Science.gov

Sample records for particle surface layer

  1. Layer by Layer, Nano-particle "Only" Surface Modification of Filtration Membranes

    NASA Astrophysics Data System (ADS)

    Escobar-Ferrand, Luis

    Layer by Layer (LbL) deposition using primarily inorganic silica nanoparticles is employed for the modification of polymeric micro and ultrafiltration (MF/UF) membranes to produce thin film composites (TFC) with potential nanofiltration (NF) and reverse osmosis (RO) capabilities.. A variety of porous substrate membranes with different membrane surface characteristics are employed, but exhibiting in common that wicking of water does not readily occur into the pore structure, including polycarbonate track etched (PCTE), polyethersulfone (PES) and sulfonated PES (SPEES) MF/UF membranes. Both spherical (cationic/anionic) and eccentric elongated (anionic) silica nanoparticles are deposited using conditions similar to those reported by Lee et al. Appropriate selection of the pH's for anionic and cationic particle deposition enables the construction of nanoparticle only layers 100--1200 nm in thickness atop the original membrane substrates. The surface layer thickness varies monotonically with the number of bilayers (anionic/cationic deposition cycles) as expected. The deposition process is optimized to eliminate drying induced cracking and to improve mechanical durability via thickness control and post-deposition hydro-thermal treatment. The hydrodynamic permeability of these TFC membranes is measured to evaluate their performance under typical NF operating conditions using dead-end permeation experiments and their performance compared quantitatively with realistic hydrodynamic models, with favorable results. For track etched polycarbonate MF substrates, surface modification causes a permeability reduction of approximately two orders of magnitude with respect to the bare substrates, to values comparable to those for typical commercial NF membranes. Good quantitative agreement with hydrodynamic models with no adjustable parameters was also established for this case, providing indirect confirmation that the LbL deposited surface layers are largely defect (crack) free. Imaging of our TFC membranes after permeation tests confirmed that no significant mechanical damage resulted, indicating integrity and robustness of the LbL deposited surface layers in typical applications. The selectivity of these novel TFC membranes was also tested using standard "rejection" tests normally used to characterize NF and RO membranes for their capabilities in typical applications, such as water softening or desalination. We report the dextran standards molecular weight "cut-off" (MWCO) using mixed dextrans from 1.5 to 500 KDa in dead-end stir cells, and the percentage of rejection of standard bivalent and monovalent salt solutions using steady cross flow permeation experiments. The results confirm rejection of at least 60% of even the smallest dextrans, an estimated dextran MWCO of 20 KDa, and rejection of 10% and 20% for monovalent (NaCl) and bivalent (MgSO4) salts, respectively, for all the TFC membranes studied, while the unmodified membranes showed no rejection capability at all. The work supports that nanoparticle based LbL surface modification of MF/UF membranes can produce filtration quality media for important water purification applications, such as nanofiltration (NF) softening processes, natural organic matter (NOM) elimination and possibly reverse osmosis (RO) desalination.

  2. Ti particle-reinforced surface layers in Al: Effect of particle size on microstructure, hardness and wear

    SciTech Connect

    Mordyuk, B.N.; Silberschmidt, V.V.; Prokopenko, G.I.; Nesterenko, Yu.V.; Iefimov, M.O.

    2010-11-15

    Two types of Ti particles are used in an ultrasonic impact peening (UIP) process to modify sub-surface layers of cp aluminium atomized, with an average size of approx. 20 {mu}m and milled (0.3-0.5 {mu}m). They are introduced into a zone of severe plastic deformation induced by UIP. The effect of Ti particles of different sizes on microstructure, phase composition, microhardness and wear resistance of sub-surface composite layers in aluminium is studied in this paper. The formed layers of a composite reinforced with smaller particles have a highly misoriented fine-grain microstructure of its matrix with a mean grain size of 200-400 nm, while reinforcement with larger particles results in relatively large Al grains (1-2 {mu}m). XRD, SEM, EDX and TEM studies confirm significantly higher particle/matrix bonding in the former case due to formation of a Ti{sub 3}Al interlayer around Ti particles with rough surface caused by milling. Different microstructures determine hardness and wear resistance of reinforced aluminium layers: while higher magnitudes of microhardness are observed for both composites (when compared with those of annealed and UIP-treated aluminium), the wear resistance is improved only in the case of reinforcement with small particles.

  3. Compliant layer chucking surface

    DOEpatents

    Blaedel, Kenneth L. (Dublin, CA); Spence, Paul A. (Pleasanton, CA); Thompson, Samuel L. (Pleasanton, CA)

    2004-12-28

    A method and apparatus are described wherein a thin layer of complaint material is deposited on the surface of a chuck to mitigate the deformation that an entrapped particle might cause in the part, such as a mask or a wafer, that is clamped to the chuck. The harder particle will embed into the softer layer as the clamping pressure is applied. The material composing the thin layer could be a metal or a polymer for vacuum or electrostatic chucks. It may be deposited in various patterns to affect an interrupted surface, such as that of a "pin" chuck, thereby reducing the probability of entrapping a particle.

  4. Structure and function of airway surface layer of the human lungs & mobility of probe particles in complex fluids

    NASA Astrophysics Data System (ADS)

    Cai, Liheng

    Numerous infectious particles such as bacteria and pathogens are deposited on the airway surface of the human lungs during our daily breathing. To avoid infection the lung has evolved to develop a smart and powerful defense system called mucociliary clearance. The airway surface layer is a critical component of this mucus clearance system, which consists of two parts: (1) a mucus layer, that traps inhaled particles and transports them out of the lung by cilia-generated flow; and (2) a periciliary layer, that provides a favorable environment for ciliary beating and cell surface lubrication. For 75 years, it has been dogma that a single gel-like mucus layer, which is composed of secreted mucin glycoproteins, is transported over a "watery" periciliary layer. This one-gel model, however, does not explain fundamental features of the normal system, e.g. formation of a distinct mucus layer, nor accurately predict how the mucus clearance system fails in disease. In the first part of this thesis we propose a novel "Gel-on-Brush" model with a mucus layer (the "gel") and a "brush-like" periciliary layer, composed of mucins tethered to the luminal of airway surface, and supporting data accurately describes both the biophysical and cell biological bases for normal mucus clearance and its failure in disease. Our "Gel-on-Brush" model describes for the first time how and why mucus is efficiently cleared in health and unifies the pathogenesis of major human diseases, including cystic fibrosis and chronic obstructive pulmonary disease. It is expected that this "Gel-on-Brush" model of airway surface layer opens new directions for treatments of airway diseases. A dilemma regarding the function of mucus is that, although mucus traps any inhaled harmful particulates, it also poses a long-time problem for drug delivery: mobility of cargos carrying pharmaceutical agents is slowed down in mucus. The second part of this thesis aims to answer the question: can we theoretically understand the relation between the motion of a probe particle and the local structure and dynamics of complex fluids such as mucus, or even one step back, simple polymer solutions and gels? It is well known that the thermal motion of a particle in simple solutions like water can be described by Stokes-Einstein relation, in which the mean-square displacement of the particle is (1) linearly proportional to time and (2) inversely proportional to the bulk viscosity of the solution. We found that these two statements become questionable if the particle size is relatively small and the solutions become complex fluids such as polymer solutions and gels. The motion of small particles with size smaller than the entanglement length (network mesh size) of a polymer solution (gel) is sub-diffusive with mean-square displacement proportional to the square root of time at relatively short time scales. Even at long time scales at which the mean-square displacement of the particles is diffusive, the mean-square displacement of the particles is not necessarily determined by the bulk viscosity, and is inversely proportional to an effective viscosity that is much smaller than the bulk value. An interesting question related to the particle motion in polymer gels is whether particles with size larger than the network mesh size can move through the gel? An intuitive answer would be that such large particles are trapped by the local network cages. We argue that the large particles can still diffuse via hopping mechanism, i.e., particles can wait for fluctuations of surrounding network cages that could be large enough to allow them to slip though. This hopping diffusion can be applied to understand the motion of large particles subjected to topological constraints such as permanent or reversible crosslinked networks as well as entanglements in high molecular weight polymer solutions, melts, and networks.

  5. Equilibrium electric double layer of charged spherical colloidal particles: effect of different distances of minimum ion approach to the particle surface.

    PubMed

    López-García, J J; Aranda-Rascón, M J; Grosse, C; Horno, J

    2010-06-10

    A study of the equilibrium double layer surrounding charged spherical particles is presented, considering that ions in the suspending medium have a finite size. It is assumed that each ionic species has a different minimum approach distance to the particle surface, while the distance of minimum approach between ions in the bulk has the same value for all ion species. Numerical calculations made using the network simulation method and including all the features of the considered model are presented, together with rigorous analytical results valid for a flat interface and point ions in the bulk electrolyte solution. It is shown that the double-layer parameters are very sensitive to the difference between the minimum approach distances of co-ions and counterions. For negative particles and greater approach distances for co-ions than for counterions, the potential always increases with this difference and, under appropriate circumstances, attains positive values leading to charge reversal. This phenomenon is favored by a high electrolyte concentration, high counterion valences, and low surface charge (in modulus). An analytical expression relating these parameters to the threshold value of the difference between the minimum approach distances of co-ions and counterions to the particle surface is presented. PMID:20476777

  6. Prediction and rational correlation of thermophoretically reduced particle mass transfer to hot surfaces across laminar or turbulent forced-convection gas boundary layers

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Rosner, Daniel E.

    1986-01-01

    A formulation previously developed to predict and correlate the thermophoretically-augmented submicron particle mass transfer rate to cold surfaces is found to account for the thermophoretically reduced particle mass transfer rate to overheated surfaces such that thermophoresis brings about a 10-decade reduction below the convective mass transfer rate expected by pure Brownian diffusion and convection alone. Thermophoretic blowing is shown to produce effects on particle concentration boundary-layer (BL) structure and wall mass transfer rates similar to those produced by real blowing through a porous wall. The applicability of the correlations to developing BL-situations is demonstrated by a numerical example relevant to wet-steam technology.

  7. Simulation of the interaction of electromagnetic waves with dispersed particles in the propagation of breather in the surface layer of a liquid medium

    SciTech Connect

    Zabolotin, V.V.; Uvarova, L.A.

    2015-03-10

    A numerical simulation of the interaction of laser radiation with dispersed particles in the course of propagation of breather in the surface layer of the liquid breather was performed. The shape and amplitude of the acoustic signal formed in this interaction were obtained. Two acoustic signals, before and after the impact of a breather on the process of optical sound generation, were compared. Results of the comparison showed that the breather spreading over the surface of the liquid medium affecst the acoustic signal and its effect must be considered in the measurements.

  8. Particle transport and adjustments of the boundary layer over rough surfaces with an unrestricted, upwind supply of sediment

    NASA Astrophysics Data System (ADS)

    McKenna Neuman, Cheryl

    1998-10-01

    Most natural surfaces containing non-erodible roughness elements are considerably more complex than those studied in modelling exercises and wind tunnel simulations. Unlike idealized roughness elements, which are uniform in size, shape (i.e., spheres or cylinders) and spacing, natural elements are challenging to measure in 3-dimensional space. Similarly, most deflation lag surfaces, such those as found on sandar and beaches, are spatially heterogeneous open systems in which sediment transport from an external supply is very likely. The development of irregular deflation lag surfaces, and the transport of sediment over these surfaces from an upwind source of sediment, was studied in a series of wind tunnel simulations. Surfaces prepared with crushed gravel and natural beach shingle respond conservatively in terms of the adjustment to the deflation and deposition of sediment. Deflation lag surfaces, prepared with no spacing between the roughness elements (i.e., close packed), demonstrate little to no change in coverage with the introduction of particles from an upwind source. Neither the element type nor the friction velocity affect this outcome. As the center-to-center element spacing increases to 60 mm, infilling of the lag surface eventually is observed, with the element coverage reduced by a factor between 2 and 4. For a given threshold ratio ( Rt), the roughness density ( ?) is smaller than observed in previous simulation studies based on idealized roughness elements.

  9. The Martian surface layer

    NASA Technical Reports Server (NTRS)

    Christensen, Philip R.; Moore, Henry J.

    1992-01-01

    The global characteristics of the Martian surface layer are discussed on the basis of thermal, albedo, color, and radar data for the region between approximately 60 deg S and 60 deg N. Thermal data reveal the presence of large low- and high-inertia regions of the northern hemisphere, with much of the south covered by material of moderate inertia. There is a strong anticorrelation between inertia and albedo, a correlation between inertia and rock abundance, and, over much of the planet, a correlation of radar-derived density with inertia. Viking Orbiter color data indicate the presence of three major surface materials: low-inertia, bright-red material that is presumably dust; high-inertia, dark-grey material interpreted to be lithic material mixed with palagonitelike dust; and moderate-inertia, dark-red material that is rough at subpixel scales and interpreted to be indurated. Observations from the Viking landing sites show rocks, fines of varying cohesion and crusts. These sites have indications of aeolian erosion and deposition in the recent past.

  10. Structure and dynamics of a layer of sedimented particles

    NASA Astrophysics Data System (ADS)

    Sonn-Segev, Adar; B?awzdziewicz, Jerzy; Wajnryb, Eligiusz; Ekiel-Je?ewska, Maria L.; Diamant, Haim; Roichman, Yael

    2015-08-01

    We investigate experimentally and theoretically thin layers of colloid particles held adjacent to a solid substrate by gravity. Epifluorescence, confocal, and holographic microscopy, combined with Monte Carlo and hydrodynamic simulations, are applied to infer the height distribution function of particles above the surface, and their diffusion coefficient parallel to it. As the particle area fraction is increased, the height distribution becomes bimodal, indicating the formation of a distinct second layer. In our theory, we treat the suspension as a series of weakly coupled quasi-two-dimensional layers in equilibrium with respect to particle exchange. We experimentally, numerically, and theoretically study the changing occupancies of the layers as the area fraction is increased. The decrease of the particle diffusion coefficient with concentration is found to be weakened by the layering. We demonstrate that particle polydispersity strongly affects the properties of the sedimented layer, because of particle size segregation due to gravity.

  11. Structure and dynamics of a layer of sedimented particles.

    PubMed

    Sonn-Segev, Adar; B?awzdziewicz, Jerzy; Wajnryb, Eligiusz; Ekiel-Je?ewska, Maria L; Diamant, Haim; Roichman, Yael

    2015-08-21

    We investigate experimentally and theoretically thin layers of colloid particles held adjacent to a solid substrate by gravity. Epifluorescence, confocal, and holographic microscopy, combined with Monte Carlo and hydrodynamic simulations, are applied to infer the height distribution function of particles above the surface, and their diffusion coefficient parallel to it. As the particle area fraction is increased, the height distribution becomes bimodal, indicating the formation of a distinct second layer. In our theory, we treat the suspension as a series of weakly coupled quasi-two-dimensional layers in equilibrium with respect to particle exchange. We experimentally, numerically, and theoretically study the changing occupancies of the layers as the area fraction is increased. The decrease of the particle diffusion coefficient with concentration is found to be weakened by the layering. We demonstrate that particle polydispersity strongly affects the properties of the sedimented layer, because of particle size segregation due to gravity. PMID:26298145

  12. Structure and dynamics of a layer of sedimented Brownian particles

    E-print Network

    Adar Sonn Segev; Jerzy B. lawzdziewicz; Eligiusz Wajnryb; Maria L. Ekiel Jezewska; Haim Diamant; Yael Roichman

    2015-04-13

    We investigate experimentally and theoretically thin layers of colloid particles held adjacent to a solid substrate by gravity. Epifluorescence, confocal, and holographic microscopy, combined with Monte Carlo and hydrodynamic simulations, are applied to infer the height distribution function of particles above the surface, and their diffusion coefficient parallel to it. As the particle area fraction is increased, the height distribution becomes bimodal, indicating the formation of a distinct second layer. In our theory we treat the suspension as a series of weakly coupled quasi-two-dimensional layers in equilibrium with respect to particle exchange. We experimentally, numerically, and theoretically study the changing occupancies of the layers as the area fraction is increased. The decrease of the particle diffusion coefficient with concentration is found to be weakened by the layering. We demonstrate that particle polydispersity strongly affects the properties of the sedimented layer, because of particle size segregation due to gravity.

  13. Surface engineering using layer-by-layer assembly of pH-sensitive polymers and nanoparticles

    E-print Network

    Lee, Daeyeon

    2007-01-01

    Surface engineering of a variety of materials including colloidal particles and porous membranes has been achieved by using layer-by-layer assembly of pH-sensitive polymers and nanoparticles. In the first part of this ...

  14. Surface layers of bacteria.

    PubMed Central

    Beveridge, T J; Graham, L L

    1991-01-01

    Since bacteria are so small, microscopy has traditionally been used to study them as individual cells. To this end, electron microscopy has been a most powerful tool for studying bacterial surfaces; the viewing of macromolecular arrangements of some surfaces is now possible. This review compares older conventional electron-microscopic methods with new cryotechniques currently available and the results each has produced. Emphasis is not placed on the methodology but, rather, on the importance of the results in terms of our perception of the makeup and function of bacterial surfaces and their interaction with the surrounding environment. Images PMID:1723487

  15. Formulation of stability-dependent empirical relations for turbulent intensities from surface layer turbulence measurements for dispersion parameterization in a lagrangian particle dispersion model

    NASA Astrophysics Data System (ADS)

    Hari Prasad, K. B. R. R.; Srinivas, C. V.; Satyanarayana, A. N. V.; Naidu, C. V.; Baskaran, R.; Venkatraman, B.

    2015-08-01

    Season- and stability-dependent turbulence intensity ( ? u / u *, ? v / u *, ? w / u *) relationships are derived from experimental turbulence measurements following surface layer scaling and local stability at the tropical coastal site Kalpakkam, India for atmospheric dispersion parameterization. Turbulence wind components ( u', v', w') measured with fast response UltraSonic Anemometers during an intense observation campaign for wind field modeling called Round Robin Exercise are used to formulate the flux-profile relationships using surface layer similarity theory and Fast Fourier Transform technique. The new relationships (modified Hanna scheme) are incorporated in a Lagrangian Particle Dispersion model FLEXPART-WRF and tested by conducting simulations for a field tracer dispersion experiment at Kalpakkam. Plume dispersion analysis of a ground level hypothetical release indicated that the new turbulent intensity formulations provide slightly higher diffusivity across the plume relative to the original Hanna scheme. The new formulations for ? u , ? v , ? w are found to give better agreement with observed turbulent intensities during both stable and unstable conditions under various seasonal meteorological conditions. The simulated concentrations using the two methods are compared with those obtained from a classical Gaussian model and the observed SF6 concentration. It has been found that the new relationships provide comparatively higher diffusion across the plume relative to the model default Hanna scheme and provide downwind concentration results in better agreement with observations.

  16. Boundary layer effects on particle impaction and capture

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Fernandez De La Mora, J.

    1984-01-01

    The inertial impaction and deposition of small particles on larger bodies with viscous boundary layers are considered theoretically, in a detailed comment on a paper by Menguturk et al. (1983). Topics addressed include cushion effects, the dimensionless groups corresponding to the diameter range (3-6 microns) examined by Menguturk et al. in a numerical example, analogous effects of particle-gas energy and mass exchange in boundary layers, and the combined effects of particle inertia and diffusion. It is argued that the inertial effects can be characterized in terms of a body, boundary-layer, or sublayer Stokes number. In a reply by Menguturk et al., the focus is on the application of the theoretical model to the erosion of blade surfaces in large gas turbines; the Stokes number is found to be of limited practical value in these cases, because the particle motion is not primarily normal to the blade surfaces.

  17. Particle motion in atmospheric boundary layers of Mars and Earth

    NASA Technical Reports Server (NTRS)

    White, B. R.; Iversen, J. D.; Greeley, R.; Pollack, J. B.

    1975-01-01

    To study the eolian mechanics of saltating particles, both an experimental investigation of the flow field around a model crater in an atmospheric boundary layer wind tunnel and numerical solutions of the two- and three-dimensional equations of motion of a single particle under the influence of a turbulent boundary layer were conducted. Two-dimensional particle motion was calculated for flow near the surfaces of both Earth and Mars. For the case of Earth both a turbulent boundary layer with a viscous sublayer and one without were calculated. For the case of Mars it was only necessary to calculate turbulent boundary layer flow with a laminar sublayer because of the low values of friction Reynolds number; however, it was necessary to include the effects of slip flow on a particle caused by the rarefied Martian atmosphere. In the equations of motion the lift force functions were developed to act on a single particle only in the laminar sublayer or a corresponding small region of high shear near the surface for a fully turbulent boundary layer. The lift force functions were developed from the analytical work by Saffman concerning the lift force acting on a particle in simple shear flow.

  18. Formation of the Surface Space Charge Layer in Fair Weather

    NASA Astrophysics Data System (ADS)

    Redin, Alexander; Kupovykh, Gennady; Boldyreff, Anton

    2014-05-01

    It is widely known that the positive space charge, caused by electrode effect action, is obtained near surface in fair weather. Space charge density depends on the different local features: meteorological conditions, aerosol particles concentration, convective transfer of the surface layer. Namely space charge determines the local variations of electric field. Space charge could be negative in condition of strong ionization rate in thin air layer near surface. The electrodynamic model, consisting of transfer equations of light ions and nucleuses, generated by interactions between lights ions and aerosol particles, and Poisson equation. The turbulent transfer members, electric field near the surface, the mobility of positive and negative ions, recombination coefficient, ionization rate, the number of elementary charges on the nuclei were took into account in the model equations. The time-space variations of positive and negative small and heavy ions, electric field, electrical conductivity, current density and space charge, depending on aerosol particles concentrations, turbulence and convective transfer ionization rate, aerosol particles size and number of charged on the particles are calculated. The mechanisms of turbulent and convection-turbulent surface layer electrodynamic structure forming in dependence of single and multi-charged aerosol particles for different physical and meteorological conditions are investigated. Increasing of turbulent mixing intensity leads to increasing of character electrode layer thickness, decreasing of space charge density value, decreasing of electric current conductivity value. The electrode effect of the whole layer remains constant. Increasing of aerosol particles concentration leads to decreasing of electrode effect within the whole electrode layer and increasing of electric field values, decreasing of space charge density values and current conductivity density. It was received that increasing of the aerosol particles concentration under weak turbulent mixing leads to increasing of the negative space charge density and its displacement to the surface level. Under severe contamination condition the electrodynamic structure of surface layer is primarily determined by negative space charge, generated by nucleuses. It was received that in case of small aerosol particles the surface layer electrodynamic structure is basically established by single- and double-charged particles. Single-charged and double-charged as triply-charged, fourfold-charged and fivefold-charged aerosol particles primarily affect on electrodynamic structure of the surface layer in case of increasing of aerosol particles size. The local variations of the electric field in different conditions were studied. Theoretical results are in a good agreement with experimental facts.

  19. Application of Analytical Model of the Electric Potential Distribution for Calculation of Charged Particle Dynamics in a Near-Wall Layer and Sputtering of the Plasma Facing Surfaces

    NASA Astrophysics Data System (ADS)

    Borodkina, I. E.; Komm, M.; Tsvetkov, I. V.

    2015-08-01

    Simple analytical formulas are derived for calculation of the electric field potential distribution in the magnetic pre-layer and the Debye layer near the plasma facing surfaces. It is shown that the calculated potential profiles are in good agreement with the dependences of the potential distribution on the magnetic field inclination obtained by solving the magnetic hydrodynamic (MHD) equations and modeling using the PIC code SPICE2. Dependences of the angular distribution of ions incident on the surface of plasma facing elements on the magnetic field inclination are obtained. Results of calculations demonstrate that the surface areas, on which the magnetic field is incident at sliding angles, are critical from the viewpoint of the increase of sputtering.

  20. Light emission during impact stressing of a particle layer

    NASA Astrophysics Data System (ADS)

    Pisarevskiy, A.; Aman, S.; Tatmyshevskiy, K.; Hirsch, S.; Tomas, J.

    2015-04-01

    The mechanical stress detection technique was developed based on light emission properties of ZnS:Mn particles. The light emission properties of ZnS:Mn particles were characterized by the use of the impact tester that includes a stressing tool, photomultiplier and a contact time measurement system. The mechanical stressing of particles was caused by the impact of a metallic ball, dropped from different heights. At impact, the metallic ball achieves direct contact with the upper surface of the metallic anvil. This allows the measurement of the contact time by means of the electrical current that flows between the anvil and the metallic ball during contact time. The stress, caused at the collision, is transmitted through a metallic anvil to the layer of particles and produces the deformation of particles. The applied stress was detected using a piezoelectric sensor. It was shown that the ZnS:Mn particles generate the light during the action of the loading force. After removal of the loading force the light emission from the particle layer disappears in a few microseconds. The measurement was carried out using different ranges of applied forces. In this way, it was shown that the particle layer exhibits a high damping factor and failure resistance. One of the possible applications of these sensor systems based on light emission properties of ZnS:Mn particles is structural health monitoring.

  1. Energetic particle acceleration in shear layers

    E-print Network

    M. Ostrowski

    1999-11-05

    A plasma velocity shear layer and/or a tangential flow discontinuity provide conditions allowing for energetic particle acceleration. We review such acceleration processes acting both in non-relativistic and in relativistic flows. In heliospheric conditions shear layers can provide particles with energies compatible with the observed values (from several keV up to MeV), while in relativistic extragalactic jets proton energies even in excess of 10^{19} eV can be obtained. Application of the discussed theory to particular astrophysical objects is severely limited by inadequate knowledge of local physical conditions.

  2. Double layers acting as particles accelerators

    SciTech Connect

    Sanduloviciu, M.; Lozneanu, E.

    1995-12-31

    It is shown that self-consistent stable and unstable double layers generated in plasma after a self-organisation process are able to accelerate charged particles. The implication of cosmic double layers (Dls) in the acceleration of electrical charged particles long been advocated by Alfven and his Stockholm school is today disputed by argument that static electric fields associated with Dls are conservative and consequently the line integral of the electric field outside the DL balances the line integral inside it. Related with this dispute we will evidence some, so far not considered, facts which are in our opinion arguments that aurora Dls are able to energize particles. For justifying this assertion we start from recent experimental results concerning the phenomenology of self-consistent Dls whose generation involve beside ionisations the neutrals excitations which are at tile origin of the light phenomena as those observed in auroras.

  3. Detector for Particle Surface Contamination

    NASA Technical Reports Server (NTRS)

    Mogan, Paul A. (Inventor); Schwindt, Christian J. (Inventor); Mattson, Carl B. (Inventor)

    1999-01-01

    A system and method for detecting and quantizing particle fallout contamination particles which are collected on a transparent disk or other surface employs an optical detector, such as a CCD camera, to obtain images of the disk and a computer for analyzing the images. From the images, the computer detects, counts and sizes particles collected on the disk The computer also determines, through comparison to previously analyzed images, the particle fallout rate, and generates an alarm or other indication if the rate exceeds a maximum allowable value. The detector and disk are disposed in a housing having an aperture formed therein for defining the area on the surface of the disk which is exposed to the particle fallout. A light source is provided for evenly illuminating the disk. A first drive motor slowly rotates the disk to increase the amount of its surface area which is exposed through the aperture to the particle fallout. A second motor is also provided for incrementally scanning the disk in a radial direction back and forth over the camera so that the camera eventually obtains images of the entire surface of the disk which is exposed to the particle fallout.

  4. Surface charge and size spectra of marine particles

    NASA Astrophysics Data System (ADS)

    Hunter, Keith A.

    This technique is well established in colloid chemistry, but needs modification for application to marine particles. The technique measures the electrophoretic mobility of individual particles in suspension, i.e., their velocity per unit of applied field. It is closely related to other electrokinetic techniques: electro-osmosis, streaming potential and sedimentation potential. The theory and practice of electrophoresis has been reviewed by Shaw [1969]. The electric field surrounding a particle in an electrolyte suspension is determined by several factors. These include charges developed at the particle surface through ionization processes, specific adsorption of ions in the inner and outer compact layers and the diffuse double layer. During electrophoretic motion, a viscous slipping plane develops within the double layer. This results in part of the double layer moving with the particle in a combined electrophoretic unit. Consequently, electrophoretic mobilities cannot be directly related to the charge on the surface of the particle.

  5. Subnanometer Palladium Particles Synthesized by Atomic Layer Deposition

    SciTech Connect

    Feng, Hao P.; Libera, Joseph A.; Stair, Peter C.; Miller, Jeffrey T.; Elam, Jeffrey W.

    2011-06-03

    Monodispersed palladium nanoparticle catalysts were synthesized by atomic layer deposition (ALD) using alternating exposures of Pd hexafluoroacetylacetonate (Pd(hfac)?) and formalin on an alumina support. The size of the ALD Pd particles could be tuned by adjusting the preparation conditions. Conventional ALD conditions produced Pd particles with an average size of 1.4 nm. Removal of surface hydroxyls from the alumina support by a chemical treatment using trimethyl aluminum (TMA) before performing Pd ALD led to nanoparticles larger than 2 nm. Ultrasmall (subnanometer) Pd particles were synthesized using low-temperature metal precursor exposures, followed by applying protective ALD alumina overcoats. The ALD Pd particles were characterized by transmission electron microscopy, extended X-ray absorption fine structure, and diffuse reflectance infrared Fourier transform spectroscopy techniques. The Pd loadings were measured by X-ray fluorescence. The catalytic performance of ALD Pd particles of different sizes was compared in the methanol decomposition reaction. The specific activity (normalized by Pd loading) of the ultrasmall Pd particles was higher than those of the larger particles. Considering the metal dispersion factor, the turnover frequency (TOF) of the ultrasmall Pd particles is comparable to that of the medium-sized (1.4 nm, on average) Pd particles synthesized under standard ALD conditions. The large Pd particles (>2 nm) are a factor of 2 less active than the smaller Pd particles.

  6. Particle acceleration at reconnecting separator current layers

    NASA Astrophysics Data System (ADS)

    Threlfall, J.; Stevenson, J. E. H.; Parnell, C. E.; Neukirch, T.

    2016-01-01

    Aims: The aim of this work is to investigate and characterise particle behaviour in a 3D magnetohydrodynamic (MHD) model of a reconnecting magnetic separator. Methods: We use a relativistic guiding-centre test-particle code to investigate electron and proton acceleration in snapshots from 3D MHD separator reconnection experiments, and compare the results with findings from an analytical separator reconnection model studied in a previous investigation. Results: The behaviour and acceleration of large distributions of particles are examined in detail for both analytical and numerical separator reconnection models. Accelerated particle orbit trajectories are shown to follow the separator before leaving the system along the separatrix surface of one of the nulls (determined by particle species) in the system of both models. A sufficiently localised electric field about the separator causes the orbits to appear to follow the spine bounding the separatrix surface field lines instead. We analyse and discuss the locations and spread of accelerated particle orbit final positions, which are seen to change over time in the numerical separator reconnection model. We deduce a simple relationship between the final energy range of particle orbits and the model dimensions, and discuss its implications for observed magnetic separators in the solar corona.

  7. Carbides composite surface layers produced by (PTA)

    SciTech Connect

    Tajoure, Meloud; Tajouri, Ali E-mail: dr.mokhtarphd@yahoo.com; Abuzriba, Mokhtar E-mail: dr.mokhtarphd@yahoo.com; Akreem, Mosbah

    2013-12-16

    The plasma transferred arc technique was applied to deposit a composite layer of nickel base with tungsten carbide in powder form on to surface of low alloy steel 18G2A type according to polish standard. Results showed that, plasma transferred arc hard facing process was successfully conducted by using Deloro alloy 22 plus tungsten carbide powders. Maximum hardness of 1489 HV and minimum dilution of 8.4 % were achieved by using an arc current of 60 A. However, when the current was further increased to 120 A and the dilution increases with current increase while the hardness decreases. Microstructure of the nickel base deposit with tungsten carbide features uniform distribution of reinforcement particles with regular grain shape half - dissolved in the matrix.

  8. Elastic Properties of Liquid Surfaces Coated with Colloidal Particles

    E-print Network

    Edward Bormashenko; Gene Whyman; Oleg Gendelman

    2015-03-10

    The physical mechanism of elasticity of liquid surfaces coated with colloidal particles is proposed. It is suggested that particles are separated by water clearings and the capillary interaction between them is negligible. The case is treated when the colloidal layer is deformed normally to its surface. The elasticity arises as an interfacial effect. The effective Young modulus of a surface depends on the interfacial tension, equilibrium contact angle, radius of colloidal particles and their surface density. For the nanometrically scaled particles the line tension becomes essential and has an influence on the effective Young modulus.

  9. Vacuum probe sampler removes micron-sized particles from surfaces

    NASA Technical Reports Server (NTRS)

    Whitfield, W. J.

    1968-01-01

    Vacuum probe sampler removes micron-sized particles from sensitive surfaces, without damage to the surface. The probe has a critical orifice to ensure an optimum airflow rate that disturbs the boundary layer of air and raises bacteria from the surface into the probe with the moving air stream.

  10. Determination of physical and dynamic properties of suspended particles in water column with ultrasonic scanning in between the water surface and stable sediment layer.

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Alpar, Bedri; Ozeren, Sinan; Cagatay, Nam?k; Sari, Erol; Vardar, Denizhan; Eris, Kadir

    2015-04-01

    The behavior of seafloor sediment with its water column should be known against any occurrences of anoxic or oxic conditions. The most important ones of these conditions are possible leakage of natural gas or escape of liquids from sediment. On the basis of combined solid/liquid flow dynamics in sedimentation, such kind of events can change, even in an effective manner, the dynamic movements of molecules and their cumulative mass of particules, i.e. the suspended materials. The deployment of suitable sediment traps or ultrasonic transducers somewhere in the water column are not easy attempts in order to obtain useful information about the state of suspended materials during sedimentation. These are usually bulky instruments; therefore they may behave like an anti-move suppresser on the particles moving in the float direction, in oxic and anoxic manner. These instruments, on the other hand, may cover the effects of diffusive flow or bubble formed gas and fluid escape from the sediment surface into the water column. Ultrasonic scanners, however, are able to make observations in a remote manner, without affecting such artificial events. Our field trials were successfully completed at the historical estuary called Halic of Marmara sea . The physical properties; such as the velocity of particles, their travel directions, their dimensions and the ability to observe anti-compositor crushes of shock waves of the bubbles are only a few of these observations in natural ambience. The most important problem solved about water pressure during 3 atmosphere . The sensor has been tested successfully few times. We used the ''High voltage electric isolator oil filling'' to the inside of the scanner for pressure equalization between outer side and inner body of probe at a depth of (20 meters) beneath the sea surface . The transmitted signals by the planar crystal of the transducer become weaker under the pressure of overlying water column in depths. Our efforts are now focused on the improved performance of transducer at higher than over 3 atm pressure. Keywords: ultrasonic , flow , particle , Sediment , Cumulative mass

  11. Surface layering of liquids: The role of surface tension

    E-print Network

    Oleg Shpyrko; Masafumi Fukuto; Peter Pershan; Ben Ocko; Ivan Kuzmenko; Thomas Gog; Moshe Deutsch

    2004-06-24

    Recent measurements show that the free surfaces of liquid metals and alloys are always layered, regardless of composition and surface tension; a result supported by three decades of simulations and theory. Recent theoretical work claims, however, that at low enough temperatures the free surfaces of all liquids should become layered, unless preempted by bulk freezing. Using x-ray reflectivity and diffuse scattering measurements we show that there is no observable surface-induced layering in water at T=298 K, thus highlighting a fundamental difference between dielectric and metallic liquids. The implications of this result for the question in the title are discussed.

  12. Regulation of Surface Potentialat Amphoteric Surfaces during Particle-Particle Interaction

    E-print Network

    Chan, Derek Y C

    Regulation of Surface Potentialat Amphoteric Surfaces during Particle-Particle Interaction BY D and constant potential assumptions and is applicable to oxide colloids and amphoteric biosurfaces in particular

  13. Surface layer effects on waste glass corrosion

    SciTech Connect

    Feng, X.

    1993-12-31

    Water contact subjects waste glass to chemical attack that results in the formation of surface alteration layers. Two principal hypotheses have been advanced concerning the effect of surface alteration layers on continued glass corrosion: (1) they act as a mass transport barrier and (2) they influence the chemical affinity of the glass reaction. In general, transport barrier effects have been found to be less important than affinity effects in the corrosion of most high-level nuclear waste glasses. However, they can be important under some circumstances, for example, in a very alkaline solution, in leachants containing Mg ions, or under conditions where the matrix dissolution rate is very low. The latter suggests that physical barrier effect may affect the long-term glass dissolution rate. Surface layers influence glass reaction affinity through the effects of the altered glass and secondary phases on the solution chemistry. The reaction affinity may be controlled by various precipitates and crystalline phases, amorphous silica phases, gel layer, or all the components of the glass. The surface alteration layers influence radionuclide release mainly through colloid formation, crystalline phase incorporation, and gel layer retention. This paper reviews current understanding and uncertainties.

  14. Paracrystalline surface layers of dairy propionibacteria.

    PubMed Central

    Lortal, S; Rouault, A; Cesselin, B; Sleytr, U B

    1993-01-01

    We examined 70 dairy propionibacteria and detected a crystalline surface layer (S-layer) in only 2 organisms (Propionibacterium freudenreichii CNRZ 722 and Propionibacterium jensenii CNRZ 87) by freeze-etching and sodium dodecyl sulfate-polyacrylamide electrophoresis (SDS-PAGE). Both S-layers exhibited oblique (p2) symmetry (a = 9.9 nm; b = 5.4 nm; gamma = 80 degrees) and completely covered the cell surface. Treatment for 15 min at the ambient temperature with 5 M guanidine hydrochloride or acidic conditions (250 mM ammonium acetate, pH 2.7) efficiently extracted the S-layer protein from intact cells of strain CNRZ 722, whereas treatment with 5 M guanidine hydrochloride at 100 degrees C for 15 min was necessary to isolate the S-layer protein of strain CNRZ 87. The precipitates obtained after dialysis of the extracting agents produced no regular patterns. The molecular masses of the two S-layer proteins, as estimated by SDS-PAGE, were 58.5 kDa for the strain CNRZ 722 and 67.3 kDa for the strain CNRZ 87. Mass spectrometry of the isolated S-layer protein of strain CNRZ 722 gave a molecular mass value close to the expected value (56,533 Da). The N-terminal sequences of the two purified S-layer proteins differed, as did their amino acid compositions, except that the same high hydrophobic amino acid content (52%) was observed. Images PMID:8304753

  15. Where surface physics and fluid dynamics meet: rupture of an amphiphile layer by fluid flow

    E-print Network

    Mahesh Bandi; Walter Goldburg; John Cressman Jr.; Hamid Kellay

    2006-07-19

    We investigate the fluctuating pattern created by a jet of fluid impingent upon an amphiphile-covered surface. This microscopically thin layer is initially covered with 50 $\\mu$m floating particles so that the layer can be visualized. A vertical jet of water located below the surface and directed upward drives a hole in this layer. The hole is particle-free and is surrounded by the particle-laden amphiphile region. The jet ruptures the amphiphile layer creating a particle-free region that is surrounded by the particle-covered surface. The aim of the experiment is to understand the (fluctuating) shape of the ramified interface between the particle-laden and particle-free regions.

  16. The surface layer for free-surface turbulent flows

    NASA Astrophysics Data System (ADS)

    Shen, Lian; Zhang, Xiang; Yue, Dick K. P.; Triantafyllou, George S.

    1999-05-01

    Direct numerical simulation (DNS) is used to examine low Froude number free-surface turbulence (FST) over a two-dimensional mean shear flow. The Navier Stokes equations are solved using a finite-difference scheme with a grid resolution of 1283. Twenty separate simulations are conducted to calculate the statistics of the flow. Based on the velocity deficit and the vertical extent of the shear of the mean flow, the Reynolds number is 1000 and the Froude number is 0.7. We identify conceptually and numerically the surface layer, which is a thin region adjacent to the free surface characterized by fast variations of the horizontal vorticity components. This surface layer is caused by the dynamic zero-stress boundary conditions at the free surface and lies inside a thicker blockage (or ‘source’) layer, which is due to the kinematic boundary condition at the free surface. The importance of the outer blockage layer is manifested mainly in the redistribution of the turbulence intensity, i.e. in the increase of the horizontal velocity fluctuations at the expense of the vertical velocity fluctuation. A prominent feature of FST is vortex connections to the free surface which occur inside the surface layer. It is found that as hairpin-shaped vortex structures approach the free surface, their ‘head’ part is dissipated quickly in the surface layer, while the two ‘legs’ connect almost perpendicularly to the free surface. Analysis of the evolution of surface-normal vorticity based on vortex surface-inclination angle shows that both dissipation and stretching decrease dramatically after connection. As a result, vortex structures connected to the free surface are persistent and decay slowly relative to non-connected vorticities. The effects of surface and blockage layers on the turbulence statistics of length scales, Reynolds-stress balance, and enstrophy dynamics are examined, which elucidate clearly the different turbulence mechanisms operating in the respective near-surface scales. Finally we investigate the effect of non-zero Froude number on the turbulence statistics. We show that the most significant effect of the presence of the free surface is a considerable reduction of the pressure strain correlation at this surface, compared to that at a free-slip at plate. This reduction is finite even for very low values of the Froude number.

  17. Reactor concepts for atomic layer deposition on agitated particles: A review

    SciTech Connect

    Longrie, Delphine Deduytsche, Davy; Detavernier, Christophe

    2014-01-15

    The number of possible applications for nanoparticles has strongly increased in the last decade. For many applications, nanoparticles with different surface and bulk properties are necessary. A popular surface modification technique is coating the particle surface with a nanometer thick layer. Atomic layer deposition (ALD) is known as a reliable method for depositing ultrathin and conformal coatings. In this article, agitation or fluidization of the particles is necessary for performing ALD on (nano)particles. The principles of gas fluidization of particles will be outlined, and a classification of the gas fluidization behavior of particles based on their size and density will be given. Following different reactor concepts that have been designed to conformally coat (nano)particles with ALD will be described, and a concise overview will be presented of the work that has been performed with each of them ending with a concept reactor for performing spatial ALD on fluidized particles.

  18. Composite interfacial layers containing micro-size and nano-size particles.

    PubMed

    Miller, R; Fainerman, V B; Kovalchuk, V I; Grigoriev, D O; Leser, M E; Michel, M

    2006-12-21

    Surface layers of micro- and nanoparticles at fluid/liquid interfaces in absence and presence of surfactants are of large importance in the process of re-discovering Pickering systems, i.e. emulsions and foams stabilized by particles. The surface pressure/area isotherms of such layers can provide information about the properties of the used particles (dimensions, interfacial contact angles), the structure of interfacial layers, the interactions between the particles as well as about relaxation processes within the layers. For a correct description of Pi-A isotherms of composite surface layers containing particles the significant difference in size of these particles to that of solvent and surfactant molecules should be taken into account. Corresponding equations can be derived on the basis of the two-dimensional solution theory. The gained equations provide satisfactory agreement with experimental data and predict realistic values for the area of particles at the interface. Also equations of state and of the dilational elasticity for composite surface layers containing particles can be obtained in the framework of the presented methodology. PMID:17196540

  19. Surface shear rheology of saponin adsorption layers.

    PubMed

    Golemanov, Konstantin; Tcholakova, Slavka; Denkov, Nikolai; Pelan, Edward; Stoyanov, Simeon D

    2012-08-21

    Saponins are a wide class of natural surfactants, with molecules containing a rigid hydrophobic group (triterpenoid or steroid), connected via glycoside bonds to hydrophilic oligosaccharide chains. These surfactants are very good foam stabiliziers and emulsifiers, and show a range of nontrivial biological activities. The molecular mechanisms behind these unusual properties are unknown, and, therefore, the saponins have attracted significant research interest in recent years. In our previous study (Stanimirova et al. Langmuir 2011, 27, 12486-12498), we showed that the triterpenoid saponins extracted from Quillaja saponaria plant (Quillaja saponins) formed adsorption layers with unusually high surface dilatational elasticity, 280 ± 30 mN/m. In this Article, we study the shear rheological properties of the adsorption layers of Quillaja saponins. In addition, we study the surface shear rheological properties of Yucca saponins, which are of steroid type. The experimental results show that the adsorption layers of Yucca saponins exhibit purely viscous rheological response, even at the lowest shear stress applied, whereas the adsorption layers of Quillaja saponins behave like a viscoelastic two-dimensional body. For Quillaja saponins, a single master curve describes the data for the viscoelastic creep compliance versus deformation time, up to a certain critical value of the applied shear stress. Above this value, the layer compliance increases, and the adsorption layers eventually transform into viscous ones. The experimental creep-recovery curves for the viscoelastic layers are fitted very well by compound Voigt rheological model. The obtained results are discussed from the viewpoint of the layer structure and the possible molecular mechanisms, governing the rheological response of the saponin adsorption layers. PMID:22830458

  20. Extending the Diffuse Layer Model of Surface Acidity Constant Behavior: IV. Diffuse Layer Charge/Potential Relationships

    EPA Science Inventory

    Most current electrostatic surface complexation models describing ionic binding at the particle/water interface rely on the use of Poisson - Boltzmann (PB) theory for relating diffuse layer charge densities to diffuse layer electrostatic potentials. PB theory is known to contain ...

  1. Surface state and normal layer effects

    SciTech Connect

    Klemm, R.A.; Ledvij, M.; Liu, S.H.

    1995-08-01

    In addition to the conducting CuO{sub 2} (S) layers, most high-T{sub c} superconductors also contain other conducting (N) layers, which are only superconducting due to the proximity effect. The combination of S and N layers can give rise to complicated electronic densities of states, leading to quasilinear penetration depth and NMR relaxation rate behavior at low temperatures. Surface states can also complicate the analysis of tunneling and, photoemission measurements. Moreover, geometrical considerations and in homogeneously trapped flux axe possible explanations of the paramagnetic Meissner effect and of corner and ring SQUID experiments. Hence, all of the above experiments could be consistent with isotropic s-wave superconductivity within the S layers.

  2. Electronic structure of bacterial surface protein layers

    SciTech Connect

    Maslyuk, Volodymyr V.; Mertig, Ingrid; Bredow, Thomas; Mertig, Michael; Vyalikh, Denis V.; Molodtsov, Serguei L.

    2008-01-15

    We report an approach for the calculation of the electronic density of states of the dried two-dimensional crystalline surface protein layer (S layer) of the bacterium Bacillus sphaericus NCTC 9602. The proposed model is based on the consideration of individual amino acids in the corresponding conformation of the peptide chain which additively contribute to the electronic structure of the entire protein complex. The derived results agree well with the experimental data obtained by means of photoemission (PE), resonant PE, and near-edge x-ray absorption spectroscopy.

  3. Electronic structure of bacterial surface protein layers

    NASA Astrophysics Data System (ADS)

    Maslyuk, Volodymyr V.; Mertig, Ingrid; Bredow, Thomas; Mertig, Michael; Vyalikh, Denis V.; Molodtsov, Serguei L.

    2008-01-01

    We report an approach for the calculation of the electronic density of states of the dried two-dimensional crystalline surface protein layer ( S layer) of the bacterium Bacillus sphaericus NCTC 9602. The proposed model is based on the consideration of individual amino acids in the corresponding conformation of the peptide chain which additively contribute to the electronic structure of the entire protein complex. The derived results agree well with the experimental data obtained by means of photoemission (PE), resonant PE, and near-edge x-ray absorption spectroscopy.

  4. All-nanoparticle layer-by-layer surface modification of micro- and ultrafiltration membranes.

    PubMed

    Escobar-Ferrand, Luis; Li, Diya; Lee, Daeyeon; Durning, Christopher J

    2014-05-20

    Layer-by-layer (LbL) deposition using primarily inorganic silica nanoparticles is employed for surface modification of polymeric micro- and ultrafiltration (MF/UF) membranes to produce novel thin film composite (TFC) membranes intended for nanofiltration (NF) and reverse osmosis (RO) applications. A wide variety of porous substrate membranes with different surface characteristics are successfully employed. This report gives detailed results for polycarbonate track etched (PCTE), polyethersulfone (PES), and sulfonated PES (SPEES) MF/UF substrates. Both spherical (cationic/anionic) and eccentric elongated (anionic) silica nanoparticles are deposited using conditions similar to those in prior works for solid substrates (e.g., Lee et al.). Appropriate selection of the pH for anionic and cationic particle deposition enables construction of nanoparticle-only layers 100-1200 nm in thickness atop the original porous membrane substrates. The surface layer thickness appears to vary linearly with the number of bilayers deposited, i.e., with the number of anionic/cationic deposition cycles. The deposition process is optimized to eliminate drying-induced cracking and improve mechanical durability via thickness control and postdeposition hydrothermal treatment. "Dead-end" permeation tests using dextran standards reveal the hydraulic characteristics and separations capability for the PCTE-based TFC membranes. The results show that nanoparticle-based LbL surface modification of MF and UF rated media can produce TFC membranes with NF capabilities. PMID:24568094

  5. Experimental study of shear layer instability below a free surface

    NASA Astrophysics Data System (ADS)

    André, Matthieu A.; Bardet, Philippe M.

    2015-11-01

    Relaxation of a laminar boundary layer at a free surface is an inviscidly unstable process and can lead to millimeter-scale surface waves, influencing interfacial processes. Due to the small time- and length-scales involved, previous experimental studies have been limited to visual observations and point-wise measurements of the surface profile to determine instability onset and frequency. However, effects of viscosity, surface tension, and non-linearity of the wave profile have not been systematically studied. In fact, no data have been reported on the velocity fields associated with this instability. In the present study, planar laser induced fluorescence and particle image velocimetry provide surface profiles coupled with liquid phase velocity fields for this instability in a time resolved manner. Wave steepness (ak, with a the amplitude and k the wave number) and Reynolds and Weber numbers based on momentum thickness range from 0 to 1.2, 143 to 177, and 4.79 to 6.61, respectively. Large datasets are analyzed to gain statistical information on the surface behavior. Discrete vortices are resolved, showing that the shear layer becomes unstable and rolls up above a Reynolds number of 140. The detection onset and steepness of the subsequent surface deformation by the vortices depend upon the Weber number. Non-linear behavior such as vortex motion and wave profile asymmetry are observed at steepness larger than 0.5.

  6. Alumina surface recovery for the particle reduction.

    PubMed

    Lee, Seong Wook; Song, Hyo Seok; Kim, Hyun Jun; Ryu, Je Hyeok; Ji, Young Yeon; Chae, Hee Sun

    2014-12-01

    The method for the alumina surface regeneration and the particle reduction in an inductively coupled plasma are described. Due to the chemical reaction between the alumina surface and the oxygen gas in high temperature plasma, the by product AI(OH)3 is formed. Then, it fell out to the wafer as the particle. Since the particles mainly generated from the alumina surface, the seasoning process was progressed after the photoresist (PR) strip process. As the results, the byproduct of the alumina surface changed from Al(OH)3 to Al2O3 after the seasoning process. Then, total number of the particles on the wafer was considerably reduced. For the surface analysis, X-ray Photoelectron Spectroscopy (XPS) and FT-IR were applied to comparing the status of the alumina surface before and after the seasoning process. PMID:25971087

  7. Particle acceleration at reconnecting separator current layers

    E-print Network

    Threlfall, J; Parnell, C E; Neukirch, T

    2015-01-01

    The aim of this work is to investigate and characterise particle behaviour in a 3D MHD model of a reconnecting magnetic separator. We use a relativistic guiding-centre test-particle code to investigate electron and proton acceleration in snapshots from 3D MHD separator reconnection experiments, and compare the results with findings from an analytical separator reconnection model studied in a previous investigation. The behaviour (and acceleration) of large distributions of particles are examined in detail for both analytical and numerical separator reconnection models. Differences in acceleration sites are recovered and discussed, together with the dependence of final particle energy ranges upon the dimensions of the models and the stage of the (time-dependent) MHD reconnection event. We discuss the implications of these results for observed magnetic separators in the solar corona.

  8. Diurnal ocean surface layer model validation

    NASA Technical Reports Server (NTRS)

    Hawkins, Jeffrey D.; May, Douglas A.; Abell, Fred, Jr.

    1990-01-01

    The diurnal ocean surface layer (DOSL) model at the Fleet Numerical Oceanography Center forecasts the 24-hour change in a global sea surface temperatures (SST). Validating the DOSL model is a difficult task due to the huge areas involved and the lack of in situ measurements. Therefore, this report details the use of satellite infrared multichannel SST imagery to provide day and night SSTs that can be directly compared to DOSL products. This water-vapor-corrected imagery has the advantages of high thermal sensitivity (0.12 C), large synoptic coverage (nearly 3000 km across), and high spatial resolution that enables diurnal heating events to be readily located and mapped. Several case studies in the subtropical North Atlantic readily show that DOSL results during extreme heating periods agree very well with satellite-imagery-derived values in terms of the pattern of diurnal warming. The low wind and cloud-free conditions necessary for these events to occur lend themselves well to observation via infrared imagery. Thus, the normally cloud-limited aspects of satellite imagery do not come into play for these particular environmental conditions. The fact that the DOSL model does well in extreme events is beneficial from the standpoint that these cases can be associated with the destruction of the surface acoustic duct. This so-called afternoon effect happens as the afternoon warming of the mixed layer disrupts the sound channel and the propagation of acoustic energy.

  9. Polymer surface treatment with particle beams

    DOEpatents

    Stinnett, R.W.; VanDevender, J.P.

    1999-05-04

    A polymer surface and near surface treatment process produced by irradiation with high energy particle beams is disclosed. The process is preferably implemented with pulsed ion beams. The process alters the chemical and mechanical properties of the polymer surface in a manner useful for a wide range of commercial applications. 16 figs.

  10. Hepatitis B small surface antigen particles are octahedral

    PubMed Central

    Gilbert, Robert J. C.; Beales, Lucy; Blond, Donatienne; Simon, Martha N.; Lin, Beth Y.; Chisari, Francis V.; Stuart, David I.; Rowlands, David J.

    2005-01-01

    The infectious component of hepatitis B (HB) virus (HBV), the Dane particle, has a diameter of ?44 nm and consists of a double-layered capsid particle enclosing a circular, incomplete double-stranded DNA genome. The outer capsid layer is formed from the HB surface antigen (HBsAg) and lipid, whereas the inner layer is formed from the HB core Ag assembled into an icosahedral structure. During chronic infection HBsAg is expressed in large excess as noninfectious quasispherical particles and tubules with ?22-nm diameter. Here, we report cryo-EM reconstructions of spherical HBsAg particles at ?12-Å resolution. We show that the particles possess different diameters and have separated them into two predominant populations, both of which have octahedral symmetry. Despite their differing diameters, the two forms of the particle have the same mass and are built through conformational switching of the same building block, a dimer of HBsAg. We propose that this conformational switching, combined with interactions with the underlying core, leads to the formation of HBV Dane particles of different sizes, dictated by the symmetry of the icosahedral core. PMID:16203986

  11. Electronic Structure of Regular Bacterial Surface Layers

    NASA Astrophysics Data System (ADS)

    Vyalikh, Denis V.; Danzenbächer, Steffen; Mertig, Michael; Kirchner, Alexander; Pompe, Wolfgang; Dedkov, Yuriy S.; Molodtsov, Serguei L.

    2004-12-01

    We report photoemission and near-edge x-ray absorption fine structure measurements of the occupied and unoccupied valence electronic states of the regular surface layer of Bacillus sphaericus, which is widely used as the protein template for the fabrication of metallic nanostructures. The two-dimensional protein crystal shows a semiconductorlike behavior with a gap value of ˜3.0 eV and the Fermi energy close to the bottom of the lowest unoccupied molecular orbital. We anticipate that these results will open up new possibilities for the electric addressability of biotemplated low-dimensional hybrid structures.

  12. Surface Properties of PEMFC Gas Diffusion Layers

    SciTech Connect

    WoodIII, David L; Rulison, Christopher; Borup, Rodney

    2010-01-01

    The wetting properties of PEMFC Gas Diffusion Layers (GDLs) were quantified by surface characterization measurements and modeling of material properties. Single-fiber contact-angle and surface energy (both Zisman and Owens-Wendt) data of a wide spectrum of GDL types is presented to delineate the effects of hydrophobic post-processing treatments. Modeling of the basic sessile-drop contact angle demonstrates that this value only gives a fraction of the total picture of interfacial wetting physics. Polar forces are shown to contribute 10-20 less than dispersive forces to the composite wetting of GDLs. Internal water contact angles obtained from Owens-Wendt analysis were measured at 13-19 higher than their single-fiber counterparts. An inverse relationship was found between internal contact angle and both Owens-Wendt surface energy and % polarity of the GDL. The most sophisticated PEMFC mathematical models use either experimentally measured capillary pressures or the standard Young-Laplace capillary-pressure equation. Based on the results of the Owens-Wendt analysis, an advancement to the Young-Laplace equation is proposed for use in these mathematical models, which utilizes only solid surface energies and fractional surface coverage of fluoropolymer. Capillary constants for the spectrum of analyzed GDLs are presented for the same purpose.

  13. Frictional forces between hydrophilic and hydrophobic particle coated nanostructured surfaces.

    PubMed

    Hansson, Petra M; Claesson, Per M; Swerin, Agne; Briscoe, Wuge H; Schoelkopf, Joachim; Gane, Patrick A C; Thormann, Esben

    2013-11-01

    Friction forces have long been associated with the famous Amontons' rule that states that the friction force is linearly dependent on the applied normal load, with the proportionality constant being known as the friction coefficient. Amontons' rule is however purely phenomenological and does not in itself provide any information on why the friction coefficient is different for different material combinations. In this study, friction forces between a colloidal probe and nanostructured particle coated surfaces in an aqueous environment exhibiting different roughness length scales were measured by utilizing the atomic force microscope (AFM). The chemistry of the surfaces and the probe was varied between hydrophilic silica and hydrophobized silica. For hydrophilic silica surfaces, the friction coefficient was significantly higher for the particle coated surfaces than on the flat reference surface. All the particle coated surfaces exhibited similar friction coefficients, from which it may be concluded that the surface geometry, and not the roughness amplitude per se, influenced the measured friction. During measurements with hydrophobic surfaces, strong adhesive forces related to the formation of a bridging air cavity were evident from both normal force and friction force measurements. In contrast to the frictional forces between the hydrophilic surfaces, the friction coefficient for hydrophobic surfaces was found to depend on the surface structure and we believe that this dependence is related to the restricted movement of the three-phase line of the bridging air cavity. For measurements using a hydrophobic surface and a hydrophilic probe, the friction coefficient was significantly smaller compared to the two homogeneous systems. A layer of air or air bubbles on the hydrophobic surface working as a lubricating layer is a possible mechanism behind this observation. PMID:24056733

  14. Regular arrangement of nanoparticles from the gas phase on bacterial surface-protein layers

    NASA Astrophysics Data System (ADS)

    Queitsch, Ute; Mohn, Elias; Schäffel, Franziska; Schultz, Ludwig; Rellinghaus, Bernd; Blüher, Anja; Mertig, Michael

    2007-03-01

    FePt nanoparticles from the gas phase are deposited onto the two-dimensional crystalline surface layer protein from the bacterium Bacillus sphaericus NCTC 9602. The potential of this protein layer to facilitate the ordered spatial arrangement of the otherwise statistically distributed nanoparticles on the substrate is studied. Transmission electron microscopy reveals the particles positions to be directed by the regular protein template.

  15. Creation of giant two-dimensional crystal of zinc oxide nanodisk by method of single-particle layer of organo-modified inorganic fine particles.

    PubMed

    Meng, Qi; Honda, Nanami; Uchida, Saki; Hashimoto, Kazuaki; Shibata, Hirobumi; Fujimori, Atsuhiro

    2015-09-01

    In this study, the formation and structure of a single-particle layer of organo-zinc oxide are investigated using surface-pressure-area (?-A) isotherms, out-of-plane X-ray diffraction (XRD) analysis, and atomic force microscopy (AFM). Further, techniques for achieving the solubilization of inorganic fine particles in general solvents have been proposed, and a single-particle layer has been formed using such an inorganic solution as a "spreading solution" for an interfacial film. Surface modification of ZnO is performed using a long-chain carboxylic acid. Accordingly, a regular arrangement of ZnO can be easily achieved in order to overcome the relatively weak van der Walls interactions between inorganic materials. A condensed Langmuir monolayer of these particles is also formed. A multiparticle layered structure is constructed by the Langmuir-Blodgett (LB) technique. Out-of-plane XRD measurement results for a single-particle layer of organo-ZnO clearly show a sharp peak at 42 Å. This peak is attributed to the distance between ZnO layers. The AFM image of this single-particle layer of organo-ZnO shows a particle assembly with a uniform height of 60 nm. These aggregated particles form large two-dimensional crystals. In other words, a regular periodic structure along the c-axis and a condensed single-particle layer had been fabricated using Langmuir and LB techniques. PMID:25978556

  16. Surface plasmon resonance on the surface: metal - liquid crystal layer

    NASA Astrophysics Data System (ADS)

    Zhelyazkova, K.; Petrov, M.; Katranchev, B.; Dyankov, G.

    2014-12-01

    Surface plasmon resonance (SPR) is widely used in different types of optical detection schemes and for light manipulation at sub-wavelength scale. Usually Kretschmann configuration is used for effective SPR excitation. There are a lot of experimental and theoretical investigations about the influence of the dielectric, adjacent to the metal, on SPR. However, till now the influence on liquid crystal layer, adjacent to the metal, is not considered to our best knowledge. The purpose of the present paper is to cover this gap. We simulate the influence of thin layer of liquid crystal, adjacent to the metal, on the SPR characteristics. For this purpose Maxwell equations are numerically solved for layer structure: prism/gold/liquid crystal/air. The light reflection spectra are calculated for chiral structure of ferroelectric smectic C (SmC*) liquid crystal layer. The angular and wavelength response are considered. Special attention is paid to SPR excitation for variation of tilt angle and different angle of incident light. The influence of SPR of the pitch length and cell thickness is also considered.

  17. Lunar particle shadows and boundary layer experiment: Plasma and energetic particles on the Apollo 15 and 16 subsatellites

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.; Chase, L. M.; Lin, R. P.; Mccoy, J. E.; Mcguire, R. E.

    1974-01-01

    The lunar particle shadows and boundary layer experiments aboard the Apollo 15 and 16 subsatellites and scientific reduction and analysis of the data to date are discussed with emphasis on four major topics: solar particles; interplanetry particle phenomena; lunar interactions; and topology and dynamics of the magnetosphere at lunar orbit. The studies of solar and interplanetary particles concentrated on the low energy region which was essentially unexplored, and the studies of lunar interaction pointed up the transition from single particle to plasma characteristics. The analysis concentrated on the electron angular distributions as highly sensitive indicators of localized magnetization of the lunar surface. Magnetosphere experiments provided the first electric field measurements in the distant magnetotail, as well as comprehensive low energy particle measurements at lunar distance.

  18. Surface modification of layered zirconium phosphates: a novel pathway to multifunctional materials.

    PubMed

    Mosby, Brian M; Díaz, Agustín; Clearfield, Abraham

    2014-07-21

    The intercalation of inorganic layered materials has resulted in a wide range of applicability. In such cases the applicability of the material is largely dependent upon the species intercalated within the layer, and the layered material acts largely as a host. Recently, the surface modification of inorganic layered materials has been investigated and it has been shown that the exterior layers can be exclusively functionalized. The advent of surface chemistry allows for the synthesis of particles with both a controlled interlayer and surface. This approach can be used to tailor nanoparticles for specific applications. Herein we review the surface chemistry of ?-zirconium bis(monohydrogen orthophosphate) monohydrate (Zr(HPO4)2·H2O, ?-ZrP) along with some applications of recent interest. Not only can these reactions be applied to ?-ZrP, but similar chemistry can also be expanded to other layered materials and systems. PMID:24737164

  19. Beta particle monitor for surfaces

    DOEpatents

    MacArthur, Duncan W. (Los Alamos, NM)

    1997-01-01

    A beta radiation detector which is capable of reliably detecting beta radiation emitted from a surface. An electrically conductive signal collector is adjustably mounted inside an electrically conductive enclosure which may define a single large opening for placing against a surface. The adjustable mounting of the electrically conductive signal collector can be based on the distance from the surface or on the expected beta energy range. A voltage source is connected to the signal collector through an electrometer or other display means for creating an electric field between the signal collector and the enclosure. Air ions created by the beta radiation are collected and the current produced is indicated on the electrometer or other display means.

  20. Surface preparation of substances for continuous convective assembly of fine particles

    DOEpatents

    Rossi, Robert (Rochester, MN)

    2003-01-01

    A method for producing periodic nanometer-scale arrays of metal or semiconductor junctions on a clean semiconductor substrate surface is provided comprising the steps of: etching the substrate surface to make it hydrophilic, forming, under an inert atmosphere, a crystalline colloid layer on the substrate surface, depositing a metal or semiconductor material through the colloid layer onto the surface of the substrate, and removing the colloid from the substrate surface. The colloid layer is grown on the clean semiconductor surface by withdrawing the semiconductor substrate from a sol of colloid particles.

