Science.gov

Sample records for particulate collector quarterly

  1. Advanced hybrid particulate collector. Quarterly technical progress report, July 1--September 30, 1996

    SciTech Connect

    Miller, S.J.; Schelkoph, G.L.

    1996-10-01

    The objective for this quarter was to test the advanced hybrid particulate collector (AHPC) in real flue gas conditions. The initial tests were performed on the particulate test combustor (PTC) firing Absoloka subbituminous using two types of bags: PTFE and graphite-impregnated PTFE. Both bag types were evaluated in the on-line and off-line cleaning modes. Findings showed only a small difference in performance between the PTFE and graphite-impregnated PTFE. In the on-line cleaning mode, both the PTFE and graphite-impregnated PTFE bags maintained pressure drop across the bags of between 8.0 and 6.0 in. W.C. In the off-line mode, the pressure drop across both bag types ranged from 8.0 to 5.5 in. W.C. Dust-loading efficiencies averaged 99.986% over all the tests. The objective of the project is to develop a highly reliable AHPC that can provide > 99.99% particulate collection efficiency for all particle sizes from 0.01 to 50 {micro}m, is applicable for use with all US coals, and is cost-comparative with existing technologies.

  2. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Stanley Miller; Rich Gebert; William Swanson

    1999-11-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a manner that has not been done before. The AHPC concept consists of a combination of fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and collection of dust in conventional baghouses. The AHPC is currently being tested at the 2.7-MW scale at the Big Stone power station.

  3. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Stanley J. Miller; Grant L. Schelkoph; Grant E. Dunham

    2000-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and recollection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hour parametric tests and 100-hour proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency.

  4. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak; Rich Gebert

    2001-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m{sup 3}/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be

  5. Advanced Hybrid Particulate Collector Project Management Plan

    SciTech Connect

    Miller, S.J.

    1995-11-01

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  6. ADVANCED HYBRID PARTICULATE COLLECTOR - PHASE III

    SciTech Connect

    Stanley J. Miller; Ye Zhuang; Michael E. Collings; Michelle R. Olderbak

    2000-10-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration. The AHPC concept consists of a combination of fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. In Phase II, a 2.5-MW-scale AHPC was designed, constructed, installed, and tested at the Big Stone power station. For Phase III, further testing of an improved version of the 2.5-MW-scale AHPC at the Big Stone power station is being conducted to facilitate commercialization of the AHPC technology.

  7. MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Ye Zhuang; Stanley J. Miller

    2005-05-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control

  8. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Ye Zhuang; Stanley J. Miller; Grant E. Dunham; Michelle R. Olderbak

    2002-02-01

    Since 1995, DOE has supported development of a new concept in particulate control, called the advanced hybrid particulate collector (AHPC). The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control.

  9. Mercury Control With The Advanced Hybrid Particulate Collector

    SciTech Connect

    Stanley J. Miller; Ye Zhuang; Jay C. Almlie

    2004-12-31

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory Program Solicitation DE-FC26-01NT41184 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the original five-task project was to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach included benchscale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control. The scope of work was modified to include an additional sixth task, initiated in April 2003. The objective of this task was to

  10. Collation of quarterly reports on air flat plate collectors

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The solar 2 air flat plate collectors are described. The development and fabrication of a prototype air flat plate collector subsystem containing 320 square feet of collector area are described. Three instrumented panels were completely assembled with glazing and insulation. Manufacture of the last seven prototype collectors was completed in October 1977.

  11. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Stanley J. Miller; Grant E. Dunham; Michelle R. Olderbak

    2001-11-01

    This project was awarded under U.S. Department of Energy (DOE) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4--Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot-Scale. The project team will include the Energy and Environmental Research Center (EERC) as the main contractor, W.L. Gore and Associates, Inc., as a technical and financial partner, and the Big Stone Power Plant operated by Otter Tail Power Company, which will host the field testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control, called the advanced hybrid particulate collector (AHPC). The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a

  12. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Stanley J. Miller; Ye Zhuang; Michelle R. Olderbak

    2003-03-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4--Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a

  13. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Ye Zhuang; Stanley J. Miller; Steven A. Benson; Michelle R. Olderbak

    2003-08-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the ''Advanced Hybrid''{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultra-high collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a

  14. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Stanley J. Miller; Ye Zhuang; Michelle R. Olderbak

    2002-11-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the ADVANCED HYBRID{trademark} Filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a

  15. Mercuty Control With The Advanced Hybrid Particulate Collector

    SciTech Connect

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak

    2003-03-31

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a

  16. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Ye Zhuang; Stanley J. Miller; Grant E. Dunham; Michelle R. Olderbak

    2002-05-01

    This project was awarded under U.S. Department of Energy (DOE) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4--Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, which will host the field testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control, called the advanced hybrid particulate collector (AHPC). The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology

  17. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Charlene R. Crocker; Steven A. Benson; Stanley J. Miller

    2003-11-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4--Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultra-high collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a

  18. Mercury Control With The Advanced Hybrid Particulate Collector

    SciTech Connect

    Steven A. Benson; Stanley J. Miller; Charlene R. Crocker; Kevin C. Galbreath; Jason D. Laumb; Jill M. Zola; Ye Zhuang; Michelle R. Olderbak

    2003-12-31

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes benchscale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at

  19. Mercury Control With The Advanced Hybrid Particulate Collector

    SciTech Connect

    Steven A. Benson; Stanley J. Miller; Charlene R. Crocker; Kevin C. Galbreath; Jason D. Laumb; Jill M. Zola; Ye Zhuang; Michelle R. Olderbak

    2004-03-31

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes benchscale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at

  20. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Steven A. Benson; Stanley J. Miller; Charlene R. Crocker; Kevin C. Galbreath; Jason D. Laumb; Jill M. Zola; Ye Zhuang; Michelle R. Olderbak

    2004-08-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a

  1. ADVANCED HYBRID PARTICULATE COLLECTOR - PILOT-SCALE TESTING

    SciTech Connect

    Ye Zhuang; Stanley J. Miller; Michael E. Collings; Michelle R. Olderbak

    2001-09-30

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed at the Energy and Environmental Research Center (EERC) with U.S. Department of Energy (DOE) funding. In addition to DOE and the EERC, the project team includes W.L. Gore and Associates, Inc., Allied Environmental Technologies, Inc., and the Big Stone power station. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique approach to develop a compact but highly efficient system. Filtration and electrostatics are employed in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. The objective of the AHPC is to provide >99.99% particulate collection efficiency for particle sizes from 0.01 to 50 {micro}m and be applicable for use with all U.S. coals at a lower cost than existing technologies. In previous field tests with the AHPC, some minor bag damage was observed that appeared to be caused by electrical effects. Extensive studies were then carried out to determine the reason for the bag damage and to find possible solutions without compromising AHPC performance. The best solution to prevent the bag damage was found to be perforated plates installed between the electrodes and the bags, which can block the electric field from the bag surface and intercept current to the bags. The perforated plates not only solve the bag damage problem, but also offer many other advantages such as operation at higher A/C (air-to-cloth) ratios, lower pressure drop, and an even more compact geometric arrangement. For this project, AHPC pilot-scale tests were carried out to understand the effect of the

  2. DEVELOPMENT OF A LARGE SAMPLE COLLECTOR OF RESPIRABLE PARTICULATE MATTER

    EPA Science Inventory

    A prototype sampler designed to collect particulate matter from air in sized fractions has been designed and tested. The sampler excludes particles above 20 micrometers in diameter and collects fractions centered at 3.5 micrometers and 1.7 micrometers on impaction plates and smal...

  3. Advanced hybrid particulate collector and method of operation

    DOEpatents

    Miller, Stanley J.

    2003-04-08

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between the rows of filter elements are rows of high voltage discharge electrodes. Between the rows of discharge electrodes and the rows of filter elements are grounded perforated plates for creating electrostatic precipitation zones.

  4. Advanced hybrid particulate collector and method of operation

    DOEpatents

    Miller, Stanley J.

    1999-01-01

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements.

  5. Advanced hybrid particulate collector and method of operation

    DOEpatents

    Miller, S.J.

    1999-08-17

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements. 12 figs.

  6. DEMONSTRATION OF A FULL-SCALE RETROFIT OF THE ADVANCED HYBRID PARTICULATE COLLECTOR TECHNOLOGY

    SciTech Connect

    Tom Hrdlicka; William Swanson

    2005-12-01

    The Advanced Hybrid Particulate Collector (AHPC), developed in cooperation between W.L. Gore & Associates and the Energy & Environmental Research Center (EERC), is an innovative approach to removing particulates from power plant flue gas. The AHPC combines the elements of a traditional baghouse and electrostatic precipitator (ESP) into one device to achieve increased particulate collection efficiency. As part of the Power Plant Improvement Initiative (PPII), this project was demonstrated under joint sponsorship from the U.S. Department of Energy and Otter Tail Power Company. The EERC is the patent holder for the technology, and W.L. Gore & Associates was the exclusive licensee for this project. The project objective was to demonstrate the improved particulate collection efficiency obtained by a full-scale retrofit of the AHPC to an existing electrostatic precipitator. The full-scale retrofit was installed on an electric power plant burning Powder River Basin (PRB) coal, Otter Tail Power Company's Big Stone Plant, in Big Stone City, South Dakota. The $13.4 million project was installed in October 2002. Project related testing concluded in December 2005. The following Final Technical Report has been prepared for the project entitled ''Demonstration of a Full-Scale Retrofit of the Advanced Hybrid Particulate Collector Technology'' as described in DOE Award No. DE-FC26-02NT41420. The report presents the operation and performance results of the system.

  7. Mechanics/heat-transfer relation for particulate materials. [Quarterly report

    SciTech Connect

    Campbell, C.S.

    1991-07-01

    The major emphasis this quarter has been in two areas. The first is to continue working the bugs out of the new particle pressure transducer. The second was to try and measure the particle pressures generated in a bed of FCC catalyst that is undergoing particulate fluidization. The results indicate that the stabilization of fluidized beds in that regime cannot be explained in terms of particle pressure generation. Instead, consistent with other recent observations,the observations can be explained by a material is that not completely fluidized but, instead, retains much of the properties of a solid and, in particular, can transmit particle pressure like a solid. 2 figs.

  8. Liquid flat plate collector and pump for solar heating and cooling systems: A collection of quarterly reports

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress in the development, fabrication, and delivery of solar subsystems consisting of a solar operated pump, and solar collectors which can be used in solar heating and cooling, or hot water, for single family, multifamily, or commercial applications is reported.

  9. SYMPOSIUM ON THE TRANSFER AND UTILIZATION OF PARTICULATE CONTROL TECHNOLOGY (4TH). VOLUME 3. ECONOMICS, MECHANICAL COLLECTORS, COAL CHARACTERISTICS, INHALABLE PARTICULATES, ADVANCED ENERGY AND NOVEL DEVICES

    EPA Science Inventory

    The papers in the three volumes (of which this is one) were presented at the Fourth Symposium on the Transfer and Utilization of Particulate Control Technology in Houston, TX, October 11-14, 1982. Volume I relates to fabric filtration; Volume II, to electrostatic precipitation; a...

  10. Investigation of particulate formation during diesel spray combustion. Technical progress quarterly report, June 1, 1989--August 31, 1989

    SciTech Connect

    Not Available

    1989-12-31

    The objective of the contract is to conduct an experimental and analytical research program to investigate strategies for using coherent anti-Stokes Raman scattering (CARS) laser diagnostic techniques for detecting the degree of fuel pyrolysis and determining fuel-air ratio. Smoke and NO{sub x} production rates depend in a complex way on the local temperature, the evaporation of the diesel spray, the local fuel-air ratio, and the pyrolysis history of fuels. Furthering the ability of CARS to provide more of this information may give engine designers more insight into the combustion process and allow them to create engines which produce fewer particulates or lower amounts of NO{sub x}. Controlling the production rates is preferable to processing emissions. If they cannot be suppressed simultaneously, adjusting the tradeoff between producing particulates or NO{sub x} may be helpful if an exhaust processing method is available for one of them. During the present quarter CARS results have been obtained in the reference/calibration cell with toluene vapor. These CARS results appear very favorable for use of toluene in 1 atm spray chamber studies as a room temperature saturated vapor mixture with CO{sub x} and N{sub 2}. The results indicate that toluene is likely a better candidate than hexane for droplet effects studies. Strong toluene CH stretch resonant CARS peaks have been found and three useful resonant CARS spectral features have been found near CO{sub 2} CARS.

  11. Particulate hot gas stream cleanup technical issues. Quarterly report, April 1 - June 30, 1996

    SciTech Connect

    1996-12-31

    This is the seventh in a series of quarterly reports describing the activities performed for this project. Our analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance address aspects of filter operation that are apparently linked to the characteristics of the collected ash or the performance of the ceramic barrier filter elements. Task 1 is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APFs) and to relate these ash properties to the operation and performance of these filters. Task 2 concerns testing and failure analysis of ceramic filter elements. Under Task 1 during the past quarter, we received and analyzed a hopper ash sample from the Transport Reactor Demonstration Unit (TRDU) located at the University of North Dakota`s Energy and Environmental Research Center (UNDEERC). We also received six ash samples from the Ahlstrom 10 MWt Pressurized Fluidized Circulating Fluid Bed (PCFB) facility located at Karhula, Finland. We selected one of the filter cake ashes from this batch of samples for detailed analyses. We continued our work on the HGCU data base we are constructing in Microsoft Access{reg_sign}. We have been entering a variety of information into the data base, including numerical values, short or long text entries, and photographs. Task 2 efforts during the past quarter focused on hoop tensile testing of Schumacher FT20 and Refractron candle filter elements removed from the Karhula APF after {approximately}540 hours of service.

  12. Particulate Hot Gas Stream Cleanup Technical Issues: Quarterly report, July 1-September 30, 1996

    SciTech Connect

    Pontius, D.H.

    1996-12-09

    This is the eighth in a series of quarterly reports describing the activities performed under Contract No. DE-AC21-94MC31160. Analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance address aspects of filter operation that are apparently linked to the characteristics of the collected ash or the performance of the ceramic barrier filter elements. Task 1 is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APFS) and to relate these ash properties to the operation and performance of these filters. Task 2 concerns testing and failure analysis of ceramic filter elements. Under Task I during the past quarter, additional analyses were performed on ashes from the Ahlstrom 10 MWt Pressurized Fluidized Circulating Fluid Bed (PCFB) facility located at Karhula, Finland. Work continued on the HGCU data base being constructed in Microsoft Access. A variety of information has been entered into the data base, including numerical values, short or long text entries, and photographs. Detailed design of a bench top device for high temperature measurement of ash permeability has also begun. In addition to these activities, a paper was prepared and a poster was presented summarizing recent work performed under this contract at the 1996 DOE/METC Contractor`s Conference. A presentation was also given corresponding to the manuscript entitled Particle Characteristics and High-Temperature Filtration that was prepared for publication in the Proceedings of the Thirteenth Annual International Pittsburgh Coal Conference held this September in Pittsburgh, PA. Arrangements have been made to be present at the DOE/METC Modular Gas Cleanup Rig (MGCR) at the conclusion of the next run of the DOE/METC air blown Fluid Bed Gasifier (FBG). This visit will include on-site sampling to collect and characterize the filter cakes collected during FGB operation. Task 2 efforts during the past quarter focused on

  13. Particulate hot gas stream cleanup technical issues. Quarterly report, January 1--March 31, 1998

    SciTech Connect

    1998-08-01

    The analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. Task 1 is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APFs) and to relate these ash properties to the operation and performance of these filters and their components. APF operations have also been limited by the strength and durability of the ceramic materials that have served as barrier filters for the capture of entrained HGCU ashes. Task 2 concerns testing and failure analyses of ceramic filter elements currently used in operating APFs and the characterization and evaluation of new ceramic materials. Task 1 research activities during the past quarter included characterizations of samples collected during a site visit on January 20 to the Department of Energy/Southern Company Services Power Systems Development Facility (PSDF). Comparisons were made between laboratory analyses of these PSDF ashes and field data obtained from facility operation. In addition, selected laboratory techniques were reviewed to assess their reproducibility and the influence of non-ideal effects and differences between laboratory and filter conditions on the quantities measured. Further work on the HGCU data base is planned for the next quarter. Two Dupont PRD-66 candle filters, one McDermott candle filter, one Blasch candle filter, and one Specific Surfaces candle filter were received at SRI for testing. A test plan and cutting plan for these candles was developed. Acquisition of two of the Dupont PRD-66 candle filters will allow candle-to-candle variability to be examined.

  14. Particulate hot gas stream cleanup technical issues. Quarterly technical progress report, July 1995--September 1995

    SciTech Connect

    Pontius, D.H.

    1995-12-15

    This is the fourth quarterly report describing the activities performed under Contract No. DE-AC21-94MC31160. Task 1 of this contract concerns analyses of HGCU ashes and descriptions of filter performance that are designed to address the problems with filter operation linked to the characteristics of the collected ash. Task 2 of this contract includes characterization of new and used filter elements. Some of the problems observed at the Tidd and Karhula PFBC facilities include excessive filtering pressure drop, the formation of large, tenacious ash deposits within the filter vessel, and bent or broken candle filter elements. These problems have been attributed to ash characteristics, durability of the ceramic filter elements, and specific limitations of the filter design. In addition to these problems related to the characteristics of PFBC ashes, our laboratory characterizations of gasifier and carbonize ashes have shown that these ashes also have characteristics that might negatively affect filtration. Problems with the durability of the filter elements are being addressed by the development and evaluation of elements constructed from alternative ceramic materials.

  15. Heat collector

    DOEpatents

    Merrigan, M.A.

    1981-06-29

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  16. Heat collector

    DOEpatents

    Merrigan, Michael A.

    1984-01-01

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  17. Catalytic fabric filtration for simultaneous NO{sub x} and particulate control. Quarterly technical progress report, July 1--September 30, 1992

    SciTech Connect

    Weber, G.F.; Ness, S.R.; Laudal, D.L.; Dunham, G.

    1992-11-01

    The overall objective of this project is the development of a catalyst-coated fabric filter for simultaneous NO{sub x} and particulate control. The catalyst-coated fabric filter must provide high removal efficiency of NO{sub x} and particulate matter. An acceptable bag and catalyst life must be demonstrated, and process economics must show a significant cost savings when compared to a commercial SCR process and conventional particulate control. Specific goals include the following: Reduce NO{sub x} emissions to 60 ppM or less; demonstrate particulate removal efficiency of > 99.5%; demonstrate a bag/catalyst life of > 1 year; control ammonia slip to <25 ppM; show that catalytic fabric filtration can achieve a 50% cost savings over conventional fabric filtration and SCR control technology; determine compatibility with SO{sub 2} removal systems; and show that the concept results in a nonhazardous waste product. Specific project activities during the past quarter were to include the following: Fundamental Testing; process Testing/Reverse-Gas System; process Testing/Pulse-Jet System; and Fabric Durability Testing/Pulse-Jet System.

