Science.gov

Sample records for partner nuclear receptor

  1. Bile acids inhibit duodenal secretin expression via orphan nuclear receptor small heterodimer partner (SHP).

    PubMed

    Lam, Ian P Y; Lee, Leo T O; Choi, Hueng-Sik; Alpini, Gianfranco; Chow, Billy K C

    2009-07-01

    Small heterodimer partner (SHP) is an orphan nuclear receptor in which gene expression can be upregulated by bile acids. It regulates its target genes by repressing the transcriptional activities of other nuclear receptors including NeuroD, which has been shown to regulate secretin gene expression. Here, we evaluated the regulation on duodenal secretin gene expression by SHP and selected bile acids, cholic acid (CA) and chenodeoxycholic acid (CDCA). In vitro treatment of CDCA or fexaramine elevated the SHP transcript level and occupancy on secretin promoter. The increase in the SHP level, induced by bile acid treatment or overexpression, reduced secretin gene expression, whereas this gene inhibitory effect was reversed by silencing of endogenous SHP. In in vivo studies, double-immunofluorescence staining demonstrated the coexpression of secretin and SHP in mouse duodenum. Feeding mice with 1% CA-enriched rodent chow resulted in upregulation of SHP and a concomitant decrease in secretin transcript and protein levels in duodenum compared with the control group fed with normal chow. A diet enriched with 5% cholestyramine led to a decrease in SHP level and a corresponding increase in secretin expression. Overall, this study showed that bile acids via SHP inhibit duodenal secretin gene expression. Because secretin is a key hormone that stimulates bile flow in cholangiocytes, this pathway thus provides a novel means to modulate secretin-stimulated choleresis in response to intraduodenal bile acids. PMID:19372104

  2. The orphan nuclear receptor small heterodimer partner mediates male infertility induced by diethylstilbestrol in mice

    PubMed Central

    Volle, David H.; Decourteix, Mélanie; Garo, Erwan; McNeilly, Judy; Fenichel, Patrick; Auwerx, Johan; McNeilly, Alan S.; Schoonjans, Kristina; Benahmed, Mohamed

    2009-01-01

    Studies in rodents have shown that male sexual function can be disrupted by fetal or neonatal administration of compounds that alter endocrine homeostasis, such as the synthetic nonsteroidal estrogen diethylstilbestrol (DES). Although the molecular basis for this effect remains unknown, estrogen receptors likely play a critical role in mediating DES-induced infertility. Recently, we showed that the orphan nuclear receptor small heterodimer partner (Nr0b2), which is both a target gene and a transcriptional repressor of estrogen receptors, controls testicular function by regulating germ cell entry into meiosis and testosterone synthesis. We therefore hypothesized that some of the harmful effects of DES on testes could be mediated through Nr0b2. Here, we present data demonstrating that Nr0b2 deficiency protected mice against the negative effects of DES on testis development and function. During postnatal development, Nr0b2-null mice were resistant to DES-mediated inhibition of germ cell differentiation, which may be the result of interference by Nr0b2 with retinoid signals that control meiosis. Adult Nr0b2-null male mice were also protected against the effects of DES; however, we suggest that this phenomenon was due to the removal of the repressive effects of Nr0b2 on steroidogenesis. Together, these data demonstrate that Nr0b2 plays a critical role in the pathophysiological changes induced by DES in the mouse testis. PMID:19884658

  3. Orphan nuclear receptor small heterodimer partner inhibits transforming growth factor-beta signaling by repressing SMAD3 transactivation.

    PubMed

    Suh, Ji Ho; Huang, Jiansheng; Park, Yun-Yong; Seong, Hyun-A; Kim, Dongwook; Shong, Minho; Ha, Hyunjung; Lee, In-Kyu; Lee, Keesook; Wang, Li; Choi, Hueng-Sik

    2006-12-22

    Orphan nuclear receptor small heterodimer partner (SHP) is an atypical member of the nuclear receptor superfamily; SHP regulates the nuclear receptor-mediated transcription of target genes but lacks a conventional DNA binding domain. In this study, we demonstrate that SHP represses transforming growth factor-beta (TGF-beta)-induced gene expression through a direct interaction with Smad, a transducer of TGF-beta signaling. Transient transfection studies demonstrate that SHP represses Smad3-induced transcription. In vivo and in vitro protein interaction assays revealed that SHP directly interacts with Smad2 and Smad3 but not with Smad4. Mapping of domains mediating the interaction between SHP and Smad3 showed that the entire N-terminal domain (1-159 amino acids) of SHP and the linker domain of Smad3 are involved in this interaction. In vitro glutathione S-transferase pulldown competition experiments revealed the SHP-mediated repression of Smad3 transactivation through competition with its co-activator p300. SHP also inhibits the activation of endogenous TGF-beta-responsive gene promoters, the p21, Smad7, and plasminogen activator inhibitor-1 (PAI-1) promoters. Moreover, adenovirus-mediated overexpression of SHP decreases PAI-1 mRNA levels, and down-regulation of SHP by a small interfering RNA increases both the transactivation of Smad3 and the PAI-1 mRNA levels. Finally, the PAI-1 gene is expressed in SHP(-/-) mouse hepatocytes at a higher level than in normal hepatocytes. Taken together, these data indicate that SHP is a novel co-regulator of Smad3, and this study provides new insights into regulation of TGF-beta signaling. PMID:17074765

  4. Repression of the nuclear receptor small heterodimer partner by steatotic drugs and in advanced nonalcoholic fatty liver disease.

