injury would allow linkage of particulate air pollution adverse health effects to sources. Research has examined the direct cardiovascular effects of air pollution particle constituents since previous studies dem...

  4. Actin–microtubule coordination at growing microtubule ends

    PubMed Central

    López, Magdalena Preciado; Huber, Florian; Grigoriev, Ilya; Steinmetz, Michel O.; Akhmanova, Anna; Koenderink, Gijsje H.; Dogterom, Marileen

    2014-01-01

    To power dynamic processes in cells, the actin and microtubule cytoskeletons organize into complex structures. Although it is known that cytoskeletal coordination is vital for cell function, the mechanisms by which cross-linking proteins coordinate actin and microtubule activities remain poorly understood. In particular, it is unknown how the distinct mechanical properties of different actin architectures modulate the outcome of actin–microtubule interactions. To address this question, we engineered the protein TipAct, which links growing microtubule ends via end-binding proteins to actin filaments. We show that growing microtubules can be captured and guided by stiff actin bundles, leading to global actin–microtubule alignment. Conversely, growing microtubule ends can transport, stretch and bundle individual actin filaments, thereby globally defining actin filament organization. Our results provide a physical basis to understand actin–microtubule cross-talk, and reveal that a simple cross-linker can enable a mechanical feedback between actin and microtubule organization that is relevant to diverse biological contexts. PMID:25159196

  5. Mechanisms of action of particles used for fouling mitigation in membrane bioreactors.

    PubMed

    Loulergue, P; Weckert, M; Reboul, B; Cabassud, C; Uhl, W; Guigui, C

    2014-12-01

    Adding chemicals to the biofluid is an option to mitigate membrane fouling in membrane bioreactors. In particular, previous studies have shown that the addition of particles could enhance activated sludge filterability. Nevertheless, the mechanisms responsible for the improved filtration performance when particles are added are still unclear. Two main mechanisms might occur: soluble organic matter adsorption onto the particles and/or cake structure modification. To date, no studies have clearly dissociated the impact of these two phenomena as a method was needed for the in-line characterization of the cake structure during filtration. The objective of this study was thus to apply, for the first time, an optical method for in-situ, non-invasive, characterization of cake structure during filtration of a real biofluid in presence of particles. This method was firstly used to study local cake compressibility during the biofluid filtration. It was found that the first layers of the cake were incompressible whereas the cake appeared to be compressible at global scale. This questions the global scale analysis generally used to study cake compressibility and highlights the interest of coupling local characterization with overall process performance analysis. Secondly, the impact of adding submicronic melamine particles into the biofluid was studied. It appears that particles added into the biofluid strongly influence the cake properties, making it thicker and more permeable. Furthermore, by using liquid chromatography with an organic carbon detector to determine the detailed characteristics of the feed and permeate, it was shown that the modification of cake structure also affected the retention of soluble organic compounds by the membrane and thus the cake composition. Simultaneous use of a method for in-situ characterization of the cake structure with a detailed analysis of the fluid composition and monitoring of the global performance is thus a powerful method for

  6. Nanoparticle growth by particle-phase chemistry

    NASA Astrophysics Data System (ADS)

    Apsokardu, Michael J.; Johnston, Murray V.

    2018-02-01

    The ability of particle-phase chemistry to alter the molecular composition and enhance the growth rate of nanoparticles in the 2-100 nm diameter range is investigated through the use of a kinetic growth model. The molecular components included are sulfuric acid, ammonia, water, a non-volatile organic compound, and a semi-volatile organic compound. Molecular composition and growth rate are compared for particles that grow by partitioning alone vs. those that grow by a combination of partitioning and an accretion reaction in the particle phase between two organic molecules. Particle-phase chemistry causes a change in molecular composition that is particle diameter dependent, and when the reaction involves semi-volatile molecules, the particles grow faster than by partitioning alone. These effects are most pronounced for particles larger than about 20 nm in diameter. The modeling results provide a fundamental basis for understanding recent experimental measurements of the molecular composition of secondary organic aerosol showing that accretion reaction product formation increases linearly with increasing aerosol volume-to-surface-area. They also allow initial estimates of the reaction rate constants for these systems. For secondary aerosol produced by either OH oxidation of the cyclic dimethylsiloxane (D5) or ozonolysis of β-pinene, oligomerization rate constants on the order of 10-3 to 10-1 M-1 s-1 are needed to explain the experimental results. These values are consistent with previously measured rate constants for reactions of hydroperoxides and/or peroxyacids in the condensed phase.

  7. ULTRAFINE CARBON PARTICLES INDUCE IL-8 EXPRESSION IN HUMAN AIRWAY EPITHELIAL CELLS THROUGH A POST-TRANSCRIPTIONAL MECHANISM

    EPA Science Inventory

    Ultrafine carbon particles induce IL-8 expression in human airway
    epithelial cells through a post-transcritpional mechanism
    Epidemiological studies suggest that ultrafine particles contribute to
    particulate matter (PM) - induced adverse health effects. IL-8 is an
    i...

  8. Chemo-Mechanical Characteristics of Mud Formed from Environmental Dust Particles in Humid Ambient Air

    PubMed Central

    Hassan, Ghassan; Yilbas, B. S.; Said, Syed A. M.; Al-Aqeeli, N.; Matin, Asif

    2016-01-01

    Mud formed from environmental dust particles in humid ambient air significantly influences the performance of solar harvesting devices. This study examines the characterization of environmental dust particles and the chemo-mechanics of dry mud formed from dust particles. Analytical tools, including scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, particle sizing, and X-ray diffraction, are used to characterize dry mud and dust particles. A micro/nano tribometer is used to measure the tangential force and friction coefficient while tensile tests are carried out to assess the binding forces of dry mud pellets. After dry mud is removed, mud residuals on the glass surface are examined and the optical transmittance of the glass is measured. Dust particles include alkaline compounds, which dissolve in water condensate and form a mud solution with high pH (pH = 7.5). The mud solution forms a thin liquid film at the interface of dust particles and surface. Crystals form as the mud solution dries, thus, increasing the adhesion work required to remove dry mud from the surface. Optical transmittance of the glass is reduced after dry mud is removed due to the dry mud residue on the surface. PMID:27445272

  9. Chemo-Mechanical Characteristics of Mud Formed from Environmental Dust Particles in Humid Ambient Air.

    PubMed

    Hassan, Ghassan; Yilbas, B S; Said, Syed A M; Al-Aqeeli, N; Matin, Asif

    2016-07-22

    Mud formed from environmental dust particles in humid ambient air significantly influences the performance of solar harvesting devices. This study examines the characterization of environmental dust particles and the chemo-mechanics of dry mud formed from dust particles. Analytical tools, including scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, particle sizing, and X-ray diffraction, are used to characterize dry mud and dust particles. A micro/nano tribometer is used to measure the tangential force and friction coefficient while tensile tests are carried out to assess the binding forces of dry mud pellets. After dry mud is removed, mud residuals on the glass surface are examined and the optical transmittance of the glass is measured. Dust particles include alkaline compounds, which dissolve in water condensate and form a mud solution with high pH (pH = 7.5). The mud solution forms a thin liquid film at the interface of dust particles and surface. Crystals form as the mud solution dries, thus, increasing the adhesion work required to remove dry mud from the surface. Optical transmittance of the glass is reduced after dry mud is removed due to the dry mud residue on the surface.

  10. Early Dynamics and Stabilization Mechanisms of Oil-in-Water Emulsions Containing Colloidal Particles Modified with Short Amphiphiles: A Numerical Study.

    PubMed

    Cerbelaud, Manuella; Videcoq, Arnaud; Alison, Lauriane; Tervoort, Elena; Studart, André R

    2017-12-19

    Emulsions stabilized by mixtures of particles and amphiphilic molecules are relevant for a wide range of applications, but their dynamics and stabilization mechanisms on the colloidal level are poorly understood. Given the challenges to experimentally probe the early dynamics and mechanisms of droplet stabilization, Brownian dynamics simulations are developed here to study the behavior of oil-in-water emulsions stabilized by colloidal particles modified with short amphiphiles. Simulation parameters are based on an experimental system that consists of emulsions obtained with octane as the oil phase and a suspension of alumina colloidal particles modified with short carboxylic acids as the continuous aqueous medium. The numerical results show that attractive forces between the colloidal particles favor the formation of closely packed clusters on the droplet surface or of a percolating network of particles throughout the continuous phase, depending on the amphiphile concentration. Simulations also reveal the importance of a strong adsorption of particles at the liquid interface to prevent their depletion from the droplet surface when another droplet approaches. Strongly adsorbed particles remain immobile on the droplet surface, generating an effective steric barrier against droplet coalescence. These findings provide new insights into the early dynamics and mechanisms of stabilization of emulsions using particles and amphiphilic molecules.

  11. Mechanical instability and titanium particles induce similar transcriptomic changes in a rat model for periprosthetic osteolysis and aseptic loosening.

    PubMed

    Amirhosseini, Mehdi; Andersson, Göran; Aspenberg, Per; Fahlgren, Anna

    2017-12-01

    Wear debris particles released from prosthetic bearing surfaces and mechanical instability of implants are two main causes of periprosthetic osteolysis. While particle-induced loosening has been studied extensively, mechanisms through which mechanical factors lead to implant loosening have been less investigated. This study compares the transcriptional profiles associated with osteolysis in a rat model for aseptic loosening, induced by either mechanical instability or titanium particles. Rats were exposed to mechanical instability or titanium particles. After 15 min, 3, 48 or 120 h from start of the stimulation, gene expression changes in periprosthetic bone tissue was determined by microarray analysis. Microarray data were analyzed by PANTHER Gene List Analysis tool and Ingenuity Pathway Analysis (IPA). Both types of osteolytic stimulation led to gene regulation in comparison to unstimulated controls after 3, 48 or 120 h. However, when mechanical instability was compared to titanium particles, no gene showed a statistically significant difference (fold change ≥ ± 1.5 and adjusted p-value ≤ 0.05) at any time point. There was a remarkable similarity in numbers and functional classification of regulated genes. Pathway analysis showed several inflammatory pathways activated by both stimuli, including Acute Phase Response signaling, IL-6 signaling and Oncostatin M signaling. Quantitative PCR confirmed the changes in expression of key genes involved in osteolysis observed by global transcriptomics. Inflammatory mediators including interleukin (IL)-6, IL-1β, chemokine (C-C motif) ligand (CCL)2, prostaglandin-endoperoxide synthase (Ptgs)2 and leukemia inhibitory factor (LIF) showed strong upregulation, as assessed by both microarray and qPCR. By investigating genome-wide expression changes we show that, despite the different nature of mechanical implant instability and titanium particles, osteolysis seems to be induced through similar biological and

  12. Quercetagetin-Loaded Zein-Propylene Glycol Alginate Ternary Composite Particles Induced by Calcium Ions: Structure Characterization and Formation Mechanism.

    PubMed

    Sun, Cuixia; Wei, Yang; Li, Ruirui; Dai, Lei; Gao, Yanxiang

    2017-05-17

    The complexation of zein and propylene glycol alginate (PGA) was confirmed to improve the entrapment efficiency and loading capacity of quercetagetin (Q) in our previous study. The present work focused on the influence and induction mechanism of calcium ions on structures of Q-loaded zein-PGA ternary composite particles. The incorporation of Ca 2+ resulted in the formation of aggregates with a large dimension between zein particles, led to obvious conformational, secondary, and tertiary structural changes of zein, and caused the disappearance of crystalline structure of zein. PGA exhibited a fine filamentous network structure and became much thicker and stronger in the presence of Ca 2+ . The presence of Q promoted the affinity and binding capacity of Ca 2+ to zein and PGA. An interwoven network structure with enhanced firmness and density was observed in Q-loaded zein-PGA composite particles, leading to improved thermal stability. Three potential mechanisms were proposed to explain the structural characteristics induced by Ca 2+ , including particle-particle collision for zein particles, chain-chain association for PGA molecules, and simultaneous cross-linking coupled with aggregating for Q-loaded zein-PGA composite particles.

  13. Test of the diffusing-diffusivity mechanism using near-wall colloidal dynamics

    NASA Astrophysics Data System (ADS)

    Matse, Mpumelelo; Chubynsky, Mykyta V.; Bechhoefer, John

    2017-10-01

    The mechanism of diffusing diffusivity predicts that, in environments where the diffusivity changes gradually, the displacement distribution becomes non-Gaussian, even though the mean-square displacement grows linearly with time. Here, we report single-particle tracking measurements of the diffusion of colloidal spheres near a planar substrate. Because the local effective diffusivity is known, we have been able to carry out a direct test of this mechanism for diffusion in inhomogeneous media.

  14. Characterization of size-dependent mechanical properties of tip-growing cells using a lab-on-chip device.

    PubMed

    Hu, Chengzhi; Munglani, Gautam; Vogler, Hannes; Ndinyanka Fabrice, Tohnyui; Shamsudhin, Naveen; Wittel, Falk K; Ringli, Christoph; Grossniklaus, Ueli; Herrmann, Hans J; Nelson, Bradley J

    2016-12-20

    Quantification of mechanical properties of tissues, living cells, and cellular components is crucial for the modeling of plant developmental processes such as mechanotransduction. Pollen tubes are tip-growing cells that provide an ideal system to study the mechanical properties at the single cell level. In this article, a lab-on-a-chip (LOC) device is developed to quantitatively measure the biomechanical properties of lily (Lilium longiflorum) pollen tubes. A single pollen tube is fixed inside the microfluidic chip at a specific orientation and subjected to compression by a soft membrane. By comparing the deformation of the pollen tube at a given external load (compressibility) and the effect of turgor pressure on the tube diameter (stretch ratio) with finite element modeling, its mechanical properties are determined. The turgor pressure and wall stiffness of the pollen tubes are found to decrease considerably with increasing initial diameter of the pollen tubes. This observation supports the hypothesis that tip-growth is regulated by a delicate balance between turgor pressure and wall stiffness. The LOC device is modular and adaptable to a variety of cells that exhibit tip-growth, allowing for the straightforward measurement of mechanical properties.

  15. Mechanism and Kinetics of the Formation and Transport of Aerosol Particles in the Lower Stratosphere

    NASA Astrophysics Data System (ADS)

    Aloyan, A. E.; Ermakov, A. N.; Arutyunyan, V. O.

    2018-03-01

    Field and laboratory observation data on aerosol particles in the lower stratosphere are considered. The microphysics of their formation, mechanisms of heterogeneous chemical reactions involving reservoir gases (e.g., HCl, ClONO2, etc.) and their kinetic characteristics are analyzed. A new model of global transport of gaseous and aerosol admixtures in the lower stratosphere is described. The preliminary results from a numerical simulation of the formation of sulfate particles of the Junge layer and particles of polar stratospheric clouds (PSCs, types Ia, Ib, and II) are presented, and their effect on the gas and aerosol composition is analyzed.

  16. Mechanical and electrostatic experiments with dust particles collected in the inner coma of comet 67P by COSIMA onboard Rosetta.

    PubMed

    Hilchenbach, Martin; Fischer, Henning; Langevin, Yves; Merouane, Sihane; Paquette, John; Rynö, Jouni; Stenzel, Oliver; Briois, Christelle; Kissel, Jochen; Koch, Andreas; Schulz, Rita; Silen, Johan; Altobelli, Nicolas; Baklouti, Donia; Bardyn, Anais; Cottin, Herve; Engrand, Cecile; Fray, Nicolas; Haerendel, Gerhard; Henkel, Hartmut; Höfner, Herwig; Hornung, Klaus; Lehto, Harry; Mellado, Eva Maria; Modica, Paola; Le Roy, Lena; Siljeström, Sandra; Steiger, Wolfgang; Thirkell, Laurent; Thomas, Roger; Torkar, Klaus; Varmuza, Kurt; Zaprudin, Boris

    2017-07-13

    The in situ cometary dust particle instrument COSIMA (COmetary Secondary Ion Mass Analyser) onboard ESA's Rosetta mission has collected about 31 000 dust particles in the inner coma of comet 67P/Churyumov-Gerasimenko since August 2014. The particles are identified by optical microscope imaging and analysed by time-of-flight secondary ion mass spectrometry. After dust particle collection by low speed impact on metal targets, the collected particle morphology points towards four families of cometary dust particles. COSIMA is an in situ laboratory that operates remotely controlled next to the comet nucleus. The particles can be further manipulated within the instrument by mechanical and electrostatic means after their collection by impact. The particles are stored above 0°C in the instrument and the experiments are carried out on the refractory, ice-free matter of the captured cometary dust particles. An interesting particle morphology class, the compact particles, is not fragmented on impact. One of these particles was mechanically pressed and thereby crushed into large fragments. The particles are good electrical insulators and transform into rubble pile agglomerates by the application of an energetic indium ion beam during the secondary ion mass spectrometry analysis.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).

  17. Particle growth kinetics over the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Pinterich, T.; Andreae, M. O.; Artaxo, P.; Kuang, C.; Longo, K.; Machado, L.; Manzi, A. O.; Martin, S. T.; Mei, F.; Pöhlker, C.; Pöhlker, M. L.; Poeschl, U.; Shilling, J. E.; Shiraiwa, M.; Tomlinson, J. M.; Zaveri, R. A.; Wang, J.

    2016-12-01

    Aerosol particles larger than 100 nm play a key role in global climate by acting as cloud condensation nuclei (CCN). Most of these particles, originated from new particle formation or directly emitted into the atmospheric, are initially too small to serve as CCN. These small particles grow to CCN size mainly through condensation of secondary species. In one extreme, the growth is dictated by kinetic condensation of very low-volatility compounds, favoring the growth of the smallest particles; in the other extreme, the process is driven by Raoult's law-based equilibrium partitioning of semi-volatile organic compound, favoring the growth of larger particles. These two mechanisms can lead to very different production rates of CCN. The growth of particles depends on a number of parameters, including the volatility of condensing species, particle phase, and diffusivity inside the particles, and this process is not well understood in part due to lack of ambient data. Here we examine atmospheric particle growth using high-resolution size distributions measured onboard the DOE G-1 aircraft during GoAmazon campaign, which took place from January 2014 to December 2015 near Manaus, Brazil, a city surrounded by natural forest for over 1000 km in every direction. City plumes are clearly identified by the strong enhancement of nucleation and Aitken mode particle concentrations over the clean background. As the plume traveled downwind, particle growth was observed, and is attributed to condensation of secondary species and coagulation (Fig.1). Observed aerosol growth is modeled using MOSAIC (Model for Simulating Aerosol Interactions and Chemistry), which dynamically partitions multiple compounds to all particle size bins by taking into account compound volatility, gas-phase diffusion, interfacial mass accommodation, particle-phase diffusion, and particle-phase reaction. The results from both wet and dry seasons will be discussed.

  18. Coalescence growth mechanism of ultrafine metal particles

    NASA Astrophysics Data System (ADS)

    Kasukabe, S.

    1990-01-01

    Ultrafine particles produced by a gas-evaporation technique show clear-cut crystal habits. The convection of an inert gas makes distinct growth zones in a metal smoke. The coalescence stages of hexagonal plates and multiply twinned particles are observed in the outer zone of a smoke. A model of the coalescence growth of particles with different crystal habits is proposed. Size distributions can be calculated by counting the ratio of the number of collisions by using the effective cross section of collisions and the existence probability of the volume of a particle. This simulation model makes clear the effect on the growth rate of coalescence growth derived from crystal habit.

  19. Mechanism of the dielectric enhancement in polymer-alumina nano-particle composites

    NASA Astrophysics Data System (ADS)

    Jacob, Rebecca; Jacob, Anne Pavitra; Mainwaring, David E.

    2009-09-01

    Polymer-alumina nano-composites with enhanced dielectric properties as a possibility to enable the miniaturization of devices have been reported. The enhancement of dielectric properties was found to be unique to the polymer. In the present work, the mechanism of the dielectric enhancement is established by performing ab initio molecular orbital calculations in order to study the molecular interactions in the interfacial region between the alumina-nano-particle surface and the polymer medium. The calculations predict the existence of strong electrostatic attraction between the positive charge on the aluminium of the alumina clusters and the negative charge of the oxygens of the polymer at the polymer-nano-particle interface resulting in an increase in the dipole moment and the polarization of the system leading to enhanced dielectric properties. The oxygen thus plays a dual role by involving in covalent bonding with the polymer chain and electrostatic bonding interactions with the alumina nano-particles. The unique structure of the polymer provides the highly electronegative oxygens, as carbonyl groups or ether linkages in conjugation with aromatic rings in an extended polymer chain system, facilitating this type of bonding at the interface.

  20. Particle size studies to reveal crystallization mechanisms of the metal organic framework HKUST-1 during sonochemical synthesis.

    PubMed

    Armstrong, Mitchell R; Senthilnathan, Sethuraman; Balzer, Christopher J; Shan, Bohan; Chen, Liang; Mu, Bin

    2017-01-01

    Systematic studies of key operating parameters for the sonochemical synthesis of the metal organic framework (MOF) HKUST-1(also called CuBTC) were performed including reaction time, reactor volume, sonication amplitude, sonication tip size, solvent composition, and reactant concentrations analyzed through SEM particle size analysis. Trends in the particle size and size distributions show reproducible control of average particle sizes between 1 and 4μm. These results along with complementary studies in sonofragmentation and temperature control were conducted to compare these results to kinetic crystal growth models found in literature to develop a plausible hypothetical mechanism for ultrasound-assisted growth of metal-organic-frameworks composed of a competitive mechanism including constructive solid-on-solid (SOS) crystal growth and a deconstructive sonofragmentation. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Nonequilibrium flows with smooth particle applied mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kum, Oyeon

    1995-07-01

    Smooth particle methods are relatively new methods for simulating solid and fluid flows through they have a 20-year history of solving complex hydrodynamic problems in astrophysics, such as colliding planets and stars, for which correct answers are unknown. The results presented in this thesis evaluate the adaptability or fitness of the method for typical hydrocode production problems. For finite hydrodynamic systems, boundary conditions are important. A reflective boundary condition with image particles is a good way to prevent a density anomaly at the boundary and to keep the fluxes continuous there. Boundary values of temperature and velocity can be separatelymore » controlled. The gradient algorithm, based on differentiating the smooth particle expression for (uρ) and (Tρ), does not show numerical instabilities for the stress tensor and heat flux vector quantities which require second derivatives in space when Fourier`s heat-flow law and Newton`s viscous force law are used. Smooth particle methods show an interesting parallel linking to them to molecular dynamics. For the inviscid Euler equation, with an isentropic ideal gas equation of state, the smooth particle algorithm generates trajectories isomorphic to those generated by molecular dynamics. The shear moduli were evaluated based on molecular dynamics calculations for the three weighting functions, B spline, Lucy, and Cusp functions. The accuracy and applicability of the methods were estimated by comparing a set of smooth particle Rayleigh-Benard problems, all in the laminar regime, to corresponding highly-accurate grid-based numerical solutions of continuum equations. Both transient and stationary smooth particle solutions reproduce the grid-based data with velocity errors on the order of 5%. The smooth particle method still provides robust solutions at high Rayleigh number where grid-based methods fails.« less

  2. Guanidine: A Highly Efficient Stabilizer in Atmospheric New-Particle Formation.

    PubMed

    Myllys, Nanna; Ponkkonen, Tuomo; Passananti, Monica; Elm, Jonas; Vehkamäki, Hanna; Olenius, Tinja

    2018-05-24

    The role of a strong organobase, guanidine, in sulfuric acid-driven new-particle formation is studied using state-of-the-art quantum chemical methods and molecular cluster formation simulations. Cluster formation mechanisms at the molecular level are resolved, and theoretical results on cluster stability are confirmed with mass spectrometer measurements. New-particle formation from guanidine and sulfuric acid molecules occurs without thermodynamic barriers under studied conditions, and clusters are growing close to a 1:1 composition of acid and base. Evaporation rates of the most stable clusters are extremely low, which can be explained by the proton transfers and symmetrical cluster structures. We compare the ability of guanidine and dimethylamine to enhance sulfuric acid-driven particle formation and show that more than 2000-fold concentration of dimethylamine is needed to yield as efficient particle formation as in the case of guanidine. At similar conditions, guanidine yields 8 orders of magnitude higher particle formation rates compared to dimethylamine. Highly basic compounds such as guanidine may explain experimentally observed particle formation events at low precursor vapor concentrations, whereas less basic and more abundant bases such as ammonia and amines are likely to explain measurements at high concentrations.

  3. Study on sand particles creep model and open pit mine landslide mechanism caused by sand fatigue liquefaction

    NASA Astrophysics Data System (ADS)

    Du, Dong-Ning; Wang, Lai-Gui; Zhang, Xiang-Dong; Zhang, Shu-Kun

    2017-06-01

    The sand particles in the sand - rock composite slope of the open pit mine occurs creep deformation and fatigue liquefaction under the action of vehicle load vibration and hydraulic gradient, which causes landslide geological disasters and it destroys the surface environment. To reveal the mechanism, a mechanics model based on the model considering the soil structural change with a new “plastic hinge” element is developed, to improve its constitutive and creep curve equations. Data from sand creep experiments are used to identify the parameters in the model and to validate the model. The results show that the mechanical model can describe the rotation progress between the sand particles, disclose the negative acceleration creep deformation stage during the third phase, and require fewer parameters while maintaining accuracy. It provides a new creep model considering rotation to analyze sand creep mechanism, which provides a theoretical basis for revealing the open pit mine landslide mechanism induced by creep deformation and fatigue liquefaction of sandy soil.

  4. Self-organized magnetic particles to tune the mechanical behavior of a granular system

    NASA Astrophysics Data System (ADS)

    Cox, Meredith; Wang, Dong; Barés, Jonathan; Behringer, Robert P.

    2016-09-01

    Above a certain density a granular material jams. This property can be controlled by either tuning a global property, such as the packing fraction or by applying shear strain, or at the micro-scale by tuning grain shape, inter-particle friction or externally controlled organization. Here, we introduce a novel way to change a local granular property by adding a weak anisotropic magnetic interaction between particles. We measure the evolution of the pressure, P, and coordination number, Z, for a packing of 2D photo-elastic disks, subject to uniaxial compression. A fraction R m of the particles have embedded cuboidal magnets. The strength of the magnetic interactions between particles is too weak to have a strong direct effect on P or Z when the system is jammed. However, the magnetic interactions play an important role in the evolution of latent force networks when systems containing a large enough fraction of the particles with magnets are driven through unjammed to jammed states. In this case, a statistically stable network of magnetic chains self-organizes before jamming and overlaps with force chains once jamming occurs, strengthening the granular medium. This property opens a novel way to control mechanical properties of granular materials.

  5. Going from microscopic to macroscopic on nonuniform growing domains.

    PubMed

    Yates, Christian A; Baker, Ruth E; Erban, Radek; Maini, Philip K

    2012-08-01

    Throughout development, chemical cues are employed to guide the functional specification of underlying tissues while the spatiotemporal distributions of such chemicals can be influenced by the growth of the tissue itself. These chemicals, termed morphogens, are often modeled using partial differential equations (PDEs). The connection between discrete stochastic and deterministic continuum models of particle migration on growing domains was elucidated by Baker, Yates, and Erban [Bull. Math. Biol. 72, 719 (2010)] in which the migration of individual particles was modeled as an on-lattice position-jump process. We build on this work by incorporating a more physically reasonable description of domain growth. Instead of allowing underlying lattice elements to instantaneously double in size and divide, we allow incremental element growth and splitting upon reaching a predefined threshold size. Such a description of domain growth necessitates a nonuniform partition of the domain. We first demonstrate that an individual-based stochastic model for particle diffusion on such a nonuniform domain partition is equivalent to a PDE model of the same phenomenon on a nongrowing domain, providing the transition rates (which we derive) are chosen correctly and we partition the domain in the correct manner. We extend this analysis to the case where the domain is allowed to change in size, altering the transition rates as necessary. Through application of the master equation formalism we derive a PDE for particle density on this growing domain and corroborate our findings with numerical simulations.

  6. Settlement statistics of a granular layer composed of polyhedral particles

    NASA Astrophysics Data System (ADS)

    Quezada, Juan Carlos; Saussine, Gilles; Breul, Pierre; Radjai, Farhang

    2013-06-01

    We use 3D contact dynamics simulations to investigate the mechanical equilibrium and settlement of a granular material composed of irregular polyhedral particles confined between two horizontal frictional planes. We show that, as a consequence of mobilized wall-particle friction force at the top and bottom boundaries, the transient deformation induced by a constant vertical load increment is controlled by the aspect ratio (thickness over width) of the packing as well as the stress ratio. The transient deformation declines considerably for increasingly smaller aspect ratios and grows with the stress ratio. From the simulation data for a large number of independent configurations, we find that sample-to-sample fluctuations of the deformation have a broad distribution and they scale with the average deformation.

  7. Global Modeling of Nebulae with Particle Growth, Drift, and Evaporation Fronts. I. Methodology and Typical Results

    NASA Astrophysics Data System (ADS)

    Estrada, Paul R.; Cuzzi, Jeffrey N.; Morgan, Demitri A.

    2016-02-01

    We model particle growth in a turbulent, viscously evolving protoplanetary nebula, incorporating sticking, bouncing, fragmentation, and mass transfer at high speeds. We treat small particles using a moments method and large particles using a traditional histogram binning, including a probability distribution function of collisional velocities. The fragmentation strength of the particles depends on their composition (icy aggregates are stronger than silicate aggregates). The particle opacity, which controls the nebula thermal structure, evolves as particles grow and mass redistributes. While growing, particles drift radially due to nebula headwind drag. Particles of different compositions evaporate at “evaporation fronts” (EFs) where the midplane temperature exceeds their respective evaporation temperatures. We track the vapor and solid phases of each component, accounting for advection and radial and vertical diffusion. We present characteristic results in evolutions lasting 2 × 105 years. In general, (1) mass is transferred from the outer to the inner nebula in significant amounts, creating radial concentrations of solids at EFs; (2) particle sizes are limited by a combination of fragmentation, bouncing, and drift; (3) “lucky” large particles never represent a significant amount of mass; and (4) restricted radial zones just outside each EF become compositionally enriched in the associated volatiles. We point out implications for millimeter to submillimeter SEDs and the inference of nebula mass, radial banding, the role of opacity on new mechanisms for generating turbulence, the enrichment of meteorites in heavy oxygen isotopes, variable and nonsolar redox conditions, the primary accretion of silicate and icy planetesimals, and the makeup of Jupiter’s core.

  8. Effect of graphite particle size and content on the formation mechanism of detonation polycrystalline diamond

    NASA Astrophysics Data System (ADS)

    Tong, Y.; Cao, Y.; Liu, R.; Shang, S. Y.; Huang, F. L.

    2018-03-01

    The formation mechanism of detonation polycrystalline diamond (DPD) generated from the detonation of a mixed RDX/graphite explosive is investigated. It is found experimentally that the DPD conversion rate decreases with both the content and the particle size of the graphite. Moreover, the particle sizes of the generated DPD powder are analyzed, which shows that, with the decrease in the graphite particle size, the mean number diameter of DPD decreases, but the mean volume diameter increases. In addition, with the help of scanning electron microscopy, it is observed that the in situ phase change occurs in the graphite particles, by which the small particles combine to form numerous large DPD particles. Based on both the experimental data and the classical ZND detonation model, we divide such a DPD synthesis process into two stages: In the first stage, the in situ phase change from graphite to diamond is dominant, supplemented by some coalescence growth at high pressure and temperature, which is affected mainly by the detonation performance of the mixed explosive under consideration. In the second stage, the graphitization of DPD caused by the residual heat is dominant, which is affected mainly by the unloading rate of the particle temperature.

  9. Moisture desorption in mechanically masticated fuels: effects of particle fracturing and fuelbed compaction

    Treesearch

    Jesse K. Kreye; J.Morgan Varner; Eric E. Knapp

    2012-01-01

    Mechanical mastication is increasingly used as a wildland fuel treatment, reducing standing trees and shrubs to compacted fuelbeds of fractured woody fuels. One major shortcoming in our understanding of these fuelbeds is how particle fracturing influences moisture gain or loss, a primary determinant of fire behaviour. To better understand fuel moisture dynamics, we...

  10. Particle size distribution control of Pt particles used for particle gun

    NASA Astrophysics Data System (ADS)

    Ichiji, M.; Akiba, H.; Nagao, H.; Hirasawa, I.

    2017-07-01

    The purpose of this study is particle size distribution (PSD) control of submicron sized Pt particles used for particle gun. In this report, simple reaction crystallization is conducted by mixing H2PtCl6 and ascorbic acid. Without the additive, obtained Pt particles have broad PSD and reproducibility of experiment is low. With seeding, Pt particles have narrow PSD and reproducibility improved. Additionally, mean particle diameter of 100-700 nm is controlled by changing seeding amount. Obtained particles are successfully characterized as Pt by XRD results. Moreover, XRD spectra indicate that obtained particles are polycrystals. These experimental results suggest that seeding consumed nucleation, as most nuclei attached on the seed surface. This mechanism virtually restricted nucleation to have narrow PSD can be obtained.

  11. The dynamics of nucleation and growth of a particle in the ternary alloy melt with anisotropic surface tension.

    PubMed

    Chen, Ming-Wen; Li, Lin-Yan; Guo, Hui-Min

    2017-08-28

    The dynamics of nucleation and growth of a particle affected by anisotropic surface tension in the ternary alloy melt is studied. The uniformly valid asymptotic solution for temperature field, concentration field, and interface evolution of nucleation and particle growth is obtained by means of the multiple variable expansion method. The asymptotic solution reveals the critical radius of nucleation in the ternary alloy melt and an inward melting mechanism of the particle induced by the anisotropic effect of surface tension. The critical radius of nucleation is dependent on isotropic surface tension, temperature undercooling, and constitutional undercooling in the ternary alloy melt, and the solute diffusion melt decreases the critical radius of nucleation. Immediately after a nucleus forms in the initial stage of solidification, the anisotropic effect of surface tension makes some parts of its interface grow inward while some parts grow outward. Until the inward melting attains a certain distance (which is defined as "the melting depth"), these parts of interface start to grow outward with other parts. The interface of the particle evolves into an ear-like deformation, whose inner diameter may be less than two times the critical radius of nucleation within a short time in the initial stage of solidification. The solute diffusion in the ternary alloy melt decreases the effect of anisotropic surface tension on the interface deformation.

  12. Microstructure and Mechanical Properties of Cr-SiC Particles-Reinforced Fe-Based Alloy Coating

    NASA Astrophysics Data System (ADS)

    Wang, Fu-cheng; Du, Xiao-dong; Zhan, Ma-ji; Lang, Jing-wei; Zhou, Dan; Liu, Guang-fu; Shen, Jian

    2015-12-01

    In this study, SiC particles were first coated with Cr to form a layer that can protect the SiC particles from dissolution in the molten pool. Then, the Cr-SiC powder was injected into the tail of molten pool during plasma-transferred arc welding process (PTAW), where the temperature was relatively low, to prepare Cr-SiC particles reinforced Fe-based alloy coating. The microstructure and phase composition of the powder and surface coatings were analyzed, and the element distribution and hardness at the interfacial region were also evaluated. The protective layer consists of Cr3Si, Cr7C3, and Cr23C6, which play an important role in the microstructure and mechanical properties. The protective layer is dissolved in the molten pool forming a flocculent region and a transition region between the SiC particles and the matrix. The tribological performance of the coating was also assessed using a ring-block sliding wear tester with GGr15 grinding ring under 490 and 980 N load. Cr-SiC particles-reinforced coating has a lower wear rate than the unreinforced coating.

  13. Simple One-Dimensional Quantum-Mechanical Model for a Particle Attached to a Surface

    ERIC Educational Resources Information Center

    Fernandez, Francisco M.

    2010-01-01

    We present a simple one-dimensional quantum-mechanical model for a particle attached to a surface. It leads to the Schrodinger equation for a harmonic oscillator bounded on one side that we solve in terms of Weber functions and discuss the behaviour of the eigenvalues and eigenfunctions. We derive the virial theorem and other exact relationships…

  14. Nanoscale morphogenesis of nylon-sputtered plasma polymer particles

    NASA Astrophysics Data System (ADS)

    Choukourov, Andrei; Shelemin, Artem; Pleskunov, Pavel; Nikitin, Daniil; Khalakhan, Ivan; Hanuš, Jan

    2018-05-01

    Sub-micron polymer particles are highly important in various fields including astrophysics, thermonuclear fusion and nanomedicine. Plasma polymerization offers the possibility to produce particles with tailor-made size, crosslink density and chemical composition to meet the requirements of a particular application. However, the mechanism of nucleation and growth of plasma polymer particles as well as diversity of their morphology remain far from being clear. Here, we prepared nitrogen-containing plasma polymer particles by rf magnetron sputtering of nylon in a gas aggregation cluster source with variable length. The method allowed the production of particles with roughly constant chemical composition and number density but with the mean size changing from 80 to 320 nm. Atomic Force Microscopy with super-sharp probes was applied to study the evolution of the particle surface topography as they grow in size. Height–height correlation and power spectral density functions were obtained to quantify the roughness exponent α  =  0.78, the growth exponent β  =  0.35, and the dynamic exponent 1/z  =  0.50. The set of critical exponents indicates that the particle surface evolves in a self-affine mode and the overall particle growth is caused by the accretion of polymer-forming species from the gas phase and not by coagulation. Redistribution of the incoming material over the surface coupled with the inhomogeneous distribution of inner stress is suggested as the main factor that determines the morphogenesis of the plasma polymer particles.

  15. The role of dispersed particles in strengthening and fracture mechanisms in a Mo-ZrC alloy processed by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takida, T.; Mabuchi, M.; Nakamura, M.

    2000-03-01

    The tensile properties of a ZrC particle-dispersed Mo, which was processed by spark plasma sintering with mechanically alloyed powder, were investigated at room temperature and at elevated temperatures of 1,170 to 1,970 K. The Mo-ZrC alloy showed much higher strength at room temperature than a fully recrystallized pure Mo. The high strength of Mo-ZrC is mainly attributed to a very small grain size (about 3 {micro}m). The main role of the ZrC particle is not to increase strength due to the particle-dislocation interaction, but to limit grain growth during sintering and to attain the very small grain size. The elongationmore » at room temperature of No-ZrC was much lower than that of pure Mo. This is probably related to the higher interstitial contents. However, Mo-ZrC showed a large elongation of 180 pct at 1,970 K and 6.7 x 10{sup {minus}4} s{sup {minus}1}. It was suggested that the ZrC particles stabilized the fine-grained microstructure yet provided no cavitation sites at 1,970 K; as a result, the large elongation was attained.« less

  16. The Mechanism Forming the Cell Surface of Tip-Growing Rooting Cells Is Conserved among Land Plants.

    PubMed

    Honkanen, Suvi; Jones, Victor A S; Morieri, Giulia; Champion, Clement; Hetherington, Alexander J; Kelly, Steve; Proust, Hélène; Saint-Marcoux, Denis; Prescott, Helen; Dolan, Liam

    2016-12-05

    To discover mechanisms that controlled the growth of the rooting system in the earliest land plants, we identified genes that control the development of rhizoids in the liverwort Marchantia polymorpha. 336,000 T-DNA transformed lines were screened for mutants with defects in rhizoid growth, and a de novo genome assembly was generated to identify the mutant genes. We report the identification of 33 genes required for rhizoid growth, of which 6 had not previously been functionally characterized in green plants. We demonstrate that members of the same orthogroup are active in cell wall synthesis, cell wall integrity sensing, and vesicle trafficking during M. polymorpha rhizoid and Arabidopsis thaliana root hair growth. This indicates that the mechanism for constructing the cell surface of tip-growing rooting cells is conserved among land plants and was active in the earliest land plants that existed sometime more than 470 million years ago [1, 2]. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Coated particles for lithium battery cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Mohit; Eitouni, Hany Basam; Pratt, Russell Clayton

    Particles of cathodic materials are coated with polymer to prevent direct contact between the particles and the surrounding electrolyte. The polymers are held in place either by a) growing the polymers from initiators covalently bound to the particle, b) attachment of the already-formed polymers by covalently linking to functional groups attached to the particle, or c) electrostatic interactions resulting from incorporation of cationic or anionic groups in the polymer chain. Carbon or ceramic coatings may first be formed on the surfaces of the particles before the particles are coated with polymer. The polymer coating is both electronically and ionically conductive.

  18. Effect of in-situ formed Al3Ti particles on the microstructure and mechanical properties of 6061 Al alloy

    NASA Astrophysics Data System (ADS)

    Gupta, Rahul; Chaudhari, G. P.; Daniel, B. S. S.

    2018-03-01

    In this study, in situ Titanium-tri-aluminide (Al3Ti) particles reinforced Al 6061 alloy matrix composites were fabricated by the reaction of potassium hexafluorotitanate (K2TiF6) inorganic salt with molten Al 6061 alloy via liquid metallurgy route. The development of in-situ Al3Ti particles and their effects on the mechanical properties such as yield strength (YS), ductility, ultimate tensile strength (UTS) and hardness, and microstructure of Al 6061 alloy were studied. It was observed from the results that in-situ formed Al3Ti particles were blocky in morphology whose average size was around 2.6 ± 1.1 μm. Microstructure studies showed that grain size of Al matrix was reduced due to the nucleating effect of Al3Ti particles. It was observed from the mechanical properties analysis that when the volume fraction of Al3Ti particles was increased, the hardness, UTS and YS of the composites were also increased as compared to that of Al 6061 alloy. An improvement in ductility was observed with the dispersion of Al3Ti particles in base alloy which is contrary to many other composites.

  19. Online differentiation of mineral phase in aerosol particles by ion formation mechanism using a LAAP-TOF single-particle mass spectrometer

    NASA Astrophysics Data System (ADS)

    Marsden, Nicholas A.; Flynn, Michael J.; Allan, James D.; Coe, Hugh

    2018-01-01

    Mineralogy of silicate mineral dust has a strong influence on climate and ecosystems due to variation in physiochemical properties that result from differences in composition and crystal structure (mineral phase). Traditional offline methods of analysing mineral phase are labour intensive and the temporal resolution of the data is much longer than many atmospheric processes. Single-particle mass spectrometry (SPMS) is an established technique for the online size-resolved measurement of particle composition by laser desorption ionisation (LDI) followed by time-of-flight mass spectrometry (TOF-MS). Although non-quantitative, the technique is able to identify the presence of silicate minerals in airborne dust particles from markers of alkali metals and silicate molecular ions in the mass spectra. However, the differentiation of mineral phase in silicate particles by traditional mass spectral peak area measurements is not possible. This is because instrument function and matrix effects in the ionisation process result in variations in instrument response that are greater than the differences in composition between common mineral phases.In this study, we introduce a novel technique that enables the differentiation of mineral phase in silicate mineral particles by ion formation mechanism measured from subtle changes in ion arrival times at the TOF-MS detector. Using a combination of peak area and peak centroid measurements, we show that the arrangement of the interstitial alkali metals in the crystal structure, an important property in silicate mineralogy, influences the ion arrival times of elemental and molecular ion species in the negative ion mass spectra. A classification scheme is presented that allowed for the differentiation of illite-smectite, kaolinite and feldspar minerals on a single-particle basis. Online analysis of mineral dust aerosol generated from clay mineral standards produced mineral fractions that are in agreement with bulk measurements reported by

  20. GLOBAL MODELING OF NEBULAE WITH PARTICLE GROWTH, DRIFT, AND EVAPORATION FRONTS. I. METHODOLOGY AND TYPICAL RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estrada, Paul R.; Cuzzi, Jeffrey N.; Morgan, Demitri A., E-mail: Paul.R.Estrada@nasa.gov

    2016-02-20

    We model particle growth in a turbulent, viscously evolving protoplanetary nebula, incorporating sticking, bouncing, fragmentation, and mass transfer at high speeds. We treat small particles using a moments method and large particles using a traditional histogram binning, including a probability distribution function of collisional velocities. The fragmentation strength of the particles depends on their composition (icy aggregates are stronger than silicate aggregates). The particle opacity, which controls the nebula thermal structure, evolves as particles grow and mass redistributes. While growing, particles drift radially due to nebula headwind drag. Particles of different compositions evaporate at “evaporation fronts” (EFs) where the midplanemore » temperature exceeds their respective evaporation temperatures. We track the vapor and solid phases of each component, accounting for advection and radial and vertical diffusion. We present characteristic results in evolutions lasting 2 × 10{sup 5} years. In general, (1) mass is transferred from the outer to the inner nebula in significant amounts, creating radial concentrations of solids at EFs; (2) particle sizes are limited by a combination of fragmentation, bouncing, and drift; (3) “lucky” large particles never represent a significant amount of mass; and (4) restricted radial zones just outside each EF become compositionally enriched in the associated volatiles. We point out implications for millimeter to submillimeter SEDs and the inference of nebula mass, radial banding, the role of opacity on new mechanisms for generating turbulence, the enrichment of meteorites in heavy oxygen isotopes, variable and nonsolar redox conditions, the primary accretion of silicate and icy planetesimals, and the makeup of Jupiter’s core.« less

  1. Mechanical Fracturing of Core-Shell Undercooled Metal Particles for Heat-Free Soldering.

    PubMed

    Çınar, Simge; Tevis, Ian D; Chen, Jiahao; Thuo, Martin

    2016-02-23

    Phase-change materials, such as meta-stable undercooled (supercooled) liquids, have been widely recognized as a suitable route for complex fabrication and engineering. Despite comprehensive studies on the undercooling phenomenon, little progress has been made in the use of undercooled metals, primarily due to low yields and poor stability. This paper reports the use of an extension of droplet emulsion technique (SLICE) to produce undercooled core-shell particles of structure; metal/oxide shell-acetate ('/' = physisorbed, '-' = chemisorbed), from molten Field's metal (Bi-In-Sn) and Bi-Sn alloys. These particles exhibit stability against solidification at ambient conditions. Besides synthesis, we report the use of these undercooled metal, liquid core-shell, particles for heat free joining and manufacturing at ambient conditions. Our approach incorporates gentle etching and/or fracturing of outer oxide-acetate layers through mechanical stressing or shearing, thus initiating a cascade entailing fluid flow with concomitant deformation, combination/alloying, shaping, and solidification. This simple and low cost technique for soldering and fabrication enables formation of complex shapes and joining at the meso- and micro-scale at ambient conditions without heat or electricity.

  2. Mechanical Fracturing of Core-Shell Undercooled Metal Particles for Heat-Free Soldering

    PubMed Central

    Çınar, Simge; Tevis, Ian D.; Chen, Jiahao; Thuo, Martin

    2016-01-01

    Phase-change materials, such as meta-stable undercooled (supercooled) liquids, have been widely recognized as a suitable route for complex fabrication and engineering. Despite comprehensive studies on the undercooling phenomenon, little progress has been made in the use of undercooled metals, primarily due to low yields and poor stability. This paper reports the use of an extension of droplet emulsion technique (SLICE) to produce undercooled core-shell particles of structure; metal/oxide shell-acetate (‘/’ = physisorbed, ‘-’ = chemisorbed), from molten Field’s metal (Bi-In-Sn) and Bi-Sn alloys. These particles exhibit stability against solidification at ambient conditions. Besides synthesis, we report the use of these undercooled metal, liquid core-shell, particles for heat free joining and manufacturing at ambient conditions. Our approach incorporates gentle etching and/or fracturing of outer oxide-acetate layers through mechanical stressing or shearing, thus initiating a cascade entailing fluid flow with concomitant deformation, combination/alloying, shaping, and solidification. This simple and low cost technique for soldering and fabrication enables formation of complex shapes and joining at the meso- and micro-scale at ambient conditions without heat or electricity. PMID:26902483

  3. Microtubule self-organisation by reaction-diffusion processes causes collective transport and organisation of cellular particles

    PubMed Central

    Glade, Nicolas; Demongeot, Jacques; Tabony, James

    2004-01-01

    Background The transport of intra-cellular particles by microtubules is a major biological function. Under appropriate in vitro conditions, microtubule preparations behave as a 'complex' system and show 'emergent' phenomena. In particular, they form dissipative structures that self-organise over macroscopic distances by a combination of reaction and diffusion. Results Here, we show that self-organisation also gives rise to a collective transport of colloidal particles along a specific direction. Particles, such as polystyrene beads, chromosomes, nuclei, and vesicles are carried at speeds of several microns per minute. The process also results in the macroscopic self-organisation of these particles. After self-organisation is completed, they show the same pattern of organisation as the microtubules. Numerical simulations of a population of growing and shrinking microtubules, incorporating experimentally realistic reaction dynamics, predict self-organisation. They forecast that during self-organisation, macroscopic parallel arrays of oriented microtubules form which cross the reaction space in successive waves. Such travelling waves are capable of transporting colloidal particles. The fact that in the simulations, the aligned arrays move along the same direction and at the same speed as the particles move, suggest that this process forms the underlying mechanism for the observed transport properties. Conclusions This process constitutes a novel physical chemical mechanism by which chemical energy is converted into collective transport of colloidal particles along a given direction. Self-organisation of this type provides a new mechanism by which intra cellular particles such as chromosomes and vesicles can be displaced and simultaneously organised by microtubules. It is plausible that processes of this type occur in vivo. PMID:15176973

  4. A discrete mesoscopic particle model of the mechanics of a multi-constituent arterial wall.

    PubMed

    Witthoft, Alexandra; Yazdani, Alireza; Peng, Zhangli; Bellini, Chiara; Humphrey, Jay D; Karniadakis, George Em

    2016-01-01

    Blood vessels have unique properties that allow them to function together within a complex, self-regulating network. The contractile capacity of the wall combined with complex mechanical properties of the extracellular matrix enables vessels to adapt to changes in haemodynamic loading. Homogenized phenomenological and multi-constituent, structurally motivated continuum models have successfully captured these mechanical properties, but truly describing intricate microstructural details of the arterial wall may require a discrete framework. Such an approach would facilitate modelling interactions between or the separation of layers of the wall and would offer the advantage of seamless integration with discrete models of complex blood flow. We present a discrete particle model of a multi-constituent, nonlinearly elastic, anisotropic arterial wall, which we develop using the dissipative particle dynamics method. Mimicking basic features of the microstructure of the arterial wall, the model comprises an elastin matrix having isotropic nonlinear elastic properties plus anisotropic fibre reinforcement that represents the stiffer collagen fibres of the wall. These collagen fibres are distributed evenly and are oriented in four directions, symmetric to the vessel axis. Experimental results from biaxial mechanical tests of an artery are used for model validation, and a delamination test is simulated to demonstrate the new capabilities of the model. © 2016 The Author(s).

  5. Quantum Mechanics, vacuum, particles, Gödel-Cohen incompleteness and the Universe

    NASA Astrophysics Data System (ADS)

    Gonzalez-Mestres, Luis

    2017-12-01

    Are the standard laws of Physics really fundamental principles? Does the physical vacuum have a more primordial internal structure? Are quarks, leptons, gauge bosons… ultimate elementary objects? These three basic questions are actually closely related. If the deep vacuum structure and dynamics turn out to be less trivial than usually depicted, the conventional "elementary" particles will most likely be excitations of such a vacuum dynamics that remains by now unknown. We then expect relativity and quantum mechanics to be low-energy limits of a more fundamental dynamical pattern that generates them at a deeper level. It may even happen that vacuum drives the expansion of the Universe from its own inner dynamics. Inside such a vacuum structure, the speed of light would not be the critical speed for vacuum constituents and propagating signals. The natural scenario would be the superbradyon (superluminal preon) pattern we postulated in 1995, with a new critical speed cs much larger than the speed of light c just as c is much larger than the speed of sound. Superbradyons are assumed to be the bradyons of a super-relativity associated to cs (a Lorentz invariance with cs as the critical speed). Similarly, the standard relativistic space-time with four real coordinates would not necessarily hold beyond low-energy and comparatively local distance scales. Instead, the spinorial space-time (SST) with two complex coordinates we introduced in 1996-97 may be the suitable one to describe the internal structure of vacuum and standard "elementary" particles and, simultaneously, Cosmology at very large distance scales. If the constituents of the preonic vacuum are superluminal, quantum entanglement appears as a natural property provided cs ≫ c . The value of cs can even be possibly found experimentally by studying entanglement at large distances. It is not excluded that preonic constituents of vacuum can exist in our Universe as free particles ("free" superbradyons), in which

  6. Morphodynamics of growing bacterial colony

    NASA Astrophysics Data System (ADS)

    Ghosh, Pushpita; Perlekar, Prasad; Rana, Navdeep

    Self-organization into multicellular communities is a natural trend of most of the bacteria. Mutual interactions and competition among the bacterial cells in such multicellular organization play essential role in governing the spatiotemporal dynamics. We here present the spatiotemporal dynamics of growing bacterial colony using theory and a particle-based or individual-based simulation model of nonmotile cells growing utilizing a diffusing nutrient/food on a semi-solid surface by their growth and division forces and by pushing each-other through sliding motility. We show how the resource competition over a fixed amount of food, the diffusion coefficient of the nutrient and the random genetic noise govern the morphodynamics of a single species and a well-mixed two-species bacterial colonies. Our results show that for a very low initial food concentrations, colony develops fingering pattern at the front, while for intermediate values of initial food sources, the colony undergoes transitions to branched structures at the periphery and for very high values of food colony develops smoother fronts.