  18. Solar collector

    DOEpatents

    Wilhelm, W.G.

    The invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame. A thin film window is bonded to one planar side of the frame. An absorber of laminate construction is comprised of two thin film layers that are sealed perimetrically. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. Absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  19. Catalytic fabric filtration for simultaneous NO{sub x} and particulate control. Quarterly technical progress report, 1 April 1994--30 June 1994

    SciTech Connect

    Weber, G.F.

    1994-07-01

    Research to develop a catalytic fabric filter (CFF) for simultaneous NO{sub x} and particulate control. The objective of this program was to develop advanced concepts for the removal of NO{sub x} from flue gas emitted by coal-fired utility boilers or for the control of NO{sub x} formation by advanced combustion modification techniques. The CFF concepts employs a high-temperature woven glass fabric, catalyst, and coating procedure. The woven fabric is coated with a catalyst capable of selectively reducing combustion blue gas NO{sub x} to nitrogen and water, using ammonia as the reducing agent. Particulate control is accomplished as a result of conventional filtration mechanisms involving woven fabric and dust cake formation. Catalyst-coated bags are housed in a pulse-jet hot-side baghouse operating at air preheater inlet temperatures. Specific project activities to be completed during the past quarter were to include the following: Complete Subtask 3.2 -- Process Testing/Reverse-Gas System; Complete Subtask 3.3 -- Process Testing/Pulse-Jet System; Complete Subtask 3.4 -- Fabric Durability Testing/Pulse-Jet System; and Complete Task 5 -- Test Unit Removal. Results on the first three tasks are discussed.

  20. Solar collector

    DOEpatents

    Wilhelm, William G.

    1982-01-01

    The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame (14). A thin film window (42) is bonded to one planar side of the frame. An absorber (24) of laminate construction is comprised of two thin film layers (24a, 24b) that are sealed perimetrically. The layers (24a, 24b) define a fluid-tight planar envelope (24c) of large surface area to volume through which a heat transfer fluid flows. Absorber (24) is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  1. Mechanisms governing fine particulate emissions from coal flames. Quarterly technical progress report No. 8, July 1, 1989--September 30, 1989

    SciTech Connect

    Newton, G.H.; Schieber, C.; Socha, R.G.; Clark, W.D.; Kramlich, J.C.

    1989-10-01

    During this reporting period the global experiments were concluded. The final activities under these experiments involved measuring mineral content of coals as a function of coal particle size. The principal activities during this quarter involved the mechanistic experiments. Three baseline coals were cleaned and two of these sized. The ash from these various cuts were sampled from a bench scale reactor. The ash size distributions were compared to distributions predicted by the breakup model.

  2. Particulate behavior in a controlled-profile pulverized coal-fired reactor: A study of coupled turbulent particle dispersion and thermal radiation transport. Quarterly technical progress report, December 15, 1992--March 14, 1993

    SciTech Connect

    Queiroz, M.; Webb, B.W.

    1993-05-01

    During the sixth quarter progress has been made in the following areas: Preparation for reactor refurbishment, instrumentation development, coal acquisition for experimental tests, and radiation and particle dispersion modelling. Refurbishment of the Controlled Profile Reactor was initiated this summer and is completed. Construction work for the local transmissometer probe is also now completed. This laser-based instrument, combined with the data from the PCSV probe will enable estimate of the local concentration of particulates below 0.5 {mu}m in size. Additionally, it will permit measurement of the temporal statistics of the local particulate number density.

  3. Simultaneous high-temperature removal of alkali and particulates in a pressurized gasification system. Sixth quarterly technical progress report, July-September 1982. [Weight increase due to absorption

    SciTech Connect

    Alvin, M.A.; Bachovchin, D.M.

    1982-10-01

    This program is directed at performing experimental and analytical investigations, deriving system designs, and estimating costs to ascertain the feasibility of using aluminosilicate-based getters for controlling alkali in pressurized gasification systems. Its overall objective is to develop a comprehensive plan for evaluating a scaled-up version of the gettering process as a unit operation or as an integral part of a particulate removal device. This report briefly summarizes efforts previously completed on thermodynamic projections and system performance projections, together with current work on getter selection and qualification completed during the sixth quarter of the project. Work on the thermodynamic projections has been completed and includes an update of the data base, development of alkali phase diagrams, and projections for several gasification processes. Getter selection and qualification effforts involved six tests - five with Emathlite and activated bauxite on the thermogravimetric analysis (TGA) system and one with Emathlite on the bench-scale unit. Finally, system performance projections entailed examination of available kinetic data to ascertain the rate-controlling step, along with modeling efforts to determine the size requirements of a commercial-sized unit.

  4. Dust collector

    SciTech Connect

    Nelson, R.T.

    1986-10-21

    This patent describes a dust collector comprising: (a) a housing having inlet means for receiving air to be cleaned; (b) a plurality of filter units within the housing; (c) a first centrifugal fan arranged for drawing air through the units for removing dust from the air; (d) a plurality of ducts each connected to a corresponding one of the units at one end and to the first fan at the other end to provide passages for air from the units to the first fan, the ducts through a portion of their length being arranged in side-by-side relationship; (e) a second centrifugal fan for providing reverse flow of air through the ducts to the units, the second fan providing a high volume of air at low pressure; (f) a transverse duct connected to the second fan and extending transversely of the portion of the plurality of ducts and adjacent thereto: (g) a plurality of openings providing communication between the transverse duct and each of the plurality of ducts; (i) rotatable means engaging the vanes for sequentially moving the vanes between the first and second positions.

  5. Process for off-gas particulate removal and apparatus therefor

    DOEpatents

    Carl, D.E.

    1997-10-21

    In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector`s centerline in proceeding toward the downstream side of the collector. Gas flow in the outer channel maintains the fluid on the channel`s wall in the form of a ``wavy film,`` while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator. 4 figs.

  6. Ultracapacitor current collector

    DOEpatents

    Jerabek, Elihu Calfin; Mikkor, Mati

    2001-10-16

    An ultracapacitor having two solid, nonporous current collectors, two porous electrodes separating the collectors, a porous separator between the electrodes and an electrolyte occupying the pores in the electrodes and separator. At least one of the current collectors comprises a conductive metal substrate coated with a metal nitride, carbide or boride coating.

  7. MSFC hot air collectors

    NASA Technical Reports Server (NTRS)

    Anthony, K.

    1978-01-01

    A description of the hot air collector is given that includes a history of development, a history of the materials development, and a program summary. The major portion of the solar energy system cost is the collector. Since the collector is the heart of the system and the most costly subsystem, reducing the cost of producing collectors in large quantities is a major goal. This solar collector is designed to heat air and/or water cheaply and efficiently through the use of solar energy.

  8. Process for off-gas particulate removal and apparatus therefor

    DOEpatents

    Carl, Daniel E.

    1997-01-01

    In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector's centerline in proceeding toward the downstream side of the collector. Gasflow in the outer channel maintains the fluid on the channel's wall in the form of a "wavy film," while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator.

  9. Catalytic fabric filtration for simultaneous NO{sub x} and particulate control. Quarterly technical progress report, October 1, 1991--December 31, 1991

    SciTech Connect

    Weber, G.F.; Ness, S.R.; Laudal, D.L.; Dunham, G.

    1992-02-01

    The overall objective of this project is the development of a catalytic fabric filter for simultaneous NO{sub x} and particulate control. The catalytic fabric filter must provide high removal efficiency of NO{sub x} and particulate matter. An acceptable bag and catalyst life must be demonstrated, and process economics must show a significant cost savings when compared to a commercial SCR process and conventional particulate control. Specific goals include the following: (1) Reduce NO{sub x} emissions to 60 ppm or less. (2) Demonstrate particulate removal efficiency of >99.5%. (3) Demonstrate a bag/catalyst life of >1 year. (4) Control ammonia slip to >25 ppm. (5) Show that catalytic fabric filtration can achieve a 50% cost savings over conventional fabric filtration and SCR control technology. (6) Determine compatibility with SO{sub 2} removal systems. (7) Show that the concept results in a nonhazardous waste product.

  10. Novel mass spectrometric instrument for gaseous and particulate characterization and monitoring. [Quarterly] technical progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Coggiola, M.J.

    1993-07-01

    A MS instrument is being developed for real-time (< 1 min) analysis of gaseous and particulate pollutants from DOE waste cleanup activities. The pollutants will include volatile organic compounds, PAHs, heavy metals, and transuranics. Design has been completed for the sampler and its vacuum interface with ion trap detectors and fabrication started. Design, fabrication, and testing of pyrolysis filament for particulate analysis is under way. 4 figs.

  11. Pulsed depressed collector

    SciTech Connect

    Kemp, Mark A

    2015-11-03

    A high power RF device has an electron beam cavity, a modulator, and a circuit for feed-forward energy recovery from a multi-stage depressed collector to the modulator. The electron beam cavity include a cathode, an anode, and the multi-stage depressed collector, and the modulator is configured to provide pulses to the cathode. Voltages of the electrode stages of the multi-stage depressed collector are allowed to float as determined by fixed impedances seen by the electrode stages. The energy recovery circuit includes a storage capacitor that dynamically biases potentials of the electrode stages of the multi-stage depressed collector and provides recovered energy from the electrode stages of the multi-stage depressed collector to the modulator. The circuit may also include a step-down transformer, where the electrode stages of the multi-stage depressed collector are electrically connected to separate taps on the step-down transformer.

  12. Air-liquid solar collector for solar heating, combined heating and cooling, and hot water subsystems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A collection of quarterly reports consisting of the installation and layout design of the air collector system for commercial applications, completion of the preliminary design review, detailed design efforts, and preparation of the verification test plan are given. Performance specifications and performance testing of a prototype model of a two manifold, 144 tube air collector array is presented.

  13. An evaluation of a pre-charging pulse-jet filter for small combustor particulate control. Project quarterly report, December 1, 1989--February 28, 1990

    SciTech Connect

    Quimby, J.M.

    1990-04-01

    The objective of this test program is the performance and economic evaluation of a pre charged-pulse jet filter as the principal particulate control device for a commercial or industrial scale coal fired combustor. Performance factors that will be considered are the effects of particle charge, air/cloth ratio, fabric types, percent humidity and inlet particulate loading on fine particle collection efficiency, and pressure drop. Economic factors that will be considered are capital costs, energy and other operating costs, and maintenance costs. The program will result in a recommendation regarding the relative suitability of the pre charged pulse-jet filter for small combustor particulate control, as compared to other control devices. Fine particle control capability, ease of operation, and overall economics will be taken into consideration in making comparisons.

  14. An evaluation of a pre-charging pulse-jet filter for small combustor particulate control. Project quarterly report, October 1--November 30, 1989

    SciTech Connect

    Helfritch, D.J.

    1989-12-01

    The objective of this test program is the performance and economic evaluation of a pre charged-pulse jet filter as the principal particulate control device for a commercial or industrial scale coal fired combustor. Performance factors that will be considered are the effects of particle charge, air/cloth ratio, fabric types, percent humidity and inlet particulate loading on fine particle collection efficiency, and pressure drop. Economic factors that will be considered are capital costs, energy and other operating costs, and maintenance costs. The program will result in a recommendation regarding the relative suitability of the pre charged pulse-jet filter for small combustor particulate control, as compared to other control devices. Fine particle control capability, ease of operation, and overall economics will be taken into consideration in making comparisons. (VC)

  15. Cleaning Surface Particle Contamination with Ultrapure Water (UPW) Megasonic Flow on Genesis Array Collectors

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Calaway, Michael J.; Hittle, J. D.; Rodriquez, M. C.; Stansbery, E. K.; McNamara, K. M.

    2006-01-01

    The hard landing experienced by the Genesis sample return capsule breached the science canister containing the solar wind collectors. This impact into the damp lakebed contaminated collector surfaces with pulverized collector and spacecraft materials and Utah sediment and brine residue. The gold foil, polished aluminum, and bulk metallic glass remained intact, but the solar wind bulk and regime-specific array collectors were jarred loose from their frames and fractured into greater than 10,000 specimens. After a year of investigation and cleaning experimentation, the Genesis Science Team determined that array collectors had 4 classes of contaminants: particles, molecular film, submicron inorganic particulate ("aerosol"), and pre-launch surface contamination. We discuss here use of megasonically energized ultrapure water (UPW) for removing particulate debris from array collector fragments.

  16. Foamglass solar window collector

    NASA Astrophysics Data System (ADS)

    Grande, P. C.

    Solar heating of a living area by means of a foamglass window collector is reported. The collector was built with readily available materials available at most local hardware stores. The payback period was found to be 3.7 years, slightly longer than anticipated.

  17. Inflatable solar collector

    SciTech Connect

    Clark, D.A.

    1980-05-20

    A solar collector using air as its heat transfer medium having a top member containing a plurality of transparent sealed air pockets allowing passage of radiant energy but preventing conductive and convective heat losses generated inside the collector; a central black-coated absorbent plastic member divides the center of the collector into a plurality of interconnected inflatable upper and lower chambers connected to air pumps at one end and to a constriction valve outlet at the other. The lower end of the lower chambers consists of a cover containing a multiplicity of insulative sealed air channels. The collector can be mounted on a turntable frame having adjustable reflective panels mounted above and below the collector. The heated air after it has given up its calories to a storage unit is recirculated to the inflatable chambers.

  18. Mechanisms governing fine particulate emissions from coal flames. Quarterly technical progress reports Nos. 3 and 4, April 1, 1988--September 30, 1988

    SciTech Connect

    Clark, W.D.; Chen, S.L.; Kramlich, J.C.; Newton, G.H.; Seeker, W.R.; Samuelsen, G.S.

    1988-11-01

    The overall objectives of this project are to provide a basic understanding of the principal processes that govern fine particulate formation in pulverized coal flames, and develop procedures to predict the levels of emission of fine particles from pulverized coal combustors. (VC)

  19. Internal absorber solar collector

    DOEpatents

    Sletten, Carlyle J.; Herskovitz, Sheldon B.; Holt, F. S.; Sletten, E. J.

    1981-01-01

    Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.

  20. Catalytic fabric filtration for simultaneous NO{sub x} and particulate control. Quarterly technical progress report, July 1, 1991--September 30, 1991

    SciTech Connect

    Weber, G.F.; Ness, S.R.; Laudal, D.L.; Svihovec, T.A.

    1991-10-01

    The University of North Dakota Energy and Environmental Research Center (EERC), Owens-Corning Fiberglas Inc. (OCF), and Stearns-Roger, a division of United Engineers & Constructors (UE&C), have initiated a research project aimed at the development of a catalytic fabric filter for simultaneous NO{sub x} and particulate control. The objective of the project is to reduce NO{sub x} emissions by >90% (to achieve an NO{sub x} emission of 60 ppm), reduce particulate emissions by >99.5%, and demonstrate a catalyst/bag life of greater than one year at a 50% cost savings when compared to a commercial selective catalytic reduction (SCR) process and conventional baghouse.

  1. Cross-flow, filter-sorbent catalyst for particulate, SO{sub 2} and NO{sub x} control. Seventh quarterly technical progress report

    SciTech Connect

    Benedek, K.; Flytzani-Stephanopoulos, M.

    1992-01-01

    This report describes work performed on a new concept for integrated pollutant control: a cross-flow filter comprised of layered, gas permeable membranes that act as a particle filter, an SO {sub 2} sorbent, and a NO {sub x} reduction catalyst. One critical element of the R&D program is the development of mixed metal oxide materials that serve as combined SO {sub 2} sorbents and NO {sub x} reduction catalysts. In this seventh quarterly progress report, we summarize the performance characteristics of three promising sorbent/catalyst materials tested in powder form.

  2. City sewer collectors biocorrosion

    NASA Astrophysics Data System (ADS)

    Ksiażek, Mariusz

    2014-12-01

    This paper presents the biocorrosion of city sewer collectors impregnated with special polymer sulphur binders, polymerized sulphur, which is applied as the industrial waste material. The city sewer collectors are settled with a colony of soil bacteria which have corrosive effects on its structure. Chemoautotrophic nitrifying bacteria utilize the residues of halites (carbamide) which migrate in the city sewer collectors, due to the damaged dampproofing of the roadway and produce nitrogen salts. Chemoorganotrophic bacteria utilize the traces of organic substrates and produce a number of organic acids (formic, acetic, propionic, citric, oxalic and other). The activity of microorganisms so enables the origination of primary and secondary salts which affect physical properties of concretes in city sewer collectors unfavourably.

  3. Fuel cell current collector

    DOEpatents

    Katz, Murray; Bonk, Stanley P.; Maricle, Donald L.; Abrams, Martin

    1991-01-01

    A fuel cell has a current collector plate (22) located between an electrode (20) and a separate plate (25). The collector plate has a plurality of arches (26, 28) deformed from a single flat plate in a checkerboard pattern. The arches are of sufficient height (30) to provide sufficient reactant flow area. Each arch is formed with sufficient stiffness to accept compressive load and sufficient resiliently to distribute the load and maintain electrical contact.

  4. Catalytic fabric filtration for simultaneous NO{sub x} and particulate control. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    Weber, G.F.

    1994-04-01

    The North Dakota Energy & Environmental Research Center (EERC) approach to removing NO{sub x} from flue gas emitted by coal-fired utility boilers or for the control of NO{sub x} formation by advanced combustion techniques involves the development of a catalytic fabric filter (CFF) for simultaneous NO{sub x} and particulate control. The NO{sub x}is removed by catalytic reduction with ammonia to form nitrogen and water. Bench-scale experimental results have shown that over 90% NO{sub x} removal can be achieved. This report details the strengths and areas for for development in this project.

  5. Simultaneous high-temperature removal of alkali and particulates in a pressurized gasification system. First quarterly project report, April-June 1981

    SciTech Connect

    Mulik, P.R.; Alvin, M.A.; Bachovchin, D.M.; Lippert, T.E.