    PubMed

    Benet, Marta; Guzmán, Carla; Pisonero-Vaquero, Sandra; García-Mediavilla, M Victoria; Sánchez-Campos, Sonia; Martínez-Chantar, M Luz; Donato, M Teresa; Castell, José Vicente; Jover, Ramiro

    2015-04-01

    The small heterodimer partner (SHP) (NR0B2) is an atypical nuclear receptor that lacks a DNA-binding domain. It interacts with and inhibits many transcription factors, affecting key metabolic processes, including bile acid, cholesterol, fatty acid, and drug metabolism. Our aim was to determine the influence of steatotic drugs and nonalcoholic fatty liver disease (NAFLD) on SHP expression and investigate the potential mechanisms. SHP was found to be repressed by steatotic drugs (valproate, doxycycline, tetracycline, and cyclosporin A) in cultured hepatic cells and the livers of different animal models of NAFLD: iatrogenic (tetracycline-treated rats), genetic (glycine N-methyltransferase-deficient mice), and nutritional (mice fed a methionine- and choline-deficient diet). Among the different transcription factors investigated, CCAAT-enhancer-binding protein α (C/EBPα) showed the strongest dominant-repressive effect on SHP expression in HepG2 and human hepatocytes. Reporter assays revealed that the inhibitory effect of C/EBPα and steatotic drugs colocalize between -340 and -509 base pair of the SHP promoter, and mutation of a predicted C/EBPα response element at -473 base pair abolished SHP repression by both C/EBPα and drugs. Moreover, inhibition of major stress signaling pathways demonstrated that the mitogen-activated protein kinase kinase 1/2 pathway activates, while the phosphatidylinositol 3 kinase pathway represses SHP in a C/EBP-dependent manner. We conclude that SHP is downregulated by several steatotic drugs and in advanced NAFLD. These conditions can activate signals that target C/EBPα and consequently repress SHP, thus favoring the progression and severity of NAFLD. PMID:25576488

  5. Modulation of expression of the nuclear receptor NR0B2 (small heterodimer partner 1) and its impact on proliferation of renal carcinoma cells

    PubMed Central

    Prestin, Katharina; Olbert, Maria; Hussner, Janine; Isenegger, Tamara L; Gliesche, Daniel G; Böttcher, Kerstin; Zimmermann, Uwe; Meyer zu Schwabedissen, Henriette E

    2016-01-01

    Mammalian nuclear receptors (NRs) are transcription factors regulating the expression of target genes that play an important role in drug metabolism, transport, and cellular signaling pathways. The orphan and structurally unique receptor small heterodimer partner 1 (syn NR0B2) is not only known for its modulation of drug response, but has also been reported to be involved in hepatocellular carcinogenesis. Indeed, previous studies show that NR0B2 is downregulated in human hepatocellular carcinoma, suggesting that NR0B2 acts as a tumor suppressor via inhibition of cellular growth and activation of apoptosis in this tumor entity. The aim of our study was to elucidate whether NR0B2 may also play a role in other tumor entities. Comparing NR0B2 expression in renal cell carcinoma and adjacent nonmalignant transformed tissue revealed significant downregulation in vivo. Additionally, the impact of heterologous expression of NR0B2 on cell cycle progression and proliferation in cells of renal origin was characterized. Monitoring fluorescence intensity of resazurin turnover in RCC-EW cells revealed no significant differences in metabolic activity in the presence of NR0B2. However, there was a significant decrease of cellular proliferation in cells overexpressing this NR, and NR0B2 was more efficient than currently used antiproliferative agents. Furthermore, flow cytometry analysis showed that heterologous overexpression of NR0B2 significantly reduced the amount of cells passing the G1 phase, while on the other hand, more cells in S/G2 phase were detected. Taken together, our data suggest that downregulation of NR0B2 may also play a role in renal cell carcinoma development and progression. PMID:27540300

  6. Modulation of expression of the nuclear receptor NR0B2 (small heterodimer partner 1) and its impact on proliferation of renal carcinoma cells.

    PubMed

    Prestin, Katharina; Olbert, Maria; Hussner, Janine; Isenegger, Tamara L; Gliesche, Daniel G; Böttcher, Kerstin; Zimmermann, Uwe; Meyer Zu Schwabedissen, Henriette E

    2016-01-01

    Mammalian nuclear receptors (NRs) are transcription factors regulating the expression of target genes that play an important role in drug metabolism, transport, and cellular signaling pathways. The orphan and structurally unique receptor small heterodimer partner 1 (syn NR0B2) is not only known for its modulation of drug response, but has also been reported to be involved in hepatocellular carcinogenesis. Indeed, previous studies show that NR0B2 is downregulated in human hepatocellular carcinoma, suggesting that NR0B2 acts as a tumor suppressor via inhibition of cellular growth and activation of apoptosis in this tumor entity. The aim of our study was to elucidate whether NR0B2 may also play a role in other tumor entities. Comparing NR0B2 expression in renal cell carcinoma and adjacent nonmalignant transformed tissue revealed significant downregulation in vivo. Additionally, the impact of heterologous expression of NR0B2 on cell cycle progression and proliferation in cells of renal origin was characterized. Monitoring fluorescence intensity of resazurin turnover in RCC-EW cells revealed no significant differences in metabolic activity in the presence of NR0B2. However, there was a significant decrease of cellular proliferation in cells overexpressing this NR, and NR0B2 was more efficient than currently used antiproliferative agents. Furthermore, flow cytometry analysis showed that heterologous overexpression of NR0B2 significantly reduced the amount of cells passing the G1 phase, while on the other hand, more cells in S/G2 phase were detected. Taken together, our data suggest that downregulation of NR0B2 may also play a role in renal cell carcinoma development and progression. PMID:27540300

  7. [Nuclear receptors PPARalpha].