  7. Effects of SiO2 nano-particles on tribological and mechanical properties of aluminum matrix composites by different dispersion methods

    NASA Astrophysics Data System (ADS)

    Azadi, Mahboobeh; Zolfaghari, Mehrdad; Rezanezhad, Saeid; Azadi, Mohammad

    2018-05-01

    This study has been presented with mechanical properties of aluminum matrix composites, reinforced by SiO2 nano-particles. The stir casting method was employed to produce various aluminum matrix composites. Different composites by varying the SiO2 nano-particle content (including 0.5 and 1 weight percents) and two dispersion methods (including ball-milling and pre-heating) were made. Then, the density, the hardness, the compression strength, the wear resistance and the microstructure of nano-composites have been studied in this research. Besides, the distribution of nano-particles in the aluminum matrix for all composites has been also evaluated by the field emission scanning electron microscopy (FESEM). Obtained results showed that the density, the elongation and the ultimate compressive strength of various nano-composites decreased by the presence of SiO2 nano-particles; however, the hardness, the wear resistance, the yield strength and the elastic modulus of composites increased by auditioning of nano-particles to the aluminum alloy. FESEM images indicated better wetting of the SiO2 reinforcement in the aluminum matrix, prepared by the pre-heating dispersion method, comparing to ball-milling. When SiO2 nano-particles were added to the aluminum alloy, the morphology of the Si phase and intermetallic phases changed, which enhanced mechanical properties. In addition, the wear mechanism plus the friction coefficient value were changed for various nano-composites with respect to the aluminum alloy.

  8. The mechanical properties of nanofilled resin-based composites: characterizing discrete filler particles and agglomerates using a micromanipulation technique.

    PubMed

    Curtis, Andrew R; Palin, William M; Fleming, Garry J P; Shortall, Adrian C C; Marquis, Peter M

    2009-02-01

    To assess the mechanical properties of discrete filler particles representative of several inorganic fillers in modern dental resin-based composites (RBCs) and to assess the validity of a novel micromanipulation technique. RBCs with microhybrid (Filtek Z250), 'nanohybrid' (Grandio) and 'nanofilled' (Filtek Supreme), filler particle morphologies were investigated. Filler particles were provided by the manufacturer or separated from the unpolymerized resin using a dissolution technique. Filler particles (n=30) were subjected to compression using a micromanipulation technique between a descending glass probe and a glass slide. The number of distinct fractures particles underwent was determined from force/displacement and stress/deformation curves and the force at fracture and pseudo-modulus of stress was calculated. Agglomerated fillers ('nanoclusters') exhibited up to four distinct fractures, while spheroidal and irregular particles underwent either a single fracture or did not fracture following micromanipulation. Z-tests highlighted failure of nanoclusters to be significant compared with spheroidal and irregular particles (P<0.05). The mean force at first fracture of the nanoclusters was greater (1702+/-909 microN) than spheroidal and irregular particles (1389+/-1342 and 1356+/-1093 microN, respectively). Likewise, the initial pseudo-modulus of stress of nanoclusters (797+/-555 MPa) was also greater than spheroidal (587+/-439 MPa) or irregular (552+/-275 MPa) fillers. The validity of employing the micromanipulation technique to determine the mechanical properties of filler particulates was established. The 'nanoclusters' exhibited a greater tendency to multiple fractures compared with conventional fillers and possessed a comparatively higher variability of pseudo-modulus and load prior to and at fracture, which may modify the damage tolerance of the overall RBC system.

  9. A Study of the Stability Mechanism of the Dispersed Particle Gel Three-Phase Foam Using the Interfacial Dilational Rheology Method.

    PubMed

    Yao, Xue; Yi, Ping; Zhao, Guang; Sun, Xin; Dai, Caili

    2018-04-28

    The dispersed particle gel (DPG) three-phase foam is a novel profile control and flooding system. The stability mechanism of the DPG three-phase foam was studied using an interfacial dilational rheology method. The results show that the elastic modulus of the DPG three-phase foam is up to 14 mN/m, which is much higher than the traditional foam. The increase in interface elasticity produces significantly positive effects on foam stability. Emphasis is given to the influences of frequency, temperature, pressure, and concentration on the viscoelasticity and interfacial adsorption of DPG particles, which change the modules of the foam interface and have a significant effect on foam stability. In addition, the microstructure of the DPG three-phase foam was observed. A viscoelastic shell is formed by the aggregation of the DPG particles on the interface. The irreversible adsorption gives the interface high elasticity and mechanical strength. The electrostatic repulsion between particles increases the spacing between bubbles. The combined effects of these factors give the interface higher mechanical strength, slow down the film drainage, effectively prevent gas permeation, and significantly improve the foam stability.

  10. A Study of the Stability Mechanism of the Dispersed Particle Gel Three-Phase Foam Using the Interfacial Dilational Rheology Method

    PubMed Central

    Yi, Ping; Zhao, Guang; Sun, Xin; Dai, Caili

    2018-01-01

    The dispersed particle gel (DPG) three-phase foam is a novel profile control and flooding system. The stability mechanism of the DPG three-phase foam was studied using an interfacial dilational rheology method. The results show that the elastic modulus of the DPG three-phase foam is up to 14 mN/m, which is much higher than the traditional foam. The increase in interface elasticity produces significantly positive effects on foam stability. Emphasis is given to the influences of frequency, temperature, pressure, and concentration on the viscoelasticity and interfacial adsorption of DPG particles, which change the modules of the foam interface and have a significant effect on foam stability. In addition, the microstructure of the DPG three-phase foam was observed. A viscoelastic shell is formed by the aggregation of the DPG particles on the interface. The irreversible adsorption gives the interface high elasticity and mechanical strength. The electrostatic repulsion between particles increases the spacing between bubbles. The combined effects of these factors give the interface higher mechanical strength, slow down the film drainage, effectively prevent gas permeation, and significantly improve the foam stability. PMID:29710805

  11. Consequences of Growing Up Poor.

    ERIC Educational Resources Information Center

    Duncan, Greg J., Ed.; Brooks-Gunn, Jeanne, Ed.

    The consequences and correlates of growing up poor as well as the mechanisms through which poverty influences children are explored. This book is organized with a primary focus on research findings and a secondary concern with policy implications. The chapters are: (1) "Poor Families, Poor Outcomes: The Well-Being of Children and Youth" (Jeanne…

  12. Irradiation behavior of the interaction product of U-Mo fuel particle dispersion in an Al matrix

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Hofman, G. L.

    2012-06-01

    Irradiation performance of U-Mo fuel particles dispersed in Al matrix is stable in terms of fuel swelling and is suitable for the conversion of research and test reactors from highly enriched uranium (HEU) to low enriched uranium (LEU). However, tests of the fuel at high temperatures and high burnups revealed obstacles caused by the interaction layers forming between the fuel particle and matrix. In some cases, fission gas filled pores grow and interconnect in the interdiffusion layer resulting in fuel plate failure. Postirradiation observations are made to examine the behavior of the interdiffusion layers. The interdiffusion layers show a fluid-like behavior characteristic of amorphous materials. In the amorphous interdiffusion layers, fission gas diffusivity is high and the material viscosity is low so that the fission gas pores readily form and grow. Based on the observations, a pore formation mechanism is proposed and potential remedies to suppress the pore growth are also introduced.

  13. Particle Disease: A Current Review of the Biological Mechanisms in Periprosthetic Osteolysis After Hip Arthroplasty

    PubMed Central

    Sukur, Erhan; Akman, Yunus Emre; Ozturkmen, Yusuf; Kucukdurmaz, Fatih

    2016-01-01

    Background: Inflammatory responses to wear debris cause osteolysis that leads to aseptic prosthesis loosening and hip arthroplasty failure. Although osteolysis is usually associated with aseptic loosening, it is rarely seen around stable implants. Aseptic implant loosening is a simple radiologic phenomenon, but a complex immunological process. Particulate debris produced by implants most commonly causes osteolysis, and this is called particle-associated periprosthetic osteolysis (PPO). Objective: The objective of this review is to outline the features of particle-associated periprosthetic osteolysis to allow the physician to recognise this condition and commence early treatment, thereby optimizing patient outcome. Methods: A thorough literature search was performed using available databases, including Pubmed, to cover important research published covering particle-associated PPO. Results: Although osteolysis causes bone resorption, clinical, animal, and in vitro studies of particle bioreactivity suggest that particle-associated PPO represents the culmination of several biological reactions of many cell types, rather than being caused solely by the osteoclasts. The biological activity is highly dependent on the characteristics and quantity of the wear particles. Conclusion: Despite advances in total hip arthroplasty (THA), particle-associated PPO and aseptic loosening continue to be major factors that affect prosthetic joint longevity. Biomarkers could be exploited as easy and objective diagnostic and prognostic targets that would enable testing for osteolysis after THA. Further research is needed to identify new biomarkers in PPO. A comprehensive understanding of the underlying biological mechanisms is crucial for developing new therapeutic interventions to reverse or suppress biological responses to wear particles. PMID:27499822

  14. Particulate representation of a chemical reaction mechanism

    NASA Astrophysics Data System (ADS)

    Lee, Kam-Wah Lucille

    1999-09-01

    A growing area of interest in chemical education has been the research associated with conceptual understanding at the particulate level. This study investigated the views of 10 university chemistry lecturers, 85 pre-service chemistry teachers and 23 Secondary 3 (equivalent to Year 9) chemistry students about the particulate level of a chemical reaction, namely the heating of copper (II) carbonate. Four characteristic views were identified on the basis of their diagrammatic representations of particles. These were: (a) formation of intermediates; (b) formation of free particles (e. g., atoms or ions); (c) combination of a and b: formation of free particles (e. g., atoms or ions) first, and then intermediates; (d) no mechanism. Both the majority of the lecturers and the pre-service teachers held an identical view about the reaction mechanism, namely that the decomposition of copper (II) carbonate goes through a transition stage by forming intermediates. In contrast, even though the students were familiar with this reaction, about half of them naïvely believed that copper (II) carbonate broke up on heating and the particles recombined directly to form copper (II) oxide and carbon dioxide, the two observed products. About one-third of the students had neither any notion of how the atoms in the copper (II) carbonate lattice interacted and were rearranged in the reaction nor any concept of bond-breaking and reformation in a chemical reaction.

  15. A new mechanism for DNA alterations induced by alpha particles such as those emitted by radon and radon progeny.

    PubMed Central

    Lehnert, B E; Goodwin, E H

    1997-01-01

    The mechanism(s) by which alpha (alpha) particles like those emitted from inhaled radon and radon progeny cause their carcinogenic effects in the lung remains unclear. Although direct nuclear traversals by alpha-particles may be involved in mediating these outcomes, increasing evidence indicates that a particles can cause alterations in DNA in the absence of direct hits to cell nuclei. Using the occurrence of excessive sister chromatid exchanges (SCE) as an index of DNA damage in human lung fibroblasts, we investigated the hypothesis that alpha-particles may induce DNA damage through the generation of extracellular factors. We have found that a relatively low dose of alpha-particles can result in the generation of extracellular factors, which, upon transfer to unexposed normal human cells, can cause excessive SCE to an extent equivalent to that observed when the cells are directly irradiated with the same irradiation dose. A short-lived, SCE-inducing factor(s) is generated in alpha-irradiated culture medium containing serum in the absence of cells. A more persistent SCE-inducing factor(s), which can survive freeze-thaw and is heat labile is produced by fibroblasts after exposure to the alpha-particles. These results indicate that the initiating target for alpha-particle-induced genetic changes can be larger than a cell's nucleus or even a whole cell. How transmissible factors like those observed here in vitro may extend to the in vivo condition in the context of a-particle-induced carcinogenesis in the respiratory tract remains to be determined. PMID:9400706

  16. Theory of self-resonance after inflation. II. Quantum mechanics and particle-antiparticle asymmetry

    NASA Astrophysics Data System (ADS)

    Hertzberg, Mark P.; Karouby, Johanna; Spitzer, William G.; Becerra, Juana C.; Li, Lanqing

    2014-12-01

    We further develop a theory of self-resonance after inflation in a large class of models involving multiple scalar fields. We concentrate on inflaton potentials that carry an internal symmetry, but also analyze weak breaking of this symmetry. This is the second part of a two-part series of papers. Here in Part 2 we develop an understanding of the resonance structure from the underlying many-particle quantum mechanics. We begin with a small-amplitude analysis, which obtains the central resonant wave numbers, and relate it to perturbative processes. We show that the dominant resonance structure is determined by (i) the nonrelativistic scattering of many quantum particles and (ii) the application of Bose-Einstein statistics to the adiabatic and isocurvature modes, as introduced in Part 1 [M. P. Hertzberg et al., Phys. Rev. D 90, 123528 (2014)]. Other resonance structures are understood in terms of annihilations and decays. We set up Bunch-Davies vacuum initial conditions during inflation and track the evolution of modes including Hubble expansion. In the case of a complex inflaton carrying an internal U(1) symmetry, we show that when the isocurvature instability is active, the inflaton fragments into separate regions of ϕ -particles and anti-ϕ -particles. We then introduce a weak breaking of the U(1) symmetry; this can lead to baryogenesis, as shown by some of us recently [M. P. Hertzberg and J. Karouby, Phys. Lett. B 737, 34 (2014); Phys. Rev. D 89, 063523 (2014)]. Then using our results, we compute corrections to the particle-antiparticle asymmetry from this preheating era.

  17. Size and shape of uniform particles precipitated in homogeneous solutions

    NASA Astrophysics Data System (ADS)

    Sevonkaev, Igor V.

    The assembly of nanosize crystals into larger uniform colloids is a fundamental process that plays a critical role in the formation of a very broad range of fine-particles used in numerous applications in technology, medicine, and national security. It is widely accepted that, along with size, in most of these applications the shape of the particles represents a critical factor. In the current research, we investigate the size and shape control of uniform particles prepared by precipitation in homogeneous solutions. In the first---theoretical---part a combinational mechanism of the shape control during particle growth was proposed and analyzed numerically. The main finding of our simulation is that a proper balance of two processes, preferential attachment of transported monomers at the protruding features of the growing cluster and monomer rearrangement at the cluster surface, can yield a well-defined particle shape that persist for sizes much larger than the original seed over a large interval of time. In the experimental part, three chemically simple systems were selected MgF2, NaMgF3, and PbS for defining and evaluating the key parameters of the shape and size control of the precipitates. Thus, uniform dispersions of particles of different morphologies (spherical, cubic, platelet, and prismatic) were prepared by precipitation in aqueous solutions. The mechanisms of the formation of the resulting particles of different shapes are explained by the role of the pH, temperature, solubility, and ionic strength. Stages of particles growth were evaluated on short and long time scales, winch allowed to propose multistage mechanisms of NaMgF3 growth and estimate induction time and critical nuclei size for MgF2. In addition, for prospective numerical modeling the surface tensions of spherical and platelet particles of MgF2 were evaluated from the X-ray data by a lattice parameter change method. Also, a new method for the evaluation of the variation in the density

  18. Pesticides in the atmosphere: a comparison of gas-particle partitioning and particle size distribution of legacy and current-use pesticides

    NASA Astrophysics Data System (ADS)

    Degrendele, C.; Okonski, K.; Melymuk, L.; Landlová, L.; Kukučka, P.; Audy, O.; Kohoutek, J.; Čupr, P.; Klánová, J.

    2015-09-01

    This study presents a comparison of seasonal variation, gas-particle partitioning and particle-phase size distribution of organochlorine pesticides (OCPs) and current-use pesticides (CUPs) in air. Two years (2012/2013) of weekly air samples were collected at a background site in the Czech Republic using a high-volume air sampler. To study the particle-phase size distribution, air samples were also collected at an urban and rural site in the area of Brno, Czech Republic, using a cascade impactor separating atmospheric particulates according to six size fractions. The timing and frequencies of detection of CUPs related to their legal status, usage amounts and their environmental persistence, while OCPs were consistently detected throughout the year. Two different seasonal trends were noted: certain compounds had higher concentrations only during the growing season (April-September) and other compounds showed two peaks, first in the growing season and second in plowing season (October-November). In general, gas-particle partitioning of pesticides was governed by physicochemical properties, with higher vapor pressure leading to higher gas phase fractions, and associated seasonality in gas-particle partitioning was observed in nine pesticides. However, some anomalous partitioning was observed for fenpropimorph and chlorpyrifos suggesting the influence of current pesticide application on gas-particle distributions. Nine pesticides had highest particle phase concentrations on fine particles (< 0.95 μm) and four pesticides on coarser (> 1.5 μm) particles.

  19. Hot particles attract in a cold bath

    NASA Astrophysics Data System (ADS)

    Tanaka, Hidenori; Lee, Alpha A.; Brenner, Michael P.

    2017-04-01

    Controlling interactions out of thermodynamic equilibrium is crucial for designing addressable and functional self-organizing structures. These active interactions also underpin collective behavior in biological systems. Here we study a general setting of active particles in a bath of passive particles and demonstrate a mechanism for long-range attraction between active particles. The mechanism operates when the translational persistence length of the active particle motion is smaller than the particle diameter. In this limit, the system reduces to particles of higher diffusivity ("hot" particles) in a bath of particles with lower diffusivity ("cold" particles). This attractive interaction arises as a hot particle pushes cold particles away to create a large hole around itself, and the holes interact via a depletion-like attraction. Strikingly, the interaction range is more than an order of magnitude larger than the particle radius, well beyond the range of the conventional depletion force. Although the mechanism occurs outside the parameter regime of typical biological swimmers, the mechanism could be realized in the laboratory.

  20. Dissipation Mechanisms and Particle Acceleration at the Earth's Bow Shock

    NASA Astrophysics Data System (ADS)

    Desai, M. I.; Burch, J. L.; Broll, J. M.; Genestreti, K.; Torbert, R. B.; Ergun, R.; Wei, H.; Giles, B. L.; Russell, C. T.; Phan, T.; Chen, L. J.; Lai, H.; Wang, S.; Schwartz, S. J.; Allen, R. C.; Mauk, B.; Gingell, I.

    2017-12-01

    NASA's Magnetospheric Multiscale (MMS) mission has four spacecraft equipped with identical state-of-the-art instruments that acquire magnetic and electric field, plasma wave, and particle data at unprecedented temporal resolution to study the fundamental physics of magnetic reconnection in the Earth's magnetosphere. During Phase 1a, MMS also encountered and crossed the Earth's bow shock more than 300 times. We use burst data during 2 bow shock crossings to shed new light on key open questions regarding the formation, evolution, and dissipation mechanisms at collisionless shocks. Specifically, we focus on two events that exhibit clear differences in the ion and electron properties, the associated wave activity, and, therefore in the nature of the dissipation. In the case of a quasi-perpendicular, low beta shock crossing, we find that the dissipation processes are most likely associated with field-aligned electron beams that are coincident with high frequency electrostatic waves. On the other hand, the dissipation processes at an oblique, high beta shock crossing are largely governed by the quasi-static electric field and generation of magnetosonic whistler waves that result in perpendicular temperature anisotropy for the electrons. We also discuss the implications of these results for ion heating, reflection, and particle acceleration.

  1. A mathematical description of a growing cell colony based on the mechanical bidomain model

    NASA Astrophysics Data System (ADS)

    Auddya, Debabrata; Roth, Bradley J.

    2017-03-01

    The mechanical bidomain model is used to describe a colony of cells growing on a substrate. Analytical expressions are derived for the intracellular and extracellular displacements. Mechanotransduction events are driven by the difference between the displacements in the two spaces, corresponding to the force acting on integrins. The equation for the displacement consists of two terms: one proportional to the radius that is the same in the intracellular and extracellular spaces (the monodomain term) and one that is proportional to a modified Bessel function that is responsible for mechanotransduction (the bidomain term). The model predicts that mechanotransduction occurs within a few length constants of the colony’s edge, and an expression for the length constant contains the intracellular and extracellular shear moduli and the spring constant of the integrins coupling the two spaces. The model predictions are qualitatively consistent with experiments on human embryonic stem cell colonies, in which differentiation is localized near the edge.

  2. Ultrafine particle libraries for exploring mechanisms of PM2.5-induced toxicity in human cells.

    PubMed

    Bai, Xue; Liu, Yin; Wang, Shenqing; Liu, Chang; Liu, Fang; Su, Gaoxing; Peng, Xiaowu; Yuan, Chungang; Jiang, Yiguo; Yan, Bing

    2018-08-15

    Air pollution worldwide, especially in China and India, has caused serious health issues. Because PM 2.5 particles consist of solid particles of diverse properties with payloads of inorganic, organic and biological pollutants, it is still not known what the major toxic components are and how these components induce toxicities. To explore this complex issue, we apply reductionism principle and an ultrafine particle library approach in this work. From investigation of 63 diversely functionalized ultrafine particles (FUPs) with adsorbed key pollutants, our findings indicate that 1) only certain pollutants in the payloads of PM 2.5 are responsible for causing cellular oxidative stress, cell apoptosis, and cytotoxicity while the particle carriers are much less toxic; 2) pollutant-induced cellular oxidative stress and oxidative stress-triggered apoptosis are identified as one of the dominant mechanisms for PM 2.5 -induced cytotoxicity; 3) each specific toxic component on PM 2.5 (such as As, Pb, Cr or BaP) mainly affects its specific target organ(s) and, adding together, these pollutants may cause synergistic or just additive effects. Our findings demonstrate that reductionism concept and model PM 2.5 particle library approach are very effective in our endeavor to search for a better understanding of PM 2.5 -induced health effects. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. The eikonal function: the commom concept in ray optics and particle mechanics

    NASA Astrophysics Data System (ADS)

    Krautter, Martin

    1993-04-01

    The habit of teaching the movements of masses first, and propagation of light later, as an electromagnetic phenomenon was widespread. Looking further back into the history of physics, however, we see earlier the concepts for understanding light rays, and later their successful application to particle trajectories, leading to the highly developed celestial mechanics towards the end of the 19th century. And then, 1905, Karl Schwarzschild transferred the technique of `canonical coordinates,' named so by C.G.J. Jacobi in 1837, back to light rays in imaging systems. I would like to point to the chief steps in the evolution. The learning process for handling both particle and wave propagation aspects continues up to our time: Richard Feynman 1918 - 1988. We may judge each contribution: whether it opens our mind to a unifying theory, or whether it hardens partial understanding. And we can notice where the understanding of light propagation led the evolution, and how the theory for movement of masses caught up.

  4. Growing and Growing: Promoting Functional Thinking with Geometric Growing Patterns

    ERIC Educational Resources Information Center

    Markworth, Kimberly A.

    2010-01-01

    Design research methodology is used in this study to develop an empirically-substantiated instruction theory about students' development of functional thinking in the context of geometric growing patterns. The two research questions are: (1) How does students' functional thinking develop in the context of geometric growing patterns? (2) What are…

  5. Assessment of mechanical behavior of PLA composites reinforced with Mg micro-particles through depth-sensing indentations analysis.

    PubMed

    Cifuentes, S C; Frutos, E; Benavente, R; Lorenzo, V; González-Carrasco, J L

    2017-01-01

    This work deals with the mechanical characterization by depth-sensing indentation (DSI) of PLLA and PLDA composites reinforced with micro-particles of Mg (up to 15wt%), which is a challenging task since the indented volume must provide information of the bulk composite, i.e. contain enough reinforcement particles. The composites were fabricated by combining hot extrusion and compression moulding. Physico-chemical characterization by TGA and DSC indicates that Mg anticipates the thermal degradation of the polymers but does not compromise their stability during processing. Especial emphasis is devoted to determine the effect of strain rate and Mg content on mechanical behavior, thus important information about the visco-elastic behavior and time-dependent response of the composites is obtained. Relevant for the intended application is that Mg addition increases the elastic modulus and hardness of the polymeric matrices and induces a higher resistance to flow. The elastic modulus obtained by DSI experiments shows good agreement with that obtained by uniaxial compression tests. The results indicate that DSI experiments are a reliable method to calculate the modulus of polymeric composites reinforced with micro-particles. Taking into consideration the mechanical properties results, PLA/Mg composite could be used as substitute for biodegradable monolithic polymeric implants already in the market for orthopedics (freeform meshes, mini plates, screws, pins, …), craniomaxillofacial, or spine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Thermophoretic aggregation of particles in a protoplanetary disc

    NASA Astrophysics Data System (ADS)

    Smith, Francis J.

    2018-04-01

    Thermophoresis causes particles to move down a temperature gradient to a cooler region of a neutral gas. An example is the temperature gradient in the gas around a large cold object, such as an aggregate of particles, cooled by radiation in a protoplanetary disc. Particles near this aggregate move down the temperature gradient to the aggregate, equivalent to the particles being attracted to it by an inter-particle thermophoretic force. This force is proportional to the temperature difference between gas and aggregate, to the gas density and to the cross-section of the aggregate. The force can be large. For example, calculations based on the equations of motion of the interacting particles show that it can be large enough in an optically thin environment to increase the rate of aggregation by up to six orders of magnitude when an aggregate radius lies between 0.1 μm and 1 mm. From 1 mm to about 10 cm aggregates drift inwards through the gas too quickly for the thermophoretic attraction to increase aggregation significantly; so they grow slowly, causing an observed accumulation of particles at these sizes. Particles above 10 cm move more quickly, causing aggregation due to collisions, but also causing fragmentation. However, calculations show that fragmenting particles and bouncing particles in inelastic collisions often have low enough relative velocities that thermophoresis brings them together again. This allows particles to grow above 1 m, which is otherwise difficult to explain.

  7. Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite

    NASA Astrophysics Data System (ADS)

    V. R., Arun prakash; Rajadurai, A.

    2016-10-01

    In this present work hybrid polymer (epoxy) matrix composite has been strengthened with surface modified E-glass fiber and iron(III) oxide particles with varying size. The particle sizes of 200 nm and <100 nm has been prepared by high energy ball milling and sol-gel methods respectively. To enhance better dispersion of particles and improve adhesion of fibers and fillers with epoxy matrix surface modification process has been done on both fiber and filler by an amino functional silane 3-Aminopropyltrimethoxysilane (APTMS). Crystalline and functional groups of siliconized iron(III) oxide particles were characterized by XRD and FTIR spectroscopy analysis. Fixed quantity of surface treated 15 vol% E-glass fiber was laid along with 0.5 and 1.0 vol% of iron(III) oxide particles into the matrix to fabricate hybrid composites. The composites were cured by an aliphatic hardener Triethylenetetramine (TETA). Effectiveness of surface modified particles and fibers addition into the resin matrix were revealed by mechanical testing like tensile testing, flexural testing, impact testing, inter laminar shear strength and hardness. Thermal behavior of composites was evaluated by TGA, DSC and thermal conductivity (Lee's disc). The scanning electron microscopy was employed to found shape and size of iron(III) oxide particles adhesion quality of fiber with epoxy matrix. Good dispersion of fillers in matrix was achieved with surface modifier APTMS. Tensile, flexural, impact and inter laminar shear strength of composites was improved by reinforcing surface modified fiber and filler. Thermal stability of epoxy resin was improved when surface modified fiber was reinforced along with hard hematite particles. Thermal conductivity of epoxy increased with increase of hematite content in epoxy matrix.

  8. Growing a Forest for the Trees.

    ERIC Educational Resources Information Center

    Growing Ideas, 2001

    2001-01-01

    Describes a tree studies program in a fourth-grade classroom. Students collected local tree seeds and seeds from supermarket fruits, researched growing conditions, and grew seeds under various conditions. Students kept journals on local trees, observing seed dispersal mechanisms and examining rings on trunk slices. Inquiry-based tree studies…

  9. Tribo-Mechanical Properties of HVOF Deposited Fe3Al Coatings Reinforced with TiB2 Particles for Wear-Resistant Applications

    PubMed Central

    Amiriyan, Mahdi; Blais, Carl; Savoie, Sylvio; Schulz, Robert; Gariépy, Mario; Alamdari, Houshang

    2016-01-01

    This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2

  10. The effect of acid–base clustering and ions on the growth of atmospheric nano-particles

    DOE PAGES

    Lehtipalo, Katrianne; Rondo, Linda; Kontkanen, Jenni; ...

    2016-05-20

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted formore » in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. Furthermore, we bring these observations into a coherent framework and discuss their significance in the atmosphere.« less

  11. The effect of acid–base clustering and ions on the growth of atmospheric nano-particles

    PubMed Central

    Lehtipalo, Katrianne; Rondo, Linda; Kontkanen, Jenni; Schobesberger, Siegfried; Jokinen, Tuija; Sarnela, Nina; Kürten, Andreas; Ehrhart, Sebastian; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Sipilä, Mikko; Yli-Juuti, Taina; Duplissy, Jonathan; Adamov, Alexey; Ahlm, Lars; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Guida, Roberto; Hakala, Jani; Hansel, Armin; Jud, Werner; Kangasluoma, Juha; Kerminen, Veli-Matti; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Kupiainen-Määttä, Oona; Laaksonen, Ari; Lawler, Michael J.; Leiminger, Markus; Mathot, Serge; Olenius, Tinja; Ortega, Ismael K.; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud; Rissanen, Matti P.; Ruuskanen, Taina; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Simon, Mario; Smith, James N.; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Tomé, António; Vaattovaara, Petri; Vehkamäki, Hanna; Vrtala, Aron E.; Wagner, Paul E.; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M.; Virtanen, Annele; Donahue, Neil M.; Carslaw, Kenneth S.; Baltensperger, Urs; Riipinen, Ilona; Curtius, Joachim; Worsnop, Douglas R.; Kulmala, Markku

    2016-01-01

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere. PMID:27197574

  12. A 3-D model of tumor progression based on complex automata driven by particle dynamics.

    PubMed

    Wcisło, Rafał; Dzwinel, Witold; Yuen, David A; Dudek, Arkadiusz Z

    2009-12-01

    The dynamics of a growing tumor involving mechanical remodeling of healthy tissue and vasculature is neglected in most of the existing tumor models. This is due to the lack of efficient computational framework allowing for simulation of mechanical interactions. Meanwhile, just these interactions trigger critical changes in tumor growth dynamics and are responsible for its volumetric and directional progression. We describe here a novel 3-D model of tumor growth, which combines particle dynamics with cellular automata concept. The particles represent both tissue cells and fragments of the vascular network. They interact with their closest neighbors via semi-harmonic central forces simulating mechanical resistance of the cell walls. The particle dynamics is governed by both the Newtonian laws of motion and the cellular automata rules. These rules can represent cell life-cycle and other biological interactions involving smaller spatio-temporal scales. We show that our complex automata, particle based model can reproduce realistic 3-D dynamics of the entire system consisting of the tumor, normal tissue cells, blood vessels and blood flow. It can explain phenomena such as the inward cell motion in avascular tumor, stabilization of tumor growth by the external pressure, tumor vascularization due to the process of angiogenesis, trapping of healthy cells by invading tumor, and influence of external (boundary) conditions on the direction of tumor progression. We conclude that the particle model can serve as a general framework for designing advanced multiscale models of tumor dynamics and it is very competitive to the modeling approaches presented before.

  13. Targeted and Nontargeted α-Particle Therapies.

    PubMed

    McDevitt, Michael R; Sgouros, George; Sofou, Stavroula

    2018-06-04

    α-Particle irradiation of cancerous tissue is increasingly recognized as a potent therapeutic option. We briefly review the physics, radiobiology, and dosimetry of α-particle emitters, as well as the distinguishing features that make them unique for radiopharmaceutical therapy. We also review the emerging clinical role of α-particle therapy in managing cancer and recent studies on in vitro and preclinical α-particle therapy delivered by antibodies, other small molecules, and nanometer-sized particles. In addition to their unique radiopharmaceutical characteristics, the increased availability and improved radiochemistry of α-particle radionuclides have contributed to the growing recent interest in α-particle radiotherapy. Targeted therapy strategies have presented novel possibilities for the use of α-particles in the treatment of cancer. Clinical experience has already demonstrated the safe and effective use of α-particle emitters as potent tumor-selective drugs for the treatment of leukemia and metastatic disease.

  14. Targeted and Nontargeted α-Particle Therapies

    PubMed Central

    McDevitt, Michael R.; Sgouros, George; Sofou, Stavroula

    2018-01-01

    α-Particle irradiation of cancerous tissue is increasingly recognized as a potent therapeutic option. We briefly review the physics, radiobiology, and dosimetry of α-particle emitters, as well as the distinguishing features that make them unique for radiopharmaceutical therapy. We also review the emerging clinical role of α-particle therapy in managing cancer and recent studies on in vitro and preclinical α-particle therapy delivered by antibodies, other small molecules, and nanometer-sized particles. In addition to their unique radiopharmaceutical characteristics, the increased availability and improved radiochemistry of α-particle radionuclides have contributed to the growing recent interest in α-particle radiotherapy. Targeted therapy strategies have presented novel possibilities for the use of α-particles in the treatment of cancer. Clinical experience has already demonstrated the safe and effective use of α-particle emitters as potent tumor-selective drugs for the treatment of leukemia and metastatic disease. PMID:29345977

  15. The Radiation Belt Storm Probes (RBSP) Energetic Particle, Composition, and Thermal plasma (ECT) Suite: Upcoming Opportunties for Testing Radiation Belt Acceleration Mechanisms

    NASA Astrophysics Data System (ADS)

    Spence, Harlan; Reeves, Geoffrey

    2012-07-01

    The Radiation Belt Storm Probes (RBSP) mission will launch in late summer 2012 and begin its exploration of acceleration and dynamics of energetic particles in the inner magnetosphere. In this presentation, we discuss opportunities afforded by the RBSP Energetic Particle, Composition, and Thermal plasma (ECT) instrument suite to advance our understanding of acceleration processes in the radiation belts. The RBSP-ECT instrument suite comprehensively measures the electron and major ion populations of the inner magnetosphere, from the lowest thermal plasmas of the plasmasphere, to the hot plasma of the ring current, to the relativistic populations of the radiation belts. Collectively, the ECT measurements will reveal the complex cross-energy coupling of these colocated particle populations, which along with concurrent RBSP wave measurements, will permit various wave-particle acceleration mechanisms to be tested. We review the measurement capabilities of the RBSP-ECT instrument suite, and demonstrate several examples of how these measurements will be used to explore candidate acceleration mechanisms and dynamics of radiation belt particles.

  16. Thermodynamics of phase-separating nanoalloys: Single particles and particle assemblies

    NASA Astrophysics Data System (ADS)

    Fèvre, Mathieu; Le Bouar, Yann; Finel, Alphonse

    2018-05-01

    The aim of this paper is to investigate the consequences of finite-size effects on the thermodynamics of nanoparticle assemblies and isolated particles. We consider a binary phase-separating alloy with a negligible atomic size mismatch, and equilibrium states are computed using off-lattice Monte Carlo simulations in several thermodynamic ensembles. First, a semi-grand-canonical ensemble is used to describe infinite assemblies of particles with the same size. When decreasing the particle size, we obtain a significant decrease of the solid/liquid transition temperatures as well as a growing asymmetry of the solid-state miscibility gap related to surface segregation effects. Second, a canonical ensemble is used to analyze the thermodynamic equilibrium of finite monodisperse particle assemblies. Using a general thermodynamic formulation, we show that a particle assembly may split into two subassemblies of identical particles. Moreover, if the overall average canonical concentration belongs to a discrete spectrum, the subassembly concentrations are equal to the semi-grand-canonical equilibrium ones. We also show that the equilibrium of a particle assembly with a prescribed size distribution combines a size effect and the fact that a given particle size assembly can adopt two configurations. Finally, we have considered the thermodynamics of an isolated particle to analyze whether a phase separation can be defined within a particle. When studying rather large nanoparticles, we found that the region in which a two-phase domain can be identified inside a particle is well below the bulk phase diagram, but the concentration of the homogeneous core remains very close to the bulk solubility limit.

  17. Enhancement of iron content in spinach plants stimulated by magnetic nano particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yulianto, Agus; Astuti, Budi; Amalia, Saptaria Rosa

    In our previous study, the iron content in spinach plants could be detected by magnetic susceptibility values. In the present work, magnetic nano particles were found from the iron sand. The magnetic nano particles are synthesis by using co-precipitation process and sol-gel technique. The stimulation of magnetic nano particles in the plant has been done by the provision of magnetic nano particles in growing media. After certain time, plant samples was characterized using susceptibility-meter MS2B and atomic absorption spectroscopy to measure the magnetic susceptibility and the amount of iron content that absorbed of the plant, respectively. The iron content inmore » the spinach plants was increased when the magnetic nano particles was injected in the growing media.« less

  18. Does a Growing Static Length Scale Control the Glass Transition?

    NASA Astrophysics Data System (ADS)

    Wyart, Matthieu; Cates, Michael E.

    2017-11-01

    Several theories of the glass transition propose that the structural relaxation time τα is controlled by a growing static length scale ξ that is determined by the free energy landscape but not by the local dynamic rules governing its exploration. We argue, based on recent simulations using particle-radius-swap dynamics, that only a modest factor in the increase in τα on approach to the glass transition may stem from the growth of a static length, with a vastly larger contribution attributable, instead, to a slowdown of local dynamics. This reinforces arguments that we base on the observed strong coupling of particle diffusion and density fluctuations in real glasses.

  19. Equine Rhinitis A Virus and Its Low pH Empty Particle: Clues Towards an Aphthovirus Entry Mechanism?

    PubMed Central

    Tuthill, Tobias J.; Harlos, Karl; Walter, Thomas S.; Knowles, Nick J.; Groppelli, Elisabetta; Rowlands, David J.; Stuart, David I.; Fry, Elizabeth E.

    2009-01-01

    Equine rhinitis A virus (ERAV) is closely related to foot-and-mouth disease virus (FMDV), belonging to the genus Aphthovirus of the Picornaviridae. How picornaviruses introduce their RNA genome into the cytoplasm of the host cell to initiate replication is unclear since they have no lipid envelope to facilitate fusion with cellular membranes. It has been thought that the dissociation of the FMDV particle into pentameric subunits at acidic pH is the mechanism for genome release during cell entry, but this raises the problem of how transfer across the endosome membrane of the genome might be facilitated. In contrast, most other picornaviruses form ‘altered’ particle intermediates (not reported for aphthoviruses) thought to induce membrane pores through which the genome can be transferred. Here we show that ERAV, like FMDV, dissociates into pentamers at mildly acidic pH but demonstrate that dissociation is preceded by the transient formation of empty 80S particles which have released their genome and may represent novel biologically relevant intermediates in the aphthovirus cell entry process. The crystal structures of the native ERAV virus and a low pH form have been determined via highly efficient crystallization and data collection strategies, required due to low virus yields. ERAV is closely similar to FMDV for VP2, VP3 and part of VP4 but VP1 diverges, to give a particle with a pitted surface, as seen in cardioviruses. The low pH particle has internal structure consistent with it representing a pre-dissociation cell entry intermediate. These results suggest a unified mechanism of picornavirus cell entry. PMID:19816570

  20. Possible roles of mechanical cell elimination intrinsic to growing tissues from the perspective of tissue growth efficiency and homeostasis.

    PubMed

    Lee, Sang-Woo; Morishita, Yoshihiro

    2017-07-01

    Cell competition is a phenomenon originally described as the competition between cell populations with different genetic backgrounds; losing cells with lower fitness are eliminated. With the progress in identification of related molecules, some reports described the relevance of cell mechanics during elimination. Furthermore, recent live imaging studies have shown that even in tissues composed of genetically identical cells, a non-negligible number of cells are eliminated during growth. Thus, mechanical cell elimination (MCE) as a consequence of mechanical cellular interactions is an unavoidable event in growing tissues and a commonly observed phenomenon. Here, we studied MCE in a genetically-homogeneous tissue from the perspective of tissue growth efficiency and homeostasis. First, we propose two quantitative measures, cell and tissue fitness, to evaluate cellular competitiveness and tissue growth efficiency, respectively. By mechanical tissue simulation in a pure population where all cells have the same mechanical traits, we clarified the dependence of cell elimination rate or cell fitness on different mechanical/growth parameters. In particular, we found that geometrical (specifically, cell size) and mechanical (stress magnitude) heterogeneities are common determinants of the elimination rate. Based on these results, we propose possible mechanical feedback mechanisms that could improve tissue growth efficiency and density/stress homeostasis. Moreover, when cells with different mechanical traits are mixed (e.g., in the presence of phenotypic variation), we show that MCE could drive a drastic shift in cell trait distribution, thereby improving tissue growth efficiency through the selection of cellular traits, i.e. intra-tissue "evolution". Along with the improvement of growth efficiency, cell density, stress state, and phenotype (mechanical traits) were also shown to be homogenized through growth. More theoretically, we propose a mathematical model that

  1. Possible roles of mechanical cell elimination intrinsic to growing tissues from the perspective of tissue growth efficiency and homeostasis

    PubMed Central

    2017-01-01

    Cell competition is a phenomenon originally described as the competition between cell populations with different genetic backgrounds; losing cells with lower fitness are eliminated. With the progress in identification of related molecules, some reports described the relevance of cell mechanics during elimination. Furthermore, recent live imaging studies have shown that even in tissues composed of genetically identical cells, a non-negligible number of cells are eliminated during growth. Thus, mechanical cell elimination (MCE) as a consequence of mechanical cellular interactions is an unavoidable event in growing tissues and a commonly observed phenomenon. Here, we studied MCE in a genetically-homogeneous tissue from the perspective of tissue growth efficiency and homeostasis. First, we propose two quantitative measures, cell and tissue fitness, to evaluate cellular competitiveness and tissue growth efficiency, respectively. By mechanical tissue simulation in a pure population where all cells have the same mechanical traits, we clarified the dependence of cell elimination rate or cell fitness on different mechanical/growth parameters. In particular, we found that geometrical (specifically, cell size) and mechanical (stress magnitude) heterogeneities are common determinants of the elimination rate. Based on these results, we propose possible mechanical feedback mechanisms that could improve tissue growth efficiency and density/stress homeostasis. Moreover, when cells with different mechanical traits are mixed (e.g., in the presence of phenotypic variation), we show that MCE could drive a drastic shift in cell trait distribution, thereby improving tissue growth efficiency through the selection of cellular traits, i.e. intra-tissue “evolution”. Along with the improvement of growth efficiency, cell density, stress state, and phenotype (mechanical traits) were also shown to be homogenized through growth. More theoretically, we propose a mathematical model that

  2. Nonlinear theory of diffusive acceleration of particles by shock waves

    NASA Astrophysics Data System (ADS)

    Malkov, M. A.; Drury, L. O'C.

    2001-04-01

    Among the various acceleration mechanisms which have been suggested as responsible for the nonthermal particle spectra and associated radiation observed in many astrophysical and space physics environments, diffusive shock acceleration appears to be the most successful. We review the current theoretical understanding of this process, from the basic ideas of how a shock energizes a few reactionless particles to the advanced nonlinear approaches treating the shock and accelerated particles as a symbiotic self-organizing system. By means of direct solution of the nonlinear problem we set the limit to the test-particle approximation and demonstrate the fundamental role of nonlinearity in shocks of astrophysical size and lifetime. We study the bifurcation of this system, proceeding from the hydrodynamic to kinetic description under a realistic condition of Bohm diffusivity. We emphasize the importance of collective plasma phenomena for the global flow structure and acceleration efficiency by considering the injection process, an initial stage of acceleration and, the related aspects of the physics of collisionless shocks. We calculate the injection rate for different shock parameters and different species. This, together with differential acceleration resulting from nonlinear large-scale modification, determines the chemical composition of accelerated particles. The review concentrates on theoretical and analytical aspects but our strategic goal is to link the fundamental theoretical ideas with the rapidly growing wealth of observational data.

  3. Plasmoids in relativistic reconnection, from birth to adulthood: first they grow, then they go

    NASA Astrophysics Data System (ADS)

    Sironi, Lorenzo; Giannios, Dimitrios; Petropoulou, Maria

    2016-10-01

    Blobs, or quasi-spherical emission regions containing relativistic particles and magnetic fields, are often assumed ad hoc in emission models of relativistic astrophysical jets, yet their physical origin is still not well understood. Here, we employ a suite of large-scale 2D particle-in-cell simulations in electron-positron plasmas to demonstrate that relativistic magnetic reconnection can naturally account for the formation of quasi-spherical plasmoids filled with high-energy particles and magnetic fields. Our simulations extend to unprecedentedly long temporal and spatial scales, so we can capture the asymptotic physics independently of the initial setup. We characterize the properties of the plasmoids, continuously generated as a self-consistent by-product of the reconnection process: they are in rough energy equipartition between particles and magnetic fields; the upper energy cutoff of the plasmoid particle spectrum is proportional to the plasmoid width w, corresponding to a Larmor radius ˜0.2 w; the plasmoids grow in size at ˜0.1 of the speed of light, with most of the growth happening while they are still non-relativistic (`first they grow'); their growth is suppressed once they get accelerated to relativistic speeds by the field line tension, up to the Alfvén speed (`then they go'). The largest plasmoids reach a width wmax ˜ 0.2 L independently of the system length L, they have nearly isotropic particle distributions and contain the highest energy particles, whose Larmor radius is ˜0.03 L. The latter can be regarded as the Hillas criterion for relativistic reconnection. We briefly discuss the implications of our results for the high-energy emission from relativistic jets and pulsar winds.

  4. Fluid particles only separate exponentially in the dissipation range of turbulence after extremely long times

    NASA Astrophysics Data System (ADS)

    Dhariwal, Rohit; Bragg, Andrew D.

    2018-03-01

    In this paper, we consider how the statistical moments of the separation between two fluid particles grow with time when their separation lies in the dissipation range of turbulence. In this range, the fluid velocity field varies smoothly and the relative velocity of two fluid particles depends linearly upon their separation. While this may suggest that the rate at which fluid particles separate is exponential in time, this is not guaranteed because the strain rate governing their separation is a strongly fluctuating quantity in turbulence. Indeed, Afik and Steinberg [Nat. Commun. 8, 468 (2017), 10.1038/s41467-017-00389-8] argue that there is no convincing evidence that the moments of the separation between fluid particles grow exponentially with time in the dissipation range of turbulence. Motivated by this, we use direct numerical simulations (DNS) to compute the moments of particle separation over very long periods of time in a statistically stationary, isotropic turbulent flow to see if we ever observe evidence for exponential separation. Our results show that if the initial separation between the particles is infinitesimal, the moments of the particle separation first grow as power laws in time, but we then observe convincing evidence that at sufficiently long times the moments do grow exponentially. However, this exponential growth is only observed after extremely long times ≳200 τη , where τη is the Kolmogorov time scale. This is due to fluctuations in the strain rate about its mean value measured along the particle trajectories, the effect of which on the moments of the particle separation persists for very long times. We also consider the backward-in-time (BIT) moments of the article separation, and observe that they too grow exponentially in the long-time regime. However, a dramatic consequence of the exponential separation is that at long times the difference between the rate of the particle separation forward in time (FIT) and BIT grows

  5. Tracer particles in two-dimensional elastic networks diffuse logarithmically slow

    NASA Astrophysics Data System (ADS)

    Lizana, Ludvig; Ambjörnsson, Tobias; Lomholt, Michael A.

    2017-01-01

    Several experiments on tagged molecules or particles in living systems suggest that they move anomalously slow—their mean squared displacement (MSD) increase slower than linearly with time. Leading models aimed at understanding these experiments predict that the MSD grows as a power law with a growth exponent that is smaller than unity. However, in some experiments the growth is so slow (fitted exponent  ˜0.1-0.2) that they hint towards other mechanisms at play. In this paper, we theoretically demonstrate how in-plane collective modes excited by thermal fluctuations in a two dimensional membrane lead to logarithmic time dependence for the the tracer particle’s MSD.

  6. Effect of reinforcing particle type on morphology and age-hardening behavior of Al–4.5 wt.% Cu based nanocomposites synthesized through mechanical milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostaed, A., E-mail: alimostaed@yahoo.com; Saghafian, H.; Mostaed, E.

    2013-02-15

    The effects of reinforcing particle type (SiC and TiC) on morphology and precipitation hardening behavior of Al–4.5%Cu based nanocomposites synthesized via mechanical milling were investigated in the current work. In order to study the microstructure and morphology of mechanically milled powder, X-ray diffraction technique, scanning electron microscopy and high resolution transmission electron microscopy were utilized. Results revealed that at the early stages of mechanical milling, when reinforcing particles are polycrystal, the alloying process is enhanced more in the case of using the TiC particles as reinforcement. But, at the final stages of mechanical milling, when reinforcing particles are single crystal,more » the alloying process is enhanced more in the case of using the SiC ones. Transmission electron microscopy results demonstrated that Al–4.5 wt.%Cu based nanocomposite powders were synthesized and confirmed that the mutual diffusion of aluminum and copper occurs through the interfacial plane of (200). The hardness results showed that not only does introducing 4 vol.% of reinforcing particles (SiC or TiC) considerably decrease the porosity of the bulk composite samples, but also it approximately doubles the hardness of Al–4.5 wt.%Cu alloy (53.4 HB). Finally, apart from TEM and scanning electron microscopy observation which are localized, a decline in hardness in the TiC and SiC contained samples, respectively, after 1.5 and 2 h aging time at 473 K proves the fact that the size of SiC particles is smaller than the size of the TiC ones. - Highlights: ► HRTEM results show mutual diffusion of Al and Cu occurs through the (200) planes. ► TiC particles enhance alloying process more than the SiC ones at the early stages of MM. ► SiC particles enhance alloying process more than the TiC ones at the final stages of MM.« less

  7. Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition

    NASA Astrophysics Data System (ADS)

    Merkulov, Vladimir I.; Melechko, Anatoli V.; Guillorn, Michael A.; Lowndes, Douglas H.; Simpson, Michael L.

    2001-10-01

    We report experimental evidence showing a direct correlation between the alignment of carbon nanofibers (CNFs) prepared by plasma-enhanced chemical-vapor deposition and the location of the catalyst particle during CNF growth. In particular, we find that CNFs that have a catalyst particle at the tip (i.e., growth proceeds from the tip) align along the electric-field lines, whereas CNFs with the particle at the base (i.e., growth proceeds from the base) grow in random orientations. We propose a model that explains the alignment process as a result of a feedback mechanism associated with a nonuniform stress (part tensile, part compressive) that is created across the interface of the catalyst particle with the CNF due to electrostatic forces. Furthermore, we propose that the alignment seen recently in some dense CNF films is due to a crowding effect and is not directly the result of electrostatic forces.

  8. The Effect of Particle Size on the Biodistribution of Low-modulus Hydrogel PRINT Particles

    PubMed Central

    Merkel, Timothy J.; Chen, Kai; Jones, Stephen W.; Pandya, Ashish A.; Tian, Shaomin; Napier, Mary E.; Zamboni, William E.; DeSimone, Joseph M.

    2012-01-01

    There is a growing recognition that the deformability of particles used for drug delivery plays a significant role on their biodistribution and circulation profile. Understanding these effects would provide a crucial tool for the rational design of drug delivery systems. While particles resembling red blood cells (RBCs) in size, shape and deformability have extended circulation times and altered biodistribution profiles compared to rigid, but otherwise similar particles, the in vivo behavior of such highly deformable particles of varied size has not been explored. We report the fabrication of a series of discoid, monodisperse, low-modulus hydrogel particles with diameters ranging from 0.8 to 8.9 μm, spanning sizes smaller than and larger than RBCs. We injected these particles into healthy mice, and tracked their concentration in the blood and their distribution into major organs. These deformable particles all demonstrated some hold up in filtration tissues like the lungs and spleen, followed by release back into the circulation, characterized by decreases in particles in these tissues with concomitant increases in particle concentration in blood. Particles similar to red blood cells in size demonstrated longer circulation times, suggesting that this size and shape of deformable particle is uniquely suited to avoid clearance. PMID:22705460

  9. Growing Bacteriophage M13 in Liquid Culture.

    PubMed

    Green, Michael R; Sambrook, Joseph

    2017-11-01

    Stocks of bacteriophage M13 are usually grown in liquid culture. The infected bacteria do not lyse but, instead, grow at a slower than normal rate to form a dilute suspension. The inoculum of bacteriophage is almost always a freshly picked plaque or a suspension of bacteriophage particles obtained from a single plaque, as described here. Infected cells contain up to 200 copies of double-stranded, replicative-form DNA and extrude several hundred bacteriophage particles per generation. Thus, a 1-mL culture of infected cells can produce enough double-stranded viral DNA (1-2 mg) for restriction mapping and recovery of cloned DNA inserts and sufficient single-stranded DNA (∼5-10 mg) for site-directed mutagenesis, DNA sequencing, or synthesis of radiolabeled probes. The titer of bacteriophages in the supernatant from infected cells is so high (∼10 12 pfu/mL) that a small aliquot serves as a permanent stock of the starting plaque. © 2017 Cold Spring Harbor Laboratory Press.