  1. Surface Layer Turbulence During a Frontal Passage

    SciTech Connect

    Piper, M; Lundquist, J K

    2004-06-15

    Some recent investigations have begun to quantify turbulence and dissipation in frontal zones to address the question of what physical mechanism counteracts the intensification of temperature and velocity gradients across a developing front. Frank (1994) examines the turbulence structure of two fronts that passed a 200m instrumented tower near Karlsruhe, Germany. In addition to showing the mean vertical structure of the fronts as they pass the tower, Frank demonstrates that there is an order of magnitude or more increase in turbulent kinetic energy across the frontal zone. Blumen and Piper (1999) reported turbulence statistics, including dissipation rate measurements, from the MICROFRONTS field experiment, where high-frequency turbulence data were collected from tower-mounted hotwire and sonic anemometers in a cold front and in a density current. Chapman and Browning (2001) measured dissipation rate in a precipitating frontal zone with high-resolution Doppler radar. Their measurements were conducted above the surface layer, to heights of 5km. The dissipation rate values they found are comparable to those measured in Kennedy and Shapiro (1975) in an upper-level front. Here, we expand on these recent studies by depicting the behavior of the fine scales of turbulence near the surface in a frontal zone. The primary objective of this study is to quantify the levels of turbulence and dissipation occurring in a frontal zone through the calculation of kinetic energy spectra and dissipation rates. The high-resolution turbulence data used in this study are taken during the cold front that passed the MICROFRONTS site in the early evening hours of 20 March 1995. These new measurements can be used as a basis for parameterizing the effects of surface-layer turbulence in numerical models of frontogenesis. We present three techniques for calculating the dissipation rate: direct dissipation technique, inertial dissipation technique and Kolmogorov's four-fifths law. Dissipation rate calculations using these techniques are employed using data from both the sonic and hotwire anemometers, when possible. Unfortunately, direct calculations of {var_epsilon} were not possible during a part of the frontal passage because the high wind speeds concurrent with the frontal passage demand very high frequency resolution, beyond that possible with the hotwire anemometer, for direct {var_epsilon} calculations. The calculations resulting from these three techniques are presented for the cold front as a time series. Quantitative comparisons of the direct and indirect calculation techniques are also given. More detail, as well as a discussion of energy spectra, can be found in Piper & Lundquist(2004).

  2. Investigation of shock wave-boundary layer instability on the heated ramp surface

    NASA Astrophysics Data System (ADS)

    Glushneva, A. V.; Saveliev, A. S.; Son, E. E.; Tereshonok, D. V.

    2015-11-01

    By means of particle image velocimetry method shock-wave boundary layer interaction on the pre-heated ramp surface was investigated. The influence of surface heating on separation region unsteadiness was proved. It was found experimentally that increasing of wall to outer flow temperature ratio raises amplitude of separation region oscillation.

  3. Development of titanium oxide layer containing nanocrystalline zirconia particles with tetragonal structure: Structural and biological characteristics.

    PubMed

    Shin, Ki Ryong; Kim, Yeon Sung; Kim, Gye Won; Ko, Young Gun; Shin, Dong Hyuk

    2015-07-01

    This study investigated the microstructural, mechanical and biological properties of oxide layers containing tetragonal zirconia (t-ZrO2) particles on pure titanium produced by plasma electrolytic oxidation (PEO) process. For this purpose, PEO processes were carried out at an AC current density of 200mA/cm(2) for 180s in potassium pyrophosphate (K4P2O7) electrolytes with and without t-ZrO2 powder. Structural investigations using transmission electron microscopy exhibited that the present nanocrystalline oxide layer evidenced the successful incorporation of a myriad of t-ZrO2 particles working as an intermediate medium to reinforce the adhesion strength between the substrate and oxide layer. Regarding biomimetic apatite formation, the t-ZrO2 particles uniformly spread were of considerable importance in triggering the nucleation and growth of biomimetic apatite on the surface of the oxide layer immersed in a simulated body fluid solution. The growth and proliferation rates of the osteoblasts (MC3T3-E1) cultured on the oxide layer with t-ZrO2 particles were higher than that without t-ZrO2 particles due to the higher roughness providing the better sites for the filopodia extension and interlocking. PMID:25956745

  4. Modeled heating and surface erosion comparing motile (gas borne) and stationary (surface coating) inert particle additives

    SciTech Connect

    Buckingham, A.C.; Siekhaus, W.J.

    1982-09-27

    The unsteady, non-similar, chemically reactive, turbulent boundary layer equations are modified for gas plus dispersed solid particle mixtures, for gas phase turbulent combustion reactions and for heterogeneous gas-solid surface erosive reactions. The exterior (ballistic core) edge boundary conditions for the solutions are modified to include dispersed particle influences on core propellant combustion-generated turbulence levels, combustion reactants and products, and reaction-induced, non-isentropic mixture states. The wall surface (in this study it is always steel) is considered either bare or coated with a fixed particle coating which is conceptually non-reactive, insulative, and non-ablative. Two families of solutions are compared. These correspond to: (1) consideration of gas-borne, free-slip, almost spontaneously mobile (motile) solid particle additives which influence the turbulent heat transfer at the uncoated steel surface and, in contrast, (2) consideration of particle-free, gas phase turbulent heat transfer to the insulated surface coated by stationary particles. Significant differences in erosive heat transfer are found in comparing the two families of solutions over a substantial range of interior ballistic flow conditions. The most effective influences on reducing erosive heat transfer appear to favor mobile, gas-borne particle additives.

  5. Generation of alginate gel particles with AuNPs layers by polydimethylsiloxan template

    PubMed Central

    Guo, Zhi-Xiao; Zhang, Meng; Zhao, Li-Bo; Guo, Shi-Shang; Zhao, Xing-Zhong

    2011-01-01

    The authors report a feasible and simple microfluidic approach for synthesizing anisotropic gel particles based on template method. By filling arrays of microwells with alginate hydrogel and synthesizing gold nanoparticles (AuNPs) on the gel surface, anisotropic alginate gel particles with single side gold nanoparticles layers were produced in microwells on the polydimethylsiloxan template. AuNPs and the anisotropic feature were characterized using scanning electron microscopy and x-ray photoelectron spectrum analyses. The anisotropic particles made of biocompatible gels could be released from the template and collected with uniform sizes, which might have a powerful potential in biological detection and sensing. PMID:21799724

  6. Strength improvement via coating of a cylindrical hole by layer-by-layer assembled polymer particles.

    PubMed

    Wu, Shuqing; Garfield, Lucas B; Rupert, Nicholas E; Grady, Brian P; Funkhouser, Gary P

    2010-04-01

    Negatively charged colloidal poly(methyl methacrylate-co-butyl acrylate) (P(MMA-BA)) particles and positively charged dissolved poly(ethyleneimine) (PEI) were adsorbed onto a cement block using a layer-by-layer (LBL) assembly technique. The block was fashioned so as to have a cylindrical hole running from one face to another along the long axis of the rectangular block, and a fluid containing either of the two charged materials was pumped through the block. The result was a film tens of micrometers thick, and the pressure required to crack the cement block was measured after one end of the hole was sealed. Latex particles with a T(g) near the use temperature showed the maximum improvement in the cracking stress of the blocks. In a multilayer coating with identically sized particles, the cracking stress of the blocks increased to an improvement of 25% and then dropped off with increasing number of layers, even though the relationship between film thickness and the number of layers was linear. An improvement of about 30% in the cracking stress of the coated blocks was obtained when using multiple layers with different particle sizes. The effects of the number of layers and particle size on the cracking stress suggest that both the morphology and the thickness of the film play a role in performance. Tests done under confinement, e.g., with an external stress applied to the outside of the blocks, suggest that not only does a film-forming mechanism contribute to performance but that filling of microcracks in the rock may also play a role. PMID:20423142

  7. Optimization of Single and Layered Surface Texturing 

    E-print Network

    Bair, Alethea S.

    2010-07-14

    In visualization problems, surface shape is often a piece of data that must be shown effectively. One factor that strongly affects shape perception is texture. For example, patterns of texture on a surface can show the surface orientation from...

  8. Dynamic Air Layer on Textured Superhydrophobic Surfaces Ivan U. Vakarelski,*,

    E-print Network

    Chan, Derek Y C

    Dynamic Air Layer on Textured Superhydrophobic Surfaces Ivan U. Vakarelski,*, Derek Y. C. Chan that a novel macroscopic, dynamic continuous air layer or plastron can be sustained indefinitely on textured super- hydrophobic surfaces in air-supersaturated water by a natural gas influx mechanism. This type

  9. Physics of neutron star surface layers and their thermal radiation

    E-print Network

    of a dense plasma provides thermal insulation of the stellar interior and controls thus the coolingPhysics of neutron star surface layers and their thermal radiation Alexander Y. Potekhin Ioffe review the physical properties of neutron star surface layers, important for the stellar thermal

  10. Small particle transport across turbulent nonisothermal boundary layers

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Fernandez De La Mora, J.

    1982-01-01

    The interaction between turbulent diffusion, Brownian diffusion, and particle thermophoresis in the limit of vanishing particle inertial effects is quantitatively modeled for applications in gas turbines. The model is initiated with consideration of the particle phase mass conservation equation for a two-dimensional boundary layer, including the thermophoretic flux term directed toward the cold wall. A formalism of a turbulent flow near a flat plate in a heat transfer problem is adopted, and variable property effects are neglected. Attention is given to the limit of very large Schmidt numbers and the particle concentration depletion outside of the Brownian sublayer. It is concluded that, in the parameter range of interest, thermophoresis augments the high Schmidt number mass-transfer coefficient by a factor equal to the product of the outer sink and the thermophoretic suction.

  11. Surface engineering of nanoparticles in suspension for particle based bio-sensing

    NASA Astrophysics Data System (ADS)

    Sen, Tapas; Bruce, Ian J.

    2012-08-01

    Surface activation of nanoparticles in suspension using amino organosilane has been carried out via strict control of a particle surface ad-layer of water using a simple but efficient protocol `Tri-phasic Reverse Emulsion' (TPRE). This approach produced thin and ordered layers of particle surface functional groups which allowed the efficient conjugation of biomolecules. When used in bio-sensing applications, the resultant conjugates were highly efficient in the hybrid capture of complementary oligonucleotides and the detection of food borne microorganism. TPRE overcomes a number of fundamental problems associated with the surface modification of particles in aqueous suspension viz. particle aggregation, density and organization of resultant surface functional groups by controlling surface condensation of the aminosilane. The approach has potential for application in areas as diverse as nanomedicine, to food technology and industrial catalysis.

  12. Adsorption of sterically stabilized latex particles at liquid surfaces: effects of steric stabilizer surface coverage, particle size, and chain length on particle wettability.

    PubMed

    Reed, K M; Borovicka, J; Horozov, T S; Paunov, V N; Thompson, K L; Walsh, A; Armes, S P

    2012-05-01

    A series of five near-monodisperse sterically stabilized polystyrene (PS) latexes were synthesized using three well-defined poly(glycerol monomethacrylate) (PGMA) macromonomers with mean degrees of polymerization (DP) of 30, 50, or 70. The surface coverage and grafting density of the PGMA chains on the particle surface were determined using XPS and (1)H NMR spectroscopy, respectively. The wettability of individual latex particles adsorbed at the air-water and n-dodecane-water interfaces was studied using both the gel trapping technique and the film calliper method. The particle equilibrium contact angle at both interfaces is relatively insensitive to the mean DP of the PGMA stabilizer chains. For a fixed stabilizer DP of 30, particle contact angles were only weakly dependent on the particle size. The results are consistent with a model of compact hydrated layers of PGMA stabilizer chains at the particle surface over a wide range of grafting densities. Our approach could be utilized for studying the adsorption behavior of a broader range of sterically stabilized inorganic and polymeric particles of practical importance. PMID:22502638

  13. Water on a Hydrophobic Surface: Contact Angle vs. Depletion Layer

    NASA Astrophysics Data System (ADS)

    Neidig, Caitlyn; Brezinsky, Jacob; Zhou, Mengjue; Poynor, Adele

    2012-02-01

    Hydrophobic surfaces repel water. When this occurs, a depletion layer is formed between the water and the hydrophobic surface. We will be studying the effects from the contact angle, the angle at which the water droplet meets the surface, on the depletion layer. Larger contact angles create thicker depletion layers, which has lead us to determine if there is a direct relationship between the contact angle and depletion layer. In order to do this, we will be coating gold slides with a hydrophobic ODT solution, a hydrophilic Mercapto solution, and various mixtures of both of these solutions to create a large range of contact angles. We will be using Surface Plasmon Resonance to study to any depletion layer created by water on these surfaces.

  14. Surface chemistry of LiNi0.5Mn1.5O4 particles coated by Al2O3 using atomic layer deposition for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, Jin Wook; Kim, Dong Hyeon; Oh, Dae Yang; Lee, Hyeyoun; Kim, Ji Hyun; Lee, Jae Hyun; Jung, Yoon Seok

    2015-01-01

    The effects of depositing ultrathin (<1 nm) Al2O3 coatings on LiNi0.5Mn1.5O4 (LNMO) particles using atomic layer deposition (ALD) are presented. Promising electrochemical performance of the Al2O3 ALD coated LNMO at 30 °C is demonstrated in not only significantly improved coulombic efficiency, cycle retention, and rate capability, but also in dramatically suppressed self-discharge and dissolution of transition metals. Combined analyses by electrochemical impedance spectroscopy, ex-situ X-ray photoelectron spectroscopy, and ex-situ time-of-flight secondary ion mass spectrometry reveal that the solid electrolyte interphase layer on the Al2O3 ALD coated LNMO is much thinner and contains fewer organic species than the one on the bare LNMO. This difference originates from the suppression of the side reaction at high voltage by the Al2O3 ALD protective coating. Also, fluorination of Al2O3 ALD layer upon repeated charge-discharge cycling is confirmed, and this can account for the capacity increases during the initial charge-discharge cycles. Finally, it is also demonstrated that a full LNMO/Li4Ti5O12 battery incorporating the Al2O3 ALD coated LNMO outperforms the one incorporating only bare LNMO.

  15. Charged particle detectors with active detector surface for partial energy deposition of the charged particles and related methods

    DOEpatents

    Gerts, David W; Bean, Robert S; Metcalf, Richard R

    2013-02-19

    A radiation detector is disclosed. The radiation detector comprises an active detector surface configured to generate charge carriers in response to charged particles associated with incident radiation. The active detector surface is further configured with a sufficient thickness for a partial energy deposition of the charged particles to occur and permit the charged particles to pass through the active detector surface. The radiation detector further comprises a plurality of voltage leads coupled to the active detector surface. The plurality of voltage leads is configured to couple to a voltage source to generate a voltage drop across the active detector surface and to separate the charge carriers into a plurality of electrons and holes for detection. The active detector surface may comprise one or more graphene layers. Timing data between active detector surfaces may be used to determine energy of the incident radiation. Other apparatuses and methods are disclosed herein.

  16. Lunar surface outgassing and alpha particle measurements

    SciTech Connect

    Lawson, S. L.; Feldman, W. C.; Lawrence, David J. ,; Moore, K. R.; Elphic, R. C.; Maurice, S.; Belian, Richard D.; Binder, Alan B.

    2002-01-01

    The Lunar Prospector Alpha Particle Spectrometer (LP APS) searched for lunar surface gas release events and mapped their distribution by detecting alpha particle?; produced by the decay of gaseous radon-222 (5.5 MeV, 3.8 day half-life), solid polonium-2 18 (6.0 MeV, 3 minute half-life), and solid polonium-210 (5.3 MeV, 138 day half-life, but held up in production by the 21 year half-life of lead-210). These three nuclides are radioactive daughters from the decay of uranium-238.

  17. Surface plasma source with anode layer plasma accelerator

    SciTech Connect

    Dudnikov, Vadim

    2012-02-15

    Proposed plasma generation system can be used for high current negative ion beam production and for directed deposition by flux of sputtered neutrals and negative ions. The main mechanism of negative ion formation in surface plasma sources is the secondary emission from low work function surface bombarded by a flux of positive ion or neutrals. The emission of negative ions is enhanced significantly by introducing a small amount of cesium or other substance with low ionization potential. In the proposed source are used positive ions generated by Hall drift plasma accelerator (anode layer plasma accelerator or plasma accelerator with insulated channel, with cylindrical or race track configuration of emission slit). The target-emitter is bombarded by the ion beam accelerated in crossed ExB fields. Negative ions are extracted from the target surface with geometrical focusing and are accelerated by negative voltage applied between emitter and plasma, contacting with the plasma accelerator. Hall drift ion source has a special design with a space for passing of the emitted negative ions and sputtered particles through the positive ion source.

  18. Surface plasma source with anode layer plasma acceleratora)

    NASA Astrophysics Data System (ADS)

    Dudnikov, Vadim

    2012-02-01

    Proposed plasma generation system can be used for high current negative ion beam production and for directed deposition by flux of sputtered neutrals and negative ions. The main mechanism of negative ion formation in surface plasma sources is the secondary emission from low work function surface bombarded by a flux of positive ion or neutrals. The emission of negative ions is enhanced significantly by introducing a small amount of cesium or other substance with low ionization potential. In the proposed source are used positive ions generated by Hall drift plasma accelerator (anode layer plasma accelerator or plasma accelerator with insulated channel, with cylindrical or race track configuration of emission slit). The target-emitter is bombarded by the ion beam accelerated in crossed ExB fields. Negative ions are extracted from the target surface with geometrical focusing and are accelerated by negative voltage applied between emitter and plasma, contacting with the plasma accelerator. Hall drift ion source has a special design with a space for passing of the emitted negative ions and sputtered particles through the positive ion source.

  19. Carbon Surface Layers on a High-Rate LiFePO4

    SciTech Connect

    Gabrisch, Heike; Wilcox, James D.; Doeff, Marca M.

    2005-09-06

    Transmission electron microscopy (TEM) was used to image particles of a high-rate LiFePO4 sample containing a small amount of in situ carbon. The particle morphology is highly irregular, with a wide size distribution. Nevertheless, coatings, varying from about 5-10 nm in thickness, could readily be detected on surfaces of particles as well as on edges of agglomerates. Elemental mapping using Energy Filtered TEM (EFTEM) indicates that these very thin surface layers are composed of carbon. These observations have important implications for the design of high-rate LiFePO4 materials in which, ideally, a minimal amount of carbon coating is used.

  20. Surface layering of liquids: The role of surface tension Oleg Shpyrko,1

    E-print Network

    Pershan, Peter S.

    Surface layering of liquids: The role of surface tension Oleg Shpyrko,1 Masafumi Fukuto,1 Peter and alloys are always layered, regardless of composition and surface tension; a result supported by three, for the liquid-vapor interface it is tempting to think that the large surface tension of liquid metals such as Hg

  1. Characterization and use of crystalline bacterial cell surface layers

    NASA Astrophysics Data System (ADS)

    Sleytr, Uwe B.; Sára, Margit; Pum, Dietmar; Schuster, Bernhard

    2001-10-01

    Crystalline bacterial cell surface layers (S-layers) are one of the most common outermost cell envelope components of prokaryotic organisms (archaea and bacteria). S-layers are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. S-layers as the most abundant of prokaryotic cellular proteins are appealing model systems for studying the structure, synthesis, genetics, assembly and function of proteinaceous supramolecular structures. The wealth of information existing on the general principle of S-layers have revealed a broad application potential. The most relevant features exploited in applied S-layer research are: (i) pores passing through S-layers show identical size and morphology and are in the range of ultrafiltration membranes; (ii) functional groups on the surface and in the pores are aligned in well-defined positions and orientations and accessible for chemical modifications and binding functional molecules in very precise fashion; (iii) isolated S-layer subunits from a variety of organisms are capable of recrystallizing as closed monolayers onto solid supports (e.g., metals, polymers, silicon wafers) at the air-water interface, on lipid films or onto the surface of liposomes; (iv) functional domains can be incorporated in S-layer proteins by genetic engineering. Thus, S-layer technologies particularly provide new approaches for biotechnology, biomimetics, molecular nanotechnology, nanopatterning of surfaces and formation of ordered arrays of metal clusters or nanoparticles as required for nanoelectronics.

  2. Correlation and prediction of thermophoretic and inertial effects on particle deposition from non-isothermal turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Fernandez De La Mora, J.

    1982-01-01

    The problem of small particle deposition which can cause hot stage corrosion and/or fouling in combustion turbines operating on fuels containing ash or inorganic salts is investigated. Two boundary layer transport phenomena are shown to assume importance in these cases: particle thermophoresis (migration down a temperature gradient) and particle inertia. Thermophoretic and eddy transport across turbulent boundary layers without and with particle inertia effects are quantitatively analyzed. The effects of streamwise blade curvature on particle transport across turbulent boundary layers are determined. It is shown that these phenomena destroy the analogy between mass and heat transfer or mass and momentum transfer. Also studied are the effects on particle deposition of distributed or localized wall blowing, surface roughness, and mainstream turbulence.

  3. Ameriflux data used for verification of surface layer parameterizations

    NASA Astrophysics Data System (ADS)

    Tassone, Caterina; Ek, Mike

    2015-04-01

    The atmospheric surface-layer parameterization is an important component in a coupled model, as its output, the surface exchange coefficients for momentum, heat and humidity, are used to determine the fluxes of these quantities between the land-surface and the atmosphere. An accurate prediction of these fluxes is therefore required in order to provide a correct forecast of the surface temperature, humidity and ultimately also the precipitation in a model. At the NOAA/NCEP Environmental Modeling Center, a one-dimensional Surface Layer Simulator (SLS) has been developed for simulating the surface layer and its interface. Two different configurations of the SLS exist, replicating in essence the way in which the surface layer is simulated in the GFS and the NAM, respectively. Input data for the SLS are the basic atmospheric quantities of winds, temperature, humidity and pressure evaluated at a specific height above the ground, surface values of temperature and humidity, and the momentum roughness length z0. The output values of the SLS are the surface exchange coefficients for heat and momentum. The exchange coefficients computed by the SLS are then compared with independent estimates derived from measured surface heat fluxes. The SLS is driven by a set of Ameriflux data acquired at 22 stations over a period of several years. This provides a large number of different vegetation characteristics and helps ensure statistical significance. Even though there are differences in the respective surface layer formulations between the GFS and the NAM, they are both based on similarity theory, and therefore lower boundary conditions, i.e. roughness lengths for momentum and heat, and profile functions are among the main components of the surface layer that need to be evaluated. The SLS is a very powerful tool for this type of evaluation. We present the results of the Ameriflux comparison and discuss the implications of our results for the surface layer parameterizations of the NAM and the GFS.

  4. Interactions of hyaluronan layers with similarly charged surfaces: the effect of divalent cations.

    PubMed

    Jiang, Lei; Titmuss, Simon; Klein, Jacob

    2013-10-01

    We used colloidal probe atomic force microscopy to measure the normal forces between the surface of a silica colloidal particle and a sparse layer of hyaluronan (hyaluronic acid, HA, MW ? 10(6) Da) covalently attached to a planar silica surface, both across pure water and following the addition of 1 mM MgCl2. It was found that in the absence of salt the HA layer repelled the colloidal silica surface during both approach and retraction. The addition of the MgCl2, however, changes the net force between the negatively charged HA layer and the opposing negatively charged silica surface from repulsion to adhesion. This interaction reversal is attributed to the bridging effect of the added Mg(2+) ions. Our results provide first direct force data to support earlier simulation and predictions that such divalent cations could bridge between negative charges on opposing surfaces, leading to an overall reversal of force from repulsion to attraction. PMID:24011082

  5. Particle nucleation in the tropical boundary layer and its coupling to marine sulfur sources

    PubMed

    Clarke; Davis; Kapustin; Eisele; Chen; Paluch; Lenschow; Bandy; Thornton; Moore; Mauldin; Tanner; Litchy; Carroll; Collins; Albercook

    1998-10-01

    New particle formation in a tropical marine boundary layer setting was characterized during NASA's Pacific Exploratory Mission-Tropics A program. It represents the clearest demonstration to date of aerosol nucleation and growth being linked to the natural marine sulfur cycle. This conclusion was based on real-time observations of dimethylsulfide, sulfur dioxide, sulfuric acid (gas), hydroxide, ozone, temperature, relative humidity, aerosol size and number distribution, and total aerosol surface area. Classic binary nucleation theory predicts no nucleation under the observed marine boundary layer conditions. PMID:9756483

  6. Improve oxidation resistance at high temperature by nanocrystalline surface layer

    NASA Astrophysics Data System (ADS)

    Xia, Z. X.; Zhang, C.; Huang, X. F.; Liu, W. B.; Yang, Z. G.

    2015-08-01

    An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in conventional P91 steel. The diffusivity of Cr, Fe and O is enhanced concurrently in the nanocrystalline surface layer, which causes the fast oxidation in the initial oxidation stage. The formation of (Fe,Cr)2O3 inner layer would inhabit fast diffusion of alloy elements in the nanocrystalline surface layer of P91 steel in the later oxidation stage, and it causes a decrease in the parabolic oxidation rate compared with conventional specimens. This study provides a novel approach to improve the oxidation resistance of heat resistant steel without changing its Cr content.

  7. Improve oxidation resistance at high temperature by nanocrystalline surface layer

    PubMed Central

    Xia, Z. X.; Zhang, C.; Huang, X. F.; Liu, W. B.; Yang, Z. G.

    2015-01-01

    An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in conventional P91 steel. The diffusivity of Cr, Fe and O is enhanced concurrently in the nanocrystalline surface layer, which causes the fast oxidation in the initial oxidation stage. The formation of (Fe,Cr)2O3 inner layer would inhabit fast diffusion of alloy elements in the nanocrystalline surface layer of P91 steel in the later oxidation stage, and it causes a decrease in the parabolic oxidation rate compared with conventional specimens. This study provides a novel approach to improve the oxidation resistance of heat resistant steel without changing its Cr content. PMID:26269034

  8. Improve oxidation resistance at high temperature by nanocrystalline surface layer.

    PubMed

    Xia, Z X; Zhang, C; Huang, X F; Liu, W B; Yang, Z G

    2015-01-01

    An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in conventional P91 steel. The diffusivity of Cr, Fe and O is enhanced concurrently in the nanocrystalline surface layer, which causes the fast oxidation in the initial oxidation stage. The formation of (Fe,Cr)2O3 inner layer would inhabit fast diffusion of alloy elements in the nanocrystalline surface layer of P91 steel in the later oxidation stage, and it causes a decrease in the parabolic oxidation rate compared with conventional specimens. This study provides a novel approach to improve the oxidation resistance of heat resistant steel without changing its Cr content. PMID:26269034

  9. Chemical composition of pen surface layers of beef cattle feedyards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biological, physical, and chemical characteristics of beef cattle feedyard pen surfaces may affect nutrient transformations and losses to the atmosphere, ground water, or surface water. Feedyard pen surfaces can typically segregate into three or four layers. The purpose of this study was to dete...

  10. Wind Tunnel Experiments and Modelling of Particle-Laden Boundary Layer Flows

    NASA Astrophysics Data System (ADS)

    Lehning, M.; Walter, B.; Horender, S.; Groot Zwaaftink, C.

    2013-12-01

    Particle-laden boundary flows occur in many geophysical and industrial environments yet are difficult to understand and quantitatively describe because the interactions of an often turbulent boundary layer flow with surface and particle dynamics are complex. The SLF wind tunnel allows the investigation of snow and sand particle laden boundary layer flows over their natural surfaces with and without the presence of a grass canopy.The experimental results are used to investigate the two possible approaches in describing the surface dynamics: (i) Models of particle transport, which assume a stationary flow situation and predict a mass flux for an hypothetical equilibrium; (ii) Models that take the temporal variability of the mass flux explicitly into account such as Lagrangian Stochastic particle tracking Models (LSM) on the basis of large eddy simulation (LES) or direct numerical simulation (DNS) of flow and turbulence. This presentation shows that wind tunnel data support the form of semi-empirical equilibrium models, which predict mass flux, q, as a function of the mean wind speed or the friction velocity, u, and a threshold velocity, uth: q=a(u-uth)x. For the exponent "x", a value of approximately 3, as based on theoretical considerations, is consistent with the data. This simple form of equilibrium models as well as more complicated equilibrium models are all based on the hypothesis that the surface shear stress induced by a fluid on the ground during sediment saltation is constant, i.e. independent of the magnitude of the particle mass flux (Owen's second hypothesis). Our surface shear stress measurements in a drifting-sand wind tunnel show a constant value of the fluid shear stress for saltation layers of various mass-flux magnitudes, directly validating Owen's second hypothesis for the first time. The equilibrium models, however, only insufficiently describe the full dynamics of particle-laden flows. The second part of the presentation therefore discusses non-equilibrium features such as a high variability of the particle mass flux caused by flow turbulence and surface heterogeneity. Mass flux intermittency is primarily observed around the threshold value uth. Using a combination of LES and LSM models, we show how the simulation of individual feed-back processes leads to a more complete understanding of the mechanisms behind the flux variability.

  11. Surface layering of liquids: Is surface tension the dominant factor? Oleg Shpyrko,1

    E-print Network

    Fukuto, Masafumi

    Surface layering of liquids: Is surface tension the dominant factor? Oleg Shpyrko,1 Masafumi Fukuto near a hard flat surface and at first it is tempt- ing to think that the large surface tension that the free surface of water, which has nearly the same surface tension as K, does not exhibit SL features

  12. Multiple angle ellipsometric analysis of surface layers and surface layer contaminants.

    PubMed

    Pedinoff, M E; Stafsudd, O M

    1982-02-01

    A multiple angle ellipsometric method is used for the measurement of substrates covered by contaminant layers and for the measurement of thin film layers on substrates. The method evaluates the fundamental optical constants N and K of the substrate and film layers deposited on it. Results are given for oxided aluminum films on glass, contamination layers on gallium arsenide, silicon oxide layers on silicon, and silicon nitride layers on silicon. This method is applicable to optical and semiconductor substrate and film evaluation, provided the number of layers in the sample is known and the layers are partially transparent. PMID:20372487

  13. Particle acceleration at shocks with surface ripples

    NASA Technical Reports Server (NTRS)

    Decker, R. B.

    1990-01-01

    The present treatment of superthermal-ion acceleration on the surface of a fast-mode hydromagnetic shock gives attention to (1) small-amplitude surface ripples characterized by width L and amplitude A that are large relative to the energetic-ion gyroradius, and (2) shocks which are on average quasi-perpendicular. An investigation is made of the effects of the confinement, evolving geometry, and finite shock curvature associated with the ripple, by integrating along the orbits of the proton test particles. As an upstream magnetic field line convects through the surface ripple, it intersects the shock at two points, thereby forming a temporary magnetic trap. Flux-line profiles and angular distributions in a given ripple differ substantially, depending on the path it takes through the ripple and its distance from the shock.

  14. Energetic Particle Synthesis of Metastable Layers for Superior Mechanical Properties

    SciTech Connect

    Follstaedt, D.M.; Knapp, J.A.; Myers, S.M.; Dugger, M.T.; Friedmann, T.A.; Sullivan, J.P.; Monteiro, O.R.; Ager, J.W. III; Brown, I.G.; Christenson, T.

    1998-01-01

    Energetic particle methods have been used to synthesize two metastable layers with superior mechanical properties: amorphous Ni implanted with overlapping Ti and C, and amorphous diamond-like carbon (DLC) formed by vacuum-arc deposition or pulsed laser deposition. Elastic modulus, yield stress and hardness were reliably determined for both materials by fitting finite-element simulations to the observed layer/substrate responses during nanoindentation. Both materials show exceptional properties, i.e., the yield stress of amorphous Ni(Ti,C) exceeds that of hardened steels and other metallic glasses, and the hardness of DLC (up to 88 GPa) approaches that of crystalline diamond (approx. 100 GPa). Tribological performance of the layers during unlubricated sliding contact appears favorable for treating Ni-based micro-electromechanical systems: stick-slip adhesion to Ni is eliminated, giving a low coefficient of friction (approx. 0.3-0.2) and greatly reduced wear. We discuss how energetic particle synthesis is critical to forming these phases and manipulating their properties for optimum performance.

  15. Surface plasmon enhanced emission from dye doped polymer layers

    E-print Network

    Okamoto, Koichi

    Surface plasmon enhanced emission from dye doped polymer layers Terrell D. Neal,a) Koichi Okamoto the plasmon frequency of a thin unpatterned silver film to the emission of a dye doped polymer deposited onto layer, we estimate that the plasmon frequency can be tuned to match dye doped polymer emission

  16. Dry deposition of large, airborne particles onto a surrogate surface

    NASA Astrophysics Data System (ADS)

    Kim, Eugene; Kalman, David; Larson, Timothy

    Simultaneous measurements of particle dry deposition flux and airborne number concentration in the open atmosphere were made using three different types of artificially generated particles in the size range 10-100 ?m - perlite, diatomaceous earth and glass beads. A combination of gravimetric analysis, automated microscopy and sonic anemometry provided size-resolved estimates of both the inertial and gravitational components of the quasi-laminar layer particle deposition velocity, ( Vd) b, as a function of size. Eddy inertial deposition efficiency ( ?dI) was determined as a function of dimensionless eddy Stokes number (Stk e). In the range 3particles and gases to environmental surfaces. DOE Report PNL-SA-6721, Pacific Northwest Laboratories, Richland, WA), used in several regulatory models, significantly under-predicted (up to seven times) ( Vd) b for large particles ( da>10 ?m).

  17. Turbulent boundary layer on a convex, curved surface

    NASA Technical Reports Server (NTRS)

    Gillis, J. C.; Johnston, J. P.; Kays, W. M.; Moffat, R. J.

    1980-01-01

    The effects of strong convex curvature on boundary layer turbulence were investigated. The data gathered on the behavior of Reynolds stress suggested the formulation of a simple turbulence model. Three sets of data were taken on two separate facilities. Both rigs had flow from a flat surface, over a convex surface with 90 deg of turning, and then onto a flat recovery surface. The geometry was adjusted so that, for both rigs, the pressure gradient along the test surface was zero - thus avoiding any effects of streamwise acceleration on the wall layers. Results show that after a sudden introduction of curvature, the shear stress in the outer part of the boundary layer is sharply diminished and is even slightly negative near the edge. The wall shear also drops off quickly downstream. In contrast, when the surface suddenly becomes flat again, the wall shear and shear stress profiles recover very slowly towards flat wall conditions.

  18. Humidity variations in the atmospheric surface layer 

    E-print Network

    Humphrey, Scott Richard

    1985-01-01

    layer characteristics. Spectra of turbulent f1 uctuati on s. Variance budgets Flux-profile relationships , Structure function parameters. 2 4 6 7 8 3. INSTRUMENTATION AND DATA a. Specifications of instruments. b. Summary of data collected. 4... universal constant (Lumley and Panofsky, 1964). By dimensional reasoning and by analogy to velocity, the spectra for temperature and humidity in the inertial subrange should have the form and -i/3 -s/3 4T(K1 ) BTXT E -1/3 -s/s 4q(1)8qxqKE (2. 6...

  19. Nanoshells with a gain layer: the effects of surface scattering

    NASA Astrophysics Data System (ADS)

    Ruppin, R.

    2015-12-01

    The optical properties of layered nanoparticles containing at least one metallic layer and one gain medium layer are calculated. The mean free path effect, resulting from the surface scattering of the conduction electrons, is taken into account in the usual way, by modifying the dielectric function of the metallic shell. There exist in the literature a number of effective mean free path model choices for the shell geometry. We investigate the dependence of the optical spectra, as well as the critical gain values, on the choice of the surface scattering model.

  20. Enceladus: Correlation of Surface Particle Distribution and Geology

    NASA Astrophysics Data System (ADS)

    Jaumann, R.; Stephan, K.; Brown, R. H.; Clark, R.; Wagner, R.; Filacchione, G.; Buratti, B. J.; Nelson, R. M.; Nicholson, P. D.; Sotin, C.; Baines, K. H.; Le Mouélic, S.; Rodriguez, S.; Hansen, G. B.; Roatsch, T.; Capaccioni, F.; Ciarniello, M.

    2011-10-01

    The surface of Enceladus consists almost completely of water ice [1,2]. The band depths of water ice absorptions are sensitive to the size of particles covering the surface. Thus, ice absorption features can be used to map variations of icy particles across the surface. The water ice band depths were compared to water ice models that represent theoretically calculated reflectance spectra for a range of particle diameters between 2 ?m and 1 mm [2,3,4]. Cassini VIMS observations show that the particle diameter of water ice increases toward younger tectonically altered surface units with the largest particles exposed in relatively "fresh" surface material. The smallest particles were generally found in old densely cratered terrains. The largest particles are concentrated at the south polar active zones. In general, the particle diameters are strongly correlated with geologic features and surface ages, indicating a stratigraphic evolution of the surface that is caused by cryovolcanic resurfacing and impact gardening.

  1. Groupwise surface correspondence using particle filtering

    NASA Astrophysics Data System (ADS)

    Li, Guangxu; Kim, Hyoungseop; Tan, Joo Kooi; Ishikawa, Seiji

    2015-03-01

    To obtain an effective interpretation of organic shape using statistical shape models (SSMs), the correspondence of the landmarks through all the training samples is the most challenging part in model building. In this study, a coarse-tofine groupwise correspondence method for 3-D polygonal surfaces is proposed. We manipulate a reference model in advance. Then all the training samples are mapped to a unified spherical parameter space. According to the positions of landmarks of the reference model, the candidate regions for correspondence are chosen. Finally we refine the perceptually correct correspondences between landmarks using particle filter algorithm, where the likelihood of local surface features are introduced as the criterion. The proposed method was performed on the correspondence of 9 cases of left lung training samples. Experimental results show the proposed method is flexible and under-constrained.

  2. Surface Layers of Clostridium difficile Endospores?†

    PubMed Central

    Permpoonpattana, Patima; Tolls, Elisabeth H.; Nadem, Ramez; Tan, Sisareuth; Brisson, Alain; Cutting, Simon M.

    2011-01-01

    Clostridium difficile is an important human pathogen and one where the primary cause of disease is due to the transmission of spores. We have investigated the proteins found in the outer coat layers of C. difficile spores of pathogenic strain 630 (CD630). Five coat proteins, CotA, CotB, CotCB, CotD, and CotE, were shown to be expressed on the outer coat layers of the spore. We demonstrate that purified spores carry catalase, peroxiredoxin, and chitinase activity and that this activity correlates with the predicted functions of three spore coat proteins identified here, CotCB, CotD, and CotE. CotCB and CotD are putative manganese catalases, and CotE is a novel bifunctional protein with peroxiredoxin activity at its amino terminus and chitinase activity at its carboxy terminus. These enzymes could play an important role in coat assembly by polymerizing protein monomers in the coat. CotE, in addition to a role in macromolecular degradation, could play an important role in inflammation, and this may be of direct relevance to the development of the gastrointestinal symptoms that accompany C. difficile infection. Although specific enzyme activity has not yet been assigned to the proteins identified here, this work provides the first detailed study of the C. difficile spore coat. PMID:21949071

  3. Thin Water Films at Multifaceted Hematite Particle Surfaces.

    PubMed

    Boily, Jean-François; Ye?ilba?, Merve; Md Musleh Uddin, Munshi; Baiqing, Lu; Trushkina, Yulia; Salazar-Alvarez, Germàn

    2015-12-01

    Mineral surfaces exposed to moist air stabilize nanometer- to micrometer-thick water films. This study resolves the nature of thin water film formation at multifaceted hematite (?-Fe2O3) nanoparticle surfaces with crystallographic faces resolved by selected area electron diffraction. Dynamic vapor adsorption (DVA) in the 0-19 Torr range at 298 K showed that these particles stabilize water films consisting of up to 4-5 monolayers. Modeling of these data predicts water loadings in terms of an "adsorption regime" (up to 16 H2O/nm(2)) involving direct water binding to hematite surface sites, and of a "condensation regime" (up to 34 H2O/nm(2)) involving water binding to hematite-bound water nanoclusters. Vibration spectroscopy identified the predominant hematite surface hydroxo groups (-OH, ?-OH, ?3-OH) through which first layer water molecules formed hydrogen bonds, as well as surface iron sites directly coordinating water molecules (i.e., as geminal ?-(OH2)2 sites). Chemometric analyses of the vibration spectra also revealed a strong correspondence in the response of hematite surface hydroxo groups to DVA-derived water loadings. These findings point to a near-saturation of the hydrogen-bonding environment of surface hydroxo groups at a partial water vapor pressure of ?8 Torr (?40% relative humidity). Classical molecular dynamics (MD) resolved the interfacial water structures and hydrogen bonding populations at five representative crystallographic faces expressed in these nanoparticles. Simulations of single oriented slabs underscored the individual roles of all (hydro)oxo groups in donating and accepting hydrogen bonds with first layer water in the "adsorption regime". These analyses pointed to the preponderance of hydrogen bond-donating -OH groups in the stabilization of thin water films. Contributions of ?-OH and ?3-OH groups are secondary, yet remain essential in the stabilization of thin water films. MD simulations also helped resolve crystallographic controls on water-water interactions occurring in the "condensation regime". Water-water hydrogen bond populations are greatest on the (001) face, and decrease in importance in the order (001) > (012) ? (110) > (014) ? (100). Simulations of a single (?5 nm × ? 6 nm × ? 6 nm) nanometric hematite particle terminated by the (001), (110), (012), and (100) faces also highlighted the key roles that sites at particle edges play in interconnecting thin water films grown along contiguous crystallographic faces. Hydroxo-water hydrogen bond populations showed that edges were the preferential loci of binding. These simulations also suggested that equilibration times for water binding at edges were slower than on crystallographic faces. In this regard, edges, and by extension roughened surfaces, are expected to play commanding roles in the stabilization of thin water films. Thus, in focusing on the properties of nanometric-thick water layers at hematite surfaces, this study revealed the nature of interactions between water and multifaced particle surfaces. Our results pave the way for furthering our understanding of mineral-thin water film interfacial structure and reactivity on a broader range of materials. PMID:26559158

  4. Surface composition of silica particles embedded in an Australian bituminous coal.

    PubMed

    Gong, B; Pigram, P J; Lamb, R N

    1999-07-01

    The composition and structure of the surface layers of a series of silica particles (10-20 microns across), embedded in a bituminous coal from the Whybrow seam, Sydney Basin, Australia, have been characterized in situ using time-of-flight secondary ion mass spectrometry (TOFSIMS), ion imaging, and depth profiling. The silica particles investigated are typically encased in a multilayered shell, the composition of which differs from average composition of both the silica and the bulk coal. The analysis directly demonstrates the presence of a silanol-rich (Si-OH) interfacial layer 3 nm in thickness. This silanol-rich region separates the bulk silica and a complex non-silica layer encasing the particles. The interfacial region also shows significant lithium enrichment (approximately fivefold over bulk) which implies diffusion and precipitation of lithium-containing species during the authigenetic formation of the surface layers of the silica grains. The outer layer encasing the silica particles is 10 nm in thickness and is composed of clays and carbonates, and, in some cases, includes organic material. The elemental constituents of this layer include aluminium, sodium, potassium, magnesium, iron, and lesser amounts of titanium and copper. The variation in the aluminium concentration from the outermost surface to the deeper layers is less than that of other non-silica species. A relatively high amount of calcium is found associated with the silica bulk. Although only non-respirable-sized silica particles are examined in this work, the methods of analysis developed have potential in providing an insight into the surface composition of respirable particles and in further studies of the surface bioavailability of silica species. PMID:10461404

  5. Monte Carlo simulation of light reflection from cosmetic powder particles near the human skin surface

    NASA Astrophysics Data System (ADS)

    Okamoto, Takashi; Kumagawa, Tatsuya; Motoda, Masafumi; Igarashi, Takanori; Nakao, Keisuke

    2013-06-01

    The reflection and scattering properties of light incident on human skin covered with powder particles have been investigated. A three-layer skin structure with a pigmented area is modeled, and the propagation of light in the skin's layers and in a layer of particles near the skin's surface is simulated using the Monte Carlo method. Assuming that only single scattering of light occurs in the powder layer, the simulation results show that the reflection spectra of light from the skin change with the size of powder particles. The color difference between normal and discolored skin is found to decrease considerably when powder particles with a diameter of approximately 0.25 ?m are present near the skin's surface. The effects of the medium surrounding the particles, and the influence of the distribution of particle size (polydispersity), are also examined. It is shown that a surrounding medium with a refractive index close to that of the skin substantially suppresses the extreme spectral changes caused by the powder particles covering the skin surface.

  6. Electrical double layer around a spherical colloid particle: the excluded volume effect.

    PubMed

    López-García, J J; Aranda-Rascón, M J; Horno, J

    2007-12-01

    The influence of the excluded volume effect on both the spatial distribution of ionic species and the electrostatic potential distribution in the neighborhood of a suspended spherical particle is examined on the basis of a modified Poisson-Boltzmann equation, which takes into account the finite ion size by means of a Langmuir-type correction. We find that kappaa (kappa and a being the reciprocal Debye length and the particle radius, respectively) ceases to be a valid parameter for the characterization of the electrical double layer, and that it is necessary to use both parameters kappa and a to characterize adequately the system. We also find that the excluded volume effect considerably increases the surface potential (for a given value of the surface charge density) as compared to the case when ideal ion behavior is assumed. This suggests the use of the particle charge rather than the surface potential in order to characterize the system. Because of this, an approximate equation for the surface charge density of spherical colloid particles, valid for a wide range of system parameter values, is also reported. PMID:17761192

  7. Multi-layer enhancement to polysilicon surface-micromachining technology

    SciTech Connect

    Sniegowski, J.J.; Rodgers, M.S.

    1997-10-01

    A multi-level polysilicon surface-micromachining technology consisting of 5 layers of polysilicon is presented. Surface topography and film mechanical stress are the major impediments encountered in the development of a multilayer surface-micromachining process. However, excellent mechanical film characteristics have been obtained through the use of chemical-mechanical polishing for planarization of topography and by proper sequencing of film deposition with thermal anneals. Examples of operating microactuators, geared power-transfer mechanisms, and optical elements demonstrate the mechanical advantages of construction with 5 polysilicon layers.

  8. Nano-porous layer on steel surface as lubricant carrier.

    PubMed

    Utsunomiya, Hiroshi; Kawajiri, Shogo; Takahira, Nobuyuki; Sakai, Tetsuo; Tanaka, Toshihiro

    2011-02-01

    In cold forging of steels, metal soap on zinc-phosphate coating is excellent lubrication system. However, the system is not only less productive, but produces hazardous wastes. In this study, an alternative lubrication system using surface porous layer is proposed. Surface oxide on low carbon steel turns into porous layer by chemical reduction using hydrogen. It is found that liquid lubricant decreases the friction coefficient in compression greatly. The porous surface enhances the decrease, especially in the cases of heavy deformation. PMID:21456283

  9. Many-body microhydrodynamics of colloidal particles with active boundary layers

    E-print Network

    Rajesh Singh; Somdeb Ghose; R. Adhikari

    2015-07-13

    Colloidal particles with active boundary layers - regions surrounding the particles where nonequilibrium processes produce large velocity gradients - are common in many physical, chemical and biological contexts. The velocity or stress at the edge of the boundary layer determines the exterior fluid flow and, hence, the many-body interparticle hydrodynamic interaction. Here, we present a method to compute the many-body hydrodynamic interaction between $N$ spherical active particles induced by their exterior microhydrodynamic flow. First, we use a boundary integral representation of the Stokes equation to eliminate bulk fluid degrees of freedom. Then, we expand the boundary velocities and tractions of the integral representation in an infinite-dimensional basis of tensorial spherical harmonics and, on enforcing boundary conditions in a weak sense on the surface of each particle, obtain a system of linear algebraic equations for the unknown expansion coefficients. The truncation of the infinite series, fixed by the degree of accuracy required, yields a finite linear system that can be solved accurately and efficiently by iterative methods. The solution linearly relates the unknown rigid body motion to the known values of the expansion coefficients, motivating the introduction of propulsion matrices. These matrices completely characterize hydrodynamic interactions in active suspensions just as mobility matrices completely characterize hydrodynamic interactions in passive suspensions. The reduction in the dimensionality of the problem, from a three-dimensional partial differential equation to a two-dimensional integral equation, allows for dynamic simulations of hundreds of thousands of active particles on multi-core computational architectures.

  10. Generalized optical theorem for surface waves and layered media

    SciTech Connect

    Halliday, David; Curtis, Andrew

    2009-05-15

    We present a generalized optical theorem for surface waves. The theorem also applies to body waves since under many circumstances body waves can be written in terms of surface-wave modal summations. This theorem therefore extends the domain of applicability of the optical theorem from homogeneous background media to a general class of body and surface-wave propagation regimes within layered elastic media.

  11. Method for producing functionally graded nanocrystalline layer on metal surface

    DOEpatents

    Ajayi, Oyelayo O. (Oswego, IL); Hershberger, Jeffrey G. (Berwyn, IL)

    2010-03-23

    An improved process for the creation or formation of nanocrystalline layers on substrates' surfaces is provided. The process involves "prescuffing" the surface of a substrate such as a metal by allowing friction to occur on the surface by a load-bearing entity making rubbing contact and moving along and on the substrate's surface. The "prescuffing" action is terminated when the coefficient of friction between the surface and the noise is rising significantly. Often, the significant rise in the coefficient of friction is signaled by a change in pitch of the scuffing action sound emanating from the buffeted surface. The "prescuffing" gives rise to a harder and smoother surface which withstands better any inadequate lubrication that may take place when the "prescuffed" surface is contacted by other surfaces.

  12. Laboratory study of opposition surge of rock chips and particle layers

    NASA Astrophysics Data System (ADS)

    Honda, T.; Nakamura, A. M..; Mukai, T.

    Surfaces of small bodies such as asteroids are covered with regolith particles The intensity of the scattered light from such surface nonlinearly increases at small solar phase angles the angle between the light source and the detector as seen from the target The degree and the sharpness of the phenomena opposition surge are considered to depend on the physical state of the surface It was shown the opposition surge appears on scattered light from surface of rocks Shepard and Arvidson 1999 However it remains to be incompletely understood how the opposition surge varies with the structure and optical characteristics of the scattering target First we performed measurements of scattered light from rock chips and particle layers at low phase angles Measurements were performed using a multi phase angle near infrared spectrometer at Kobe University with the incident angle fixed at 2 degree and the phase angle varied within 0-25 degrees A clear differences were found between the phase curves of dunite chip and particles whereas there were no apparent difference between the chips and the powders for a meteorite and mortar We then performed new measurements to focus on clarifying whether or not 1 bulk chips consisting of uniform composition also show opposition surge 2 difference in size of the constituent grains of bulk chips affects the opposition surge and 3 difference in surface roughness of bulk chips has dominant effect We will show the results of several types of bulk chips and sintered powders and will discuss on the possible

  13. Dual-layered-coated mechanically-durable superomniphobic surfaces with anti-smudge properties.

    PubMed

    Muthiah, Palanikkumaran; Bhushan, Bharat; Yun, Kyungsung; Kondo, Hirofumi

    2013-11-01

    Bio-inspired surfaces that exhibit high contact angle and low contact angle hysteresis for various liquids and demonstrate mechanical durability and anti-smudge properties are of interest for various applications. The fabrication of such surfaces has often involved complex or expensive processes, required techniques that may not be suitable for various substrates and particles, may require surface post-treatment, or may lack durability. Dual layered coatings of roughness-induced superomniphobic surfaces that demonstrate good mechanical durability were fabricated on glass substrates using hydrophobic SiO2 nanoparticles and low surface energy fluorobinders using dip coating and spray coating techniques. The particle-to-binder ratio was optimized for contact angles of interest. The mechanical durability of these coatings was examined under mechanical rubbing action. The anti-smudge properties were examined by wiping an artificially contaminated coating using oil-impregnated microfiber cloth. PMID:23993782

  14. Mechanisms of drag reduction of superhydrophobic surfaces in a turbulent boundary layer flow

    NASA Astrophysics Data System (ADS)

    Zhang, Jingxian; Tian, Haiping; Yao, Zhaohui; Hao, Pengfei; Jiang, Nan

    2015-09-01

    The drag-reducing property of a superhydrophobic surface is investigated along with its mechanism. A superhydrophobic surface with micro-nanotextures is fabricated and tested using SEM and contact angle measurement. Velocity distributions in the turbulent boundary layer with a superhydrophobic surface and a smooth surface are measured by particle image velocimetry at Re ? = 810, 990, and 1220. An upward lift effect on the velocity profile caused by the rugged air layer on the superhydrophobic surface is observed, which indicates drag reduction. Estimated by the wall shear stress, a drag reduction of 10.1, 20.7, and 24.1 % is observed for Re ? equal to 810, 990, and 1220, respectively. The drag reduction is caused mainly by slip on the interface and modifications in the turbulent structures, and the latter plays a more important role as Re ? increases. Suppressions are observed in turbulence intensities, and reductions in the total Reynolds shear stress T {turb/+} are 2.5, 18.5, and 23.1 % for Re ? = 810, 990, and 1220, respectively. Vortex fields above the superhydrophobic and smooth surfaces at Re ? = 990 are investigated. Vortexes are weakened and lifted upward by the superhydrophobic surface, and the position of the maximum swirling strength is lifted 0.17 ? ( ? is the boundary layer thickness) upward in the wall-normal direction. This modification in turbulence structures contributes significantly to the drag reduction in the turbulent boundary layer flow.

  15. Atomic and molecular layer deposition for surface modification

    SciTech Connect

    Vähä-Nissi, Mika; Sievänen, Jenni; Salo, Erkki; Heikkilä, Pirjo; Kenttä, Eija; Johansson, Leena-Sisko; Koskinen, Jorma T.; Harlin, Ali

    2014-06-01

    Atomic and molecular layer deposition (ALD and MLD, respectively) techniques are based on repeated cycles of gas–solid surface reactions. A partial monolayer of atoms or molecules is deposited to the surface during a single deposition cycle, enabling tailored film composition in principle down to molecular resolution on ideal surfaces. Typically ALD/MLD has been used for applications where uniform and pinhole free thin film is a necessity even on 3D surfaces. However, thin – even non-uniform – atomic and molecular deposited layers can also be used to tailor the surface characteristics of different non-ideal substrates. For example, print quality of inkjet printing on polymer films and penetration of water into porous nonwovens can be adjusted with low-temperature deposited metal oxide. In addition, adhesion of extrusion coated biopolymer to inorganic oxides can be improved with a hybrid layer based on lactic acid. - Graphical abstract: Print quality of a polylactide film surface modified with atomic layer deposition prior to inkjet printing (360 dpi) with an aqueous ink. Number of printed dots illustrated as a function of 0, 5, 15 and 25 deposition cycles of trimethylaluminum and water. - Highlights: • ALD/MLD can be used to adjust surface characteristics of films and fiber materials. • Hydrophobicity after few deposition cycles of Al{sub 2}O{sub 3} due to e.g. complex formation. • Same effect on cellulosic fabrics observed with low temperature deposited TiO{sub 2}. • Different film growth and oxidation potential with different precursors. • Hybrid layer on inorganic layer can be used to improve adhesion of polymer melt.

  16. Multi-layer surface profiling using gated wavefront sensing

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Nordin, Nur Dalilla; Tik, Eddy Chow Mun; Tan, ChingSeong; Chew, Kuew Wai; Menoni, Carmen

    2015-01-01

    Recently, multi-layer surface profiling and inspection has been considered an emerging topic that can be used to solve various manufacturing inspection problems, such as graded index lenses, TSV (Thru-Silicon Via), and optical coating. In our study, we proposed a gated wavefront sensing approach to estimate the multi-layer surface profile. In this paper, we set up an experimental platform to validate our theoretical models and methods. Our test bed consists of pulse laser, collimator, prism, well-defined focusing lens, testing specimen, and gated wavefront sensing assembly (e.g., lenslet and gated camera). Typical wavefront measurement steps are carried out for the gated system, except the reflectance is timed against its time of flight as well as its intensity profile. By synchronizing the laser pulses to the camera gate time, it is possible to discriminate a multi-layer wavefront from its neighbouring discrete layer reflections.

  17. GPU Accelerated Particle System for Triangulated Surface Meshes Brad Peterson

    E-print Network

    GPU Accelerated Particle System for Triangulated Surface Meshes Brad Peterson School Of Computing of Utah Ross Whitaker SCI Institute University of Utah Figure 1: Particle distribution for test shapes surfaces has been an active area of research for the past several years. Particle systems have emerged

  18. Surface Collisions Involving Particles and Moisture (SCIP'M)

    NASA Technical Reports Server (NTRS)

    Davis, Robert H.

    2005-01-01

    Experiments were performed on the collision of a solid sphere with a nearly horizontal flat surface covered with a thin layer of viscous liquid. High-speed collisions were obtained by dropping the ball onto the surface from various heights, using gravitational acceleration. Low-speed collisions were obtained using pendulums with long strings or by launching the balls at low velocities in the reduced-gravity environment of parabolic flight. The sphere bounces only when the impact velocity exceeds a critical value. The coefficient of restitution (ratio of rebound velocity to impact velocity) increases with increasing impact velocity above the critical value, indicating the increasing relative importance of elastic deformation to viscous dissipation. The critical impact velocity increases, and the coefficient of restitution decreases, with increasing viscosity or thickness of the liquid layer and with decreasing density or size of the sphere. The ratio of the wet and dry coefficients is expressed as a function of the Stokes number (ratio of particle inertia and viscous forces), showing good agreement between theory and experiment. Similar experiments were performed with the flat surface inclined at various angles to the approaching sphere. A modified Stokes number, which is a measure of the ratio of inertia of the sphere in the normal direction to the viscous forces exerted by the fluid layer, was used for the analysis of oblique collisions. Even for these oblique collisions, it was found that no rebound of the ball was observed below a certain critical Stokes number. The coefficient of normal restitution, defined as a ratio of normal rebound velocity to normal approach velocity, was found to increase beyond the critical Stokes number and even out as it approaches the value for dry restitution at high Stokes numbers. It was also found that, for smooth spheres like steel, the normal restitution at the same modified Stokes number is independent of the angle of impact. The tangential coefficient of restitution, defined as the ratio of tangential rebound velocity to tangential approach velocity, is found to be nearly unity, except for very low approach velocities. Thus, as a first approximation, the theories that predict the coefficient of restitution for head-on wet collisions can be extended to predict the coefficient of normal restitution for oblique wet collisions. Additional experiments were performed with soft surfaces in which a porous cloth or sponge layer was placed over the hard, flat surface. In these experiments, the coefficient of restitution was found to decrease with increasing impact velocity, due to inelastic losses in the soft material. A model combining inelastic deformation and flow through porous media was developed to describe these findings.

  19. Resuspension onset and crater erosion by a vortex ring interacting with a particle layer

    E-print Network

    Dalziel, Stuart

    -empirical formulations relating the rate of particle erosion to flow parameters such as the bed shear stress, which haveResuspension onset and crater erosion by a vortex ring interacting with a particle layer N. Bethke and crater erosion by a vortex ring interacting with a particle layer N. Bethkea) and S. B. Dalziel

  20. Particle-Stabilized Defect Gel in Layered Mesophases

    NASA Astrophysics Data System (ADS)

    Zapotocky, Martin

    1998-03-01

    Layered mesophases are characterized by a one-dimensional periodic variation in molecular density (in the case of smectic liquid crystals and lyotropic L_? systems) or molecular orientation (in the case of cholesteric liquid crystals). We report on how the structure and the macroscopic properties of such phases are modified when colloidal particles of a typical size that exceeds the layer spacing are dispersed in the system. The presence of the colloidal inclusions leads to the stabilization of a dense network of linear defects of the lamellar order. The defects have predominantly the structure of ``oily streaks''(M. Kléman, Points, Lines and Walls) (John Wiley & Sons, Chichester, 1983); O. D. Lavrentovich, M. Kléman and V. M. Pergamenshchik, J. Phys. II France 4, 377 (1994)., and are prevented from annealing by the energetical preference of the inclusions to be located at the nodes of the oily streak network. A convenient system for the experimental study of this mechanism and its consequences is provided by cholesteric liquid crystals with cholesteric pitch (and hence the layer spacing) in the micrometer range. We present optical microscopy observations directly demonstrating the stabilization of the oily streak network in thin cholesteric films with colloidal inclusions. We also discuss experiments showing that in bulk cholesteric samples, the preference of the inclusions to be located at the nodes of the oily streak network leads to a novel mechanism for the stabilization of a 3-dimensional colloidal structure. On appropriate time scales, the described defect network structure can be viewed as a cross-linked network of elastic bonds, and gives raise to gel-like rheological behavior. We present measurements of the frequency dependence of the shear modulus, and discuss theoretically the highly unusual rheological properties of the material.

  1. Re-suspension Process In Turbulent Particle-fluid Mixture Boundary Layers

    NASA Astrophysics Data System (ADS)

    Zwinger, T.; Kluwick, A.

    Many theoretical applications of geophysical flows, such as sediment transport (e.g. Jenkins &Hanes, 1998) and aeolian transport of particles (e.g. Hopwood et al., 1995) utilize concepts for describing the near wall velocity profiles of particle suspensions originally arising from classical single phase theories. This approach is supported by experiments indicating the existence of a logarithmic fluid velocity profile similar to single phase flows also in case of high Reynolds number wall bounded particle sus- pension flows with low particle volume fractions (Nishimura &Hunt, 2000). Since the concept of a logarithmic near wall profile follows from classic asymptotic the- ory of high Reynolds number wall bounded flows the question arises to what extent this theory can be modified to account for particles being suspended in the ambient fluid. To this end, the asymptotic theory developed by Mellor (1972) is applied to the Favré-averaged equations for the carrier fluid as well as the dispersed phase derived on the basis of a volume averaged dispersed two-phase theory (Gray &Lee, 1977). Numerical solutions for profiles of main stream velocities and particle volume frac- tion in the fully turbulent region of the boundary layer for different turbulent Schmidt numbers are computed applying a Finite Difference box scheme. In particular, atten- tion is focused on the turbulent re-suspension process of particles from dense granular flow adjacent to the bounding surface into the suspension. From these results boundary conditions in form of wall functions for velocities as well as the volume fraction of the particles can be derived and the validity of analogy laws between turbulent mass and momentum transfer at the bounding surface can be proved from an asymptotic point of view. The application of these concepts in the field of snow avalanche simulation (Zwinger, 2000) is discussed.

  2. Surface reactions on thin layers of silane coupling agents

    SciTech Connect

    Kurth, D.G.; Bein, T. )

    1993-11-01

    The reactivity of immobilized functional groups in thin layers of (3-aminopropyl)triethoxysilane (APS), (3-mercaptopropyl)trimethoxysilane, (3-bromopropyl)trimethoxysilane, and (8-bromooctyl)trimethoxysilane on oxidized aluminum substrates was studied with reflection-adsorption infrared spectroscopy (RAIR), optical ellipsometry and contact-angle measurements. Mass changes on the surface associated with the surface-confined reactions were measured with the quartz crystal microbalance (QCM). Single layers of (3-aminopropyl)triethoxysilane on oxidized aluminum react with chlorodimethylsilane to give [(-O)[sub 3]Si(CH[sub 2])[sub 3]NH[sub 2][sup +]SiMe[sub 2]H]Cl[sup [minus

  3. Continuous production of nanostructured particles using spatial atomic layer deposition

    SciTech Connect

    Ommen, J. Ruud van Kooijman, Dirkjan; Niet, Mark de; Talebi, Mojgan; Goulas, Aristeidis

    2015-03-15

    In this paper, the authors demonstrate a novel spatial atomic layer deposition (ALD) process based on pneumatic transport of nanoparticle agglomerates. Nanoclusters of platinum (Pt) of ?1?nm diameter are deposited onto titania (TiO{sub 2}) P25 nanoparticles resulting to a continuous production of an active photocatalyst (0.12–0.31?wt. % of Pt) at a rate of about 1?g min{sup ?1}. Tuning the precursor injection velocity (10–40?m s{sup ?1}) enhances the contact between the precursor and the pneumatically transported support flows. Decreasing the chemisorption temperature (from 250 to 100?°C) results in more uniform distribution of the Pt nanoclusters as it decreases the reaction rate as compared to the rate of diffusion into the nanoparticle agglomerates. Utilizing this photocatalyst in the oxidation reaction of Acid Blue 9 showed a factor of five increase of the photocatalytic activity compared to the native P25 nanoparticles. The use of spatial particle ALD can be further expanded to deposition of nanoclusters on porous, micron-sized particles and to the production of core–shell nanoparticles enabling the robust and scalable manufacturing of nanostructured powders for catalysis and other applications.

  4. Space Weathering on Itokawa Surface Deduced from Shape and Surface Features of Hayabusa Regolith Particles

    NASA Astrophysics Data System (ADS)

    Tsuchiyama, A.; Matsumoto, T.; Uesugi, M.; Yada, T.; Shimada, A.; Sakurama, T.; Kadokawa, T.

    2015-11-01

    Examination of shape and surface features of Itokawa particles showed that space-weathered rims developed on individual particle surfaces promoted spectral change of Itokawa, while mechanical abrasion and fragmentation suppressed the spectral change.

  5. Morphological instability of spherical soft particles induced by surface charges

    NASA Astrophysics Data System (ADS)

    Li, Bo; Feng, Xi-Qiao; Li, Yue; Wang, Gang-Feng

    2009-07-01

    We here demonstrate that surface charges on a spherical soft particle may induce its morphology instability. It is found that various patterns can be obtained by varying the surface charge density. The critical condition for the occurrence of surface instability and the wavelength of the induced surface patterns are derived analytically and, thereby, the morphological phase diagram of soft particles can be provided easily. Besides the electric stress, surface tension also plays a significant role in the surface evolution process. In addition, the morphological evolution behavior of a soft particle is demonstrated to exhibit distinct dependence on its size.

  6. Surface morphological evolution during annealing of epitaxial Cu(001) layers

    SciTech Connect

    Purswani, J. M.; Gall, D.

    2008-08-15

    Single crystal Cu(001) layers were grown on MgO(001) by ultrahigh vacuum magnetron sputtering at T{sub s}=100 deg. C. Quantitative surface morphological analyses by in situ scanning tunneling microscopy show that the surfaces exhibit self-affine mound structures with a scaling exponent of 0.82{+-}0.03 and a mound radius r{sub c} that increases from 31{+-}8 to 39{+-}6 nm for increasing layer thickness t=24-120 nm. In situ annealing at 200 and 300 deg. C leads to a thermodynamically driven mass transport that minimizes the surface step density, resulting in broader mounds and a smaller root mean square surface roughness {sigma}. This effect is most pronounced for t=24 nm, for which r{sub c} increases from 31{+-}8 to 70{+-}20 nm and {sigma} decreases from 1.3{+-}0.1 to 0.74{+-}0.08 nm, resulting in a decrease in the average surface slope from {chi}=7 deg. to 2 deg. and an increase in the average terrace width w{sub T} by more than a factor of 4. In contrast, w{sub T} increases by only 20% for t=120 nm. This remarkable difference between 'thin' and 'thick' layers is attributed to diverging surface morphological pathways during annealing: The strong smoothening for t=24 nm is due to a competitive coalescence process where some mounds grow laterally at the expense of their smaller neighbors, which die out. In contrast, the initially wider mounds of thicker layers (t=120 nm) combine to form a quasistable surface morphology that exhibits anisotropic mound structures, which limit mass transport and stabilize the surface step density.