    PubMed

    Soska, V

    2006-06-01

    Mechanism of the fibrates action is mediated by nuclear PPARalpha receptors (Peroxisome Proliferator-Activated Receptor). These receptors regulate a number of genes that are involved both in lipids and lipoproteins metabolism and other mediators (e.g. inflammatory mediatores). Due to PPARalpha activation by fibrates, triglycerides and small dense LDL concentration is decreased, HDL cholesterol is increased and both inflammation and prothrombotic status are reduced. These effects are very important in patients with metabolic syndrom. PMID:16871768

  8. Historical overview of nuclear receptors.

    PubMed

    Gustafsson, Jan-Ake

    2016-03-01

    This review summarizes the birth of the field of nuclear receptors, from Jensen's discovery of estrogen receptor alpha, Gustafsson's discovery of the three-domain structure of the glucocorticoid receptor, the discovery of the glucocorticoid response element and the first partial cloning of the glucocorticoid receptor. Furthermore the discovery of the novel receptors called orphan receptors is described. PMID:25797032

  9. {beta}-Catenin can act as a nuclear import receptor for its partner transcription factor, lymphocyte enhancer factor-1 (lef-1)

    SciTech Connect

    Asally, Munehiro; Yoneda, Yoshihiro . E-mail: yyoneda@anat3.med.osaka-u.ac.jp

    2005-08-15

    Nuclear accumulation of {beta}-catenin plays an important role in the Wnt signaling pathway. In the nucleus, {beta}-catenin acts as a transcriptional co-activator for TCF/LEF family of transcription factors. It has been shown that lef-1 contains a typical basic type nuclear localization signal (NLS) and is transported into the nucleus by the conventional import pathway. In this study, we found that a mutant lef-1 lacking the classical NLS accumulated in the nucleus of living cells, when {beta}-catenin was co-expressed. In addition, in a cell-free import assay, lef-1 migrated into the nucleus in the presence of {beta}-catenin alone without any other soluble factors. In contrast, another mutant lef-1 lacking the {beta}-catenin binding domain failed to migrate into the nucleus, even in the presence of {beta}-catenin. These findings indicate that {beta}-catenin alone can mediate the nuclear import of lef-1 through the direct binding. Collectively, we propose that there are two distinct pathways for the nuclear import of lef-1: importin {alpha}/{beta}-mediated and {beta}-catenin-mediated one, which provides a novel paradigm for Wnt signaling pathway.

  10. Nuclear Receptors and Inflammatory Diseases

    PubMed Central

    Wang, Kun; Wan, Yu-Jui Yvonne

    2014-01-01

    It is well known that the steroid hormone glucocorticoid and its nuclear receptor regulate the inflammatory process, a crucial component in the pathophysiological process related to human diseases that include atherosclerosis, obesity and type II diabetes, inflammatory bowel disease, Alzheimer’s disease, multiple sclerosis, and liver tumors. Growing evidence demonstrates that orphan and adopted orphan nuclear receptors, such as peroxisome proliferator-activated receptors, liver × receptors, the farnesoid × receptor, NR4As, retinoid × receptors, and the pregnane × receptor, regulate the inflammatory and metabolic profiles in a ligand-dependent or -independent manner in human and animal models. This review summarizes the regulatory roles of these nuclear receptors in the inflammatory process and the underlying mechanisms. PMID:18375823

  11. Structural mechanism for signal transduction in RXR nuclear receptor heterodimers

    PubMed Central

    Kojetin, Douglas J.; Matta-Camacho, Edna; Hughes, Travis S.; Srinivasan, Sathish; Nwachukwu, Jerome C.; Cavett, Valerie; Nowak, Jason; Chalmers, Michael J.; Marciano, David P.; Kamenecka, Theodore M.; Shulman, Andrew I.; Rance, Mark; Griffin, Patrick R.; Bruning, John B.; Nettles, Kendall W.

    2015-01-01

    A subset of nuclear receptors (NRs) function as obligate heterodimers with retinoid X receptor (RXR), allowing integration of ligand-dependent signals across the dimer interface via an unknown structural mechanism. Using nuclear magnetic resonance (NMR) spectroscopy, x-ray crystallography and hydrogen/deuterium exchange (HDX) mass spectrometry, here we show an allosteric mechanism through which RXR co-operates with a permissive dimer partner, peroxisome proliferator-activated receptor (PPAR)-γ, while rendered generally unresponsive by a non-permissive dimer partner, thyroid hormone (TR) receptor. Amino acid residues that mediate this allosteric mechanism comprise an evolutionarily conserved network discovered by statistical coupling analysis (SCA). This SCA network acts as a signalling rheostat to integrate signals between dimer partners, ligands and coregulator-binding sites, thereby affecting signal transmission in RXR heterodimers. These findings define rules guiding how NRs integrate two ligand-dependent signalling pathways into RXR heterodimer-specific responses. PMID:26289479

  12. Database of Ligand-Receptor Partners, a DIP subset

    DOE Data Explorer

    Graeber, Thomas G.; Eisenberg, David

    The Database of Ligand-Receptor Partners (DLRP) is a subset of DIP (Database of Interacting Proteins). The DLRP is a database of protein ligand and protein receptor pairs that are known to interact with each other. By interact we mean that the ligand and receptor are members of a ligand-receptor complex and, unless otherwise noted, transduce a signal. In some instances the ligand and/or receptor may form a heterocomplex with other ligands/receptors in order to be functional. We have entered the majority of interactions in DLRP as full DIP entries, with links to references and additional information (see the DIP User's Guide). DLRP is a web supplement for: Thomas G. Graeber and David Eisenberg. Bioinformatic identification of potential autocrine signaling loops in cancers from gene expression profiles. Nature Genetics, 29(3):295-300 (November 2001). [Quoted from the DLRP homepage at http://dip.doe-mbi.ucla.edu/dip/DLRP.cgi] Also available from this page is the DLRP chemokine subset.