  10. Effect of diffusional creep on particle morphology of polycrystalline alloys strengthened by second phase particles

    NASA Technical Reports Server (NTRS)

    Wittenberger, J. D.; Behrendt, D. R.

    1973-01-01

    Diffusional creep in a polycrystalline alloy containing second-phase particles can disrupt the particle morphology. For alloys which depend on the particle distribution for strength, changes in the particle morphology can affect the mechanical properties. Recent observations of diffusional creep in alloys containing soluble particles (gamma-prime strengthened Ni base alloys) and inert particles have been reexamined in light of the basic mechanisms of diffusional creep, and a generalized model of this effect is proposed. The model indicates that diffusional creep will generally result in particle-free regions in the vicinity of grain boundaries serving as net vacancy sources. The factors which control the changes in second-phase morphology have been identified, and methods of reducing the effects of diffusional creep are suggested.

  11. Growing multiplex networks with arbitrary number of layers

    NASA Astrophysics Data System (ADS)

    Momeni, Naghmeh; Fotouhi, Babak

    2015-12-01

    This paper focuses on the problem of growing multiplex networks. Currently, the results on the joint degree distribution of growing multiplex networks present in the literature pertain to the case of two layers and are confined to the special case of homogeneous growth and are limited to the state state (that is, the limit of infinite size). In the present paper, we first obtain closed-form solutions for the joint degree distribution of heterogeneously growing multiplex networks with arbitrary number of layers in the steady state. Heterogeneous growth means that each incoming node establishes different numbers of links in different layers. We consider both uniform and preferential growth. We then extend the analysis of the uniform growth mechanism to arbitrary times. We obtain a closed-form solution for the time-dependent joint degree distribution of a growing multiplex network with arbitrary initial conditions. Throughout, theoretical findings are corroborated with Monte Carlo simulations. The results shed light on the effects of the initial network on the transient dynamics of growing multiplex networks and takes a step towards characterizing the temporal variations of the connectivity of growing multiplex networks, as well as predicting their future structural properties.

  12. Rotating magnetic field induced oscillation of magnetic particles for in vivo mechanical destruction of malignant glioma.

    PubMed

    Cheng, Yu; Muroski, Megan E; Petit, Dorothée C M C; Mansell, Rhodri; Vemulkar, Tarun; Morshed, Ramin A; Han, Yu; Balyasnikova, Irina V; Horbinski, Craig M; Huang, Xinlei; Zhang, Lingjiao; Cowburn, Russell P; Lesniak, Maciej S

    2016-02-10

    Magnetic particles that can be precisely controlled under a magnetic field and transduce energy from the applied field open the way for innovative cancer treatment. Although these particles represent an area of active development for drug delivery and magnetic hyperthermia, the in vivo anti-tumor effect under a low-frequency magnetic field using magnetic particles has not yet been demonstrated. To-date, induced cancer cell death via the oscillation of nanoparticles under a low-frequency magnetic field has only been observed in vitro. In this report, we demonstrate the successful use of spin-vortex, disk-shaped permalloy magnetic particles in a low-frequency, rotating magnetic field for the in vitro and in vivo destruction of glioma cells. The internalized nanomagnets align themselves to the plane of the rotating magnetic field, creating a strong mechanical force which damages the cancer cell structure inducing programmed cell death. In vivo, the magnetic field treatment successfully reduces brain tumor size and increases the survival rate of mice bearing intracranial glioma xenografts, without adverse side effects. This study demonstrates a novel approach of controlling magnetic particles for treating malignant glioma that should be applicable to treat a wide range of cancers. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    PubMed Central

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K.; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P.; Rondo, Linda; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S.; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M.; Worsnop, Douglas R.

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions. PMID:24101502

  14. Particle astrophysics

    NASA Technical Reports Server (NTRS)

    Sadoulet, Bernard; Cronin, James; Aprile, Elena; Barish, Barry C.; Beier, Eugene W.; Brandenberger, Robert; Cabrera, Blas; Caldwell, David; Cassiday, George; Cline, David B.

    1991-01-01

    The following scientific areas are reviewed: (1) cosmology and particle physics (particle physics and the early universe, dark matter, and other relics); (2) stellar physics and particles (solar neutrinos, supernovae, and unconventional particle physics); (3) high energy gamma ray and neutrino astronomy; (4) cosmic rays (space and ground observations). Highest scientific priorities for the next decade include implementation of the current program, new initiatives, and longer-term programs. Essential technological developments, such as cryogenic detectors of particles, new solar neutrino techniques, and new extensive air shower detectors, are discussed. Also a certain number of institutional issues (the funding of particle astrophysics, recommended funding mechanisms, recommended facilities, international collaborations, and education and technology) which will become critical in the coming decade are presented.

  15. Hydrodynamic Capture and Release of Passively Driven Particles by Active Particles Under Hele-Shaw Flows

    NASA Astrophysics Data System (ADS)

    Mishler, Grant; Tsang, Alan Cheng Hou; Pak, On Shun

    2018-03-01

    The transport of active and passive particles plays central roles in diverse biological phenomena and engineering applications. In this paper, we present a theoretical investigation of a system consisting of an active particle and a passive particle in a confined micro-fluidic flow. The introduction of an external flow is found to induce the capture of the passive particle by the active particle via long-range hydrodynamic interactions among the particles. This hydrodynamic capture mechanism relies on an attracting stable equilibrium configuration formed by the particles, which occurs when the external flow intensity exceeds a certain threshold. We evaluate this threshold by studying the stability of the equilibrium configurations analytically and numerically. Furthermore, we study the dynamics of typical capture and non-capture events and characterize the basins of attraction of the equilibrium configurations. Our findings reveal a critical dependence of the hydrodynamic capture mechanism on the external flow intensity. Through adjusting the external flow intensity across the stability threshold, we demonstrate that the active particle can capture and release the passive particle in a controllable manner. Such a capture-and-release mechanism is desirable for biomedical applications such as the capture and release of therapeutic payloads by synthetic micro-swimmers in targeted drug delivery.

  16. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  17. Low-solubility particles and a Trojan-horse type mechanism of toxicity: the case of cobalt oxide on human lung cells

    PubMed Central

    2014-01-01

    Background The mechanisms of toxicity of metal oxide particles towards lung cells are far from being understood. In particular, the relative contribution of intracellular particulate versus solubilized fractions is rarely considered as it is very challenging to assess, especially for low-solubility particles such as cobalt oxide (Co3O4). Methods This study was possible owing to two highly sensitive, independent, analytical techniques, based on single-cell analysis, using ion beam microanalysis, and on bulk analysis of cell lysates, using mass spectrometry. Results Our study shows that cobalt oxide particles, of very low solubility in the culture medium, are readily incorporated by BEAS-2B human lung cells through endocytosis via the clathrin-dependent pathway. They are partially solubilized at low pH within lysosomes, leading to cobalt ions release. Solubilized cobalt was detected within the cytoplasm and the nucleus. As expected from these low-solubility particles, the intracellular solubilized cobalt content is small compared with the intracellular particulate cobalt content, in the parts-per-thousand range or below. However, we were able to demonstrate that this minute fraction of intracellular solubilized cobalt is responsible for the overall toxicity. Conclusions Cobalt oxide particles are readily internalized by pulmonary cells via the endo-lysosomal pathway and can lead, through a Trojan-horse mechanism, to intracellular release of toxic metal ions over long periods of time, involving specific toxicity. PMID:24669904

  18. Higgs Particle: The Origin of Mass

    NASA Astrophysics Data System (ADS)

    Okada, Yasuhiro

    2007-11-01

    The Higgs particle is a new elementary particle predicted in the Standard Model of the elementary particle physics. It plays a special role in the theory of mass generation of quarks, leptons, and gauge bosons. In this article, theoretical issues on the Higgs mechanism are first discussed, and then experimental prospects on the Higgs particle study at the future collider experiments, LHC and ILC, are reviewed. The Higgs coupling determination is an essential step to establish the mass generation mechanism, which could lead to a deeper understanding of particle physics.

  19. Acoustic emission from a growing crack

    NASA Technical Reports Server (NTRS)

    Jacobs, Laurence J.

    1989-01-01

    An analytical method is being developed to determine the signature of an acoustic emission waveform from a growing crack and the results of this analysis are compared to experimentally obtained values. Within the assumptions of linear elastic fracture mechanics, a two dimensional model is developed to examine a semi-infinite crack that, after propagating with a constant velocity, suddenly stops. The analytical model employs an integral equation method for the analysis of problems of dynamic fracture mechanics. The experimental procedure uses an interferometric apparatus that makes very localized absolute measurements with very high fidelity and without acoustically loading the specimen.

  20. Statistical mechanics of few-particle systems: exact results for two useful models

    NASA Astrophysics Data System (ADS)

    Miranda, Enrique N.

    2017-11-01

    The statistical mechanics of small clusters (n ˜ 10-50 elements) of harmonic oscillators and two-level systems is studied exactly, following the microcanonical, canonical and grand canonical formalisms. For clusters with several hundred particles, the results from the three formalisms coincide with those found in the thermodynamic limit. However, for clusters formed by a few tens of elements, the three ensembles yield different results. For a cluster with a few tens of harmonic oscillators, when the heat capacity per oscillator is evaluated within the canonical formalism, it reaches a limit value equal to k B , as in the thermodynamic case, while within the microcanonical formalism the limit value is k B (1-1/n). This difference could be measured experimentally. For a cluster with a few tens of two-level systems, the heat capacity evaluated within the canonical and microcanonical ensembles also presents differences that could be detected experimentally. Both the microcanonical and grand canonical formalism show that the entropy is non-additive for systems this small, while the canonical ensemble reaches the opposite conclusion. These results suggest that the microcanonical ensemble is the most appropriate for dealing with systems with tens of particles.

  1. Toxicity of Mineral Dusts and a Proposed Mechanism for the Pathogenesis of Particle-Induced Lung Diseases

    NASA Technical Reports Server (NTRS)

    Lam, C.-W.; Zeidler-Erdely, P.; Scully, R.R.; Meyers, V.; Wallace, W.; Hunter, R.; Renne, R.; McCluskey, R.; Castranova, V.; Barger, M.; hide

    2015-01-01

    Humans will set foot on the moon again. The lunar surface has been bombarded for 4 billion years by micrometeoroids and cosmic radiation, creating a layer of fine dust having a potentially reactive particle surface. To investigate the impact of surface reactivity (SR) on the toxicity of particles, and in particular, lunar dust (LD), we ground 2 Apollo 14 LD samples to increase their SR and compare their toxicity with those of unground LD, TiO2 and quartz. Intratracheally instilled at 0, 1, 2.5, or 7.5 mg/rat, all dusts caused dose-dependent increases in pulmonary lesions, and enhancement of biomarkers of toxicity assessed in bronchoalveolar lavage fluids (BALF). The toxicity of LD was greater than that of TiO2 but less than that of quartz. Three LDs differed 14-fold in SR but were equally toxic; quartz had the lowest SR but was most toxic. These results show no correlation between particle SR and toxicity. Often pulmonary toxicity of a dust can be attributed to oxidative stress (OS). We further observed dose-dependent and dustcytotoxicity- dependent increases in neutrophils. The oxidative content per BALF cell was also directly proportional to both the dose and cytotoxicity of the dusts. Because neutrophils are short-lived and release of oxidative contents after they die could initiate and promote a spectrum of lesions, we postulate a general mechanism for the pathogenesis of particle-induced diseases in the lung that involves chiefly neutrophils, the source of persistent endogenous OS. This mechanism explains why one dust (e.g., quartz or nanoparticles) is more toxic than another (e.g., micrometer-sized TiO2), why dust-induced lesions progress with time, and why lung cancer occurs in rats but not in mice and hamsters exposed to the same duration and concentration of dust.

  2. An investigation of the microstructure and mechanical properties of electrochemically coated Ag(4)Sn dental alloy particles condensed in vitro

    NASA Astrophysics Data System (ADS)

    Marquez, Jose Antonio

    As part of the ongoing scientific effort to develop a new amalgam-like material without mercury, a team of metallurgists and electrochemists at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, announced in 1993 the development of a new Ag-Sn dental alloy system without mercury that sought to replace conventional dental amalgams. They used spherical Ag3Sn and Ag4Sn intermetallic dental alloy particles, commonly used in conventional dental alloys, and coated them with electrodeposited silver with newly-developed electrolytic and immersion techniques. The particles had relatively pure silver coatings that were closely adherent to the intermetalfic cores. These silver-coated particles, due to silver's plasticity at room temperature, were condensed into PlexiglasRTM molds with the aid of an acidic surface activating solution (HBF4) and a mechanical condensing device, producing a metal-matrix composite with Ag3,4Sn filler particles surrounded by a cold-welded silver matrix. Since silver strain hardens rather easily, the layers had to be condensed in less than 0.5 mm increments to obtain a dense structure. Mechanical testing at NIST produced compressive strength values equal to or greater than those of conventional dental amalgams. Because of its potential for eliminating mercury as a constituent in dental amalgam, this material created a stir in dental circles when first developed and conceivably could prove to be a major breakthrough in the field of dental restoratives. To date, the chief impediments to its approval for human clinical applications by the Food and Drug Administration are the potentially-toxic surface activating solution used for oxide reduction, and the high condensation pressures needed for cold welding because of the tendency for silver to strain harden. In this related study, the author, who has practiced general dentistry for 25 years, evaluates some of the mechanical and microstructural properties of these

  3. Clustering of low-valence particles: structure and kinetics.

    PubMed

    Markova, Olga; Alberts, Jonathan; Munro, Edwin; Lenne, Pierre-François

    2014-08-01

    We compute the structure and kinetics of two systems of low-valence particles with three or six freely oriented bonds in two dimensions. The structure of clusters formed by trivalent particles is complex with loops and holes, while hexavalent particles self-organize into regular and compact structures. We identify the elementary structures which compose the clusters of trivalent particles. At initial stages of clustering, the clusters of trivalent particles grow with a power-law time dependence. Yet at longer times fusion and fission of clusters equilibrates and clusters form a heterogeneous phase with polydispersed sizes. These results emphasize the role of valence in the kinetics and stability of finite-size clusters.

  4. Isostructural solid-solid phase transition in monolayers of soft core-shell particles at fluid interfaces: structure and mechanics.

    PubMed

    Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio

    2016-04-21

    We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization.

  5. Role of the reaction of stabilized Criegee intermediates with peroxy radicals in particle formation and growth in air.

    PubMed

    Zhao, Yue; Wingen, Lisa M; Perraud, Véronique; Greaves, John; Finlayson-Pitts, Barbara J

    2015-05-21

    Ozonolysis of alkenes is an important source of secondary organic aerosol (SOA) in the atmosphere. However, the mechanisms by which stabilized Criegee intermediates (SCI) react to form and grow the particles, and in particular the contributions from oligomers, are not well understood. In this study, ozonolysis of trans-3-hexene (C6H12), as a proxy for small alkenes, was investigated with an emphasis on the mechanisms of particle formation and growth. Ozonolysis experiments were carried out both in static Teflon chambers (18-20 min reaction times) and in a glass flow reactor (24 s reaction time) in the absence and presence of OH or SCI scavengers, and under different relative humidity (RH) conditions. The chemical composition of polydisperse and size-selected SOA particles was probed using different mass spectrometric techniques and infrared spectroscopy. Oligomers having SCI as the chain unit are found to be the dominant components of such SOA particles. The formation mechanism for these oligomers suggested by our results follows the sequential addition of SCI to organic peroxy (RO2) radicals, in agreement with previous studies by Moortgat and coworkers. Smaller particles are shown to have a relatively greater contribution from longer oligomers. Higher O/C ratios are observed in smaller particles and are similar to those of oligomers resulting from RO2 + nSCI, supporting a significant role for longer oligomers in particle nucleation and early growth. Under atmospherically relevant RH of 30-80%, water vapor suppresses oligomer formation through scavenging SCI, but also enhances particle nucleation. Under humid conditions, or in the presence of formic or hydrochloric acid as SCI scavengers, peroxyhemiacetals are formed by the acid-catalyzed particle phase reaction between oligomers from RO2 + nSCI and a trans-3-hexene derived carbonyl product. In contrast to the ozonolysis of trans-3-hexene, oligomerization involving RO2 + nSCI does not appear to be prevalent in the

  6. Fabrication and Mechanical Behavior of Ex Situ Mg-Based Bulk Metallic Glass Matrix Composite Reinforced with Electroless Cu-Coated SiC Particles.

    PubMed

    Wang, Xin; Zhao, Lichen; Hu, Ximei; Cheng, Yongjian; Liu, Shuiqing; Chen, Peng; Cui, Chunxiang

    2017-11-30

    Magnesium-based bulk metallic glass matrix composites (BMGMCs) have better plasticity than the corresponding bulk metallic glasses (BMGs); however, their strength and density are often compromised due to the fact that the effective reinforcement phase is mostly plastic heavy metal. For lightweight SiC-particle reinforced BMGMCs, interface wettability and the sharpness of the particles often reduce the strengthening effect. In this work, SiC particles were coated with a thin Cu coating by electroless plating, and added to Mg 54 Cu 26.5 Ag 8.5 Gd 11 melt in an amount of 5 wt % to prepare a BMGMC. The microstructure of the interface, mechanical behavior and fracture morphology of the BMGMC were studied by scanning electron microscopy and quasi-static compression testing. The results showed that the Cu coating improved the wettability between SiC and the matrix alloy without obvious interfacial reactions, leading to the dispersion of SiC particles in the matrix. The addition of Cu-coated SiC particles improved the plastic deformation ability of Mg 54 Cu 26.5 Ag 8.5 Gd 11 BMG, proving that electroless plating was an effective method for controlling the interface microstructure and mechanical behavior of BMGMCs.

  7. Neural-like growing networks

    NASA Astrophysics Data System (ADS)

    Yashchenko, Vitaliy A.

    2000-03-01

    On the basis of the analysis of scientific ideas reflecting the law in the structure and functioning the biological structures of a brain, and analysis and synthesis of knowledge, developed by various directions in Computer Science, also there were developed the bases of the theory of a new class neural-like growing networks, not having the analogue in world practice. In a base of neural-like growing networks the synthesis of knowledge developed by classical theories - semantic and neural of networks is. The first of them enable to form sense, as objects and connections between them in accordance with construction of the network. With thus each sense gets a separate a component of a network as top, connected to other tops. In common it quite corresponds to structure reflected in a brain, where each obvious concept is presented by certain structure and has designating symbol. Secondly, this network gets increased semantic clearness at the expense owing to formation not only connections between neural by elements, but also themselves of elements as such, i.e. here has a place not simply construction of a network by accommodation sense structures in environment neural of elements, and purely creation of most this environment, as of an equivalent of environment of memory. Thus neural-like growing networks are represented by the convenient apparatus for modeling of mechanisms of teleological thinking, as a fulfillment of certain psychophysiological of functions.

  8. Isoprene suppression of new particle formation: Potential mechanisms and implications

    NASA Astrophysics Data System (ADS)

    Lee, Shan-Hu; Uin, Janek; Guenther, Alex B.; de Gouw, Joost A.; Yu, Fangqun; Nadykto, Alex B.; Herb, Jason; Ng, Nga L.; Koss, Abigail; Brune, William H.; Baumann, Karsten; Kanawade, Vijay P.; Keutsch, Frank N.; Nenes, Athanasios; Olsen, Kevin; Goldstein, Allen; Ouyang, Qi

    2016-12-01

    Secondary aerosols formed from anthropogenic pollutants and natural emissions have substantial impacts on human health, air quality, and the Earth's climate. New particle formation (NPF) contributes up to 70% of the global production of cloud condensation nuclei (CCN), but the effects of biogenic volatile organic compounds (BVOCs) and their oxidation products on NPF processes in forests are poorly understood. Observations show that isoprene, the most abundant BVOC, suppresses NPF in forests. But the previously proposed chemical mechanism underlying this suppression process contradicts atmospheric observations. By reviewing observations made in other forests, it is clear that NPF rarely takes place during the summer when emissions of isoprene are high, even though there are sufficient concentrations of monoterpenes. But at present it is not clear how isoprene and its oxidation products may change the oxidation chemistry of terpenes and how NOx and other atmospheric key species affect NPF in forest environments. Future laboratory experiments with chemical speciation of gas phase nucleation precursors and clusters and chemical composition of particles smaller than 10 nm are required to understand the role of isoprene in NPF. Our results show that climate models can overpredict aerosol's first indirect effect when not considering the absence of NPF in the southeastern U.S. forests during the summer using the current nucleation algorithm that includes only sulfuric acid and total concentrations of low-volatility organic compounds. This highlights the importance of understanding NPF processes as function of temperature, relative humidity, and BVOC compositions to make valid predictions of NPF and CCN at a wide range of atmospheric conditions.

  9. Removal of polybrominated diphenyl ethers by biomass carbon-supported nanoscale zerovalent iron particles: influencing factors, kinetics, and mechanism.

    PubMed

    Fu, Rongbing; Xu, Zhen; Peng, Lin; Bi, Dongsu

    2016-12-01

    In this study, nanoscale zerovalent iron (NZVI) immobilized on biomass carbon was used for the high efficient removal of BDE 209. NZVI supported on biomass carbon minimized the aggregation of NZVI particles resulting in the increased reaction performance. The proposed removal mechanism included the adsorption of BDE 209 on the surface or interior of the biomass carbon NZVI (BC-NZVI) particles and the subsequent debromination of BDE 209 by NZVI while biomass carbon served as an electron shuttle. BC-NZVI particles and the interaction between BC-NZVI particles and BDE 209 were characterized by TEM, XRD, and XPS. The removal reaction followed a pseudo-first-order rate expression under different reaction conditions, and the k obs was higher than that of other NZVI-supported materials. The debromination of BDE 209 by BC-NZVI was a stepwise process from nona-BDE to DE. A proposed pathway suggested that supporting NZVI on biomass carbon has potential as a promising technique for in situ organic-contaminated groundwater remediation.

  10. Cluster formation and drag reduction-proposed mechanism of particle recirculation within the partition column of the bottom spray fluid-bed coater.

    PubMed

    Wang, Li Kun; Heng, Paul Wan Sia; Liew, Celine Valeria

    2015-04-01

    Bottom spray fluid-bed coating is a common technique for coating multiparticulates. Under the quality-by-design framework, particle recirculation within the partition column is one of the main variability sources affecting particle coating and coat uniformity. However, the occurrence and mechanism of particle recirculation within the partition column of the coater are not well understood. The purpose of this study was to visualize and define particle recirculation within the partition column. Based on different combinations of partition gap setting, air accelerator insert diameter, and particle size fraction, particle movements within the partition column were captured using a high-speed video camera. The particle recirculation probability and voidage information were mapped using a visiometric process analyzer. High-speed images showed that particles contributing to the recirculation phenomenon were behaving as clustered colonies. Fluid dynamics analysis indicated that particle recirculation within the partition column may be attributed to the combined effect of cluster formation and drag reduction. Both visiometric process analysis and particle coating experiments showed that smaller particles had greater propensity toward cluster formation than larger particles. The influence of cluster formation on coating performance and possible solutions to cluster formation were further discussed. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Mechanism for thermal relic dark matter of strongly interacting massive particles.

    PubMed

    Hochberg, Yonit; Kuflik, Eric; Volansky, Tomer; Wacker, Jay G

    2014-10-24

    We present a new paradigm for achieving thermal relic dark matter. The mechanism arises when a nearly secluded dark sector is thermalized with the standard model after reheating. The freeze-out process is a number-changing 3→2 annihilation of strongly interacting massive particles (SIMPs) in the dark sector, and points to sub-GeV dark matter. The couplings to the visible sector, necessary for maintaining thermal equilibrium with the standard model, imply measurable signals that will allow coverage of a significant part of the parameter space with future indirect- and direct-detection experiments and via direct production of dark matter at colliders. Moreover, 3→2 annihilations typically predict sizable 2→2 self-interactions which naturally address the "core versus cusp" and "too-big-to-fail" small-scale structure formation problems.

  12. Evaluating the Role of the Air-Solution Interface on the Mechanism of Subvisible Particle Formation Caused by Mechanical Agitation for an IgG1 mAb.

    PubMed

    Ghazvini, Saba; Kalonia, Cavan; Volkin, David B; Dhar, Prajnaparamita

    2016-05-01

    Mechanical agitation of monoclonal antibody (mAb) solutions often leads to protein particle formation. In this study, various formulations of an immunoglobulin G (IgG) 1 mAb were subjected to different controlled interfacial stresses using a Langmuir trough, and protein particles formed at the interface and measured in bulk solution were characterized using atomic force microscopy and flow digital imaging. Results were compared to mAb solutions agitated in glass vials and unstressed controls. At lower pH, mAb solutions exhibited larger hysteresis in their surface pressure versus area isotherms and increased number of particles in bulk solution, when subjected to interfacial stresses. mAb samples subjected to 750-1000 interfacial compression-expansion cycles in 6 h contained high particle numbers in bulk solution, and displayed similar particulation trends when agitated in vials. At compression rates of 50 cycles in 6 h, however, particle levels in mAb solutions were comparable to unstressed controls, despite protein aggregates being present at the air-solution interface. These results suggest that while the air-solution interface serves as a nucleation site for initiating protein aggregation, the number of protein particles measured in bulk mAb solutions depends on the total number of compression cycles that proteins at the air-solution interface are subjected to within a fixed time. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Rotating Vessels for Growing Protein Crystals

    NASA Technical Reports Server (NTRS)

    Cottingham, Paul

    2005-01-01

    Rotating vessels have been proposed as means of growing larger, more nearly uniform protein crystals than would otherwise be possible in the presence of normal Earth gravitation. Heretofore, nonrotating vessels have been used. It is difficult to grow high-quality protein crystals in the terrestrial gravitational field because of convection plumes created by the interaction between gravitation and density gradients in protein-solution depletion layers around growing crystals. The density gradients and the associated convection plumes cause the surfaces of growing crystals to be exposed to nonuniform solution densities, thereby causing the crystals to form in irregular shapes. The microgravitational environment of outer space has been utilized to eliminate gravitation-induced convection, but this approach is generally not favorable because of the high cost and limited availability of space flight. The use of a rotating vessel according to the proposal is intended to ameliorate the effects of gravitation and the resultant convection, relative to the corresponding effects in a non-rotating vessel. The rotation would exert an averaging effect over time, distributing the convective force on the depletion layer. Therefore, the depletion layer would be more nearly uniform and, as a result, the growing crystal would be more nearly perfect. The proposal admits of variations (see figure), including the following: The growing crystal could be rotated about its own central axis or an external axis. The crystal-growth vessel could be of any of various shapes, including cylindrical, hemispherical, conical, and combinations thereof. The crystal-growth vessel could be suspended in a viscous fluid in an outer vessel to isolate the growing crystal from both ambient vibrations and vibrations induced by a mechanism that drives the rotation. The rotation could be coupled to the crystal-growth vessel by viscous or magnetic means. The crystal-growth vessel could be supported within the

  14. Anatomy of Particle Diffusion

    ERIC Educational Resources Information Center

    Bringuier, E.

    2009-01-01

    The paper analyses particle diffusion from a thermodynamic standpoint. The main goal of the paper is to highlight the conceptual connection between particle diffusion, which belongs to non-equilibrium statistical physics, and mechanics, which deals with particle motion, at the level of third-year university courses. We start out from the fact…

  15. The Least Particle Theory

    NASA Astrophysics Data System (ADS)

    Hartsock, Robert

    2011-10-01

    The Least Particle Theory states that the universe was cast as a great sea of energy. MaX Planck declared a quantum of energy to be the least value in the universe. We declare the quantum of energy to be the least particle in the universe. Stephen Hawking declared quantum mechanics to be of no value in todays gross mechanics. That's like saying the number 1 has no place in mathematics.

  16. Particle characterization in retail environments: concentrations, sources, and removal mechanisms.

    PubMed

    Zaatari, M; Siegel, J

    2014-08-01

    Particles in retail environments can have consequences for the occupational exposures of retail workers and customers, as well as the energy costs associated with ventilation and filtration. Little is known about particle characteristics in retail environments. We measured indoor and outdoor mass concentrations of PM10 and PM2.5 , number concentrations of submicron particles (0.02-1 μm), size-resolved 0.3-10 μm particles, as well as ventilation rates in 14 retail stores during 24 site visits in Pennsylvania and Texas. Overall, the results were generally suggestive of relatively clean environments when compared to investigations of other building types and ambient/occupational regulatory limits. PM10 and PM2.5 concentrations (mean ± s.d.) were 20 ± 14 and 11 ± 10 μg/m(3), respectively, with indoor-to-outdoor ratios of 1.0 ± 0.7 and 0.88 ± 1.0. Mean submicron particle concentrations were 7220 ± 7500 particles/cm(3) with an indoor-to-outdoor ratio of 1.18 ± 1.30. The median contribution to PM10 and PM2.5 concentrations from indoor sources (vs. outdoors) was 83% and 53%, respectively. There were no significant correlations between measured ventilation rates and particle concentrations of any size. When examining options to lower PM2.5 concentrations below regulatory limits, the required changes to ventilation and filtration efficiency were site specific and depended on the indoor and outdoor concentration, emission rate, and infiltration level. Little is known about particle concentrations, contribution of indoor sources, and emission rates in retail environments. Knowledge of these particle characteristics informs health scientists with input parameters to include in exposure modeling. The predicted concentration change in response to different ventilation rates and filtration efficiencies may be used for guidance to develop control strategies to lower particulate matter concentrations in retail environments. © 2013 John Wiley & Sons A/S. Published by John

  17. Charging of mesospheric particles - Implications for electron density and particle coagulation

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.; Thomas, Gary E.

    1991-01-01

    The relationship between N(e) and mesospheric aerosols near the mesopause is studied. The full distribution of charges on mesospheric aerosols is calculated, including dust and ice particles with radii ranging from 1 to 400 nm. The N(e) and ion density N(i) are obtained and ionization height profiles are calculated. The effects of dust and ice particles on N(e) and N(i) are studied for a wide range of assumed conditions. The results indicate that aerosol concentrations associated with visible polar mesospheric clouds are unlikely to cause a severe N(e) depletion. The pronounced 'bite-out' of N(e) at about 87 km in the summertime may be caused by a large concentration of small ice particles in a narrow cold layer near the mesosphere. Net negative charge on mesospheric aerosols may severely inihibit coagulation, so that mesospheric dust would not grow significantly. A higher supersaturation with respect to water vapor would be needed for heterogeneous nucleation of ice crystals.

  18. Grow, Baby, Grow

    Cancer.gov

    Maybe you quit smoking during your pregnancy. Or maybe you struggled and weren’t able to stay quit. Now that your baby is here, trying to stay away from smoking is still important. That’s because the chemicals in smoke can make it harder for your baby to grow like he or she should.

  19. Phage as a template to grow bone mineral nanocrystals.

    PubMed

    Cao, Binrui; Xu, Hong; Mao, Chuanbin

    2014-01-01

    Phage display is a biotechnique that fuses functional peptides on the outer surface of filamentous phage by inserting DNA encoding the peptides into the genes of its coat proteins. The resultant peptide-displayed phage particles have been widely used as biotemplates for the synthesis of functional hybrid nanomaterials. Here, we describe the bioengineering of M13 filamentous phage to surface-display bone mineral (hydroxyapatite (HAP))-nucleating peptides derived from dentin matrix protein-1 and using the engineered phage as a biotemplate to grow HAP nanocrystals.

  20. Effect of TiC nano-particles on the mechanical properties of an Al-5Cu alloy after various heat treatments

    NASA Astrophysics Data System (ADS)

    Zhang, Qingquan; Zhang, Wei; Tian, Weisi; Zhao, Qinglong

    2017-12-01

    In this paper, the effects of TiC nano-particles on the mechanical properties of Al-5Cu alloy were investigated. Adding TiC nano-particles can effectively refine grain size and secondary dendritic arm. The ultimate tensile strength, yield strength and elongation of the Al-5Cu alloy in each of the three states (i.e. as-cast, solid-solution state and T6 state) were also improved by adding TiC nano-particles. Moreover, the elastic-plastic plane-strain fracture toughness (K J) and work of fracture ( wof) of Al-5Cu containing TiC were significantly higher than those of Al-5Cu without TiC after aging for 10 h. The addition of TiC nano-particles also led to finer and denser ‧ precipitates.

  1. [Adverse effects of ultrafine particles on the cardiovascular system and its mechanisms].

    PubMed

    Yi, Tie-ci; Li, Jian-ping

    2014-12-18

    Cardiovascular disease is one of the major threats to human. Air pollution, which , as it become a problem too serious to be ignored in China, is known to be an important risk factor for cardiovascular disease. Among all pollutants, ultrafine particles ( UFPs) , defined as particles with their diameter less than 0. 1 f.Lm, are a specific composition. They are very small in size, large in quantity and surface area, and most important, capable of passing through the air-blood barrier. These unique features of UFPs make them special in their impact on cardiovascular system. Nowadays, the influence of UFPs on the cardiovascular system has become a hot topic. On the one side, studies have shown that UFPs can cause inflammation and oxidative stress in the lung, and then induce systemic inflammation by releasing cytokine and reactive oxygen species into the circulation. On the other side, UFPs themselves can "spillout"into the circulation and interact with their targets. By this way, UFPs directly affect endothelial cells, myocardial cells and the autonomic nervous system, which ultimately result in increased cardiovascular events. We intend to make an overview about the recent progress about the influence of UFPs on human cardiovascular disease and the related mechanisms, and argue for more attention to this issue.

  2. Effects of butter naturally enriched with conjugated linoleic acid and vaccenic acid on blood lipids and LDL particle size in growing pigs.

    PubMed

    Haug, Anna; Sjøgren, Per; Hølland, Nina; Müller, Hanne; Kjos, Nils P; Taugbøl, Ole; Fjerdingby, Nina; Biong, Anne S; Selmer-Olsen, Eirik; Harstad, Odd M

    2008-08-29

    Cow milk is a natural source of the cis 9, trans 11 isomer of conjugated linoleic acid (c9,t11-CLA) and trans vaccenic acid (VA). These fatty acids may be considered as functional foods, and the concentration in milk can be increased by e.g. sunflower oil supplementation to the dairy cow feed. The objective of this study was to compare the effects of regular butter with a special butter naturally enriched in c9,t11-CLA and VA on plasma lipids in female growing pigs. The experimental period lasted for three weeks and the two diets provided daily either 5.0 g c9,t11-CLA plus 15.1 g VA or 1.3 g c9,t11-CLA plus 3.6 g VA. The serum concentrations of c9,t11-CLA, VA and alpha-linolenic acid were increased and myristic (14:0) and palmitic acid (16:0) were reduced in the pigs fed the CLA+VA-rich butter-diet compared to regular butter, but no differences in plasma concentrations of triacylglycerol, cholesterol, HDL-cholesterol, LDL-cholesterol, LDL particle size distribution or total cholesterol/HDL cholesterol were observed among the two dietary treatment groups. Growing pigs fed diets containing butter naturally enriched in about 20 g c9,t11-CLA plus VA daily for three weeks, had increased serum concentrations of alpha-linolenic acid and decreased myristic and palmitic acid compared to pigs fed regular butter, implying a potential benefit of the CLA+VA butter on serum fatty acid composition. Butter enriched in CLA+VA does not appear to have significant effect on the plasma lipoprotein profile in pigs.

  3. High velocity collisions between large dust aggregates at the limit for growing planetesimals

    NASA Astrophysics Data System (ADS)

    Wurm, G.; Teiser, J.; Paraskov, G.

    2007-08-01

    Planetesimals are km-size bodies supposed to be formed in protoplanetary disks as planetary precursors [1]. The most widely considered mechanism for their formation is based on mutual collisions of smaller bodies, a process which starts with the aggregation of (sub)-micron size dust particles. In the absence of events that lithify the growing dust aggregates, only the surface forces between dust particles provide adhesion and internal strength of the objects. It has been assumed that this might be a disadvantage as dust aggregates are readily destroyed by rather weak collisions. In fact, experimental research on dust aggregation showed that for collisions in the m/s range (sub)-mm size dust aggregates impacting a larger body do show a transition from sticking to rebound and/or fragmentation in collisions and no growth occurs at the large velocities [2, 3]. This seemed to be incompatible with typical collision velocities of small dust aggregates with m-size bodies which are expected to be on the order 50 m/s in protoplanetary disks [4]. We recently found that the experimental results cannot be scaled from m/s to tens of m/s collisions. In contrast to the assumptions and somewhat counterintuitive, it is the fragility of dust aggregates that allows growth at higher collision velocities. In impact experiments Wurm et al. [5] showed that between 13 m/s and 25 m/s a larger compact (target) body consisting of micron-size SiO2 dust particles accreted 50 % of the mass of a 1 cm dust projectile consisting of the same dust. For slower impacts the projectile only rebounded or fragmented slightly.

  4. pH-Mediated Fluorescent Polymer Particles and Gel from Hyperbranched Polyethylenimine and the Mechanism of Intrinsic Fluorescence.

    PubMed

    Liu, Shi Gang; Li, Na; Ling, Yu; Kang, Bei Hua; Geng, Shuo; Li, Nian Bing; Luo, Hong Qun

    2016-02-23

    We report that fluorescence properties and morphology of hyperbranched polyethylenimine (hPEI) cross-linked with formaldehyde are highly dependent on the pH values of the cross-linking reaction. Under acidic and neutral conditions, water-soluble fluorescent copolymer particles (CPs) were produced. However, under basic conditions, white gels with weak fluorescence emission would be obtained. The water-soluble hPEI-formaldehyde (hPEI-F) CPs show strong intrinsic fluorescence without the conjugation to any classical fluorescent agents. By the combination of spectroscopy and microscopy techniques, the mechanism of fluorescence emission was discussed. We propose that the intrinsic fluorescence originates from the formation of a Schiff base in the cross-linking process between hPEI and formaldehyde. Schiff base bonds are the fluorescence-emitting moieties, and the compact structure of hPEI-F CPs plays an important role in their strong fluorescence emission. The exploration on fluorescence mechanism may provide a new strategy to prepare fluorescent polymer particles. In addition, the investigation shows that the hPEI-F CPs hold potential as a fluorescent probe for the detection of copper ions in aqueous media.

  5. Growth mechanism, distribution characteristics and reinforcing behavior of (Ti, Nb)C particle in laser cladded Fe-based composite coating

    NASA Astrophysics Data System (ADS)

    Li, Qingtang; Lei, Yongping; Fu, Hanguang

    2014-10-01

    Over the past decade, researchers have demonstrated much interest in laser cladded metal matrix composite coatings for its good wear resistance, corrosion resistance, and high temperature properties. In this paper, in-situ (Ti, Nb)C particle reinforced Fe-based composite coatings were produced by laser cladding. The effects of Ti/Nb(atomic ratio) in the cladding powder on the formation mechanism and distribution characteristics of multiple particle were investigated. The results showed that when Ti/Nb > 1, Ti had a stronger ability to bond with C compared with Nb. (Ti, Nb)C multiple particles with TiC core formed in the molten pool. With the decrease of Ti/Nb, core-shell structure disappeared, the structure of particle got close to that of NbC gradually. It is found that the amount, area ratio and distribution of the reinforced particle in the coating containing Ti and Nb elements were improved, compared with these in the coating containing equal Nb element. When Ti/Nb = 1, the effects above-mentioned is most prominent, and the wear resistance of the coating is promoted obviously.

  6. Adaptation and detoxification mechanisms of Vetiver grass (Chrysopogon zizanioides) growing on gold mine tailings.

    PubMed

    Melato, F A; Mokgalaka, N S; McCrindle, R I

    2016-01-01

    Vetiver grass (Chrysopogon zizanioides) was investigated for its potential use in the rehabilitation of gold mine tailings, its ability to extract and accumulate toxic metals from the tailings and its metal tolerant strategies. Vetiver grass was grown on gold mine tailings soil, in a hothouse, and monitored for sixteen weeks. The mine tailings were highly acidic and had high electrical conductivity. Vetiver grass was able to grow and adapt well on gold mine tailings. The results showed that Vetiver grass accumulated large amounts of metals in the roots and restricted their translocation to the shoots. This was confirmed by the bioconcentration factor of Zn, Cu, and Ni of >1 and the translocation factor of <1 for all the metals. This study revealed the defense mechanisms employed by Vetiver grass against metal stress that include: chelation of toxic metals by phenolics, glutathione S-tranferase, and low molecular weight thiols; sequestration and accumulation of metals within the cell wall that was revealed by the scanning electron microscopy that showed closure of stomata and thickened cell wall and was confirmed by high content of cell wall bound phenolics. Metal induced reactive oxygen species are reduced or eliminated by catalase, superoxide dismutase and peroxidase dismutase.

  7. Quantum mechanics of a constrained particle on an ellipsoid: Bein formalism and Geometric momentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panahi, H., E-mail: t-panahi@guilan.ac.ir; Jahangiri, L., E-mail: laleh.jahangiry@yahoo.com

    2016-09-15

    In this work we apply the Dirac method in order to obtain the classical relations for a particle on an ellipsoid. We also determine the quantum mechanical form of these relations by using Dirac quantization. Then by considering the canonical commutation relations between the position and momentum operators in terms of curved coordinates, we try to propose the suitable representations for momentum operator that satisfy the obtained commutators between position and momentum in Euclidean space. We see that our representations for momentum operators are the same as geometric one.

  8. The nature of catalyst particles and growth mechanisms of GaN nanowires grown by Ni-assisted metal-organic chemical vapor deposition.

    PubMed

    Weng, Xiaojun; Burke, Robert A; Redwing, Joan M

    2009-02-25

    The structure and chemistry of the catalyst particles that terminate GaN nanowires grown by Ni-assisted metal-organic chemical vapor deposition were investigated using a combination of electron diffraction, high-resolution transmission electron microscopy, and x-ray energy dispersive spectrometry. The crystal symmetry, lattice parameter, and chemical composition obtained reveal that the catalyst particles are Ni(3)Ga with an ordered L 1(2) structure. The results suggest that the catalyst is a solid particle during growth and therefore favor a vapor-solid-solid mechanism for the growth of GaN nanowires under these conditions.

  9. Correlating particle hardness with powder compaction performance.

    PubMed

    Cao, Xiaoping; Morganti, Mikayla; Hancock, Bruno C; Masterson, Victoria M

    2010-10-01

    Assessing particle mechanical properties of pharmaceutical materials quickly and with little material can be very important to early stages of pharmaceutical research. In this study, a wide range of pharmaceutical materials were studied using atomic force microscopy (AFM) nanoindentation. A significant amount of particle hardness and elastic modulus data were provided. Moreover, powder compact mechanical properties of these materials were investigated in order to build correlation between the particle hardness and powder compaction performance. It was found that the materials with very low or high particle hardness most likely exhibit poor compaction performance while the materials with medium particle hardness usually have good compaction behavior. Additionally, the results from this study enriched Hiestand's special case concept on particle hardness and powder compaction performance. This study suggests that the use of AFM nanoindentation can help to screen mechanical properties of pharmaceutical materials at early development stages of pharmaceutical research.

  10. Particle size of calcium carbonate does not affect apparent and standardized total tract digestibility of calcium, retention of calcium, or growth performance of growing pigs.

    PubMed

    Merriman, L A; Stein, H H

    2016-09-01

    Two experiments were conducted to evaluate particle size of calcium carbonate used in diets fed to growing pigs. Experiment 1 was conducted to determine apparent total tract digestibility (ATTD), standardized total tract digestibility (STTD), and retention of Ca among diets containing calcium carbonate produced to different particle sizes, and Exp. 2 was conducted to determine if growth performance of weanling pigs is affected by particle size of calcium carbonate. In Exp. 1, 4 diets based on corn and potato protein isolate were formulated to contain 0.70% Ca and 0.33% standardized total tract digestible P, but the calcium carbonate used in the diets was ground to 4 different particle sizes (200, 500, 700, or 1,125 μm). A Ca-free diet was formulated to determine basal endogenous losses of Ca. In Exp. 2, 4 diets were based on corn and soybean meal and the only difference among diets was that each diet contained calcium carbonate ground to the 4 particle sizes used in Exp. 1. In Exp. 1, 40 barrows (15.42 ± 0.70 kg initial BW) were allotted to the 5 diets with 8 replicate pigs per diet using a randomized complete block design, and in Exp. 2, 128 pigs with an initial BW of 9.61 ± 0.09 kg were randomly allotted to 4 experimental diets. Results of Exp. 1 indicated that basal endogenous losses of Ca were 0.329 g/kg DMI. The ATTD of Ca was 70.0 ± 3.2, 74.3 ± 2.7, 70.0 ± 2.9, and 72.1 ± 2.7 and the STTD of Ca was 74.2 ± 3.2, 78.5 ± 2.7, 74.1 ± 2.9, and 76.2 ± 2.7 for calcium carbonate ground to 200, 500, 700, or 1,125 μm, respectively. Retention of Ca was 67.4 ± 3.1, 70.4 ± 2.6, 63.9 ± 2.8, and 67.2 ± 2.2 for diets containing calcium carbonate ground to 200, 500, 700, or 1,125 μm, respectively. There were no differences among diets for ATTD of Ca, STTD of Ca, or retention of Ca. The ATTD of P was 64.5 ± 1.7, 66.8 ± 2.6, 64.2 ± 3.0, and 63.2 ± 1.7% and retention of P was 61.4 ± 1.4, 63.8 ± 2.8, 61.9 ± 2.8, and 60.9 ± 1.5 for diets containing calcium

  11. Physical and Mechanical Properties of LoVAR: A New Lightweight Particle-Reinforced Fe-36Ni Alloy

    NASA Technical Reports Server (NTRS)

    Stephenson, Timothy; Tricker, David; Tarrant, Andrew; Michel, Robert; Clune, Jason

    2015-01-01

    Fe-36Ni is an alloy of choice for low thermal expansion coefficient (CTE) for optical, instrument and electrical applications in particular where dimensional stability is critical. This paper outlines the development of a particle-reinforced Fe-36Ni alloy that offers reduced density and lower CTE compared to the matrix alloy. A summary of processing capability will be given relating the composition and microstructure to mechanical and physical properties.

  12. Wave-Particle Interactions and Particle Acceleration in Turbulent Plasmas: Hybrid Simulations

    NASA Astrophysics Data System (ADS)

    Kucharek, Harald; Pogorelov, Nikolai; Mueller, Hans; Gamayunov, Konstantin; Farrugia, Charles

    2015-04-01

    Wave-particle interactions and acceleration processes are present in all key regions inside and outside of the heliosphere. Spacecraft observations measure ion distributions and accelerated ion populations, which are the result of one or several processes. For instance STEREO measures energetic particles associated with interplanetary discontinuities and in the solar wind. Voyager and IBEX provide unique data of energetic particles from the termination shock and the inner and outer heliopause. The range of plasma conditions covered by observations is enormous. However, the physical processes causing particle acceleration and wave-particle interaction and determining the particle distributions are still unknown. Currently two mechanisms, the so-called pumping mechanism (Fisk and Gloeckler, 2010) and merging/contracting island (Fermo, Drake & Swisdak, 2010) are discussed as promising models. In order to determine these individual processes, numerical models or theoretical considerations are needed. Hybrid simulations, which include all kinetic processes self-consistently on the ion level, are a very proven, powerful tool to investigate wave-particle interaction, turbulence, and phase-space evolution of pickup and solar wind ions. In the framework of this study we performed 3D multi-species hybrid simulations for an ion/ion beam instability to study the temporal evolution of ion distributions, their stability, and the influence of self-generated waves. We investigated the energization of ions downstream of interplanetary discontinuities and shocks and downstream of the termination shock, the turbulence, and growth rate of instabilities and compared the results with theoretical predictions. The simulations show that ions can be accelerated downstream of collisionless shocks by trapping of charged particles in coherent wave fronts.

  13. Linear stability analysis of particle-laden hypopycnal plumes

    NASA Astrophysics Data System (ADS)

    Farenzena, Bruno Avila; Silvestrini, Jorge Hugo

    2017-12-01

    Gravity-driven riverine outflows are responsible for carrying sediments to the coastal waters. The turbulent mixing in these flows is associated with shear and gravitational instabilities such as Kelvin-Helmholtz, Holmboe, and Rayleigh-Taylor. Results from temporal linear stability analysis of a two-layer stratified flow are presented, investigating the behavior of settling particles and mixing region thickness on the flow stability in the presence of ambient shear. The particles are considered suspended in the transport fluid, and its sedimentation is modeled with a constant valued settling velocity. Three scenarios, regarding the mixing region thickness, were identified: the poorly mixed environment, the strong mixed environment, and intermediate scenario. It was observed that Kelvin-Helmholtz and settling convection modes are the two fastest growing modes depending on the particles settling velocity and the total Richardson number. The second scenario presents a modified Rayleigh-Taylor instability, which is the dominant mode. The third case can have Kelvin-Helmholtz, settling convection, and modified Rayleigh-Taylor modes as the fastest growing mode depending on the combination of parameters.

  14. Cytotoxicity evaluation of ceramic particles of different sizes and shapes.

    PubMed

    Yamamoto, Akiko; Honma, Rieko; Sumita, Masae; Hanawa, Takao

    2004-02-01

    When artificial hip or knee joints are implanted in the human body, they release metallic, ceramic, and polymeric debris into the surrounding tissues. The toxicity of the released particles is of two types: chemical, caused by the released soluble ions and monomers, and mechanical, a result of mechanical stimulation produced by the insoluble particles. In this study, the cytotoxicity of particles of TiO2, Al2O3, ZrO2, Si3N4, and SiC for murine fibroblasts and macrophages were examined to evaluate just their mechanical toxicity because these particles are not expected to release soluble metal ions. Different sizes and shapes of TiO2 particles were used to evaluate the effect of size and shape on particle cytotoxicity. The results suggest that the cytotoxicity of ceramic particles does not depend on their chemical species. Cytotoxicity levels were lower than those of corresponding metal ions, indicating that the mechanical toxicity of particles is lower than the chemical toxicity of released soluble ions and monomers. The differences in size did not affect the mechanical toxicity of these particles. The dendritic particles had a higher cytotoxicity level for macrophages than did spindle and spheric particles. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 68A: 244-256, 2004

  15. Interaction of Burning Metal Particles

    NASA Technical Reports Server (NTRS)

    Dreizin, Edward L.; Berman, Charles H.; Hoffmann, Vern K.

    1999-01-01

    Physical characteristics of the combustion of metal particle groups have been addressed in this research. The combustion behavior and interaction effects of multiple metal particles has been studied using a microgravity environment, which presents a unique opportunity to create an "aerosol" consisting of relatively large particles, i.e., 50-300 micrometer diameter. Combustion behavior of such an aerosol could be examined using methods adopted from well-developed single particle combustion research. The experiment included fluidizing relatively large (order of 100 micrometer diameter) uniform metal particles under microgravity and igniting such an "aerosol" using a hot wire igniter. The flame propagation and details of individual particle combustion and particle interaction have been studied using a high speed movie and video-imaging with cameras coupled with microscope lenses to resolve individual particles. Interference filters were used to separate characteristic metal and metal oxide radiation bands form the thermal black body radiation. Recorded flame images were digitized and employed to understand the processes occurring in the burning aerosol. The development of individual particle flames, merging or separation, and extinguishing as well as induced particle motion have been analyzed to identify the mechanisms governing these processes. Size distribution, morphology, and elemental compositions of combustion products were characterized and used to link the observed in this project aerosol combustion phenomena with the recently expanded mechanism of single metal particle combustion.

