Sample records for particleboards

  1. 40 CFR 429.140 - Applicability; description of the particleboard manufacturing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... particleboard manufacturing subcategory. 429.140 Section 429.140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Particleboard Manufacturing Subcategory § 429.140 Applicability; description of the particleboard...

  2. Integration of textile fabric and coconut shell in particleboard

    NASA Astrophysics Data System (ADS)

    Misnon, M. I.; Bahari, S. A.; Islam, M. M.; Epaarachchi, J. A.

    2013-08-01

    In this study, cotton fabric and coconut shell were integrated in particleboard to reduce the use of wood. Particleboards containing mixed rubberwood and coconut shell with an equal weight ratio have been integrated with various layers of cotton fabric. These materials were bonded by urea formaldehyde with a content level of 12% by weight. Flexural and water absorption tests were conducted to analyze its mechanical properties and dimensional stability. Results of flexural test showed an increment at least double strength values in fabricated materials as compared to control sample. The existence of fabric in the particleboard system also improved the dimensional stability of the produced material. Enhancement of at least 39% of water absorption could help the dimensional stability of the produced material. Overall, these new particleboards showed better results with the incorporation of cotton fabric layers and this study provided better understanding on mechanical and physical properties of the fabricated particleboard.

  3. Post-treatment Effect of Particleboard on Dimensional Stability and Durability Properties of Particleboard Made From Sorghum Bagasse

    NASA Astrophysics Data System (ADS)

    Iswanto, A. H.; Sucipto, T.; Nadeak, S. S. D.; Fatriasari, W.

    2017-03-01

    In general, the weakness of particleboard using urea formaldehyde (UF) resin has a low dimensional stability. This reasearch intends to improve its properties by post-treatment technique using several water repellent materials. The post-treatment effect on dimensional stability and durability properties of particleboard against to subterranean and dry termites has been evaluated. Sample was dipped into water reppelent solution namely parafin, palm oil, silicon and water proof for 3 minutes. Furthermore, they were oven dried at 50°C for 24 hours. The results showed that the density varied of 0.60 to 0.74 g/cm3. The post-treatment of particleboard increases the density value. Water absorption and thickness swelling of board were varied of 29.35% to 114.99% and 13.23 to 37.31%, respectively. This treatment also improved up the thickness swelling to 65%. The best durability of board to subterranean and dry termite attack has found on silicon and waterproof treatment, respectively.

  4. Wood particleboard and flakeboard : types, grades, and uses

    Treesearch

    C. G. Carll

    1986-01-01

    This report is for those who use or may want to use wood particleboard. The term bparticleboardc is used as defined in the American Society for Testing and Materials (ASTM) Standard D 1554, which includes flakeboards as a subclass of particleboards, and not as used in the lumber trade where the term is usually reserved for panels made of fine wood particles such as...

  5. Treated and Untreated foam core particleboards with intumescent veneer

    Treesearch

    Mark A. Dietenberger; Ali Shalbafan; Johannes Welling; Charles Boardman

    2013-01-01

    The effectiveness of treatments for the surface layer of novel foam core particleboards was evaluated by means of Cone calorimeter tests, Foam cote particleboards with variations of surface layer treatment, adhesives, and surface layer thicknesses under similar processing conditions were used to produce the test specimen for the Cone calorimeter tests. Ignitability,...

  6. Carbon footprint as an environmental sustainability indicator for the particleboard produced in Pakistan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, Majid

    This study quantified the carbon footprint of particleboard production in Pakistan using a cradle-to-gate life cycle assessment approach. The system boundary comprised raw materials acquisition, transport, particleboard manufacture and finished product distribution. Primary data were collected through surveys and meetings with particleboard manufacturers. Secondary data were taken from the literature. Greenhouse gas emissions from off-site industrial operations of the particleboard industry represented 52% of the total emissions from the production of 1.0 m{sup 3} of particleboard in Pakistan. The on-site industrial operations cause direct greenhouse gas emissions and accounted for 48% of the total emissions. These operations included energy consumptionmore » in stationary sources, the company-owned vehicle fleet, and the distribution and marketing of the finished product. The use of natural gas combustion in the stationary and mobile sources, raw material transport and urea-formaldehyde resin production chain accounted for the highest emissions from the particleboard production chain in Pakistan. The identification of the major hotspots in the particleboard production chain can assist the wood panel industry to improve their environmental profile. More efforts are needed to investigate the urea-formaldehyde resin production chain and substitution of roundwood with wood and agri-residues to assess the potential improvements. In addition, renewable energy sources should be encouraged to avoid greenhouse gas emissions by substituting fossil energy. This study also provides a benchmark for future research work to formulate comprehensive greenhouse gas emissions reduction plans, because no previous research work is available on the carbon footprint of particleboard production in Pakistan. - Highlights: • We conducted the first carbon footprint assessment of particleboard produced in Pakistan. • System boundary comprised raw materials acquisition, particleboard

  7. Carbon footprint as an environmental sustainability indicator for the particleboard produced in Pakistan.

    PubMed

    Hussain, Majid; Naseem Malik, Riffat; Taylor, Adam

    2017-05-01

    This study quantified the carbon footprint of particleboard production in Pakistan using a cradle-to-gate life cycle assessment approach. The system boundary comprised raw materials acquisition, transport, particleboard manufacture and finished product distribution. Primary data were collected through surveys and meetings with particleboard manufacturers. Secondary data were taken from the literature. Greenhouse gas emissions from off-site industrial operations of the particleboard industry represented 52% of the total emissions from the production of 1.0m 3 of particleboard in Pakistan. The on-site industrial operations cause direct greenhouse gas emissions and accounted for 48% of the total emissions. These operations included energy consumption in stationary sources, the company-owned vehicle fleet, and the distribution and marketing of the finished product. The use of natural gas combustion in the stationary and mobile sources, raw material transport and urea-formaldehyde resin production chain accounted for the highest emissions from the particleboard production chain in Pakistan. The identification of the major hotspots in the particleboard production chain can assist the wood panel industry to improve their environmental profile. More efforts are needed to investigate the urea-formaldehyde resin production chain and substitution of roundwood with wood and agri-residues to assess the potential improvements. In addition, renewable energy sources should be encouraged to avoid greenhouse gas emissions by substituting fossil energy. This study also provides a benchmark for future research work to formulate comprehensive greenhouse gas emissions reduction plans, because no previous research work is available on the carbon footprint of particleboard production in Pakistan. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Anaerobically digested bovine biofiber as a source of fiber for particleboard manufacturing : an economic analysis

    Treesearch

    Henry Spelter; Jerrold Winandy; Timothy Zauche

    2008-01-01

    This paper explores the physical and economic potential to substitute anaerobically digested bovine biofiber (ADBF) for wood in the making of particleboard. Laboratory tests indicated that replacement of one-half the wood in particleboard with ADBF produced panels that compared favorably to the requirements for commercial particleboard performance (specified by ANSI...

  9. Cone Calorimeter Analysis of FRT Intumescent and Untreated Foam Core Particleboards

    Treesearch

    Mark A. Dietenberger; Ali Shalbafan; Johannes Welling; Charles Boardman

    2012-01-01

    The effectiveness of treatments of the surface layer of novel foam core particleboards were evaluated by means of Cone calorimeter tests. Foam core particleboards with variations of surface layer treatment, adhesives and surface layer thicknesses under similar processing conditions were used to produce the test specimen for the Cone calorimeter tests. Ignitability,...

  10. Use of acousto-ultrasonic techniques to determine properties of remanufactured particleboards made solely from recycled particles

    Treesearch

    Sumire Kawamoto; James H. Muehl; R. Sam Williams

    2005-01-01

    Properties of particleboard manufactured entirely from recycled particleboard were tested The method for processing three-layer particleboard from all-recycled particles was described. Dynamic MOE (modulus of elasticity) before and after re-manufacturing was tested by a longitudinal stress wave technique. Some stress wave techniques were compared. Nondestructive AU (...

  11. Resistance of Particleboards Made from Fast-Growing Wood Species to Subterranean Termite Attack

    PubMed Central

    Hermawan, Dede; Hadi, Yusuf S.; Fajriani, Esi.; Massijaya, Muhamad Y.; Hadjib, Nurwati

    2012-01-01

    Laboratory-made particleboards were tested for their resistance to subterranean termite, Coptotermes curvignathus Holmgren (Order Isoptera, Family Termitidae) by Indonesian standard SNI 01.7207–2006, during four weeks and at the end of the test their mass loss percentage and feeding rate were determined. Particleboards consisted of: jabon (Anthocephalus cadamba, Family Rubiacea) with a density of 0.41 g/cm3; sungkai (Peronema canescens, Family Verbenaceae) with a density of 0.46 g/cm3; mangium (Acacia mangium, Family Rhamnaceae) with a density of 0.60 g/cm3 separately and the three species mixture at a rate of 1:1:1. Densities of the boards were targetted at 0.60 g/cm3 and 0.80 g/cm3 by using 12% urea formaldehyde as binder with 2% paraffin as additive based on oven dry wood particle weight. The hand-formed mats and hot-pressing at 130 °C and 2.45 MPa for 10 min were applied. The results showed that particleboards density did not affect mass loss and feeding rate, but the particleboards made from higher density wood resulted in higher resistance to subterranean termite attack. The most resistant particleboards were made of magium, followed by sungkai, mixed species, and jabon. PMID:26466542

  12. Resistance of Particleboards Made from Fast-Growing Wood Species to Subterranean Termite Attack.

    PubMed

    Hermawan, Dede; Hadi, Yusuf S; Fajriani, Esi; Massijaya, Muhamad Y; Hadjib, Nurwati

    2012-05-29

    Laboratory-made particleboards were tested for their resistance to subterranean termite, Coptotermes curvignathus Holmgren (Order Isoptera, Family Termitidae) by Indonesian standard SNI 01.7207-2006, during four weeks and at the end of the test their mass loss percentage and feeding rate were determined. Particleboards consisted of: jabon (Anthocephalus cadamba, Family Rubiacea) with a density of 0.41 g/cm³; sungkai (Peronema canescens, Family Verbenaceae) with a density of 0.46 g/cm³; mangium (Acacia mangium, Family Rhamnaceae) with a density of 0.60 g/cm³ separately and the three species mixture at a rate of 1:1:1. Densities of the boards were targetted at 0.60 g/cm³ and 0.80 g/cm³ by using 12% urea formaldehyde as binder with 2% paraffin as additive based on oven dry wood particle weight. The hand-formed mats and hot-pressing at 130 °C and 2.45 MPa for 10 min were applied. The results showed that particleboards density did not affect mass loss and feeding rate, but the particleboards made from higher density wood resulted in higher resistance to subterranean termite attack. The most resistant particleboards were made of magium, followed by sungkai, mixed species, and jabon.

  13. Selected properties of particleboard panels manufactured from rice straws of different geometries

    Treesearch

    Xianjun Li; Zhiyong Cai; Jerrold E. Winandy; Altaf H. Basta

    2010-01-01

    The objective is to evaluate the primary mechanical and physical properties of particleboard made from hammer-milled rice straw particles of six different categories and two types of resins. The results show the performance of straw particleboards is highly dependent upon the straw particle size controlled by the opening size of the perforated plate inside the hammer-...

  14. Fabrication and characterisation of phantom material made of Tannin-added Rhizophora spp. particleboards for photon and electron beams

    NASA Astrophysics Data System (ADS)

    Yusof, M. F. Mohd; Hamid, P. N. K. Abd; Tajuddin, A. A.; Hashim, R.; Bauk, S.; Isa, N. Mohd; Isa, M. J. Md

    2017-05-01

    Particleboards made of Rhizophora spp. with addition of tannin adhesive were fabricated at target density of 1.0 g/cm3. The physical and mechanical properties of the particleboards including internal bond strength (IB) and modulus of rupture (MOR) were measured based on Japanese Industrial Standards (JIS A-5908). The characterisation of the particleboards including the effective atomic number, CT number and relative electron density were determined and compared to water. The mass attenuation coefficient of the particleboards were measured and compared to the calculated value of water using photon cross-section database (XCOM). The results showed that the physical and mechanical properties of the particleboards complied with Type 13 and 18 of JIS A-5908. The values of effective atomic number, CT number and relative electron density were also close to the value of water. The value of mass attenuation coefficients of the particleboards showed good agreement with water (XCOM) at low and high energy photon indicated by the χ2 values.

  15. Effects of press sizes on internal steam pressure during particleboard hot-pressing process

    Treesearch

    Zhiyong Cai; Michael Birkeland; James M. Wescott; Jane O' Dell; Jerrold E. Winandy

    2009-01-01

    Internal steam pressure produced during the hot-pressing cycle in particleboard production is critical to the newly developed bond strength that will determine the overall performance of particleboard. The difference between the accumulation of internal steam pressure for small panels made in the laboratory and that of large commercial-sized panels makes it difficult...

  16. Design and evaluation of corn starch-bonded Rhizophora spp. particleboard phantoms for SPECT/CT imaging

    NASA Astrophysics Data System (ADS)

    Hamid, Puteri Nor Khatijah Abd; Yusof, Mohd Fahmi Mohd; Aziz Tajuddin, Abd; Hashim, Rokiah; Zainon, Rafidah

    2018-01-01

    The aim of this study was to design and evaluate of corn starch-bonded Rhizophora spp. particleboards as phantom for SPECT/CT imaging. The phantom was designed according to the Jaszczak phantom commonly used in SPECT imaging with dimension of 22 cm diameter and 18 cm length. Six inserts with different diameter were made for insertion of vials filled with 1.6 µCi/ml of 99mTc unsealed source. The particleboard phantom was scanned using SPECT/CT imaging protocol. The contrast of each vial for particleboards phantom were calculated based on the ratio of counts in radionuclide volume and phantom background and compared to Perspex® and water phantom. The results showed that contrast values for each vial in particleboard phantomis near to 1.0 and in good agreement with Perspex® and water phantoms as common phantom materials for SPECT/CT. The paired sample t-test result showed no significant difference of contrast values between images in particleboard phantoms and that in water. The overall results showed the potential of corn starch-bonded Rhizophora spp. as phantom for quality control and dosimetry works in SPECT/CT imaging.

  17. Evaluation of Some Finishing Properties of Oil Palm Particleboard for Furniture Application

    NASA Astrophysics Data System (ADS)

    Ratnasingam, J.; Nyugen, V.; Ioras, F.

    The finishing properties of particleboard made from the Empty-Fruit Bunch (EFB) of oil palm (Elaeis guineensis Jacq.) were evaluated for its suitability for furniture applications, using different coating and overlay materials. The results found that the thick plastic-formica overlay provided the best surface finish, in terms of surface smoothness, adhesion strength and impact resistance. Although the polyurethane lacquer provided an acceptable finish, its quality and performance is not comparable to that of the thick plastic overlay. Despite the fact that the use of such overlay material may render the material not aesthetically appealing and limit it to concealed applications or where the thick overlay material is tolerated, its cost competitiveness and environmental friendliness may be able to position the oil palm particleboard as a substitute for the conventional wood-based particleboard in the furniture manufacturing industry.