  13. Nuclear receptors, mitochondria and lipid metabolism.

    PubMed

    Alaynick, William A

    2008-09-01

    Lipid metabolism is a continuum from emulsification and uptake of lipids in the intestine to cellular uptake and transport to compartments such as mitochondria. Whether fats are shuttled into lipid droplets in adipose tissue or oxidized in mitochondria and peroxisomes depends on metabolic substrate availability, energy balance and endocrine signaling of the organism. Several members of the nuclear hormone receptor superfamily are lipid-sensing factors that affect all aspects of lipid metabolism. The physiologic actions of glandular hormones (e.g. thyroid, mineralocorticoid and glucocorticoid), vitamins (e.g. vitamins A and D) and reproductive hormones (e.g. progesterone, estrogen and testosterone) and their cognate receptors are well established. The peroxisome-proliferator activated receptors (PPARs) and liver X receptors (LXRs), acting in concert with PPARgamma Coactivator 1alpha (PGC-1alpha), have been shown to regulate insulin sensitivity and lipid handling. These receptors are the focus of intense pharmacologic studies to expand the armamentarium of small molecule ligands to treat diabetes and the metabolic syndrome (hypertension, insulin resistance, hyperglycemia, dyslipidemia and obesity). Recently, additional partners of PGC-1alpha have moved to the forefront of metabolic research, the estrogen-related receptors (ERRs). Although no endogenous ligands for these receptors have been identified, phenotypic analyses of knockout mouse models demonstrate an important role for these molecules in substrate sensing and handling as well as mitochondrial function. PMID:18375192

  14. Steroid receptor coupling becomes nuclear.

    PubMed

    Galigniana, Mario D

    2012-06-22

    In this issue of Chemistry & Biology, Grossman et al. report a study on aldosterone-dependent nuclear translocation of the mineralocorticoid receptor (MR). They analyze the dependency of MR retrotransport, DNA-binding, and transcriptional activity on Hsp90 and demonstrate that MR dimerization is a nuclear event. PMID:22726677

  15. Nuclear Receptors, RXR & the Big Bang

    PubMed Central

    Evans, Ronald M.; Mangelsdorf, David J.

    2014-01-01

    Summary Isolation of genes encoding the receptors for steroids, retinoids, vitamin D and thyroid hormone, and their structural and functional analysis revealed an evolutionarily conserved template for nuclear hormone receptors. This discovery sparked identification of numerous genes encoding related proteins, termed orphan receptors. Characterization of these orphan receptors, and in particular of the retinoid X receptor (RXR), positioned nuclear receptors at the epicenter of the “Big Bang” of molecular endocrinology. This review provides a personal perspective on nuclear receptors and explores their integrated and coordinated signaling networks that are essential for multi-cellular life, highlighting the RXR heterodimer and its associated ligands and transcriptional mechanism. PMID:24679540

  16. Nuclear Receptors, RXR, and the Big Bang.

    PubMed

    Evans, Ronald M; Mangelsdorf, David J

    2014-03-27

    Isolation of genes encoding the receptors for steroids, retinoids, vitamin D, and thyroid hormone and their structural and functional analysis revealed an evolutionarily conserved template for nuclear hormone receptors. This discovery sparked identification of numerous genes encoding related proteins, termed orphan receptors. Characterization of these orphan receptors and, in particular, of the retinoid X receptor (RXR) positioned nuclear receptors at the epicenter of the "Big Bang" of molecular endocrinology. This Review provides a personal perspective on nuclear receptors and explores their integrated and coordinated signaling networks that are essential for multicellular life, highlighting the RXR heterodimer and its associated ligands and transcriptional mechanism. PMID:24679540

  17. Targeting Nuclear Receptors with Marine Natural Products

    PubMed Central

    Yang, Chunyan; Li, Qianrong; Li, Yong

    2014-01-01

    Nuclear receptors (NRs) are important pharmaceutical targets because they are key regulators of many metabolic and inflammatory diseases, including diabetes, dyslipidemia, cirrhosis, and fibrosis. As ligands play a pivotal role in modulating nuclear receptor activity, the discovery of novel ligands for nuclear receptors represents an interesting and promising therapeutic approach. The search for novel NR agonists and antagonists with enhanced selectivities prompted the exploration of the extraordinary chemical diversity associated with natural products. Recent studies involving nuclear receptors have disclosed a number of natural products as nuclear receptor ligands, serving to re-emphasize the translational possibilities of natural products in drug discovery. In this review, the natural ligands of nuclear receptors will be described with an emphasis on their mechanisms of action and their therapeutic potentials, as well as on strategies to determine potential marine natural products as nuclear receptor modulators. PMID:24473166

  18. Nuclear receptors and nonalcoholic fatty liver disease.

    PubMed

    Cave, Matthew C; Clair, Heather B; Hardesty, Josiah E; Falkner, K Cameron; Feng, Wenke; Clark, Barbara J; Sidey, Jennifer; Shi, Hongxue; Aqel, Bashar A; McClain, Craig J; Prough, Russell A

    2016-09-01

    Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic

  19. What are Nuclear Receptor Ligands?

    PubMed Central

    Sladek, Frances M.

    2010-01-01

    Nuclear receptors (NRs) are a family of highly conserved transcription factors that regulate transcription in response to small lipophilic compounds. They play a role in every aspect of development, physiology and disease in humans. They are also ubiquitous in and unique to the animal kingdom suggesting that they may have played an important role in their evolution. In contrast to the classical endocrine receptors that originally defined the family, recent studies suggest that the first NRs might have been sensors of their environment, binding ligands that were external to the host organism. The purpose of this review is to provide a broad perspective on NR ligands and address the issue of exactly what constitutes a NR ligand from historical, biological and evolutionary perspectives. This discussion will lay the foundation for subsequent reviews in this issue as well as pose new questions for future investigation. PMID:20615454

  20. Adamantyl-Substituted Retinoid-Derived Molecules That Interact with the Orphan Nuclear Receptor Small Heterodimer Partner: Effects of Replacing the 1-Adamantyl or Hydroxyl Group on Inhibition of Cancer Cell Growth, Induction of Cancer Cell Apoptosis, and Inhibition of Src Homology 2 Domain-Containing Protein Tyrosine Phosphatase-2 Activity

    PubMed Central

    Dawson, Marcia I.; Xia, Zebin; Jiang, Tao; Ye, Mao; Fontana, Joseph A.; Farhana, Lulu; Patel, Bhaumik; Xue, Li Ping; Bhuiyan, Mohammad; Pellicciari, Roberto; Macchiarulo, Antonio; Nuti, Roberto; Zhang, Xiao-Kun; Han, Young-Hoon; Tautz, Lutz; Hobbs, Peter D.; Jong, Ling; Waleh, Nahid; Chao, Wan-ru; Feng, Gen-Sheng; Pang, Yuhong; Su, Ying