    1981-07-01

    This program is directed at performing experimental and analytical investigations, system designs, and cost estimates to ascertain the feasibility of using aluminosilicate-based getters for controlling alkali in pressurized gasification systems. Its overall objective is to develop a comprehensive plan for evaluating a scaled-up version of the gettering process as a unit operation or as an integral part of a particulate removal device. This report describes work completed on thermodynamic projections, getter selection and qualification, and system performance projections during the first three months of the project, as well as work applicable to this program under two companion DOE projects at Westinghouse. These latter efforts occurred in the interim between the current and a previous contract on alkali gettering.

  6. Simultaneous high-temperature removal of alkali and particulates in a pressurized gasification system. Seventh quarterly project report, October 1982-December 1982

    SciTech Connect

    Mulik, P.R.; Alvin, M.A.; Bachovchin, D.M.

    1983-01-01

    This program is directed at performing experimental and analytical investigations, deriving system designs, and estimating costs to asertain the feasibility of using aluminosilicate-based getters for controlling alkali in pressurized gasifications systems. Its overall objective is to develop a comprehensive plan for evaluating a scaled-up version of the gettering process as a unit operation or as an integral part of a particulate removal device. This report briefly summarizes efforts previously completed on thermodynamic projections and system performance projections, together with current work on getter selection and qualification. Work on the thermodynamic projections has been completed and includes an update of the data base, development of alkali phase diagrams, and projections for several gasification processes. Getter selection and qualification efforts involved four tests with the leading candidate getter -- emathlite -- on the thermogravimetric analysis (TGA) system. Plans were also formulated for three tests with emathlite on the bench-scale unit, including one with simulated fuel gas containing water vapor and alkali.

  7. Solvent vapor collector

    DOEpatents

    Ellison, Kenneth; Whike, Alan S.

    1979-01-30

    A solvent vapor collector is mounted on the upstream inlet end of an oven having a gas-circulating means and intended for curing a coating applied to a strip sheet metal at a coating station. The strip sheet metal may be hot and solvent vapors are evaporated at the coating station and from the strip as it passes from the coating station to the oven. Upper and lower plenums within a housing of the collector are supplied with oven gases or air from the gas-circulating means and such gases or air are discharged within the collector obliquely in a downstream direction against the strip passing through that collector to establish downstream gas flows along the top and under surfaces of the strip so as, in turn, to induct solvent vapors into the collector at the coating station. A telescopic multi-piece shroud is usefully provided on the housing for movement between an extended position in which it overlies the coating station to collect solvent vapors released thereat and a retracted position permitting ready cleaning and adjustment of that coating station.

  8. Catalytic fabric filtration for simultaneous NO{sub x} and particulate control. Quarterly technical progress report, October 1--December 31, 1992

    SciTech Connect

    Weber, G.F.; Ness, S.R.; Laudal, D.L.; Dunham, G.

    1993-02-01

    The EERC approach to meeting the program objective involves the development of a catalytic fabric filter for simultaneous NO{sub x} and particulate control. The idea of applying either permanent or throwaway catalysts to a high-temperature fabric filter for NO{sub x} control is not new. However, advances at OCF have shown that a high-activity catalyst can be applied to a high-temperature woven glass cloth resulting in a fabric filter material that can operate at temperatures higher than the maximum operating temperatures of commercially available, coated glass fabric. The NO{sub x} is removed by catalytic reduction with ammonia to form nitrogen and water. The catalyst employed at this time is vanadium/titanium, but the exact catalyst composition and the unique method of applying the catalyst to high-temperature glass fabric are the property of OCF. Other catalyst options are being evaluated by OCF in order to improve catalyst performance and minimize catalyst cost. Bench-scale experimental results to date have shown that over 90% NO{sub x} removal can be achieved, the catalyst/fabric has promising self-abrasion characteristics, and the potential exists for substantially reduced cost when compared with conventional SCR/fabric filtration technology. However, development of the technology requires further evaluation of air-to-cloth ratio, ammonia slip, SO{sub 2} oxidation to SO{sub 3}, temperature cycling, catalyst-coated fabric preparation, fuel impacts, fabric cleaning (reverse-gas versus pulse-jet), catalyst life (poisoning and resistance to erosion), and filter performance/life (particulate control, differential pressure, and durability).

  9. Catalytic fabric filtration for simultaneous NO{sub x} and particulate control. Quarterly technical progress report, July 1--September 30, 1993

    SciTech Connect

    Weber, G.F.; Ness, S.R.; Schelkoph, G.L.

    1993-11-01

    The EERC approach to meeting the program objective involves the development of a CFF for simultaneous NO{sub x} and particulate control. The idea of applying either a permanent or throwaway catalyst to a high-temperature fabric filter for NO{sub x} control is not new. However, advances at OCF have shown that a high-activity catalyst can be applied to a high-temperature woven glass cloth, resulting in a fabric filter material that can operate at temperatures higher than commercially available, coated glass fabric. The NO{sub x} is removed by catalytic reduction with ammonia to form nitrogen and water. The catalyst employed at this time is vanadium-titanium, but the exact catalyst composition and the unique method of applying the catalyst to high-temperature glass fabric are the property of OCF. Other catalyst options are being evaluated by OCF in order to improve catalyst performance and minimize catalyst cost. Bench-scale experimental results have shown that over 90% NO{sub x} removal can be achieved, that the catalyst-fabric has promising self-abrasion characteristics, and that the potential exists for substantially reduced cost compared to conventional SCR and fabric filtration technologies. However, development of the technology required further evaluation of air-to-cloth ratio effects, ammonia slip, SO{sub 2} oxidation to SO{sub 3}, temperature cycling, catalyst-coated fabric preparation, fuel impacts, fabric cleaning (reverse-gas versus pulse-jet), catalyst life (poisoning and resistance to erosion), and filter performance/life (particulate control, differential pressure, and durability).

  10. Catalytic fabric filtration for simultaneous NO{sub x} and particulate control. Quarterly technical progress report, October 1--December 31, 1993

    SciTech Connect

    Weber, G.F.; Ness, S.R.; Schelkoph, G.L.

    1994-01-01

    The EERC approach to meeting the program objective involves the development of a CFF for simultaneous NO. and particulate control. The idea of applying either a permanent or throwaway catalyst to a high-temperature fabric filter for NO. control is not new (1--4). However, advances at OCF have shown that a high-activity catalyst can be applied to a high-temperature woven glass cloth, resulting in a fabric filter material that can operate at temperatures higher than commercially available, coated glass fabric. The NO. is removed by catalytic reduction with ammonia to form nitrogen and water. The catalyst employed at this time is vanadium-titanium, but the exact catalyst composition and the unique method of applying the catalyst to high-temperature glass fabric are the property of OCF (5). Other catalyst options are being evaluated by OCF in order to improve catalyst performance and minimize catalyst cost. Bench-scale experimental results have shown that over 90% NO. removal can be achieved, that the catalyst-coated fabric has promising self-abrasion characteristics, and that the potential exists for substantially reduced cost compared to conventional SCR and fabric filtration technologies (6,7). However, development of the technology required further evaluation of air-to-cloth ratio effects, ammonia slip, SO{sub 2} oxidation to SO{sub 3}, temperature cycling, catalyst-coated fabric preparation, fuel impacts, fabric cleaning (reverse-gas versus pulse-jet), catalyst life (poisoning and resistance to erosion), and filter performance/life (particulate control, differential pressure, and durability).

  11. Catalytic fabric filtration for simultaneous NO{sub x} and particulate control. Quarterly technical progress report, April 1--June 30, 1993

    SciTech Connect

    Weber, G.F.; Ness, S.R.; Laudal, D.L.; Dunham, G.E.

    1993-08-01

    The University of North Dakota Energy & Environmental Research Center (EERC), Owens-Corning Fiberglas Corporation (OCF), and Raytheon Engineers & Constructors (RE&C), are conducting research to develop a catalytic fabric filter (CFF) for simultaneous NO{sub x} and particulate control. Advances at OCF have shown that a high-activity catalyst can be applied to a high-temperature woven glass cloth resulting in a fabric filter material that can operate at temperatures higher than commercially available, coated glass fabric. The NO{sub x} is removed by catalytic reduction with ammonia to form nitrogen and water. The catalyst employed at this time is vanadium/titanium, but the exact catalyst composition and the unique method of applying the catalyst to high-temperature glass fabric are the property of OCF. Other catalyst options are being evaluated by OCF in order to improve catalyst performance and minimize catalyst cost. Bench-scale experimental results have shown that over 90% NO{sub x} removal can be achieved, that the catalyst/fabric has promising self-abrasion characteristics, and that the potential exists for substantially reduced cost compared to conventional SCR/fabric filtration technology. However, development of the technology requires further evaluation of air-to-cloth ratio effects, ammonia slip, SO{sub 2} oxidation to SO{sub 3}, temperature cycling, catalyst-coated fabric preparation, fuel impacts, fabric cleaning (reverse-gas versus pulse-jet), catalyst life (poisoning and resistance to erosion), and filter performance/life (particulate control, differential pressure, and durability).

  12. Simultaneous high-temperature removal of alkali and particulates in a pressurized gasification system. Fifth quarterly project report, April 1982-June 1982. [Concentration of Na and K in gas at process conditions; also optimization of removal system

    SciTech Connect

    Mulik, P.R.; Alvin, M.A.; Bachovchin, D.M.

    1982-07-01

    This program is directed at performing experimental and analytical investigations, deriving system designs, and estimating costs to ascertain the feasibility of using aluminosilicate-based getters for controlling alkali in pressurized gasification systems. Its overall objective is to develop a comprehensive plan for evaluating a scaled-up version of the gettering process as a unit operation or as an integral part of a particulate removal device. This report briefly summarizes efforts previously completed on thermodynamic projections and system performance projections, together with current work on getter selection and qualification completed during the fifth quarter of the project. Work on the thermodynamic projections has been completed and includes an update of the data base, development of alkali phase diagrams, and projections for several gasification processes. Getter selection and qualification efforts involved four tests - two with activated bauxite and one each with diatomaceous earth and Novacite on the thermogravimetric analysis (TGA) system. Finally, system performance projections entailed examination of available kinetic data to ascertain the rate-controlling step, along with modeling efforts to determine the size requirements of a commercial-sized unit.

  13. Tracking system for solar collectors

    DOEpatents

    Butler, B.

    1980-10-01

    A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.

  14. Tracking system for solar collectors

    DOEpatents

    Butler, Barry L.

    1984-01-01

    A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.

  15. Artists and collectors

    NASA Astrophysics Data System (ADS)

    Meulien-Ohlmann, Odile

    1995-02-01

    `Where can I buy holograms?' `Where can I exhibit, there is no more gallery to show me?' These are the two complaints I have heard these past two years, first from the collectors and museum curators, second from the artists, Trained as a psycho-sociologist, I have been the curator and research associate of the Museum of Holography in Washington, D.C. for 7 years, at a time when holography was coming out of the laboratory, creating a real 3-D novelty in people's minds. I saw the mass production growing and the applications multiplying. Meanwhile the artists appeared and started to deal with gallery managers. After the renting period of artworks for exhibits, price went up. The general recession affected the art and the dialogue between collectors and artists became harder. Having my husband as an artist, I know pretty well both sides. My paper tries to analyze the situation to facilitate the communication between artists and collectors.

  16. Biological sample collector

    DOEpatents

    Murphy, Gloria A.

    2010-09-07

    A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

  17. Miniature, ruggedized data collector

    NASA Astrophysics Data System (ADS)

    Jackson, Scott; Calcutt, Wade; Knobler, Ron; Jones, Barry; Klug, Robert

    2009-05-01

    McQ has developed a miniaturized, programmable, ruggedized data collector intended for use in weapon testing or data collection exercises that impose severe stresses on devices under test. The recorder is designed to survive these stresses which include acceleration and shock levels up to 100,000 G. The collector acquires and stores up to four channels of signal data to nonvolatile memory for later retrieval by a user. It is small (< 7 in3), light weight (< 1 lb), and can operate from various battery chemistries. A built-in menuing system, accessible via a USB interface, allows the user to configure parameters of the recorder operation, such as channel gain, filtering, and signal offsets, and also to retrieve recorded data for analysis. An overview of the collector, its features, performance, and potential uses, is presented.

  18. Simultaneous high-temperature removal of alkali and particulates in a pressurized gasification system. Second quarterly project report, January 1984-March 1984

    SciTech Connect

    Mulik, P.R.; Alvin, M.A.; Bachovchin, D.M.

    1984-05-23

    In previous programs, emathlite - an inexpensive, readily available mineral - was identified as the leading getter candidate for high-temperature, high-pressure alkali removal in pressurized gasification and PFBC systems. It was also shown that a packed bed getter reactor is the most feasible contacting technique for this hot gas cleaning unit operation. This program represents an attempt to use those findings to develop a packed bed emathlite getter reactor to the stage of readiness for demonstration on a gasification or PFBC system. In addition, one of the program tasks is aimed at more fundamental studies to identify and/or develop alternative or better getter materials. This report summarizes efforts on the five program tasks during the first quarter of 1984. The five tasks include: getter fabrication studies; alkali getter reaction mechanism definition (Si, Al, Ca, Mg, Na, K, Fe, Ti); getter capacity measurements; bench-scale process development unit studies; and engineering definition of hardware requirements for concept scale-up. 2 references, 11 figures, 7 tables.

  19. Collector/collector guard ring balancing circuit eliminates edge effects

    NASA Technical Reports Server (NTRS)

    Lieb, D. P.

    1966-01-01

    Circuit in which an emitter is maintained opposite a concentric collector and guard structure is achieved by matching the temperature and potential of the guard with that of the collector over the operating range. This control system is capable of handling up to 100 amperes in the guard circuit and 200 amperes in the collectors circuit.

  20. Black Liquid Solar Collector Demonstrator.

    ERIC Educational Resources Information Center

    Weichman, F. L.; Austen, D. J.

    1979-01-01

    Describes the details of constructing, and use of, a solar collector. Uses a black liquid to absorb the energy, the thermosyphon effect to drive the liquid through the collector, and a floodlamp as a surrogate sun. (GA)

  1. Simultaneous high-temperature removal of alkali and particulates in a pressurized gasification system. Third quarterly project report, October 1981-December 1981

    SciTech Connect

    Mulik, P.R.; Alvin, M.A.; Bachovchin, D.M.

    1982-02-01

    This program is directed at performing experimental and analytical investigations, deriving system designs, and eestimating costs to ascertain the feasibility of using aluminosilicate-based getters for controlling alkali in pressurized gasification systems. Its overall objective is to develop a comprehensive plan for evaluating a scaled-up version of the gettering process as a unit operation or as an integral part of a particulate removal device. This report describes work completed on thermodynamic projections, getter selection and qualification, and system performance projections. Work on the thermodynamic projections has been completed and includes an update of the data base, development of alkali phase diagrams, and projections for several gasification processes. Getter selection and qualification efforts involved eight tests with activated bauxite on the thermogravimetric analysis (TGA) system and a comprehensive getter screening test, along with an activated bauxite run with water vapor on the bench-scale unit. Finally, system performance projections entailed a study that attempted to define reaction stoichiometry for the complex gettering process. Data on the fates of alkali metals (Na and K) in 5 gasification processes are reported, including chemical species in the gas and chemical compounds stable at various temperatures in the ash.

  2. Simultaneous high-temperature removal of alkali and particulates in a pressurized gasification system. Second quarterly project report, July 1981-September 1981

    SciTech Connect

    Mulik, P.R.; Alvin, M.A.; Bachovchin, D.M.

    1981-12-01

    This program is directed at performing experimental and analytical investigations, system designs, and cost estimates to ascertain the feasibility of using aluminosilicate-based getters for controlling alkali in pressurized gasification systems. Its overall objective is to develop a comprehensive plan for evaluating a scaled-up version of the gettering process as a unit operation or as an integral part of a particulate removal device. This report describes work completed on thermodynamic projections, getter selection and qualification, and system performance projections during the second three months of the project. Work on the thermodynamic projections is complete with one exception: estimating alkali stabilities as a function of trace contaminants for various process systems. Getter selection and qualification efforts involved additional kinetic studies utilizing both our bench-scale and TGA units. Finally, system performance projections entailed using available kinetic data on activated bauxite to evaluate two models based on reversible reaction mechanisms. In turn, the models were used to update the size requirements of a full-scale packed bed.

  3. Solar collector assembly

    SciTech Connect

    Murphy, J.A.

    1980-09-09

    A solar collector assembly includes shingles which have integral tubes projecting therefrom, and which are mounted in overlapping parallel array. Mounting brackets for the shingles are engaged on roof rafters or the like, and interlocked light transmissive plates overlie the shingles. The plates are also engaged with shingle components. A special fitting for the tube ends is provided.

  4. Leaves: Nature's Solar Collectors

    ERIC Educational Resources Information Center

    Isabelle, Aaron D.; de Groot, Cornelis

    2009-01-01

    One of the most captivating things about plants is the way they capture the Sun's energy, but this can be a difficult topic to cover with elementary students. Therefore, to help students to make a concrete connection to this abstract concept, this series of solar-energy lessons focuses on leaves and how they act as "solar collectors." As students…

  5. Sheldon Jackson the Collector.

    ERIC Educational Resources Information Center

    Carlton, Rosemary

    Missionary, educator, humanitarian, and collector, the Reverend Sheldon Jackson came to Alaska in 1877 to assimilate Native populations into the dominant White culture, but his collecting efforts between 1877 and 1902 represent a significant effort to preserve the legacy of Alaska Natives during a period of tumultuous change. A zealous missionary,…

  6. Solar energy collector

    DOEpatents

    Brin, Raymond L.; Pace, Thomas L.

    1978-01-01

    The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.

  7. Structurally integrated steel solar collector

    DOEpatents

    Moore, S.W.

    1975-06-03

    Herein is disclosed a flate plate solar heat collector unit. The solar collector is integrated as a structural unit so that the collector also functions as the building roof. The functions of efficient heat collection, liquid coolant flow passages, roof structural support, and building insulation are combined into one unit.

  8. Structurally integrated steel solar collector

    DOEpatents

    Moore, Stanley W.

    1977-03-08

    Herein is disclosed a flat plate solar heat collector unit. The solar collector is integrated as a structural unit so that the collector also functions as the building roof. The functions of efficient heat collection, liquid coolant flow passages, roof structural support and building insulation are combined into one unit.

  9. Catalytic fabric filtration for simultaneous NO{sub x} and particulate control. Quarterly technical progress report, January 1--March 31, 1993

    SciTech Connect

    Weber, G.F.; Ness, S.R.; Laudal, D.L.; Dunham, G.E.