  18. Automation of a laboratory particleboard press

    Treesearch

    Robert L. Geimer; Gordon H. Stevens; Richard E. Kinney

    1982-01-01

    A manually operated particleboard press was converted to a fully automatic, programable system with updated data collection capabilities. Improved control has permitted observations of very small changes in pressing variables resulting in the development of a technique capable of reducing press times by 70 percent. Accurate control of the press is obtained through an...

  19. PARVCOST : a particleboard variable cost program

    Treesearch

    Peter J. Ince; George B. Harpole

    1977-01-01

    PARVCOST, a FORTRAN program, was designed to develop economic and financial analyses of systems for manufacturing particleboard. In the program, costs and requirements of wood are calculated as are chemicals and energy per unit of finished board products. Estimates are made of sensitivity of the finished product costs to changes in unit costs of energy and raw...

  20. Effect of particle treatment and adhesive type on physical, mechanical, and durability properties of particleboard made from Sorghum Bagasse

    NASA Astrophysics Data System (ADS)

    Heri Iswanto, Apri; Supriyanto; Fatriasari, Widya; Susilowati, Arida

    2018-03-01

    Refers to chemical content of sweet sorghum stalk especially for Numbu varian, sorghum bagasse issuitable for materials of particleboard. The objective of the experiment was to evaluate of particle treatment on physichal, mechanical, and durability properties of particleboard made from sorghum bagasse. For particle treatment, Sorghum bagasse immersed in cold water and hot water for 24 and 1 hours respectively. Particleboards were produced in size 25 by 25 cm2 with thickness and density target of 0.8 cm and 0.7 g/cm3. Amount of 10% Urea formaldehyde (UF) and 7% isocyanat (MDI) adhesive level used for manufacturing of board. Particle and adhesive were blended with rotary blending. Afterward, it was placed into mat former with size of 25 by 25 cm2. Mat was pressed by hot press machine. The pressing was conducted on 130°C temperature for UF resin and 160°C for MDI resin, pressure of 25 kg/cm2 and pressing time for 10 minutes. The results showed that particle soaking in hot water produced of lower thickness swelling compared to untreated board. Similar trend also occuron particleboard whichwas bonded with MDI resin. MDI as exterior adhesive resulted good performance in dimensional stability of sorghum bagasse particleboard. For UF bonded particleboard, immersing in hot water resulted in the low MOR, MOE and IB parameter. It’s contrary with MDI bonded particleboard.

  1. Mass attenuation coefficients of several bio-adhesive based oil palm particleboards at 16.59-25.26 keV photon energies

    NASA Astrophysics Data System (ADS)

    Abdu Mustapa, U. A.; Yusof, M. F. Mohd; Hamid, P. N. K. Abd; Hashim, R.; Ahmad, M. Z.; Aziz, M. Z. Abd

    2018-01-01

    Particleboards made of oil palm with addition of polylactic acid (PLA), starch, and fish oil were fabricated with target density of 1.0 g/cm3. The mass attenuation coefficients of the particleboards were measured using x-ray fluorescence (XRF) configuration in conjunction with niobium, molybdenum, palladium and tin metal plates that provided Kα1 photon energies between 16.59 and 25.26 keV. The results were compared to the calculated value of water using XCOM. The results showed that all particleboards having mass attenuation coefficients near to the value of water with the mass attenuation coefficient different less than 0.25. The method of fabrication did not give significant different to the mass attenuation coefficients of the particleboards. The results had indicated the potential of bio-adhesive based palm oil particleboards to be developed as phantoms for low energy photons.

  2. The Research of Improving the Particleboard Glue Dosing Process Based on TRIZ Analysis

    NASA Astrophysics Data System (ADS)

    Yu, Huiling; Fan, Delin; Zhang, Yizhuo

    This research creates a design methodology by synthesizing the Theory of Inventive Problem Solving (TRIZ) and cascade control based on Smith predictor. The particleboard glue supplying and dosing system case study defines the problem and the solution using the methodology proposed in the paper. Status difference existing in the gluing dosing process of particleboard production usually causes gluing volume inaccurately. In order to solve the problem above, we applied the TRIZ technical contradiction and inventive principle to improve the key process of particleboard production. The improving method mapped inaccurate problem to TRIZ technical contradiction, the prior action proposed Smith predictor as the control algorithm in the glue dosing system. This research examines the usefulness of a TRIZ based problem-solving process designed to improve the problem-solving ability of users in addressing difficult or reoccurring problems and also testify TRIZ is practicality and validity. Several suggestions are presented on how to approach this problem.

  3. The design and dosimetric evaluation of tannin-based Rhizophora spp. particleboards as phantoms for high energy photons and electrons

    NASA Astrophysics Data System (ADS)

    Yusof, M. F. Mohd; Abdullah, R.; Tajuddin, A. A.; Hashim, R.; Bauk, S.; Hamid, P. N. K. Abd

    2018-01-01

    A set of phantom with an external dimension of 30 cm x 30 cm was constructed from tannin-based Rhizophora spp. particleboards similar to the solid water phantoms. The dosimetric characteristics of the particleboard phantoms were evaluated at high energy photons and electrons by measuring the beam output at 6 MV photons and 6 MeV electrons based on the IAEA TRS 398:2000 protocol. The tissue-phantom ratio (TPR20,10) was measured at 6 and 10 MV photons. The beam output calibration of the particleboards was in good agreement to water and solid water phantoms at 6 MV photons with percentage difference of 1.7 and 6.2% respectively. The beam output calibration of the tannin-based Rhizophora spp. particleboards at 6 MeV electrons on the other hand were in excellent agreement to water with percentage difference of 0.3. The percentage depth dose of tannin-based Rhizophora spp. particleboards were in agreement to water and solid water within 4.5% when measured using ionization chamber and EBT2 film. The electron beam parameters of R50, R80 and R90 at 6 MeV electrons also were in good agreement to water and solid water phantoms. The overall results had indicated the suitability of tannin-based Rhizophora spp. particleboards as water substitute phantom materials for high energy photons and electrons.

  4. Characterization and attenuation study on tannin-added Rhizophora spp. particleboard at high energy photon and electron

    NASA Astrophysics Data System (ADS)

    Yusof, Mohd Fahmi Mohd; Hamid, Puteri Nor Khatijah Abd; Tajuddin, Abd Aziz; Abdullah, Reduan; Hashim, Rokiah; Bauk, Sabar; Isa, Norriza Mohd; Isa, Muhammad Jamal Md

    2017-01-01

    The effective atomic number of tannin-added Rhizophora spp. particleboards was determined based on elemental composition using Energy Dispersive X-ray Analysis (EDXA). The value of mass attenuation coefficients were measured using 137Cs and 60Co gamma energies. The attenuation properties of PDD curves and beam profile of tannin-added Rhizophora spp. particleboards were investigated using Gafchromic EBT2 film at 6 MV photon and 6 MeV electrons and compared to the value in water and solid water phantoms. The results showed that tannin-added Rhizophora spp. particleboards having effective atomic number close to the value of water. The mass attenuation coefficients were near to the value of water with χ2 values of 0.018 and 0.357 to 137Cs and 60Co gamma energies respectively. The PDD of tannin-added Rhizophora spp. particleboards at 6 MV photons showed good agreement within 3.21 and 5.91% to that in solid water phantoms and water respectively. The PDD at 6 MeV electrons showed a good agreement within 3.32 and 3.12% to that in solid water phantoms and water respectively. The depth of R50 and R90 in tannin-added Rhizophora spp. also showed a good agreement to that in water and solid water pahtoms. Lower surface dose was observed in tannin-added Rhizophora spp. particleboards at electron beams in comparison to solid water phantoms and water.

  5. Veneer-reinforced particleboard for exterior structural composition board

    Treesearch

    Chung-Yun Hse; Todd F. Shupe; Hui Pan; Fu Feng

    2012-01-01

    Two experiments were performed to determine the physical and mechanical characteristics of panels consisting of a veneer face and a particleboard core composed of mixed wood particles/powdered-recycled polyethylene (PE) bag waste (MWP) using urea-formaldehyde (UF) resin as a binder. The addition of 25 percent powdered-recycled PE bag waste to the MWP panels did not...

  6. Aldehyde emissions from particleboard and medium density fiberboard products

    Treesearch

    Melissa G. D. Baumann; Linda F. Lorenz; Stuart A. Batterman; Guo-Zheng Zhang

    2000-01-01

    Indoor air quality problems resulting from the emission of volatile organic compounds (VOCs) have become an issue of increasing concern. Emissions from building and furnishing materials, which are frequently constructed from particleboard and medium density fiberboard (MDF), are a potentially important contributor of indoor VOCs. In this research, VOC emissions from...

  7. Mass attenuation coefficient of tannin-added Rhizophora spp. particleboards at 16.59-25.56 keV photons, and 137Cs and 60Co gamma energies.

    PubMed

    Yusof, Mohd Fahmi Mohd; Hamid, Puteri Nor Khatijah Abd; Tajuddin, Abd Aziz; Hashim, Rokiah; Bauk, Sabar; Isa, Norriza Mohd; Isa, Muhammad Jamal Md

    2017-09-01

    The aim of this study was to determine the suitability of tannin-added Rhizophora spp. particleboards as phantom materials in the application of low- and high-energy photons. The tannin-added Rhizophora spp. particleboards and density plug phantoms were created with a target density of 1.0 g/cm 3 . The elemental composition and effective atomic number of the particleboards were measured using energy dispersive X-ray analysis. The mass attenuation coefficient of the particleboards for low-energy photons were measured using the attenuation of X-ray fluorescence. The mass attenuation coefficients of high-energy photons were measured using the attenuation of 137 Cs and 60 Co gamma energies. The results were compared to the calculated value of water using XCOM calculations. The results showed that the effective atomic number and mass attenuation coefficients of tannin-added Rhizophora spp. particleboards were similar to those of water, indicating the suitability of tannin-added Rhizophora spp. particleboards as phantom materials for low- and high-energy photons.

  8. Characterization a binderless particleboard of coffee husk using Hydrogen Peroxide (H2O2) and Ferrous Sulfate (FeSO4)

    NASA Astrophysics Data System (ADS)

    Milawarni; Nurlaili; Sariyadi

    2018-05-01

    Binderless particleboard is particleboard that can be made of a lignocellulose material which is formed into a board only by heat pressing without the addition of adhesive or resin. The particleboard in this study was made from coffee husk (endocarp) using H2O2 and FeSO4 catalyst to activate lignin coffee husk component by oxidation method. Initial treatment of coffee husk is the variation of steam then Oxidation (S + O) and Oxidation without steaming (O). In this study H2O2 and FeSO4 catalysts were varied, including H2O2 levels of 10,20,30 wt% based on particle dry weight and FeSO4 is 5 and 7.5 wt% based on H2O2 weight. From the results of the study, it can be concluded that the coffee husk particleboard whose raw material is treated oxidation without steam can improve the physical properties of binderless particleboard. Increased wt% of H2O2 and FeSO4 catalysts in the oxidation process of coffee husk particles produce binderless particleboard with good physical characteristics such as density, water content, water absorption and swelling thickness. Therefore, considering the efficient aspects of the use of chemicals, the combination of H2O2 and FeSO4 catalysts that can be made according to JIS A 5908 2003 standard are 20% H2O2 and 7.5% FeSO4. The ester linkages were detected by Fourier transform infrared spectroscopy, indicated that cross-link due to the incorporation of phenoxyl radicals.

  9. Foam Core Particleboards with Intumescent FRT Veneer: Cone Calorimeter Testing With Varying Adhesives, Surface Layer Thicknesses, and Processing Conditions

    Treesearch

    Mark A. Dietenberger; Johannes Welling; Ali Shalbafan

    2014-01-01

    Intumescent FRT Veneers adhered to the surface of foam core particleboard to provide adequate fire protection were evaluated by means of cone calorimeter tests (ASTM E1354). The foam core particleboards were prepared with variations in surface layer treatment, adhesives, surface layer thicknesses, and processing conditions. Ignitability, heat release rate profile, peak...

  10. Mass attenuation coefficient of binderless, pre-treated and tannin-based Rhizophora spp. particleboards using 16.59 - 25.26 keV photon energy range

    NASA Astrophysics Data System (ADS)

    Mohd Yusof, Mohd Fahmi; Hamid, Puteri Nor Khatijah Abdul; Bauk, Sabar; Hashim, Rokiah; Tajuddin, Abdul Aziz

    2015-04-01

    The Rhizophora spp. particleboards were fabricated using ≤ 104 µm particle size at three different fabrication methods; binderless, steam pre-treated and tannin-added. The mass attenuation coefficient of Rhizophora spp. particleboards were measured using x-ray fluorescent (XRF) photon from niobium, molybdenum, palladium, silver and tin metal plates that provided photon energy between 16.59 to 25.26 keV. The results were compared to theoretical values for water calculated using photon cross-section database (XCOM).The results showed that all Rhizophora spp. particleboards having mass attenuation coefficient close to calculated XCOM for water. Tannin-added Rizophora spp. particleboard was nearest to calculated XCOM for water with χ2 value of 13.008 followed by binderless Rizophora spp. (25.859) and pre-treated Rizophora spp. (91.941).

  11. Mass attenuation coefficient of binderless, pre-treated and tannin-based Rhizophora spp. particleboards using 16.59 – 25.26 keV photon energy range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohd Yusof, Mohd Fahmi, E-mail: mfahmi@usm.my; Hamid, Puteri Nor Khatijah Abdul; Tajuddin, Abdul Aziz

    2015-04-29

    The Rhizophora spp. particleboards were fabricated using ≤ 104 µm particle size at three different fabrication methods; binderless, steam pre-treated and tannin-added. The mass attenuation coefficient of Rhizophora spp. particleboards were measured using x-ray fluorescent (XRF) photon from niobium, molybdenum, palladium, silver and tin metal plates that provided photon energy between 16.59 to 25.26 keV. The results were compared to theoretical values for water calculated using photon cross-section database (XCOM).The results showed that all Rhizophora spp. particleboards having mass attenuation coefficient close to calculated XCOM for water. Tannin-added Rizophora spp. particleboard was nearest to calculated XCOM for water with χ2 valuemore » of 13.008 followed by binderless Rizophora spp. (25.859) and pre-treated Rizophora spp. (91.941)« less

  12. The Bending Strength, Internal Bonding and Thickness Swelling of a Five Layer Sandwiched Bamboo Particleboard

    NASA Astrophysics Data System (ADS)

    Jamaludin, M. A.; Bahari, S. A.; Nordin, K.; Soh, T. F. T.