  16. Polymer-Particle Nanocomposites: Size and Dispersion Effects

    NASA Astrophysics Data System (ADS)

    Moll, Joseph

    Polymer-particle nanocomposites are used in industrial processes to enhance a broad range of material properties (e.g. mechanical, optical, electrical and gas permeability properties). This dissertation will focus on explanation and quantification of mechanical property improvements upon the addition of nanoparticles to polymeric materials. Nanoparticles, as enhancers of mechanical properties, are ubiquitous in synthetic and natural materials (e.g. automobile tires, packaging, bone), however, to date, there is no thorough understanding of the mechanism of their action. In this dissertation, silica (SiO2) nanoparticles, both bare and grafted with polystyrene (PS), are studied in polymeric matrices. Several variables of interest are considered, including particle dispersion state, particle size, length and density of grafted polymer chains, and volume fraction of SiO2. Polymer grafted nanoparticles behave akin to block copolymers, and this is critically leveraged to systematically vary nanoparticle dispersion and examine its role on the mechanical reinforcement in polymer based nanocomposites in the melt state. Rheology unequivocally shows that reinforcement is maximized by the formation of a transient, but long-lived, percolating polymer-particle network with the particles serving as the network junctions. The effects of dispersion and weight fraction of filler on nanocomposite mechanical properties are also studied in a bare particle system. Due to the interest in directional properties for many different materials, different means of inducing directional ordering of particle structures are also studied. Using a combination of electron microscopy and x-ray scattering, it is shown that shearing anisotropic NP assemblies (sheets or strings) causes them to orient, one in front of the other, into macroscopic two-dimensional structures along the flow direction. In contrast, no such flow-induced ordering occurs for well dispersed NPs or spherical NP aggregates! This work

  17. Particle Bonding Mechanism in Cold Gas Dynamic Spray: A Three-Dimensional Approach

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Jen, Tien-Chien; Pan, Yen-Ting; Chen, Hong-Sheng

    2017-12-01

    Cold gas dynamic spray (CGDS) is a surface coating process that uses highly accelerated particles to form the surface coating. In the CGDS process, metal particles with a diameter of 1-50 µm are carried by a gas stream at high pressure (typically 20-30 atm) through a de Laval-type nozzle to achieve supersonic velocity upon impact onto the substrate. Typically, the impact velocity ranges between 300 and 1200 m/s in the CGDS process. When the particle is accelerated to its critical velocity, which is defined as the minimum in-flight velocity at which it can deposit on the substrate, adiabatic shear instabilities will occur. Herein, to ascertain the critical velocities of different particle sizes on the bonding efficiency in CGDS process, three-dimensional numerical simulations of single particle deposition process were performed. In the CGDS process, one of the most important parameters which determine the bonding strength with the substrate is particle impact temperature. It is hypothesized that the particle will bond to the substrate when the particle's impacting velocity surpasses the critical velocity, at which the interface can achieve 60% of the melting temperature of the particle material (Ref 1, 2). Therefore, critical velocity should be a main parameter on the coating quality. Note that the particle critical velocity is determined not only by its size, but also by its material properties. This study numerically investigates the critical velocity for the particle deposition process in CGDS. In the present numerical analysis, copper (Cu) was chosen as particle material and aluminum (Al) as substrate material. The impacting velocities were selected between 300 and 800 m/s increasing in steps of 100 m/s. The simulation result reveals temporal and spatial interfacial temperature distribution and deformation between particle(s) and substrate. Finally, a comparison is carried out between the computed results and experimental data.

  18. Piezoelectric particle accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemp, Mark A.; Jongewaard, Erik N.; Haase, Andrew A.

    2017-08-29

    A particle accelerator is provided that includes a piezoelectric accelerator element, where the piezoelectric accelerator element includes a hollow cylindrical shape, and an input transducer, where the input transducer is disposed to provide an input signal to the piezoelectric accelerator element, where the input signal induces a mechanical excitation of the piezoelectric accelerator element, where the mechanical excitation is capable of generating a piezoelectric electric field proximal to an axis of the cylindrical shape, where the piezoelectric accelerator is configured to accelerate a charged particle longitudinally along the axis of the cylindrical shape according to the piezoelectric electric field.

  19. A theoretical perspective on particle acceleration by interplanetary shocks and the Solar Energetic Particle problem

    NASA Astrophysics Data System (ADS)

    Verkhoglyadova, Olga P.; Zank, Gary P.; Li, Gang

    2015-02-01

    Understanding the physics of Solar Energetic Particle (SEP) events is of importance to the general question of particle energization throughout the cosmos as well as playing a role in the technologically critical impact of space weather on society. The largest, and often most damaging, events are the so-called gradual SEP events, generally associated with shock waves driven by coronal mass ejections (CMEs). We review the current state of knowledge about particle acceleration at evolving interplanetary shocks with application to SEP events that occur in the inner heliosphere. Starting with a brief outline of recent theoretical progress in the field, we focus on current observational evidence that challenges conventional models of SEP events, including complex particle energy spectra, the blurring of the distinction between gradual and impulsive events, and the difference inherent in particle acceleration at quasi-parallel and quasi-perpendicular shocks. We also review the important problem of the seed particle population and its injection into particle acceleration at a shock. We begin by discussing the properties and characteristics of non-relativistic interplanetary shocks, from their formation close to the Sun to subsequent evolution through the inner heliosphere. The association of gradual SEP events with shocks is discussed. Several approaches to the energization of particles have been proposed, including shock drift acceleration, diffusive shock acceleration (DSA), acceleration by large-scale compression regions, acceleration by random velocity fluctuations (sometimes known as the "pump mechanism"), and others. We review these various mechanisms briefly and focus on the DSA mechanism. Much of our emphasis will be on our current understanding of the parallel and perpendicular diffusion coefficients for energetic particles and models of plasma turbulence in the vicinity of the shock. Because of its importance both to the DSA mechanism itself and to the particle

  20. Particle Engulfment and Pushing Micro-Gravity Experiments and Mathematical Modeling

    NASA Technical Reports Server (NTRS)

    Stefanescu, Doru M.; Catalina, A. V.; Juretzko, F.; Mukherjee, S.; Sen, S.

    2000-01-01

    The phenomenon of interaction of particles with solid-liquid interfaces that results in particle engulfment or pushing (PEP) has been Studied since mid 1960's. While the original interest stemmed from geology applications (frost heaving in soil), it was recognized early that understanding particle behavior at solidifying interfaces mi ht yield 9 practical benefits in other fields. In metallurgical applications the issue is the location of particles with respect to grain boundaries at the end of solidification. Considerable amount of experimental and theoretical research was lately focused on applications to metal matrix composites produced by casting; or spray forming techniques. Another application of PEP is in the growing of Y1Ba2CU3O7-delta(123) superconductor crystals from an undercooled liquid. The oxide melt contains Y2Ba1CU1O5 (211) precipitates, which act as flux pinning sites. The paper presents results of PEP micro-gravity research performed by the authors on two shuttle missions using metallic and polymeric materials. In addition. a discussion on the theoretical aspects of the physics of PEP is offered. Analytical and numerical models for planar solidification interfaces developed by the authors are used to explain the experimental results. Shortcomings of steady-state models are emphasized. A numerical model that includes the effect of the solutal field and of natural convection is introduced. A discussion of phenomena associated with dendritic solidification based on experimental observations is also offered. A mechanism of engulfment is proposed.

  1. Effects of butter naturally enriched with conjugated linoleic acid and vaccenic acid on blood lipids and LDL particle size in growing pigs

    PubMed Central

    Haug, Anna; Sjøgren, Per; Hølland, Nina; Müller, Hanne; Kjos, Nils P; Taugbøl, Ole; Fjerdingby, Nina; Biong, Anne S; Selmer-Olsen, Eirik; Harstad, Odd M

    2008-01-01

    Background Cow milk is a natural source of the cis 9, trans 11 isomer of conjugated linoleic acid (c9,t11-CLA) and trans vaccenic acid (VA). These fatty acids may be considered as functional foods, and the concentration in milk can be increased by e.g. sunflower oil supplementation to the dairy cow feed. The objective of this study was to compare the effects of regular butter with a special butter naturally enriched in c9,t11-CLA and VA on plasma lipids in female growing pigs. The experimental period lasted for three weeks and the two diets provided daily either 5.0 g c9,t11-CLA plus 15.1 g VA or 1.3 g c9,t11-CLA plus 3.6 g VA. Results The serum concentrations of c9,t11-CLA, VA and alpha-linolenic acid were increased and myristic (14:0) and palmitic acid (16:0) were reduced in the pigs fed the CLA+VA-rich butter-diet compared to regular butter, but no differences in plasma concentrations of triacylglycerol, cholesterol, HDL-cholesterol, LDL-cholesterol, LDL particle size distribution or total cholesterol/HDL cholesterol were observed among the two dietary treatment groups. Conclusion Growing pigs fed diets containing butter naturally enriched in about 20 g c9,t11-CLA plus VA daily for three weeks, had increased serum concentrations of alpha-linolenic acid and decreased myristic and palmitic acid compared to pigs fed regular butter, implying a potential benefit of the CLA+VA butter on serum fatty acid composition. Butter enriched in CLA+VA does not appear to have significant effect on the plasma lipoprotein profile in pigs. PMID:18759970

  2. Investigating the mechanism of aggregation of colloidal particles during electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Guelcher, Scott Arthur

    Charged particles deposited near an electrode aggregate to form ordered clusters in the presence of both dc and ac applied electric fields. The aggregation process could have important applications in areas such as coatings technology and ceramics processing. This thesis has sought to identify the phenomena driving the aggregation process. According to the electroosmotic flow developed by Solomentsev et al. (1997), aggregation in dc electric fields is caused by convection in the electroosmotic flow about deposited particles, and it is therefore an electrokinetic phenomenon which scales linearly with the electric field and the zeta-potential of the particles. Trajectories of pairs of particles aggregating to form doublets have been shown to scale linearly with the electric field and the zeta-potential of the particles, as predicted by the electroosmotic flow model. Furthermore, quantitative agreement has been demonstrated between the experimental and calculated trajectories for surface-to-surface separation distances between the particles ranging from one to two radii. The trajectories were calculated from the electroosmotic flow model with no fitting parameters; the only inputs to the model were the mobility of the deposited particles, the zeta- potential of the particles, and the applied electric field, all of which were measured independently. Clustering of colloidal particles deposited near an electrode in ac fields has also been observed, but a suitable model for the aggregation process has not been proposed and quantitative data in the literature are scarce. Trajectories of pairs of particles aggregating to form doublets in an ac field have been shown to scale with the root-mean-square (rms) electric field raised to the power 1.4 over the range of electric fields 10-35 V/cm (100-Hz sine and square waves). The aggregation is also frequency dependent; the doublets aggregate fastest at 30 Hz (square wave) and slowest at 500 Hz (square wave), while the interaction

  3. The particles in town air

    PubMed Central

    Ellison, J. McK.

    1965-01-01

    Particles constitute an important part of air pollution, and their behaviour when suspended in air is very different from that of gas molecules: in particular, the mechanisms by which they become deposited on surfaces are different, and consequently the methods normally used for removing particles from the air, either for sampling or for cleaning it, rely mainly on mechanisms that do not enter into the behaviour of gas molecules. These mechanisms are described, and the ways in which they affect the problems of air pollution and its measurement are discussed. ImagesFIG. 8 PMID:14315713

  4. Particle measurement systems and methods

    DOEpatents

    Steele, Paul T [Livermore, CA

    2011-10-04

    A system according to one embodiment includes a light source for generating light fringes; a sampling mechanism for directing a particle through the light fringes; and at least one light detector for detecting light scattered by the particle as the particle passes through the light fringes. A method according to one embodiment includes generating light fringes using a light source; directing a particle through the light fringes; and detecting light scattered by the particle as the particle passes through the light fringes using at least one light detector.

  5. Matter and Interactions: A Particle Physics Perspective

    ERIC Educational Resources Information Center

    Organtini, Giovanni

    2011-01-01

    In classical mechanics, matter and fields are completely separated; matter interacts with fields. For particle physicists this is not the case; both matter and fields are represented by particles. Fundamental interactions are mediated by particles exchanged between matter particles. In this article we explain why particle physicists believe in…

  6. Testing of the coalescence mechanism in high energy heavy ion collisions using two-particle correlations with identified particle trigger

    NASA Astrophysics Data System (ADS)

    Choudhury, Subikash; Sarkar, Debojit; Chattopadhyay, Subhasis

    2016-05-01

    In central Au-Au collisions at top RHIC energy, two-particle correlation measurements with identified hadron trigger have shown attenuation of near-side proton triggered jetlike yield at intermediate transverse momentum (p T ),2

    mechanism of hadronization. Baryon enhancement was also observed at LHC in the single inclusive spectra. We study the consequence of such an enhancement on two-particle correlations at LHC energy within the framework of a multiphase transport (AMPT) model that implements quark coalescence as a mode of hadronization. In this paper we have calculated the proton over pion ratio and the near side per trigger yield associated with pion and proton triggers at intermediate p T from the string melting (SM) version of AMPT. Results obtained are contrasted with the AMPT default (Def.) which does not include coalescence. Baryon enhancement was observed in AMPT SM at intermediate p T . Near-side jetlike correlated yield associated with baryon (proton) trigger in the momentum region where baryon generation is enhanced is found to be suppressed as compared to the corresponding yields for the meson (pion) trigger in most central Pb-Pb events. No such effect was found in the default version of AMPT.

  7. Dynamic and mechanical properties of supported lipid bilayers

    NASA Astrophysics Data System (ADS)

    Wu, Hsing-Lun; Tsao, Heng-Kwong; Sheng, Yu-Jane

    2016-04-01

    Supported lipid bilayers (SLBs) offer an excellent model system for investigating the physico-chemical properties of the cell membrane. In this work, dynamic and mechanical properties of SLBs are explored by dissipative particle dynamics simulations for lipids with different architectures (chain length, kink, and asymmetry associated with lipid tails). It is found that the lateral diffusivity (Dx) and flip-flop rate (FF) grow with increasing temperature in both gel and liquid phases and can be described by an Arrhenius-like expression. Three regimes can be clearly identified for symmetric and asymmetric saturated lipids but only two regimes are observed for kinked lipids. Both Dx and FF grow with decreasing tail length and increasing number of kinks. The stretching (KA) and apparent bending (KB) moduli exhibit concave upward curves with temperature and the minima are attained at Tm. In general, the minima of KA and KB decrease with the chain length and increase with number of kinks. The typical relation among the bending modulus, area stretching modulus, and bilayer thickness is still followed, KB = βKAh2 and β is much smaller in the gel phase. The dynamic and mechanical properties of lipids with asymmetric tails are found to situate between their symmetric counterparts.

  8. Investigation of Polar Stratospheric Cloud Solid Particle Formation Mechanisms Using ILAS and AVHRR Observations in the Arctic

    NASA Technical Reports Server (NTRS)

    Irie, H.; Pagan, K. L.; Tabazadeh, A.; Legg, M. J.; Sugita, T.

    2004-01-01

    Satellite observations of denitrification and ice clouds in the Arctic lower stratosphere in February 1997 are used with Lagrangian microphysical box model calculations to evaluate nucleation mechanisms of solid polar stratospheric cloud (PSC) particles. The occurrences of ice clouds are not correlated in time and space with the locations of back trajectories of denitrified air masses, indicating that ice particle surfaces are not always a prerequisite for the formation of solid PSCs that lead to denitrification. In contrast, the model calculations incorporating a pseudoheterogeneous freezing process occurring at the vapor-liquid interface can quantitatively explain most of the observed denitrification when the nucleation activation free energy for nitric acid dihydrate formation is raised by only approx.10% relative to the current published values. Once nucleated, the conversion of nitric acid dihydrate to the stable trihydrate phase brings the computed levels of denitrification closer to the measurements. INDEX TERMS: 0305 Atmospheric Composition and Structure: Aerosols and particles (0345, 4801); 0320 Atmospheric Composition and SblctureC: loud physics and chemistry; 0340 Atmospheric Composition and Structure: Middle atmosphere-composition and chemistry

  9. Mechanical characterization and ion release of bioactive dental composites containing calcium phosphate particles.

    PubMed

    Natale, Livia C; Rodrigues, Marcela C; Alania, Yvette; Chiari, Marina D S; Boaro, Leticia C C; Cotrim, Marycel; Vega, Oscar; Braga, Roberto R

    2018-08-01

    to verify the effect of the addition of dicalcium phosphate dihydrate (DCPD) particles functionalized with di- or triethylene glycol dimethacrylate (DEGDMA or TEGDMA) on the degree of conversion (DC), post-gel shrinkage (PS), mechanical properties, and ion release of experimental composites. Four composites were prepared containing a BisGMA/TEGDMA matrix and 60 vol% of fillers. The positive control contained only barium glass fillers, while in the other composites 15 vol% of the barium was replaced by DCPD. Besides the functionalized particles, non-functionalized DCPD was also tested. DC after 24 h (n = 3) was determined by FTIR spectroscopy. The strain gage method was used to obtain PS 5 min after photoactivation (n = 5). Flexural strength and modulus (n = 10) were calculated based on the biaxial flexural test results, after specimen storage for 24 h or 60 days in water. The same storage times were used for fracture toughness testing (FT, n = 10). Calcium and phosphate release up to 60 days was quantified by ICP-OES (n = 3). Data were analyzed by ANOVA/Tukey test (alpha: 5%). Composites containing functionalized DCPD presented higher DC than the control (p < 0.001). The material containing DEGDMA-functionalized particles showed higher PS than the other composites (p < 0.001). After 60 days, only the composite with DEGDMA-functionalized DCPD presented fracture strength similar to the control, while for flexural modulus only the composite with TEGDMA-functionalized particles was lower than the control (p < 0.001). FT of all composites containing DCPD was higher than the control after 60 days (p < 0.005). Calcium release was higher for the composite with non-functionalized DCPD at 15 days and no significant reductions were observed for composites with functionalized DCPD during the observation period (p < 0.001). For all the tested composites, phosphate release was higher at 15 days than in the subsequent periods, and

  10. Interaction of Burning Metal Particles

    NASA Technical Reports Server (NTRS)

    Dreizin, Edward L.; Berman, Charles H.; Hoffmann, Vern K.

    1999-01-01

    Physical characteristics of the combustion of metal particle groups have been addressed in this research. The combustion behavior and interaction effects of multiple metal particles has been studied using a microgravity environment, which presents a unique opportunity to create an "aerosol" consisting of relatively large particles, i.e., 50-300 m diameter. Combustion behavior of such an aerosol could be examined using methods adopted from well-developed single particle combustion research. The experiment included fluidizing relatively large (order of 100 m diameter) uniform metal particles under microgravity and igniting such an "aerosol" using a hot wire igniter. The flame propagation and details of individual particle combustion and particle interaction have been studied using a high speed movie and video-imaging with cameras coupled with microscope lenses to resolve individual particles. Interference filters were used to separate characteristic metal and metal oxide radiation bands from the thermal black body radiation. Recorded flame images were digitized and various image processing techniques including flame position tracking, color separation, and pixel by pixel image comparison were employed to understand the processes occurring in the burning aerosol. The development of individual particle flames, merging or separation, and extinguishment as well as induced particle motion have been analyzed to identify the mechanisms governing these processes. Size distribution, morphology, and elemental compositions of combustion products were characterized and used to link the observed in this project aerosol combustion phenomena with the recently expanded mechanism of single metal particle combustion.

  11. Collisionless Shocks and Particle Acceleration.

    NASA Astrophysics Data System (ADS)

    Malkov, M.

    2016-12-01

    Collisionless shocks emerged in the 50s and 60s of the last century as an important branch of plasma physics and have remained ever since. New applications pose new challenges to our understanding of collisionless shock mechanisms. Particle acceleration in astrophysical settings, primarily studied concerning the putative origin of cosmic rays (CR) in supernova remnant (SNR) shocks, stands out with the collisionless shock mechanism being the key. Among recent laboratory applications, a laser-based tabletop proton accelerator is an affordable compact alternative to big synchrotron accelerators. The much-anticipated proof of cosmic ray (CR) acceleration in supernova remnants is hindered by our limited understanding of collisionless shock mechanisms. Over the last decade, dramatically improved observations were puzzling the theorists with unexpected discoveries. The difference between the helium/carbon and proton CR rigidity (momentum to charge ratio) spectra, seemingly inconsistent with the acceleration and propagation theories, and the perplexing positron excess in the 10-300 GeV range are just two recent examples. The latter is now also actively discussed in the particle physics and CR communities as a possible signature of decay or annihilation of hypothetical dark matter particles. By considering an initial (injection) phase of a diffusive shock acceleration mechanism, including particle reflection off the shock front - where an elemental similarity of particle dynamics does not apply - I will discuss recent suggestions of how to address the new data from the collisionless shock perspective. The backreaction of accelerated particles on the shock structure, its environment, and visibility across the electromagnetic spectrum from radio to gamma rays is another key aspect of collisionless shock that will be discussed.

  12. Characterization and modeling of illite crystal particles and growth mechanisms in a zoned hydrothermal deposit, Lake City, Colorado

    USGS Publications Warehouse

    Bove, D.J.; Eberl, D.D.; McCarty, D.K.; Meeker, G.P.

    2002-01-01

    Mean thickness measurements and crystal-thickness distributions (CTDs) of illite particles vary systematically with changes in hydrothermal alteration type, fracture density, and attendant mineralization in a large acid-sulfate/Mo-porphyry hydrothermal system at Red Mountain, near Lake City, Colorado. The hydrothermal illites characterize an extensive zone of quartz-sericite-pyrite alteration beneath two deeply rooted bodies of magmatic-related, quartz-alunite altered rock. Nineteen illites from a 3000 ft vertical drill hole were analyzed by XRD using the PVP-10 intercalation method and the computer program MudMaster (Bertaut-Warren-Averbach technique). Mean crystallite thicknesses, as determined from 001 reflections, range from 5-7 nanometers (nm) at depths from 0-1700 ft, then sharply increase to 10-16 nm at depths between 1800-2100 ft, and decrease again to 4-5 nm below this level. The interval of largest particle thickness correlates strongly with the zone of most intense quartz-sericite-pyrite alteration (QSP) and attendant high-density stockwork fracturing, and with the highest concentrations of Mo within the drill core. CTD shapes for the illite particles fall into two main categories: asymptotic and lognormal. The shapes of the CTDs are dependent on conditions of illite formation. The asymptotic CTDs correspond to a nucleation and growth mechanism, whereas surface-controlled growth was the dominant mechanism for the lognormal CTDs. Lognormal CTDs coincide with major through-going fractures or stockwork zones, whereas asymptotic CTDs are present in wallrock distal to these intense fracture zones. The increase in illite particle size and the associated zone of intense QSP alteration and stockwork veining was related by proximity to the dacitic magma(s), which supplied both reactants and heat to the hydrothermal system. However, no changes in illite polytype, which in other studies reflect temperature transitions, were observed within this interval.

  13. MMS Multipoint Analysis of the Dynamics, Evolution, and Particle Acceleration Mechanisms Inside FTEs at Earth's Subsolar Magnetopause

    NASA Astrophysics Data System (ADS)

    Akhavan-Tafti, M.; Slavin, J. A.; Eastwood, J. P.; Cassak, P.; Gershman, D. J.; Zhao, C.

    2017-12-01

    Flux Transfer Events (FTEs) are transient signatures of magnetic reconnection at the dayside magnetopause and play significant roles in determining the rate of reconnection and accelerating particles. This study investigates the magnetohydrodynamic forces inside and outside FTEs to infer the process through which these structures become force-free and uses electron dynamics to study the mechanisms for particle acceleration within the FTE. Akhavan-Tafti et al. [2017] demonstrated that ion-scale FTEs contain regions of elevated plasma density which greatly contribute to plasma pressure forces inside FTEs. It is shown that as FTEs evolve, the plasma is evacuated as the core magnetic field strengthens, hence becoming more force-free. The neighboring ion-scale FTEs formed at the subsolar magnetopause due to multiple X-line reconnection are forced to interact, and likely coalesce. Entropy is invoked to motivate the discussion on the essential role of coalescence in reconfiguring magnetic fields and current density distributions inside FTEs to allow for the adiabatic growth of these structures. Here, we present observational evidence which shows that, in the absence of coalescence, FTEs can become less force free. Local electron kinematics is studied to compare the contributions of parallel electric field, Fermi acceleration, and betatron acceleration mechanisms to particle heating. Acceleration due to parallel electric fields are shown to be dominant in the vicinity of the reconnection site while betatron acceleration controls perpendicular heating inside the FTE in the presence of magnetic pressure gradients. In the downstream of the reconnection site, the `freshly' reconnected field lines start to straighten due to the magnetic curvature force. Straightening field lines accelerate trapped electrons parallel to the local magnetic field (i.e., first-order Fermi acceleration). These acceleration mechanisms are shown to explain the observed anisotropic pitch angle

  14. Anatomy of particle diffusion

    NASA Astrophysics Data System (ADS)

    Bringuier, E.

    2009-11-01

    The paper analyses particle diffusion from a thermodynamic standpoint. The main goal of the paper is to highlight the conceptual connection between particle diffusion, which belongs to non-equilibrium statistical physics, and mechanics, which deals with particle motion, at the level of third-year university courses. We start out from the fact that, near equilibrium, particle transport should occur down the gradient of the chemical potential. This yields Fick's law with two additional advantages. First, splitting the chemical potential into 'mechanical' and 'chemical' contributions shows how transport and mechanics are linked through the diffusivity-mobility relationship. Second, splitting the chemical potential into entropic and energetic contributions discloses the respective roles of entropy maximization and energy minimization in driving diffusion. The paper addresses first unary diffusion, where there is only one mobile species in an immobile medium, and next turns to binary diffusion, where two species are mobile with respect to each other in a fluid medium. The interrelationship between unary and binary diffusivities is brought out and it is shown how binary diffusion reduces to unary diffusion in the limit of high dilution of one species amidst the other one. Self- and mutual diffusion are considered and contrasted within the thermodynamic framework; self-diffusion is a time-dependent manifestation of the Gibbs paradox of mixing.

  15. Phase space flow of particles in squeezed states

    NASA Technical Reports Server (NTRS)

    Ceperley, Peter H.

    1994-01-01

    The manipulation of noise and uncertainty in squeezed states is governed by the wave nature of the quantum mechanical particles in these states. This paper uses a deterministic model of quantum mechanics in which real guiding waves control the flow of localized particles. This model will be used to examine the phase space flow of particles in typical squeezed states.

  16. High energy particles with negative and positive energies in the vicinity of black holes

    NASA Astrophysics Data System (ADS)

    Grib, A. A.; Pavlov, Yu. V.

    2014-07-01

    It is shown that the energy in the centre of mass frame of two colliding particles in free fall at any point of the ergosphere of the rotating black hole can grow without limit for fixed energy values of particles on infinity. The effect takes place for large negative values of the angular momentum of one of the particles. It occurs that the geodesics with negative energy in equatorial plane of rotating black holes cannot originate or terminate inside the ergosphere. Their length is always finite and this leads to conclusion that they must originate and terminate inside the gravitational radius of the ergosphere. The energy in the centre of mass frame of one particle falling into the gravitational radius and the other arriving from the area inside it is growing without limit on the horizon.

  17. Analysis of shape memory alloy sensory particles for damage detection via substructure and continuum damage modeling

    NASA Astrophysics Data System (ADS)

    Bielefeldt, Brent R.; Benzerga, A. Amine; Hartl, Darren J.

    2016-04-01

    The ability to monitor and predict the structural health of an aircraft is of growing importance to the aerospace industry. Currently, structural inspections and maintenance are based upon experiences with similar aircraft operating in similar conditions. While effective, these methods are time-intensive and unnecessary if the aircraft is not in danger of structural failure. It is imagined that future aircraft will utilize non-destructive evaluation methods, allowing for the near real-time monitoring of structural health. A particularly interesting method involves utilizing the unique transformation response of shape memory alloy (SMA) particles embedded in an aircraft structure. By detecting changes in the mechanical and/or electromagnetic responses of embedded particles, operators could detect the formation or propagation of fatigue cracks in the vicinity of these particles. This work focuses on a finite element model of SMA particles embedded in an aircraft wing using a substructure modeling approach in which degrees of freedom are retained only at specified points of connection to other parts or the application of boundary conditions, greatly reducing computational cost. Previous work evaluated isolated particle response to a static crack to numerically demonstrate and validate this damage detection method. This paper presents the implementation of a damage model to account for crack propagation and examine for the first time the effect of particle configuration and/or relative placement with respect to the ability to detect damage.

  18. Growing Pains

    PubMed Central

    Lehman, Patrick J.; Carl, Rebecca L.

    2017-01-01

    Context: The term growing pains describes a common, benign syndrome of recurrent discomfort that occurs in young children. First described in the 1800s, the etiology of this condition remains unclear. The peak incidence does not correspond to a time of rapid growth. Children typically report bilateral pain in the lower extremities that occurs late in the day or at night. Evidence Acquisition: The PubMed database was searched using the keywords growing pains, benign nocturnal limb pains of childhood, recurrent limb pain of childhood, and limb pain in childhood. Articles were also found by reviewing references from the initial PubMed search. Only English-language articles published from 1900 through 2016 were included in the review. Study Design: Clinical review. Level of Evidence: Level 3. Results: When a patient’s history is classic for growing pains and physical examination is normal, laboratory and radiographic evaluation are not needed to make the diagnosis. Findings typical for growing pains include bilateral lower extremity pain usually experienced in the early evening or at night. The pain is not caused by activity and will not cause a limp. Conclusion: Additional workup is warranted for children with an atypical history, systemic symptoms, or for those individuals with physical examination abnormalities such as allodynia, focal tenderness, joint swelling, or decreased joint range of motion. Management of growing pains generally consists of symptomatic care with massage and over-the-counter analgesics, as well as reassurance to children and parents about the benign, self-limited nature of this condition. This review article summarizes data on the epidemiology, etiology, and management of growing pains and provides a framework for distinguishing this entity from other causes of extremity pain. PMID:28177851

  19. Effects of ultrasonic vibration on microstructure and mechanical properties of nano-sized SiC particles reinforced Al-5Cu composites.

    PubMed

    Li, Jianyu; Lü, Shulin; Wu, Shusen; Gao, Qi

    2018-04-01

    Ultrasonic vibration (UV) treatment has been successfully applied to improve the particles distribution of nano-sized SiC particles (SiC p ) reinforced Al-5Cu alloy matrix composites which were prepared by combined processes of dry high energy ball milling and squeeze casting. When UV treatment is applied, the distribution of nano-sized SiC p has been greatly improved. After UV for 1 min, large particles aggregates are broken up into small aggregates due to effects of cavitation and the acoustic streaming. After UV for 5 min, all the particles aggregates are dispersed and the particles are uniformly distributed in the composites. Compared with the Al-5Cu matrix alloy, the ultimate tensile strength, yield strength and elongation of the 1 wt% nano-sized SiC p /Al-5Cu composites treated by UV for 5 min are 270 MPa, 173 MPa and 13.3%, which are increased by 7.6%, 6.8% and 29%, respectively. The improvements of mechanical properties after UV are attributed to the uniform distribution of nano particles, grain refinement of aluminum matrix alloy and reduction of porosity in the composites. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Heterogeneous kinetics, products, and mechanisms of ferulic acid particles in the reaction with NO3 radicals

    NASA Astrophysics Data System (ADS)

    Liu, Changgeng; Zhang, Peng; Wen, Xiaoying; Wu, Bin

    2017-03-01

    Methoxyphenols, as an important component of wood burning, are produced by lignin pyrolysis and considered to be the potential tracers for wood smoke emissions. In this work, the heterogeneous reaction between ferulic acid particles and NO3 radicals was investigated. Six products including oxalic acid, 4-vinylguaiacol, vanillin, 5-nitrovanillin, 5-nitroferulic acid, and caffeic acid were confirmed by gas chromatography-mass spectrometry (GC-MS). In addition, the reaction mechanisms were proposed and the main pathways were NO3 electrophilic addition to olefin and the meta-position to the hydroxyl group. The uptake coefficient of NO3 radicals on ferulic acid particles was 0.17 ± 0.02 and the effective rate constant under experimental conditions was (1.71 ± 0.08) × 10-12 cm3 molecule-1 s-1. The results indicate that ferulic acid degradation by NO3 can be an important sink at night.

  1. Energetic particle influences in Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Aplin, Karen; Harrison, R. Giles; Nicoll, Keri; Rycroft, Michael; Briggs, Aaron

    2016-04-01

    Energetic particles from outer space, known as galactic cosmic rays, constantly ionise the entire atmosphere. During strong solar storms, solar energetic particles can also reach the troposphere and enhance ionisation. Atmospheric ionisation generates cluster ions. These facilitate current flow in the global electric circuit, which arises from charge separation in thunderstorms driven by meteorological processes. Energetic particles, whether solar or galactic in origin, may influence the troposphere and stratosphere through a range of different mechanisms, each probably contributing a small amount. Some of the suggested processes potentially acting over a wide spatial area in the troposphere include enhanced scavenging of charged aerosol particles, modification of droplet or droplet-droplet behavior by charging, and the direct absorption of infra-red radiation by the bending and stretching of hydrogen bonds inside atmospheric cluster-ions. As well as reviewing the proposed mechanisms by which energetic particles modulate atmospheric properties, we will also discuss new instrumentation for measurement of energetic particles in the atmosphere.

  2. Incremental social learning in particle swarms.

    PubMed

    de Oca, Marco A Montes; Stutzle, Thomas; Van den Enden, Ken; Dorigo, Marco

    2011-04-01

    Incremental social learning (ISL) was proposed as a way to improve the scalability of systems composed of multiple learning agents. In this paper, we show that ISL can be very useful to improve the performance of population-based optimization algorithms. Our study focuses on two particle swarm optimization (PSO) algorithms: a) the incremental particle swarm optimizer (IPSO), which is a PSO algorithm with a growing population size in which the initial position of new particles is biased toward the best-so-far solution, and b) the incremental particle swarm optimizer with local search (IPSOLS), in which solutions are further improved through a local search procedure. We first derive analytically the probability density function induced by the proposed initialization rule applied to new particles. Then, we compare the performance of IPSO and IPSOLS on a set of benchmark functions with that of other PSO algorithms (with and without local search) and a random restart local search algorithm. Finally, we measure the benefits of using incremental social learning on PSO algorithms by running IPSO and IPSOLS on problems with different fitness distance correlations.

  3. Numerical investigation of compaction of deformable particles with bonded-particle model

    NASA Astrophysics Data System (ADS)

    Dosta, Maksym; Costa, Clara; Al-Qureshi, Hazim

    2017-06-01

    In this contribution, a novel approach developed for the microscale modelling of particles which undergo large deformations is presented. The proposed method is based on the bonded-particle model (BPM) and multi-stage strategy to adjust material and model parameters. By the BPM, modelled objects are represented as agglomerates which consist of smaller ideally spherical particles and are connected with cylindrical solid bonds. Each bond is considered as a separate object and in each time step the forces and moments acting in them are calculated. The developed approach has been applied to simulate the compaction of elastomeric rubber particles as single particles or in a random packing. To describe the complex mechanical behaviour of the particles, the solid bonds were modelled as ideally elastic beams. The functional parameters of solid bonds as well as material parameters of bonds and primary particles were estimated based on the experimental data for rubber spheres. Obtained results for acting force and for particle deformations during uniaxial compression are in good agreement with experimental data at higher strains.

  4. Experimental study of dielectrophoresis and liquid dielectrophoresis mechanisms for particle capture in a droplet.

    PubMed

    Tsai, Sung-Lin; Hong, Jhih-Lin; Chen, Ming-Kun; Jang, Ling-Sheng

    2011-06-01

    This work presents a microfluidic system that can transport, concentrate, and capture particles in a controllable droplet. Dielectrophoresis (DEP), a phenomenon in which a force is exerted on a dielectric particle when it is subjected to a non-uniform electric field, is used to manipulate particles. Liquid dielectrophoresis (LDEP), a phenomenon in which a liquid moves toward regions of high electric field strength under a non-uniform electric field, is used to manipulate the fluid. In this study, a mechanism of droplet creation presented in a previous work that uses DEP and LDEP is improved. A driving electrode with a DEP gap is used to prevent beads from getting stuck at the interface between air and liquid, which is actuated with an AC signal of 200 V(pp) at a frequency of 100 kHz. DEP theory is used to calculate the DEP force in the liquid, and LDEP theory is used to analyze the influence of the DEP gap. The increment of the actuation voltage due to the electrode with a DEP gap is calculated. A set of microwell electrodes is used to capture a bead using DEP force, which is actuated with an AC signal of 20 V(pp) at a frequency of 5 MHz. A simulation is carried out to investigate the dimensions of the DEP gap and microwell electrodes. Experiments are performed to demonstrate the creation of a 100-nL droplet and the capture of individual 10-μm polystyrene latex beads in the droplet. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Particle-induced viscous fingering

    NASA Astrophysics Data System (ADS)

    Lee, Sungyon

    2017-11-01

    An inclusion of non-colloidal particles in a Newtonian liquid can fundamentally change the interfacial dynamics and even cause interfacial instabilities. In this talk, we report a particle-induced fingering instability when a mixture of particles and viscous oil is injected radially into a Hele-Shaw cell. Our experimental results show that the onset and characteristics of fingering are most directly affected by the particle volume fraction but also depend on the ratio of the particle diameter to gap size. In particular, the formation of a particle band is observed on the interface only when the particle diameter is comparable to the channel gap thickness. This work demonstrates the complex coupling between suspensions and fluid-fluid interfaces and has broad relevance in suspension processing, particle self-assembly, and oil recovery processes. The physical mechanism behind the instability and a quantitative model are also discussed.

  6. Influence of airborne-particle abrasion on mechanical properties and bond strength of carbon/epoxy and glass/bis-GMA fiber-reinforced resin posts.

    PubMed

    Soares, Carlos Jose; Santana, Fernanda Ribeiro; Pereira, Janaina Carla; Araujo, Tatiana Santos; Menezes, Murilo Souza

    2008-06-01

    Controversy exists concerning the use of fiber-reinforced posts to improve bond strength to resin cement because some precementation treatments can compromise the mechanical properties of the posts. The purpose of this study was to analyze the influence of airborne-particle abrasion on the mechanical properties and microtensile bond strength (MTBS) of carbon/epoxy and glass/bis-GMA fiber-reinforced resin posts. Flexural strength (delta(f)), flexural modulus (E(f)), and stiffness (S) were assessed using a 3-point bending test for glass fiber-reinforced and carbon fiber-reinforced resin posts submitted to airborne-particle abrasion (AB) with 50-microm Al(2)O(3), and for posts without any surface treatment (controls) (n=10). Forty glass fiber (GF) and 40 carbon fiber (CF) posts were submitted to 1 of 4 surface treatments (n=10) prior to MTBS testing: silane (S); silane and adhesive (SA); airborne-particle abrasion with 50-microm Al(2)O(3) and silane (ABS); airborne-particle abrasion, silane, and adhesive (ABSA). Two composite resin restorations (Filtek Z250) with rounded depressions in the lateral face were bilaterally fixed to the post with resin cement (RelyX ARC). Next, the specimen was sectioned with a precision saw running perpendicular to the bonded surface to obtain 10 bonded beam specimens with a cross-sectional area of 1 mm(2). Each beam specimen was tested in a mechanical testing machine (EMIC 2,000 DL), under stress, at a crosshead speed of 0.5 mm/min until failure. Data were analyzed by 2-way ANOVA followed by Tukey HSD test (alpha=.05). Failure patterns of tested specimens were analyzed using scanning electron microscopy (SEM). The 3-point bending test demonstrated significant differences among groups only for the post type factor for flexural strength, flexural modulus, and stiffness. The carbon fiber posts exhibited significantly higher mean flexural strength (P=.001), flexural modulus (P=.003), and stiffness (P=.001) values when compared with glass

  7. Growing media [Chapter 5

    Treesearch

    Douglass F. Jacobs; Thomas D. Landis; Tara Luna

    2009-01-01

    Selecting the proper growing medium is one of the most important considerations in nursery plant production. A growing medium can be defined as a substance through which roots grow and extract water and nutrients. In native plant nurseries, a growing medium can consist of native soil but is more commonly an "artificial soil" composed of materials such as peat...

  8. Microphysical processes affecting stratospheric aerosol particles

    NASA Technical Reports Server (NTRS)

    Hamill, P.; Toon, O. B.; Kiang, C. S.

    1977-01-01

    Physical processes which affect stratospheric aerosol particles include nucleation, condensation, evaporation, coagulation and sedimentation. Quantitative studies of these mechanisms to determine if they can account for some of the observed properties of the aerosol are carried out. It is shown that the altitude range in which nucleation of sulfuric acid-water solution droplets can take place corresponds to that region of the stratosphere where the aerosol is generally found. Since heterogeneous nucleation is the dominant nucleation mechanism, the stratospheric solution droplets are mainly formed on particles which have been mixed up from the troposphere or injected into the stratosphere by volcanoes or meteorites. Particle growth by heteromolecular condensation can account for the observed increase in mixing ratio of large particles in the stratosphere. Coagulation is important in reducing the number of particles smaller than 0.05 micron radius. Growth by condensation, applied to the mixed nature of the particles, shows that available information is consistent with ammonium sulfate being formed by liquid phase chemical reactions in the aerosol particles. The upper altitude limit of the aerosol layer is probably due to the evaporation of sulfuric acid aerosol particles, while the lower limit is due to mixing across the tropopause.

  9. Condensation Kinetics of Water on Amorphous Aerosol Particles.

    PubMed

    Rothfuss, Nicholas E; Marsh, Aleksandra; Rovelli, Grazia; Petters, Markus D; Reid, Jonathan P

    2018-06-25

    Responding to changes in the surrounding environment, aerosol particles can grow by water condensation changing rapidly in composition and changing dramatically in viscosity. The timescale for growth is important to establish for particles undergoing hydration processes in the atmosphere or during inhalation. Using an electrodynamic balance, we report direct measurements at -7.5, 0, and 20 °C of timescales for hygroscopic condensational growth on a range of model hygroscopic aerosol systems. These extend from viscous aerosol particles containing a single saccharide solute (sucrose, glucose, raffinose, or trehalose) and a starting viscosity equivalent to a glass of ∼10 12 Pa·s, to nonviscous (∼10 -2 Pa·s) tetraethylene glycol particles. The condensation timescales observed in this work indicate that water condensation occurs rapidly at all temperatures examined (<10 s) and for particles of all initial viscosities spanning 10 -2 to 10 12 Pa·s. Only a marginal delay (<1 order of magnitude) is observed for particles starting as a glass.

  10. Stiff, porous scaffolds from magnetized alumina particles aligned by magnetic freeze casting.

    PubMed

    Frank, Michael B; Naleway, Steven E; Haroush, Tsuk; Liu, Chin-Hung; Siu, Sze Hei; Ng, Jerry; Torres, Ivan; Ismail, Ali; Karandikar, Keyur; Porter, Michael M; Graeve, Olivia A; McKittrick, Joanna

    2017-08-01

    Bone consists of a hard mineral phase and a compliant biopolymer phase resulting in a composite material that is both lightweight and strong. Osteoporosis that degrades spongy bone preferentially over time leads to bone brittleness in the elderly. A porous ceramic material that can mimic spongy bone for a one-time implant provides a potential solution for the future needs of an aging population. Scaffolds made by magnetic freeze casting resemble the aligned porosity of spongy bone. A magnetic field applied throughout freezing induces particle chaining and alignment of lamellae structures between growing ice crystals. After freeze drying to extract the ice and sintering to strengthen the scaffold, cubes from the scaffold center are mechanically compressed along longitudinal (z-axis, ice growth direction) and transverse (y-axis, magnetic field direction) axes. The best alignment of lamellar walls in the scaffold center occurs when applying magnetic freeze casting with the largest particles (350nm) at an intermediate magnetic field strength (75mT), which also agrees with stiffness enhancement results in both z and y-axes. Magnetic moments of different sized magnetized alumina particles help determine the ideal magnetic field strength needed to induce alignment in the scaffold center rather than just at the poles. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effects of Process Parameters on Copper Powder Compaction Process Using Multi-Particle Finite Element Method

    NASA Astrophysics Data System (ADS)

    Güner, F.; Sofuoğlu, H.

    2018-01-01

    Powder metallurgy (PM) has been widely used in several industries; especially automotive and aerospace industries and powder metallurgy products grow up every year. The mechanical properties of the final product that is obtained by cold compaction and sintering in powder metallurgy are closely related to the final relative density of the process. The distribution of the relative density in the die is affected by parameters such as compaction velocity, friction coefficient and temperature. Moreover, most of the numerical studies utilizing finite element approaches treat the examined environment as a continuous media with uniformly homogeneous porosity whereas Multi-Particle Finite Element Method (MPFEM) treats every particles as an individual body. In MPFEM, each of the particles can be defined as an elastic- plastic deformable body, so the interactions of the particles with each other and the die wall can be investigated. In this study, each particle was modelled and analyzed as individual deformable body with 3D tetrahedral elements by using MPFEM approach. This study, therefore, was performed to investigate the effects of different temperatures and compaction velocities on stress distribution and deformations of copper powders of 200 µm-diameter in compaction process. Furthermore, 3-D MPFEM model utilized von Mises material model and constant coefficient of friction of μ=0.05. In addition to MPFEM approach, continuum modelling approach was also performed for comparison purposes.

  12. Continuous flow dielectrophoretic particle concentrator

    DOEpatents

    Cummings, Eric B [Livermore, CA

    2007-04-17

    A continuous-flow filter/concentrator for separating and/or concentrating particles in a fluid is disclosed. The filter is a three-port device an inlet port, an filter port and a concentrate port. The filter separates particles into two streams by the ratio of their dielectrophoretic mobility to their electrokinetic, advective, or diffusive mobility if the dominant transport mechanism is electrokinesis, advection, or diffusion, respectively.Also disclosed is a device for separating and/or concentrating particles by dielectrophoretic trapping of the particles.

  13. Mechanical positioning of multiple nuclei in muscle cells.

    PubMed

    Manhart, Angelika; Windner, Stefanie; Baylies, Mary; Mogilner, Alex

    2018-06-01

    Many types of large cells have multiple nuclei. In skeletal muscle fibers, the nuclei are distributed along the cell to maximize their internuclear distances. This myonuclear positioning is crucial for cell function. Although microtubules, microtubule associated proteins, and motors have been implicated, mechanisms responsible for myonuclear positioning remain unclear. We used a combination of rough interacting particle and detailed agent-based modeling to examine computationally the hypothesis that a force balance generated by microtubules positions the muscle nuclei. Rather than assuming the nature and identity of the forces, we simulated various types of forces between the pairs of nuclei and between the nuclei and cell boundary to position the myonuclei according to the laws of mechanics. We started with a large number of potential interacting particle models and computationally screened these models for their ability to fit biological data on nuclear positions in hundreds of Drosophila larval muscle cells. This reverse engineering approach resulted in a small number of feasible models, the one with the best fit suggests that the nuclei repel each other and the cell boundary with forces that decrease with distance. The model makes nontrivial predictions about the increased nuclear density near the cell poles, the zigzag patterns of the nuclear positions in wider cells, and about correlations between the cell width and elongated nuclear shapes, all of which we confirm by image analysis of the biological data. We support the predictions of the interacting particle model with simulations of an agent-based mechanical model. Taken together, our data suggest that microtubules growing from nuclear envelopes push on the neighboring nuclei and the cell boundaries, which is sufficient to establish the nearly-uniform nuclear spreading observed in muscle fibers.

  14. Novel mechanism of antibodies to hepatitis B virus in blocking viral particle release from cells.

    PubMed

    Neumann, Avidan U; Phillips, Sandra; Levine, Idit; Ijaz, Samreen; Dahari, Harel; Eren, Rachel; Dagan, Shlomo; Naoumov, Nikolai V

    2010-09-01

    Antibodies are thought to exert antiviral activities by blocking viral entry into cells and/or accelerating viral clearance from circulation. In particular, antibodies to hepatitis B virus (HBV) surface antigen (HBsAg) confer protection, by binding circulating virus. Here, we used mathematical modeling to gain information about viral dynamics during and after single or multiple infusions of a combination of two human monoclonal anti-HBs (HepeX-B) antibodies in patients with chronic hepatitis B. The antibody HBV-17 recognizes a conformational epitope, whereas antibody HBV-19 recognizes a linear epitope on the HBsAg. The kinetic profiles of the decline of serum HBV DNA and HBsAg revealed partial blocking of virion release from infected cells as a new antiviral mechanism, in addition to acceleration of HBV clearance from the circulation. We then replicated this approach in vitro, using cells secreting HBsAg, and compared the prediction of the mathematical modeling obtained from the in vivo kinetics. In vitro, HepeX-B treatment of HBsAg-producing cells showed cellular uptake of antibodies, resulting in intracellular accumulation of viral particles. Blocking of HBsAg secretion also continued after HepeX-B was removed from the cell culture supernatants. These results identify a novel antiviral mechanism of antibodies to HBsAg (anti-HBs) involving prolonged blocking of the HBV and HBsAg subviral particles release from infected cells. This may have implications in designing new therapies for patients with chronic HBV infection and may also be relevant in other viral infections.

  15. Effects of Charged Particles on Human Tumor Cells

    PubMed Central

    Held, Kathryn D.; Kawamura, Hidemasa; Kaminuma, Takuya; Paz, Athena Evalour S.; Yoshida, Yukari; Liu, Qi; Willers, Henning; Takahashi, Akihisa

    2016-01-01

    The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects, including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors, and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors, such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of relative biological effectiveness (RBE) for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions, and importance of fractionation, including use of hypofractionation, with charged particles. PMID:26904502

  16. CFD and PIV Analysis of Hemodynamics in a Growing Intracranial Aneurysm

    PubMed Central

    Raschi, Marcelo; Mut, Fernando; Byrne, Greg; Putman, Christopher M.; Tateshima, Satoshi; Viñuela, Fernando; Tanoue, Tetsuya; Tanishita, Kazuo; Cebral, Juan R.

    2011-01-01

    Hemodynamics is thought to be a fundamental factor in the formation, progression and rupture of cerebral aneurysms. Understanding these mechanisms is important to improve their rupture risk assessment and treatment. In this study we analyze the blood flow field in a growing cerebral aneurysm using experimental particle image velocimetry (PIV) and computational fluid dynamics (CFD) techniques. Patient-specific models were constructed from longitudinal 3D computed tomography angiography (CTA) images acquired at one-year intervals. Physical silicone models were constructed from the CTA images using rapid prototyping techniques and pulsatile flow fields were measured with PIV. Corresponding CFD models were created and run under matching flow conditions. Both flow fields were aligned, interpolated, and compared qualitatively by inspection and quantitatively by defining similarity measures between the PIV and CFD vector fields. Results showed that both flow fields were in good agreement. Specifically, both techniques provided consistent representations of the main intra-aneurysmal flow structures, and their change during the geometric evolution of the aneurysm. Despite differences observed mainly in the near wall region and the inherent limitations of each technique, the information derived is consistent and can be used to study the role of hemodynamics in the natural history of intracranial aneurysms. PMID:22548127

  17. Optofluidics incorporating actively controlled micro- and nano-particles

    PubMed Central

    Kayani, Aminuddin A.; Khoshmanesh, Khashayar; Ward, Stephanie A.; Mitchell, Arnan; Kalantar-zadeh, Kourosh

    2012-01-01

    The advent of optofluidic systems incorporating suspended particles has resulted in the emergence of novel applications. Such systems operate based on the fact that suspended particles can be manipulated using well-appointed active forces, and their motions, locations and local concentrations can be controlled. These forces can be exerted on both individual and clusters of particles. Having the capability to manipulate suspended particles gives users the ability for tuning the physical and, to some extent, the chemical properties of the suspension media, which addresses the needs of various advanced optofluidic systems. Additionally, the incorporation of particles results in the realization of novel optofluidic solutions used for creating optical components and sensing platforms. In this review, we present different types of active forces that are used for particle manipulations and the resulting optofluidic systems incorporating them. These systems include optical components, optofluidic detection and analysis platforms, plasmonics and Raman systems, thermal and energy related systems, and platforms specifically incorporating biological particles. We conclude the review with a discussion of future perspectives, which are expected to further advance this rapidly growing field. PMID:23864925

  18. Strong correlations between the exponent α and the particle number for a Renyi monoatomic gas in Gibbs' statistical mechanics.