    1993-04-01

    The objective of this program is to develop advanced concepts for the removal of NO{sub x} from flue gas emitted by coal-fired utility boilers, or for the control of NO{sub x} formation by advanced combustion modification techniques. Funded projects are required to focus on the development of technology that significantly advances the state of the art using a process or a combination of processes capable of reducing NO{sub x} emissions to 60 ppM or less. The concept must have successfully undergone sufficient laboratory-scale development to justify scaleup for further evaluation at the pilot scale (not to exceed 5 MWe in size). Other requirements include production of a nonhazardous waste or a salable by-product. The concept should have application to both new and retrofit coal-fired systems and show the potential for a 50% cost savings when compared to a commercial selective catalytic reduction (SCR) process capable of meeting the 60-ppM NO{sub x} emission limit. The EERC approach to meeting the program objective involves the development of a catalytic fabric filter for simultaneous NO{sub x} and particulate control. The NO{sub x} is removed by catalytic reduction with ammonia to form nitrogen and water. The catalyst employed at this time is vanadium/titanium, but the exact catalyst composition and the unique method of applying the catalyst to high-temperature glass fabric are the property of OCF. Other catalyst options are being evaluated by OCF in order to improve catalyst performance and minimize catalyst cost.

  10. Catalytic fabric filtration for simultaneous NO{sub x} and particulate control. Quarterly technical progress report, April 1--June 30, 1992

    SciTech Connect

    Weber, G.F.; Ness, S.R.; Laudal, D.L.; Dunham, G.

    1992-08-01

    The objective of this program is to develop advanced concepts for the removal of NO{sub x} from flue gas emitted by coal-fired utility boilers, or for the control of NO{sub x} formation by advanced combustion modification techniques. Funded projects are required to focus on the development of technology that significantly advances the state of the art using a process or a combination of processes capable of reducing NO{sub x} emissions to 60 ppm or less. The concept must have successfully undergone sufficient laboratory-scale development to justify scaleup for further evaluation at the pilot scale (not to exceed 5 MWe in size). The EERC approach to meeting the program objective involves the development of a catalytic fabric filter for simultaneous NO{sub x} and particulate control. The idea of applying either permanent or throwaway catalysts to a high-temperature fabric filter for NO{sub x} control is not new. However, advances at OCF have shown that a high-activity catalyst can be applied to a high-temperature woven glass cloth resulting in a fabric filter material that can operate at temperatures higher than the maximum operating temperatures of commercially available, coated glass fabric. The NO{sub x} is removed by catalytic reduction with ammonia to form nitrogen and water. The catalyst employed at this time is vanadium/titanium, but the exact catalyst composition and the unique method of applying the catalyst to high-temperature glass fabric are the property of OCF. Other catalyst options are being evaluated by OCF in order to improve catalyst performance and minimize catalyst cost.

  11. Multiple discharge cylindrical pump collector

    DOEpatents

    Dunn, Charlton; Bremner, Robert J.; Meng, Sen Y.

    1989-01-01

    A space-saving discharge collector 40 for the rotary pump 28 of a pool-type nuclear reactor 10. An annular collector 50 is located radially outboard for an impeller 44. The annular collector 50 as a closed outer periphery 52 for collecting the fluid from the impeller 44 and producing a uniform circumferential flow of the fluid. Turning means comprising a plurality of individual passageways 54 are located in an axial position relative to the annular collector 50 for receiving the fluid from the annular collector 50 and turning it into a substantially axial direction.

  12. Particulate Matter

    MedlinePlus

    ... Technology Laws & Regulations About EPA Contact Us Particulate Matter (PM) You are here: EPA Home Air & Radiation Six Common Pollutants Particulate Matter Announcements March 13, 2013 - An updated “Strategies ...

  13. Analysis of Molecular Contamination on Genesis Collectors Through Spectroscopic Ellipsometry

    NASA Technical Reports Server (NTRS)

    McNamara, K. M.; Stansbery, Eileen K.

    2005-01-01

    Before the spacecraft returned to Earth in September, the Genesis mission had a preliminary assessment plan in place for the purpose of providing information on the condition and availability of collector materials to the science community as a basis for allocation requests. One important component of that plan was the evaluation of collector surfaces for molecular contamination. Sources of molecular contamination might be the on-orbit outgassing of spacecraft and science canister components, the condensation of thruster by-products during spacecraft maneuvers, or the condensation of volatile species associated with reentry. Although the non-nominal return of the Genesis spacecraft introduced particulate contamination to the collectors, such as dust and heatshield carbon-carbon, it is unlikely to have caused any molecular deposition. The contingency team's quick action in returning the damaged payload the UTTR cleanroom by 6 PM the evening of recovery help to ensure that exposure to weather conditions and the environment were kept to a minimum.

  14. Solar collector array

    SciTech Connect

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  15. Solar collector device

    SciTech Connect

    Bates, K. N.

    1985-06-11

    A solar collector is provided in which a focussing element precisely focusses solar radiation upon a collecting region of a collecting element during all times of the day, without necessitating daily motion of the focussing element. The collecting region is constructed to be more highly absorbing of the solar radiation than any other region of the collector which might be in thermal contact with the collecting region. In some embodiments, the collecting region is a self-defined portion of the collecting element upon which the solar radiation is focussed at any given time. This is achieved by utilizing a collecting element which locally converts incident solar energy to another form of energy in a non-linear manner as a function of incident solar intensity. For example, the collecting element may be fabricated from a photochromic glass which darkens when impinged upon by the focussed radiation of the sun. The collecting region is automatically self-defined by the local darkened region of the photochromic glass, which traverses the collector as the sun traverses the sky.

  16. Solar collector device

    SciTech Connect

    Bates, K.N.

    1984-09-25

    A solar collector is provided in which a focussing element precisely focusses solar radiation upon a collecting region of a collecting element during all times of the day, without necessitating daily motion of the focussing element. The collecting region is constructed to be more highly absorbing of the solar radiation than any other region of the collector which might be in thermal contact with the collecting region. In some embodiments, the collecting region is a selfdefined portion of the collecting element upon which the solar radiation is focussed at any given time. This is achieved by utilizing a collecting element which locally converts incident solar energy to another form of energy in a non-linear manner as a function of incident solar intensity. For example, the collecting element may be fabricated from a photochromic glass which darkens when impinged upon by the focussed radiation of the sun. The collecting region is automatically self-defined by the local darkened region of the photochromic glass, which traverses the collector as the sun traverses the sky.

  17. Turning collectors for solar radiation

    DOEpatents

    Barak, Amitzur Z.

    1976-01-01

    A device is provided for turning a solar collector about the polar axis so that the collector is directed toward the sun as the sun tracks the sky each day. It includes two heat-expansive elements and a shadow plate. In the morning a first expansive element is heated, expands to turn the collector to face the sun, while the second expansive element is shaded by the plate. In the afternoon the second element is heated, expands to turn the collector to face the sun, while the first is shaded by the plate.

  18. Current collector for AMTEC

    NASA Technical Reports Server (NTRS)

    Williams, Roger M. (Inventor)

    1989-01-01

    An electrode having higher power output is formed of an open mesh current collector such as expanded nickel covering an electrode film applied to a tube of beta-alumina solid electrolyte (BASE). A plurality of cross-members such as spaced, parallel loops of molybdenum metal wire surround the BASE tube. The loops are electrically connected by a bus wire. As the AMTEC cell is heated, the grid of expanded nickel expands more than the BASE tube and the surrounding loop of wire and become diffusion welded to the electrode film and to the wire loops.

  19. Atmospheric Ionic Deposition in Tropical Sites of Central Sulawesi Determined by Ion Exchange Resin Collectors and Bulk Water Collector.

    PubMed

    Köhler, S; Jungkunst, H F; Gutzler, C; Herrera, R; Gerold, G

    2012-09-01

    In the light of global change, the necessity to monitor atmospheric depositions that have relevant effects on ecosystems is ever increasing particularly for tropical sites. For this study, atmospheric ionic depositions were measured on tropical Central Sulawesi at remote sites with both a conventional bulk water collector system (BWS collector) and with a passive ion exchange resin collector system (IER collector). The principle of IER collector to fix all ionic depositions, i.e. anions and cations, has certain advantages referring to (1) post-deposition transformation processes, (2) low ionic concentrations and (3) low rainfall and associated particulate inputs, e.g. dust or sand. The ionic concentrations to be measured for BWS collectors may easily fall below detection limits under low deposition conditions which are common for tropical sites of low land use intensity. Additionally, BWS collections are not as independent from the amount of rain fallen as are IER collections. For this study, the significant differences between both collectors found for nearly all measured elements were partly correlated to the rainfall pattern, i.e. for calcium, magnesium, potassium and sodium. However, the significant differences were, in most cases, not highly relevant. More relevant differences between the systems were found for aluminium and nitrate (434-484 %). Almost five times higher values for nitrate clarified the advantage of the IER system particularly for low deposition rate which is one particularity of atmospheric ionic deposition in tropical sites of extensive land use. The monthly resolution of the IER data offers new insights into the temporal distribution of annual ionic depositions. Here, it did not follow the tropical rain pattern of a drier season within generally wet conditions. PMID:22865942

  20. Selecting baghouse dust collectors

    SciTech Connect

    Moore, S.; Rubak, J.; Jolin, M. |

    1996-10-01

    Control of nuisance or process dusts generated within a plant is a vital concern with today`s growing emphasis on indoor air quality. In the past, many companies simply moved these contaminants away from workers and discharged them into the atmosphere. More stringent pollution control requirements now make this course of action unacceptable. Also, in some cases there is a need to recover high-value dusts, such as chemicals or precious metals. As a result, proper design and selection of a dust collection system are more critical than ever. There are two types of fabric filter dust collection systems commonly used today: baghouses and cartridges. Baghouses were the first collection systems with fabric media (in the form of long tubes, or bags) for removal of contaminants. The versatility of the baghouse--coupled with constant technological refinements--have made it a long-standing favorite among specifiers of pollution control equipment. In fact, baghouses account for more than 80% of all fabric filter dust collection systems in use today. Cartridge dust collectors use rigidly pleated filter elements instead of bags, making it possible to accommodate a large amount of filter surface area in a comparatively small package. Cartridge collectors also offer high efficiency and low pressure drop.

  1. Integrated solar collector

    DOEpatents

    Tchernev, Dimiter I.

    1985-01-01

    A solar collector having a copper panel in a contiguous space relationship with a condenser-evaporator heat exchanger located under the panel, the panel having a honeycomb-like structure on its interior defining individual cells which are filled with zeolite loaded, in its adsorbed condition, with 18 to 20% by weight of water. The interior of the panel and heat exchanger are maintained at subatmospheric pressure of about 0.1 to 1 psia. The panel and heat exchanger are insulated on their lateral sides and bottoms and on the top of the heat exchange. The panel has a black coating on its top which is exposed to and absorbs solar energy. Surrounding the insulation (which supports the panel) is an extruded aluminum framework which supports a pair of spaced-apart glass panels above the solar panel. Water in conduits from a system for heating or cooling or both is connected to flow into an inlet and discharge from outlet of a finned coil received within the heat exchanger. The collector panel provides heat during the day through desorption and condensing of water vapor from the heated solar panel in the heat exchanger and cools at night by the re-adsorption of the water vapor from the heat exchanger which lowers the absolute pressure within the system and cools the heat exchange coils by evaporation.

  2. Genesis: Removing Contamination from Sample Collectors

    NASA Technical Reports Server (NTRS)

    Lauer, H. V.; McNamara, K. M.; Westphal, Andrew; Butterworth, A. L.; Burnett, D. S.; Jurewicz, A.; Woolum, D.; Allton, J. H.

    2005-01-01

    The Genesis mission returned to Earth on September 8, 2004, experiencing a non-nominal reentry. The parachutes which were supposed to slow and stabilize the capsule throughout the return failed to deploy, causing the capsule to impact the desert floor at a speed of nearly 200 MPH. Both the science canister and the major components of the SRC were returned before nightfall on September 8 to the prestaged cleanroom at UTTR , avoiding prolonged exposure or pending weather changes which might further contaminate the samples. The majority of the contaminants introduced as a result of the anomalous landing were in the form of particulates, including UTTR dust and soil, carbon-carbon heat shield material, and shattered collector dust (primarily silicon and germanium). Additional information is included in the original extended abstract.

  3. Tower-supported solar-energy collector

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1977-01-01

    Multiple-collector tower system supports three receiver/concentrators that absorb solar energy reflected from surrounding field of heliostats. System overcomes disadvantages of tower-supported collectors. Booms can be lowered during heavy winds to protect arms and collectors.

  4. Depressed collector for electron beams

    NASA Technical Reports Server (NTRS)

    Ives, R. Lawrence (Inventor)

    2005-01-01

    A depressed collector for recovery of spent beam energy from electromagnetic sources emitting sheet or large aspect ration annular electron beams operating aver a broad range of beam voltages and currents. The collector incorporates a trap for capturing and preventing the return of reflected and secondary electrons.

  5. Collector-Output Analysis Program

    NASA Technical Reports Server (NTRS)

    Glandorf, D. R.; Phillips, Robert F., II

    1986-01-01

    Collector-Output Analysis Program (COAP) programmer's aid for analyzing output produced by UNIVAC collector (MAP processor). COAP developed to aid in design of segmentation structures for programs with large memory requirements and numerous elements but of value in understanding relationships among components of any program. Crossreference indexes and supplemental information produced. COAP written in FORTRAN 77.

  6. A Passive Nuclear Debris Collector.

    ERIC Educational Resources Information Center

    Griffin, John J.; And Others

    1979-01-01

    Describes a nuclear debris collector which removes trace substances from the lower atmosphere during rainfall. Suggests that the collector could be implemented into courses at various educational levels and could result in developing a network for monitoring the geographical extent of nuclear contamination. (Author/SA)

  7. Biobriefcase aerosol collector

    DOEpatents

    Bell, Perry M.; Christian, Allen T.; Bailey, Christopher G.; Willis, Ladona; Masquelier, Donald A.; Nasarabadi, Shanavaz L.

    2009-09-22

    A system for sampling air and collecting particles entrained in the air that potentially include bioagents. The system comprises providing a receiving surface, directing a liquid to the receiving surface and producing a liquid surface. Collecting samples of the air and directing the samples of air so that the samples of air with particles entrained in the air impact the liquid surface. The particles potentially including bioagents become captured in the liquid. The air with particles entrained in the air impacts the liquid surface with sufficient velocity to entrain the particles into the liquid but cause minor turbulence. The liquid surface has a surface tension and the collector samples the air and directs the air to the liquid surface so that the air with particles entrained in the air impacts the liquid surface with sufficient velocity to entrain the particles into the liquid, but cause minor turbulence on the surface resulting in insignificant evaporation of the liquid.

  8. Radiant energy collector

    DOEpatents

    McIntire, William R.

    1983-01-01

    A cylindrical radiant energy collector is provided which includes a reflector spaced apart from an energy absorber. The reflector is of a particular shape which ideally eliminates gap losses. The reflector includes a plurality of adjacent facets of V shaped segments sloped so as to reflect all energy entering between said absorber and said reflector onto said absorber. The outer arms of each facet are sloped to reflect one type of extremal ray in a line substantially tangent to the lowermost extremity of the energy absorber. The inner arms of the facets are sloped to reflect onto the absorber all rays either falling directly thereon or as a result of reflection from an outer arm.

  9. AEROSOL PARTICLE COLLECTOR DESIGN STUDY

    SciTech Connect

    Lee, S; Richard Dimenna, R

    2007-09-27

    A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitful areas for further study are proposed.

  10. Shenandoah parabolic dish solar collector

    SciTech Connect

    Kinoshita, G.S.

    1985-01-01

    The objectives of the Shenandoah, Georgia, Solar Total Energy System are to design, construct, test, and operate a solar energy system to obtain experience with large-scale hardware systems for future applications. This report describes the initial design and testing activities conducted to select and develop a collector that would serve the need of such a solar total energy system. The parabolic dish was selected as the collector most likely to maximize energy collection as required by this specific site. The fabrication, testing, and installation of the parabolic dish collector incorporating improvements identified during the development testing phase are described.

  11. FRACTIONATING COLUMN PRODUCT COLLECTOR CONTROL

    DOEpatents

    Paxson, G.D. Jr.

    1964-03-10

    Means for detecting minute fluid products from a chemical separation column and for advancing a collector tube rack in order to automatically separate and collect successive fractionated products are described. A charge is imposed on the forming drops at the column orifice to create an electric field as the drop falls in the vicinity of a sensing plate. The field is detected by an electrometer tube coupled to the plate causing an output signal to actuate rotation of a collector turntable rack, thereby positioning new collectors under the orifice. The invention provides reliable automatic collection independent of drop size, rate of fall, or chemical composition. (AEC)

  12. Solar collector with altitude tracking

    DOEpatents

    Barak, Amitzur Z.

    1977-01-01

    A device is provided for turning a solar collector about an east-west horizontal axis so that the collector is tilted toward the sun as the EWV altitude of the sun varies each day. It includes one or more heat responsive elements and a shading means aligned so that within a range of EWV altitudes of the sun during daylight hours the shading means shades the element or elements while during the rest of the daylight hours the elements or elements are heated by the sun to assume heated, stable states. Mechanical linkage between the collector and the element is responsive to the states of the element or elements to tilt the collector in accordance with variations in the EWV altitude of the sun.

  13. Solar collector manufacturing activity, 1992

    SciTech Connect

    Not Available

    1993-11-09

    This report presents data provided by US-based manufacturers and importers of solar collectors. Summary data on solar thermal collector shipments are presented for the years 1974 through 1992. Summary data on photovoltaic cell and module shipments are presented for the years 1982 through 1992. Detailed information for solar thermal collectors and photovoltaic cells and modules are presented for 1992. Appendix A describes the survey methodology. Appendix B contains the 1992 survey forms and instructions. Appendices C and D list the companies that responded to the 1992 surveys and granted permission for their names and addresses to appear in the report. Appendix E provides selected tables from this report with data shown in the International System of Units (SI) metric units. Appendix F provides an estimate of installed capacity and energy production from solar collectors for 1992.