    2010-03-01

    The demand for wood based material is increasing but the supply is decreasing. Therefore the price of these raw materials has increased. Bamboo provides an economically feasible alternative raw material for the wood based industry. Its properties are comparable to wood. It is also compatible with the existing processing technology. Bamboo is in abundance, easy to propagate and of short maturation period. Bamboo provides a cheaper alternative resource for the wood based industry. The development of new structural components from bamboo will widen its area of application from handicrafts to furniture and building components. In this study, five layer sandwiched bamboo particleboard were manufactured. The sandwiched Bamboo PB consists of a bamboo PB core, oil palm middle veneers and thin meranti surface veneers. The physical and mechanical properties of the bamboo sandwiched particleboards were tested in accordance to the BS-EN 317:1993 [1] and BS-EN 310:1993 [2], respectively. All the samples passed the standards. The modulus of elasticity was about 352% higher than the value specified in the BS standard, BS-EN 312-4:1996 [3]. The Internal bonding was about 23% higher than the general requirements specified in the standard. On the other hand, the thickness swelling was about 6% lower than the standard. No glue line failure was observed in the strength tests. Critical failures in the IB tests were observed in the particleboards. Tension failures were observed in the surface veneers in the bending tests. The five layer sandwiched bamboo particleboard can be used for light weight construction such as furniture, and wall and door panels in buildings.

  13. Investigation on the feasibility of coffee husk (endocarp) as efficient filler material for enhancing physical and mechanical properties of styrofoam based particleboard

    NASA Astrophysics Data System (ADS)

    Milawarni; Nurlaili; Ernayusnianti

    2018-03-01

    This research focuses on introducing a coffee husk as viable and efficient filler for enhancing physical and mechanical properties of Styrofoam based particleboard. Heat treatment method was adopted to produce the particleboard from the mixture of coffee husk (CH) with Styrofoam (PS). Styrofoam is material derived from polystyrene. The aim of this research is to get the appropriate weight composition between coffee husks with PS and to identify the physical and mechanical properties of the produced particleboard. The composition of coffee husk varies between 0-90%wt. The manufacture of particleboard i.e. coffee husk milled with size 20/10 mesh then soak with 10% NaOH for 2 hours, rinsed with clean water and dried and weight according to the composition. The mixture of CH and PS is inserted into mold and put into hot-press. The result shows from physical properties that density, water absorption and thick development test corresponding with SNI 03-2105-2006 standard, the mechanical properties shows MOR test meets the standard on the addition of CH 10-50%, while the MOE test has not meet the standard.

  14. Particleboard made from remediated CCA-treated wood : evaluation of panel properties

    Treesearch

    Carol A. Clausen; S. Nami Kartal; James Muehl

    2001-01-01

    CCA-treated southern yellow pine (SYP) chips were remediated utilizing acid extraction alone, and using acid extraction followed by bioleaching with the metal-tolerant bacterium Bacillus licheniformis CC01. bCleanedc chips were used to make particleboard (PB) with 10 percent urea-formaldehyde (UF) resin, and the PB samples were evaluated for internal bond (IB), modulus...

  15. Formaldehyde emission from particleboard and plywood paneling : measurement, mechanism, and product standards

    Treesearch

    George E. Myers

    1983-01-01

    A number of commercial panel products, primarily particleboard and hardwood plywood, were tested for their formaldehyde emission behavior using desiccator, perforator, and dynamic chamber methods. The results were analyzed in terms of the source of formaldehyde observed in the tests (free vs. hydrolytically produced) and the potential utility of the testa as product...

  16. Effect of hot water extracted hardwood and softwood chips on particleboard properties

    Treesearch

    Manuel Raul Pelaez-Samaniego; Vikram Yadama; Tsai Garcia-Perez; Eini Lowell; Thomas Amidon

    2014-01-01

    The affinity of particleboard (PB) to water is one of the main limitations for using PB in moisture-rich environments. PB dimensional stability and durability can be improved by reducing the available hydroxyl groups in wood through hemicellulose removal, for example, by hot water extraction (HWE), which increases wood resistance to moisture uptake. The resulting...

  17. Passion fruit hulls particleboard: the effect of urea formaldehyde level on physical and mechanical properties

    NASA Astrophysics Data System (ADS)

    Iswanto, A. H.; Sucipto, T.; Adlina, E.; Prabuningrum, D. S.

    2018-02-01

    The purpose of this research was to explore the suitability of Passion Fruit Hulls (PFH) as a raw material particleboard with variants of urea formaldehyde adhesive content (UF). In this research, PFH particles filtered by sieve in size of 10 mesh to throw dust particles. Furthermore, the particles dried until reaches of 5% moisture content. Levels of UF adhesive was using comprise of 10%, 12% and 14%. Hot pressing conducted at 120°C temperature for 10 minutes at a pressure of 30 kg/cm2. The results showed that in moisture content for 10% adhesive level, almost all the parameters such as thickness swelling, modulus of elasticity (MOE) and modulus of rupture (MOR) that produced did not fulfiled the standard. The 14% adhesive level produced of the best of PFH particleboard.

  18. Critical literature review of relationships between processing parameters and physical properties of particleboard

    Treesearch

    Myron W. Kelly

    1977-01-01

    The pertinent literature has been reviewed, and the apparent effects of selected processing parameters on the resultant particleboard properties, as generally reported in the literature, have been determined. Resin efficiency, type and level, furnish, and pressing conditions are reviewed for their reported effects on physical, strength, and moisture and dimensional...

  19. Fire performances of foam core particleboards continuously produced in a one-step process

    Treesearch

    Ali Shalbafan; Mark A. Dietenberger; Johannes Welling

    2013-01-01

    For further progress of novel foam core particleboards, their fire performance was examined with cone calorimetry tests (ASTM E 1354-11a). Specimens with varying surface layer thicknesses, foam densities (polystyrene foam), and processing temperatures were tested. Using the initially recommended cone irradiance of 35 kW/m2, different flammability...

  20. Anaerobic Digestion of Saline Creeping Wild Ryegrass for Biogas Production and Pretreatment of Particleboard Material

    USDA-ARS?s Scientific Manuscript database

    The objective of this research was to develop an integrated process to produce biogas and high-quality particleboard using saline creeping wild ryegrass (CWR), Leymus triticoides through anaerobic digestion (AD). Besides producing biogas, AD also serves as a pretreatment method to remove the wax la...

  1. Regional impacts of technical change: the case of structural particleboard in the United States.

    Treesearch

    Zhi Xu; David N. Bengston; Hans M. Gregersen; Allen L. Lundgren

    1992-01-01

    Analyzes the regional impacts of research benefits in the United States due to the introduction of structural particleboard. The distribution of consumer benefits, producer benefits, direct employment impacts, and changes in wood requirements are analyzed for the four census regions. The distribution of benefits is found to differ widely between regions, indicating...

  2. Vertical density profile and internal bond strength of wet-formed particleboard bonded with cellulose nanofibrils

    Treesearch

    John F. Hunt; Weiqi Leng; Mehdi Tajvidi

    2017-01-01

    In this study, the effects of cellulose nanofibrils (CNFs) ratio, press program, particle size, and density on the vertical density profile (VDP) and internal bond (IB) strength of the wet-formed particleboard were investigated. Results revealed that the VDP was significantly influenced by the press program. Pressing using a constant pressure (CP) press program...

  3. Effect of silvicultural practice and wood type on loblolly pine particleboard and medium density fiberboard properties

    Treesearch

    Todd F. Shupe; Chung Y. Hse; Elvin T. Choong; Leslie H. Groom

    1999-01-01

    he objective of this study was to determine the effect of five different silvicultural strategies and wood type on mechanical and physical properties of loblolly pine (Pinus taeda L.) particleboard and fiberboard. The furnish was prepared in an unconventional manner from innerwood and outerwood veneer for each stand. Modulus of rupture (MOR)...

  4. Influence of board density, mat construction, and chip type on performance of particleboard made from eastern redcedar

    Treesearch

    Zhiyong Cai; Qinglin Wu; Jong N. Lee; Salim Hiziroglu

    2004-01-01

    The purpose of this study was to investigate mechanical and physical performances of particleboard made from low-value eastern redcedar trees. The properties evaluated included bending strength and stiffness, swelling, surface hardness, and screw holding capacity as a function of processing variables (i.e., density, chip type, and board construction). Two types of...

  5. Effect of oxalic acid and steam pretreatment on the primary properties of UF-bonded rice straw particleboards

    Treesearch

    Xianjun Li; Zhiyong Cai; Jerrold E. Winandy; Altaf H. Basta

    2011-01-01

    The objective is to evaluate the effect of oxalic acid (OA) and steam-pretreatment on the primary performance of rice straw particleboards. In addition, the effect of various treatment conditions on carbohydrates released from rice straw particles was investigated. The results show that steam- and short durations of OA-treatment significantly improved the mechanical...

  6. The effect of particle immersing in acetic acid solution on dimensional stability and strength properties of particleboard

    NASA Astrophysics Data System (ADS)

    Heri Iswanto, Apri; Hermanto, Samuel; Sucipto, Tito

    2018-03-01

    The objective of the research was to evaluate the effect of particle immersing treatments in acetic acid (AA) solution on dimensional stability and strength properties of particleboard. Particle was immersed in various level AA solution namely 0 (untreated), 1, 2, 3, 4% for 24 hours. Afterward, the particle was oven dried up to 5% moisture content. The amount of 12% UF resin level used for binding in manufacturing particleboard. Board size, thickness and density target in this experiment was 25 by 25 cm2, 1 cm, and 0.75 g/cm3 respectively. After mat forming, board pressed using 130°C temperature, 30 kg/cm2, and pressure for 10 minutes. The results showed that particles immersing in AA solution provide enhancement of thickness swelling (TS) parameters. Overall, 1% AA solution is the best treatment to improve dimensional stability. The similar results also showed by internal bond value. In general, the excess of 1% acetic acid level resulted in decreasing of IB value. A similar trend also occurs in modulus of rupture (MoR) and modulus of elasticity (MoE) parameters.

  7. Formaldehyde Emissions from Urea-Formaldehyde- and no-added-formaldehyde-Bonded particleboard as Influenced by Temperature and Relative Humidity

    Treesearch

    Charles R. Frihart; James M. Wescott; Timothy L. Chaffee; Kyle M. Gonner

    2012-01-01

    It is well documented that temperature and humidity can influence formaldehyde emissions from composite panels that are produced using urea-formaldehyde (UF)–type adhesives. This work investigates the effect of temperature and humidity on newer commercial California Air Resources Board (CARB) phase II–compliant particleboard produced with UF-type adhesives. These...

  8. Effects of density, cellulose nanofibrils addition ratio, pressing method, and particle size on the bending properties of wet-formed particleboard

    Treesearch

    Weiqi Leng; John F. Hunt; Mehdi Tajvidi

    2017-01-01

    Wet-formed particleboard bonded with cellulose nanofibrils (CNF) was prepared in this work. The effects of density, CNF addition ratio, pressing method, and particle size on the bending strength were evaluated. The results showed that density had the most important effect on the modulus of elasticity (MOE), while the CNF addition ratio had the most important effect on...

  9. Properties of leaves particleboard for sheathing application

    NASA Astrophysics Data System (ADS)

    Nuryawan, Arif; Rahmawaty

    2018-03-01

    Manufacturing particleboard (PB) made of leaves was carried out to make non-structural building components, such as insulation, partition, wall, and sheathing. Raw materials used dry leaves originated from plantation (palm oil leaves) and forest plantation (magahony leaves). The adhesive used was interior type thermosetting commercial resins, namely 10% urea-formaldehyde (UF) based on oven dry leaves. Hardener used for UF resin was 1% and 3% ammonium chloride (NH4Cl) 20% (w/w), respectively. Technically, the target density of PB was 0.8 g/cm3 with the dimension’s size of (250 x 250 x 10) mm3. The pressure, temperature, and time of pressing of the hot press were 25 kgf/cm2, 120C, and 10 minutes, respectively. After conditioning for one week, the PB then was evaluated their physical and mechanical properties according to Japanese Industrial Standard (JIS) A 5908 (2003). Results of this work showed: 1) Both types of PB (palm oil and mahagony leaves) were feasible to be produced for non-structural applications; 2) Addition of hardener enhanced the physical and mechanical properties of PB; 3) It was recommended to enhance the performance of the PB by manipulation of the raw materials and the design.

  10. Volatile organic compound emissions during hot-pressing of southern pine particleboard : panel size effects and trade-off between press time and temperature

    Treesearch

    Wenlong Wang; Douglas J. Gardner; Melissa G.D. Baumann

    2002-01-01

    In previous research, it was shown that decreasing either press temperature or press time generally resulted in decreased volatile organic compound (VOC) emissions during the hot-pressing of southern pine particleboard. However, because it is impossible to reduce both pressing time and temperature while maintaining panel physical and mechanical properties, this study...

  11. Physical properties of heat-treated rattan waste binderless particleboard

    NASA Astrophysics Data System (ADS)

    Tajuddin, Maisarah; Ahmad, Zuraida; Halim, Zahurin; Maleque, Md Abd; Ismail, Hanafi; Sarifuddin, Norshahida

    2017-07-01

    The objective of this study is to investigate the effects of heat treatment on the properties of binderless particleboard (BPB) fabricated via hot-pressing process with pressing temperature, pressing time and pressing pressure of 180°C, 5 minutes and 1 MPa, respectively. The fabricated BPB with density in the range of 0.8-0.95g cm-3 was heated in a temperature-controlled laboratory chamber at 80°C, 120°C and 160°C for period of 2 and 8 hours before underwent physical observation, mass loss measurement and thickness swelling test. The samples had remarkable color changes, mainly with samples of treatment temperature of 160˚C, where the color differences were 9.5 and 20.3. This changed the fabricated BPB samples from yellowish brown to dark brown color when treatment conditions increased. Darker color indicates greater mass loss due to severity of chemical component in the powder. Dimensional stability of fabricated BPB was improved with higher treatment temperature as more cellulose cross-linked and hemicellulose degraded that removed the hygroscopicity behavior of powder. These results revealed that heat treatment helped in improving the BPB physical properties, particularly in dimensional stability of boards.