  7. Surface morphological evolution during annealing of epitaxial Cu(001) layers

    NASA Astrophysics Data System (ADS)

    Purswani, J. M.; Gall, D.

    2008-08-01

    Single crystal Cu(001) layers were grown on MgO(001) by ultrahigh vacuum magnetron sputtering at Ts=100 °C. Quantitative surface morphological analyses by in situ scanning tunneling microscopy show that the surfaces exhibit self-affine mound structures with a scaling exponent of 0.82±0.03 and a mound radius rc that increases from 31±8 to 39±6 nm for increasing layer thickness t =24-120 nm. In situ annealing at 200 and 300 °C leads to a thermodynamically driven mass transport that minimizes the surface step density, resulting in broader mounds and a smaller root mean square surface roughness ?. This effect is most pronounced for t =24 nm, for which rc increases from 31±8 to 70±20 nm and ? decreases from 1.3±0.1 to 0.74±0.08 nm, resulting in a decrease in the average surface slope from ? =7° to 2° and an increase in the average terrace width wT by more than a factor of 4. In contrast, wT increases by only 20% for t =120 nm. This remarkable difference between "thin" and "thick" layers is attributed to diverging surface morphological pathways during annealing: The strong smoothening for t =24 nm is due to a competitive coalescence process where some mounds grow laterally at the expense of their smaller neighbors, which die out. In contrast, the initially wider mounds of thicker layers (t =120 nm) combine to form a quasistable surface morphology that exhibits anisotropic mound structures, which limit mass transport and stabilize the surface step density.

  8. r-Process Nucleosynthesis in Shocked Surface Layers of O-Ne-Mg Cores

    E-print Network

    H. Ning; Y. -Z. Qian; B. S. Meyer

    2007-08-13

    We demonstrate that rapid expansion of the shocked surface layers of an O-Ne-Mg core following its collapse can result in r-process nucleosynthesis. As the supernova shock accelerates through these layers, it makes them expand so rapidly that free nucleons remain in disequilibrium with alpha-particles throughout most of the expansion. This allows heavy r-process isotopes including the actinides to form in spite of the very low initial neutron excess of the matter. We estimate that yields of heavy r-process nuclei from this site may be sufficient to explain the Galactic inventory of these isotopes.

  9. Structure and properties of titanium surface layers after electron beam alloying with powder mixtures containing carbon

    NASA Astrophysics Data System (ADS)

    Lenivtseva, O. G.; Bataev, I. A.; Golkovskii, M. G.; Bataev, A. A.; Samoilenko, V. V.; Plotnikova, N. V.

    2015-11-01

    The structure and tribological properties of commercially pure titanium (cp-Ti) samples after non-vacuum electron beam surface alloying with carbon were studied. Two types of powders were used to introduce carbon in surface layer of cp-Ti: titanium carbide (TiC) and mixture of pure titanium and graphite ("Ti + C"). Single layer and multilayer coatings were studied. Application of electron beam for alloying provided cladding rate of 4.5 m2/h. The thickness of the clad coatings was 1.6-2.0 mm. The main phases received after "Ti + C" powder cladding were ?-titanium, TiC, and retained graphite. In the samples obtained by cladding of TiC, graphite was not observed. A factor determining the microhardness and tribological properties of the cladded layer was the volume fraction of TiC. Maximum coating microhardness of 8 GPa was obtained by cladding of single layer of TiC powder or two layers of the "Ti + C" mixture. Two types of tests were carried out to evaluate the wear resistance of the samples. In friction tests against loose abrasive particles, the wear rate of the best samples was 9.3 times lower than that of cp-Ti. In wear tests using fixed abrasive particles, the relative wear resistance of the best samples was 2.3 times higher than that of cp-Ti.

  10. Corrugations on the Free Surface of Nematic Liquid Crystal Layers

    NASA Astrophysics Data System (ADS)

    Virga, Epifanio G.; Schadt, Martin

    2000-12-01

    In this paper we quantitatively treat an equilibrium problem for the free surface of a monomeric or polymeric nematic liquid crystal layer, which has been suggested by some novel industrial applications. Think of a layer deposited on a plane, rigid substrate, whose optical axis is anchored in such a way that the azimuthal angle is everywhere defined, whereas the polar angle may freely vary. Let further the azimuthal anchoring be discontinuous along a line on the substrate. To accommodate this singularity within a continuous field, the optic axis must flip out of the substrate plane and become orthogonal to it at the anchoring discontinuity. Such a distortion entrains a corrugation on the free surface of the layer. Experimentally, the existence of corrugations at the alignment boundaries of nematic liquid crystal polymer films on single glass substrates is demonstrated by photo-aligning and photo-patterning such films by the linear photopolymerization (LPP)-technology of ROLIC.

  11. Reflection from Layered Surfaces due to Subsurface Scattering Pat Hanrahan

    E-print Network

    Zwicker, Matthias

    Reflection from Layered Surfaces due to Subsurface Scattering Pat Hanrahan Department of Computer Research Center for Computer Science Abstract The reflection of light from most materials consists of two ma- jor terms: the specular and the diffuse. Specular reflection may be modeled from first principles

  12. Surface Science Letters Structures of adsorbed water layers

    E-print Network

    Alavi, Ali

    Surface Science Letters Structures of adsorbed water layers on MgO: an ab initio study R.M. Lynden-55021 Mainz, Germany c University Chemical Laboratory, Lens®eld Road, Cambridge CB2 1EW, UK Received 15 of the lowest energy structure. We also found a structure with a similar energy with (2 Â 2) symmetry and half

  13. NMR of thin layers using a meanderline surface coil

    DOEpatents

    Cowgill, Donald F. (San Ramon, CA)

    2001-01-01

    A miniature meanderline sensor coil which extends the capabilities of nuclear magnetic resonance (NMR) to provide analysis of thin planar samples and surface layer geometries. The sensor coil allows standard NMR techniques to be used to examine thin planar (or curved) layers, extending NMRs utility to many problems of modern interest. This technique can be used to examine contact layers, non-destructively depth profile into films, or image multiple layers in a 3-dimensional sense. It lends itself to high resolution NMR techniques of magic angle spinning and thus can be used to examine the bonding and electronic structure in layered materials or to observe the chemistry associated with aging coatings. Coupling this sensor coil technology with an arrangement of small magnets will produce a penetrator probe for remote in-situ chemical analysis of groundwater or contaminant sediments. Alternatively, the sensor coil can be further miniaturized to provide sub-micron depth resolution within thin films or to orthoscopically examine living tissue. This thin-layer NMR technique using a stationary meanderline coil in a series-resonant circuit has been demonstrated and it has been determined that the flat meanderline geometry has about he same detection sensitivity as a solenoidal coil, but is specifically tailored to examine planar material layers, while avoiding signals from the bulk.

  14. Surface boundary layer turbulence in the Southern ocean

    NASA Astrophysics Data System (ADS)

    Merrifield, Sophia; St. Laurent, Louis; Owens, Breck; Naveira Garabato, Alberto

    2015-04-01

    Due to the remote location and harsh conditions, few direct measurements of turbulence have been collected in the Southern Ocean. This region experiences some of the strongest wind forcing of the global ocean, leading to large inertial energy input. While mixed layers are known to have a strong seasonality and reach 500m depth, the depth structure of near-surface turbulent dissipation and diffusivity have not been examined using direct measurements. We present data collected during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) field program. In a range of wind conditions, the wave affected surface layer (WASL), where surface wave physics are actively forcing turbulence, is contained to the upper 15-20m. The lag-correlation between wind stress and turbulence shows a strong relationship up to 6 hours (˜1/2 inertial period), with the winds leading the oceanic turbulent response, in the depth range between 20-50m. We find the following characterize the data: i) Profiles that have a well-defined hydrographic mixed layer show that dissipation decays in the mixed layer inversely with depth, ii) WASLs are typically 15 meters deep and 30% of mixed layer depth, iii) Subject to strong winds, the value of dissipation as a function of depth is significantly lower than predicted by theory. Many dynamical processes are known to be missing from upper-ocean parameterizations of mixing in global models. These include surface-wave driven processes such as Langmuir turbulence, submesocale frontal processes, and nonlocal representations of mixing. Using velocity, hydrographic, and turbulence measurements, the existence of coherent structures in the boundary layer are investigated.

  15. Controlled formation of surface hydrophilicity enhanced chitosan film by layer-by-layer electro-assembly.

    PubMed

    Chen, Li; Liu, Kuo; Ye, Jia-Ru; Shen, Qing

    2015-11-01

    Several surface hydrophilicity enhanced chitosan, CS, films were controllably formed by using the layer-by-layer electro-assembly, LBLEA, method with varied voltages. Experimentally, an employed electrostatic generator was employed by taking its anode and cathode electrodes alternatively linking to the CS solution or silicon plate to form two opposite cycles corresponding to the electrostatic force, EF, enhancement or reduction, respectively. Wetting results showed that the water contact angle, ?W, on those CS film surfaces was gradually reduced with the applied voltage increase, especially by EF reduction, e.g. the ?W on 0V sample at about 55° and on 4kV EF-reduction formed sample at about 20°. AFM images comparison showed that the LBLEA process can control the surface structure for CS film. ATR-FTIR spectra comparison showed that the EF reduction process would reveal the C-O groups on CS film surface to enhance the hydrophilicity. PMID:26249622

  16. Many-body microhydrodynamics of colloidal particles with active boundary layers

    NASA Astrophysics Data System (ADS)

    Singh, Rajesh; Ghose, Somdeb; Adhikari, R.

    2015-06-01

    Colloidal particles with active boundary layers—regions surrounding the particles where non-equilibrium processes produce large velocity gradients—are common in many physical, chemical and biological contexts. The velocity or stress at the edge of the boundary layer determines the exterior fluid flow and, hence, the many-body interparticle hydrodynamic interaction. Here, we present a method to compute the many-body hydrodynamic interaction between N spherical active particles induced by their exterior microhydrodynamic flow. First, we use a boundary integral representation of the Stokes equation to eliminate bulk fluid degrees of freedom. Then, we expand the boundary velocities and tractions of the integral representation in an infinite-dimensional basis of tensorial spherical harmonics and, on enforcing boundary conditions in a weak sense on the surface of each particle, obtain a system of linear algebraic equations for the unknown expansion coefficients. The truncation of the infinite series, fixed by the degree of accuracy required, yields a finite linear system that can be solved accurately and efficiently by iterative methods. The solution linearly relates the unknown rigid body motion to the known values of the expansion coefficients, motivating the introduction of propulsion matrices. These matrices completely characterize hydrodynamic interactions in active suspensions just as mobility matrices completely characterize hydrodynamic interactions in passive suspensions. The reduction in the dimensionality of the problem, from a three-dimensional partial differential equation to a two-dimensional integral equation, allows for dynamic simulations of hundreds of thousands of active particles on multi-core computational architectures. In our simulation of 104 active colloidal particle in a harmonic trap, we find that the necessary and sufficient ingredients to obtain steady-state convective currents, the so-called ‘self-assembled pump’, are (a) one-body self-propulsion and (b) two-body rotation from the vorticity of the Stokeslet induced in the trap.

  17. Influence of layer-by-layer laser sintering conditions on the quality of sintered surface layer of products

    NASA Astrophysics Data System (ADS)

    Saprykina, N. A.; Saprykin, A. A.; Borovikov, I. F.; Sharkeev, Y. P.

    2015-09-01

    The influence of technological modes of sintering: the displacement velocity of laser beam V, laser power P, scanning step S and preheating temperature of powder material t on the quality of sintered surface layer of aluminum powder PA-4, copper powder PMS-1 and cobalt- chromium-molybdenum powder DSK-F75 were studied.

  18. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces.

    PubMed

    Vakarelski, Ivan U; Patankar, Neelesh A; Marston, Jeremy O; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2012-09-13

    In 1756, Leidenfrost observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants. The presence of these vapour films can also reduce liquid-solid drag. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling--by heat transfer--the liquid-gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating. PMID:22972299

  19. Particles in Surface Waters: Coagulation and Transport 

    E-print Network

    Culkin, Gerald W.; Lawler, Desmond F.

    1991-01-01

    Conventional water quality assessment and simulation of particles in natural waters focus on bulk concentrations of the suspended solid phase. These analyses rely directly or indirectly on a linear, 'average particle' ...

  20. Tunable surface topographies via particle-enhanced soft composites

    E-print Network

    Guttag, Mark A. (Mark Andrew)

    2015-01-01

    We introduce a new class of particle-enhanced soft composites (PESC) that can generate, on demand, custom and reversible surface topographies, with surface features that can be highly localized. These features can be ...

  1. A breaking internal wave in the surface ocean boundary layer

    NASA Astrophysics Data System (ADS)

    Wain, Danielle J.; Lilly, Jonathan M.; Callaghan, Adrian H.; Yashayaev, Igor; Ward, Brian

    2015-06-01

    High-temporal resolution measurements in the Labrador Sea surface layer are presented using an upwardly profiling autonomous microstructure instrument, which captures an internal wave in the act of breaking at the base of the surface mixed layer, driving turbulence levels 2-3 orders of magnitude above the background. While lower-frequency (near-inertial) internal waves are known to be important sources of turbulence, we report here a higher-frequency internal wave breaking near the ocean surface. Due to observational limitations, the exact nature of the instability cannot be conclusively identified, but the interaction of wave-induced velocity with unresolved background shear appears to be the most likely candidate. These observations add a new process to the list of those currently being considered as potentially important for near-surface mixing. The geographical distribution and global significance of such features are unknown, and underscore the need for more extensive small-scale, rapid observations of the ocean surface layer.

  2. Effects of mesoscale surface inhomogeneities on atmospheric boundary layer transfer

    SciTech Connect

    Shaw, W.J.; Doran, J.C.; Hubbe, J.M.

    1992-09-01

    Defining the nature of turbulent transfer over horizontally inhomogeneous surfaces remains one of the challenges in meteorology. Because the transfer of energy and momentum through the atmospheric boundary layer forms part of the lower boundary condition for global climate models (GCMs), the problem is important. Over the last two decades, advances in sensor and computer technology wave made good point measurements of turbulent fluxes fairly routine. A fundamental question with respect to climate models, however, is how such point measurements are related to average fluxes over the area of a GCM grid box. In this paper we will use data from the field program to depict the evolution of the boundary layer over adjacent, sharply contrasting surface types on two separate occasions. We will then use simple scaling based on the observations to argue that sub-gridscale motions would often be likely to significantly alter the estimates and resulting parameterizations of GCM-scale surface fluxes in the region.

  3. Resuspension of Small Particles from Multilayer Deposits in Turbulent Boundary Layers

    E-print Network

    F. Zhang; M. Reeks; M. Kissane; R. J. Perkins

    2012-06-09

    We present a hybrid stochastic model for the resuspension of micron-size particles from multilayer deposits in a fully-developed turbulent boundary layer. The rate of removal of particles from any given layer depends upon the rate of removal of particles from the layer above which acts as a source of uncovering and exposure of particles to the resuspending flow. The primary resuspension rate constant for an individual particle within a layer is based on the Rock'n'Roll (R'n'R) model using non-Gaussian statistics for the aerodynamic forces acting on the particles (Zhang et al., 2012). The coupled layer equations that describe multilayer resuspension of all the particles in each layer are based on the generic lattice model of Friess & Yadigaroglu (2001) which is extended here to include the influence of layer coverage and particle size distribution. We consider the influence of layer thickness on the resuspension along with the spread of adhesion within layers, and the statistics of non-Gaussian versus Gaussian removal forces including their timescale. Unlike its weak influence on long-term resuspension rates for monolayers, this timescale plays a crucial and influential role in multilayer resuspension. Finally we compare model predictions with those of a large-scale and a mesoscale resuspension test, STORM (Castelo et al., 1999) and BISE (Alloul-Marmor, 2002).

  4. Nucleation and Early Stages of Layer-by-Layer Growth of Metal Organic Frameworks on Surfaces

    PubMed Central

    2015-01-01

    High resolution atomic force microscopy (AFM) is used to resolve the evolution of crystallites of a metal organic framework (HKUST-1) grown on Au(111) using a liquid-phase layer-by-layer methodology. The nucleation and faceting of individual crystallites is followed by repeatedly imaging the same submicron region after each cycle of growth and we find that the growing surface is terminated by {111} facets leading to the formation of pyramidal nanostructures for [100] oriented crystallites, and triangular [111] islands with typical lateral dimensions of tens of nanometres. AFM images reveal that crystallites can grow by 5–10 layers in each cycle. The growth rate depends on crystallographic orientation and the morphology of the gold substrate, and we demonstrate that under these conditions the growth is nanocrystalline with a morphology determined by the minimum energy surface.

  5. Particle resuspension and associated coherent structures in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Braaten, David Alan

    Fundamental properties of particle resuspension from a surface solely by turbulent fluid forces was examined experimentally by observing intermittent particle resuspension and associated turbulent flow properties. Experiments were conducted in an environmental wind tunnel, where sparse beds of monodisperse Lycopodium spores (Club Moss) were placed flush with the floor of the wind tunnel, and exposed to a steady, well developed turbulent boundary layer flow. Particle bed concentration was monitored in situ throughout each experimental trial using an optical system designed to detect forward scattering from a HeNe laser beam. Simultaneous measurements of streamwise and vertical velocity were made immediately downstream of the illuminated particles using hot film anemometry. Experimental trials were conducted at three free-stream velocities (6.0, 7.5, and 9.0 m s(-1)) for a duration of 35 minutes. A Monte-Carlo particle resuspension model was developed to simulate the resuspension process associated with coherent structures of varying magnitude. Simulations were compared with experimental results to identify a probability distribution of coherent structure magnitude.

  6. Oxygen inhibition layer of composite resins: effects of layer thickness and surface layer treatment on the interlayer bond strength.

    PubMed

    Bijelic-Donova, Jasmina; Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2015-02-01

    An oxygen inhibition layer develops on surfaces exposed to air during polymerization of particulate filling composite. This study assessed the thickness of the oxygen inhibition layer of short-fiber-reinforced composite in comparison with conventional particulate filling composites. The effect of an oxygen inhibition layer on the shear bond strength of incrementally placed particulate filling composite layers was also evaluated. Four different restorative composites were selected: everX Posterior (a short-fiber-reinforced composite), Z250, SupremeXT, and Silorane. All composites were evaluated regarding the thickness of the oxygen inhibition layer and for shear bond strength. An equal amount of each composite was polymerized in air between two glass plates and the thickness of the oxygen inhibition layer was measured using a stereomicroscope. Cylindrical-shaped specimens were prepared for measurement of shear bond strength by placing incrementally two layers of the same composite material. Before applying the second composite layer, the first increment's bonding site was treated as follows: grinding with 1,000-grit silicon-carbide (SiC) abrasive paper, or treatment with ethanol or with water-spray. The inhibition depth was lowest (11.6 ?m) for water-sprayed Silorane and greatest (22.9 ?m) for the water-sprayed short-fiber-reinforced composite. The shear bond strength ranged from 5.8 MPa (ground Silorane) to 36.4 MPa (water-sprayed SupremeXT). The presence of an oxygen inhibition layer enhanced the interlayer shear bond strength of all investigated materials, but its absence resulted in cohesive and mixed failures only with the short-fiber-reinforced composite. Thus, more durable adhesion with short-fiber-reinforced composite is expected. PMID:25556290

  7. Surface Layers in General Relativity and Their Relation to Surface Tensions

    E-print Network

    H. -J. Schmidt

    2001-05-28

    For a thin shell, the intrinsic 3-pressure will be shown to be analogous to -A, where A is the classical surface tension: First, interior and exterior Schwarzschild solutions will be matched together such that the surface layer generated at the common boundary has no gravitational mass; then its intrinsic 3-pressure represents a surface tension fulfilling Kelvin's relation between mean curvature and pressure difference in the Newtonian limit. Second, after a suitable definition of mean curvature, the general relativistic analogue to Kelvin's relation will be proven to be contained in the equation of motion of the surface layer.

  8. Creation of deuterium protective layer below the tungsten surface

    NASA Astrophysics Data System (ADS)

    Krstic, Predrag; Kaganovich, Igor; Startsev, Edward

    2014-10-01

    By cumulative irradiation of both pre-damaged and virgin surfaces of monocrystal tungsten by deuterium atoms of impact energy of few tens of eV, we simulate by classical molecular dynamics the creation of a deuterium protective layer. The depth and width of the layer depend on the deuterium impact energy and the diffusion rate of deuterium in tungsten, the latter being influenced by the tungsten temperature and damage. Found simulation results are in concert with the experimental results, found recently in DIFFER. Support of the PPPL LDRD project acknowledged.

  9. Theoretical study of the amphoteric oxide nanoparticle surface charge during multi-particle interactions in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Alfimov, A. V.; Aryslanova, E. M.; Chivilikhin, S. A.

    2015-11-01

    Nanoparticle surface charge plays an important role in many biological applications. In this study, an analytical surface charging model for the amphoteric oxide nanoparticles has been presented. The model accounts for the particle's electric double layer self-action on the charging process and the charge regulation during multi-particle interactions in aqueous solutions. The employment of the model allows to explicitly describe the nanoparticle agglomeration process and the accompanying agglomerate surface charge variation.

  10. Alpha particle backscattering measurements used for chemical analysis of surfaces

    NASA Technical Reports Server (NTRS)

    Patterson, J. H.

    1967-01-01

    Alpha particle backscattering performs a chemical analysis of surfaces. The apparatus uses a curium source and a semiconductor detector to determine the energy spectrum of the particles. This in turn determines the chemical composition of the surface after calibration to known samples.

  11. Medical applications of diamond particles and surfaces.

    SciTech Connect

    Narayan, R. J.; Boehm, R. D.; Sumant, A. V.

    2011-04-01

    Diamond has been considered for use in several medical applications due to its unique mechanical, chemical, optical, and biological properties. In this paper, methods for preparing synthetic diamond surfaces and particles are described. In addition, recent developments involving the use of diamond in prostheses, sensing, imaging, and drug delivery applications are reviewed. These developments suggest that diamond-containing structures will provide significant improvements in the diagnosis and treatment of medical conditions over the coming years. Diamond is an allotrope of carbon that is being considered for use in several medical applications. Ramachandran determined that the crystal structure of diamond consists of two close packed interpenetrating face centered cubic lattices; one lattice is shifted with respect to the other along the elemental cube space diagonal by one-quarter of its length. If one approximates carbon atoms as equal diameter rigid spheres, the filling of this construction is 34%. Due to the carbon-carbon distance (1.54 {angstrom}), diamond crystal exhibits the highest atomic density (1.76 x 10{sup 23} cm{sup -3}) of any solid. The very high bond energy between two carbon atoms (83 kcal/mol) and the directionality of tetrahedral bonds are the main reasons for the high strength of diamond. Diamond demonstrates the highest Vickers hardness value of any material (10,000 kg/mm{sup 2}). The tribological properties of diamond are also impressive; the coefficient of friction of polished diamond is 0.07 in argon and 0.05 in humid air. Diamond is resistant to corrosion except in an oxygen atmosphere at temperatures over 800 C. In addition, type IIa diamond exhibits the highest thermal conductivity of all materials (20 W cm{sup -1} K{sup -1} at room temperature).

  12. Dead layer on silicon p-i-n diode charged-particle detectors

    E-print Network

    B. L. Wall; J. F. Amsbaugh; A. Beglarian; T. Bergmann; H. C. Bichsel; L. I. Bodine; N. M. Boyd; T. H. Burritt; Z. Chaoui; T. J. Corona; P. J. Doe; S. Enomoto; F. Harms; G. C. Harper; M. A. Howe; E. L. Martin; D. S. Parno; D. A. Peterson; L. Petzold; P. Renschler; R. G. H. Robertson; J. Schwarz; M. Steidl; T. D. Van Wechel; B. A. VanDevender; S. Wüstling; K. J. Wierman; J. F. Wilkerson

    2013-10-07

    Semiconductor detectors in general have a dead layer at their surfaces that is either a result of natural or induced passivation, or is formed during the process of making a contact. Charged particles passing through this region produce ionization that is incompletely collected and recorded, which leads to departures from the ideal in both energy deposition and resolution. The silicon \\textit{p-i-n} diode used in the KATRIN neutrino-mass experiment has such a dead layer. We have constructed a detailed Monte Carlo model for the passage of electrons from vacuum into a silicon detector, and compared the measured energy spectra to the predicted ones for a range of energies from 12 to 20 keV. The comparison provides experimental evidence that a substantial fraction of the ionization produced in the "dead" layer evidently escapes by diffusion, with 46% being collected in the depletion zone and the balance being neutralized at the contact or by bulk recombination. The most elementary model of a thinner dead layer from which no charge is collected is strongly disfavored.

  13. Dead layer on silicon p-i-n diode charged-particle detectors

    SciTech Connect

    Wall, B. L.; Amsbaugh, John F.; Beglarian, A.; Bergmann, T.; Bichsel, H. C.; Bodine, L. I.; Boyd, N. M.; Burritt, Tom H.; Chaoui, Z.; Corona, T. J.; Doe, Peter J.; Enomoto, S.; Harms, F.; Harper, Gregory; Howe, M. A.; Martin, E. L.; Parno, D. S.; Peterson, David; Petzold, Linda; Renschler, R.; Robertson, R. G. H.; Schwarz, J.; Steidl, M.; Van Wechel, T. D.; VanDevender, Brent A.; Wustling, S.; Wierman, K. J.; Wilkerson, J. F.

    2014-04-21

    Abstract Semiconductor detectors in general have a dead layer at their surfaces that is either a result of natural or induced passivation, or is formed during the process of making a contact. Charged particles passing through this region produce ionization that is incompletely collected and recorded, which leads to departures from the ideal in both energy deposition and resolution. The silicon p-i-n diode used in the KATRIN neutrinomass experiment has such a dead layer. We have constructed a detailed Monte Carlo model for the passage of electrons from vacuum into a silicon detector, and compared the measured energy spectra to the predicted ones for a range of energies from 12 to 20 keV. The comparison provides experimental evidence that a substantial fraction of the ionization produced in the "dead" layer evidently escapes by discussion, with 46% being collected in the depletion zone and the balance being neutralized at the contact or by bulk recombination. The most elementary model of a thinner dead layer from which no charge is collected is strongly disfavored.

  14. On the relationship between the surface pressure in a cavity and the shear layer above it

    NASA Astrophysics Data System (ADS)

    Ukeiley, Lawrence; Murray, Nathan

    2003-11-01

    The results of experiments to relate the velocity field in the shear layer above a cavity and the dynamic surface pressure on its floor will be discussed. The experiments used two component Particle Image Velocimetry (PIV) measurements sampled simultaneously with surface pressure measurements from piezo based sensors. These experiments were conducted in a newly constructed subsonic wind tunnel with cavities, in the wind tunnel floor, having length to depth (L/D) ratios typically characterized as open cavities. The two different L/D ratios allowed examination of cavities with and without strong evidence of resonating conditions. Analysis of the data using the Proper Orthogonal Decomposition shows the different flow structure for the resonating and non-resonating conditions. Furthermore, correlations between the fluctuating surface pressure and the velocity field in the shear layer above the cavity yield insight into the cavity resonant phenomena and its pumping action. Additionally a Stochastic Estimation procedure has been applied using the cavity surface pressure as the condition to estimate the time dependence of the shear layer above the cavity. This yields information of the kinematic processes of the large scale structures in the cavity shear layer and time dependent information of the sources in the cavity.

  15. Electron Scattering at Surfaces of Epitaxial Metal Layers

    NASA Astrophysics Data System (ADS)

    Chawla, Jasmeet Singh

    In the field of electron transport in metal films and wires, the 'size effect' refers to the increase in the resistivity of the films and wires as their critical dimensions (thickness of film, width and height of wires) approach or become less than the electron mean free path lambda, which is, for example, 39 nm for bulk copper at room temperature. This size-effect is currently of great concern to the semiconductor industry because the continued downscaling of feature sizes has already lead to Cu interconnect wires in this size effect regime, with a reported 2.5 times higher resistivity for 40 nm wide Cu wires than for bulk Cu. Silver is a possible alternate material for interconnect wires and titanium nitride is proposed as a gate metal in novel field-effect-transistors. Therefore, it is important to develop an understanding of how the growth, the surface morphology, and the microstructure of ultrathin (few nanometers) Cu, Ag and TiN layers affect their electrical properties. This dissertation aims to advance the scientific knowledge of electron scattering at surfaces (external surfaces and grain boundaries), that are, the primary reasons for the size-effect in metal conductors. The effect of surface and grain boundary scattering on the resistivity of Cu thin films and nanowires is separately quantified using (i) in situ transport measurements on single-crystal, atomically smooth Cu(001) layers, (ii) textured polycrystalline Cu(111) layers and patterned wires with independently varying grain size, thickness and line width, and (iii) in situ grown interfaces including Cu-Ta, Cu-MgO, Cu-vacuum and Cu-oxygen. In addition, the electron surface scattering is also measured in situ for single-crystal Ag(001), (111) twinned epitaxial Ag(001), and single-crystal TiN(001) layers. Cu(001), Ag(001), and TiN(001) layers with a minimum continuous thickness of 4, 3.5 and 1.8 nm, respectively, are grown by ultra-high vacuum magnetron sputter deposition on MgO(001) substrates with and without thin epitaxial TiN(001) wetting layers and are studied for structure, crystalline quality, surface morphology, density and composition by a combination of x-ray diffraction theta-2theta scans, o-rocking curves, pole figures, reciprocal space mapping, Rutherford backscattering, x-ray reflectometry and transmission electron microscopy. The TiN(001) surface suppresses Cu and Ag dewetting, yielding lower defect density, no twinning, and smaller surface roughness than if grown on MgO(001). Textured polycrystalline Cu(111) layers 25-50-nm-thick are deposited on a stack of 7.5-nm-Ta on SiO2/Si(001), and subsequent in situ annealing at 350°C followed by sputter etching in Ar plasma yields Cu layers with independently variable thickness and grain size. Cu nanowires, 75 to 350 nm wide, are fabricated from Cu layers with different average grain size using a subtractive patterning process. In situ electron transport measurements at room temperature in vacuum and at 77 K in liquid nitrogen for single-crystal Cu and Ag layers is consistent with the Fuchs-Sondheimer (FS) model and indicates specular scattering at the metal-vacuum boundary with an average specularity parameter p = 0.8 and 0.6, respectively. In contrast, layers measured ex situ show diffuse surface scattering due to sub-monolayer oxidation. Also, addition of Ta atoms on Cu(001) surface perturbs the smooth interface potential and results in completely diffuse scattering at the Cu-Ta interface, and in turn, a higher resistivity of single-crystal Cu layers. In situ exposure of Cu(001) layers to O2 between 10 -3 and 105 Pa-s results in a sequential increase, decrease and increase of the electrical resistance which is attributed to specular surface scattering for clean Cu(001) and for surfaces with a complete adsorbed monolayer, but diffuse scattering at partial coverage and after chemical oxidation. Electron transport measurements for polycrystalline Cu layers and wires show a 10-15% and 7-9% decrease in resistivity, respectively, when increasing the average lateral grain size by a factor of 1.8. The

  16. Characterizing the Effect of Surface Hydrophobicity on the Depletion Layer

    NASA Astrophysics Data System (ADS)

    Brown, Erin; Petersen, Shannon; Jeroski, Jessica; Statman, Ariel; Poynor, Adele

    2013-03-01

    When water is forced into contact with an extended hydrophobic surface, a uniform region of reduced density forms along the interface. We seek to identify both a qualitative and a quantitative relationship between the hydrophobicity of a surface and the characteristics of the corresponding depletion layer, specifically its thickness and density. We determine these qualities using surface plasmon resonance spectroscopy (SPR). We produce surfaces of different hydrophobicities through the formation of self-assembled monolayers of organothiols on gold-plated slides. Self-assembled monolayers (SAMs) of 1-octadecanethiol are used to produce surfaces with high hydrophobicity, as the terminal methyl group is highly nonpolar, while 11-mercapto-1-undecanol is used to produce surfaces with minimal hydrophobicity, as the terminal hydroxyl group is hydrophilic. Surfaces of intermediate hydrophobicity are fabricated using mixed SAMs of 1-octadecanethiol and 11-mercapto-1-undecanol. We measure surface hydrophobicity for the resulting SAM-coated slides by their contact angle with water droplets. In order to ensure an unchanging hydrophobicity throughout SPR trials, we analyze the stability of the surfaces to through repeated testing of contact angle variability over time and after extended submersion both in water and in ethanol.

  17. Surface morphological evolution of epitaxial CrN(001) layers

    SciTech Connect

    Frederick, J.R.; Gall, D.

    2005-09-01

    CrN layers, 57 and 230 nm thick, were grown on MgO(001) at T{sub s}=600-800 deg. C by ultrahigh-vacuum magnetron sputter deposition in pure N{sub 2} discharges from an oblique deposition angle {alpha}=80 deg. . Layers grown at 600 deg. C nucleate as single crystals with a cube-on-cube epitaxial relationship with the substrate. However, rough surfaces with cauliflower-type morphologies cause the nucleation of misoriented CrN grains that develop into cone-shaped grains that protrude out of the epitaxial matrix to form triangular faceted surface mounds. The surface morphology of epitaxial CrN(001) grown at 700 deg. C is characterized by dendritic ridge patterns extending along the orthogonal <110> directions superposed by square-shaped super mounds with <100> edges. The ridge patterns are attributed to a Bales-Zangwill instability while the supermounds form due to atomic shadowing which leads to the formation of epitaxial inverted pyramids that are separated from the surrounding layer by tilted nanovoids. Growth at 800 deg. C yields complete single crystals with smooth surfaces. The root-mean-square surface roughness for 230-nm-thick layers decreases from 18.8 to 9.3 to 1.1 nm as T{sub s} is raised from 600 to 700 to 800 deg. C. This steep decrease is due to a transition in the roughening mechanism from atomic shadowing to kinetic roughening. Atomic shadowing is dominant at 600 and 700 deg. C, where misoriented grains and supermounds, respectively, capture a larger fraction of the oblique deposition flux in comparison to the surrounding epitaxial matrix, resulting in a high roughening rate that is described by a power law with an exponent {beta}>0.5. In contrast, kinetic roughening controls the surface morphology for T{sub s}=800 deg. C, as well as the epitaxial fraction of the layers grown at 600 and 700 deg. C, yielding relatively smooth surfaces and {beta}{<=}0.27.

  18. Particle concentration and flux dynamics in the atmospheric boundary layer as the indicator of formation mechanism

    NASA Astrophysics Data System (ADS)

    Lauros, J.; Sogachev, A.; Smolander, S.; Vuollekoski, H.; Sihto, S.-L.; Mammarella, I.; Laakso, L.; Rannik, Ü.; Boy, M.

    2011-06-01

    We carried out column model simulations to study particle fluxes and deposition and to evaluate different particle formation mechanisms at a boreal forest site in Finland. We show that kinetic nucleation of sulphuric acid cannot be responsible for new particle formation alone as the simulated vertical profile of particle number concentration does not correspond to observations. Instead organic induced nucleation leads to good agreement confirming the relevance of the aerosol formation mechanism including organic compounds emitted by the biosphere. The simulation of aerosol concentration within the atmospheric boundary layer during nucleation event days shows a highly dynamical picture, where particle formation is coupled with chemistry and turbulent transport. We have demonstrated the suitability of our turbulent mixing scheme in reproducing the most important characteristics of particle dynamics within the boundary layer. Deposition and particle flux simulations show that deposition affects noticeably only the smallest particles in the lowest part of the atmospheric boundary layer.

  19. Particle concentration and flux dynamics in the atmospheric boundary layer as the indicator of formation mechanism

    NASA Astrophysics Data System (ADS)

    Lauros, J.; Sogachev, A.; Smolander, S.; Vuollekoski, H.; Sihto, S.-L.; Mammarella, I.; Laakso, L.; Rannik, Ü.; Boy, M.

    2010-08-01

    We carried out column model simulations to study particle fluxes and deposition and to evaluate different particle formation mechanisms at a boreal forest site in Finland. We show that kinetic nucleation of sulphuric acid cannot be responsible for new particle formation alone as the vertical profile of particle number distribution does not correspond to observations. Instead organic induced nucleation leads to good agreement confirming the relevance of the aerosol formation mechanism including organic compounds emitted by biosphere. Simulation of aerosol concentration inside the atmospheric boundary layer during nucleation days shows highly dynamical picture, where particle formation is coupled with chemistry and turbulent transport. We have demonstrated suitability of our turbulent mixing scheme in reproducing most important characteristics of particle dynamics inside the atmospheric boundary layer. Deposition and particle flux simulations show that deposition affects noticeably only the smallest particles at the lowest part of the atmospheric boundary layer.

  20. Faceted particles formed by the frustrated packing of anisotropic colloids on curved surfaces

    E-print Network

    Naiyin Yu; Michael F. Hagan

    2015-06-29

    We use computer simulations and simple theoretical models to analyze the morphologies that result when rod-like particles end-attach onto a curved surface, creating a finite-thickness monolayer aligned with the surface normal. This geometry leads to two forms of frustration, one associated with the incompatibility of hexagonal order on surfaces with Gaussian curvature, and the second reflecting the deformation of a layer with finite thickness on a surface with non-zero mean curvature. We show that the latter effect leads to a faceting mechanism. Above threshold values of the inter-particle attraction strength and surface mean curvature, the adsorbed layer undergoes a transition from orientational disorder to an ordered state that is demarcated by reproducible patterns of line defects. The number of facets is controlled by the competition between line defect energy and intra-facet strain. Tuning control parameters thus leads to a rich variety of morphologies, including icosahedral particles and irregular polyhedra. In addition to suggesting a new strategy for the synthesis of aspherical particles with tunable symmetries, our results may shed light on recent experiments in which rod-like HIV GAG proteins assemble around nanoscale particles.

  1. Microhydrodynamics of flotation processes in the sea surface layer

    NASA Astrophysics Data System (ADS)

    Grammatika, Marianne; Zimmerman, William B.

    2001-10-01

    The uppermost surface of the ocean forms a peculiarly important ecosystem, the sea surface microlayer (SML). Comprising the top 1-1000 ?m of the ocean surface, the SML concentrates many chemical substances, particularly those that are surface active. Important economically as a nursery for fish eggs and larvae, the SML unfortunately is also especially vulnerable to pollution. Contaminants that settle out from the air, have low solubility, or attach to floatable matter tend to accumulate in the SML. Bubbles contribute prominently to the dynamics of air-sea exchanges, playing an important role in geochemical cycling of material in the upper ocean and SML. In addition to the movement of bubbles, the development of a bubble cloud interrelates with the single particle dynamics of all other bubbles and particles. In the early sixties, several in situ oceanographic techniques revealed an "unbelievably immense" number of coastal bubbles of radius 15-300 ?m. The spatial and temporal variation of bubble numbers were studied; acoustical oceanographers now use bubbles as tracers to determine ocean processes near the ocean surface. Sea state and rain noises have both been definitively ascribed to the radiation from huge numbers of infant micro bubbles [The Acoustic Bubble. Academic Press, San Diego]. Our research programme aims at constructing a hydrodynamic model for particle transport processes occurring at the microscale, in multi-phase flotation suspensions. Current research addresses bubble and floc microhydrodynamics as building blocks for a microscale transport model. This paper reviews sea surface transport processes in the microlayer and the lower atmosphere, and identifies those amenable to microhydrodynamic modelling and simulation. It presents preliminary simulation results including the multi-body hydrodynamic mobility functions for the modelling of "dynamic bubble filters" and floc suspensions. Hydrodynamic interactions versus spatial anisotropy and size of particle clouds are investigated.

  2. Interaction between surface and atmosphere in a convective boundary layer

    NASA Astrophysics Data System (ADS)

    Garai, Anirban

    Solar heating of the surface causes the near surface air to warm up and with sufficient buoyancy it ascends through the atmosphere as surface-layer plumes and thermals. The cold fluid from the upper part of the boundary layer descends as downdrafts. The downdrafts and thermals form streamwise roll vortices. All these turbulent coherent structures are important because they contribute most of the momentum and heat transport. While these structures have been studied in depth, their imprint on the surface through energy budget in a convective atmospheric boundary layer has received little attention. The main objective of the present study is to examine the turbulence-induced surface temperature fluctuations for different surface properties and stratification. Experiments were performed to measure atmospheric turbulence using sonic anemometers, fine wire thermocouples and LIDAR; and surface temperature using an infra-red camera over grass and artificial turf fields. The surface temperature fluctuations were found to be highly correlated to the turbulent coherent structures and follow the processes postulated in the surface renewal theory. The spatio-temporal scales and advection speed of the surface temperature fluctuation were found to match with those of turbulent coherent structures. A parametric direct numerical simulation (DNS) study was then performed by solving the solid-fluid heat transport mechanism numerically for varying solid thermal properties, solid thickness and strength of stratification. Even though there were large differences in the friction Reynolds and Richardson numbers between the experiments and numerical simulations, similar turbulent characteristics were observed. The ejection (sweep) events tend to be aligned with the streamwise direction to form roll vortices with unstable stratification. The solid-fluid interfacial temperature fluctuations increase with the decreases in solid thermal inertia; and with the increase in solid thickness to attain a constant value for a sufficiently thick solid. The temperature fluctuation changes from a Gaussian distribution near the wall to a positively skewed distribution away from the wall. The turbulent temperature fluctuations influence the solid interfacial temperature by thermal conduction only. These studies provided unique insights into the solid-fluid coupled heat transport in low and high Reynolds number flows. This turbulence induced surface temperature fluctuation can influence the performances of several satellite remote sensing models.

  3. Arctic Cloud-driven Mixed Layers and Surface Coupling State

    NASA Astrophysics Data System (ADS)

    Shupe, M.; Persson, O. P.; Solomon, A.; de Boer, G.

    2013-12-01

    Arctic low-level clouds interact with the atmosphere and underlying surface via many inter-related processes. The balance of cloud radiative warming and cooling effects imparts a strong control on the net surface energy budget. Cloud-driven atmospheric circulations can impact surface turbulent heat fluxes and influence the vertical mixing of atmospheric state parameters and aerosols. Large-scale advection of heat and moisture provides the background context within which these local interactions unfold. Importantly, these radiative, dynamical, and advective processes also contribute to a complex web of self-sustaining cloud processes that can promote cloud maintenance over long periods of time. We examine many of these processes, with a specific focus on the dynamical linkages between Arctic clouds and the surface that influence low-level atmospheric structure and mixing. Comprehensive, ground-based observations from meteorological towers, remote-sensors, and radiosondes are used to simultaneously characterize surface fluxes, atmospheric structure, cloud properties, in-cloud motions, and the depth of the cloud-driven mixed layer in multiple Arctic environments. Relationships among these parameters are explored to elucidate the properties of the system that determine the degree of vertical atmospheric mixing and the coupling state between cloud and surface. The influence of temperature and moisture inversions on this system is also explored. Transitions in the coupling state are utilized to illustrate the relative roles of different processes. Cases from a coastal Arctic site at Barrow, Alaska and a station embedded in the Arctic sea-ice pack are used to contrast conditional influences related to season and surface type. It is found that over sea-ice, where surface turbulent fluxes are weak, the coupling of cloud-level processes to the surface layer is largely due to proximity of the cloud-driven mixed layer to the surface, which appears to be primarily influenced by the larger-scale, advective environment. In contrast, surface-forced turbulence can also play a significant role in vertical atmospheric mixing and cloud maintenance in the presence of open ocean or land processes.

  4. Marangoni instability in a liquid layer with two free surfaces

    NASA Technical Reports Server (NTRS)

    Deissler, Robert J.; Oron, Alxander; Duh, J. C.

    1993-01-01

    The onset of the Marangoni instability in a liquid layer with two free nearly insulating surfaces heated from below is studied. Linear stability analysis yields a condition for the emergence of a longwave or a finite wavelength instability from the quiescent equilibrium state. Using the method of asymptotic expansions, a weakly nonlinear evolution equation describing the spatiotemporal behavior of the velocity and temperature fields at the onset of the longwave instability is derived. The latter is given by delta(M) = 24, delta(M) being the difference between the upper and the lower Marangoni numbers. It is shown that in some parametric range one convective cell forms across the layer, while in other parametric domains two convective cells emerge between the two free surfaces.

  5. On the Effects of Surface Roughness on Boundary Layer Transition

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan; Edwards, Jack

    2009-01-01

    Surface roughness can influence laminar-turbulent transition in many different ways. This paper outlines selected analyses performed at the NASA Langley Research Center, ranging in speed from subsonic to hypersonic Mach numbers and highlighting the beneficial as well as adverse roles of the surface roughness in technological applications. The first theme pertains to boundary-layer tripping on the forebody of a hypersonic airbreathing configuration via a spanwise periodic array of trip elements, with the goal of understanding the physical mechanisms underlying roughness-induced transition in a high-speed boundary layer. The effect of an isolated, finite amplitude roughness element on a supersonic boundary layer is considered next. The other set of flow configurations examined herein corresponds to roughness based laminar flow control in subsonic and supersonic swept wing boundary layers. A common theme to all of the above configurations is the need to apply higher fidelity, physics based techniques to develop reliable predictions of roughness effects on laminar-turbulent transition.

  6. Effect of charged-particle surface excitations on near-field optics.

    PubMed

    Kundracik, František; Kocifaj, Miroslav; Videen, Gorden; Kla?ka, Jozef

    2015-08-01

    The mechanism of charge on the near-field intensity distribution is revealed for metallic and dielectric particles with sizes ranging from 10 nm to 10 ?m. The theoretical foundation of near-field intensity perturbations is in the discontinuity of the tangential components of the magnetic fields on either side of the interface between the particle and its surrounding medium, since excess electrons form a thin metal-like layer with elevated conductivity. We have shown that the local fields alter marginally if charges are imposed on a surface of a metallic particle. But an intensity amplification is identified in the vicinity of charged dielectric particles with sizes smaller than the wavelength. Specifically, we have demonstrated that the electromagnetic field is amplified near the poles of the particle as a result of the oriented electric and incident fields. In contrast, a dielectric particle that is large compared to the wavelength becomes opaque with a deep shadow at the side opposite to the beam incidence. As a result, intensity damping is identified near a charged sphere in the geometric optics regime. At significant charge densities, the physical properties of a conductive layer play a dominant role in forming the 3D intensity distribution independent of conductivity or permittivity of the particle core. These findings suggest that some electrically chargeable particles have the potential to be used as optical devices with properties tunable through their net surface charge. PMID:26368079

  7. Influence of particle/solid surface zeta potential on particle adsorption kinetics.

    PubMed

    Savaji, Kunal V; Niitsoo, Olivia; Couzis, Alexander

    2014-10-01

    In this paper we attempt to understand monolayer formation of spherical particles on a solid surface immersed in a suspension and driven by electrostatic interaction force. The study focuses on the theoretical aspects of the particle adsorption and modeling work based on the random sequential adsorption (RSA) approach is done in order to describe the particle adsorption kinetics and the saturation coverage. The theoretical model is then compared with experimental data obtained under conditions similar to those of the modeling work. Studying the adsorption of polystyrene particles on a silicon wafer in an aqueous system was employed to experimentally validate the theoretical framework. It has been shown both theoretically and experimentally that the particle and solid surface zeta potential values do influence the adsorption kinetics but the effect is too negligible to be of any use in accelerating the kinetics. We have shown that the electrostatically driven particle adsorption is a transport limited process and the rate of transport is not a major function of the zeta potential values of the particle and the solid surface. The faster kinetics seen when the ionic concentration of the suspension is increased is because of the blocking effects and not due to faster approach of particles towards the solid surface. Finally, we have made an important addition to the existing models by incorporating the variation in the flux as a function of particle/solid surface zeta potentials, surface coverage and the randomized position of incidence of an incoming particle on the solid surface. PMID:24996026

  8. Novel exact surface wave solutions for layered structures

    NASA Astrophysics Data System (ADS)

    Kiselev, Aleksei P.; Ducasse, Eric; Deschamps, Marc; Darinskii, Alexander

    2007-08-01

    Novel exact solutions describing surface acoustic waves on general layered structures have been found by the method of variable separation. First, solutions have been constructed with plane wavefronts and involving polynomial dependence on lateral variables. Second, their inhomogeneous plane-wave analogues have been found. At last, beam-like solutions highly localized at large lateral distances in a given sector have also been considered. To cite this article: A.P. Kiselev et al., C. R. Mecanique 335 (2007).

  9. Site-specific electronic structure of bacterial surface protein layers

    NASA Astrophysics Data System (ADS)

    Vyalikh, D. V.; Kummer, K.; Kade, A.; Blüher, A.; Katzschner, B.; Mertig, M.; Molodtsov, S. L.

    2009-03-01

    We applied resonant photoemission and X-ray absorption spectroscopy for a detailed characterization of the valence electronic structure of the regular two-dimensional bacterial surface protein layer of Bacillus sphaericus NCTC 9602. Using this approach, we detected valence electron emission from specific chemical sites. In particular, it was found that electrons from the ? clouds of aromatic systems make large contributions to the highest occupied molecular orbitals.

  10. Surface-plasmons lasing in double-graphene-layer structures

    SciTech Connect

    Dubinov, A. A.; Aleshkin, V. Ya.; Ryzhii, V.; Shur, M. S.; Otsuji, T.

    2014-01-28

    We consider the concept of injection terahertz lasers based on double-graphene-layer (double-GL) structures with metal surface-plasmon waveguide and study the conditions of their operation. The laser under consideration exploits the resonant radiative transitions between GLs. This enables the double-GL laser room temperature operation and the possibility of voltage tuning of the emission spectrum. We compare the characteristics of the double-GL lasers with the metal surface-plasmon waveguides with those of such laser with the metal-metal waveguides.

  11. Magnetic Or Optical Surface Layer Would Indicate Strain

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.

    1995-01-01

    In proposed method of obtaining information on strain at surface of material specimen, magnetic coat (like that on magnetic tape) or optical coat (like that on compact disk) applied to all or part of surface monitored. Coating layer and associated measuring equipment, taken together, constitute system called "material strain monitor" (MSM). MSM important in research in materials and mechanics; in particular, expected to compete strongly with systems based on image-analysis and laser techniques now being developed to obtain information on strain fields.

  12. Nanostructured coatings by adhesion of phosphonated polystyrene particles onto titanium surface for implant material applications.

    PubMed

    Zeller, Anke; Musyanovych, Anna; Kappl, Michael; Ethirajan, Anitha; Dass, Martin; Markova, Dilyana; Klapper, Markus; Landfester, Katharina

    2010-08-01

    Titanium that is covered with a native oxide layer is widely used as an implant material; however, it is only passively incorporated in the human bone. To increase the implant-bone interaction, one can graft multifunctional phosphonic compounds onto the implant material. Phosphonate groups show excellent adhesion properties onto metal oxide surfaces such as titanium dioxide, and therefore, they can be used as anchor groups. Here, we present an alternative coating material composed of phosphonate surface-functionalized polystyrene nanoparticles synthesized via free radical copolymerization in a direct (oil-in-water) miniemulsion process. Two types of functional monomers, namely, vinylphosphonic acid (VPA) and vinylbenzyl phosphonic acid (VBPA), were employed in the copolymerization reaction. Using VBPA as a comonomer leads to particles with a higher density of surface phosphonate groups in comparison to those obtained with VPA. VBPA-functionalized particles were used for the coating formation on the titanium surface. The particles monolayer was investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM) employing titanium and silicium tip with the native OH groups. Force versus distance curves proves the strong adhesion between the phosphonated particles and the titanium (or silicium) surfaces in contrast to the nonfunctionalized polystyrene particles. Finally, as a proof of concept, the particles adhered to the surface were further used to nucleate hydroxyapatite, which has high potential for bioimplants. PMID:20690639

  13. Magnetorheology and sedimentation behavior of an aqueous suspension of surface modified carbonyl iron particles

    NASA Astrophysics Data System (ADS)

    Cheng, H. B.; Zuo, L.; Song, J. H.; Zhang, Q. J.; Wereley, N. M.

    2010-05-01

    Surface modified carbonyl iron particles (SMCIPs) were synthesized by coating carbonyl iron particles with an organic reagent (N-polyether, N, N, N,-acetyloxy) 2, 6-aminion-1, 3, 4-thiadiazole dimer. The properties of these SMCIPs, including morphology, structure, and magnetic behavior, were characterized using scanning electron microscopy and a vibrating sample magnetometer. Aqueous magnetorheological (MR) fluids were prepared using SMCIPs. MR properties were measured via a strain-controlled parallel disk rheometer equipped with a magnetic field source. Addition of the organic surface coating layer was found to greatly improve sedimentation stability of the aqueous MR fluids at a small cost of a reduction in field dependent yield stress.

  14. Surface Growth and Oxidation of Soot Particles under Flame Conditions

    NASA Astrophysics Data System (ADS)

    Schäfer, Th.; Mauß, F.; Bockhorn, H.; Fetting, F.

    1995-11-01

    Surface growth and oxidation of soot particles is investigated in premixed counter flow flames. Surface growth rates and soot oxidation rates can be evaluated from the measured appearance rates of soot and the calculated surface growth rates derived from the HACA-mechanism. The dependence of surface growth rates and soot oxidation rates on composition of the gas phase, temperature and "surface concentration" is discussed. A mechanism of soot oxidation accounting for the experimental findings is suggested.

  15. Tape method of forming a thin layer of doped lanthanum chromite particles and of bonding such on an electrode

    DOEpatents

    Richards, Von L. (Murrysville, PA); Singhal, Subhash C. (Murrysville, PA); Pal, Uday B. (Cambridge, MA)

    1992-01-01

    A combustible polymer film, useful for application of an interconnection on an electrode is made by: (1) providing doped LaCro.sub.3 particles; (2) dispersing doped LaCrO.sub.3 particles in a solvent, to provide a dispersion; (3) screening the dispersion to provide particles in the range of from 30 micrometers to 80 micrometers; (4) admixing a fugitive polymer with the particles; (5) casting the dispersion to provide a film; (6) drying the film; and (7) stripping the film. The film can then be applied to a porous, preheated electrode top surface, and then electrochemical vapor depositing a dense skeletal LaCrO.sub.3 structure, between and around the doped LaCrO.sub.3 particles. Additional solid oxide electrolyte and fuel electrode layers can then be added to provide a fuel cell.

  16. A novel surface cleaning method for chemical removal of fouling lead layer from chromium surfaces

    NASA Astrophysics Data System (ADS)

    Gholivand, Kh.; Khosravi, M.; Hosseini, S. G.; Fathollahi, M.

    2010-10-01

    Most products especially metallic surfaces require cleaning treatment to remove surface contaminations that remain after processing or usage. Lead fouling is a general problem which arises from lead fouling on the chromium surfaces of bores and other interior parts of systems which have interaction with metallic lead in high temperatures and pressures. In this study, a novel chemical solution was introduced as a cleaner reagent for removing metallic lead pollution, as a fouling metal, from chromium surfaces. The cleaner aqueous solution contains hydrogen peroxide (H 2O 2) as oxidizing agent of lead layer on the chromium surface and acetic acid (CH 3COOH) as chelating agent of lead ions. The effect of some experimental parameters such as acetic acid concentration, hydrogen peroxide concentration and temperature of the cleaner solution during the operation on the efficiency of lead cleaning procedure was investigated. The results of scanning electron microscopy (SEM) showed that using this procedure, the lead pollution layer could be completely removed from real chromium surfaces without corrosion of the original surface. Finally, the optimum conditions for the complete and fast removing of lead pollution layer from chromium surfaces were proposed. The experimental results showed that at the optimum condition (acetic acid concentration 28% (V/V), hydrogen peroxide 8% (V/V) and temperature 35 °C), only 15-min time is needed for complete removal of 3 g fouling lead from a chromium surface.

  17. Surface plasmon polaritons scattering by subwavelength dielectric particles

    E-print Network

    Aporvari, Mehdi Shafiei

    2015-01-01

    Surface plasmon polaritons scattering from subwavelength dielectric particles is investigated using finite difference time domain method. It is shown that coupling an incident surface plasmon polariton to inter-cavity modes of the particle can dramatically changes transmitted fields and plasmon-induced forces. In particular, both transmission and optical forces are highly sensitive to the particle size that is related to the excitation of whispering gallery modes or standing-wave modes depending on the particle shape and size. This features might have potential sensing applications.

  18. Financial Brownian Particle in the Layered Order-Book Fluid and Fluctuation-Dissipation Relations

    NASA Astrophysics Data System (ADS)

    Yura, Yoshihiro; Takayasu, Hideki; Sornette, Didier; Takayasu, Misako

    2014-03-01

    We introduce a novel description of the dynamics of the order book of financial markets as that of an effective colloidal Brownian particle embedded in fluid particles. The analysis of comprehensive market data enables us to identify all motions of the fluid particles. Correlations between the motions of the Brownian particle and its surrounding fluid particles reflect specific layering interactions; in the inner layer the correlation is strong and with short memory, while in the outer layer it is weaker and with long memory. By interpreting and estimating the contribution from the outer layer as a drag resistance, we demonstrate the validity of the fluctuation-dissipation relation in this nonmaterial Brownian motion process.

  19. Financial Brownian particle in the layered order-book fluid and fluctuation-dissipation relations.

    PubMed

    Yura, Yoshihiro; Takayasu, Hideki; Sornette, Didier; Takayasu, Misako

    2014-03-01

    We introduce a novel description of the dynamics of the order book of financial markets as that of an effective colloidal Brownian particle embedded in fluid particles. The analysis of comprehensive market data enables us to identify all motions of the fluid particles. Correlations between the motions of the Brownian particle and its surrounding fluid particles reflect specific layering interactions; in the inner layer the correlation is strong and with short memory, while in the outer layer it is weaker and with long memory. By interpreting and estimating the contribution from the outer layer as a drag resistance, we demonstrate the validity of the fluctuation-dissipation relation in this nonmaterial Brownian motion process. PMID:24655287

  20. Linear stability of a layered fluid with mobile surface plates

    NASA Technical Reports Server (NTRS)

    Buffett, B. A.; Gable, C. W.; O'Connell, R. J.

    1994-01-01

    We develop a general method of calculating the linear stability of a fluid with homogeneous layers that is heated from below. The method employs a propagator technique to obtain expressions for the fluid velocity, stress, and temperature. The principal advantage of the method is the ease with which solutions are adapted to a wide variety of boundary conditions and fluid properties. We demonstrate the utility of the method using three examples which quantify the effects of (1) rheological layering, (2) mobile plates at the surface, and (3) multiple phase transitions. Each example is presented in the context of Earth's mantle. In the first example, we predict that convection becomes confined to the upper mantle once the viscosity increase between the upper and lower mantle exceeds a factor of 2000, consistent with the nonlinear calculations of Davies (1977). In the second example we find that the heat flux variations in a convecting fluid with variably sized, surface plates can be attributed, in part, to changes in the critical Rayleigh number. The linear stability of a fluid with multiple phase transitions is significantly affects by the locations of the transitions. We find that phase transitions have their largest effect when they are located at the center of the fluid layer and become much less important when they are located near the exterior boundaries.

  1. Calibration of charge state conversion surfaces for neutral particle detectors

    NASA Astrophysics Data System (ADS)

    Wahlström, P.; Scheer, J. A.; Wurz, P.; Hertzberg, E.; Fuselier, S. A.

    2008-08-01

    Molecular oxygen and hydrogen ions were scattered off hydrogen terminated diamondlike carbon (DLC) charge state conversion surfaces at incident grazing angles. The energy range of the scattered particles was 390-1000 eV, and the surface roughness of the DLC surface was of the order of 1 Å rms. For all surfaces almost equal angular scattering and negative ion fractions were found within the uncertainties of the measurement. This result supports the fact that charge state conversion with DLC surfaces is a reliable technology for neutral particle sensing instruments. Furthermore, these instruments can work in the laboratory as well as in the harsh environment on board a satellite.The surfaces measured here are used in the IBEX-lo sensor, a neutral particle sensing instrument on the NASA IBEX mission, which is scheduled for launch into orbit around Earth in July 2008.

  2. Calibration of charge state conversion surfaces for neutral particle detectors

    SciTech Connect

    Wahlstroem, P.; Scheer, J. A.; Wurz, P.; Hertzberg, E.; Fuselier, S. A.

    2008-08-01

    Molecular oxygen and hydrogen ions were scattered off hydrogen terminated diamondlike carbon (DLC) charge state conversion surfaces at incident grazing angles. The energy range of the scattered particles was 390-1000 eV, and the surface roughness of the DLC surface was of the order of 1 A rms. For all surfaces almost equal angular scattering and negative ion fractions were found within the uncertainties of the measurement. This result supports the fact that charge state conversion with DLC surfaces is a reliable technology for neutral particle sensing instruments. Furthermore, these instruments can work in the laboratory as well as in the harsh environment on board a satellite.The surfaces measured here are used in the IBEX-lo sensor, a neutral particle sensing instrument on the NASA IBEX mission, which is scheduled for launch into orbit around Earth in July 2008.

  3. Atmospheric surface and boundary layers of the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Garstang, Michael

    1987-01-01

    Three phases of work were performed: design of and preparation for the Amazon Boundary Layer Experiment (ABLE 2-A); execution of the ABLE 2-A field program; and analysis of the ABLE 2-A data. Three areas of experiment design were dealt with: surface based meteorological measurements; aircraft missions; and project meteorological support. The primary goal was to obtain a good description of the structure of the atmosphere immediately above the rain forest canopy (top of canopy to a few thousand meters), to describe this region during the growing daytime phase of the boundary layer; and to examine the nighttime stratified state. A secondary objective was to examine the role that deep convective storms play in the vertical transport of heat, water vapor, and other trace gases. While significant progress was made, much of the analysis remains to be done.

  4. Assessment of Fluorescent Particles for Surface Flow Analysis

    PubMed Central

    Tauro, Flavia; Mocio, Gabriele; Rapiti, Emiliano; Grimaldi, Salvatore; Porfiri, Maurizio

    2012-01-01

    In this paper, a systematic performance assessment of the measurement system for surface flow analysis developed by our group in (Tauro et al., Sensors, 2010) is presented. The system is based on the detection of buoyant fluorescent microspheres through a low-cost apparatus, which incorporates light sources to elicit fluorescence response and a digital camera to identify the particles' transit. Experiments are conducted using green fluorescent particles and further tests are executed to evaluate the system performance for red and orange particles varying in emission wavelength, degree of biocompatibility, and cost. The influence of the following parameters on surface flow sensing using fluorescent beads is investigated: (i) distance of the light sources from the water surface, (ii) presence of an ad-hoc filter tuned at the particle emission wavelength, (iii) camera resolution and frame rate, (iv) flow regime, and (v) ambient light. Experimental results are used to inform implementation guidelines for surface flow analysis in natural environments. PMID:23202234

  5. Anisotropic Particle Synthesis Inside Droplet Templates on Superhydrophobic Surfaces

    E-print Network

    Velev, Orlin D.

    Anisotropic Particle Synthesis Inside Droplet Templates on Superhydrophobic Surfaces Vinayak on superhydrophobic substrates can be used to fabricate both shape-anisotropic (``doughnut'') and composition anisotropic structures via droplet templates dispensed on superhydrophobic substrates. Hence, little is known

  6. Architecting boron nanostructure on the diamond particle surface

    NASA Astrophysics Data System (ADS)

    Bai, H.; Dai, D.; Yu, J. H.; Nishimura, K.; Sasaoka, S.; Jiang, N.

    2014-02-01

    The present study provides an efficient approach for nano-functionalization of diamond powders. Boron nanostructure can be grown on diamond particle entire surface by a simple heat-treatment process. After treatment, various boron nanoforms were grown on the diamond particle surface at different processing temperature. High-density boron nanowires (BNWs) grow on the diamond particle entire surface at 1333 K, while nanopillars cover diamond powders when the heat treatment process is performed at 1393 K. The influence of the pretreatment temperature on the microstructure and thermal conductivity of Cu/diamond composites were investigated. Cu/diamond composites with high thermal conductivity of 670 W (m K)-1 was obtained, which was achieved by the formation of large number of nanowires and nanopillars on the diamond particle surface.

  7. Effects of nanoparticle layering on nanofluid and base fluid pool boiling heat transfer from a horizontal surface under atmospheric pressure

    NASA Astrophysics Data System (ADS)

    White, Steven B.; Shih, Albert J.; Pipe, Kevin P.

    2010-06-01

    Previous heat transfer studies of nanofluids have shown that suspended nanoparticles can affect thermal properties within a fluid and furthermore can affect surface roughness by depositing on a heater surface. Pool boiling studies of nanofluids have demonstrated either enhanced or diminished heat transfer, yet have been unable to distinguish the contributions of increased surface roughness and suppression of bubble transport by suspended particles because they have used base fluids on a clean boiling surface as a comparison. We resolve this uncertainty by studying the boiling performance of a surface exposed to a series of boiling tests that alternate between water and a water-based nanofluid with suspended 40 nm ZnO nanoparticles. We find that the performance for the water tests increases significantly, showing a 62% enhancement after four cycles. This increase correlates well with a surface roughness model for boiling that uses atomic force microscopy-measured surface data to quantify the layering of nanoparticles in intervening nanofluid boiling tests. We find that the performance of the ZnO nanofluid initially shows a 24% enhancement versus water on a clean (unroughened) surface, but then steadily declines in later tests as nanoparticle layering occurs, showing a measured trend that is opposite that of water. We ascribe this decrease to the suppression of bubble formation and motion by the suspended particles. The results demonstrate that the effect of increased surface roughness due to nanoparticle layering can be twofold, greatly enhancing boiling for the base fluid and slightly decreasing performance for the nanofluid.

  8. CORRELATIVE SURFACE ANALYSIS STUDIES OF ENVIRONMENTAL PARTICLES

    EPA Science Inventory

    Various surface analysis techniques (scanning electron microscopy/energy dispersive X-ray microanalysis (SEM/EDX), electron spectroscopy for chemical analysis (ESCA), and secondary ion mass spectrometry (SIMS) were evaluated in a correlative regimen for the chemical characterizat...