    2014-01-01

    (E)-4-[3-(1-Adamantyl)-4′-hydroxyphenyl]-3-chlorocinnamic acid (3-Cl-AHPC) induces the cell-cycle arrest and apoptosis of leukemia and cancer cells. Studies demonstrated that 3-Cl-AHPC bound to the atypical orphan nuclear receptor small heterodimer partner (SHP). Although missing a DNA-binding domain, SHP heterodimerizes with the ligand-binding domains of other nuclear receptors to repress their abilities to induce or inhibit gene expression. 3-Cl-AHPC analogues having the 1-adamantyl and phenolic hydroxyl pharmacophoric elements replaced with isosteric groups were designed, synthesized, and evaluated for their inhibition of proliferation and induction of human cancer cell apoptosis. Structure–anticancer activity relationship studies indicated the importance of both groups to apoptotic activity. Docking of 3-Cl-AHPC and its analogues to an SHP computational model that was based on the crystal structure of ultraspiracle complexed with 1-stearoyl-2-palmitoylglycero-3-phosphoethanolamine suggested why these 3-Cl-AHPC groups could influence SHP activity. Inhibitory activity against Src homology 2 domain-containing protein tyrosine phosphatase 2 (Shp-2) was also assessed. The most active Shp-2 inhibitor was found to be the 3′-(3,3-dimethylbutynyl) analogue of 3-Cl-AHPC. PMID:18759424

  1. Nuclear receptors: the evolution of diversity.

    PubMed

    Schwabe, John W R; Teichmann, Sarah A

    2004-01-27

    Nuclear receptors are an ancient family of transcription factors. Some receptors are regulated by small lipophilic ligands, whereas others are constitutive transcriptional activators or repressors. The evolution of this diversity is poorly understood, and it remains an open question as to whether or not the ancestral receptor was ligand-regulated. The recent cloning, from a snail, of an estrogen receptor that does not bind estrogen not only suggests that the steroid receptors are much more ancient than previous thought, but also points toward a mechanism through which nuclear receptors can lose the ability to be ligand regulated. PMID:14747695

  2. Melanocortin Receptor Agonists Facilitate Oxytocin-Dependent Partner Preference Formation in the Prairie Vole.

    PubMed

    Modi, Meera E; Inoue, Kiyoshi; Barrett, Catherine E; Kittelberger, Kara A; Smith, Daniel G; Landgraf, Rainer; Young, Larry J

    2015-07-01

    The central melanocortin (MC) system has been widely studied for its effects on food intake and sexual behavior. However, the MC system, and more specifically the MC4 receptor (MC4R), also interacts with neurochemical systems that regulate socioemotional behaviors, including oxytocin (OT) and dopamine. In monogamous prairie voles, OT and dopamine interact to promote partner preference formation, a laboratory measure of an enduring social bond between mates. Here we investigated the effects of MC receptor activation on partner preference formation in prairie voles, as well as the interaction between the MC and OT systems during this process. Peripheral administration of the brain penetrant MC3/4R receptor peptide agonist, Melanotan II (MTII), and the highly selective, small-molecule MC4R agonist, Pf-446687, enhanced partner preference formation in the prairie vole, but not in the non-monogamous meadow vole. MTII-induced partner preferences were enduring, as they were present 1 week after drug manipulation. The prosocial effects of MCR agonists may be mediated, in part, through modulation of OT, as coadministration of an OT receptor antagonist prevented MTII-induced partner preferences. MTII also selectively activated hypothalamic OT neurons and potentiated central OT release. As OT has been shown to enhance some aspects of social cognition in humans, our data suggest that the MC4R may be a viable therapeutic target for enhancing social function in psychiatric disorders, including autism spectrum disorders and schizophrenia, potentially through activation of the OT system. PMID:25652247

  3. Melanocortin Receptor Agonists Facilitate Oxytocin-Dependent Partner Preference Formation in the Prairie Vole

    PubMed Central

    Modi, Meera E; Inoue, Kiyoshi; Barrett, Catherine E; Kittelberger, Kara A; Smith, Daniel G; Landgraf, Rainer; Young, Larry J

    2015-01-01

    The central melanocortin (MC) system has been widely studied for its effects on food intake and sexual behavior. However, the MC system, and more specifically the MC4 receptor (MC4R), also interacts with neurochemical systems that regulate socioemotional behaviors, including oxytocin (OT) and dopamine. In monogamous prairie voles, OT and dopamine interact to promote partner preference formation, a laboratory measure of an enduring social bond between mates. Here we investigated the effects of MC receptor activation on partner preference formation in prairie voles, as well as the interaction between the MC and OT systems during this process. Peripheral administration of the brain penetrant MC3/4R receptor peptide agonist, Melanotan II (MTII), and the highly selective, small-molecule MC4R agonist, Pf-446687, enhanced partner preference formation in the prairie vole, but not in the non-monogamous meadow vole. MTII-induced partner preferences were enduring, as they were present 1 week after drug manipulation. The prosocial effects of MCR agonists may be mediated, in part, through modulation of OT, as coadministration of an OT receptor antagonist prevented MTII-induced partner preferences. MTII also selectively activated hypothalamic OT neurons and potentiated central OT release. As OT has been shown to enhance some aspects of social cognition in humans, our data suggest that the MC4R may be a viable therapeutic target for enhancing social function in psychiatric disorders, including autism spectrum disorders and schizophrenia, potentially through activation of the OT system. PMID:25652247

