Science.gov

Sample records for particle inflow gun

  1. Erosion in radial inflow turbines. Volume 5: Computer programs for tracing particle trajectories

    NASA Technical Reports Server (NTRS)

    Clevenger, W. B., Jr.; Tabakoff, W.

    1975-01-01

    Computer programs used to study the trajectories of particles in the radial inflow turbines are presented. The general technique of each program is described. A set of subroutines developed during the study are described. Descriptions, listings, and typical examples of each of the main programs are included.

  2. Numerical simulation of gas and particle flow field characteristics in HVOF guns

    SciTech Connect

    Yang, X.; Eidelman, S.; Lottati, I.

    1995-12-31

    The particle flow field characteristics in an HVOF gun are examined using numerical simulation techniques. The authors consider the particle injection, acceleration, convection heat transfer, and particle barrel interaction processes in a TAFA JP-5000 HVOF gun. Details of particle trajectories and temperature history as a function of particle size and other parameters are simulated and analyzed. A parameter study is conducted for different particle size, particle injection direction, and particle velocity. The number of distinct particle injection regimes was predicted and analyzed. Particle velocity and temperature at the exit of the barrel are listed. Using numerical simulation, the injection condition can be designed as a function of the set of flow parameters as well as particle properties, including particle size and material properties, to optimize the thermal spray process. A companion paper by the same authors in this proceedings presents a comprehensive analysis of the gas flow conditions for the HVOF gun.

  3. Particle Acceleration in a High Enthalpy Nozzle Flow with a Modified Detonation Gun

    NASA Astrophysics Data System (ADS)

    Henkes, C.; Olivier, H.

    2014-04-01

    The quality of thermal sprayed coatings depends on many factors which have been investigated and are still in scientific focus. Mostly, the coating material is inserted into the spray device as solid powder. The particle condition during the spray process has a strong effect on coating quality. In some cases, higher particle impact energy leads to improved coating quality. Therefore, a computer-controlled detonation gun based spraying device has been designed and tested to obtain particle velocities over 1200 m/s. The device is able to be operated in two modes based on different flow-physical principles. In one mode, the device functions like a conventional detonation gun in which the powder is accelerated in a blast wave. In the other mode, an extension with a nozzle transforms the detonation gun process into an intermittent shock tunnel process in which the particles are accelerated in a high enthalpy nozzle flow with high reservoir conditions. Presented are experimental results of the operation with nozzle in which the device generates very high particle velocities up to a frequency of 5 Hz. A variable particle injection system allows injection of the powder at any point along the nozzle axis to control particle temperature and velocity. A hydrogen/oxygen mixture is used in the experiments. Operation performance and nozzle outflow are characterized by time resolved pressure measurements. The particle conditions inside the nozzle and in the nozzle exit plane are calculated with a quasi-one-dimensional WENO-code of high order. For the experiments, particle velocity is obtained by particle image velocimetry, and particle concentration is qualitatively determined by a laser extinction method. The powders used are WC-Co(88/12), NiCr(80/20), Al2O3, and Cu. Different substrate/powder combinations for varying particle injection positions have been investigated by light microscopy and measurements of microhardness.

  4. Inflow/Outflow Boundary Conditions for Particle-Based Blood Flow Simulations: Application to Arterial Bifurcations and Trees.

    PubMed

    Lykov, Kirill; Li, Xuejin; Lei, Huan; Pivkin, Igor V; Karniadakis, George Em

    2015-08-01

    When blood flows through a bifurcation, red blood cells (RBCs) travel into side branches at different hematocrit levels, and it is even possible that all RBCs enter into one branch only, leading to a complete separation of plasma and RBCs. To quantify this phenomenon via particle-based mesoscopic simulations, we developed a general framework for open boundary conditions in multiphase flows that is effective even for high hematocrit levels. The inflow at the inlet is duplicated from a fully developed flow generated in a pilot simulation with periodic boundary conditions. The outflow is controlled by adaptive forces to maintain the flow rate and velocity gradient at fixed values, while the particles leaving the arteriole at the outlet are removed from the system. Upon validation of this approach, we performed systematic 3D simulations to study plasma skimming in arterioles of diameters 20 to 32 microns. For a flow rate ratio 6:1 at the branches, we observed the "all-or-nothing" phenomenon with plasma only entering the low flow rate branch. We then simulated blood-plasma separation in arteriolar bifurcations with different bifurcation angles and same diameter of the daughter branches. Our simulations predict a significant increase in RBC flux through the main daughter branch as the bifurcation angle is increased. Finally, we demonstrated the effectiveness of the new methodology in simulations of blood flow in vessels with multiple inlets and outlets, constructed using an angiogenesis model. PMID:26317829

  5. Inflow/outflow boundary conditions for particle-based blood flow simulations: Application to arterial bifurcations and trees

    DOE PAGESBeta

    Lykov, Kirill; Li, Xuejin; Lei, Huan; Pivkin, Igor V.; Karniadakis, George Em; Feng, James

    2015-08-28

    When blood flows through a bifurcation, red blood cells (RBCs) travel into side branches at different hematocrit levels, and it is even possible that all RBCs enter into one branch only, leading to a complete separation of plasma and R- BCs. To quantify this phenomenon via particle-based mesoscopic simulations, we developed a general framework for open boundary conditions in multiphase flows that is effective even for high hematocrit levels. The inflow at the inlet is duplicated from a fully developed flow generated in a pilot simulation with periodic boundary conditions. The outflow is controlled by adaptive forces to maintain themore » flow rate and velocity gradient at fixed values, while the particles leaving the arteriole at the outlet are removed from the system. Upon valida- tion of this approach, we performed systematic 3D simulations to study plasma skimming in arterioles of diameters 20 to 32 microns. For a flow rate ratio 6:1 at the branches, we observed the \\all-or-nothing" phenomenon with plasma only entering the low flow rate branch. We then simulated blood-plasma separation in arteriolar bifurcations with different bifurcation angles and same diameter of the daughter branches. Our simulations predict a significant increase in RBC flux through the main daughter branch as the bifurcation angle is increased. Lastly, we demonstrated the new methodology for simulating blood flow in ves- sels with multiple inlets and outlets, constructed using an angiogenesis model.« less

  6. Inflow/outflow boundary conditions for particle-based blood flow simulations: Application to arterial bifurcations and trees

    SciTech Connect

    Lykov, Kirill; Li, Xuejin; Lei, Huan; Pivkin, Igor V.; Karniadakis, George Em; Feng, James

    2015-08-28

    When blood flows through a bifurcation, red blood cells (RBCs) travel into side branches at different hematocrit levels, and it is even possible that all RBCs enter into one branch only, leading to a complete separation of plasma and R- BCs. To quantify this phenomenon via particle-based mesoscopic simulations, we developed a general framework for open boundary conditions in multiphase flows that is effective even for high hematocrit levels. The inflow at the inlet is duplicated from a fully developed flow generated in a pilot simulation with periodic boundary conditions. The outflow is controlled by adaptive forces to maintain the flow rate and velocity gradient at fixed values, while the particles leaving the arteriole at the outlet are removed from the system. Upon valida- tion of this approach, we performed systematic 3D simulations to study plasma skimming in arterioles of diameters 20 to 32 microns. For a flow rate ratio 6:1 at the branches, we observed the \\all-or-nothing" phenomenon with plasma only entering the low flow rate branch. We then simulated blood-plasma separation in arteriolar bifurcations with different bifurcation angles and same diameter of the daughter branches. Our simulations predict a significant increase in RBC flux through the main daughter branch as the bifurcation angle is increased. Lastly, we demonstrated the new methodology for simulating blood flow in ves- sels with multiple inlets and outlets, constructed using an angiogenesis model.

  7. Inflow/Outflow Boundary Conditions for Particle-Based Blood Flow Simulations: Application to Arterial Bifurcations and Trees

    PubMed Central

    Lei, Huan; Pivkin, Igor V.; Karniadakis, George Em

    2015-01-01

    When blood flows through a bifurcation, red blood cells (RBCs) travel into side branches at different hematocrit levels, and it is even possible that all RBCs enter into one branch only, leading to a complete separation of plasma and RBCs. To quantify this phenomenon via particle-based mesoscopic simulations, we developed a general framework for open boundary conditions in multiphase flows that is effective even for high hematocrit levels. The inflow at the inlet is duplicated from a fully developed flow generated in a pilot simulation with periodic boundary conditions. The outflow is controlled by adaptive forces to maintain the flow rate and velocity gradient at fixed values, while the particles leaving the arteriole at the outlet are removed from the system. Upon validation of this approach, we performed systematic 3D simulations to study plasma skimming in arterioles of diameters 20 to 32 microns. For a flow rate ratio 6:1 at the branches, we observed the “all-or-nothing” phenomenon with plasma only entering the low flow rate branch. We then simulated blood-plasma separation in arteriolar bifurcations with different bifurcation angles and same diameter of the daughter branches. Our simulations predict a significant increase in RBC flux through the main daughter branch as the bifurcation angle is increased. Finally, we demonstrated the effectiveness of the new methodology in simulations of blood flow in vessels with multiple inlets and outlets, constructed using an angiogenesis model. PMID:26317829

  8. Microneedle assisted micro-particle delivery from gene guns: experiments using skin-mimicking agarose gel.

    PubMed

    Zhang, Dongwei; Das, Diganta B; Rielly, Chris D

    2014-02-01

    A set of laboratory experiments has been carried out to determine if micro-needles (MNs) can enhance penetration depths of high-speed micro-particles delivered by a type of gene gun. The micro-particles were fired into a model target material, agarose gel, which was prepared to mimic the viscoelastic properties of porcine skin. The agarose gel was chosen as a model target as it can be prepared as a homogeneous and transparent medium with controllable and reproducible properties allowing accurate determination of penetration depths. Insertions of various MNs into gels have been analysed to show that the length of the holes increases with an increase in the agarose concentration. The penetration depths of micro-particle were analysed in relation to a number of variables, namely the operating pressure, the particle size, the size of a mesh used for particle separation and the MN dimensions. The results suggest that the penetration depths increase with an increase of the mesh pore size, because of the passage of large agglomerates. As these particles seem to damage the target surface, then smaller mesh sizes are recommended; here, a mesh with a pore size of 178 μm was used for the majority of the experiments. The operating pressure provides a positive effect on the penetration depth, that is it increases as pressure is increased. Further, as expected, an application of MNs maximises the micro-particle penetration depth. The maximum penetration depth is found to increase as the lengths of the MNs increase, for example it is found to be 1272 ± 42, 1009 ± 49 and 656 ± 85 μm at 4.5 bar pressure for spherical micro-particles of 18 ± 7 μm diameter when we used MNs of 1500, 1200 and 750 μm length, respectively. PMID:24399616

  9. Half-Cell RF Gun Simulations with the Electromagnetic Particle-in-Cell Code VORPAL

    SciTech Connect

    Paul, K.; Dimitrov, D. A.; Busby, R.; Bruhwiler, D. L.; Smithe, D.; Cary, J. R.; Kewisch, J.; Kayran, D.; Calaga, R.; Ben-Zvi, I.

    2009-01-22

    We have simulated Brookhaven National Laboratory's half-cell superconducting RF gun design for a proposed high-current ERL using the three-dimensional, electromagnetic particle-in-cell code VORPAL. VORPAL computes the fully self-consistent electromagnetic fields produced by the electron bunches, meaning that it accurately models space-charge effects as well as bunch-to-bunch beam loading effects and the effects of higher-order cavity modes, though these are beyond the scope of this paper. We compare results from VORPAL to the well-established space-charge code PARMELA, using RF fields produced by SUPERFISH, as a benchmarking exercise in which the two codes should agree well.

  10. Half-Cell RF Gun Simulations with the Electromagnetic Particle-in-Cell Code VORPAL

    NASA Astrophysics Data System (ADS)

    Paul, K.; Dimitrov, D. A.; Busby, R.; Bruhwiler, D. L.; Smithe, D.; Cary, J. R.; Kewisch, J.; Kayran, D.; Calaga, R.; Ben-Zvi, I.

    2009-01-01

    We have simulated Brookhaven National Laboratory's half-cell superconducting RF gun design for a proposed high-current ERL using the three-dimensional, electromagnetic particle-in-cell code VORPAL. VORPAL computes the fully self-consistent electromagnetic fields produced by the electron bunches, meaning that it accurately models space-charge effects as well as bunch-to-bunch beam loading effects and the effects of higher-order cavity modes, though these are beyond the scope of this paper. We compare results from VORPAL to the well-established space-charge code PARMELA, using RF fields produced by SUPERFISH, as a benchmarking exercise in which the two codes should agree well.

  11. ELM simulation experiments using transient heat and particle load produced by a magnetized coaxial plasma gun

    NASA Astrophysics Data System (ADS)

    Shoda, K.; Sakuma, I.; Iwamoto, D.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2011-10-01

    It is considered that thermal transient events such as type I edge-localized modes (ELMs) and disruptions will limit the lifetime of plasma-facing components (PFCs) in ITER. It is predicted that the heat load onto the PFCs during type I ELMs in ITER is 0.2-2MJ/m2 with pulse length of ~0.1-1ms. We have investigated interaction between transient heat and particle load and the PFCs by using a magnetized coaxial plasma gun (MCPG) at University of Hyogo. In the experiment, a pulsed plasma with duration of ~0.5ms, incident ion energy of ~30eV, and surface absorbed energy density of ~0.3-0.7MJ/m2 was produced by the MCPG. However, no melting occurred on a tungsten surface exposed to a single plasma pulse of ~0.7MJ/m2, while cracks clearly appeared at the edge part of the W surface. Thus, we have recently started to improve the performance of the MCPG in order to investigate melt layer dynamics of a tungsten surface such as vapor cloud formation. In the modified MCPG, the capacitor bank energy for the plasma discharge is increased from 24.5 kJ to 144 kJ. In the preliminary experiments, the plasmoid with duration of ~0.6 ms, incident ion energy of ~ 40 eV, and the surface absorbed energy density of ~2 MJ/m2 was successfully produced at the gun voltage of 6 kV.

  12. Particle-In-Cell/Monte Carlo Simulation of Ion Back BomBardment in a High Average Current RF Photo-Gun

    SciTech Connect

    Qiang, J.

    2009-10-17

    In this paper, we report on study of ion back bombardment in a high average current radio-frequency (RF) photo-gun using a particle-in-cell/Monte Carlo simulation method. Using this method, we systematically studied effects of gas pressure, RF frequency, RF initial phase, electric field profile, magnetic field, laser repetition rate, different ion species on ion particle line density distribution, kinetic energy spectrum, and ion power line density distribution back bombardment onto the photocathode. Those simulation results suggested that effects of ion back bombardment could increase linearly with the background gas pressure and laser repetition rate. The RF frequency has significantly affected the ion motion inside the gun so that the ion power deposition on the photocathode in an RF gun can be several orders of magnitude lower than that in a DC gun. The ion back bombardment can be minimized by appropriately choosing the electric field profile and the initial phase.

  13. Fluorescence imaging of microbe-containing particles shot from a two-stage Light-gas gun into an aerogel.

    PubMed

    Kawaguchi, Yuko; Sugino, Tomohiro; Tabata, Makoto; Okudaira, Kyoko; Imai, Eichi; Yano, Hajime; Hasegawa, Sunao; Hashimoto, Hirofumi; Yabuta, Hikaru; Kobayashi, Kensei; Kawai, Hideyuki; Mita, Hajime; Yokobori, Shin-ichi; Yamagishi, Akihiko

    2014-02-01

    We have proposed an experiment (the Tanpopo mission) to capture microbes on the Japan Experimental Module of the International Space Station. An ultra low-density silica aerogel will be exposed to space for more than 1 year. After retrieving the aerogel, particle tracks and particles found in it will be visualized by fluorescence microscopy after staining it with a DNA-specific fluorescence dye. In preparation for this study, we simulated particle trapping in an aerogel so that methods could be developed to visualize the particles and their tracks. During the Tanpopo mission, particles that have an orbital velocity of ~8 km/s are expected to collide with the aerogel. To simulate these collisions, we shot Deinococcus radiodurans-containing Lucentite particles into the aerogel from a two-stage light-gas gun (acceleration 4.2 km/s). The shapes of the captured particles, and their tracks and entrance holes were recorded with a microscope/camera system for further analysis. The size distribution of the captured particles was smaller than the original distribution, suggesting that the particles had fragmented. We were able to distinguish between microbial DNA and inorganic compounds after staining the aerogel with the DNA-specific fluorescence dye SYBR green I as the fluorescence of the stained DNA and the autofluorescence of the inorganic particles decay at different rates. The developed methods are suitable to determine if microbes exist at the International Space Station altitude. PMID:25086872

  14. Gun Play

    ERIC Educational Resources Information Center

    Mechling, Jay

    2008-01-01

    Biology and the particular gun culture of the United States come together to explain the persistent and powerful attraction of American boys to both real guns and toy guns. The 1990s saw adults begin to conflate "the gun problem" with "the boy problem," sparking attempts (largely failed) to banish toy guns from homes and…

  15. In-flow detection of ultra-small magnetic particles by an integrated giant magnetic impedance sensor

    NASA Astrophysics Data System (ADS)

    Fodil, K.; Denoual, M.; Dolabdjian, C.; Treizebre, A.; Senez, V.

    2016-04-01

    We have designed and fabricated a microfluidic system made of glass and polydimethylsiloxane. A micro-magnetometer has been integrated to the system. This sensor is made of a giant magneto-impedance wire known to have very high magnetic sensitivity at room temperature. A liquid-liquid segmented multiphase flow was generated in the channel using a Y-shaped inlet junction. The dispersed phase plugs contained superparamagnetic iron oxide (20 nm) nanoparticles at a molar concentration of 230 mmol/l. We have shown both theoretically and experimentally that in-flow detection of these nanoparticles is performed by the microsystem for concentration as small as 5.47 × 10-9 mol. These performances show that it is conceivable to use this system for ex-vivo analysis of blood samples where superparamagnetic iron oxide nanoparticles, initially used as magnetic contrast agents, could be functionalized for biomarkers fishing. It opens new perspectives in the context of personalized medicine.

  16. Erosion in radial inflow turbines. Volume 2: Balance of centrifugal and radial drag forces on erosive particles

    NASA Technical Reports Server (NTRS)

    Clevenger, W. B., Jr.; Tabakoff, W.

    1974-01-01

    The particle motion in two-dimensional free and forced inward flowing vortices is considered. A particle in such a flow field experiences a balance between the aerodynamic drag forces that tend to drive erosive particles toward the axis, and centrifugal forces that prevent these particles from traveling toward the axis. Results predict that certain sizes of particles will achieve a stable orbit about the turbine axis in the inward flowing free vortex. In this condition, the radial drag force is equal to the centrifugal force. The sizes of particles that will achieve a stable orbit is shown to be related to the gas flow velocity diagram at a particular radius. A second analysis yields a description of particle sizes that will experience a centrifugal force that is greater than the radial component of the aerodynamic drag force for a more general type of particle motion.

  17. ION GUN

    DOEpatents

    Dandl, R.A.

    1961-10-24

    An ion gun is described for the production of an electrically neutral ionized plasma. The ion gun comprises an anode and a cathode mounted in concentric relationship with a narrow annulus between. The facing surfaces of the rear portions of the anode and cathode are recessed to form an annular manifold. Positioned within this manifold is an annular intermediate electrode aligned with the an nulus between the anode and cathode. Gas is fed to the manifold and an arc discharge is established between the anode and cathode. The gas is then withdrawn from the manifold through the annulus between the anode and cathode by a pressure differential. The gas is then ionized by the arc discharge across the annulus. The ionized gas is withdrawn from the annulus by the combined effects of the pressure differential and a collimating magnetic field. In a 3000 gauss magnetic field, an arc voltage of 1800 volts, and an arc current of 0.2 amp, a plasma of about 3 x 10/sup 11/ particles/cc is obtained. (AEC)

  18. Gun Safety

    MedlinePlus

    Many U.S. households have guns, but they can cause harm if not handled properly. Here are some things you can do to keep yourself and ... safe: Teach children that they shouldn't touch guns and that if they see a gun, to ...

  19. Ultrafine particles emitted by flame and electric arc guns for thermal spraying of metals.

    PubMed

    Bémer, Denis; Régnier, Roland; Subra, Isabelle; Sutter, Benjamin; Lecler, Marie T; Morele, Yves

    2010-08-01

    The ultrafine aerosol emitted by thermal spraying of metals using flame and electric arc processes has been characterized in terms of particle size distribution and emission rates based on both particle number and mass. Thermal spraying of Zn, Zn/Al, and Al was studied. Measurements taken using an electrical low pressure impactor and a condensation nucleus counter reveal an aerosol made up of very fine particles (80-95% of number distribution <100 nm). Ultrafine particle emission rates produced by the electric arc process are very high, the largest values being recorded during spraying of pure aluminium. This process generates high particle emissions and therefore requires careful consideration and possible rethinking of currently implemented protection measures: ventilated cabins, dust collectors, and personal protective equipment. PMID:20685717

  20. Charged-particle Gun Design with 3D Finite-element Methods

    NASA Astrophysics Data System (ADS)

    Humphries, Stanley

    2002-04-01

    The DARHT second-axis injector poses a major challenge for computer simulation. The relativistic electrons are subject to strong beam-generated electric and magnetic forces. The beam and applied fields are fully three-dimensional. Furthermore, accurate field calculations at surfaces are critical to model Child-law emission. Although several 2D relativistic beam codes are available, there is presently no 3D tool that can address all important processes in the DARHT injector. As a result, we created the OmniTrak 3D finite-element code suite. This talk gives a basic tutorial on finite-element methods with emphasis on electron gun design via the ray-tracing technique. Four main areas are covered: 1) the mesh as a tool to organize space, 2) transformation of the Poisson equation through the minimum residual principle, 3) orbit tracking in a complex environment and 4) handling self-consistent beam-generated fields. The components of a volume mesh (elements, nodes and facets) are reviewed. We consider motivations for choosing a 3D mesh style: structured versus unstructured, tetrahedrons versus hexahedrons. We discuss methods for taking volume integrals over arbitrary hexahedrons through normal coordinates and shape functions, leading to the fundamental field equations. The special problems of 3D magnetic field solutions and the advantages of the reduced potential method are outlined. Accurate field interpolations for orbit calculations require fast identification of occupied elements. A method for fast element identification that also yields the orbit penetration point on the element surface is described. The final topics are the assignment of charge and current to meshes from calculated orbits and techniques for space-charge-limited emission from multiple arbitrary 3D surfaces.

  1. Gene gun bombardment with DNA-coated gold particles is a potential alternative to hydrodynamics-based transfection for delivering genes into superficial hepatocytes.

    PubMed

    Chang, Ming-Ling; Chen, Jeng-Chang; Yeh, Chau-Ting; Chang, Ming-Yu; Liang, Chun-Kai; Chiu, Cheng-Tang; Lin, Deng-Yn; Liaw, Yun-Fan

    2008-04-01

    Although in vivo nonviral gene delivery to the liver is critical for hepatic gene therapy, there are a number of technical obstacles. Enhanced green fluorescent protein (EGFP)-encoding DNA was coated onto gold particles (gold-DNA), dissolved in phosphate-buffered saline (pure DNA), and prepared as a polymer adjuvant (jetPEI)-galactosidase solution (polymer-DNA). Murine liver transfection was attempted by nonviral approaches, which included hydrodynamics-based transfection (HBT) of pure DNA, transport and transhepatic injection of polymer-DNA, and gene gun bombardment with pure DNA, gold-DNA, and polymer-DNA. Only HBT and gene gun bombardment yielded significant numbers of EGFP(+) hepatocytes. With the exception of the edge of the liver, HBT had a whole-liver transfection rate of 20% under optimized conditions. HBT resulted in marked hepatic infarctions, most prominently at the edge of the liver. For gene gun bombardment, the transfection rate was pressure dependent and limited to 15% for gold-DNA. Triple or quadruple bombardment at 30 psi resulted in a transfection rate comparable to that of a single bombardment at higher pressure, but was associated with minimal scattered hepatic necrosis. The EGFP(+) hepatocytes were located mainly in the superficial layers. We conclude that both HBT and gene gun bombardment yielded efficient murine hepatocyte transfection in vivo. Severe hepatic infarction impedes foreign gene expression in the superficial hepatocytes after HBT. Repeated bombardment with gold-DNA, using an accelerated particle gene gun at 30 psi, is a potential alternative to HBT for delivering genes to superficial hepatocytes in vivo, although gold-related hepatic necrosis is a persistent problem. PMID:18366343

  2. RF Gun Optimization Study

    SciTech Connect

    A. S. Hofler; P. Evtushenko; M. Krasilnikov

    2007-08-01

    Injector gun design is an iterative process where the designer optimizes a few nonlinearly interdependent beam parameters to achieve the required beam quality for a particle accelerator. Few tools exist to automate the optimization process and thoroughly explore the parameter space. The challenging beam requirements of new accelerator applications such as light sources and electron cooling devices drive the development of RF and SRF photo injectors. RF and SRF gun design is further complicated because the bunches are space charge dominated and require additional emittance compensation. A genetic algorithm has been successfully used to optimize DC photo injector designs for Cornell* and Jefferson Lab**, and we propose studying how the genetic algorithm techniques can be applied to the design of RF and SRF gun injectors. In this paper, we report on the initial phase of the study where we model and optimize gun designs that have been benchmarked with beam measurements and simulation.

  3. Gun Control, Gun Ownership, and Suicide Prevention.

    ERIC Educational Resources Information Center

    Lester, David

    1988-01-01

    Explored relationship between the extent of gun ownership and the strictness of gun control laws to suicide and homicide rates in the nine major geographic regions of the United States. Found gun ownership, rather than the strictness of gun control laws, was the strongest correlate of the rates of suicide and homicide by guns. (Author)

  4. Gun control, gun ownership, and suicide prevention.

    PubMed

    Lester, D

    1988-01-01

    The relationship of the extent of gun ownership and the strictness of gun control laws to suicide and homicide rates in the nine major geographic regions of the United States was explored. Gun ownership, rather than the strictness of gun control laws, was found to be the strongest correlate of the rates of suicide and homicide by guns. Regions with a higher extent of gun ownership had higher rates of suicide and homicide by firearms. PMID:3262246

  5. Spectrometer gun

    DOEpatents

    Waechter, David A.; Wolf, Michael A.; Umbarger, C. John

    1985-01-01

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  6. Spectrometer gun

    DOEpatents

    Waechter, D.A.; Wolf, M.A.; Umbarger, C.J.

    1981-11-03

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun is described that includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  7. Water gun vs air gun: A comparison

    USGS Publications Warehouse

    Hutchinson, D.R.; Detrick, R. S.