  12. Determination of CT number and density profile of binderless, pre-treated and tannin-based Rhizophora spp. particleboards using computed tomography imaging and electron density phantom

    NASA Astrophysics Data System (ADS)

    Yusof, Mohd Fahmi Mohd; Hamid, Puteri Nor Khatijah Abdul; Bauk, Sabar; Hashim, Rokiah; Tajuddin, Abdul Aziz

    2015-04-01

    Plug density phantoms were constructed in accordance to CT density phantom model 062M CIRS using binderless, pre-treated and tannin-based Rhizophora Spp. particleboards. The Rhizophora Spp. plug phantoms were scanned along with the CT density phantom using Siemens Somatom Definition AS CT scanner at three CT energies of 80, 120 and 140 kVp. 15 slices of images with 1.0 mm thickness each were taken from the central axis of CT density phantom for CT number and CT density profile analysis. The values were compared to water substitute plug phantom from the CT density phantom. The tannin-based Rhizophora Spp. gave the nearest value of CT number to water substitute at 80 and 120 kVp CT energies with χ2 value of 0.011 and 0.014 respectively while the binderless Rhizphora Spp. gave the nearest CT number to water substitute at 140 kVp CT energy with χ2 value of 0.023. The tannin-based Rhizophora Spp. gave the nearest CT density profile to water substitute at all CT energies. This study indicated the suitability of Rhizophora Spp. particleboard as phantom material for the use in CT imaging studies.

  13. Determination of CT number and density profile of binderless, pre-treated and tannin-based Rhizophora spp. particleboards using computed tomography imaging and electron density phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusof, Mohd Fahmi Mohd, E-mail: mfahmi@usm.my; Hamid, Puteri Nor Khatijah Abdul; Tajuddin, Abdul Aziz

    2015-04-29

    Plug density phantoms were constructed in accordance to CT density phantom model 062M CIRS using binderless, pre-treated and tannin-based Rhizophora Spp. particleboards. The Rhizophora Spp. plug phantoms were scanned along with the CT density phantom using Siemens Somatom Definition AS CT scanner at three CT energies of 80, 120 and 140 kVp. 15 slices of images with 1.0 mm thickness each were taken from the central axis of CT density phantom for CT number and CT density profile analysis. The values were compared to water substitute plug phantom from the CT density phantom. The tannin-based Rhizophora Spp. gave the nearest valuemore » of CT number to water substitute at 80 and 120 kVp CT energies with χ{sup 2} value of 0.011 and 0.014 respectively while the binderless Rhizphora Spp. gave the nearest CT number to water substitute at 140 kVp CT energy with χ{sup 2} value of 0.023. The tannin-based Rhizophora Spp. gave the nearest CT density profile to water substitute at all CT energies. This study indicated the suitability of Rhizophora Spp. particleboard as phantom material for the use in CT imaging studies.« less

  14. The Effect of Nanocopper Additions in a Urea-Formaldehyde Adhesive on the Physical and Mechanical Properties of Particleboard Manufactured from Date Palm Waste

    NASA Astrophysics Data System (ADS)

    Rangavar, H.; Hoseiny fard, M. S.

    2015-03-01

    The effect of addition of copper nanoparticles to a urea-formaldehyde (UF) adhesive on the physical and mechanical properties of particleboards manufactured from date palm waste (DPW) was investigated. The variable factors in the study included copper nanoparticles in amounts of 6 and 8 wt.% of the dry mass of wood, pressing durations of 5 and 6 min, and pressing temperatures of 150 and 160°C. The physical and mechanical properties of manufactured boards were measured according to EN standards. The results showed that the addition of copper nanoparticles to the UF adhesive considerably improved the physical and mechanical properties of the boards and shortened the pressing duration. The boards manufactured with 6 wt.% copper nanoparticles in a dry mass of wood mixed with the adhesive and pressed at a temperature of 160°C for 5 min had mechanical properties exceeding the EN312-2 standard levels.

  15. Attenuation properties and percentage depth dose of tannin-based Rhizophora spp. particleboard phantoms using computed tomography (CT) and treatment planning system (TPS) at high energy x-ray beams

    NASA Astrophysics Data System (ADS)

    Yusof, M. F. Mohd; Abdullah, R.; Tajuddin, A. A.; Hashim, R.; Bauk, S.

    2016-01-01

    A set of tannin-based Rhizophora spp. particleboard phantoms with dimension of 30 cm x 30 cm was fabricated at target density of 1.0 g/cm3. The mass attenuation coefficient of the phantom was measured using 60Co gamma source. The phantoms were scanned using Computed Tomography (CT) scanner and the percentage depth dose (PDD) of the phantom was calculated using treatment planning system (TPS) at 6 MV and 10 MV x-ray and compared to that in solid water phantoms. The result showed that the mass attenuation coefficient of tannin-based Rhizohora spp. phantoms was near to the value of water with χ2 value of 1.2. The measured PDD also showed good agreement with solid water phantom at both 6 MV and 10 MV x-ray with percentage deviation below 8% at depth beyond the maximum dose, Zmax.

  16. Determining the mass attenuation coefficient, effective atomic number, and electron density of raw wood and binderless particleboards of Rhizophora spp. by using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Marashdeh, Mohammad W.; Al-Hamarneh, Ibrahim F.; Abdel Munem, Eid M.; Tajuddin, A. A.; Ariffin, Alawiah; Al-Omari, Saleh

    Rhizophora spp. wood has the potential to serve as a solid water or tissue equivalent phantom for photon and electron beam dosimetry. In this study, the effective atomic number (Zeff) and effective electron density (Neff) of raw wood and binderless Rhizophora spp. particleboards in four different particle sizes were determined in the 10-60 keV energy region. The mass attenuation coefficients used in the calculations were obtained using the Monte Carlo N-Particle (MCNP5) simulation code. The MCNP5 calculations of the attenuation parameters for the Rhizophora spp. samples were plotted graphically against photon energy and discussed in terms of their relative differences compared with those of water and breast tissue. Moreover, the validity of the MCNP5 code was examined by comparing the calculated attenuation parameters with the theoretical values obtained by the XCOM program based on the mixture rule. The results indicated that the MCNP5 process can be followed to determine the attenuation of gamma rays with several photon energies in other materials.

  17. Attenuation properties and percentage depth dose of tannin-based Rhizophora spp. particleboard phantoms using computed tomography (CT) and treatment planning system (TPS) at high energy x-ray beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusof, M. F. Mohd, E-mail: mfahmi@usm.my; School of Health Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan; Abdullah, R.

    A set of tannin-based Rhizophora spp. particleboard phantoms with dimension of 30 cm x 30 cm was fabricated at target density of 1.0 g/cm{sup 3}. The mass attenuation coefficient of the phantom was measured using {sup 60}Co gamma source. The phantoms were scanned using Computed Tomography (CT) scanner and the percentage depth dose (PDD) of the phantom was calculated using treatment planning system (TPS) at 6 MV and 10 MV x-ray and compared to that in solid water phantoms. The result showed that the mass attenuation coefficient of tannin-based Rhizohora spp. phantoms was near to the value of water with χ{sup 2} valuemore » of 1.2. The measured PDD also showed good agreement with solid water phantom at both 6 MV and 10 MV x-ray with percentage deviation below 8% at depth beyond the maximum dose, Z{sub max}.« less

  18. Effects of tree species and wood particle size on the properties of cement-bonded particleboard manufacturing from tree prunings.

    PubMed

    Nasser, Ramadan A; Al-Mefarrej, H A; Abdel-Aal, M A; Alshahrani, T S

    2014-09-01

    This study investigated the possibility of using the prunings of six locally grown tree species in Saudi Arabia for cement-bonded particleboard (CBP) production. Panels were made using four different wood particle sizes and a constant wood/cement ratio (1/3 by weight) and target density (1200 kg/m3). The mechanical properties and dimensional stability of the produced panels were determined. The interfacial area and distribution of the wood particles in cement matrix were also investigated by scanning electron microscopy. The results revealed that the panels produced from these pruning materials at a target density of 1200 kg m(-3) meet the strength and dimensional stability requirements of the commercial CBP panels. The mean moduli of rupture and elasticity (MOR and MOE) ranged from 9.68 to 11.78 N mm2 and from 3952 to 5667 N mm2, respectively. The mean percent water absorption for twenty four hours (WA24) ranged from 12.93% to 23.39%. Thickness swelling values ranged from 0.62% to 1.53%. For CBP panels with high mechanical properties and good dimensional stability, mixed-size or coarse particles should be used. Using the tree prunings for CBPs production may help to solve the problem of getting rid of these residues by reducing their negative effects on environment, which are caused by poor disposal of such materials through direct combustion process and appearance of black cloud and then the impact on human health or the random accumulation and its indirect effects on the environment.

  19. Life cycle assessment of wood wastes: A case study of ephemeral architecture.

    PubMed

    Rivela, Beatriz; Moreira, María Teresa; Muñoz, Iván; Rieradevall, Joan; Feijoo, Gumersindo

    2006-03-15

    One of the most commonly used elements in ephemeral architecture is a particleboard panel. These types of wood products are produced from wood wastes and they are used in temporary constructions such as trade fairs. Once the event is over, they are usually disposed into landfills. This paper intends to assess the environmental effects related to the use of these wood wastes in the end-of-life stage. The Life Cycle Assessment (LCA) of two scenarios was performed, considering the recycling of wood waste for particleboard manufacture and energy generation from non-renewable resources (Scenario 1) versus the production of energy from the combustion of wood waste and particleboard manufacture with conventional wooden resources (Scenario 2). A sensitive analysis was carried out taking into account the influence of the percentage of recycled material and the emissions data from wood combustion. According to Ecoindicator 99 methodology, Damage to Human Health and Ecosystem Quality are more significant in Scenario 2 whereas Scenario 1 presents the largest contribution to Damage to Resources. Between the two proposed alternatives, the recycling of wood waste for particleboard manufacture seems to be more favorable under an environmental perspective.

  20. Urea-formaldehyde resins: production, application, and testing

    NASA Astrophysics Data System (ADS)

    Nuryawan, A.; Risnasari, I.; Sucipto, T.; Heri Iswanto, A.; Rosmala Dewi, R.

    2017-07-01

    Urea-formaldehyde (UF) resin, one of the most important formaldehyde resin adhesives, is a polymeric condensation product of formaldehyde with urea, and being widely used for the manufacture of wood-based composite panels, such as plywood, particleboard, and fiberboard. In spite of its benefits such as fast curing, good performance in the panels (colorless), and lower cost; formaldehyde emission (FE) originated from either UF resin itself or composite products bonded by UF resins is considered a critical drawback as it affects human health particularly in indoor environment. In order to reduce the FE, lowering formaldehyde/urea (F/U) mole ratio in the synthesis of the UF resin was done. In this study, synthesis of UF resins was carried out following the conventional alkaline-acid two-step reaction with a second addition of urea, resulting in F/U mole ratio around 1.0, namely 0.95; 1.05, and 1.15. The UF resins produced were used as binder for particleboard making. The board was manufactured in the laboratory using shaving type particle of Gmelina wood, 8% UF resin based on oven dry particle, and 1% NH4Cl (20%wt) as hardener for the resin. The target of the thickness was 10 mm and the dimension was 25 cm x 25 cm. The resulted particleboard then was evaluated the physical and the mechanical properties by Japanese Industrial Standard (JIS) A 5908 (2003). Further, the resulted particleboard also was used for the mice cage’s wall in order to mimic the real living environment. After four weeks exposure in the cages, the mice then were evaluated their mucous organs as well as their blood. The experiment results were as follows: 1) It was possible to synthesis UF resins with low F/U mole ratio; 2) However, the particleboard bonded UF resins with low F/U mole ratio showed poor properties, particularly on the thickness swelling and modulus of elasticity; 3) There was no significant differences among the mucous organs of the mice after a month exposure FE originated from

  1. 40 CFR 429.143 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Particleboard Manufacturing Subcategory § 429.143 Effluent limitations representing the degree of effluent reduction...

  2. 40 CFR 429.142 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Particleboard Manufacturing Subcategory § 429.142 Effluent limitations representing the degree of effluent...

  3. 40 CFR 429.141 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Particleboard Manufacturing Subcategory § 429.141 Effluent limitations representing the degree of effluent reduction...

  4. 40 CFR 429.145 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Particleboard Manufacturing Subcategory § 429.145 Pretreatment standards for existing sources (PSES). Any existing source...

  5. 40 CFR 429.146 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Particleboard Manufacturing Subcategory § 429.146 Pretreatment standards for new sources (PSNS). Any new source subject to...

  6. 24 CFR 3280.406 - Air chamber test method for certification and qualification of formaldehyde emission levels.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... particleboard is produced or surface-finished, whichever is later, the panels must be dead-stacked or air-tight... with the Standard Test Method for Determining Formaldehyde Levels from Wood Products Under Defined Test...

  7. Wood Used in U.S. Manufacturing Industries, 1977.

    DTIC Science & Technology

    1983-12-01

    10 1965, and 1977. Particleboard .............................................................. . . 10 • .%- M ed iu m -D e ns ity F...ibe rbo ard ............................................. 10 T able 4...used in manufacturing in- dustries, 1960, 1965, and 1977. T able 10 ........................................................................ . . . 15

  8. CHARACTERIZATION OF MANUFACTURING PROCESSES AND EMISSIONS AND POLLUTION PREVENTION OPTIONS FOR THE COMPOSITE WOOD INDUSTRY

    EPA Science Inventory

    The report summarizes information gathered on emissions from the composite wood industry (also called the Plywood and particleboard industry) and potential pollution prevention options. Information was gathered during a literature search that included trade association publicatio...

  9. 40 CFR 429.144 - New source performance standards (NSPS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false New source performance standards (NSPS). 429.144 Section 429.144 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Particleboard Manufacturing...

  10. APPLICATION OF POLLUTION PREVENTION TECHNIQUES TO REDUCE INDOOR AIR EMISSIONS FROM ENGINEERED WOOD PRODUCTS

    EPA Science Inventory

    The report gives results of an investigation of pollution prevention options to reduce indoor emissions from a type of finished engineered wood. Emissions were screened from four types of finished engineered wood: oak-veneered particleboard coated and cured with a heat-curable, a...

  11. 24 CFR 200.952 - Supplementary specific requirements under the HUD building product standards and certification...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... under the HUD building product standards and certification program for particleboard interior stair... Supplementary specific requirements under the HUD building product standards and certification program for... forth in § 200.935(d)(6) concerning labeling of a product, the administrator's validation mark and the...

  12. The effects of temperature and humidity on formaldehyde emission from UF-bonded boards : a literature critique

    Treesearch

    George E. Myers

    1985-01-01

    An analysis has been conducted on available data related to temperature and humidity effects on formaldehyde concentrations that are produced by emission from particleboard and hardwood plywood paneling. Temperature changes are described by an exponential relation while a linear relation suffices for humidity effects. Large variations exist in the results from...

  13. Wood-based panel plant locations and timber availability in selected U.S. states

    Treesearch

    T. McKeever; H. N. Spelter

    1998-01-01

    This report lists wood-based panel industry plant locations, production capacities, timber inventories, and wood costs for 24 U.S. states. Industry sectors covered include medium-density fiberboard, particleboard, softwood plywood, and oriented strandboard. Maps of major forest producing states show plant locations and the underlying density of timber stocking by...