  9. Analysing the Properties of Surface Layers Generated by Sheet Metal Forming Operations

    NASA Astrophysics Data System (ADS)

    Šugárová, Jana; Šugár, Peter; Zemko, Peter

    2010-01-01

    The paper brings results of the surface layers properties analysis of a thin wall hollow sheet metal parts, produced by metal spinning and deep drawing. The influence of mandrel (workpiece) frequency of rotation on the spun parts surface layer strainhardening is studied and compared with the quality of the formed part surface layer produced by deep drawing technology.

  10. Physica D 143 (2000) 169186 Surface tension-driven convection patterns in two liquid layers

    E-print Network

    2000-01-01

    Physica D 143 (2000) 169­186 Surface tension-driven convection patterns in two liquid layers Anne a liquid layer with a free surface is heated from below, both surface tension gradients and buoyancy may liquid layers display a variety of convective phenomena that are inaccessible in the traditional system

  11. A SEMI-AUTOMATIC APPROACH FOR ESTIMATING NEAR SURFACE INTERNAL LAYERS FROM SNOW RADAR IMAGERY

    E-print Network

    A SEMI-AUTOMATIC APPROACH FOR ESTIMATING NEAR SURFACE INTERNAL LAYERS FROM SNOW RADAR IMAGERY changing polar ice sheets. Identifying and tracing near surface internal layers in snow radar echograms can developed an approach for semi-automatically esti- mating near surface internal layers in snow radar

  12. Boundary layer flow past a stretching sheet with fluid-particle suspension and convective boundary condition

    NASA Astrophysics Data System (ADS)

    Ramesh, G. K.; Gireesha, B. J.; Gorla, Rama Subba Reddy

    2015-08-01

    The steady two-dimensional boundary layer flow of a viscous dusty fluid over a stretching sheet with the bottom surface of the sheet heated by convection from a hot fluid is considered. The governing partial differential equations are transformed into ordinary differential equations using a similarity transformation, before being solved numerically by a Runge-Kutta-Fehlberg fourth-fifth order method (RKF45 Method) with the help of MAPLE. The effects of convective Biot number, fluid particle interaction parameter, and Prandtl number on the heat transfer characteristics are discussed. It is found that the temperature of both fluid and dust phase increases with increasing Biot number. A comparative study between the previous published and present results in a limiting sense is found in an excellent agreement.

  13. Anisotropy of Atmospheric Surface Layer Turbulence During the MATERHORN Experiment

    NASA Astrophysics Data System (ADS)

    Klipp, C. L.

    2014-12-01

    LES models are capable of capturing anisotropic turbulence, however little is currently known about the actual anisotropy in the atmospheric surface layer. It is known that atmospheric motion is anisotropic at large scales and becomes more isotropic as the scales of motion diminish in size, but quantifiable analysis has not been extensively carried out. Multiresolution decomposition of MATERHORN sonic anemometer data is used to separate the turbulence into different scales of motion. Reynolds stress tensor analysis is then used to determine the anisotropy characteristics of each scale. Flow from some directions exhibits a narrow range of anisotropy characteristics, while the anisotropy for flow from other directions not predictable.

  14. MICROANALYSIS OF INDIVIDUAL LAYERED PARTICLES BY SECONDARY ION MASS SPECTROMETRY

    EPA Science Inventory

    Secondary ion mass spectrometry is evaluated for application to the determination of the composition and structure of individual particles. Analyses of many elemental constituents at the ppm level can be obtained in individual particles as small as micrometers in diameter. Molecu...

  15. Homogenous Surface Nucleation of Solid Polar Stratospheric Cloud Particles

    NASA Technical Reports Server (NTRS)

    Tabazadeh, A.; Hamill, P.; Salcedo, D.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    A general surface nucleation rate theory is presented for the homogeneous freezing of crystalline germs on the surfaces of aqueous particles. While nucleation rates in a standard classical homogeneous freezing rate theory scale with volume, the rates in a surface-based theory scale with surface area. The theory is used to convert volume-based information on laboratory freezing rates (in units of cu cm, seconds) of nitric acid trihydrate (NAT) and nitric acid dihydrate (NAD) aerosols into surface-based values (in units of sq cm, seconds). We show that a surface-based model is capable of reproducing measured nucleation rates of NAT and NAD aerosols from concentrated aqueous HNO3 solutions in the temperature range of 165 to 205 K. Laboratory measured nucleation rates are used to derive free energies for NAT and NAD germ formation in the stratosphere. NAD germ free energies range from about 23 to 26 kcal mole, allowing for fast and efficient homogeneous NAD particle production in the stratosphere. However, NAT germ formation energies are large (greater than 26 kcal mole) enough to prevent efficient NAT particle production in the stratosphere. We show that the atmospheric NAD particle production rates based on the surface rate theory are roughly 2 orders of magnitude larger than those obtained from a standard volume-based rate theory. Atmospheric volume and surface production of NAD particles will nearly cease in the stratosphere when denitrification in the air exceeds 40 and 78%, respectively. We show that a surface-based (volume-based) homogeneous freezing rate theory gives particle production rates, which are (not) consistent with both laboratory and atmospheric data on the nucleation of solid polar stratospheric cloud particles.

  16. Plasma-enhanced deposition of antifouling layers on silicone rubber surfaces

    NASA Astrophysics Data System (ADS)

    Jiang, Hongquan

    In food processing and medical environments, biofilms serve as potential sources of contamination, and lead to food spoilage, transmission of diseases or infections. Because of its ubiquitous and recalcitrant nature, Listeria monocytogenes biofilm is especially hard to control. Generating antimicrobial surfaces provide a method to control the bacterial attachment. The difficulty of silver deposition on polymeric surfaces has been overcome by using a unique two-step plasma-mediated method. First silicone rubber surfaces were plasma-functionalized to generate aldehyde groups. Then thin silver layers were deposited onto the functionalized surfaces according to Tollen's reaction. X-ray photoelectron spectroscopy (XPS), atomic force spectroscopy (AFM) and scanning electron microscopy (SEM) showed that silver particles were deposited. By exposing the silver coated surfaces to L. monocytogenes, it was demonstrated that they were bactericidal to L. monocytogenes. No viable bacteria were detected after 12 to 18 h on silver-coated silicone rubber surfaces. Another antifouling approach is to generate polyethylene glycol (PEG) thin layer instead of silver on polymer surfaces. Covalent bond of PEG structures of various molecular weights to cold-plasma-functionalized polymer surfaces, such as silicone rubber, opens up a novel way for the generation of PEG brush-like or PEG branch-like anti-fouling layers. In this study, plasma-generated surface free radicals can react efficiently with dichlorosilane right after plasma treatment. With the generation of halo-silane groups, this enables PEG molecules to be grafted onto the modified surfaces. XPS data clearly demonstrated the presence of PEG molecules on plasma-functionalized silicone rubber surfaces. AFM images showed the changed surface morphologies as a result of covalent attachment to the surface of PEG molecules. Biofilm experiment results suggest that the PEG brush-like films have the potential ability to be the next generation antifouling deposition. However, the coverage on FSR needs to be improved. Different PEG structures (brush, branched, oxirane-group terminated and PEG terminated structures) were developed in this study to understand the bacterial attachment behavior and the antifouling mechanism of PEG-like structures. Results from biofilm experiments demonstrated the absence of antifouling behavior. The presence of PEG structure on substrate surfaces cannot guarantee antifouling ability.

  17. Nanofilms of hyaluronan/chitosan assembled layer-by-layer: An antibacterial surface for Xylella fastidiosa.

    PubMed

    Hernández-Montelongo, Jacobo; Nascimento, Vicente F; Murillo, Duber; Taketa, Thiago B; Sahoo, Prasana; de Souza, Alessandra A; Beppu, Marisa M; Cotta, Monica A

    2016-01-20

    In this work, nanofilms of hyaluronan/chitosan (HA/CHI) assembled layer by layer were synthesized; their application as a potential antimicrobial material was demonstrated for the phytopathogen Xylella fastidiosa, a gram-negative bacterium, here used as a model. For the synthesis, the influence of pH and ionic strength of these natural polymer stem-solutions on final characteristics of the HA/CHI nanofilms was studied in detail. The antibacterial effect was evaluated using widefield fluorescence microscopy. These results were correlated with the chemical properties of the nanofilms, studied by FTIR and Raman spectroscopy, as well as with their morphology and surface properties characterized using SEM and AFM. The present findings can be extended to design and optimize HA/CHI nanofilms with enhanced antimicrobial behavior for other type of phytopathogenic gram-negative bacteria species, such as Xanthomonas citri, Xanthomas campestri and Ralstonia solanacearum. PMID:26572322

  18. Three-Dimensional Porous Particles Composed of Curved, Two-Dimensional, Nano-Sized Layers for Li-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Yushin, Gleb; Evanoff, Kara; Magasinski, Alexander

    2012-01-01

    Thin Si films coated on porous 3D particles composed of curved 2D graphene sheets have been synthesized utilizing techniques that allow for tunable properties. Since graphene exhibits specific surface area up to 100 times higher than carbon black or graphite, the deposition of the same mass of Si on graphene is much faster in comparison -- a factor which is important for practical applications. In addition, the distance between graphene layers is tunable and variation in the thickness of the deposited Si film is feasible. Both of these characteristics allow for optimization of the energy and power characteristics. Thicker films will allow higher capacity, but slower rate capabilities. Thinner films will allow more rapid charging, or higher power performance. In this innovation, uniform deposition of Si and C layers on high-surface area graphene produced granules with specific surface area (SSA) of 5 sq. m/g.

  19. Particle dispersion within zonal jets in two-layer beta-plane turbulence 

    E-print Network

    Roman, Jennifer Claire

    1996-01-01

    Passive tracer dispersion is studied in a two-layer, quasigeostrophic, betaplane model in which persistent, steady, zonal jets are observed. Particle trajectories and statistics are examined for barriers to or mechanisms for mixing. Simulations...

  20. The role of adsorbed water on the friction of a layer of submicron particles

    USGS Publications Warehouse

    Sammis, Charles G.; Lockner, David A.; Reches, Ze’ev

    2011-01-01

    Anomalously low values of friction observed in layers of submicron particles deformed in simple shear at high slip velocities are explained as the consequence of a one nanometer thick layer of water adsorbed on the particles. The observed transition from normal friction with an apparent coefficient near ? = 0.6 at low slip speeds to a coefficient near ? = 0.3 at higher slip speeds is attributed to competition between the time required to extrude the water layer from between neighboring particles in a force chain and the average lifetime of the chain. At low slip speeds the time required for extrusion is less than the average lifetime of a chain so the particles make contact and lock. As slip speed increases, the average lifetime of a chain decreases until it is less than the extrusion time and the particles in a force chain never come into direct contact. If the adsorbed water layer enables the otherwise rough particles to rotate, the coefficient of friction will drop to ? = 0.3, appropriate for rotating spheres. At the highest slip speeds particle temperatures rise above 100°C, the water layer vaporizes, the particles contact and lock, and the coefficient of friction rises to ? = 0.6. The observed onset of weakening at slip speeds near 0.001 m/s is consistent with the measured viscosity of a 1 nm thick layer of adsorbed water, with a minimum particle radius of approximately 20 nm, and with reasonable assumptions about the distribution of force chains guided by experimental observation. The reduction of friction and the range of velocities over which it occurs decrease with increasing normal stress, as predicted by the model. Moreover, the analysis predicts that this high-speed weakening mechanism should operate only for particles with radii smaller than approximately 1 ?m. For larger particles the slip speed required for weakening is so large that frictional heating will evaporate the adsorbed water and weakening will not occur.

  1. Shear-Layer Interactions Between Surface-Mounted Obstacles at Varying Streamwise Spacings

    NASA Astrophysics Data System (ADS)

    Kim, T.; Best, J. L.; Christensen, K. T.

    2012-11-01

    Surface obstacles occur in a variety of flows, such as roughness elements in engineering flows and barchan dunes in natural eolian environments on both the Earth and Mars. Depending upon the arrangement and spacing between such obstacles, the flow over one obstacle can significantly alter the flow over those positioned downstream. Such flow interactions occur in fields of barchan dunes that are closely spaced and aligned in the flow direction, and where flow sheltering may play a significant role. To better understand these flow interactions, experiments were conducted for a pair of identical, upright cylinders extending into the log layer and aligned at various spacings in the streamwise direction of a turbulent channel flow at Re? ~ 1200 . Particle-image velocimetry measurements of the flow around the cylinders reveal strong interactions between the shear layers generated downstream of the cylinders, and particularly a weakening of the downstream-most shear layer for small cylinder spacings (< 4 - 6 D). Modifications of the vortex-shedding processes at the downstream cylinder are under investigation, as these interactions are thought to play a critical role in the formation and evolution of surface obstacles when the surface is cohesionless and mobile.

  2. Solar radiation transfer in the surface snow layer in Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Järvinen, Onni; Leppäranta, Matti

    2013-03-01

    Spectroradiometer measurements of solar radiation (the broadest band used 400-900 nm) were performed above and inside the surface snow layer in western Dronning Maud Land, Antarctica, during the austral summer of 2009-2010. The vertical distributions of transmittance and the extinction coefficient were examined from the surface to a depth of 30 cm. Physical characterization of the snowpack included measurements of thickness, density, hardness (hand test), liquid-water content, and grain size and shape (from photographs of grains). The transmittance was <1% in the upper 20 cm and <27% in the upper 10 cm. The mean spectral diffuse extinction coefficient varied between 0.04 and 0.31 cm-1 (10-20-cm layer). Using the spectral extinction coefficients of the 0-10-cm and 10-20-cm layers, the depth, where broadband (400-700-nm band) irradiance was 1% of the downwelling irradiance at the surface, was 50 cm. The density of the snow in the upper part of the snowpack (depth of 0-55 cm) varied from 300 to 440 kg m-3. The predominant grain type was large rounded particles (RGlr) and the predominant grain size was 1 mm.

  3. Thermal stability of nanocrystalline layers fabricated by surface nanocrystallization

    NASA Astrophysics Data System (ADS)

    Mai, Yong-jin; Jie, Xiao-hua; Liu, Li-li; Yu, Neng; Zheng, Xiang-xin

    2010-01-01

    A nanocrystalline layer with ultrafine grains (about 30-40 nm) on the surface of 7050 aluminum alloy was fabricated by a new technique called High Pressure Shot Peening (HPSP) which is the combination of common Shot Peening equipment with a pressurizing vessel. Relationship between hot flow and temperature was observed by Differential Scanning Calorimetry (DSC) and the activation energy, calculated by Kisssinger equation, of the as-treated sample increased 26.6 kJ/mol when it is compared with the as-reserved sample. The Bragg peaks of the as-prepared samples, respectively treated with various annealing treatments were characterized by XRD and the microhardness distribution along the depth from the treated surface were measured at the same time, which indicated that the broadening of Bragg peaks decreased with the increasing of anneal temperature; the grain size, calculated by Scherrer-Wilson equation, increased obviously during 180-220 °C, accordingly, the microhardness obviously decreased. According to the results of DSC, XRD and microhardness, it is reasonable to deduce that the temperature range of thermal stability for aluminum alloy nanocrystalline layer is lower than 200 °C.

  4. Parameterization of turbulence characteristics of Atmospheric surface layer in Qatar

    NASA Astrophysics Data System (ADS)

    Singha, Arindam; Sadr, Reza

    2011-11-01

    Turbulent characteristics of atmospheric boundary layer are of utmost importance in modeling the large-scale meteorological processes, diffusion of atmospheric contaminants, heat transfer and evaporation from the earth surface. Available data are for some areas on the globe and are really sparse in tropical regions, except a few recent studies in Asia. There had been some recent studies in tropical weather in southwestern Asia but no study is carried out in Persian Gulf region. An atmospheric measurement station has been designed and installed in a site in the coastal region of Doha, Qatar, to characterize the nature of atmosphere surface layer (ASL) and ocean wave characteristics in this field. The aim of the present study is to report the micrometeorological data collected from this site. The normalized variation of the turbulent velocity components and temperature were studied using Monin-Obukhov similarity theory (MOST). This study also attempts to verify the validity of MOST in the context of the data collected for a marine ASL in Qatar, and compares the modeling parameters with other investigations around the world. This is the first ever study of ASL in this area, and is expected to be a foundation of further atmospheric research endeavors in Qatar.

  5. Spectral characteristics of atmospheric surface layer turbulence in Qatar

    NASA Astrophysics Data System (ADS)

    Sadr, Reza; Singha, Arindam; Micro Scale Thermofluids Laboratory Team

    2012-11-01

    Turbulent characteristics of atmospheric boundary layer are of utmost importance in modeling the large-scale meteorological processes, diffusion of atmospheric contaminants, heat transfer and evaporation from the earth surface. Meteorological data are available for some areas of the globe but are sparse in tropical regions. There had been some recent studies in tropical weather in southwestern Asia but no study is carried out in Persian Gulf region. The present study reports the micrometeorological data collected from an atmospheric measurement station in the coastal region of Doha, Qatar, to characterize the nature of atmosphere surface layer (ASL) and ocean wave in this region. In the present work turbulence velocity spectra in this region is presented and compared with the available data from other locations. Also, empirical relationship for the normalized dissipation function in this region is suggested. Finally, variation of different length scales with the stability parameter z/ L is investigated and compare with the existing values in available literatures. This is the first ever study of ASL in this area, and is expected to be a foundation of further atmospheric research endeavors in Qatar.

  6. Real-time assessment of surface interactions with titanium passivation layer by surface plasmon resonance

    PubMed Central

    Hirata, Isao; Yoshida, Yasuhiro; Nagaoka, Noriyuki; Hiasa, Kyou; Abe, Yasuhiko; Maekawa, Kenji; Kuboki, Takuo; Akagawa, Yasumasa; Suzuki, Kazuomi; Van Meerbeek, Bart; Messersmith, Phillip B.; Okazaki, Masayuki

    2011-01-01

    The high corrosion resistance and strength-to-density ratio makes titanium widely used in major industry, but also in a gamut of medical applications. Here we report for the first time on our development of a titanium passivation layer sensor that makes use of surface plasmon resonance (SPR). The deposited titanium metal layer on the sensor was passivated in air, like titanium medical devices. Our ‘Ti-SPR sensor’ enables analysis of biomolecules interactions with the passivated surface of titanium in real time. As a proof of concept, corrosion of titanium passivation layer exposed to acid was monitored in real time. Also, the Ti-SPR sensor can accurately measure the time-dependence of protein adsorption onto titanium passivation layer with a sub-nanogram per square millimeter accuracy. Besides such SPR analyses, an SPR-imaging (SPRI) enables real-time assessment of chemical surface processes that occur simultaneously at ‘multiple independent spots’ on the Ti-SPR sensor, such as acid-corrosion or adhesion of cells. Our Ti-SPR sensor will therefore be very useful to study titanium-corrosion phenomena and biomolecular titanium-surface interactions with application in a broad range of industrial and biomedical fields. PMID:22154862

  7. Atomic layer deposition of ultrathin platinum films on tungsten atomic layer deposition adhesion layers: Application to high surface area substrates

    SciTech Connect

    Clancey, Joel W.; Cavanagh, Andrew S.; Kukreja, Ratandeep S.; Kongkanand, Anusorn; George, Steven M.

    2015-01-15

    Platinum (Pt) atomic layer deposition (ALD) usually yields Pt nanoparticles during initial film growth. In contrast, deposition of continuous and ultrathin Pt films is needed for many important applications, such as the oxygen reduction reaction in polymer electrolyte membrane (PEM) fuel cells. A continuous and high radius of curvature Pt film is more stable and has a higher area-specific activity than the Pt nanoparticles commonly used in PEM fuel cells. However, the Pt film must be ultrathin and have a large surface area to be cost effective. In this paper, a review of earlier Pt ALD studies on flat substrates is presented that demonstrates that tungsten, with a higher surface energy than platinum, can serve as an adhesion layer to achieve Pt ALD films that are continuous at ultrathin thicknesses of ?1.5?nm. This work utilized MeCpPtMe{sub 3} and H{sub 2} plasma as the Pt ALD reactants. The deposition of continuous and ultrathin Pt ALD films using MeCpPtMe{sub 3} and H{sub 2} plasma as the reactants is then studied on two high surface area substrate materials: TiO{sub 2} nanoparticles and 3M nanostructured thin film (NSTF). Transmission electron microscopy (TEM) showed uniform and continuous Pt films with thicknesses of ?4?nm on the TiO{sub 2} nanoparticles. TEM with electron energy loss spectroscopy analysis revealed W ALD and Pt ALD films with thicknesses of ?3?nm that were continuous and conformal on the high aspect ratio NSTF substrates. These results demonstrate that cost effective use of Pt ALD on high surface area substrates is possible for PEM fuel cells.

  8. THEORETICAL MODEL OF SOILING OF SURFACES BY AIRBORNE PARTICLES

    EPA Science Inventory

    A model is developed which can be used to predict the change in reflectance from a surface as a function of time. Reflectance change is a measure of soiling caused by the deposition of particles on a surface. The major inputs to the model are the parameters to a bimodal distribut...

  9. Utilization of surface-treated rubber particles from waste tires

    SciTech Connect

    Smith, F.G. |

    1994-12-01

    During a 12-month program, the author successfully demonstrated commercial applications for surface-treated rubber particles in two major markets: footwear (shoe soles and components) and urethane-foam carpet underlay (padding). In these markets, he has clearly demonstrated the ease of using R-4080 and R-4030 surface-treated rubber particles in existing manufacturing plants and processes and have shown that the material meets or exceeds existing standards for performance, quality, and cost-effectiveness. To produce R-4080 and R-4030, vulcanized rubber, whole-tire material is finely ground to particles of nominal 80 and mesh size respectively. Surface treatment is achieved by reacting these rubber particles with chlorine gas. In this report, the author describes the actual test and evaluations of the participant companies, and identifies other potential end uses.

  10. Confinement of dust particles in a double layer A. Barkan and R. L. Merlin0

    E-print Network

    Merlino, Robert L.

    Confinement of dust particles in a double layer A. Barkan and R. L. Merlin0 Department of Physics) Negatively charged, micron-sized dust grains have been electrostatically confined in the high-potential region of an anode double layer formed in a single-ended Q-machine plasma. The levitated dust grains

  11. Spatially selective surface platforms for binding fibrinogen prepared by particle lithography with organosilanes

    PubMed Central

    Englade-Franklin, Lauren E.; Saner, ChaMarra K.; Garno, Jayne C.

    2013-01-01

    We introduce an approach based on particle lithography to prepare spatially selective surface platforms of organosilanes that are suitable for nanoscale studies of protein binding. Particle lithography was applied for patterning fibrinogen, a plasma protein that has a major role in the clotting cascade for blood coagulation and wound healing. Surface nanopatterns of mercaptosilanes were designed as sites for the attachment of fibrinogen within a protein-resistant matrix of 2-[methoxy(polyethyleneoxy)propyl] trichlorosilane (PEG-silane). Preparing site-selective surfaces was problematic in our studies, because of the self-reactive properties of PEG-organosilanes. Certain organosilanes presenting hydroxyl head groups will cross react to form mixed surface multi-layers. We developed a clever strategy with particle lithography using masks of silica mesospheres to protect small, discrete regions of the surface from cross reactions. Images acquired with atomic force microscopy (AFM) disclose that fibrinogen attached primarily to the surface areas presenting thiol head groups, which were surrounded by PEG-silane. The activity for binding anti-fibrinogen was further evaluated using ex situ AFM studies, confirming that after immobilization the fibrinogen nanopatterns retained capacity for binding immunoglobulin G. Studies with AFM provide advantages of achieving nanoscale resolution for detecting surface changes during steps of biochemical surface reactions, without requiring chemical modification of proteins or fluorescent labels. PMID:24427541

  12. Neutral particle release from Europa's surface

    E-print Network

    Plainaki, C; Mura, A; Orsini, S; Cassidy, T

    2009-01-01

    In this paper, we look at space weathering processes on the icy surface of Jupiter's moon Europa. The heavy energetic ions of the Jovian plasma (H+, O+, S+, C+) can erode the surface of Europa via ion sputtering (IS), ejecting up to 1000 H2O molecules per ion and also break the chemical bonds of the ejected species which can result in the formation of new molecules (e.g. O2), a process called radiolysis. UV Photons impinging the Europa's surface can also result in neutral atom release via photon stimulated desorption (PSD) and chemical change (photolysis). In this work, we study the efficiency of these two processes (IS and PSD) for ejecting water molecules. We simulated the resulting neutral H2O density, finding that they alone cannot sustain the tenuous atmosphere deduced from the Galileo Orbiter data. We also estimate the contribution to the total neutral atom release by the Ion Backscattering and Neutralization (IBSN) process. Moreover, we estimate the possibility of etecting the sputtered high energy ato...

  13. Dynamics of Swollen Gel Layers Anchored to Solid Surfaces

    NASA Astrophysics Data System (ADS)

    Fytas, George; Gianneli, Maria; Roskamp, Robert; Jonas, Ulrich; Koynov, Kaloian; Knoll, Wolfgang; Loppinet, Benoit

    2008-03-01

    Thin responsive hydrogel films are currently under development for biosensor applications. Photocrosslinkable poly(N-isopropylacrylamide) (PNIPAAm) based chains are spin coated as thin films (about 1 micron) and UV irradiated with variable doses to control the crosslink density. The obtained anchored gel layers can swell in ethanol or water up to about 10 microns for low crosslinking densities. Dynamics of the swollen layers and diffusion of different tracers (as analyte mimicks) are studied by dynamic light scattering (PCS) and fluorescence correlation spectroscopy (FCS). PCS resolved fast and slow diffusions, attributed to cooperative diffusion and long range concentration heterogeneities. Higher crosslink densities give rise to faster cooperative diffusion, i.e. short dynamic mesh sizes. FCS revealed the importance of electrostatic interactions between probe and negatively charged network. While a negatively charged dye senses local dynamics with a moderate slow down, a positively charged dye exhibited substantially retarded diffusion. Larger tracers are used to assess the size dependent gel penetrability, whereas large particles, trapped into the network, expectedly follow the network dynamics.

  14. Numerical Computations of Hypersonic Boundary-Layer over Surface Irregularities

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Choudhari, Meelan M.; Li, Fei

    2010-01-01

    Surface irregularities such as protuberances inside a hypersonic boundary layer may lead to premature transition on the vehicle surface. Early transition in turn causes large localized surface heating that could damage the thermal protection system. Experimental measurements as well as numerical computations aimed at building a knowledge base for transition Reynolds numbers with respect to different protuberance sizes and locations have been actively pursued in recent years. This paper computationally investigates the unsteady wake development behind large isolated cylindrical roughness elements and the scaled wind-tunnel model of the trip used in a recent flight measurement during the reentry of space shuttle Discovery. An unstructured mesh, compressible flow solver based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for the flow past a roughness element under several wind-tunnel conditions. For a cylindrical roughness element with a height to the boundary-layer thickness ratio from 0.8 to 2.5, the wake flow is characterized by a mushroom-shaped centerline streak and horse-shoe vortices. While time-accurate solutions converged to a steady-state for a ratio of 0.8, strong flow unsteadiness is present for a ratio of 1.3 and 2.5. Instability waves marked by distinct disturbance frequencies were found in the latter two cases. Both the centerline streak and the horse-shoe vortices become unstable downstream. The oscillatory vortices eventually reach an early breakdown stage for the largest roughness element. Spectral analyses in conjunction with the computed root mean square variations suggest that the source of the unsteadiness and instability waves in the wake region may be traced back to possible absolute instability in the front-side separation region.

  15. Nature of the Martian surface as inferred from the particle-size distribution of lunar-surface material.

    NASA Technical Reports Server (NTRS)

    Mason, C. C.

    1971-01-01

    Analysis of lunar particle size distribution data indicates that the surface material is composed of two populations. One population is caused by comminution from the impact of the larger-sized meteorites, while the other population is caused by the melting of fine material by the impact of smaller-sized meteorites. The results are referred to Mars, and it is shown that the Martian atmosphere would vaporize the smaller incoming meteorites and retard the incoming meteorites of intermediate and large size, causing comminution and stirring of the particulate layer. The combination of comminution and stirring would result in fine material being sorted out by the prevailing circulation of the Martian atmosphere and the material being transported to regions where it could be deposited. As a result, the Martian surface in regions of prevailing upward circulation is probably covered by either a rubble layer or by desert pavement; regions of prevailing downward circulation are probably covered by sand dunes.

  16. Surface and sub-surface reactions during low temperature aluminium oxide atomic layer deposition on fiber-forming polymers

    E-print Network

    Khan, Saad A.

    Surface and sub-surface reactions during low temperature aluminium oxide atomic layer deposition-phase chemical precursors and high molecular weight polymers are important for polymer coating, encapsulation and surface modification. Using trimethylaluminium and water in an atomic layer deposition (ALD) exposure

  17. Global chaotization of fluid particle trajectories in a sheared two-layer two-vortex flow

    NASA Astrophysics Data System (ADS)

    Ryzhov, Evgeny A.; Koshel, Konstantin V.

    2015-10-01

    In a two-layer quasi-geostrophic approximation, we study the irregular dynamics of fluid particles arising due to two interacting point vortices embedded in a deformation flow consisting of shear and rotational components. The two vortices are arranged within the bottom layer, but an emphasis is on the upper-layer fluid particle motion. Vortices moving in one layer induce stirring of passive scalars in the other layer. This is of interest since point vortices induce singular velocity fields in the layer they belong to; however, in the other layer, they induce regular velocity fields that generally result in a change in passive particle stirring. If the vortices are located at stagnation points, there are three different types of the fluid flow. We examine how properties of each flow configuration are modified if the vortices are displaced from the stagnation points and thus circulate in the immediate vicinity of these points. To that end, an analysis of the steady-state configurations is presented with an emphasis on the frequencies of fluid particle oscillations about the elliptic stagnation points. Asymptotic relations for the vortex and fluid particle zero-oscillation frequencies are derived in the vicinity of the corresponding elliptic points. By comparing the frequencies of fluid particles with the ones of the vortices, relations between the parameters that lead to enhanced stirring of fluid particles are established. It is also demonstrated that, if the central critical point is elliptic, then the fluid particle trajectories in its immediate vicinity are mostly stable making it harder for the vortex perturbation to induce stirring. Change in the type of the central point to a hyperbolic one enhances drastically the size of the chaotic dynamics region. Conditions on the type of the central critical point also ensue from the derived asymptotic relations.

  18. Global chaotization of fluid particle trajectories in a sheared two-layer two-vortex flow.

    PubMed

    Ryzhov, Evgeny A; Koshel, Konstantin V

    2015-10-01

    In a two-layer quasi-geostrophic approximation, we study the irregular dynamics of fluid particles arising due to two interacting point vortices embedded in a deformation flow consisting of shear and rotational components. The two vortices are arranged within the bottom layer, but an emphasis is on the upper-layer fluid particle motion. Vortices moving in one layer induce stirring of passive scalars in the other layer. This is of interest since point vortices induce singular velocity fields in the layer they belong to; however, in the other layer, they induce regular velocity fields that generally result in a change in passive particle stirring. If the vortices are located at stagnation points, there are three different types of the fluid flow. We examine how properties of each flow configuration are modified if the vortices are displaced from the stagnation points and thus circulate in the immediate vicinity of these points. To that end, an analysis of the steady-state configurations is presented with an emphasis on the frequencies of fluid particle oscillations about the elliptic stagnation points. Asymptotic relations for the vortex and fluid particle zero-oscillation frequencies are derived in the vicinity of the corresponding elliptic points. By comparing the frequencies of fluid particles with the ones of the vortices, relations between the parameters that lead to enhanced stirring of fluid particles are established. It is also demonstrated that, if the central critical point is elliptic, then the fluid particle trajectories in its immediate vicinity are mostly stable making it harder for the vortex perturbation to induce stirring. Change in the type of the central point to a hyperbolic one enhances drastically the size of the chaotic dynamics region. Conditions on the type of the central critical point also ensue from the derived asymptotic relations. PMID:26520074

  19. Investigation of acoustically-coupled shear layers using particle image velocimetry

    E-print Network

    Oshkai, Peter

    Investigation of acoustically-coupled shear layers using particle image velocimetry P. Oshkai, T in a duct is performed using a technique of digital particle image velocimetry. Imaging of the flow, vorticity, and streamline topology at various phases of the acoustic cycle. Global instantaneous images

  20. Electromagnetic Boundary Layer Flow Control Facility Development Using Conductive Particle Seeding

    E-print Network

    Texas at Arlington, University of

    particle seeding is in the initial stages of development, fabrication and testing. The facility consists earth magnets. Initial bench-top testing is reported with the future intention of testing the facilityElectromagnetic Boundary Layer Flow Control Facility Development Using Conductive Particle Seeding

  1. Secondary electron emission from the surface covered by a dust layer

    NASA Astrophysics Data System (ADS)

    Richterova, Ivana; Vaverka, Jakub; Pavlu, Jiri; Nemecek, Zdenek; Safrankova, Jana

    2015-04-01

    Bodies immersed in the plasma are charged to the floating potential that is determined by a balance of the currents onto/from the surface. The collection of charged particles and the photoemission current dominate but if the temperature of the electron component of the ambient plasma is high enough (10 eV or more) the secondary electron emission current should be considered. For an explanation of observed surface potentials of the bodies covered with a dust layer like the Moon, a depression of the secondary electron emission yield by a factor of 2 or 3 with respect to the smooth planar surface is expected. However, our previous calculations of an influence of the surface roughness on the secondary electron emission from dust grains have shown that these effects do not lead to required yield reduction. The present paper is devoted to a search for dust grain configurations on a planar surface that can provide the yield reduction consistent with observed surface potentials. The results are compared with the calculations of the yield from porous (lava type) surfaces. This approach can be also applied to other processes as the photoemission or ion induced electron emission.

  2. Dense medium radiative transfer theory for two scattering layers with a Rayleigh distribution of particle sizes

    SciTech Connect

    West, R.; Tsang, Leung; Winebrenner, D.P. )

    1993-03-01

    Dense medium radiative transfer theory is applied to a three-layer model consisting of two scattering layers overlying a homogeneous half space with a size distribution of particles in each layer. A model with a distribution of sizes gives quite different results than those obtained from a model with a single size. The size distribution is especially important in the low frequency limit when scattering is strongly dependent on particle size. The size distribution and absorption characteristics also affect the extinction behavior as a function of fractional volume. Theoretical results are also compared with experimental data. The sizes, permittivities, and densities used in the numerical illustrations are typical values for snow.

  3. Analysis of Nb3Sn surface layers for superconducting radio frequency cavity applications

    NASA Astrophysics Data System (ADS)

    Becker, Chaoyue; Posen, Sam; Groll, Nickolas; Cook, Russell; Schlepütz, Christian M.; Hall, Daniel Leslie; Liepe, Matthias; Pellin, Michael; Zasadzinski, John; Proslier, Thomas

    2015-02-01

    We present an analysis of Nb3Sn surface layers grown on a bulk Niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb3Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperatures (Tc) up to 16.3 K. Scanning transmission electron microscopy performed on cross sections of the sample's surface region shows an ˜2 ?m thick Nb3Sn surface layer. The elemental composition map exhibits a Nb:Sn ratio of 3:1 and reveals the presence of buried sub-stoichiometric regions that have a ratio of 5:1. Synchrotron x-ray diffraction experiments indicate a polycrystalline Nb3Sn film and confirm the presence of Nb rich regions that occupy about a third of the coating volume. These low Tc regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb3Sn-coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators.

  4. Entropic Trapping of Particles at Polymer Surfaces and Interfaces

    E-print Network

    Galen T. Pickett

    2015-05-22

    I consider the possibility that Gaussian random walk statistics are sufficient to trap nanoscopic additives at either a polymer interface or surface. When an additive particle goes to the free surface, two portions of the polymer surface energy behave quite differently. The purely enthalpic contribution increases the overall free energy when the additive protrudes above the level of the polymer matrix. The entropic part of the surface energy arising from constraints that segments near a surface can't cross it, is partly relaxed when the additive moves to the free surface. These two portions of the polymer surface energy determine the equilibrium wetting angle formed between the additive and the polymer matrix, the measurement of which in an experiment would allow an independent determination of each piece of the polymer surface energy.

  5. Characterization of cathode keeper wear by surface layer activation

    NASA Technical Reports Server (NTRS)

    Polk, James E.

    2003-01-01

    In this study, the erosion rates of the discharge cathode keeper in a 30 cm NSTAR configuration ion thruster were measured using a technique known as Surface Layer Activation (SLA). This diagnostic technique involves producing a radioactive tracer in a given surface by bombardment with high energy ions. The decrease in activity of the tracer material may be monitored as the surface is subjected to wear processes and correlated to a depth calibration curve, yielding the eroded depth. Analysis of the activities was achieved through a gamma spectroscopy system. The primary objectives of this investigation were to reproduce erosion data observed in previous wear studies in order to validate the technique, and to determine the effect of different engine operating parameters on erosion rate. The erosion profile at the TH 15 (23 kw) setting observed during the 8200 hour Life Demonstration Test (LDT) was reproduced. The maximum keeper erosion rate at this setting was determined to be 0.085 pm/hr. Testing at the TH 8 (1.4 kw) setting demonstrated lower erosion rates than TH 15, along with a different wear profile. Varying the keeper voltage was shown to have a significant effect on the erosion, with a positive bias with respect to cathode potential decreasing the erosion rate significantly. Accurate measurements were achieved after operating times of only 40 to 70 hours, a significant improvement over other erosion diagnostic methods.

  6. The Zeta Potential of Surface-Functionalized Metallic Nanorod Particles in Aqueous Solution

    SciTech Connect

    Dougherty, G M; Rose, K A; Tok, J B; Pannu, S S; Chuang, F S; Sha, M Y; Chakarova, G; Penn, S G

    2007-05-07

    Metallic nanoparticles suspended in aqueous solutions, and functionalized with chemical and biological surface coatings, are important elements in basic and applied nanoscience research. Many applications require an understanding of the electrokinetic or colloidal properties of such particles. In this paper we describe the results of experiments to measure the zeta potential of metallic nanorod particles in aqueous saline solutions, including the effects of pH, ionic strength, metallic composition, and surface functionalization state. Particle substrates tested include gold, silver, and palladium monometallic particles as well as gold/silver bimetallic particles. Surface functionalization conditions included 11-mercaptoundecanoic acid (MUA), mercaptoethanol (ME), and mercaptoethanesulfonic acid (MESA) self-assembled monolayers (SAMs), as well as MUA layers subsequently derivatized with proteins. Zeta potential data for typical charge-stabilized polystyrene particles are also presented for comparison. Experimental data are compared with theory. The results of these studies are useful in predicting and controlling the aggregation, adhesion, and transport of functionalized metallic nanoparticles within microfluidic devices and other systems.

  7. [Particle dispersion by order motion in mixing layers

    SciTech Connect

    Troutt, T.R.

    1993-09-01

    Multiphase mixing in turbulent flows is a key element in many energy conversion and chemical processes. There is considerable need for improving the design and control of these processes. Free turbulent shear flows are the primary agents for particle mixing in these systems. Previous studies by this research group have shown that, if particle coupling effects are neglected, the organized vortex structures generated by these shear flows control the character of the particle mixing process. A coordinated experimental and numerical study is proposed to investigate the coupled effects of droplet mass and energy transfer on the turbulent multiphase mixing process in free shear flows. This study has important implications concerning the design of reacting flow systems. Experimental visualizations of the multiphase flow will be carried out using laser-sheet lighting and high speed photography. Local measurements of droplet size, velocity and concentration diagnostics, will be made with laser anemometry and phase Doppler diagnostics. Complementary analytical and numerical analyses will be carried out to assess the effect of coupling on vortex structure, stability and growth. The results of the proposed research will provide basic understanding concerning the coupled effects of particle concentration on the rate of multiphase mixing in turbulent flows. Information of this nature is essential to the improved designs of engineering systems with particulate or droplet flows.

  8. Enceladus: Correlation of Surface Particle Distribution and Geology

    NASA Astrophysics Data System (ADS)

    Jaumann, R.; Stephan, K.; Brown, R. H.; Clark, R. N.; Filacchione, G.; Buratti, B. J.; Nelson, R. M.; Nicholson, P. D.; Le Mouélic, S.; Rodriguez, S.; Hansen, G. B.; Roatsch, T.; Capaccionii, F.; Sotin, C.

    2012-04-01

    The surface of Enceladus consists almost completely of water ice [1,2]. The band depths of water ice absorptions are sensitive to the size of particles [2,3,4] covering the surface. The Visual and Infrared Mapping Spectrometer [5] observed Enceladus with high spatial resolution during multiple Cassini fly-bys. Based on these data we measured the band depths of water ice absorptions over Enceladus' surface and mapped their distribution. The spatial resolution of VIMS is sufficient to distinguish three major geologic units: heavily cratered terrain, fractured and ridged terrain and complex tectonically deformed regions of troughs and ridges [6], which include the south pole region. Surface ages, as derived from the impact flux models of [7,8] indicate the cratered terrain being oldest while the Sulci the youngest unit [2,9]. From the distribution of particle sizes we can conclude that the largest particle diameters are those inside the tectonically deformed regions, with a decrease in size departing from the fractures. These occur not only at the south pole but also in older tectonic regions [2]. The basic correlation between particle diameter, geologic unit and age suggests the following relative stratigraphic sequence [2,10]: (1) Formation of a primary crust (heavily cratered terrain); (2) Mechanical weathering of the surface particles by microimpacts and sputtering during the last 4 billion years; (3) Tectonic disruption of the surface and deposition of new material with large particles. Although this newly deposited material has undergone mechanical weathering of the particles by microimpacts and sputtering, these particles are larger due to a shorter exposure time; (4) Recent deposition of larger particles in the south polar region. If the larger particles in the tectonically deformed regions have of the same cryovolcanic origin as at the south pole, the volcanic activity must have a temporal evolution. However, there are still different possibilities to explain this observation [2]: (1) The eruption zones may have moved from north to south. (2) Cryovolcanic eruptions might have occurred across the entire surface and later shrunk to a small zone at the south pole, which would be indicative of a probable decrease in internal heat transfer. (3) The intensity of cryovolcanic eruptions had a different temporal evolution at different locations with maximum activity in the south polar region.

  9. Surface charge features of kaolinite particles and their interactions

    NASA Astrophysics Data System (ADS)

    Gupta, Vishal

    Kaolinite is both a blessing and a curse. As an important industrial mineral commodity, kaolinite clays are extensively used in the paper, ceramic, paint, plastic and rubber industries. In all these applications the wettability, aggregation, dispersion, flotation and thickening of kaolinite particles are affected by its crystal structure and surface properties. It is therefore the objective of this research to investigate selected physical and surface chemical properties of kaolinite, specifically the surface charge of kaolinite particles. A pool of advanced analytical techniques such as XRD, XRF, SEM, AFM, FTIR and ISS were utilized to investigate the morphological and surface chemistry features of kaolinite. Surface force measurements revealed that the silica tetrahedral face of kaolinite is negatively charged at pH>4, whereas the alumina octahedral face of kaolinite is positively charged at pH<6, and negatively charged at pH>8. Based on electrophoresis measurements, the apparent iso-electric point for kaolinite particles was determined to be less than pH 3. In contrast, the point of zero charge was determined to be pH 4.5 by titration techniques, which corresponds to the iso-electric point of between pH 4 and 5 as determined by surface force measurements. Results from kaolinite particle interactions indicate that the silica face--alumina face interaction is dominant for kaolinite particle aggregation at low and intermediate pH values, which explains the maximum shear yield stress at pH 5-5.5. Lattice resolution images reveal the hexagonal lattice structure of these two face surfaces of kaolinite. Analysis of the silica face of kaolinite showed that the center of the hexagonal ring of oxygen atoms is vacant, whereas the alumina face showed that the hexagonal surface lattice ring of hydroxyls surround another hydroxyl in the center of the ring. High resolution transmission electron microscopy investigation of kaolinite has indicated that kaolinite is indeed composed of silica/alumina bilayers with a c-spacing of 7.2 A. The surface charge densities of the silica face, the alumina face and the edge surface of kaolinite all influence particle interactions, and thereby affect the mechanical properties of kaolinite suspensions. The improved knowledge of kaolinite surface chemistry from this dissertation research provides a foundation for the development of improved process strategies for both the use and disposal of clay particles such as kaolinite.

  10. A theory and a simulation capability for the growth of a solid electrolyte interphase layer at an anode particle in a Li-ion battery

    NASA Astrophysics Data System (ADS)

    Rejovitzky, Elisha; Di Leo, Claudio V.; Anand, Lallit

    2015-05-01

    A major mechanism for electrochemical aging of Li-ion batteries is the growth of a solid electrolyte interphase (SEI) layer on the surface of anode particles, which leads to capacity fade and also results in a rise in cell resistance. We have formulated a continuum theory for the growth of an SEI layer-a theory which accounts for the generation of the attendant growth stresses. The theory has been numerically implemented in a finite-element program. This simulation capability for SEI growth is coupled with our previously published chemo-mechanical simulation capability for intercalation of Li-ions in electrode particles. Using this new combined capability we have simulated the formation and growth of an SEI layer during cyclic lithiation and delithiation of an anode particle, and predicted the evolution of the growth stresses in the SEI layer. The evolution of the stress state within the SEI layer and at the SEI/anode-particle interface for spherical- and spheroidal-shaped graphite particles is studied. This knowledge of the local interfacial stresses provides a good estimate for the propensity of potential delamination of an SEI layer from an anode particle.

  11. Method and apparatus for measuring surface density of explosive and inert dust in stratified layers

    DOEpatents

    Sapko, Michael J. (Finleyville, PA); Perlee, Henry E. (Bethel Park, PA)

    1988-01-01

    A method for determining the surface density of coal dust on top of rock dust or rock dust on top of coal dust is disclosed which comprises directing a light source at either a coal or rock dust layer overlaying a substratum of the other, detecting the amount of light reflected from the deposit, generating a signal from the reflected light which is converted into a normalized output (V), and calculating the surface density from the normalized output. The surface density S.sub.c of coal dust on top of rock dust is calculated according to the equation: S.sub.c =1/-a.sub.c ln(V) wherein a.sub.c is a constant for the coal dust particles, and the surface density S.sub.r of rock dust on top of coal dust is determined by the equation: ##EQU1## wherein a.sub.r is a constant based on the properties of the rock dust particles. An apparatus is also disclosed for carrying out the method of the present invention.

  12. Noise propagation in the atmosphere's surface and planetary boundary layers

    SciTech Connect

    Thomson, D.W.

    1982-01-01

    Interest in the characteristics of atmospheric sound propagation has recently been renewed as a consequence of publicity regarding the sound emitted by some types of wind turbine generators. Although traditionally studies in meteorological acoustics have most frequently been concerned with analysis of the refractive effects of the stratosphere, since about 1968 as a result of the development of sodar systems for indirect atmospheric probing, substantial knowledge regarding the propagation and scattering of audible frequency sound in the lower atmosphere also has been accumulated. There have been, however, only a few studies concerned with the dependence of refractive sound propagation on the temporally and spatially variable conditions in the atmosphere's planetary boundary layer (PBL). The structure of the PBL whose depth can easily vary from 200 to 2000 m in the course of a day is strongly dependent upon not only the ambient general meteorological conditions but also details of the underlying surface (e.g., topography and land use).

  13. Atomic Layer Deposition to Fine-Tune the Surface Properties and Diameters of

    E-print Network

    Atomic Layer Deposition to Fine-Tune the Surface Properties and Diameters of Fabricated Nanopores 02138 Received April 23, 2004; Revised Manuscript Received May 12, 2004 ABSTRACT Atomic layer deposition. The control over the chemical and physical nature of the pore surface provided by atomic layer deposition

  14. ONLINE TOOL FOR VISUALIZING SURFACE HOAR LAYERS Simon Horton*, Michael Schirmer, Erik Kulyk, and Bruce Jamieson

    E-print Network

    Jamieson, Bruce

    aspects at three elevation bands. Google Earth map layers are created to display the size of surface hoarONLINE TOOL FOR VISUALIZING SURFACE HOAR LAYERS Simon Horton*, Michael Schirmer, Erik Kulyk in preparing an avalanche forecast is estimating the location and sensitivity of critical snowpack layers

  15. Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment

    SciTech Connect

    Rosner, D.E.

    1987-06-01

    During this third quarter of Grant DE-FG22-86 PC 90756, we have obtained preliminary experimental results on the deposition behavior of submicron and supermicron solid particles (MgO, Al[sub 2]O[sub 3]) on a two-dimensional surface exposed to a high temperature/velocity particle laden'' atmospheric pressure jet. The uniform velocity ( plug flow'') jet, with temperatures up to about 1520 K, derives from a pressurized gaseous fuel microcombustion chamber (110 cc) equipped with a platinum guiding (exit) channel. Particles were generated by several methods (Berglund-Liu type aerosol generator, ultrasonic nebulizer, or syringe feeder with aerodynamic particle off-take) and were introduced into the combustion chamber with a carrier stream of nitrogen or air. Laser light scattering and reflectivity techniques were used for the study of particle deposition, supplemented by post-mortem microscopy on the exposed surface. We observed a linear deposition rate of submicron particles due to the thermophoretic mechanism (until the first layer was developed) under both high and low velocity conditions. On the contrary, supermicron particle deposits reach a steady-state, evidently due to a dynamic equilibrium between particle deposition and dislodging caused by the impacting particles. At several temperatures particle-free subsonic gas jets (up to 120 m/sec) were unable to remove the submicron particle layer.

  16. Exoelectronic emission of particles of lunar surface material

    NASA Technical Reports Server (NTRS)

    Mints, R. I.; Alimov, V. I.; Melekhin, V. P.; Milman, I. I.; Kryuk, V. I.; Kunin, L. L.; Tarasov, L. S.

    1974-01-01

    A secondary electron multiplier was used to study the thermostimulated exoelectronic emission of particles of lunar surface material returned by the Soviet Luna 16 automatic station. The natural exoemission from fragments of slag, glass, anorthosite, and a metallic particle was recorded in the isochronic and isothermal thermostimulation regimes. The temperature of emission onset depended on the type of regolith fragment. For the first three particles the isothermal drop in emission is described by first-order kinetic equations. For the anorthosite fragment, exoemission at constant temperature is characterized by a symmetric curve with a maximum. These data indicate the presence of active surface defects, whose nature can be due to the prehistory of the particles.

  17. GYROSCOPIC PUMPING IN THE SOLAR NEAR-SURFACE SHEAR LAYER

    SciTech Connect

    Miesch, Mark S.; Hindman, Bradley W.

    2011-12-10

    We use global and local helioseismic inversions to explore the prevailing dynamical balances in the solar near-surface shear layer (NSSL). The differential rotation and meridional circulation are intimately linked, with a common origin in the turbulent stresses of the upper solar convection zone. The existence and structure of the NSSL cannot be attributed solely to the conservation of angular momentum by solar surface convection, as is often supposed. Rather, the turbulent angular momentum transport accounts for the poleward meridional flow while the often overlooked meridional force balance is required to maintain the mid-latitude rotational shear. We suggest that the base of the NSSL is marked by a transition from baroclinic to turbulent stresses in the meridional plane which suppress Coriolis-induced circulations that would otherwise establish a cylindrical rotation profile. The turbulent angular momentum transport must be nondiffusive and directed radially inward. Inferred mean flows are consistent with the idea that turbulent convection tends to mix angular momentum but only if the mixing efficiency is inhomogeneous and/or anisotropic. The latitudinal and longitudinal components of the estimated turbulent transport are comparable in amplitude and about an order of magnitude larger than the vertical component. We estimate that it requires 2%-4% of the solar luminosity to maintain the solar NSSL against the inertia of the mean flow. Most of this energy is associated with the turbulent transport of angular momentum out of the layer, with a spin-down timescale of {approx}600 days. We also address implications of these results for numerical modeling of the NSSL.

  18. Incipient space weathering observed on the surface of Itokawa dust particles.

    PubMed

    Noguchi, T; Nakamura, T; Kimura, M; Zolensky, M E; Tanaka, M; Hashimoto, T; Konno, M; Nakato, A; Ogami, T; Fujimura, A; Abe, M; Yada, T; Mukai, T; Ueno, M; Okada, T; Shirai, K; Ishibashi, Y; Okazaki, R

    2011-08-26

    The reflectance spectra of the most abundant meteorites, ordinary chondrites, are different from those of the abundant S-type (mnemonic for siliceous) asteroids. This discrepancy has been thought to be due to space weathering, which is an alteration of the surfaces of airless bodies exposed to the space environment. Here we report evidence of space weathering on particles returned from the S-type asteroid 25143 Itokawa by the Hayabusa spacecraft. Surface modification was found in 5 out of 10 particles, which varies depending on mineral species. Sulfur-bearing Fe-rich nanoparticles exist in a thin (5 to 15 nanometers) surface layer on olivine, low-Ca pyroxene, and plagioclase, which is suggestive of vapor deposition. Sulfur-free Fe-rich nanoparticles exist deeper inside (<60 nanometers) ferromagnesian silicates. Their texture suggests formation by metamictization and in situ reduction of Fe(2+). PMID:21868670

  19. Particle simulation of auroral double layers. Doctoral thesis

    SciTech Connect

    Smith, B.L.

    1992-06-01

    Externally driven magnetic reconnection has been proposed as a possible mechanism for production of auroral electrons during magnetic substorms. Fluid simulations of magnetic reconnection lead to strong plasma flows towards the increasing magnetic field of the earth. These plasma flows must generate large scale potential drops to preserve global charge neutrality. We have examined currentless injection of plasma along a dipole magnetic field into a bounded region using both analytic techniques and particle simulation.

  20. Copolyimide Surface Modifying Agents for Particle Adhesion Mitigation

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Connell, John W.

    2011-01-01

    Marine biofouling, insect adhesion on aircraft surfaces, microbial contamination of sterile environments, and particle contamination all present unique challenges for which researchers have adopted an array of mitigation strategies. Particulate contamination is of interest to NASA regarding exploration of the Moon, Mars, asteroids, etc.1 Lunar dust compromised seals, clogged filters, abraded visors and space suit surfaces, and was a significant health concern during the Apollo missions.2 Consequently, NASA has instituted a multi-faceted approach to address dust including use of sacrificial surfaces, active mitigation requiring the use of an external energy source, and passive mitigation utilizing materials with an intrinsic resistance to surface contamination. One passive mitigation strategy is modification of a material s surface energy either chemically or topographically. The focus of this paper is the synthesis and evaluation of novel copolyimide materials with surface modifying agents (SMA, oxetanes) enabling controlled variation of surface chemical composition.

  1. Highly Stable Surface Functionalization of Microgas Chromatography Columns Using Layer-by-Layer Self-Assembly of

    E-print Network

    Heflin, Randy

    Highly Stable Surface Functionalization of Microgas Chromatography Columns Using Layer chromatography (GC) systems have attracted considerable attention. This system, upon complete realization, could-encapsulated gold nanoparticles16 have been utilized for gas chromatography (GC) separations. Our group has reported

  2. NMR Spectroscopy of the Hydrated Layer of Composite Particles Based on Nanosized Al2O3 and Vitreous Humor

    NASA Astrophysics Data System (ADS)

    Turov, V. V.; Gerashchenko, I. I.; Markina, A. I.

    2013-11-01

    The hydrated layer of composite particles prepared using Al2O3 and cattle vitreous humor was investigated using NMR spectroscopy. It was found that water bound to Al2O3 nanoparticles was present in the form of clusters with different degrees of association and energies of interaction with the surface. Water bound to the surface of the Al2O3/vitreous humor composite became more uniform upon immobilization of vitreous humor components on the surface of the Al2O3. With this, the clusters of adsorbed water had characteristics that were close to those found in air and weakly polar CHCl3 media. Addition of polar CH3CN led to the formation of very small water clusters. PMR spectra of the surface of the Al2O3/vitreous humor composite in the presence of trifluoroacetic acid differentiated four types of hydrated structures that differed in the degree of water association.

  3. Self-assembly and manipulation of particles on drop surfaces

    NASA Astrophysics Data System (ADS)

    Janjua, M.; Fischer, I. S.; Singh, P.

    2013-11-01

    We have recently shown that particles adsorbed on the surface of a drop can be self-assembled at the poles or the equator of the drop by applying a uniform electric field, and that this method can be used to separate on the surface of a drop particles experiencing positive dielectrophoresis from those experiencing negative dielectrophoresis. In this talk we show that the frequency of the electric field is an important parameter which can be used to modify the distribution of self-assembled monolayers.

  4. Calcination kinetics and surface area of dispersed limestone particles

    SciTech Connect

    Borgwardt, R.H.

    1985-01-01

    The paper gives results of measurements of the rates of calcination of two types of limestones, ranging in particle size from 1 to 90 micrometers, and over the temperature range of 516 to 1000 C. A kinetic model, based on the B.E.T. (Brunauer-Emmett-Teller) surface area of the CaCO/sub 3/, correlates the results over five orders of magnitude in reaction rate. The B.E.T. surface area of CaO, formed by rapid calcination in dispersed-particle systems is 50 to 60 square m/g.

  5. The North Atlantic surface layer and the shallow overturning circulation

    NASA Astrophysics Data System (ADS)

    Busecke, Julius; Gordon, Arnold L.

    2014-05-01

    The sea surface salinity maximum (SSS-max) is an integral part of the shallow overturning (SOC) circulation in the North Atlantic. The temperature and salinity of the SSS-max set the density of the subducted water thus are important for the transport properties of the SOC, which has been shown to be important for the large-scale climate. The region requires a net influx of freshwater at near surface level to balance net evaporation. The processes that achieve this task likely influence the variability of SSS-max properties on various time scales in addition to the surface forcing. We are testing the hypothesis that changes in the large-scale wind field in the North Atlantic drive variability of freshwater import by ocean processes into the SSS-max, resulting in seasonal and interannual variability as previously documented. To evaluate the role of said processes for the variability of the upper limb of the SOC, AQUARIUS sea surface salinity (SSS), eddy kinetic energy (EKE) derived from altimetry data (AVISO), sea surface temperature (SST, NOAA OI SST V2) and wind fields (NCEP reanalysis) are used. Previous studies point out the importance of mesoscale dynamics for the freshwater flux into the region which seems to be enhanced by an increased density gradient at the southern edge of the SSS-max as seen from 2012 to 2013. The interannual comparison of meridional density gradient and EKE underline the importance of baroclinic instability for the formation of mesoscale turbulence in the SSS-max in accordance with previous studies. Further analysis, using the SST gradient (extending further back in time than the SSS satellite record) reveals significant seasonal cycles of zonal wind, SST gradient and EKE within the SSS-max region. Spatial correlations between aforementioned variables within the SSS-max region are found, with the EKE peaking about 2-4 months after the large-scale temperature gradient and the zonal wind. Ekman induced set up of the meridional density gradient might be a mechanism for seasonally enhanced mesoscale turbulence, which could be important for the seasonal mixed layer budget as well as interannual variability in surface properties within the SSS-max.

  6. Mixed and mixing layer depths in the ocean surface boundary layer under conditions of diurnal stratification

    NASA Astrophysics Data System (ADS)

    Sutherland, G.; Reverdin, G.; Marié, L.; Ward, B.

    2014-12-01

    A comparison between mixed (MLD) and mixing (XLD) layer depths is presented from the SubTRopical Atlantic Surface Salinity Experiment (STRASSE) cruise in the subtropical Atlantic. This study consists of 400 microstructure profiles during fairly calm and moderate conditions (2 < U10 < 10 m s-1) and strong solar heating O(1000 W m-2). The XLD is determined from a decrease in the turbulent dissipation rate to an assumed background level. Two different thresholds for the background dissipation level are tested, 10-8 and 10-9 m2 s-3, and these are compared with the MLD as calculated using a density threshold. The larger background threshold agrees with the MLD during restratification but only extends to half the MLD during nighttime convection, while the lesser threshold agrees well during convection but is deeper by a factor of 2 during restratification. Observations suggest the use of a larger density threshold to determine the MLD in a buoyancy driven regime.

  7. Functionalization of Ag nanoparticles using local hydrophilic pool segment designed on their particle surface

    NASA Astrophysics Data System (ADS)

    Iijima, Motoyuki; Kurumiya, Aki; Esashi, Junki; Miyazaki, Hayato; Kamiya, Hidehiro

    2014-10-01

    The preparation of SiO2-coated Ag nanoparticles dispersible in various organic solvents has been achieved using a solgel reaction of tetraethylorthosilicate (TEOS), in the localized hydrophilic pool segments designed on Ag nanoparticle surfaces. First, oleylamine-capped core Ag nanoparticles were synthesized, followed by ligand exchange with polyethyleneimine (PEI) and further adsorption of an anionic surfactant comprising hydrophilic polyethylene glycol (PEG) chains and hydrophobic alkyl chains, which has previously been reported to improve the stability of nanoparticles in various solvents. Then, a reaction of TEOS with the localized hydrophilic PEI layer on the Ag nanoparticles' surface was conducted by stirring a toluene/TEOS solution of surface-modified Ag nanoparticles at various temperatures. It was found that a SiO2 layer was successfully formed on Ag nanoparticles when the reaction temperature was increased to 60 °C. It was also found, however, that at this elevated temperature, the primary particle size of Ag nanoparticles increased to several tens of nm, attributable to the dissolution and re-reduction of Ag+. Because the surface modifier, PEI and anionic surfactant all remained on the nanoparticle surface during the SiO2 coating process, the prepared SiO2-coated Ag nanoparticles were found to be dispersible in various organic solvents near to their primary particle size.

  8. On the Interaction between Marine Boundary Layer Cellular Cloudiness and Surface Heat Fluxes

    SciTech Connect

    Kazil, J.; Feingold, G.; Wang, Hailong; Yamaguchi, T.

    2014-01-02

    The interaction between marine boundary layer cellular cloudiness and surface uxes of sensible and latent heat is investigated. The investigation focuses on the non-precipitating closed-cell state and the precipitating open-cell state at low geostrophic wind speed. The Advanced Research WRF model is used to conduct cloud-system-resolving simulations with interactive surface fluxes of sensible heat, latent heat, and of sea salt aerosol, and with a detailed representation of the interaction between aerosol particles and clouds. The mechanisms responsible for the temporal evolution and spatial distribution of the surface heat fluxes in the closed- and open-cell state are investigated and explained. It is found that the horizontal spatial structure of the closed-cell state determines, by entrainment of dry free tropospheric air, the spatial distribution of surface air temperature and water vapor, and, to a lesser degree, of the surface sensible and latent heat flux. The synchronized dynamics of the the open-cell state drives oscillations in surface air temperature, water vapor, and in the surface fluxes of sensible and latent heat, and of sea salt aerosol. Open-cell cloud formation, cloud optical depth and liquid water path, and cloud and rain water path are identified as good predictors of the spatial distribution of surface air temperature and sensible heat flux, but not of surface water vapor and latent heat flux. It is shown that by enhancing the surface sensible heat flux, the open-cell state creates conditions by which it is maintained. While the open-cell state under consideration is not depleted in aerosol, and is insensitive to variations in sea-salt fluxes, it also enhances the sea-salt flux relative to the closed-cell state. In aerosol-depleted conditions, this enhancement may replenish the aerosol needed for cloud formation, and hence contribute to the perpetuation of the open-cell state as well. Spatial homogenization of the surface fluxes is found to have only a small effect on cloud properties in the investigated cases. This indicates that sub-grid scale spatial variability in the surface flux of sensible and latent heat and of sea salt aerosol may not be required in large scale and global models to describe marine boundary layer cellular cloudiness.

  9. Monolayers of charged particles in a Langmuir trough: Could particle aggregation increase the surface pressure?

    PubMed

    Petkov, Plamen V; Danov, Krassimir D; Kralchevsky, Peter A

    2016-01-15

    The effect of aggregation on the surface pressure, ?, of monolayers from charged micrometer-sized colloidal particles on the air/water interface is investigated. ? is completely due to the long-range electrostatic repulsion between the particles mediated by their electrostatic field in the air. The most probable origin of particle aggregation is the attraction between capillary quadrupoles due to undulated contact lines on particle surfaces. Aggregates have higher charge and repel each other stronger than single particles. The data analysis by means of a theoretical model implies that ? linearly increases with n(1/2); n is the mean aggregation number, which can be determined from the experimental ? vs. area curves. The presence of electrolyte promotes aggregation, which tends to increase ?, but simultaneously reduces the surface charge that leads to lower ?. For our system, the first effect prevails and apparently paradoxical behavior is observed: the addition of salt in water enhances the electrostatic surface pressure. The data indicate limited aggregation: the rise of the electrostatic barrier prevents the further coalescence of aggregates if they have become sufficiently large. The results contribute for a better understanding of the factors that control the interactions in monolayers of charged particles at liquid interfaces. PMID:26454382

  10. FRACTAL PROPERTIES OF TEMPERATlTRE FLUCTUATIONS IN THE CONVECTIVE SURFACE LAYER

    E-print Network

    Leclerc, Monique Y.

    FRACTAL PROPERTIES OF TEMPERATlTRE FLUCTUATIONS IN THE CONVECTIVE SURFACE LAYER SZYMON P in a convective surface layer were investigated. Box counting analysis was performed to investigate fractal thresholds on detrended records. Results indicate that surfaces of constant temperature have fractal

  11. Layer-like Structure of Radio-Frequency Discharge with Dust Particles

    SciTech Connect

    Kravchenko, O. Y.; Vakulenko, A. V.; Lisitchenko, T. Y.; Levada, G. I.

    2008-09-07

    In this paper we are carried out the computer simulation of the dust particles dynamics in the radio frequency discharges at the microgravity conditions using PIC/MCC method for electrons and ions and hydrodynamics model for dust particles. The moving of dust particles is governed by the electrostatic force, ion and neutral drag forces, which are averaged over period of RF discharge. The obtained results show that dust particles form layers with sharp boundaries in the discharge chamber that is response on the instability of the radio-frequency discharge.