  14. Elastocapillary mist collector

    NASA Astrophysics Data System (ADS)

    Duprat, Camille; Labbé, Romain; Rewakowicz, Ana

    2015-11-01

    Fibrous media are commonly used to collect droplets from an aerosol. In particular, woven textiles are used to harvest fresh water from fog, and coalescing filters made of non-woven entangled fibers are used to extract oil drops from gas streams. We propose a novel mist collector made of a forest of vertical flexible threads. As the droplets accumulate on the fibers, capillary bridges are formed, leading to the collapse of adjacent fibers thus forming liquid columns. This improve the liquid collection by preventing clogging, enabling high capture and precluding re-entrainment of drops in the gas stream due to the immediate coalescence of incoming droplets, and promoting fast drainage. We find that the collection flow rate is constant and can be adjusted by varying the fibers arrangement and flexibility. We show that there is an optimal situation for which this collection rate, i.e. the global efficiency, is maximal due to an elastocapillary coupling that we further characterize with a model experiment. Specifically, we study the drainage between two flexible fibers. Depending on the geometry and the fiber deformations, several flow regimes are observed. We characterize these regimes, and discuss the consequences on the drainage velocity, and thus the collection efficiency.

  15. SOLAR NANTENNA ELECTROMAGNETIC COLLECTORS

    SciTech Connect

    Steven D. Novack; Dale K. Kotter; Dennis Slafer; Patrick Pinhero

    2008-08-01

    This research explores a new efficient approach for producing electricity from the abundant energy of the sun. A nanoantenna electromagnetic collector (NEC) has been designed, prototyped, and tested. Proof of concept has been validated. The device targets mid-infrared wavelengths where conventional photovoltaic (PV) solar cells do not respond but is abundant in solar energy. The initial concept of designing NEC antennas was based on scaling of radio frequency antenna theory. This approach has proven unsuccessful by many due to not fully understanding and accounting for the optical behavior of materials in the THz region. Also until recent years the nanofabrication methods were not available to fabricate the optical antenna elements. We have addressed and overcome both technology barriers. Several factors were critical in successful implementation of NEC including: 1) frequency-dependent modeling of antenna elements, 2) selection of materials with proper THz properties and 3) novel manufacturing methods that enable economical large-scale manufacturing. The work represents an important step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity, which will lead to a wide spectrum, high conversion efficiency, and low cost solution to complement conventional PVs.

  16. Design package for concentrating solar collector panels

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information used to evaluate the design of the Northrup concentrating collector is presented. Included are the system performance specifications, the applications manual, and the detailed design drawings of the collector. The collector is a water/glycol/working fluid type, with a dipped galvanized steel housing, transparent acrylic Fresnel lens cover, copper absorber tube, and fiber glass insulation. It weights 98 pounds. A collector assembly includes four collector units within a tracking mount array.

  17. Solar radiation on a catenary collector

    NASA Astrophysics Data System (ADS)

    Crutchik, M.; Appelbaum, J.

    1992-07-01

    A tent-shaped structure with a flexible photovoltaic blanket acting as a catenary collector is presented. The shadow cast by one side of the collector produces a shadow on the other side of the collector. This self-shading effect is analyzed. The direct beam, the diffuse, and the albedo radiation on the collector are determined. An example is given for the insolation on the collector operating on Viking Lander 1 (VL1).

  18. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  19. Bi-coolant flat plate solar collector

    NASA Astrophysics Data System (ADS)

    Chon, W. Y.; Green, L. L.

    The feasibility study of a flat plate solar collector which heats air and water concurrently or separately was carried out. Air flows above the collector absorber plate, while water flows in tubes soldered or brazed beneath the plate. The collector efficiencies computed for the flow of both air and water are compared with those for the flow of a single coolant. The results show that the bi-coolant collector efficiency computed for the entire year in Buffalo, New York is higher than the single-coolant collector efficiency, although the efficiency of the water collector is higher during the warmer months.

  20. Thin film solar energy collector

    DOEpatents

    Aykan, Kamran; Farrauto, Robert J.; Jefferson, Clinton F.; Lanam, Richard D.

    1983-11-22

    A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

  1. Pyrolytic graphite collector development program

    NASA Technical Reports Server (NTRS)

    Wilkins, W. J.

    1982-01-01

    Pyrolytic graphite promises to have significant advantages as a material for multistage depressed collector electrodes. Among these advantages are lighter weight, improved mechanical stiffness under shock and vibration, reduced secondary electron back-streaming for higher efficiency, and reduced outgassing at higher operating temperatures. The essential properties of pyrolytic graphite and the necessary design criteria are discussed. This includes the study of suitable electrode geometries and methods of attachment to other metal and ceramic collector components consistent with typical electrical, thermal, and mechanical requirements.

  2. Performance verification of an air solar collector

    NASA Technical Reports Server (NTRS)

    Miller, D. C.; Romaker, R. F.

    1979-01-01

    Procedures and results of battery of qualification tests performed by independent certification agency on commercial solar collector are presented in report. Reported results were used as basis in judging collector suitable for field installation in residential and commerical buildings.

  3. Installation package for concentrating solar collector panels

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The concentrating solar collector panels comprise a complete package array consisting of collector panels using modified Fresnel prismatic lenses for a 10 to 1 concentrating ratio, supporting framework, fluid manifolding and tracking drive system, and unassembled components for field erection.

  4. Solar radiation on a catenary collector

    NASA Astrophysics Data System (ADS)

    Crutchik, M.; Appelbaum, J.

    A tent-shaped structure with a flexible photovoltaic blanket acting as a catenary collector is presented. The shadow cast by one side of the collector on the other side producing a self shading effect is analyzed. The direct beam, the diffuse and the albedo radiation on the collector are determined. An example is given for the insolation on the collector operating on the martian surface for the location of Viking Lander 1 (VL1).

  5. Selective coating for solar collectors

    SciTech Connect

    Schardein, D.J.

    1983-03-15

    A selective solar coating for solar collectors is disclosed. The coating is characterized by its high absorptance and low emittance. The coating comprises an organic compound or substance having a high molecular weight and a high carbon content, such as a petroleum, vegetable or animal oil, fat or wax, which is pyrolyzed to produce a carbon black pigmented varnish.

  6. 31 CFR 203.17 - Collector depositaries.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 2 2012-07-01 2012-07-01 false Collector depositaries. 203.17 Section... TAX AND LOAN PROGRAM PATAX § 203.17 Collector depositaries. (a) Debit to reserve account. On the business day that the TSC receives an AOC from a collector depositary, the TSC will debit the...

  7. 31 CFR 203.17 - Collector depositaries.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 2 2014-07-01 2014-07-01 false Collector depositaries. 203.17... TAX AND LOAN PROGRAM PATAX § 203.17 Collector depositaries. (a) Debit to reserve account. On the business day that the TSC receives an AOC from a collector depositary, the TSC will debit the...

  8. 31 CFR 203.17 - Collector depositaries.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 2 2013-07-01 2013-07-01 false Collector depositaries. 203.17 Section... TAX AND LOAN PROGRAM PATAX § 203.17 Collector depositaries. (a) Debit to reserve account. On the business day that the TSC receives an AOC from a collector depositary, the TSC will debit the...

  9. Installation package for Sunpak solar collectors

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A subsystem (air/liquid vacuum collector) was developed for use with solar combined heating and cooling subsystems. The collector is modular in design, is approximately twelve-feet-three-inches wide and is eight-feet-seven-inches high. The module contains 72 collector tube elements and weighs approximately 300 pounds.

  10. Macroscopic Subdivision of Silica Aerogel Collectors for Sample Return Missions

    SciTech Connect

    Ishii, H A; Bradley, J P

    2005-09-14

    Silica aerogel collector tiles have been employed for the collection of particles in low Earth orbit and, more recently, for the capture of cometary particles by NASA's Stardust mission. Reliable, reproducible methods for cutting these and future collector tiles from sample return missions are necessary to maximize the science output from the extremely valuable embedded particles. We present a means of macroscopic subdivision of collector tiles by generating large-scale cuts over several centimeters in silica aerogel with almost no material loss. The cut surfaces are smooth and optically clear allowing visual location of particles for analysis and extraction. This capability is complementary to the smaller-scale cutting capabilities previously described [Westphal (2004), Ishii (2005a, 2005b)] for removing individual impacts and particulate debris in tiny aerogel extractions. Macroscopic cuts enable division and storage or distribution of portions of aerogel tiles for immediate analysis of samples by certain techniques in situ or further extraction of samples suited for other methods of analysis.

  11. Desiccant cooling using unglazed transpired solar collectors

    NASA Astrophysics Data System (ADS)

    Pesaran, A. A.; Wipke, K.

    1992-05-01

    The use of unglazed solar collectors for desiccant regeneration in a solid desiccant cooling cycle was investigated because these collectors are lower in cost than conventional glazed flat-plate collectors. Using computer models, the performance of a desiccant cooling ventilation cycle integrated with either unglazed transpired collectors or conventional glazed flat-plate collectors was obtained. We found that the thermal performance of the unglazed system was lower than the thermal performance of the glazed system because the unglazed system could not take advantage of the heat of adsorption released during the dehumidification process. For a 3-ton cooling system, although the area required for the unglazed collector was 69 percent more than that required for the glazed collector, the cost of the unglazed collector array was 44 percent less than the cost of the glazed collector array. The simple payback period of the unglazed system was half of the payback period of the glazed collector when compared to an equivalent gas-fired system. Although the use of unglazed transpired collectors makes economic sense, some practical considerations may limit their use in desiccant regeneration.

  12. DEVELOPMENT OF ON-LINE INSTRUMENTATION AND TECHNIQUES TO DETECT AND MEASURE PARTICULATES

    SciTech Connect

    Sheng Wu; Steve Palm; Yongchun Tang; William A. Goddard III

    2003-01-28

    In the first quarter of the project, we reviewed many past references about using light scattering to characterize particulate matters. We also constructed light sources, detection systems and PM synthesizer for the project.

  13. Solar collector manufacturing activity, 1988

    NASA Astrophysics Data System (ADS)

    1989-11-01

    This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy in cooperation with the Office of Conservation and Renewable Energy. The report presents data on producer shipments and end uses obtained from manufacturers and importers of solar thermal collectors and photovoltaic modules. It provides annual data necessary for the Department of Energy to execute its responsibility to: (1) monitor activities and trends in the solar collector manufacturing industry, (2) prepare the national energy strategy, and (3) provide information on the size and status of the industry to interested groups such as the U.S. Congress, government agencies, the Solar Energy Research institute, solar energy specialists, manufacturers, and the general public.

  14. Terrestrial photovoltaic collector technology trend

    SciTech Connect

    Shimada, K.; Costogue, E.

    1984-08-01

    Following the path of space PV collector development in its early stages, terrestrial PV technologies based upon single-crystal silicon have matured rapidly. Currently, terrestrial PV cells with efficiencies approaching space cell efficiencies are being fabricated into modules at a fraction of the space PV module cost. New materials, including CuInSe/sub 2/ and amorphous silicon, are being developed for lowering the cost, and multijunction materials for achieving higher efficiency. Large grid-interactive, tracking flat-plate power systems and concentrator PV systems totaling about 10 MW, are already in operation. Collector technology development both flat-plate and concentrator, will continue under an extensive government and private industry partnership.

  15. The Whitfield Solar CPV Collector

    NASA Astrophysics Data System (ADS)

    Bentley, Roger; Anstey, Ben; Callear, Jason; Chonavel, Sylvain; Clark, Ian; Collins, Ian; Ramallo, Alfonso; Scanlon, Hamilton; Weatherby, Clive

    2010-10-01

    Whitfield Solar is now in production with a point-focus Fresnel lens 70x PV concentrator that uses LGBC silicon cells. The design builds on initial research carried out under a number of EU-funded R&D projects. Each collector has twenty-four V-troughs 1.2 m long by 110 mm wide by 110 mm deep, and each trough carries 12 cells. Tracking is closed-loop, in a 2-axis tilt & roll system. Initial prototypes were installed in Spain in 2006, and subsequent production-version collectors have been on-sun since September 2008. In-field normalised d.c. system efficiency is 13.5%. Volume-manufactured sales price—including support frame and mark-up—is €2.40/Wp,dc, with scope for further significant cost reduction identified.

  16. Standardized performance tests of collectors of solar thermal energy: Prototype moderately concentrating grooved collectors

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Prototypes of moderately concentrating grooved collectors were tested with a solar simulator for varying inlet temperature, flux level, and incident angle. Collector performance is correlated in terms of inlet temperature and flux level.

  17. Fog collectors and collection techniques

    NASA Astrophysics Data System (ADS)

    Höhler, I.; Suau, C.

    2010-07-01

    The earth sciences taught that due to the occurrence of water in three phases: gas, liquid and solid, solar energy keeps the hydrological cycle going, shaping the earth surface while regulating the climate and thus allowing smart technologies to interfere in the natural process by rerouting water and employing its yield for natural and human environments’ subsistence. This is the case of traditional fog collectors implemented by several researchers along the Atacama Desert since late ’50s such as vertical tensile mesh or macro-diamonds structures. Nevertheless, these basic prototypes require to be upgraded, mainly through new shapes, fabrics and frameworks’ types by following the principles of lightness, transformability, portability and polyvalence. The vertical canvas of conventional fog collectors contain too much stressed at each joints and as result it became vulnerable. Our study constitutes a research by design of two fog-trap devices along the Atacama Desert. Different climatic factors influence the efficiency of fog harvesting. In order to increase yield of collected fog water, we need to establish suitable placements that contain high rates of fog’s accumulation. As important as the location is also the building reliability of these collectors that will be installed. Their frames and skins have to be adjustable to the wind direction and resistant against strong winds and rust. Its fabric need to be more hydrophobic, elastic and with light colours to ease dripping/drainage and avoid ultra-violet deterioration. In addition, meshes should be well-tensed and frames well-embraced too. In doing so we have conceived two fog collectors: DropNet© (Höhler) and FogHive© (Suau). These designs explore climatic design parameters combined with the agile structural principles of Tensegrity and Geodesic widely developed by Bucky Fuller and Frei Otto. The research methods mainly consisted of literature review; fieldwork; comparative analysis of existing fog

  18. Tubular solid oxide fuel cell current collector

    DOEpatents

    Bischoff, Brian L.; Sutton, Theodore G.; Armstrong, Timothy R.

    2010-07-20

    An internal current collector for use inside a tubular solid oxide fuel cell (TSOFC) electrode comprises a tubular coil spring disposed concentrically within a TSOFC electrode and in firm uniform tangential electrical contact with the electrode inner surface. The current collector maximizes the contact area between the current collector and the electrode. The current collector is made of a metal that is electrically conductive and able to survive under the operational conditions of the fuel cell, i.e., the cathode in air, and the anode in fuel such as hydrogen, CO, CO.sub.2, H.sub.2O or H.sub.2S.

  19. Solar thermal collectors using planar reflector

    NASA Technical Reports Server (NTRS)

    Espy, P. N.

    1978-01-01

    Specular reflectors have been used successfully with flat-plate collectors to achieve exceptionally high operating temperatures and high delivered energy per unit collector area. Optimal orientation of collectors and reflectors can result in even higher performance with an improved relationship between energy demand and supply. This paper reports on a study providing first order optimization of collector-reflector arrays in which single- and multiple-faceted reflectors in fixed or singly adjustable configurations provide delivered energy maxima in either summer or winter.

  20. Automated solar collector installation design

    DOEpatents

    Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules

    2014-08-26

    Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre-defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives.

  1. Particulate behavior in a controlled-profile pulverized coal-fired reactor: A study of coupled turbulent particle dispersion and thermal radiation transport. Quarterly technical progress report, June 15, 1993--September 14, 1993

    SciTech Connect

    Queiroz, M.; Webb, B.W.

    1993-11-01

    Testing on the CPR using Pitt No. 8 coal was completed this quarter. Combustion characteristics of this coal required combustion to take place at an air/fuel equivalence ration of 0.75 (fuel-rich) in order to maintain a stable flame. The reason for this difficulty in burning at higher equivalence ratios is still under investigation. Flame symmetry was established during testing using suction pyrometer measurements, and was checked at various times throughout the test. Repeatability measurements were also made. These tests showed that running on coal for four hours after warm up was necessary to ensure constant wall temperatures. The PCSV-P was used to measure radial profiles of velocities and number density distributions for particles between 0.4 and 98 microns at three axial locations in the CPR. The particle velocities were measured as the average small particle (0.4-3.5 micron) and large particle (3.5-98 micron) velocities. The analysis of the data taken during these tests has not been completed. The coal feed system was revised again before testing. The Acrison auger feeder used to deliver the coal was calibrated according to the armature setting on the feeder motor. Variability and repeatability of this method were established by taking several manual measurements over and extended period of time. It was shown that the error associated with this method was less than 4% over one minute intervals. The small error was attributable to the excellent armature feedback supplied by the Acrison controller board.

  2. Apparatus for measuring surface particulate contamination

    DOEpatents

    Woodmansee, Donald E.

    2002-01-01

    An apparatus for measuring surface particulate contamination includes a tool for collecting a contamination sample from a target surface, a mask having an opening of known area formed therein for defining the target surface, and a flexible connector connecting the tool to the mask. The tool includes a body portion having a large diameter section defining a surface and a small diameter section extending from the large diameter section. A particulate collector is removably mounted on the surface of the large diameter section for collecting the contaminants. The tool further includes a spindle extending from the small diameter section and a spool slidingly mounted on the spindle. A spring is disposed between the small diameter section and the spool for biasing the spool away from the small diameter section. An indicator is provided on the spindle so as to be revealed when the spool is pressed downward to compress the spring.

  3. 1. VIEW LOOKING EAST AT TIPPLE, SEPARATOR AND DUST COLLECTOR. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW LOOKING EAST AT TIPPLE, SEPARATOR AND DUST COLLECTOR. Separator contains Pangborn Dust Collectors. - Allendale Coal Processing Plant, Tipple, Separator & Dust Collector, South of State Route 869, Beaverdale, Cambria County, PA

  4. Combined solar collector and energy storage system

    NASA Technical Reports Server (NTRS)

    Jensen, R. N. (Inventor)

    1980-01-01

    A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation.

  5. Development and testing of the Shenandoah collector

    NASA Technical Reports Server (NTRS)

    Kinoshita, G. S.

    1981-01-01

    The test and development of the 7-meter Shenandoah parabolic dish collector incorporating an FEK-244 film reflective surface and cavity receiver are described. Four prototypes tested in the midtemperature Solar System Test Facility indicate, with changes incorporated from these development tests, that the improvements should lead to predicted performance levels in the production collectors.

  6. 49 CFR 229.77 - Current collectors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Current collectors. 229.77 Section 229.77 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....77 Current collectors. (a) Pantographs shall be so arranged that they can be operated from...

  7. 49 CFR 229.77 - Current collectors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Current collectors. 229.77 Section 229.77 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....77 Current collectors. (a) Pantographs shall be so arranged that they can be operated from...