    1984-01-01

    The water gun is a relatively new marine seismic sound source that produces an acoustic signal by an implosive rather than explosive mechanism. A comparison of the source characteristics of two different-sized water guns with those of conventional air guns shows the the water gun signature is cleaner and much shorter than that of a comparable-sized air gun: about 60-100 milliseconds (ms) for an 80-in3. (1.31-liter (I)) water gun compared with several hundred ms for an 80-in3. (1.31-1) air gun. The source spectra of water guns are richer in high frequencies (>200 Hz) than are those of air guns, but they also have less energy than those of air guns at low frequencies. A comparison between water gun and air gun reflection profiles in both shallow (Long Island Sound)-and deep (western Bermuda Rise)-water settings suggests that the water gun offers a good compromise between very high resolution, limited penetration systems (e.g. 3.5-kHz profilers and sparkers) and the large volume air guns and tuned air gun arrays generally used where significant penetration is required. ?? 1984 D. Reidel Publishing Company.

  8. Radial Inflow Turboexpander Redesign

    SciTech Connect

    William G. Price

    2001-09-24

    Steamboat Envirosystems, LLC (SELC) was awarded a grant in accordance with the DOE Enhanced Geothermal Systems Project Development. Atlas-Copco Rotoflow (ACR), a radial expansion turbine manufacturer, was responsible for the manufacturing of the turbine and the creation of the new computer program. SB Geo, Inc. (SBG), the facility operator, monitored and assisted ACR's activities as well as provided installation and startup assistance. The primary scope of the project is the redesign of an axial flow turbine to a radial inflow turboexpander to provide increased efficiency and reliability at an existing facility. In addition to the increased efficiency and reliability, the redesign includes an improved reduction gear design, and improved shaft seal design, and upgraded control system and a greater flexibility of application

  9. Surface cracking and melting of different tungsten grades under transient heat and particle loads in a magnetized coaxial plasma gun

    NASA Astrophysics Data System (ADS)

    Kikuchi, Y.; Sakuma, I.; Iwamoto, D.; Kitagawa, Y.; Fukumoto, N.; Nagata, M.; Ueda, Y.

    2013-07-01

    Surface damage of pure tungsten (W), W alloys with 2 wt.% tantalum (W-Ta) and vacuum plasma spray (VPS) W coating on a reduced activation material of ferritic steel (F82H) due to repetitive ELM-like pulsed (˜0.3 ms) deuterium plasma irradiation has been investigated by using a magnetized coaxial plasma gun. Surface cracks appeared on a pure W sample exposed to 10 plasma pulses of ˜0.3 MJ m-2, while a W-Ta sample did not show surface cracks with similar pulsed plasma irradiation. The energy density threshold for surface cracking was significantly increased by the existence of the alloying element of tantalum. No surface morphology change of a VPS W coated F82H sample was observed under 10 plasma pulses of ˜0.3 MJ m-2, although surface melting and cracks in the resolidification layer occurred at higher energy density of ˜0.9 MJ m-2. There was no indication of exfoliation of the W coating from the substrate of F82H after the pulsed plasma exposures.

  10. ELECTRON GUN

    DOEpatents

    Christofilos, N.C.; Ehlers, K.W.

    1960-04-01

    A pulsed electron gun capable of delivering pulses at voltages of the order of 1 mv and currents of the order of 100 amperes is described. The principal novelty resides in a transformer construction which is disposed in the same vacuum housing as the electron source and accelerating electrode structure of the gun to supply the accelerating potential thereto. The transformer is provided by a plurality of magnetic cores disposed in circumferentially spaced relation and having a plurality of primary windings each inductively coupled to a different one of the cores, and a helical secondary winding which is disposed coaxially of the cores and passes therethrough in circumferential succession. Additional novelty resides in the disposition of the electron source cathode filament input leads interiorly of the transformer secondary winding which is hollow, as well as in the employment of a half-wave filament supply which is synchronously operated with the transformer supply such that the transformer is pulsed during the zero current portions of the half-wave cycle.

  11. Gun ownership and social gun culture.

    PubMed

    Kalesan, Bindu; Villarreal, Marcos D; Keyes, Katherine M; Galea, Sandro

    2016-06-01

    We assessed gun ownership rates in 2013 across the USA and the association between exposure to a social gun culture and gun ownership. We used data from a nationally representative sample of 4000 US adults, from 50 states and District of Columbia, aged >18 years to assess gun ownership and social gun culture performed in October 2013. State-level firearm policy information was obtained from the Brady Law Center and Injury Prevention and Control Center. One-third of Americans reported owning a gun, ranging from 5.2% in Delaware to 61.7% in Alaska. Gun ownership was 2.25-times greater among those reporting social gun culture (PR=2.25, 95% CI 2.02 to 2.52) than those who did not. In conclusion, we found strong association between social gun culture and gun ownership. Gun cultures may need to be considered for public health strategies that aim to change gun ownership in the USA. PMID:26124073

  12. Encyclopedia of Gun Control and Gun Rights.

    ERIC Educational Resources Information Center

    Utter, Glenn H.

    This reference volume provides information on gun control and gun rights, including resources on the debate surrounding the Second Amendment and individuals and organizations focused on gun issues, along with statutes, court cases, events, and publications surrounding this current topic. Highlighted are the important organizations and their…

  13. Resonant optical gun.

    PubMed

    Maslov, A V; Bakunov, M I

    2014-05-01

    We propose a concept of a structure-a resonant optical gun-to realize an efficient propulsion of dielectric microparticles by light forces. The structure is based on a waveguide in which a reversal of the electromagnetic momentum flow of the incident mode is realized by exciting a whispering gallery resonance in the microparticle. The propelling force can reach the value up to the theoretical maximum of twice the momentum flow of the initial wave. The force density oscillates along the particle periphery and has very large amplitude. PMID:24784113

  14. The Gun Dispute.

    ERIC Educational Resources Information Center

    Spitzer, Robert J.

    1999-01-01

    Explores the debate over gun ownership and gun control in the United States, focusing on the historic place of guns in U.S. society. The current national mood is more receptive than ever to restricting and regulating adolescent access to guns in light of recent school shootings. (SLD)

  15. Gun Sales. Firearm Facts.

    ERIC Educational Resources Information Center

    Duker, Laurie, Ed.

    Minimal federal regulations on firearm sales have facilitated the proliferation of guns, gun owners, and gun dealers in the United States. This fact sheet offers data on the growing number of firearm dealers, the relative ease of obtaining and keeping a license to sell guns from the Federal Bureau of Alcohol, Tobacco, and Firearms, the lack of…

  16. Arc Plasma Gun With Coaxial Powder Feed

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, Isidor

    1988-01-01

    Redesigned plasma gun provides improved metallic and ceramic coatings. Particles injected directly through coaxial bore in cathode into central region of plasma jet. Introduced into hotter and faster region of plasma jet.

  17. Inflow boundary profile prescription for numerical simulation of nasal airflow

    PubMed Central

    Taylor, D. J.; Doorly, D. J.; Schroter, R. C.

    2010-01-01

    Knowledge of how air flows through the nasal passages relies heavily on model studies, as the complexity and relative inaccessibility of the anatomy prevents detailed in vivo measurement. Almost all models to date fail to incorporate the geometry of the external nose, instead employing a truncated inflow. Typically, flow is specified to enter the model domain either directly at the nares (nostrils), or via an artificial pipe inflow tract attached to the nares. This study investigates the effect of the inflow geometry on flow predictions during steady nasal inspiration. Models that fully replicate the internal and external nasal airways of two anatomically distinct subjects are used as a reference to compare the effects of common inflow treatments on physiologically relevant quantities including regional wall shear stress and particle residence time distributions. Inflow geometry truncation is found to affect flow predictions significantly, though slightly less so for the subject displaying more pronounced passage area contraction up to the internal nasal valve. For both subject geometries, a tapered pipe inflow provides a better approximation to the natural inflow than a blunt velocity profile applied to the nares. Computational modelling issues are also briefly outlined, by comparing quantities predicted using different surface tessellations, and by evaluation of domain-splitting techniques. PMID:19740920

  18. Spree measurements of wave-particle interactions generated by the electron guns on TSS-1 and TSS-1R

    NASA Astrophysics Data System (ADS)

    Gough, M. P.; Hardy, D. A.; Oberhardt, M. R.; Burke, W. J.; Gentile, L. C.; Thompson, D. C.; Raitt, W. J.

    The Shuttle Potential and Return Electron Experiment (SPREE) was flown in the orbiter bay during TSS-1 and TSS-1R flights. Measurements presented here correspond to times of DC electron firings of the Shuttle Electrodynamic Tether System (SETS) fast pulsed electron generator (FPEG). SPREE included particle correlators measuring particle modulations in the 0-10kHz and 0-10MHz frequency ranges. Wave Particle Interactions, WPI, were observed on TSS-1 & TSS-1R in both frequency ranges: around a few MHz whenever the emitted beams were close to 90 deg pitch angle, and at a few kHz at many other beam pitch angles. On both missions problems with the tether deployment lead to more of the mission timeline being dedicated to the SPREE / FPEG active plasma studies reported here. The strong MHz waves occur when the 90 deg FPEG beam has the same low parallel velocity component, V_par values as the thermal electrons. Then both the beam source and the thermal sink can interact with the same waves. The strong kHz waves are generated directly by the passage of the FPEG beam through the ionospheric plasma at the orbiter velocity with a period determined by the geometry of the disturbance.

  19. A high-brightness thermionic microwave electron gun

    SciTech Connect

    Borland, M.

    1991-02-01

    In a collaborative effort by SSRL, AET Associates, and Varian Associates, a high-brightness microwave electron gun using a thermionic cathode has been designed, built, tested, and installed for use with the SSRL 150 MeV linear accelerator. This thesis discusses the physics behind the design and operation of the gun and associated systems, presenting predictions and experimental tests of the gun's performance. The microwave gun concept is of increasing interest due to its promise of providing higher-current, lower-emittance electron beams than possible from conventional, DC gun technology. In a DC guns, accelerating gradients are less than 8 MV/m, while those in a microwave gun can exceed 100 MV/m, providing much more rapid initial acceleration, thereby reducing the deleterious effects of space-charge. Microwave guns produce higher momentum beams than DC guns, thus lessening space-charge effects during subsequent beam transport. Typical DC guns produce kinetic energies of 80--400 KeV, compared to 2--3 MeV for the SSRL microwave gun. State-of-the-art'' microwave gun designs employ laser-driven photocathodes, providing excellent performance but with greater complexity and monetary costs. A thermionic microwave gun with a magnetic bunching system is comparable in cost and complexity to a conventional system, but provides performance that is orders of magnitude better. Simulations of the SSRL microwave gun predict a normalized RMS emittance at the gun exist of < 10 {pi} {center dot} m{sub e}c {center dot} {mu}m for a beam consisting of approximately 50% of the particles emitted from the gun, and having a momentum spread {plus minus}10%. These emittances are for up to 5 {times} 10{sup 9}e{sup {minus}} per bunch. Chromatic aberrations in the transport line between the gun and linear accelerator increase this to typically < 30 {pi} {center dot} m{sub e} {center dot} {mu}m.

  20. Guns and Violence. Current Controversies.

    ERIC Educational Resources Information Center

    Kim, Henny H., Ed.

    This book focuses on gun violence and gun control, presenting both sides of arguments about firearms ownership and gun control. Each of five chapters poses a question about gun control and provides answers for both sides of the question. The following essays are included: (1) "Gun Violence Is Becoming an Epidemic" (Bob Herbert); (2) "Gun Violence…

  1. Gun Safety (For Kids)

    MedlinePlus

    ... guns are featured in many television shows, video games, computer games, and movies, it's important to know that real ... only happen on TV, in movies, or video games. A real gun is never a toy, and ...

  2. Survey of SRF guns

    SciTech Connect

    Belomestnykh, S.

    2011-07-25

    Developing Superconducting RF (SRF) electron guns is an active field with several laboratories working on different gun designs. While the first guns were based on elliptic cavity geometries, Quarter Wave Resonator (QWR) option is gaining popularity. QWRs are especially well suited for producing beams with high charge per bunch. In this talk we will describe recent progress in developing both types of SRF guns. SRF guns made excellent progress in the last two years. Several guns generated beams and one, at HZDR, injected beam into an accelerator. By accomplishing this, HZDR/ELBE gun demonstrated feasibility of the SRF gun concept with a normal-conducting Cs{sub 2}Te cathode. The cathode demonstrated very good performance with the lifetime of {approx}1 year. However, for high average current/high bunch charge operation CsK{sub 2}Sb is preferred as it needs green lasers, unlike UV laser for the Cs{sub 2}Te, which makes it easier to build laser/optics systems. Other high QE photocathodes are being developed for SRF guns, most notably diamond-amplified photocathode. Several QWR guns are under development with one producing beam already. They are very promising for high bunch charge operation. The field is very active and we should expect more good results soon.

  3. Women and Guns. Firearm Facts.

    ERIC Educational Resources Information Center

    Duker, Laurie, Ed.

    Many gun manufacturers market guns to women claiming a gun can provide protection. Statistics provided in this fact sheet indicate gun ownership may provide a false sense of security that can be fatal, since the greatest threat to a woman comes from the people and guns within her own home. Contrary to "typical" scenarios created by advertisers,…

  4. Interior of southeast gun chamber (labeled "Gun Turret No. Two), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of southeast gun chamber (labeled "Gun Turret No. Two), showing gun mounting pad, wall rings, small niche, and opening to outside - U.S. Naval Base, Pearl Harbor, Battery Adair, Princeton Place, Pearl City, Honolulu County, HI

  5. Carbon Nanotube Electron Gun

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2013-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  6. Carbon nanotube electron gun

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2010-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  7. Remotely controlled spray gun

    NASA Technical Reports Server (NTRS)

    Cunningham, William C. (Inventor)

    1987-01-01

    A remotely controlled spray gun is described in which a nozzle and orifice plate are held in precise axial alignment by an alignment member, which in turn is held in alignment with the general outlet of the spray gun by insert. By this arrangement, the precise repeatability of spray patterns is insured.

  8. A high-brightness thermionic microwave electron gun

    SciTech Connect

    Borland, M.

    1991-02-01

    In a collaborative effort by SSRL, AET Associates, and Varian Associates, a high-brightness microwave electron gun using a thermionic cathode has been designed, built, tested, and installed for use with the SSRL 150 MeV linear accelerator. This thesis discusses the physics behind the design and operation of the gun and associated systems, presenting predictions and experimental tests of the gun`s performance. The microwave gun concept is of increasing interest due to its promise of providing higher-current, lower-emittance electron beams than possible from conventional, DC gun technology. In a DC guns, accelerating gradients are less than 8 MV/m, while those in a microwave gun can exceed 100 MV/m, providing much more rapid initial acceleration, thereby reducing the deleterious effects of space-charge. Microwave guns produce higher momentum beams than DC guns, thus lessening space-charge effects during subsequent beam transport. Typical DC guns produce kinetic energies of 80--400 KeV, compared to 2--3 MeV for the SSRL microwave gun. ``State-of-the-art`` microwave gun designs employ laser-driven photocathodes, providing excellent performance but with greater complexity and monetary costs. A thermionic microwave gun with a magnetic bunching system is comparable in cost and complexity to a conventional system, but provides performance that is orders of magnitude better. Simulations of the SSRL microwave gun predict a normalized RMS emittance at the gun exist of < 10 {pi} {center_dot} m{sub e}c {center_dot} {mu}m for a beam consisting of approximately 50% of the particles emitted from the gun, and having a momentum spread {plus_minus}10%. These emittances are for up to 5 {times} 10{sup 9}e{sup {minus}} per bunch. Chromatic aberrations in the transport line between the gun and linear accelerator increase this to typically < 30 {pi} {center_dot} m{sub e} {center_dot} {mu}m.

  9. Weightings and water inflows during longwall working

    SciTech Connect

    Farmer, I.W.

    1996-12-01

    Weightings and water inflows into longwall workings often occur together, giving rise to discussions on their relative genesis. Case histories are introduced which indicate that most water inflows are associated with heavy weightings. Resultant large releases of energy can lead to extensive vertical fractures, which can drain water from aquifers or other sources, such as separation accumulations, onto the face. Effectively control of water inflows in these cases depends on face support and weighting control.

  10. Rarefaction wave gun propulsion

    NASA Astrophysics Data System (ADS)

    Kathe, Eric Lee

    A new species of gun propulsion that dramatically reduces recoil momentum imparted to the gun is presented. First conceived by the author on 18 March 1999, the propulsion concept is explained, a methodology for the design of a reasonable apparatus for experimental validation using NATO standard 35mm TP anti-aircraft ammunition is developed, and the experimental results are presented. The firing results are juxtaposed by a simple interior ballistic model to place the experimental findings into a context within which they may better be understood. Rarefaction wave gun (RAVEN) propulsion is an original contribution to the field of armament engineering. No precedent is known, and no experimental results of such a gun have been published until now. Recoil reduction in excess of 50% was experimentally achieved without measured loss in projectile velocity. RAVEN achieves recoil reduction by means of a delayed venting of the breech of the gun chamber that directs the high enthalpy propellant gases through an expansion nozzle to generate forward thrust that abates the rearward momentum applied to the gun prior to venting. The novel feature of RAVEN, relative to prior recoilless rifles, is that sufficiently delayed venting results in a rarefaction wave that follows the projectile though the bore without catching it. Thus, the projectile exits the muzzle without any compromise to its propulsion performance relative to guns that maintain a sealed chamber.

  11. Simulation of an rf thermionic gun

    NASA Astrophysics Data System (ADS)

    Liu, Hongxiu

    1991-07-01

    An rf thermionic gun is simulated using Superfish and Parmela. A strong front-end compression for the bunch is demonstrated. The energy spread, phase spread and emittance of a single electron micropulse are examined subtly by cutting the bunch into slices corresponding to different initial emission phases of the particles.

  12. Plasma gun with coaxial powder feed and adjustable cathode

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, Isidor (Inventor)

    1991-01-01

    An improved plasma gun coaxially injects particles of ceramic materials having high melting temperatures into the central portion of a plasma jet. This results in a more uniform and higher temperature and velocity distribution of the sprayed particles. The position of the cathode is adjustable to facilitate optimization of the performance of the gun wherein grains of the ceramic material are melted at lower power input levels.

  13. High Velocity Gas Gun

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A video tape related to orbital debris research is presented. The video tape covers the process of loading a High Velocity Gas Gun and firing it into a mounted metal plate. The process is then repeated in slow motion.

  14. Gas gun dynamics

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2013-09-01

    The mechanics and thermodynamics of one- and two-stage gas guns are developed. Very high projectile muzzle speed can be obtained by the two-stage version. The physics of simple gas guns, such as air rifles, is accessible to undergraduates and the same level of presentation is used here to understand more complex designs. Numerical solutions to the equations of motion are shown, along with insightful analytic approximations.

  15. Low Emittance Guns for the ILC Polarized Electron Beam

    SciTech Connect

    Clendenin, J.E.; Brachmann, A.; Ioakeimidi, K.; Kirby, R.E.; Maruyama, T.; Miller, R.H.; Wang, J.W.; Zhou, F.; /SLAC

    2006-12-01

    Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressed by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of {ge}200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while {ge}500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns.

  16. Low Emittance Guns for the ILC Polarized Electron Beam

    SciTech Connect

    Clendenin, J. E.; Brachmann, A.; Ioakeimidi, K.; Kirby, R. E.; Maruyama, T.; Miller, R. H.; Wang, J. W.; Zhou, F.

    2007-06-13

    Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressed by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of {>=}200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while {>=}500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns.

  17. Electromagnetic targeting of guns

    SciTech Connect

    Pogue, E.W.; Boat, R.M.; Holden, D.N.; Lopez, J.R.

    1996-10-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Electromagnetic pulse (EMP) signals produced from explosives being fired have been reported in the literature for fifty years. When a gun is fired it produces an EMP muzzle blast signal. The strength and nature of these signals was first analyzed in the early 1970s, while the results were interesting, no follow-up studies were conducted. With modern detection and signal processing technology, we believe that these signals could be used to instantaneously locate guns of virtually all calibers as they fire. The objective of our one-year project was to establish the basic nature of these signals and their utility in the concept of electromagnetic targeting of guns.

  18. Mole gun injury.

    PubMed

    Pistré, V; Rezzouk, J

    2013-09-01

    A mole gun is a weapon, which is used to trap and kill moles. This report provides an overview of the state of knowledge of mole gun injuries, comparable to blast injuries caused by fireworks, explosive or gunshot. Over a 2-year period, the authors reported their experience with ten hand injuries caused by mole gun. Radial side of the hand was often concerned, particularly the thumb. The authors explain their choices in the management of such lesions. Surgery was performed primarily and a large debridement currently seemed to offer the best outcome for the patient. Blast, crush, burns and lacerations may explain the higher rate of amputation to the digits. A long period of physiotherapy, specifically of the hand, was needed before the patient could return to work. This ballistic hand trauma encountered by surgeons requires knowledge and understanding of these injuries. It should be in accordance with firearms law because of severe injuries encountered and possible lethal wounds. PMID:23746826

  19. Comparison of a laboratory and a production coating spray gun with respect to scale-up.

    PubMed

    Mueller, Ronny; Kleinebudde, Peter

    2007-01-01

    A laboratory spray gun and a production spray gun were investigated in a scale-up study. Two Schlick spray guns, which are equipped with a new antibearding cap, were used in this study. The influence of the atomization air pressure, spray gun-to tablet bed distance, polymer solution viscosity, and spray rate were analyzed in a statistical design of experiments. The 2 spray guns were compared with respect to the spray width and height, droplet size, droplet velocity, and spray density. The droplet size, velocity, and spray density were measured with a Phase Doppler Particle Analyzer. A successful scale-up of the atomization is accomplished if similar droplet sizes, droplet velocities, and spray densities are achieved in the production scale as in the laboratory scale. This study gives basic information for the scale-up of the settings from the laboratory spray gun to the production spray gun. Both spray guns are highly comparable with respect to the droplet size and velocity. The scale-up of the droplet size should be performed by an adjustment of the atomization air pressure. The scale-up of the droplet velocity should be performed by an adjustment of the spray gun to tablet bed distance. The presented statistical model and surface plots are convenient and powerful tools for scaling up the spray settings if the spray gun is changed from laboratory spray gun to the production spray gun. PMID:17408226

  20. Where the guns come from: the gun industry and gun commerce.

    PubMed

    Wintemute, Garen J

    2002-01-01

    Under federal law, it is illegal for youth under age 18 to purchase rifles or shotguns, and for those under age 21 to purchase handguns. However, fatality and injury statistics clearly show that guns are finding their way into young people's hands. Many of these youth obtain guns through illegal gun markets. This article focuses on how guns in the United States are manufactured, marketed, and sold. The article shows how the legal and illegal gun markets are intimately connected and make guns easily accessible to youth. Although the domestic gun manufacturing industry is relatively small and has experienced declining sales in recent years, it has significant political clout and a large market for its products, and has engaged in aggressive marketing to youth. Lax oversight of licensed firearms dealers, combined with little or no regulation of private sales between gun owners, mean that guns can quickly moved from the legal gun market into the illegal market, where they can be acquired by young people. Certain guns, especially inexpensive, poorly made small handguns, are particularly attractive to criminals and youth. The author observes that several policy innovations--including increased regulation of licensed firearms dealers, intensified screening of prospective buyers, regulation of private sales, gun licensing and registration, and bans on some types of weapons--hold promise for decreasing the flow of guns into the hands of youth. PMID:12194613

  1. Unbalanced field RF electron gun

    DOEpatents

    Hofler, Alicia

    2013-11-12

    A design for an RF electron gun having a gun cavity utilizing an unbalanced electric field arrangement. Essentially, the electric field in the first (partial) cell has higher field strength than the electric field in the second (full) cell of the electron gun. The accompanying method discloses the use of the unbalanced field arrangement in the operation of an RF electron gun in order to accelerate an electron beam.

  2. Hot hollow cathode gun assembly

    DOEpatents

    Zeren, J.D.

    1983-11-22

    A hot hollow cathode deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, the hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  3. Vacuum vapor deposition gun assembly

    DOEpatents

    Zeren, Joseph D.

    1985-01-01

    A vapor deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, a hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  4. Children, Youth, and Gun Violence.

    ERIC Educational Resources Information Center

    Behrman, Richard E., Ed.

    2002-01-01

    This collection of articles summarizes knowledge and research about how gun violence affects children and youth and discusses which policies hold promise for reducing youth gun violence. The papers are: (1) "Statement of Purpose" (Richard E. Behrman); "Children, Youth, and Gun Violence: Analysis and Recommendations" (Kathleen Reich, Patti L.…

  5. Glue Guns: Aiming for Safety

    ERIC Educational Resources Information Center

    Roy, Ken

    2010-01-01

    While glue guns are very useful, there are safety issues. Regardless of the temperature setting, glue guns can burn skin. The teacher should demonstrate and supervise the use of glue guns and have a plan should a student get burned. There should be an initial first aid protocol in place, followed by a visit to the school nurse. An accident report…

  6. Testing a GaAs cathode in SRF gun

    SciTech Connect

    Wang, E.; Kewisch, J.; Ben-Zvi, I.; Burrill, A.; Rao, T.; Wu, Q.; Holmes, D.

    2011-03-28

    RF electron guns with a strained superlattice GaAs cathode are expected to generate polarized electron beams of higher brightness and lower emittance than do DC guns, due to their higher field gradient at the cathode's surface and lower cathode temperature. We plan to install a bulk GaAs:Cs in a SRF gun to evaluate the performance of both the gun and the cathode in this environment. The status of this project is: In our 1.3 GHz 1/2 cell SRF gun, the vacuum can be maintained at nearly 10{sup -12} Torr because of cryo-pumping at 2K. With conventional activation of bulk GaAs, we obtained a QE of 10% at 532 nm, with lifetime of more than 3 days in the preparation chamber and have shown that it can survive in transport from the preparation chamber to the gun. The beam line has been assembled and we are exploring the best conditions for baking the cathode under vacuum. We report here the progress of our test of the GaAs cathode in the SRF gun. Future particle accelerators, such as eRHIC and the ILC require high-brightness, high-current polarized electrons. Strained superlattice GaAs:Cs has been shown to be an efficient cathode for producing polarized electrons. Activation of GaAs with Cs,O(F) lowers the electron affinity and makes it energetically possible for all the electrons, excited into the conduction band that drift or diffuse to the emission surface, to escape into the vacuum. Presently, all operating polarized electron sources, such as the CEBAF, are DC guns. In these devices, the excellent ultra-high vacuum extends the lifetime of the cathode. However, the low field gradient on the photocathode's emission surface of the DC guns limits the beam quality. The higher accelerating gradients, possible in the RF guns, generate a far better beam. Until recently, most RF guns operated at room temperature, limiting the vacuum to {approx}10{sup -9} Torr. This destroys the GaAs's NEA surface. The SRF guns combine the excellent vacuum conditions of DC guns and the high

  7. Service Without Guns

    ERIC Educational Resources Information Center

    Eberly, Donald J.; Gal, Reuven

    2006-01-01

    "Service Without Guns"--by Donald J. Eberly and Reuven Gal with a guest chapter by Michael Sherraden--notes the many similarities between military service and civilian National Youth Service (NYS) and concludes that NYS can and should become as large and influential in the 21st Century as military service was in the 20th. The book examines the…

  8. Magnetron injection gun scaling

    SciTech Connect

    Lawson, W.