  12. New Material Development for Surface Layer and Surface Technology in Tribology Science to Improve Energy Efficiency

    NASA Astrophysics Data System (ADS)

    Ismail, R.; Tauviqirrahman, M.; Jamari, Jamari; Schipper, D. J.

    2009-09-01

    This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boron nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio-degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser-print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running-in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.

  13. Surface impacts and collisions of particle-laden nanodrops

    E-print Network

    Joel Koplik

    2014-12-17

    The surface impact and collisions of particle-laden nanodrops are studied using molecular dynamics computer simulations. The drops are composed of Lennard- Jones dimers and the particles are rigid spherical sections of a cubic lattice, with radii about 11 nm and 0.6 nm, respectively. Uniform suspensions of 21% and 42% particle concentrations and particle-coated drops are studied, and their behavior is compared to that of pure fluid drops of the same size. The relative velocities studied span the transition to splashing, and both wetting/miscible and non-wetting/immiscible cases are considered. Impacts normal to the surface and head-on collisions are studied and compared. In surface impact, the behavior of low-density suspensions and liquid marble drops is qualitatively similar to that of pure liquid, while the concentrated drops are solid-like on impact. Collisions produce a splash only at velocities signif- icantly higher than in impact, but the resulting drop morphology shows a similar dependence on solid concentration as in impact. In all cases the collision or impact produces a strong local enhancement in the kinetic energy density and temperature but not in the particle or potential energy densities. Mixing of the two colliding species is not enhanced by collisions, unless the velocity is so high as to cause drop disintegration.

  14. Surface impacts and collisions of particle-laden nanodrops

    NASA Astrophysics Data System (ADS)

    Koplik, Joel

    2015-08-01

    The surface impact and collisions of particle-laden nanodrops are studied using molecular dynamics computer simulations. The drops are composed of Lennard-Jones dimers and the particles are rigid spherical sections of a cubic lattice, with radii about 11 nm and 0.6 nm, respectively. Uniform suspensions of 21% and 42% particle concentrations and particle-coated drops are studied, and their behavior is compared to that of pure fluid drops of the same size. The relative velocities studied span the transition to splashing, and both wetting/miscible and non-wetting/immiscible cases are considered. Impacts normal to the surface and head-on collisions are studied and compared. In surface impact, the behavior of low-density suspensions and liquid marble drops is qualitatively similar to that of pure liquid, while the concentrated drops are solid-like on impact. Collisions produce a splash only at velocities significantly higher than in impact, but the resulting drop morphology shows a similar dependence on solid concentration as in impact. In all cases, the collision or impact produces a strong local enhancement in the kinetic energy density and temperature but not in the particle or potential energy densities. Mixing of the two colliding species is not enhanced by collisions, unless the velocity is so high as to cause drop disintegration.

  15. Physico-chemical characterisation of surface modified particles for inhalation.

    PubMed

    Stank, Katharina; Steckel, Hartwig

    2013-05-01

    Surface modification of drugs for inhalation is a possibility to influence interparticulate forces. This can be necessary to achieve a sufficient aerosolisation during powder inhalation as the cohesiveness of the micronised drug can be reduced. In addition, the interaction with propellants in pressurised metered dose inhaler can be changed. This can be used to improve the physical stability of the suspension based formulations. A dry particle coating process was used for the alteration of particle surfaces. The blending of micronised salbutamol sulphate (SBS) with different concentrations of magnesium stearate (Mgst) or glycerol monostearate (GMS) was followed by co-milling with an air jet mill. The powder properties were characterised by SEM, EDX, laser diffraction, BET and inverse gas chromatography. Physical mixtures generated by Turbula blending were compared to co-milled samples. A slight particle size reduction was determined. The Mgst deposition on SBS particles was detected by EDX measurements. The dispersive surface energy of SBS is lowered and the energy distribution is more homogenous for the co-milled samples. This study proves the application of co-milling for surface modification in the inhalation area. PMID:23518364

  16. CALCINATION KINETICS AND SURFACE AREA OF DISPERSED LIMESTONE PARTICLES

    EPA Science Inventory

    The paper gives results of measurements of the rates of calcination of two types of limestones, ranging in particle size from 1 to 90 micrometers, and over the temperature range of 516 to 1000 C. A kinetic model, based on the B.E.T. (Brunauer-Emmett-Teller) surface area of the Ca...

  17. Lofting of Triboelectrostatically Charged Particles From the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Davis, S.; Marshall, J.; Richard, D.; Laub, J.

    2008-12-01

    Tribocharging of lunar regolith can occur by micrometeorite gardening and by anthropogenic interaction with the lunar surface. The tribocharged material may then be lofted into the exosphere by near-surface electrical fields created by solar wind and radiation effects. On the basis of a simple charge-to-mass ratio, the finest dust should be the most readily lofted. However, this model assumes that all particles in the affected material become charged, and that charging is a homogeneous process. Laboratory experiments have demonstrated that it is not simply the smallest particles that are subject to lofting. In an analog Debye-sheath electrical field between capacitor plates, tribocharged (vibrated) lunar simulant materials released both dust and silt/sand size materials into the electrical field. This observation was made with scanning electron microscopy of particle traps within the electrical field. The lab experiments also demonstrated an extreme inhomogeneity of tribocharging in the test samples. Ostensibly, the tribocharging vibrational energy was uniform throughout the sample, but observations of surface 'bursting', ' ballistic fountaining', and other phenomena indicated localized (millimeter-scale) electrical inhomogeneity. Theoretical modeling of tribocharging also suggests that there may be an optimum size fraction for charging. The coarsest particles undergo the greatest number of contact electrification events, but are too massive to be lifted. The finest particles are hidden or shielded from tribocharging by adhering to larger host grains in mechanical recesses. Medium-size particles receive moderate charging and are light enough to be lifted in the electrical fields; particles of several tens of microns may be optimally sized for lofting.

  18. ELECTROSTATIC SURFACE STRUCTURES OF COAL AND MINERAL PARTICLES

    SciTech Connect

    M.K. Mazumder; D.A. Lindquist; K.B. Tennal

    1999-04-01

    We have developed a video image analyzer for measuring the size and charge of airborne particles. Particles are illuminated by laser light and subjected to a sinusoidal electric field while images of the trajectories of the particles are captured using a video camera and a frame grabber. Analysis of the particle tracks allows the size and charge of the particles to be determined. The instrument can be used to measure size and charge spectra of charged coal and mineral particles in real time. Appendix I shows size and charge distributions of coal and flyash particles measured with the image analyzer. A second instrument, an Ultraviolet Photoelectron Spectrometer (UPS) for measuring effective work functions of insulator and semiconductor surfaces in air is under development. Work function data for individual macerals and minerals in a coal matrix will be related to triboelectric charging properties. In this instrumental method, originally developed by Kirhata, the surface of a test sample is bombarded by monochromatic ultraviolet light of known wavelength. At atmospheric pressure, the photo-ejected electrons attach to air molecules forming negative ions. The ions are attracted by an applied electric field into a detector where they are accelerated to sufficient energy that they cause momentary dielectric breakdown or discharge in the air inside the detector. The rate at which these discharges occur is proportional to the rate at which photoelectrons are generated at the sample surface. From a plot of the discharge rate as a function of photon energy the minimum energy needed to remove an electron can be determined. The mechanical components of our instrument have been completed. A number of electronic circuit difficulties remain to be solved. The counting circuits are able to produce a count rate proportional to the ion concentration generated using a corona gun. However, when the high voltage accelerating potential is applied the circuit oscillates preventing proper operation. Our current focus on this instrument is to attain stability of operation.

  19. EVIDENCE OF INTERACTION BETWEEN SYNOPTIC AND LOCAL SCALES IN THE SURFACE LAYER OVER THE PARIS AREA

    E-print Network

    Menut, Laurent

    characterizing the experimental site are prescribed explicitly in the model, using sonic anemometer measurements meteorological factors affecting urban air quality. Keywords: Surface layer, Roughness length, Sonic anemometer

  20. Spin-glass-like freezing of inner and outer surface layers in hollow ?-Fe2O3 nanoparticles

    PubMed Central

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; Alonso, Javier; Phan, Manh-Huong; Sun, Cheng-Jun; Saboungi, Marie-Louise; Srikanth, Hariharan

    2015-01-01

    Disorder among surface spins is a dominant factor in the magnetic response of magnetic nanoparticle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8?±?0.5?nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50?K, and become frozen on experimental time scales below 20?K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point to highly frustrated surface spins that rearrange much more slowly than interior spins. Monte Carlo simulations of a hollow particle corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15?nm hollow particles exhibiting a higher degree of frustration. Our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures. PMID:26503506

  1. Spin-glass-like freezing of inner and outer surface layers in hollow ?-Fe2O3 nanoparticles.

    PubMed

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; Alonso, Javier; Phan, Manh-Huong; Sun, Cheng-Jun; Saboungi, Marie-Louise; Srikanth, Hariharan

    2015-01-01

    Disorder among surface spins is a dominant factor in the magnetic response of magnetic nanoparticle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8?±?0.5?nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50?K, and become frozen on experimental time scales below 20?K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point to highly frustrated surface spins that rearrange much more slowly than interior spins. Monte Carlo simulations of a hollow particle corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15?nm hollow particles exhibiting a higher degree of frustration. Our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures. PMID:26503506

  2. Spin-glass-like freezing of inner and outer surface layers in hollow ?-Fe2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; Alonso, Javier; Phan, Manh-Huong; Sun, Cheng-Jun; Saboungi, Marie-Louise; Srikanth, Hariharan

    2015-10-01

    Disorder among surface spins is a dominant factor in the magnetic response of magnetic nanoparticle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8?±?0.5?nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50?K, and become frozen on experimental time scales below 20?K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point to highly frustrated surface spins that rearrange much more slowly than interior spins. Monte Carlo simulations of a hollow particle corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15?nm hollow particles exhibiting a higher degree of frustration. Our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures.

  3. Layered reactive particles with controlled geometries, energies, and reactivities, and methods for making the same

    DOEpatents

    Fritz, Gregory M; Knepper, Robert Allen; Weihs, Timothy P; Gash, Alexander E; Sze, John S

    2013-04-30

    An energetic composite having a plurality of reactive particles each having a reactive multilayer construction formed by successively depositing reactive layers on a rod-shaped substrate having a longitudinal axis, dividing the reactive-layer-deposited rod-shaped substrate into a plurality of substantially uniform longitudinal segments, and removing the rod-shaped substrate from the longitudinal segments, so that the reactive particles have a controlled, substantially uniform, cylindrically curved or otherwise rod-contoured geometry which facilitates handling and improves its packing fraction, while the reactant multilayer construction controls the stability, reactivity and energy density of the energetic composite.

  4. Liquid layers bound to a gold surface supporting a surface plasmon-polariton

    NASA Astrophysics Data System (ADS)

    Sambles, J. R.; Pollard, J. D.; Bradberry, G. W.

    1987-09-01

    This paper presents a novel use of the surface plasmon-polariton at the surface of a gold film to allow a study of the progressive thickening of an organic liquid film condensing on the gold. The vapour is supplied by an effectively infinite liquid reservoir some 4 mm below the observation height. For methanol, n-hexane and n-heptane equilibrium thicknesses of order 16 nm, 26 nm and 28 nm respectively, are obtained, while for ethanol there appears to be continual growth to a bulk condensed phase. The data can be reconciled in the most general terms with theories of Van der Waal's bonding between thin liquid layers and a plane surface. Currently however there is no detailed theory which would predict the striking difference in behaviour between methanol and ethanol.

  5. ELECTRONIC SURFACE STRUCTURES OF COAL AND MINERAL PARTICLES

    SciTech Connect

    M.K.Mazumder; D.A. Linduist; K.B. Tennal

    2001-04-01

    Surface science studies related to tribocharging and charge separation studies were performed on electrostatic beneficiation of coal. In contrast to other cleaning methods, electrostatic beneficiation is a dry cleaning process requiring no water or subsequent drying. Despite these advantages, there is still uncertainty in implementing large-scale commercial electrostatic beneficiation of coal. The electronic surface states of coal macerals and minerals are difficult to describe due to their chemical complexity and variability. The efficiency in separation of mineral particles from organic macerals depends upon these surface states. Therefore, to further understand and determine a reason for the bipolar charging observed in coal separation, surface analysis studies using Ultra-violet Photoelectron Spectroscopy (UPS) and X-ray Photoelectron Spectroscopy (XPS) were performed on coal samples and several materials that are used or considered for use in tribocharging. Electrostatic charging is a surface phenomenon, so the electronic surface states of the particles, which are influenced by the environmental conditions, determine both polarity and magnitude of tribocharging. UPS was used to measure the work function of the materials as typically used in ambient air. XPS was used to determine the surface chemistry in the form of contamination and degree of oxidation under the same environmental conditions.

  6. The surface and through crack problems in layered orthotropic plates

    NASA Technical Reports Server (NTRS)

    Erdogan, Fazil; Wu, Binghua

    1991-01-01

    An analytical method is developed for a relatively accurate calculation of Stress Intensity Factors in a laminated orthotropic plate containing a through or part-through crack. The laminated plate is assumed to be under bending or membrane loading and the mode 1 problem is considered. First three transverse shear deformation plate theories (Mindlin's displacement based first-order theory, Reissner's stress-based first-order theory, and a simple-higher order theory due to Reddy) are reviewed and examined for homogeneous, laminated and heterogeneous orthotropic plates. Based on a general linear laminated plate theory, a method by which the stress intensity factors can be obtained in orthotropic laminated and heterogeneous plates with a through crack is developed. Examples are given for both symmetrically and unsymmetrically laminated plates and the effects of various material properties on the stress intensity factors are studied. In order to implement the line-spring model which is used later to study the surface crack problem, the corresponding plane elasticity problem of a two-bonded orthotropic plated containing a crack perpendicular to the interface is also considered. Three different crack profiles: an internal crack, an edge crack, and a crack terminating at the interface are considered. The effect of the different material combinations, geometries, and material orthotropy on the stress intensity factors and on the power of stress singularity for a crack terminating at the interface is fully examined. The Line Spring model of Rice and Levy is used for the part-through crack problem. The surface crack is assumed to lie in one of the two-layered laminated orthotropic plates due to the limitation of the available plane strain results. All problems considered are of the mixed boundary value type and are reduced to Cauchy type of singular integral equations which are then solved numerically.

  7. Low energy charged particles interacting with amorphous solid water layers

    SciTech Connect

    Horowitz, Yonatan; Asscher, Micha

    2012-04-07

    The interaction of charged particles with condensed water films has been studied extensively in recent years due to its importance in biological systems, ecology as well as interstellar processes. We have studied low energy electrons (3-25 eV) and positive argon ions (55 eV) charging effects on amorphous solid water (ASW) and ice films, 120-1080 ML thick, deposited on ruthenium single crystal under ultrahigh vacuum conditions. Charging the ASW films by both electrons and positive argon ions has been measured using a Kelvin probe for contact potential difference (CPD) detection and found to obey plate capacitor physics. The incoming electrons kinetic energy has defined the maximum measurable CPD values by retarding further impinging electrons. L-defects (shallow traps) are suggested to be populated by the penetrating electrons and stabilize them. Low energy electron transmission measurements (currents of 0.4-1.5 {mu}A) have shown that the maximal and stable CPD values were obtained only after a relatively slow change has been completed within the ASW structure. Once the film has been stabilized, the spontaneous discharge was measured over a period of several hours at 103 {+-} 2 K. Finally, UV laser photo-emission study of the charged films has suggested that the negative charges tend to reside primarily at the ASW-vacuum interface, in good agreement with the known behavior of charged water clusters.

  8. Ammonia Surface-Atmosphere Exchange in the Arctic Marine Boundary Layer

    NASA Astrophysics Data System (ADS)

    Murphy, J. G.; Wentworth, G.; Tremblay, J. E.; Gagnon, J.; Côté, J. S.; Courchesne, I.

    2014-12-01

    The net flux of ammonia between the ocean and the atmosphere is poorly known on global and regional scales. Data from high-latitude research cruises suggest that deposition from the atmosphere to the surface dominates, but the magnitude and drivers of this flux are not well understood. In the polar marine boundary layer, the surface may be composed of not only open ocean, but also first-year or multi-year sea ice which may be covered with meltponds. To characterize the air-sea exchange of ammonia in the polar marine boundary layer, data were collected aboard the Canadian Coast Guard Ship Amundsen between July 10 and Aug 14, 2014 in the Eastern Canadian Arctic. The Ambient Ion Monitor Ion Chromatograph was used to make hourly measurements of the mixing ratio of gas phase ammonia, and the water-soluble constituents of fine particle matter (PM2.5). Fluorometry was used to measure dissolved ammonium concentrations in the ocean between 0 and 20 m, and in low-salinity melt ponds encountered in regions of extensive sea ice. Observations indicate that the atmosphere contains higher levels of ammonia than are calculated to be in equilibrium with surface reservoirs, implying net deposition of ammonia from the atmosphere. While ammonium levels tended to be higher in melt ponds, the lower water temperatures still mean that these are unlikely to be sources of NH3 to the atmosphere. The disequilibrium between atmospheric and surface reservoirs of ammonia imply relatively large sources to the atmosphere (possibly nearby bird colonies) or high consumption rates in surface waters.

  9. Crystalline particle packings on constant mean curvature (Delaunay) surfaces

    NASA Astrophysics Data System (ADS)

    Bendito, Enrique; Bowick, Mark J.; Medina, Agustin; Yao, Zhenwei

    2013-07-01

    We investigate the structure of crystalline particle arrays on constant mean curvature (CMC) surfaces of revolution. Such curved crystals have been realized physically by creating charge-stabilized colloidal arrays on liquid capillary bridges. CMC surfaces of revolution, classified by Delaunay in 1841, include the 2-sphere, the cylinder, the vanishing mean curvature catenoid (a minimal surface), and the richer and less investigated unduloid and nodoid. We determine numerically candidate ground-state configurations for 1000 pointlike particles interacting with a pairwise-repulsive 1/r3 potential, with distance r measured in three-dimensional Euclidean space R3. We mimic stretching of capillary bridges by determining the equilibrium configurations of particles arrayed on a sequence of Delaunay surfaces obtained by increasing or decreasing the height at constant volume starting from a given initial surface, either a fat cylinder or a square cylinder. In this case, the stretching process takes one through a complicated sequence of Delaunay surfaces, each with different geometrical parameters, including the aspect ratio, mean curvature, and maximal Gaussian curvature. Unduloids, catenoids, and nodoids all appear in this process. Defect motifs in the ground state evolve from dislocations at the boundary to dislocations in the interior to pleats and scars in the interior and then isolated sevenfold disclinations in the interior as the capillary bridge narrows at the waist (equator) and the maximal (negative) Gaussian curvature grows. We also check theoretical predictions that the isolated disclinations are present in the ground state when the surface contains a geodesic disk with integrated Gaussian curvature exceeding -?/3. Finally, we explore minimal energy configurations on sets of slices of a given Delaunay surface, and we obtain configurations and defect motifs consistent with those seen in stretching.

  10. Surface Passivation by Quantum Exclusion Using Multiple Layers

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E. (Inventor)

    2013-01-01

    A semiconductor device has a multilayer doping to provide improved passivation by quantum exclusion. The multilayer doping includes a plurality M of doped layers, where M is an integer greater than 1. The dopant sheet densities in the M doped layers need not be the same, but in principle can be selected to be the same sheet densities or to be different sheet densities. M-1 interleaved layers provided between the M doped layers are not deliberately doped (also referred to as "undoped layers"). Structures with M=2, M=3 and M=4 have been demonstrated and exhibit improved passivation.

  11. Planetary boundary layer response to surface temperature anomalies forcing

    NASA Astrophysics Data System (ADS)

    Perrot, Xavier; Lapeyre, Guillaume; Plougonven, Riwal

    2015-04-01

    Recent studies showed that strong sea surface temperature (SST) fronts, on the scale of the western boundary currents, strongly affect the planetary boundary layer (PBL) but also all the troposphere. This renewed the interest of air-sea interactions at oceanic meso-scales. Mainly two mechanisms are proposed in the literature, the first one (due to Wallace et al 1989) is based on the destabilization of the PBL above SST anomalies, the second one (Lindzen and Nigam 1987) is based on the pressure anomalies linked to the atmosphere temperature adjustment to the SST. These two mechanisms predict different responses of the PBL to the SST. We did numerical simulations with a meso-scale atmospheric model (WRF) with the same configuration as the one described in Lambert et al 2013. The model is forced by a SST anomaly which is first a zonally or meridionally constant field and secondly a field of meso-scale structures. Firstly we studied the influence of the initial wind strength on the PBL response for the two different types of SST anomalies. We showed that the dominant mechanism can change according to weak or strong wind and to the orientation of the SST anomaly. Secondly after considering a dry atmosphere we switched on the humidity in our configuration. We studied how it influences the PBL response and whether the mechanism driving the PBL response is still the same as in the dry case.

  12. Surface pressure fluctuations in hypersonic turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Raman, K. R.

    1974-01-01

    The surface pressure fluctuations on a flat plate model at hypersonic Mach numbers of 5.2, 7.4 and 10.4 with an attached turbulent boundary layer were measured using flush mounted small piezoelectric sensors. A high frequency resolution of the pressure field was achieved using specially designed small piezoelectric sensors that had a good frequency response well above 300 KHz. The RMS pressures and non-dimensional energy spectra for all above Mach numbers are presented. The convective velocities, obtained from space time correlation considerations are equal to 0.7 U sub infinity. The results indicate the RMS pressures vary from 5 to 25 percent of the mean static pressures. The ratios of RMS pressure to dynamic pressure are less than the universally accepted subsonic value of 6 x 10/3. The ratio decreases in value as the Mach number or the dynamic pressure is increased. The ratio of RMS pressure to wall shear for Mach number 7.4 satisfies one smaller than or equal to p/tau sub w smaller than or equal to three.

  13. Preparation and antifrictional properties of surface modified hybrid fluorine-containing silica particles

    NASA Astrophysics Data System (ADS)

    Gorbunova, T. I.; Zapevalov, A. Ya.; Beketov, I. V.; Demina, T. M.; Timoshenkova, O. R.; Murzakaev, A. M.; Gaviko, V. S.; Safronov, A. P.; Saloutin, V. I.

    2015-01-01

    Modified SiO2 particles were successfully prepared via [(perfluorobutyl)methyl]oxirane and [(perfluorobutyl)methyl]thiirane in sol-gel conditions using basic catalysis. As a result of acid catalysis non-modified nano-sized SiO2 particles were formed. Chemically modified SiO2 particles were characterized by means of FT-IR, BET, TEM, XRD- and XPS-analyses. Friction coefficients were determined at steel surface for base oil with modified SiO2 additives (5, 10 and 15 wt.%) at 10, 20, 30 and 60 N loads. Friction was reduced most strongly in the oil mix with the lowest content of the additive. A possible mechanism of antifrictional improvement is the formation of boundary lubrication layers containing iron salts.

  14. Hollow organosilica nanospheres prepared through surface hydrophobic layer protected selective etching

    NASA Astrophysics Data System (ADS)

    Li, J.; Chen, L. X.; Li, X.; Zhang, C. C.; Zeng, F. L.

    2015-06-01

    In this study, a facile and effective surface hydrophobic layer protected selective etching strategy has been adopted to fabricate organic functionalized hollow silica nanospheres (OHSNSs). Our experiments demonstrated that the morphology and structure of OHSNSs were greatly affected by the types of organosilanes and concentrations of cetyltrimethylammonium bromide (CTAB) as pore-making agent. At low concentration of CTAB (1.9 mg/mL-1), it was found that the protective effect of the hydrophobic layer of 3-thiocyanatopropyltriethoxysilane (TCPTES) was so strong that can be endured long time etching (8 h), leading to the formation of hollow core and organic porous shell structure. And yet, the protective effect of the hydrophobic layer of vinyltriethoxysilane (VTES) was too weak to withstand alkali etching, resulting in preferentially etched of the outer vinyl protection shell. Whereas, at a higher concentration of CTAB (2.5 mg/mL-1), for TCPTES, the irregular and capsules-like spheres were obtained. In contrast, for VTES, porous core/solid shell structures with shell thickness of 16 nm were generated. In addition, no particles were observed when the CTAB concentration was above 2.5 mg/mL-1.

  15. Atmospheric new particle formation as a source of CCN in the eastern Mediterranean marine boundary layer

    NASA Astrophysics Data System (ADS)

    Kalivitis, N.; Kerminen, V.-M.; Kouvarakis, G.; Stavroulas, I.; Bougiatioti, A.; Nenes, A.; Manninen, H. E.; Petäjä, T.; Kulmala, M.; Mihalopoulos, N.

    2015-08-01

    While cloud condensation nuclei (CCN) production associated with atmospheric new particle formation (NPF) is thought to be frequent throughout the continental boundary layers, few studies on this phenomenon in marine air exist. Here, based on simultaneous measurement of particle number size distributions, CCN properties and aerosol chemical composition, we present the first direct evidence on CCN production resulting from NPF in the eastern Mediterranean atmosphere. We show that condensation of both gaseous sulfuric acid and organic compounds from multiple sources leads to the rapid growth of nucleated particles to CCN sizes in this environment during the summertime. Sub-100 nm particles were found to be substantially less hygroscopic than larger particles during the period with active NPF and growth (the value of ? was lower by 0.2-0.4 for 60 nm particles compared with 120 nm particles), probably due to enrichment of organic material in the sub-100 nm size range. The aerosol hygroscopicity tended to be at minimum just before the noon and at maximum in the afternoon, which was very likely due to the higher sulfate-to-organic ratios and higher degree of oxidation of the organic material during the afternoon. Simultaneous with the formation of new particles during daytime, particles formed during the previous day or even earlier were growing into the size range relevant to cloud droplet activation, and the particles formed in the atmosphere were possibly mixed with long-range-transported particles.

  16. Method of evaluating the integrity of the outer carbon layer of triso-coated reactor fuel particles

    DOEpatents

    Caputo, Anthony J. (Knoxville, TN); Costanzo, Dante A. (Oak Ridge, TN); Lackey, Jr., Walter J. (Oak Ridge, TN); Layton, Frank L. (Clinton, TN); Stinton, David P. (Knoxville, TN)

    1980-01-01

    This invention relates to a method for determining defective final layers of carbon on triso-coated fuel particles and the like. Samples of the particles are subjected to a high temperature treatment with gaseous chlorine and thereafter radiographed. The chlorine penetrates through any defective carbon layer and reacts with the underlying silicon carbide resulting in the volatilization of the silicon as SiCl.sub.4 leaving carbon as a porous layer. This porous carbon layer is easily detected by the radiography.

  17. Wettability of terminally anchored polymer brush layers on a polyamide surface.

    PubMed

    Varin, Kari J Moses; Cohen, Yoram

    2014-12-15

    Surface wettability of terminally anchored hydrophilic polymer brush layers on polyamide-silicon (PA-Si) surfaces was evaluated with respect to surface topography at the nanoscale. Hydrophilic polyvinylpyrrolidone (PVP) and polyacrylamide (PAAm) brush layers were synthesized via graft polymerization onto a PA-Si surface previously activated by surface treatment with atmospheric pressure plasma. Hydrophilicity (or wettability) of the PA substrate, as quantified by the free energy of hydration, was increased upon surface coverage with the PVP and PAAm brush layers by 13-24% (-101.4 to -111.3 mJ/m(2)) and 19-37% (-106.1 to -122.4 mJ/m(2)), respectively. Surface hydrophilicity increased with both increasing surface roughness (0.55-2.89 nm and 1.54-5.84 nm for PVP and PAAm, respectively) and polymer volume (1.3×10(6)-7.3×10(6) nm(3)/?m(2) and 3.3×10(6)-2.8×10(7) nm(3)/?m(2) for PVP and PAAm surfaces, respectively). The present study suggests that a specific level of surface wettability can be attained by tailor-designing the polymer brush layer's physicochemical characteristics (e.g., surface roughness, wettability, and polymer water affinity) by adjusting surface topography and surface chemistry, which are controlled by surface activation and polymerization conditions. The above indicates that there is merit in structuring various surfaces with hydrophilic brush layers to increase surface wettability in membrane filtration, biomedical devices, and lubrication applications. PMID:25305445

  18. Layer-by-layer construction of the heparin/fibronectin coatings on titanium surface:stability and functionality

    NASA Astrophysics Data System (ADS)

    Li, Guicai; Yang, Ping; Huang, Nan

    Layer-by-layer assembly as a versatile bottom-up nanofabrication technique has been widely used in the development of biomimetic materials with superior mechanical and biological properties. In this study, layer-by-layer assembled heparin/fibronectin biofunctional films were fabricated on titanium (Ti) surface to enhance the blood anticoagulation and accelerate the endothelialization simultaneously. The wettability and chemical changes of the assembled films were investigated by static water contact angle measurement and fourier transform infrared spectroscopy (FTIR). The morphology of modified Ti surfaces were observed using scanning electron microscopy (SEM). The real time assembly process was in-situ monitored by quartz crystal microbalance with dissipation (QCM-D). The stability of the films was evaluated by measuring the changes in wettability and the quantity of heparin and fibronectin on the surfaces. The anticoagulation properties of the films were quantitatively rated using Activated partial thromboplastin time (APTT) analysis. New peaks of hydroxyl and amino group were observed on the assembled Ti srufaces by FTIR. The contact angles varied among the films with different bilayer numbers, indicating the successful graft of the heparin and fibronectin layer-by-layer. QCM-D results showed that the frequency shift increased with the bilayer numbers, and the heparin and fibronectin could form multilayers. The assembly films were stable after incubation in PBS for 24 h based on the results of the contact angle measurement and the quantity of heparin and fibronectin analysis. APTT results suggested that the assembled films kept excellent antithrombotic properties. All these results revealed that the assembled heparin/fibronectin films with stabiltiy and anticoagulation property could be firmly formed on titanium surfaces. Our study further demonstrates that layer-by-layer assembly of heparin and fibronectin will provide a potential and effective tool for biomaterials surface modification.

  19. Surface Chemistry at Size-Selected Nano-Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Roberts, Jeffrey

    2005-03-01

    A method has been developed to conduct surface chemistry and extract surface kinetic rates from size-selected aerosol nanoparticles. The measurements encompass broad ranges of particle size, phase, and composition. Results will be presented on the uptake of water by aerosolized soot nanoparticles of radius between 10 and 40 nm. Water uptake was monitored by tandem differential mobility analysis (T-DMA), which is capable of measuring changes in particle diameter as little as 0.2 nm. Soot particles were produced in an ethene diffusion flame and extracted into an atmospheric pressure aerosol flow tube reactor. The particles were subjected to various thermal and oxidative treatments, and the effects of these treatments on the ability of soot to adsorb monolayer quantities of water was determined. The results are important because soot nucleates atmospheric cloud particles. More generally, the results represent one of the first kinetic and mechanistic studies of gas-phase nanoparticle reactivity. Co-author: Henry Ajo, University of Minnesota

  20. Creating deformations and tunnels in a surface using layered geometry with adaptive filtering 

    E-print Network

    Brooks, Jacob Kirk

    2005-11-01

    With this thesis, I present a method for creating footprints and tunnels in a surface through the use of layered geometry. Rather than using a single geometric surface, deformations are created through the interaction of a polygonal object...

  1. Influence of atomic layer deposition Al2O3 nano-layer on the surface passivation of silicon solar cells

    NASA Astrophysics Data System (ADS)

    Decheng, Yang; Fang, Lang; Zhuo, Xu; Jinchao, Shi; Gaofei, Li; Zhiyan, Hu; Jingfeng, Xiong

    2014-05-01

    A stack of Al2O3/SiNx dual layer was applied for the back side surface passivation of p-type multi-crystalline silicon solar cells, with laser-opened line metal contacts, forming a local aluminum back surface field (local Al-BSF) structure. A slight amount of Al2O3, wrapping around to the front side of the wafer during the thermal atomic layer deposition process, was found to have a negative influence on cell performance. The different process flow was found to lead to a different cell performance, because of the Al2O3 wrapping around the front surface. The best cell performance, with an absolute efficiency gain of about 0.6% compared with the normal full Al-BSF structure solar cell, was achieved when the Al2O3 layer was deposited after the front surface of the wafer had been covered by a SiNx layer. We discuss the possible reasons for this phenomenon, and propose three explanations as the Ag paste, being hindered from firing through the front passivation layer, degraded the SiNx passivation effect and the Al2O3 induced an inversion effect on the front surface. Characterization methods like internal quantum efficiency and contact resistance scanning were used to assist our understanding of the underlying mechanisms.

  2. Uptake of gas phase nitrous acid onto boundary layer soil surfaces.

    PubMed

    Donaldson, Melissa A; Berke, Andrew E; Raff, Jonathan D

    2014-01-01

    Nitrous acid (HONO) is an important OH radical source that is formed on both ground and aerosol surfaces in the well-mixed boundary layer. Large uncertainties remain in quantifying HONO sinks and determining the mechanism of HONO uptake onto surfaces. We report here the first laboratory determination of HONO uptake coefficients onto actual soil under atmospheric conditions using a coated-wall flow tube coupled to a highly sensitive chemical ionization mass spectrometer (CIMS). Uptake coefficients for HONO decrease with increasing RH from (2.5 ± 0.4) × 10(-4) at 0% RH to (1.1 ± 0.4) × 10(-5) at 80% RH. A kinetics model of competitive adsorption of HONO and water onto the particle surfaces fits the dependence of the HONO uptake coefficients on the initial HONO concentration and relative humidity. However, a multiphase resistor model based on the physical and chemical processes affecting HONO uptake is more flexible as it accounts for the pH dependence of HONO uptake and bulk diffusion in the soil matrix. Fourier transform infrared (FTIR) spectrometry and cavity-enhanced absorption spectroscopy (CEAS) studies indicate that NO and N2O (16% and 13% yield, respectively) rather than NO2 are the predominant gas phase products, while NO2(-) and NO3(-) were detected on the surface post-exposure. Results are compared to uptake coefficients inferred from models and field measurements, and the atmospheric implications are discussed. PMID:24328088

  3. Explosive particle soil surface dispersion model for detonated military munitions.

    PubMed

    Hathaway, John E; Rishel, Jeremy P; Walsh, Marianne E; Walsh, Michael R; Taylor, Susan

    2015-07-01

    The accumulation of high explosive mass residue from the detonation of military munitions on training ranges is of environmental concern because of its potential to contaminate the soil, surface water, and groundwater. The US Department of Defense wants to quantify, understand, and remediate high explosive mass residue loadings that might be observed on active firing ranges. Previously, efforts using various sampling methods and techniques have resulted in limited success, due in part to the complicated dispersion pattern of the explosive particle residues upon detonation. In our efforts to simulate particle dispersal for high- and low-order explosions on hypothetical firing ranges, we use experimental particle data from detonations of munitions from a 155-mm howitzer, which are common military munitions. The mass loadings resulting from these simulations provide a previously unattained level of detail to quantify the explosive residue source-term for use in soil and water transport models. In addition, the resulting particle placements can be used to test, validate, and optimize particle sampling methods and statistical models as applied to firing ranges. Although the presented results are for a hypothetical 155-mm howitzer firing range, the method can be used for other munition types once the explosive particle characteristics are known. PMID:26050065

  4. Erosion processes due to energetic particle-surface interaction

    SciTech Connect

    Schmid, K.; Roth, J.

    2010-05-20

    The interaction of the fast particles from the hot plasma of a magnetic confinement fusion experiment with the first wall is one of the most challenging problems toward the realization of a fusion power plant. The erosion of the first wall by the fast particles leads to life time limitations and the radiative cooling of the plasma by the eroded impurity species lowers the energy confinement. Apart from these obvious consequences also the trapping of large quantities of the fuelling species (deuterium and tritium) in re-deposited layers of the eroded species poses a problem due to accumulation of large radiative inventories and plasma fuelling inefficiency. The source of all these challenges is the erosion of first wall components due to physical sputtering, chemical erosion and radiation enhanced sublimation. This paper will give an overview about the physical principles behind these erosion channels.

  5. Discovering sub-micron ice particles across Dione' surface

    NASA Astrophysics Data System (ADS)

    Scipioni, Francesca; Schenk, Pual; Tosi, Federico; Clark, Roger; Dalle Ore, Cristina; Combe, Jean-Philippe

    2015-11-01

    Water ice is the most abundant component of Saturn’s mid-sized moons. However, these moons show an albedo asymmetry – their leading sides are bright while their trailing side exhibits dark terrains. Such differences arise from two surface alteration processes: (i) the bombardment of charged particles from the interplanetary medium and driven by Saturn’s magnetosphere on the trailing side, and (ii) the impact of E-ring water ice particles on the satellites’ leading side. As a result, the trailing hemisphere appears to be darker than the leading side. This effect is particularly evident on Dione's surface. A consequence of these surface alteration processes is the formation or the implantation of sub-micron sized ice particles.The presence of such particles influences and modifies the surfaces' spectrum because of Rayleigh scattering by the particles. In the near infrared range of the spectrum, the main sub-micron ice grains spectral indicators are: (i) asymmetry and (ii) long ward minimum shift of the absorption band at 2.02 ?m (iii) a decrease in the ratio between the band depths at 1.50 and 2.02 ?m (iv) a decrease in the height of the spectral peak at 2.6 ?m (v) the suppression of the Fresnel reflection peak at 3.1 ?m and (vi) the decrease of the reflection peak at 5 ?m relative to those at 3.6 ?m.We present results from our ongoing work mapping the variation of sub-micron ice grains spectral indicators across Dione' surface using Cassini-VIMS cubes acquired in the IR range (0.8–5.1 ?m). To characterize the global variations of spectral indicators across Dione' surface, we divided it into a 1°x1° grid and then averaged the band depths and peak values inside each square cell.We will investigate if there exist a correspondence with water ice abundance variations by producing water ice' absorption band depths at 1.25, 1.52 and 2.02 ?m, and with surface morphology by comparing the results with ISS color maps in the ultraviolet, visible and infrared ranges. Finally, we will compare the results with those obtained for Enceladus, Tethys, and Mimas

  6. Synthesis of Submicrometer Hollow Particles with a Nanoscale Double-Layer Shell Structure

    E-print Network

    Spinu, Leonard

    of the organic surfactant species, leaving behind hollow silica particles containing magnetic iron oxides. Our of magnetic iron oxide into the shells opens up applications in external stimuli-responsive nanomaterials shell is a hydrophilic silica layer of approximately 40 nm, with the shell thickness being a function

  7. Lagranian measurements of inertial particle trajectories in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Gerashchenko, Sergiy; Sharp, Nicole; Neuscamman, Stephanie; Ayyalasomayajula, Sathyanarayana; Warhaft, Zellman

    2007-11-01

    We describe Lagrangian measurements of water droplets in a boundary layer with high Reynolds number free stream turbulence. The high Reynolds number turbulence is produced using a active grid in a wind tunnel. Water droplets are introduced into the flow using an array of nozzles attached down stream of the active grid. A boundary layer is formed above a glass plate and the particle trajectories are tracked by a high speed camera moving along side of the tunnel [Ayyalasomayajula et al Phys. Rev. Lett., 97, 2006). We show that the probability density function of the acceleration of the particles in the boundary layer has stretched exponential tails that have pronounced asymmetry, reflecting the deceleration events as the particles approach the wall.The pdf's are measured as a function of distance from the wall and the free stream turbulence level is is also varied in order to change the turbulence characteristics in the boundary layer. The Stokes number of the particles is varied up to a value of approximately 0.2.

  8. Characterization of nano-sized iron particle layers spin coated on glass substrate

    NASA Astrophysics Data System (ADS)

    Dehipawala, Sunil; Samarasekara, Pubudu; Dahanayake, Rasika; Tremberger, George; Cheung, Tak D.; Gafney, Harry D.

    2015-08-01

    Nanometer scale iron particles have a variety of technological applications. They are vastly utilized in optical and microwave devices. Thin films with varying compositions of iron (III) nitrate and ethylene glycol were deposited on glass substrate using a spin coating technique. The thicknesses of the films were controlled by the spin rate. Precursor films on the substrate were then annealed to different temperatures ranging from 200°C to 600°C for 1-3 hours in air. The microstructures of iron particles in films prepared under different conditions were investigated using X-ray Absorption spectroscopy and Mossbauer spectroscopy. The main absorption edge peak position and pre-edge energy position were identical in samples with different numbers of layers, but prepared under similar conditions. This indicates that there was no change in the charge state of the iron regardless of the number of layers. However the intensity of the pre-edge feature decreases as the number of layers increases, which shows a decrease of Fe-O compounds as the number of layers increases. Mossbauer spectrum of these iron particles contains only quadrupole doublets. The absence of six-linespectrum confirms the nano-size nature of the particles.

  9. Antimicrobial and antioxidant surface modification of cellulose fibers using layer-by-layer deposition of chitosan and lignosulfonates.

    PubMed

    Li, Hui; Peng, Lincai

    2015-06-25

    To confer cellulose fibers antimicrobial and antioxidant activities, chitosan (CS)/lignosulfonates (LS) multilayers were constructed on fibers surfaces through layer-by-layer deposition technique. The formation of CS/LS multilayers on cellulose fibers surfaces was verified by X-ray photoelectron spectroscopy (XPS) and zeta potential measurement. The surface morphologies of CS/LS multilayers on fibers surfaces were observed by atomic force microscopy (AFM). The results showed that characteristic element (i.e. N and S element) content increased with increasing bilayers number, the surface LS content increased linearly as a function of bilayers. Zeta potential of modified fibers was inversed after deposition of each layer. AFM phase images indicated that the cellulose microfibrils on fibers surfaces were gradually covered by granular LS aggregate. The antimicrobial testing results demonstrated that CS/LS multilayers modified fibers with CS in the outermost layer exhibited higher antimicrobial activity against Escherichia coli. The antioxidant testing results showed that antioxidant activity of CS/LS multilayers modified fibers was better than that of original fibers under the same oxidation conditions. PMID:25839791

  10. Fabrication of large-sized two-dimensional ordered surface array with well-controlled structure via colloidal particle lithography.

    PubMed

    Meng, Xiaohui; Zhang, Xinping; Ye, Lei; Qiu, Dong

    2014-06-17

    Epoxy resin coated glass slides were used for colloidal particle lithography, in order to prepare well-defined 2D surface arrays. Upon the assistance of a large-sized 2D colloidal single crystal as template, centimeter-sized ordered surface arrays of bowl-like units were obtained. Systematic studies revealed that the parameters of obtained surface arrays could be readily controlled by some operational factors, such as temperature, epoxy resin layer thickness, and template particle size. With epoxy resin substituting for normal linear polymer, the height/diameter ratio of bowls in the formed surface arrays can be largely increased. With further reactive plasma etching, the parameters of ordered surface arrays could be finely tuned through controlling etching time. This study provides a facile way to prepare large-sized 2D surface arrays with tunable parameters. PMID:24870696

  11. A Semi-Automatic Approach for Estimating Near Surface Internal Layers From Snow Radar

    E-print Network

    A Semi-Automatic Approach for Estimating Near Surface Internal Layers From Snow Radar Imagery 300 MHz 40 cm 300 m 10 W 20000 ft Patch Array Vivaldi Array Twin-Otter P-3 Snow Radar Snow Cover snow radar echograms #12;Future Work · Improve near surface layer detection algorithms for more data

  12. Dispersive Nonlinear Waves in Two-Layer Flows with Free Surface. II. Large amplitude solitary waves

    E-print Network

    Dispersive Nonlinear Waves in Two-Layer Flows with Free Surface. II. Large amplitude solitary waves In this paper we study the dispersive model derived in Part I, for the description of long wave propagation in two-layer flows with free surface. As in the case of the full water-wave problem, this model

  13. A SEMI-AUTOMATIC APPROACH FOR ESTIMATING NEAR SURFACE INTERNAL LAYERS FROM SNOW RADAR IMAGERY

    E-print Network

    Menczer, Filippo

    A SEMI-AUTOMATIC APPROACH FOR ESTIMATING NEAR SURFACE INTERNAL LAYERS FROM SNOW RADAR IMAGERY changing polar ice sheets. Identifying and tracing near surface internal layers in snow radar echograms can and have applied it to snow radar echograms acquired from Antarctica. Our solution uti- lizes an active

  14. High-Speed Transport of Fluid Drops and Solid Particles via Surface Acoustic Waves

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Bao, Xiaoqi; Sherrit, Stewart; Badescu, Mircea; Lih, Shyh-shiuh

    2012-01-01

    A compact sampling tool mechanism that can operate at various temperatures, and transport and sieve particle sizes of powdered cuttings and soil grains with no moving parts, has been created using traveling surface acoustic waves (SAWs) that are emitted by an inter-digital transducer (IDT). The generated waves are driven at about 10 MHz, and it causes powder to move towards the IDT at high speed with different speeds for different sizes of particles, which enables these particles to be sieved. This design is based on the use of SAWs and their propelling effect on powder particles and fluids along the path of the waves. Generally, SAWs are elastic waves propagating in a shallow layer of about one wavelength beneath the surface of a solid substrate. To generate SAWs, a piezoelectric plate is used that is made of LiNbO3 crystal cut along the x-axis with rotation of 127.8 along the y-axis. On this plate are printed pairs of fingerlike electrodes in the form of a grating that are activated by subjecting the gap between the electrodes to electric field. This configuration of a surface wave transmitter is called IDT. The IDT that was used consists of 20 pairs of fingers with 0.4-mm spacing, a total length of 12.5 mm. The surface wave is produced by the nature of piezoelectric material to contract or expand when subjected to an electric field. Driving the IDT to generate wave at high amplitudes provides an actuation mechanism where the surface particles move elliptically, pulling powder particles on the surface toward the wavesource and pushing liquids in the opposite direction. This behavior allows the innovation to separate large particles and fluids that are mixed. Fluids are removed at speed (7.5 to 15 cm/s), enabling this innovation of acting as a bladeless wiper for raindrops. For the windshield design, the electrodes could be made transparent so that they do not disturb the driver or pilot. Multiple IDTs can be synchronized to transport water or powder over larger distances. To demonstrate the transporting action, a video camera was used to record the movement. The speed of particles was measured from the video images.

  15. The Point of Departure of a Particle Sliding on a Curved Surface

    ERIC Educational Resources Information Center

    Aghamohammadi, Amir

    2012-01-01

    A particle is thrown tangentially on a surface. It is shown that for some surfaces and for special initial velocities the thrown particle immediately leaves the surface, and for special conditions it never leaves the surface. The conditions for leaving the surface are investigated. The problem is studied for a surface with the cross-section y =…

  16. Analysis on the formation and growth of condensing aerosol particles in a turbulent mixing layer

    NASA Astrophysics Data System (ADS)

    Zhou, Kun; Attili, Antonio; Al-Shaarawi, Amjad; Bisetti, Fabrizio

    2013-11-01

    A simulation of the formation and growth of dibutyl phthalate (DBP) particles in a three-dimensional turbulent mixing layer is performed to investigate the effects of turbulence on the aerosol evolution. A fast, hot stream with DBP vapor is mixed with a slow, cold stream achieving supersaturation by turbulent mixing. The aerosol dynamics are solved with the quadrature method of moments, and the moments are transported via a Lagrangian particles scheme. The results show that aerosol particles are formed in the cold stream, while they grow rapidly in the hot stream. The differential diffusion of temperature/vapor concentration and aerosol particles is investigated through conditional statistics in the mixture fraction space. Aerosol particles formed in the cold stream tend to drift towards the hot stream and grow substantially there.

  17. Depth profile analysis of native oxide layer on GaAs (100) surface

    NASA Astrophysics Data System (ADS)

    Cheng, Xing; Shi, Feng; Cheng, Hongchang; Niu, Sen; Wang, Long; Miao, Zhuang; Chen, Chang

    2014-12-01

    Ar+ ion etching and X-ray photoelectron spectroscopy (XPS)depth profile analysis have been performed on the native oxide layerof GaAs(100) surface. The composition of the native oxide layer,that isthe oxide phases of gallium and arsenic, was characterized precisely. It is indicated that native oxide phases on extreme surface of GaAs(100) consist of a mixture of Ga2O3, As2O3 and As2O5. Furthermore, the respective distribution of oxide phases of gallium and arsenic along the depthwere compared and analyzed.A seemingly contradictory phenomenon was found, that is As enrichment exist in total oxide layer, but the content of Ga oxide was greater than that of As oxide in the oxide layer except for the outmost surface layer.Based on the comprehensive influence of oxidation process, etching, segregation and growth process, the intrinsic mechanism of the change of oxides along etching depth was discussed. According to the analyzed results, the oxide layer of GaAs (100) surface should be divided to two layers,that is the outmost layer containing oxides of Ga and As and the intermediate layer including only oxide of Ga.The concentration of As oxides in the outmost layer and the enrichment of As in total oxide layer are derived from surface structure inhomogeneity. The throughout total oxide layer of Ga oxide is attributed to its stronger oxidability.In the present work, the system study for native oxide layer of GaAs surface provides the powerful foundation for understanding surface state of GaAs and surface treatment.

  18. Influence of ultrathin water layer on the van der Waals/Casimir force between gold surfaces

    SciTech Connect

    Palasantzas, G.; Zwol, P. J. van; Svetovoy, V. B.

    2009-06-15

    In this paper we investigate the influence of ultrathin water layer ({approx}1-1.5 nm) on the van der Waals/Casimir force between gold surfaces. Adsorbed water is inevitably present on gold surfaces at ambient conditions as jump-up-to contact during adhesion experiments demonstrate. Calculations based on the Lifshitz theory give very good agreement with the experiment in the absence of any water layer for surface separations d > or approx. 10 nm. However, a layer of thickness h < or approx. 1.5 nm is allowed by the error margin in force measurements. At shorter separations, d < or approx. 10 nm, the water layer can have a strong influence as calculations show for flat surfaces. Nonetheless, in reality the influence of surface roughness must also be considered, and it can overshadow any water layer influence at separations comparable to the total sphere-plate rms roughness w{sub shp}+w.

  19. Hydrate layers on ice particles and superheated ice: a {sup 1}H NMR microimaging study

    SciTech Connect

    Moudrakovski, I.L.; Ratcliffe, C.I.; McLaurin, G.E.; Simard, B.; Ripmeester, J.A.

    1999-07-01

    Recent observations on the interaction of methane gas with ice surfaces have led to the suggestion that the resulting hydrate layer prevents the encapsulated ice from melting at its usual temperature. This would require ice to exist in a superheated state. The authors have examined the product of the gas-solid reaction with {sup 1}H NMR imaging. The imaging experiments show that the hydrate-encapsulated ice is able to melt at its usual melting point. As a possible alternative model, the authors suggest that a considerable amount of ice inside the hydrate layer can be converted to hydrate and liquid water under isothermal and constant volume conditions, the hydrate layer acting as an insulating, semipermeable layer that insulates processes inside the hydrate layer from external bulk temperature and pressure measurements.

  20. Analytic expressions for atomic layer deposition: Coverage, throughput, and materials utilization in cross-flow, particle coating, and spatial atomic layer deposition

    SciTech Connect

    Yanguas-Gil, Angel; Elam, Jeffrey W.

    2014-05-15

    In this work, the authors present analytic models for atomic layer deposition (ALD) in three common experimental configurations: cross-flow, particle coating, and spatial ALD. These models, based on the plug-flow and well-mixed approximations, allow us to determine the minimum dose times and materials utilization for all three configurations. A comparison between the three models shows that throughput and precursor utilization can each be expressed by universal equations, in which the particularity of the experimental system is contained in a single parameter related to the residence time of the precursor in the reactor. For the case of cross-flow reactors, the authors show how simple analytic expressions for the reactor saturation profiles agree well with experimental results. Consequently, the analytic model can be used to extract information about the ALD surface chemistry (e.g., the reaction probability) by comparing the analytic and experimental saturation profiles, providing a useful tool for characterizing new and existing ALD processes.

  1. A literature review of surface alteration layer effects on waste glass behavior

    SciTech Connect

    Feng, X.; Cunnane, J.C.; Bates, J.K.

    1993-01-01

    When in contact with an aqueous solution, nuclear waste glass is subject to a chemical attack that results in progressive alteration. During tills alteration, constituent elements of the glass pass into the solution; elements initially in solution diffuse into, or are adsorbed onto, the solid; and new phases appear. This results in the formation of surface layers on the reacted glass. The glass corrosion and radionuclide release can be better understood by investigating these surface layer effects. In the past decade, there have been numerous studies regarding the effects of surface layers on glass reactions. This paper presents a systematic analysis and summary of the past knowledge regarding the effects of surface layers on glass-water interaction. This paper describes the major formation mechanisms of surface layers; reviews the role of surface layers in controlling mass transport and glass reaction affinity (through crystalline phases, an amorphous silica, a gel layer, or all the components in the glass); and discusses how the surface layers contribute to the retention of radionuclides during glass dissolution.

  2. A literature review of surface alteration layer effects on waste glass behavior

    SciTech Connect

    Feng, X.; Cunnane, J.C.; Bates, J.K.

    1993-05-01

    When in contact with an aqueous solution, nuclear waste glass is subject to a chemical attack that results in progressive alteration. During tills alteration, constituent elements of the glass pass into the solution; elements initially in solution diffuse into, or are adsorbed onto, the solid; and new phases appear. This results in the formation of surface layers on the reacted glass. The glass corrosion and radionuclide release can be better understood by investigating these surface layer effects. In the past decade, there have been numerous studies regarding the effects of surface layers on glass reactions. This paper presents a systematic analysis and summary of the past knowledge regarding the effects of surface layers on glass-water interaction. This paper describes the major formation mechanisms of surface layers; reviews the role of surface layers in controlling mass transport and glass reaction affinity (through crystalline phases, an amorphous silica, a gel layer, or all the components in the glass); and discusses how the surface layers contribute to the retention of radionuclides during glass dissolution.

  3. Surface Modification of Layered Zirconium Phosphates: A Novel Pathway to Multifunctional Nanomaterials 

    E-print Network

    Mosby, Brian Matthew

    2014-04-08

    was investigated with a variety of coupling agents. Initially, covalent attachment of molecules to the exterior surface of the nano particles was attempted with silanes and epoxides. Subsequently, the ion exchange character of the surface phosphate groups was used...

  4. Surface composition of solid-rocket exhausted aluminum oxide particles

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Winstead, Edward L.; Key, Lawrence E.

    1989-01-01

    Particulate samples of aluminum oxide were collected on Teflon filters from the exhaust plume of the Space Shuttle (STS-61A, October 30, 1985) over the altitude interval 4.6-7.6 km immediately after launch. These particles were analyzed using SEM, energy-dispersive X-ray analysis, electron spectroscopy for chemical analysis, X-ray fluorescent spectroscopy, and conventional wet-chemical techniques. The samples were 0.6-1.0 percent surface-chlorided (chlorided meaning predominantly aluminum chlorides and oxychlorides, possibly including other adsorbed forms of chloride) by weight. This level of chloriding is about one-third of the amount determined previously from laboratory-prepared alumina and surface site samples of solid-rocket-produced alumina (SRPA) after both had been exposed to moist HCl vapor at temperatures down to ambient. This level is equivalent to previous laboratory results with samples exposed to moist HCl at temperatures above the boiling point of water. It is suggested that the present lower chloriding levels, determined for samples from a 'dry' Shuttle exhaust cloud, underscore the importance of a liquid water/hydrochloric acid phase in governing the extent of surface chloriding of SRPA. The reduced chloriding is not trivial with respect to potential physical/chemical modification of the SRPA particle surfaces and their corresponding interaction with the atmosphere.

  5. Exothermic surface chemistry on aluminum particles promoting reactivity

    NASA Astrophysics Data System (ADS)

    Mulamba, Oliver; Pantoya, Michelle L.

    2014-10-01

    The exothermic surface chemistry associated with the alumina passivation shell surrounding aluminum (Al) particles and fluorine from fluoropolymer materials is investigated. In particular, polytetrafluoroethylene (PTFE) has been synthesized with varying chain lengths and combined with nanometric Al fuel particles. The Al-PTFE kinetics were analyzed using equilibrium diagnostics including differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) for calorific and phase change behavior coupled with additional flame speed measurements. The objective was to understand the effects of varying PTFE molecular structure on the kinetic and energy propagation behaviors of these composites. Results showed a pre-ignition reaction (PIR) with longer chained PTFE samples and not with the shorter chained PTFE samples. The PIR is attributed to fluorine dislodging hydroxyls from the alumina (Al2O3) passivation surface and forming Al-F structures. Composites exhibiting the PIR correspondingly result in significantly higher flame speeds. The PIR surface chemistry may contribute to promoting the melt dispersion mechanism (MDM) responsible for propagating energy in nano Al reactions. Composites with a PIR also have higher heats of combustion in both the PIR and main reaction exotherms. These results help elucidate the influence of molecular scale surface chemistry on macroscopic energy propagation.

  6. The Role of Adsorbed Water on the Friction of a Layer of Submicron Particles CHARLES G. SAMMIS,1

    E-print Network

    Ze'ev, Reches

    friction with an apparent coefficient near l = 0.6 at low slip speeds to a coefficient near l = 0 layer enables the otherwise rough particles to rotate, the coefficient of friction will drop to l = 0 layer vaporizes, the particles contact and lock, and the coefficient of friction rises to l = 0

  7. Cell and tissue kinetics of the subependymal layer in mouse brain following heavy charged particle irradiation

    SciTech Connect

    Manley, N.B.; Fabrikant, J.I.; Alpen, E.L.

    1988-12-01

    The following studies investigate the cellular response and cell population kinetics of the subependymal layer in the mouse brain exposed to heavy charged particle irradiation. Partial brain irradiation with helium and neon ions was confined to one cortex of the brain. Both the irradiated and the unirradiated contralateral cortex showed similar disturbances of the cell and tissue kinetics in the subependymal layers. The irradiated hemisphere exhibited histological damage, whereas the unirradiated side appeared normal histologically. This study concerns the cell population and cell cycle kinetics of the subependymal layer in the mouse brain, and the effects of charged particle irradiations on this cell population. Quantitative high resolution autoradiography was used to study the kinetic parameters in this cell layer. This study should help in understanding the effects of these high-energy heavy ions on normal mammalian brain tissue. The response of the mammalian brain exposure to charged particle ionizing radiation may be extremely variable. It varies from minimal physiological changes to overt tissue necrosis depending on a number of factors such as: the administered dose, dose-rate, the volume of the irradiated tissue, and the biological end-point being examined.

  8. Study of microstructure of surface layers of low-carbon steel after turning and ultrasonic finishing

    NASA Astrophysics Data System (ADS)

    Kovalevskaya, Zh. G.; Ivanov, Yu. F.; Perevalova, O. B.; Klimenov, V. A.; Uvarkin, P. V.

    2013-01-01

    Profilometry and optical and transmission electron microscopy are used to examine the microstructure of surface layers of a low-carbon ferrite-pearlite steel subjected to turning and ultrasonic finishing. It is shown that turning peaks and valleys have different microstructures, which stipulates manifestation of technological hereditary when processing surfaces of machined parts. Ultrasonic finishing causes the severe plastic deformation of the surface layer, which favors the elimination of a technological heredity that is acquired during turning.

  9. Atomic Layer Deposition to Fine-Tune the Surface Properties and Diameters of Fabricated Nanopores

    PubMed Central

    Chen, Peng; Mitsui, Toshiyuki; Farmer, Damon B.; Golovchenko, Jene; Gordon, Roy G.; Branton, Daniel

    2011-01-01

    Atomic layer deposition of alumina enhanced the molecule sensing characteristics of fabricated nanopores by fine-tuning their surface properties, reducing 1/f noise, neutralizing surface charge to favor capture of DNA and other negative polyelectrolytes, and controlling the diameter and aspect ratio of the pores with near single Ångstrom precision. The control over the chemical and physical nature of the pore surface provided by atomic layer deposition produced a higher yield of functional nanopore detectors. PMID:24991194

  10. Layered devices having surface curvature and method of constructing same

    DOEpatents

    Woodbury, Richard C. (Provo, UT); Perkins, Raymond T. (Provo, UT); Thorne, James M. (Provo, UT)

    1989-01-01

    A method of treating a substrate having first and second sides with corresponding oppositely facing first and second surfaces, to produce curvature in the first surface. The method includes the steps of removing material, according to a predetermined pattern, from the second side of the substrate, and applying a stress-producing film of material to at least one surface of the substrate to thereby cause the substrate to bend to produce the desired curvature in the first surface.

  11. Retrieving the aerosol particle distribution in Titan's detached layer from ISS limb observations

    NASA Astrophysics Data System (ADS)

    Seignovert, B.; Rannou, P.; Lavvas, P.; Cours, T.; West, R. A.

    2015-10-01

    The study of the detached haze layer above Titan's thick atmosphere is one of the key elements to understand the growth of the aerosols in the upper atmosphere of Titan. In this work we will present the results of a radiative transfer inversion of the vertical profile distribution of aerosols in the detached haze layer (from 300 to 600 km) by using the I/F ratio ob- served by Cassini ISS camera. The analyses will focus on the derivation of the particle size distribution.

  12. Modifying of Cotton Fabric Surface with Nano-ZnO Multilayer Films by Layer-by-Layer Deposition Method

    NASA Astrophysics Data System (ADS)

    U?ur, ?ule S.; Sar????k, Merih; Akta?, A. Hakan; Uçar, M. Çi?dem; Erden, Emre

    2010-07-01

    ZnO nanoparticle-based multilayer nanocomposite films were fabricated on cationized woven cotton fabrics via layer-by-layer molecular self-assembly technique. For cationic surface charge, cotton fabrics were pretreated with 2,3-epoxypropyltrimethylammonium chloride (EP3MAC) by pad-batch method. XPS and SEM were used to examine the deposited nano-ZnO multilayer films on the cotton fabrics. The nano-ZnO films deposited on cotton fabrics exhibited excellent antimicrobial activity against Staphylococcus aureus bacteria. The results also showed that the coated fabrics with nano-ZnO multilayer films enhanced the protection of cotton fabrics from UV radiation. Physical tests (tensile strength of weft and warp yarns, air permeability and whiteness values) were performed on the fabrics before and after the treatment with ZnO nanoparticles to evaluate the effect of layer-by-layer (LbL) process on cotton fabrics properties.

  13. Surface Roughness and Size Measurements of Microscopic Particles by Reflection Interference Contrast Microscopy 

    E-print Network

    Chang, Jamison

    2013-02-13

    Accurate information about particle roughness and the deformation that occurs when a particle is in contact with a surface is needed to provide improved models of particle resuspension and adhesion. The capabilities of reflection interference...

  14. Electrical conductivity of reconstructed Si(111) surface with sodium-doped C60 layers

    NASA Astrophysics Data System (ADS)

    Tsukanov, D. A.; Ryzhkova, M. V.; Borisenko, E. A.; Zotov, A. V.; Saranin, A. A.

    2015-01-01

    Electrical conductance of sodium-doped C60 ultra-thin layers (1-6 monolayers) grown on the Na-adsorbed Si(111)?3 × ?3-Au surface has been studied in situ by four-point probe technique, combined with low-energy electron diffraction observations. Evidence of conductance channel formation through the C60 ultrathin layer is demonstrated as a result of Na dosing of 3 and 6 monolayers thick C60 layers. The observed changes in surface conductivity can be attributed to the formation of fulleride-like NaC60 and Na2C60 compound layers.

  15. Microporous structure with layered interstitial surface treatment, and method and apparatus for preparation thereof

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (inventor)

    1992-01-01

    A microporous structure with layered interstitial surface treatments, and the method and apparatus for its preparation are disclosed. The structure is prepared by sequentially subjecting a uniformly surface treated structure to atomic oxygen treatment to remove an outer layer of surface treatment to a generally uniform depth, and then surface treating the so exposed layer with another surface treating agent. The atomic oxygen/surface treatment steps may optionally be repeated, each successive time to a lesser depth, to produce a microporous structure having multilayered surface treatments. The apparatus employs at least one side arm from a main oxygen-containing chamber. The side arm has characteristic relaxation times such that a uniform atomic oxygen dose rate is delivered to a specimen positioned transversely in the side arm spaced from the main gas chamber.

  16. Microporous structure with layered interstitial surface treatment, and method and apparatus for preparation thereof

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (inventor)

    1994-01-01

    A microporous structure with layered interstitial surface treatments, and method and apparatus for preparation thereof is presented. The structure is prepared by sequentially subjecting a uniformly surface-treated structure to atomic oxygen treatment to remove an outer layer of surface treatment to a generally uniform depth, and then surface treating the so exposed layer with another surface treating agent. The atomic oxygen/surface treatment steps may optionally be repeated, each successive time to a lesser depth, to produce a microporous structure having multilayered surface treatments. The apparatus employs at least one side arm from a main atomic oxygen-containing chamber. The side arm has characteristic relaxation times such that a uniform atomic oxygen dose rate is delivered to a specimen positioned transversely in the side arm spaced from the main gas chamber.