  8. 49 CFR 229.77 - Current collectors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Current collectors. 229.77 Section 229.77 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....77 Current collectors. (a) Pantographs shall be so arranged that they can be operated from...

  9. 49 CFR 229.77 - Current collectors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Current collectors. 229.77 Section 229.77 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....77 Current collectors. (a) Pantographs shall be so arranged that they can be operated from...

  10. 49 CFR 229.77 - Current collectors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Current collectors. 229.77 Section 229.77 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....77 Current collectors. (a) Pantographs shall be so arranged that they can be operated from...

  11. Solar collector with improved thermal concentration

    DOEpatents

    Barak, Amitzur Z.

    1976-01-01

    Reduced heat loss from the absorbing surface of the energy receiver of a cylindrical radiant energy collector is achieved by providing individual, insulated, cooling tubes for adjacent parallel longitudinal segments of the receiver. Control means allow fluid for removing heat absorbed by the tubes to flow only in those tubes upon which energy is then being directed by the reflective wall of the collector.

  12. The Thermal Collector With Varied Glass Covers

    SciTech Connect

    Luminosu, I.; Pop, N.

    2010-08-04

    The thermal collector with varied glass covers represents an innovation realized in order to build a collector able to reach the desired temperature by collecting the solar radiation from the smallest surface, with the highest efficiency. In the case of the thermal collector with variable cover glasses, the number of the glass plates covering the absorber increases together with the length of the circulation pipe for the working fluid. The thermal collector with varied glass covers compared to the conventional collector better meet user requirements because: for the same temperature increase, has the collecting area smaller; for the same collection area, realizes the highest temperature increase and has the highest efficiency. This works is addressed to researchers in the solar energy and to engineers responsible with air-conditioning systems design or industrial and agricultural products drying.

  13. The Thermal Collector With Varied Glass Covers

    NASA Astrophysics Data System (ADS)

    Luminosu, I.; Pop, N.

    2010-08-01

    The thermal collector with varied glass covers represents an innovation realized in order to build a collector able to reach the desired temperature by collecting the solar radiation from the smallest surface, with the highest efficiency. In the case of the thermal collector with variable cover glasses, the number of the glass plates covering the absorber increases together with the length of the circulation pipe for the working fluid. The thermal collector with varied glass covers compared to the conventional collector better meet user requirements because: for the same temperature increase, has the collecting area smaller; for the same collection area, realizes the highest temperature increase and has the highest efficiency. This works is addressed to researchers in the solar energy and to engineers responsible with air-conditioning systems design or industrial and agricultural products drying.

  14. Particulate control system for biomass firing technologies

    SciTech Connect

    Easom, B.H.; Smolensky, L.A.; Wysk, S.R.

    1996-12-31

    The new particulate control equipment, the so-called Core Separator, overcomes most of the limitations inherent in conventional particulate control systems and can be effectively adapted for biomass applications. The Core Separator is a mechanical collector; however, this technology overcomes the performance limitation inherent in cyclones by performing the tasks of separation and collection in two separate components. The separation process is less affected by secondary flows and is much more efficient than the collection process. Also, the components of the system are arranged in such a way that the separation process determines the system efficiency. As a result, particulate emission rates downstream of this system are one fourth of those from the most efficient cyclones. This technology has been demonstrated through commercial unit installations in the U.S. and abroad. It has been used for industrial separations including coal fly ash, minerals, and chemical recovery applications. It is considered a lower-cost alternative to fabric filters and electrostatic precipitators, albeit one that can meet or exceed regulations for particulate emissions. Development of this technology has been funded by the U.S. Department of Energy, Environmental Protection Agency, and Electric Power Research Institute.

  15. Solar collector mounting and support apparatus

    SciTech Connect

    Hutchison, J.A.

    1981-12-22

    A solar collector system is described of the type having a movable surface for receiving solar radiation having improved means for rotatably supporting the movable surface and for rotating the collector surface. A support axle for the collector includes a ball at one end which is carried within a cylindrical sleeve in the solar collector to support the weight of the collector. A torque transmitting arm comprising a flexible flat strip is connected at one end to the axle and at the other end to the collector surface. An improved rotational drive mechanism includes a first sprocket wheel carried on the axle and a second sprocket wheel supported on a support pylon with a drive chain engaging both sprockets. A double acting piston also supported by the pylon is coupled to the chain so that the chain may be driven by a hydraulic control system to rotate the collector surfaces as required. An improved receiver tube support ring is also provided for use with the improved mounting and support apparatus to improve overall efficiency by reducing thermal losses.

  16. Single-stage depressed collectors for gyrotrons

    SciTech Connect

    Piosczyk, B.; Iatrou, C.T.; Dammertz, G.; Thumm, M. |

    1996-06-01

    Two 140 GHz gyrotrons with a single-step depressed collector have been operated. The different position of the isolating collector gap in the stray magnetic field causes the electron motion in the retarding region to be in one case adiabatic and in the other case nonadiabatic. The kind of motion within the retarding field influences strongly the behavior of the gyrotron with a depressed collector. In the case of nonadiabatic motion a significant amount of transverse momentum is given to the electrons reflected at the collector potential. This causes the reflected electrons to be trapped between the magnetic mirror and the collector. The electrons escape from the trap by diffusion across the magnetic field to the body of the tube thus contributing to the body current. Despite the high body current there is no observable influence of the collector voltage on the RF output power. In the case of adiabatic motion the reflected electrons do not gain a sufficient amount of transverse momentum to be trapped by the magnetic mirror. They pass the cavity toward the gun and they are trapped between the negative gun potential and the collector. The interaction with the RF field by electrons traveling through the cavity enhances the diffusion in the velocity space thus enabling the trapped electrons to overcome the potential barrier and escape toward the collector. Therefore the body current stays at low values since in this case the reflected electrons do not contribute to it. However, at higher collector voltages a reduction of RF power occurred and some noise in the electron beam was observed. The main motivation for the development of gyrotrons in the frequency range above 100 GHz with power levels in excess of several hundreds kW per tube, is the application in magnetic fusion devices for plasma heating and for electron current drive.

  17. Next Generation Solar Collectors for CSP

    SciTech Connect

    Molnar, Attila; Charles, Ruth

    2014-07-31

    The intent of “Next Generation Solar Collectors for CSP” program was to develop key technology elements for collectors in Phase 1 (Budget Period 1), design these elements in Phase 2 (Budget Period 2) and to deploy and test the final collector in Phase 3 (Budget Period 3). 3M and DOE mutually agreed to terminate the program at the end of Budget Period 1, primarily due to timeline issues. However, significant advancements were achieved in developing a next generation reflective material and panel that has the potential to significantly improve the efficiency of CSP systems.

  18. A mobile apparatus for solar collector testing

    NASA Technical Reports Server (NTRS)

    Hotchkiss, G. B.; Simon, F. F.; Burmeister, L. C.

    1979-01-01

    The design, construction, and operation of a mobile apparatus for solar collector testing (MASCOT) is described. The MASCOT is a self-contained test unit costing about $10,000 whose only external requirement for operation is electrical power and which is capable of testing two water-cooled flat-plate solar collectors simultaneously. The MASCOT is small enough and light enough to be transported to any geographical site for outdoor tests at the location of collector usage. It has been used in both indoor solar simulator tests and outdoor tests.

  19. South African Particulates

    Atmospheric Science Data Center

    2013-04-16

    ... title:  Airborne Particulates over Southern Africa     View Larger Image ... of airborne particulates, or aerosols, over Southern Africa during the period August 14 - September 29, 2000. Low particle ...

  20. Concentrating solar collector subsystem: Preliminary design package

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Preliminary design data are presented for a concentrating solar collector including an attitude controller. Provided are schedules, technical status, all documents required for preliminary design, and other program activities.

  1. Potential collector surface materials for divertors

    NASA Astrophysics Data System (ADS)

    Prebble, H. E.; Forty, C. B. A.; Butterworth, G. J.

    1992-09-01

    Twelve refractory materials have been investigated to assess their suitability for use as collector target materials for divertors. The steady state limiting heat flux to avoid melting of the collector material has been calculated as a function of thickness using a simple one-dimensional thermal-hydraulics model. Similarly, the limiting heat flux to avoid melting following a plasma disruption has been calculated as a function of collector surface temperature just prior to the disruption event. Finally, the resistance of each collector material to thermal shock was estimated. The calculations indicate diamond, graphite and tungsten as favourable materials, BN, AlN, TiN, V 2C and beryllium as unsuitable and BeO, SiC, TiC and TIB 2 as exhibiting combinations of favourable and unfavourable properties.

  2. Collector/Receiver Characterization (Fact Sheet)

    SciTech Connect

    Not Available

    2010-08-01

    Fact sheet describing NREL CSP Program capabilities for collector/receiver characterization: determining optical efficiency, measuring heat loss, developing and testing concentrators, concentrating the sun's power, and optically characterizing CSP plants.

  3. Modern multistage depressed collectors - A review

    NASA Technical Reports Server (NTRS)

    Kosmahl, H. G.

    1982-01-01

    The design and performance of the Lewis Research Center (LeRC) electrostatic collector and the associated passive permanent magnetic beam reconditioning (refocusing) are discussed and compared with numerous experimental results on wide- and narrow-band TWT and two klystron cases. Universal designs for efficient collectors for TV klystrons are presented. Collectors other than those based on the symmetric LeRC concept are reviewed only briefly, either because they have not been treated analytically or because only sporadic or incomplete experimental evaluation results are available. It is concluded that significant, a priori predictable performance improvements for TWTs have been demonstrated and that a substantial reduction in the dc power input to TV klystron transmitters could be effected by using well-designed multistage depressed collectors.

  4. Tax Examiners, Revenue Agents, and Collectors.

    ERIC Educational Resources Information Center

    McCarron, Kevin M.

    2001-01-01

    Describes the nature of the work of tax examiners, revenue agents, and collectors. Includes employment outlook; benefits and drawbacks; qualifications, training, and advancement; and sources of additional information. (JOW)

  5. Tilt assembly for tracking solar collector assembly

    DOEpatents

    Almy, Charles; Peurach, John; Sandler, Reuben

    2012-01-24

    A tilt assembly is used with a solar collector assembly of the type comprising a frame, supporting a solar collector, for movement about a tilt axis by pivoting a drive element between first and second orientations. The tilt assembly comprises a drive element coupler connected to the drive element and a driver, the driver comprising a drive frame, a drive arm and a drive arm driver. The drive arm is mounted to the drive frame for pivotal movement about a drive arm axis. Movement on the drive arm mimics movement of the drive element. Drive element couplers can extend in opposite directions from the outer portion of the drive arm, whereby the assembly can be used between adjacent solar collector assemblies in a row of solar collector assemblies.

  6. Subsystem design package for Solar II collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The requirements for the design and performance of the Solar 2 Collector Subsystem developed for use in solar heating of single family residences and mobile homes are presented. Installation drawings are included.

  7. Processing on high efficiency solar collector coatings

    NASA Technical Reports Server (NTRS)

    Roberts, M.

    1977-01-01

    Wavelength selective coatings for solar collectors are considered. Substrates with good infrared reflectivity were examined along with their susceptibility to physical and environmental damage. Improvements of reflective surfaces were accomplished through buffing, chemical polishing and other surface processing methods.

  8. Modern multistage depressed collectors - A review

    NASA Astrophysics Data System (ADS)

    Kosmahl, H. G.

    1982-11-01

    The design and performance of the Lewis Research Center (LeRC) electrostatic collector and the associated passive permanent magnetic beam reconditioning (refocusing) are discussed and compared with numerous experimental results on wide- and narrow-band TWT and two klystron cases. Universal designs for efficient collectors for TV klystrons are presented. Collectors other than those based on the symmetric LeRC concept are reviewed only briefly, either because they have not been treated analytically or because only sporadic or incomplete experimental evaluation results are available. It is concluded that significant, a priori predictable performance improvements for TWTs have been demonstrated and that a substantial reduction in the dc power input to TV klystron transmitters could be effected by using well-designed multistage depressed collectors.

  9. Mercury Control With The Advanced Hybrid Paticulate Collector

    SciTech Connect

    Stanley J. Miller; Ye Zhuang; Jay Almlie

    2004-09-30

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project was to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control. The scope of work was modified to include an additional sixth task, initiated in April 2003. The objective of this task

  10. Effects of High Temperature on Collector Coatings

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1982-01-01

    Report reveals electroplated black chrome is good coating for concentrating collectors in which temperatures are in the 650 degrees-800 degrees F (340 degrees - 430 degrees C) range. Black chrome thermal emittance is low and solar-absorption properties are not seriously degraded at high temperatures. Black coatings are used to increase absorption of solar energy by base metal while decreasing emission of infrared energy. Coatings are intended to improve efficiency of solar collectors.

  11. Installation package for air flat plate collector

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Solar 2 dimensions are four feet by eight feet by two and one half inches. The collector weighs 130 pounds and has an effective solar collection area of over 29.5 square feet. This area represents 95 percent of the total surface of the collector. The installation, operation and maintenance manual, safety hazard analysis, special handling instructions, materials list, installation concept drawings, warranty and certification statement are included in the installation package.

  12. Qualification test and analysis report: Solar collectors

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Test results show that the Owens-Illinois Sunpak TM Model SEC 601 air-cooled collector meets the national standards and codes as defined in the Subsystem Peformance Specification and Verification Plan of NASA/MSFC, dated October 28, 1976. The program calls for the development, fabrication, qualification and delivery of an air-cooled solar collector for solar heating, combined heating and cooling, and/or hot water systems.

  13. Wind loading on solar collectors

    SciTech Connect

    Bhaduri, S.; Murphy, L.M.

    1985-06-01

    The present design methodology for the determination of wind loading on the various solar collectors has been reviewed and assessed. The total force coefficients of flat plates of aspect ratios 1.0 and 3.0, respectively, at various angles of attack obtained by using the guidelines of the ANSI A58.1-1982, have been compared with those obtained by using the methodology of the ASCE Task Committee, 1961, and the experimental results of the full-scale test of heliostats by Peglow. The turbulent energy spectra, currently employed in the building code, are compared with those of Kaimal et al., Lumley, and Ponofsky for wind velocities of 20.0 m/s and 40.24 m/s at an elevation of 9.15 m. The longitudinal spectra of the building code overestimates the Kaimal spectra in the frequency range of 0.007 Hz to 0.08 Hz and underestimates beyond the frequency of 0.08 Hz. The peak angles of attack, on the heliostat, stowed in horizontal position, due to turbulent vertical and lateral components of wind velocity, have been estimated by using Daniel's methodology for three wind velocities and compared with the value suggested by the code. The experimental results of a simple test in the laboratory indicate the feasibility of decreasing the drag forces of the flat plate by reducing the solidity ratio.

  14. Single collector attachment efficiency of colloid capture by a cylindrical collector in laminar overland flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little research has been conducted to investigate fate and transport of colloids in surface vegetation in overland flow under unfavorable chemical conditions. In this work, single collector attachment efficiency (a) of colloid capture by a simulated plant stem (i.e. cylindrical collector) in laminar...

  15. Ceramic materials for solar collectors. Final report

    SciTech Connect

    Ankeny, A.E.

    1982-09-29

    The purpose of this project was to identify ceramic materials which exhibit solar absorption properties which are appropriate for flat plate solar collectors. To accomplish this, various glaze formulations and clay combinations were produced and evaluated for their potential as solar absorbers. For purposes of comparison a black coated copper sheet was also tested concurrently with the ceramic materials. Thirty-five different coatings were prepared on fifty-six tiles. Two different clays, a porcelain and a stoneware clay, were used to make the tiles. From the tiles prepared, thirty of the most promising coatings were chosen for evaluation. The test apparatus consisted of a wooden frame which enclosed four mini-collectors. Each mini-collector was a rectangular ceramic heat exchanger on which a test tile could be mounted. The working fluid, water, was circulated into the collector, passed under the test tile where it gained heat, and then was discharged out of the collector. Thermometers were installed in the inlet and discharge areas to indicate the temperature increase of the water. The quantity of heat absorbed was determined by measuring the water flow (pounds per minute) and multiplying it by the temperature increase (/sup 0/F). The control sample, a copper wheet painted flat black, provided a base by which to compare the performance of the test tiles installed in the other three mini-collectors. Testing was conducted on various days during August and September, 1982. The test results indicate that coatings with very satisfactory solar absorbing properties can be made with ceramic materials. The results suggest that an economically viable ceramic solar collector could be constructed if engineered to minimize the effects of relatively low thermal conductivity of clay.

  16. Bioinspired plate-based fog collectors.

    PubMed

    Heng, Xin; Luo, Cheng

    2014-09-24

    In a recent work, we explored the feeding mechanism of a shorebird to transport liquid drops by repeatedly opening and closing its beak. In this work, we apply the corresponding results to develop a new artificial fog collector. The collector includes two nonparallel plates. It has three advantages in comparison with existing artificial collectors: (i) easy fabrication, (ii) simple design to scale up, and (iii) active transport of condensed water drops. Two collectors have been built. A small one with dimensions of 4.2 × 2.1 × 0.05 cm(3) (length × width × thickness) was first built and tested to examine (i) the time evolution of condensed drop sizes and (ii) the collection processes and efficiencies on the glass, SiO2, and SU-8 plates. Under similar experimental conditions, the amount of water collected per unit area on the small collector is about 9.0, 4.7, and 3.7 times, respectively, as much as the ones reported for beetles, grasses, and metal wires, and the total amount of water collected is around 33, 18, and 15 times. On the basis of the understanding gained from the tests on the small collector, a large collector with dimensions of 26 × 10 × 0.2 cm(3) was further built and tested, which was capable of collecting 15.8 mL of water during a period of 36 min. The amount of water collected, when it is scaled from 36 to 120 min, is about 878, 479, or 405 times more than what was collected by individual beetles, grasses, or metal wires. PMID:25192549

  17. 5. East side of quarters (executive officer's quarters), looking west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. East side of quarters (executive officer's quarters), looking west - Naval Air Station Chase Field, Quarters S, Essex Street, .45 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  18. 4. South side of quarters (executive officer's quarters), looking north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. South side of quarters (executive officer's quarters), looking north - Naval Air Station Chase Field, Quarters S, Essex Street, .45 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  19. 3. Southwest side of quarters (executive officer's quarters), looking northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Southwest side of quarters (executive officer's quarters), looking northeast - Naval Air Station Chase Field, Quarters S, Essex Street, .45 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  20. 6. Interior of quarters (executive officer's quarters), living room, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Interior of quarters (executive officer's quarters), living room, looking west - Naval Air Station Chase Field, Quarters S, Essex Street, .45 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  1. 2. West side of quarters (executive officer's quarters), looking east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. West side of quarters (executive officer's quarters), looking east - Naval Air Station Chase Field, Quarters S, Essex Street, .45 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  2. 1. North side of quarters (executive officer's quarters), looking southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. North side of quarters (executive officer's quarters), looking southeast - Naval Air Station Chase Field, Quarters S, Essex Street, .45 mile South-Southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  3. Contextual view of quarters no. 2 quarters no. 1, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Contextual view of quarters no. 2 quarters no. 1, and water tower, looking southwest. - Sacramento National Wildlife Refuge, Headquarters Complex, Quarters No. 2, 752 County Road 99W, Willows, Glenn County, CA

  4. Quarterly coal report

    SciTech Connect

    Young, P.