  14. Capacity, production, and manufacturing of woodbased panels in North America

    Treesearch

    Henry Spelter

    1994-01-01

    This report is an informational report about four wood-based panel industries: particleboard, oriented strandboard, medium density fiberboard, and Southern Pine plywood. Items highlighted are trends in manufacturing and new plant costs, industry manufacturing capacity, and location. Recent data show the greatest amount of growth taking place in the oriented strandboard...

  15. Composites from southern pine juvenile wood. Part 2. Durability and dimensional stability

    Treesearch

    Anton D. Pugel; Eddie W. Price; Chung-Yun Hse

    1990-01-01

    Southern pine juvenile and mature wood were processed into three composites: flakeboard, particleboard, and fiberboard. The durability of these composites was assessed by subjecting specimens to an ovendry-vacuumpressure-soak (ODVPS) treatment, and then evaluated for modulus of elasticity, modulus of rupture, and internal bond. Overall, juvenile wood composites had...

  16. Mechanical properties of wood-based composite materials

    Treesearch

    Zhiyong Cai; Robert J. Ross

    2010-01-01

    The term composite is used to describe any wood material bonded together with adhesives. The current product mix ranges from fiberboard to laminated beams and components. In this chapter, wood-based composite materials are classified into the following categories: panel products (plywood, oriented strandboard (OSB), particleboard, fiberboard, medium-density fiberboard...

  17. Properties of structural panels fabricated from bioremediated CCA-treated wood: pilot scale

    Treesearch

    Carol A. Clausen; James H. Muehl; Andrzej M. Krzysik

    2006-01-01

    Particleboard and flakeboard panels were fabricated from remediated CCA-treated southern yellow pine. Treated wood, flaked or comminuted into particles, was remediated in 12-kg batches using oxalic acid extraction, followed by bioleaching with the metal-tolerant bacterium Bacillus licheniformis. Remediation resulted in removal of 80 percent Cu, 71 percent Cr, and 89...

  18. Durability of structural panels

    Treesearch

    Eddie W. Price; [Editor

    1984-01-01

    Twenty papers from the proceedings of a workshop are presented on the durability of a group of structural panels for use in roof, wall, and floor sheathing applications. The panel types are waferboard,flakeboard, strandboard, oriented structural board, and structural particleboard. A summary of the proceedings is given as the final presentation.

  19. Air quality and composite wood products

    Treesearch

    Melissa G. D. Baumann

    1999-01-01

    Research at the USDA Forest Service, Forest Products Laboratory (FPL) is being conducted to identify the compounds emitted from wood products during their manufacture and subsequent use. The FPL researchers are measuring the types and quantities of VOCs that are emitted from particleboard and MDF products to provide quantitative emissions information. This information...

  20. Laser machining wood composites

    Treesearch

    Vladimir Barnekov; Henry A. Huber; Charles W. McMillin

    1989-01-01

    This practical, nonstatistical experiment using commercial equipment demonstrated that nominal 3/4-inch compositep anelsf or furniture consisting of a particleboard core,h igh density melamine crossbands, and walnut veneer face plies can be cut with a carbon dioxide/airjet-assisted laser to produce surfaces with minimal nonparallelism and char compared to previous...

  1. Adhesives with wood materials : bond formation and performance

    Treesearch

    Charles R. Frihart; Christopher G. Hunt

    2010-01-01

    Adhesive bonding of wood plays an increasing role in the forest products industry and is a key factor for efficiently utilizing our timber resource. The main use of adhesives is in the manufacture of building materials, including plywood, oriented strandboard, particleboard, fiberboard, structural composite lumber, doors, windows and frames, and factory-laminated wood...

  2. In-situ cure monitoring of isocyanate adhesives using microdielectric analysis

    Treesearch

    Micahel P. Wolcott; Timothy G. Rials

    1995-01-01

    Recent advances in microelectronics have produced small electrodes that can be used for remote dielectric measurements. These miniature sensors are small enough to be embedded in a composite panel during manufacture with little disturbance to the manufacturing process. Small particleboard panels (5 by 4.5 by 0.25 in.) were manufactured with 6 percent polymeric...

  3. In-situ cure monitoring of isocyanate adhesives using microdielectric analysis

    Treesearch

    Michael P. Wolcott; Timothy G. Rials

    1995-01-01

    Recent advances in microelectronics have produced small electrodes that can be used for remote dielectric measurements. These miniature sensors are small enought to be embedded in a composite panel during manufacture with little disturbance to the manufacturing process. Small particleboard panels (5 by 4.5 by 0.25 in) were manufactured with 6 percent polymeric...

  4. A profile of wood use in nonresidential building construction

    Treesearch

    H. N. Spelter; R. G. Anderson

    This report presents estimates of the amounts of lumber, glued-laminated lumber, trusses, plywood, particleboard, hardboard, and wood shingles used in new nonresidential building construction in the United States. Use of wood products is shown for several building types, project sizes, and building components. The estimates are based on a survey of 489 projects under...

  5. Composites from southern pine juvenile wood. Part 1. Panel fabrication and initial properties

    Treesearch

    Anton D. Pugel; Eddie W. Price; Chung-Yun Hse

    1990-01-01

    Flakeboard, particleboard, and fiberboard panels were manufactured from four different sources of southern pine (Pinus taeda L.) juvenile wood. The sources were: 1) fastgrown trees; 2) the inner core of older trees; 3) branches; and 4) tops. The juvenile wood particle sizes and panel densities were similar to those used for control panels made from...

  6. Measurement of Dynamic Viscoelasticity of Full-Size Wood Composite Panels Using a Vibration Testing Method

    Treesearch

    Cheng Guan; Houjiang Zhang; John F. Hunt; Lujing Zhou; Dan Feng

    2016-01-01

    The dynamic viscoelasticity of full-size wood composite panels (WCPs) under the free-free vibrational state were determined by a vibration testing method. Vibration detection tests were performed on 194 pieces of three types of full-size WCPs (particleboard, medium density fiberboard, and plywood (PW)). The dynamic viscoelasticity from smaller specimens cut from the...

  7. Steam-assisted hot-pressing of construction plywood

    Treesearch

    Ronald W. Jokerst; Robert L. Geimer

    1994-01-01

    This study was designed to determine if steam injection pressing used for fiberboard, particleboard, and flakeboard could be adapted to the pressing of plywood. Plywood panels were fabricated with and without adhesive and then pressed to determine the effects of steam injection Lime, steam injection pressure, and press pressure on heat transfer rate, moisture...

  8. Stress-wave velocity of wood-based panels: effect of moisture, product type, and material direction

    Treesearch

    Guangping Han; Qinglin Wu; Xiping Wang

    2006-01-01

    The effect of moisture on longitudinal stress-wave velocity (SWV), bending stiffness. and bending strength of commercial oriented strandboard, plywood. particleboard. and southern pine lumber was evaluated. It was shown that the stress-wave verocity decreased in general with increases in panel moisture content (MC). At a given MC level. SWV varied with panel type and...

  9. Lumber and panel products consumption for packaging and shipping in the United States, perspective for the 1980`s

    Treesearch

    D. B. McKeever; H. E. Dickerhoof

    Trends in demand for lumber and panel products in packaging and materials handling are examined both for the past and the future. Effects of recent technological developments and innovations such as molded particleboard pallets, medium-density fiberboard pallets, and plywood pallets, are analyzed. Increased use of pallets is seen as the main reason for the expected...

  10. Issues and concepts for making durable composites

    Treesearch

    Frederick A. Kamke; Jerrold E. Winandy

    2008-01-01

    Perhaps the greatest obstacle facing the acceptance of engineered wood composite products into new markets is the perceived lack of durability. Public perception is that particleboard and other wood-based composites fall apart when exposed to water. This paper will review the unique characteristics of wood based composites that make them more or less susceptible to...

  11. Effect of ventilation rate and board loading on formaldehyde concentration : a critical review of the literature

    Treesearch

    George E. Myers

    1984-01-01

    A critical literature review has been carried out on the influence of ventilation rate (N, hr.-1) and board loading (L, m2/m3) on steady state formaldehyde concentrations (Cs, ppm) resulting from particleboard and plywood emissions. Large differences exist among boards in the extent to which their formaldehyde concentrations change with N or L in laboratory chambers....

  12. Mechanical and physical properties of composite panels manufactured from Chinese tallow tree furnish

    Treesearch

    Todd F. Shupe; Leslie H. Groom; Thomas L. Eberhardt; Timothy G. Rials; Chung Y. Hse; Thomas Pesacreta

    2006-01-01

    Chinese tallow tree is a noxious, invasive plant in the southeastern United States. It is generally considered a nuisance and has no current commercial use. The objective of this research was to determine the technical feasibility of using the stem wood of this species for particleboard, fiberboard, and structural flakeboard. Due to its rapid growth, Chinese tallow...

  13. How mole ratio of UF resin affects formaldehyde emission and other properties : a literature critique

    Treesearch

    George E. Myers

    1984-01-01

    A critical review was made of the literature concerned with how the formaldehyde to urea mole ratio (F/U) affects formaldehyde emission from particleboard and plywood bonded with urea-formaldehyde (UF) adhesives, and how this ratio affects certain other adhesive and board properties. It is difficult to quantify the dependence of various properties on mole ratio or...

  14. Development of melamine modified urea formaldehyde resins based o nstrong acidic pH catalyzed urea formaldehyde polymer

    Treesearch

    Chung-Yun Hse

    2009-01-01

    To upgrade the performance of urea-formaldehyde (UF) resin bonded particleboards, melamine modified urea-formaldehyde (MUF) resins based on strong acidic pH catalyzed UF polymers were investigated. The study was conducted in a series of two experiments: 1) formulation of MUF resins based on a UF polymer catalyzed with strong acidic pH and 2) determination of the...

  15. California’s forest products industry and timber harvest, 2006

    Treesearch

    Todd A. Morgan; Jason P. Brandt; Kathleen E. Songster; Charles E. Keegan; Glenn A. Christensen

    2012-01-01

    This report traces the flow of California’s 2006 timber harvest through the primary wood products industry (i.e., firms that process timber into manufactured products such as lumber, as well as facilities such as pulp mills and particleboard plants, which use the wood fiber or mill residue directly from timber processors) and provides a description of the structure,...

  16. Analysis of Cantilever-Beam Bending Stress Relaxation Properties of Thin Wood Composites

    Treesearch

    John F. Hunt; Houjiang Zhang; Yan Huang

    2015-01-01

    An equivalent strain method was used to analyze and determine material relaxation properties for specimens from particleboard, high density fiberboard, and medium density fiberboard. Cantilever beams were clamped and then deflected to 11 m and held for either 2 h or 3 h, while the load to maintain that deflection was measured vs. time. Plots of load relaxation for each...

  17. The changing market for hardwood plywood stock panels.

    Treesearch

    Gary R. Lindell

    1972-01-01

    The major end product for hardwood plywood (usually birch) stock panels in 1970 was kitchen cabinets. About 1/3 of the volume was shipped to the Pacific region. Over 1/3 of the responses by wholesalers indicated that stock panel sales had declined over the preceding 3 years, chiefly because of the inroads being made by plastic covered particleboard panels. The...

  18. Dynamic determination of modulus of elasticity of full-size wood composite panels using a vibration method

    Treesearch

    Cheng Guan; Houjiang Zhang; Lujing Zhou; Xiping Wang

    2015-01-01

    A vibration testing method based on free vibration theory in a ‘‘free–free” support condition was investigated for evaluating the modulus of elasticity (MOE) of full-size wood composite panels (WCPs). Vibration experiments were conducted on three types of WCPs (medium density fibreboard, particleboard, and plywood) to determine the dynamic MOE of the panels. Static...

  19. Slash pine rootwood in flakeboard

    Treesearch

    E.T. Howard

    1974-01-01

    Flakes 3 Inches along the grain. 3/8-inch wide, and 0.02 inch thick were machined from the taproots (with 6-inch-high stump) and second logs at eight 31-year-old slash pines. Specific gravity (O.D. weight, green volume) of stems averaged 0.52; rootwood averaged 0.43 and decreased sharply with depth below ground. Forty-four-lb./cu. ft. structural-type particleboards...

  20. Evaluating the warping of laminated particleboard panels

    Treesearch

    Zhiyong Cai

    2004-01-01

    Laminated wood composites have been used widely in the secondary manufacturing processes in the wood panel industries. Warping, which is defined as the out-of-plane deformation of an initially flat panel, is a longstanding problem associated with the use of laminated wood composites. The mechanism of warping is still not fully understood. A new two- dimensional warping...

  1. Asthma, Wheezing, and Allergies in Russian Schoolchildren in Relation to New Surface Materials in the Home

    PubMed Central

    Jaakkola, Jouni J. K.; Parise, Helen; Kislitsin, Victor; Lebedeva, Natalia I.; Spengler, John D.

    2004-01-01

    In a cross-sectional study of 5951 Russian 8–12-year-old schoolchildren, risks of current asthma, wheezing, and allergy were related to recent renovation and the installation of materials with potential chemical emissions. New linoleum flooring, synthetic carpeting, particleboard, wall coverings, and furniture and recent painting were determinants of 1 or several of these 3 health outcomes. These findings warrant further attention to the type of materials used in interior design. PMID:15054004

  2. Data for Prediction of Mechanical Properties of Aspen Flakeboards.

    DTIC Science & Technology

    1983-09-01

    mat and, consequently, Design of particleboards or flakeboards with specific flexural possible flake damage by crushing. Geirner has since properties...acletst at gos U.S. Foes Produt La. ’Nire numein pernm e refe to @teW cited at end of report. ., Experimental Design and Procedute Homogeneous boards...superior tensile strength to steanInjected boards at low Bending Properties . : SG levels where the comparativ advantage of steam- "iection presg (i.e

  3. Melamine-modified urea formaldehyde resin for bonding particleboards

    Treesearch

    Chung-Yun Hse; Feng Fu; Hui Pan

    2008-01-01

    For the development of a cost-effective melamine-modified urea formaldehyde resin (MUF), the study evaluated the effects of reaction pH and melamine content on resin properties and bond performance of the MUF resin adhesive systems. Eight resins, each with three replicates, were prepared in a factorial experiment that included two formulation variables: two reaction...

  4. Identification using versatile sampling and analytical methods of volatile compounds from Streptomyces albidoflavus grown on four humid building materials and one synthetic medium.