    1988-04-01

    Existing analytic design equations for magnetron injection guns (MIG's) are approximated to obtain a set of scaling laws. The constraints are chosen to examine the maximum peak power capabilities of MIG's. The scaling laws are compared with exact solutions of the design equations and are supported by MIG simulations.

  9. The Rail Gun.

    ERIC Educational Resources Information Center

    Stewart, Gay B.

    1996-01-01

    Presents a rail gun demonstration that addresses a broad group of educational goals in introductory electricity and magnetism. Uses a battery-powered circuit consisting of a movable conductor placed across two conducting rails in a magnetic field to review mechanics, foster approximate reasoning and lateral class discussion, and demonstrate the…

  10. Gun control saves lives.

    PubMed

    Matzopoulos, Richard

    2016-01-01

    Reducing firearm mortality by means of stricter gun control is one of the most important short- to medium-term measures to address the burden of violence in South Africa, while longer-term interventions and policy measures take effect. PMID:27245735

  11. Gun Dealers, USA.

    ERIC Educational Resources Information Center

    Duker, Laurie; And Others

    In the United States, more than 11,500 adolescents' and young adults' lives are taken each year by firearms. Although Federal law prohibits minors from purchasing handguns, they typically get them by asking someone of legal age (18 years or older) to purchase them from one of the 256,771 Federally licensed gun dealers. This pamphlet answers…

  12. Radar gun hazards

    SciTech Connect

    Not Available

    1991-12-20

    Radar guns - hand-held units used by the law to nail speeders - have been in use since the early '60s. Now they've been accused of causing cancer. Police officers in several states have so far filed eight suits against the manufacturer, claiming that they have contracted rare forms of cancer, such as of the eyelid and the testicle, from frequent proximity to the devices. Spurred by concerns expressed by police groups, researchers at the Rochester Institute of Technology are conducting what they believe to be the first research of its kind in the nation. Last month psychologist John Violanti, an expert in policy psychology and health, sent out a one-page survey to 6,000 active and retired police officers in New York State, asking them about their health and their use of radar guns. Violanti says melanoma, leukemia, and lymph node cancer may be linked to these as well as other electromagnetic devices. The Food and Drug Administration earlier this year issued a warning about radar guns, telling users not to operate them closer than 6 inches from the body. But this may not be a sufficient safeguard since the instruments can give off crisscrossing wave emissions within a police vehicle. The survey will be used to help determine if it would be safer to mount the guns, which are currently either hand-held or mounted on dashboards, outside troopers' cars.

  13. 40 CFR 35.927-1 - Infiltration/inflow analysis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Infiltration/inflow analysis. 35.927-1... Infiltration/inflow analysis. (a) The infiltration/inflow analysis shall demonstrate the nonexistence or possible existence of excessive infiltration/inflow in the sewer system. The analysis should identify...

  14. 40 CFR 35.927-1 - Infiltration/inflow analysis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Infiltration/inflow analysis. 35.927-1... Infiltration/inflow analysis. (a) The infiltration/inflow analysis shall demonstrate the nonexistence or possible existence of excessive infiltration/inflow in the sewer system. The analysis should identify...

  15. Ice accretion on a radial inflow turbine blade

    SciTech Connect

    Hefazi, H.; Kaups, K.; Murry, R.

    1996-07-01

    A computational method for predicting ice accumulation on a radial inflow turbine blade has been developed. The method includes particle trajectory calculations based on a flow field solution, and icing analysis that takes the impinging liquid and formulates a heat balance equation on the surface of the blade. Since there are no known previous calculations or experiments to compare with the prediction of the present method, calculations for several ranges of parameters are performed in order to gain experience. Some qualitative predictions of ice shedding frequencies, types of ice that may be formed, and a design suggestion for reducing ice buildup is also made.

  16. Design of a high repetition rate S-band photocathode gun

    NASA Astrophysics Data System (ADS)

    Han, Jang-Hui; Cox, Matthew; Huang, Houcheng; Pande, Shivaji

    2011-08-01

    Photocathode RF guns have been developed in many laboratories for generating high quality electron beams for free-electron lasers based on linear accelerators. Such guns can generate electron beams with an exceptionally high peak current as well as a small transverse emittance. Their applications have been recently expanded for ultrafast electron diffraction, coherent terahertz radiation, and X-ray or γ-ray radiation by Compton scattering. In this paper, we design an S-band normal-conducting gun with capabilities of high quality beam generation and high repetition rate operation. The RF design and thermal analysis of the gun cavity and coupler are introduced. Optimal position of the gun focusing solenoid for low emittance beam generation is found by performing particle tracking simulations. Then, the gun system is designed to be able to afford the optimal solenoid position. The cooling-water channel surrounding the gun cavity and coupler is designed and analyzed numerically. The pressure in the gun is simulated with a vacuum model containing the detailed inner structure of the gun. An injector for a free-electron laser application is designed by using this gun and the beam dynamics simulation is shown. A cold test with a prototype gun for confirmation of the RF design is reported.

  17. The polarized SRF gun experiment.

    SciTech Connect

    Kewisch,J.; Ben-Zvi, I.; Rao, T.; Burrill, A.; Pate, D.; Grover, R.; Todd, R.; Bluem, H.; Holmes, D.; Schultheiss, T.

    2007-09-10

    RF electron guns are capable of producing electron bunches with high brightness, which outperform DC electron guns and may even be able to provide electron beams for the ILC without the need for a damping ring. However, all successful existing guns for polarized electrons are DC guns because the environment inside an RF gun is hostile to the GaAs cathode material necessary for polarization. While the typical vacuum pressure in a DC gun is better than 10{sup -11} torr the vacuum in an RF gun is in the order of 10{sup -9} torr. Experiments at BINP Novosibirsk show that this leads to strong ion back-bombardment and generation of dark currents, which destroy the GaAs cathode in a short time. The situation might be much more favorable in a (super-conducting) SRF gun. The cryogenic pumping of the gun cavity walls may make it possible to maintain a vacuum close to 10{sup -12} torr, solving the problem of ion bombardment and dark currents. Of concern would be contamination of the gun cavity by evaporating cathode material. This report describes an experiment that Brookhaven National Laboratory (BNL) in collaboration with Advanced Energy Systems (AES) is conducting to answer these questions.

  18. Gun Attitudes and Fear of Crime.

    ERIC Educational Resources Information Center

    Heath, Linda; Weeks, Kyle; Murphy, Marie Mackay

    1997-01-01

    Using three studies, examined the relationship between attitudes toward guns and fear of crime. Findings indicate a connection between fear of crime and attitudes toward guns: people higher in fear of crime favored gun control. Results also established a relationship between stereotypical beliefs about gun victims and support for gun control. (RJM)

  19. Friction in rail guns

    NASA Technical Reports Server (NTRS)

    Kay, P. K.

    1984-01-01

    The influence of friction is included in the present equations describing the performance of an inductively driven rail gun. These equations, which have their basis in an empirical formulation, are applied to results from two different experiments. Only an approximate physical description of the problem is attempted, in view of the complexity of details in the interaction among forces of this magnitude over time periods of the order of milisecs.

  20. Observational manifestations of anomaly inflow

    SciTech Connect

    Boyarsky, Alexey; Shaposhnikov, Mikhail

    2005-10-15

    In theories with chiral couplings, one of the important consistency requirements is that of the cancellation of a gauge anomaly. In particular, this is one of the conditions imposed on the hypercharges in the standard model. However, anomaly cancellation condition of the standard model looks unnatural from the perspective of a theory with extra dimensions. Indeed, if our world were embedded into an odd-dimensional space, then the full theory would be automatically anomaly-free. In this paper we discuss the physical consequences of anomaly noncancellation for effective 4-dimensional field theory. We demonstrate that in such a theory parallel electric and magnetic fields get modified. In particular, this happens for any particle possessing both electric charge and magnetic moment. This effect, if observed, can serve as a low energy signature of extra dimensions. On the other hand, if such an effect is absent or is very small, then from the point of view of any theory with extra dimensions it is just another fine-tuning and should acquire theoretical explanation.

  1. Improved DC Gun Insulator

    SciTech Connect

    M.L. Neubauer, K.B. Beard, R. Sah, C. Hernandez-Garcia, G. Neil

    2009-05-01

    Many user facilities such as synchrotron light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic, creating a buildup of charge and causing eventual puncture. A novel ceramic manufacturing process is proposed. It will incorporate bulk resistivity in the region where it is needed to bleed off accumulated charge caused by highly energetic electrons. This process will be optimized to provide an appropriate gradient in bulk resistivity from the vacuum side to the air side of the HV standoff ceramic cylinder. A computer model will be used to determine the optimum cylinder dimensions and required resistivity gradient for an example RF gun application. A ceramic material example with resistivity gradient appropriate for use as a DC gun insulator will be fabricated by glazing using doping compounds and tested.

  2. Inflow forecasting using Artificial Neural Networks for reservoir operation

    NASA Astrophysics Data System (ADS)

    Chiamsathit, Chuthamat; Adeloye, Adebayo J.; Bankaru-Swamy, Soundharajan

    2016-05-01

    In this study, multi-layer perceptron (MLP) artificial neural networks have been applied to forecast one-month-ahead inflow for the Ubonratana reservoir, Thailand. To assess how well the forecast inflows have performed in the operation of the reservoir, simulations were carried out guided by the systems rule curves. As basis of comparison, four inflow situations were considered: (1) inflow known and assumed to be the historic (Type A); (2) inflow known and assumed to be the forecast (Type F); (3) inflow known and assumed to be the historic mean for month (Type M); and (4) inflow is unknown with release decision only conditioned on the starting reservoir storage (Type N). Reservoir performance was summarised in terms of reliability, resilience, vulnerability and sustainability. It was found that Type F inflow situation produced the best performance while Type N was the worst performing. This clearly demonstrates the importance of good inflow information for effective reservoir operation.

  3. USEPA RESEARCH ON INFILTRATION/INFLOW CONTROL

    EPA Science Inventory

    From the late 60's to early 80's, the USEPA conducted a series of research, development, and demonstration projects on the characterization, cause and consequence, and control of infiltation/inflow (I/I) in both sanitary and combined sewers. The research effort was driven by the ...

  4. USEPA RESEARCH ON INFILTRATION/INFLOW CONTROL

    EPA Science Inventory

    From the late 60's to early 80's, the USEPA conducted a series of research, development, and demonsration projects on the characterization, cause and consequence, and control of infiltation/inflow (I/I) in both sanitary and combined sewers. The research effort was driven by the n...

  5. Wisconsin SRF Electron Gun Commissioning

    SciTech Connect

    Bisognano, Joseph J.; Bissen, M.; Bosch, R.; Efremov, M.; Eisert, D.; Fisher, M.; Green, M.; Jacobs, K.; Keil, R.; Kleman, K.; Rogers, G.; Severson, M.; Yavuz, D. D.; Legg, Robert A.; Bachimanchi, Ramakrishna; Hovater, J. Curtis; Plawski, Tomasz; Powers, Thomas J.

    2013-12-01

    The University of Wisconsin has completed fabrication and commissioning of a low frequency (199.6 MHz) superconducting electron gun based on a quarter wave resonator (QWR) cavity. Its concept was optimized to be the source for a CW free electron laser facility. The gun design includes active tuning and a high temperature superconducting solenoid. We will report on the status of the Wisconsin SRF electron gun program, including commissioning experience and first beam measurements.

  6. Gun muzzle blast and flash

    NASA Astrophysics Data System (ADS)

    Klingenberg, Guenter; Heimerl, Joseph M.

    A repository of fundamental experimental and analytical data concerning the complex phenomena associated with gun-muzzle blast and flash effects is presented, proceeding from gun muzzle signatures to modern gun-propulsion concepts, interior and transitional ballistics, and characterizations of blast-wave research and muzzle flash. Data are presented in support of a novel hypothesis which explains the ignition of secondary flash and elucidates the means for its suppression. Both chemical and mechanical (often competing) methods of flash suppression are treated. The historical work of Kesslau and Ladenburg is noted, together with French, British, Japanese and American research efforts and current techniques of experimental characterization for gun muzzle phenomena.

  7. FRESHWATER INFLOWS: WATER FOR HEALTHY ESTUARIES CONFERENCE (MX96476507

    EPA Science Inventory

    The grantee will hold an interstate workshop on Freshwater Inflow issues in the Gulf of Mexico coastal region. The conference will identify water management questions to be addressed regarding providing freshwater inflows to estuaries, update participants on the current scientif...

  8. Gun Concerns Personal for Duncan

    ERIC Educational Resources Information Center

    McNeil, Michele

    2013-01-01

    As U.S. Secretary of Education Arne Duncan works with other Obama administration officials on policy responses to the shootings at a Connecticut elementary school, he brings a personal and professional history that has acquainted him with the impact of gun violence. As schools chief in Chicago from 2001 to 2008, he was affected by the gun deaths…

  9. Preventing gun injuries in children.

    PubMed

    Crossen, Eric J; Lewis, Brenna; Hoffman, Benjamin D

    2015-02-01

    Firearms are involved in the injury and death of a large number of children each year from both intentional and unintentional causes. Gun ownership in homes with children is common, and pediatricians should incorporate evidence-based means to discuss firearms and protect children from gun-related injuries and violence. Safe storage of guns, including unloaded guns locked and stored separately from ammunition, can decrease risks to children, and effective tools are available that pediatricians can use in clinical settings to help decrease children's access to firearms. Furthermore, several community-based interventions led by pediatricians have effectively reduced firearm-related injury risks to children. Educational programs that focus on children's behavior around guns have not proven effective. PMID:25646308

  10. LCLS Gun Solenoid Design Considerations

    SciTech Connect

    Schmerge, John

    2010-12-10

    The LCLS photocathode rf gun requires a solenoid immediately downstream for proper emittance compensation. Such a gun and solenoid have been operational at the SSRL Gun Test Facility (GTF) for over eight years. Based on magnetic measurements and operational experience with the GTF gun solenoid multiple modifications are suggested for the LCLS gun solenoid. The modifications include adding dipole and quadrupole correctors inside the solenoid, increasing the bore to accommodate the correctors, decreasing the mirror plate thickness to allow the solenoid to move closer to the cathode, cutouts in the mirror plate to allow greater optical clearance with grazing incidence cathode illumination, utilizing pancake coil mirror images to compensate the first and second integrals of the transverse fields and incorporating a bipolar power supply to allow for proper magnet standardization and quick polarity changes. This paper describes all these modifications plus the magnetic measurements and operational experience leading to the suggested modifications.

  11. Electric arc welding gun

    DOEpatents

    Luttrell, Edward; Turner, Paul W.

    1978-01-01

    This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.

  12. Investigating the Link Between Gun Possession and Gun Assault

    PubMed Central

    Richmond, Therese S.; Culhane, Dennis P.; Ten Have, Thomas R.; Wiebe, Douglas J.

    2009-01-01

    Objectives. We investigated the possible relationship between being shot in an assault and possession of a gun at the time. Methods. We enrolled 677 case participants that had been shot in an assault and 684 population-based control participants within Philadelphia, PA, from 2003 to 2006. We adjusted odds ratios for confounding variables. Results. After adjustment, individuals in possession of a gun were 4.46 (P < .05) times more likely to be shot in an assault than those not in possession. Among gun assaults where the victim had at least some chance to resist, this adjusted odds ratio increased to 5.45 (P < .05). Conclusions. On average, guns did not protect those who possessed them from being shot in an assault. Although successful defensive gun uses occur each year, the probability of success may be low for civilian gun users in urban areas. Such users should reconsider their possession of guns or, at least, understand that regular possession necessitates careful safety countermeasures. PMID:19762675

  13. Gun Shows and Gun Violence: Fatally Flawed Study Yields Misleading Results

    PubMed Central

    Hemenway, David; Webster, Daniel; Pierce, Glenn; Braga, Anthony A.

    2010-01-01

    A widely publicized but unpublished study of the relationship between gun shows and gun violence is being cited in debates about the regulation of gun shows and gun commerce. We believe the study is fatally flawed. A working paper entitled “The Effect of Gun Shows on Gun-Related Deaths: Evidence from California and Texas” outlined this study, which found no association between gun shows and gun-related deaths. We believe the study reflects a limited understanding of gun shows and gun markets and is not statistically powered to detect even an implausibly large effect of gun shows on gun violence. In addition, the research contains serious ascertainment and classification errors, produces results that are sensitive to minor specification changes in key variables and in some cases have no face validity, and is contradicted by 1 of its own authors’ prior research. The study should not be used as evidence in formulating gun policy. PMID:20724672

  14. Gun shows and gun violence: fatally flawed study yields misleading results.

    PubMed

    Wintemute, Garen J; Hemenway, David; Webster, Daniel; Pierce, Glenn; Braga, Anthony A

    2010-10-01

    A widely publicized but unpublished study of the relationship between gun shows and gun violence is being cited in debates about the regulation of gun shows and gun commerce. We believe the study is fatally flawed. A working paper entitled "The Effect of Gun Shows on Gun-Related Deaths: Evidence from California and Texas" outlined this study, which found no association between gun shows and gun-related deaths. We believe the study reflects a limited understanding of gun shows and gun markets and is not statistically powered to detect even an implausibly large effect of gun shows on gun violence. In addition, the research contains serious ascertainment and classification errors, produces results that are sensitive to minor specification changes in key variables and in some cases have no face validity, and is contradicted by 1 of its own authors' prior research. The study should not be used as evidence in formulating gun policy. PMID:20724672

  15. TESLA FEL Gun simulations with PARMELA and MAFIA

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Schuett, Petra

    1997-02-01

    The most recent simulation results of the DESY TESLA FEL gun are presented. Two codes are used: PARMELA and MAFIA. Since the two use different schemes in particle simulations, we will address their differences and try to give an explanation for them.

  16. Air gun test evaluation

    SciTech Connect

    Carleton, J.J. II; Fox, L.; Rudy, C.R.

    1992-01-15

    A mechanical shock testing apparatus is used for testing the response of components subject to large accelerations in hostile environments. The test acceleration is provided by the impact of a bullet against a plate on which the component to be tested is mounted. This report describes a series of experiments that were performed to determine the dependence of the air gun test apparatus performance on incremental changes in the hardware configurations, changes in the pressure used to drive the bullet, and different accelerometers. The effect of variation of these experimental factors on the measured acceleration was determined using a Taguchi screening experimental design. Experimental settings were determined that can be used to operate the tester with a measured output within acceleration specifications.

  17. High Intensity Polarized Electron Gun

    SciTech Connect

    Redwine, Robert P.

    2012-07-31

    The goal of the project was to investigate the possibility of building a very high intensity polarized electron gun for the Electron-Ion Collider. This development is crucial for the eRHIC project. The gun implements a large area cathode, ring-shaped laser beam and active cathode cooling. A polarized electron gun chamber with a large area cathode and active cathode cooling has been built and tested. A preparation chamber for cathode activation has been built and initial tests have been performed. Major parts for a load-lock chamber, where cathodes are loaded into the vacuum system, have been manufactured.

  18. Reduction of Gun Erosion and Correlation of Gun Erosion Measurements

    NASA Technical Reports Server (NTRS)

    Bogdanoff, Dave; Wercinski, Paul (Technical Monitor)

    1997-01-01

    Gun barrel erosion is serious problem with two-stage light gas guns. Excessive barrel erosion can lead to poor or failed launches and frequent barrel changes, with the corresponding down time. Also, excessive barrel erosion can limit the maximum velocity obtainable by loading down the hydrogen working gas with eroded barrel material. Guided by a CFD code, the operating conditions of the Ames 0.5-inch gun were modified to reduce barrel erosion. The changes implemented included: (1) reduction in the piston mass, powder mass and hydrogen fill pressure; and (2) reduction in pump tube volume, while maintaining hydrogen mass. The latter change was found, in particular, to greatly reduce barrel erosion. For muzzle velocity ranges of 6.1 - 6.9 km/sec, the barrel erosion was reduced by a factor of 10. Even for the higher muzzle velocity range of 7.0 - 8.2 km/sec, the barrel erosion was reduced by a factor of 4. Gun erosion data from the Ames 0.5-inch, 1.0-inch, and 1.5-inch guns operated over a wide variety of launch conditions was examined and it was found that this data could be correlated using four different parameters: normalized powder charge energy, normalized hydrogen energy density, normalized pump tube volume and barrel diameter. The development of the correlation and the steps used to collapse the experimental data are presented. Over a certain parameter range in the correlation developed, the barrel erosion per shot is found to increase very rapidly. The correlation should prove useful in the selection of gun operating conditions and the design of new guns. Representative shapes of eroded gun barrels are also presented.

  19. The system of RF beam control for electron gun

    NASA Astrophysics Data System (ADS)

    Barnyakov, A. M.; Chernousov, Yu. D.; Ivannikov, V. I.; Levichev, A. E.; Shebolaev, I. V.

    2015-06-01

    The system of RF control of three-electrode electron gun current is described. It consists of a source of microwave signal, coaxial line, coaxial RF switch and RF antenna lead. The system allows one to get the electron beam in the form of bunches with the frequency of the accelerating section to achieve the capture of particles in the acceleration mode close to 100%. The results of calculation and analysis of the elements of the system are presented. Characteristics of the devices are obtained experimentally. The results of using RF control in three-electrode electron gun at electron linear accelerator are described.

  20. Temporal association between federal gun laws and the diversion of guns to criminals in Milwaukee.

    PubMed

    Webster, Daniel W; Vernick, Jon S; Bulzacchelli, Maria T; Vittes, Katherine A

    2012-02-01

    The practices of licensed gun dealers can threaten the safety of urban residents by facilitating the diversion of guns to criminals. In 2003, changes to federal law shielded gun dealers from the release of gun trace data and provided other protections to gun dealers. The 14-month period during which the dealer did not sell junk guns was associated with a 68% reduction in the diversion of guns to criminals within a year of sale by the dealer and a 43% increase in guns diverted to criminals following sales by other dealers. The laws were associated with a 203% increase in the number of guns diverted to criminals within a year of sale by the gun store, which was the focus of this study. Policies which affect gun dealer accountability appeared to influence the diversion of guns to criminals. PMID:22218834

  1. The polarized SRF gun experiment

    SciTech Connect

    Kewisch,J.; Ben-Zvi, I.; Rao, T.; Burrill, A.; Pate, D.; Todd, R.; Wang, E.; Bluem, H.; Holmes, D.; Shultheiss, T.

    2008-10-01

    An experiment is under way to prove the feasibility of a super-conducting RF gun for the production of polarized electrons. We report on the progress of the experiment and on simulations predicting the possibility of success.

  2. NASA-Ames vertical gun

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.

    1984-01-01

    A national facility, the NASA-Ames vertical gun range (AVGR) has an excellent reputation for revealing fundamental aspects of impact cratering that provide important constraints for planetary processes. The current logistics in accessing the AVGR, some of the past and ongoing experimental programs and their relevance, and the future role of this facility in planetary studies are reviewed. Publications resulting from experiments with the gun (1979 to 1984) are listed as well as the researchers and subjects studied.

  3. Los Alamos Guns Take Aim at Material's Mysteries

    ScienceCinema

    Byers, Mark; Moore, David; Dimarino, Steve

    2014-05-30

    Los Alamos National Laboratory scientists and technicians conduct thousands of experiments a year, delving into the fundamental nature of everything from supernovas to subatomic particles. One set of instruments used to better understand the fundamental nature of various materials are 10 scientific gun systems that fire various projectiles at high-tech targets to create enormous velocities, pressures, and temperatures - and using laser, x-ray, and other diagnostics - explore the very nature of metals and other materials. The hundreds of gun-based experiments conducted every year at the Laboratory require a highly-skilled staff of scientists and technicians, and has given rise to a special organization called the "gun working group" to foster open communications, cooperation, problem-solving, and a healthy safety culture.

  4. Modelling and simulation of beam formation in electron guns

    NASA Astrophysics Data System (ADS)

    Sabchevski, S.; Mladenov, G.; Titov, A.; Barbarich, I.

    1996-02-01

    This paper describes a new PC version of the software package GUN-EBT for computer simulation of beam formation in rotationally symmetric electron guns with thermionic cathodes. It is based on a self-consistent physical model which takes into account the beam space charge and the initial velocities effects. The theoretical framework used for both the formulation of the model and for the interpretation of the results of numerical experiments is the formalism of the charged particle dynamics in phase space. This enables not only a trajectory analysis (ray tracing) but also a phase-space analysis of beams to be performed. The package can be used as an effective tool for computer aided design and optimization of electron guns in various electron-optical systems. The operation of the package is illustrated with a typical example.

  5. An active expriments with electron gun on the microsatellite

    NASA Astrophysics Data System (ADS)

    Dokukin, V.; Ruzhin, Yu.

    Plasma radio emission in the presence of energetic particle fluxes is a very informative source of knowledge about plasma processes and its parameters in the interaction region. Now there is a big experience of work with election beams in the Earth ionosphere. The new generation of spacecrafts- micro and small satellites give us rather chip possibilities to carry out space orbital experiments. But there is an obstacle to do an active experiments at microsatellite with injection of electron beam-the limited onboard power source. Typically it requires at least tens of Watts to heat the cathode of electron gun and to accelerate the electrons of the beam. The proposal is made to apply ``solar'' electron gun with ``zero'' consumption from satellite powersuppliment. Such type of electron gun could be applied for space experiments at near Earth orbits and for solar or planetary missions.

  6. Los Alamos Guns Take Aim at Material's Mysteries

    SciTech Connect

    Byers, Mark; Moore, David; Dimarino, Steve

    2014-04-14

    Los Alamos National Laboratory scientists and technicians conduct thousands of experiments a year, delving into the fundamental nature of everything from supernovas to subatomic particles. One set of instruments used to better understand the fundamental nature of various materials are 10 scientific gun systems that fire various projectiles at high-tech targets to create enormous velocities, pressures, and temperatures - and using laser, x-ray, and other diagnostics - explore the very nature of metals and other materials. The hundreds of gun-based experiments conducted every year at the Laboratory require a highly-skilled staff of scientists and technicians, and has given rise to a special organization called the "gun working group" to foster open communications, cooperation, problem-solving, and a healthy safety culture.