  4. ALT telomeres get together with nuclear receptors.

    PubMed

    Aeby, Eric; Lingner, Joachim

    2015-02-26

    Nuclear receptors bind chromosome ends in "alternative lengthening of telomeres" (ALT) cancer cells that maintain their ends by homologous recombination instead of telomerase. Marzec et al. now demonstrate that, in ALT cells, nuclear receptors not only trigger distal chromatin associations to mediate telomere-telomere recombination events, but also drive chromosome-internal targeted telomere insertions (TTI). PMID:25723159

  5. Partners.

    PubMed

    Westover, P F

    1986-01-01

    The Salt Lake Clinic's problem was one of balance. Although the organizational values of the clinic were well developed, the organizational structure was not. The board of directors historically was accountable to its partners or shareholders, but the competitive, consumer-oriented environment also called for recognition of community, business, and consumer interest. To achieve a more balanced approach to clinic governance, a lay advisory board was appointed, made up of members active in civic affairs who each had a unique contribution to make and represented a business, community, or consumer perspective. PMID:10278455

  6. Nuclear receptors in bile acid metabolism

    PubMed Central

    Li, Tiangang; Chiang, John Y. L.

    2013-01-01

    Bile acids are signaling molecules that activate nuclear receptors, such as farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, and vitamin D receptor, and play a critical role in the regulation of lipid, glucose, energy, and drug metabolism. These xenobiotic/endobiotic-sensing nuclear receptors regulate phase I oxidation, phase II conjugation, and phase III transport in bile acid and drug metabolism in the digestive system. Integration of bile acid metabolism with drug metabolism controls absorption, transport, and metabolism of nutrients and drugs to maintain metabolic homeostasis and also protects against liver injury, inflammation, and related metabolic diseases, such as nonalcoholic fatty liver disease, diabetes, and obesity. Bile-acid–based drugs targeting nuclear receptors are in clinical trials for treating cholestatic liver diseases and fatty liver disease. PMID:23330546

  7. Sister Lab Program Prospective Partner Nuclear Profile: Indonesia

    SciTech Connect

    Bissani, M; Tyson, S

    2006-12-14

    Indonesia has participated in cooperative technical programs with the IAEA since 1957, and has cooperated with regional partners in all of the traditional areas where nuclear science is employed: in medicine, public health (such as insect control and eradication programs), agriculture (e.g. development of improved varieties of rice), and the gas and oil industries. Recently, Indonesia has contributed significantly to the Reduced Enrichment Research and Training Reactor (RERTR) Program by conducting experiments to confirm the feasibility of Mo-99 production using high-density low enriched uranium (LEU) fuel, a primary goal of the RERTR Program. Indonesia's first research reactor, the TRIGA Mark II at Bandung, began operation in 1964 at 250 kW and was subsequently upgraded in 1971 to 1 MW and further upgraded in 2000 to 2 MW. This reactor was joined by another TRIGA Mark II, the 100-kW Kartini-PPNY at Yogyakarta, in 1979, and by the 30-MW G.A. Siwabessy multipurpose reactor in Serpong, which achieved criticality in July 1983. A 10-MW radioisotope production reactor, to be called the RPI-10, also was proposed for construction at Serpong in the late 1990s, but the project apparently was not carried out. In the five decades since its nuclear research program began, Indonesia has trained a cadre of scientific and technical staff who not only operate and conduct research with the current facilities, but also represent the nucleus of a skilled labor pool to support development of a nuclear power program. Although Indonesia's previous on-again, off-again consideration of nuclear power has not gotten very far in the past, it now appears that Indonesia again is giving serious consideration to beginning a national nuclear energy program. In June 2006, Research and Technology Minister Kusmayanto Kadiman said that his ministry was currently putting the necessary procedures in place to speed up the project to acquire a nuclear power plant, indicating that, ''We will need around

  8. Palmitoylation-dependent regulation of glutamate receptors and their PDZ domain-containing partners

    PubMed Central

    Thomas, Gareth M.; Huganir, Richard L.

    2013-01-01

    In recent years, it has become clear that both AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid)- and NMDA (N-methyl-D-aspartate)-type glutamate receptors, and many of their interacting partners, are palmitoylated proteins. Interfering with palmitoylation dramatically affects receptor trafficking and distribution and, in turn, can profoundly alter synaptic transmission. Increased knowledge of synaptic palmitoylation not only will aid our understanding of physiological neuronal regulation, but also may provide insights into, and even novel treatments for, neuropathological conditions. In the present paper, we review recent advances regarding the regulation of ionotropic glutamate receptor trafficking and function by palmitoylation. PMID:23356261

  9. Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor knockout mice

    SciTech Connect

    Li, Guodong; Kong, Bo; Zhu, Yan; Zhan, Le; Williams, Jessica A.; Tawfik, Ossama; Kassel, Karen M.; Luyendyk, James P.; Wang, Li; Guo, Grace L.

    2013-10-15

    Farnesoid X receptor (FXR, Nr1h4) and small heterodimer partner (SHP, Nr0b2) are nuclear receptors that are critical to liver homeostasis. Induction of SHP serves as a major mechanism of FXR in suppressing gene expression. Both FXR{sup −/−} and SHP{sup −/−} mice develop spontaneous hepatocellular carcinoma (HCC). SHP is one of the most strongly induced genes by FXR in the liver and is a tumor suppressor, therefore, we hypothesized that deficiency of SHP contributes to HCC development in the livers of FXR{sup −/−} mice and therefore, increased SHP expression in FXR{sup −/−} mice reduces liver tumorigenesis. To test this hypothesis, we generated FXR{sup −/−} mice with overexpression of SHP in hepatocytes (FXR{sup −/−}/SHP{sup Tg}) and determined the contribution of SHP in HCC development in FXR{sup −/−} mice. Hepatocyte-specific SHP overexpression did not affect liver tumor incidence or size in FXR{sup −/−} mice. However, SHP overexpression led to a lower grade of dysplasia, reduced indicator cell proliferation and increased apoptosis. All tumor-bearing mice had increased serum bile acid levels and IL-6 levels, which was associated with activation of hepatic STAT3. In conclusion, SHP partially protects FXR{sup −/−} mice from HCC formation by reducing tumor malignancy. However, disrupted bile acid homeostasis by FXR deficiency leads to inflammation and injury, which ultimately results in uncontrolled cell proliferation and tumorigenesis in the liver. - Highlights: • SHP does not prevent HCC incidence nor size in FXR KO mice but reduces malignancy. • Increased SHP promotes apoptosis. • Bile acids and inflammation maybe critical for HCC formation with FXR deficiency.