  17. Electronic Surface Structures of Coal and Mineral Particles

    SciTech Connect

    M.K. Mazumder; D.A. Lindquist; K.B. Tennal; Steve Trigwell; Steve Farmer; Albert Nutsukpul; Alex Biris

    2001-04-01

    Surface science studies related to tribocharging and charge separation studies were performed on electrostatic beneficiation of coal. In contrast to other cleaning methods, electrostatic beneficiation is a dry cleaning process requiring no water or subsequent drying. Despite these advantages, there is still uncertainty in implementing large scale commercial electrostatic beneficiation of coal. The electronic surface states of coal macerals and minerals are difficult to describe due to their chemical complexity and variability [1]. The efficiency in separation of mineral particles from organic macerals depends upon these surface states. Therefore, to further understand and determine a reason for the bipolar charging observed in coal separation, surface analysis studies using Ultra-violet Photoelectron Spectroscopy (UPS) and X-ray Photoelectron Spectroscopy (XPS) were performed on coal samples and several materials that are used or considered for use in tribocharging. Electrostatic charging is a surface phenomenon, so the electronic surface states of the particles, which are influenced by the environmental conditions, determine both polarity and magnitude of tribocharging. UPS was used to measure the work function of the materials as typically used in ambient air. XPS was used to determine the surface chemistry in the form of contamination and degree of oxidation under the same environmental conditions. Mineral bearing coals are those amenable to electrostatic beneficiation. Three types of coal, Illinois No. 6, Pittsburgh No. 8, and Kentucky No. 9 were investigated in this study. Pulverized coal powder was tribocharged against copper. Pyritic and other ashes forming minerals in coal powders should charge with a negative polarity from triboelectrification, and organic macerals should acquire positive charge, according to the relative differences in the surface work functions between the material being charged and the charging medium. Different types of minerals exhibit different magnitudes of negative charge and some may also charge positively against copper [2]. Only the mineral sulfur fraction of the total sulfur content is accessible by the electrostatic method since organic sulfur is covalently bound with carbon in macerals. The sizes of mineral constituents in coal range from about 0.1 to 100 {micro}m, but pyrites in many coals are on the lower end of this scale necessitating fine grinding for their liberation and separation. A ready explanation for coal powder macerals to charge positively by triboelectrification is found in the large numbers of surface carbon free radicals available to release electrons to form aromatic carbocations. There is evidence that these cationic charges are delocalized over several atoms [3]. Only perhaps one in one hundred thousand of the surface atoms is charged during triboelectrification [4], making it difficult to predict charging levels since the data depends upon the surface chemical species involved in charging. Based on the high electron affinity of oxygen atoms, oxidation is expected to decrease the extent of a coal particle to charge positively. Also, ion transfer may contribute to the increasingly negative charging character of oxidized coal carbons. A variety of oxidized surface functional groups may influence charge properties. For example, carboxylic acid functions can lose protons to form carboxylate anions. The samples of coal investigated in this study showed differing degrees of beneficiation, consistent with a more extensively oxidized Illinois No. 6 coal sample relative to that of Pittsburgh No. 8. Even though oxygen in air is deleterious to coal stored prior to beneficiation, other gases might favorably influence charge properties. To this end, coal exposed to vapors of acetone, ammonia, and sulfur dioxide also were beneficiated and analyzed in this study.

  18. Transient Heat Transfer in a Semitransparent Radiating Layer with Boundary Convection and Surface Reflections

    NASA Technical Reports Server (NTRS)

    Siegel, Robert

    1996-01-01

    Surface convection and refractive index are examined during transient radiative heating or cooling of a grey semitransparent layer with internal absorption, emission and conduction. Each side of the layer is exposed to hot or cold radiative surroundings, while each boundary is heated or cooled by convection. Emission within the layer and internal reflections depend on the layer refractive index. The reflected energy and heat conduction distribute energy across the layer and partially equalize the transient temperature distributions. Solutions are given to demonstrate the effect of radiative heating for layers with various optical thicknesses, the behavior of the layer heated by radiation on one side and convectively cooled on the other, and a layer heated by convection while being cooled by radiation. The numerical method is an implicit finite difference procedure with non-uniform space and time increments. The basic method developed in earlier work is expanded to include external convection and incident radiation.

  19. Surface double-layer structure in (110) oriented BiFeO{sub 3} thin film

    SciTech Connect

    Yang, Tieying; Zhang, Xingmin; Gao, Xingyu; Li, Zhong; Li, Xiaolong; Wang, Can; Feng, Yu; Guo, Haizhong; Jin, Kuijuan

    2014-11-17

    Surface double-layer structure different from the interior was found in BiFeO{sub 3} thin film grown on SrRuO{sub 3} covered SrTiO{sub 3} (110) substrate by pulsed laser deposition. It was shown that BiFeO{sub 3} film exhibits epitaxial phase with single domain. X-ray reflectivity and X-ray photoelectron spectroscopy results revealed a skin layer of less than 1?nm with a reduced electron density and different surface state. Grazing incidence x-ray diffraction convinced a surface multi-domain structure of several nm beneath the surface skin layer. The double-layer near surface structure would be originated from the large depolarization field produced by the single-domain structure with strain.

  20. Characteristics of the low electron density surface layer on BaTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Li, X. L.; Lu, H. B.; Li, Ming; Mai, Zhenhong; Kim, Hyunjung; Jia, Q. J.

    2008-01-01

    The surfaces of epitaxial BaTiO3 films on SrTiO3 substrates were investigated by x-ray reflectivity (XRR) and angle-resolved x-ray photoelectron spectroscopy (ARXPS). It was shown by XRR analysis that there exists a low electron density surface layer (about 87%-93% of the electron density of the underneath BaTiO3 layer) of 15Å on top of the film. Moreover, ARXPS results revealed a surface core-level shift of Ba in layer of about 11Å, a value which is in agreement with the thickness obtained by XRR, indicating that the surface core-level shift of Ba stems from the low electron density surface layer.

  1. Simple solution route to uniform MoS{sub 2} particles with randomly stacked layers

    SciTech Connect

    Li Qing; Li Ming; Chen Zhiqian; Li Chunmei

    2004-06-08

    MoS{sub 2} particles of uniform size (ca. 70 nm) consisting of random and loosely stacked layers have been synthesized from hydrazine solution with (NH{sub 4}){sub 2}Mo{sub 3}S{sub 13} as the precursor at 180 deg. C for 16 h under hydrothermal conditions. The particles were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HREM). The influences of reaction conditions are discussed while a mechanism is proposed to explain the formation of this peculiar morphology.

  2. Statistics of particle concentration in free-surface turbulence

    SciTech Connect

    Bandi, Mahesh M; Larkin, J; Goldburg, W

    2009-01-01

    Particles on the surface of an incompressible fluid maintained in a turbulent steady-state cluster into spatio-temporally complex flow structures. We experimentally study the statistics of particle concentration n(r, t) over various coarse-grained scales r' in the inertial range. Another control parameter is the Taylor Microscale Reynolds number Re{sub {lambda}}. The focus is on the steady state probability density function {Pi}(n{sub r}). Attention is also given to the variance {sigma}{sup 2}(r, t) of this PDF, since it yields information about the topology of the coagulated structures. Where possible, the results are compared and contrasted with those obtained in a recent analytical and numerical study of two-dimensional synthetic turbulence by Ducasse and Pumir. There, but not here, the dimensionless compressibility C is an important control parameter.

  3. A layer tracking approach to buried surface detection

    NASA Astrophysics Data System (ADS)

    Dobbins, Peter J.; Wilson, Joseph N.; Smock, Brandon

    2015-05-01

    Ground penetrating radar (GPR) devices use sensors to capture one-dimensional representations, or A-scans, of the soil and buried properties at each sampling point. Previous work uses reciprocal pointer chains (RPCs) to find one-dimensional layers in two-dimensional data (B-scans). We extend this work to find two-dimensional layers in three-dimensional data. We explore the application and differences of our technique when applied to vehicular mounted systems versus handheld systems and their distinct detection sequences. Not only can this work be used to display subsurface structure to a system operator, but we can also use changes in the subsurface structure of a local region to help identify buried objects within the data. We propose distinguishing buried objects from layers can reduce false alarm rates and may help increase probability of detection.

  4. Surface Passivation by Quantum Exclusion Using Multiple Layers

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E. (Inventor)

    2015-01-01

    A semiconductor device has a multilayer doping to provide improved passivation by quantum exclusion. The multilayer doping includes at least two doped layers fabricated using MBE methods. The dopant sheet densities in the doped layers need not be the same, but in principle can be selected to be the same sheet densities or to be different sheet densities. The electrically active dopant sheet densities are quite high, reaching more than 1.times.10.sup.14 cm.sup.-2, and locally exceeding 10.sup.22 per cubic centimeter. It has been found that silicon detector devices that have two or more such dopant layers exhibit improved resistance to degradation by UV radiation, at least at wavelengths of 193 nm, as compared to conventional silicon p-on-n devices.

  5. Layered Model for Radiation-Induced Chemical Evolution of Icy Surface Composition on Kuiper Belt and Oort Cloud Bodies

    NASA Astrophysics Data System (ADS)

    Cooper, John F.; Hill, M. E.; Richardson, J. D.; Sturner, S. J.

    2010-10-01

    The diversity of albedos and surface colors on observed Kuiper Belt and Inner Oort Cloud objects remains to be explained in terms of competition between primordial intrinsic versus exogenic drivers of surface and near-surface evolution. Earlier models have attempted without success to attribute this diversity to the relations between surface radiolysis from cosmic ray irradiation and gardening by meteoritic impacts. A more flexible approach considers the different depth-dependent radiation profiles produced by low-energy plasma, suprathermal, and maximally penetrating charged particles of the heliospheric and local interstellar radiation environments. Generally red objects of the dynamically cold (low inclination, circular orbit) Classical Kuiper Belt might be accounted for from erosive effects of plasma ions and reddening effects of high energy cosmic ray ions, while suprathermal keV-MeV ions could alternatively produce more color neutral surfaces. The deepest layer of more pristine ice can be brought to the surface from meter to kilometer depths by larger impact events and potentially by cryovolcanic activity. The bright surfaces of some larger objects, e.g. Eris, suggest ongoing resurfacing activity. Interactions of surface irradiation, resultant chemical oxidation, and near-surface cryogenic fluid reservoirs have been proposed to account for Enceladus cryovolcanism (Cooper et al., Plan. Sp. Sci., 2009) and may have further applications to other icy irradiated bodies. The diversity of causative processes must be understood to account for observationally apparent diversities of the object surfaces.

  6. Layered Model for Radiation-Induced Chemical Evolution of Icy Surface Composition on Kuiper Belt and Oort Cloud Bodies

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Hill, Matthew E.; Richardson, John D.; Sturner, Steven J.

    2010-01-01

    The diversity of albedos and surface colors on observed Kuiper Belt and Inner Oort Cloud objects remains to be explained in terms of competition between primordial intrinsic versus exogenic drivers of surface and near-surface evolution. Earlier models have attempted without success to attribute this diversity to the relations between surface radiolysis from cosmic ray irradiation and gardening by meteoritic impacts. A more flexible approach considers the different depth-dependent radiation profiles produced by low-energy plasma, suprathermal, and maximally penetrating charged particles of the heliospheric and local interstellar radiation environments. Generally red objects of the dynamically cold (low inclination, circular orbit) Classical Kuiper Belt might be accounted for from erosive effects of plasma ions and reddening effects of high energy cosmic ray ions, while suprathermal keV-MeV ions could alternatively produce more color neutral surfaces. The deepest layer of more pristine ice can be brought to the surface from meter to kilometer depths by larger impact events and potentially by cryovolcanic activity. The bright surfaces of some larger objects, e.g. Eris, suggest ongoing resurfacing activity. Interactions of surface irradiation, resultant chemical oxidation, and near-surface cryogenic fluid reservoirs have been proposed to account for Enceladus cryovolcanism and may have further applications to other icy irradiated bodies. The diversity of causative processes must be understood to account for observationally apparent diversities of the object surfaces.

  7. Charged Particle Alterations of Surfaces in the Solar System

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1995-01-01

    The surfaces of 'airless' bodies in the solar system are exposed to the ambient plasma, micrometeorites, and the solar UV. The effects of these space weathering agents on surfaces in the solar system has been studied in this project. In the last three years work was carried out on volatile depletion at Mars, on sputtering of the lunar surface, on absorption by implanted S in vapor-deposited H2O and its relevance to observations of Europa's surface in the UV, and on the spectral changes produced on irradiating SO2 and its possible relevance to Io. In addition, the role of plasma-induced charging of E-ring grains was evaluated because of its relevance to E-ring particle source and the lifetime of the E-ring. Finally, the detection of sputtered material from Dione by the CAPS instrument on CASSINI was evaluated as a tool for analysis of satellite surface composition, and the role of sputtering on the ambient OH in the vicinity of the ice satellites and the E-ring was evaluated.

  8. An improved analysis of the scattering properties of half-space problem with multiple defect particles for an optical surface

    NASA Astrophysics Data System (ADS)

    Gong, L.; Wu, Z. S.; Li, Z. J.; Zhang, G.

    2015-09-01

    Based on the practical situation of nondestructive examination, an improved analysis of the scattering properties of multiple-defect particles for an optical surface is shown. Using finite difference time domain method, the generalized perfectly matched layer can work very well against the half-space problem of optical surface and defect particles. Boundary-connecting condition is reduced by three-wave method. Reciprocity theorem is applied to near-far field extrapolation. Results are compared with those obtained using CST Microwave Studio software, and both are found to match each other very well, thereby proving the reliability of the proposed method. Angle distributions of double particles with different positions are shown. Some selected calculations on the effects of sphere number and sphere separation distance are described. As the most important factor, the position factor is numerically analyzed in detail. Theory and model are valuable in examining inspect optical or wafer surface.

  9. Surface layering and melting in an ionic liquid studied by resonant soft X-ray reflectivity

    PubMed Central

    Mezger, Markus; Ocko, Benjamin M.; Reichert, Harald; Deutsch, Moshe

    2013-01-01

    The molecular-scale structure of the ionic liquid [C18mim]+[FAP]? near its free surface was studied by complementary methods. X-ray absorption spectroscopy and resonant soft X-ray reflectivity revealed a depth-decaying near-surface layering. Element-specific interfacial profiles were extracted with submolecular resolution from energy-dependent soft X-ray reflectivity data. Temperature-dependent hard X-ray reflectivity, small- and wide-angle X-ray scattering, and infrared spectroscopy uncovered an intriguing melting mechanism for the layered region, where alkyl chain melting drove a negative thermal expansion of the surface layer spacing. PMID:23431181

  10. Surface Layering at the Mercury-Electrolyte Interface

    SciTech Connect

    Ocko, B.M.; Elsen, A.; Murphy, B.M.; Tamam, L.; Deutsch, M.; Kuzmenko, I.; Magnussen, O.M.

    2010-03-12

    X-ray reflectometry reveals atomic layering at a liquid-liquid interface--mercury in a 0.01 M NaF solution. The interface width exceeds capillary wave theory predictions and displays an anomalous dependence on the voltage applied across it, displaying a minimum positive of the potential of zero charge. The latter is explained by electrocapillary effects and an additional intrinsic broadening of the interface profile, tentatively assigned to polarization of the conduction electrons due to the electric field of the electrochemical double layer at the interface.

  11. Effect of particle size on the surface properties and morphology of ground flax.

    PubMed

    Csiszár, E; Fekete, E; Tóth, A; Bandi, E; Koczka, B; Sajó, I

    2013-05-15

    Flax fibers were ground with a ball-mill and four fractions with different size ranges were collected by sieving. These were tested for water sorption, degree of polymerization (DP), copper number, hydroxyl number and analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and inverse gas chromatography (IGC). Significant differences were found between the properties of the flax fiber and those of the ground versions, including fragmentation of fibers, increase of water sorption, copper number, hydroxyl number and surface O/C ratio, and decrease of DP, crystallite size and dispersive component of surface energy (?s(d)). Some parameters depended on the particle size: O/C ratio and hydroxyl number had local maxima at 315-630 ?m, while ?s(d) increased steadily with the decrease of particle size. These relationships were explained by fiber disintegration, destruction of waxy surface layer, exposure of cellulosic components, increase of surface area and crystalline imperfections. PMID:23544651

  12. Estimation of new surface generation and energy analysis during particle fracture

    NASA Astrophysics Data System (ADS)

    Khanal, Manoj; Tomas, Jürgen

    2013-06-01

    Breakage of particles is a common phenomenon in handling, storage, transportation and processing of particles. Severity of breakage depends on particle loading types and environment as well as on the particle properties and strengths. The loading energy applied to the particle is used to generate new surfaces in the particles; as a result fragmentation of particles occurs. In this regard, the paper estimates the new surface generation during particle fracture using discrete element modeling. The paper also deals with the compression and impact loading of particles.

  13. MEASUREMENTS OF CONFORMATION CHANGES DURING ADHESION OF LIPID PROTEIN (POLYLYSINE AND S-LAYER) SURFACES

    EPA Science Inventory

    The adhesion forces between various surfaces were measured using the "surface forces apparatus" technique which allows for the thickness of surface layers and the adhesion force between them to be directly measured in controlled vapor or liquid environments. hree types of biologi...

  14. Colloid Surface Chemistry Critically Affects Multiple Particle Tracking Measurements of Biomaterials

    E-print Network

    Gardel, Margaret

    Colloid Surface Chemistry Critically Affects Multiple Particle Tracking Measurements they probe. We here show that colloid surface chemistry can profoundly affect multiple particle tracking present a simple protocol to render the surface of colloidal probe particles protein-resistant by grafting

  15. Optical detector having a plurality of matrix layers with cobalt disilicide particles embedded therein

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W. (inventor); Schowalter, Leo (inventor)

    1994-01-01

    Silicon and metal are coevaporated onto a silicon substrate in a molecular beam epitaxy system with a larger than stoichiometric amount of silicon so as to epitaxially grow particles of metal silicide embedded in a matrix of single crystal epitaxially grown silicon. The particles interact with incident photons by resonant optical absorption at the surface plasmon resonance frequency. Controlling the substrate temperature and deposition rate and time allows the aspect ratio of the particles to be tailored to desired wavelength photons and polarizations. The plasmon energy may decay as excited charge carriers of phonons, either of which can be monitored to indicate the amount of incident radiation at the selected frequency and polarization.

  16. Surface structure of thin pseudomorphous GeSi layers

    NASA Astrophysics Data System (ADS)

    Nikiforov, A. I.; Timofeev, V. F.; Pchelyakov, O. P.

    2015-11-01

    Reflection high-energy electron diffraction (RHEED) was used to study the evolution of thin GexSi1-x film surface superstructures s in the course of molecular beam epitaxy. The (2 × N) superstructure of the epitaxial film surface at periodicity N from 14 to 8, the latter being characteristic of pure germanium at the Si(1 0 0) surface. The epitaxial film thickness that is required for the formation of the (2 × 8) superstructure depends on the deposition temperature and germanium content in the solid solution. The germanium segregation on the growing film surface is shown to be responsible for the observed superstructural changes.

  17. IMPACT OF BOUNDARY-LAYER CUTTING ON FREE-SURFACE

    E-print Network

    Collection · Cuvette opening = 1 cm × 1 cm w/ 1 mm walls · 5 cuvettes placed side by side Cuvette #3 centered / (m2·s)] Equivalent number density, N [m-3] zs x Cuvettes y z 54 3 2 1 #12;13 Boundary-Layer Cutter

  18. Estimates of surface heat flux from sodar and laser scintillation measurements in the unstable boundary layer

    SciTech Connect

    Coulter, R.L.; Wesely, M.L.

    1980-10-01

    Measurements of acoustic backscatter in the lower planetary boundary layer and optical line-of-sight scintillation in the surface layer are each used to compute sensible heat fluxes in the unstable surface layer. Comparisons with simultaneous low-level point measurements by eddy correlation show good agreement, indicating that remote-sensing methods can be successful over less homogeneous terrain where conventional surface layer measurement techniques are less accurate. Corrections to take into account the effects of humidity fluctuations are found necessary in order to achieve accuracies within 10%. Free convection is assumed to permit interpretation of the sodar data, while either forced or free convection is assumed for the scintillation data. A systematic overestimate of heat fluxes is found from sodar measurements made during the morning, when the height of the convectively mixed layer is increasing rapidly.

  19. Mass loading of soil particles on plant surfaces

    SciTech Connect

    Pinder, J.E. III; McLeod, K.W. )

    1989-12-01

    Radionuclide-bearing soil particles on plant surfaces can be ingested and contribute to human dose, but evaluating the potential dose is limited by the relatively few data available on the masses of soil particles present on plant surfaces. This report summarizes mass loading data (i.e., mass of soil per unit of vegetation) for crops in the southeastern United States and compares these data to (1) those from other regions and (2) the mass loadings used in radionuclide transfer models to predict soil contamination of plant surfaces. Mass loadings were estimated using the 238Pu content of crops as an indicator of soil on plant surfaces. Crops were grown in two soils: a sandy clay loam soil and a loamy sand soil. Concentrations of soil on southeastern crops (i.e., mg soil g-1 plant) differed by more than a factor of 100 due to differences in crop growth form and biomass. Mean concentrations ranged from 1.7 mg g-1 for corn to 260 mg g-1 for lettuce. Differences in mass loadings between soils were less than those among crops. Concentrations differed by less than a factor of two between the two soil types. Because of (1) the differences among crops and (2) the limited data available from other systems, it is difficult to draw conclusions regarding regional or climatic variation in mass loadings. There is, however, little evidence to suggest large differences among regions. The mass loadings used to predict soil contamination in current radionuclide transfer models appear to be less than those observed for most crops.

  20. Evolution of the surface area of a snow layer

    SciTech Connect

    Hanot, L.; Domine, F.

    1999-12-01

    Atmospheric trace gases can partition between the atmosphere and the snow surface. Because snow has a large surface-to-volume ratio, an important interaction potential between ice and atmospheric trace gases exists. Quantifying this partitioning requires the knowledge of the surface area (SA) of snow. Eleven samples were taken from a 50 cm thick snow fall at Col de Porte, near Grenoble (French Alps) between January 20 and February 4, 1998. Fresh snow and 3, 8, and 15-day-old snow were sampled at three different depths. Surface hoar, formed after the fall, was also sampled. Air and surface snow temperature, snow density, and snow fall rate were measured. Snow temperature always remained below freezing. Snow SA was measured using methane adsorption at 77.15 K. Values ranged from 2.25 m{sup 2}/g for fresh snow to 0.25 m{sup 2}/g for surface hoar and surface snow after 15 days. These values are much too high to be explained by the macroscopic aspect of snow crystals, and microstructures such as small rime droplets must have been present. Large decrease in SA with time were observed. The first meter of snowpack had a total surface area of about 50,000 m{sup 2} per m{sup 2} of ground. Reduction in SA will lead to the emission of adsorbed species by the snowpack, with possible considerable increase in atmospheric concentrations.

  1. Two-Layer Variable Infiltration Capacity Land Surface Representation for General Circulation Models

    NASA Technical Reports Server (NTRS)

    Xu, L.

    1994-01-01

    A simple two-layer variable infiltration capacity (VIC-2L) land surface model suitable for incorporation in general circulation models (GCMs) is described. The model consists of a two-layer characterization of the soil within a GCM grid cell, and uses an aerodynamic representation of latent and sensible heat fluxes at the land surface. The effects of GCM spatial subgrid variability of soil moisture and a hydrologically realistic runoff mechanism are represented in the soil layers. The model was tested using long-term hydrologic and climatalogical data for Kings Creek, Kansas to estimate and validate the hydrological parameters. Surface flux data from three First International Satellite Land Surface Climatology Project Field Experiments (FIFE) intensive field compaigns in the summer and fall of 1987 in central Kansas, and from the Anglo-Brazilian Amazonian Climate Observation Study (ABRACOS) in Brazil were used to validate the mode-simulated surface energy fluxes and surface temperature.

  2. Optical model for simulation and optimization of luminescent down-shifting layers filled with phosphor particles for photovoltaics.

    PubMed

    Lipovšek, Benjamin; Solodovnyk, Anastasiia; Forberich, Karen; Stern, Edda; Kr?, Janez; Brabec, Christoph J; Topi?, Marko

    2015-07-27

    We developed an optical model for simulation and optimization of luminescent down-shifting (LDS) layers for photovoltaics. These layers consist of micron-sized phosphor particles embedded in a polymer binder. The model is based on ray tracing and employs an effective approach to scattering and photoluminescence modelling. Experimental verification of the model shows that the model accurately takes all the structural parameters and material properties of the LDS layers into account, including the layer thickness, phosphor particle volume concentration, and phosphor particle size distribution. Finally, using the verified model, complete organic solar cells on glass substrate covered with the LDS layers are simulated. Simulations reveal that an optimized LDS layer can result in more than 6% larger short-circuit current of the solar cell. PMID:26367688

  3. Observations of the sensitivity of beam attenuation to particle size in a coastal bottom boundary layer

    NASA Astrophysics Data System (ADS)

    Hill, P. S.; Boss, E.; Newgard, J. P.; Law, B. A.; Milligan, T. G.

    2011-02-01

    The goal of this study was to test the hypothesis that the aggregated state of natural marine particles constrains the sensitivity of optical beam attenuation to particle size. An instrumented bottom tripod was deployed at the 12-m node of the Martha's Vineyard Coastal Observatory to monitor particle size distributions, particle size-versus-settling-velocity relationships, and the beam attenuation coefficient (cp) in the bottom boundary layer in September 2007. An automated in situ filtration system on the tripod collected 24 direct estimates of suspended particulate mass (SPM) during each of five deployments. On a sampling interval of 5 min, data from a Sequoia Scientific LISST 100x Type B were merged with data from a digital floc camera to generate suspended particle volume size distributions spanning diameters from approximately 2 ?m to 4 cm. Diameter-dependent densities were calculated from size-versus-settling-velocity data, allowing conversion of the volume size distributions to mass distributions, which were used to estimate SPM every 5 min. Estimated SPM and measured cp from the LISST 100x were linearly correlated throughout the experiment, despite wide variations in particle size. The slope of the line, which is the ratio of cp to SPM, was 0.22 g m-2. Individual estimates of cp:SPM were between 0.2 and 0.4 g m-2 for volumetric median particle diameters ranging from 10 to 150 ?m. The wide range of values in cp:SPM in the literature likely results from three factors capable of producing factor-of-two variability in the ratio: particle size, particle composition, and the finite acceptance angle of commercial beam-transmissometers.

  4. A simple stochastic quadrant model for the transport and deposition of particles in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Jin, C.; Potts, I.; Reeks, M. W.

    2015-05-01

    We present a simple stochastic quadrant model for calculating the transport and deposition of heavy particles in a fully developed turbulent boundary layer based on the statistics of wall-normal fluid velocity fluctuations obtained from a fully developed channel flow. Individual particles are tracked through the boundary layer via their interactions with a succession of random eddies found in each of the quadrants of the fluid Reynolds shear stress domain in a homogeneous Markov chain process. In this way, we are able to account directly for the influence of ejection and sweeping events as others have done but without resorting to the use of adjustable parameters. Deposition rate predictions for a wide range of heavy particles predicted by the model compare well with benchmark experimental measurements. In addition, deposition rates are compared with those obtained from continuous random walk models and Langevin equation based ejection and sweep models which noticeably give significantly lower deposition rates. Various statistics related to the particle near wall behavior are also presented. Finally, we consider the model limitations in using the model to calculate deposition in more complex flows where the near wall turbulence may be significantly different.

  5. A simple stochastic quadrant model for the transport and deposition of particles in turbulent boundary layers

    SciTech Connect

    Jin, C.; Potts, I.; Reeks, M. W.

    2015-05-15

    We present a simple stochastic quadrant model for calculating the transport and deposition of heavy particles in a fully developed turbulent boundary layer based on the statistics of wall-normal fluid velocity fluctuations obtained from a fully developed channel flow. Individual particles are tracked through the boundary layer via their interactions with a succession of random eddies found in each of the quadrants of the fluid Reynolds shear stress domain in a homogeneous Markov chain process. In this way, we are able to account directly for the influence of ejection and sweeping events as others have done but without resorting to the use of adjustable parameters. Deposition rate predictions for a wide range of heavy particles predicted by the model compare well with benchmark experimental measurements. In addition, deposition rates are compared with those obtained from continuous random walk models and Langevin equation based ejection and sweep models which noticeably give significantly lower deposition rates. Various statistics related to the particle near wall behavior are also presented. Finally, we consider the model limitations in using the model to calculate deposition in more complex flows where the near wall turbulence may be significantly different.

  6. ON THE LOCATION OF THE FORCES WHICH DETERMINE THE ELECTRICAL DOUBLE LAYER BETWEEN COLLODION PARTICLES AND WATER.

    PubMed

    Loeb, J

    1923-09-20

    1. The cataphoretic P.D. of suspended particles is assumed to be due to an excess in the concentration of one kind of a pair of oppositely charged ions in the film of water enveloping the particles and this excess is generally ascribed to a preferential adsorption of this kind of ions by the particle. The term adsorption fails, however, to distinguish between the two kinds of forces which can bring about such an unequal distribution of ions between the enveloping film and the opposite film of the electrical double layer, namely, forces inherent in the water itself and forces inherent in the particle (e.g. chemical attraction between particle and adsorbed ions). 2. It had been shown in a preceding paper that collodion particles suspended in an aqueous solution of an ordinary electrolyte like NaCl, Na(2)SO(4), Na(4)Fe(CN)(6), CaCl(2), HCl, H(2)SO(4), or NaOH are always negatively charged, and that the addition of these electrolytes increases the negative charge as long as their concentration is below M/1,000 until a certain maximal P.D. is reached. Hence no matter whether acid, alkali, or a neutral salt is added, the concentration of anions must always be greater in the film enveloping the collodion particles than in the opposite film of the electrical double layer, and the reverse is true for the concentration of cations. This might suggest that the collodion particles, on account of their chemical constitution, attract anions with a greater force than cations, but such an assumption is rendered difficult in view of the following facts. 3. Experiments with dyes show that at pH 5.8 collodion particles are stained by basic dyes (i.e. dye cations) but not by acid dyes (i.e. dye anions), and that solutions of basic dyes are at pH 5.8 more readily decolorized by particles of collodion than acid dyes. It is also shown in this paper that crystalline egg albumin, gelatin, and Witte's peptone form durable films on collodion only when the protein exists in the form of a cation or when it is isoelectric, but not when it exists in the form of an anion (i.e. on the alkaline side of its isoelectric point). Hence if any ions of dyes or proteins are permanently bound at the surface of collodion particles through forces inherent in the collodion they are cations but not anions. The fact that isoelectric proteins form durable films on collodion particles suggests, that the forces responsible for this combination are not ionic. 4. It is shown that salts of dyes or proteins, the cations of which are capable of forming durable films on the surface of the collodion, influence the cataphoretic P.D. of the collodion particles in a way entirely different from that of any other salts inasmuch as surprisingly low concentrations of salts, the cation of which is a dye or a protein, render the negatively charged collodion particles positive. Crystalline egg albumin and gelatin have such an effect even in concentrations of 1/130,000 or 1/65,000 of 1 per cent, i.e. in a probable molar concentration of about 10(-9). 5. Salts in which the dye or protein is an anion have no such effect but act like salts of the type of NaCl or Na(2)SO(4) on the cataphoretic P.D. of collodion particles. 6. Amino-acids do not form durable films on the surface of collodion particles at any pH and the salts of amino-acids influence their cataphoretic P.D. in the same way as NaCl but not in the same way as proteins or dyes, regardless of whether the amino-acid ion is a cation or an anion. 7. Ordinary salts like LaCl(3) also fail to form a durable film on the surface of collodion particles. 8. Until evidence to the contrary is furnished, these facts seem to suggest that the increase of the negative charge of the collodion particles caused by the addition of low concentrations of ordinary electrolytes is chiefly if not entirely due to forces inherent in the aqueous solution but to a less extent, if at all, due to an attraction of the anions of the electrolyte by forces inherent in the collodion particles. PMID:19872044

  7. Tunable THz surface plasmon polariton based on a topological insulator/layered superconductor hybrid structure

    E-print Network

    Li, Mingda

    We theoretically investigate the surface plasmon polariton (SPP) at the interface between a three-dimensional strong topological insulator (TI) and a layered superconductor/magnetic insulator structure, within the random ...

  8. Rapid Melt and Resolidification of Surface Layers Using Intense, Pulsed Ion Beams Final Report

    SciTech Connect

    Renk, Timothy J. Turman, Bob Senft, Donna Sorensen, Neil R. Stinnett, Regan Greenly, John B. Thompson, Michael O. Buchheit, Rudolph G.

    1998-10-02

    The emerging technology of pulsed intense ion beams has been shown to lead to improvements in surface characteristics such as hardness and wear resistance, as well as mechanical smoothing. We report hereon the use of this technology to systematically study improvements to three types of metal alloys - aluminum, iron, and titanium. Ion beam tieatment produces a rapid melt and resolidification (RMR) of the surface layer. In the case of a predeposited thin-fihn layer, the beam mixes this layer into the substrate, Ieading to improvements that can exceed those produced by treatment of the alloy alone, In either case, RMR results in both crystal refinement and metastable state formation in the treated surface layer not accessible by conventional alloy production. Although more characterization is needed, we have begun the process of relating these microstructural changes to the surface improvements we discuss in this report.

  9. Photoacoustic frequency-domain depth profilometry of surface-layer inhomogeneities: Application to laser processed steels

    E-print Network

    Mandelis, Andreas

    Photoacoustic frequency-domain depth profilometry of surface-layer inhomogeneities: Application change in the photoacoustic signal frequency response of laser processed stainless-steel and carbon steel examination and microhardness testing. I. INTRODUCTION Photoacoustic and photothermal detection methods have

  10. A manufacturing method for multi-layer polysilicon surface-micromachining technology

    SciTech Connect

    Sniegowski, J.J.; Rodgers, M.S.

    1998-01-01

    An advanced manufacturing technology which provides multi-layered polysilicon surface micromachining technology for advanced weapon systems is presented. Specifically, the addition of another design layer to a 4 levels process to create a 5 levels process allows consideration of fundamentally new architecture in designs for weapon advanced surety components.

  11. Friction, Frontogenesis, and the Stratification of the Surface Mixed Layer LEIF THOMAS*

    E-print Network

    Ferrari, Raffaele

    Friction, Frontogenesis, and the Stratification of the Surface Mixed Layer LEIF THOMAS* Department restratification resulting from frontogenesis in regions of confluent flow. Frictional forces acting of friction versus frontogenesis in the restratification of the mixed layer and are tested using numerical

  12. Structural properties of particle deposits at heterogeneous surfaces

    NASA Astrophysics Data System (ADS)

    Stojiljkovi?, D.; Š?epanovi?, J. R.; Vrhovac, S. B.; Švraki?, N. M.

    2015-06-01

    The random sequential adsorption (RSA) approach is used to analyze adsorption of spherical particles of a fixed radius on nonuniform flat surfaces covered by rectangular cells. The configuration of the cells (heterogeneities) was produced by performing RSA simulations to a prescribed coverage fraction ?_0{(cell)} . Adsorption was assumed to occur if the particle (projected) center lies within a rectangular cell area, i.e. if sphere touches the cells. The jammed-state properties of the model were studied for different values of cell size ? (comparable with the adsorbing particle size) and density ?_0{(cell)} . Numerical simulations were carried out to investigate adsorption kinetics, jamming coverage, and structure of coverings. Structural properties of the jammed-state coverings were analyzed in terms of the radial distribution function g(r) and distribution of the Delaunay ‘free’ volumes P(v). It was demonstrated that adsorption kinetics and the jamming coverage decreased significantly, at a fixed density ?_0{(cell)} , when the cell size ? increased. The predictions following from our calculation suggest that the porosity (pore volumes) of deposited monolayer can be controlled by the size and shape of landing cells, and by anisotropy of the cell deposition procedure.

  13. Boundary layer development on turbine airfoil suction surfaces

    NASA Technical Reports Server (NTRS)

    Sharma, O. P.; Wells, R. A.; Schlinker, R. H.; Bailey, D. A.

    1981-01-01

    The results of a study supported by NASA under the Energy Efficient Engine Program, conducted to investigate the development of boundary layers under the influence of velocity distributions that simulate the suction sides of two state-of-the-art turbine airfoils, are presented. One velocity distribution represented a forward loaded airfoil ('squared-off' design), while the other represented an aft loaded airfoil ('aft loaded' design). These velocity distributions were simulated in a low-speed, high-aspect-ratio wind tunnel specifically designed for boundary layer investigations. It is intended that the detailed data presented in this paper be used to develop improved turbulence model suitable for application to turbine airfoil design.

  14. Origin and consequences of silicate glass passivation by surface layers.

    PubMed

    Gin, Stéphane; Jollivet, Patrick; Fournier, Maxime; Angeli, Frédéric; Frugier, Pierre; Charpentier, Thibault

    2015-01-01

    Silicate glasses are durable materials, but are they sufficiently durable to confine highly radioactive wastes for hundreds of thousands years? Addressing this question requires a thorough understanding of the mechanisms underpinning aqueous corrosion of these materials. Here we show that in silica-saturated solution, a model glass of nuclear interest corrodes but at a rate that dramatically drops as a passivating layer forms. Water ingress into the glass, leading to the congruent release of mobile elements (B, Na and Ca), is followed by in situ repolymerization of the silicate network. This material is at equilibrium with pore and bulk solutions, and acts as a molecular sieve with a cutoff below 1?nm. The low corrosion rate resulting from the formation of this stable passivating layer enables the objective of durability to be met, while progress in the fundamental understanding of corrosion unlocks the potential for optimizing the design of nuclear glass-geological disposal. PMID:25695377

  15. Origin and consequences of silicate glass passivation by surface layers

    NASA Astrophysics Data System (ADS)

    Gin, Stéphane; Jollivet, Patrick; Fournier, Maxime; Angeli, Frédéric; Frugier, Pierre; Charpentier, Thibault

    2015-02-01

    Silicate glasses are durable materials, but are they sufficiently durable to confine highly radioactive wastes for hundreds of thousands years? Addressing this question requires a thorough understanding of the mechanisms underpinning aqueous corrosion of these materials. Here we show that in silica-saturated solution, a model glass of nuclear interest corrodes but at a rate that dramatically drops as a passivating layer forms. Water ingress into the glass, leading to the congruent release of mobile elements (B, Na and Ca), is followed by in situ repolymerization of the silicate network. This material is at equilibrium with pore and bulk solutions, and acts as a molecular sieve with a cutoff below 1?nm. The low corrosion rate resulting from the formation of this stable passivating layer enables the objective of durability to be met, while progress in the fundamental understanding of corrosion unlocks the potential for optimizing the design of nuclear glass-geological disposal.

  16. Origin and consequences of silicate glass passivation by surface layers

    PubMed Central

    Gin, Stéphane; Jollivet, Patrick; Fournier, Maxime; Angeli, Frédéric; Frugier, Pierre; Charpentier, Thibault

    2015-01-01

    Silicate glasses are durable materials, but are they sufficiently durable to confine highly radioactive wastes for hundreds of thousands years? Addressing this question requires a thorough understanding of the mechanisms underpinning aqueous corrosion of these materials. Here we show that in silica-saturated solution, a model glass of nuclear interest corrodes but at a rate that dramatically drops as a passivating layer forms. Water ingress into the glass, leading to the congruent release of mobile elements (B, Na and Ca), is followed by in situ repolymerization of the silicate network. This material is at equilibrium with pore and bulk solutions, and acts as a molecular sieve with a cutoff below 1?nm. The low corrosion rate resulting from the formation of this stable passivating layer enables the objective of durability to be met, while progress in the fundamental understanding of corrosion unlocks the potential for optimizing the design of nuclear glass-geological disposal. PMID:25695377

  17. Dusty Plasma Technology of DCM with Nanostructure Surface Layer Production

    NASA Astrophysics Data System (ADS)

    Gavrikov, A. V.; Ivanov, A. S.; Pal, A. F.; Petrov, O. F.; Ryabinkin, A. N.; Serov, A. O.; Shulga, Yu. M.; Starostin, A. N.; Fortov, V. E.

    2008-09-01

    The technique of disperse composite material (DCM) production was developed. The technique based on using special dusty plasma trap in RF plasma, in which fine particles levitate and are exposed by the atomic beam. The two types of covering were obtained: "cauliflower" or smooth, depending on process condition.

  18. Dusty Plasma Technology of DCM with Nanostructure Surface Layer Production

    SciTech Connect

    Gavrikov, A. V.; Ivanov, A. S.; Petrov, O. F.; Shulga, Yu. M.; Starostin, A. N.; Fortov, V. E.

    2008-09-07

    The technique of disperse composite material (DCM) production was developed. The technique based on using special dusty plasma trap in RF plasma, in which fine particles levitate and are exposed by the atomic beam. The two types of covering were obtained: ''cauliflower'' or smooth, depending on process condition.

  19. Introduction of nickel surface layer atoms into silicon

    NASA Astrophysics Data System (ADS)

    Duplii, S. A.; Pelikhatyi, N. M.; Steshenko, S. A.

    1989-07-01

    Results of experimental studies of the process of introduction of nickel atoms into silicon upon irradiation of layered Ni-Si structures by argon ions are presented. Following irradiation, specimen composition was studied using back scattering of helium ions. Processing of the back scattering spectra was performed by an improved method using an analytical approach. The effects of annealing temperature and dosage on the process of formation of the suicide NiSi are studied.

  20. Interaction of bacterial surface layer proteins with lipid membranes: synergysm between surface charge density and chain packing.

    PubMed

    Hollmann, Axel; Delfederico, Lucrecia; De Antoni, Graciela; Semorile, Liliana; Disalvo, Edgardo Aníbal

    2010-08-01

    S-layer proteins from Lactobacillus kefir and Lactobacillus brevis are able to adsorb on the surface of positively charged liposomes composed by Soybean lecithin, cholesterol and stearylamine. The different K values for S-layer proteins isolated from L. kefir and L. brevis (4.22 x 10(-3) and 2.45 x 10(2) microM(-1) respectively) indicates that the affinity of the glycosylated protein isolated from L. kefir is higher than the non-glycosylated one. The attachment of S-layer proteins counteracts the electrostatic charge repulsion between stearylamine molecules in the membrane surface, producing an increase in the rigidity in the acyl chains as measured by DPH anisotropy. Laurdan generalized polarization (GP) shows that glycosylated causes a GP increase, attributed to a lowering in water penetration into the head groups of membrane phospholipids, with charge density reduction, while the non-glycosylated does not affect it. The octadecyl-rhodamine results indicate that S-layer coated liposomes do not show spontaneous dequenching in comparison with control liposomes without S-layer proteins, suggesting that S-layer protein avoid spontaneous liposomal fusion. It is concluded that the increase in stability of liposomes coated with S-layers proteins is due to the higher rigidity induced by the S-layer attachment by electrostatic forces. PMID:20417069

  1. The near-neutral atmospheric surface layer: turbulence and non-stationarity.

    PubMed

    Metzger, M; McKeon, B J; Holmes, H

    2007-03-15

    The neutrally stable atmospheric surface layer is used as a physical model of a very high Reynolds number, canonical turbulent boundary layer. Challenges and limitations with this model are addressed in detail, including the inherent thermal stratification, surface roughness and non-stationarity of the atmosphere. Concurrent hot-wire and sonic anemometry data acquired in Utah's western desert provide insight to Reynolds number trends in the axial velocity statistics and spectra. PMID:17244589

  2. Near Surface Vapor Bubble Layers in Buoyant Low Stretch Burning of Polymethylmethacrylate

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.; Tien, J. S.

    1999-01-01

    Large-scale buoyant low stretch stagnation point diffusion flames over solid fuel (polymethylmethacrylate) were studied for a range of aerodynamic stretch rates of 2-12/ sec which are of the same order as spacecraft ventilation-induced stretch in a microgravity environment. An extensive layer of polymer material above the glass transition temperature is observed. Unique phenomena associated with this extensive glass layer included substantial swelling of the burning surface, in-depth bubble formation, and migration and/or elongation of the bubbles normal to the hot surface. The bubble layer acted to insulate the polymer surface by reducing the effective conductivity of the solid. The reduced in-depth conduction stabilized the flame for longer than expected from theory neglecting the bubble layer. While buoyancy acts to move the bubbles deeper into the molten polymer, thermocapillary forces and surface regression both act to bring the bubbles to the burning surface. Bubble layers may thus be very important in low gravity (low stretch) burning of materials. As bubbles reached the burning surface, monomer fuel vapors jetted from the surface, enhancing burning by entraining ambient air flow. Popping of these bubbles at the surface can expel burning droplets of the molten material, which may increase the fire propagation hazards at low stretch rates.

  3. On a relation between particle size distribution and mixing layer height

    NASA Astrophysics Data System (ADS)

    Schäfer, Klaus; Emeis, Stefan; Höß, Markus; Cyrys, Josef; Pitz, Mike; Münkel, Christoph; Suppan, Peter

    2011-11-01

    Ceilometers are applied to detect layering of the lower atmosphere continuously. This is necessary because not only wind speeds and directions but also atmospheric layering and especially the mixing layer height (MLH) influence exchange processes of ground level emissions. It will be discussed how the ceilometer monitoring information can be used to determine the MLH influence upon the particle size distribution (PSD) which is detected near the ground. The information about atmospheric layering is continuously monitored by uninterrupted remote sensing measurements with the Vaisala ceilometers LD40 and CL31 which are eye-safe commercial lidar systems. Special software for these ceilometers provides routine retrievals of lower atmosphere layering from vertical profiles of laser backscatter data. The meteorological data are collected by the air pollution monitoring station of the Bavarian State Agency of Environment (LfU) at the southern edge of Augsburg and at the airport at the northern edge of Augsburg by the German National Meteorological Service (DWD). PSD are measured at the aerosol measurement station in the centre of Augsburg by the Cooperative Health Research in the Region of Augsburg (KORA). The two intensive measurement periods during the winter 2006/2007 and 2007/2008 are studied. The weather situations are characterized, the meteorological influences upon air pollutant concentrations like wind speed and wind direction are studied and the correlations of ceilometer backscatter densities and MLH with PSD are determined.

  4. Volumetric Layer Segmentation Using Coupled Surfaces Propagation Xiaolan Zengy

    E-print Network

    Duncan, James S.

    , which takes into account coupling as an important constraint. By evolving two embed- ded surfaces, computational e ciency and the ability to cap- ture deep folds of the sulci. As a test example, we apply our

  5. Surface modification of polypropylene non-woven fibers with TiO2 nanoparticles via layer-by-layer self assembly method: Preparation and photocatalytic activity.

    PubMed

    Pavasupree, Suttipan; Dubas, Stephan T; Rangkupan, Ratthapol

    2015-11-01

    Polypropylene (PP) meltblown fibers were coated with titanium dioxide (TiO2) nanoparticles using layer-by-layer (LbL) deposition technique. The fibers were first modified with 3 layers of poly(4-styrenesulfonic acid) (PSS) and poly(diallyl-dimethylammonium chloride) (PDADMAC) to improve the anchoring of the TiO2 nanoparticle clusters. PDADMAC, which is positively charged, was then used as counter polyelectrolyte in tandem with anionic TiO2 nanoparticles to construct TiO2/PDADMAC bilayer in the LbL fashion. The number of deposited TiO2/PDADMAC layers was varied from 1 to 7 bilayer, and could be used to adjust TiO2 loading. The LbL technique showed higher TiO2 loading efficiency than the impregnation approach. The modified fibers were tested for their photocatalytic activity against a model dye, Methylene Blue (MB). Results showed that the TiO2 modified fibers exhibited excellent photocatalytic activity efficiency similar to that of TiO2 powder dispersed in solution. The deposition of TiO2 3 bilayer on the PP substrate was sufficient to produce nanocomposite fibers that could bleach the MB solution in less than 4hr. TiO2-LbL constructions also preserved TiO2 adhesion on substrate surface after 1cycle of photocatalytic test. Successive photocatalytic test showed decline in MB reduction rate with loss of TiO2 particles from the substrate outer surface. However, even in the third cycle, the TiO2 modified fibers are still moderately effective as it could remove more than 95% of MB after 8hr of treatment. PMID:26574088

  6. Modeling of two-layer eddies and coastal flows with a particle method

    NASA Astrophysics Data System (ADS)

    Esenkov, Oleg E.; Cushman-Roisin, Benoit

    1999-05-01

    An existing particle-in-cell (PIC) numerical method developed for the study of two-layer mesoscale motions with outcropping pycnocline is applied to lens-like anticyclonic vortices and buoyant coastal currents. From a first series of experiments investigating the evolution of an initially elongated lens-like anticyclone, it is found that motions induced in the lower layer act only to increase the rotation of the vortex structure and do not appear to affect the process of eccentricity reduction (partial axisymmetrization). Eccentricity reduction, if any, produces a final vortex of aspect ratio between 1.8 and 1.9, a value that is very close to the stability threshold of large, reduced-gravity lenses. A second series of experiments devoted to vortex mergers determines how the maximal separation distance for which two circular anticyclonic lenses merge spontaneously varies with vortex size (ratio of lens radius to deformation radius) and stratification (ratio of lens central thickness to ocean depth). A third series of experiments considers the interaction of a lens vortex in the upper layer with a potential-vorticity anomaly in the lower layer. "Second-hand" relative vorticity, generated in the lower layer under the action of vertical stretching induced by the movement of the upper-layer vortex, interacts with "first-hand" relative vorticity, created by the existing potential-vorticity, to create effects similar to those predicted by studies of two-layer point vortices (hetons). Finally, the PIC method is generalized to simulate the finite-amplitude instability of a buoyant geostrophic/hydrostatic intrusion flowing along a vertical coastal wall. Those results, however, are reported here more as a demonstration on how the PIC method can be extended to include coastal boundaries than as a thorough investigation of coastal-current instabilities.

  7. Particle image velocimetry for the Surface Tension Driven Convection Experiment using a particle displacement tracking technique

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Pline, Alexander D.

    1991-01-01

    The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the USML-1 Spacelab mission planned for 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electronic, two-dimensional particle image velocimetry technique called particle displacement tracking (PDT) which uses a simple space domain particle tracking algorithm. The PDT system is successful in producing velocity vector fields from the raw video data. Application of the PDT technique to a sample data set yielded 1606 vectors in 30 seconds of processing time. A bottom viewing optical arrangement is used to image the illuminated plane, which causes keystone distortion in the final recorded image. A coordinate transformation was incorporated into the system software to correct this viewing angle distortion. PDT processing produced 1.8 percent false identifications, due to random particle locations. A highly successful routine for removing the false identifications was also incorporated, reducing the number of false identifications to 0.2 percent.

  8. Particle image velocimetry for the surface tension driven convection experiment using a particle displacement tracking technique

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Pline, Alexander D.

    1991-01-01

    The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the USML-1 Spacelab mission planned for 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electronic, two-dimensional particle image velocimetry technique called particle displacement tracking (PDT) which uses a simple space domain particle tracking algorithm. The PDT system is successful in producing velocity vector fields from the raw video data. Application of the PDT technique to a sample data set yielded 1606 vectors in 30 seconds of processing time. A bottom viewing optical arrangement is used to image the illuminated plane, which causes keystone distortion in the final recorded image. A coordinate transformation was incorporated into the system software to correct this viewing angle distortion. PDT processing produced 1.8 percent false identifications, due to random particle locations. A highly successful routine for removing the false identifications was also incorporated, reducing the number of false identifications to 0.2 percent.

  9. Quantitative Study of Energization of Plasma Particles in the Magnetic Reconnection Layer of a Laboratory Plasma

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Yoo, J.; Swanson, C.; Jara Almonte, J.; Ji, H.; Myers, C. E.; Chen, L.

    2013-12-01

    Quantitative study of the energization of plasma particles in the magnetic reconnection layer has been carried out by monitoring the behavior of electrons and ions in MRX (1, 2). The measured profiles of plasma parameters are quantitatively analyzed with symmetric as well as asymmetric upstream conditions in the context of the two-fluid reconnection physics (1) and compared with the recent numerical simulation results. The electron heating is observed to extend beyond the electron diffusion region and considered to be due to energization by magnetic instabilities of incoming electrons trapped in the magnetic mirror. This energization often occurs impulsively. Ions are accelerated by an electrostatic field across the separatrices to the plasma exhaust region of the reconnection layer and become thermalized through re-magnetization by the exiting magnetic fields. In this paper, the acceleration and heating of ions and electrons which extents much wider than the length scale of the ion skin depth, is addressed quantitatively for the first time in a laboratory reconnection layer. A total energy inventory is calculated based on analysis of the Poynting, enthalpy, flow energy, and heat flux in the measured diffusion layer (3). More than half of the incoming magnetic energy is converted to particle energy during collisionless reconnection. The results will bring a new insight into the conversion mechanism of magnetic energy to that of plasma particles during magnetic reconnection. (1) M. Yamada, R. Kulsrud, H. Ji, Rev. Mod. Phys. v.82, 602 (2010) (2) J. Yoo et al, Phys. Rev. Letts. 110, 215007 (2013) (3) J. Eastwood et al., PRL 110, 225001 (2013) Fig. 1. Measured in-plane ion flow vectors along with the measured 2-D profile of the in-plane plasma potential ?p in the half reconnection plane of MRX. The thin black lines are measured contours of poloidal flux ?p. While ions flow across the separatrices, they turn in-plane electric field Ein.

  10. Synthesis of superhydrophobic SiO{sub 2} layers via combination of surface roughness and fluorination

    SciTech Connect

    Kim, Eun-Kyeong; Yeong Kim, Ji; Sub Kim, Sang

    2013-01-15

    We describe the preparation of superhydrophobic SiO{sub 2} layers through a combination of surface roughness and fluorination. Electrospraying SiO{sub 2} precursor solutions that were prepared by a sol-gel route and included trichloro(1H,1H,2H,2H-perfluorooctyl)silane as a fluorination source produced highly rough, fluorinated SiO{sub 2} layers. In sharp contrast to the fluorinated flat SiO{sub 2} layer, the fluorinated rough SiO{sub 2} layer showed much enhanced repellency toward liquid droplets of different surface tensions. The surface fraction and the work of adhesion of the superhydrophobic SiO{sub 2} layers were determined, respectively, based on Cassie-Baxter and Young-Dupre equations. The satisfactory long-term stability for 30 days, the ultraviolet resistance and the thermal stability up to 400 {sup o}C of the superhydrophobic SiO{sub 2} layers prepared in this work confirm a promising practical application. - Graphical abstract: A schematic illustration of the electrospray deposition used for preparing SiO{sub 2} layers. Shapes of liquid droplets of water, glycerol, coffee, juice and milk created on the fluorinated rough SiO{sub 2} layer deposited on a silicon wafer. Highlights: Black-Right-Pointing-Pointer Superhydrophobic SiO{sub 2} layers are realized by a combination of surface roughness and fluorination. Black-Right-Pointing-Pointer The fluorinated rough SiO{sub 2} layer shows enhanced repellency toward various liquid droplets. Black-Right-Pointing-Pointer The wetting behavior is explained based on Cassie-Baxter and Young-Dupre equations. Black-Right-Pointing-Pointer The superhydrophobic SiO{sub 2} layers confirm a promising practical application.

  11. Cloud layer thicknesses from a combination of surface and upper-air observations

    NASA Technical Reports Server (NTRS)

    Poore, Kirk D.; Wang, Junhong; Rossow, William B.

    1995-01-01

    Cloud layer thicknesses are derived from base and top altitudes by combining 14 years (1975-1988) of surface and upper-air observations at 63 sites in the Northern Hemisphere. Rawinsonde observations are employed to determine the locations of cloud-layer top and base by testing for dewpoint temperature depressions below some threshold value. Surface observations serve as quality checks on the rawinsonde-determined cloud properties and provide cloud amount and cloud-type information. The dataset provides layer-cloud amount, cloud type, high, middle, or low height classes, cloud-top heights, base heights and layer thicknesses, covering a range of latitudes from 0 deg to 80 deg N. All data comes from land sites: 34 are located in continental interiors, 14 are near coasts, and 15 are on islands. The uncertainties in the derived cloud properties are discussed. For clouds classified by low-, mid-, and high-top altitudes, there are strong latitudinal and seasonal variations in the layer thickness only for high clouds. High-cloud layer thickness increases with latitude and exhibits different seasonal variations in different latitude zones: in summer, high-cloud layer thickness is a maximum in the Tropics but a minimum at high latitudes. For clouds classified into three types by base altitude or into six standard morphological types, latitudinal and seasonal variations in layer thickness are very small. The thickness of the clear surface layer decreases with latitude and reaches a summer minimum in the Tropics and summer maximum at higher latitudes over land, but does not vary much over the ocean. Tropical clouds occur in three base-altitude groups and the layer thickness of each group increases linearly with top altitude. Extratropical clouds exhibit two groups, one with layer thickness proportional to their cloud-top altitude and one with small (less than or equal to 1000 m) layer thickness independent of cloud-top altitude.

  12. A boundary-layer analysis of atmospheric motion over a semi-elliptical surface obstruction

    NASA Technical Reports Server (NTRS)

    Frost, W.; Maus, J. R.; Fichtl, G. H.

    1974-01-01

    Flow over surface obstructions can produce adverse flying conditions for helicopters, V/STOL vehicles, etc. The disturbed boundary-layer concept is applied in approximating the localized flow field induced around a surface obstruction (modeled by a two-dimensional cylinder with elliptical cross section) by an impinging wind. The analysis concludes that: (1) localized wind-speed maxima occur at the top of a surface obstruction, which are expected in physically real flows; (2) increased elliptical aspect ratio decreases with speed within the boundary layer at the top of the ellipse; (3) increased surface roughness decreases velocity in the boundary layer; (4) Reynolds number has a negligible effect on the overall flow for the Re range considered; (5) decreased elliptical aspect ratio and increased surface roughness cause larger separation regions.

  13. Surface processes on the asteroid deduced from the external 3D shapes and surface features of Itokawa particles

    NASA Astrophysics Data System (ADS)

    Tsuchiyama, A.; Matsumoto, T.

    2015-10-01

    Particles on the surface of S-type Asteroid 25143 Itokawa were successfully recovered by the Hayabusa mission of JAXA (e.g., [1,2]). They are not only the first samples recovered from an asteroid, but also the second extraterrestrial regolith to have been sampled, the first being the Moon by Apollo and Luna missions. The analysis of tiny sample particles (20-200 ?m) shows that the Itokawa surface material is consistent with LL chondrites suffered by space weathering as expected and brought an end to the origin of meteorites (e.g., [2-4]). In addition, the examination of Itokawa particles allow studies of surface processes on the asteroid because regolith particles can be regarded as an interface with the space environment, where the impacts of small objects and irradiation by the solar wind and galactic cosmic rays should have been recorded. External 3D shapes and surface features of Itokawa regolith particles were examined. Two kinds of surface modification, formation of space-weathering rims mainly by solar wind implantation and surface abrasion by grain migration, were recognized. Spectral change of the asteroid proceeded by formation of space-weathering rims and refreshment of the regolith surfaces. External 3D shapes and surface morphologies of the regolith particles can provide information about formation and evolution history of regolith particles in relation to asteroidal surface processes. 3D shapes of Itokawa regolith particles were obtained using microtomography [3]. The surface nanomiromorpholgy of Itokawa particles were also observed using FE-SEM [5]. However, the number of particles was limited and genial feature on the surface morphology has not been understood. In this study, the surface morphology of Itokawa regolith particles was systematically investigated together with their 3D structures.

  14. Ion size effects on the electric double layer of a spherical particle in a realistic salt-free concentrated suspension

    E-print Network

    Rafael Roa; Félix Carrique; Emilio Ruiz-Reina

    2011-05-05

    A new modified Poisson-Boltzmann equation accounting for the finite size of the ions valid for realistic salt-free concentrated suspensions has been derived, extending the formalism developed for pure salt-free suspensions [Roa et al., Phys. Chem. Chem. Phys., 2011, 13, 3960-3968] to real experimental conditions. These realistic suspensions include water dissociation ions and those generated by atmospheric carbon dioxide contamination, in addition to the added counterions released by the particles to the solution. The electric potential at the particle surface will be calculated for different ion sizes and compared with classical Poisson-Boltzmann predictions for point-like ions, as a function of particle charge and volume fraction. The realistic predictions turn out to be essential to achieve a closer picture of real salt-free suspensions, and even more important when ionic size effects are incorporated to the electric double layer description. We think that both corrections have to be taken into account when developing new realistic electrokinetic models, and surely will help in the comparison with experiments for low-salt or realistic salt-free systems.

  15. When do pyroclastic particles move? Wind tunnel experiments on saltation threshold and surface roughness.

    NASA Astrophysics Data System (ADS)

    Douillet, G. A.; Rasmussen, K. R.; Kueppers, U.; Merrison, J.; Dingwell, D. B.

    2012-04-01

    Our understanding of the dynamics of pyroclastic density currents (PDCs) is largely based on the study of their deposits. Pyroclasts have strongly deviating properties in density and angularity compared to the wind blown and fluvial sand usually studied in clastic sedimentology. In order to test whether these specificities have an impact on the sedimentation processes and dynamic behavior of dilute PDCs, wind tunnel experiments were carried out in order to characterize the onset of saltation and surface roughness induced by pyroclastic material. Saltation is the major transport process occurring at the boundary between a flow and the sediment, and corresponds to alternate, sub-planar jumps and landing of particles on the ground. The surface roughness is a measure of how rough a bed is seen by a wind, and is a property of the bed depending on grains' size and shape. The static saltation threshold corresponds to the minimum shearing necessary for particles to be lifted off the ground and begin to bounce. The dynamic saltation threshold corresponds to the minimum shearing necessary to maintain an already saltating bed in that state. Experiments were done in a 6 m long, inclinable, wind tunnel in Aarhus (Denmark). Two sample types (pumices and scoriaceous particles) were investigated individually at 1 Phi grain-size intervals between 0.125 and 16 mm. The surface roughness was measured over a quiescent bed of particles. The static saltation threshold was derived from wind profiles reaching the onset of particle transport and was measured for bed slopes between -20° and 25° (every 5°). The surface roughness measured are of the order expected for rounded particles of similar grain sizes (c.a. 1/30th of the grain diameter). However, a slight deviation to smaller surface roughness is observed for particles < 1 mm, possibly due to the occurrence of a laminar sub-layer near the bed, and a deviation to higher surface roughness values for particles > 1 mm, possibly showing the increasing influence of shape for larger grains. The static saltation thresholds (given as a shear velocity value) for horizontal surfaces show that the shearing necessary to initiate transport is smaller for fines than for coarse grains, thus only macro-scale forces are acting over the whole range of grain sizes. The shear velocity necessary to erode scoria is 2 to 3 times higher than for low-density pumices. The results agree remarkably well with standard curves for rounded particles of similar densities for both pumice and scoria, suggesting that shape is not a relevant factor in these experiments. Additionally, a downslope wind lowers the threshold shear velocity by a factor 0.6 to 0.9, whereas it increases the value when blowing upslope by a factor up to 1.2. Dynamic saltation threshold is predicted (15-20% lower than static) derived from the static saltation threshold and the ratio of dynamic over static repose angles for grain piles. Our experimental results contribute to a better understanding of the genesis of dune bedforms produced by dilute pyroclastic density currents, provide inputs for models, and serve as analogue for other sedimentary environments (other planets, nuclear base surges). They also permit to give a lower estimate of near bed velocities for field-observed erosion-planes truncating stratification.

  16. Interfacial layer effects on surface capacitances and electro-osmosis in electrolytes.

    PubMed

    Bonthuis, Douwe Jan; Uematsu, Yuki; Netz, Roland R

    2016-02-13

    Many properties of the interfacial layer of water at surfaces differ significantly from those of bulk water. The consequences are most significant for the double-layer capacitance and the electrokinetic properties. We model the interfacial hydration layer by a modified dielectric constant and a modified local viscosity over a single interfacial width. Analytic expressions in the low-charge Debye-Hückel approximation are derived and shown to describe experimental surface capacitance and electro-osmotic data in a unified framework. PMID:26712645

  17. Bidirectional Reflectance of Flat, Optically Thick Particulate Layers: An Efficient Radiative Transfer Solution and Applications to Snow and Soil Surfaces

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Yanovitsku, Edgard G.; Zakharova, Nadia T.

    1999-01-01

    We describe a simple and highly efficient and accurate radiative transfer technique for computing bidirectional reflectance of a macroscopically flat scattering layer composed of nonabsorbing or weakly absorbing, arbitrarily shaped, randomly oriented and randomly distributed particles. The layer is assumed to be homogeneous and optically semi-infinite, and the bidirectional reflection function (BRF) is found by a simple iterative solution of the Ambartsumian's nonlinear integral equation. As an exact Solution of the radiative transfer equation, the reflection function thus obtained fully obeys the fundamental physical laws of energy conservation and reciprocity. Since this technique bypasses the computation of the internal radiation field, it is by far the fastest numerical approach available and can be used as an ideal input for Monte Carlo procedures calculating BRFs of scattering layers with macroscopically rough surfaces. Although the effects of packing density and coherent backscattering are currently neglected, they can also be incorporated. The FORTRAN implementation of the technique is available on the World Wide Web at http://ww,,v.giss.nasa.gov/-crmim/brf.html and can be applied to a wide range of remote sensing, engineering, and biophysical problems. We also examine the potential effect of ice crystal shape on the bidirectional reflectance of flat snow surfaces and the applicability of the Henyey-Greenstein phase function and the 6-Eddington approximation in calculations for soil surfaces.

  18. Interactions between volume and surface EM waves in layered structures

    NASA Technical Reports Server (NTRS)

    Ushioda, S.

    1984-01-01

    Using light scattering spectroscopy, the interaction of Surface Plasmon Polariton SPP in silver films on a glass substrate is with the incident radiation and with optical phonons of an external medium in contact with the film. The mean free path and the field strength of SPP are determined. The same SPP plays an important role in light emitting tunnel junctions (LETJ) in which an electrical current is converted into Volume Electromagnetic Wave VEW. The efficiency of light emission from LETJ through a prism coupler rather than through surface roughness is discussed. The coupling between phonon surface polaritons (PhSP) and optical guided waves (OGW) in thin films of GaP is also examined.

  19. Structural analysis of nitride layer formed on uranium metal by glow plasma surface nitriding

    NASA Astrophysics Data System (ADS)

    Liu, Kezhao; Bin, Ren; Xiao, Hong; Long, Zhong; Hong, Zhanglian; Yang, Hui; Wu, Sheng

    2013-01-01

    The nitride layer was formed on uranium metal by a glow plasma surface nitriding method. The structure and composition of the layer were investigated by X-ray diffraction and Auger electron spectroscopy. The nitride layer mainly consisted of ?-phase U2N3 nanocrystals with an average grain size about 10-20 nm. Four zones were identified in the layer, which were the oxide surface zone, the nitride mainstay zone, the oxide-existence interface zone, and the nitrogen-diffusion matrix zone. The gradual decrease of binding energies of uranium revealed the transition from oxide to nitride to metal states with the layer depth, while the chemical states of nitrogen and oxygen showed small variation.

  20. Surface passivation of InP solar cells with InAlAs layers

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Flood, Dennis J.; Landis, Geoffrey A.