  7. ELECTROSTATIC MODELING OF THE JEFFERSON LABORATORY INVERTED CERAMIC GUN

    SciTech Connect

    P. Evtushenko ,F.E. Hannon, C. Hernandez-Garcia

    2010-05-01

    Jefferson Laboratory (JLab) is currently developing a new 500kV DC electron gun for future use with the FEL. The design consists of two inverted ceramics which support a central cathode electrode. This layout allows for a load-lock system to be located behind the gun chamber. The electrostatic geometry of the gun has been designed to minimize surface electric field gradients and also to provide some transverse focusing to the electron beam during transit between the cathode and anode. This paper discusses the electrode design philosophy and presents the results of electrostatic simulations. The electric field information obtained through modeling was used with particle tracking codes to predict the effects on the electron beam.

  8. The case for moderate gun control.

    PubMed

    DeGrazia, David

    2014-03-01

    In addressing the shape of appropriate gun policy, this essay assumes for the sake of discussion that there is a legal and moral right to private gun ownership. My thesis is that, against the background of this right, the most defensible policy approach in the United States would feature moderate gun control. The first section summarizes the American gun control status quo and characterizes what I call "moderate gun control." The next section states and rebuts six leading arguments against this general approach to gun policy. The section that follows presents a positive case for moderate gun control that emphasizes safety in the home and society as well as rights whose enforcement entails some limits or qualifications on the right to bear arms. A final section shows how the recommended gun regulations address legitimate purposes, rather than imposing arbitrary restrictions on gun rights, and offers concluding reflections. PMID:24783322

  9. Large Bore Powder Gun Qualification (U)

    SciTech Connect

    Rabern, Donald A.; Valdiviez, Robert

    2012-04-02

    A Large Bore Powder Gun (LBPG) is being designed to enable experimentalists to characterize material behavior outside the capabilities of the NNSS JASPER and LANL TA-55 PF-4 guns. The combination of these three guns will create a capability to conduct impact experiments over a wide range of pressures and shock profiles. The Large Bore Powder Gun will be fielded at the Nevada National Security Site (NNSS) U1a Complex. The Complex is nearly 1000 ft below ground with dedicated drifts for testing, instrumentation, and post-shot entombment. To ensure the reliability, safety, and performance of the LBPG, a qualification plan has been established and documented here. Requirements for the LBPG have been established and documented in WE-14-TR-0065 U A, Large Bore Powder Gun Customer Requirements. The document includes the requirements for the physics experiments, the gun and confinement systems, and operations at NNSS. A detailed description of the requirements is established in that document and is referred to and quoted throughout this document. Two Gun and Confinement Systems will be fielded. The Prototype Gun will be used primarily to characterize the gun and confinement performance and be the primary platform for qualification actions. This gun will also be used to investigate and qualify target and diagnostic modifications through the life of the program (U1a.104 Drift). An identical gun, the Physics Gun, will be fielded for confirmatory and Pu experiments (U1a.102D Drift). Both guns will be qualified for operation. The Gun and Confinement System design will be qualified through analysis, inspection, and testing using the Prototype Gun for the majority of process. The Physics Gun will be qualified through inspection and a limited number of qualification tests to ensure performance and behavior equivalent to the Prototype gun. Figure 1.1 shows the partial configuration of U1a and the locations of the Prototype and Physics Gun/Confinement Systems.

  10. Particle Tracks in Aerogel

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In an experiment using a special air gun, particles are shot into aerogel at high velocities. Closeup of particles that have been captured in aerogel are shown here. The particles leave a carrot-shaped trail in the aerogel. Aerogel was used on the Stardust spacecraft to capture comet particles from Comet Wild 2.

  11. [Suicide with home-made gun].

    PubMed

    Safr, M; Hejna, P; Zátopková, L

    2009-04-01

    Three cases of suicide by single bullet injury to head by home-made guns with immediate incapacitation are reported in following article. Zip gun (home-made gun) is a improvised firearm, usually a handgun. Home-made guns are almost always single-shot, as the improvised construction sometimes makes them weak enough to be destroyed by the act of firing. Zip guns are mostly smoothbore. Zip gun injuries, although unique today, represent a special category of missile injury with atypical low velocity terminal ballistics. PMID:19534397

  12. Guns in the home: risky business.

    PubMed

    Wiebe, Douglas J

    2003-05-01

    One in three U.S. households contains at least one firearm. Gun owners cite two main reasons for having a gun: hunting and self-protection. A majority of handgun owners believe that they are protecting their homes and families against violent assaults. But in a country where the majority of homicides and suicides involve a gun, it is reasonable to question whether access to a gun increases or decreases the risk of violent death. This Issue Brief describes case-control studies that investigate links between gun availability and gun death, and supports earlier findings that people with guns in their homes appear to increase their risk of being shot fatally (intentionally or unintentionally) or taking their own life with a gun. PMID:12828174

  13. States with More Gun Owners Have More Gun-Related Suicides: Study

    MedlinePlus

    ... gov/news/fullstory_158931.html States With More Gun Owners Have More Gun-Related Suicides: Study But only association was found, ... HealthDay News) -- In states where there are more gun owners, there are also more gun-related suicides, ...

  14. States with More Gun Owners Have More Gun-Related Suicides: Study

    MedlinePlus

    ... medlineplus/news/fullstory_158931.html States With More Gun Owners Have More Gun-Related Suicides: Study But only association was found, ... HealthDay News) -- In states where there are more gun owners, there are also more gun-related suicides, ...

  15. Automatic targeting of plasma spray gun

    DOEpatents

    Abbatiello, Leonard A.; Neal, Richard E.

    1978-01-01

    A means for monitoring the material portion in the flame of a plasma spray gun during spraying operations is provided. A collimated detector, sensitive to certain wavelengths of light emission, is used to locate the centroid of the material with each pass of the gun. The response from the detector is then relayed to the gun controller to be used to automatically realign the gun.

  16. 40 CFR 35.927-1 - Infiltration/inflow analysis.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.927-1... estimated total costs for transportation and treatment of the infiltration/inflow. Cost-effectiveness... presence, flow rate, and type of infiltration/inflow conditions which exist in the sewer system. (b)...

  17. 40 CFR 35.927-1 - Infiltration/inflow analysis.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.927-1... estimated total costs for transportation and treatment of the infiltration/inflow. Cost-effectiveness... presence, flow rate, and type of infiltration/inflow conditions which exist in the sewer system. (b)...

  18. 40 CFR 35.927-1 - Infiltration/inflow analysis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.927-1... estimated total costs for transportation and treatment of the infiltration/inflow. Cost-effectiveness... presence, flow rate, and type of infiltration/inflow conditions which exist in the sewer system. (b)...

  19. Suspended-sediment inflows to Watts Bar Reservoir. Revision 1

    SciTech Connect

    Ewing, L.K.

    1993-09-01

    Suspended-sediment inflows to Watts Bar Reservoir are important data that are required in numerical modeling of transport and deposition of sediment in the reservoir. Acceptable numerical modeling requires sediment inflow rates and locations in order to be able to compute the location and quantity of sediment deposited within the reservoir. Therefore, the representativeness of modeling results is highly dependent on the characteristics of sediment input to the model. The following recommendations, that account for suspended-sediment inflows to be used in the numerical modeling of sediment transport and deposition in Watts Bar Reservoir, were developed through an evaluation of available watershed and sediment deposition data. (1) Use the suspended-sediment rating regression equations of Gaydos et al., for Emory River at Oakdale, TN, and for Poplar Creek near Oak Ridge, TN, to represent the suspended-sediment inflows into Watts Bar Reservoir from its tributaries; (2) Use a suspended-sediment rating regression equation that was derived from suspended-sediment and streamflow data of the Little Tennessee River at McGhee, TN, to represent sediment inflow from the Little Tennessee River for simulation of any historical year before the completion of Tellico Dam; (3) Check the appropriateness of any assumption for suspended-sediment inflows from upstream reservoirs by using its long-term relationship to local suspended-sediment inflows and to the suspended-sediment outflow through Watts Bar Dam; and (4) Focus refinements to suspended-sediment inflow rates on the Clinch arm of Watts Bar Reservoir.

  20. Preparation of Gene Gun Bullets and Biolistic Transfection of Neurons in Slice Culture

    PubMed Central

    Woods, Georgia; Zito, Karen

    2008-01-01

    Biolistic transfection is a physical means of transfecting cells by bombarding tissue with high velocity DNA coated particles. We provide a detailed protocol for biolistic transfection of rat hippocampal slices, from the initial preparation of DNA coated bullets to the final shooting of the organotypic slice cultures using a gene gun. Gene gun transfection is an efficient and easy means of transfecting neurons and is especially useful for fluorescently labeling a small subset of cells in tissue slice. In this video, we first outline the steps required to coat gold particles with DNA. We next demonstrate how to line the inside of plastic tubing with the gold/DNA bullets, and how to cut this tubing to obtain the plastic cartridges for loading into the gene gun. Finally, we perform biolistic transfection of rat hippocampal slice cultures, demonstrating handling of the Bio-Rad Helios gene gun, and offering trouble shooting advice to obtain healthy and optimally transfected tissue slices. PMID:19066564

  1. Unintentional Gun Deaths among Children. Firearm Facts.

    ERIC Educational Resources Information Center

    Duker, Laurie, Ed.

    Children are at risk of being killed or injured by a gun if their parents own a gun because many guns obtained for self-defense are kept loaded and within reach of children. This brief fact sheet presents statistical information relating to accidental deaths involving young people and firearms. Safety measures are suggested for preventing…

  2. Boundary Information Inflow Enhances Correlation in Flocking

    NASA Astrophysics Data System (ADS)

    Cavagna, Andrea; Giardina, Irene; Ginelli, Francesco

    2013-04-01

    The most conspicuous trait of collective animal behavior is the emergence of highly ordered structures. Less obvious to the eye, but perhaps more profound a signature of self-organization, is the presence of long-range spatial correlations. Experimental data on starling flocks in 3D show that the exponent ruling the decay of the velocity correlation function, C(r)˜1/rγ, is extremely small, γ≪1. This result can neither be explained by equilibrium field theory nor by off-equilibrium theories and simulations of active systems. Here, by means of numerical simulations and theoretical calculations, we show that a dynamical field applied to the boundary of a set of Heisenberg spins on a 3D lattice gives rise to a vanishing exponent γ, as in starling flocks. The effect of the dynamical field is to create an information inflow from border to bulk that triggers long-range spin-wave modes, thus giving rise to an anomalously long-ranged correlation. The biological origin of this phenomenon can be either exogenous—information produced by environmental perturbations is transferred from boundary to bulk of the flock—or endogenous—the flock keeps itself in a constant state of dynamical excitation that is beneficial to correlation and collective response.

  3. Galaxy ecosystems: gas contents, inflows and outflows

    NASA Astrophysics Data System (ADS)

    Lu, Zhankui; Mo, H. J.; Lu, Yu

    2015-06-01

    We use a set of observational data for galaxy cold gas mass fraction and gas phase metallicity to constrain the content, inflow and outflow of gas in central galaxies hosted by haloes with masses between 1011 and 1012 M⊙. The gas contents in high-redshift galaxies are obtained by combining the empirical star formation histories and star formation models that relate star formation rate with the cold gas mass in galaxies. We find that the total baryon mass in low-mass galaxies is always much less than the universal baryon mass fraction since z = 2, regardless of star formation model adopted. The data for the evolution of the gas phase metallicity require net metal outflow at z ≲ 2, and the metal loading factor is constrained to be about 0.01, or about 60 per cent of the metal yield. Based on the assumption that galactic outflow is more enriched in metal than both the interstellar medium and the material ejected at earlier epochs, we are able to put stringent constraints on the upper limits for both the net accretion rate and the net mass outflow rate. The upper limits strongly suggest that the evolution of the gas phase metallicity and gas mass fraction for low-mass galaxies at z < 2 is not compatible with strong outflow. We speculate that the low star formation efficiency of low-mass galaxies is owing to some preventative processes that prevent gas from accreting into galaxies in the first place.

  4. Guns in Schools. Firearm Facts.

    ERIC Educational Resources Information Center

    Duker, Laurie, Ed.

    Common reasons that young people choose to carry firearms outside of school--protection, intimidation of others, or to be like their peers--are the same reasons they carry guns into the school. This fact sheet presents statistics regarding the prevalence of firearms amongst students in American schools, including: shooting fatalities and woundings…

  5. An autoneutralizing neutral molecular beam gun

    SciTech Connect

    Delmore, J.E.; Appelhans, A.D.; Dahl, D.A. )

    1990-01-01

    A high-energy (up to 28 keV) neutral molecular beam gun has been developed and put into routine use that takes advantage of the autoneutralization properties of the sulfur hexafluoride anion for the production of high-energy sulfur hexafluoride neutral molecules. The anions are produced in an electron-capture source, accelerated, and focused in a lens assembly designed to minimize residence time, allowed to drift at their terminal velocity for a suitable distance during which up to 30% auto-eject an electron, and all remaining charged particles are electrostatically skimmed, resulting in a focused neutral beam. Rasterable neutral beams focused to a 5-mm spot size up to 3 m from the source have been produced with beam currents up to 40 pA equivalent. Spot sizes of 1 mm can be produced with intensity levels of a few picoamperes equivalent.

  6. Preliminary Langmuir probe results on the CTX gun experiment

    SciTech Connect

    Tuszewski, M.

    1981-12-01

    Preliminary results obtained with a double Langmuir probe in the Compact Toroid experiment facility confirm the existence of a gun plasma of n approx. 5 x 10/sup 14/ cm/sup -3/ and T approx. 10 eV lasting for approx. 250 to 400 ..mu..s, which is consistent with interferometry and Thomson scattering data. The probe current characteristics as a function of voltage suggest non-Maxwellian features of the particles distribution functions.

  7. RF Design of the LCLS Gun

    SciTech Connect

    Limborg-Deprey, C

    2010-12-13

    Final dimensions for the LCLS RF gun are described. This gun, referred to as the LCLS gun, is a modified version of the UCLA/BNL/SLAC 1.6 cell S-Band RF gun [1], referred to as the prototype gun. The changes include a larger mode separation (15 MHz for the LCLS gun vs. 3.5 MHz for the prototype gun), a larger radius at the iris between the 2 cells, a reduced surface field on the curvature of the iris between the two cells, Z power coupling, increased cooling channels for operation at 120 Hz, dual rf feed, deformation tuning of the full cell, and field probes in both cells. Temporal shaping of the klystron pulse, to reduce the average power dissipated in the gun, has also been adopted. By increasing the mode separation, the amplitude of the 0-mode electric field on the cathode decreases from 10% of the peak on axis field for the prototype gun to less than 3% for the LCLS gun for the steady state fields. Beam performance is improved as shown by the PARMELA simulations. The gun should be designed to accept a future load lock system. Modifications follow the recommendations of our RF review committee [2]. Files and reference documents are compiled in Section IV.

  8. DESIGN ANALYSIS OF RADIAL INFLOW TURBINES

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.

    1994-01-01

    This program performs a velocity-diagram analysis required for determining geometry and estimating performance for radial-inflow turbines. Input design requirements are power, mass flow rate, inlet temperature and pressure, and rotative rate. The design variables include stator-exit angle, rotor-exit-tip to rotor-inlet radius ratio, rotor-exit-hub to tip radius ratio, and the magnitude and radial distribution of rotor-exit tangential velocity. The program output includes diameters, total and static efficiences, all absolute and relative temperatures, pressures, and velocities, and flow angles at stator inlet, stator exit, rotor inlet, and rotor exit. Losses accounted for in this program by the internal loss model are three-dimensional (profile plus end wall) viscous losses in the stator and the rotor, the disk-friction loss on the back side of the rotor, the loss due to the clearance between the rotor tip and the outer casing, and the exit velocity loss. The flow analysis is one-dimensional at the stator inlet, stator exit, and rotor inlet, each of these calculation stations being at a constant radius. At the rotor exit where there is a variation in flow-field radius, an axisymmetric two-dimensional analysis is made using constant height sectors. Simple radial equilibrium is used to establish the static pressure gradient at the rotor exit. This program is written in FORTRAN V and has been implemented on a UNIVAC 1100 series computer with a memory requirement of approximately 22K of 36 bit words.

  9. Inflow as a source of extraretinal eye position information.

    NASA Technical Reports Server (NTRS)

    Skavenski, A. A.

    1972-01-01

    Experiments were performed which show that subjects can reliably report when, and in which direction, loads were applied to their eyes in total darkness, which indicates that they were aware of inflow eye position information. Awareness of the inflow signal was not disrupted when the eyelids and conjunctiva were anesthetized and the eyelids were retracted from all possible contact with the scleral contact lens. Furthermore, the subjects maintained eye position when loads were applied to the eye in total darkness, showing that this inflow information can be used for extraretinal oculomotor control.

  10. Prediction of Performance of a Cavitating Propeller in Oblique Inflow

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Kinnas, Spyros A.

    2015-12-01

    A cavitating propeller subject to an oblique inflow in a cavitating tunnel is simulated using potential flow methods coupled with a Reynolds-averaged Navier-Stokes (RANS) solver. The propeller is mainly modelled using a panel method, while the inflow to the propeller is evaluated by coupling a Vortex-Lattice Method (VLM) with the RANS solver. The effects of the tunnel wall are incorporated into the calculated effective inflow to the propeller. The predicted propeller forces and cavity pattern are correlated with experiment. The fully wetted open water characteristics of the propeller predicted by the panel method are presented as well.

  11. Granny, (don't) get your gun: competency issues in gun ownership by older adults.

    PubMed

    Greene, Edith; Bornstein, Brian H; Dietrich, Hannah

    2007-01-01

    This article explores the possible risks associated with gun ownership by older adults. We summarize existing regulations on who may own firearms, especially with respect to age. We then present data on older gun owners and violence committed by older adults in general, followed by a discussion of gun violence perpetrated by gun owners whose functional and cognitive abilities have declined, perhaps as a result of dementia. For comparison purposes, we review regulations on driving among older adults, drawing parallels to gun ownership. The paper concludes with recommendations for ensuring the safety of older gun owners and others, balanced against citizens' right to bear arms, and with some directions for research. PMID:17559168

  12. A gasdynamic gun driven by gaseous detonation

    NASA Astrophysics Data System (ADS)

    Li, Jinping; Chen, Hong; Zhang, Shizhong; Zhang, Xiaoyuan; Yu, Hongru

    2016-01-01

    A gasdynamic gun driven by gaseous detonation was developed to address the disadvantages of the insufficient driving capability of high-pressure gas and the constraints of gunpowder. The performance of this gasdynamic gun was investigated through experiments and numerical simulations. Much more powerful launching capability was achieved by this gun relative to a conventional high-pressure gas gun, owing to the use of the chemical energy of the driver gas. To achieve the same launching condition, the initial pressure required for this gun was an order of magnitude lower than that for a gun driven by high-pressure H2. Because of the presence of the detonation, however, a more complex internal ballistic process of this gun was observed. Acceleration of projectiles for this gun was accompanied by a series of impulse loads, in contrast with the smooth acceleration for a conventional one, which indicates that this gun should be used conditionally. The practical feasibility of this gun was verified by experiments. The experiments demonstrated the convenience of taking advantage of the techniques developed for detonation-driven shock tubes and tunnels.

  13. A gasdynamic gun driven by gaseous detonation.

    PubMed

    Li, Jinping; Chen, Hong; Zhang, Shizhong; Zhang, Xiaoyuan; Yu, Hongru

    2016-01-01

    A gasdynamic gun driven by gaseous detonation was developed to address the disadvantages of the insufficient driving capability of high-pressure gas and the constraints of gunpowder. The performance of this gasdynamic gun was investigated through experiments and numerical simulations. Much more powerful launching capability was achieved by this gun relative to a conventional high-pressure gas gun, owing to the use of the chemical energy of the driver gas. To achieve the same launching condition, the initial pressure required for this gun was an order of magnitude lower than that for a gun driven by high-pressure H2. Because of the presence of the detonation, however, a more complex internal ballistic process of this gun was observed. Acceleration of projectiles for this gun was accompanied by a series of impulse loads, in contrast with the smooth acceleration for a conventional one, which indicates that this gun should be used conditionally. The practical feasibility of this gun was verified by experiments. The experiments demonstrated the convenience of taking advantage of the techniques developed for detonation-driven shock tubes and tunnels. PMID:26827358

  14. Assessment of inflow control structure effectiveness and design system development

    NASA Technical Reports Server (NTRS)

    Peracchio, A. A.

    1981-01-01

    Inflow control structures used during static testing of fans are shown to minimize inflow distortions and thus stimulate the inflight flow field and noise generating mechanisms. Acoustic tests are conducted on a Pratt and Whitney aircraft JT9D engine with and without an inflow control structure. Raw data are corrected to 77 deg, and time is averaged over 0.5 second intervals. Use of an inflow control structure is found to significantly reduce blade passage frequency tone, while having little effect on twice blade passage frequency tones, and significantly improves agreement between static data projected to flight and flight data for the blade passage frequency fan tone. A design system is also presented, which prescribes structure shape, size and construction.

  15. 2. CATCH BASIN, INFLOW PIPES AT CENTER, COLD FLOW LABORATORY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CATCH BASIN, INFLOW PIPES AT CENTER, COLD FLOW LABORATORY AT LEFT, VIEW TOWARDS NORTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Catch Basin, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  16. 46. MISSISSIPPI BASIN MODEL AT CLINTON SUBSTATION. DETAIL OF INFLOW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. MISSISSIPPI BASIN MODEL AT CLINTON SUBSTATION. DETAIL OF INFLOW CONTROLLER WITH ORIGINAL CAPACITOR BANK. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  17. Radial inflow gas turbine engine with advanced transition duct

    SciTech Connect

    Wiebe, David J

    2015-03-17

    A gas turbine engine (10), including: a turbine having radial inflow impellor blades (38); and an array of advanced transition combustor assemblies arranged circumferentially about the radial inflow impellor blades (38) and having inner surfaces (34) that are adjacent to combustion gases (40). The inner surfaces (34) of the array are configured to accelerate and orient, for delivery directly onto the radial inflow impellor blades (38), a plurality of discrete flows of the combustion gases (40). The array inner surfaces (34) define respective combustion gas flow axes (20). Each combustion gas flow axis (20) is straight from a point of ignition until no longer bound by the array inner surfaces (34), and each combustion gas flow axis (20) intersects a unique location on a circumference defined by a sweep of the radial inflow impellor blades (38).

  18. Liquid inflow to a baffled cylindrical tank during weightlessness

    NASA Technical Reports Server (NTRS)

    Staskus, J. V.

    1972-01-01

    An experimental investigation was conducted in which the behavior of liquid inflow to a cylindrical tank containing inlet baffles was observed during weightlessness. A single tank radius (2 cm), inlet radius (0.2 cm), and liquid (ethanol)were used. The inlet end of the tank was hemispherical with a 30 deg convergent inlet. All the baffle configurations tested were cylindrically symmetric and mounted coaxially with the tank within the hemispherical end. Both stable and unstable inflow behavior were observed using each baffle. It was found that, depending on which of the baffles was used, the critical inflow velocity at which a transition to unstable inflow began was from 2.5 to 12 times greater than the corresponding velocity in an unbaffled tank.

  19. Effects of a gun dealer's change in sales practices on the supply of guns to criminals.

    PubMed

    Webster, Daniel W; Vernick, Jon S; Bulzacchelli, Maria T

    2006-09-01

    Licensed gun dealers are a major conduit for gun trafficking. Prior to May 1999, a single gun store sold more than half of the guns recovered from criminals in Milwaukee, WI, shortly following retail sale. On May 10, 1999, the store stopped selling small, inexpensive handguns popular with criminals, often called "Saturday night specials." The purpose of this study was to estimate the effect of this gun store's changed sales practices on criminals' acquisition of new guns. We used an interrupted time-series design with comparisons to test for changes in the number of guns that police recovered from criminals within a year of retail sale following the gun dealer's new sales policy. The dealer's changed sales policy was associated with a 96% decrease in recently sold, small, inexpensive handguns use in crime in Milwaukee, a 73% decrease in crime guns recently sold by this dealer, and a 44% decrease in the flow of all new, trafficked guns to criminals in Milwaukee. The findings demonstrate the substantial impact that a single gun store's sales practices can have on the supply of new guns to criminals. Proposed anti-gun-trafficking efforts in other cities could benefit from targeting problem retail outlets. PMID:16937085

  20. Effects of a Gun Dealer's Change in Sales Practices on the Supply of Guns to Criminals

    PubMed Central

    Vernick, Jon S.; Bulzacchelli, Maria T.

    2006-01-01

    Licensed gun dealers are a major conduit for gun trafficking. Prior to May 1999, a single gun store sold more than half of the guns recovered from criminals in Milwaukee, WI, shortly following retail sale. On May 10, 1999, the store stopped selling small, inexpensive handguns popular with criminals, often called “Saturday night specials.” The purpose of this study was to estimate the effect of this gun store's changed sales practices on criminals' acquisition of new guns. We used an interrupted time-series design with comparisons to test for changes in the number of guns that police recovered from criminals within a year of retail sale following the gun dealer's new sales policy. The dealer's changed sales policy was associated with a 96% decrease in recently sold, small, inexpensive handguns use in crime in Milwaukee, a 73% decrease in crime guns recently sold by this dealer, and a 44% decrease in the flow of all new, trafficked guns to criminals in Milwaukee. The findings demonstrate the substantial impact that a single gun store's sales practices can have on the supply of new guns to criminals. Proposed anti-gun-trafficking efforts in other cities could benefit from targeting problem retail outlets. PMID:16937085

  1. Impact of inflow transport approximation on light water reactor analysis

    NASA Astrophysics Data System (ADS)

    Choi, Sooyoung; Smith, Kord; Lee, Hyun Chul; Lee, Deokjung

    2015-10-01

    The impact of the inflow transport approximation on light water reactor analysis is investigated, and it is verified that the inflow transport approximation significantly improves the accuracy of the transport and transport/diffusion solutions. A methodology for an inflow transport approximation is implemented in order to generate an accurate transport cross section. The inflow transport approximation is compared to the conventional methods, which are the consistent-PN and the outflow transport approximations. The three transport approximations are implemented in the lattice physics code STREAM, and verification is performed for various verification problems in order to investigate their effects and accuracy. From the verification, it is noted that the consistent-PN and the outflow transport approximations cause significant error in calculating the eigenvalue and the power distribution. The inflow transport approximation shows very accurate and precise results for the verification problems. The inflow transport approximation shows significant improvements not only for the high leakage problem but also for practical large core problem analyses.