    1996-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for October through December 1995 and aggregated quarterly historical data for 1987 through the third quarter of 1995. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  5. Method of preparing electrodes with porous current collector structures and solid reactants for secondary electrochemical cells

    DOEpatents

    Gay, Eddie C.; Martino, Fredric J.

    1976-01-01

    Particulate electrode reactants, for instance transition metal sulfides for the positive electrodes and lithium alloys for the negative electrodes, are vibratorily compacted into porous, electrically conductive structures. Structures of high porosity support sufficient reactant material to provide high cell capacity per unit weight while serving as an electrical current collector to improve the utilization of reactant materials. Pore sizes of the structure and particle sizes of the reactant material are selected to permit uniform vibratory loading of the substrate without settling of the reactant material during cycling.

  6. Low cost anti-soiling coatings for CSP collector mirrors and heliostats

    SciTech Connect

    Smith, Barton Barton; Polyzos, Georgios; Schaeffer, Daniel A; Lee, Dominic F; Datskos, Panos G

    2014-01-01

    Most concentrating solar power (CSP) facilities in the USA are located in the desert southwest of the country where land and sunshine are abundant. But one of the significant maintenance problems and cost associated with operating CSP facilities in this region is the accumulation of dust, sand and other pollutants on the collector mirrors and heliostats. In this paper we describe the development of low cost, easy to apply anti-soiling coatings based on superhydrophobic (SH) functionalized nano silica materials and polymer binders that posses the key requirements necessary to inhibit particulate deposition on and sticking to CSP mirror surfaces, and thereby significantly reducing mirror cleaning costs and facility downtime.

  7. Heat Pumps With Direct Expansion Solar Collectors

    NASA Astrophysics Data System (ADS)

    Ito, Sadasuke

    In this paper, the studies of heat pump systems using solar collectors as the evaporators, which have been done so far by reserchers, are reviwed. Usually, a solar collector without any cover is preferable to one with ac over because of the necessity of absorbing heat from the ambient air when the intensity of the solar energy on the collector is not enough. The performance of the collector depends on its area and the intensity of the convective heat transfer on the surface. Fins are fixed on the backside of the collector-surface or on the tube in which the refrigerant flows in order to increase the convective heat transfer. For the purpose of using a heat pump efficiently throughout year, a compressor with variable capacity is applied. The solar assisted heat pump can be used for air conditioning at night during the summer. Only a few groups of people have studied cooling by using solar assisted heat pump systems. In Japan, a kind of system for hot water supply has been produced commercially in a company and a kind of system for air conditioning has been installed in buildings commercially by another company.

  8. Integrated main rail, feed rail, and current collector

    DOEpatents

    Petri, R.J.; Meek, J.; Bachta, R.P.; Marianowski, L.G.

    1994-11-08

    A separator plate is described for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced. 9 figs.

  9. Integrated main rail, feed rail, and current collector

    DOEpatents

    Petri, Randy J.; Meek, John; Bachta, Robert P.; Marianowski, Leonard G.

    1994-01-01

    A separator plate for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced.

  10. Diesel particulate control

    SciTech Connect

    Bertelsen, F.I. )

    1988-01-01

    Diesel particulates, because of their chemical composition and extremely small size, have raised health and welfare issues. Health experts have expressed concern that they contribute to or aggravate chronic lung diseases such as asthma, bronchitis and emphysema, and there is the lingering issue about the potential cancer risk from exposure to diesel particulate. Diesel particulates impair visibility, soil buildings, contribute to structural damage through corrosion and give off a pungent odor. Diesel trucks, buses and cars together are such a significant and growing source of particulate emissions. Such vehicles emit 30 to 70 times more particulate matter than gasoline vehicles equipped with catalytic converters. Diesel engines currently power the majority of larger trucks and buses. EPA predicted that, if left uncontrolled, diesel particulate from motor vehicles would increase significantly. Diesel particulate emissions from motor vehicles are particularly troublesome because they frequently are emitted directly into the breathing zone where we work and recreate. The U.S. Congress recognized the risks posed by diesel particulate and as part of the 1977 Clean Air Act Amendments established specific, technology-forcing requirements for controlling these emissions. The U.S. Environmental Protection Agency (EPA) in 1980 established particulate standards for automobiles and light trucks and in 1985, heavy trucks and buses. California, concerned that EPA standards would not adequately protect its citizens, adopted its own set of standards for passenger cars and light trucks. This paper discusses emerging technologies proposed to address the problem.

  11. Recent progress in terrestrial photovoltaic collector technology

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.

    1982-01-01

    The U.S. Photovoltaic Research and Development Program has the objective to develop the technology necessary to foster widespread grid-competitive electric power generation by the late 1980s. The flat-plate and the concentrator collector activities form the nucleus of the program. The project is concerned with the refining of silicon, silicon sheet production, solar cell processing and fabrication, encapsulation materials development, and collector design and production. The Large-Area Silicon Sheet Task has the objective to develop and demonstrate the feasibility of several methods for producing large area silicon sheet material suitable for fabricating low-cost, high-efficiency solar cells. It is expected that a variety of economic flat-plate and concentrator collectors will become commercially available for grid-connected applications.

  12. Power losses in liquid metal current collectors

    NASA Astrophysics Data System (ADS)

    Hurwitz, M. M.; Wallace, D. R.

    1980-05-01

    A numerical capability has been developed which will compute ohmic and viscous power losses in liquid metal current collectors. The present work extends previous analytical investigations in that semi-infinite collector geometries are no longer assumed. This new capability is based on the finite element method and makes use of electrical current densities computed by the heat transfer portion of the NASTRAN structural analysis program. Although some limitations and questions remain, a comparison between the new numerical capability and experiment shows very good agreement in the computation of the power losses.

  13. SELECTIVE ABSORBER COATED FOILS FOR SOLAR COLLECTORS

    SciTech Connect

    Lampert, Carl M.

    1980-04-01

    Solar absorber metal foils are discussed in terms of materials and basic processing science. Also included is the use of finished heavy sheet stock for direct fabrication of solar collector panels. Both the adhesives and bonding methods for foils and sheet are surveyed. Developmental and representative commercial foils are used as illustrative examples. As a result it was found that foils can compete economically with batch plating but are limited by adhesive temperature stability. Also absorber foils are very versatile and direct collector fabrication from heavy foils appears very promising.

  14. English Leadership Quarterly. 1991.

    ERIC Educational Resources Information Center

    Strickland, James, Ed.

    1991-01-01

    These four issues of the English Leadership Quarterly represent the quarterly for 1991. Articles in number 1 deal with whole language and include: "CEL: Shorter and Better" (Myles D. Eley); "Toward a New Philosophy of Language Learning" (Kathleen Strickland); "Whole Language: Implications for Secondary Classrooms" (Barbara King-Shaver); "Whole…

  15. CSSEDC Quarterly. 1990.

    ERIC Educational Resources Information Center

    Strickland, James, Ed.

    1990-01-01

    These four issues of the CSSEDC Quarterly (Conference for Secondary School English Department Chairpersons) represent the quarterly for 1990. Articles in number 1 deal with student teachers and include: "Student Teaching: Smoothing Out the Rough Spots" (Susan B. Argyle and Fred C. Feitler); "A Partnership for Urban Student Teaching" (Jerome T.…

  16. CSSEDC Quarterly. 1989.

    ERIC Educational Resources Information Center

    Strickland, James, Ed.

    1989-01-01

    These four issues of the CSSEDC Quarterly (Conference for Secondary School English Department Chairpersons) represent the quarterly for 1989. Articles in number 1 deal with professional development, and include: "Sharing Expertise within a Department" (Martha R. Dolly); "Empowerment Develops a Computer Writing Center" (Norman L. Frey); "Videotapes…

  17. CSSEDC Quarterly. 1988.

    ERIC Educational Resources Information Center

    Zirinsky, Driek, Ed.; Strickland, James, Ed.

    1988-01-01

    These four issues of the CSSEDC Quarterly (Conference for Secondary School English Department Chairpersons) represent the quarterly for 1988. Articles in number 1 include: "Relearning Leadership" (Tom Jones); "The English Coalition Conference" (Robert Denham); "The Reluctant Writer and Word Processing" (James Strickland); "Teacher Aides: An…

  18. Economic analysis based on land costs of collector spacing in a collector field

    NASA Astrophysics Data System (ADS)

    Lee, D. O.

    1981-10-01

    Three collector fluid outlet average field temperatures were used: 200, 250, and 300 C. Land cost varied from $0.54/sq m to $215.20/sq m. and collector costs from $53.80/sq. m to $322.80/sq. m FOB factory. Costs of fees, controls, foundations, etc, are considered as separate items which are added to the land and collector costs to obtain the total cost of the systems. These studies were normalized to a 5,000,000 Btu/day requirement. Thus, the life-cycle costs of the various configurations are, in essence, the cost of energy.

  19. Particulate emission abatement for Krakow boiler houses

    SciTech Connect

    Wysk, R.

    1995-12-31

    Among the many strategies for improving air quality in Krakow, one possible method is to adapt new and improved emission control technology. This project focuses on such a strategy. In order to reduce dust emissions from coal-fueled boilers, a new device called a Core Separator has been introduced in several boiler house applications. This advanced technology has been successfully demonstrated in Poland and several commercial units are now in operation. Particulate emissions from the Core Separator are typically 3 to 5 times lower than those from the best cyclone collectors. It can easily meet the new standard for dust emissions which will be in effect in Poland after 1997. The Core Separator is a completely inertial collector and is based on a unique recirculation method. It can effectively remove dust particles below 10 microns in diameter, the so-called PM-10 emissions. Its performance approaches that of fabric filters, but without the attendant cost and maintenance. It is well-suited to the industrial size boilers located in Krakow. Core Separators are now being marketed and sold by EcoInstal, one of the leading environmental firms in Poland, through a cooperative agreement with LSR Technologies.

  20. Indoor thermal performance evaluation of Daystar solar collector

    NASA Technical Reports Server (NTRS)

    Shih, K., Sr.

    1977-01-01

    The test procedures used and results obtained from a test program to obtain thermal performance data on a Daystar Model 21B, S/N 02210, Unit 2, liquid solar collector under simulated conditions are described. The test article is a flat plate solar collector using liquid as a heat transfer medium. The absorber plate is copper and coated with black paint. Between the tempered low iron glass and absorber plate is a polycarbonate trap used to suppress convective heat loss. The collector incorporates a convector heat dump panel to limit temperature excursions during stagnation. The following tests were conducted: (1) collector thermal efficiency; (2) collector time constant; (3) collector incident angle modifier; (4) collector heat loss coefficient; and (5) collector stagnation.

  1. Particulate Air Pollution: The Particulars

    ERIC Educational Resources Information Center

    Murphy, James E.

    1973-01-01

    Describes some of the causes and consequences of particulate air pollution. Outlines the experimental procedures for measuring the amount of particulate materials that settles from the air and for observing the nature of particulate air pollution. (JR)

  2. Pitch based foam with particulate

    DOEpatents

    Klett, James W.

    2001-01-01

    A thermally conductive, pitch based foam composite having a particulate content. The particulate alters the mechanical characteristics of the foam without severely degrading the foam thermal conductivity. The composite is formed by mixing the particulate with pitch prior to foaming.

  3. CONTROLLING EMISSIONS OF PARTICULATES

    EPA Science Inventory

    The report gives a semi-technical overview of the contribution of particulate matter to the overall U.S. air pollution problem. It also discusses contributions of the Particulate Technology Branch of EPA's Industrial Environmental Research Laboratory at Research Triangle Park, N....

  4. Airborne particulate discriminator

    DOEpatents

    Creek, Kathryn Louise; Castro, Alonso; Gray, Perry Clayton

    2009-08-11

    A method and apparatus for rapid and accurate detection and discrimination of biological, radiological, and chemical particles in air. A suspect aerosol of the target particulates is treated with a taggant aerosol of ultrafine particulates. Coagulation of the taggant and target particles causes a change in fluorescent properties of the cloud, providing an indication of the presence of the target.

  5. 4. Northeast corner of quarters (executive officer's quarters), looking onto ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Northeast corner of quarters (executive officer's quarters), looking onto Quarter R (commanding officer's quarters), looking southeast - Naval Air Station Chase Field, Texas State Highway 202, 4.8 miles east of intersection of Texas State Highway 202 & U.S. State Highway 181, Beeville, Bee County, TX

  6. Solar Air Collectors: How Much Can You Save?

    DOE R&D Accomplishments Database

    Newburn, J. D.

    1985-04-01

    A collector efficiency curve is used to determine the output of solar air collectors based on the testing of seven solar collectors sold in Iowa. In this application the solar heater is being used as a space heater for a house. The performance of the solar air heater was analyzed and an 8% savings in energy was achieved over a one year period using two 4 x 8 collectors in a typical house.

  7. Circumferentially-segmented collector usable with a TWT

    NASA Technical Reports Server (NTRS)

    Brown, II, Richard A. (Inventor)

    2001-01-01

    A TWT collector has axially-positioned collector stages in which at least one of the stages includes a plurality of annularly-arranged stage segments. The collector enhances electron beam velocity sorting by facilitating a combination of (a) selecting axial electric field distributions with application of selected voltages to the axially-positioned collector stages and (b) selecting radial electric field distributions with application of selected voltages to the annularly-arranged stage segments.

  8. Power systems development facility. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    Not Available

    1994-07-01

    This quarterly technical progress report summarizes work completed during the last quarter of the Second Budget Period, January 1 through March 31, 1994, entitled {open_quotes}Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.{close_quotes} The objective of this project is to evaluate hot gas particulate control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size.

  9. Non-tracking solar energy collector system

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (Inventor)

    1978-01-01

    A solar energy collector system is described characterized by an improved concentrator for directing incident rays of solar energy on parallel strip-like segments of a flatplate receiver. Individually mounted reflector modules of a common asymmetrical triangular cross-sectional configuration supported for independent orientation are asymmetric included with vee-trough concentrators for deflecting incident solar energy toward the receiver.

  10. Hybrid collectors using thin-film technology

    SciTech Connect

    Platz, R.; Fischer, D.; Zufferey, M.A.; Selvan, J.A.A.; Shah, A.; Haller, A.

    1997-12-31

    Amorphous silicon (a-Si:H) based solar cells are highly interesting in the context of hybrid (i.e., photovoltaic/thermal) solar energy conversion. First, their large area capability and the variety of possible substrate materials permit one to apply a-Si:H PV modules directly on the surface of conventional heat collectors at low cost. Further, the low temperature coefficient of a-Si:H cells (0.1%/K) allows operation of a-Si:H solar modules at temperatures as high as 100 C without substantial power loss. The authors focus on the thermal performance of such hybrid collectors based on a-Si:H cells, with emphasis on a ZnO coat on top of the solar cell. ZnO can be tuned to absorb the infrared part of the sunlight and, at the same time, its emission coefficient for heat-radiation is nearly as low as that of optimized selective surfaces used in thermal collectors. The authors propose a collector structure with a high potential for the thermal conversion efficiency while maintaining a high electrical conversion efficiency.

  11. Thermionic converter performance with oxide collectors

    NASA Technical Reports Server (NTRS)

    Lieb, D.; Goodale, D.; Briere, T.; Balestra, C.

    1977-01-01

    Thermionic converters using a variety of metal oxide collector surfaces have been fabricated and tested. Both work function and power output data are presented and evaluated. Oxides of barium, strontium, zinc, tungsten and titanium have been incorporated into a variable spacing converter. Tungsten oxide was found to give the highest converter performance and to furnish oxygen for the emitter at the same time. Oxygenated emitters operate at reduced cesium pressure with an increase in electrode spacing. Electron spectroscopy for chemical analysis (ESCA) performed on several tungsten oxide collectors showed cesium penetration of the oxide layer, possibly forming a cesium tungstate bronze. Titanium oxide showed high performance but did not furnish oxygen for the emitter; strontium oxide, in the form of a sprayed layer, appeared to dissociate in the presence of cesium. Sprayed coatings of barium and zinc oxides produced collector work functions of about 1.3 eV, but had excessive series resistance. Lanthanum hexaboride, in combination with oxygen introduced through a silver tube, and cesium produced a low work function collector and better than average performance.

  12. Selective optical coatings for solar collectors

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1980-01-01

    For best performance, energy-absorbing surface of solar collector should be characterized by high ratio of solar absorptance to thermal emitance. Report on optical characteristics of several chemical treatments and electrodeposited coatings for metal solar-absorbing surfaces should interest designers and users of solar-energy systems. Moisture resistance of some coatings is also reported.

  13. Natural-oxide solar-collector coatings

    NASA Technical Reports Server (NTRS)

    Krupnick, A. C.; Roberts, M. L.; Sharpe, M. H.

    1979-01-01

    Optically selective coatings for solar collectors are produced by thermally treating stainless steel in furnace after series of cleaning and soaking operations. Coatings have withstood 18-month exposure tests at 100 percent relative humidity and temperatures of 95 F. Room temperature coatings are valuable as they are inexpensive to produce, highly production oriented, and environmentally stable.

  14. 27 CFR 479.25 - Collector's items.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2012-04-01 2010-04-01 true Collector's items. 479.25 Section 479.25 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE DEVICES, AND...

  15. 27 CFR 479.25 - Collector's items.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2013-04-01 2013-04-01 false Collector's items. 479.25 Section 479.25 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE DEVICES, AND...

  16. 27 CFR 479.25 - Collector's items.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2011-04-01 2010-04-01 true Collector's items. 479.25 Section 479.25 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE DEVICES, AND...

  17. 27 CFR 479.25 - Collector's items.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2014-04-01 2014-04-01 false Collector's items. 479.25 Section 479.25 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE DEVICES, AND...

  18. 27 CFR 479.25 - Collector's items.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Collector's items. 479.25 Section 479.25 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE DEVICES, AND...