    1993-01-01

    The efficiency of indium phosphide solar cells is limited by high values of surface recombination. The effect of a lattice-matched In(0.52)Al(0.48)As window layer material for InP solar cells, using the numerical code PC-1D is investigated. It was found that the use of InAlAs layer significantly enhances the p(+)n cell efficiency, while no appreciable improvement is seen for n(+)p cells. The conduction band energy discontinuity at the heterojunction helps in improving the surface recombination. An optimally designed InP cell efficiency improves from 15.4 percent to 23 percent AMO for a 10 nm thick InAlAs layer. The efficiency improvement reduces with increase in InAlAs layer thickness, due to light absorption in the window layer.

  1. Evaluation of filter media for particle number, surface area and mass penetrations.

    PubMed

    Li, Lin; Zuo, Zhili; Japuntich, Daniel A; Pui, David Y H

    2012-07-01

    The National Institute for Occupational Safety and Health (NIOSH) developed a standard for respirator certification under 42 CFR Part 84, using a TSI 8130 automated filter tester with photometers. A recent study showed that photometric detection methods may not be sensitive for measuring engineered nanoparticles. Present NIOSH standards for penetration measurement are mass-based; however, the threshold limit value/permissible exposure limit for an engineered nanoparticle worker exposure is not yet clear. There is lack of standardized filter test development for engineered nanoparticles, and development of a simple nanoparticle filter test is indicated. To better understand the filter performance against engineered nanoparticles and correlations among different tests, initial penetration levels of one fiberglass and two electret filter media were measured using a series of polydisperse and monodisperse aerosol test methods at two different laboratories (University of Minnesota Particle Technology Laboratory and 3M Company). Monodisperse aerosol penetrations were measured by a TSI 8160 using NaCl particles from 20 to 300 nm. Particle penetration curves and overall penetrations were measured by scanning mobility particle sizer (SMPS), condensation particle counter (CPC), nanoparticle surface area monitor (NSAM), and TSI 8130 at two face velocities and three layer thicknesses. Results showed that reproducible, comparable filtration data were achieved between two laboratories, with proper control of test conditions and calibration procedures. For particle penetration curves, the experimental results of monodisperse testing agreed well with polydisperse SMPS measurements. The most penetrating particle sizes (MPPSs) of electret and fiberglass filter media were ~50 and 160 nm, respectively. For overall penetrations, the CPC and NSAM results of polydisperse aerosols were close to the penetration at the corresponding median particle sizes. For each filter type, power-law correlations between the penetrations measured by different instruments show that the NIOSH TSI 8130 test may be used to predict penetrations at the MPPS as well as the CPC and NSAM results with polydisperse aerosols. It is recommended to use dry air (<20% RH) as makeup air in the test system to prevent sodium chloride particle deliquescing and minimizing the challenge particle dielectric constant and to use an adequate neutralizer to fully neutralize the polydisperse challenge aerosol. For a simple nanoparticle penetration test, it is recommended to use a polydisperse aerosol challenge with a geometric mean of ~50 nm with the CPC or the NSAM as detectors. PMID:22752097

  2. Critical CuI buffer layer surface density for organic molecular crystal orientation change

    SciTech Connect

    Ahn, Kwangseok; Kim, Jong Beom; Lee, Dong Ryeol; Kim, Hyo Jung; Lee, Hyun Hwi

    2015-01-21

    We have determined the critical surface density of the CuI buffer layer inserted to change the preferred orientation of copper phthalocyanine (CuPc) crystals grown on the buffer layer. X-ray reflectivity measurements were performed to obtain the density profiles of the buffer layers and out-of-plane and 2D grazing-incidence X-ray diffraction measurements were performed to determine the preferred orientations of the molecular crystals. Remarkably, it was found that the preferred orientation of the CuPc film is completely changed from edge-on (1 0 0) to face-on (1 1 ?2) by a CuI buffer layer with a very low surface density, so low that a large proportion of the substrate surface is bare.

  3. Weak superconductivity in the surface layer of a bulk single-crystal boron-doped diamond

    NASA Astrophysics Data System (ADS)

    Blank, Vladimir; Buga, Sergei; Bormashov, Vitaly; Denisov, Victor; Kirichenko, Alexei; Kulbachinskii, Vladimir; Kuznetsov, Michail; Kytin, Vladimir; Kytin, Gennadii; Tarelkin, Sergei; Terentiev, Sergei

    2014-12-01

    We have grown and investigated bulk single-crystal heavily boron-doped diamonds possessing superconductivity with TC{onset} =1.7\\text-3.5 \\text{K} . Only the surface layer with the thickness less than 1 ? \\text{m} showed the degenerate semiconductor behavior with transition to the superconducting state, while the bulk of the crystal was a typical doped semiconductor. The morphology of the surface layer is dendritic polycrystalline with an average boron content of 2.5-2.9 at.%. The typical Josephson junction current-voltage characteristic was observed. The degenerate semiconductor-superconductor transition as in single-crystal high-temperature superconductors and the structural data analysis of the surface layer indicate the two-dimensional character of superconductivity, and the actual superconducting structure is a set of few-nanometer thick boron carbide layers embedded in a diamond structure.

  4. Surface treatment for the atomic layer deposition of HfO{sub 2} on silicon

    SciTech Connect

    Damlencourt, J-F.; Renault, O.; Martin, F.; Semeria, M-N.; Billon, T; Bedu, F.

    2005-04-04

    The atomic layer deposition (ALD) of HfO{sub 2} on silicon with a Cl{sub 2} surface treatment is investigated by physicochemical and electrical techniques. The specificity of this treatment is to create, on a HF-dipped silicon surface, the nucleation sites necessary for the ALD growth. The growth rates obtained by spectroscopic ellipsometry and total x-ray fluorescence spectroscopy indicate that the nucleation sites (i.e., the -OH groups), which are necessary to perform some bidimensional ALD growth, are generated during this surface treatment. After deposition of thin HfO{sub 2} layers (from a few monolayers up to 8.7 nm), a very thin parasitic SiO{sub x} layer, underneath 1 monolayer of Hf silicate, is observed by x-ray photoelectron spectroscopy. Nevertheless, an equivalent oxide thickness of 1.1 nm is obtained with an as-deposited 3.7 nm thick HfO{sub 2} layer.

  5. Effect of Thickness on Surface Morphology of Silver Nanoparticle Layer During Furnace Sintering

    NASA Astrophysics Data System (ADS)

    Moon, Yoon Jae; Kang, Heuiseok; Kang, Kyungtae; Moon, Seung-Jae; Young hwang, Jun

    2015-04-01

    In printed electronics applications, specific resistances of conductive lines are critical to the performance of the devices. The specific resistance of a silver (Ag) nanoparticle electrode is affected by surface morphology of the layered nanoparticles which were sintered by the heat treatment after printing. In this work, the relationship between surface morphology and specific resistance was investigated with various sintering temperatures and various layer thicknesses of Ag nanoparticle ink. Ag nanoparticles with an average size of approximately 50 nm were spin-coated on Eagle XG glass substrates with various spin speed to change the layer thickness of Ag nanoparticles from 200 nm to 900 nm. Coated Ag nanoparticle layers were heated from 150°C to 450°C for 30 min in a furnace. The result showed that higher sintering temperature produces larger grains in an Ag layer and decreases specific resistance of the layer, but that the maximum allowable heating temperature is limited by the thickness of the layer. When grain size exceeded the thickness of the layer, the morphology of the Ag nanoparticles changed to submicron-sized islands and the Ag layers did not have electrical conductivity any more.

  6. CHARACTERIZING SURFACE LAYERS IN NITINOL USING X-RAY PHOTOELECTRON SPECTROSCOPY

    SciTech Connect

    Christopfel, R.; Mehta, A.

    2008-01-01

    Nitinol is a shape memory alloy whose properties allow for large reversible deformations and a return to its original geometry. This nickel-titanium (NiTi) alloy has become a material used widely in the biomedical fi eld as a stent to open up collapsed arteries. Both ambient and biological conditions cause surface oxidation in these devices which in turn change its biocompatibility. The thickness of oxidized layers can cause fractures in the material if too large and can allow for penetration if too thin. Depending on the type and abundance of the chemical species on or near the surface, highly toxic metal ions can leak into the body causing cell damage or even cell death. Thus, biocompatibility of such devices is crucial. By using highly surface sensitive x-ray photoelectron spectroscopy to probe the surface of these structures, it is possible to decipher both layer composition and layer thickness. Two samples, both of which were mechanically polished, were investigated. Of the two samples, one was then exposed to a phosphate buffered saline (PBS) solution to mimic the chemical properties of blood, while the other remained unexposed. Although both samples were found to have oxide layers of appropriate thickness (on the order of a few nm), it was found that the sample exposed to the saline solution had a slightly thicker oxide layer and more signifi cantly, a phosphate layer very near the surface suggesting toxic metal components are well contained within the sample. These are considerable indications of a biocompatible device.

  7. SURFACE WAVE TESTING FOR CHARACTERIZATION OF BALLAST AND FOUNDATION LAYERS

    E-print Network

    of ballast bed and soil foundation. Ballast fouling due to degradation and infiltration of other materials from the ballast surface and the foundation has been a common problem with rail track performance. The efficiency of a track system decreases with time due to ballast fouling and/or loss of the shear strength

  8. Low-energy particle layer outside of the plasma sheet boundary

    NASA Technical Reports Server (NTRS)

    Parks, G. K.; Fitzenreiter, R.; Ogilvie, K. W.; Huang, C.; Anderson, K. A.; Dandouras, J.; Frank, L.; Lin, R. P.; Mccarthy, M.; Reme, H.

    1992-01-01

    The ISEE spacecraft in the geomagnetic tail frequently crossed the high-latitude boundary of the plasma sheet. On a number of these crossings on the morningside (between 15 RE and 22 RE) the ISEE instruments detected an enhanced population of low-energy electrons and ions immediately adjacent to the plasma sheet boundary layer (PSBL). The electrons in this low-energy layer (LEL) have energies less than a few hundred eV, and they are aligned along the magnetic field direction propagating in the tailward direction. The ions have energies less than 100 eV and are also streaming along the magnetic field direction but in the earthward direction. These particles are clearly distinguished from the bulk of the particles in the plasma sheet and the PSBL. These observations may help clarify where the various particle features in the geomagnetic tail map to in the ionosphere. It is suggested that the LEL maps to the soft (less than 1 keV) electron precipitation region poleward of the plasma sheet boundary.

  9. Influence of emulsification process on the properties of Pickering emulsions stabilized by layered double hydroxide particles.

    PubMed

    Zhang, Nana; Zhang, Li; Sun, Dejun

    2015-04-28

    This paper reports the influence of emulsification process on the packing of layered double hydroxide (LDH) particles at the aqueous/oil phase interface and the properties of the resulting Pickering emulsions. Emulsions prepared by ultrasonication display superior long-term stability and gel-like characteristics at the dispersed phase volume fraction well below the random close packing limit, whereas emulsions with same compositions prepared by vortex mixing show some extent of sedimentation and liquid-like behaviors. Rheological measurements demonstrate that the zero-shear elastic modulus and yield stress of gel-like emulsions exhibit power-law dependences on particle concentration and independence on aqueous/oil phase ratio. The microstructural origin of this behavior is investigated by optical microscopy, revealing the droplets become strongly adhesive and a heterogeneous percolating network is formed among neighboring droplets. Fluorescent confocal microscopy measurements further confirm that the droplet adhesion is due to particle layers bridging opposite interfaces. In contrast, homogeneous, isolated, and densely packed droplets are present in emulsions prepared by vortex mixing, which results in these systems being dominantly viscous like the suspending fluid. This study shows that the emulsification process can be used as a trigger to modify long-term stability and rheology of solid-stabilized multiphase mixtures, which greatly expands their potential technological applications. PMID:25853297

  10. One-dimensional particle simulations of Knudsen-layer effects on D-T fusion

    SciTech Connect

    Cohen, Bruce I.; Dimits, Andris M.; Zimmerman, George B.; Wilks, Scott C.

    2014-12-15

    Particle simulations are used to solve the fully nonlinear, collisional kinetic equation describing the interaction of a high-temperature, high-density, deuterium-tritium plasma with absorbing boundaries, a plasma source, and the influence of kinetic effects on fusion reaction rates. Both hydrodynamic and kinetic effects influence the end losses, and the simulations show departures of the ion velocity distributions from Maxwellian due to the reduction of the population of the highest energy ions (Knudsen-layer effects). The particle simulations show that the interplay between sources, plasma dynamics, and end losses results in temperature anisotropy, plasma cooling, and concomitant reductions in the fusion reaction rates. However, for the model problems and parameters considered, particle simulations show that Knudsen-layer modifications do not significantly affect the velocity distribution function for velocities most important in determining the fusion reaction rates, i.e., the thermal fusion reaction rates using the local densities and bulk temperatures give good estimates of the kinetic fusion reaction rates.

  11. Formation of paramagnetic defects in oxide glasses during the bombardment of their surface with charged particles

    SciTech Connect

    Bogomolova, L.D.; Stefanovsky, S.V.; Teplyakov, Y.G.; Dmitriev, S.A.

    1997-12-31

    In the present work some results of EPR study of point defects formed in silicate, borate, borosilicate, phosphate and other oxide glasses irradiated with different charge particles (C, N, O, Ar, Mn, Cu, Pb) at energy E = 150 keV and large total fluence of ions (up to 10{sup 17} cm{sup {minus}2}) are reported. Electron paramagnetic resonance (EPR) is a very sensitive technique which gives information on the structure of point defects and their content. It is shown that in some cases (for example, in borate glasses) the oxygen hole centers similar to ones observed in {gamma}-irradiated glasses are formed after ion bombardment. However, in the majority of cases new defects which are not typical of {gamma}-irradiated oxide glasses were found. They were large molecular oxygen ions (O{sub 2}{sup {minus}}, O{sub 3}{sup {minus}}, O{sub 4}{sup {minus}}) located in the cavities formed under ion bombardment in the near surface layer of glass. It should be noted that the relative content of these defects is of the order of several tens per 1,000 incident ions. This content decreases with increasing fluence and atomic mass of incident ions. It indicates indirectly that point defects are clustered when the damage of the near surface layer becomes strong. The formation of gaseous oxygen is possible in cavities of the damage surface layer. It was found that some elements (for example C, N and transition metals) form chemical compounds with oxygen. The migration of alkali ions promotes the formation of such compounds since the chemical compounds were detected by means EPR in glasses rich in alkali oxides.

  12. Arnold L. Gordon R. Dwi Susanto Banda Sea surface-layer divergence

    E-print Network

    Susanto, R. Dwi

    Arnold L. Gordon á R. Dwi Susanto Banda Sea surface-layer divergence Received: 21 May 2001 / Accepted: 2 August 2001 Abstract Sea-surface temperature (SST) within the Banda Sea varies from a low of 26 cm maximum range of sea level. Steric eects are minor, with well over 80% of the sea level change due

  13. Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces

    PubMed Central

    Reker, Meike; Barthlott, Wilhelm

    2014-01-01

    Summary Some plants and animals feature superhydrophobic surfaces capable of retaining a layer of air when submerged under water. Long-term air retaining surfaces (Salvinia-effect) are of high interest for biomimetic applications like drag reduction in ship coatings of up to 30%. Here we present a novel method for measuring air volumes and air loss under water. We recorded the buoyancy force of the air layer on leaf surfaces of four different Salvinia species and on one biomimetic surface using a highly sensitive custom made strain gauge force transducer setup. The volume of air held by a surface was quantified by comparing the buoyancy force of the specimen with and then without an air layer. Air volumes retained by the Salvinia-surfaces ranged between 0.15 and 1 L/m2 depending on differences in surface architecture. We verified the precision of the method by comparing the measured air volumes with theoretical volume calculations and could find a good agreement between both values. In this context we present techniques to calculate air volumes on surfaces with complex microstructures. The introduced method also allows to measure decrease or increase of air layers with high accuracy in real-time to understand dynamic processes. PMID:24991518

  14. Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces.

    PubMed

    Mayser, Matthias J; Bohn, Holger F; Reker, Meike; Barthlott, Wilhelm

    2014-01-01

    Some plants and animals feature superhydrophobic surfaces capable of retaining a layer of air when submerged under water. Long-term air retaining surfaces (Salvinia-effect) are of high interest for biomimetic applications like drag reduction in ship coatings of up to 30%. Here we present a novel method for measuring air volumes and air loss under water. We recorded the buoyancy force of the air layer on leaf surfaces of four different Salvinia species and on one biomimetic surface using a highly sensitive custom made strain gauge force transducer setup. The volume of air held by a surface was quantified by comparing the buoyancy force of the specimen with and then without an air layer. Air volumes retained by the Salvinia-surfaces ranged between 0.15 and 1 L/m(2) depending on differences in surface architecture. We verified the precision of the method by comparing the measured air volumes with theoretical volume calculations and could find a good agreement between both values. In this context we present techniques to calculate air volumes on surfaces with complex microstructures. The introduced method also allows to measure decrease or increase of air layers with high accuracy in real-time to understand dynamic processes. PMID:24991518

  15. Tunable Dipole Surface Plasmon Resonances of Silver Nanoparticles by Cladding Dielectric Layers

    PubMed Central

    Liu, Xiaotong; Li, Dabing; Sun, Xiaojuan; Li, Zhiming; Song, Hang; Jiang, Hong; Chen, Yiren

    2015-01-01

    The tunability of surface plasmon resonance can enable the highest degree of localised surface plasmon enhancement to be achieved, based on the emitting or absorbing wavelength. In this article, tunable dipole surface plasmon resonances of Ag nanoparticles (NPs) are realized by modification of the SiO2 dielectric layer thicknesses. SiO2 layers both beneath and over the Ag NPs affected the resonance wavelengths of local surface plasmons (LSPs). By adjusting the SiO2 thickness beneath the Ag NPs from 5?nm to 20?nm, the dipole surface plasmon resonances shifted from 470?nm to 410?nm. Meanwhile, after sandwiching the Ag NPs by growing SiO2 before NPs fabrication and then overcoating the NPs with various SiO2 thicknesses from 5?nm to 20?nm, the dipole surface plasmon resonances changed from 450?nm to 490?nm. The SiO2 cladding dielectric layer can tune the Ag NP surface charge, leading to a change in the effective permittivity of the surrounding medium, and thus to a blueshift or redshift of the resonance wavelength. Also, the quadrupole plasmon resonances were suppressed by the SiO2 cladding layer because the dielectric SiO2 can suppress level splitting of surface plasmon resonances caused by the Ag NP coupling effect. PMID:26218501

  16. Controllable surface haptics via particle jamming and pneumatics.

    PubMed

    Stanley, Andrew A; Okamura, Allison M

    2015-01-01

    The combination of particle jamming and pneumatics allows the simultaneous control of shape and mechanical properties in a tactile display. A hollow silicone membrane is molded into an array of thin cells, each filled with coffee grounds such that adjusting the vacuum level in any individual cell rapidly switches it between flexible and rigid states. The array clamps over a pressure-regulated air chamber with internal mechanisms designed to pin the nodes between cells at any given height. Various sequences of cell vacuuming, node pinning, and chamber pressurization allow the surface to balloon into a variety of shapes. Experiments were performed to expand existing physical models of jamming at the inter-particle level to define the rheological characteristics of jammed systems from a macroscopic perspective, relevant to force-displacement interactions that would be experienced by human users. Force-displacement data show that a jammed cell in compression fits a Maxwell model and a cell deflected in the center while supported only at the edges fits a Zener model, each with stiffness and damping parameters that increase at higher levels of applied vacuum. This provides framework to tune and control the mechanical properties of a jamming haptic interface. PMID:25594980

  17. Leonids' Particle Analyses from Stratospheric Balloon Collection on Xerogel Surfaces

    NASA Astrophysics Data System (ADS)

    Noever, David

    Recovered from a stratospheric balloon above 20 km on 17-18 November 1998, at least eight candidate microparticles were collected and analyzed from low-density silica xerogel collection plates. Capture time at Leonids' storm peak was validated locally along the balloon trajectory by direct video imaging of meteor fluence up to 24/hr above 98% of the Earth's atmosphere. At least one 30 micron particle agrees morphologically to a smooth, unmelted spherule and compares most closely in non-volatile elemental ratios (Mg/Si, Al/Si, and Fe/Si) to compositional data in surface/ocean meteorite collections. A Euclidean tree diagram based on composition makes a most probable identification as a non-porous stratospherically collected particle and a least probable identification as terrestrial matter or an ordinary chondrite. If of extraterrestrial origin, the mineralogical class would be consistent with a stony (S) type of silicate, olivine [(Mg,Fe)2SiO4] and pyroxene [(Mg, Fe)Si! O3)--or oxides, herecynite [(Fe,Mg) Al2O4].

  18. High-speed Particle Image Velocimetry Near Surfaces

    PubMed Central

    Lu, Louise; Sick, Volker

    2013-01-01

    Multi-dimensional and transient flows play a key role in many areas of science, engineering, and health sciences but are often not well understood. The complex nature of these flows may be studied using particle image velocimetry (PIV), a laser-based imaging technique for optically accessible flows. Though many forms of PIV exist that extend the technique beyond the original planar two-component velocity measurement capabilities, the basic PIV system consists of a light source (laser), a camera, tracer particles, and analysis algorithms. The imaging and recording parameters, the light source, and the algorithms are adjusted to optimize the recording for the flow of interest and obtain valid velocity data. Common PIV investigations measure two-component velocities in a plane at a few frames per second. However, recent developments in instrumentation have facilitated high-frame rate (> 1 kHz) measurements capable of resolving transient flows with high temporal resolution. Therefore, high-frame rate measurements have enabled investigations on the evolution of the structure and dynamics of highly transient flows. These investigations play a critical role in understanding the fundamental physics of complex flows. A detailed description for performing high-resolution, high-speed planar PIV to study a transient flow near the surface of a flat plate is presented here. Details for adjusting the parameter constraints such as image and recording properties, the laser sheet properties, and processing algorithms to adapt PIV for any flow of interest are included. PMID:23851899

  19. Leonid's Particle Analyses from Stratospheric Balloon Collection on Xerogel Surfaces

    NASA Technical Reports Server (NTRS)

    Noever, David; Phillips, Tony; Horack, John; Porter, Linda; Myszka, Ed

    1999-01-01

    Recovered from a stratospheric balloon above 20 km on 17-18 November 1998, at least eight candidate microparticles were collected and analyzed from low-density silica xerogel collection plates. Capture time at Leonids' storm peak was validated locally along the balloon trajectory by direct video imaging of meteor fluence up to 24/hr above 98% of the Earth's atmosphere. At least one 30 micron particle agrees morphologically to a smooth, unmelted spherule and compares most closely in non-volatile elemental ratios (Mg/Si, Al/Si, and Fe/Si) to compositional data in surface/ocean meteorite collections. A Euclidean tree diagram based on composition makes a most probable identification as a non-porous stratospherically collected particle and a least probable identification as terrestrial matter or an ordinary chondrite. If of extraterrestrial origin, the mineralogical class would be consistent with a stony (S) type of silicate, olivine [(Mg,Fe)2SiO4] and pyroxene [(Mg, Fe)Si!O3)--or oxides, herecynite [(Fe,Mg) Al2O4].

  20. Convection and correlation of coherent structure in turbulent boundary layer using tomographic particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Guan, Xin-Lei; Jiang, Nan

    2014-10-01

    The present experimental work focuses on a new model for space—time correlation and the scale-dependencies of convection velocity and sweep velocity in turbulent boundary layer over a flat wall. A turbulent boundary layer flow at Re? = 2460 is measured by tomographic particle image velocimetry (tomographic PIV). It is demonstrated that arch, cane, and hairpin vortices are dominant in the logarithmic layer. Hairpins and hairpin packets are responsible for the elongated low-momentum zones observed in the instantaneous flow field. The conditionally-averaged coherent structures systemically illustrate the key roles of hairpin vortice in the turbulence dynamic events, such as ejection and sweep events and energy transport. The space—time correlations of instantaneous streamwise fluctuation velocity are calculated and confirm the new elliptic model for the space—time correlation instead of Taylor hypothesis. The convection velocities derived from the space—time correlation and conditionally-averaged method both suggest the scaling with the local mean velocity in the logarithmic layer. Convection velocity result based on Fourier decomposition (FD) shows stronger scale- dependency in the spanwise direction than in streamwise direction. Compared with FD, the proper orthogonal decomposition (POD) has a distinct distribution of convection velocity for the large- and small-scales which are separated in light of their contributions of turbulent kinetic energy.

  1. Solution-processed amorphous silicon surface passivation layers

    SciTech Connect

    Mews, Mathias Sontheimer, Tobias; Korte, Lars; Rech, Bernd; Mader, Christoph; Traut, Stephan; Wunnicke, Odo

    2014-09-22

    Amorphous silicon thin films, fabricated by thermal conversion of neopentasilane, were used to passivate crystalline silicon surfaces. The conversion is investigated using X-ray and constant-final-state-yield photoelectron spectroscopy, and minority charge carrier lifetime spectroscopy. Liquid processed amorphous silicon exhibits high Urbach energies from 90 to 120?meV and 200?meV lower optical band gaps than material prepared by plasma enhanced chemical vapor deposition. Applying a hydrogen plasma treatment, a minority charge carrier lifetime of 1.37?ms at an injection level of 10{sup 15}/cm{sup 3} enabling an implied open circuit voltage of 724?mV was achieved, demonstrating excellent silicon surface passivation.

  2. Adsorption of sulfur dioxide on hematite and goethite particle surfaces.

    PubMed

    Baltrusaitis, Jonas; Cwiertny, David M; Grassian, Vicki H

    2007-11-01

    The adsorption of sulfur dioxide (SO(2)) on iron oxide particle surfaces at 296 K has been investigated using X-ray photoelectron spectroscopy (XPS). A custom-designed XPS ultra-high vacuum chamber was coupled to an environmental reaction chamber so that the effects of adsorbed water and molecular oxygen on the reaction of SO(2) with iron oxide surfaces could be followed at atmospherically relevant pressures. In the absence of H(2)O and O(2), exposure of hematite (alpha-Fe(2)O(3)) and goethite (alpha-FeOOH) to SO(2) resulted predominantly in the formation of adsorbed sulfite (SO(3)(2-)), although evidence for adsorbed sulfate (SO(4)(2-)) was also found. At saturation, the coverage of adsorbed sulfur species was the same on both alpha-Fe(2)O(3) and alpha-FeOOH as determined from the S2p : Fe2p ratio. Equivalent saturation coverages and product ratios of sulfite to sulfate were observed on these oxide surfaces in the presence of water vapor at pressures between 6 and 18 Torr, corresponding to 28 to 85% relative humidity (RH), suggesting that water had no effect on the adsorption of SO(2). In contrast, molecular oxygen substantially influenced the interactions of SO(2) with iron oxide surfaces, albeit to a much larger extent on alpha-Fe(2)O(3) relative to alpha-FeOOH. For alpha-Fe(2)O(3), adsorption of SO(2) in the presence of molecular oxygen resulted in the quantitative formation of SO(4)(2-) with no detectable SO(3)(2-). Furthermore, molecular oxygen significantly enhanced the extent of SO(2) uptake on alpha-Fe(2)O(3), as indicated by the greater than two-fold increase in the S2p : Fe2p ratio. Although SO(2) uptake is still enhanced on alpha-Fe(2)O(3) in the presence of molecular oxygen and water, the enhancement factor decreases with increasing RH. In the case of alpha-FeOOH, there is an increase in the amount of SO(4)(2-) in the presence of molecular oxygen, however, the predominant surface species remained SO(3)(2-) and there is no enhancement in SO(2) uptake as measured by the S2p : Fe2p ratio. A mechanism involving molecular oxygen activation on oxygen vacancy sites is proposed as a possible explanation for the non-photochemical oxidation of sulfur dioxide on iron oxide surfaces. The concentration of these sites depends on the exact environmental conditions of RH. PMID:17957310

  3. The adsorption of tin layers on cleaved indium phosphide surfaces

    NASA Astrophysics Data System (ADS)

    Humphreys, T. P.; Hughes, G. J.; McKinley, A.; Cunningham, B. C.; Williams, R. H.

    1985-04-01

    The growth of tin overlayers on vacuum cleaved (110) surfaces of indium phosphide has been studied using a multi-technique approach. The growth mode appears both coverage and temperature dependent. The systematics of the adsorption process as well as the mechanism driving the interdiffusion of atoms across the interface are considered as well as the influence of the interdiffusion on the electrical nature of the interface.

  4. Appearance of aldehydes in the surface layer of lake waters.

    PubMed

    D?browska, Agata; Nawrocki, Jacek; Szel?g-Wasielewska, El?bieta

    2014-07-01

    The paper presents results concerning the changes in the content of aldehydes in samples of lake water collected near the lake surface. The study of lake waters was undertaken to explain which physicochemical parameters of the environment have the greatest influence on the level of aldehydes, which of the aldehydes are most often met in surface water and in what concentrations. We observed that formaldehyde, acetaldehyde, propanal, glyoxal, methylglyoxal and acetone were commonly present in surface water samples, while semi-volatile and poorly soluble aldehydes such as nonanal and decanal were observed seasonally. The contents of total aldehydes varied in a wide range, from 55 to 670 ?g/l, and the concentration of total organic carbon varied significantly from 3 to 18 mg /l, but there was no evident correlation between them in all of samples. The total content of aldehydes did not depend on the meteorological parameters such as air temperature, UV radiation and ozone concentration; however, it was noted that the level of carbonyl concentration is related to the period of intense precipitation: in the period of very low precipitations, the highest contents of total aldehydes were determined in all of the water samples, and in the periods of intense precipitations, the content of total aldehydes was drastically smaller. PMID:24671617

  5. Investigation of Oxide Layer Structure on Niobium Surfaces using a Secondary Ion Mass Spectrometer

    SciTech Connect

    Andy T. Wu

    2005-07-10

    Oxide layer structure on the surfaces of niobium (Nb) can be studied by continuously monitoring peaks of the secondary ions of Nb and its relevant oxides as a function of time during depth profiling measurements employing a secondary ion mass spectrometer (SIMS). This is based on the fact that different oxides have different cracking patterns. This new approach is much simpler and easier for studying oxide layer structure on Nb surfaces than the conventional approach through deconvolution of oxide peaks obtained from an x-ray photoemission spectrometer. Eventually it can be developed into an in-situ tool for monitoring the oxide layer structure on Nb surfaces prepared by various procedures. Preliminary results of SIMS measurements on the surfaces of Nb samples treated by buffered electropolishing and buffered chemical polishing will be reported.

  6. Structure of the surface layer of the methanogenic archaean Methanosarcina acetivorans

    SciTech Connect

    Arbing, Mark A.; Chan, Sum; Shin, Annie; Phan, Tung; Ahn, Christine J.; Rohlin, Lars; Gunsalus, Robert P.

    2012-09-05

    Archaea have a self-assembling proteinaceous surface (S-) layer as the primary and outermost boundary of their cell envelopes. The S-layer maintains structural rigidity, protects the organism from adverse environmental elements, and yet provides access to all essential nutrients. We have determined the crystal structure of one of the two 'homologous' tandem polypeptide repeats that comprise the Methanosarcina acetivorans S-layer protein and propose a high-resolution model for a microbial S-layer. The molecular features of our hexameric S-layer model recapitulate those visualized by medium resolution electron microscopy studies of microbial S-layers and greatly expand our molecular view of S-layer dimensions, porosity, and symmetry. The S-layer model reveals a negatively charged molecular sieve that presents both a charge and size barrier to restrict access to the cell periplasmic-like space. The {beta}-sandwich folds of the S-layer protein are structurally homologous to eukaryotic virus envelope proteins, suggesting that Archaea and viruses have arrived at a common solution for protective envelope structures. These results provide insight into the evolutionary origins of primitive cell envelope structures, of which the S-layer is considered to be among the most primitive: it also provides a platform for the development of self-assembling nanomaterials with diverse functional and structural properties.

  7. Intermittency in the heat and particle transports in the SINP tokamak scrape-off layer

    SciTech Connect

    Saha, S. K.; Chowdhury, S.

    2008-01-15

    The intermittent heat and particle transports have been studied in the scrape-off layer of the SINP tokamak. Properties of the plasma structures, responsible for the intermittency, have been measured by the conditional averaging technique. The probability distribution functions of the fluctuations, including temperature fluctuations, obey non-Gaussian statistics. Wavelet analysis has shown that the cross-correlation between two probes is also intermittent in time and is connected to the passage of plasma structures. The structures decay in density as they move radially outward but their temperature is found to decay more rapidly.

  8. Insight in layer-by-layer assembly of cysteamine and L-cysteine on the copper surface by electrochemistry and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Song, Ping; Shen, Shu; Li, Chuan-Chuan; Guo, Xiao-Yu; Wen, Ying; Yang, Hai-Feng

    2015-02-01

    In this work, we examined the relationship between the anticorrosion behavior and the structure of the cysteamine/L-cysteine layer-by-layer coating on the copper surface via the self-assembled monolayers (SAMs) technique with electrochemistry and surface-enhanced Raman scattering (SERS) spectroscopy. SERS results elucidated the layer-by-layer adsorption mechanism of cysteamine/L-cysteine at the copper surface. Electrochemical investigations explored the inhibition behavior of cysteamine/L-cysteine for copper from corrosion with a high protection efficiency of 91.4%.

  9. Understanding for controls of particle shape of various titanates with layered structure.

    PubMed

    Lee, Nam-Hee; Oh, Hyo-Jin; Yoon, Cho-Rong; Guo, Yupeng; Park, Kyeong-Soon; Kim, Byung-Whan; Kim, Sun-Jae

    2008-10-01

    In this study, various sized and shaped titanates were prepared using rutile phase TiO2 nano-powders in strong basic solution of NaOH having various metallic ions as chlorides by hydrothermal process. Obtained powders were fully characterized using SEM, TEM, XRD, and BET. The XRD results show that all obtained powders have layered structure. However, the shapes of particles doped with Zr4+ and Li+ show nano-belt and nano-plate, respectively, compared to those with nano-tubes of undoped, Ni2+ and Fe3+ doped. These results suggest that particle shape of titanates can be controlled only by small amount of doping elements in NaOH aqueous solutions. PMID:19198411

  10. Modeling the snow surface temperature with a one-layer energy balance snowmelt model

    NASA Astrophysics Data System (ADS)

    You, J.; Tarboton, D. G.; Luce, C. H.

    2013-12-01

    ?bel{sec:abstract} Snow surface temperature is a key control on energy exchanges at the snow surface, particularly net longwave radiation and turbulent energy fluxes. The snow surface temperature is in turn controlled by the balance between various external fluxes and the conductive heat flux, internal to the snowpack. Because of the strong insulating properties of snow, thermal gradients in snow packs are large and nonlinear, a fact that has led many to advocate multiple layer snowmelt models over single layer models. In an effort to keep snowmelt modeling simple and parsimonious, the Utah Energy Balance (UEB) snowmelt model used only one layer but allowed the snow surface temperature to be different from the snow average temperature by using an equilibrium gradient parameterization based on the surface energy balance. Although this procedure was considered an improvement over the ordinary single layer snowmelt models, it still resulted in discrepancies between modeled and measured snowpack energy contents. In this paper we examine the parameterization of snow surface temperature in single layer snowmelt models from the perspective of heat conduction into a semi-infinite medium. We evaluate the equilibrium gradient approach, the force-restore approach, and a modified force-restore approach. In addition, we evaluate a scheme for representing the penetration of a refreezing front in cold periods following melt. We also introduce a method to adjust effective conductivity to account for the presence of ground near to a shallow snow surface. These parameterizations were tested against data from the Central Sierra Snow Laboratory, CA, Utah State University experimental farm, UT, and Subnivean snow laboratory at Niwot Ridge, CO. These tests compare modeled and measured snow surface temperature, snow energy content, snow water equivalent, and snowmelt outflow. We found that with these refinements the model is able to better represent the snowpack energy balance and internal energy content while still retaining a parsimonious one layer format.

  11. Layer-by-layer generation of PEG-based regenerable immunosensing surfaces for small-sized analytes.

    PubMed

    Huebner, Maria; Ben Haddada, Maroua; Méthivier, Christophe; Niessner, Reinhard; Knopp, Dietmar; Boujday, Souhir

    2015-05-15

    Small molecules (haptens) like pharmaceuticals or peptides can serve as targets for antibody binding in competitive immunoassay-based flow-through assays. In this work, a strategy for preparing polyethylene glycol (PEG) coatings for subsequent hapten immobilization on glass-type silica surfaces is presented and characterized in detail. Two substrates bearing terminal silanol groups were utilized, a glass slide and a silicon wafer. First, surfaces were thoroughly cleaned and pretreated to generate additional silanol groups. Then, a silane layer with terminal epoxy groups was created using 3-glycidyloxypropyltrimethoxysilane (GOPTS). Epoxy groups were used to bind a layer of diamino-poly(ethylene glycol) (DAPEG) with terminal amino groups. Finally, the low molecular weight compound diclofenac was bound to the surface to be used as model ligand for competitive biosensing of haptens. The elementary steps were characterized using atomic force microscopy (AFM), water contact angle measurement, grazing-angle attenuated total reflection (GA-ATR) FT-IR spectroscopy, and X-ray photoelectron spectroscopy (XPS). The data collected using these techniques have confirmed the successive grafting of the molecular species, evidencing, that homogeneous monolayers were created on the silica surfaces and validated the proposed mechanism of functionalization. The resulting surfaces were used to investigate polyclonal anti-diclofenac antibodies recognition and reversibility using quartz crystal microbalance with dissipation (QCM-D) measurements or an automated flow-through immunoassay with chemiluminescence (CL) read-out. For both techniques, recognition and reversibility of the antibody binding were observed. The stability of sensors over time was also assessed and no decrease in CL response was observed upon 14 days in aqueous solution. The herein presented strategy for surface functionalization can be used in the future as reproducible and reusable universal platform for hapten biosensors. PMID:25201037

  12. Structure-phase states of silumin surface layer after electron beam and high cycle fatigue

    NASA Astrophysics Data System (ADS)

    Konovalov, S. V.; Alsaraeva, K. V.; Gromov, V. E.; Ivanov, Yu F.

    2015-11-01

    Modification of eutectic silumin surface has been implemented by high-intensity pulsed electron beam. The irradiation mode has been revealed; it allows increasing silumin fatigue life in more than 3.5 times. It has been established that the main reason of this fact is the formation of a multiphase submicro- and nanosized structure. It has been elicited that the most danger stress concentrators are large silicon plates situated on the surface and near-surface layers.

  13. Origin of non-spherical particles in the boundary layer over Beijing, China: based on balloon-borne observations.

    PubMed

    Chen, Bin; Yamada, Maromu; Iwasaka, Yasunobu; Zhang, Daizhou; Wang, Hong; Wang, Zhenzhu; Lei, Hengchi; Shi, Guangyu

    2015-10-01

    Vertical structures of aerosols from the ground to about 1,000 m altitude in Beijing were measured with a balloon-borne optical particle counter. The results showed that, in hazy days, there were inversions at approximately 500-600 m, below which the particulate matters were well mixed vertically, while the concentration of particles decreased sharply above the mixing layer. Electron microscopic observation of the particles collected with the balloon-borne impactor indicates that the composition of particles is different according to weather conditions in the boundary mixing layer of Beijing city and suggests that dust particles are always dominant in coarse-mode particles. Interestingly, sea-salt particles are frequently identified, suggesting the importance of marine air inflow to the Beijing area even in summer. The Ca-rich spherical particles are also frequently identified, suggesting chemical modification of dust particle by NOx or emission of CaO and others from local emission. Additionally, those types of particles showed higher concentration above the mixing layer under the relatively calm weather condition of summer, suggesting the importance of local-scale convection found in summer which rapidly transported anthropogenic particles above the mixing layer. Lidar extinction profiles qualitatively have good consistency with the balloon-borne measurements. Attenuation effects of laser pulse intensity are frequently observed due to high concentration of particulate matter in the Beijing atmosphere, and therefore quantitative agreement of lidar return and aerosol concentration can be hardly observed during dusty condition. Comparing the depolarization ratio obtained from the lidar measurements with the balloon-borne measurements, the contribution of the dry sea-salt particles, in addition to the dust particles, is suggested as an important factor causing depolarization ratio in the Beijing atmosphere. PMID:25537163

  14. Direct calculation of anisotropic surface stresses during deformation of a particle-covered drop.

    PubMed

    Gu, Chuan; Botto, Lorenzo

    2016-01-21

    The modification of the surface tension and the surface shear elasticity by particles in particle-covered drops can be attributed to a particle-induced surface stress. This stress represents at the macroscopic, continuum level the microscopic effect of lateral particle-particle interactions. Understanding the link between the isotropic and anisotropic components of the surface stress and the particle microstructure, and how these components change when structured interfaces deform, is a crucial problem in the field of particle-laden interfaces. In this paper, we analyse static and transient three-dimensional simulations of a pendant drop whose surface is covered by colloidal particles displaying purely repulsive particle-particle interactions. We compute the isotropic and anisotropic surface stress from the inter-particle forces using a version of the Kirkwood-Irving formula suitable for interfacial suspensions; we validate the approach by comparing against surface tension values obtained using Fordham's method (Proc. R. Soc. London, Ser. A, 1948, 194). In the parameter range simulated, the combination of parameters for which the drop does not pinch off (stable drop) gives rise to a homogeneous and isotropic surface stress; we argue that in the absence of attractive interactions the drop becomes unstable before anisotropic effects can manifest themselves. For unstable drops, stress non-uniformity and anisotropy are significant when the drop deformation and the solid area fraction are sufficiently large. Our results have implications for the dynamic deformation of structured interfaces with geometrically complex and time dependent morphologies. PMID:26559077

  15. Surface Navigation Using Optimized Waypoints and Particle Swarm Optimization

    NASA Technical Reports Server (NTRS)

    Birge, Brian

    2013-01-01

    The design priority for manned space exploration missions is almost always placed on human safety. Proposed manned surface exploration tasks (lunar, asteroid sample returns, Mars) have the possibility of astronauts traveling several kilometers away from a home base. Deviations from preplanned paths are expected while exploring. In a time-critical emergency situation, there is a need to develop an optimal home base return path. The return path may or may not be similar to the outbound path, and what defines optimal may change with, and even within, each mission. A novel path planning algorithm and prototype program was developed using biologically inspired particle swarm optimization (PSO) that generates an optimal path of traversal while avoiding obstacles. Applications include emergency path planning on lunar, Martian, and/or asteroid surfaces, generating multiple scenarios for outbound missions, Earth-based search and rescue, as well as human manual traversal and/or path integration into robotic control systems. The strategy allows for a changing environment, and can be re-tasked at will and run in real-time situations. Given a random extraterrestrial planetary or small body surface position, the goal was to find the fastest (or shortest) path to an arbitrary position such as a safe zone or geographic objective, subject to possibly varying constraints. The problem requires a workable solution 100% of the time, though it does not require the absolute theoretical optimum. Obstacles should be avoided, but if they cannot be, then the algorithm needs to be smart enough to recognize this and deal with it. With some modifications, it works with non-stationary error topologies as well.

  16. Relevance of glycosylation of S-layer proteins for cell surface properties

    PubMed Central

    Schuster, Bernhard; Sleytr, Uwe B.

    2015-01-01

    Elucidating the building principles and intrinsic features modulating certain water-associated processes (e.g., surface roughness in the nanometer scale, surface hydration and accompanied antifouling property, etc.) of surface structures from (micro)organisms is nowadays a highly challenging task in fields like microbiology, biomimetic engineering and (bio)material sciences. Here, we show for the first time the recrystallization of the wild-type S-layer glycoprotein wtSgsE from Geobacillus stearothermophilus NRS 2004/3a and its recombinantly produced non-glycosylated form, rSgsE, on gold sensor surfaces. Whereas the proteinaceous lattice of the S-layer proteins is forming a rigid layer on the sensor surface, the glycan chains are developing an overall soft, highly dissipative film. Interestingly, to the wtSgsE lattice almost twice the amount of water is bound and/or coupled in comparison with the non-glycosylated rSgsE with the preferred region being the extending glycan residues. The present results are discussed in terms of the effect of the glycan residues on the recrystallization, the adjoining hydration layer, and the nanoscale roughness and fluidic behavior. The latter features may turn out to be one of the most general ones among bacterial and archaeal S-layer lattices. PMID:25818946

  17. Analysis of the surface layer diurnal temperature cycle in the MM5 forecast model

    NASA Astrophysics Data System (ADS)

    Foster, R.; McCaa, J.; Wyant, M.; Mass, C.; Ferguson, S.

    2003-04-01

    The MM5 regional forecast model is being used by the Northwest Regional Modeling Consortium to provide forecasts for the Pacific Northwestern United States for a variety of purposes including forest fire forecasting and smoke plume modeling. To improve the quality of these forecasts, we are evaluating the effects of the model surface and boundary layer parameterizations on forecast errors. This study focuses on the accuracy of the model forecasts of diurnal cycle of temperature in the atmospheric surface layer over land. An ensemble of 48-hour MM5 forecasts centered on the Pacific Northwest United States was made, using various boundary layer parameterizations and soil diffusivity constants. The forecasts were initialized at the start of each day (0 GMT) of the month of May 2002, using larger scale forecast model data. For validation, the ensemble of runs was compared with data from a number of agricultural weather stations. These stations provide surface-layer air temperatures as well as soil temperatures. The forecast air and surface temperatures from a number of different boundary layer parameterizations are compared, including the MRF Scheme, the Mellor-Yamada type scheme of Grenier and Bretherton (2001), and an experimental k-type closure. Also examined is the considerable impact of the specified soil diffusivity constant on the air temperature forecast errors in the diurnal cycle at the surface.

  18. Surface Micromorphologies of Regolith Particles from Asteroid Itokawa and Its Implicaition to Space Weathering

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.; Tsuchiyama, A.; Miyake, A.; Noguchi, T.; Nakamura, T.; Nakamura, M.; Matsuno, J.; Shimada, A.; Uesugi, K.; Nakano, T.

    2014-09-01

    Surface distribution of space weathered rims of Itokawa particles were examined. They were heterogeneously distributed, suggesting that space weathering of Asteroid Itokawa was involved in regolith activity such as migration of regolith particles.

  19. Monte Carlo simulations of light scattering by composite particles in a planetary surface

    NASA Technical Reports Server (NTRS)

    Hillier, J.; Buratti, B.

    2001-01-01

    Composite particles containing internal scatterers have been proposed as an explanation for the fact that most photometric studies of planetary surfaces based on Hapke's bidirectional reflectance model have found the planetary particles to exhibit moderately backscattering phase functions.

  20. Laser controlled melting of H12 hot-work tool steel with B4C particles at the surface

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Patel, F.; Karatas, C.

    2015-11-01

    Laser controlled melting of pre-prepared H12 hot-work tool steel surface is carried out. B4C particles in the carbon film are located at the workpiece surface prior to the laser treatment process. Nitrogen at high pressure is used as an assisting gas during the laser melting. Morphological and metallurgical changes in the treated layer are examined using scanning electron microscope, energy dispersive spectroscopy, and X-ray diffraction. Microhardness of the treated surface is measured and the residual stress formed at the treated surface vicinity is obtained using the X-ray diffraction technique. It is found that a dense layer consisting of fine grains is formed at the treated surface. Microhardness of the treated surface improves significantly because of fine grains, nitride compounds formed at the surface and micro-stresses developed due to mismatched of thermal expansion coefficients of B4C and the base material. The residual stress formed at the surface is suppressed by the self annealing effect of the initially formed laser scans.

  1. The CCN activity of internally mixed organic-inorganic particles: the effect of solubility and surface tension on particle activation

    NASA Astrophysics Data System (ADS)

    Broekhuizen, K.; Kumar, P.; Abbatt, J.

    2004-05-01

    The ability of internally mixed organic-inorganic aerosols to act as cloud condensation nuclei (CCN) will be discussed. Internally mixed particles were produced through a variety of methods, including particle coating and atomization of mixed solutions. These experiments were designed to address several key questions concerning particle activation. How does surface tension play a role and can a surface active organic species impact activation? Does a trace amount of a highly soluble species impact the activation of organic particles of moderate to low solubility? Can the activation properties of ammonium sulfate be "shut off" through coating with an inactive organic species? To systematically address these issues, the CCN activity of various mixed particles such as ammonium sulfate(AS)/oleic acid, AS/stearic acid, AS/adipic acid, AS/hexanoic acid and others have been studied. These results are among the first to specifically address the effect of surface tension on CCN activity in the laboratory.

  2. Capillary-wave roughening of surface-induced layering in liquid gallium M. J. Regan and P. S. Pershan

    E-print Network

    Pershan, Peter S.

    Capillary-wave roughening of surface-induced layering in liquid gallium M. J. Regan and P. S 11 June 1996 The temperature dependence of surface-induced atomic layering in liquid gallium has been x-ray reflectivity measurements on liq- uid mercury8 and gallium.9 For Hg, a layering decay length

  3. Surface (S)-layer proteins of Deinococcus radiodurans and their utility as vehicles for surface localization of functional proteins.

    PubMed

    Misra, Chitra Seetharam; Basu, Bhakti; Apte, Shree Kumar

    2015-12-01

    The radiation resistant bacterium, Deinococcus radiodurans contains two major surface (S)-layer proteins, Hpi and SlpA. The Hpi protein was shown to (a) undergo specific in vivo cleavage, and (b) closely associate with the SlpA protein. Using a non-specific acid phosphatase from Salmonella enterica serovar Typhi, PhoN as a reporter, the Surface Layer Homology (SLH) domain of SlpA was shown to bind deinococcal peptidoglycan-containing cell wall sacculi. The association of SlpA with Hpi on one side and peptidoglycan on the other, localizes this protein in the 'interstitial' layer of the deinoccocal cell wall. Gene chimeras of hpi-phoN and slh-phoN were constructed to test efficacy of S-layer proteins, as vehicles for cell surface localization in D. radiodurans. The Hpi-PhoN protein localized exclusively in the membrane fraction, and displayed cell-based phosphatase activity in vivo. The SLH-PhoN, which localized to both cytosolic and membrane fractions, displayed in vitro activity but no cell-based in vivo activity. Hpi, therefore, emerged as an efficient surface localizing protein and can be exploited for suitable applications of this superbug. PMID:26450150

  4. Atomic imaging and modeling of passivation, functionalization, and atomic layer deposition nucleation of the SiGe(001) surface via

    E-print Network

    Kummel, Andrew C.

    Atomic imaging and modeling of passivation, functionalization, and atomic layer deposition Atomic layer deposition X-ray photoelectron spectroscopy Passivation, functionalization, and atomic layer\\OH and Ge\\O bonds while annealing induces an atomic layer ex- change bringing Si to the surface to bond

  5. Interfacial layers from the protein HFBII hydrophobin: dynamic surface tension, dilatational elasticity and relaxation times.

    PubMed

    Alexandrov, Nikola A; Marinova, Krastanka G; Gurkov, Theodor D; Danov, Krassimir D; Kralchevsky, Peter A; Stoyanov, Simeon D; Blijdenstein, Theodorus B J; Arnaudov, Luben N; Pelan, Eddie G; Lips, Alex

    2012-06-15

    The pendant-drop method (with drop-shape analysis) and Langmuir trough are applied to investigate the characteristic relaxation times and elasticity of interfacial layers from the protein HFBII hydrophobin. Such layers undergo a transition from fluid to elastic solid films. The transition is detected as an increase in the error of the fit of the pendant-drop profile by means of the Laplace equation of capillarity. The relaxation of surface tension after interfacial expansion follows an exponential-decay law, which indicates adsorption kinetics under barrier control. The experimental data for the relaxation time suggest that the adsorption rate is determined by the balance of two opposing factors: (i) the barrier to detachment of protein molecules from bulk aggregates and (ii) the attraction of the detached molecules by the adsorption layer due to the hydrophobic surface force. The hydrophobic attraction can explain why a greater surface coverage leads to a faster adsorption. The relaxation of surface tension after interfacial compression follows a different, square-root law. Such behavior can be attributed to surface diffusion of adsorbed protein molecules that are condensing at the periphery of interfacial protein aggregates. The surface dilatational elasticity, E, is determined in experiments on quick expansion or compression of the interfacial protein layers. At lower surface pressures (<11 mN/m) the experiments on expansion, compression and oscillations give close values of E that are increasing with the rise of surface pressure. At higher surface pressures, E exhibits the opposite tendency and the data are scattered. The latter behavior can be explained with a two-dimensional condensation of adsorbed protein molecules at the higher surface pressures. The results could be important for the understanding and control of dynamic processes in foams and emulsions stabilized by hydrophobins, as well as for the modification of solid surfaces by adsorption of such proteins. PMID:22480400

  6. Turbulent Structures and Coherence in the Atmospheric Surface Layer

    NASA Astrophysics Data System (ADS)

    Träumner, K.; Damian, Th.; Stawiarski, Ch.; Wieser, A.

    2015-01-01

    Organized structures in turbulent flow fields are a well-known and still fascinating phenomenon. Although these so-called coherent structures are obvious from visual inspection, quantitative assessment is a challenge and many aspects e.g., formation mechanisms and contribution to turbulent fluxes, are discussed controversially. During the "High Definition Clouds and Precipitation for Advancing Climate Prediction" Observational Prototype Experiment (HOPE) from April to May 2013, an advanced dual Doppler lidar technique was used to image the horizontal wind field near the surface for approximately 300 h. A visual inspection method, as well as a two-dimensional integral length scale analysis, were performed to characterize the observations qualitatively and quantitatively. During situations with forcing due to shear, the wind fields showed characteristic patterns in the form of clearly bordered, elongated areas of enhanced or reduced wind speed, which can be associated with near-surface streaks. During calm situations with strong buoyancy forcing, open cell patterns in the horizontal divergence field were observed. The measurement technique used enables the calculation of integral length scales of both horizontal wind components in the streamwise and cross-stream directions. The individual length scales varied considerably during the observation period but were on average shorter during situations with compared to strongly stable situations. During unstable situations, which were dominated by wind fields with structures, the streamwise length scales increased with increasing wind speed, whereas the cross-stream length scales decreased. Consequently, the anisotropy increased from 1 for calm situations to values of 2-3 for wind speeds of 8-10. During neutral to stable situations, the eddies were on average quite isotropic in the horizontal plane.

  7. The effect of aerosol vertical profiles on satellite-estimated surface particle sulfate concentrations

    SciTech Connect

    Liu, Yang; Wang, Zifeng; Wang, Jun; Ferrare, Richard A.; Newsom, Rob K.; Welton, Ellsworth J.

    2011-02-15

    The aerosol vertical distribution is an important factor in determining the relationship between satellite retrieved aerosol optical depth (AOD) and ground-level fine particle pollution concentrations. We evaluate how aerosol profiles measured by ground-based lidar and simulated by models can help improve the association between AOD retrieved by the Multi-angle Imaging Spectroradiometer (MISR) and fine particle sulfate (SO4) concentrations using matched data at two lidar sites. At the Goddard Space Flight Center (GSFC) site, both lidar and model aerosol profiles marginally improve the association between SO4 concentrations and MISR fractional AODs, as the correlation coefficient between cross-validation (CV) and observed SO4 concentrations changes from 0.87 for the no-scaling model to 0.88 for models scaled with aerosol vertical profiles. At the GSFC site, a large amount of urban aerosols resides in the well-mixed boundary layer so the column fractional AODs are already excellent indicators of ground-level particle pollution. In contrast, at the Atmospheric Radiation Measurement Program (ARM) site with relatively low aerosol loadings, scaling substantially improves model performance. The correlation coefficient between CV and observed SO4 concentrations is increased from 0.58 for the no-scaling model to 0.76 in the GEOS-Chem scaling model, and the model bias is reduced from 17% to 9%. In summary, despite the inaccuracy due to the coarse horizontal resolution and the challenges of simulating turbulent mixing in the boundary layer, GEOS-Chem simulated aerosol profiles can still improve methods for estimating surface aerosol (SO4) mass from satellite-based AODs, particularly in rural areas where aerosols in the free troposphere and any long-range transport of aerosols can significantly contribute to the column AOD.

  8. Electrical conductivity of reconstructed Si(111) surface with sodium-doped C{sub 60} layers

    SciTech Connect

    Tsukanov, D. A. Saranin, A. A.; Ryzhkova, M. V.; Borisenko, E. A.; Zotov, A. V.

    2015-01-05

    Electrical conductance of sodium-doped C{sub 60} ultra-thin layers (1–6 monolayers) grown on the Na-adsorbed Si(111)?3?×??3-Au surface has been studied in situ by four-point probe technique, combined with low-energy electron diffraction observations. Evidence of conductance channel formation through the C{sub 60} ultrathin layer is demonstrated as a result of Na dosing of 3 and 6 monolayers thick C{sub 60} layers. The observed changes in surface conductivity can be attributed to the formation of fulleride-like NaC{sub 60} and Na{sub 2}C{sub 60} compound layers.

  9. The importance of a surface organic layer in simulating permafrost thermal and carbon dynamics

    NASA Astrophysics Data System (ADS)

    Jafarov, E.; Schaefer, K.

    2015-06-01

    Permafrost-affected soils contain twice as much carbon as currently exists in the atmosphere. Studies show that warming of the perennially frozen ground could initiate significant release of the frozen soil carbon into the atmosphere. To reduce the uncertainty associated with the modeling of the permafrost carbon feedback it is important to start with the observed soil carbon distribution and to better address permafrost thermal and carbon dynamics. We used the recent Northern Circumpolar Soil Carbon Dataset to simulate present soil organic carbon (SOC) distribution in permafrost-affected soils under the steady state climate forcing. We implemented a dynamic surface organic layer with vertical carbon redistribution and dynamic root growth controlled by active layer thickness to improve modeling of the permafrost thermodynamics. Our results indicate that a dynamic surface organic layer improved permafrost thermal dynamics and simulated active layer thickness, allowing better simulation of the observed SOC densities and their spatial distribution.

  10. Influence of surface forcing on near-surface and mixing layer turbulence in the tropical Indian Ocean

    NASA Astrophysics Data System (ADS)

    Callaghan, Adrian H.; Ward, Brian; Vialard, Jérôme

    2014-12-01

    An autonomous upwardly-moving microstructure profiler was used to collect measurements of the rate of dissipation of turbulent kinetic energy (?) in the tropical Indian Ocean during a single diurnal cycle, from about 50 m depth to the sea surface. This dataset is one of only a few to resolve upper ocean ? over a diurnal cycle from below the active mixing layer up to the air-sea interface. Wind speed was weak with an average value of ~5 m s-1 and the wave field was swell-dominated. Within the wind and wave affected surface layer (WWSL), ? values were on the order of 10-7-10-6 W kg-1 at a depth of 0.75 m and when averaged, were almost a factor of two above classical law of the wall theory, possibly indicative of an additional source of energy from the wave field. Below this depth, ? values were closer to wall layer scaling, suggesting that the work of the Reynolds stress on the wind-induced vertical shear was the major source of turbulence within this layer. No evidence of persistent elevated near-surface ? characteristic of wave-breaking conditions was found. Profiles collected during night-time displayed relatively constant ? values at depths between the WWSL and the base of the mixing layer, characteristic of mixing by convective overturning. Within the remnant layer, depth-averaged values of ? started decaying exponentially with an e-folding time of 47 min, about 30 min after the reversal of the total surface net heat flux from oceanic loss to gain.

  11. Surface structure and surface kinetics of InN grown by plasma-assisted atomic layer epitaxy: A HREELS study

    SciTech Connect

    Acharya, Ananta R. E-mail: anantaach@gmail.com; Thoms, Brian D.; Nepal, Neeraj; Eddy, Charles R.

    2015-03-15

    The surface bonding configuration and kinetics of hydrogen desorption from InN grown by plasma-assisted atomic layer epitaxy have been investigated. High resolution electron energy loss spectra exhibited loss peaks assigned to a Fuchs–Kliewer surface phonon, N-N and N-H surface species. The surface N-N vibrations are attributed to surface defects. The observation of N-H but no In-H surface species suggested N-terminated InN. Isothermal desorption data were best fit by the first-order desorption kinetics with an activation energy of (0.88?±?0.06) eV and pre-exponential factor of (1.5?±?0.5)?×?10{sup 5?}s{sup ?1}.

  12. An Observational Case Study on the Influence of Atmospheric Boundary-Layer Dynamics on New Particle Formation

    NASA Astrophysics Data System (ADS)

    Platis, Andreas; Altstädter, Barbara; Wehner, Birgit; Wildmann, Norman; Lampert, Astrid; Hermann, Markus; Birmili, Wolfram; Bange, Jens

    2015-09-01

    We analyze the influence of atmospheric boundary-layer development on new particle formation (NPF) during the morning transition. Continuous in-situ measurements of vertical profiles of temperature, humidity and aerosol number concentrations were quasi-continously measured near Melpitz, Germany, by unmanned aerial systems to investigate the potential connection between NPF and boundary-layer dynamics in the context of turbulence, temperature and humidity fluctuations. On 3 April 2014 high number concentrations of nucleation mode particles up to 6.0 × 10^4 {cm}^{-3} were observed in an inversion layer located about 450 m above ground level. The inversion layer exhibited a spatial temperature structure parameter C_T^2 15 times higher and a spatial humidity structure parameter C_q^2 5 times higher than in the remaining part of the vertical profile. The study provides hints that the inversion layer is responsible for creating favorable thermodynamic conditions for a NPF event. In addition, this layer showed a strong anti-correlation of humidity and temperature fluctuations. Using estimates of the turbulent mixing and dissipation rates, it is concluded that the downward transport of particles by convective mixing was also the reason of the sudden increase of nucleation mode particles measured on ground. This work supports the hypothesis that many of the NPF events that are frequently observed near the ground may, in fact, originate at elevated altitude, with newly formed particles subsequently being mixed down to the ground.

  13. Anisotropy beneath Hawaii from surface wave particle motion observations

    NASA Astrophysics Data System (ADS)

    Vig, Pradeep K.; Mitchell, Brian J.

    1990-03-01

    Observed polarization ellipses for fundamental-mode surface waves observed at a digital station in Hawaii deviate from those expected for isotropic models of crust and mantle structure for that region. The anomalous motion occurs as rotations of the ellipse about all three axes in a cartesian corrdinate system. The largest and most consistent deviations occur as anomalous slopes of the ellipse about the horizontal axis transverse to the direction of propagation. The observed orientations and magnitudes of these angles can be explained by models of the upper mantle which contain olivine for which the a-axis dips significantly from the horizontal and which includes a sufficiently thick sedimentary layer (1 km) and a thicker than normal oceanic crust (15 km). The ellipses are also generally inclined from great circle paths about the vertical axis and are tilted about the axis aligned with the propagation direction. Both angles are small and difficult to measure, but the inclination angles are consistent with a model of the upper mantle in which the a-axis of olivine is preferentially oriented in an east-west direction.

  14. Spontaneous Recurrence of Deposition and Dissolution of a Solid Layer on a Solution Surface.

    PubMed

    Sasaki, Tomohiro; Suematsu, Nobuhiko J; Sakurai, Tatsunari; Kitahata, Hiroyuki

    2015-07-30

    We investigated the spontaneous recurrence of deposition and dissolution of camphor layer on the surface of camphor methanol solution. This recurrence is a novel rhythmic process concerned with solid-liquid phase transition. To elucidate the underlying mechanism, we measured the solution temperature at different times, and found that the temperature increased and decreased repetitively, correlating with the camphor layer's deposition and dissolution. These experimental results show that the solution temperature plays an important role in recurrence of deposition and dissolution. PMID:26131927

  15. An improved design of TRISO particle with porous SiC inner layer by fluidized bed-chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Liu, Rongzheng; Liu, Malin; Chang, Jiaxing; Shao, Youlin; Liu, Bing

    2015-12-01

    Tristructural-isotropic (TRISO) particle has been successful in high temperature gas cooled reactor (HTGR), but an improved design is required for future development. In this paper, the coating layers are reconsidered, and an improved design of TRISO particle with porous SiC inner layer is proposed. Three methods of preparing the porous SiC layer, called high methyltrichlorosilane (MTS) concentration method, high Ar concentration method and hexamethyldisilane (HMDS) method, are experimentally studied. It is indicated that porous SiC layer can be successfully prepared and the density of SiC layer can be adjusted by tuning the preparation parameters. Microstructure and characterization of the improved TRISO coated particle are given based on scanning electron microscope (SEM), X-ray diffraction (XRD), Raman scattering and energy dispersive X-ray (EDX) analysis. It can be found that the improved TRISO coated particle with porous SiC layer can be mass produced successfully. The formation mechanisms of porous SiC layer are also discussed based on the fluidized bed-chemical vapor deposition principle.

  16. A model of wind shear and turbulence in the surface boundary layer

    NASA Technical Reports Server (NTRS)

    Luers, J. K.

    1973-01-01

    A model of wind and turbulence has been described for the surface boundary layer. The wind structure in the surface layer is considered to be a function of the surface parameters, stability, and height. The surface parameters considered are: (1) the surface roughness length; (2) the surface friction velocity; and (3) the zero plane displacement height. The stability parameter, Z/L, where L is the Monin-Obukov stability length, describes the thermal effect on the wind profile. The logarithmic wind profile is used to describe the mean wind field in the neutral boundary layer, and a logarithmic profile with a stability defect is used to describe the stable and unstable atmospheric conditions. For the very stable conditions, the logarithmic wind law does not hold. Under this condition, the layers of the atmosphere become disconnected and large scale frontal motions are the predominate factor in defining the wind profile. Figures are presented which represent some typical wind profiles in the very stable condition.

  17. The role of modifying molecular chains in the formation of organized molecular films of organo-modified nanodiamond: construction of a highly ordered low defect particle layer and evaluation of desorption behavior of organic chains.