    PubMed

    Claeson, A-S; Sunesson, A-L

    2005-01-01

    The Streptomyces spp. form a common group of bacteria found in the indoor air of water-damaged buildings. They are known for their capability to produce compounds, like geosmin, with low odor thresholds. In this study, two strains of Streptomyces albidoflavus were cultivated on pinewood, gypsum board, particle-board, sand and tryptone glucose extract agar (TGEA). Air samples from the cultures were collected on six different adsorbents and chemosorbents to sample a wide range of compounds such as VOCs, aldehydes, amines and lightweight organic acids. The samples were analyzed with gas chromatography, high-pressure liquid chromatography and ion chromatography. Mass spectrometry was used for identification of the compounds. Metabolites were found and identified in air samples from cultures on all materials except sand. Alcohols and ketones were the dominating compound groups produced by cultures grown on pinewood and gypsum board. Few metabolites were produced on particle-board. The culture growing on TGEA produced mainly sulfur compounds and sesquiterpenes. Ammonia, methylamine, diethylamine, ethylamine and one unidentifiable amine were also found from cultivation on TGEA. The growth medium was of crucial importance to the production of potentially irritating metabolites. Microbial growth and the production of volatile metabolites is one possible explanation for building-related health problems. Streptomyces spp. are frequently found in water-damaged buildings. This study shows that Streptomyces spp. are able to produce not only odorous compounds like geosmin, but also potentially irritating compounds. This finding should be of interest in indoor air investigations.

  5. Properties of particleboard made from recycled CCA-treated wood

    Treesearch

    Carol A. Clausen; S. Nami Kartal; James Muehl

    2000-01-01

    Recovery of chromated copper arsenate (CCA)-treated wood for reuse has been the focus of several international research groups due to the imminent disposal problem created when large quantities of CCA-treated wood ultimately come out of service. Bioleaching with Bacillus licheniformis CC01 and oxalic acid extraction are two methods known to remove significant...

  6. Adhesion improvement of lignocellulosic products by enzymatic pre-treatment.

    PubMed

    Widsten, Petri; Kandelbauer, Andreas

    2008-01-01

    Enzymatic bonding methods, based on laccase or peroxidase enzymes, for lignocellulosic products such as medium-density fiberboard and particleboard are discussed with reference to the increasing costs of presently used petroleum-based adhesives and the health concerns associated with formaldehyde emissions from current composite products. One approach is to improve the self-bonding properties of the particles by oxidation of their surface lignin before they are fabricated into boards. Another method involves using enzymatically pre-treated lignins as adhesives for boards and laminates. The application of this technology to achieve wet strength characteristics in paper is also reviewed.

  7. Can early household exposure influence the development of rhinitis symptoms in infancy? Findings from the PARIS birth cohort.

    PubMed

    Herr, Marie; Nikasinovic, Lydia; Foucault, Christophe; Le Marec, Anne-Marie; Giordanella, Jean-Pierre; Just, Jocelyne; Momas, Isabelle

    2011-10-01

    Allergic rhinitis (AR) has become the most prevalent chronic allergic disorder in childhood, and the role of environment has been questioned, particularly in early life. To investigate the risk factors for rhinitis symptoms in infants included in the PARIS (Pollution and Asthma Risk: an Infant Study) birth cohort. Infants were invited to participate at age 18 months in a health examination conducted by a pediatrician. Allergic rhinitis was defined as the presence of rhinitis symptoms (runny nose, blocked nose, sneezing in the absence of a cold) combined with biological atopy (elevated total immunoglobulin E [IgE], specific IgE, or eosinophilia) and nonallergic rhinitis (NAR) as symptoms without biological atopy. Information about indoor exposures and lifestyle was collected during a telephone interview when the child was 1 month of age. Risk factors for AR and NAR were studied by using a polytomous regression model. The prevalence of AR and NAR was 70/1,850 (3.8%) and 99/1,850 (5.4%), respectively. Allergic rhinitis and NAR did not share similar risk factors. Male sex (odds ratio [OR] = 1.99 [1.19-3.32]), parental history of AR (OR = 1.89 [1.16-3.08]), low socioeconomic class (OR = 2.23 [1.05-4.72] for low vs high level), and the presence of cockroaches in the home (OR = 3.15 [1.67-5.96]) were risk factors for AR. Conversely, the presence of particle-board furniture less than 12 months old in the child's bedroom was associated with an increased risk of NAR (OR = 1.87 [1.21-2.90]). This study should raise awareness about the impact of indoor exposures, particularly with regard to cockroaches and particle-board furniture, because they could influence the occurrence of noninfectious rhinitis. Copyright © 2011 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  8. Fundamental mass transfer modeling of emission of volatile organic compounds from building materials

    NASA Astrophysics Data System (ADS)

    Bodalal, Awad Saad

    In this study, a mass transfer theory based model is presented for characterizing the VOC emissions from building materials. A 3-D diffusion model is developed to describe the emissions of volatile organic compounds (VOCs) from individual sources. Then the formulation is extended to include the emissions from composite sources (system comprising an assemblage of individual sources). The key parameters for the model (The diffusion coefficient of the VOC in the source material D, and the equilibrium partition coefficient k e) were determined independently (model parameters are determined without the use of chamber emission data). This procedure eliminated to a large extent the need for emission testing using environmental chambers, which is costly, time consuming, and may be subject to confounding sink effects. An experimental method is developed and implemented to measure directly the internal diffusion (D) and partition coefficients ( ke). The use of the method is illustrated for three types of VOC's: (i) Aliphatic Hydrocarbons, (ii) Aromatic Hydrocarbons and ( iii) Aldehydes, through typical dry building materials (carpet, plywood, particleboard, vinyl floor tile, gypsum board, sub-floor tile and OSB). Then correlations for predicting D and ke based solely on commonly available properties such as molecular weight and vapour pressure were proposed for each product and type of VOC. These correlations can be used to estimate the D and ke when direct measurement data are not available, and thus facilitate the prediction of VOC emissions from the building materials using mass transfer theory. The VOC emissions from a sub-floor material (made of the recycled automobile tires), and a particleboard are measured and predicted. Finally, a mathematical model to predict the diffusion coefficient through complex sources (floor adhesive) as a function of time was developed. Then this model (for diffusion coefficient in complex sources) was used to predict the emission rate from

  9. Use of lasers in the furniture industry

    NASA Astrophysics Data System (ADS)

    Wieloch, Grzegorz; Pohl, Piotr

    1995-03-01

    One of the ways of using laser in industry is its usage in loss treatment of wood and composite wood products. In the furniture industry the above mentioned machining is used in such technological processes in which tool machining (sawing, molding) is not economical or even possible. These processes are mainly curvilinear cutting of layer materials like veneers, plywood, and face layers and thicker materials like particleboards, fiberboards, and lumber- core panels. Wide usage has also been achieved in heat treatment in wood for decoration. It can be calcinating designs, engraving them, blackening of parts of surfaces, or changing of anatomic characteristics of wood tissue. Nevertheless laser usage in recliner cutting seems at present causeless.

  10. The internal bond and shear strength of hardwood veneered particleboard composites

    Treesearch

    P. Chow; J.J. Janowiak; E.W. Price

    1986-01-01

    The effects of several accelerated aging tests and weather exposures on hardwood reconstituted structural composite panels were evaluated. The results indicated that the internal bond and shear by tension loading strength reductions of the panels were affected by the exposure test method. The ranking of the effects of various exposure tests on strength values in an...

  11. Recycling of wood for particle board production: accounting of greenhouse gases and global warming contributions.

    PubMed

    Merrild, Hanna; Christensen, Thomas H

    2009-11-01

    The greenhouse gas (GHG) emissions related to the recycling of wood waste have been assessed with the purpose to provide useful data that can be used in accounting of greenhouse gas emissions. Here we present data related to the activities in a material recovery facility (MRF) where wood waste is shredded and foreign objects are removed in order to produce wood chips for use in the production of particleboard. The data are presented in accordance with the UOD (upstream, operational, downstream) framework presented in Gentil et al. (Waste Management & Research, 27, 2009). The GHG accounting shows that the emissions related to upstream activities (5 to 41 kg CO(2)-equivalents tonne( -1) wood waste) and to activities at the MRF (approximately 5 kg CO(2)-equivalents tonne(-1) wood waste) are negligible compared to the downstream processing (-560 to -120 kg CO(2)equivalents tonne(-1) wood waste). The magnitude of the savings in GHG emissions downstream are mainly related to savings in energy consumption for drying of fresh wood for particleboard production. However, the GHG account highly depends on the choices made in the modelling of the downstream system. The inclusion of saved electricity from avoided chipping of virgin wood does not change the results radically (-665 to -125 kg CO(2)-equivalents tonne(- 1) wood waste). However, if in addition it is assumed that the GHG emissions from combustion of wood has no global warming potential (GWP) and that the energy produced from excess wood due to recycling substitutes energy from fossil fuels, here assumed to be coal, potentially large downstream GHG emissions savings can be achieved by recycling of waste wood (-1.9 to -1.3 tonnes CO(2)-equivalents tonne(- 1) wood waste). As the data ranges are broad, it is necessary to carefully evaluate the feasibility of the data in the specific system which the GHG accounting is to be applied to.

  12. Performance of finishes on western juniper lumber and particleboard during outdoor exposure

    Treesearch

    R. Sam Williams; Larry Swan; Peter Sotos; Mark Knaebe; William C. Feist

    2005-01-01

    The increasing number of western juniper trees per acre and the expansion of its range is resulting in watershed degradation, loss of site productivity, decrease in forage production, loss of wildlife habitat, and overall reduction in biodiversity. Previous studies and anecdotal evidence indicate western juniper has fairly good resistance to decay and insect attack,...

  13. Thermochemical pretreatment of underutilized woody biomass for manufacturing wood composites

    NASA Astrophysics Data System (ADS)

    Pelaez Samaniego, Manuel Raul

    Prescribed fires, one method for reducing hazardous fuel loads from forest lands in the US, are limited by geographical, environmental, and social impacts. Mechanical operations are an alternative type of fuel treatment but these processes are constrained by the difficulty of economically harvesting and/or using large amounts of low-value woody biomass. Adoption and integration of new technologies into existing wood composite facilities offer better utilization of this material. A pretreatment that enables integration of technologies in a typical composite facility will aid with diversification of product portfolio (e.g. wood composites, fuel pellets, liquid fuels, chemicals). Hot water extraction (HWE) is an option for wood pretreatment. This work provides a fundamental understanding of the physicochemical changes to wood resulting from HWE, and how these changes impact processing and performance of composites. Specific objectives were to: 1) review literature on studies related to the manufacture of composites produced with thermally pretreated wood, 2) manufacture wood plastic composites (WPC) and particleboard using HWE wood and evaluate the impacts of pretreatment on product properties, 3) develop an understanding of the effect of HWE on lignin properties, specifically lignin at the cells surface level after migration from cell walls and middle lamella, 4) discern the influence of lignin on the fiber surface on processing WPCs, and, 5) investigate the effect of changing the pretreatment environment (inert gas instead of water) on lignin behavior. Results show that HWE enhances the resistance of both WPCs and particleboard to water with positive or no effect on mechanical properties. Reduction of hemicelluloses and lignin property changes are suggested as the main reasons for enhancing interaction between wood fiber and resins during composite processing. Lignin on the surface of particles after HWE interacts with thermoplastics during WPCs compounding, thus

  14. Development and evaluation of epoxidized soybean oil-based polymers

    NASA Astrophysics Data System (ADS)

    Juangvanich, Nuanpen

    hull particleboard was developed using the cured ESO resin as adhesive, and the board had strength comparable to the National Bureau of Standards minimum requirement for particleboard. A 35 wt % of ESO resin imparted the highest strength for the rice hull board, with a value of 15.5 MPa.

  15. The nature of the MDI/wood bond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcinko, J.J.; Phanopoulos, C.; Newman, W.H.

    1995-12-01

    Polymeric diphenylmethane diisocyanate (pMDI) binders have been used in the wood composite industry for 20 years. Almost one half of the oriented strand board (OSB) manufactures in North America are taking advantage of its processing speed and superior board performance. MDI`s current use in Strandboard, MDF (medium density fiber board), LVL (laminated veneer lumber), Plywood, and Particleboard is wide spread. A fundamental understanding of the role of MIDI as a binder in these complex composites is essential for further processing optimization. Experimental data is presented which investigates the nature of the chemical bonding in wood composites. Solid state nuclear magneticmore » resonance (NMR) data is combined with data from thermal analysis and fluorescence microscopy to investigate the chemistry, penetration, and morphology of the isocyanate/wood interphase. Structure property relationships are developed and related to composite performance. The study contrasts isocyanate and phenol formaldehyde binder systems.« less

  16. Characterization and Performance of Melamine Enhanced Urea Formaldehyde Resin for Bonding Southern Pine Particleboard

    Treesearch

    Qi-Ning Sun; Chung-Yun Hse; Todd F. Shupe

    2011-01-01

    Urea-formaldehyde resins modified by melamine were synthesized by four catalysts (H2SO4, HCl, H3PO4, and NaOH/NH4OH) with a F/U/M molar ratio of 1.38/1/0.074. Resin structure and thermal behavior were studied by 13C-NMR and DSC techniques. For H2SO4, HCl, and H3PO4 catalysts, resins were prepared by two stage pH adjustment: the first pH stage was set at 1.25 (H3PO4 pH...

  17. Soy adhesives that can form durable bonds for plywood, laminated wood flooring, and particleboard

    Treesearch

    Charles R. Frihart; Michael J. Birkeland; Anthony J. Allen; James M. Wescott

    2010-01-01

    Synthetic adhesives, including urea-formaldehyde (UF) and phenol-formaldehyde (PF), have generally replaced biobased adhesives over the past 70 years because of their durability, low cost, and ease of use. However, in the past few years, concern about formaldehyde emissions, cost, and interest in biobased materials have renewed interest in soy adhesives. The use of soy...

  18. Possibility of using waste tire composites reinforced with rice straw as construction materials.

    PubMed

    Yang, Han-Seung; Kim, Dae-Jun; Lee, Young-Kyu; Kim, Hyun-Joong; Jeon, Jin-Yong; Kang, Chun-Won

    2004-10-01

    Agricultural lignocellulosic fiber (rice straw)-waste tire particle composite boards were manufactured for use as insulation boards in construction, using the same method as that used in the wood-based panel industry. The manufacturing parameters were: a specific gravity of 0.8 and a rice straw content (10/90, 20/80 and 30/70 by wt.% of rice straw/waste tire particle). A commercial polyurethane adhesive for rubber was used as the composite binder. The water proof, water absorption and thickness swelling properties of the composite boards were better than those of wood particleboard. Furthermore, the flexibility and flexural properties of the composite boards were superior to those of other wood-based panel products. The composite boards also demonstrated good acoustical insulation, electrical insulation, anti-caustic and anti-rot properties. These boards can be used to prevent impact damage, are easily modifiable and are inexpensive. They are able to be used as a substitute for insulation boards and other flexural materials in construction.