    PubMed

    Plastino, A; Rocca, M C

    2017-06-01

    Appealing to the 1902 Gibbs formalism for classical statistical mechanics (SM)-the first SM axiomatic theory ever that successfully explained equilibrium thermodynamics-we show that already at the classical level there is a strong correlation between Renyi's exponent α and the number of particles for very simple systems. No reference to heat baths is needed for such a purpose.

  19. Effect of single-particle magnetostriction on the shear modulus of compliant magnetoactive elastomers.

    PubMed

    Kalita, Viktor M; Snarskii, Andrei A; Shamonin, Mikhail; Zorinets, Denis

    2017-03-01

    The influence of an external magnetic field on the static shear strain and the effective shear modulus of a magnetoactive elastomer (MAE) is studied theoretically in the framework of a recently introduced approach to the single-particle magnetostriction mechanism [V. M. Kalita et al., Phys. Rev. E 93, 062503 (2016)10.1103/PhysRevE.93.062503]. The planar problem of magnetostriction in an MAE with magnetically soft inclusions in the form of a thin disk (platelet) having the magnetic anisotropy in the plane of this disk is solved analytically. An external magnetic field acts with torques on magnetic filler particles, creates mechanical stresses in the vicinity of inclusions, induces shear strain, and increases the effective shear modulus of these composite materials. It is shown that the largest effect of the magnetic field on the effective shear modulus should be expected in MAEs with soft elastomer matrices, where the shear modulus of the matrix is less than the magnetic anisotropy constant of inclusions. It is derived that the effective shear modulus is nonlinearly dependent on the external magnetic field and approaches the saturation value in magnetic fields exceeding the field of particle anisotropy. It is shown that model calculations of the effective shear modulus correspond to a phenomenological definition of effective elastic moduli and magnetoelastic coupling constants. The obtained theoretical results compare well with known experimental data. Determination of effective elastic coefficients in MAEs and their dependence on magnetic field is discussed. The concentration dependence of the effective shear modulus at higher filler concentrations has been estimated using the method of Padé approximants, which predicts that both the absolute and relative changes of the magnetic-field-dependent effective shear modulus will significantly increase with the growing concentration of filler particles.

  20. Effect of single-particle magnetostriction on the shear modulus of compliant magnetoactive elastomers

    NASA Astrophysics Data System (ADS)

    Kalita, Viktor M.; Snarskii, Andrei A.; Shamonin, Mikhail; Zorinets, Denis

    2017-03-01

    The influence of an external magnetic field on the static shear strain and the effective shear modulus of a magnetoactive elastomer (MAE) is studied theoretically in the framework of a recently introduced approach to the single-particle magnetostriction mechanism [V. M. Kalita et al., Phys. Rev. E 93, 062503 (2016), 10.1103/PhysRevE.93.062503]. The planar problem of magnetostriction in an MAE with magnetically soft inclusions in the form of a thin disk (platelet) having the magnetic anisotropy in the plane of this disk is solved analytically. An external magnetic field acts with torques on magnetic filler particles, creates mechanical stresses in the vicinity of inclusions, induces shear strain, and increases the effective shear modulus of these composite materials. It is shown that the largest effect of the magnetic field on the effective shear modulus should be expected in MAEs with soft elastomer matrices, where the shear modulus of the matrix is less than the magnetic anisotropy constant of inclusions. It is derived that the effective shear modulus is nonlinearly dependent on the external magnetic field and approaches the saturation value in magnetic fields exceeding the field of particle anisotropy. It is shown that model calculations of the effective shear modulus correspond to a phenomenological definition of effective elastic moduli and magnetoelastic coupling constants. The obtained theoretical results compare well with known experimental data. Determination of effective elastic coefficients in MAEs and their dependence on magnetic field is discussed. The concentration dependence of the effective shear modulus at higher filler concentrations has been estimated using the method of Padé approximants, which predicts that both the absolute and relative changes of the magnetic-field-dependent effective shear modulus will significantly increase with the growing concentration of filler particles.

  1. Shape of the growing front of biofilms

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Stone, Howard A.; Golestanian, Ramin

    2017-12-01

    The spatial organization of bacteria in dense biofilms is key to their collective behaviour, and understanding it will be important for medical and technological applications. Here we study the morphology of a compact biofilm that undergoes unidirectional growth, and determine the condition for the stability of the growing interface as a function of the nutrient concentration and mechanical tension. Our study suggests that transient behaviour may play an important role in shaping the structure of a biofilm.

  2. Self-consistent particle-in-cell simulations of fundamental and harmonic radio plasma emission mechanisms

    NASA Astrophysics Data System (ADS)

    Tsiklauri, D.; Thurgood, J. O.

    2015-12-01

    first co-author Jonathan O. Thurgood (QMUL) The simulation of three-wave interaction based plasma emission, an underlying mechanism for type III solar radio bursts, is a challenging task requiring fully-kinetic, multi-dimensional models. This paper aims to resolve a contradiction in past attempts, whereby some authors report that no such processes occur and others draw conflicting conclusions, by using 2D, fully kinetic, particle-in-cell simulations of relaxing electron beams. Here we present the results of particle-in-cell simulations which for different physical parameters permit or prohibit the plasma emission. We show that the possibility of plasma emission is contingent upon the frequency of the initial electrostatic waves generated by the bump-in-tail instability, and that these waves may be prohibited from participating in the necessary three-wave interactions due to the frequency beat requirements. We caution against simulating astrophysical radio bursts using unrealistically dense beams (a common approach which reduces run time), as the resulting non-Langmuir characteristics of the initial wave modes significantly suppresses the emission. Comparison of our results indicates that, contrary to the suggestions of previous authors, a plasma emission mechanism based on two counter-propagating beams is unnecessary in astrophysical context. Finally, we also consider the action of the Weibel instability, which generates an electromagnetic beam mode. As this provides a stronger contribution to electromagnetic energy than the emission, we stress that evidence of plasma emission in simulations must disentangle the two contributions and not simply interpret changes in total electromagnetic energy as the evidence of plasma emission. In summary, we present the first self-consistent demonstration of fundamental and harmonic plasma emission from a single-beam system via fully kinetic numerical simulation. Pre-print can be found at http://astro.qmul.ac.uk/~tsiklauri/jtdt1

  3. Particle Engulfment and Pushing by Solidifying Interfaces

    NASA Technical Reports Server (NTRS)

    Stefanescu, D. M.; Mukherjee, S.; Juretzko, F. R.; Catalina, A. V.; Sen, S.; Curreri, P. A.

    2000-01-01

    The phenomenon of interaction of particles with solid-liquid interfaces (SLI) has been studied since mid 1960's. While the original interest stemmed from geology applications (frost heaving in soil), researchers soon realized that fundamental understanding of particles behavior at solidifying interfaces might yield practical benefits in other fields, including metallurgy. In materials engineering the main issue is the location of particles with respect to grain boundaries at the end of solidification. Considerable experimental and theoretical research was lately focused on applications to metal matrix composites produced by casting or spray forming techniques, and on inclusion management in steel. Another application of particle SLI interaction is in the growing of Y1Ba2Cu3O(7-delta) (123) superconductor crystals from an undercooled liquid. The oxide melt contains Y2Ba1Cu1O5 (211) precipitates, which act as flux pinning sites.

  4. DEM Particle Fracture Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Boning; Herbold, Eric B.; Homel, Michael A.

    2015-12-01

    An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density andmore » packings o the samples are also studied in numerical examples.« less

  5. Field signature for apparently superluminal particle motion

    NASA Astrophysics Data System (ADS)

    Land, Martin

    2015-05-01

    In the context of Stueckelberg's covariant symplectic mechanics, Horwitz and Aharonovich [1] have proposed a simple mechanism by which a particle traveling below light speed almost everywhere may exhibit a transit time that suggests superluminal motion. This mechanism, which requires precise measurement of the particle velocity, involves a subtle perturbation affecting the particle's recorded time coordinate caused by virtual pair processes. The Stueckelberg framework is particularly well suited to such problems, because it permits pair creation/annihilation at the classical level. In this paper, we study a trajectory of the type proposed by Horwitz and Aharonovich, and derive the Maxwell 4-vector potential associated with the motion. We show that the resulting fields carry a signature associated with the apparent superluminal motion, providing an independent test for the mechanism that does not require direct observation of the trajectory, except at the detector.

  6. Fluidized Bed Sputtering for Particle and Powder Metallization

    DTIC Science & Technology

    2013-04-01

    Introduction Small particles are often added to material systems to modify mechanical, dielectric, optical, or other properties . However, the particle...the poor mechanical properties of the wax degrade the bulk mechanical properties of the composite material . Thin metal coatings on the catalyst...to create precisely tailored optical properties . Alternating layers of ceramic and metal thin films can be designed to create optical filters that

  7. Understanding of the mechanical and structural changes induced by alpha particles and heavy ions in the French simulated nuclear waste glass

    NASA Astrophysics Data System (ADS)

    Karakurt, G.; Abdelouas, A.; Guin, J.-P.; Nivard, M.; Sauvage, T.; Paris, M.; Bardeau, J.-F.

    2016-07-01

    Borosilicate glasses are considered for the long-term confinement of high-level nuclear wastes. External irradiations with 1 MeV He+ ions and 7 MeV Au5+ ions were performed to simulate effects produced by alpha particles and by recoil nuclei in the simulated SON68 nuclear waste glass. To better understand the structural modifications, irradiations were also carried out on a 6-oxides borosilicate glass, a simplified version of the SON68 glass (ISG glass). The mechanical and macroscopic properties of the glasses were studied as function of the deposited electronic and nuclear energies. Alpha particles and gold ions induced a volume change up to -0.7% and -2.7%, respectively, depending on the glass composition. Nano-indentations tests were used to determine the mechanical properties of the irradiated glasses. A decrease of about -22% to -38% of the hardness and a decrease of the reduced Young's modulus by -8% were measured after irradiations. The evolution of the glass structure was studied by Raman spectroscopy, and also 11B and 27Al Nuclear Magnetic Resonance (MAS-NMR) on a 20 MeV Kr irradiated ISG glass powder. A decrease of the silica network connectivity after irradiation with alpha particles and gold ions is deduced from the structural changes observations. NMR spectra revealed a partial conversion of BO4 to BO3 units but also a formation of AlO5 and AlO6 species after irradiation with Kr ions. The relationships between the mechanical and structural changes are also discussed.

  8. Nanoscale interfacial defect shedding in a growing nematic droplet.

    PubMed

    Gurevich, Sebastian; Provatas, Nikolas; Rey, Alejandro

    2017-08-01

    Interfacial defect shedding is the most recent known mechanism for defect formation in a thermally driven isotropic-to-nematic phase transition. It manifests in nematic-isotropic interfaces going through an anchoring switch. Numerical computations in planar geometry established that a growing nematic droplet can undergo interfacial defect shedding, nucleating interfacial defect structures that shed into the bulk as +1/2 point defects. By extending the study of interfacial defect shedding in a growing nematic droplet to larger length and time scales, and to three dimensions, we unveil an oscillatory growth mode involving shape and anchoring transitions that results in a controllable regular distributions of point defects in planar geometry, and complex structures of disclination lines in three dimensions.

  9. Particle acceleration at a reconnecting magnetic separator

    NASA Astrophysics Data System (ADS)

    Threlfall, J.; Neukirch, T.; Parnell, C. E.; Eradat Oskoui, S.

    2015-02-01

    Context. While the exact acceleration mechanism of energetic particles during solar flares is (as yet) unknown, magnetic reconnection plays a key role both in the release of stored magnetic energy of the solar corona and the magnetic restructuring during a flare. Recent work has shown that special field lines, called separators, are common sites of reconnection in 3D numerical experiments. To date, 3D separator reconnection sites have received little attention as particle accelerators. Aims: We investigate the effectiveness of separator reconnection as a particle acceleration mechanism for electrons and protons. Methods: We study the particle acceleration using a relativistic guiding-centre particle code in a time-dependent kinematic model of magnetic reconnection at a separator. Results: The effect upon particle behaviour of initial position, pitch angle, and initial kinetic energy are examined in detail, both for specific (single) particle examples and for large distributions of initial conditions. The separator reconnection model contains several free parameters, and we study the effect of changing these parameters upon particle acceleration, in particular in view of the final particle energy ranges that agree with observed energy spectra.

  10. Particle morphology influence on mechanical and biocompatibility properties of injection molded Ti alloy powder.

    PubMed

    Gülsoy, H Özkan; Gülsoy, Nagihan; Calışıcı, Rahmi

    2014-01-01

    Titanium and Titanium alloys exhibits properties that are excellent for various bio-applications. Metal injection molding is a processing route that offers reduction in costs, with the added advantage of near net-shape components. Different physical properties of Titanium alloy powders, shaped and processed via injection molding can achieve high complexity of part geometry with mechanical and bioactivity properties, similar or superior to wrought material. This study describes that the effect of particle morphology on the microstructural, mechanical and biocompatibility properties of injection molded Ti-6Al-4V (Ti64) alloy powder for biomaterials applications. Ti64 powders irregular and spherical in shape were injection molded with wax based binder. Binder debinding was performed in solvent and thermal method. After debinding the samples were sintered under high vacuum. Metallographic studies were determined to densification and the corresponding microstructural changes. Sintered samples were immersed in a simulated body fluid (SBF) with elemental concentrations that were comparable to those of human blood plasma for a total period of 15 days. Both materials were implanted in fibroblast culture for biocompatibility evaluations were carried out. The results show that spherical and irregular powder could be sintered to a maximum theoretical density. Maximum tensile strength was obtained for spherical shape powder sintered. The tensile strength of the irregular shape powder sintered at the same temperature was lower due to higher porosity. Finally, mechanical tests show that the irregular shape powder has lower mechanical properties than spherical shape powder. The sintered irregular Ti64 powder exhibited better biocompatibility than sintered spherical Ti64 powder. Results of study showed that sintered spherical and irregular Ti64 powders exhibited high mechanical properties and good biocompatibility properties.

  11. Mechanism of amorphisation of micro-particles of griseofulvin during powder flow in a mixer.

    PubMed

    Pazesh, Samaneh; Höckerfelt, Mina Heidarian; Berggren, Jonas; Bramer, Tobias; Alderborn, Göran

    2013-11-01

    The purpose of the research was to investigate the degree of solid-state amorphisation during powder flow and to propose a mechanism for this transformation. Micro-particles of griseofulvin (about 2 μm in diameter) were mixed in a shear mixer under different conditions to influence the inter-particulate collisions during flow, and the degree of amorphisation was determined by micro-calorimeter. The amorphisation of griseofulvin particles (GPs) during repeated compaction was also determined. The GPs generally became disordered during mixing in a range from about 6% to about 86%. The degree of amorphisation increased with increased mixing time and increased batch size of the mixer, whereas the addition of a lubricant to the blend reduced the degree of amorphisation. Repeated compaction using the press with ejection mode gave limited amorphisation, whereas repeated compaction without an ejection process gave minute amorphisation. It is concluded that during powder flow, the most important inter-particulate contact process that cause the transformation of a crystalline solid into an amorphous state is sliding. On the molecular scale, this amorphisation is proposed to be caused by vitrification, that is the melting of a solid because of the generation of heat during sliding followed by solidification into an amorphous phase. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. THE USE OF STATIC AND DYNAMIC MECHANICAL MODELS IN TEACHING ASPECTS OF THE THEORETICAL CONCEPT, THE PARTICLE NATURE OF MATTER.

    ERIC Educational Resources Information Center

    PELLA, MILTON O.; ZIEGLER, ROBERT E.

    THE RELATIVE EFFECTIVENESS OF TWO TYPES OF MECHANICAL MODELS FOR TEACHING ELEMENTARY SCHOOL STUDENTS TO USE THE PARTICLE IDEA OF MATTER TO EXPLAIN CERTAIN PHYSICAL PHENOMENA WAS INVESTIGATED. SUBJECTS WERE RANDOMLY SELECTED FROM STUDENTS ENROLLED IN GRADES TWO THROUGH SIX IN A SCHOOL SYSTEM. A SERIES OF DEMONSTRATIONS AND RELATED QUESTIONS WERE…

  13. Embryonic stem cells growing in 3-dimensions shift from reliance on the substrate to each other for mechanical support.

    PubMed

    Teo, Ailing; Lim, Mayasari; Weihs, Daphne

    2015-07-16

    Embryonic stem cells (ESCs) grow into three-dimensional (3D) spheroid structures en-route to tissue growth. In vitro spheroids can be controllably induced on a two-dimensional (2D) substrate with high viability. Here we use a method for inducing pluripotent embryoid body (EB) formation on flat polyacrylamide gels while simultaneously evaluating the dynamic changes in the mechano-biology of the growing 3D spheroids. During colony growth in 3D, pluripotency is conserved while the spheroid-substrate interactions change significantly. We correlate colony-size, cell-applied traction-forces, and expressions of cell-surface molecules indicating cell-cell and cell-substrate interactions, while verifying pluripotency. We show that as the colony size increases with time, the stresses applied by the spheroid to the gel decrease in the 3D growing EBs; control cells growing in 2D-monolayers maintain unvarying forces. Concurrently, focal-adhesion mediated cell-substrate interactions give way to E-cadherin cell-cell connections, while pluripotency. The mechano-biological changes occurring in the growing embryoid body are required for stabilization of the growing pluripotent 3D-structure, and can affect its potential uses including differentiation. This could enable development of more effective expansion, differentiation, and separation approaches for clinical purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Air pollution particles and iron homeostasis

    EPA Science Inventory

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, fun...

  15. Phase separation of self-propelled ballistic particles

    NASA Astrophysics Data System (ADS)

    Bruss, Isaac R.; Glotzer, Sharon C.

    2018-04-01

    Self-propelled particles phase-separate into coexisting dense and dilute regions above a critical density. The statistical nature of their stochastic motion lends itself to various theories that predict the onset of phase separation. However, these theories are ill-equipped to describe such behavior when noise becomes negligible. To overcome this limitation, we present a predictive model that relies on two density-dependent timescales: τF, the mean time particles spend between collisions; and τC, the mean lifetime of a collision. We show that only when τF<τC do collisions last long enough to develop a growing cluster and initiate phase separation. Using both analytical calculations and active particle simulations, we measure these timescales and determine the critical density for phase separation in both two and three dimensions.

  16. Dealing with indistinguishable particles and their entanglement.

    PubMed

    Compagno, Giuseppe; Castellini, Alessia; Lo Franco, Rosario

    2018-07-13

    Here, we discuss a particle-based approach to deal with systems of many identical quantum objects (particles) that never employs labels to mark them. We show that it avoids both methodological problems and drawbacks in the study of quantum correlations associated with the standard quantum mechanical treatment of identical particles. The core of this approach is represented by the multiparticle probability amplitude, whose structure in terms of single-particle amplitudes we derive here by first principles. To characterize entanglement among the identical particles, this new method uses the same notions, such as partial trace, adopted for non-identical ones. We highlight the connection between our approach and second quantization. We also define spin-exchanged multipartite states which contain a generalization of W states to identical particles. We prove that particle spatial overlap plays a role in the distributed entanglement within multipartite systems and is responsible for the appearance of non-local quantum correlations.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  17. How to think about indiscernible particles

    NASA Astrophysics Data System (ADS)

    Giglio, Daniel Joseph

    Permutation symmetries which arise in quantum mechanics pose an intriguing problem. It is not clear that particles which exhibit permutation symmetries (i.e. particles which are indiscernible, meaning that they can be swapped with each other without this yielding a new physical state) qualify as "objects" in any reasonable sense of the term. One solution to this puzzle, which I attribute to W.V. Quine, would have us eliminate such particles from our ontology altogether in order to circumvent the metaphysical vexations caused by permutation symmetries. In this essay I argue that Quine's solution is too rash, and in its place I suggest a novel solution based on altering some of the language of quantum mechanics. Before launching into the technical details of indiscernible particles, however, I begin this essay with some remarks on the methodology -- instrumentalism -- which motivates my arguments.

  18. Morphological instability of a thermophoretically growing deposit

    NASA Technical Reports Server (NTRS)

    Castillo, Jose L.; Garcia-Ybarra, Pedro L.; Rosner, Daniel E.

    1992-01-01

    The stability of the planar interface of a structureless solid growing from a depositing component dilute in a carrier fluid is studied when the main solute transport mechanism is thermal (Soret) diffusion. A linear stability analysis, carried out in the limit of low growth Peclet number, leads to a dispersion relation which shows that the planar front is unstable either when the thermal diffusion factor of the condensing component is positive and the latent heat release is small or when the thermal diffusion factor is negative and the solid grows over a thermally-insulating substrate. Furthermore, the influence of interfacial energy effects and constitutional supersaturation in the vicinity of the moving interface is analyzed in the limit of very small Schmidt numbers (small solute Fickian diffusion). The analysis is relevant to physical vapor deposition of very massive species on cold surfaces, as in recent experiments of organic solid film growth under microgravity conditions.

  19. Scaling during capillary thinning of particle-laden drops

    NASA Astrophysics Data System (ADS)

    Thete, Sumeet; Wagoner, Brayden; Basaran, Osman

    2017-11-01

    A fundamental understanding of drop formation is crucial in many applications such as ink-jet printing, microfluidic devices, and atomization. During drop formation, the about-to-form drop is connected to the fluid hanging from the nozzle via a thinning filament. Therefore, the physics of capillary thinning of filaments is key to understanding drop formation and has been thoroughly studied for pure Newtonian fluids using theory, simulations, and experiments. In some of the applications however, the forming drop and hence the thinning filament may contain solid particles. The thinning dynamics of such particle-laden filaments differs radically from that of particle-free filaments. Moreover, our understanding of filament thinning in the former case is poor compared to that in the latter case despite the growing interest in pinch-off of particle-laden filaments. In this work, we go beyond similar studies and experimentally explore the impact of solid particles on filament thinning by measuring both the radial and axial scalings in the neck region. The results are summarized in terms of a phase diagram of capillary thinning of particle-laden filaments.

  20. The formation of ultrafine iodine particles from coastal macroalgae

    NASA Astrophysics Data System (ADS)

    McFiggans, G.; Coe, H.; Allan, J. D.; Plane, J. M. C.; Saunders, R.

    2003-04-01

    We will present the first direct evidence for iodine-containing ultrafine particle (ufp) production from macroalgae in the intertidal zone. Ultrafine particles in the coastal environment have been the subject of intense interest(1,2,3) due to their potentially important contributions to both the direct radiation scattering budget and, by activation to form cloud droplets, to the indirect radiative effect. Based on a variety of laboratory studies, it has recently been proposed that photochemical production of condensable iodine oxides is responsible for their formation(4-9). This work shows that previous studies investigating the mechanisms and kinetics of particle formation due to iodine photochemistry are largely untargeted in that they assume gaseous iodocarbons are the precursor material. Models aiming to simulate coastal new particle formation suffer from the same lack of basic understanding of the formation mechanisms (and indeed precursor identities)(7-9). Following measurements of iodine monoxide(10,11) and iodocarbons(12) in the coastal atmosphere, modelling studies have demonstrated the importance of inorganic iodine in gaseous photochemical cycles(13). Volatile iodocarbons have a number of sources, but intertidal macroalgal beds(14) appear to dominate in the coastal zone(15). However, no direct evidence for a relationship between the macroalgae and iodine-containing particle formation have been reported. During the NERC-funded NAMBLEX field project at Mace Head on the west coast of Ireland in August 2002, we conducted a series of experiments on macroalgae in the intertidal zone. A reactor containing Laminaria digitata cropped from an intertidal rock pool was exposed to an ozonised stream of initially particle-free air. Using a scanning mobility particle sizer (SMPS) to sample the reactor output, it was found that extremely large numbers of particles were formed. By increasing the exposure time to the airstream, the particles were allowed to grow above the

  1. RNA encapsidation by SV40-derived nanoparticles follows a rapid two-state mechanism

    PubMed Central

    Kler, Stanislav; Asor, Roi; Li, Chenglei; Ginsburg, Avi; Harries, Daniel; Oppenheim, Ariella; Zlotnick, Adam; Raviv, Uri

    2012-01-01

    Remarkably, uniform virus-like particles self-assemble in a process that appears to follow a rapid kinetic mechanism. The mechanisms by which spherical viruses assemble from hundreds of capsid proteins around nucleic acid, however, are yet unresolved. Using Time-Resolved Small-Angle X-ray Scattering (TR-SAXS) we have been able to directly visualize SV40 VP1 pentamers encapsidating short RNA molecules (500 mers). This assembly process yields T = 1 icosahedral particles comprised of 12 pentamers and one RNA molecule. The reaction is nearly 1/3 complete within 35 milliseconds, following a two–state kinetic process with no detectable intermediates. Theoretical analysis of kinetics, using a master equation, shows that the assembly process nucleates at the RNA and continues by a cascade of elongation reactions in which one VP1 pentamer is added at a time, with a rate of approximately 109 M−1 s−1. The reaction is highly robust and faster than the predicted diffusion limit. The emerging molecular mechanism, which appears to be general to viruses that assemble around nucleic acids, implicates long-ranged electrostatic interactions. The model proposes that the growing nucleo-protein complex acts as an electrostatic antenna that attracts other capsid subunits for the encapsidation process. PMID:22329660

  2. Velocity and displacement statistics in a stochastic model of nonlinear friction showing bounded particle speed

    NASA Astrophysics Data System (ADS)

    Menzel, Andreas M.

    2015-11-01

    Diffusion of colloidal particles in a complex environment such as polymer networks or biological cells is a topic of high complexity with significant biological and medical relevance. In such situations, the interaction between the surroundings and the particle motion has to be taken into account. We analyze a simplified diffusion model that includes some aspects of a complex environment in the framework of a nonlinear friction process: at low particle speeds, friction grows linearly with the particle velocity as for regular viscous friction; it grows more than linearly at higher particle speeds; finally, at a maximum of the possible particle speed, the friction diverges. In addition to bare diffusion, we study the influence of a constant drift force acting on the diffusing particle. While the corresponding stationary velocity distributions can be derived analytically, the displacement statistics generally must be determined numerically. However, as a benefit of our model, analytical progress can be made in one case of a special maximum particle speed. The effect of a drift force in this case is analytically determined by perturbation theory. It will be interesting in the future to compare our results to real experimental systems. One realization could be magnetic colloidal particles diffusing through a shear-thickening environment such as starch suspensions, possibly exposed to an external magnetic field gradient.

  3. Immobilization of Aluminum Hydroxide Particles on Quartz Crystal Microbalance Sensors to Elucidate Antigen-Adjuvant Interaction Mechanisms in Vaccines.

    PubMed

    Art, Jean-François; Vander Straeten, Aurélien; Dupont-Gillain, Christine C

    2018-01-16

    Aluminum hydroxide (AH) salts are the most widely used adjuvants in vaccine formulation. They trigger immunogenicity from antigenic subunits that would otherwise suffer from a lack of efficiency. Previous studies focusing on antigen-AH interaction mechanisms, performed with model proteins, suggested that electrostatic interactions and phosphate-hydroxyl ligand exchanges drive protein adsorption on AH. We however recently evidenced that NaCl, used in vaccine formulation, provokes AH particle aggregation. This must be taken into account to interpret data related to protein adsorption on AH. Here, we report on the successful development and use of a stable AH-coated surface to explore the mechanisms of protein adsorption by means of ultrasensitive surface analysis tools. Bovine serum albumin (BSA) adsorption was studied at different pHs and ionic strengths (I) using quartz crystal microbalance. The results show that protein adsorption on the AH adjuvant cannot be explained solely by electrostatic interactions and ligand exchanges. Hence, a higher adsorption was observed at pH 3 compared to pH 7, although AH and BSA respectively undergo repulsive and attractive electrostatic interactions at these pH values. Almost no effect of I on adsorption was moreover noted at pH 7. These new developments and observations not only suggest that other mechanisms govern protein adsorption on AH but also offer a new platform for the study of antigen adsorption in the context of vaccine formulation. Immobilizing particles on QCM sensors also enriches the range of applications for which QCM can be exploited, especially in colloid science.

  4. Effects of types of ventilation system on indoor particle concentrations in residential buildings.

    PubMed

    Park, J S; Jee, N-Y; Jeong, J-W

    2014-12-01

    The objective of this study was to quantify the influence of ventilation systems on indoor particle concentrations in residential buildings. Fifteen occupied, single-family apartments were selected from three sites. The three sites have three different ventilation systems: unbalanced mechanical ventilation, balanced mechanical ventilation, and natural ventilation. Field measurements were conducted between April and June 2012, when outdoor air temperatures were comfortable. Number concentrations of particles, PM2.5 and CO2 , were continuously measured both outdoors and indoors. In the apartments with natural ventilation, I/O ratios of particle number concentrations ranged from 0.56 to 0.72 for submicron particles, and from 0.25 to 0.60 for particles larger than 1.0 μm. The daily average indoor particle concentration decreased to 50% below the outdoor level for submicron particles and 25% below the outdoor level for fine particles, when the apartments were mechanically ventilated. The two mechanical ventilation systems reduced the I/O ratios by 26% for submicron particles and 65% for fine particles compared with the natural ventilation. These results showed that mechanical ventilation can reduce exposure to outdoor particles in residential buildings. Results of this study confirm that mechanical ventilation with filtration can significantly reduce indoor particle levels compared with natural ventilation. The I/O ratios of particles substantially varied at the naturally ventilated apartments because of the influence of variable window opening conditions and unsteadiness of wind flow on the penetration of outdoor air particles. For better prediction of the exposure to outdoor particles in naturally ventilated residential buildings, it is important to understand the penetration of outdoor particles with variable window opening conditions. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. The Particle Adventure | What is fundamental? | Fundamental

    Science.gov Websites

    fundamental The atom Is the atom fundamental? Is the nucleus fundamental? Are protons and neutrons fundamental decay What is the Mechanism giving mass to fundamental particles? What is the Mechanism giving mass to fundamental particles? Part 2 How Does the Higgs Boson get its Mass? Finding the Mass of the Higgs Boson

  6. Small RNA-mediated regulation in bacteria: A growing palette of diverse mechanisms.

    PubMed

    Dutta, Tanmay; Srivastava, Shubhangi

    2018-05-20

    Small RNAs (sRNAs) in bacteria have evolved with diverse mechanisms to balance their target gene expression in response to changes in the environment. Accumulating studies on bacterial regulatory processes firmly established that sRNAs modulate their target gene expression generally at the posttranscriptional level. Identification of large number of sRNAs by advanced technologies, like deep sequencing, tilling microarray, indicates the existence of a plethora of distinctive sRNA-mediated regulatory mechanisms in bacteria. Types of the novel mechanisms are increasing with the discovery of new sRNAs. Complementary base pairing between sRNAs and target RNAs assisted by RNA chaperones like Hfq and ProQ, in many occasions, to regulate the cognate gene expression is prevalent in sRNA mechanisms. sRNAs, in most studied cases, can directly base pair with target mRNA to remodel its expression. Base pairing can happen either in the untranslated regions or in the coding regions of mRNA to activate/repress its translation. sRNAs also act as target mimic to titrate away different regulatory RNAs from its target. Other mechanism includes the sequestration of regulatory proteins, especially transcription factors, by sRNAs. Numerous sRNAs, following analogous mechanism, are widespread in bacteria, and thus, has drawn immense attention for the development of RNA-based technologies. Nevertheless, typical sRNA mechanisms are also discovered to be confined in some bacteria. Analysis of the sRNA mechanisms unravels their existence in both the single step processes and the complex regulatory networks with a global effect on cell physiology. This review deals with the diverse array of mechanisms, which sRNAs follow to maintain bacterial lifestyle. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Probing young drinking water biofilms with hard and soft particles.

    PubMed

    Paris, Tony; Skali-Lami, Salaheddine; Block, Jean-Claude

    2009-01-01

    The aim of our study was to investigate, through the use of soft (Escherichia coli) and hard (polystyrene microspheres) particles, the distribution and persistence of allochthonous particles inoculated in drinking water flow chambers. Biofilms were allowed to grow for 7-10 months in tap water from Nancy's drinking water network and were composed of bacterial aggregates and filamentous fungi. Both model particles adhered almost exclusively on the biofilms (i.e. on the bacterial aggregates and on the filamentous structures) and not directly on the uncolonized walls (glass or Plexiglas). Biofilm age (i.e. bacterial density and biofilm properties) and convective-diffusion were found to govern particle accumulation: older biofilms and higher wall shear rates both increased the velocity and the amount of particle deposition on the biofilm. Persistence of the polystyrene particles was measured over a two-month period after inoculation. Accumulation amounts were found to be very different between hard and soft particles as only 0.03 per thousand of the soft particles inoculated accumulated in the biofilm against 0.3-0.8% for hard particles.

  8. A mean-field theory for self-propelled particles interacting by velocity alignment mechanisms

    NASA Astrophysics Data System (ADS)

    Peruani, F.; Deutsch, A.; Bär, M.

    2008-04-01

    A mean-field approach (MFA) is proposed for the analysis of orientational order in a two-dimensional system of stochastic self-propelled particles interacting by local velocity alignment mechanism. The treatment is applied to the cases of ferromagnetic (F) and liquid-crystal (LC) alignment. In both cases, MFA yields a second order phase transition for a critical noise strength and a scaling exponent of 1/2 for the respective order parameters. We find that the critical noise amplitude ηc at which orientational order emerges in the LC case is smaller than in the F-alignment case, i.e. ηLC C<ηF C. A comparison with simulations of individual-based models with F- resp. LC-alignment shows that the predictions about the critical behavior and the qualitative relation between the respective critical noise amplitudes are correct.

  9. Predicting the Effects of Powder Feeding Rates on Particle Impact Conditions and Cold Spray Deposited Coatings

    NASA Astrophysics Data System (ADS)

    Ozdemir, Ozan C.; Widener, Christian A.; Carter, Michael J.; Johnson, Kyle W.

    2017-10-01

    As the industrial application of the cold spray technology grows, the need to optimize both the cost and the quality of the process grows with it. Parameter selection techniques available today require the use of a coupled system of equations to be solved to involve the losses due to particle loading in the gas stream. Such analyses cause a significant increase in the computational time in comparison with calculations with isentropic flow assumptions. In cold spray operations, engineers and operators may, therefore, neglect the effects of particle loading to simplify the multiparameter optimization process. In this study, two-way coupled (particle-fluid) quasi-one-dimensional fluid dynamics simulations are used to test the particle loading effects under many potential cold spray scenarios. Output of the simulations is statistically analyzed to build regression models that estimate the changes in particle impact velocity and temperature due to particle loading. This approach eases particle loading optimization for more complete analysis on deposition cost and time. The model was validated both numerically and experimentally. Further numerical analyses were completed to test the particle loading capacity and limitations of a nozzle with a commonly used throat size. Additional experimentation helped document the physical limitations to high-rate deposition.

  10. Evolution of the fastest-growing relativistic mixed mode instability driven by a tenuous plasma beam in one and two dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieckmann, M. E.; Frederiksen, J. T.; Bret, A.

    2006-11-15

    Particle-in-cell simulations confirm here that a mixed plasma mode is the fastest growing when a highly relativistic tenuous electron-proton beam interacts with an unmagnetized plasma. The mixed modes grow faster than the filamentation and two-stream modes in simulations with beam Lorentz factors {gamma} of 4, 16, and 256, and are responsible for thermalizing the electrons. The mixed modes are followed to their saturation for the case of {gamma}=4 and electron phase space holes are shown to form in the bulk plasma, while the electron beam becomes filamentary. The initial saturation is electrostatic in nature in the considered one- and two-dimensionalmore » geometries. Simulations performed with two different particle-in-cell simulation codes evidence that a finite grid instability couples energy into high-frequency electromagnetic waves, imposing simulation constraints.« less

  11. Effect of Gravity Level on the Particle Shape and Size During Zeolite Crystal Growth

    NASA Technical Reports Server (NTRS)

    Song, Hong-Wei; Ilebusi, Olusegun J.; Sacco, Albert, Jr.

    2003-01-01

    A microscopic diffusion model is developed to represent solute transport in the boundary layer of a growing zeolite crystal. This model is used to describe the effect of gravity on particle shape and solute distribution. Particle dynamics and crystal growth kinetics serve as the boundary conditions of flow and convection-diffusion equations. A statistical rate theory is used to obtain the rate of solute transport across the growing interface, which is expressed in terms of concentration and velocity of solute species. Microgravity can significantly decrease the solute velocity across the growing interface compared to its earth-based counterpart. The extent of this reduction highly depends on solute diffusion constant in solution. Under gravity, the flow towards the crystal enhances solute transport rate across the growing interface while the flow away from crystals reduces this rate, suggesting a non-uniform growth rate and thus an elliptic final shape. However, microgravity can significantly reduce the influence of flow and obtain a final product with perfect spherical shape. The model predictions compare favorably with the data of space experiment of zeolites grown in space.

  12. Particle dynamics and particle-cell interaction in microfluidic systems

    NASA Astrophysics Data System (ADS)

    Stamm, Matthew T.

    Particle-laden flow in a microchannel resulting in aggregation of microparticles was investigated to determine the dependence of the cluster growth rate on the following parameters: suspension void fraction, shear strain rate, and channel-height to particle-diameter ratio. The growth rate of an average cluster was found to increase linearly with suspension void fraction, and to obey a power-law relationships with shear strain rate as S 0.9 and channel-height to particle-diameter ratio as (h/d )--3.5. Ceramic liposomal nanoparticles and silica microparticles were functionalized with antibodies that act as targeting ligands. The bio-functionality and physical integrity of the cerasomes were characterized. Surface functionalization allows cerasomes to deliver drugs with selectivity and specificity that is not possible using standard liposomes. The functionalized particle-target cell binding process was characterized using BT-20 breast cancer cells. Two microfluidic systems were used; one with both species in suspension, the other with cells immobilized inside a microchannel and particle suspension as the mobile phase. Effects of incubation time, particle concentration, and shear strain rate on particle-cell binding were investigated. With both species in suspension, the particle-cell binding process was found to be reasonably well-described by a first-order model. Particle desorption and cellular loss of binding affinity in time were found to be negligible; cell-particle-cell interaction was identified as the limiting mechanism in particle-cell binding. Findings suggest that separation of a bound particle from a cell may be detrimental to cellular binding affinity. Cell-particle-cell interactions were prevented by immobilizing cells inside a microchannel. The initial stage of particle-cell binding was investigated and was again found to be reasonably well-described by a first-order model. For both systems, the time constant was found to be inversely proportional to

  13. Digital particle image thermometry/velocimetry: a review

    NASA Astrophysics Data System (ADS)

    Dabiri, Dana

    2009-02-01

    Digital particle image thermometry/velocimetry (DPIT/V) is a relatively new methodology that allows for measurements of simultaneous temperature and velocity within a two-dimensional domain, using thermochromic liquid crystal tracer particles as the temperature and velocity sensors. Extensive research has been carried out over recent years that have allowed the methodology and its implementation to grow and evolve. While there have been several reviews on the topic of liquid crystal thermometry (Moffat in Exp Therm Fluid Sci 3:14-32, 1990; Baughn in Int J Heat Fluid Flow 16:365-375, 1995; Roberts and East in J Spacecr Rockets 33:761-768, 1996; Wozniak et al. in Appl Sci Res 56:145-156, 1996; Behle et al. in Appl Sci Res 56:113-143, 1996; Stasiek in Heat Mass Transf 33:27-39, 1997; Stasiek and Kowalewski in Opto Electron Rev 10:1-10, 2002; Stasiek et al. in Opt Laser Technol 38:243-256, 2006; Smith et al. in Exp Fluids 30:190-201, 2001; Kowalewski et al. in Springer handbook of experimental fluid mechanics, 1st edn. Springer, Berlin, pp 487-561, 2007), the focus of the present review is to provide a relevant discussion of liquid crystals pertinent to DPIT/V. This includes a background on liquid crystals and color theory, a discussion of experimental setup parameters, a description of the methodology’s most recent advances and processing methods affecting temperature measurements, and finally an explanation of its various implementations and applications.

  14. Measurement of hydraulic characteristics of porous media used to grow plants in microgravity

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan L.; Poritz, Darwin

    2005-01-01

    Understanding the effect of gravity on hydraulic properties of plant growth medium is essential for growing plants in space. The suitability of existing models to simulate hydraulic properties of porous medium is uncertain due to limited understanding of fundamental mechanisms controlling water and air transport in microgravity. The objective of this research was to characterize saturated and unsaturated hydraulic conductivity (K) of two particle-size distributions of baked ceramic aggregate using direct measurement techniques compatible with microgravity. Steady state (Method A) and instantaneous profile measurement (Method B) methods for K were used in a single experimental unit with horizontal flow through thin sections of porous medium providing an earth-based analog to microgravity. Comparison between methods was conducted using a crossover experimental design compatible with limited resources of space flight. Satiated (natural saturation) K ranged from 0.09 to 0.12 cm s-1 and 0.5 to >1 cm s-1 for 0.25- to 1- and 1- to 2-mm media, respectively. The K at the interaggregate/intraaggregate transition was approximately 10(-4) cm s-1 for both particle-size distributions. Significant differences in log(10)K due to method and porous medium were less than one order of magnitude and were attributed to variability in air entrapment. The van Genuchten/Mualem parametric models provided an adequate prediction of K of the interaggregate pore space, using residual water content for that pore space. The instantaneous profile method covers the range of water contents relevant to plant growth using fewer resources than Method A, all advantages for space flight where mass, volume, and astronaut time are limited.

  15. Refining Mechanism of 7075 Al Alloy by In-Situ TiB₂ Particles.

    PubMed

    Gan, Guisheng; Yang, Bin; Zhang, Bo; Jiang, Xin; Shi, Yunlong; Wu, Yiping

    2017-02-04

    The nucleation undercooling of TiB₂/7075 Al matrix composites, the microstructure observed after solidification at different cooling rate, and the size and distribution of TiB₂ particles were investigated. The experimental results have shown that the grain sizes of TiB₂/7075 Al matrix composites firstly decreased, then increased, and finally decreased again with the increase of TiB₂ content. The nucleation undercooling of TiB₂/7075 Al matrix composites first increased, then decreased, and finally increased again with the increase of TiB₂ content when the cooling rates was 5 and 10 °C/min respectively, but kept decreasing with the increase of TiB₂ content at a cooling rate of 20 °C/min. The melting and solidification process showed no significant change with the decrease of cooling rate in 9.0% TiB₂/7075 Al matrix composites. Most small particles can act as heterogeneous nucleus, which induced grain growth and were captured into the grain by the solid/liquid interface. At the same time, most of the larger particles and a minority of the small TiB₂ particles are pushed into the grain boundary; locating in the grain boundary can hinder the Al atoms from diffusing during the solidification process and restrain α-Al phase growth. The influence of particles shifted from dominating by locating to dominating by nucleation as the quantity of TiB₂ particles increased.

  16. Morphodynamics of a growing microbial colony driven by cell death

    NASA Astrophysics Data System (ADS)

    Ghosh, Pushpita; Levine, Herbert

    2017-11-01

    Bacterial cells can often self-organize into multicellular structures with complex spatiotemporal morphology. In this work, we study the spatiotemporal dynamics of a growing microbial colony in the presence of cell death. We present an individual-based model of nonmotile bacterial cells which grow and proliferate by consuming diffusing nutrients on a semisolid two-dimensional surface. The colony spreads by growth forces and sliding motility of cells and undergoes cell death followed by subsequent disintegration of the dead cells in the medium. We model cell death by considering two possible situations: In one of the cases, cell death occurs in response to the limitation of local nutrients, while the other case corresponds to an active death process, known as apoptotic or programmed cell death. We demonstrate how the colony morphology is influenced by the presence of cell death. Our results show that cell death facilitates transitions from roughly circular to highly branched structures at the periphery of an expanding colony. Interestingly, our results also reveal that for the colonies which are growing in higher initial nutrient concentrations, cell death occurs much earlier compared to the colonies which are growing in lower initial nutrient concentrations. This work provides new insights into the branched patterning of growing bacterial colonies as a consequence of complex interplay among the biochemical and mechanical effects.

  17. Differential Cloud Particles Evolution Algorithm Based on Data-Driven Mechanism for Applications of ANN

    PubMed Central

    2017-01-01

    Computational scientists have designed many useful algorithms by exploring a biological process or imitating natural evolution. These algorithms can be used to solve engineering optimization problems. Inspired by the change of matter state, we proposed a novel optimization algorithm called differential cloud particles evolution algorithm based on data-driven mechanism (CPDD). In the proposed algorithm, the optimization process is divided into two stages, namely, fluid stage and solid stage. The algorithm carries out the strategy of integrating global exploration with local exploitation in fluid stage. Furthermore, local exploitation is carried out mainly in solid stage. The quality of the solution and the efficiency of the search are influenced greatly by the control parameters. Therefore, the data-driven mechanism is designed for obtaining better control parameters to ensure good performance on numerical benchmark problems. In order to verify the effectiveness of CPDD, numerical experiments are carried out on all the CEC2014 contest benchmark functions. Finally, two application problems of artificial neural network are examined. The experimental results show that CPDD is competitive with respect to other eight state-of-the-art intelligent optimization algorithms. PMID:28761438

  18. A rational explanation of wave-particle duality of light

    NASA Astrophysics Data System (ADS)

    Rashkovskiy, S. A.

    2013-10-01

    The wave-particle duality is a fundamental property of the nature. At the same time, it is one of the greatest mysteries of modern physics. This gave rise to a whole direction in quantum physics - the interpretation of quantum mechanics. The Wiener experiments demonstrating the wave-particle duality of light are discussed. It is shown that almost all interpretations of quantum mechanics allow explaining the double-slit experiments, but are powerless to explain the Wiener experiments. The reason of the paradox, associated with the wave-particle duality is analyzed. The quantum theory consists of two independent parts: (i) the dynamic equations describing the behavior of a quantum object (for example, the Schrodinger or Maxwell equations), and (ii) the Born's rule, the relation between the wave function and the probability of finding the particle at a given point. It is shown that precisely the Born's rule results in paradox in explaining the wave-particle duality. In order to eliminate this paradox, we propose a new rational interpretation of the wave-particle duality and associated new rule, connecting the corpuscular and wave properties of quantum objects. It is shown that this new rational interpretation of the wave-particle duality allows using the classic images of particle and wave in explaining the quantum mechanical and optical phenomena, does not result in paradox in explaining the doubleslit experiments and Wiener experiments, and does not contradict to the modern quantum mechanical concepts. It is shown that the Born's rule follows immediately from proposed new rules as an approximation.

  19. Interphase and particle dispersion correlations in polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Senses, Erkan

    Particle dispersion in polymer matrices is a major parameter governing the mechanical performance of polymer nanocomposites. Controlling particle dispersion and understanding aging of composites under large shear and temperature variations determine the processing conditions and lifetime of composites which are very important for diverse applications in biomedicine, highly reinforced materials and more importantly for the polymer composites with adaptive mechanical responses. This thesis investigates the role of interphase layers between particles and polymer matrices in two bulk systems where particle dispersion is altered upon deformation in repulsive composites, and good-dispersion of particles is retained after multiple oscillatory shearing and aging cycles in attractive composites. We demonstrate that chain desorption and re-adsorption processes in attractive composites under shear can effectively enhance the bulk microscopic mechanical properties, and long chains of adsorbed layers lead to a denser entangled interphase layer. We further designed experiments where particles are physically adsorbed with bimodal lengths of homopolymer chains to underpin the entanglement effect in interphases. Bimodal adsorbed chains are shown to improve the interfacial strength and used to modulate the elastic properties of composites without changing the particle loading, dispersion state or polymer conformation. Finally, the role of dynamic asymmetry (different mobilities in polymer blends) and chemical heterogeneity in the interphase layer are explored in systems of poly(methyl methacrylate) adsorbed silica nanoparticles dispersed in poly(ethylene oxide) matrix. Such nanocomposites are shown to exhibit unique thermal-stiffening behavior at temperatures above glass transitions of both polymers. These interesting findings suggest that the mobility of the surface-bound polymer is essential for reinforcement in polymer nanocomposites, contrary to existing glassy layer theories

  20. Differential Adhesion between Moving Particles as a Mechanism for the Evolution of Social Groups

    PubMed Central

    Garcia, Thomas; Brunnet, Leonardo Gregory; De Monte, Silvia

    2014-01-01

    The evolutionary stability of cooperative traits, that are beneficial to other individuals but costly to their carrier, is considered possible only through the establishment of a sufficient degree of assortment between cooperators. Chimeric microbial populations, characterized by simple interactions between unrelated individuals, restrain the applicability of standard mechanisms generating such assortment, in particular when cells disperse between successive reproductive events such as happens in Dicyostelids and Myxobacteria. In this paper, we address the evolutionary dynamics of a costly trait that enhances attachment to others as well as group cohesion. By modeling cells as self-propelled particles moving on a plane according to local interaction forces and undergoing cycles of aggregation, reproduction and dispersal, we show that blind differential adhesion provides a basis for assortment in the process of group formation. When reproductive performance depends on the social context of players, evolution by natural selection can lead to the success of the social trait, and to the concomitant emergence of sizeable groups. We point out the conditions on the microscopic properties of motion and interaction that make such evolutionary outcome possible, stressing that the advent of sociality by differential adhesion is restricted to specific ecological contexts. Moreover, we show that the aggregation process naturally implies the existence of non-aggregated particles, and highlight their crucial evolutionary role despite being largely neglected in theoretical models for the evolution of sociality. PMID:24586133

  1. A method for detecting the presence of organic fraction in nucleation mode sized particles

    NASA Astrophysics Data System (ADS)

    Vaattovaara, P.; Räsänen, M.; Kühn, T.; Joutsensaari, J.; Laaksonen, A.

    2005-12-01

    New particle formation and growth has a very important role in many climate processes. However, the overall knowlegde of the chemical composition of atmospheric nucleation mode (particle diameter, d<20 nm) and the lower end of Aitken mode particles (d≤50 nm) is still insufficient. In this work, we have applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer) method to shed light on the presence of an organic fraction in the nucleation mode size class in different atmospheric environments. The basic principle of the organic fraction detection is based on our laboratory UFO-TDMA measurements with organic and inorganic compounds. Our laboratory measurements indicate that the usefulness of the UFO-TDMA in the field experiments would arise especially from the fact that atmospherically the most relevant inorganic compounds do not grow in subsaturated ethanol vapor, when particle size is 10 nm in diameter and saturation ratio is about 86% or below it. Furthermore, internally mixed particles composed of ammonium bisulfate and sulfuric acid with sulfuric acid mass fraction ≤33% show no growth at 85% saturation ratio. In contrast, 10 nm particles composed of various oxidized organic compounds of atmospheric relevance are able to grow in those conditions. These discoveries indicate that it is possible to detect the presence of organics in atmospheric nucleation mode sized particles using the UFO-TDMA method. In the future, the UFO-TDMA is expected to be an important aid to describe the composition of atmospheric newly-formed particles.

  2. A method for detecting the presence of organic fraction in nucleation mode sized particles

    NASA Astrophysics Data System (ADS)

    Vaattovaara, P.; Räsänen, M.; Kühn, T.; Joutsensaari, J.; Laaksonen, A.

    2005-06-01

    New particle formation and growth has a very important role in many climate processes. However, the overall knowlegde of the chemical composition of atmospheric nucleation mode (particle diameter, d<20 nm) and the lower end of Aitken mode particles (d≤50 nm) is still insufficient. In this work, we have applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer) method to shed light on the presence of organic fraction in the nucleation mode size class in different atmospheric environments. The basic principle of the organic fraction detection is based on our laboratory UFO-TDMA measurements with organic and inorganic compounds. Our laboratory measurements indicate that the usefulness of the UFO-TDMA in the field experiments would arise especially from the fact that atmospherically the most relevant inorganic compounds do not grow in subsaturated ethanol vapor, when particle size is 10nm in diameter and saturation ratio is about 86% or below it. Furthermore, internally mixed particles composed of ammonium bisulfate and sulfuric acid with sulfuric acid mass fraction ≤33% show no growth at 85% saturation ratio. In contrast, 10 nm particles composed of various organic compounds of atmospheric relevance are able to grow in those conditions. These discoveries indicate that it is possible to detect the presence of organics in atmospheric nucleation mode sized particles using the UFO-TDMA method. In the future, the UFO-TDMA is expected to be an important aid to describe the composition of atmospheric newly-formed particles.