    PubMed

    Fujimori, Atsuhiro; Kasahara, Yusuke; Honda, Nanami; Akasaka, Shuichi

    2015-03-10

    The role of organo-modifying molecular chains in the formation of molecular films of organo-modified nanodiamond is discussed herein based on interfacial chemical particle integration of organo-modified nanodiamond having a particle size of 5 nm. The surface of nanodiamond is known to be covered with a nanolayer of adsorbed water. This water nanolayer was exploited for organo-modification of nanodiamond with long-chain fatty acids via adsorption, leading to nanodispersion of nanodiamond in general organic solvents as a mimic of solvency. The organo-modified nanodiamond dispersed "solution" was used as a spreading solution for depositing a mono-"particle" layer on the water surface, and a Langmuir particle layer was integrated at the air/water interface. Multi-"particle" layers were then formed via the Langmuir-Blodgett technique and were subjected to fine structural analysis. The effect of organo-modification enabled integration and multilayer formation of inorganic nanoparticles due to enhancement of the van der Waals interactions between the chains. That is to say, the "encounter" between the organo-modifying chain and the inorganic particles led to solubilization of the inorganic particles and enhanced interactions between the particles, which can be regarded as imparting new function to the organic molecules. The morphology of the single-particle layer was maintained after removal of the organic region of the composite via the baking process, whereas the regularity of the layered period was disordered. Thus, the organic chains are essential as modifiers for maintenance of the layered structure. PMID:25692757

  18. Manufacture of silicon-based devices having disordered sulfur-doped surface layers

    DOEpatents

    Carey, III, James Edward (Newton, MA); Mazur, Eric (Concord, MA)

    2008-04-08

    The present invention provides methods of fabricating a radiation-absorbing semiconductor wafer by irradiating at least one surface location of a silicon substrate, e.g., an n-doped crystalline silicon, by a plurality of temporally short laser pulses, e.g., femtosecond pulses, while exposing that location to a substance, e.g., SF.sub.6, having an electron-donating constituent so as to generate a substantially disordered surface layer (i.e., a microstructured layer) that incorporates a concentration of that electron-donating constituent, e.g., sulfur. The substrate is also annealed at an elevated temperature and for a duration selected to enhance the charge carrier density in the surface layer. For example, the substrate can be annealed at a temperature in a range of about 700 K to about 900 K.

  19. Hardening of the surface layers of commercial pure titanium VT1-0 under combined treatment

    NASA Astrophysics Data System (ADS)

    Bashchenko, Lyudmila P.; Gromov, Viktor E.; Budovskikh, Evgenii A.; Ivanov, Yurii F.; Soskova, Nina A.

    2015-10-01

    The treatment of VT1-0 titanium samples was carried out by concentrated energy fluxes. The combined treatment included surface carburizing with the joint use of powder samples of compounds with high physical and mechanical properties (namely, titanium diboride TiB2, silicon carbide SiC and zirconium oxide ZrO2) and subsequent electron beam treatment of surface layers formed in electroexplosive treatment. The combined treatment of surface layers resulted in the multifold increase in microhardness, which reduces depending on the depth of hardening zone. After electron-beam treatment, the depth of hardening zone is increased. During electron-beam treatment, the two-layer hardening zone forms.

  20. Two-stage surface freezing of a single top layer in a smectic-A membrane.

    PubMed

    de Jeu, Wim H; Fera, Andrea; Konovalov, Oleg; Ostrovskii, Boris I

    2003-02-01

    The crystallization of a single liquid top layer of smectic membranes of the compound 4O.8 has been studied with grazing-incidence x-ray diffraction. As this process takes place in two steps, involving an intermediate hexatic smectic-B layer before the final crystalline-B surface structure is reached, it provides a model for melting in two dimensions. The positional order has been investigated quantitatively by measuring the scattering profiles and the associated correlation lengths. The surface liquid-hexatic phase transition is found to be continuous, while the hexatic-crystal transition is weakly first order with an abrupt change of the in-plane positional correlations. The surface phase transitions do not modify the liquid in-plane structure of the interior layers. PMID:12636645

  1. Photoinduced semiconductor-metal phase transition in the surface layer of vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Semenov, A. L.

    2007-12-01

    The photoinduced semiconductor-metal phase transition occurring for a time ? t < 1 ps in the surface layer of vanadium dioxide is studied theoretically. A nonthermal mechanism of instability development is considered. An equation for the order parameter ? of the photoinduced semiconductor-metal phase transition is derived. It is shown that the transition of the surface layer of VO2 to the metallic state requires irradiation by a laser pulse whose energy density W exceeds a critical value W c. The phase transition is initiated at the surface, after which the interface propagates deep into the sample. The critical energy density W c, the velocity of propagation of the metal-semiconductor interface, the thickness z 0, and the characteristic time ? t of formation of the metal layer are calculated. The theoretical results obtained are in agreement with the experimental data on irradiation of vanadium dioxide single crystals by high-intensity laser pulses.

  2. Surface Modified Particles By Multi-Step Addition And Process For The Preparation Thereof

    DOEpatents

    Cook, Ronald Lee (Lakewood, CO); Elliott, Brian John (Superior, CO); Luebben, Silvia DeVito (Golden, CO); Myers, Andrew William (Arvada, CO); Smith, Bryan Matthew (Boulder, CO)

    2006-01-17

    The present invention relates to a new class of surface modified particles and to a multi-step surface modification process for the preparation of the same. The multi-step surface functionalization process involves two or more reactions to produce particles that are compatible with various host systems and/or to provide the particles with particular chemical reactivities. The initial step comprises the attachment of a small organic compound to the surface of the inorganic particle. The subsequent steps attach additional compounds to the previously attached organic compounds through organic linking groups.

  3. Deducing droplet concentration and supersaturation in marine boundary layer clouds from surface aerosol measurements

    NASA Astrophysics Data System (ADS)

    Hoppel, W. A.; Frick, G. M.; Fitzgerald, J. W.

    1996-11-01

    Air parcels in the marine boundary layer (MBL) are mixed up through nonprecipitating clouds at the top of the MBL many times (on average) before they can be removed by precipitation scavenging. The equivalent dry size of the particles (cloud condensation nuclei, CCN) upon which droplets are formed increases because of liquid phase oxidation of soluble trace gases during the cloud processing. The observed separation of the submicron size distribution into an interstitial mode and cloud droplet residue mode makes it possible to infer the effective MBL cloud supersaturation and cloud droplet concentrations from surface measurements of the aerosol size distribution during periods when nonprecipitating MBL clouds are present in the back trajectory and the MBL is well mixed. The effect of particle composition on the accuracy of the inferred cloud supersaturations is evaluated. A large database of hundreds of size distributions taken on an Atlantic and a Pacific cruise and an airship flight off the Oregon coast are used to calculate the range of effective MBL cloud supersaturations and droplet concentrations encountered during these expeditions. The inferred droplet concentrations on the Pacific cruise were mostly in the 25 to 150 cm-3 range, whereas they were mostly in the 50 to 500 cm-3 range for the Atlantic cruise. The inferred effective supersaturation in the tropical MBL clouds was typically in the 0.15% to 0.25% range. Recent work of Tang and Munkelwitz [1994] would indicate that particles consisting of mixtures of ammonium sulfate and sulfuric acid would not have recrystalized in the differential mobility analyzer (DMA) within the range of relative humidities (45% to 60%) at which the DMA was operated. At these humidities the hydrated size can be as much as 20% greater than the dry size. Corrections for the hydrated size within the DMA at the time of measurement are included and are also used to correct previous measurements of the relationship between dry size and critical supersaturation made using the Naval Research Laboratory (NRL) DMA and NRL thermal gradient CCN counters.

  4. Optical properties of thin semiconductor device structures with reflective back-surface layers

    SciTech Connect

    Clevenger, M.B.; Murray, C.S.; Ringel, S.A.; Sachs, R.N.; Qin, L.; Charache, G.W.; Depoy, D.M.

    1998-11-01

    Ultrathin semiconductor device structures incorporating reflective internal or back surface layers have been investigated recently as a means of improving photon recuperation, eliminating losses associated with free carrier absorption in conductive substrates and increasing the above bandgap optical thickness of thermophotovoltaic device structures. However, optical losses in the form of resonance absorptions in these ultrathin devices have been observed. This behavior in cells incorporating epitaxially grown FeAl layers and in devices that lack a substrate but have a back-surface reflector (BSR) at the rear of the active layers has been studied experimentally and modeled effectively. For thermophotovoltaic devices, these resonances represent a significant loss mechanism since the wavelengths at which they occur are defined by the active TPV cell thickness of {approximately} 2--5 microns and are in a spectral range of significant energy content for thermal radiators. This study demonstrates that ultrathin semiconductor structures that are clad by such highly reflective layers or by films with largely different indices of refraction display resonance absorptions that can only be overcome through the implementation of some external spectral control strategy. Effective broadband, below-bandgap spectral control using a back-surface reflector is only achievable using a large separation between the TPV active layers and the back-surface reflector.

  5. Optical properties of thin semiconductor device structures with reflective back-surface layers

    SciTech Connect

    Clevenger, M.B.; Murray, C.S.; Sacks, R.N.; Qin, L.; Depoy, D.M.

    1999-03-01

    Ultrathin semiconductor device structures incorporating reflective internal or back surface layers have been investigated recently as a means of improving photon recuperation eliminating losses associated with free carrier absorption in conductive substrates and increasing the above bandgap optical thickness of thermophotovoltaic device structures. However, optical losses in the form of resonance absorptions in these ultrathin devices have been observed. This behavior in cells incorporating epitaxially grown FeAl layers and in devices that lack a substrate but have a back-surface reflector (BSR) at the rear of the active layers has been studied experimentally and modeled effectively. For thermophotovoltaic devices, these resonances represent a significant loss mechanism since the wavelengths at which they occur are defined by the active TPV cell thickness of {approximately}2{endash}5 microns and are in a spectral range of significant energy content for thermal radiators. This study demonstrates that ultrathin semiconductor structures that are clad by such highly reflective layers or by films with largely different indices of refraction display resonance absorptions that can only be overcome through the implementation of some external spectral control strategy. Effective broadband below-bandgap spectral control using a back-surface reflector is only achievable using a large separation between the TPV active layers and the back-surface reflector. {copyright} {ital 1999 American Institute of Physics.}

  6. Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification

    PubMed Central

    Lassnig, R.; Hollerer, M.; Striedinger, B.; Fian, A.; Stadlober, B.; Winkler, A.

    2015-01-01

    In this work we present in situ electrical and surface analytical, as well as ex situ atomic force microscopy (AFM) studies on temperature and surface condition induced pentacene layer growth modifications, leading to the selection of optimized deposition conditions and entailing performance improvements. We prepared p++-silicon/silicon dioxide bottom-gate, gold bottom-contact transistor samples and evaluated the pentacene layer growth for three different surface conditions (sputtered, sputtered + carbon and unsputtered + carbon) at sample temperatures during deposition of 200 K, 300 K and 350 K. The AFM investigations focused on the gold contacts, the silicon dioxide channel region and the highly critical transition area. Evaluations of coverage dependent saturation mobilities, threshold voltages and corresponding AFM analysis were able to confirm that the first 3–4 full monolayers contribute to the majority of charge transport within the channel region. At high temperatures and on sputtered surfaces uniform layer formation in the contact–channel transition area is limited by dewetting, leading to the formation of trenches and the partial development of double layer islands within the channel region instead of full wetting layers. By combining the advantages of an initial high temperature deposition (well-ordered islands in the channel) and a subsequent low temperature deposition (continuous film formation for low contact resistance) we were able to prepare very thin (8 ML) pentacene transistors of comparably high mobility. PMID:26543442

  7. Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export

    NASA Technical Reports Server (NTRS)

    Loughner, Christopher P.; Tzortziou, Maria; Follette-Cook, Melanie; Pickering, Kenneth E.; Goldberg, Daniel; Satam, Chinmay; Weinheimer, Andrew; Crawford, James H.; Knapp, David J.; Montzka, Denise D.; Diskin, Glenn S.; Dickerson, Russell R.

    2014-01-01

    Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.

  8. Nuclear magnetic resonance-based study of ordered layering on the surface of alumina nanoparticles in water

    E-print Network

    Gerardi, Craig

    Layering of water molecules on the surface of alumina nanoparticles in an alumina/water nanofluid is studied using nuclear magnetic resonance (NMR). The data suggest that a thin ordered layer ( ? 1.4?nm) of water molecules ...

  9. Fullerene-containing liquid crystal spatiotemporal light modulators with surface-electromagnetic-wave-treated conducting layers

    NASA Astrophysics Data System (ADS)

    Vasilyev, P. Ya.; Kamanina, N. V.

    2007-01-01

    We have studied the switching characteristics of multilayer electrooptical structures comprising quartz substrates, transparent conducting layers, and an oriented nematic liquid crystal (NLC) film doped with photosensitive charge-transfer complexes based on electrooptically active organic monomer or polymer molecules and fullerenes. The transparent conducting layers treated with surface electromagnetic waves are used for the orientation of NLC molecules. The surface relief with variable permittivity, which is created by this treatment, not only ensures the alignment of NLC molecules, but also significantly influences the relaxation times of the electrooptical mesophase, thus making possible effective control over the switching times of the electrooptical light modulator within 1-1.5 ms.

  10. Mechanical characteristics of SiC coating layer in TRISO fuel particles

    SciTech Connect

    Hosemann, Peter; Martos, J. N.; Frazer, D.; Vasudevamurthy, Gokul; Byun, Thak Sang; Hunn, John D; Jolly, Brian C; Terrani, Kurt A; Okuniewski, Maria A.

    2013-01-01

    Tristructural isotropic (TRISO) particles are considered as advanced fuel forms for a variety of fission platforms. While these fuel structures have been tested and deployed in reactors, the mechanical properties of these structures as a function of production parameters need to be investigated in order to ensure their reliability during service. Nanoindentation techniques, indentation crack testing, and half sphere crush testing were utilized in order to evaluate the integrity of the SiC coating layer that is meant to prevent fission product release in the coated particle fuel form. The results are complimented by scanning electron microscopy (SEM) of the grain structure that is subject to change as a function of processing parameters and can alter the mechanical properties such as hardness, elastic modulus, fracture toughness and fracture strength. Through utilization of these advanced techniques, subtle differences in mechanical properties that can be important for in-pile fuel performance can be distinguished and optimized in iteration with processing science of coated fuel particle production.

  11. Mechanical Characteristics of SiC Coating Layer in TRISO Fuel Particles

    SciTech Connect

    P. Hosemann; J. N. Martos; D. Frazer; G. Vasudevamurthy; T. S. Byun; J. D. Hunn; B. C. Jolly; K. Terrani; M. Okuniewski

    2013-11-01

    Tristructural isotropic (TRISO) particles are considered as advanced fuel forms for a variety of fission platforms. While these fuel structures have been tested and deployed in reactors, the mechanical properties of these structures as a function of production parameters need to be investigated in order to ensure their reliability during service. Nanoindentation techniques, indentation crack testing, and half sphere crush testing were utilized in order to evaluate the integrity of the SiC coating layer that is meant to prevent fission product release in the coated particle fuel form. The results are complimented by scanning electron microscopy (SEM) of the grain structure that is subject to change as a function of processing parameters and can alter the mechanical properties such as hardness, elastic modulus, fracture toughness and fracture strength. Through utilization of these advanced techniques, subtle differences in mechanical properties that can be important for in-pile fuel performance can be distinguished and optimized in iteration with processing science of coated fuel particle production.

  12. Particle-Surface Interaction Databases in ALADDIN Format

    DOE Data Explorer

    These databases are listed as recommended resources by CFADC. They represent older data and are not necessarily DOE-originated or funded. However, they are cited in the DOE Data Explorer because of their availability through a DOE Data Center. The citations for these databases are: 1) Energy Dependence of Ion-Induced Sputtering Yields of Monatomic Solids in the Low Energy Region. N. Matsunami, Y. Yamamura, N. Itoh, H. Tawara, T. Kawamura. Report IPPJ-AM-52, Institute of Plasma Physics (National Institute for Fusion Science), Nagoya, Japan (1987); 2) Energy Dependence of the Yields of Ion-Induced Sputtering of Monatomic Solids. N. Maksunami, Y. Yamaura, Y. Itikawa, N. Itoh, Y. Kazumata, S. Miyagawer, K. Morita, R. Strimizu, H. Tawara. Report IPPJ-AM-32, Institute of Plasma Physics (National Institute for Fusion Science), Nagoya, Japan (1988); 3) Particle Reflection from Surfaces - A Recommended Data Base. E. W. Thomas, R. K. Janev and J. J. Smith. Report IAEA INDC(NDS)-249, July 1991; 4) Sputtering Data. W. Eckstein, C. Garcia-Rosales, J. Roth and W. Ottenberger. Max-Plank-Institute fur Plasmaphysik Report IPP9/82 (1993); 5) An Evaluated Database for Sputtering. E. W. Thomas, R. K. Janev, J. Botero, J. J. Smith and Y. Qiu. Report IAEA INDC(NDS)-287 (1993).

  13. Layers: A molecular surface peeling algorithm and its applications to analyze protein structures.

    PubMed

    Karampudi, Naga Bhushana Rao; Bahadur, Ranjit Prasad

    2015-01-01

    We present an algorithm 'Layers' to peel the atoms of proteins as layers. Using Layers we show an efficient way to transform protein structures into 2D pattern, named residue transition pattern (RTP), which is independent of molecular orientations. RTP explains the folding patterns of proteins and hence identification of similarity between proteins is simple and reliable using RTP than with the standard sequence or structure based methods. Moreover, Layers generates a fine-tunable coarse model for the molecular surface by using non-random sampling. The coarse model can be used for shape comparison, protein recognition and ligand design. Additionally, Layers can be used to develop biased initial configuration of molecules for protein folding simulations. We have developed a random forest classifier to predict the RTP of a given polypeptide sequence. Layers is a standalone application; however, it can be merged with other applications to reduce the computational load when working with large datasets of protein structures. Layers is available freely at http://www.csb.iitkgp.ernet.in/applications/mol_layers/main. PMID:26553411

  14. Layers: A molecular surface peeling algorithm and its applications to analyze protein structures

    PubMed Central

    Karampudi, Naga Bhushana Rao; Bahadur, Ranjit Prasad

    2015-01-01

    We present an algorithm ‘Layers’ to peel the atoms of proteins as layers. Using Layers we show an efficient way to transform protein structures into 2D pattern, named residue transition pattern (RTP), which is independent of molecular orientations. RTP explains the folding patterns of proteins and hence identification of similarity between proteins is simple and reliable using RTP than with the standard sequence or structure based methods. Moreover, Layers generates a fine-tunable coarse model for the molecular surface by using non-random sampling. The coarse model can be used for shape comparison, protein recognition and ligand design. Additionally, Layers can be used to develop biased initial configuration of molecules for protein folding simulations. We have developed a random forest classifier to predict the RTP of a given polypeptide sequence. Layers is a standalone application; however, it can be merged with other applications to reduce the computational load when working with large datasets of protein structures. Layers is available freely at http://www.csb.iitkgp.ernet.in/applications/mol_layers/main. PMID:26553411

  15. Layers: A molecular surface peeling algorithm and its applications to analyze protein structures

    NASA Astrophysics Data System (ADS)

    Karampudi, Naga Bhushana Rao; Bahadur, Ranjit Prasad

    2015-11-01

    We present an algorithm ‘Layers’ to peel the atoms of proteins as layers. Using Layers we show an efficient way to transform protein structures into 2D pattern, named residue transition pattern (RTP), which is independent of molecular orientations. RTP explains the folding patterns of proteins and hence identification of similarity between proteins is simple and reliable using RTP than with the standard sequence or structure based methods. Moreover, Layers generates a fine-tunable coarse model for the molecular surface by using non-random sampling. The coarse model can be used for shape comparison, protein recognition and ligand design. Additionally, Layers can be used to develop biased initial configuration of molecules for protein folding simulations. We have developed a random forest classifier to predict the RTP of a given polypeptide sequence. Layers is a standalone application; however, it can be merged with other applications to reduce the computational load when working with large datasets of protein structures. Layers is available freely at http://www.csb.iitkgp.ernet.in/applications/mol_layers/main.

  16. Experimental data and model for the turbulent boundary layer on a convex, curved surface

    NASA Technical Reports Server (NTRS)

    Gillis, J. C.; Johnson, J. P.; Moffat, R. J.; Kays, W. M.

    1981-01-01

    Experiments were performed to determine how boundary layer turbulence is affected by strong convex curvature. The data gathered on the behavior of the Reynolds stress suggested the formulation of a simple turbulence model. Data were taken on two separate facilities. Both rigs had flow from a flat surface, over a convex surface with 90 deg of turning and then onto a flat recovery surface. The geometry was adjusted so that, for both rigs, the pressure gradient along the test surface was zero. Two experiments were performed at delta/R approximately 0.10, and one at weaker curvature with delta/R approximately 0.05. Results show that after a sudden introduction of curvature the shear stress in the outer part of the boundary layer is sharply diminished and is even slightly negative near the edge. The wall shear also drops off quickly downstream. When the surface suddenly becomes flat again, the wall shear and shear stress profiles recover very slowly towards flat wall conditions. A simple turbulence model, which was based on the theory that the Prandtl mixing length in the outer layer should scale on the velocity gradient layer, was shown to account for the slow recovery.

  17. Surface electrical properties of coal particles on interaction with polyelectrolytes

    SciTech Connect

    Evmenova, G.L.

    2006-07-15

    The paper presents experimental data obtained in determining an electrokinetic potential of coal particles during their interaction with coagulation and flocculation agents. It is established that flocculation agents allow decreasing electrokinetic potential of mineral particles up to the values that promote aggregation of the particles thereby enabling the control over the stability of coal dispersions.

  18. Relaxation of surface tension in the free-surface boundary layer of simple Lennard-Jones liquids

    E-print Network

    Lukyanov, Alex

    2013-01-01

    In this paper we use molecular dynamics (MD) to answer a classical question: how does the surface tension on a liquid/gas interface appear? After defining surface tension from the first principles and performing several consistency checks, we perform a dynamic experiment with a single simple liquid nanodroplet. At time zero, we remove all molecules of the interfacial layer, creating a fresh bare interface with the bulk arrangement of molecules. After that the system evolves towards equilibrium, and the expected surface tension is re-established. We found that the system relaxation consists of three distinct stages. First, the mechanical balance is quickly re-established. During this process the notion of surface tension is meaningless. In the second stage, the surface tension equilibrates, and the density profile broadens to a value which we call "intrinsic" interfacial width. During the third stage, the density profile continues to broaden due to capillary wave excitations, which does not however affect the ...

  19. Surface layer ozone and nitric oxides in the Arctic: The inuence of boundary layer dynamics, snowpack chemistry, surface exchanges, and seasonality

    NASA Astrophysics Data System (ADS)

    Van Dam, Brie A.

    The snowpack is a region of active chemistry. Aqueous chemistry in a quasi-liquid layer on snow grains and gas-phase chemical reactions in snow interstitial air can lead to the production or destruction of important trace gases. Physical transport parameters such as wind pumping and diffusion affect the vertical distribution of gases within the snowpack. The resulting emission or uptake of trace gases at the atmosphere-snowpack interface can have significant in uence on the chemistry of the lower atmosphere. In this work the dynamic interactions between the snowpack and atmosphere are examined from multiple perspectives. The primary focus is on ozone (O3) and nitrogen oxides (NOx) in the Arctic, a region undergoing widespread environmental change. To investigate an ice-sheet location with year round snow cover, data from a two-year campaign at Summit, Greenland are implemented. At Summit this study examines (1) the processes contributing to vigorous chemistry in snow interstitial air, and (2) the role of the boundary layer over snow in determining surface layer NOx. Physical and chemical processes are shown to contribute to distinct seasonal and diurnal cycles of O3, NO, and NO2 in the snowpack. Boundary layer depths estimated from sonic anemometer turbulence quantities are used alongside sodar-derived values to show that the depth of the stable to weakly stable boundary layer at Summit was not a primary factor in determining NO x in early summer. Motivated by observations of an increase in the length of the snow-free season in the Arctic in recent decades, data from a one-year experiment at the seasonally-snow covered location of Toolik Lake, AK are also incorporated. This study shows the first observations of springtime ozone depletion events at a location over 200 km from the coast in the Arctic. FLEXPART analysis is used to illustrate that these inland events are linked to transport conditions. Lastly at this location, eddy-covariance O3 uxes were calculated to characterize deposition of O3 to the Arctic tundra surface in the summertime. Surface deposition in combination with stability conditions is shown to contribute to the development of a diurnal cycle in surface O 3 with amplitude ranging 5-35 ppbv.

  20. Particle Size Metrology: Comparison Between Aerosol Electrical Mobility and Laser Surface Light Scattering Techniques

    SciTech Connect

    Germer, Thomas A.; Mulholland, George W.

    2005-09-09

    Two different methods used to determine the size of polystyrene spheres were found to disagree by about 5 %. One of the methods, differential mobility analysis, measures particles in the aerosol phase, while the other, laser surface light scattering, measures them bound to a surface. It is believed that the observed discrepancy results from deformation of the particle when it is bound to the surface. The implications of such a deformation on scanning surface inspection system calibration is discussed.

  1. Influence of substrate preparation on the shaping of the topography of the surface of nanoceramic oxide layers

    NASA Astrophysics Data System (ADS)

    Bara, Marek; Kubica, Marek

    2014-02-01

    The paper discusses the shaping mechanism and changes occurring in the structure and topography of the surface of nanoceramic oxide layers during their formation. The paper presents the influence of substrate preparation on the surface topography of oxide layers. The layers were produced via hard anodizing on the EN AW-5251 aluminum alloy. The layers obtained were subjected to microscope examinations, image and chemical composition analyses, and stereometric examinations. Heredity of substrate properties in the topography of the surface of nanoceramic oxide layers formed as a result of electrochemical oxidation has been shown.

  2. Deformation characteristics of the near-surface layers of zirconia ceramics implanted with aluminum ions

    NASA Astrophysics Data System (ADS)

    Ghyngazov, S. A.; Vasiliev, I. P.; Frangulyan, T. S.; Chernyavski, A. V.

    2015-10-01

    The effect of ion treatment on the phase composition and mechanical properties of the near-surface layers of zirconium ceramic composition 97 ZrO2-3Y2O3 (mol%) was studied. Irradiation of the samples was carried out by accelerated ions of aluminum with using vacuum-arc source Mevva 5-Ru. Ion beam had the following parameters: the energy of the accelerated ions E = 78 keV, the pulse current density Ji = 4mA / cm2, current pulse duration equal ? = 250 mcs, pulse repetition frequency f = 5 Hz. Exposure doses (fluence) were 1016 ? 1017 ion/cm2. The depth distribution implanted ions was studied by SIMS method. It is shown that the maximum projected range of the implanted ions is equal to 250 nm. Near-surface layers were investigated by X-ray diffraction (XRD) at fixed glancing incidence angle. It is shown that implantation of aluminum ions into the ceramics does not lead to a change in the phase composition of the near-surface layer. The influence of implanted ions on mechanical properties of ceramic near-surface layers was studied by the method of dynamic nanoindentation using small loads on the indenter P=300 mN. It is shown that in ion- implanted ceramic layer the processes of material recovery in the deformed region in the unloading mode proceeds with higher efficiency as compared with the initial material state. The deformation characteristics of samples before and after ion treatment have been determined from interpretation of the resulting P-h curves within the loading and unloading sections by the technique proposed by Oliver and Pharr. It was found that implantation of aluminum ions in the near-surface layer of zirconia ceramics increases nanohardness and reduces the Young's modulus.

  3. Layer-by-layer TiO(2)/WO(3) thin films as efficient photocatalytic self-cleaning surfaces.

    PubMed

    Patrocinio, Antonio Otavio T; Paula, Leonardo F; Paniago, Roberto M; Freitag, Janna; Bahnemann, Detlef W

    2014-10-01

    New TiO2/WO3 films were produced by the layer-by-layer (LbL) technique and successfully applied as self-cleaning photocatalytic surfaces. The films were deposited on fluorine doped tin oxide (FTO) glass substrates from the respective metal oxide nanoparticles obtained by the sol-gel method. Thirty alternative immersions in pH = 2 TiO2 and pH = 10 WO3 sols resulted in ca. 400 nm thick films that exhibited a W(VI)/Ti(IV) molar ratio of 0.5, as determined by X-ray photoelectron spectroscopy. Scanning electron microscopy, along with atomic force images, showed that the resulting layers are constituted by aggregates of very small nanoparticles (<20 nm) and exhibited nanoporous and homogeneous morphology. The electronic and optical properties of the films were investigated by UV-vis spectrophotometry and ultraviolet photoelectron spectroscopy. The films behave as nanoscale heterojunctions, and the presence of WO3 nanoparticles caused a decrease in the optical band gap of the bilayers compared to that of pure LbL TiO2 films. The TiO2/WO3 thin films exhibited high hydrophilicity, which is enhanced after exposition to UV light, and they can efficiently oxidize gaseous acetaldehyde under UV(A) irradiation. Photonic efficiencies of ? = 1.5% were determined for films constituted by 30 TiO2/WO3 bilayers in the presence of 1 ppm of acetaldehyde, which are ?2 times higher than those observed for pure LbL TiO2 films. Therefore, these films can act as efficient and cost-effective layers for self-cleaning, antifogging applications. PMID:25216058

  4. Boundary layer new particle formation over East Antarctic sea ice - possible Hg driven nucleation?

    NASA Astrophysics Data System (ADS)

    Humphries, R. S.; Schofield, R.; Keywood, M.; Ward, J.; Pierce, J. R.; Gionfriddo, C. M.; Tate, M.; Krabbenhoft, D.; Galbally, I. E.; Molloy, S. B.; Klekociuk, A.; Johnston, P. V.; Kreher, K.; Thomas, A. J.; Robinson, A. D.; Harris, N. R. P.; Johnson, R.; Wilson, S. R.

    2015-07-01

    Aerosol observations above the Southern Ocean and Antarctic sea ice are scarce. Measurements of aerosols and atmospheric composition were made in East Antarctic pack ice on-board the Australian icebreaker Aurora Australis during the spring of 2012. One particle formation event was observed during the 32 days of observations. This event occurred on the only day to exhibit extended periods of global irradiance in excess of 600 W m-2. Within the single air-mass influencing the measurements, number concentrations of particles larger than 3 nm (CN3) reached almost 7700 cm-3 within a few hours of clouds clearing, and grew at rates of 5.6 nm h-1. Formation rates of 3 nm particles were in the range of those measured at other Antarctic locations at 0.2-1.1 ± 0.1 cm-3 s-1. Our investigations into the nucleation chemistry found that there were insufficient precursor concentrations for known halogen or organic chemistry to explain the nucleation event. Modelling studies utilising known sulfuric acid nucleation schemes could not simultaneously reproduce both particle formation or growth rates. Surprising correlations with Total Gaseous Mercury (TGM) were found that, together with other data, suggest a mercury driven photochemical nucleation mechanism may be responsible for aerosol nucleation. Given the very low vapour pressures of the mercury species involved, this nucleation chemistry is likely only possible where pre-existing aerosol concentrations are low and both TGM concentrations and solar radiation levels are relatively high (~ 1.5 ng m-3 and ≥ 600 W m-2, respectively), such as those observed in the Antarctic sea ice boundary layer in this study or in the global free-troposphere, particularly in the Northern Hemisphere.

  5. Spray dried mannitol carrier particles with tailored surface properties--the influence of carrier surface roughness and shape.

    PubMed

    Littringer, E M; Mescher, A; Schroettner, H; Achelis, L; Walzel, P; Urbanetz, N A

    2012-09-01

    The aim of this work was to study the performance of mannitol carrier particles of tailored surface roughness in dry powder inhaler formulations. Carrier particles of different surface roughness were prepared by spray drying of aqueous mannitol solutions at different outlet temperatures at a pilot-scale spray dryer. However, the carrier particles did not only change in surface roughness but also in shape. This is why the impact of carrier shape on the performance of carrier based dry powder inhalates was evaluated also. The highest fine particle fraction (FPF), that is the amount of active pharmaceutical substance, delivered to the deep lung, is achieved when using rough, spherical carrier particles (FPF=29.23 ± 4.73%, mean arithmetic average surface roughness (mean R(a))=140.33 ± 27.75 nm, aspect ratio=0.925). A decrease of surface roughness (mean R(a)=88.73 ± 22.25 nm) leads to lower FPFs (FPF=14.62 ± 1.18%, aspect ratio=0.918). The FPF further decreases when irregular shaped particles are used. For those particles, the micronized active accumulates within the cavities of the carrier surface during the preparation of the powder mixtures. Upon inhalation, the cavities may protect the active from being detached from the carrier. PMID:22595133

  6. Spectroscopic detection of atom-surface interactions in an atomic-vapor layer with nanoscale thickness

    NASA Astrophysics Data System (ADS)

    Whittaker, K. A.; Keaveney, J.; Hughes, I. G.; Sargsyan, A.; Sarkisyan, D.; Adams, C. S.

    2015-11-01

    We measure the resonance line shape of atomic-vapor layers with nanoscale thickness confined between two sapphire windows. The measurement is performed by scanning a probe laser through resonance and collecting the scattered light. The line shape is dominated by the effects of Dicke narrowing, self-broadening, and atom-surface interactions. By fitting the measured line shape to a simple model we discuss the possibility to extract information about the atom-surface interaction.

  7. Modification of the surface layer of the system coating (TiCuN)/substrate (A7) by an intensive electron beam

    NASA Astrophysics Data System (ADS)

    Ivanov, Yu F.; Potekaev, A. I.; Petrikova, E. A.; Ivanova, O. V.; Ikonnikova, I. A.; Shugurov, V. V.; Krysina, O. V.; Klopotov, A. A.

    2015-04-01

    In order to study the conditions of modification of the surface layer of the system coating (TiCuN)/substrate (A7) an analysis of processes occurring in the surface layer of the system wear-resistant coating/substrate irradiated by an intensive pulsed electron beam at a submillisecond exposure time has been carried out on the example of aluminum and titanium nitride. Irradiation has been carried out under conditions ensuring melting and crystallization of the surface layer of the material by a nonequilibrium phase diagram. It has been experimentally established that irradiation of the system coating (TiCuN)/substrate (A7) by an intensive electron beam is accompanied by changes in the phase composition of the material. It is evident that nanostructuring of the aluminum layer adjacent to the coating, and formation in it of nitride phase particles will contribute to hardening of the surface layer of the material, creating a transition sublayer between a solid coating and a relatively soft volume. The carried out analysis shows that binary nitrides based on TiN1-x are most likely to form under nonequilibrium conditions, since the homogeneity range of this compound is rather large. On the other hand, formation of the ternary compound Ti3CuN, which can be formed after an arc plasma-assisted deposition of titanium nitride of the composition TiCuN and by the subsequent intensive pulsed electron beam exposure, cannot be excluded.

  8. Quantitative study for surface properties of AlGaN epi-layers by ARXPS

    NASA Astrophysics Data System (ADS)

    Yang, Hongquan; Zhang, Xiong; Wang, Shuchang; Zhu, Min; Cui, Yiping

    2015-11-01

    The surface chemical properties of AlxGa1-xN (x=0.35, 0.47, 0.60) epi-layers grown on c-plane sapphire substrates by metal-organic chemical vapor deposition (MOCVD) were quantitatively characterized by angle-resolved X-ray photoelectron spectroscopy (ARXPS). The results suggested that the Ga Auger peak for the AlxGa1-xN epi-layers was greatly suppressed with increasing Al composition since the amount of N-Ga bonds were dramatically decreased. Moreover, more Al-O bonds were found near the surfaces of the AlxGa1-xN epi-layers with relatively high Al composition due to the large chemical affinity of aluminum to oxygen. In addition, the Al composition in the AlxGa1-xN epi-layers was showed to be non-uniform because Al atom has higher oxidizability and lower mobility than Ga atom, especially for the AlxGa1-xN epi-layers with relatively high Al composition. Our work should be very helpful to further investigation of the surface properties for making Al-containing III-nitrides optoelectronic devices.

  9. Effects of surface source/sink distributions on the flux-gradient similarity in the unstable surface layer

    NASA Astrophysics Data System (ADS)

    Huo, Qing; Cai, Xuhui; Kang, Ling; Zhang, Hongsheng; Song, Yu

    2015-01-01

    Based on the micrometeorological measurements at a heterogeneous farmland in the North China Plain, this study focused on the effects of surface source/sink distributions on the flux-gradient similarity theory in the unstable surface layer. Firstly, the quality of the micrometeorological measurements was evaluated by the analysis of the surface energy balance closure and the integral turbulence characteristics. In general, a 22 % deficit of energy balance was found at this site, with the sum of sensible and latent heat being smaller than the available energy. The normalized standard deviations of turbulent quantities behaved in accordance with Monin-Obukhov similarity theory. However, slight departures from the classical formulations might be caused by the surface heterogeneity. Then, the applicability of flux-gradient similarity over the heterogeneous surface was examined. The observed normalized wind gradients agreed with the classical universal function established over homogeneous surface. However, due to the effects of surface source/sink distributions, the observed normalized humidity and temperature gradients deviated from the classical universal functions. Our study shows that the classical universal functions, when adjusted by a coefficient considering the effects of surface heterogeneity, can be utilized to estimate fluxes via gradient method even though over the heterogeneous surface. This adjustment coefficient was found to decrease linearly from unity with the increase of the absolute value of the vertical flux divergence.

  10. The mechanical properties of a surface-modified layer on poly(dimethylsiloxane)

    PubMed Central

    Mills, K. L.; Zhu, Xiaoyue; Takayama, Shuichi; Thouless, M. D.

    2009-01-01

    Surface-modification of the elastomer poly(dimethylsiloxane) by exposure to oxygen plasma for four minutes creates a thin, stiff film. In this study, the thickness and mechanical properties of this surface-modified layer were determined. Using the phase image capabilities of a tapping-mode atomic-force microscope, the surface-modified region was distinguished from the bulk PDMS; specifically, it suggested a graded surface layer to a depth of about 200 nm. Load-displacement data for elastic indentation using a compliant AFM cantilever was analyzed as a plate bending on an elastic foundation to determine the elastic modulus of the surface (37 MPa). An applied uniaxial strain generated a series of parallel nano-cracks with spacing on the order of a few microns. Numerical analyses of this cracking phenomenon showed that the depth of these cracks was in the range of 300–600 nm and that the surface layer was extremely brittle, with its toughness in the range of 0.1–0.3 J/m2. PMID:19779588

  11. Non-linear boundary-layer receptivity due to distributed surface roughness

    NASA Technical Reports Server (NTRS)

    Amer, Tahani Reffet; Selby, Gregory V.

    1995-01-01

    The process by which a laminar boundary layer internalizes the external disturbances in the form of instability waves is known as boundary-layer receptivity. The objective of the present research was to determine the effect of acoustic excitation on boundary-layer receptivity for a flat plate with distributed variable-amplitude surface roughness through measurements with a hot-wire probe. Tollmien-Schlichting (T-S) mode shapes due to surface-roughness receptivity have also been determined, analyzed, and shown to be in agreement with theory and other experimental work. It has been shown that there is a linear relationship between the surface roughness and receptivity for certain roughness configurations with constant roughness wavelength. In addition, strong nonlinear receptivity effects exist for certain surface roughness configurations over a band where the surface roughness and T-S wavelength are matched. The results from the present experiment follow the trends predicted by theory and other experimental work for linear receptivity. In addition, the results show the existence of nonlinear receptivity effects for certain combinations of surface roughness elements.

  12. Non-linear boundary-layer receptivity due to distributed surface roughness

    NASA Technical Reports Server (NTRS)

    Amer, Tahani Reffet

    1995-01-01

    The process by which a laminar boundary layer internalizes the external disturbances in the form of instability waves is known as boundary-layer receptivity. The objective of the present research was to determine the effect of acoustic excitation on boundary-layer receptivity for a flat plate with distributed variable-amplitude surface roughness through measurements with a hot-wire probe. Tollmien-Schlichting mode shapes due to surface roughness receptivity have also been determined, analyzed, and shown to be in agreement with theory and other experimental work. It has been shown that there is a linear relationship between the surface roughness and receptivity for certain roughness configurations with constant roughness wavelength. In addition, strong non-linear receptivity effects exist for certain surface roughness configurations over a band where the surface roughness and T-S wavelength are matched. The results from the present experiment follow the trends predicted by theory and other experimental work for linear receptivity. In addition, the results show the existence of non-linear receptivity effects for certain combinations of surface roughness elements.

  13. Marine Surface Layer Characteristics Over the Summertime Costal Water Off Virginia Beach

    NASA Astrophysics Data System (ADS)

    Cherrett, R.; Wang, Q.; Lind, R.; Kalogiros, J.; Horgan, K.; Guest, P. S.; Doyle, J. D.

    2013-12-01

    As part of the Trident Warrior Exercise 2013 (TW13), measurements of the atmospheric surface layer characteristics off the coast of Virginia Beach, VA were made using a combination of drifting flux buoy, rawinsonde, and tether-sonde between July 13 and July 18, 2013. Although the measurement period covered only a few days, the surface layer measurements reveal the complex atmospheric surface layer structure and its interaction with the upper ocean. This presentation will focus on results from the drifting flux buoy equipped to sample turbulent fluxes of momentum and virtual temperature and the vertical variation of mean thermodynamic and wind in the lowest 3.5 m above the immediate surface. Measurements of the flux buoy were made on three days covering weakly stable, stable, and unstable cases with variable wind conditions. Since the flux buoy is also capable of sampling the 2-dimensional ocean surface wave spectra and three levels of ocean temperature within the top 0.5 m of the surface, the flux buoy data allow us to investigate the wave-air-sea interaction in the sampling region. The validity of the Monin-Obukhov similarity theory in low wind and swell conditions will be discussed based on the flux and profile measurements. Rawinsonde measurements will be used to extend the measurements to higher altitudes when necessary. We also plan to use the buoy measurements to evaluate mesoscale simulations from the US Navy's operational mesoscale forecast model (COAMPS).

  14. On the development of boundary layer secondary circulations resulting from horizontally varying surface heat flux

    SciTech Connect

    Shaw, W.J.; Doran, J.C.

    1994-03-01

    During the last decade there has been a surge in efforts to understand the processes at work in the inhomogeneous atmospheric boundary layer. Much of the interest in the problem has been driven by increasingly urgent needs to develop accurate assessments of man`s Contribution to climate change. It has been argued that subgrid-scale secondary circulations in the boundary layer can cause significant errors in parameterized turbulent surface fluxes. Such circulations -- variously termed ``inland breezes``, ``lake breezes``, ``snow breezes``, or ``nonclassical mesoscale circulations`` are becoming widely discussed and modeled. Because surface fluxes are part of the lower boundary condition for global climate models, it is important to understand when these circulations occur and what their effects are on overall turbulent transfer. What are not yet clear are the combinations of the ambient wind and the horizontal scale and intensity of surface flux variability under which we may expect boundary layer secondary circulations to occur. Several authors have modeled the development of these circulations for ad hoc situations of alternating surface characteristics, and SA have developed one parameterization relating the scale of surface heat flux variability and the ambient wind to the evolution of NCMCs. In this paper we present observations, collected in a region of inhomogeneous surface fluxes, that suggest the development of a ``farm breeze``, and we develop an alternative scaling argument to that of SA that better represents our measurement conditions.

  15. The dynamic deformation of a layered viscoelastic medium under surface excitation

    NASA Astrophysics Data System (ADS)

    Aglyamov, Salavat R.; Wang, Shang; Karpiouk, Andrei B.; Li, Jiasong; Twa, Michael; Emelianov, Stanislav Y.; Larin, Kirill V.

    2015-06-01

    In this study the dynamic behavior of a layered viscoelastic medium in response to the harmonic and impulsive acoustic radiation force applied to its surface was investigated both theoretically and experimentally. An analytical solution for a layered viscoelastic compressible medium in frequency and time domains was obtained using the Hankel transform. A special incompressible case was considered to model soft biological tissues. To verify our theoretical model, experiments were performed using tissue-like gel-based phantoms with varying mechanical properties. A 3.5?MHz single-element focused ultrasound transducer was used to apply the radiation force at the surface of the phantoms. A phase-sensitive optical coherence tomography system was used to track the displacements of the phantom surface. Theoretically predicted displacements were compared with experimental measurements. The role of the depth dependence of the elastic properties of a medium in its response to an acoustic pulse at the surface was studied. It was shown that the low-frequency vibrations at the surface are more sensitive to the deep layers than high-frequency ones. Therefore, the proposed model in combination with spectral analysis can be used to evaluate depth-dependent distribution of the mechanical properties based on the measurements of the surface deformation.

  16. A Unified Account of Perceptual Layering and Surface Appearance in Terms of Gamut Relativity

    PubMed Central

    Vladusich, Tony; McDonnell, Mark D.

    2014-01-01

    When we look at the world—or a graphical depiction of the world—we perceive surface materials (e.g. a ceramic black and white checkerboard) independently of variations in illumination (e.g. shading or shadow) and atmospheric media (e.g. clouds or smoke). Such percepts are partly based on the way physical surfaces and media reflect and transmit light and partly on the way the human visual system processes the complex patterns of light reaching the eye. One way to understand how these percepts arise is to assume that the visual system parses patterns of light into layered perceptual representations of surfaces, illumination and atmospheric media, one seen through another. Despite a great deal of previous experimental and modelling work on layered representation, however, a unified computational model of key perceptual demonstrations is still lacking. Here we present the first general computational model of perceptual layering and surface appearance—based on a boarder theoretical framework called gamut relativity—that is consistent with these demonstrations. The model (a) qualitatively explains striking effects of perceptual transparency, figure-ground separation and lightness, (b) quantitatively accounts for the role of stimulus- and task-driven constraints on perceptual matching performance, and (c) unifies two prominent theoretical frameworks for understanding surface appearance. The model thereby provides novel insights into the remarkable capacity of the human visual system to represent and identify surface materials, illumination and atmospheric media, which can be exploited in computer graphics applications. PMID:25402466

  17. The dynamic deformation of a layered viscoelastic medium under surface excitation.

    PubMed

    Aglyamov, Salavat R; Wang, Shang; Karpiouk, Andrei B; Li, Jiasong; Twa, Michael; Emelianov, Stanislav Y; Larin, Kirill V

    2015-06-01

    In this study the dynamic behavior of a layered viscoelastic medium in response to the harmonic and impulsive acoustic radiation force applied to its surface was investigated both theoretically and experimentally. An analytical solution for a layered viscoelastic compressible medium in frequency and time domains was obtained using the Hankel transform. A special incompressible case was considered to model soft biological tissues. To verify our theoretical model, experiments were performed using tissue-like gel-based phantoms with varying mechanical properties. A 3.5?MHz single-element focused ultrasound transducer was used to apply the radiation force at the surface of the phantoms. A phase-sensitive optical coherence tomography system was used to track the displacements of the phantom surface. Theoretically predicted displacements were compared with experimental measurements. The role of the depth dependence of the elastic properties of a medium in its response to an acoustic pulse at the surface was studied. It was shown that the low-frequency vibrations at the surface are more sensitive to the deep layers than high-frequency ones. Therefore, the proposed model in combination with spectral analysis can be used to evaluate depth-dependent distribution of the mechanical properties based on the measurements of the surface deformation. PMID:25974168

  18. Production and cell surface display of recombinant anthrax protective antigen on the surface layer of attenuated Bacillus anthracis.

    PubMed

    Wang, Yan-chun; Yuan, Sheng-ling; Tao, Hao-xia; Wang, Ling-chun; Zhang, Zhao-shan; Liu, Chun-jie

    2015-02-01

    To investigate the surface display of the anthrax protective antigen (PA) on attenuated Bacillus anthracis, a recombinant B. anthracis strain, named AP429 was constructed by integrating into the chromosome a translational fusion harboring the DNA fragments encoding the cell wall-targeting domain of the S-layer protein EA1 and the anthrax PA. Crerecombinase action at the loxP sites excised the antibiotic marker. Western blot analysis, fluorescence-activated cell sorting and immunofluorescence analysis confirmed that PA was successfully expressed on the S-layer of the recombinant antibiotic marker-free strain. Notwithstanding extensive proteolytic degradation of the hybrid protein SLHs-PA, quantitative ELISA revealed that approximately 8.1 × 10(6) molecules of SLHs-PA were gained from each Bacillus cell. Moreover, electron microscopy assay indicated that the typical S-layer structures could be clearly observed from the recombinant strain micrographs. PMID:25504373

  19. Distribution of icy particles across Enceladus' surface as derived from Cassini-VIMS measurements

    USGS Publications Warehouse

    Jaumann, R.; Stephan, K.; Hansen, G.B.; Clark, R.N.; Buratti, B.J.; Brown, R.H.; Baines, K.H.; Newman, S.F.; Bellucci, G.; Filacchione, G.; Coradini, A.; Cruikshank, D.P.; Griffith, C.A.; Hibbitts, C.A.; McCord, T.B.; Nelson, R.M.; Nicholson, P.D.; Sotin, C.; Wagner, R.

    2008-01-01

    The surface of Enceladus consists almost completely of water ice. As the band depths of water ice absorptions are sensitive to the size of particles, absorptions can be used to map variations of icy particles across the surface. The Visual and Infrared Mapping Spectrometer (VIMS) observed Enceladus with a high spatial resolution during three Cassini flybys in 2005 (orbits EN 003, EN 004 and EN 011). Based on these data we measured the band depths of water ice absorptions at 1.04, 1.25, 1.5, and 2 ??m. These band depths were compared to water ice models that represent theoretically calculated reflectance spectra for a range of particle diameters between 2 ??m and 1 mm. The agreement between the experimental (VIMS) and model values supports the assumption that pure water ice characterizes the surface of Enceladus and therefore that variations in band depth correspond to variations in water ice particle diameters. Our measurements show that the particle diameter of water ice increases toward younger tectonically altered surface units with the largest particles exposed in relatively "fresh" surface material. The smallest particles were generally found in old densely cratered terrains. The largest particles (???0.2 mm) are concentrated in the so called "tiger stripes" at the south pole. In general, the particle diameters are strongly correlated with geologic features and surface ages, indicating a stratigraphic evolution of the surface that is caused by cryovolcanic resurfacing and impact gardening. ?? 2007 Elsevier Inc. All rights reserved.

  20. Using of standard marine radar for determination of a water surface and an atmosphere near-surface layer parameters

    NASA Astrophysics Data System (ADS)

    Bogatov, Nikolay A.; Bakhanov, Victor V.; Ermoshkin, Aleksei V.; Kazakov, Vasily I.; Kemarskaya, Olga N.; Titov, Victor I.; Troitskaya, Yulia I.

    2014-10-01

    At present time radar methods of the seas and oceans diagnostics are actively developing. Using of the radar stations based on satellites and planes allows to receive information on a sea surface and a atmosphere near-surface layer with coverage of big water surface areas independently of day time. The developed methods of satellite radio images processing can be applied to marine radar stations. In Institute of Applied Physics RAS works on sea surface diagnostics systems development on the basis of standard marine radar are actively conducted. Despite smaller coverage of the territory in comparison with satellite data, marine radar have possibility to record spatially temporary radar images and to receive information on a surrounding situation quickly. This work deals with results of the researches which were conducted within the international expedition in the Atlantic Ocean in the autumn of 2012 on a route Rotterdam (Netherlands) - Ushuaya (Argentina) - Antarctica — Ushuaya. During this expedition a complex measurements of a sea surface, a atmosphere near-surface layer parameters and subsurface currents in the wide range of hydroweather conditions, including the storm were carried out. The system developed in IAP RAS on the basis of a marine radar ICOM MR-1200RII and the ADC (Analog Digital Converter) block for data recording on the personal computer was used. Display of a non-uniform near-surface current on sea surface radar images in storm conditions is shown. By means of the high-speed anemometer and meteorological station the measurements of the atmosphere parameters were carried out. Comparison of the anemometer data with calculated from radar images is carried out. Dependence of radar cross section from wind speed in the wide range of wind speeds, including storm conditions is investigated. Possibility of marine radar using for surface waves intensity and ice situation estimates also as icebergs detection is shown.

  1. Optical luminescence studies of the ethyl xanthate adsorption layer on the surface of sphalerite minerals.

    PubMed

    Todoran, R; Todoran, D; Szakács, Zs

    2016-01-01

    In this work we propose optical luminescence measurements as a method to evaluate the kinetics of adsorption processes. Measurement of the intensity of the integral optical radiation obtained from the mineral-xanthate interface layer, stimulated with a monochromatic pulsating optical signal, as a function of time were made. The luminescence radiation was obtained from the thin interface layer formed at the separation surface between the sphalerite natural mineral and potassium ethyl xanthate solution, for different solution concentrations and pH-es at the constant industry standard temperature. This method enabled us to determine the time to achieve dynamic equilibrium in the formation of the interface layer of approximately 20min, gaining information on the adsorption kinetics in the case of xanthate on mineral surface and leading to the optimization of the industrial froth flotation process. PMID:25619858

  2. Computational simulation of salt transport and crystallization in surface layers of building envelopes

    NASA Astrophysics Data System (ADS)

    Ko?í, Václav; Mad?ra, Ji?í; ?erný, Robert

    2012-09-01

    A computational model of heat, moisture and salt transport in multi-layered systems of porous materials including salt crystallization is presented. A practical application of the model is illustrated for two different types of wall provided with interior and exterior plasters which are exposed to the climatic conditions characteristic for Central Europe. Temperature, water content, salt concentration and crystallized-salt amount fields are calculated for the time period of five years. Computational results show that water and salt transport parameters of both the load bearing structures and plasters play a very important role in the salt crystallization in surface layers. Lower transport parameters of materials of surface layers and higher transport parameters of materials of load bearing structures are found preferable.

  3. Optical luminescence studies of the ethyl xanthate adsorption layer on the surface of sphalerite minerals

    NASA Astrophysics Data System (ADS)

    Todoran, R.; Todoran, D.; Szakács, Zs.

    2016-01-01

    In this work we propose optical luminescence measurements as a method to evaluate the kinetics of adsorption processes. Measurement of the intensity of the integral optical radiation obtained from the mineral-xanthate interface layer, stimulated with a monochromatic pulsating optical signal, as a function of time were made. The luminescence radiation was obtained from the thin interface layer formed at the separation surface between the sphalerite natural mineral and potassium ethyl xanthate solution, for different solution concentrations and pH-es at the constant industry standard temperature. This method enabled us to determine the time to achieve dynamic equilibrium in the formation of the interface layer of approximately 20 min, gaining information on the adsorption kinetics in the case of xanthate on mineral surface and leading to the optimization of the industrial froth flotation process.

  4. Investigation of turbulent boundary layer structure using stereoscopic particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Ganapathisubramani, Bharathram

    The focus of this study is on understanding the dynamics of a zero-pressure-gradient turbulent boundary layer over a flat plate. The primary objective is to relate production of turbulence to vortex structures and study the cause and effect relationship between vortex structures and Reynolds shear stress. Stereoscopic particle image velocimetry was employed to obtain detailed measurements of the fluid flow in a wind tunnel. The vector fields in the logarithmic layer reveal signatures of vortex packets similar to those found by Adrian and co-workers in their PIV experiments. Groups of legs of hairpin vortices appear to be coherently arranged along the streamwise direction. These regions also generate substantial Reynolds shear stress (-uw), sometimes as high as 40 U2t . An objective feature extraction algorithm was developed to automate the identification and characterization of these packets of hairpin vortices. Hairpin packets contained anywhere between 2--10 hairpin vortices and sometimes were found to span across the entire vector field (>2delta). Identified packets contribute close to 30% of the total Reynolds shear stress while occupying less than 5% of the total area in the log layer. Beyond the log layer, the spatial organization into packets breaks down. Instead, large individual vortex cores and spanwise strips of positive and negative wall-normal velocity are observed. Dual-plane PIV experiments were performed at two wall-normal locations to obtain all components of the velocity gradient tensor. The availability of the complete gradient tensor aid improved identification of vortex cores, determination of their ori entation and their relationship to turbulence production. Inclination angles of vortex cores were computed using statistical tools (two-point correlations, joint p.d.f.) as well as instantaneous fields. The results indicate that most vortex cores are inclined in the downstream direction, however a small percentage of the cores are inclined backwards. The ratio of the number of forward to backward leaning cores decreases away from the wall; however the number density of backward leaning cores remains relatively a constant. A hypothetical model to represent the structure of the boundary layer is proposed that includes forward-leaning and backward-leaning vortex cores.

  5. a Two-Layer Variable Infiltration Capacity Land Surface Representation for General Circulation Models.

    NASA Astrophysics Data System (ADS)

    Liang, Xu.

    A simple two-layer variable infiltration capacity (VIC-2L) land surface model suitable for incorporation in general circulation models (GCMs) was developed. The model consists of a two-layer characterization of the soil within a GCM grid cell, and uses an aerodynamic representation of latent and sensible heat fluxes at the land surface. The effects of GCM spatial subgrid variability of soil moisture and a hydrologically realistic runoff mechanism are represented in the soil layers. In the upper layer, the spatial distribution of infiltration and soil moisture capacities is included. The lower layer is lumped spatially and uses a nonlinear drainage representation. The model partitions the area of interest into multiple land surface cover types; for each land cover type the fraction of plant roots in the upper and lower zone is specified. Evaporation occurs via canopy evaporation, evaporation from bare soil, and transpiration, which is represented using a canopy and architectural resistance formulation. The model was tested using long-term hydrologic and climatalogical data for Kings Creek, Kansas to estimate and validate the hydrological parameters. Surface flux data from three First International Satellite Land Surface Climatology Project Field Experiment (FIFE) intensive field campaigns in the summer and fall of 1987 in central Kansas, and from the Anglo-Brazilian Amazonian Climate Observation Study (ABRACOS) in Brazil were used to validate the model -simulated surface energy fluxes and surface temperature. In addition, a derived distribution approach which accounts for the effects of subgrid scale spatial variabilities of precipitation on surface energy fluxes, soil moisture, and runoff production was developed for an extended version of VIC-2L model. The derived distribution approach differs from pixel-based approaches which discretize precipitation over a spatial domain, and from previous statistical approaches that combine the point precipitation distribution with the point statistical distribution of selected land surface characteristics. The results of the derived distribution method are compared with those obtained using an exhaustive pixel-based approach, and the results obtained by applying uniform spatially averaged precipitation to the VIC-2L model. Under most conditions, the derived distribution approach gives good approximations to the pixel-based approach, and is superior to the constant precipitation approach for surface fluxes, surface temperature, runoff, and soil moisture. Finally, VIC-2L sensitivity of predictions to model parameters were explored for two different climate regimes using both fractional factorial and one-at-a-time sensitivity analyses.

  6. Surface plasmon resonance based fiber optic refractive index sensor utilizing Cu/ZnO layer

    NASA Astrophysics Data System (ADS)

    Mishra, Satyendra Kr; Varshney, Charul; Gupta, Banshi D.

    2013-06-01

    Modeling of a miniaturized fiber optic sensor based on surface plasmon resonance (SPR) utilizing Cu/ZnO layer is presented. Attenuated total internal reflection with Kretschmann configuration is the basis of the theoretical model. The performance of the sensor is evaluated in terms of sensitivity and detection accuracy.

  7. Including Atmospheric Layers in Vegetation and Urban Offline Surface Schemes VALE RY MASSON AND YANN SEITY

    E-print Network

    of the SBL into the urban Town Energy Balance scheme is presented in a paper by Hamdi and Masson in which, water, and heat surface fluxes, drive the boundary layer evolution and influence the formation of low, Netherlands, grass site], urban schemes for cities [see a review in Masson (2006)], or schemes dedicated

  8. A SIMPLE, EFFICIENT SOLUTION OF FLUX-PROFILE RELATIONSHIPS IN THE ATMOSPHERIC SURFACE LAYER

    EPA Science Inventory

    This note describes a simple scheme for analytical estimation of the surface layer similarity functions from state variables. What distinguishes this note from the many previous papers on this topic is that this method is specifically targeted for numerical models where simplici...

  9. Extending the Diffuse Layer Model of Surface Acidity Behavior: III. Estimating Bound Site Activity Coefficients

    EPA Science Inventory

    Although detailed thermodynamic analyses of the 2-pK diffuse layer surface complexation model generally specify bound site activity coefficients for the purpose of accounting for those non-ideal excess free energies contributing to bound site electrochemical potentials, in applic...

  10. Effects of surface wave breaking on the oceanic boundary layer Hailun He1,2

    E-print Network

    Chen, .Dake

    the wave breaking effects. Noh et al. [2004] investigated the effect of the additional stress of wave breaking on the OBL using a threedimensional LargeEddy Simulation model, with the stress imposedEffects of surface wave breaking on the oceanic boundary layer Hailun He1,2 and Dake Chen1

  11. Structure fragmentation of a surface layer of commercial purity titanium during ultrasonic impact treatment

    NASA Astrophysics Data System (ADS)

    Kozelskaya, Anna; Panin, Alexey; Kazachenok, Marina; Hairullin, Rustam; Sinyakova, Elena; Pochivalov, Yurii; Perevalova, Olga

    2015-10-01

    The mechanisms of surface layer fragmentation of titanium specimens subjected to ultrasonic impact treatment is investigated by atomic force microscopy, transmission electron microscopy and electron backscatter diffraction. It is shown that the twin boundaries ?7b and ?11b are unable to be strong obstacles for propagation of dislocations and other twins.

  12. X-ray diffraction investigation of structural distortion in crystals with a disturbed surface layer

    SciTech Connect

    Nikolaev, V.V.; Khrupa, V.I.; Krasulya, S.M.

    1994-09-01

    An experimental method allowing the testing of defects in the bulk of single crystals with a surface layer damaged by mechanical treatment is described. The subject of the investigation were silicon crystals, grown by the crucibleless zone melting and Czochralski methods.

  13. The Surface Diurnal Warm Layer in the Indian Ocean during CINDY/DYNAMO ADRIAN J. MATTHEWS

    E-print Network

    Matthews, Adrian

    The Surface Diurnal Warm Layer in the Indian Ocean during CINDY/DYNAMO ADRIAN J. MATTHEWS Centre is diagnosed from Seaglider observations and develops on half of the days in the Cooperative Indian Ocean Experiment on Intraseasonal Variability/Dynamics of the Madden­Julian Oscillation (CINDY/DYNAMO) Indian Ocean

  14. ESTIMATING BEDROCK AND SURFACE LAYER BOUNDARIES AND CONFIDENCE INTERVALS IN ICE SHEET RADAR IMAGERY USING MCMC

    E-print Network

    Crandall, David J.

    for Remote Sensing of Ice Sheets (CReSIS) [1]. This echogram is a virtual cross-section of the ice, whereESTIMATING BEDROCK AND SURFACE LAYER BOUNDARIES AND CONFIDENCE INTERVALS IN ICE SHEET RADAR IMAGERY-penetrating radar imagery. Identifying these features is typically performed by hand, which can be tedious and error

  15. Interaction of optical Whispering Gallery Modes with the surface layer of evaporating droplet of suspension

    E-print Network

    Interaction of optical Whispering Gallery Modes with the surface layer of evaporating droplet October 2012 Received in revised form 15 February 2013 Accepted 5 March 2013 Keywords: Whispering Gallery structures of inclusions with Whispering Gallery Modes of the droplet. It seems possible to exploit

  16. Turbulence Anisotropy Carried by Streaks in the Neutral Atmospheric Surface Layer THOMAS DUBOS

    E-print Network

    Dubos, Thomas

    Turbulence Anisotropy Carried by Streaks in the Neutral Atmospheric Surface Layer THOMAS DUBOS and Brown 1993; Drobinski et al. 1998; Young et al. 2002). Because of their long dura- tion, rolls-eddy simulations (LES) of the NPBL Corresponding author address: Dr. Thomas Dubos, Institut Pierre Simon Laplace

  17. Fluid-membrane tethers: Minimal surfaces and elastic boundary layers Thomas R. Powers,1,

    E-print Network

    Goldstein, Raymond E.

    Fluid-membrane tethers: Minimal surfaces and elastic boundary layers Thomas R. Powers,1, * Greg bilayer membrane structures, arising in situations ranging from micromanipulation experiments of a tether in terms of the classical soap-film problem, which is applied to the case of a membrane disk under

  18. The depth of the tropical Pacific Ocean's warm surface layer shrank during the last three

    E-print Network

    Yanik, Mehmet Fatih

    The depth of the tropical Pacific Ocean's warm surface layer shrank during the last three decades Pacific Ocean, off an island in Palau. They analysed the ratio of nitrogen and carbon isotopes.1029/2010GL044867 (2010) OceanOgraphy Cold water rising in the Pacific DrUg DeVeLOpMenT Worm surgery on a chip

  19. Chemical characteristics of North American surface layer outflow: Insights from Chebogue Point, Nova Scotia

    E-print Network

    Goldstein, Allen

    , Nova Scotia Dylan B. Millet,1,2 Allen H. Goldstein,1 Rupert Holzinger,1,3 Brent J. Williams,1 James D measurements collected at Chebogue Point, Nova Scotia, during the summer of 2004 to characterize the chemical characteristics of North American surface layer outflow: Insights from Chebogue Point, Nova Scotia, J. Geophys

  20. Surface-Engineered Graphene Quantum Dots Incorporated into Polymer Layers for High Performance Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Kim, Jung Kyu; Kim, Sang Jin; Park, Myung Jin; Bae, Sukang; Cho, Sung-Pyo; Du, Qing Guo; Wang, Dong Hwan; Park, Jong Hyeok; Hong, Byung Hee

    2015-09-01

    Graphene quantum dots (GQDs), a newly emerging 0-dimensional graphene based material, have been widely exploited in optoelectronic devices due to their tunable optical and electronic properties depending on their functional groups. Moreover, the dispersibility of GQDs in common solvents depending on hydrophobicity or hydrophilicity can be controlled by chemical functionalization, which is particularly important for homogeneous incorporation into various polymer layers. Here we report that a surface-engineered GQD-incorporated polymer photovoltaic device shows enhanced power conversion efficiency (PCE), where the oxygen-related functionalization of GQDs enabled good dispersity in a PEDOT:PSS hole extraction layer, leading to significantly improved short circuit current density (Jsc) value. To maximize the PCE of the device, hydrophobic GQDs that are hydrothermally reduced (rGQD) were additionally incorporated in a bulk-heterojunction layer, which is found to promote a synergistic effect with the GQD-incorporated hole extraction layer.