  19. 31 CFR 203.17 - Collector depositaries.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... business day that the TSC receives an AOC from a collector depositary, the TSC will debit the depositary's reserve account for the amount reported on the AOC and credit that amount to Treasury's account. (b) Late delivery of AOC. If an AOC does not arrive at the TSC before the designated cutoff time on the...

  20. Solar collector apparatus having increased energy rejection during stagnation

    DOEpatents

    Moore, Stanley W.

    1983-07-12

    The disclosure relates to an active solar collector having increased energy rejection during stagnation. The collector's glazing is brought into substantial contact with absorber during stagnation to increase re-emittance and thereby to maintain lower temperatures when the collector is not in operation.

  1. Development, testing, and certification of life sciences engineering solar collector

    NASA Technical Reports Server (NTRS)

    Caudle, J. M.

    1978-01-01

    Results are presented for the development of an air flat plate collector for use with solar heating, combined heating and cooling, and hot water systems. The contract was for final development, testing, and certification of the collector, and for delivery of a 320 square feet collector panel.

  2. Solar collector apparatus having increased energy rejection during stagnation

    DOEpatents

    Moore, S.W.

    1981-01-16

    An active solar collector having increased energy rejection during stagnation is disclosed. The collector's glazing is brought into substantial contact with absorber during stagnation to increase re-emittance and thereby to maintan lower temperatures when the collector is not in operation.

  3. 10 CFR 26.85 - Collector qualifications and responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Collector qualifications and responsibilities. 26.85 Section 26.85 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.85 Collector qualifications and responsibilities. (a) Urine collector qualifications....

  4. 10 CFR 26.85 - Collector qualifications and responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Collector qualifications and responsibilities. 26.85 Section 26.85 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.85 Collector qualifications and responsibilities. (a) Urine collector qualifications....

  5. 10 CFR 26.85 - Collector qualifications and responsibilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Collector qualifications and responsibilities. 26.85 Section 26.85 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.85 Collector qualifications and responsibilities. (a) Urine collector qualifications....

  6. 10 CFR 26.85 - Collector qualifications and responsibilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Collector qualifications and responsibilities. 26.85 Section 26.85 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.85 Collector qualifications and responsibilities. (a) Urine collector qualifications....

  7. 10 CFR 26.85 - Collector qualifications and responsibilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Collector qualifications and responsibilities. 26.85 Section 26.85 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.85 Collector qualifications and responsibilities. (a) Urine collector qualifications....

  8. Standardized solar simulator tests of flat plate solar collectors. 1: Soltex collector with two transparent covers

    NASA Technical Reports Server (NTRS)

    Simon, F.

    1975-01-01

    A Soltex flat plate solar collector was tested with a solar simulator for inlet temperatures of 77 to 201 F, flux levels of 240 and 350 Btu/hr-sq ft, a collant flow rate of 10.5 lb/hr sq ft, and incident angles of 0 deg, 41.5 deg, and 65.2 deg. Collector performance is correlated in terms of inlet temperature, flux level, and incident angle.

  9. Confined Vortex Scrubber. Quarterly technical progress report, October 1, 1989--December 31, 1989

    SciTech Connect

    Not Available

    1990-02-01

    The program objective is to demonstrate efficient removal of fine particulates to sufficiently low levels to meet proposed small scale coal combustor emission standards. This is to be accomplished using a novel particulate removal device, the Confined Vortex Scrubber. This is the first quarterly technical progress report under this contract. Accordingly, a summary of the cleanup concept and the structure of the program is given here.

  10. Standardized performance tests of collectors of solar thermal energy: An evacuated flatplate copper collector with a serpentine flow distribution

    NASA Technical Reports Server (NTRS)

    Johnson, S. M.

    1976-01-01

    Basic test results are given for a flat plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.

  11. Standardized performance tests of collectors of solar thermal energy - A flat-plate copper collector with parallel mylar striping

    NASA Technical Reports Server (NTRS)

    Johnson, S. M.

    1976-01-01

    Basic test results are reported for a flat plate solar collector whose performance was determined in a solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.

  12. Standardized performance tests of collectors of solar thermal energy: A selectively coated, steel collector with one transparent cover

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Basic test results are presented of a flat-plate solar collector whose performance was determined in solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficiency was correlated in terms of inlet temperature and flux level.

  13. The application of an improved gas and aerosol collector for ambient air pollutants in China

    NASA Astrophysics Data System (ADS)

    Dong, Huabin; Zeng, Limin; Zhang, Yuanhang; Hu, Min; Wu, Yusheng

    2016-04-01

    An improved Gas and Aerosol Collector (GAC) equipped with a newly designed aerosol collector and a set of dull-polished wet annular denuder (WAD) was developed by Peking University based on a Steam Jet Aerosol Collector (SJAC) sampler. Combined with Ion Chromatography (IC) the new sampler performed well in laboratory tests with high collection efficiencies for SO2 (above 98 %) and particulate sulfate (as high as 99.5 %). An inter-comparison between the GAC-IC system and the filter-pack method was performed and the results indicated that the GAC-IC system could supply reliable particulate sulfate, nitrate, chloride, and ammonium data in field measurement with a much wider range of ambient concentrations. From 2008 to 2015, dozens of big field campaigns (rural and coastal sites) were executed in different parts of China, the GAC-IC system took the chance having its field measurement performance checked repeatedly and provided high quality data in ambient conditions either under high loadings of pollutants or background area. Its measurements were highly correlated with data by other commercial instruments such as the SO2 analyzer, the HONO analyzer, a filter sampler, Aerosol Mass Spectrometer (AMS), etc. over a wide range of concentrations and proved particularly useful in future intensive campaigns or long-term monitoring stations to study various environmental issues such as secondary aerosol and haze formation. During these years of applications of GAC-IC in those field campaigns, we found some problems of several instruments running under field environment and some interesting results could also be drew from the large amount of data measured in near 20 provinces of China. Detail results will be demonstrated on the poster afterwards.

  14. Comparative testing of U-tube convective collectors

    SciTech Connect

    Lentz, C.B.

    1980-01-01

    Two identical U-tube convective solar collectors have been constructed and installed in south-facing windows. One collector was instrumented with 15 thermocouple sensors at various locations within the air flow path and the collector walls, and continuous readings were taken to analyze the daily performance cycle. The two collectors were then used for comparison tests of instantaneous heat output. Several alternative absorber materials were compared to the standard absorber of 5 layers of expanded metal lathe. The details of the collector design, some representative test data, and the conclusions are presented.

  15. Thermal performance of honeywell double covered liquid solar collector

    NASA Technical Reports Server (NTRS)

    Losey, R.

    1977-01-01

    The test procedures and results obtained during an evaluation test program to determine the outdoor performance characteristics of the Honeywell liquid solar collector are presented. The program was based on the thermal evaluation of a Honeywell double covered liquid solar collection. Initial plans included the simultaneous testing of a single covered Honeywell collector. During the initial testing, the single covered collector failed due to leakage; thus, testing continued on the double covered collector only. To better define the operating characteristics of the collector, several additional data points were obtained beyond those requested.

  16. Outdoor performance results for NBS Round Robin collector no. 1

    NASA Technical Reports Server (NTRS)

    Miller, D. R.

    1976-01-01

    The efficiency of a PPG flat-plate solar collector was evaluated utilizing an outdoor solar collector test facility at the NASA-Lewis Research Center, as part of the National Bureau of Standards 'round robin' collector test program. The correlation equation for collector thermal efficiency Eta curve fit of the data was: Eta = 0.666 - 1.003(Btu/hr-sq ft-F) Theta, where the parameter Theta is the difference between the average fluid temperature and the ambient temperature, all divided by the total flux impinging on the collector.

  17. Integrated Design of Undepressed Collector for Low Power Gyrotron

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Goswami, Uttam K.; Poonia, Sunita; Singh, Udaybir; Kumar, Nitin; Alaria, M. K.; Bera, A.; Khatun, Hasina; Sinha, A. K.

    2011-06-01

    A 42 GHz, 200 kW continuous wave (CW) gyrotron, operating at TE03 mode is under development for the electron cyclotron resonance plasma heating of the Indian TOKAMAK system. The gyrotron is made up of an undepressed collector. The undepressed collector is simple to design and cost effective. In this paper, a detailed design study of the undepressed collector for the 42 GHz gyrotron is presented. The EGUN code is used to analyze the spent electron beam trajectory for the maximum spread to reduce the power loading on the collector surface. To achieve wall loading ≤1 kW/cm2, a collector with a length of 800 mm and a radius of 42.5 mm is designed. The design also includes the three magnet systems around the collector for maximum and uniform beam spread. The thermal and the structural analyses are done using the ANSYS code to optimize the collector structure and dimensions with tolerance.

  18. Fluidizing device for solid particulates

    DOEpatents

    Diebold, J.P.; Scahill, J.W.

    A flexible whip suspended in a hopper is caused to impact against fibrous and irregularly shaped particulates in the hopper to fluidize the particulates and facilitate the flow of the particulates through the hopper. The invention provides for the flow of particulates at a substantially constant mass flow rate and uses a minimum of energy.

  19. Application of local exhaust ventilation system and integrated collectors for control of air pollutants in mining company.

    PubMed

    Ghorbani Shahna, Farshid; Bahrami, Abdulrahman; Farasati, Farhad

    2012-01-01

    Local exhaust ventilation (LEV) systems and integrated collectors were designed and implemented in a mining company in order to control emitted air pollutant from furnaces. The LEV was designed for capture and transition of air pollutants emitted from furnaces to the integrated collectors. The integrated collectors including four high efficiency Stairmand model cyclones for control of particulate matter, a venturi scrubber for control of the fine particles, SO(2) and a part of H(2)S to follow them, and a packed scrubber for treatment of the residual H(2)S and SO(2) were designed. Pollutants concentration were measured to determine system effectiveness. The results showed that the effectiveness of LEV for reducing workplace pollution is 91.83%, 96.32% and 83.67% for dust, SO(2) and H(2)S, respectively. Average removal efficiency of particles by combination of cyclone and venturi scrubber was 98.72%. Average removal efficiency of SO(2) and H(2)S were 95.85% and 47.13% for the venturi scrubber and 68.45% and 92.7% for the packed bed scrubber. The average removal efficiency of SO(2) and H(2)S were increased to 99.1% and 95.95% by the combination of venturi and packed bed scrubbers. According to the results, integrated collectors are a good air pollution control option for industries with economic constraints and ancient technologies. PMID:22878358

  20. A Self-Biasing Pulsed Depressed Collector

    SciTech Connect

    Kemp, Mark A.; Jensen, Aaron; Neilson, Jeff; /SLAC

    2014-05-29

    Depressed collectors have been utilized successfully for many years to improve the electrical efficiency of vacuum electron devices. Increasingly, pulsed, high-peak power accelerator applications are placing a premium on electrical efficiency. As RF systems are responsible for a large percentage of the overall energy usage at accelerator laboratories, methods to improve upon the state-of-the-art in pulsed high-power sources are desired. This paper presents a technique for self-biasing the stages in a multistage depressed collector. With this technique, the energy lost during the rise and fall times of the pulse can be recovered, separate power supplies are not needed, and existing modulators can be retrofitted. Calculations show that significant cost savings can be realized with the implementation of this device in high-power systems. In this paper, the technique is described along with experimental demonstration. (auth)

  1. Particulate hot gas stream cleanup technical issues

    SciTech Connect

    1998-09-01

    This is the tenth in a series of quarterly reports describing the activities performed under Contract No. DE-AC21-94MC31160. Analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance address aspects of filter operation that are apparently linked to the characteristics of the collected ash or the performance of the ceramic bed filter elements. Task I is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APFS) and to relate these ash properties to the operation and performance of these filters. Task 2 concerns testing and failure analysis of ceramic filter elements. Under Task I during the past quarter, analyses were performed on a particulate sample from the Transport Reactor Demonstration Unit (TRDU) located at the University of North Dakota Energy and Environmental Research Center. Analyses are in progress on ash samples from the Advanced Particulate Filter (APF) at the Pressurized Fluidized-Bed Combustor (PFBC) that was in operation at Tidd and ash samples from the Pressurized Circulating Fluid Bed (PCFB) system located at Karhula, Finland. A site visit was made to the Power Systems Development Facility (PSDF) to collect ash samples from the filter vessel and to document the condition of the filter vessel with still photographs and videotape. Particulate samples obtained during this visit are currently being analyzed for entry into the Hot Gas Cleanup (HGCU) data base. Preparations are being made for a review meeting on ash bridging to be held at Department of Energy Federal Energy Technology Center - Morgantown (DOE/FETC-MGN) in the near future. Most work on Task 2 was on hold pending receipt of additional funds; however, creep testing of Schumacher FT20 continued. The creep tests on Schumacher FT20 specimens just recently ended and data analysis and comparisons to other data are ongoing. A summary and analysis of these creep results will be sent out shortly. Creep

  2. Charge collectors for the omega upgrade

    SciTech Connect

    Yaakobi, B.

    1993-08-01

    Charge collectors placed at several distances from the target measure the current of ions resulting from target disassembly and expansion, as a function of arrival time at the detector. Since the expanding plasma is neutral, comprising both electrons and ions moving together, the role of the charge collector is to separate out the electrons, so that the net ion current can be measured. The time-integrated current, or the total charge, can yield the total mass ablated from the target, provided the ionic charge Z is known. From the total ablated mass, the mass ablation rate during the target implosion can be estimated. This quantity provides a useful gauge of the combined effects of absorption, heat conduction, and hydrodynamic efficiency in target interactions. In principle, one charge collector can yield useful results because we assume spherical symmetry of the expansion (this question is addressed directly by the plasma calorimeters of which there are many around the target). In practice there will be four charge collectors, two at the tank wall (distance R from the target) and two in an extension tube, at a distance of about 2R from the target. The reason for the two different distances is to check that complete charge separation within the detector has been achieved. A signature of such separation will be to verify that the current falls off as I/R{sup 2} with distance from the target. Since the separation can be inadequate due to space charges within the detector, the farther detector, having smaller charge density, will be more reliable. The two pairs will be oriented at about 90{degrees} with respect to each other (say, east and north) to give a rough idea on the isotropy.

  3. Improved Collectors for High Power Gyrotrons

    SciTech Connect

    Ives, R. Lawrence; Singh, Amarjit; Read, Michael; Borchard, Phillipp; Neilson, Jeff

    2009-05-20

    High power gyrotrons are used for electron cyclotron heating, current drive and parasitic mode suppression in tokamaks for fusion energy research. These devices are crucial for successful operation of many research programs around the world, including the ITER program currently being constructed in France. Recent gyrotron failures resulted from cyclic fatigue of the copper material used to fabricated the collectors. The techniques used to collect the spent beam power is common in many gyrotrons produced around the world. There is serious concern that these tubes may also be at risk from cyclic fatigue. This program addresses the cause of the collector failure. The Phase I program successfully demonstrated feasibility of a mode of operation that eliminates the cyclic operation that caused the failure. It also demonstrated that new material can provide increased lifetime under cyclic operation that could increase the lifetime by more than on order of magnitude. The Phase II program will complete that research and develop a collector that eliminates the fatigue failures. Such a design would find application around the world.

  4. Thin film absorber for a solar collector

    DOEpatents

    Wilhelm, William G.

    1985-01-01

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  5. EMSL Quarterly Highlights Report: FY 2008, 3rd Quarter

    SciTech Connect

    Showalter, Mary Ann

    2008-09-16

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2007 - December 2007) of Fiscal Year 2008.

  6. EMSL Quarterly Highlights Report: 1st Quarter, Fiscal Year 2009

    SciTech Connect

    Showalter, Mary Ann; Kathmann, Loel E.; Manke, Kristin L.

    2009-02-02

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2008 - December 2008) of Fiscal Year 2009.

  7. EMSL Quarterly Highlights Report: 1st Quarter, FY08

    SciTech Connect

    Showalter, Mary Ann

    2008-01-28

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2007 - December 2007) of Fiscal Year 2008.

  8. Diesel particulate emissions

    SciTech Connect

    Williams, P.T.; Abbass, M.K.; Andrews, G.E.; Bartle, K.D.

    1989-01-01

    The relationship between diesel fuel composition and that of the solvent organic fraction of diesel particulates was investigated for an old DI Petter engine and a modern DI Perkins engine. Polycyclic aromatic compounds (PAC) were identified using high-resolution capillary column chromatography with a parallel triple detector system for polycyclic aromatic hydrocarbons (PAH), nitrogen-containing PAH, and sulphur-containing PAH. Identification of the PAC using retention indexes was confirmed using an ion trap detector, which was also used to quantify the low-concentration (<1 ppm) benzo(a)pyrene. It was conclusively shown for both engines that the bulk of the particulate solvent organic fraction, including the PAH fraction, was unburned fuel. However, there was some evidence that high molecular weight five-ring PAH may have an in-cylinder formation contribution, and it is postulated that this could be due to pyrolysis of lower molecular weight unburned fuel PAH. The contribution of lubricating oil to the particulate PAC is discussed, and evidence is presented that shows the unburned fuel PAC accumulates in the lubricating oil and thus contributes to the particulate PAC via the large lubricating oil component of the particulate PAC.

  9. Short-term energy outlook. Quarterly projections, second quarter 1996

    SciTech Connect

    1996-04-01

    The Energy Information Administration prepares quarterly, short-term energy supply, demand, and price projections. The forecasts in this issue cover the second quarter of 1996 through the fourth quarter of 1997. Changes to macroeconomic measures by the Bureau of Economic Analysis have been incorporated into the STIFS model used.

  10. Design, fabrication, testing and delivery of a solar collector

    NASA Technical Reports Server (NTRS)

    Sims, W. H.; Ballheim, R. W.; Bartley, S. M.; Smith, G. W.

    1976-01-01

    A two phase program encompassing the redesign and fabrication of a solar collector which is low in cost and aesthetically appealing is described. Phase one work reviewed the current collector design and developed a low-cost design based on specific design/performance/cost requirements. Throughout this phase selected collector component materials were evaluated by testing and by considering cost, installation, maintainability and durability. The resultant collector design was composed of an absorber plate, insulation, frame, cover, desiccant and sealant. In Phase two, three collector prototypes were fabricated and evaluated for both nonthermal and thermal characteristics. Tests included static load tests of covers, burst pressure tests of absorber plates, and tests for optical characteristics of selective absorber plate coatings. The three prototype collectors were shipped to Marshall Space Flight Center for use in their solar heating and cooling test facility.