  3. Deterministic particle transport in a ratchet flow.

    PubMed

    Beltrame, Philippe; Makhoul, Mounia; Joelson, Maminirina

    2016-01-01

    This study is motivated by the issue of the pumping of particle through a periodic modulated channel. We focus on a simplified deterministic model of small inertia particles within the Stokes flow framework that we call "ratchet flow." A path-following method is employed in the parameter space in order to retrace the scenario which from bounded periodic solutions leads to particle transport. Depending on whether the magnitude of the particle drag is moderate or large, two main transport mechanisms are identified in which the role of the parity symmetry of the flow differs. For large drag, transport is induced by flow asymmetry, while for moderate drag, since the full transport solution bifurcation structure already exists for symmetric settings, flow asymmetry only makes the transport effective. We analyzed the scenarios of current reversals for each mechanism as well as the role of synchronization. In particular we show that, for large drag, the particle drift is similar to phase slip in a synchronization problem.

  4. High-energy particles associated with solar flares

    NASA Technical Reports Server (NTRS)

    Sakurai, K.; Klimas, A. J.

    1974-01-01

    High-energy particles, the so-called solar cosmic rays, are often generated in association with solar flares, and then emitted into interplanetary space. These particles, consisting of electrons, protons, and other heavier nuclei, including the iron-group, are accelerated in the vicinity of the flare. By studying the temporal and spatial varation of these particles near the earth's orbit, their storage and release mechanisms in the solar corona and their propagation mechanism can be understood. The details of the nuclear composition and the rigidity spectrum for each nuclear component of the solar cosmic rays are important for investigating the acceleration mechanism in solar flares. The timing and efficiency of the acceleration process can also be investigated by using this information. These problems are described in some detail by using observational results on solar cosmic rays and associated phenomena.

  5. Measurement of surface effects on the rotational diffusion of a colloidal particle.

    PubMed

    Lobo, Sebastian; Escauriaza, Cristian; Celedon, Alfredo

    2011-03-15

    A growing number of nanotechnologies involve rotating particles. Because the particles are normally close to a solid surface, hydrodynamic interaction may affect particle rotation. Here, we track probes composed of two particles tethered to a solid surface by a DNA molecule to measure for the first time the effect of a surface on the rotational viscous drag. We use a model that superimposes solutions of the Stokes equation in the presence of a wall to confirm and interpret our measurements. We show that the hydrodynamic interaction between the surface and the probe increases the rotational viscous drag and that the effect strongly depends on the geometry of the probe.

  6. Minimal mechanisms for school formation in self-propelled particles

    NASA Astrophysics Data System (ADS)

    Li, Yue-Xian; Lukeman, Ryan; Edelstein-Keshet, Leah

    2008-05-01

    In the context of social organisms, a school refers to a cohesive group of organisms that share a common speed and direction of motion, as well as a common axis of body alignment or polarization. Schools are also noted for the relatively fixed nearest-neighbour distances between individuals. The rules of interaction that lead to the formation and maintenance of a school structure have been explored experimentally, analytically, and by simulation. Interest in biological examples, and non-biological “self-propelled particles” such as robots, vehicles, or autonomous agents leads to the question of what are the simplest possible sets of rules that can assure the formation and the stability of the “perfect school”: an aggregate in which the nearest-neighbour distances and speeds are identical. Here we explore mechanisms that lead to a perfect school structure in one and two dimensions. We consider distance-detection as well as velocity-detection between the interacting pairs of self-propelled particles. We construct interaction forces and formulate schooling equations. In the simplest cases, these equations have analytic solutions. In many cases, the stability of the perfect school can be explored. We then investigate how these structures form and evolve over time from various initial configurations using simulations. We study the relationship between the assumed interaction forces and the school patterns that emerge. While true biological schools are far from perfect, the insights gained from this investigation can help to understand some properties of real schools, and to suggest the appropriate properties of artificial schools where coordinated motion is desired.

  7. Nanocellulose Fragmentation Mechanisms and Inversion of Chirality from the Single Particle to the Cholesteric Phase.

    PubMed

    Nyström, Gustav; Arcari, Mario; Adamcik, Jozef; Usov, Ivan; Mezzenga, Raffaele

    2018-05-22

    Understanding how nanostructure and nanomechanics influence physical material properties on the micro- and macroscale is an essential goal in soft condensed matter research. Mechanisms governing fragmentation and chirality inversion of filamentous colloids are of specific interest because of their critical role in load-bearing and self-organizing functionalities of soft nanomaterials. Here we provide a fundamental insight into the self-organization across several length scales of nanocellulose, an important biocolloid system with wide-ranging applications as structural, insulating, and functional material. Through a combined microscopic and statistical analysis of nanocellulose fibrils at the single particle level, we show how mechanically and chemically induced fragmentations proceed in this system. Moreover, by studying the bottom-up self-assembly of fragmented carboxylated cellulose nanofibrils into cholesteric liquid crystals, we show via direct microscopic observations that the chirality is inverted from right-handed at the nanofibril level to left-handed at the level of the liquid crystal phase. These results improve our fundamental understanding of nanocellulose and provide an important rationale for its application in colloidal systems, liquid crystals, and nanomaterials.

  8. Effect of particle treatment and adhesive type on physical, mechanical, and durability properties of particleboard made from Sorghum Bagasse

    NASA Astrophysics Data System (ADS)

    Heri Iswanto, Apri; Supriyanto; Fatriasari, Widya; Susilowati, Arida

    2018-03-01

    Refers to chemical content of sweet sorghum stalk especially for Numbu varian, sorghum bagasse issuitable for materials of particleboard. The objective of the experiment was to evaluate of particle treatment on physichal, mechanical, and durability properties of particleboard made from sorghum bagasse. For particle treatment, Sorghum bagasse immersed in cold water and hot water for 24 and 1 hours respectively. Particleboards were produced in size 25 by 25 cm2 with thickness and density target of 0.8 cm and 0.7 g/cm3. Amount of 10% Urea formaldehyde (UF) and 7% isocyanat (MDI) adhesive level used for manufacturing of board. Particle and adhesive were blended with rotary blending. Afterward, it was placed into mat former with size of 25 by 25 cm2. Mat was pressed by hot press machine. The pressing was conducted on 130°C temperature for UF resin and 160°C for MDI resin, pressure of 25 kg/cm2 and pressing time for 10 minutes. The results showed that particle soaking in hot water produced of lower thickness swelling compared to untreated board. Similar trend also occuron particleboard whichwas bonded with MDI resin. MDI as exterior adhesive resulted good performance in dimensional stability of sorghum bagasse particleboard. For UF bonded particleboard, immersing in hot water resulted in the low MOR, MOE and IB parameter. It’s contrary with MDI bonded particleboard.

  9. Mechanical properties and ion release from bioactive restorative composites containing glass fillers and calcium phosphate nano-structured particles.

    PubMed

    Chiari, Marina D S; Rodrigues, Marcela C; Xavier, Tathy A; de Souza, Eugen M N; Arana-Chavez, Victor E; Braga, Roberto R

    2015-06-01

    To evaluate the effect of the replacement of barium glass by dicalcium phosphate dihydrate (DCPD) particles on the mechanical properties and degree of conversion (DC) of composites. Additionally, calcium and hydrogen phosphate (HPO4(2-)) release were followed for 28 days. Nine composites containing equal parts (in mols) of BisGMA and TEGDMA and 40, 50 or 60 vol% of total filler were manipulated. Filler phase was constituted by silanated barium glass and 0%, 10% or 20% of DCPD particles. DC was determined by near-FTIR. Biaxial flexural strength (BFS) and modulus (E) were tested using the "piston on three balls" method, while fracture toughness (KIc) used the "single edge notched beam" method. Specimens were tested after 24h and 28 days in water. Ion release was determined using inductively coupled plasma optical emission spectrometry (ICP-OES). Data were analyzed by ANOVA/Tukey (DC and ion release) or Kruskal-Wallis/Mann-Whitney (mechanical properties; alpha: 5%). DC was not affected by DCPD. The presence of DCPD reduced BFS for both storage times, while differences in E became evident after 28 days. After 24h, KIc increased with the addition of DCPD; after 28 days, however, KIc decreased only for DCPD-containing composites. Calcium release was similar for both DCPD contents and remained fairly constant during the 28-day period. Overall, HPO4(2-) release was higher at 7 days and did not decrease after 14 days. The composite with the highest filler level and 10% DCPD represented the best compromise between mechanical properties after aging in water and ion release. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Mechanism of Particle Formation in Silver/Epoxy Nanocomposites Obtained through a Visible-Light-Assisted in Situ Synthesis.

    PubMed

    dell'Erba, Ignacio E; Martínez, Francisco D; Hoppe, Cristina E; Eliçabe, Guillermo E; Ceolín, Marcelo; Zucchi, Ileana A; Schroeder, Walter F

    2017-10-03

    A detailed understanding of the processes taking place during the in situ synthesis of metal/polymer nanocomposites is crucial to manipulate the shape and size of nanoparticles (NPs) with a high level of control. In this paper, we report an in-depth time-resolved analysis of the particle formation process in silver/epoxy nanocomposites obtained through a visible-light-assisted in situ synthesis. The selected epoxy monomer was based on diglycidyl ether of bisphenol A, which undergoes relatively slow cationic ring-opening polymerization. This feature allowed us to access a full description of the formation process of silver NPs before this was arrested by the curing of the epoxy matrix. In situ time-resolved small-angle X-ray scattering investigation was carried out to follow the evolution of the number and size of the silver NPs as a function of irradiation time, whereas rheological experiments combined with near-infrared and ultraviolet-visible spectroscopies were performed to interpret how changes in the rheological properties of the matrix affect the nucleation and growth of particles. The analysis of the obtained results allowed us to propose consistent mechanisms for the formation of metal/polymer nanocomposites obtained by light-assisted one-pot synthesis. Finally, the effect of a thermal postcuring treatment of the epoxy matrix on the particle size in the nanocomposite was investigated.

  11. Entropic stochastic resonance of a self-propelled Janus particle

    NASA Astrophysics Data System (ADS)

    Liu, Zhenzhen; Du, Luchun; Guo, Wei; Mei, Dong-Cheng

    2016-10-01

    Entropic stochastic resonance is investigated when a self-propelled Janus particle moves in a double-cavity container. Numerical simulation results indicate the entropic stochastic resonance can survive even if there is no symmetry breaking in any direction. This is the essential distinction between the property of a self-propelled Janus particle and that of a passive Brownian particle, for the symmetry breaking is necessary for the entropic stochastic resonance of a passive Brownian particle. With the rotational noise intensity growing at small fixed noise intensity of translational motion, the signal power amplification increases monotonically towards saturation which also can be regarded as a kind of stochastic resonance effect. Besides, the increase in the natural frequency of the periodic driving depresses the degree of the stochastic resonance, whereas the rise in its amplitude enhances and then suppresses the behavior.

  12. Polydopamine-Coated Magnetic Composite Particles with an Enhanced Photothermal Effect.

    PubMed

    Zheng, Rui; Wang, Sheng; Tian, Ye; Jiang, Xinguo; Fu, Deliang; Shen, Shun; Yang, Wuli

    2015-07-29

    Recently, photothermal therapy (PTT) that utilizes photothermal conversion (PTC) agents to ablate cancer under near-infrared (NIR) irradiation has attracted a growing amount of attention because of its excellent therapeutic efficacy and improved target selectivity. Therefore, exploring novel PTC agents with an outstanding photothermal effect is a current research focus. Herein, we reported a polydopamine-coated magnetic composite particle with an enhanced PTC effect, which was synthesized simply through coating polydopamine (PDA) on the surface of magnetic Fe3O4 particles. Compared with magnetic Fe3O4 particles and PDA nanospheres, the core-shell nanomaterials exhibited an increased NIR absorption, and thus, an enhanced photothermal effect was obtained. We demonstrated the in vitro and in vivo effects of the photothermal therapy using our composite particles and their ability as a contrast agent in the T2-weighted magnetic resonance imaging. These results indicated that the multifunctional composite particles with enhanced photothermal effect are superior to magnetic Fe3O4 particles and PDA nanospheres alone.

  13. Synthesis and characterization of struvite nano particles

    NASA Astrophysics Data System (ADS)

    Rathod, K. R.; Jogiya, B. V.; Chauhan, C. K.; Joshi, M. J.

    2015-06-01

    Struvite, Ammonium Magnesium Phosphate Hexahydrate [(AMPH) - (NH4)MgPO4.6(H2O)], is one of the fascinating inorganic phosphate minerals. Struvite is one of the components of the urinary stones. Struvite occurs as crystallites in urine and grows as a type of kidney stone. In this study, struvite nano particles were synthesized by wet chemical technique. The aqueous solutions containing dissolved Mg(CH3COO)2.4H2O and (NH4)H2PO4 mixed at the Mg/P molar ratio of 1.00. The synthesized struvite nano particles were characterized by XRD, FT-IR, Thermal Analysis and TEM. From XRD, crystal structure of the nano particle was found to be orthorhombic and crystalline size was found to be within 11 to 26 nm. The FT-IR spectrum for the struvite nano particles confirmed the presence of a water molecule and metal-oxygen stretching vibration, O-H stretching and bending, N-H bending and stretching, P-O bending and stretching vibrations. The Thermal Analysis was carried out from room temperature to 900°C. From TEM analysis, particle size was 23 to 30 nm. All the results were compared with bulk struvite.

  14. Diffusion in jammed particle packs

    NASA Astrophysics Data System (ADS)

    Bolintineanu, Dan S.; Silbert, Leonardo E.; Grest, Gary S.; Lechman, Jeremy B.

    2015-03-01

    Diffusive transport in jammed particle packs is of interest for a number of applications, as well as being a potential indicator of structural properties near the jamming point. To this end, we report stochastic simulations of equilibrium diffusion through monodisperse sphere packs near the jamming point in the limit of a perfectly insulating surrounding medium. The time dependence of various diffusion properties is resolved over several orders of magnitude. Two time regimes of expected Fickian diffusion are observed, separated by an intermediate regime of anomalous diffusion. This intermediate regime grows as the particle volume fraction approaches the critical jamming transition. The diffusion behavior is fully controlled by the extent of the contacts between neighboring particles, which in turn depend on proximity to the jamming point. In particular, the mean first passage time associated with the escape of random walkers between neighboring particles is shown to control both the time to recover Fickian diffusion and the long time diffusivity. Scaling laws are established that relate these quantities to the difference between the actual and critical jamming volume fractions. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE- AC04-94AL85000.

  15. ATom observations of new particle formation in the tropical upper troposphere. The role of convection and nucleation mechanisms

    NASA Astrophysics Data System (ADS)

    Kupc, A.; Williamson, C.; Hodshire, A. L.; Pierce, J. R.; Ray, E. A.; Froyd, K. D.; Richardson, M.; Weinzierl, B.; Dollner, M.; Erdesz, F.; Bui, T. V.; Diskin, G. S.; Brock, C. A.

    2017-12-01

    Measurements of size distributions during the Atmospheric Tomography Mission (ATom) reveal high number concentrations (>>1000 cm-3) of nucleation mode particles at high altitudes in the tropics and subtropics under low condensation sink conditions and are associated with upwelling in convective clouds. The broad spatial extent of these newly formed particles shows that the upper free troposphere (FT) of the tropics and subtropics is a globally significant source. In this study, we investigate the link between convection and new particle formation (NPF) by exploring the processes that govern NPF and growth in the tropical and subtropical FT of the Pacific and Atlantic Oceans. We use measurements of the size distributions made with a suite of fast-response instruments on board of a NASA DC-8 aircraft during ATom mission. ATom maps the remote atmosphere over the Pacific and Atlantic basins ( 80 °N and 65 °S) in continuous ascents and descents (0.2 and 13 km), providing the latitudinal and vertical information on the greenhouse gases, reactive and tracer species and aerosol properties and their seasonal variability. We couple measurements of size distributions between 0.003 and 4.8 µm and potential aerosol precursor vapors measured on ATom (August 2016 and February 2017) with calculated air mass back trajectories and the TwO-Moment Aerosol Sectional (TOMAS) box model. The back trajectories identify air masses potentially influenced by recent convection. We then use TOMAS to model particle nucleation, condensation and coagulation along that trajectory to investigate the link between convection and NPF. Through TOMAS, we explore the influence of different nucleation mechanisms (such as binary, ternary or the one with organics) and gas-phase aerosol precursors (such as sulfur dioxide) on observed particle size distributions. We discuss similarities and differences in NPF over the Pacific and Atlantic Oceans and their relationship to convection, examine particle

  16. Alpha particle confinement in tandem mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devoto, R.S.; Ohnishi, M.; Kerns, J.

    1980-10-10

    Mechanisms leading to loss of alpha particles from non-axisymmetric tandem mirrors are considered. Stochastic diffusion due to bounce-drift resonances, which can cause rapid radial losses of high-energy alpha particles, can be suppressed by imposing a 20% rise in axisymmetric fields before the quadrupole transition sections. Alpha particles should then be well-confined until thermal energies when they enter the resonant plateau require. A fast code for computation of drift behavior in reactors is described. Sample calculations are presented for resonant particles in a proposed coil set for the Tandem Mirror Next Step.

  17. Rotational bursting of interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Paddack, S. J.; Rhee, J. W.

    1974-01-01

    Solar radiation pressure is discussed as a cause of rotational bursting, and of eventual elimination of asymmetric dust particles from the solar system, by a windmill effect. The predicted life span with this process for metallic particles with radii of 0.00001 to 0.01 cm ranges from 10 to 10,000 years. The effects of magnetic spin damping were considered. This depletion mechanism works faster than the traditional Poynting-Robertson effect by approximately one order of magnitude for metallic particles and about two orders of magnitude for nonmetallic particles.

  18. MECHANISMS BY WHICH ULTRAFINE, FINE, AND COARSE PARTICLES CAUSE ADVERSE HEALTH EFFECTS

    EPA Science Inventory

    A small number of recent studies suggest that different size particles may cause different health effects. There are clearly differences in the chemical makeup of coarse, fine, and ultrafine particles, and this different chemistry may well drive different health responses. The ...

  19. Smoothed particle hydrodynamics method for simulating waterfall flow

    NASA Astrophysics Data System (ADS)

    Suwardi, M. G.; Jondri; Tarwidi, D.

    2018-03-01

    The existence of waterfall in many nations, such as Indonesia has a potential to develop and to fulfill the electricity demand in the nation. By utilizing mechanical flow energy of the waterfall, it would be able to generate electricity. The study of mechanical energy could be done by simulating waterfall flow using 2-D smoothed particle hydrodynamics (SPH) method. The SPH method is suitable to simulate the flow of the waterfall, because it has an advantage which could form particles movement that mimic the characteristics of fluid. In this paper, the SPH method is used to solve Navier-Stokes and continuity equation which are the main cores of fluid motion. The governing equations of fluid flow are used to obtain the acceleration, velocity, density, and position of the SPH particles as well as the completion of Leapfrog time-stepping method. With these equations, simulating a waterfall flow would be more attractive and able to complete the analysis of mechanical energy as desired. The mechanical energy that generated from the waterfall flow is calculated and analyzed based on the mass, height, and velocity of each SPH particle.

  20. Particle Capture Devices and Methods of Use Thereof

    NASA Technical Reports Server (NTRS)

    Voldman, Joel (Inventor); Skelley, Alison M. (Inventor); Kirak, Oktay (Inventor); Jaenisch, Rudolf (Inventor)

    2015-01-01

    The present invention provides a device and methods of use thereof in microscale particle capturing and particle pairing. This invention provides particle patterning device, which mechanically traps individual particles within first chambers of capture units, transfer the particles to second chambers of opposing capture units, and traps a second type of particle in the same second chamber. The device and methods allow for high yield assaying of trapped cells, high yield fusion of trapped, paired cells, for controlled binding of particles to cells and for specific chemical reactions between particle interfaces and particle contents. The device and method provide means of identification of the particle population and a facile route to particle collection.

  1. Mechanical properties, phenolic composition and extractability indices of Barbera grapes of different soluble solids contents from several growing areas.

    PubMed

    Torchio, Fabrizio; Cagnasso, Enzo; Gerbi, Vincenzo; Rolle, Luca

    2010-02-15

    Phenolic compounds, extractable from grape skins and seeds, have a notable influence on the quality of red wines. Many studies have clearly demonstrated the relationship between the phenolic composition of the grape at harvest time and its influence on the phenolic composition of the red wine produced. In many previous works the evolution of phenolic composition and relative extractability was normally studied on grapes sampled at different times during ripening, but at the same date the physiological characteristics of grape berries in a vineyard are often very heterogeneous. Therefore, the main goal of the study is to investigate the differences among mechanical properties, phenolic composition and relative extractability of Vitis vinifera L. cv Barbera grape berries, harvested at the same date from several vineyards, and calibrated according to their density at three levels of soluble solids (A=235+/-8, B=252+/-8 and C=269+/-8 g L(-1) sugar) with the aim of studying the influence of ripeness stages and growing locations on these parameters. Results on mechanical properties showed that the thickness of the berry skin (Sp(sk)) was the parameter most affected by the different level of sugars in the pulp, while different skin hardnesses, evaluated by the break skin force (F(sk)), were related to the cultivation sites. The latter were also observed to influence the mechanical characteristics of seeds. Generally, the anthocyanin content increased with the level of soluble solids, while the increase in the tannin content of the berry skin and seeds was less marked. However, significant changes in flavanols reactive to vanillin in the seeds were found. The cellular maturity index (EA%) was little influenced by the soluble solids content of grapes. Copyright 2009 Elsevier B.V. All rights reserved.

  2. Statistical mechanics of addition polymerisation. Calculations of the expectation and variance of the average atmosphere in growing self avoiding walks

    NASA Astrophysics Data System (ADS)

    Taniya, Abraham; Deepthi, Murali; Padmanabhan, Alapat

    2018-06-01

    Recent calculations on the change in radial dimensions of reacting (growing) polyethylene in the gas phase experiencing Lennard Jones and Kihara type potentials revealed that a single reacting polyethylene molecule does not experience polymer collapse. This implies that a transition that is the converse of what happens when molten polyethylene crystallizes, i.e. it transforms from random coil like structure to folded rigid rod type structure, occurs. The predicted behaviour of growing polyethylene was explained by treating the head of the growing polymer chain as myopic whereas as the whole chain (i.e. when under equilibrium conditions) being treated as having normal vision, i.e. the growing chain does not see the attractive part of the LJ or Kihara Potentials. In this paper we provide further proof for this argument in two ways. Firstly we carry forward the exact enumeration calculations on growing self avoiding walks reported in that paper to larger values of number of steps by using Monte Carlo type calculations. We thereby assign physical significance to the connective constant of self avoiding walks, which until now was treated as a purely abstract mathematical entity. Secondly since a reacting polymer molecule that grows by addition polymerisation sees only one step ahead at a time, we extend this calculation by estimating the average atmosphere for molecules, with repulsive potential only (growing self avoiding walks in two dimensions), that look at two, three, four, five ...steps ahead. Our calculation shows that the arguments used in the previous work are correct.

  3. Random deposition of particles of different sizes.

    PubMed

    Forgerini, F L; Figueiredo, W

    2009-04-01

    We study the surface growth generated by the random deposition of particles of different sizes. A model is proposed where the particles are aggregated on an initially flat surface, giving rise to a rough interface and a porous bulk. By using Monte Carlo simulations, a surface has grown by adding particles of different sizes, as well as identical particles on the substrate in (1+1) dimensions. In the case of deposition of particles of different sizes, they are selected from a Poisson distribution, where the particle sizes may vary by 1 order of magnitude. For the deposition of identical particles, only particles which are larger than one lattice parameter of the substrate are considered. We calculate the usual scaling exponents: the roughness, growth, and dynamic exponents alpha, beta, and z, respectively, as well as, the porosity in the bulk, determining the porosity as a function of the particle size. The results of our simulations show that the roughness evolves in time following three different behaviors. The roughness in the initial times behaves as in the random deposition model. At intermediate times, the surface roughness grows slowly and finally, at long times, it enters into the saturation regime. The bulk formed by depositing large particles reveals a porosity that increases very fast at the initial times and also reaches a saturation value. Excepting the case where particles have the size of one lattice spacing, we always find that the surface roughness and porosity reach limiting values at long times. Surprisingly, we find that the scaling exponents are the same as those predicted by the Villain-Lai-Das Sarma equation.

  4. Identifying a New Mechanism of HIV Core Formation | Center for Cancer Research

    Cancer.gov

    During the maturation of human immunodeficiency virus 1 (HIV-1), viral particles transition from a noninfectious form to an infectious one, and this conversion requires the cleavage of the HIV-1 Gag polyprotein. Gag is made up of three structural proteins—matrix (MA), capsid (CA), and nucleocapsid (NC)—connected by linkers. MA anchors Gag in the membrane, CA surrounds the HIV-1 core, and NC packages the viral RNA within the core. Current models of the development of HIV-1 suggest that when CA is cleaved from Gag it dissociates from the membrane and moves into the virus interior before nucleating, in a concentration-dependent manner, into the core, which is the last step in virus maturation. The core is thought to grow from its narrow end stopping only when it reaches the opposite side of the virus membrane. Since blocking the formation of infectious viral particles is an important therapeutic strategy, it is critical to understand the detailed mechanism of core maturation.

  5. Nanobody Binding to a Conserved Epitope Promotes Norovirus Particle Disassembly

    PubMed Central

    Koromyslova, Anna D.

    2014-01-01

    ABSTRACT Human noroviruses are icosahedral single-stranded RNA viruses. The capsid protein is divided into shell (S) and protruding (P) domains, which are connected by a flexible hinge region. There are numerous genetically and antigenically distinct noroviruses, and the dominant strains evolve every other year. Vaccine and antiviral development is hampered by the difficulties in growing human norovirus in cell culture and the continually evolving strains. Here, we show the X-ray crystal structures of human norovirus P domains in complex with two different nanobodies. One nanobody, Nano-85, was broadly reactive, while the other, Nano-25, was strain specific. We showed that both nanobodies bound to the lower region on the P domain and had nanomolar affinities. The Nano-85 binding site mainly comprised highly conserved amino acids among the genetically distinct genogroup II noroviruses. Several of the conserved residues also were recognized by a broadly reactive monoclonal antibody, which suggested this region contained a dominant epitope. Superposition of the P domain nanobody complex structures into a cryoelectron microscopy particle structure revealed that both nanobodies bound at occluded sites on the particles. The flexible hinge region, which contained ∼10 to 12 amino acids, likely permitted a certain degree of P domain movement on the particles in order to accommodate the nanobodies. Interestingly, the Nano-85 binding interaction with intact particles caused the particles to disassemble in vitro. Altogether, these results suggested that the highly conserved Nano-85 binding epitope contained a trigger mechanism for particle disassembly. Principally, this epitope represents a potential site of norovirus vulnerability. IMPORTANCE We characterized two different nanobodies (Nano-85 and Nano-25) that bind to human noroviruses. Both nanobodies bound with high affinities to the lower region of the P domain, which was occluded on intact particles. Nano-25 was

  6. Effect of particle morphology of Ni on the mechanical behavior of AZ91E-Ni coated nano Al2O3 composites

    NASA Astrophysics Data System (ADS)

    Sameer Kumar, D.; Suman, K. N. S.; Poddar, Palash

    2017-06-01

    The properties of any composite always depend on the bonding between the matrix and reinforcement phases. One way of improving the wettability of reinforcement in a matrix is to apply a layer of coating on reinforcing particles. The present study aims at developing Ni coating on nano Al2O3 ceramic particles and dispersing them in AZ91E magnesium matrix material. The electroless plating method has been employed to coat the particles and semi solid stir casting technique was adopted to prepare the composites. Several weight fractions of dispersed phase are considered to analyze the behavior of the fabricated composites. Field emission scanning electron microscopy (FESEM) and x-ray diffraction analysis has been carried out to investigate the distribution of particles and phase characteristics of the proposed material. The physical and mechanical behavior of the material was examined through density measurements, hardness, elastic modulus, ductility and tensile strength calculations. The metal coating on reinforcement aids to promote metal-metal bonding interface reactions which result in improved properties of the composite. Tensile fractography was carried out under FESEM and presented.

  7. Particle size effect and the mechanism of hematite reduction by the outer membrane cytochrome OmcA of Shewanella oneidensis MR-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Juan; Pearce, Carolyn I.; Shi, Liang

    The cycling of iron at the Earth’s near surface is profoundly influenced by dissimilatory metal reducing microorganisms, and many studies have focused on unraveling electron transfer mechanisms between these bacteria and Fe(III)-(oxyhydr)oxides. However, these efforts have been complicated by the fact that these minerals often occur in the micro- to nanosize regime, and in relevant natural environments as well as in the laboratory are subject to aggregation. The nature of the physical interface between the cellular envelope, the outer-membrane cytochromes responsible for facilitating the interfacial electron transfer step, and these complex mineral particulates is thus difficult to probe. Previous studiesmore » using whole cells have reported reduction rates that do not correlate with particle size. In the present study we isolate the interaction between the decaheme outer-membrane cytochrome OmcA of Shewanella oneidensis and nanoparticulate hematite, examining the reduction rate as a function of particle size and reaction products through detailed characterization of the electron balance and the structure and valence of iron at particle surfaces. By comparison with abiotic reduction via the smaller molecule ascorbic acid, we show that the reduction rate is systematically controlled by the sterically accessible interfacial contact area between OmcA and hematite in particle aggregates; rates increase once pore throat sizes in aggregates become as large as OmcA. Simultaneous measure of OmcA oxidation against Fe(II) release shows a ratio of 1:10, consistent with a cascade OmcA oxidation mechanism heme by heme. X-ray absorption spectroscopies reveal incipient magnetite on the reacted surfaces of the hematite nanoparticles after reaction. The collective findings establish the importance of accessibility of physical contact between the terminal reductases and iron oxide surfaces, and through apparent consistency of observations help reconcile behavior reported at the

  8. Particle size effect and the mechanism of hematite reduction by the outer membrane cytochrome OmcA of Shewanella oneidensis MR-1

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Pearce, Carolyn I.; Shi, Liang; Wang, Zheming; Shi, Zhi; Arenholz, Elke; Rosso, Kevin M.

    2016-11-01

    The cycling of iron at the Earth's near surface is profoundly influenced by dissimilatory metal reducing microorganisms, and many studies have focused on unraveling electron transfer mechanisms between these bacteria and Fe(III)-(oxyhydr)oxides. However, these efforts have been complicated by the fact that these minerals often occur in the micro- to nanosize regime, and in relevant natural environments as well as in the laboratory are subject to aggregation. The nature of the physical interface between the cellular envelope, the outer-membrane cytochromes responsible for facilitating the interfacial electron transfer step, and these complex mineral particulates is thus difficult to probe. Previous studies using whole cells have reported reduction rates that do not correlate with particle size. In the present study we isolate the interaction between the decaheme outer-membrane cytochrome OmcA of Shewanella oneidensis and nanoparticulate hematite, examining the reduction rate as a function of particle size and reaction products through detailed characterization of the electron balance and the structure and valence of iron at particle surfaces. By comparison with abiotic reduction via the smaller molecule ascorbic acid, we show that the reduction rate is systematically controlled by the sterically accessible interfacial contact area between OmcA and hematite in particle aggregates; rates increase once pore throat sizes in aggregates become as large as OmcA. Simultaneous measure of OmcA oxidation against Fe(II) release shows a ratio of 1:10, consistent with a cascade OmcA oxidation mechanism heme by heme. X-ray absorption spectroscopies reveal incipient magnetite on the reacted surfaces of the hematite nanoparticles after reaction. The collective findings establish the importance of accessibility of physical contact between the terminal reductases and iron oxide surfaces, and through apparent consistency of observations help reconcile behavior reported at the larger

  9. Mechanical recycling of waste electric and electronic equipment: a review.

    PubMed

    Cui, Jirang; Forssberg, Eric

    2003-05-30

    The production of electric and electronic equipment (EEE) is one of the fastest growing areas. This development has resulted in an increase of waste electric and electronic equipment (WEEE). In view of the environmental problems involved in the management of WEEE, many counties and organizations have drafted national legislation to improve the reuse, recycling and other forms of recovery of such wastes so as to reduce disposal. Recycling of WEEE is an important subject not only from the point of waste treatment but also from the recovery of valuable materials.WEEE is diverse and complex, in terms of materials and components makeup as well as the original equipment's manufacturing processes. Characterization of this waste stream is of paramount importance for developing a cost-effective and environmentally friendly recycling system. In this paper, the physical and particle properties of WEEE are presented. Selective disassembly, targeting on singling out hazardous and/or valuable components, is an indispensable process in the practice of recycling of WEEE. Disassembly process planning and innovation of disassembly facilities are most active research areas. Mechanical/physical processing, based on the characterization of WEEE, provides an alternative means of recovering valuable materials. Mechanical processes, such as screening, shape separation, magnetic separation, Eddy current separation, electrostatic separation, and jigging have been widely utilized in recycling industry. However, recycling of WEEE is only beginning. For maximum separation of materials, WEEE should be shredded to small, even fine particles, generally below 5 or 10mm. Therefore, a discussion of mechanical separation processes for fine particles is highlighted in this paper. Consumer electronic equipment (brown goods), such as television sets, video recorders, are most common. It is very costly to perform manual dismantling of those products, due to the fact that brown goods contain very low

  10. Air pollution particles and iron homeostasis | Science ...

    EPA Pesticide Factsheets

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, functional groups at the surface of retained particle complex iron available in the cell. In response to a reduction in concentrations of requisite iron, a functional deficiency can result intracellularly. Superoxide production by the cell exposed to a particle increases ferrireduction which facilitates import of iron with the objective being the reversal of the metal deficiency. Failure to resolve the functional iron deficiency following cell exposure to particles activates kinases and transcription factors resulting in a release of inflammatory mediators and inflammation. Tissue injury is the end product of this disruption in iron homeostasis initiated by the particle exposure. Elevation of available iron to the cell precludes deficiency of the metal and either diminishes or eliminates biological effects.General Significance: Recognition of the pathway for biological effects after particle exposure to involve a functional deficiency of iron suggests novel therapies such as metal supplementation (e.g. inhaled and oral). In addition, the demonstration of a shared mechanism of biological effects allows understanding the common clinical, physiological, and pathological presentation fol

  11. Effects of Heat-Treated Wood Particles on the Physico-Mechanical Properties and Extended Creep Behavior of Wood/Recycled-HDPE Composites Using the Time-Temperature Superposition Principle.

    PubMed

    Yang, Teng-Chun; Chien, Yi-Chi; Wu, Tung-Lin; Hung, Ke-Chang; Wu, Jyh-Horng

    2017-03-30

    This study investigated the effectiveness of heat-treated wood particles for improving the physico-mechanical properties and creep performance of wood/recycled-HDPE composites. The results reveal that the composites with heat-treated wood particles had significantly decreased moisture content, water absorption, and thickness swelling, while no improvements of the flexural properties or the wood screw holding strength were observed, except for the internal bond strength. Additionally, creep tests were conducted at a series of elevated temperatures using the time-temperature superposition principle (TTSP), and the TTSP-predicted creep compliance curves fit well with the experimental data. The creep resistance values of composites with heat-treated wood particles were greater than those having untreated wood particles due to the hydrophobic character of the treated wood particles and improved interfacial compatibility between the wood particles and polymer matrix. At a reference temperature of 20 °C, the improvement of creep resistance ( ICR ) of composites with heat-treated wood particles reached approximately 30% over a 30-year period, and it increased significantly with increasing reference temperature.

  12. Effects of Heat-Treated Wood Particles on the Physico-Mechanical Properties and Extended Creep Behavior of Wood/Recycled-HDPE Composites Using the Time–Temperature Superposition Principle

    PubMed Central

    Yang, Teng-Chun; Chien, Yi-Chi; Wu, Tung-Lin; Hung, Ke-Chang; Wu, Jyh-Horng

    2017-01-01

    This study investigated the effectiveness of heat-treated wood particles for improving the physico-mechanical properties and creep performance of wood/recycled-HDPE composites. The results reveal that the composites with heat-treated wood particles had significantly decreased moisture content, water absorption, and thickness swelling, while no improvements of the flexural properties or the wood screw holding strength were observed, except for the internal bond strength. Additionally, creep tests were conducted at a series of elevated temperatures using the time–temperature superposition principle (TTSP), and the TTSP-predicted creep compliance curves fit well with the experimental data. The creep resistance values of composites with heat-treated wood particles were greater than those having untreated wood particles due to the hydrophobic character of the treated wood particles and improved interfacial compatibility between the wood particles and polymer matrix. At a reference temperature of 20 °C, the improvement of creep resistance (ICR) of composites with heat-treated wood particles reached approximately 30% over a 30-year period, and it increased significantly with increasing reference temperature. PMID:28772726

  13. How do bubbles grow in a weakly supersaturated solution?

    NASA Astrophysics Data System (ADS)

    Enriquez, Oscar; Sun, Chao; Lohse, Detlef; Prosperetti, Andrea; van der Meer, Devaraj

    2013-11-01

    Beer, champagne and soft-drinks are water-based solutions which owe their ``bubbliness'' to a moderate degree of carbon dioxide supersaturation. Bubbles grow sequentially from nucleation sites due to solute concentration gradients and detach due to buoyancy. The leading mass transfer mechanism is diffusion, but the advection caused by the moving surface also plays an important role. Now, what happens at the limit of very weak supersaturation? We take an experimental look at CO2 bubbles growing in water under such a condition. Nucleation sites are provided by hydrophobic micro-cavities on a silicon chip, therefore controlling the number and position of bubbles. Although advection is negligible, measured growth rates for an isolated bubble differ noticeably from a purely diffusive theoretical solution. We can explain the differences as effects of the concentration boundary layer around the bubble. Initially, its interaction with the surface on which the bubble grows slows the process down. Later on, the growth rate is enhanced by buoyancy effects caused by the depletion of the solute in the surroundings of the bubble. When neighboring bubbles are brought into play they interact through their boundary layers, further slowing down their growth rates.

  14. Pharmaceutical Particle Engineering via Spray Drying

    PubMed Central

    2007-01-01

    This review covers recent developments in the area of particle engineering via spray drying. The last decade has seen a shift from empirical formulation efforts to an engineering approach based on a better understanding of particle formation in the spray drying process. Microparticles with nanoscale substructures can now be designed and their functionality has contributed significantly to stability and efficacy of the particulate dosage form. The review provides concepts and a theoretical framework for particle design calculations. It reviews experimental research into parameters that influence particle formation. A classification based on dimensionless numbers is presented that can be used to estimate how excipient properties in combination with process parameters influence the morphology of the engineered particles. A wide range of pharmaceutical application examples—low density particles, composite particles, microencapsulation, and glass stabilization—is discussed, with specific emphasis on the underlying particle formation mechanisms and design concepts. PMID:18040761

  15. Gravitational particle production in braneworld cosmology.

    PubMed

    Bambi, C; Urban, F R

    2007-11-09

    Gravitational particle production in a time variable metric of an expanding universe is efficient only when the Hubble parameter H is not too small in comparison with the particle mass. In standard cosmology, the huge value of the Planck mass M{Pl} makes the mechanism phenomenologically irrelevant. On the other hand, in braneworld cosmology, the expansion rate of the early Universe can be much faster, and many weakly interacting particles can be abundantly created. Cosmological implications are discussed.

  16. Airborne soil organic particles generated by precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bingbing; Harder, Tristan H.; Kelly, Stephen T.

    Airborne organic particles play a critical role in the Earth’s climate1, public health2, air quality3, and hydrological and carbon cycles4. These particles exist in liquid, amorphous semi-solid, or solid (glassy) phase states depending on their composition and ambient conditions5. However, sources and formation mechanisms for semi- solid and solid organic particles are poorly understood and typically neglected in atmospheric models6. Here we report field evidence for airborne solid organic particles generated by a “raindrop” mechanism7 pertinent to atmosphere – land surface interactions (Fig. 1). We find that after rain events at Southern Great Plains, Oklahoma, USA, submicron solid particles, withmore » a composition consistent with soil organic matter, contributed up to 60% of atmospheric particles in number. Subsequent experiments indicate that airborne soil organic particles are ejected from the surface of soils caused by intensive rains or irrigation. Our observations suggest that formation of these particles may be a widespread phenomenon in ecosystems where soils are exposed to strong, episodic precipitation events such as agricultural systems and grasslands8. Chemical imaging and micro-spectroscopy analysis of their physico-chemical properties suggests that airborne soil organic particles may have important impacts on cloud formation and efficiently absorb solar radiation and hence, are an important type of particles.« less

  17. Motion of particles with inertia in a compressible free shear layer

    NASA Technical Reports Server (NTRS)

    Samimy, M.; Lele, S. K.

    1991-01-01

    The effects of the inertia of a particle on its flow-tracking accuracy and particle dispersion are studied using direct numerical simulations of 2D compressible free shear layers in convective Mach number (Mc) range of 0.2 to 0.6. The results show that particle response is well characterized by tau, the ratio of particle response time to the flow time scales (Stokes' number). The slip between particle and fluid imposes a fundamental limit on the accuracy of optical measurements such as LDV and PIV. The error is found to grow like tau up to tau = 1 and taper off at higher tau. For tau = 0.2 the error is about 2 percent. In the flow visualizations based on Mie scattering, particles with tau more than 0.05 are found to grossly misrepresent the flow features. These errors are quantified by calculating the dispersion of particles relative to the fluid. Overall, the effect of compressibility does not seem to be significant on the motion of particles in the range of Mc considered here.

  18. Synthesis and characterization of monosodium urate (MSU) nano particles

    NASA Astrophysics Data System (ADS)

    Tank, Nirali S.; Rathod, K. R.; Parekh, B. B.; Parikh, K. D.; Joshi, M. J.

    2016-05-01

    In Gout the deposition of crystals of Monosodium Urate (MSU) in various connective tissues and joints occurs, which is very painful with immflamation. The deposition likely to begin with nano particles form and expected to grow in to micro-paricles and hence it is important to synthesize and characrterize MSU nano-particles. The MSU nano particles were synthesized by wet chemical method using NaOH and uric acid (C5H4N4O3) and then characterized by powder XRD, TEM, FT-IR and thermal analysis. From the powder XRD the triclinic structure was found and 40 nm average particle size was estimated by using Scherrer's formula. From TEM the particle size was found to be in the range of 20 to 60 nm. The FT-IR spectrum for the MSU nano particles confirmed the presence of O-H stretching, N-H stretching, N-H rocking, C = O, C = C Enol or Keto and C = N vibrations. The thermal analysis was carried out from room temperature to 900°C. With comparison to the bulk MSU the thermal stability of MSU nano particles was slightly higher and 1.5 water molecules were found to be associated with MSU nano particles. Present results are compared with the bulk MSU.

  19. In Situ Solid Particle Generator

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Vijayakumar, R.

    2013-01-01

    Particle seeding is a key diagnostic component of filter testing and flow imaging techniques. Typical particle generators rely on pressurized air or gas sources to propel the particles into the flow field. Other techniques involve liquid droplet atomizers. These conventional techniques have drawbacks that include challenging access to the flow field, flow and pressure disturbances to the investigated flow, and they are prohibitive in high-temperature, non-standard, extreme, and closed-system flow conditions and environments. In this concept, the particles are supplied directly within a flow environment. A particle sample cartridge containing the particles is positioned somewhere inside the flow field. The particles are ejected into the flow by mechanical brush/wiper feeding and sieving that takes place within the cartridge chamber. Some aspects of this concept are based on established material handling techniques, but they have not been used previously in the current configuration, in combination with flow seeding concepts, and in the current operational mode. Unlike other particle generation methods, this concept has control over the particle size range ejected, breaks up agglomerates, and is gravity-independent. This makes this device useful for testing in microgravity environments.

  20. Spatially Localized Particle Energization by Landau Damping in Current Sheets

    NASA Astrophysics Data System (ADS)

    Howes, G. G.; Klein, K. G.; McCubbin, A. J.

    2017-12-01

    Understanding the mechanisms of particle energization through the removal of energy from turbulent fluctuations in heliospheric plasmas is a grand challenge problem in heliophysics. Under the weakly collisional conditions typical of heliospheric plasma, kinetic mechanisms must be responsible for this energization, but the nature of those mechanisms remains elusive. In recent years, the spatial localization of plasma heating near current sheets in the solar wind and numerical simulations has gained much attention. Here we show, using the innovative and new field-particle correlation technique, that the spatially localized particle energization occurring in a nonlinear gyrokinetic simulation has the velocity space signature of Landau damping, suggesting that this well-known collisionless damping mechanism indeed actively leads to spatially localized heating in the vicinity of current sheets.

  1. Results and perspectives of particle transport measurements in gases in microgravity

    NASA Astrophysics Data System (ADS)

    Vedernikov, Andrei; Balapanov, Daniyar; Beresnev, Sergey

    2016-07-01

    Solid or liquid particles floating in a gas belong to dispersed systems, most often referred to as aerosols or dust clouds. They are widely spread in nature, involving both environmental and technological issues. They attract growing attention in microgravity, particularly in complex plasma, simulation of protoplanetary dust clouds, atmospheric aerosol, etc. Brownian random walk, motion of particles in gravity, electrostatic and magnetic fields, are well defined. We present the survey showing that the quantitative description of a vast variety of other types of motion is much less accurate, often known only in a limited region of parameters, sometimes described by the contradictory models, poorly verified experimentally. It is true even for the most extensively investigated transport phenomena - thermophoresis and photophoresis, not to say about diffusiophoresis, gravito-photophoresis, various other types of particle motion driven by physicochemical transformation and accommodation peculiarities on the particle-gas interface, combination of different processes. The number of publications grow very quickly, only those dealing with thermophoresis exceeded 300 in 2015. Hence, there is a strong need in high quality experimental data on particle transport properties with growing interest to expand the scope for non-isometric particles, agglomerates, dense clouds, interrelation with the two-phase flow dynamics. In most cases, the accuracy and sometimes the entire possibility of the measurement is limited by the presence of gravity. Floating particles have the density considerably different from that of the gas. They sediment, often with gliding and tumbling, that perturbs the motion trajectory, local hydrodynamic environment around particles, all together complicating definition of the response. Measurements at very high or very low Knudsen numbers (rarefied gas or too big particles) are of particular difficulty. Experiments assume creating a well-defined force, i

  2. Quantitation of Cellular Dynamics in Growing Arabidopsis Roots with Light Sheet Microscopy

    PubMed Central

    Birnbaum, Kenneth D.; Leibler, Stanislas

    2011-01-01

    To understand dynamic developmental processes, living tissues have to be imaged frequently and for extended periods of time. Root development is extensively studied at cellular resolution to understand basic mechanisms underlying pattern formation and maintenance in plants. Unfortunately, ensuring continuous specimen access, while preserving physiological conditions and preventing photo-damage, poses major barriers to measurements of cellular dynamics in growing organs such as plant roots. We present a system that integrates optical sectioning through light sheet fluorescence microscopy with hydroponic culture that enables us to image, at cellular resolution, a vertically growing Arabidopsis root every few minutes and for several consecutive days. We describe novel automated routines to track the root tip as it grows, to track cellular nuclei and to identify cell divisions. We demonstrate the system's capabilities by collecting data on divisions and nuclear dynamics. PMID:21731697

  3. Magnetorheological response of highly filled magnetoactive elastomers from perspective of mechanical energy density: Fractal aggregates above the nanometer scale?

    PubMed

    Sorokin, Vladislav V; Belyaeva, Inna A; Shamonin, Mikhail; Kramarenko, Elena Yu

    2017-06-01

    The dynamic shear modulus of magnetoactive elastomers containing 70 and 80 mass % of carbonyl iron microparticles is measured as a function of strain amplitude via dynamic torsion oscillations in various magnetic fields. The results are presented in terms of the mechanical energy density and considered in the framework of the conventional Kraus model. The form exponent of the Kraus model is further related to a physical model of Huber et al. [Huber et al., J. Phys.: Condens. Matter 8, 409 (1996)10.1088/0953-8984/8/29/003] that uses a realistic representation for the cluster network possessing fractal structure. Two mechanical loading regimes are identified. At small strain amplitudes the exponent β of the Kraus model changes in an externally applied magnetic field due to rearrangement of ferromagnetic-filler particles, while at large strain amplitudes, the exponent β seems to be independent of the magnetic field. The critical mechanical energy characterizing the transition between these two regimes grows with the increasing magnetic field. Similarities between agglomeration and deagglomeration of magnetic filler under simultaneously applied magnetic field and mechanical shear and the concept of jamming transition are discussed. It is proposed that the magnetic field should be considered as an additional parameter to the jamming phase diagram of rubbers filled with magnetic particles.

  4. Numerical study into the morphology and formation mechanisms of three-dimensional particle structures in vibrated cylindrical cavities with various heating conditions

    NASA Astrophysics Data System (ADS)

    Lappa, Marcello

    2016-10-01

    The present analysis extends the author's earlier work [Lappa, Phys. Fluids 26, 093301 (2014), 10.1063/1.4893078] on the properties of patterns formed by the spontaneous accumulation and ordering of solid particles in certain types of flow. It is shown that under certain conditions, when subjected to vibrations to induce natural flow, nonisothermal fluids with dispersed solid particles are characterized by intervals of solid-pattern-forming behavior due to particle rearrangements preceded by intervals in which no recognizable structures of solid matter can be detected. The dynamics of these systems are highly nonlinear in nature. Because this family of particle attractors is known to exhibit strong sensitivity to the symmetry properties of the considered vibrated system and related geometrical constraints, the present study attempts to clarify the related dynamics in a geometry with curved walls (cylindrical enclosure). In particular, by assuming vibrations always directed perpendicularly to the imposed temperature gradient, we show that the morphology, spatial extension (percentage of physical volume occupied), separation (spatial distance), and mechanisms responsible for the formation of the resulting particle structures change significantly according to whether the temperature gradient is parallel or perpendicular to the symmetry axis of the cylinder. This indicates that the physics is not invariant with respect to 90° rotations in space of the specific forcing considered (direction of the imposed temperature gradient and associated perpendicular vibrations). Additional insights into the problem are obtained by assessing separately the influence played by the time-averaged (mean) and oscillatory effects. According to the numerical results, the intriguing diversity of particle agglomerates results from the different role or importance played by (curved or straight) boundaries in constraining particles and from the different structure and topology of the

  5. Particle-Based Geometric and Mechanical Modelling of Woven Technical Textiles and Reinforcements for Composites

    NASA Astrophysics Data System (ADS)

    Samadi, Reza

    affecting the textile geometry and constitutive behaviour under evolving loading; 5) validating simulation results with experimental trials; and 6) demonstrating the applicability of the simulation procedure to textile reinforcements featuring large numbers of small fibres as used in PMCs. As a starting point, the effects of reinforcement configuration on the in-plane permeability of textile reinforcements, through-thickness thermal conductivity of PMCs and in-plane stiffness of unidirectional and bidirectional PMCs were quantified systematically and correlated with specific geometric parameters. Variability was quantified for each property at a constant fibre volume fraction. It was observed that variability differed strongly between properties; as such, the simulated behaviour can be related to variability levels seen in experimental measurements. The effects of the geometry of textile reinforcements on the aforementioned processing and performance properties of the textiles and PMCs made from these textiles was demonstrated and validated, but only for simple cases as thorough and credible geometric models were not available at the onset of this work. Outcomes of this work were published in a peer-reviewed journal [101]. Through this thesis it was demonstrated that predicting changes in textile geometry prior and during loading is feasible using the proposed particle-based modelling method. The particle-based modelling method relies on discrete mechanics and offers an alternative to more traditional methods based on continuum mechanics. Specifically it alleviates issues caused by large strains and management of intricate, evolving contact present in finite element simulations. The particle-based modelling method enables credible, intricate modelling of the geometry of textiles at the mesoscopic scale as well as faithful mechanical modelling under load. Changes to textile geometry and configuration due to the normal compaction pressure, stress relaxation, in-plane shear

  6. Rheology of granular materials composed of crushable particles.

    PubMed

    Nguyen, Duc-Hanh; Azéma, Émilien; Sornay, Philippe; Radjaï, Farhang

    2018-04-11

    We investigate sheared granular materials composed of crushable particles by means of contact dynamics simulations and the bonded-cell model for particle breakage. Each particle is paved by irregular cells interacting via cohesive forces. In each simulation, the ratio of the internal cohesion of particles to the confining pressure, the relative cohesion, is kept constant and the packing is subjected to biaxial shearing. The particles can break into two or more fragments when the internal cohesive forces are overcome by the action of compressive force chains between particles. The particle size distribution evolves during shear as the particles continue to break. We find that the breakage process is highly inhomogeneous both in the fragment sizes and their locations inside the packing. In particular, a number of large particles never break whereas a large number of particles are fully shattered. As a result, the packing keeps the memory of its initial particle size distribution, whereas a power-law distribution is observed for particles of intermediate size due to consecutive fragmentation events whereby the memory of the initial state is lost. Due to growing polydispersity, dense shear bands are formed inside the packings and the usual dilatant behavior is reduced or cancelled. Hence, the stress-strain curve no longer passes through a peak stress, and a progressive monotonic evolution towards a pseudo-steady state is observed instead. We find that the crushing rate is controlled by the confining pressure. We also show that the shear strength of the packing is well expressed in terms of contact anisotropies and force anisotropies. The force anisotropy increases while the contact orientation anisotropy declines for increasing internal cohesion of the particles. These two effects compensate each other so that the shear strength is nearly independent of the internal cohesion of particles.