  10. CRF receptors in the nucleus accumbens modulate partner preference in prairie voles

    PubMed Central

    Lim, Miranda M.; Liu, Yan; Ryabinin, Andrey E.; Bai, Yaohui; Wang, Zuoxin; Young, Larry J.

    2007-01-01

    Recent evidence suggests a role for corticotropin-releasing factor (CRF) in the regulation of pair bonding in prairie voles. We have previously shown that monogamous and non-monogamous vole species have dramatically different distributions of CRF receptor type 1 (CRF1) and CRF receptor type 2 (CRF2) in the brain, and that CRF1 and CRF2 receptor densities in the nucleus accumbens (NAcc) are correlated with social organization. Monogamous prairie and pine voles have significantly lower levels of CRF receptor type 1 (CRF1), and significantly higher levels of type 2 (CRF2) binding, in NAcc than non-monogamous meadow and montane voles. Here, we report that microinjections of CRF directly into the NAcc accelerate partner preference formation in male prairie voles. Control injections of CSF into NAcc, and CRF into caudate-putamen, did not facilitate partner preference. Likewise, CRF injections into NAcc of non-monogamous meadow voles also did not facilitate partner preference. In prairie voles, this CRF-facilitation effect was blocked by co-injection of either CRF1 or CRF2 receptor antagonists into NAcc. Immunocytochemical staining for CRF and Urocortin-1 (Ucn-1), two endogenous ligands for CRF1 or CRF2 receptors in the brain, revealed that CRF, but not Ucn-1, immunoreactive fibers were present in NAcc. This supports the hypothesis that local CRF release into NAcc could activate CRF1 or CRF2 receptors in the region. Taken together, our results reveal a novel role for accumbal CRF systems in social behavior. PMID:17320879

  11. High Mobility Group Box Protein 1 (HMGB1)-Partner Molecule Complexes Enhance Cytokine Production by Signaling Through the Partner Molecule Receptor

    PubMed Central

    Hreggvidsdóttir, Hulda Sigridur; Lundberg, Anna M; Aveberger, Ann-Charlotte; Klevenvall, Lena; Andersson, Ulf; Harris, Helena Erlandsson

    2012-01-01

    The nuclear protein high mobility group box protein 1 (HMGB1) promotes inflammation upon extracellular release. HMGB1 induces proinflammatory cytokine production in macrophages via Toll-like receptor (TLR)-4 signaling in a redox-dependent fashion. Independent of its redox state and endogenous cytokine-inducing ability, HMGB1 can form highly immunostimulatory complexes by interaction with certain proinflammatory mediators. Such complexes have the ability to enhance the induced immune response up to 100-fold, compared with induction by the ligand alone. To clarify the mechanisms for these strong synergistic effects, we studied receptor requirements. Interleukin (IL)-6 production was assessed in supernatants from cultured peritoneal macrophages from mice each deficient in one of the HMGB1 receptors (receptor for advanced glycation end products [RAGE], TLR2 or TLR4) or from wild-type controls. The cultures were stimulated with the TLR4 ligand lipopolysaccaride (LPS), the TLR2 ligand Pam3CysSerLys4 (Pam3CSK4), noninflammatory HMGB1 or each TLR ligand in complex with noninflammatory HMGB1. The activity of the HMGB1-TLR ligand complexes relied on engagement of the same receptor as for the noncomplexed TLR ligand, since HMGB1-LPS complexes used TLR4 and HMGB1-Pam3CSK4 complexes used TLR2. Deletion of any of the intracellular adaptor molecules used by TLR2 (myeloid differentiation factor-88 [MyD88], TIR domain–containing adaptor protein [TIRAP]) or TLR4 (MyD88, TIRAP, TIR domain–containing adaptor-inducing interferon-β [TRIF], TRIF-related adaptor molecule [TRAM]) had similar effects on HMGB1 complex activation compared with noncomplexed LPS or Pam3CSK4. This result implies that the enhancing effects of HMGB1-partner molecule complexes are not regulated by the induction of additional signaling cascades. Elucidating HMGB1 receptor usage in processes where HMGB1 acts alone or in complex with other molecules is essential for the understanding of basic HMGB1 biology and

  12. Thyroid Hormone Regulates the mRNA Expression of Small Heterodimer Partner through Liver Receptor Homolog-1

    PubMed Central

    Ahn, Hwa Young; Kim, Hwan Hee; Kim, Ye An; Kim, Min; Ohn, Jung Hun; Chung, Sung Soo; Lee, Yoon-Kwang; Park, Do Joon; Park, Kyong Soo

    2015-01-01

    Background Expression of hepatic cholesterol 7α-hydroxylase (CYP7A1) is negatively regulated by orphan nuclear receptor small heterodimer partner (SHP). In this study, we aimed to find whether thyroid hormone regulates SHP expression by modulating the transcriptional activities of liver receptor homolog-1 (LRH-1). Methods We injected thyroid hormone (triiodothyronine, T3) to C57BL/6J wild type. RNA was isolated from mouse liver and used for microarray analysis and quantitative real-time polymerase chain reaction (PCR). Human hepatoma cell and primary hepatocytes from mouse liver were used to confirm the effect of T3 in vitro. Promoter assay and electrophoretic mobility-shift assay (EMSA) were also performed using human hepatoma cell line Results Initial microarray results indicated that SHP expression is markedly decreased in livers of T3 treated mice. We confirmed that T3 repressed SHP expression in the liver of mice as well as in mouse primary hepatocytes and human hepatoma cells by real-time PCR analysis. LRH-1 increased the promoter activity of SHP; however, this increased activity was markedly decreased after thyroid hormone receptor β/retinoid X receptor α/T3 administration. EMSA revealed that T3 inhibits specific LRH-1 DNA binding. Conclusion We found that thyroid hormone regulates the expression of SHP mRNA through interference with the transcription factor, LRH-1. PMID:26485468

  13. Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling

    SciTech Connect

    Magno, Aaron L.; Ingley, Evan; Brown, Suzanne J.; Conigrave, Arthur D.; Ratajczak, Thomas; Ward, Bryan K.