  2. Transient proton inflows during illumination of anaerobic Halobacterium halobium cells

    NASA Technical Reports Server (NTRS)

    Helgerson, S. L.; Stoeckenius, W.

    1985-01-01

    The roles of bacteriorhodopsin (bR), halorhodopsin (hR), and the H(+)-ATPase in the proton uptake in intact cells are examined. The Halobacterium halobium strains and solutions utilized in the experiment, and the techniques for measuring extracellular pH changes and intracellular K(+) concentrations are described. It is observed that in Halobacterium halobium strain R1, containing bR and hR, the light-driven proton uptake is divided into three transient inflows superimposed on the larger proton outflow. Under anaerobic conditions early proton uptake consists of an inflow which can be blocked with Dio-9 and a second inflow that can be eliminated by low concentrations (less than 125 nm) of triphenyltin chloride (TPT). The effects of Dio-9 and TPT on the passive proton-hydroxyl permeability of the cell membrane are investigated. A third transient light-driven proton flow observed at later times of illumination is studied. The data reveal that the first proton inflow correlates with proton dependent ATP synthesis; the second inflow is a passive uptake through an unidentified channel in response to electrogenic chloride pumping by bR and/or hR; and the third inflow correlates with the Na(+)/H(+) antiporter function.

  3. Estimating Wind Turbine Inflow Using Sparse Wind Data

    NASA Astrophysics Data System (ADS)

    Rai, Raj; Naughton, Jonathan

    2011-11-01

    An accurate spatially and temporally resolved estimation of the wind inflow under various atmospheric boundary layer stability conditions is useful for several applications relevant to wind turbines. Estimations of a wind inflow plane in a neutrally stable boundary layer using sparse data (temporally resolved but spatially sparse, and spatially resolved but temporally sparse) has shown good agreement with the original data provided by a Large Eddy Simulation. A complementary Proper Orthogonal Decomposition-Linear Stochastic Estimation (POD-LSE) approach has been used for the estimation in which the POD identifies the energetic modes of the flow that are then used in estimating the time dependent flow-field using LSE. The applicability of such an approach is considered by simulating the estimation of the wind inflow using data collected in the field. Modern remote measurement approaches, such as Lidar (Light detection and ranging), can sample the wind at the multiple locations, but cannot sufficiently resolve the inflow in space in time that is required for many wind turbine applications. Since inflow estimations using the POD-LSE approach can simultaneously provide spatial and temporal behavior, the use of the approach with field data for better understanding the characteristics of the wind inflow at a particular site under different atmospheric conditions is demonstrated. Support from a gift from BP is acknowledged.

  4. Typical features of pedestrian spatial distribution in the inflow process

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodong; Song, Weiguo; Fu, Libi; Lv, Wei; Fang, Zhiming

    2016-04-01

    Pedestrian inflow is frequently observed in various pedestrian facilities. In this work, we first proposed four hypotheses concerning the inflow process. Then, we performed a series of experiments to test the hypotheses. With several analytical methods, e.g., the proxemics theory and Voronoi diagram method, the features of pedestrian inflow are analyzed in detail. Results demonstrate that the distribution of pedestrians in the room is not uniform. Boundaries are attractive for these pedestrians. The impact of two factors of the inflow are analyzed, i.e., movement rule, and first-out reward. It is found pedestrians can enter the room more effectively under the random rule or two queues. Under some hurry circumstances, pedestrians may prefer to gather around the door, and the spatial distribution is not uniform, leading to the imbalance use of the room. Practical suggestions are given for pedestrians to improve the travel efficiency in the inflow process. This experimental study is meaningful to reveal some fundamental phenomena of inflow process, which can provide the realistic basis for building the theory and mathematical-physical models.

  5. X-Band RF Gun Development

    SciTech Connect

    Vlieks, Arnold; Dolgashev, Valery; Tantawi, Sami; Anderson, Scott; Hartemann, Fred; Marsh, Roark; /LLNL, Livermore

    2012-06-22

    In support of the MEGa-ray program at LLNL and the High Gradient research program at SLAC, a new X-band multi-cell RF gun is being developed. This gun, similar to earlier guns developed at SLAC for Compton X-ray source program, will be a standing wave structure made of 5.5 cells operating in the pi mode with copper cathode. This gun was designed following criteria used to build SLAC X-band high gradient accelerating structures. It is anticipated that this gun will operate with surface electric fields on the cathode of 200 MeV/m with low breakdown rate. RF will be coupled into the structure through a final cell with symmetric duel feeds and with a shape optimized to minimize quadrupole field components. In addition, geometry changes to the original gun, operated with Compton X-ray source, will include a wider RF mode separation, reduced surface electric and magnetic fields.

  6. Determination of secondary flow morphologies by wavelet analysis in a curved artery model with physiological inflow

    NASA Astrophysics Data System (ADS)

    Bulusu, Kartik V.; Hussain, Shadman; Plesniak, Michael W.

    2014-11-01

    Secondary flow vortical patterns in arterial curvatures have the potential to affect several cardiovascular phenomena, e.g., progression of atherosclerosis by altering wall shear stresses, carotid atheromatous disease, thoracic aortic aneurysms and Marfan's syndrome. Temporal characteristics of secondary flow structures vis-à-vis physiological (pulsatile) inflow waveform were explored by continuous wavelet transform (CWT) analysis of phase-locked, two-component, two-dimensional particle image velocimeter data. Measurements were made in a 180° curved artery test section upstream of the curvature and at the 90° cross-sectional plane. Streamwise, upstream flow rate measurements were analyzed using a one-dimensional antisymmetric wavelet. Cross-stream measurements at the 90° location of the curved artery revealed interesting multi-scale, multi-strength coherent secondary flow structures. An automated process for coherent structure detection and vortical feature quantification was applied to large ensembles of PIV data. Metrics such as the number of secondary flow structures, their sizes and strengths were generated at every discrete time instance of the physiological inflow waveform. An autonomous data post-processing method incorporating two-dimensional CWT for coherent structure detection was implemented. Loss of coherence in secondary flow structures during the systolic deceleration phase is observed in accordance with previous research. The algorithmic approach presented herein further elucidated the sensitivity and dependence of morphological changes in secondary flow structures on quasiperiodicity and magnitude of temporal gradients in physiological inflow conditions.

  7. Analytical models for use in fan inflow control structure design. Inflow distortion and acoustic transmission models

    NASA Technical Reports Server (NTRS)

    Gedge, M. R.

    1979-01-01

    Analytical models were developed to study the effect of flow contraction and screening on inflow distortions to identify qualitative design criteria. Results of the study are that: (1) static testing distortions are due to atmospheric turbulence, nacelle boundary layer, exhaust flow reingestion, flow over stand, ground plane, and engine casing; (2) flow contraction suppresses, initially, turbulent axial velocity distortions and magnifies turbulent transverse velocity distortions; (3) perforated plate and gauze screens suppress axial components of velocity distortions to a degree determined by the screen pressure loss coefficient; (4) honeycomb screen suppress transverse components of velocity distortions to a degree determined by the length to diameter ratio of the honeycomb; (5) acoustic transmission loss of perforated plate is controlled by the reactance of its acoustic impedance; (6) acoustic transmission loss of honeycomb screens is negligible; and (7) a model for the direction change due to a corner between honeycomb panels compares favorably with measured data.

  8. Racism, Gun Ownership and Gun Control: Biased Attitudes in US Whites May Influence Policy Decisions

    PubMed Central

    O’Brien, Kerry; Forrest, Walter; Lynott, Dermot; Daly, Michael

    2013-01-01

    Objective Racism is related to policies preferences and behaviors that adversely affect blacks and appear related to a fear of blacks (e.g., increased policing, death penalty). This study examined whether racism is also related to gun ownership and opposition to gun controls in US whites. Method The most recent data from the American National Election Study, a large representative US sample, was used to test relationships between racism, gun ownership, and opposition to gun control in US whites. Explanatory variables known to be related to gun ownership and gun control opposition (i.e., age, gender, education, income, conservatism, anti-government sentiment, southern vs. other states, political identification) were entered in logistic regression models, along with measures of racism, and the stereotype of blacks as violent. Outcome variables included; having a gun in the home, opposition to bans on handguns in the home, support for permits to carry concealed handguns. Results After accounting for all explanatory variables, logistic regressions found that for each 1 point increase in symbolic racism there was a 50% increase in the odds of having a gun at home. After also accounting for having a gun in the home, there was still a 28% increase in support for permits to carry concealed handguns, for each one point increase in symbolic racism. The relationship between symbolic racism and opposition to banning handguns in the home (OR1.27 CI 1.03,1.58) was reduced to non-significant after accounting for having a gun in the home (OR1.17 CI.94,1.46), which likely represents self-interest in retaining property (guns). Conclusions Symbolic racism was related to having a gun in the home and opposition to gun control policies in US whites. The findings help explain US whites’ paradoxical attitudes towards gun ownership and gun control. Such attitudes may adversely influence US gun control policy debates and decisions. PMID:24204867

  9. Improved Orifice Plate for Spray Gun

    NASA Technical Reports Server (NTRS)

    Cunningham, W.

    1986-01-01

    Erratic spray pattern of commercial spray gun changed to repeatable one by simple redesign of two parts. In modified spray gun orifice plate and polytetrafluoroethylene bushing redesigned to assure centering and alignment with nozzle. Such improvement useful in many industrial applications requiring repeatable spray patterns. Might include spraying of foam insulation, paint, other protective coatings, detergents, abrasives, adhesives, process chemicals, or fuels. Unmodified spray gun produces erratic spray because lateral misalignment between orifice plate and nozzle.

  10. Modelling the behaviour of additives in gun barrels

    NASA Astrophysics Data System (ADS)

    Rhodes, N.; Ludwig, J. C.

    1986-01-01

    A mathematical model which predicts the flow and heat transfer in a gun barrel is described. The model is transient, two-dimensional and equations are solved for velocities and enthalpies of a gas phase, which arises from the combustion of propellant and cartridge case, for particle additives which are released from the case; volume fractions of the gas and particles. Closure of the equations is obtained using a two-equation turbulence model. Preliminary calculations are described in which the proportions of particle additives in the cartridge case was altered. The model gives a good prediction of the ballistic performance and the gas to wall heat transfer. However, the expected magnitude of reduction in heat transfer when particles are present is not predicted. The predictions of gas flow invalidate some of the assumptions made regarding case and propellant behavior during combustion and further work is required to investigate these effects and other possible interactions, both chemical and physical, between gas and particles.

  11. Note: O-ring stack system for electron gun alignment.

    PubMed

    Park, In-Yong; Cho, Boklae; Han, Cheolsu; Shin, Seungmin; Lee, Dongjun; Ahn, Sang Jung

    2015-01-01

    We present a reliable method for aligning an electron gun which consists of an electron source and lenses by controlling a stack of rubber O-rings in a vacuum condition. The beam direction angle is precisely tilted along two axes by adjusting the height difference of a stack of O-rings. In addition, the source position is shifted in each of three orthogonal directions. We show that the tilting angle and linear shift along the x and y axes as obtained from ten stacked O-rings are ±2.55° and ±2 mm, respectively. This study can easily be adapted to charged particle gun alignment and adjustments of the flange position in a vacuum, ensuring that its results can be useful with regard to electrical insulation between flanges with slight modifications. PMID:25638137

  12. Note: O-ring stack system for electron gun alignment

    NASA Astrophysics Data System (ADS)

    Park, In-Yong; Cho, Boklae; Han, Cheolsu; Shin, Seungmin; Lee, Dongjun; Ahn, Sang Jung

    2015-01-01

    We present a reliable method for aligning an electron gun which consists of an electron source and lenses by controlling a stack of rubber O-rings in a vacuum condition. The beam direction angle is precisely tilted along two axes by adjusting the height difference of a stack of O-rings. In addition, the source position is shifted in each of three orthogonal directions. We show that the tilting angle and linear shift along the x and y axes as obtained from ten stacked O-rings are ±2.55° and ±2 mm, respectively. This study can easily be adapted to charged particle gun alignment and adjustments of the flange position in a vacuum, ensuring that its results can be useful with regard to electrical insulation between flanges with slight modifications.

  13. Note: O-ring stack system for electron gun alignment

    SciTech Connect

    Park, In-Yong; Cho, Boklae; Han, Cheolsu; Shin, Seungmin; Lee, Dongjun; Ahn, Sang Jung

    2015-01-15

    We present a reliable method for aligning an electron gun which consists of an electron source and lenses by controlling a stack of rubber O-rings in a vacuum condition. The beam direction angle is precisely tilted along two axes by adjusting the height difference of a stack of O-rings. In addition, the source position is shifted in each of three orthogonal directions. We show that the tilting angle and linear shift along the x and y axes as obtained from ten stacked O-rings are ±2.55° and ±2 mm, respectively. This study can easily be adapted to charged particle gun alignment and adjustments of the flange position in a vacuum, ensuring that its results can be useful with regard to electrical insulation between flanges with slight modifications.

  14. Health and Gun Violence. Guns as a Public-Health Issue.

    ERIC Educational Resources Information Center

    Duran, Victoria

    1994-01-01

    Violence in all settings has reached epidemic proportions. Most shootings are committed by friends or relatives following an argument or when playing with guns. The public needs education about nonviolent ways of coping with anger and about the high cost of gun violence. Suggestions for avoiding gun violence and the PTA position on firearms are…

  15. A turbulent inflow model based on velocity modulation

    NASA Astrophysics Data System (ADS)

    Huyer, Stephen A.; Beal, David

    2007-11-01

    This article presents a novel turbulent inflow model based on modulation of the velocity field for use with time-domain propulsor calculations. Given an experimental mean and rms turbulent inflow, a model can be constructed by modulating the velocity field over a range of frequencies. Assuming the turbulence is homogeneous, the inflow can be constructed as a Fourier series where the frequencies can also be modulated to smooth the broadband output. To demonstrate the effectiveness of the model, experimental inflow velocity data were acquired for an upstream stator, downstream rotor configuration mounted on an undersea vehicle afterbody. Two main sources of turbulence originated from the vorticity shed from the stator wakes and the boundary layer vorticity produced on the hull body. Three-dimensional, unsteady velocity data were acquired using hot-wire anemometry and reduced to provide mean and rms velocity values. Time-series data were processed to provide velocity power spectra used to calibrate the model. Simulations were performed using a modified version of the propulsor unsteady flow code capable of computing fully turbulent inflows. This solver models the propulsor blade as a vortex lattice and sheds the vorticity into the wake to solve the unsteady potential flow. The no-flux boundary conditions are satisfied at the lattice control points and the resulting unsteady circulation is a function of the instantaneous inflow velocity field over the blade. Vorticity is shed into the wake to account for the full time history of the inflow velocity field. To demonstrate the full effectiveness of the model, computed surface pressure data were exported to a code to compute the far-field radiated noise (both tonal and broadband). Simulated data were compared with experimentally obtained noise data with favorable results. Applications of this methodology in the incompressible flow domain include broadband analysis of propulsor-radiated noise on undersea vehicles and

  16. Coronal inflows during the interval 1996-2014

    SciTech Connect

    Sheeley, N. R. Jr.; Wang, Y.-M.

    2014-12-10

    We extend our previous counts of coronal inflows from the 5 yr interval 1996-2001 to the 18 yr interval 1996-2014. By comparing stackplots of these counts with similar stackplots of the source-surface magnetic field and its longitudinal gradient, we find that the inflows occur in long-lived streams with counting rates in excess of 18 inflows per day at sector boundaries where the gradient exceeds 0.22 G rad{sup –1}. These streams are responsible for the high (86%) correlation between the inflow rate and the longitudinal field gradient. The overall inflow rate was several times larger in sunspot cycle 23 than it has been so far in cycle 24, reflecting the relatively weak source-surface fields during this cycle. By comparison, in cycles 21-22, the source-surface field and its gradient had bursts of great strength, as if large numbers of inflows occurred during those cycles. We find no obvious relation between inflows and coronal mass ejections (CMEs) on timescales of days to weeks, regardless of the speeds of the CMEs, and only a 60% correlation on timescales of months, provided the CMEs are fast (V > 600 km s{sup –1}). We conclude that most of the flux carried out by CMEs is returned to the Sun via field line reconnection well below the 2.0 R {sub ☉} inner limit of the LASCO field of view, and that the remainder accumulates in the outer corona for an eventual return at sector boundaries.

  17. Helicopter rotor dynamic inflow modeling for maneuvering flight

    NASA Astrophysics Data System (ADS)

    Krothapalli, Krishnamohan Rao

    Finite-state dynamic inflow models for the wake of a helicopter rotor are necessary for the implementation of real-time flight simulation models. There has been a discrepancy between helicopter simulation model response and true vehicle response that has perplexed researchers for many years. This "off-axis problem" is believed to be caused by inaccurate representation of the inflow at the rotor disk during pitching or rolling maneuvers. Current simulation models predict an initial off-axis response to cyclic stick inputs that are opposite in sign to responses of the corresponding flight tests. This study addresses this problem by modifying existing inflow models to account for variations in the rotor wake during maneuvering flight. It is shown that only compact modifications to finite-state inflow models are needed to capture these effects in the inflow dynamics. Vortex and momentum theories are used to model the effect of wake curvature expected in maneuvering flight. It is believed that the curvature of the wake results in inflow gradients that affect the flapping dynamics, mainly in the off-axis channel. While this effect is greatest in hover, where the inflow is largest, it is also significant for low speed conditions where the inflow is still plays a major role. The curvature and contraction of the wake vary greatly in the flight envelope, so it is necessary to construct a unified model (for the inflow coupling due to wake curvature) that is applicable in all flight conditions. The final result is a modified, Peters-He generalized dynamic wake model with curvature augmentation. Specifically, the L-matrix of the Peters-He model is modified by extending a general vortex tube result for arbitrary load distributions. This extended wake model is then coupled with a rotor flapping model, and the flap and hub moment responses are studied in hover and forward flight. Comparisons are made between the simulation model and the Sikorsky Bearingless Main Rotor (SBMR) at 40

  18. From gun politics to self-defense politics: a feminist critique of the great gun debate.

    PubMed

    Carlson, Jennifer D

    2014-03-01

    This article calls attention to a problematic binary produced by public debates surrounding gun rights and gun control-namely, that women must choose armed self-protection or no self-protection at all. I argue that both anti- and pro-gun discourses, drawing on and reproducing race and class privileges, use assumptions about women's physical inferiority to further their agendas. I highlight how both sides have used guns as the proxy for self-defense and conclude by calling for a shift in public discourse to focus on the broader question of the right to self-defense rather than the narrower question of gun rights. PMID:24686128

  19. Dynamics of a wind turbine airfoil in turbulent inflow

    NASA Astrophysics Data System (ADS)

    Heisselmann, Hendrik; Peinke, Joachim; Hoelling, Michael

    2015-11-01

    An experimental investigation of the aerodynamics of a wind turbine airfoil model was performed for laminar inflow and three different turbulent inflow conditions at Re ~ 500,000. Particular turbulent inflow conditions were generated with an active grid, which allows for a repetition of the same turbulence pattern for each investigated airfoil configuration. The inflow wind fields comprise a laminar baseline case, a quasi-2D sinusoidal angle of attack (AoA) variation and an intermittent AoA variation. Additionally, AoA variations as obtained from a 5-hole Pitot probe during a field experiment were emulated. High-resolution time series of the pressure distributions and acting forces on a DU00-W-212 airfoil model were measured under the various inflow conditions for an AoA range of +/-35°. The obtained data was analyzed using time averages of first order quantities (mean, std. deviation) as well as more complex stochastic methods. The analysis of the laminar and turbulent cases indicates higher AoAs for maximum lift under turbulent conditions, while the drop-off in the post-stall regime is flattened. The presented work was funded from the European Union's Seventh Program for research, technological development and demonstration under grand agreement No FP7-ENERGY-2013-1/n° 608396.

  20. Crafting a Gauss Gun Demonstration

    NASA Astrophysics Data System (ADS)

    Blodgett, Matthew E.; Blodgett, E. D.

    2006-12-01

    A Gauss Gun launches a ferromagnetic projectile using a pulsed electromagnet. This demonstration provides a nice counterpoint to the popular Thompson's jumping ring demonstration, which launches a nonferromagnetic ring via repulsion of an induced current. The pulsed current must be short enough in duration so that the projectile is not retarded by lingering current in the launch solenoid, but also large enough to provide a suitably impressive velocity. This project involved an iterative design process, as we worked through balancing all the different design criteria. We recommend it as a very nice electronics design project which will produce a very portable and enjoyable demonstration. AAPT sponsor Earl Blodgett.

  1. The Xygra gun simulation tool.

    SciTech Connect

    Garasi, Christopher Joseph; Lamppa, Derek C.; Aubuchon, Matthew S.; Shirley, David Noyes; Robinson, Allen Conrad; Russo, Thomas V.

    2008-12-01

    Inductive electromagnetic launchers, or coilguns, use discrete solenoidal coils to accelerate a coaxial conductive armature. To date, Sandia has been using an internally developed code, SLINGSHOT, as a point-mass lumped circuit element simulation tool for modeling coilgun behavior for design and verification purposes. This code has shortcomings in terms of accurately modeling gun performance under stressful electromagnetic propulsion environments. To correct for these limitations, it was decided to attempt to closely couple two Sandia simulation codes, Xyce and ALEGRA, to develop a more rigorous simulation capability for demanding launch applications. This report summarizes the modifications made to each respective code and the path forward to completing interfacing between them.

  2. Electromagnetic Gun With Commutated Coils

    NASA Technical Reports Server (NTRS)

    Elliott, David G.

    1991-01-01

    Proposed electromagnetic gun includes electromagnet coil, turns of which commutated in sequence along barrel. Electrical current fed to two armatures by brushes sliding on bus bars in barrel. Interaction between armature currents and magnetic field from coil produces force accelerating armature, which in turn, pushes on projectile. Commutation scheme chosen so magnetic field approximately coincides and moves with cylindrical region defined by armatures. Scheme has disadvantage of complexity, but in return, enables designer to increase driving magnetic field without increasing armature current. Attainable muzzle velocity increased substantially.

  3. Experiments and Demonstrations with Soldering Guns.

    ERIC Educational Resources Information Center

    Henry, Dennis C.; Danielson, Sarah A.

    1993-01-01

    Discusses the essential electrical characteristics of a particular model of soldering gun. Presents four classroom demonstrations that utilize the soldering gun to test the following geometrics of wire loops as electromagnets: (1) the original tip; (2) a single circular loop; (3) a Helmholtz coil; and (4) the solenoid. (MDH)

  4. Youth Homicide and Guns. Firearm Facts.

    ERIC Educational Resources Information Center

    Duker, Laurie, Ed.

    Young Americans are killed with guns at rates far higher than young people in other countries and than older Americans, with young, urban African-American males being most at risk. This fact sheet presents data on gun-related homicides among teenagers in the United States. The high rate of youth homicide in the United States is unique in the…

  5. Protect Children Instead of Guns, 2002.

    ERIC Educational Resources Information Center

    Children's Defense Fund, Washington, DC.

    Beginning with statistics pertaining to children and gun violence in a single year in the United States, this report details trends in child and youth gun deaths. Tables present information on the following: (1) number of firearms deaths by manner and by race from 1979 to 2000; (2) number of firearms deaths by manner for each state and nationwide,…

  6. Fighting Juvenile Gun Violence. Juvenile Justice Bulletin.

    ERIC Educational Resources Information Center

    Sheppard, David; Grant, Heath; Rowe, Wendy; Jacobs, Nancy

    This bulletin describes the Office of Juvenile Justice and Delinquency Prevention's efforts to fight juvenile gun violence. The Office awarded four community demonstration grants to implement "Partnerships To Reduce Juvenile Gun Violence." Partnership goals include increasing the effectiveness of existing strategies by enhancing and coordinating…

  7. Gun Control: The Debate and Public Policy.

    ERIC Educational Resources Information Center

    Watkins, Christine

    1997-01-01

    Provides an overview and background information on the debate over gun control, as well as several teaching ideas. Handouts include a list of related topics drawn from various disciplines (economics, U.S. history), seven arguments for and against gun control, and a set of policy evaluation guidelines. (MJP)

  8. Light gas gun with reduced timing jitter

    DOEpatents

    Laabs, G.W.; Funk, D.J.; Asay, B.W.

    1998-06-09

    Gas gun with reduced timing jitter is disclosed. A gas gun having a prepressurized projectile held in place with a glass rod in compression is described. The glass rod is destroyed with an explosive at a precise time which allows a restraining pin to be moved and free the projectile. 4 figs.

  9. Superconducting 112 MHz QWR electron gun

    SciTech Connect

    Belomestnykh, S.; Ben-Zvi, I.; Boulware, C.H.; Chang, X.; Grimm, T.L.; Rao, T.; Siegel, B.; Skaritka, J.; Than, R.; Winowski, M.; Wu, Q.; Xin, T.; Xue, L.

    2011-07-25

    Brookhaven National Laboratory and Niowave, Inc. have designed and fabricated a superconducting 112 MHz quarter-wave resonator (QWR) electron gun. The first cold test of the QWR cryomodule has been completed at Niowave. The paper describes the cryomodule design, presents the cold test results, and outline plans to upgrade the cryomodule. Future experiments include studies of different photocathodes and use for the coherent electron cooling proof-of-principle experiment. Two cathode stalk options, one for multi-alkali photocathodes and the other one for a diamond-amplified photocathode, are discussed. A quarter-wave resonator concept of superconducting RF (SRF) electron gun was proposed at BNL for electron cooling hadron beams in RHIC. QWRs can be made sufficiently compact even at low RF frequencies (long wavelengths). The long wavelength allows to produce long electron bunches, thus minimizing space charge effects and enabling high bunch charge. Also, such guns should be suitable for experiments requiring high average current electron beams. A 112 MHz QWR gun was designed, fabricated, and cold-tested in collaboration between BNL and Niowave. This is the lowest frequency SRF gun ever tested successfully. In this paper we describe the gun design and fabrication, present the cold test results, and outline our plans. This gun will also serve as a prototype for a future SRF gun to be used for coherent electron cooling of hadrons in eRHIC.

  10. Light gas gun with reduced timing jitter

    DOEpatents

    Laabs, Gary W.; Funk, David J.; Asay, Blaine W.

    1998-01-01

    Gas gun with reduced timing jitter. A gas gun having a prepressurized projectile held in place with a glass rod in compression is described. The glass rod is destroyed with an explosive at a precise time which allows a restraining pin to be moved and free the projectile.

  11. Advanced radial inflow turbine rotor program: Design and dynamic testing

    NASA Technical Reports Server (NTRS)

    Rodgers, C.