  7. Smoothed-particle hydrodynamics and nonequilibrium molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoover, W. G.; Hoover, C. G.

    1993-08-01

    Gingold, Lucy, and Monaghan invented a grid-free version of continuum mechanics ``smoothed-particle hydrodynamics,`` in 1977. It is a likely contributor to ``hybrid`` simulations combining atomistic and continuum simulations. We describe applications of this particle-based continuum technique from the closely-related standpoint of nonequilibrium molecular dynamics. We compare chaotic Lyapunov spectra for atomistic solids and fluids with those which characterize a two-dimensional smoothed-particle fluid system.

  8. Ion beam sputtering of Ag - Angular and energetic distributions of sputtered and scattered particles

    NASA Astrophysics Data System (ADS)

    Feder, René; Bundesmann, Carsten; Neumann, Horst; Rauschenbach, Bernd

    2013-12-01

    Ion beam sputter deposition (IBD) provides intrinsic features which influence the properties of the growing film, because ion properties and geometrical process conditions generate different energy and spatial distribution of the sputtered and scattered particles. A vacuum deposition chamber is set up to measure the energy and spatial distribution of secondary particles produced by ion beam sputtering of different target materials under variation of geometrical parameters (incidence angle of primary ions and emission angle of secondary particles) and of primary ion beam parameters (ion species and energies).

  9. Application of growing nested Petri nets for modeling robotic systems operating under risk

    NASA Astrophysics Data System (ADS)

    Sorokin, E. V.; Senkov, A. V.

    2017-10-01

    The paper studies the peculiarities of modeling robotic systems engaged in mining. Existing modeling mechanisms are considered, which are based on nested Petri nets, and a new formalism of growing Petri nets is presented that allows modeling robotic systems operating under risk. Modeling is provided both for the regular operation mode and for non-standard modes in which individual elements of the system can perform uncharacteristic functions. The example shows growing Petri nets that are used for modeling extraction of flat coal seams by a robotic system consisting of several different-type autonomous robots.

  10. Wave particle interactions in Jupiter's magnetosphere: Implications for auroral and magnetospheric particle distributions

    NASA Astrophysics Data System (ADS)

    Saur, Joachim; Schreiner, Anne; Barry, Mauk; Clark, George; Kollman, Peter

    2017-04-01

    We investigate the occurrence and the role of wave particle interaction processes, i.e., Landau and cyclotron damping, in Jupiter's magnetosphere. Therefore we calculate kinetic length and temporal scales, which we cross-compare at various regions within Jupiter's magnetosphere. Based on these scales, we investigate the roles of possible wave particle mechanisms in each region, e.g., Jupiter's plasma sheet, the auroral acceleration region and the polar ionosphere. We thereby consider that the magnetospheric regions are coupled through convective transport, Alfven and other wave modes. We particularly focus on the role of kinetic Alfven waves in contributing to Jupiter's aurora. Our results will aid the interpretation of particle distribution functions measured by the JEDI instrument onboard the JUNO spacecraft.

  11. Particle Sliding on a Rough Incline

    ERIC Educational Resources Information Center

    Zurcher, Ulrich

    2007-01-01

    We study a particle sliding on a rough inclined plane as an example of a mechanical problem with nonholonomic constraint. The particle is launched in an arbitrary direction so that its motion has both a horizontal and a "vertical" (i.e., up- and downhill) direction. The friction force acts along the instantaneous velocity, so that the horizontal…

  12. Temperature Sensitivity of Soil Respiration to Nitrogen Fertilization: Varying Effects between Growing and Non-Growing Seasons

    PubMed Central

    Liu, Qingfang; Wang, Rui; Li, Rujian; Hu, Yaxian; Guo, Shengli

    2016-01-01

    Nitrogen (N) fertilization has a considerable effect on food production and carbon cycling in agro-ecosystems. However, the impacts of N fertilization rates on the temperature sensitivity of soil respiration (Q10) were controversial. Five N rates (N0, N45, N90, N135, and N180) were applied to a continuous winter wheat (Triticum aestivum L.) crop on the semi-arid Loess Plateau, and the in situ soil respiration was monitored during five consecutive years from 2008 to 2013. During the growing season, the mean soil respiration rates increased with increasing N fertilization rates, peaking at 1.53 μmol m−2s−1 in the N135 treatment. A similar dynamic pattern was observed during the non-growing season, yet on average with 7.3% greater soil respiration rates than the growing season. In general for all the N fertilization treatments, the mean Q10 value during the non-growing season was significantly greater than that during the growing season. As N fertilization rates increased, the Q10 values did not change significantly in the growing season but significantly decreased in the non-growing season. Overall, N fertilization markedly influenced soil respirations and Q10 values, in particular posing distinct effects on the Q10 values between the growing and non-growing seasons. PMID:27992576

  13. White zein colloidal particles: synthesis and characterization of their optical properties on the single particle level and in concentrated suspensions.

    PubMed

    de Boer, F Y; Kok, R N U; Imhof, A; Velikov, K P

    2018-04-18

    Growing interest in using natural, biodegradable ingredients for food products leads to an increase in research for alternative sources of functional ingredients. One alternative is zein, a water-insoluble protein from corn. Here, a method to investigate the optical properties of white zein colloidal particles is presented in both diluted and concentrated suspensions. The particles are synthesized, after purification of zein, by anti-solvent precipitation. Mean particle diameters ranged from 35 to 135 nm based on dynamic light scattering. The value of these particles as white colorant is examined by measuring their optical properties. Dilute suspensions are prepared to measure the extinction cross section of individual particles and this was combined with Mie theory to determine a refractive index (RI) of 1.49 ± 0.01 for zein particles dispersed in water. This value is used to further model the optical properties of concentrated suspensions. To obtain full opacity of the suspension, comparable to 0.1-0.2 wt% suspensions of TiO2, concentrations of 2 to 3.3 wt% of zein particles are sufficient. The optimal size for maximal scattering efficiency is explored by modeling dilute and concentrated samples with RI's matching those of zein and TiO2 particles in water. The transport mean free path of light was determined experimentally and theoretically and the agreement between the transport mean free path calculated from the model and the measured value is better than 30%. Such particles have the potential to be an all-natural edible alternative for TiO2 as white colorant in wet food products.

  14. Effect of crumb-rubber particle size on mechanical response of polyurethane foam composites

    NASA Astrophysics Data System (ADS)

    Sanjay, Omer Sheik

    The compression properties of foam are governed by by three factors: i) cell edge bending ii) compression of cell fluid iii) membrane stresses in the cell faces. The effect of reinforcement, granular form of scrap tire rubber on contribution of each of these effects along with the physical properties of polyurethane foam is investigated. It is seen that the addition of crumb-rubber hinders the formation of cell membranes during the foaming process. Four different sizes of particles were chosen to closely study the effect of particle size on the physical properties of the foam composite. There is a definite pattern seen in each of the physical property of the composite with change in the particle size. Addition of crumb-rubber decreases the compressive strength but in turn increases the elastic modulus of the composite. The rubber particles act as the sites for stress concentration and hence the inclusion of rubber particles induces the capability to transfer the axial load laterally along the surface of the foam. Also, the filler material induces porosity into the foam, which is seen in the SEM images, and hence the addition of rubber particles induces brittleness, which makes the foam composites extensively applicable for structural application in sandwich components. The lightweight composite therefore is a potential substitute to the heavier metal foams and honeycombs as a protective layer.

  15. Single charging events on colloidal particles in a nonpolar liquid with surfactant

    NASA Astrophysics Data System (ADS)

    Schreuer, Caspar; Vandewiele, Stijn; Brans, Toon; Strubbe, Filip; Neyts, Kristiaan; Beunis, Filip

    2018-01-01

    Electrical charging of colloidal particles in nonpolar liquids due to surfactant additives is investigated intensively, motivated by its importance in a variety of applications. Most methods rely on average electrophoretic mobility measurements of many particles, which provide only indirect information on the charging mechanism. In the present work, we present a method that allows us to obtain direct information on the charging mechanism, by measuring the charge fluctuations on individual particles with a precision higher than the elementary charge using optical trapping electrophoresis. We demonstrate the capabilities of the method by studying the influence of added surfactant OLOA 11000 on the charging of single colloidal PMMA particles in dodecane. The particle charge and the frequency of charging events are investigated both below and above the critical micelle concentration (CMC) and with or without applying a DC offset voltage. It is found that at least two separate charging mechanisms are present below the critical micelle concentration. One mechanism is a process where the particle is stripped from negatively charged ionic molecules. An increase in the charging frequency with increased surfactant concentration suggests a second mechanism that involves single surfactant molecules. Above the CMC, neutral inverse micelles can also be involved in the charging process.

  16. Particle Size, Composition, and Ocean Temperature Govern the Global Distribution of Particle Transfer Efficiency to the Mesopelagic

    NASA Astrophysics Data System (ADS)

    Cram, J. A.; Weber, T. S.; Leung, S.; Deutsch, C. A.

    2016-02-01

    New analyses of geochemical tracer data detect significant differences between ocean basins in the depth scale of particle remineralization, with deepest in high latitudes, shallowest in the subtropical gyres, and intermediate in the tropics. We evaluate the possible causes of this pattern using a mechanistic model of particle dynamics that includes microbial colonization, detachment, and degradation of sinking particles. The model represents the size structure of particles, the effects of mineral ballast (diagnosed from alkalinity and silicate distributions) and seawater temperature (which influences particle velocity and microbial metabolic rates). We find that diagnosed spatial patterns in particle flux profiles can be best reproduced through a combination of surface particle size distribution and temperature, which both favor low transfer efficiency in subtropical gyres, and high transfer efficiency in higher latitudes and intermediate tropical values. Particle mineral content is shown to significantly modulate these patterns, albeit with a high remaining uncertainty. Implications of these mechanisms for changes in biological carbon storage in a warmer ocean are examined.

  17. Changes in particle morphology during illitization: An experimental study

    USGS Publications Warehouse

    Whitney, Gene; Velde, Bruce

    1993-01-01

    Smectite was reacted at several temperatures between 200°C and 500°C to produce interstratified illite/smectite (I/S) with different proportions of expandable layers. Dispersed and sedimented products were examined using a transmission electron microscope. Particle size and aspect ratio showed no systematic change as a function of reaction extent during R0 illitization. However, particles exhibited rounded edges during the early stages of the reaction, suggesting some dissolution of primary smectite. Additionally, increasing particle contrast in the electron beam suggests thickening of particles with increasing reaction extent. The thickening of particles is thought to be produced by the nucleation and precipitation of secondary illite layers on primary smectite layers. In the most extensively reacted I/S, particles have become aggregated into clumps or quasicrystals by lateral growth of illite layers. Internal uniformity of crystallographic alignment of individual growing crystals within each aggregate was reflected in the increasing frequency of 60° and 120° interfacial angles within each aggregate. In highly illitic I/S, these aggregates took on an overall euhedral form and became crystallographically contiguous, producing single crystal electron diffraction patterns.

  18. Solar radiation induced rotational bursting of interplanetary particles

    NASA Technical Reports Server (NTRS)

    Sparrow, J. G.

    1975-01-01

    It is suggested that the magnitudes of the two radiation-induced rotational bursting mechanisms (Radzieskii effect and windmill effect) have been overestimated and that they do not work significantly faster than the Poynting-Robertson effect in removing interplanetary particles. These two mechanisms are described, and serious doubts are raised regarding the derivation of their radiation pressure-torque proportionality constants, which are required for calculating their magnitudes. It is shown that both mechanisms will cause the alignment of elongated particles and, consequently, the polarization of zodiacal light. Since no positive polarization has been measured at the antisolar point, it is concluded that the magnitudes of the rotational bursting mechanisms are smaller than that of the Poynting-Robertson effect.

  19. Cleaning mechanism of particle contaminants on large aperture optical components by using air knife sweeping technology

    NASA Astrophysics Data System (ADS)

    Niu, Longfei; Liu, Hao; Miao, Xinxiang; Lv, Haibing; Yuan, Xiaodong; Zhou, Hai; Yao, Caizhen; Zhou, Guorui; Li, Qin

    2017-05-01

    The cleaning mechanism of optical surface particle contaminants in the light pneumatic tube was simulated based on the static equations and JKR model. Cleaning verification experiment based on air knife sweeping system and on-line monitoring system in high power laser facility was set up in order to verify the simulated results. Results showed that the removal ratio is significantly influenced by sweeping velocity and angle. The removal ratio can reach to 94.3% by using higher input pressure of the air knife, demonstrating that the air knife sweeping technology is useful for maintaining the surface cleanliness of optical elements, and thus guaranteeing the long-term stable running of the high power laser facility.

  20. Advances in Field Deployable Instrumented Particles for the Study of Alluvial Transport Mechanisms

    NASA Astrophysics Data System (ADS)

    Dillon, B.; Strom, K.

    2017-12-01

    Advances in microelectromechanical systems (MEMs) in the past decade have lead to the development of various instrumented or "smart" particles for use in the study of alluvial transport. The goal of many of these devices is to collect data on the interaction between hydrodynamic turbulence and individual sediment particles. Studying this interaction provides a basis to better understand entrainment and deposition processes which leads to better predictive morphologic and transport models. In collecting data on these processes, researchers seek to capture the time history of the forces incident on the particle and the particle's reaction. Many methods have been employed to capture this data - miniaturized pressure traps, accelerometers, gyroscopes, MEMs pressure transducers, and cantilevered load cells. However no system to date has been able to capture the pressure forces incident on the particle and its reaction while remaining mobile and of a size and density comparable to most gravels. Advances in the development, deployment, and use of waterproofed laboratory instrumentation have led our research group to develop such a particle. This particle has been used in both laboratory settings and large-scale fluvial environments (coupled with a field-deployable PIV system) to capture data on turbulent erosion processes. This system advances the practice in several ways: 1) It is, at present, the smallest (⌀ 19mm) instrumented erodible particle reported in the literature. 2) It contains novel developments in pressure sensing technology which allow the inclusion of six pressure ports, a 3-axis accelerometer, and a 1-axis gyroscope - all of which can be recorded simultaneously. 3) It expands the researcher's abilities to gather data on phenomena that, previously, have mandated the use of a laboratory scale model. The use of this system has generated observations of the so-called very large scale motions (VLSMs) in a reach of the Virginia section of the New River. Their

  1. On the fate of particles liberated from hydroxyapatite coatings in vivo.

    PubMed

    Dunne, C F; Gibbons, J; FitzPatrick, D P; Mulhall, K J; Stanton, K T

    2015-03-01

    Hydroxyapatite (HA) has been used as a coating for orthopaedic implants for over 30 years to help promote the fixation of orthopaedic implants into the surrounding bone. However, concerns exist about the fate of the hydroxyapatite coating and hydroxyapatite particles in vivo, especially in the wake of recent concerns about particulates from metal-on-metal bearings. Here, we assess the mechanisms of particle detachment from coated orthopaedic devices as well as the safety and performance concerns and biomedical implications arising from the liberation of the particles by review of the literature. The mechanisms that can result in the detachment of the HA coating from the implant can be mechanical or biochemical, or both. Mechanical mechanisms include implant insertion, abrasion, fatigue and micro-motion. Biochemical mechanisms that contribute to the liberation of HA particles include dissolution into extra-cellular fluid, cell-mediated processes and crystallisation of amorphous phases. The form the particles take once liberated is influenced by a number of factors such as coating method, the raw powder morphology, processing parameters, coating thickness and coating structure. This review summarises and discusses each of these factors and concludes that HA is a safe biomimetic material to use as a coating and does not cause any problems in particulate form if liberated as debris from an orthopaedic implant.

  2. Label-Free Alignment of Nonmagnetic Particles in a Small Uniform Magnetic Field.

    PubMed

    Wang, Zhaomeng; Wang, Ying; Wu, Rui Ge; Wang, Z P; Ramanujan, R V

    2018-01-01

    Label-free manipulation of biological entities can minimize damage, increase viability and improve efficiency of subsequent analysis. Understanding the mechanism of interaction between magnetic and nonmagnetic particles in an inverse ferrofluid can provide a mechanism of label-free manipulation of such entities in a uniform magnetic field. The magnetic force, induced by relative magnetic susceptibility difference between nonmagnetic particles and surrounding magnetic particles as well as particle-particle interaction were studied. Label-free alignment of nonmagnetic particles can be achieved by higher magnetic field strength (Ba), smaller particle spacing (R), larger particle size (rp1), and higher relative magnetic permeability difference between particle and the surrounding fluid (Rμr). Rμr can be used to predict the direction of the magnetic force between both magnetic and nonmagnetic particles. A sandwich structure, containing alternate layers of magnetic and nonmagnetic particle chains, was studied. This work can be used for manipulation of nonmagnetic particles in lab-on-a-chip applications.

  3. Features and heterogeneities in growing network models

    NASA Astrophysics Data System (ADS)

    Ferretti, Luca; Cortelezzi, Michele; Yang, Bin; Marmorini, Giacomo; Bianconi, Ginestra

    2012-06-01

    Many complex networks from the World Wide Web to biological networks grow taking into account the heterogeneous features of the nodes. The feature of a node might be a discrete quantity such as a classification of a URL document such as personal page, thematic website, news, blog, search engine, social network, etc., or the classification of a gene in a functional module. Moreover the feature of a node can be a continuous variable such as the position of a node in the embedding space. In order to account for these properties, in this paper we provide a generalization of growing network models with preferential attachment that includes the effect of heterogeneous features of the nodes. The main effect of heterogeneity is the emergence of an “effective fitness” for each class of nodes, determining the rate at which nodes acquire new links. The degree distribution exhibits a multiscaling behavior analogous to the the fitness model. This property is robust with respect to variations in the model, as long as links are assigned through effective preferential attachment. Beyond the degree distribution, in this paper we give a full characterization of the other relevant properties of the model. We evaluate the clustering coefficient and show that it disappears for large network size, a property shared with the Barabási-Albert model. Negative degree correlations are also present in this class of models, along with nontrivial mixing patterns among features. We therefore conclude that both small clustering coefficients and disassortative mixing are outcomes of the preferential attachment mechanism in general growing networks.

  4. Orientation specific deposition of mesoporous particles

    NASA Astrophysics Data System (ADS)

    Kjellman, Tomas; Bodén, Niklas; Wennerström, Hâkan; Edler, Karen J.; Alfredsson, Viveka

    2014-11-01

    We present a protocol for a facile orientation specific deposition of plate-like mesoporous SBA-15 silica particles onto a surface (mesopores oriented normal to surface). A drop of an aqueous dispersion of particles is placed on the surface and water vaporizes under controlled relative humidity. Three requirements are essential for uniform coverage: particle dispersion should not contain aggregates, a weak attraction between particles and surface is needed, and evaporation rate should be low. Aggregates are removed by stirring/sonication. Weak attraction is realized by introducing cationic groups to the surface. Insight into the mechanisms of the so-called coffee stain effect is also provided.

  5. Glass formation and unusual hygroscopic growth of iodic acid solution droplets with relevance for iodine mediated particle formation in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Murray, B. J.; Haddrell, A. E.; Peppe, S.; Davies, J. F.; Reid, J. P.; O'Sullivan, D.; Price, H. C.; Kumar, R.; Saunders, R. W.; Plane, J. M. C.; Umo, N. S.; Wilson, T. W.

    2012-09-01

    Iodine oxide particles are known to nucleate in the marine boundary layer where gas phase molecular iodine and organoiodine species are produced by macroalgae. These ultra-fine particles may then grow through the condensation of other materials to sizes where they may serve as cloud condensation nuclei. There has been some debate over the chemical identity of the initially nucleated particles. In laboratory simulations, hygroscopic measurements have been used to infer that they are composed of insoluble I2O4, while elemental analysis of laboratory generated particles suggests soluble I2O5 or its hydrated form iodic acid, HIO3 (I2O5·H2O). In this paper we explore the response of super-micron sized aqueous iodic acid solution droplets to varying humidity using both Raman microscopy and single particle electrodynamic traps. These measurements reveal that the propensity of an iodic acid solution droplet to crystallise is negligible on drying to ~0% relative humidity (RH). On applying mechanical pressure to these droplets they shatter in a manner consistent with an ultra-viscous liquid or a brittle glass. Water retention in amorphous material at low RH is important for understanding the hygroscopic growth of aerosol particles and uptake of other condensable material. Subsequent water uptake between 10 and 20% RH causes their viscosity to reduce sufficiently that the cracked droplets flow and merge. The persistence of iodic acid solution in an amorphous state, rather than a crystalline state, suggests they will more readily accommodate other condensable material and are therefore more likely to grow to sizes where they may serve as cloud condensation nuclei. On increasing the humidity to ~90% the mass of the droplets only increases by ~20% with a corresponding increase in radius of only 6%, which is remarkably small for a highly soluble material. We suggest that the small growth factor of aqueous iodic acid solution droplets is consistent with the small aerosol growth

  6. Acoustic filtration and sedimentation of soot particles

    NASA Astrophysics Data System (ADS)

    Martin, K. M.; Ezekoye, O. A.

    Removal of soot particles from a static chamber by an intense acoustic field is investigated. Combustion of a solid fuel fills a rectangular chamber with small soot particles, which sediment very slowly. The chamber is then irradiated by an intense acoustic source to produce a three dimensional standing wave field in the chamber. The acoustic excitation causes the soot particles to agglomerate, forming larger particles which sediment faster from the system. The soot also forms 1-2 cm disks, with axes parallel to the axis of the acoustic source, which are levitated by the sound field at half-wavelength spacing within the chamber. Laser extinction measurements are made to determine soot volume fractions as a function of exposure time within the chamber. The volume fraction is reduced over time by sedimentation and by particle migration to the disks. The soot disks are considered to be a novel mechanism for particle removal from the air stream, and this mechanism has been dubbed acoustic filtration. An experimental method is developed for comparing the rate of soot removal by sedimentation alone with the rate of soot removal by sedimentation and acoustic filtration. Results show that acoustic filtration increases the rate of soot removal by a factor of two over acoustically-induced sedimentation alone.

  7. Shear thinning in soft particle suspensions

    NASA Astrophysics Data System (ADS)

    Voudouris, Panayiotis; van der Zanden, Berco; Florea, Daniel; Fahimi, Zahra; Wyss, Hans

    2012-02-01

    Suspensions of soft deformable particles are encountered in a wide range of food and biological materials. Examples are biological cells, micelles, vesicles or microgel particles. While the behavior of suspenions of hard spheres - the classical model system of colloid science - is reasonably well understood, a full understanding of these soft particle suspensions remains elusive. The relation between single particle properties and macroscopic mechanical behavior still remains poorly understood in these materials. Here we examine the surprising shear thinning behavior that is observed in soft particle suspensions as a function of particle softness. We use poly-N-isopropylacrylamide (p-NIPAM) microgel particles as a model system to study this effect in detail. These soft spheres show significant shear thinning even at very large Peclet numbers, where this would not be observed for hard particles. The degree of shear thinning is directly related to the single particle elastic properties, which we characterize by the recently developed Capillary Micromechanics technique. We present a simple model that qualitatively accounts for the observed behavior.

  8. Particle Engulfment and Pushing By Solidifying Interfaces

    NASA Technical Reports Server (NTRS)

    Stefanescu, Doru M.; Mukherjee, Sundeep; Juretzko, Frank Robert; Catalina, A.drian V.; Sen, Subhayu; Curreri, P. A.

    2001-01-01

    The phenomenon of interaction of particles with solid-liquid interfaces (SLI) has been studied since the mid 1960's. While the original interest stemmed from geology applications (frost heaving in soil), researchers soon realized that fundamental understanding of particles behavior at solidifying interfaces might yield practical benefits in other fields, including metallurgy. In materials engineering the main issue is the location of particles with respect to grain boundaries at the end of solidification. Considerable experimental and theoretical research was lately focused on applications to metal matrix composites produced by casting or spray forming techniques, and on inclusion management in steel. Another application of particle SLI interaction is in the growing of Y1Ba2Cu3O(7-delta) (123) superconductor crystals from an undercooled liquid. The oxide melt contains Y2Ba1Cu1O5 (211) precipitates, which act as flux pinning sites. The experimental evidence on transparent organic materials, as well as the recent in situ observations on steel demonstrates that there exist a critical velocity of the planar SLI below which particles are pushed ahead of the interface, and above which particles are engulfment. The engulfment of a SiC particle in succinonitrile is exemplified. However, in most commercial alloys dendritic interfaces must be considered. Indeed, most data available on metallic alloys are on dendritic structures. The term engulfment is used to describe incorporation of a particle by a planar or cellular interface as a result of local interface perturbation, as opposed to entrapment that implies particle incorporation at cells or dendrites boundaries. During entrapment the particles are pushed in the intercellular or interdendritic regions and then captured when local solidification occurs. The physics of these two phenomena is fundamentally different.

  9. Effects of Thermal and Mechanical Processing on Microstructures and Desired Properties of Particle-Strengthened Cu-Cr-Nb Alloys

    NASA Technical Reports Server (NTRS)

    Anderson, Kenneth Reed

    2000-01-01

    Ternary Cu-Cr-Nb alloys, particularly Cu-8 Cr-4 Nb (in at.%), have demonstrated good thermal stability as well as high strength and conductivity at elevated temperatures. The initial powder material has a bimodal size distribution of Cr2Nb precipitates. Primary Cr2Nb precipitates are approx. 1 micron, and secondary Cr2Nb particles are 30-200 nm. The particle coarsening was analyzed and found to follow LSW-type behavior, This study provides a detailed examination of the stability and strengthening effects of Cr2Nb particles. This investigation also revealed that the primary particles provide direct grain boundary pinning and indirect grain boundary strengthening but virtually no Orowan strengthening. The secondary particles found within grains do provide Orowan strengthening. For extruded material, grain bound-ary strengthening (Hall-Petch effect) accounts for two-thirds of the strength with Orowan effects contributing the remainder. The proven advantages of Cu-Cr-Nb were the motivation to improve these attributes via microstructural refinement. Mechanical milling (MM) of Cu- 4 Cr-2 Nb and Cu-8 Cr-2 Nb produced an increase in hot pressed Vickers hardness of 122% and 96%, respectively. The increase in hardness was more due to Cu grain-size refinement than to Cr,,Nb refinement. This study also demonstrated enhanced stability of MM Cu-4 Cr-2 Nb. Hot pressed 4 h milled Cu-4 Cr-2 Nb experienced only a 22% drop in hardness when annealed at 1273 K for 50 h versus a 30% drop for extruded Cu-8 Cr-4 Nb. The goal of improving the strength and stability of Cu-4 Cr-2 Nb to better than such properties for as- extruded Cu-8 Cr-4 Nb has been met. In addition, a figure-of-merit (FOM) coupling hardness and thermal conductivity was maximized for the case of 4 h milled Cu-4 Cr-2 Nb material. Overall, Cu-Cr-Nb alloys not only possess high strength, conductivity and thermal stability but also can be further developed to improve strength and stability.

  10. A numerical study of bidisperse particles in cluster-induced turbulence

    NASA Astrophysics Data System (ADS)

    Patel, Ravi; Kong, Bo; Capecelatro, Jesse; Fox, Rodney; Desjardins, Olivier

    2016-11-01

    Particle-laden turbulent flow is an important feature of many diverse environmental and industrial systems. To elucidate the mechanics of these types of flows, we study cluster-induced turbulence (CIT), wherein momentum coupling between a carrier fluid and setting particles leads to turbulent-like fluctuations in various quantities of interest. In this work, simulations of CIT with bidisperse particles are presented. The flow of kinetic energy is tracked from its generation due to drag until its dissipation due to fluid viscosity and particle collisions. As suggested by Fox (2014), the particle kinetic energy is separated into a correlated turbulent kinetic energy and an uncorrelated granular energy. An overall energy balance is computed for various exchange terms to determine their relative importance and to understand the underlying physical mechanisms in bidisperse CIT. Additionally, volume fraction and velocity statistics for both particle types and the fluid are presented. From these results, the consequences on closures for Reynolds-averaged stress models of particle-laden flows are discussed. National Science Foundation.

  11. Application of porous titanium in prosthesis production using a moldless process: Evaluation of physical and mechanical properties with various particle sizes, shapes, and mixing ratios.

    PubMed

    Prananingrum, Widyasri; Tomotake, Yoritoki; Naito, Yoshihito; Bae, Jiyoung; Sekine, Kazumitsu; Hamada, Kenichi; Ichikawa, Tetsuo

    2016-08-01

    The prosthetic applications of titanium have been challenging because titanium does not possess suitable properties for the conventional casting method using the lost wax technique. We have developed a production method for biomedical application of porous titanium using a moldless process. This study aimed to evaluate the physical and mechanical properties of porous titanium using various particle sizes, shapes, and mixing ratio of titanium powder to wax binder for use in prosthesis production. CP Ti powders with different particle sizes, shapes, and mixing ratios were divided into five groups. A 90:10wt% mixture of titanium powder and wax binder was prepared manually at 70°C. After debinding at 380°C, the specimen was sintered in Ar at 1100°C without a mold for 1h. The linear shrinkage ratio of sintered specimens ranged from 2.5% to 14.2%. The linear shrinkage ratio increased with decreasing particle size. While the linear shrinkage ratio of Groups 3, 4, and 5 were approximately 2%, Group 1 showed the highest shrinkage of all. The bending strength ranged from 106 to 428MPa under the influence of porosity. Groups 1 and 2 presented low porosity followed by higher strength. The shear bond strength ranged from 32 to 100MPa. The shear bond strength was also particle-size dependent. The decrease in the porosity increased the linear shrinkage ratio and bending strength. Shrinkage and mechanical strength required for prostheses were dependent on the particle size and shape of titanium powders. These findings suggested that this production method can be applied to the prosthetic framework by selecting the material design. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Refining Mechanism of 7075 Al Alloy by In-Situ TiB2 Particles

    PubMed Central

    Gan, Guisheng; Yang, Bin; Zhang, Bo; Jiang, Xin; Shi, Yunlong; Wu, Yiping

    2017-01-01

    The nucleation undercooling of TiB2/7075 Al matrix composites, the microstructure observed after solidification at different cooling rate, and the size and distribution of TiB2 particles were investigated. The experimental results have shown that the grain sizes of TiB2/7075 Al matrix composites firstly decreased, then increased, and finally decreased again with the increase of TiB2 content. The nucleation undercooling of TiB2/7075 Al matrix composites first increased, then decreased, and finally increased again with the increase of TiB2 content when the cooling rates was 5 and 10 °C/min respectively, but kept decreasing with the increase of TiB2 content at a cooling rate of 20 °C/min. The melting and solidification process showed no significant change with the decrease of cooling rate in 9.0% TiB2/7075 Al matrix composites. Most small particles can act as heterogeneous nucleus, which induced grain growth and were captured into the grain by the solid/liquid interface. At the same time, most of the larger particles and a minority of the small TiB2 particles are pushed into the grain boundary; locating in the grain boundary can hinder the Al atoms from diffusing during the solidification process and restrain α-Al phase growth. The influence of particles shifted from dominating by locating to dominating by nucleation as the quantity of TiB2 particles increased. PMID:28772492

  13. Heavy Duty Diesel Exhaust Particles during Engine Motoring Formed by Lube Oil Consumption.

    PubMed

    Karjalainen, Panu; Ntziachristos, Leonidas; Murtonen, Timo; Wihersaari, Hugo; Simonen, Pauli; Mylläri, Fanni; Nylund, Nils-Olof; Keskinen, Jorma; Rönkkö, Topi

    2016-11-15

    This study reports high numbers of exhaust emissions particles during engine motoring. Such particles were observed in the exhaust of two heavy duty vehicles with no diesel particle filter (DPF), driven on speed ramp tests and transient cycles. A significant fraction of these particles was nonvolatile in nature. The number-weighted size distribution peak was below 10 nm when a thermodenuder was used to remove semivolatile material, growing up to 40 nm after semivolatile species condensation. These particles were found to contribute to 9-13% of total particle number emitted over a complete driving cycle. Engine motoring particles originated from lube oil and evidence suggests that these are of heavy organic or organometallic material. Particles of similar characteristics have been observed in the core particle mode during normal fired engine operation. Their size and chemical character has implications primarily on the environmental toxicity of non-DPF diesel and, secondarily, on the performance of catalytic devices and DPFs. Lube oil formulation measures can be taken to reduce the emission of such particles.

  14. Relativistic particle in a box: Klein-Gordon versus Dirac equations

    NASA Astrophysics Data System (ADS)

    Alberto, Pedro; Das, Saurya; Vagenas, Elias C.

    2018-03-01

    The problem of a particle in a box is probably the simplest problem in quantum mechanics which allows for significant insight into the nature of quantum systems and thus is a cornerstone in the teaching of quantum mechanics. In relativistic quantum mechanics this problem allows also to highlight the implications of special relativity for quantum physics, namely the effect that spin has on the quantised energy spectra. To illustrate this point, we solve the problem of a spin zero relativistic particle in a one- and three-dimensional box using the Klein-Gordon equation in the Feshbach-Villars formalism. We compare the solutions and the energy spectra obtained with the corresponding ones from the Dirac equation for a spin one-half relativistic particle. We note the similarities and differences, in particular the spin effects in the relativistic energy spectrum. As expected, the non-relativistic limit is the same for both kinds of particles, since, for a particle in a box, the spin contribution to the energy is a relativistic effect.

  15. Growing media constituents determine the microbial nitrogen conversions in organic growing media for horticulture.

    PubMed

    Grunert, Oliver; Reheul, Dirk; Van Labeke, Marie-Christine; Perneel, Maaike; Hernandez-Sanabria, Emma; Vlaeminck, Siegfried E; Boon, Nico

    2016-05-01

    Vegetables and fruits are an important part of a healthy food diet, however, the eco-sustainability of the production of these can still be significantly improved. European farmers and consumers spend an estimated €15.5 billion per year on inorganic fertilizers and the production of N-fertilizers results in a high carbon footprint. We investigated if fertilizer type and medium constituents determine microbial nitrogen conversions in organic growing media and can be used as a next step towards a more sustainable horticulture. We demonstrated that growing media constituents showed differences in urea hydrolysis, ammonia and nitrite oxidation and in carbon dioxide respiration rate. Interestingly, mixing of the growing media constituents resulted in a stimulation of the function of the microorganisms. The use of organic fertilizer resulted in an increase in amoA gene copy number by factor 100 compared to inorganic fertilizers. Our results support our hypothesis that the activity of the functional microbial community with respect to nitrogen turnover in an organic growing medium can be improved by selecting and mixing the appropriate growing media components with each other. These findings contribute to the understanding of the functional microbial community in growing media and its potential role towards a more responsible horticulture. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  16. Influence of jet milling and particle size on the composition, physicochemical and mechanical properties of barley and rye flours.

    PubMed

    Drakos, Antonios; Kyriakakis, Georgios; Evageliou, Vasiliki; Protonotariou, Styliani; Mandala, Ioanna; Ritzoulis, Christos

    2017-01-15

    Finer barley and rye flours were produced by jet milling at two feed rates. The effect of reduced particle size on composition and several physicochemical and mechanical properties of all flours were evaluated. Moisture content decreased as the size of the granules decreased. Differences on ash and protein contents were observed. Jet milling increased the amount of damaged starch in both rye and barley flours. True density increased with decreased particle size whereas porosity and bulk density increased. The solvent retention capacity profile was also affected by jet milling. Barley was richer in phenolics and had greater antioxidant activity than rye. Regarding colour, both rye and barley flours when subjected to jet milling became brighter, whereas their yellowness was not altered significantly. The minimum gelation concentration for all flours was 16%w/v. Barley flour gels were stronger, firmer and more elastic than the rye ones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Burning mechanism and regression rate of RX-35-AU and RX-35-AV as a function of HMX particle size measured by the hybrid closed bomb-strand burner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, W.C.; Costantino, M.S.; Ornellas, D.L.

    1990-04-01

    In this study, the average surface regression rate of two HMX-based cast explosives, RX-35-AU and RX-35-AV, is measured to pressures above 750 MPa using a hybrid closed bomb-strand burner. The hybrid design allows the simultaneous measurement of pressure and regression rate over a large range of pressures in each experiment. Nitroglycerin/Triacetin (75/25) and polyethylene glycol (PEG) are used as the energetic plasticizer and polymeric binder, respectively, in both formulations. The HMX solids loading in each formulation is 50 wt %, consisting of a narrow particle size distribution of 6--8 {mu}m for RX-35-AU and 150--177 {mu}m for RX-35-AV. Of special interestmore » are the regression rate and burning mechanism as a function of the initial particle size distribution and the mechanical properties fo the cast explosives. In general, the regression rate for the larger particle size formulation, RX-35-AV, is two to three times faster compared to that for RX-35-AU. Up to 750 MPa and independent of the initial confinement pressure, RX-35-AU exhibits a planar burning mechanism with the regression rate obeying the classical aP{sup n} formalism. For RX-35-AV, however, the burning behavior is erratic for samples ignited at 200 MPa confinement pressure. At confinement pressures above 400 MPa, the regression exhibits more of a planar burning mechanism. The unstable combustion behavior for RX-35-AV at lower confinement pressures is related to several mechanisms: (1) an abrupt increase in surface area due to particle fracture and subsequent translation and rotation, resulting in debonding and creating porosity, (2) thixotropic'' separation of the binder and nitramine, causing the significantly greater fracture damage to the nitramine during the loading cycle, (3) microscopic damage to the nitramine crystals that increase its intrinsic burning rate. 12 refs., 8 figs., 2 tabs.« less

  18. Particles trajectories in magnetic filaments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.; Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real

    2015-07-15

    The motion of a particle in a spatially harmonic magnetic field is a basic problem involved, for example, in the mechanism of formation of a collisionless shock. In such settings, it is generally reasoned that particles entering a Weibel generated turbulence are trapped inside it, provided their Larmor radius in the peak field is smaller than the field coherence length. The goal of this work is to put this heuristic conclusion on firm ground by studying, both analytically and numerically, such motion. A toy model is analyzed, consisting of a relativistic particle entering a region of space occupied by amore » spatially harmonic field. The particle penetrates the magnetic structure in a direction aligned with the magnetic filaments. Although the conclusions are not trivial, the main result is confirmed.« less

  19. Particles trajectories in magnetic filaments

    NASA Astrophysics Data System (ADS)

    Bret, A.

    2015-07-01

    The motion of a particle in a spatially harmonic magnetic field is a basic problem involved, for example, in the mechanism of formation of a collisionless shock. In such settings, it is generally reasoned that particles entering a Weibel generated turbulence are trapped inside it, provided their Larmor radius in the peak field is smaller than the field coherence length. The goal of this work is to put this heuristic conclusion on firm ground by studying, both analytically and numerically, such motion. A toy model is analyzed, consisting of a relativistic particle entering a region of space occupied by a spatially harmonic field. The particle penetrates the magnetic structure in a direction aligned with the magnetic filaments. Although the conclusions are not trivial, the main result is confirmed.

  20. An experimental-computer modeling study of inorganic phosphates surface adsorption on hydroxyapatite particles.

    PubMed

    Rivas, Manuel; Casanovas, Jordi; del Valle, Luis J; Bertran, Oscar; Revilla-López, Guillermo; Turon, Pau; Puiggalí, Jordi; Alemán, Carlos

    2015-06-07

    The adsorption of orthophosphate, pyrophosphate, triphosphate and a trisphosphonate onto hydroxyapatite has been examined using experiments and quantum mechanical calculations. Adsorption studies with FTIR and X-ray photoelectron spectroscopies have been performed considering both crystalline hydroxyapatite (HAp) and amorphous calcium phosphate particles, which were specifically prepared and characterized for this purpose. Density functional theory (DFT) calculations have been carried out considering the (100) and (001) surfaces of HAp, which were represented using 1 × 2 × 2 and 3 × 3 × 1 slab models, respectively. The adsorption of phosphate onto the two crystallographic surfaces is very much favored from an energetic point of view, which is fully consistent with current interpretations of the HAp growing process. The structures calculated for the adsorption of pyrophosphate and triphosphate evidence that this process is easier for the latter than for the former. Thus, the adsorption of pyrophosphate is severely limited by the surface geometry while the flexibility of triphosphate allows transforming repulsive electrostatic interactions into molecular strain. On the other hand, calculations predict that the trisphosphonate only adsorbs onto the (001) surface of HAp. Theoretical predictions are fully consistent with experimental data. Thus, comparison of DFT results and spectroscopic data suggests that the experimental conditions used to prepare HAp particles promote the predominance of the (100) surface. Accordingly, experimental identification of the adsorption of trisphosphonate onto such crystalline particles is unclear while the adsorption of pyrophosphate and triphosphate is clearly observed.

  1. Interplanetary particle beams

    NASA Technical Reports Server (NTRS)

    Dulk, G. A.

    1990-01-01

    This paper reviews observations of interplanetary particle beams of the kind that frequently accompany a solar flare. It is shown that the most frequently observed beams are beams of electrons which are associated with radio bursts of type III, but occasionally with flares and X-ray bursts. Although the main features of these beams and their associated plasma waves and radio bursts are known, uncertainties remain in terms of the correlation between electron beams and filamentary structures, the relative importance of the quasi-linear and the nonlinear wave emissions as the dominant process, and the mechanism of conversion of some of the Langmuir wave energy into radio emissions. Other particle beams discussed are those composed of protons, neutrons, He ions, or heavy ions. While most of these beams originate from sun flares, the source of some of particle beams may be the earth, Jupiter, or other planets as well as comets.

  2. Effect of Particle Size and Impact Velocity on Collision Behaviors Between Nano-Scale TiN Particles: MD Simulation.

    PubMed

    Yao, Hai-Long; Hu, Xiao-Zhen; Yang, Guan-Jun

    2018-06-01

    Inter-particle bonding formation which determines qualities of nano-scale ceramic coatings is influenced by particle collision behaviors during high velocity collision processes. In this study, collision behaviors between nano-scale TiN particles with different diameters were illuminated by using Molecular Dynamics simulation through controlling impact velocities. Results show that nano-scale TiN particles exhibit three states depending on particle sizes and impact velocities, i.e., bonding, bonding with localized fracturing, and rebounding. These TiN particles states are summarized into a parameter selection map providing an overview of the conditions in terms of particle sizes and velocities. Microstructure results show that localized atoms displacement and partial fracture around the impact region are main reasons for bonding formation of nano-scale ceramic particles, which shows differences from conventional particles refining and amorphization. A relationship between the adhesion energy and the rebound energy is established to understand bonding formation mechanism for nano-scale TiN particle collision. Results show that the energy relationship is depended on the particle sizes and impact velocities, and nano-scale ceramic particles can be bonded together as the adhesion energy being higher than the rebound energy.

  3. Innovations in the flotation of fine and coarse particles

    NASA Astrophysics Data System (ADS)

    Fornasiero, D.; Filippov, L. O.

    2017-07-01

    Research on the mechanisms of particle-bubble interaction has provided valuable information on how to improve the flotation of fine (<20 µm) and coarse particles (>100 µm) with novel flotation machines which provide higher collision and attachment efficiencies of fine particles with bubbles and lower detachment of the coarse particles. Also, new grinding methods and technologies have reduced energy consumption in mining and produced better mineral liberation and therefore flotation performance.

  4. Development of an ash particle deposition model considering build-up and removal mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kjell Strandstroem; Christian Muellera; Mikko Hupa

    2007-12-15

    Slagging and fouling on heat exchanger surfaces in power boilers fired with fossil fuels and fuel mixtures has a significant influence on boiler efficiency and availability. Mathematical modelling has long been considered a suitable method to assist boiler operators to determine optimized operating conditions for an existing furnace. The ultimate goal in ash deposition prediction is hereby the determination of the total amount of material deposited and hence the determination of the total reduction in efficiency. Depending on the fuels fired the total deposited mass is a combination of ash particle deposition and ash particle erosion due to non-sticky particles.more » The novel ash particle deposition model presented in this work considers deposition of sticky ash particles, cleansing of deposit by non-sticky sand particles and sticking of sand due to contact with sticky ash. The steady-state modelling results for the total amount of ash deposited on the deposition probe of an entrained flow reactor presented in this work agree well with the experimental data. Only at very high fractions of sand added as non-sticky material, a significant influence of the sand on the overall mass deposited was found. Since the model considers sticking of non-sticking sand due to contact with sticky ash, the fraction of sand deposited on the probe was especially studied. Using a correction factor to consider the influence of operating time on the steady-state simulations led to good agreement between simulations and experimental data. 12 refs., 10 figs.« less

  5. Growing into and out of the bouncing barrier in planetesimal formation

    NASA Astrophysics Data System (ADS)

    Kruss, Maximilian; Teiser, Jens; Wurm, Gerhard

    2017-04-01

    In recent laboratory studies the robustness of a bouncing barrier in planetesimal formation was studied with an ensemble of pre-formed compact mm-sized aggregates. Here we show that a bouncing barrier indeed evolves self-consistently by hit-and-stick from an ensemble of smaller dust aggregates. In addition, we feed small aggregates to an ensemble of larger bouncing aggregates. The stickiness temporarily increases, but the final number of aggregates still bouncing remains the same. However, feeding on the small particle supply, the size of the bouncing aggregates increases. This suggests that in the presence of a dust reservoir aggregates grow into but also out of a bouncing barrier at larger size.

  6. A dynamic cellular vertex model of growing epithelial tissues

    NASA Astrophysics Data System (ADS)

    Lin, Shao-Zhen; Li, Bo; Feng, Xi-Qiao

    2017-04-01

    Intercellular interactions play a significant role in a wide range of biological functions and processes at both the cellular and tissue scales, for example, embryogenesis, organogenesis, and cancer invasion. In this paper, a dynamic cellular vertex model is presented to study the morphomechanics of a growing epithelial monolayer. The regulating role of stresses in soft tissue growth is revealed. It is found that the cells originating from the same parent cell in the monolayer can orchestrate into clustering patterns as the tissue grows. Collective cell migration exhibits a feature of spatial correlation across multiple cells. Dynamic intercellular interactions can engender a variety of distinct tissue behaviors in a social context. Uniform cell proliferation may render high and heterogeneous residual compressive stresses, while stress-regulated proliferation can effectively release the stresses, reducing the stress heterogeneity in the tissue. The results highlight the critical role of mechanical factors in the growth and morphogenesis of epithelial tissues and help understand the development and invasion of epithelial tumors.

  7. Contact freezing of supercooled cloud droplets on collision with mineral dust particles: effect of particle size

    NASA Astrophysics Data System (ADS)

    Hoffmann, Nadine; Duft, Denis; Kiselev, Alexei; Leisner, Thomas

    2013-04-01

    The contact freezing of supercooled cloud droplets is one of the potentially important and the least investigated heterogeneous mechanism of ice formation in the tropospheric clouds [1]. On the time scales of cloud lifetime the freezing of supercooled water droplets via contact mechanism may occur at higher temperature compared to the same IN immersed in the droplet. However, the laboratory experiments of contact freezing are very challenging due to the number of factors affecting the probability of ice formation. In our experiment we study single water droplets freely levitated in the laminar flow of mineral dust particles acting as the contact freezing nuclei. By repeating the freezing experiment sufficient number of times we are able to reproduce statistical freezing behavior of large ensembles of supercooled droplets and measure the average rate of freezing events. We show that the rate of freezing at given temperature is governed only by the rate of droplet -particle collision and by the properties of the contact ice nuclei. In this contribution we investigate the relationship between the freezing probability and the size of mineral dust particle (represented by illite) and show that their IN efficiency scales with the particle size. Based on this observation, we discuss the similarity between the freezing of supercooled water droplets in immersion and contact modes and possible mechanisms of apparent enhancement of the contact freezing efficiency. [1] - K.C. Young, The role of contact nucleation in ice phase initiation in clouds, Journal of the Atmospheric Sciences 31, 1974

  8. Study on reaction mechanism by analysis of kinetic energy spectra of light particles and formation of final products

    NASA Astrophysics Data System (ADS)

    Giardina, G.; Mandaglio, G.; Nasirov, A. K.; Anastasi, A.; Curciarello, F.; Fazio, G.

    2018-05-01

    The sensitivity of reaction mechanism in the formation of compound nucleus (CN) by the analysis of kinetic energy spectra of light particles and of reaction products are shown. The dependence of the P CN fusion probability of reactants and W sur survival probability of CN against fission at its deexcitation on the mass and charge symmetries in the entrance channel of heavy-ion collisions, as well as on the neutron numbers is discussed. The possibility of conducting a complex program of investigations of the complete fusion by reliable ways depends on the detailed and refined methods of experimental and theoretical analyses.

  9. Fine Particle Emissions from Residual Fuel Oil Combustion: Characterization and Mechanisms of Formation

    DTIC Science & Technology

    2000-08-04

    another apparent factor influencing health impact is the presence of ultrafine particles (0.1 lm in diameter) [2]. All three characteristics...between 0.5 and 100 lm. The ultrafine particles from both combustion systems were consistent with the accumulation of an evolving aerosol formed by the

  10. Dynamics of an acoustically levitated particle using the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Barrios, G.; Rechtman, R.

    When the acoustic force inside a cavity balances the gravitational force on a particle the result is known as acoustic levitation. Using the lattice Boltzmann equation method we find the acoustic force acting on a rounded particle for two different single-axis acoustic levitators in two dimensions, the first with plane waves, the second with a rounded reflector that enhances the acoustic force. With no gravitational force, a particle oscillates around a pressure node; in the presence of gravity the oscillation is shifted a small vertical distance below the pressure node. This distance increases linearly as the density ratio between the solid particle and fluid grows. For both cavities, the particle oscillates with the frequency of the sound source and its harmonics and in some cases there is a much smaller second dominant frequency. When the momentum of the acoustic source changes, the oscillation around the average vertical position can have both frequencies mentioned above. However, if this quantity is large enough, the oscillations of the particle are aperiodic in the cavity with a rounded reflector.

  11. Exploration of particle production mechanisms via angular correlations of π, K, p, Λ with ALICE in pp collisions at √S = 7 TeV

    NASA Astrophysics Data System (ADS)

    Janik, Małgorzata Anna

    2018-02-01

    Two-particle correlations as a function of Δη and Δφ are used in many colliding systems to study a wide range of physical phenomena. Examples include the collective behavior of the quark-gluon plasma medium, jets, quantum statistics or Coulomb effects, conservation laws, and resonance decays. In this work, measurements of the correlations of identified particles and their antiparticles (for π, K, p, Λ) are reported in pp collisions at √s = 7 TeV at low transverse momenta. The analysis reveals differences in particle production between baryons and mesons. The correlation functions for mesons exhibit the expected peak dominated by the effects of mini-jet fragmentation and are reproduced well by general purpose Monte Carlo generators. For baryon pairs where both particles have the same baryon number, an anti-correlation structure is observed instead of a peak centered at (Δη, Δφ) = (0, 0); an observation which presents a challenge to models typically used to describe pp data (PYTHIA, PHOJET). This baryon anti-correlation is further interpreted in the context of baryon production mechanisms in the fragmentation processes.

  12. GRAVITATIONAL MODEL OF HIGH-ENERGY PARTICLES IN A COLLIMATED JET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Freitas Pacheco, J. A.; Gariel, J.; Marcilhacy, G.