  19. Evaluation of a headspace solid-phase microextraction method for the analysis of ignitable liquids in fire debris.

    PubMed

    Fettig, Ina; Krüger, Simone; Deubel, Jan H; Werrel, Martin; Raspe, Tina; Piechotta, Christian

    2014-05-01

    The chemical analysis of fire debris represents a crucial part in fire investigations to determine the cause of a fire. A headspace solid-phase microextraction (HS-SPME) procedure for the detection of ignitable liquids in fire debris using a fiber coated with a mixture of three different sorbent materials (Divinylbenzene/Carboxen/Polydimethylsiloxane, DVB/CAR/PDMS) is described. Gasoline and diesel fuel were spiked upon a preburnt matrix (wood charcoal), extracted and concentrated with HS-SPME and then analyzed with gas chromatography/mass spectrometry (GC/MS). The experimental conditions--extraction temperature, incubation and exposure time--were optimized. To assess the applicability of the method, fire debris samples were prepared in the smoke density chamber (SDC) and a controlled-atmosphere cone calorimeter. The developed methods were successfully applied to burnt particleboard and carpet samples. The results demonstrate that the procedure that has been developed here is suitable for detecting these ignitable liquids in highly burnt debris. © 2013 American Academy of Forensic Sciences.

  20. Emission of formaldehyde by particleboard : effect of ventilation rate and loading on air-contamination levels

    Treesearch

    George E. Myers; Muneo Nagaoka

    1981-01-01

    Dynamic tests for determining the formaldehyde emission behavior of UF-bonded boards involve the measurement of formaldehyde concentration in the air within a vessel which contains a specified board loading L (m2 of board area per m3 of vessel free volume) and is being ventilated at a specified air exchange rate N (hr.-1). Such tests constitute a primary...

  1. Improved Properties of Medium-Density Particleboard Manufactured from Saline Creeping Wild Rye and HDPE Plastic

    USDA-ARS?s Scientific Manuscript database

    Creeping Wild Rye (CWR), Leymus triticoides, is a salt-tolerant perennial grass used for mitigating the problems of saltilization and alkalization in drainage irrigation water and soil to minimize potential pollution of water streams. In this study, CWR was used as a raw material to manufacture med...

  2. Characteristics of urea-formaldehyde resins as related to glue bond quality of southern pine particleboard

    Treesearch

    C. -Y. Hse

    1974-01-01

    Forty-five urea resins were formulated and replicated by factorial arrangement of three variables: molar ratio of formaldehyde to urea (1.5, 1.7, 1.9, 2.1, and 2.3), reactant concentration (35, 42.5, and 50%), and reaction temperature (75°, 85°, and 95°C).

  3. Reaction catalysts of urea-formaldehyde resin, as related to strength properties of southern pine particleboard

    Treesearch

    C. -Y. Hse

    1974-01-01

    Twelve resins were formulated with factorial combinations of three alkaline catalysts (i.e., somdium hydroxide, hexamethylenetetramine, and triethanolamine) and four acidic catalysts (i.e., acetic acid, hydrochloric acid, ammonium chloride, and phosphoric acid). The resins were replicated.

  4. Determination of native (wood derived) formaldehyde by the desiccator method in particleboards generated during panel production

    Treesearch

    Michael J. Birkeland; Linda Lorenz; James M. Wescott; Charles R. Frihart

    2010-01-01

    Hot-pressing wood, particularly in the production of wood composites, generates significant ‘‘native’’ (wood-based) formaldehyde (FA), even in the absence of adhesive. The level of native FA relates directly to the time and temperature of hot-pressing. This native FA dissipates in a relatively short time and is not part of the long-term FA emission issue commonly...

  5. Reaction pH of urea-formaldehyde resins as related to strength properties of southern pine particleboard

    Treesearch

    C. -Y. Hse

    1974-01-01

    Twelve urea-formaldehyde resins were prepared with factorial combinations of 4 alkaline and 3 acidic reaction phases; i. e., the reaction mixture was adjusted to pH 7, 8, 9, or 10 for the first hour and then made weakly acid to pH 5.8, 4.8, or 3.8.

  6. Wood specific gravity variation among five important hardwood species of Kashmir Himalaya.

    PubMed

    Wani, Bilal Ahmad; Bodha, R H; Khan, Amina

    2014-02-01

    Wood Specific Gravity (SG) is a measure of the amount of structural material a tree species allocates to support and strength. In the present study, specific gravity varied among the five different woods at three different sites from 0.40 in Populus nigra at site III (Shopian) to 0.80 in Parrotiopsis jacquemontiana at site II (Surasyar). Among the three different sites, specific gravity varied from 0.73 to 0.80 in Parroptiosis jacquemontiana; in Robinia pseudoacacia it varied from 0.71 to 0.79; in Salix alba, it varied from 0.42 to 0.48; In Populus nigra it varied from 0.40 to 0.48 and in Juglans regia it varied from 0.59 to 0.66. On the basis of the specific gravity variation patterns these woods were categorized as light (Salix alba, Populus nigra) moderately heavy (Juglans regia) and moderately heavy to heavy (Robinia pseudoacacia, Parrotiopsis jacquemontiana) which predicts their properties like strength, dimensional stability with moisture content change, ability to retain paint, fiber yield per unit volume, suitability for making particleboard and related wood composite materials and suitability as a raw material for making paper.

  7. PSD Applicability Analysis for a Past Change at the Georgia-Pacific Taylorsville Facility Particleboard Plant, Taylorsville, Mississippi

    EPA Pesticide Factsheets

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  8. Impact of Thermomechanical Fiber Pre-Treatment Using Twin-Screw Extrusion on the Production and Properties of Renewable Binderless Coriander Fiberboards.

    PubMed

    Uitterhaegen, Evelien; Labonne, Laurent; Merah, Othmane; Talou, Thierry; Ballas, Stéphane; Véronèse, Thierry; Evon, Philippe

    2017-07-17

    The aim of this study consisted of manufacturing renewable binderless fiberboards from coriander straw and a deoiled coriander press cake, thus at the same time ensuring the valorization of crop residues and process by-products. The press cake acted as a natural binder inside the boards owing to the thermoplastic behavior of its protein fraction during thermopressing. The influence of different fiber-refining methods was evaluated and it was shown that a twin-screw extrusion treatment effectively improved fiber morphology and resulted in fiberboards with enhanced performance as compared to a conventional grinding process. The best fiberboard was produced with extrusion-refined straw using a 0.4 liquid/solid (L/S) ratio and with 40% press cake addition. The water sensitivity of the boards was effectively reduced by 63% through the addition of an extrusion raw material premixing operation and thermal treatment of the panels at 200 °C, resulting in materials with good performance showing a flexural strength of 29 MPa and a thickness swelling of 24%. Produced without the use of any chemical adhesives, these fiberboards could thus present viable, sustainable alternatives for current commercial wood-based materials such as oriented strand board, particleboard and medium-density fiberboard, with high cost-effectiveness.

  9. Impact of Thermomechanical Fiber Pre-Treatment Using Twin-Screw Extrusion on the Production and Properties of Renewable Binderless Coriander Fiberboards

    PubMed Central

    Uitterhaegen, Evelien; Labonne, Laurent; Merah, Othmane; Talou, Thierry; Ballas, Stéphane; Véronèse, Thierry

    2017-01-01

    The aim of this study consisted of manufacturing renewable binderless fiberboards from coriander straw and a deoiled coriander press cake, thus at the same time ensuring the valorization of crop residues and process by-products. The press cake acted as a natural binder inside the boards owing to the thermoplastic behavior of its protein fraction during thermopressing. The influence of different fiber-refining methods was evaluated and it was shown that a twin-screw extrusion treatment effectively improved fiber morphology and resulted in fiberboards with enhanced performance as compared to a conventional grinding process. The best fiberboard was produced with extrusion-refined straw using a 0.4 liquid/solid (L/S) ratio and with 40% press cake addition. The water sensitivity of the boards was effectively reduced by 63% through the addition of an extrusion raw material premixing operation and thermal treatment of the panels at 200 °C, resulting in materials with good performance showing a flexural strength of 29 MPa and a thickness swelling of 24%. Produced without the use of any chemical adhesives, these fiberboards could thus present viable, sustainable alternatives for current commercial wood-based materials such as oriented strand board, particleboard and medium-density fiberboard, with high cost-effectiveness. PMID:28714928

  10. Wood biodegradation in laboratory-scale landfills.

    PubMed

    Wang, Xiaoming; Padgett, Jennifer M; De la Cruz, Florentino B; Barlaz, Morton A

    2011-08-15

    The objective of this research was to characterize the anaerobic biodegradability of major wood products in municipal waste by measuring methane yields, decay rates, the extent of carbohydrate decomposition, carbon storage, and leachate toxicity. Tests were conducted in triplicate 8 L reactors operated to obtain maximum yields. Measured methane yields for red oak, eucalyptus, spruce, radiata pine, plywood (PW), oriented strand board (OSB) from hardwood (HW) and softwood (SW), particleboard (PB) and medium-density fiberboard (MDF) were 32.5, 0, 7.5, 0.5, 6.3, 84.5, 0, 5.6, and 4.6 mL CH(4) dry g(-1), respectively. The red oak, a HW, exhibited greater decomposition than either SW (spruce and radiata), a trend that was also measured for the OSB-HW relative to OSB-SW. However, the eucalyptus (HW) exhibited toxicity. Thus, wood species have unique methane yields that should be considered in the development of national inventories of methane production and carbon storage. The current assumption of uniform biodegradability is not appropriate. The ammonia release from urea formaldehyde as present in PB and MDF could contribute to ammonia in landfill leachate. Using the extent of carbon conversion measured in this research, 0-19.9%, predicted methane production from a wood mixture using the Intergovernmental Panel for Climate Change waste model is only 7.9% of that predicted using the 50% carbon conversion default.

  11. Copolymerization of UF Resins with Dimethylurea for Improving Storage Stability without Impairing Adhesive Performance.

    PubMed

    Pereira, Pedro; Pereira, João; Paiva, Nádia T; Ferra, João M; Martins, Jorge M; Carvalho, Luísa H; Magalhães, Fernão D

    2018-06-19

    Urea-formaldehyde (UF) resins are the most used resins in the wood industry due to high reactivity and low price. However, their reduced stability during storage is a drawback, imposing strict limits in terms of allowable shipping distances and storage times. This instability, manifested by viscosity increase that renders the resin unusable, occurs due to the progress of condensation reactions between the polymeric species present in the liquid medium. In order to achieve a stable resin formulation, dimethylurea (DMeU) was selected for being less reactive than urea. Dimethylurea is shown to co-polymerize with the UF polymer during the acidic synthesis condensation step. However, during storage it behaves like an end group blocker, due to its lower reactivity at basic pH. By adding 1.25% DMeU, it was possible to obtain a formulation that remained with stable viscosity during two-month storage at 40 °C. The reference UF resin remained stable only for eight days in these conditions. Wood particleboards produced with modified resins showed internal bond strengths of about 0.5 N·mm −2 , similar to the fresh reference UF resin, even when the resins were used after the two-month storage period. Formaldehyde content values were below the limit for E1 class, ≤8 mg/100 g oven dry board (EN 13986).

  12. From MDF and PB wastes to adsorbents for the removal of pollutants

    NASA Astrophysics Data System (ADS)

    Gomes, J. A. F. L.; Azaruja, B. A.; Mourão, P. A. M.

    2016-09-01

    The production of activated carbons in powder and monolith forms, by physical activation with CO2, with specific surface areas between 804 and 1469 m2 g-1, porous volume between 0.33 and 0.59 cm3 g-1, with basic nature (PZC ∼ 9.6-10.6) was achieved in our lab, from medium density fibreboard (MDF) and particleboard (PB), engineered wood composites wastes. These highly porous adsorbents were applied in kinetic and equilibrium adsorption studies, in batch and dynamic modes, in powder and monolith forms, of specific adsorptives, considered pollutants, namely phenol (P), p-nitrophenol (PNP) and neutral red (NR). In batch the maximum adsorbed amount was 267, 162 and 92 mg g-1, for PNP, P and NR, respectively. The application of different kinetic models (pseudo-first order, pseudo-second order and intraparticle diffusion model) leads to a better knowledge of the adsorption mechanisms of those adsorptives. The results obtained in the kinetic and equilibrium tests show that the combination of the structural features and the surface chemistry nature of the adsorbents, with the adsorptives properties, establish the kinetic performance, the type and amount adsorbed for each system. This work confirms the potential of these types of wastes in the production of activated carbons and its application in adsorption from liquid phase.

  13. Application of photocuring technique on wood surface and its prospects in Bangladesh

    NASA Astrophysics Data System (ADS)

    Bhattcacharia, S. K.; Khan, Mubarak A.

    2005-07-01

    Photocuring technique has unveiled a new horizon in polymer science. Application of photocuring technique on wood surface has enhanced the use of low grade wood. As Bangladesh is an overpopulated country, necessity of good quality wood is increasing day by day. So low grade wood, like Simul or Partex, locally produced particleboard, would come out with great use. As Partex board, produced from Jute sticks and various types of indigenous low grade wood and particle board are abundant in Bangladesh, so photocuring could play a major role to improve the quality of low grade wood and serve the nation. Already, a lot of research works were carried out by the local scientists to improve the wood surface using UV curing method. Different formulations were also developed by the local scientists using various oligomer, monomer and different types of additives. The used oligomers are epoxy, polyester, urethane, etc. and monomers of different functionalities and used additives are acrylic monomer, CaCO3, sand, MgSiO3, talc, etc. Thin films were prepared on glass plate with different formulations using UV radiation and different characteristics properties (pendulum hardness, abrasion, gloss (60° and 20°), microscratch hardness, weathering effect, adhesion strength, etc.) were studied. Now, a Pilot Plant has already been established with the financial assistance by the government of Bangladesh, worth US 3.5 million.