    1976-01-01

    The advancement of small, cooled, radial inflow turbine technology in the area of operation at higher turbine inlet temperature is discussed. The first step was accomplished by designing, fabricating, and subjecting to limited mechanical testing an advanced gas generator rotating assembly comprising a radial inflow turbine and two-stage centrifugal compressor. The radial inflow turbine and second-stage compressor were designed as an integrally machined monorotor with turbine cooling taking place basically by conduction to the compressor. Design turbine inlet rotor gas temperature, rotational speed, and overall gas generator compressor pressure ratio were 1422 K (2560 R), 71,222 rpm, and 10/1 respectively. Mechanical testing on a fabricated rotating assembly and bearing system covered 1,000 cold start/stop cycles and three spins to 120 percent design speed (85,466 rpm).

  12. The influence of wellbore inflow on electromagnetic borehole flowmeter measurements.

    PubMed

    Clemo, Tom; Barrash, Warren; Reboulet, Edward C; Johnson, Timothy C; Leven, Carsten

    2009-01-01

    This paper describes a combined field, laboratory, and numerical study of electromagnetic borehole flowmeter measurements acquired without the use of a packer or skirt to block bypass flow around the flowmeter. The most significant finding is that inflow through the wellbore screen changes the ratio of flow through the flowmeter to wellbore flow. Experiments reveal up to a factor of two differences in this ratio for conditions with and without inflow through the wellbore screen. Standard practice is to assume the ratio is constant. A numerical model has been developed to simulate the effect of inflow on the flowmeter. The model is formulated using momentum conservation within the borehole and around the flowmeter. The model is embedded in the MODFLOW-2000 ground water flow code. PMID:19341370

  13. Gun shows across a multistate American gun market: observational evidence of the effects of regulatory policies

    PubMed Central

    Wintemute, Garen J

    2007-01-01

    Objective To describe gun shows and assess the impact of increased regulation on characteristics linked to their importance as sources of guns used in crime. Design Cross‐sectional, observational. Subjects Data were collected at a structured sample of 28 gun shows in California, which regulates these events and prohibits undocumented private party gun sales; and in Arizona, Nevada, Texas and Florida—all leading sources of California's crime guns—where these restrictions do not exist. Main outcome measures Size of shows, measured by numbers of gun vendors and people in attendance; number and nature of guns for sale by gun vendors; measures of private party gun sales and illegal surrogate (“straw”) gun purchases. Results Shows in comparison states were larger, but the number of attendees per gun vendor was higher in California. None of these differences was statistically significant. Armed attendees were more common in other states (median 5.7%, interquartile range (IQR) 3.9–10.0%) than in California (median 1.1%, IQR 0.5–2.2%), p = 0.0007. Thirty percent of gun vendors both in California and elsewhere were identifiable as licensed firearm retailers. There were few differences in the types or numbers of guns offered for sale; vendors elsewhere were more likely to sell assault weapons (34.9% and 13.3%, respectively; p = 0.001). Straw purchases were more common in the comparison states (rate ratio 6.6 (95% CI 0.9 to 49.1), p = 0.06). Conclusions California's regulatory policies were associated with a decreased incidence of anonymous, undocumented gun sales and illegal straw purchases at gun shows. No significant adverse effects of these policies were observed. PMID:17567968

  14. Life-threatening nail gun injuries.

    PubMed

    Beaver, A C; Cheatham, M L

    1999-12-01

    The use of pneumatic and explosive cartridge-activated nail guns is common in the construction industry. The ease and speed of nailing these tools afford enhance productivity at the cost of increased potential for traumatic injury. Although extremity injuries are most common, life-threatening injuries to the head, neck, chest, or abdomen and pelvis may occur. During a 20-month period, eight potentially life-threatening nail gun injuries were admitted to a Level I trauma center, including injuries to the brain, eye, neck, heart, lung, and femoral artery. Mechanism of injury included nail ricochet, nail gun misuse due to inadequate training, and successful suicide. Nail guns have significant potential for causing severe debilitating injury and death. These findings indicate a need for improved safety features and user education. The various types of nail guns, their ballistic potential, and techniques for operative management are discussed. PMID:10597056

  15. Sequential injection gas guns for accelerating projectiles

    DOEpatents

    Lacy, Jeffrey M.; Chu, Henry S.; Novascone, Stephen R.

    2011-11-15

    Gas guns and methods for accelerating projectiles through such gas guns are described. More particularly, gas guns having a first injection port located proximate a breech end of a barrel and a second injection port located longitudinally between the first injection port and a muzzle end of the barrel are described. Additionally, modular gas guns that include a plurality of modules are described, wherein each module may include a barrel segment having one or more longitudinally spaced injection ports. Also, methods of accelerating a projectile through a gas gun, such as injecting a first pressurized gas into a barrel through a first injection port to accelerate the projectile and propel the projectile down the barrel past a second injection port and injecting a second pressurized gas into the barrel through the second injection port after passage of the projectile and to further accelerate the projectile are described.

  16. Electron gun jitter effects on beam bunching

    SciTech Connect

    Liu, M. S.; Iqbal, M.

    2014-02-15

    For routine operation of Beijing Electron Positron Collider II (BEPCII) linac, many factors may affect the beam bunching process directly or indirectly. We present the measurements and analyses of the gun timing jitter, gun high voltage jitter, and beam energy at the exit of the standard acceleration section of the linac quantitatively. Almost 80 mV and more than 200 ps of gun high voltage and time jitters have ever been measured, respectively. It was analyzed that the gun timing jitter produced severe effects on beam energy than the gun high voltage jitter, if the timing jitter exceeded 100 ps which eventually deteriorates both the beam performance and the injection rate to the storage ring.

  17. ECR ion source with electron gun

    DOEpatents

    Xie, Z.Q.; Lyneis, C.M.

    1993-10-26

    An Advanced Electron Cyclotron Resonance ion source having an electron gun for introducing electrons into the plasma chamber of the ion source is described. The ion source has a injection enclosure and a plasma chamber tank. The plasma chamber is defined by a plurality of longitudinal magnets. The electron gun injects electrons axially into the plasma chamber such that ionization within the plasma chamber occurs in the presence of the additional electrons produced by the electron gun. The electron gun has a cathode for emitting electrons therefrom which is heated by current supplied from an AC power supply while bias potential is provided by a bias power supply. A concentric inner conductor and outer conductor carry heating current to a carbon chuck and carbon pusher which hold the cathode in place and also heat the cathode. In the Advanced Electron Cyclotron Resonance ion source, the electron gun replaces the conventional first stage used in prior electron cyclotron resonance ion generators. 5 figures.

  18. Climate change impacts on reservoir inflow in the United States

    NASA Astrophysics Data System (ADS)

    Naz, B. S.; Kao, S. C.; Ashfaq, M.; Gangrade, S.; Mei, R.; Ratogi, D.

    2014-12-01

    This study describes the impacts of projected climate change on reservoir inflows across the United States. For this purpose, we focused on several large U.S. reservoirs where inflow to reservoir is non-regulated (i.e. unaffected by human influence or upstream regulation) and also have long-term streamflow observations. We first simulated the 1980-2012 historic hydrologic conditions using the marco-scale Variable Infiltration Capacity (VIC) hydrological model at 1/24th degree grid cell resolution. The VIC-routing model was then used to simulate and compare with observed streamflow at the selected reservoir inflow locations. To project the climate change effects on reservoir inflows, the VIC model was then driven by 12-member dynamically downscaled and bias corrected meteorological forcings ensemble, which was generated by using 12 selected Global Climate Models from Coupled Model Intercomparison Project Phase-5 as an initial and boundary conditions in a regional climate model, RegCM4. Each set of dynamical downscaling experiment was carried out at 18 km horizontal grid spacing over the continental U.S. and parts of Canada and Mexico, and consisted of 41 years in the historic period (1965-2005) and 41 years in the near-term future period (2010-2050) under the Representative Concentration Pathway 8.5. To better understand the impact of projected future changes in temperature and precipitation on shifts in streamflow discharge and distribution, and its implications on reservoir storage, temporal trends in reservoir inflows were also explored. Furthermore, hydrologic sensitivities experiments were conducted to identify the factors affecting the streamflow response to changes in precipitation and temperature. This study provides estimates for changes in the reservoir inflows over the next several decades in response to potential climate variations that can be used for optimized water supply management in the downstream areas.

  19. The Long-Term Inflow and Structural Test Program

    SciTech Connect

    SUTHERLAND,HERBERT J; JONES,PERRY L.; NEAL,BYRON A.

    2000-10-17

    The Long-term Inflow and Structural Test (LIST) program is collecting long-term, continuous inflow and structural response data to characterize the extreme loads on wind turbines. A heavily instrumented Micon 65/13M turbine with SERI 8-m blades is being used as the first test turbine for this test program. This turbine and its two sister turbines are located in Bushland, TX a test site that exposes the turbines to a wind regime that is representative of a Great Plains commercial site. The turbines and their inflow are being characterized with 60 measurements: 34 to characterize the inflow, 19 to characterize structural response, and 7 to characterize the time-varying state of the turbine. The primary characterization of the inflow into the LIST turbine relies upon an array of five sonic anemometers. These three-axis anemometers are placed approximately 2-diameters upstream of the turbine in a pattern designed to describe the inflow. Primary characterization of the structural response of the turbine uses several sets of strain gauges to measure bending loads on the blades and the tower and two accelerometers to measure the motion of the nacelle. Data from the various instruments are sampled at a rate of 30 Hz using a newly developed data acquisition system that features a time-synchronized continuous data stream that is telemetered from the turbine rotor. The data, taken continuously, are automatically divided into 10-minute segments and archived for analysis. Preliminary data are presented to illustrate the operation of the turbine and the data acquisition and analysis system.

  20. Reference Inflow Characterization for River Resource Reference Model (RM2)

    SciTech Connect

    Neary, Vincent S

    2011-12-01

    Sandia National Laboratory (SNL) is leading an effort to develop reference models for marine and hydrokinetic technologies and wave and current energy resources. This effort will allow the refinement of technology design tools, accurate estimates of a baseline levelized cost of energy (LCoE), and the identification of the main cost drivers that need to be addressed to achieve a competitive LCoE. As part of this effort, Oak Ridge National Laboratory was charged with examining and reporting reference river inflow characteristics for reference model 2 (RM2). Published turbulent flow data from large rivers, a water supply canal and laboratory flumes, are reviewed to determine the range of velocities, turbulence intensities and turbulent stresses acting on hydrokinetic technologies, and also to evaluate the validity of classical models that describe the depth variation of the time-mean velocity and turbulent normal Reynolds stresses. The classical models are found to generally perform well in describing river inflow characteristics. A potential challenge in river inflow characterization, however, is the high variability of depth and flow over the design life of a hydrokinetic device. This variation can have significant effects on the inflow mean velocity and turbulence intensity experienced by stationary and bottom mounted hydrokinetic energy conversion devices, which requires further investigation, but are expected to have minimal effects on surface mounted devices like the vertical axis turbine device designed for RM2. A simple methodology for obtaining an approximate inflow characterization for surface deployed devices is developed using the relation umax=(7/6)V where V is the bulk velocity and umax is assumed to be the near-surface velocity. The application of this expression is recommended for deriving the local inflow velocity acting on the energy extraction planes of the RM2 vertical axis rotors, where V=Q/A can be calculated given a USGS gage flow time

  1. The Ames Vertical Gun Range

    NASA Technical Reports Server (NTRS)

    Karcz, J. S.; Bowling, D.; Cornelison, C.; Parrish, A.; Perez, A.; Raiche, G.; Wiens, J.-P.

    2016-01-01

    The Ames Vertical Gun Range (AVGR) is a national facility for conducting laboratory- scale investigations of high-speed impact processes. It provides a set of light-gas, powder, and compressed gas guns capable of accelerating projectiles to speeds up to 7 km s(exp -1). The AVGR has a unique capability to vary the angle between the projectile-launch and gravity vectors between 0 and 90 deg. The target resides in a large chamber (diameter approximately 2.5 m) that can be held at vacuum or filled with an experiment-specific atmosphere. The chamber provides a number of viewing ports and feed-throughs for data, power, and fluids. Impacts are observed via high-speed digital cameras along with investigation-specific instrumentation, such as spectrometers. Use of the range is available via grant proposals through any Planetary Science Research Program element of the NASA Research Opportunities in Space and Earth Sciences (ROSES) calls. Exploratory experiments (one to two days) are additionally possible in order to develop a new proposal.

  2. Subterranean well casing perforating gun

    SciTech Connect

    Stout, G. W.; Nelson, J. A.

    1984-10-30

    The invention provides a subterranean well casing perforating gun device which employs shaped explosive charges to perforate the well casing. The device generally defines an outer tubular housing assembly concentrically insertable in the well and defining a vertical axis, cylindrical chamber. A tubular carrier of polygonal cross sectional configuration is insertable in the chamber in concentric relationship to the cylindrical wall of the cylindrical chamber. Each of the faces of the carrier have a plurality of spaced passages therethrough, each passage having a configuration substantially corresponding to the configuration of the polygonal face. A shaped charge container has its cylindrical body insertable in any selected one of the passages and a radial flange on the outer end for abutting the polygonal face portion adjacent the respective passage, thereby limiting the insertion of each of the containers into the selected passage. Selectively disengageable fastening means are operable from the exterior of the carrier for clamping the radial flange against the respective polygonal face and for selective disengagement therefrom from the exterior of the carrier. The invention also contemplates a method of utilization of the carrier and the gun, as well as to incorporation of same into a particular perforating and gravel packing method and apparatus.

  3. Overview of the TurbSim Stochastic Inflow Turbulence Simulator

    SciTech Connect

    Kelley, N. D.; Jonkman, B. J.

    2005-09-01

    The TurbSim stochastic inflow turbulence code was developed to provide a numerical simulation of a full-field flow that contains coherent turbulence structures that reflect the proper spatiotemporal turbulent velocity field relationships seen in instabilities associated with nocturnal boundary layer flows that are not represented well by the IEC Normal Turbulence Models (NTM). Its purpose is to provide the wind turbine designer with the ability to drive design code (FAST or MSC.ADAMS) simulations of advanced turbine designs with simulated inflow turbulence environments that incorporate many of the important fluid dynamic features known to adversely affect turbine aeroelastic response and loading.

  4. Quantum efficiency temporal response and lifetime of a GaAs cathode in SRF electron gun

    SciTech Connect

    Wang, E.; Ben-Zvi, I.; Kewisch, J.; Burrill, A.; Rao, T.; Wu, Q.; Holmes, D.

    2010-05-23

    RF electron guns with a strained super lattice GaAs cathode can generate polarized electron beam of higher brightness and lower emittance than do DC guns, due to their higher field gradient at the cathode's surface. In a normal conducting RF gun, the extremely high vaccum required by these cathodes can not be met. We report on an experiment with a superconducting SRF gun, which can maintain a vacuum of nearly 10-12 torr because of cryo-pumping at the temperature of 4.2K. With conventional activation, we obtained a QE of 3% at 532 nm, with lifetime of nearly 3 days in the preparation chamber. We plan to use this cathode in a 1.3 GHz 1/2 cell SRF gun to study its performance. In addition, we studied the multipacting at the location of cathode. A new model based on the Forkker-Planck equation which can estimate the bunch length of the electron beam is discussed in this paper. Future particle accelerators such as eRHIC and ILC require high brightness, high current polarized electrons Recently, using a superlattice crystal, the maximum polarization of 95% was reached. Activation with Cs,O lowers the electron affinity and makes it energetically possible for all the electrons excited in to the conduction band and reach the surface to escape into the vacuum. Presently the polarized electron sources are based on DC gun, such as that at the CEBAF at Jlab. In these devices, the life time of the cathode is extended due to the reduced back bombardment in their UHV conditions. However, the low accelerating gradient of the DC guns lead to poor longitudinal emittance. The higher accelerating gradient of the RF gun generates low emittance beams. Superconducting RF guns combine the excellent vacuum conditions of the DC guns with the higher accelerating gradients of the RF guns and provide potentially a long lived cathode with very low transverse and longitudinal emittance. In our work at BNL, we successfully activated the GaAs. The quantum efficient is 3% at 532 nm and is expected

  5. Magnetic gauge instrumentation on the LANL gas-driven two-stage gun

    SciTech Connect

    Alcon, R.R.; Sheffield, S.A.; Martinez, A.R.; Gustavsen, R.L.

    1997-11-01

    The LANL gas-driven two-stage gun was designed and built to do initiation studies on insensitive high explosives as well as equation of state and reaction experiments on other materials. The preferred method of measuring reaction phenomena involves the use of in-situ magnetic particle velocity gauges. In order to accommodate this type of gauging in the two-stage gun, it has a 50-mm-diameter launch tube. The authors have sued magnetic gauging on the 72-mm bore diameter single-stage gun for over 15 years and it has proven a very effective technique for all types of shock wave experiments, including those on high explosives. This technique has now been installed on the gas-driven two-stage gun. They describe the method used, as well as some of the difficulties that arose during the installation. Several magnetic gauge experiments have been completed on plastic materials. Waveforms obtained in some of the experiments will be discussed. Up to 10 in-situ particle velocity measurements can be made in a single experiment. This new technique is now working quite well, as is evidenced by the data. To their knowledge, this is the first time magnetic gauging has been used on a two-stage gun.

  6. Gun Violence, Mental Illness, And Laws That Prohibit Gun Possession: Evidence From Two Florida Counties.

    PubMed

    Swanson, Jeffrey W; Easter, Michele M; Robertson, Allison G; Swartz, Marvin S; Alanis-Hirsch, Kelly; Moseley, Daniel; Dion, Charles; Petrila, John

    2016-06-01

    Gun violence kills about ninety people every day in the United States, a toll measured in wasted and ruined lives and with an annual economic price tag exceeding $200 billion. Some policy makers suggest that reforming mental health care systems and improving point-of-purchase background checks to keep guns from mentally disturbed people will address the problem. Epidemiological research shows that serious mental illness contributes little to the risk of interpersonal violence but is a strong factor in suicide, which accounts for most firearm fatalities. Meanwhile, the effectiveness of gun restrictions focused on mental illness remains poorly understood. This article examines gun-related suicide and violent crime in people with serious mental illnesses, and whether legal restrictions on firearm sales to people with a history of mental health adjudication are effective in preventing gun violence. Among the study population in two large Florida counties, we found that 62 percent of violent gun crime arrests and 28 percent of gun suicides involved individuals not legally permitted to have a gun at the time. Suggested policy reforms include enacting risk-based gun removal laws and prohibiting guns from people involuntarily detained in short-term psychiatric hospitalizations. PMID:27269024

  7. High power testing of a 17 GHz photocathode RF gun

    SciTech Connect

    Chen, S.C.; Danly, B.G.; Gonichon, J.

    1995-12-31

    The physics and technological issues involved in high gradient particle acceleration at high microwave (RF) frequencies are under study at MIT. The 17 GHz photocathode RF gun has a 1 1/2 cell ({pi} mode) room temperature cooper cavity. High power tests have been conducted at 5-10 MW levels with 100 ns pulses. A maximum surface electric field of 250 MV/m was achieved. This corresponds to an average on-axis gradient of 150 MeV/m. The gradient was also verified by a preliminary electron beam energy measurement. Even high gradients are expected in our next cavity design.

  8. Temperature distribution study in a cooled radial inflow turbine rotor

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Baskharone, E.; Tabakoff, W.

    1976-01-01

    A numerical study to determine the temperature distribution in the rotor of a radial inflow turbine is presented. The study is based on the use of the finite element method in the three dimensional heat conduction problem. Different cooling techniques with various coolant to primary mass flow ratios are investigated. The resulting temperature distribution in the rotor are presented for comparison.

  9. Gas inflow and metallicity drops in star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Ceverino, Daniel; Sánchez Almeida, Jorge; Muñoz Tuñón, Casiana; Dekel, Avishai; Elmegreen, Bruce G.; Elmegreen, Debra M.; Primack, Joel

    2016-04-01

    Gas inflow feeds galaxies with low-metallicity gas from the cosmic web, sustaining star formation across the Hubble time. We make a connection between these inflows and metallicity inhomogeneities in star-forming galaxies, by using synthetic narrow-band images of the Hα emission line from zoom-in AMR cosmological simulations of galaxies with stellar masses of M* ≃ 109 M⊙ at redshifts z = 2-7. In ˜50 per cent of the cases at redshifts lower than 4, the gas inflow gives rise to star-forming, Hα-bright, off-centre clumps. Most of these clumps have gas metallicities, weighted by Hα luminosity, lower than the metallicity in the surrounding interstellar medium by ˜0.3 dex, consistent with observations of chemical inhomogeneities at high and low redshifts. Due to metal mixing by shear and turbulence, these metallicity drops are dissolved in a few disc dynamical times. Therefore, they can be considered as evidence for rapid gas accretion coming from cosmological inflow of pristine gas.

  10. SEWER INFILTRATION AND INFLOW CONTROL PRODUCT AND EQUIPMENT GUIDE

    EPA Science Inventory

    The report lists and discusses new and existing equipment, materials, and practices available to prevent the entry of unwanted water into the sewer system from infiltration and inflow, and thereby needlessly usurping the capacity of the sewerage system. The report has six section...

  11. Simple light gas guns for hypervelocity studies

    SciTech Connect

    Combs, S.K.; Haselton, H.H.; Milora, S.L.

    1990-01-01

    Two-stage light guns are used extensively in hypervelocity research. The applications of this technology include impact studies and special materials development. Oak Ridge National Laboratory (ORNL) has developed two-stage guns that accelerate small projectiles (4-mm nominal diameter) to velocities of up to {approx}5 km/s. These guns are relatively small and simple (thus, easy to operate), allowing a significant number of test shots to be carried out and data accumulated in a short time. Materials that have been used for projectiles include plastics, frozen isotopes of hydrogen, and lithium hydride. One gun has been used to demonstrate repetitive operation at a rate of 0.7 Hz; and, with a few design improvements, it appears capable of performing at firing frequencies of 1--2 Hz. A schematic of ORNL two-stage device is shown below. Unlike most such devices, no rupture disks are used. Instead, a fast valve (high-flow type) initiates the acceleration process in the first stage. Projectiles can be loaded into the gun breech via the slide mechanism; this action has been automated which allows repetitive firing. Alternatively, the device is equipped with pipe gun'' apparatus in which gas can be frozen in situ in the gun barrel to form the projectile. This equipment operates with high reliability and is well suited for small-scale testing at high velocity. 17 refs., 6 figs., 2 tabs.

  12. Gun Violence, mental health, and Connecticut physicians.

    PubMed

    Dodds, Peter R; Anderson, Caitlyn O; Dodds, Jon H

    2014-01-01

    While there is a public perception that gun violence is associated with mental illness we present evidence that it is a complex public health problem which defies simple characterizations and solutions. Only a small percentage of individuals with mental illness are at risk for extreme violence and they account for only a small percentage of gun-related homicides. Individuals who are at risk for gun violence are difficult to identify and successfully treat. The incidence, and perhaps the demographics, of gun violence vary substantially from state to state. We make a case for Connecticut physicians to study gun violence at the state level. We recommend that Connecticut physicians promote and expand upon the American Academy of Pediatrics' recommendation for creating a "safe home environment. "We suggest that guns be secured in all homes in which there are children. In addition we suggest that guns be voluntarily removed from homes in which there are individuals with a history of violence, threats of violence, depression, drug and/or alcohol abuse, and individuals with major mental illnesses who are not cooperating with therapy. PMID:25745735

  13. Nail-Gun Injuries to the Hand

    PubMed Central

    Pierpont, Yvonne N.; Pappas-Politis, Effie; Naidu, Deepak K.; Salas, R. Emerick; Johnson, Erika L.; Payne, Wyatt G.

    2008-01-01

    Background: The nail gun is a commonly utilized tool in carpentry and construction. When used properly with appropriate safety precautions, it can facilitate production and boost efficiency; however, this powerful tool also has the potential to cause serious injury. The most common site of nail-gun injuries in both industrial and nonoccupational settings is the hand. Materials and Methods: We report on two patients with nail-gun injuries to the hand. A review of the literature and discussion of clinical evaluation and treatment of nail-gun injuries to the hand are presented. Results: Two patients present with soft tissue injuries to the hand with the nail embedded and intact at the injury site. Operative removal of the nail and wound care resulted in successful treatment in both cases. Nail-gun injuries to the hand vary in severity on the basis of the extent of structural damage. Treatment is based on the severity of injury and the presence and location of barbs on the penetrating nail. Conclusion: Healthcare providers must understand and educate patients on the prevention mechanics of nail-gun injuries. Nail-gun injuries to the hand necessitate appropriate evaluation techniques, understanding of surgical management versus nonsurgical management, and awareness of potential pitfalls in treatment. PMID:19079574

  14. Homopolar Gun for Pulsed Spheromak Fusion Reactors II

    SciTech Connect

    Fowler, T

    2004-06-14

    A homopolar gun is discussed that could produce the high currents required for pulsed spheromak fusion reactors even with unit current amplification and open field lines during injection, possible because close coupling between the gun and flux conserver reduces gun losses to acceptable levels. Example parameters are given for a gun compatible with low cost pulsed reactors and for experiments to develop the concept.

  15. Gun Safety Management with Patients at Risk for Suicide

    ERIC Educational Resources Information Center

    Simon, Robert I.

    2007-01-01

    Guns in the home are associated with a five-fold increase in suicide. All patients at risk for suicide must be asked if guns are available at home or easily accessible elsewhere, or if they have intent to buy or purchase a gun. Gun safety management requires a collaborative team approach including the clinician, patient, and designated person…

  16. Alignment Fixtures For Vacuum-Plasma-Spray Gun

    NASA Technical Reports Server (NTRS)

    Woodford, William H.; Mckechnie, Timothy N.; Power, Christopher A.; Daniel, Ronald L., Jr.

    1993-01-01

    Fixtures for alignment of vacuum-plasma-spray guns built. Each fixture designed to fit specific gun and holds small, battery-powered laser on centerline of gun. Laser beam projects small red dot where centerline intersects surface of workpiece to be sprayed. After laser beam positioned on surface of workpiece, fixture removed from gun and spraying proceeds.

  17. Ready, Fire, Aim: The College Campus Gun Fight

    ERIC Educational Resources Information Center

    Birnbaum, Robert

    2013-01-01

    The question of whether guns should be permitted on college and university campuses in the United States reflects the tension between two competing perspectives. America has both a robust gun culture and an equally robust (if less well known) gun-control culture. The gun culture is as American as apple pie: There may be as many as 300 million…

  18. Correlates of Gun Involvement and Aggressiveness among Adolescents.

    ERIC Educational Resources Information Center

    Ding, Cody S.; Nelsen, Edward A.; Lassonde, Cynthia T.