    2012-11-10

    Observations suggest that relativistic particles play a fundamental role in the dynamics of jets emerging from active galactic nuclei as well as in their interaction with the intracluster medium. However, no general consensus exists concerning the acceleration mechanism of those high-energy particles. A gravitational acceleration mechanism is proposed here in which particles leaving precise regions within the ergosphere of a rotating supermassive black hole (BH) produce a highly collimated flow. These particles follow unbound geodesics which are asymptotically parallel to the spin axis of the BH and are characterized by the energy E, the Carter constant Q, and zero angularmore » momentum of the component L{sub z} . If environmental effects are neglected, the present model predicts the presence of electrons with energies around 9.4 GeV at distances of about 140 kpc from the ergosphere. The present mechanism can also accelerate protons up to the highest energies observed in cosmic rays by the present experiments.« less

  13. HIGH SPEED PARTICLE BEAM GENERATION: SIMPLE FOCUSING MECHANISMS. (R823980)

    EPA Science Inventory

    Modern chemical characterization instruments employ an aerosol inlet that transmits atmospheric aerosols to the low pressure source region of a time-of-flight mass spectrometer, where particles are ablated and ionized using high energy irradiation. The ions when analyzed in the m...

  14. Microscopic origin and macroscopic implications of lane formation in mixtures of oppositely driven particles

    NASA Astrophysics Data System (ADS)

    Klymko, Katherine; Geissler, Phillip L.; Whitelam, Stephen

    2016-08-01

    Colloidal particles of two types, driven in opposite directions, can segregate into lanes [Vissers et al., Soft Matter 7, 2352 (2011), 10.1039/c0sm01343a]. This phenomenon can be reproduced by two-dimensional Brownian dynamics simulations of model particles [Dzubiella et al., Phys. Rev. E 65, 021402 (2002), 10.1103/PhysRevE.65.021402]. Here we use computer simulation to assess the generality of lane formation with respect to variation of particle type and dynamical protocol. We find that laning results from rectification of diffusion on the scale of a particle diameter: oppositely driven particles must, in the time taken to encounter each other in the direction of the drive, diffuse in the perpendicular direction by about one particle diameter. This geometric constraint implies that the diffusion constant of a particle, in the presence of those of the opposite type, grows approximately linearly with the Péclet number, a prediction confirmed by our numerics over a range of model parameters. Such environment-dependent diffusion is statistically similar to an effective interparticle attraction; consistent with this observation, we find that oppositely driven nonattractive colloids display features characteristic of the simplest model system possessing both interparticle attractions and persistent motion, the driven Ising lattice gas [Katz, Leibowitz, and Spohn, J. Stat. Phys. 34, 497 (1984), 10.1007/BF01018556]. These features include long-ranged correlations in the disordered regime, a critical regime characterized by a change in slope of the particle current with the Péclet number, and fluctuations that grow with system size. By analogy, we suggest that lane formation in the driven colloid system is a phase transition in the macroscopic limit, but that macroscopic phase separation would not occur in finite time upon starting from disordered initial conditions.

  15. Electromechanical characterization of individual micron-sized metal coated polymer particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazilchuk, Molly; Kristiansen, Helge; Conpart AS, Skjetten 2013

    Micron-sized polymer particles with nanoscale metal coatings are essential in conductive adhesives for electronics assembly. The particles function in a compressed state in the adhesives. The link between mechanical properties and electrical conductivity is thus of the utmost importance in the formation of good electrical contact. A custom flat punch set-up based on nanoindentation has been developed to simultaneously deform and electrically probe individual particles. The set-up has a sufficiently low internal resistance to allow the measurement of sub-Ohm contact resistances. Additionally, the set-up can capture mechanical failure of the particles. Combining this data yields a fundamental understanding of contactmore » behavior. We demonstrate that this method can clearly distinguish between particles of different sizes, with different thicknesses of metal coating, and different metallization schemes. The technique provides good repeatability and physical insight into the behavior of these particles that can guide adhesive design and the optimization of bonding processes.« less

  16. Improving aluminum particle reactivity by annealing and quenching treatments: Synchrotron X-ray diffraction analysis of strain

    DOE PAGES

    McCollum, Jena; Pantoya, Michelle L.; Tamura, Nobumichi

    2015-11-06

    In bulk material processing, annealing and quenching metals such as aluminum (Al) can improve mechanical properties. On a single particle level, affecting mechanical properties may also affect Al particle reactivity. Our study examines the effect of annealing and quenching on the strain of Al particles and the corresponding reactivity of aluminum and copper oxide (CuO) composites. Micron-sized Al particles were annealed and quenched according to treatments designed to affect Al mechanical properties. Furthermore, synchrotron X-ray diffraction (XRD) analysis of the particles reveals that thermal treatment increased the dilatational strain of the aluminum-core, alumina-shell particles. Flame propagation experiments also show thermalmore » treatments effect reactivity when combined with CuO. An effective annealing and quenching treatment for increasing aluminum reactivity was identified. Our results show that altering the mechanical properties of Al particles affects their reactivity.« less

  17. Retrieval and clinical analysis of distraction-based dual growing rod constructs for early-onset scoliosis.

    PubMed

    Hill, Genevieve; Nagaraja, Srinidhi; Akbarnia, Behrooz A; Pawelek, Jeff; Sponseller, Paul; Sturm, Peter; Emans, John; Bonangelino, Pablo; Cockrum, Joshua; Kane, William; Dreher, Maureen

    2017-10-01

    Growing rod constructs are an important contribution for treating patients with early-onset scoliosis. These devices experience high failure rates, including rod fractures. The objective of this study was to identify the failure mechanism of retrieved growing rods, and to identify differences between patients with failed and intact constructs. Growing rod patients who had implant removal and were previously enrolled in a multicenter registry were eligible for this study. Forty dual-rod constructs were retrieved from 36 patients across four centers, and 34 of those constructs met the inclusion criteria. Eighteen constructs failed due to rod fracture. Sixteen intact constructs were removed due to final fusion (n=7), implant exchange (n=5), infection (n=2), or implant prominence (n=2). Analyses of clinical registry data, radiographs, and retrievals were the outcome measures. Retrievals were analyzed with microscopic imaging (optical and scanning electron microscopy) for areas of mechanical failure, damage, and corrosion. Failure analyses were conducted on the fracture surfaces to identify failure mechanism(s). Statistical analyses were performed to determine significant differences between the failed and intact groups. The failed rods fractured due to bending fatigue under flexion motion. Construct configuration and loading dictate high bending stresses at three distinct locations along the construct: (1) mid-construct, (2) adjacent to the tandem connector, or (3) adjacent to the distal anchor foundation. In addition, high torques used to insert set screws may create an initiation point for fatigue. Syndromic scoliosis, prior rod fractures, increase in patient weight, and rigid constructs consisting of tandem connectors and multiple crosslinks were associated with failure. This is the first study to examine retrieved, failed growing rod implants across multiple centers. Our analysis found that rod fractures are due to bending fatigue, and that stress concentrations

  18. Structure, Immunogenicity, and Protective Mechanism of an Engineered Enterovirus 71-Like Particle Vaccine Mimicking 80S Empty Capsid.

    PubMed

    Wang, Xiaoli; Ku, Zhiqiang; Zhang, Xiang; Ye, Xiaohua; Chen, Jinhuan; Liu, Qingwei; Zhang, Wei; Zhang, Chao; Fu, Zhenglin; Jin, Xia; Cong, Yao; Huang, Zhong

    2018-01-01

    Enterovirus 71 (EV71) is the major causative agent of severe hand, foot, and mouth disease, which affects millions of young children in the Asia-Pacific region annually. In this study, we engineered a novel EV71 virus-like particle (VLP) that lacks VP4 (therefore designated VLP ΔVP4 ) and investigated its structure, antigenicity, and vaccine potential. The cryo-electron microscopy (cryo-EM) structure of VLP ΔVP4 was reconstructed to 3.71-Å resolution. Results from structural and biochemical analyses revealed that VLP ΔVP4 resembles the end product of the viral uncoating process, the 80S empty capsid. VLP ΔVP4 is able to elicit high-titer neutralizing antibodies and to fully protect mice against lethal viral challenge. Mechanistic studies showed that, at the cellular level, the anti-VLP ΔVP4 sera exert neutralization effects at both pre- and postattachment stages by inhibiting both virus attachment and internalization, and at the molecular level, the antisera can block multiple interactions between EV71 and its key receptors. Our study gives a better understanding of EV71 capsid assembly and provides important information for the design and development of new-generation vaccines for EV71, and perhaps for other enteroviruses, as well. IMPORTANCE Enterovirus 71 (EV71) infection may lead to severe hand, foot, and mouth disease, with significant morbidity and mortality. Knowledge regarding EV71 particle assembly remains limited. Here, we report the generation and characterization of a novel EV71 virus-like particle that lacks the VP4 capsid subunit protein. This particle, termed VLP ΔVP4 , structurally mimics the 80S empty capsid, which is the end stage of EV71 uncoating. We further show that VLP ΔVP4 exhibits desirable immunogenicity and protective efficacy in proof-of-concept studies. In addition, the inhibitory mechanisms of the VLP ΔVP4 -induced antibodies are unraveled at both the cellular and molecular levels. Our work provides the first evidence of

  19. Discrete particle swarm optimization to solve multi-objective limited-wait hybrid flow shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Santosa, B.; Siswanto, N.; Fiqihesa

    2018-04-01

    This paper proposes a discrete Particle Swam Optimization (PSO) to solve limited-wait hybrid flowshop scheduing problem with multi objectives. Flow shop schedulimg represents the condition when several machines are arranged in series and each job must be processed at each machine with same sequence. The objective functions are minimizing completion time (makespan), total tardiness time, and total machine idle time. Flow shop scheduling model always grows to cope with the real production system accurately. Since flow shop scheduling is a NP-Hard problem then the most suitable method to solve is metaheuristics. One of metaheuristics algorithm is Particle Swarm Optimization (PSO), an algorithm which is based on the behavior of a swarm. Originally, PSO was intended to solve continuous optimization problems. Since flow shop scheduling is a discrete optimization problem, then, we need to modify PSO to fit the problem. The modification is done by using probability transition matrix mechanism. While to handle multi objectives problem, we use Pareto Optimal (MPSO). The results of MPSO is better than the PSO because the MPSO solution set produced higher probability to find the optimal solution. Besides the MPSO solution set is closer to the optimal solution

  20. Quantifying growing versus non-growing ovarian follicles in the mouse.

    PubMed

    Uslu, Bahar; Dioguardi, Carola Conca; Haynes, Monique; Miao, De-Qiang; Kurus, Meltem; Hoffman, Gloria; Johnson, Joshua

    2017-01-13

    A standard histomorphometric approach has been used for nearly 40 years that identifies atretic (e.g., dying) follicles by counting the number of pyknotic granulosa cells (GC) in the largest follicle cross-section. This method holds that if one pyknotic granulosa nucleus is seen in the largest cross section of a primary follicle, or three pyknotic cells are found in a larger follicle, it should be categorized as atretic. Many studies have used these criteria to estimate the fraction of atretic follicles that result from genetic manipulation or environmental insult. During an analysis of follicle development in a mouse model of Fragile X premutation, we asked whether these 'historical' criteria could correctly identify follicles that were not growing (and could thus confirmed to be dying). Reasoning that the fraction of mitotic GC reveals whether the GC population was increasing at the time of sample fixation, we compared the number of pyknotic nuclei to the number of mitotic figures in follicles within a set of age-matched ovaries. We found that, by itself, pyknotic nuclei quantification resulted in high numbers of false positives (improperly categorized as atretic) and false negatives (improperly categorized intact). For preantral follicles, scoring mitotic and pyknotic GC nuclei allowed rapid, accurate identification of non-growing follicles with 98% accuracy. This method most often required the evaluation of one follicle section, and at most two serial follicle sections to correctly categorize follicle status. For antral follicles, we show that a rapid evaluation of follicle shape reveals which are intact and likely to survive to ovulation. Combined, these improved, non-arbitrary methods will greatly improve our ability to estimate the fractions of growing/intact and non-growing/atretic follicles in mouse ovaries.

  1. A New Paradigm for Flare Particle Acceleration

    NASA Astrophysics Data System (ADS)

    Guidoni, Silvina E.; Karpen, Judith T.; DeVore, C. Richard

    2017-08-01

    The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission and its spectra in solar flares is not well understood. Here, we propose a first-principle-based model of particle acceleration that produces energy spectra that closely resemble those derived from hard X-ray observations. Our mechanism uses contracting magnetic islands formed during fast reconnection in solar flares to accelerate electrons, as first proposed by Drake et al. (2006) for kinetic-scale plasmoids. We apply these ideas to MHD-scale islands formed during fast reconnection in a simulated eruptive flare. A simple analytic model based on the particles’ adiabatic invariants is used to calculate the energy gain of particles orbiting field lines in our ultrahigh-resolution, 2.5D, MHD numerical simulation of a solar eruption (flare + coronal mass ejection). Then, we analytically model electrons visiting multiple contracting islands to account for the observed high-energy flare emission. Our acceleration mechanism inherently produces sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each macroscopic island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare current sheet is a promising candidate for electron acceleration in solar eruptions. This work was supported in part by the NASA LWS and H-SR programs..

  2. Antarctic new particle formation from continental biogenic precursors

    NASA Astrophysics Data System (ADS)

    Kyrö, E.-M.; Kerminen, V.-M.; Virkkula, A.; Dal Maso, M.; Parshintsev, J.; Ruíz-Jimenez, J.; Forsström, L.; Manninen, H. E.; Riekkola, M.-L.; Heinonen, P.; Kulmala, M.

    2012-12-01

    Over Antarctica, aerosol particles originate almost entirely from marine areas, with minor contribution from long-range transported dust or anthropogenic material. The Antarctic continent itself, unlike all other continental areas, has been thought to be practically free of aerosol sources. Here we present evidence of local aerosol production associated with melt-water ponds in the continental Antarctica. We show that in air masses passing such ponds, new aerosol particles are efficiently formed and these particles grow up to sizes where they may act as cloud condensation nuclei (CCN). The precursor vapours responsible for aerosol formation and growth originate very likely from highly abundant cyanobacteria Nostoc commune (Vaucher) communities of local ponds. This is the first time when freshwater vegetation has been identified as an aerosol precursor source. The influence of the new source on clouds and climate may increase in future Antarctica, and possibly elsewhere undergoing accelerating summer melting of semi-permanent snow cover.

  3. Antarctic new particle formation from continental biogenic precursors

    NASA Astrophysics Data System (ADS)

    Kyrö, E.-M.; Kerminen, V.-M.; Virkkula, A.; Dal Maso, M.; Parshintsev, J.; Ruíz-Jimenez, J.; Forsström, L.; Manninen, H. E.; Riekkola, M.-L.; Heinonen, P.; Kulmala, M.

    2013-04-01

    Over Antarctica, aerosol particles originate almost entirely from marine areas, with minor contribution from long-range transported dust or anthropogenic material. The Antarctic continent itself, unlike all other continental areas, has been thought to be practically free of aerosol sources. Here we present evidence of local aerosol production associated with melt-water ponds in continental Antarctica. We show that in air masses passing such ponds, new aerosol particles are efficiently formed and these particles grow up to sizes where they may act as cloud condensation nuclei (CCN). The precursor vapours responsible for aerosol formation and growth originate very likely from highly abundant cyanobacteria Nostoc commune (Vaucher) communities of local ponds. This is the first time freshwater vegetation has been identified as an aerosol precursor source. The influence of the new source on clouds and climate may increase in future Antarctica, and possibly elsewhere undergoing accelerating summer melting of semi-permanent snow cover.

  4. An updated Lagrangian particle hydrodynamics (ULPH) for Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Tu, Qingsong; Li, Shaofan

    2017-11-01

    In this work, we have developed an updated Lagrangian particle hydrodynamics (ULPH) for Newtonian fluid. Unlike the smoothed particle hydrodynamics, the non-local particle hydrodynamics formulation proposed here is consistent and convergence. Unlike the state-based peridynamics, the discrete particle dynamics proposed here has no internal material bond between particles, and it is not formulated with respect to initial or a fixed referential configuration. In specific, we have shown that (1) the non-local update Lagrangian particle hydrodynamics formulation converges to the conventional local fluid mechanics formulation; (2) the non-local updated Lagrangian particle hydrodynamics can capture arbitrary flow discontinuities without any changes in the formulation, and (3) the proposed non-local particle hydrodynamics is computationally efficient and robust.

  5. The Higgs mechanism and the origin of mass

    NASA Astrophysics Data System (ADS)

    Djouadi, Abdelhak

    2012-06-01

    The Higgs mechanism plays a key role in the physics of elementary particles: in the context of the Standard Model, the theory which describes in a unified framework the electromagnetic, weak and strong nuclear interactions, it allows for the generation of particle masses while preserving the fundamental symmetries of the theory. This mechanism predicts the existence of a new type of particle, the scalar Higgs boson, with unique characteristics. The detection of this particle and the study of its fundamental properties is a major goal of high-energy particle colliders, such as the CERN Large Hadron Collider or LHC.

  6. The Higgs Mechanism and the Orogin of Mass

    NASA Astrophysics Data System (ADS)

    Djouadi, Abdelhak

    The Higgs mechanism plays a key role in the physics of elementary particles: in the context of the Standard Model, the theory which, describes in a unified framework the electromagnetic, weak, and strong nuclear interactions, it allows for the generation of particle masses while preserving the fundamental symmetries of the theory. This mechanism predicts the existence of a new type of particle, the scalar Higgs boson, with unique characteristics. The detection of this particle and the study of its fundamental properties is a major goal of high-energy particle colliders, such as the CERN Large Hadron Collider or LHC.

  7. Inertial Particle Migration in the Presence of a Permeate Flow

    NASA Astrophysics Data System (ADS)

    Garcia, Mike; Singelton, Amanda; Pennathur, Sumita

    2016-11-01

    Tangential Flow Filtration (TFF) is a rapid and efficient method for the filtration and separation of suspensions of particles such as viruses, bacteria or cellular material. Enhancing the efficacy of TFF not only requires a detailed understanding of particle transport mechanisms, but also the interactions between these mechanisms and a porous wall. In this work, we numerically and experimentally explore the mechanisms of inertial particle migration in the presence of a permeate flow through the porous walls of a microchannel. Numerically, we develop a force balance model to understand the competition between permeate and inertial forces and the resultant consequences on the particle equilibrium location. Experimentally, we fabricated MEMS TFF devices to study the migration of 5, 10 and 15 µm fluorescent polystyrene beads in straight channels with perpendicular permeate flow rates up to 90% of the inlet flow rate. We find that the permeate flow directly influences the inertial focusing position of the particles, both as a function of downstream channel position and ratio of inlet to outlet flow rate. Comparing experiments to our model, we can identify inertial, viscous and a co-dominant regimes.

  8. Mechanical Failure in Colloidal Gels

    NASA Astrophysics Data System (ADS)

    Kodger, Thomas Edward

    When colloidal particles in a dispersion are made attractive, they aggregate into fractal clusters which grow to form a space-spanning network, or gel, even at low volume fractions. These gels are crucial to the rheological behavior of many personal care, food products and dispersion-based paints. The mechanical stability of these products relies on the stability of the colloidal gel network which acts as a scaffold to provide these products with desired mechanical properties and to prevent gravitational sedimentation of the dispersed components. Understanding the mechanical stability of such colloidal gels is thus of crucial importance to predict and control the properties of many soft solids. Once a colloidal gel forms, the heterogeneous structure bonded through weak physical interactions, is immediately subject to body forces, such as gravity, surface forces, such as adhesion to a container walls and shear forces; the interplay of these forces acting on the gel determines its stability. Even in the absence of external stresses, colloidal gels undergo internal rearrangements within the network that may cause the network structure to evolve gradually, in processes known as aging or coarsening or fail catastrophically, in a mechanical instability known as syneresis. Studying gel stability in the laboratory requires model colloidal system which may be tuned to eliminate these body or endogenous forces systematically. Using existing chemistry, I developed several systems to study delayed yielding by eliminating gravitational stresses through density matching and cyclic heating to induce attraction; and to study syneresis by eliminating adhesion to the container walls, altering the contact forces between colloids, and again, inducing gelation through heating. These results elucidate the varied yet concomitant mechanisms by which colloidal gels may locally or globally yield, but then reform due to the nature of the physical, or non-covalent, interactions which form

  9. A numerical determination of the evolution of cloud drop spectra due to condensation on natural aerosol particles

    NASA Technical Reports Server (NTRS)

    Lee, I. Y.; Haenel, G.; Pruppacher, H. R.

    1980-01-01

    The time variation in size of aerosol particles growing by condensation is studied numerically by means of an air parcel model which allows entrainment of air and aerosol particles. Particles of four types of aerosols typically occurring in atmospheric air masses were considered. The present model circumvents any assumption about the size distribution and chemical composition of the aerosol particles by basing the aerosol particle growth on actually observed size distributions and on observed amounts of water taken up under equilibrium by a deposit of the aerosol particles. Characteristic differences in the drop size distribution, liquid water content and supersaturation were found for the clouds which evolved from the four aerosol types considered.

  10. The mechanisms of fine particle generation and electrification during Mount St. Helens volcanic eruption

    NASA Technical Reports Server (NTRS)

    Cheng, R. J.

    1982-01-01

    Microscopical investigation of volcanic ash collected from ground stations during Mount St. Helens eruptions reveal a distinctive bimodel size distribution with high concentrations of particle ranges at (1) 200-100 microns and (2) 20-0.1 microns. Close examination of individual particles shows that most larger ones are solidified magma particles of porous pumice with numerous gas bubbles in the interior and the smaller ones are all glassy fragments without any detectable gas bubbles. Elemental analysis demonstrates that the fine fragments all have a composition similar to that of the larger pumice particles. Laboratory experiments suggest that the formation of the fine fragments is by bursting of glassy bubbles from a partially solidified surface of a crystallizing molten magma particle. The production of gas bubbles is due to the release of absorbed gases in molten magma particles when solubility decreases during phase transition. Diffusion cloud chamber experiments strongly indicate that sub-micron volcanic fragments are highly hygroscopic and extremely active as cloud condensation nuclei. Ice crystals also are evidently formed on those fragments in a supercooled (-20 C) cloud chamber. It has been reported that charge generation from ocean volcanic eruptions is due to contact of molten lava with sea water. This seems to be insufficient to explain the observed rapid and intense lightning activities over Mount St. Helens eruptions. Therefore, a hypothesis is presented here that highly electrically charged fine solid fragments are ejected by bursting of gas bubbles from the surface of a crystallizing molten magma particles.

  11. DETERMINATION OF PARTICLE DEPOSITION RATES FOR COOKING AND OTHER INDOOR SOURCE

    EPA Science Inventory

    Residential indoor particle concentrations are dependent on indoor sources, penetration of outdoor particles, air change with outdoors, and deposition of particles on indoor surfaces as well as other loss mechanisms. Of these factors, few data are available on deposition of pa...

  12. Electrostatic effects on dust particles in space

    NASA Astrophysics Data System (ADS)

    Leung, Philip; Wuerker, Ralph

    1992-02-01

    The star scanner of the Magellan spacecraft experienced operational anomalies continuously during Magellan's journey to Venus. These anomalies were attributed to the presence of dust particles in the vicinity of the spacecraft. The dust particles, which were originated from the surface of thermal blankets, were liberated when the electrostatic force acting on them was of sufficient magnitude. In order to verify this hypothesis, an experimental program was initiated to study the mechanisms responsible for the release of dust particles from a spacecraft surface. In the experiments, dust particles were immersed in a plasma and/or subjected to ultra-violet irradiation. Results showed that the charging state of a dust particle was strongly dependent on the environment, and the charge on a dust particle was approximately 10(exp 3) elementary charges. Consequently, in the space environment, electrostatic force could be the most dominant force acting on a dust particle.

  13. Engineering mechanics: statics and dynamics. [Textbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandor, B.I.

    1983-01-01

    The purpose of this textbook is to provide engineering students with basic learning material about statics and dynamics which are fundamental engineering subjects. The chapters contain information on: an introduction to engineering mechanics; forces on particles, rigid bodies, and structures; kinetics of particles, particle systems, and rigid bodies in motion; kinematics; mechanical vibrations; and friction, work, moments of inertia, and potential energy. Each chapter contains introductory material, the development of the essential equations, worked-out example problems, homework problems, and, finally, summaries of the essential methods and equations, graphically illustrated where appropriate. (LCL)

  14. Comparison of mechanical and friction properties of composite materials based on AlMg2 containing nano-dimensional particles of crystalline graphite and nanofibers of gamma oxide of aluminum

    NASA Astrophysics Data System (ADS)

    Aborkin, A. V.; Babin, D. M.; Soboĺkov, A. V.

    2018-04-01

    The method of mechanical synthesis in a planetary ball mill was used for production of composite powders based on the AlMg2 alloy containing 1 wt. % of nanosized particles of crystalline graphite or γ-Al2O3. The resulting powders are consolidated by the sintering under pressure. Using the methods of X-ray diffraction analysis, scanning and transmission electron microscopy, the structural-phase composition of bulk composite materials was studied. Comparative analysis of the microhardness, the conditional yield stress at compression, and the friction coefficient of bulk composite materials is carried out. It has been found out that the mechanical properties of composites reinforced with γ-Al2O3 nanofibers are higher than when reinforcing with nanoscale particles of crystalline graphite.

  15. Quantifying the motion of magnetic particles in excised tissue: Effect of particle properties and applied magnetic field

    NASA Astrophysics Data System (ADS)

    Kulkarni, Sandip; Ramaswamy, Bharath; Horton, Emily; Gangapuram, Sruthi; Nacev, Alek; Depireux, Didier; Shimoji, Mika; Shapiro, Benjamin

    2015-11-01

    This article presents a method to investigate how magnetic particle characteristics affect their motion inside tissues under the influence of an applied magnetic field. Particles are placed on top of freshly excised tissue samples, a calibrated magnetic field is applied by a magnet underneath each tissue sample, and we image and quantify particle penetration depth by quantitative metrics to assess how particle sizes, their surface coatings, and tissue resistance affect particle motion. Using this method, we tested available fluorescent particles from Chemicell of four sizes (100 nm, 300 nm, 500 nm, and 1 μm diameter) with four different coatings (starch, chitosan, lipid, and PEG/P) and quantified their motion through freshly excised rat liver, kidney, and brain tissues. In broad terms, we found that the applied magnetic field moved chitosan particles most effectively through all three tissue types (as compared to starch, lipid, and PEG/P coated particles). However, the relationship between particle properties and their resulting motion was found to be complex. Hence, it will likely require substantial further study to elucidate the nuances of transport mechanisms and to select and engineer optimal particle properties to enable the most effective transport through various tissue types under applied magnetic fields.

  16. An efficient venturi scrubber system to remove submicron particles in exhaust gas.

    PubMed

    Tsai, Chuen-Jinn; Lin, Chia-Hung; Wang, Yu-Min; Hunag, Cheng-Hsiung; Li, Shou-Nan; Wu, Zong-Xue; Wang, Feng-Cai

    2005-03-01

    An efficient venturi scrubber system making use of heterogeneous nucleation and condensational growth of particles was designed and tested to remove fine particles from the exhaust of a local scrubber where residual SiH4 gas was abated and lots of fine SiO2 particles were generated. In front of the venturi scrubber, normal-temperature fine-water mist mixes with high-temperature exhaust gas to cool it to the saturation temperature, allowing submicron particles to grow into micron sizes. The grown particles are then scrubbed efficiently in the venturi scrubber. Test results show that the present venturi scrubber system is effective for removing submicron particles. For SiO2 particles greater than 0.1microm, the removal efficiency is greater than 80-90%, depending on particle concentration. The corresponding pressure drop is relatively low. For example, the pressure drop of the venturi scrubber is approximately 15.4 +/- 2.4 cm H2O when the liquid-to-gas ratio is 1.50 L/m3. A theoretical calculation has been conducted to simulate particle growth process and the removal efficiency of the venturi scrubber. The theoretical results agree with the experimental data reasonably well when SiO2 particle diameter is greater than 0.1 microm.

  17. Fracture of a Brittle-Particle Ductile Matrix Composite with Applications to a Coating System

    NASA Astrophysics Data System (ADS)

    Bianculli, Steven J.

    In material systems consisting of hard second phase particles in a ductile matrix, failure initiating from cracking of the second phase particles is an important failure mechanism. This dissertation applies the principles of fracture mechanics to consider this problem, first from the standpoint of fracture of the particles, and then the onset of crack propagation from fractured particles. This research was inspired by the observation of the failure mechanism of a commercial zinc-based anti-corrosion coating and the analysis was initially approached as coatings problem. As the work progressed it became evident that failure mechanism was relevant to a broad range of composite material systems and research approach was generalized to consider failure of a system consisting of ellipsoidal second phase particles in a ductile matrix. The starting point for the analysis is the classical Eshelby Problem, which considered stress transfer from the matrix to an ellipsoidal inclusion. The particle fracture problem is approached by considering cracks within particles and how they are affected by the particle/matrix interface, the difference in properties between the particle and matrix, and by particle shape. These effects are mapped out for a wide range of material combinations. The trends developed show that, although the particle fracture problem is very complex, the potential for fracture among a range of particle shapes can, for certain ranges in particle shape, be considered easily on the basis of the Eshelby Stress alone. Additionally, the evaluation of cracks near the curved particle/matrix interface adds to the existing body of work of cracks approaching bi-material interfaces in layered material systems. The onset of crack propagation from fractured particles is then considered as a function of particle shape and mismatch in material properties between the particle and matrix. This behavior is mapped out for a wide range of material combinations. The final section of

  18. Compaction of granular materials composed of deformable particles

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh Hai; Nezamabadi, Saeid; Delenne, Jean-Yves; Radjai, Farhang

    2017-06-01

    In soft particle materials such as metallic powders the particles can undergo large deformations without rupture. The large elastic or plastic deformations of the particles are expected to strongly affect the mechanical properties of these materials compared to hard particle materials more often considered in research on granular materials. Herein, two numerical approaches are proposed for the simulation of soft granular systems: (i) an implicit formulation of the Material Point Method (MPM) combined with the Contact Dynamics (CD) method to deal with contact interactions, and (i) Bonded Particle Model (BPM), in which each deformable particle is modeled as an aggregate of rigid primary particles using the CD method. These two approaches allow us to simulate the compaction of an assembly of elastic or plastic particles. By analyzing the uniaxial compaction of 2D soft particle packings, we investigate the effects of particle shape change on the stress-strain relationship and volume change behavior as well as the evolution of the microstructure.

  19. Allergy adjuvant effect of particles from wood smoke and road traffic.

    PubMed

    Samuelsen, Mari; Nygaard, Unni Cecilie; Løvik, Martinus

    2008-04-18

    There is growing evidence that in addition to augmenting the severity of asthma and allergic diseases, particulate air pollution also increases the incidence of allergy and asthma. We studied the adjuvant effect of particles from wood smoke and road traffic on the immune response to the allergen ovalbumin (OVA). OVA with and without particles was injected into one hind footpad of Balb/cA mice. All particles together with OVA significantly increased the level of OVA-specific immunoglobulin E (IgE) in serum, compared to groups given OVA or particles alone. Reference diesel exhaust particles (DEP) with OVA induced the highest levels of IgE, whereas no clear difference was observed between particles from road traffic and wood smoke. Road traffic particles collected in the autumn induced higher IgE values with OVA than corresponding particles collected during the winter season when studded tires are used, suggesting that studded tire-generated road pavement particles have less allergy adjuvant activity than exhaust particles. Compared to OVA or particles alone, all particles with OVA increased popliteal lymph node cell numbers, cell proliferation, ex vivo secretion of IL-4 and IL-10 after ConA stimulation, and the expression of several cell surface molecules (CD19, MHC class II, CD86 and CD23). Wood smoke particles with OVA induced somewhat higher cellular responses than road traffic particles, but less than DEP with OVA which seemed to be the most potent particle in inducing cellular as well as antibody responses. Thus, wood smoke particles had about the same capacity to enhance allergic sensitization as road traffic particles, but less than diesel exhaust particles.

  20. 9 CFR 319.5 - Mechanically Separated (Species).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... resulting from the mechanical separation and removal of most of the bone from attached skeletal muscle of... Pork”, and “Mechanically Separated Lamb”. At least 98 percent of the bone particles present in such... shall be no bone particles larger than 0.85 millimeter in their greatest dimension. The product...

  1. 9 CFR 319.5 - Mechanically Separated (Species).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... resulting from the mechanical separation and removal of most of the bone from attached skeletal muscle of... Pork”, and “Mechanically Separated Lamb”. At least 98 percent of the bone particles present in such... shall be no bone particles larger than 0.85 millimeter in their greatest dimension. The product...

  2. 9 CFR 319.5 - Mechanically Separated (Species).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... resulting from the mechanical separation and removal of most of the bone from attached skeletal muscle of... Pork”, and “Mechanically Separated Lamb”. At least 98 percent of the bone particles present in such... shall be no bone particles larger than 0.85 millimeter in their greatest dimension. The product...

  3. 9 CFR 319.5 - Mechanically Separated (Species).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... resulting from the mechanical separation and removal of most of the bone from attached skeletal muscle of... Pork”, and “Mechanically Separated Lamb”. At least 98 percent of the bone particles present in such... shall be no bone particles larger than 0.85 millimeter in their greatest dimension. The product...

  4. 9 CFR 319.5 - Mechanically Separated (Species).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... resulting from the mechanical separation and removal of most of the bone from attached skeletal muscle of... Pork”, and “Mechanically Separated Lamb”. At least 98 percent of the bone particles present in such... shall be no bone particles larger than 0.85 millimeter in their greatest dimension. The product...

  5. Numerical prediction on the dispersion of pollutant particles

    NASA Astrophysics Data System (ADS)

    Osman, Kahar; Ali, Zairi; Ubaidullah, S.; Zahid, M. N.

    2012-06-01

    The increasing concern on air pollution has led people around the world to find more efficient ways to control the problem. Air dispersion modeling is proven to be one of the alternatives that provide economical ways to control the growing threat of air pollution. The objective of this research is to develop a practical numerical algorithm to predict the dispersion of pollutant particles around a specific source of emission. The source selected was a rubber wood manufacturing plant. Gaussian-plume model were used as air dispersion model due to its simplicity and generic application. Results of this study show the concentrations of the pollutant particles on ground level reached approximately 90μg/m3, compared with other software. This value surpasses the limit of 50μg/m3 stipulated by the National Ambient Air Quality Standard (NAAQS) and Recommended Malaysian Guidelines (RMG) set by Environment Department of Malaysia. The results also show high concentration of pollutant particles reading during dru seasons as compared to that of rainy seasons. In general, the developed algorithm is proven to be able to predict particles distribution around emitted source with acceptable accuracy.

  6. The Role of Fluid Compression in Particle Energization during Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Li, X.; Guo, F.; Li, H.; Li, S.

    2017-12-01

    Theories of particle transport and acceleration have shown that fluid compression is the leading mechanism for particle energization. However, the role of compression in particle energization during magnetic reconnection is unclear. We present a cluster of studies to clarify and show the effect of fluid compression in accelerating particles to high energies during magnetic reconnection. Using fully kinetic reconnection simulations, we show that fluid compression is the leading mechanism for high-energy particle energization. We find that the compressional energization is more important in a low-beta plasma or in a reconnection layer with a weak guide field (the magnetic field component perpendicular to the reconnecting magnetic field), which are relevant to solar flares. Our analysis on 3D kinetic simulations shows that the self-generated turbulence scatters particles and enhances the particle diffusion processes in the acceleration regions. Based on these results, we then study large-scale reconnection acceleration by solving the particle transport equation in a large-scale reconnection layer evolved with MHD simulations. Due to the compressional effect, particles are accelerated to high energies and develop power-law energy distributions. This study clarifies the nature of particle acceleration in reconnection layer and is important to understand particle energization during large-scale acceleration such as solar flares.

  7. Authenticated multi-user quantum key distribution with single particles

    NASA Astrophysics Data System (ADS)

    Lin, Song; Wang, Hui; Guo, Gong-De; Ye, Guo-Hua; Du, Hong-Zhen; Liu, Xiao-Fen

    2016-03-01

    Quantum key distribution (QKD) has been growing rapidly in recent years and becomes one of the hottest issues in quantum information science. During the implementation of QKD on a network, identity authentication has been one main problem. In this paper, an efficient authenticated multi-user quantum key distribution (MQKD) protocol with single particles is proposed. In this protocol, any two users on a quantum network can perform mutual authentication and share a secure session key with the assistance of a semi-honest center. Meanwhile, the particles, which are used as quantum information carriers, are not required to be stored, therefore the proposed protocol is feasible with current technology. Finally, security analysis shows that this protocol is secure in theory.

  8. Factors affecting the microstructure and mechanical properties of Ti-Al3Ti core-shell-structured particle-reinforced Al matrix composites

    NASA Astrophysics Data System (ADS)

    Guo, Baisong; Yi, Jianhong; Ni, Song; Shen, Rujuan; Song, Min

    2016-04-01

    This work studied the effects of matrix powder and sintering temperature on the microstructure and mechanical properties of in situ formed Ti-Al3Ti core-shell-structured particle-reinforced pure Al-based composites. It has been shown that both factors have significant effects on the morphology of the reinforcements and densification behaviour of the composites. Due to the strong interfacial bonding and the limitation of the crack propagation in the intermetallic shell during deformation by soft Al matrix and Ti core, the composite fabricated using fine spherical-shaped Al powder and sintered at 570 °C for 5 h has the optimal combination of the overall mechanical properties. The study provides a direction for the optimum combination of high strength and ductility of the composites by adjusting the fabrication parameters.

  9. The effects of particle size and surface coating on the cytotoxicity of nickel ferrite.

    PubMed

    Yin, H; Too, H P; Chow, G M

    2005-10-01

    The safety and toxicity of nanoparticles are of growing concern despite their significant scientific interests and promising potentials in many applications. The properties of nanoparticles depend not only on the size but also the structure, microstructure and surface coating. These in turn are controlled by the synthesis and processing conditions. The dependence of cytotoxicity on particle size and on the presence of oleic acid as surfactant on nickel ferrite particles were investigated in vitro using the Neuro-2A cell line as a model. For nickel ferrite particles without oleic acid prepared by ball milling, cytotoxicity was independent of particle size within the given mass concentrations and surface areas accessible to the cells. For nickel ferrite particles coated with oleic acid prepared by the polyol method, the cytotoxicity significantly increased when one or two layers of oleic acid were deposited. Large particles (150+/-50 nm diameter) showed a higher cytotoxicity than smaller particles (10+/-3 nm diameter).

  10. Enhancing Aluminum Reactivity by Exploiting Surface Chemistry and Mechanical Properties

    DTIC Science & Technology

    2015-06-01

    alter its mechanical properties . In bulk material processing , annealing and quenching metals such as Al can relieve residual stress and improve...increasing  Al  reactivity is to alter its mechanical  properties .  In bulk material  processing , annealing and quenching metals such as  Al  can relieve...mechanical properties . On a single particle level, affecting mechanical properties may also affect Al particle reactivity. Aluminum particles underwent

  11. Cluster analysis of stress corrosion mechanisms for steel wires used in bridge cables through acoustic emission particle swarm optimization.

    PubMed

    Li, Dongsheng; Yang, Wei; Zhang, Wenyao

    2017-05-01

    Stress corrosion is the major failure type of bridge cable damage. The acoustic emission (AE) technique was applied to monitor the stress corrosion process of steel wires used in bridge cable structures. The damage evolution of stress corrosion in bridge cables was obtained according to the AE characteristic parameter figure. A particle swarm optimization cluster method was developed to determine the relationship between the AE signal and stress corrosion mechanisms. Results indicate that the main AE sources of stress corrosion in bridge cables included four types: passive film breakdown and detachment of the corrosion product, crack initiation, crack extension, and cable fracture. By analyzing different types of clustering data, the mean value of each damage pattern's AE characteristic parameters was determined. Different corrosion damage source AE waveforms and the peak frequency were extracted. AE particle swarm optimization cluster analysis based on principal component analysis was also proposed. This method can completely distinguish the four types of damage sources and simplifies the determination of the evolution process of corrosion damage and broken wire signals. Copyright © 2017. Published by Elsevier B.V.

  12. Dynamics of particles in central Encke ringlet

    NASA Astrophysics Data System (ADS)

    Sun, K.-L.; Spahn, F.; Schmidt, J.

    2012-09-01

    The Encke gap is a 320 km wide division in the Saturn A ring centered at 133,581 km. There are at least 3 ringlets in Encke gap, and the central one shares the orbit with Pan [1]. Observations suggest that these ringlets are mainly composed of micronsized particles [2]. The lifetime of these particles are restricted, mechanisms must be at work to replenish these ringlets. The kinetic balance of dust production, dynamical evolution, and loss of dust has been investigated in [3]. In this work, we focus on the particle dynamics in the Encke gap. Our results show that in the central Encke ringlet: (1) The solar radiation pressure provides a minimum particle radius of 7μm; (2) The plasma drag force pushes particle outward in a rate of ˜ 1km/yr; (3) Particles are in a 'modified' horseshoe orbit which is the result of horseshoe orbit plus plasma drag, this orbit prevent particles to reach large co-rotational longitudes of Pan.

  13. THE MECHANISM OF THE INFLAMMATORY PROCESS : III. ELECTROPHORETIC MIGRATION OF INERT PARTICLES AND BLOOD CELLS IN GELATIN SOLS AND GELS WITH REFERENCE TO LEUCOCYTE EMIGRATION THROUGH THE CAPILLARY WALL.

    PubMed

    Abramson, H A

    1928-07-20

    1. Quartz particles and certain other particles move cataphoretically in certain soft gelatin gels, with the same velocity as in the sol. The speed is a function of the true viscosity of the sol or gel, and it is See PDF for Structure apparently not altered in these soft gels by the presence of gel structure. It is proportional to the applied difference of potential. 2. This finding is compatible with the fact that certain sols undergo gelation with no increase of the true viscosity although a marked change in the apparent viscosity takes place. 3. Red cells in soft gelatin-serum gels show a distinct difference in behavior. They migrate through the sol or gel with a speed that is about twice as great as the leucocytes and quartz particles, which latter particles migrate with the same velocity. This ratio has been found to hold for serum and plasma. The absolute velocities are comparatively slightly decreased by the presence of the gel. 4. In more concentrated or stiffer gels, leucocytes, red cells and quartz particles all move at first with the same velocity. By producing mechanical softening of these gels (shearing from cataphoretic movement of the micells within the cell) the red cells presently resume their previous property of independent migration through the gel. 5. The movements of particles in gelatin gels produced by a magnetic force or the force of gravity are of a different nature than those movements produced by cataphoresis. 6. The mechanical nature of obstruction to the cataphoretic migration of leucocytes and red cells in fibrin gels is briefly described. 7. The correlation of cataphoresis of microscopic particles in gels with the order of magnitude and nature of the potential differences in the capillary wall, lends additional evidence to the theory that polymorphonuclear leucocyte emigration and migration are dependent upon these potential differences.

  14. Hydrodynamic Capture of Particles by Micro-swimmers under Hele-Shaw Flows

    NASA Astrophysics Data System (ADS)

    Mishler, Grant; Tsang, Alan Cheng Hou; Pak, On Shun

    2017-11-01

    We explore a hydrodynamic capture mechanism of a driven particle by a micro-swimmer in confined microfluidic environments with an idealized model. The capture is mediated by the hydrodynamic interactions between the micro-swimmer, the driven particle, and the background flow. This capture mechanism relies on the existence of attractive stable equilibrium configurations between the driven particle and the micro-swimmer, which occurs when the background flow is larger than a certain critical threshold. Dynamics and stability of capture and non-capture events will be discussed. This study may have potential applications in the study of capture and delivery of therapeutic payloads by micro-swimmers as well as particle self-assembly under confinements.

  15. Coalescence driven self-organization of growing nanodroplets around a microcap

    NASA Astrophysics Data System (ADS)

    Dyett, Brendan; Hao, Hao; Lohse, Detlef; Zhang, Xuehua

    The coalescence between growing droplets is important for the surface coverage and spatial arrangements of droplets on surfaces. In this work, total internal reflection fluorescence (TIRF) microscopy is utilized to in-situ investigate the formation of nanodroplets around the rim of a polymer microcap, with sub-micron spatial and millisecond temporal resolution. We observe that the coalescence among droplets occurs frequently during their growth by solvent exchange. Our experimental results show that the position of the droplet from two merged droplets is related to the size of the parent droplets. The position of the coalesced droplet and the ratio of parent droplet sizes obey a scaling law, reflecting a coalescence preference based on the size inequality. As a result of droplet coalescence, the angles between the centroids of two neighbouring droplets increase with time, obeying a nearly symmetrical arrangement of droplets at various time intervals. The evolution of the position and number from coalescence of growing droplets is modelled. The mechanism for coalescence driven self-organization of growing droplets is general, applicable to microcaps of different sizes and droplets of different liquids. The understanding from this work may be valuable for positioning nanodroplets by nucleation and growth without using templates.

  16. Coalescence driven self-organization of growing nanodroplets around a microcap.

    PubMed

    Dyett, Brendan; Hao, Hao; Lohse, Detlef; Zhang, Xuehua

    2018-04-04

    The coalescence between growing droplets is important for the surface coverage and spatial arrangements of droplets on surfaces. In this work, total internal reflection fluorescence (TIRF) microscopy is utilized to in situ investigate the formation of nanodroplets around the rim of a polymer microcap, with sub-micron spatial and millisecond temporal resolution. We observe that the coalescence among droplets occurs frequently during their growth by solvent exchange. Our experimental results show that the position of the droplet from two merged droplets is related to the size of the parent droplets. The position of the coalesced droplet and the ratio of parent droplet sizes obey a scaling law, reflecting a coalescence preference based on the size inequality. As a result of droplet coalescence, the angles between the centroids of two neighbouring droplets increase with time, obeying a nearly symmetrical arrangement of droplets at various time intervals. The evolution of the position and number from coalescence of growing droplets is modelled. The mechanism for coalescence driven self-organization of growing droplets is general, applicable to microcaps of different sizes and droplets of different liquids. The understanding from this work may be valuable for positioning nanodroplets by nucleation and growth without using templates.

  17. Pulmonary macrophages: Phenomena associated with the particle ``overload`` condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehnert, B.E.; Sebring, R.J.; Oberdoerster, G.

    1993-05-01

    Numerous lines of evidence support the generalization that alveolar macrophage (AM)-mediated particle clearance, or the transport of particle-containing AM from the alveoli out of the lung via the mucociliary apparatus, is a prominent mechanism that determines the pulmonary retention characteristics of relatively insoluble particles. Studies have also shown that the alveolar deposition of excessive burdens of particles with even low intrinsic cytotoxicity can result in impairments of the AM-mediated panicle clearance mechanism and the development of pathologic disorders including pulmonary fibrosis and lung cancer, at least in the lungs of rats. We briefly review evidence consistent with the idea thatmore » the high volumetric loads of particles contained in AM during particle overload conditions underlies their inabilities to translocate from the lung. Using a condition of particle overload brought about by subchronic exposure of rats to ultra-fine titanium dioxide as an experimental model, we have obtained ultrastructural and other evidence that indicates an association between particle overload and: The occurrence of aggregates of particle-containing AM in alveoli, Type II cell hyperplasia in alveoli that contain the AM aggregates, a loss in patent pores of Kohn in alveoli that contain the AM aggregates and show Type II cell hyperplasia, the interstitialization of particles at the sites where these phenomena collectively occur, and the development of fibrosis in alveolar regions where particle interstitialization occurs. The loss of pores of Kohn in the alveoli that contain aggregates of particle-laden AM suggests that these interalveolar pores normally serve as passageways through which AM may migrate to neighboring alveoli as they perform their function of phagocytizing particles that have deposited on the alveolar surface. The pores of Kohn also serve as short-cut pathways for AM to reach the mucociliary apparatus from more distal alveoli.« less

  18. Pulmonary macrophages: Phenomena associated with the particle overload'' condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehnert, B.E.; Sebring, R.J.; Oberdoerster, G.

    1993-01-01

    Numerous lines of evidence support the generalization that alveolar macrophage (AM)-mediated particle clearance, or the transport of particle-containing AM from the alveoli out of the lung via the mucociliary apparatus, is a prominent mechanism that determines the pulmonary retention characteristics of relatively insoluble particles. Studies have also shown that the alveolar deposition of excessive burdens of particles with even low intrinsic cytotoxicity can result in impairments of the AM-mediated panicle clearance mechanism and the development of pathologic disorders including pulmonary fibrosis and lung cancer, at least in the lungs of rats. We briefly review evidence consistent with the idea thatmore » the high volumetric loads of particles contained in AM during particle overload conditions underlies their inabilities to translocate from the lung. Using a condition of particle overload brought about by subchronic exposure of rats to ultra-fine titanium dioxide as an experimental model, we have obtained ultrastructural and other evidence that indicates an association between particle overload and: The occurrence of aggregates of particle-containing AM in alveoli, Type II cell hyperplasia in alveoli that contain the AM aggregates, a loss in patent pores of Kohn in alveoli that contain the AM aggregates and show Type II cell hyperplasia, the interstitialization of particles at the sites where these phenomena collectively occur, and the development of fibrosis in alveolar regions where particle interstitialization occurs. The loss of pores of Kohn in the alveoli that contain aggregates of particle-laden AM suggests that these interalveolar pores normally serve as passageways through which AM may migrate to neighboring alveoli as they perform their function of phagocytizing particles that have deposited on the alveolar surface. The pores of Kohn also serve as short-cut pathways for AM to reach the mucociliary apparatus from more distal alveoli.« less

  19. Mechanical properties of growing melanocytic nevi and the progression to melanoma

    NASA Astrophysics Data System (ADS)

    Taloni, Alessandro; Alemi, Alexander; Ciusani, Emilio; Sethna, James P.; Zapperi, Stefano; La Porta, Caterina A. M.; National Research Council Of Italy Team; Lassp, Department Of Physics, Cornell University Team; Istituto Neurologico Carlo Besta Collaboration; Department Of Biosciences, University Of Milano Team

    2015-03-01

    Melanocytic nevi are benign proliferations that sometimes turn into malignant melanoma in a way that is still unclear from the biochemical and genetic point of view. Diagnostic and prognostic tools are then mostly based on dermoscopic examination and morphological analysis of histological tissues. To investigate the role of mechanics and geometry in the morpholgical dynamics of melanocytic nevi, we present a computational model for cell proliferation in a layered non-linear elastic tissue. Our simulations show that the morphology of the nevus is correlated to the initial location of the proliferating cell starting the growth process and to the mechanical properties of the tissue. We also demonstrate that melanocytes are subject to compressive stresses that fluctuate widely in the nevus and depend on the growth stage. Numerical simulations of cells in the epidermis releasing matrix metalloproteinases display an accelerated invasion of the dermis by destroying the basal membrane. Moreover, we show experimentally that osmotic stress and collagen inhibit growth in primary melanoma cells while the effect is much weaker in metastatic cells.

  20. Mechanisms of single-walled carbon nanotube nucleation, growth, and healing determined using QM/MD methods.

    PubMed

    Page, Alister J; Ohta, Yasuhito; Irle, Stephan; Morokuma, Keiji

    2010-10-19

    Since their discovery in the early 1990s, single-walled carbon nanotubes (SWNTs) have spawned previously unimaginable commercial and industrial technologies. Their versatility stems from their unique electronic, physical/chemical, and mechanical properties, which set them apart from traditional materials. Many researchers have investigated SWNT growth mechanisms in the years since their discovery. The most prevalent of these is the vapor-liquid-solid (VLS) mechanism, which is based on experimental observations. Within the VLS mechanism, researchers assume that the formation of a SWNT starts with co-condensation of carbon and metal atoms from vapor to form liquid metal carbide. Once the liquid reaches supersaturation, the solid phase nanotubes begin to grow. The growth process is partitioned into three distinct stages: nucleation of a carbon "cap-precursor," "cap-to-tube" transformation, and continued SWNT growth. In recent years, molecular dynamics (MD) simulations have come to the fore with respect to SWNT growth. MD simulations lead to spatial and temporal resolutions of these processes that are superior to those possible using current experimental techniques, and so provide valuable information regarding the growth process that researchers cannot obtain experimentally. In this Account, we review our own recent efforts to simulate SWNT nucleation, growth, and healing phenomena on transition-metal catalysts using quantum mechanical molecular dynamics (QM/MD) methods. In particular, we have validated each stage of the SWNT condensation mechanism using a self-consistent-charge density-functional tight-binding (SCC-DFTB) methodology. With respect to the nucleation of a SWNT cap-precursor (stage 1), we have shown that the presence of a transition-metal carbide particle is not a necessary prerequisite for SWNT nucleation, contrary to conventional experimental presumptions. The formation and coalescence of polyyne chains on the metal surface occur first, followed by the