  14. Formaldehyde concentrations in household air of asthma patients determined using colorimetric detector tubes

    PubMed Central

    Dannemiller, Karen C.; Murphy, Johnna S.; Dixon, Sherry L.; Pennell, Kelly G.; Suuberg, Eric M.; Jacobs, David E.; Sandel, Megan

    2013-01-01

    Formaldehyde is a colorless, pungent gas commonly found in homes that is a respiratory irritant, sensitizer, carcinogen and asthma trigger. Typical household sources include plywood and particleboard, cleaners, cosmetics, pesticides, and others. Development of a fast and simple measurement technique could facilitate continued research on this important chemical. The goal of this research is to apply an inexpensive short-term measurement method to find correlations between formaldehyde sources and concentration, and formaldehyde concentration and asthma control. Formaldehyde was measured using 30-minute grab samples in length-of-stain detector tubes in homes (n=70) of asthmatics in the Boston, MA area. Clinical status and potential formaldehyde sources were determined. The geometric mean formaldehyde level was 35.1 ppb and ranged from 5–132 ppb. Based on one-way ANOVA, t-tests, and linear regression, predictors of log-transformed formaldehyde concentration included absolute humidity, season, and the presence of decorative laminates, fiberglass, or permanent press fabrics (p<0.05), as well as temperature and household cleaner use (p<0.10). The geometric mean formaldehyde concentration was 57% higher in homes of children with very poorly controlled asthma compared to homes of other asthmatic children (p=0.078). This study provides a simple method for measuring household formaldehyde and suggests that exposure is related to poorly controlled asthma. PMID:23278296

  15. Rice straw-wood particle composite for sound absorbing wooden construction materials.

    PubMed

    Yang, Han-Seung; Kim, Dae-Jun; Kim, Hyun-Joong

    2003-01-01

    In this study, rice straw-wood particle composite boards were manufactured as insulation boards using the method used in the wood-based panel industry. The raw material, rice straw, was chosen because of its availability. The manufacturing parameters were: a specific gravity of 0.4, 0.6, and 0.8, and a rice straw content (10/90, 20/80, and 30/70 weight of rice straw/wood particle) of 10, 20, and 30 wt.%. A commercial urea-formaldehyde adhesive was used as the composite binder, to achieve 140-290 psi of bending modulus of rupture (MOR) with 0.4 specific gravity, 700-900 psi of bending MOR with 0.6 specific gravity, and 1400-2900 psi of bending MOR with a 0.8 specific gravity. All of the composite boards were superior to insulation board in strength. Width and length of the rice straw particle did not affect the bending MOR. The composite boards made from a random cutting of rice straw and wood particles were the best and recommended for manufacturing processes. Sound absorption coefficients of the 0.4 and 0.6 specific gravity boards were higher than the other wood-based materials. The recommended properties of the rice straw-wood particle composite boards are described, to absorb noises, preserve the temperature of indoor living spaces, and to be able to partially or completely substitute for wood particleboard and insulation board in wooden constructions.

  16. Experimental and Theoretical Modal Analysis of Full-Sized Wood Composite Panels Supported on Four Nodes

    PubMed Central

    Guan, Cheng; Zhang, Houjiang; Wang, Xiping; Miao, Hu; Zhou, Lujing; Liu, Fenglu

    2017-01-01

    Key elastic properties of full-sized wood composite panels (WCPs) must be accurately determined not only for safety, but also serviceability demands. In this study, the modal parameters of full-sized WCPs supported on four nodes were analyzed for determining the modulus of elasticity (E) in both major and minor axes, as well as the in-plane shear modulus of panels by using a vibration testing method. The experimental modal analysis was conducted on three full-sized medium-density fiberboard (MDF) and three full-sized particleboard (PB) panels of three different thicknesses (12, 15, and 18 mm). The natural frequencies and mode shapes of the first nine modes of vibration were determined. Results from experimental modal testing were compared with the results of a theoretical modal analysis. A sensitivity analysis was performed to identify the sensitive modes for calculating E (major axis: Ex and minor axis: Ey) and the in-plane shear modulus (Gxy) of the panels. Mode shapes of the MDF and PB panels obtained from modal testing are in a good agreement with those from theoretical modal analyses. A strong linear relationship exists between the measured natural frequencies and the calculated frequencies. The frequencies of modes (2, 0), (0, 2), and (2, 1) under the four-node support condition were determined as the characteristic frequencies for calculation of Ex, Ey, and Gxy of full-sized WCPs. The results of this study indicate that the four-node support can be used in free vibration test to determine the elastic properties of full-sized WCPs. PMID:28773043

  17. Laser processing of phenolic wood substitutes

    NASA Astrophysics Data System (ADS)

    Quintero, F.; Riveiro, A.; Lusquiños, F.; Penide, J.; Arias-González, F.; del Val, J.; Comesaña, R.; Boutinguiza, M.; Pou, J.

    2013-11-01

    Phenolic resin boards (PRB) are wood substitutes that comprises of a thick core exclusively made of phenolic resin covered by a thin sheet of melamine resin imitating the aspect of natural wood. The use of these materials in furniture and in construction industry has proliferated during last years. Boards made of phenolic resins are dense, hard and very difficult to cut using band saws, disc saws, or milling cutters. Nevertheless, these difficulties can be overcome by means of laser cutting, which is one of the most firmly established techniques for separating materials. This is due to the great advantages of this technique over traditional cutting methods, such as its versatility and flexibility that allow effective cutting. Nevertheless, charring of the cut edge surface caused by laser induced thermal degradation degrades the cut quality under non-optimized processing conditions. In this research work the viability and quality of CO2 laser cutting process of phenolic resin boards and wood particleboard panels has been evaluated. The present work validates the cut of phenolic resin boards by CO2 lasers using a high laser power and elevated cutting speeds. Moreover, this process involves a serious health hazard since the combustion and decomposition of wood may produce fumes and vapors, which can be toxic and carcinogenic according to the International Chemical Safety Cards (ICSC). Therefore, this work was complemented by the assessment of the potential toxicity of the condensed residues formed on the cut edges, and assessment of the chemistry of the generated fumes by chromatography.

  18. Decomposition of forest products buried in landfills.

    PubMed

    Wang, Xiaoming; Padgett, Jennifer M; Powell, John S; Barlaz, Morton A

    2013-11-01

    The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C+H) loss of up to 38%, while loss for the other wood types was 0-10% in most samples. The C+H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27gOCg(-1) dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than previously reported. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Yield and utilization of hardwood fiber grown on short rotations. [Platanus occidentalis, Liquidambar styraciflua, Liriodendron tulipifera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinbeck, K.; Brown, C.L.

    1976-01-01

    Plantations of broad-leaved tree species harvested in cycles of less than 10 years can help meet man's increasing cellulose and energy needs. A system of growing hardwoods like an agricultural row crop, harvested with equipment equivalent to corn silage cutters and using the ensuing sprout growth as the next crop, was conceived by foresters in Georgia in 1965. Research has focused on the tree species, sites, and cultural practices suited for this concept as well as the biomass yields and the utility of the fiber that was produced. About 70 hectares of American sycamore (Platanus occidentalis L.), sweetgum (Liquidambar styracifluamore » L.), and yellow poplar (Liriodendron tulipifera L.) test plantings have been established in the Piedmont and Coastal Plain regions of Georgia. These species, when given proper care, can be grown successfully on many sites previously deemed unsuitable for hardwood growth. Stumps will resprout throughout the year, ensuring a continuous flow of raw material to the user. The biomass yields from hardwood fields vary with species, site, cultural practices, and rotation age. Fresh weight yields of unfoliated sycamore sprouts grown on an upland site varied from 14.3 tons/ha/yr when harvested annually to 21.8 tons/ha/yr with harvest at age four. When sprouts were harvested every two years, 46 kg/ha/2 yrs of nitrogen, 35 kg calcium, 22 kg potassium, and 6 kg phosphorus were removed in the harvested material. Juvenile American sycamore stump sprouts have been successfully converted into corrugating medium, particleboard, fiberboard, hardboard, and newsprint. It can be cooked by the Kraft and NSSC processes. One-, two-, and four-year-old sycamore sprouts presented no unusual problems in the Kraft process, and yields ranged from 45 to 57 percent with an average yield of 52 percent. Cooking times were relatively short.« less

  20. Life cycle assessment of medium-density fiberboard (MDF) manufacturing process in Brazil.

    PubMed

    Piekarski, Cassiano Moro; de Francisco, Antonio Carlos; da Luz, Leila Mendes; Kovaleski, João Luiz; Silva, Diogo Aparecido Lopes

    2017-01-01

    Brazil is one of the largest producers of medium-density fibreboard (MDF) in the world, and also the MDF has the highest domestic consumption and production rate in the country. MDF applications are highlighted into residential and commercial furniture design and also a wide participation in the building sector. This study aimed to propose ways of improving the environmental cradle-to-gate life-cycle of one cubic meter MDF panel by means of a life-cycle assessment (LCA) study. Complying with requirements of ISO 14040 and 14,044 standards, different MDF manufacturing scenarios were modelled using Umberto® v.5.6 software and the Ecoinvent v.2.2 life-cycle inventory (LCI) database for the Brazilian context. Environmental and human health impacts were assessed by using the CML (2001) and USEtox (2008) methods. The evaluated impact categories were: acidification, global warming, ozone layer depletion, abiotic resource depletion, photochemical formation of tropospheric ozone, ecotoxicity, eutrophication and human toxicity. Results identified the following hotspots: gas consumption at the thermal plant, urea-formaldehyde resin, power consumption, wood chip consumption and wood chip transportation to the plant. The improvement scenario proposals comprised the following actions: eliminate natural gas consumption at the thermal plant, reduce electrical power consumption, reduce or replace urea-formaldehyde resin consumption, reduce wood consumption and minimize the distance to wood chip suppliers. The proposed actions were analysed to verify the influence of each action on the set of impact categories. Among the results, it can be noted that a joint action of the proposed improvements can result in a total reduction of up to 38.5% of impacts to OD, 34.4% to AD, 31.2% to ET, and 30.4% to HT. Finally, MDF was compared with particleboard production in Brazil, and additional opportunities to improve the MDF environmental profile were identified. Copyright © 2016 Elsevier B

  1. Methyl bromide as a building disinfectant: interaction with indoor materials and resulting byproduct formation.

    PubMed

    Corsi, Richard L; Walker, Matthew B; Liljestrand, Howard M; Hubbard, Heidi F; Poppendieck, Dustin G

    2007-05-01

    Several buildings were contaminated with Bacillus anthracis in the fall of 2001. These events required consideration of how to disinfect large indoor spaces for continued worker occupation. The interactions of gaseous disinfectants with indoor materials may inhibit the disinfection process, cause persistence of the disinfectant, and lead to possible byproduct formation and persistence. Methyl bromide (CH3Br) is a candidate for disinfection/deactivation of biological agents in buildings. In this study, 24 indoor materials were exposed to CH3Br for 16 hr at concentrations ranging from 100 to 2500 ppm in 48-L electropolished stainless steel chambers. CH3Br concentrations were measured during and after disinfection. Its interactions with materials were observed to be small, with nearly complete and rapid desorption. Between 3% and 8% of CH3Br adsorbed to four materials (office partition, ceiling tile, particle-board, and gypsum wallboard with satin paint), and the degree of adsorption decreased with increasing relative humidity. The percentage of adsorption to all other materials was <2%. This result suggests that when designing disinfection events with CH3Br, loss to indoor materials can be neglected in terms of disinfectant dose calculations. Possible reaction products were identified and/or quantified before and after exposure to CH3Br. Several monomethylated and dimethylated aliphatic compounds were observed in chamber air at low concentrations after the exposures of six materials to CH3Br. Concentration increases also occurred for chemicals that were observed to naturally off-gas from materials before exposure to CH3Br, suggesting that CH3Br may play a role in enhancing the natural off-gassing of chemicals, for example, by competitive displacement of compounds that already existed in the materials. The results described in this paper should facilitate the design of building disinfection systems involving CH3Br.

  2. Acoustic Monitoring of Adhesive Bond Curing in Wood Laminates.

    NASA Astrophysics Data System (ADS)

    Biernacki, Jacek Marek

    be developed to monitor lumber and panel products curing at high temperature, such as LVL (laminated veneer lumber), OSB (oriented strandboard) and particleboard.

  3. An Investigation on Formaldehyde Emission Characteristics of Wood Building Materials in Chinese Standard Tests: Product Emission Levels, Measurement Uncertainties, and Data Correlations between Various Tests

    PubMed Central

    Song, Wei; Cao, Yang; Wang, Dandan; Hou, Guojun; Shen, Zaihua; Zhang, Shuangbao

    2015-01-01

    As a large producer and consumer of wood building materials, China suffers product formaldehyde emissions (PFE) but lacks systematic investigations and basic data on Chinese standard emission tests (CST), so this paper presented a first effort on this issue. The PFE of fiberboards, particleboards, blockboards, floorings, and parquets manufactured in Beijing region were characterized by the perforator extraction method (PE), 9–11 L and 40 L desiccator methods (D9, D40), and environmental chamber method (EC) of the Chinese national standard GB 18580; based on statistics of PFE data, measurement uncertainties in CST were evaluated by the Monte Carlo method; moreover, PFE data correlations between tests were established. Results showed: (1) Different tests may give slightly different evaluations on product quality. In PE and D9 tests, blockboards and parquets reached E1 grade for PFE, which can be directly used in indoor environment; but in D40 and EC tests, floorings and parquets achieved E1. (2) In multiple tests, PFE data characterized by PE, D9, and D40 complied with Gaussian distributions, while those characterized by EC followed log-normal distributions. Uncertainties in CST were overall low, with uncertainties for 20 material-method combinations all below 7.5%, and the average uncertainty for each method under 3.5%, thus being acceptable in engineering application. A more complicated material structure and a larger test scale caused higher uncertainties. (3) Conventional linear models applied to correlating PFE values between PE, D9, and EC, with R2 all over 0.840, while novel logarithmic (exponential) models can work better for correlations involving D40, with R2 all beyond 0.901. This research preliminarily demonstrated the effectiveness of CST, where results for D40 presented greater similarities to EC—the currently most reliable test for PFE, thus highlighting the potential of Chinese D40 as a more practical approach in production control and risk

  4. Decomposition of forest products buried in landfills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoming, E-mail: xwang25@ncsu.edu; Padgett, Jennifer M.; Powell, John S.

    Highlights: • This study tracked chemical changes of wood and paper in landfills. • A decomposition index was developed to quantify carbohydrate biodegradation. • Newsprint biodegradation as measured here is greater than previous reports. • The field results correlate well with previous laboratory measurements. - Abstract: The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal wastemore » components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g{sup −1} dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were

  5. Study of VOCs transport and storage in porous media and assemblies

    NASA Astrophysics Data System (ADS)

    Xu, Jing

    the vapor pressure of the compound, but also increased with the increase of the Henry's law constant. Experiment results also showed that a higher relative humidity led to a larger effective diffusion coefficient for both conventional wallboard and green wallboard. The partition coefficient (Kma) of formaldehyde in conventional wallboard was larger at 50% RH than at 20% RH, while the difference in partition coefficient between 50% RH and 70% RH was insignificant. For the green wallboard and green carpet, the partition coefficient increased slightly with the increase of relative humidity from 20% to 50% and 70%. Engineered wood products such as particleboard have widely been used with wood veneer and laminate to form multilayer assembly work surfaces or panels. The multilayer model study in this dissertation comprised both numerical and experimental investigation of the VOCs emission from such an assembly. A coupled 1D multilayer model based on CHAMPS (coupled heat, air, moisture and pollutant simulations) was first described. Later, the transport properties of each material layer were determined. Several emission cases from a three-layered heterogeneous work assembly were modeled using a developed simulation model. At last, the numerical model was verified by the experimental data of both hexanal and acetaldehyde emissions in a 50L standard small scale chamber. The model is promising in predicting VOCs' emissions for multilayered porous materials in emission tests.