    2002-01-01

    Investigated adolescents' aggressiveness in relation to their experiences, beliefs, and attitudes concerning gun use, also noting family composition, relationships with parents, and emotionality as correlates of gun involvement and aggression. Student surveys indicated links between gun ownership and recreational use, beliefs about gun use, and…

  19. On The Atlantic Water Inflow Into The Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Walczowski, W.; Maslowski, W.

    Water mass exchanges between the Nordic Seas and the Arctic Ocean are analysed using results from two high-resolution models of the Arctic Ocean and sea ice, and observation obtained by the Institute of Oceanology Polish Academy of Sciences. The two models used are developed at the Naval Postgraduate School and they are con- figured at (i) 1/6 and 30-level and (ii) 1/12 and 45-level grids. Model results show that more intensive inflow into the Arctic Ocean occurs via the Spitsbergen-Norway opening than through Fram Strait. The strait determines the outflow from the Arctic Ocean via the East Greenland Current. The net mean transport through Fram Strait, es- timated from the 18-km model integration forced with the 1979-1998 ECMWF daily realistic data, is 2.19 Sv southward, with 1.73 Sv flowing to the north and 3.92 to the south. The net mean transport into the Barents Sea, based on the same results is 2.5 Sv, consisting of 3.12 Sv inflow and 0.62 Sv outflow. The Barents Sea also appears to be an efficient route of Atlantic Water (AW) inflow into the Arctic Ocean. The net mean AW (S>34.92 psu) transport into the Barents Sea is 2.25 Sv (2.78 Sv inflow, 0.53 Sv outflow) compared to 0.23 Sv (1.22 Sv inflow, 0.99 Sv outflow) through Fram Strait. Preliminary results from the 9-km model show similar relations. A high seasonal and annual variability of those transports exists. A strong negative correlation between the net transport through the Barents Sea Opening and Fram Strait is determined. During periods of intensive inflow from the Nordic Seas into the Barents Sea, the southward flow of the East Greenland Current increases, representing a stronger export of wa- ter from the Arctic Ocean. Estimates from measurements support model results about the net volume transport and the inflow of AW being larger across the Spitsbergen- Norway section than through Fram Strait. The net baroclinic transport calculated from the summer data (1988-1998) into the Barents Sea is 2.32 Sv

  20. Overlapping inflow events as catalysts for supermassive black hole growth

    NASA Astrophysics Data System (ADS)

    Carmona-Loaiza, Juan M.; Colpi, Monica; Dotti, Massimo; Valdarnini, Riccardo

    2014-02-01

    One of the greatest issues in modelling black hole fuelling is our lack of understanding of the processes by which gas loses angular momentum and falls from galactic scales down to the nuclear region where an accretion disc forms, subsequently guiding the inflow of gas down to the black hole horizon. It is feared that gas at larger scales might still retain enough angular momentum and settle into a larger scale disc with very low or no inflow to form or replenish the inner accretion disc (on ˜0.01 pc scales). In this paper we report on hydrodynamical simulations of rotating infalling gas shells impacting at different angles on to a pre-existing, primitive large-scale (˜10 pc) disc around a supermassive black hole. The aim is to explore how the interaction between the shell and the disc redistributes the angular momentum on scales close to the black hole's sphere of influence. Angular momentum redistribution via hydrodynamical shocks leads to inflows of gas across the inner boundary, enhancing the inflow rate by more than 2-3 orders of magnitude. In all cases, the gas inflow rate across the inner parsec is higher than in the absence of the interaction, and the orientation of the angular momentum of the flow in the region changes with time due to gas mixing. Warped discs or nested misaligned rings form depending on the angular momentum content of the infalling shell relative to the disc. In the cases in which the shell falls in near counter-rotation, part of the resulting flows settle into an inner dense disc which becomes more susceptible to mass transfer.

  1. Control of Inflow Distortion in a Scarf Inlet

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Clark, Lorenzo R.; Biedron, Robert T.

    2002-01-01

    The scarf inlet has the potential to reduce aircraft inlet noise radiation to the ground by reflecting it into the space above the engine. Without forward motion of the engine, the non-symmetry of the inlet causes inflow distortion which generates noise that is greater than the noise reduction of the scarf. However, acoustic evaluations of aircraft engines are often done on static test stands. A method to reduce inflow distortion by boundary layer suction is proposed and evaluated using a model of a high bypass ratio engine located in an anechoic chamber. The design goal of the flow control system is to make the inflow to the inlet circumferentially uniform and to eliminate reversed flow. This minimizes the inflow distortion and allows for acoustic evaluation of the scarf inlet on a static test stand. The inlet boundary layer suction effectiveness is evaluated both by aerodynamic and by acoustic measurements. Although the design goal is not met, the control system is found to have a beneficial effect on the engine operation, reducing blade stall and speed variation. This is quantified by two acoustic benefits, reduction both of the variability of tone noise and of the low frequency wideband noise due to the inflow distortion. It is felt that a compromise in the manufacture of the control hardware contributes to the inability of the control system to perform as expected from the analysis. The control system with sufficient authority is felt to have the potential to permit reliable acoustic testing in a static configuration of engines with non-symmetric inlets. Because the control system can improve operation of the engine, it may also have the potential to reduce noise and vibration and enhance engine longevity during low speed ground operations in the terminal area.

  2. Performance of the Brookhaven photocathode rf gun

    SciTech Connect

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.C.; Fischer, J.; Fisher, A.S.; Gallardo, J.; Ingold, G.; Kirk, H.G.; Leung, K.P.; Malone, R.; Pogorelsky, I.; Srinivasan-Rao, T.; Rogers, J.; Tsang, T.; Sheehan, J.; Ulc, S.; Woodle, M.; Xie, J.; Zhang, R.S.; Lin, L.Y.; McDonald, K.T.; Russell, D.P.; Hung, C.M.; Wang, X.J.

    1991-12-31

    The Brookhaven Accelerator Test Facility (ATF) uses a photocathode rf gun to provide a high-brightness electron beam intended for FEL and laser-acceleration experiments. The rf gun consists of 1{1/2} cells driven at 2856 MHz in {pi}-mode with a maximum cathode field of 100 MV/m. To achieve long lifetimes, the photocathode development concentrates on robust metals such as copper, yttrium and samarium. We illuminate these cathodes with a 10-ps, frequency-quadrupled Nd:YAG laser. We describe the initial operation of the gun, including measurements of transverse and longitudinal emittance, quantum efficiencies, and peak current. The results are compared to models.

  3. Performance of the Brookhaven photocathode rf gun

    SciTech Connect

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.C.; Fischer, J.; Fisher, A.S.; Gallardo, J.; Ingold, G.; Kirk, H.G.; Leung, K.P.; Malone, R.; Pogorelsky, I.; Srinivasan-Rao, T.; Rogers, J.; Tsang, T.; Sheehan, J.; Ulc, S.; Woodle, M.; Xie, J.; Zhang, R.S. ); Lin, L.Y. . Dept. of Applied Physics); McDonald, K.T.; Russell, D.P. (Pr

    1991-01-01

    The Brookhaven Accelerator Test Facility (ATF) uses a photocathode rf gun to provide a high-brightness electron beam intended for FEL and laser-acceleration experiments. The rf gun consists of 1{1/2} cells driven at 2856 MHz in {pi}-mode with a maximum cathode field of 100 MV/m. To achieve long lifetimes, the photocathode development concentrates on robust metals such as copper, yttrium and samarium. We illuminate these cathodes with a 10-ps, frequency-quadrupled Nd:YAG laser. We describe the initial operation of the gun, including measurements of transverse and longitudinal emittance, quantum efficiencies, and peak current. The results are compared to models.

  4. Evaluation of Smart Gun Technologies preliminary report

    SciTech Connect

    Weiss, D.R.

    1996-01-01

    The Smart Gun Technology Project has a goal to eliminate the capability of an unauthorized user from firing a law enforcement officer`s firearm by implementing {open_quote}smart{close_quote} technologies. Smart technologies are those that can in some manner identify an officer. This report will identify, describe, and grade various technologies as compared to the requirements that were obtained from officers. This report does not make a final recommendation for a smart gun technology, nor does it give the complete design of a smart gun system.

  5. A Two Frequency Thermionic Cathode Electron Gun

    NASA Astrophysics Data System (ADS)

    Edelen, Jon; Biedron, Sandra; Harris, John; Lewellen, John; Milton, Stephen

    2014-03-01

    When an un-gated thermionic cathode is operated in an RF gun, some fraction of the emitted electrons will return to the cathode due to the change in sign of the electric field in the gun. This back-bombardment current causes heating of the cathode, and this reduces the ability of the cathode heater to control the bunch charge. In this paper, we investigate the use of a two frequency TM010 / TM020 electron gun to mitigate this effect. Simulations revealed that for a 100-pC bunch charge operating at 10MV/m gradient the harmonic field produced a 63% reduction in the back-bombardment power.

  6. SSRL photocathode RF gun test stand

    SciTech Connect

    Hernandez, M.; Baltay, M.; Boyce, A.

    1995-12-31

    A photocathode RF gun test stand designed for the production and study of high brightness electron beams will be constructed at SSRL. The beam will be generated from a laser driven third generation photocathode RF gun being developed in collaboration with BNL, LBL, and UCLA. The 3-5 [MeV] beam from the gun will be accelerated using a SLAC three meter S-band accelerator section, in order to achieve the desired low emittance beam, emittance compensation with solenoidal focusing will be employed.

  7. Advances in DC photocathode electron guns

    SciTech Connect

    Bruce M. Dunham; P. Heartmann; Reza Kazimi; Hongxiu Liu; B. M. Poelker; J. S. Price; P. M. Rutt; W. J. Schneider; Charles K. Sinclair

    1998-07-01

    At Jefferson Lab, a DC photoemission gun using GaAs and GaAs-like cathodes provides a source of polarized electrons for the main accelerator. The gun is required to produce high average current with long operational lifetimes and high system throughout. Recent work has shown that careful control of the parameters affecting cathode lifetime lead to dramatic improvements in source operation. These conditions include vacuum and the related effect of ion backbombardment, and precise control of all of the electrons emitted from the cathode. In this paper, the authors will review recent results and discuss implications for future photocathode guns.

  8. "Is there a gun in the home?" Assessing the risks of gun ownership in older adults.

    PubMed

    Pinholt, Ellen M; Mitchell, Joshua D; Butler, Jane H; Kumar, Harjinder

    2014-06-01

    An important ethical and safety concern that geriatricians, primary care providers, and home health professionals need to address is gun ownership by elderly adults. Those aged 65 and older now have the highest rate of gun ownership in America, and they also have a high prevalence of depression and suicide. Dementia can add additional layers of risk. Even older gun owners who are otherwise intellectually intact may benefit from information about gun safety with the increasing numbers of children being cared for by grandparents. Health professionals should ask patients, "Is there a gun in the home?" in the clinic and during home visits. Healthcare professionals must have knowledge and skills to address safe gun ownership in elderly adults. The 5 L's (Locked, Loaded, Little children, feeling Low, Learned owner) will assist professionals in addressing all aspects of safe ownership. PMID:24898055

  9. Time-domain inflow boundary condition for turbulence-airfoil interaction noise prediction using synthetic turbulence modeling

    NASA Astrophysics Data System (ADS)

    Kim, Daehwan; Heo, Seung; Cheong, Cheolung

    2015-03-01

    The present paper deals with development of the synthetic turbulence inflow boundary condition (STIBC) to predict inflow broadband noise generated by interaction between turbulence and an airfoil/a cascade of airfoils in the time-domain. The STIBC is derived by combining inflow boundary conditions that have been successfully applied in external and internal computational aeroacoustics (CAA) simulations with a synthetic turbulence model. The random particle mesh (RPM) method based on a digital filter is used as the synthetic turbulence model. Gaussian and Liepmann spectra are used to define the filters for turbulence energy spectra. The linearized Euler equations are used as governing equations to evaluate the suitability of the STIBC in time-domain CAA simulations. First, the velocity correlations and energy spectra of the synthesized turbulent velocities are compared with analytic ones. The comparison results reveal that the STIBC can reproduce a turbulent velocity field satisfying the required statistical characteristics of turbulence. Particularly, the Liepmann filter representing a non-Gaussian filter is shown to be effectively described by superposing the Gaussian filters. Each Gaussian filter has a different turbulent kinetic energy and integral length scale. Second, two inflow noise problems are numerically solved using the STIBC: the turbulence-airfoil interaction and the turbulence-a cascade of airfoils interaction problems. The power spectrum of noise due to an isolated flat plate airfoil interacting with incident turbulence is predicted, and its result is successfully validated against Amiet's analytic model (Amiet, 1975) [4]. The prediction results of the upstream and downstream acoustic power spectra from a cascade of flat plates are then compared with Cheong's analytic model (Cheong et al., 2006) [30]. These comparisons are also in excellent agreement. On the basis of these illustrative computation results, the STIBC is expected to be applied to

  10. Effects of undercover police stings of gun dealers on the supply of new guns to criminals

    PubMed Central

    Webster, D W; Bulzacchelli, M T; Zeoli, A M; Vernick, J S

    2006-01-01

    Objective To assess the effects of undercover police stings and lawsuits against gun dealers suspected of facilitating illegal gun sales in three US cities (Chicago, Detroit, Gary) on the flow of new firearms to criminals. Methods An interrupted time series design and negative binomial regression analyses were used to test for temporal change in the recovery of guns used in crimes within one year of retail sale in both intervention and comparison cities. Results The stings were associated with an abrupt 46.4% reduction in the flow of new guns to criminals in Chicago (95% confidence interval, −58.6% to −30.5%), and with a gradual reduction in new crime guns recovered in Detroit. There was no significant change associated with the stings in Gary, and no change in comparison cities that was coincident with the stings in Chicago and Detroit. Conclusions The announcement of police stings and lawsuits against suspect gun dealers appeared to have reduced the supply of new guns to criminals in Chicago significantly, and may have contributed to beneficial effects in Detroit. Given the important role that gun stores play in supplying guns to criminals in the US, further efforts of this type are warranted and should be evaluated. PMID:16887943

  11. Separating batterers and guns: a review and analysis of gun removal laws in 50 States.

    PubMed

    Frattaroli, Shannon; Vernick, Jon S

    2006-06-01

    Firearms play an important role in lethal domestic violence incidents. The authors review state laws regarding two policies to separate batterers from firearms: laws authorizing police to remove firearms when responding to a domestic violence complaint ("police gun removal laws") and laws authorizing courts to order guns removed from batterers through a protective order ("court-ordered removal laws"). As of April 2004, 18 states had police gun removal laws; 16 states had court-ordered removal laws. The authors examine relevant characteristics of the laws and recommend that these laws be mandatory, apply to all guns and ammunition possessed by an abuser, and include clear procedures to enhance implementation. PMID:16679498

  12. A Gridded Electron Gun for a Sheet Beam Klystron

    NASA Astrophysics Data System (ADS)

    Read, M. E.; Miram, G.; Ives, R. L.; Ivanov, V.; Krasnykh, A.

    2003-12-01

    Calabazas Creek Research, Inc.(CCR) is developing rectangular, gridded, thermionic, dispenser-cathode guns for sheet beam devices. The first application is expected to be klystrons for advanced particle accelerators and colliders. The current generation of accelerators typically use klystrons with a cylindrical beam generated by a Pierce-type electron gun. As RF power is pushed to higher levels, space charge forces in the electron beam limit the amount of current that can be transmitted at a given voltage. The options are to increase the beam voltage, leading to problems with X-Ray shielding and modulator and power supply design, or to develop new techniques for lowering the space charge forces in the electron beam. In this device, the beam has a rectangular cross section. The thickness is constrained as it would in a normal, cylindrically symmetric klystron with a Pierce gun. However, the width of the beam is many times the thickness, and the resulting cross sectional area is much larger than in the conventional device. This allows much higher current and/or a lower voltage before space charge forces become too high. The current program addresses issues related to beam formation at the emitter surface, design and implementation of shadow and control grids in a rectangular geometry. It is directed toward a robust, cost-effective, and reliable mechanical design. A prototype device will be developed that will operate at 415 kV, 250 A for an 80 MW, X-Band, sheet-beam klystron. The cathode will have 100 cm2 of cathode area with an average cathode current loading of 2.5 A/cm2. For short pulse formation, the use of a grid was chosen. The gun has been designed with a combination of 2-D and 3-D codes. 2-D codes were used to determine the starting point for the electrodes to produce the compression (which is in only 1 direction.) These results showed that a very high quality beam could be achieved even in the presence of the shadow grid. 3-D results have shown that the

  13. Arc-driven rail gun research

    NASA Technical Reports Server (NTRS)

    Ray, P. K.

    1984-01-01

    The equations describing the performance of an inductively-driven rail gun are analyzed numerically. Friction between the projectile and rails is included through an empirical formulation. The equations are applied to the experiment of Rashleigh and Marshall to obtain an estimate of energy distribution in rail guns as a function of time. The effect of frictional heat dissipation on the bore of the gun is calculated. The mechanism of plasma and projectile acceleration in a dc rail gun is described from a microscopic point of view through the establishment of the Hall field. The plasma conductivity is shown to be a tensor indicating that there is a small component of current parallel to the direction of acceleration. The plasma characteristics are evaluated as a function of plasma mass through a simple fluid mechanical analysis of the plasma. By equating the energy dissipated in the plasma with the radiation heat loss, the properties of the plasma are determined.

  14. Direct launch using the electric rail gun

    NASA Technical Reports Server (NTRS)

    Barber, J. P.

    1983-01-01

    The concept explored involves using a large single stage electric rail gun to achieve orbital velocities. Exit aerodynamics, launch package design and size, interior ballistics, system and component sizing and design concepts are treated. Technology development status and development requirements are identified and described. The expense of placing payloads in Earth orbit using conventional chemical rockets is considerable. Chemical rockets are very inefficient in converting chemical energy into payload kinetic energy. A rocket motor is relatively expensive and is usually expended on each launch. In addition specialized and expensive forms of fuel are required. Gun launching payloads directly to orbit from the Earth's surface is a possible alternative. Guns are much more energy efficient than rockets. The high capital cost of the gun installation can be recovered by reusing it over and over again. Finally, relatively inexpensive fuel and large quantities of energy are readily available to a fixed installation on the Earth's surface.

  15. Lightweight, High-Current Welding Gun

    NASA Technical Reports Server (NTRS)

    Starck, Thomas F.; Brennan, Andrew D.

    1989-01-01

    Lighweight resistance-welding, hand-held gun supplies alternating or direct current over range of 600 to 4,000 A and applies forces from 40 to 60 lb during welding. Used to weld metal sheets in multilayered stacks.

  16. Toroid Joining Gun For Fittings And Couplings

    NASA Technical Reports Server (NTRS)

    Fox, Robert L.; Swaim, Robert J.; Johnson, Samuel D.; Buckley, John D.; Copeland, Carl E.; Coultrip, Robert H.; Johnston, David F.; Phillips, William M.

    1992-01-01

    Hand-held gun used to join metal heat-to-shrink couplings. Uses magnetic induction (eddy currents) to produce heat in metal coupling, and thermocouple to measure temperature and signals end of process. Gun, called "toroid joining gun" concentrates high levels of heat in localized areas. Reconfigured for use on metal heat-to-shrink fitting and coupling applications. Provides rapid heating, operates on low power, lightweight and portable. Safe for use around aircraft fuel and has no detrimental effects on surrounding surfaces or objects. Reliable in any environment and under all weather conditions. Gun logical device for taking full advantage of capabilities of new metal heat-to-shrink couplings and fittings.

  17. Circuit Model for Gun Driven Spheromaks

    SciTech Connect

    Thomassen, K I

    2000-07-14

    In this note we derive circuit equations for sustained spheromaks, in the phase after a spheromak is detached from the gun and sustained in a flux conserver. The impedance of the spheromak during the formation and ''bubble burst'' phase has been discussed by Barnes et. al. We assume here that the spheromak is formed and helicity is being delivered to it from the gun, currents are above the threshold current, and the {lambda}-gradients are outward ({lambda} decreasing inward). We follow an open field line that begins and ends at the gun electrodes, encircling the closed flux surfaces of the spheromak, and apply power and helicity balance equations for this gun-driven system. In addition to these equations one will need to know the initial conditions (currents, stored energies) after the ''bubble burst'' in order to project forward in time.

  18. The electric rail gun for space propulsion

    NASA Technical Reports Server (NTRS)

    Bauer, D. P.; Barber, J. P.; Vahlberg, C. J.

    1981-01-01

    An analytic feasibility investigation of an electric propulsion concept for space application is described. In this concept, quasistatic thrust due to inertial reaction to repetitively accelerated pellets by an electric rail gun is used to propel a spacecraft. The study encompasses the major subsystems required in an electric rail gun propulsion system. The mass, performance, and configuration of each subsystem are described. Based on an analytic model of the system mass and performance, the electric rail gun mission performance as a reusable orbital transfer vehicle (OTV) is analyzed and compared to a 30 cm ion thruster system (BIMOD) and a chemical propulsion system (IUS) for payloads with masses of 1150 kg and 2300 kg. For system power levels in the range from 25 kW(e) to 100 kW(e) an electric rail gun OTV is more attractive than a BIMOD system for low Earth orbit to geosynchronous orbit transfer durations in the range from 20 to 120 days.

  19. Lateral groundwater inflows into alluvial aquifers of main alpine valleys

    NASA Astrophysics Data System (ADS)

    Burger, Ulrich

    2015-04-01

    In alpine regions the topography is mainly characterised by deep incised valleys, mountain slopes and ridges. Usually the main valleys contain aquifers in alluvial soft rock. Lateral these aquifers are confined by mountainous hard rock slopes covered by heterogeneous sediments with different thickness. The slopes can be incised by lateral valleys. Numerical models for the main alluvial aquifers ask for lateral hydrogeological boundaries. Usually no flow boundaries or Constant head Boundaries are used, even if the lateral inflows to the main aquifers are rarely known. In this example a data set for a detailed investigated and monitored area is studied to give an answer on the location and the quantification of these lateral subsurface inflows. The study area is a typical main alpine valley with a thick alluvial aquifer (appr. 120m thick), lateral confined by granite, covered at the base of the steep slopes by quaternary sediments (Burger at al. 2012). The study consists of several steps 1.) Analytical calculation of the inflows on the base of investigated and monitored 2d profiles along fault zones (Perello et al 2013) which pinch out in the main valley 2.) Analytical models along typical W-dipping slopes with monitored slope springs 3.) Evaluating temperature and electrical conductivity profiles measured in approx. 30 groundwater wells in the alluvial aquifers and along the slopes to locate main lateral subsurface inflows 4.) Output of a regional model used for the hydrogeological back analyses of the excavation of a tunnel (Baietto et al. 2014) 5.) Output of a local numerical model calibrated with a monitoring dataset and results of a pumping test of big scale (450l/s for 10days) Results of these analyses are shown to locate and quantify the lateral groundwater inflows in the main alluvial aquifer. References Baietto A., Burger U., Perello P. (2014): Hydrogeological modelling applications in tunnel excavations: examples from tunnel excavations in granitic rocks

  20. Conference on electromagnetic guns and launchers, 1980

    SciTech Connect

    Anon

    1982-01-01

    Proceedings includes 31 papers dealing with the physical principles and engineering technology associated with the development of electromagnetic propulsion, with emphasis on its use for guns, launchers as well as other military equipment. Topics covered include: rail guns, projectiles, mass accelerators, electric motors and generators, nuclear reactors, superconducting devices, plasma acceleration and confinement, traveling magnetic waves, aerospace propulsion, space shuttles, homopolar generators, fusion reactors, tokamaks, impact fusion, and electric power generation. 14 papers are abstracted and indexed separately.

  1. Modifications Of A Commercial Spray Gun

    NASA Technical Reports Server (NTRS)

    Allen, Peter B.

    1993-01-01

    Commercial spray gun modified to increase spray rate and make sprayed coats more nearly uniform. Consists of gun head and pneumatic actuator. Actuator opens valves for two chemical components, called "A" and "B," that react to produce foam. Components flow through orifices, into mixing chamber in head. Mixture then flows through control orifice to spray tip. New spray tip tapered to reduce area available for accumulation of foam and makes tip easier to clean.

  2. Design of spherical electron gun for ultra high frequency, CW power inductive output tube

    NASA Astrophysics Data System (ADS)

    Kaushik, Meenu; Joshi, L. M.

    2016-03-01

    Inductive Output Tube (IOT) is an amplifier that usually operates in UHF range. It is an electron tube whose basic structure is similar to conventional vacuum devices. This device is widely used in broadcast applications but is now being explored for scientific applications also specifically, particle accelerators and fusion plasma heating purposes. The paper describes the design approach of a spherical gridded electron gun of a 500 MHz, 100 kW CW power IOT. The electron gun structure has been simulated and optimized for operating voltage and current of 40kV and 3.5 A respectively. The electromagnetic analysis of this spherical electron gun has been carried out in CST and TRAK codes.

  3. Implication of dc-space-charge-induced velocity spread on gyrotron gun performance

    SciTech Connect

    Liu, C.; Antonsen, T.M. Jr.

    1998-06-01

    The confinement of mirror-trapped electrons under the influence of dc space charge and their effect on the velocity distribution in a magnetron injection gun is investigated theoretically and computationally. Most trapped electrons are found to escape from the gun due to pitch angle scattering by the spatially periodic electrostatic potential created by the forward propagating beam. However, a small portion scatters into orbits which are more deeply trapped and can escape only by striking the modulation anode. As electrons diffuse in velocity, the velocity distribution in the gun region extends toward increasing perpendicular velocity. On the other hand, the accumulation of trapped particles near the cathode induces an additional velocity spread in the main beam. Consequently, the main beam exhibits an increased velocity spread and a reduced transverse momentum when it enters the cavity.

  4. THE EFFECT OF FRESHWATER INFLOW ON NET ECOSYSTEM METABOLISM IN LAVACA BAY, TEXAS

    EPA Science Inventory

    Estuaries and other coastal ecosystems depend on freshwater inflow to maintain the gradients in environmental characteristics that define these transitional water bodies. Freshwater inflow (FWI) rates in many estuaries are changing due to changing land use patterns, water divers...

  5. NPS Gas Gun for Planar Impact Studies

    NASA Astrophysics Data System (ADS)

    Cheong Ho, Chien; Hixson, Robert

    2009-11-01

    The Naval Postgraduate School (NPS) commissioned a Gas Gun for shock wave studies on 9^th October 2009, by performing the first experiment. The Gas Gun is the key element of NPS Shock Wave Research Program within the Physics Department, where well-characterized planar impacts are essential for obtaining high quality data, to characterize a solid material. This first experiment was very successful, and returned key data on the quality of the impact conditions created. The Gas Gun is designed by SANDIA NATIONAL LABORATORIES, and the NPS spent twelve months fabricating the components of the Gas Gun and six months assembling the Gas Gun. Three inch projectile are launched at velocities up to 0.5 km/s, creating high pressure and temperature states that can be used to characterize the fundamental response of relevant materials to dynamic loading. The projectile is launched from a `wrap around' gas breech where helium gas is pressurized to relatively low pressure. This gas is used to accelerate the projectile down a 3m barrel. Upon impact, the speed of the projectile and the flatness of the impact is measured, via a stepped circular pin array circuit. The next stage of development for the Gas Gun is to integrate a Velocity Interferometer System for Any Reflector (VISAR). The VISAR sees all the waves that flow through the target plate as a result of the impact. This is a key diagnostic for determining material properties under dynamic loading conditions.

  6. Changes to the LANL gas-driven two-stage gun: Magnetic gauge instrumentation, etc.

    SciTech Connect

    Sheffield, S.A.; Gustavsen, R.L.; Martinez, A.R.; Alcon, R.R.

    1996-12-31

    Our gas-driven two-stage gun was designed and built to do initiation studies on insensitive high explosives as well as other equation of state experiments on inert materials. Our preferred method of measuring initiation phenomena involves the use of magnetic particle velocity gauges. In order to accommodate this type of gauging in our two-stage gun, projectile velocity was sacrificed in favor of a larger experimental target area (obtained by using a 50 mm diameter launch tube). We have used magnetic gauging on our 72-mm bore diameter single-stage gun for over 15 years and it has proven a very effective technique to monitor reactive shock wave evolution. This technique has now been adapted to our gas-driven two-stage gun. We describe the method used, as well as some of the difficulties that arose while installing this technique. Several magnetic gauge experiments have been completed on plastic materials. Waveforms obtained in one experiment are given, along with the Hugoniot information that was obtained. This new technique is now working quite well, as is evidenced by the data. To our knowledge, this is the first time magnetic gauging has been used on a two-stage gun. We have also made changes to the burst diaphragm package in the transition section to ensure that the petals do not break off during the opening process and to increase the burst pressure. This will also be discussed briefly.

  7. Waves generated in the vicinity of an argon plasma gun in the ionosphere

    NASA Technical Reports Server (NTRS)

    Cahill, L. J., Jr.; Arnoldy, R. L.; Lysak, R. L.; Peria, W.; Lynch, K. A.

    1993-01-01

    Wave and particle observations were made in the close vicinity of an argon plasma gun carned to over 600 km altitude on a sounding rocket. The gun was carned on a subpayload, separated from the main payload early in the flight. Twelve-second argon ion ejections were energized alternately with a peak energy of 100 or 200 eV. They produced waves, with multiple harmonics, in the range of ion cyclotron waves, 10 to 1000 Hz at rocket altitudes. Many of these waves could not be identified as corresponding to the cyclotron frequencies of any of the ions, argon or ambient, known to be present. In addition, the wave frequencies were observed to rise and fall and to change abruptly during a 12-s gun operation. The wave amplitudes, near a few hundred Hertz, were of the order of O. 1 V/m. Some of the waves may be ion-ion hybrid waves. Changes in ion populations were observed at the main payload and at the subpayload during gun operations. A gun-related, field-aligned, electron population also appeared.

  8. Phase II Final Report Computer Optimization of Electron Guns

    SciTech Connect

    R. Lawrence Ives; Thuc Bui; Hien Tran; Michael Read; Adam Attarian; William Tallis

    2011-04-15

    This program implemented advanced computer optimization into an adaptive mesh, finite element, 3D, charged particle code. The routines can optimize electron gun performance to achieve a specified current, beam size, and perveance. It can also minimize beam ripple and electric field gradients. The magnetics optimization capability allows design of coil geometries and magnetic material configurations to achieve a specified axial magnetic field profile. The optimization control program, built into the charged particle code Beam Optics Analyzer (BOA) utilizes a 3D solid modeling package to modify geometry using design tables. Parameters within the graphical user interface (currents, voltages, etc.) can be directly modified within BOA. The program implemented advanced post processing capability for the optimization routines as well as the user. A Graphical User Interface allows the user to set up goal functions, select variables, establish ranges of variation, and define performance criteria. The optimization capability allowed development of a doubly convergent multiple beam gun that could not be designed using previous techniques.

  9. Variability of Atmospheric Circulation Patterns associated with Major Baltic Inflows

    NASA Astrophysics Data System (ADS)

    Post, Piia; Lehmann, Andreas

    2014-05-01

    Due to the narrow and shallow Danish Straits the water exchange between the North Sea and the Baltic Sea is greatly restrained. As a consequence the salt flux into the Baltic Sea is reduced, so that during stagnation periods where no strong inflows occur the permanent halocline weakens, and even disappears in some basins. Only Major Baltic inflows (MBIs), when large volumes of highly saline and oxygenated water invade over the sills, are capable to flow as dense bottom currents into the central deeps and replace the stagnant water there, simultaneously improving living conditions to biota. MBIs are typically forced by a sequence of easterly winds lasting for about 20 days followed by strong to very strong westerly winds of similar duration. Since the mid-1970s, the frequency and intensity of major inflows have decreased, and they were completely absent between February 1983 and January 1993. As the major inflows are mainly forced by the atmosphere, the reason for this kind of change is assumed to be connected to variations in the atmospheric circulation. There have been several studies where the changes in regional atmospheric circulation have been described through local wind climatology or modes of large scale low-frequency circulation variability, defined by means of principal component analysis. Another way to describe atmospheric circulation patterns is by classifying them into different atmospheric circulation types. The latter are well suited for describing sequences of circulation patterns in appropriate temporal (in hours) and spatial (regional to local) scales. Circulation types reflect real circulation patterns, which are easy to interpret, unlike the modes of variability, that cannot be considered as typical patterns of airflow, but just as building bricks for describing variability of the atmospheric circulation. Hence, our aim was to characterize the variability of sequences of atmospheric circulation patterns at the time of MBIs, to use this

  10. The timing of vortex shedding in a cylinder wake imposed by periodic inflow perturbations

    NASA Astrophysics Data System (ADS)

    Konstantinidis, E.; Balabani, S.; Yianneskis, M.

    2005-10-01

    The interaction of vortex shedding from a circular cylinder with an inflow which has low-amplitude periodic velocity oscillations (perturbations) superimposed upon it, was investigated experimentally by means of particle image velocimetry. The experiments were made at three perturbation frequencies across the lock-on range in which the vortex shedding frequency is synchronized with the subharmonic of the imposed frequency. The basic wake pattern in this range is antisymmetric vortex shedding, i.e. the familiar 2S mode. The timing of vortex shedding is defined with respect to the cross-flow oscillation of the wake which is found to play a critical role. Quantitative analysis of the phase-referenced patterns of vorticity distribution in the wake shows that a vortex is actually shed from the cylinder when the cross-flow oscillation of the wake is strongest, marked by a sudden drop in the computed vortex strength. At the middle of the lock-on range, shedding occurs near the minimum inflow velocity in the cycle or, equivalently, during the forward stroke of a cylinder oscillating in-line with the flow. It is argued that the imposed timing of vortex shedding relative to the cylinder motion induces a negative excitation from the fluid, which might explain why the in-line response of a freely vibrating cylinder exhibits two positive excitation regions separated by the lock-on region found in forced oscillations.

  11. Cooling considerations for design of a radial inflow turbine

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Sheoran, Y.; Tabakoff, W.

    1977-01-01

    A numerical study to determine the temperature distribution in the rotor of a radial inflow turbine is presented. Internal cooling passages are modeled in the present formulation in order to carry out solid and coolant temperature computations simultaneously resulting in a considerable computer time savings. The stresses due to centrifugal and thermal loadings are determined in an actual rotor and the effect of cooling design on its mechanical integrity is discussed.

  12. Stress analysis study in cooled radial inflow turbine

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Sheoran, Y.; Tabakoff, W.

    1978-01-01

    With increased turbine inlet temperatures, numerical methods of thermal and stress analysis are becoming more valuable in the design of air-cooled turbines. This paper presents a study of the stresses associated with different cooling patterns in a radial inflow turbine rotor. The finite element method is used in the stress calculations taking into consideration centrifugal, thermal and aerodynamic loading. The effects of temperature distribution and the presence of internal cooling passages are discussed.

  13. Tracing inflows and outflows with absorption lines in circumgalactic gas

    NASA Astrophysics Data System (ADS)

    Ford, Amanda Brady; Davé, Romeel; Oppenheimer, Benjamin D.; Katz, Neal; Kollmeier, Juna A.; Thompson, Robert; Weinberg, David H.

    2014-10-01

    We examine how H I and metal absorption lines within low-redshift galaxy haloes trace the dynamical state of circumgalactic gas, using cosmological hydrodynamic simulations that include a well-vetted heuristic model for galactic outflows. We categorize inflowing, outflowing, and ambient gas based on its history and fate as tracked in our simulation. Following our earlier work, showing that the ionization level of absorbers was a primary factor in determining the physical conditions of absorbing gas, we show here that it is also a governing factor for its dynamical state. Low-ionization metal absorbers (e.g. Mg II) tend to arise in gas that will fall on to galaxies within several Gyr, while high-ionization metal absorbers (e.g. O VI) generally trace material that was deposited by outflows many Gyr ago. Inflowing gas is dominated by enriched material that was previously ejected in an outflow; hence, accretion at low redshifts is typically substantially enriched. Recycling wind material is preferentially found closer to galaxies, and is more dominant in lower mass haloes since high-mass haloes have more hot gas that is able to support itself against infall. Low-mass haloes also tend to re-eject more of their accreted material, owing to our outflow prescription that employs higher mass loading factors for lower mass galaxies. Typical H I absorbers trace unenriched ambient material that is not participating in the baryon cycle, but stronger H I absorbers arise in cool, enriched inflowing gas. Instantaneous radial velocity measures of absorbers are generally poor at distinguishing between inflowing and outflowing gas, except in the case of very recent outflows. These results suggest that probing halo gas using a range of absorbers can provide detailed information about the amount and physical conditions of material that is participating in the baryon cycle.

  14. Inflow and outflow signatures in flowing wellbore electrical conductivity logs

    SciTech Connect

    Doughty, Christine; Tsang, Chin-Fu

    2002-08-28

    Flowing wellbore electrical-conductivity logging provides a means to determine hydrologic properties of fractures, fracture zones, or other permeable layers intersecting a borehole in saturated rock. The method involves analyzing the time-evolution of fluid electrical-conductivity logs obtained while the well is being pumped and yields information on the location, hydraulic transmissivity, and salinity of permeable layers, as well as their initial (or ambient) pressure head. Earlier analysis methods were restricted to the case in which flows from the permeable layers or fractures were directed into the borehole. More recently, a numerical model for simulating flowing-conductivity logging was adapted to permit treatment of both inflow and outflow, including analysis of natural regional flow in the permeable layer. However, determining the fracture properties with the numerical model by optimizing the match to the conductivity logs is a laborious trial-and-error procedure. In this paper, we identify the signatures of various inflow and outflow features in the conductivity logs to expedite this procedure and to provide physical insight for the analysis of these logs. Generally, inflow points are found to produce a distinctive signature on the conductivity logs themselves, enabling the determination of location, inflow rate, and ion concentration in a straightforward manner. Identifying outflow locations and flow rates, on the other hand, can be done with a more complicated integral method. Running a set of several conductivity logs with different pumping rates (e.g., half and double the original pumping rate) provides further information on the nature of the feed points. In addition to enabling the estimation of flow parameters from conductivity logs, an understanding of the conductivity log signatures can aid in the design of follow-up logging activities.

  15. Developing Novel Reservoir Rule Curves Using Seasonal Inflow Projections

    NASA Astrophysics Data System (ADS)

    Tseng, Hsin-yi; Tung, Ching-pin

    2015-04-01

    Due to significant seasonal rainfall variations, reservoirs and their flexible operational rules are indispensable to Taiwan. Furthermore, with the intensifying impacts of climate change on extreme climate, the frequency of droughts in Taiwan has been increasing in recent years. Drought is a creeping phenomenon, the slow onset character of drought makes it difficult to detect at an early stage, and causes delays on making the best decision of allocating water. For these reasons, novel reservoir rule curves using projected seasonal streamflow are proposed in this study, which can potentially reduce the adverse effects of drought. This study dedicated establishing new rule curves which consider both current available storage and anticipated monthly inflows with leading time of two months to reduce the risk of water shortage. The monthly inflows are projected based on the seasonal climate forecasts from Central Weather Bureau (CWB), which a weather generation model is used to produce daily weather data for the hydrological component of the GWLF. To incorporate future monthly inflow projections into rule curves, this study designs a decision flow index which is a linear combination of current available storage and inflow projections with leading time of 2 months. By optimizing linear relationship coefficients of decision flow index, the shape of rule curves and the percent of water supply in each zone, the best rule curves to decrease water shortage risk and impacts can be developed. The Shimen Reservoir in the northern Taiwan is used as a case study to demonstrate the proposed method. Existing rule curves (M5 curves) of Shimen Reservoir are compared with two cases of new rule curves, including hindcast simulations and historic seasonal forecasts. The results show new rule curves can decrease the total water shortage ratio, and in addition, it can also allocate shortage amount to preceding months to avoid extreme shortage events. Even though some uncertainties in

  16. A design procedure for fan inflow control structures

    NASA Technical Reports Server (NTRS)

    Gedge, M. R.

    1980-01-01

    Significant differences exist in the noise generated by engine in flight and engines operating on the test stand. It was observed that these differences can be reduced by use of an inflow control structure (ICS) in the static test configuration. The results of the second phase of a three phase program are described and the results of a test program conducted to assess and modify various theoretical models, leading to the development of an ICS design system is summarized.

  17. An investigation of viscous losses in radial inflow turbine nozzles

    NASA Technical Reports Server (NTRS)

    Khalil, I.; Tabakoff, W.; Hamed, A.

    1977-01-01

    A theoretical model is developed to predict losses in radial inflow turbine nozzles. The analysis is presented in two parts. The first one evaluates the losses which occur across the vaned region of the nozzle, while the second part deals with the losses which take place in the vaneless field. It is concluded that the losses in a radial nozzle would not be greatly affected by the addition of a large vaneless space.

  18. Turbine Inflow Characterization at the National Wind Technology Center: Preprint

    SciTech Connect

    Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J.

    2012-01-01

    Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results shown that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

  19. Daily reservoir inflow forecasting combining QPF into ANNs model

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Cheng, Chun-Tian; Liao, Sheng-Li; Wu, Xin-Yu; Shen, Jian-Jian

    2009-01-01

    Daily reservoir inflow predictions with lead-times of several days are essential to the operational planning and scheduling of hydroelectric power system. The demand for quantitative precipitation forecasting (QPF) is increasing in hydropower operation with the dramatic advances in the numerical weather prediction (NWP) models. This paper presents a simple and an effective algorithm for daily reservoir inflow predictions which solicits the observed precipitation, forecasted precipitation from QPF as predictors and discharges in following 1 to 6 days as predicted targets for multilayer perceptron artificial neural networks (MLP-ANNs) modeling. An improved error back-propagation algorithm with self-adaptive learning rate and self-adaptive momentum coefficient is used to make the supervised training procedure more efficient in both time saving and search optimization. Several commonly used error measures are employed to evaluate the performance of the proposed model and the results, compared with that of ARIMA model, show that the proposed model is capable of obtaining satisfactory forecasting not only in goodness of fit but also in generalization. Furthermore, the presented algorithm is integrated into a practical software system which has been severed for daily inflow predictions with lead-times varying from 1 to 6 days of more than twenty reservoirs operated by the Fujian Province Grid Company, China.

  20. A novel formulation for Neumann inflow boundary conditions in biomechanics.

    PubMed

    Gravemeier, Volker; Comerford, Andrew; Yoshihara, Lena; Ismail, Mahmoud; Wall, Wolfgang A

    2012-05-01

    Neumann boundary conditions prescribing the total momentum flux at inflow boundaries of biomechanical problems are proposed in this study. This approach enables the simultaneous application of velocity/flow rate and pressure curves at inflow boundaries. As the basic numerical method, a residual-based variational multiscale (or stabilized) finite element method is presented. The focus of the numerical examples in this work is on respiratory flows with complete flow reversals. However, the proposed formulation is just as well suited for cardiovascular flow problems with partial retrograde flow. Instabilities, which were reported for such problems in the literature, are resolved by the present approach without requiring the additional consideration of a Lagrange multiplier technique. The suitability of the approach is demonstrated for two respiratory flow examples, a rather simple tube and complex tracheobronchial airways (up to the fourth generation, segmented from end-expiratory CT images). For the latter example, the boundary conditions are generated from mechanical ventilation data obtained from an intensive care unit patient suffering from acute lung injury. For the tube, analytical pressure profiles can be replicated, and for the tracheobronchial airways, a correct distribution of the prescribed total momentum flux at the inflow boundary into velocity and pressure part is observed. PMID:25099458

  1. Turbine Inflow Characterization at the National Wind Technology Center

    SciTech Connect

    Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J. K.

    2012-01-01

    Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results show that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

  2. Separating Batterers and Guns: A Review and Analysis of Gun Removal Laws in 50 States

    ERIC Educational Resources Information Center

    Frattaroli, Shannon; Vernick, Jon S.

    2006-01-01

    Firearms play an important role in lethal domestic violence incidents. The authors review state laws regarding two policies to separate batterers from firearms: laws authorizing police to remove firearms when responding to a domestic violence complaint ("police gun removal laws") and laws authorizing courts to order guns removed from batterers…

  3. Gun Carrying by High School Students in Boston, MA: Does Overestimation of Peer Gun Carrying Matter?

    ERIC Educational Resources Information Center

    Hemenway, David; Vriniotis, Mary; Johnson, Renee M.; Miller, Matthew; Azrael, Deborah

    2011-01-01

    This paper investigates: (1) whether high school students overestimate gun carrying by their peers, and (2) whether those students who overestimate peer gun carrying are more likely to carry firearms. Data come from a randomly sampled survey conducted in 2008 of over 1700 high school students in Boston, MA. Over 5% of students reported carrying a…

  4. Modeling internal ballistics of gas combustion guns.

    PubMed

    Schorge, Volker; Grossjohann, Rico; Schönekess, Holger C; Herbst, Jörg; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias

    2016-05-01

    Potato guns are popular homemade guns which work on the principle of gas combustion. They are usually constructed for recreational rather than criminal purposes. Yet some serious injuries and fatalities due to these guns are reported. As information on the internal ballistics of homemade gas combustion-powered guns is scarce, it is the aim of this work to provide an experimental model of the internal ballistics of these devices and to investigate their basic physical parameters. A gas combustion gun was constructed with a steel tube as the main component. Gas/air mixtures of acetylene, hydrogen, and ethylene were used as propellants for discharging a 46-mm caliber test projectile. Gas pressure in the combustion chamber was captured with a piezoelectric pressure sensor. Projectile velocity was measured with a ballistic speed measurement system. The maximum gas pressure, the maximum rate of pressure rise, the time parameters of the pressure curve, and the velocity and path of the projectile through the barrel as a function of time were determined according to the pressure-time curve. The maximum gas pressure was measured to be between 1.4 bar (ethylene) and 4.5 bar (acetylene). The highest maximum rate of pressure rise was determined for hydrogen at (dp/dt)max = 607 bar/s. The muzzle energy was calculated to be between 67 J (ethylene) and 204 J (acetylene). To conclude, this work provides basic information on the internal ballistics of homemade gas combustion guns. The risk of injury to the operator or bystanders is high, because accidental explosions of the gun due to the high-pressure rise during combustion of the gas/air mixture may occur. PMID:26239103

  5. The supply and demand for guns to juveniles: Oakland's gun tracing project.

    PubMed

    Calhoun, Deane; Dodge, Andrea Craig; Journel, Coraline S; Zahnd, Elaine

    2005-12-01

    In response to Oakland, California's high level of gun violence affecting young people, the East Oakland Partnership to Reduce Juvenile Gun Violence, a citywide collaboration, was formed in 1997. In 1999, the Partnership established the Oakland Gun Tracing Project to develop evidence-based policy recommendations aimed at reducing the supply of and demand for gun acquisition among urban youth. The advocacy project involved gathering, analyzing, and using police record and gun sale/registration data to inform policy and practice. Such data were collected for all gun crimes committed in Oakland, California between 1998 and 1999 in which a juvenile was either the suspect or the victim. The 213 cases involved 263 juveniles of which 170 were suspects/perpetrators and 93 were victims. Suspects as well as victims were predominantly male and African American. The 213 cases involved 132 recovered guns. Only 55% of the cases were traced to a federally licensed dealer. Three-quarters of the guns were purchased near Oakland, California. Successful traces, defined as the ability to identify federally licensed dealers and initial purchasers, were completed on only 52 of the 132 guns, demonstrating systemic tracing difficulties. Data gathered for the project was used to advocate for numerous policy changes. Recommended policy strategies include initiating a comprehensive gun tracing program so police can track all secondary sales, new laws requiring federal handgun registration which would track ownership changes, required reporting of stolen firearms, and providing effective intervention services to all juveniles the first time they enter the criminal justice system. PMID:16269532

  6. Development of plasma cathode electron guns

    NASA Astrophysics Data System (ADS)

    Oks, Efim M.; Schanin, Peter M.

    1999-05-01

    The status of experimental research and ongoing development of plasma cathode electron guns in recent years is reviewed, including some novel upgrades and applications to various technological fields. The attractiveness of this kind of e-gun is due to its capability of creating high current, broad or focused beams, both in pulsed and steady-state modes of operation. An important characteristic of the plasma cathode electron gun is the absence of a thermionic cathode, a feature which leads to long lifetime and reliable operation even in the presence of aggressive background gas media and at fore-vacuum gas pressure ranges such as achieved by mechanical pumps. Depending on the required beam parameters, different kinds of plasma discharge systems can be used in plasma cathode electron guns, such as vacuum arcs, constricted gaseous arcs, hollow cathode glows, and two kinds of discharges in crossed E×B fields: Penning and magnetron. At the present time, plasma cathode electron guns provide beams with transverse dimension from fractional millimeter up to about one meter, beam current from microamperes to kiloamperes, beam current density up to about 100 A/cm2, pulse duration from nanoseconds to dc, and electron energy from several keV to hundreds of keV. Applications include electron beam melting and welding, surface treatment, plasma chemistry, radiation technologies, laser pumping, microwave generation, and more.

  7. ECR ion source with electron gun

    DOEpatents

    Xie, Zu Q.; Lyneis, Claude M.

    1993-01-01

    An Advanced Electron Cyclotron Resonance ion source (10) having an electron gun (52) for introducing electrons into the plasma chamber (18) of the ion source (10). The ion source (10) has a injection enclosure (12) and a plasma chamber tank (14). The plasma chamber (18) is defined by a plurality of longitudinal magnets (16). The electron gun (52) injects electrons axially into the plasma chamber (18) such that ionization within the plasma chamber (18) occurs in the presence of the additional electrons produced by the electron gun (52). The electron gun (52) has a cathode (116) for emitting electrons therefrom which is heated by current supplied from an AC power supply (96) while bias potential is provided by a bias power supply (118). A concentric inner conductor (60) and Outer conductor (62) carry heating current to a carbon chuck (104) and carbon pusher (114) Which hold the cathode (116) in place and also heat the cathode (16). In the Advanced Electron Cyclotron Resonance ion source (10), the electron gun (52) replaces the conventional first stage used in prior art electron cyclotron resonance ion generators.

  8. Electron gun system for NSC KIPT linac

    NASA Astrophysics Data System (ADS)

    Zhou, Zu-Sheng; He, Da-Yong; Chi, Yun-Long

    2014-06-01

    In the NSC KIPT linac, a neutron source based on a subcritical assembly driven by a 100 MeV/100 kW electron linear accelerator is under design and development. The linear accelerator needs a new high current electron gun. In this paper, the physical design, mechanical fabrication and beam test of this new electron gun are described. The emission current is designed to be higher than 2 A for the pulse width of 3 μs with repetition rate of 50 Hz. The gun will operate with a DC high voltage power supply that can provide a high voltage up to 150 kV. Computer simulations and optimizations have been carried out in the design stage, including the gun geometry and beam transport line. The test results of high voltage conditioning and beam test are presented. The operation status of the electron gun system is also included. The basic test results show that the design, manufacture, and operation of the new electron system are basically successful.

  9. Fresh oxygen for the Baltic Sea — An exceptional saline inflow after a decade of stagnation

    NASA Astrophysics Data System (ADS)

    Mohrholz, V.; Naumann, M.; Nausch, G.; Krüger, S.; Gräwe, U.

    2015-08-01

    The ecological state of the Baltic Sea depends crucially on sufficiently frequent, strong deep water renewal on the periodic deep water renewal events by inflow of oxygen rich saline water from the North Sea. Due to the strong density stratification these inflows are the only source for deep water ventilation. Since the early eighties of the last century the frequency of inflow events has dropped drastically from 5 to 7 major inflows per decade to only one inflow per decade. Wide spread anoxic conditions became the usual state in the central Baltic. The rare major Baltic inflow (MBI) events in 1993 and 2003 could interrupt the anoxic bottom conditions only temporarily. After more than 10 years without a major Baltic inflow events, in December 2014 a strong MBI brought large amounts of saline and well oxygenated water into the Baltic Sea. Based on observations and numerical modeling, the inflow was classified as one of the rare very strong events. The inflow volume and the amount of salt transported into the Baltic were estimated to be with 198 km3 and 4 Gt, respectively. The strength of the MBI exceeded considerably the previous 2003 event. In the list of the MBIs since 1880, the 2014 inflow is the third strongest event together with the MBI in 1913. This inflow event will most probably turn the entire Baltic deep water from anoxic to oxic conditions, with substantial spread consequences for marine life and biogeochemical cycles.

  10. [Comparison of wound morphology following gunshots by machine guns and sub-machine guns].

    PubMed

    Grellner, W; Madea, B

    1999-01-01

    Automatic weapons such as machine guns and submachine guns are found in the German-speaking region only in special army and police units and appear accordingly rarely in homicides, suicides and accidents. In the following, the findings in two cases of death with the use of machine and submachine guns are presented. The first case was a fatal accident during shooting on a training area (current machine gun of the German army, calibre 7.62 x 51 mm), the second case was a killing during a physical conflict (submachine gun MP 40 from World War II, calibre 9 x 19 mm). In the case with the machine gun autopsy disclosed typical entry holes corresponding to the calibre, but unusually large exit wounds with tissue bridges in the wound ground, measuring 4 x 2.5 cm in diameter. By contrast, the second case (submachine gun) showed "normal" entry and exit wounds. The differences are mainly caused by deviating ballistic data of the ammunition used. They are discussed against the background of literature on wound ballistics. PMID:10198694