    2011-09-09

    Highlights: {yields} A yeast two-hybrid screen revealed testin bound to the calcium-sensing receptor. {yields} The second zinc finger of LIM domain 1 of testin is critical for interaction. {yields} Testin bound to a region of the receptor tail important for cell signalling. {yields} Testin and receptor interaction was confirmed in mammalian (HEK293) cells. {yields} Overexpression of testin enhanced receptor-mediated Rho signalling in HEK293 cells. -- Abstract: The calcium-sensing receptor (CaR) plays an integral role in calcium homeostasis and the regulation of other cellular functions including cell proliferation and cytoskeletal organisation. The multifunctional nature of the CaR is manifested through ligand-dependent stimulation of different signalling pathways that are also regulated by partner binding proteins. Following a yeast two-hybrid library screen using the intracellular tail of the CaR as bait, we identified several novel binding partners including the focal adhesion protein, testin. Testin has not previously been shown to interact with cell surface receptors. The sites of interaction between the CaR and testin were mapped to the membrane proximal region of the receptor tail and the second zinc-finger of LIM domain 1 of testin, the integrity of which was found to be critical for the CaR-testin interaction. The CaR-testin association was confirmed in HEK293 cells by coimmunoprecipitation and confocal microscopy studies. Ectopic expression of testin in HEK293 cells stably expressing the CaR enhanced CaR-stimulated Rho activity but had no effect on CaR-stimulated ERK signalling. These results suggest an interplay between the CaR and testin in the regulation of CaR-mediated Rho signalling with possible effects on the cytoskeleton.

  14. Involvement of the Tyro3 receptor and its intracellular partner Fyn signaling in Schwann cell myelination.

    PubMed

    Miyamoto, Yuki; Torii, Tomohiro; Takada, Shuji; Ohno, Nobuhiko; Saitoh, Yurika; Nakamura, Kazuaki; Ito, Akihito; Ogata, Toru; Terada, Nobuo; Tanoue, Akito; Yamauchi, Junji

    2015-10-01

    During early development of the peripheral nervous system, Schwann cell precursors proliferate, migrate, and differentiate into premyelinating Schwann cells. After birth, Schwann cells envelop neuronal axons with myelin sheaths. Although some molecular mechanisms underlying myelination by Schwann cells have been identified, the whole picture remains unclear. Here we show that signaling through Tyro3 receptor tyrosine kinase and its binding partner, Fyn nonreceptor cytoplasmic tyrosine kinase, is involved in myelination by Schwann cells. Impaired formation of myelin segments is observed in Schwann cell neuronal cultures established from Tyro3-knockout mouse dorsal root ganglia (DRG). Indeed, Tyro3-knockout mice exhibit reduced myelin thickness. By affinity chromatography, Fyn was identified as the binding partner of the Tyro3 intracellular domain, and activity of Fyn is down-regulated in Tyro3-knockout mice, suggesting that Tyro3, acting through Fyn, regulates myelination. Ablating Fyn in mice results in reduced myelin thickness. Decreased myelin formation is observed in cultures established from Fyn-knockout mouse DRG. Furthermore, decreased kinase activity levels and altered expression of myelination-associated transcription factors are observed in these knockout mice. These results suggest the involvement of Tyro3 receptor and its binding partner Fyn in Schwann cell myelination. This constitutes a newly recognized receptor-linked signaling mechanism that can control Schwann cell myelination. PMID:26224309

  15. Cytoplasmic and nuclear cytokine receptor complexes.

    PubMed

    Mertani, H C; Morel, G; Lobie, P E

    1999-01-01

    Much of our understanding on how hormones and cytokines transmit their message into the cell is based on the receptor activation at the plasma membrane. Many experimental in vitro models have established the paradigm for cytokine action based upon such activation of their cell surface receptor. The signaling from the plasma membrane activated cytokine receptor is driven to the nucleus by a rapid ricochet of protein phosphorylation, ultimately integrated as a differentiative, proliferative, or transcriptional message. The Janus kinase (JAK)--signal transducers and activators of transcription (STAT) pathway that was first thought to be cytokine receptor specific now appears to be activated by other noncytokine receptors. Also, evidence is accumulating showing that cytokines modulate the signal transduction machinery of the tyrosine kinase receptors and that of the heterotrimeric guanosine triphosphate (GTP)-binding protein-coupled receptors. Thus cytokine receptor signaling has become much more complex than originally hypothesized, challenging the established model of specificity of the action of a given cytokine. This review is focused on another level of complexity emerging within cytokine receptor superfamily signaling. Over the past 10 years, data from different laboratories have shown that cytokines and their receptors localize to intracellular compartments including the nucleus, and, in some cases, biological responses have been correlated with this unexpected location, raising the possibility that cytokines act as their own messenger through inter-actions with nuclear proteins. Thus, the interplay between cytokine receptor engagement and cellular signaling turns out to be more dynamic than originally suspected. The mechanisms and regulations of intracellular translocation of the cytokines, their receptors, and their signaling proteins are discussed in the context that such compartmentalization provides some of the specificity of the responses mediated by each

  16. Nuclear receptors and pathogenesis of pancreatic cancer.

    PubMed

    Polvani, Simone; Tarocchi, Mirko; Tempesti, Sara; Galli, Andrea

    2014-09-14

    Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a median overall survival time of 5 mo and the five years survival less than 5%, a rate essentially unchanged over the course of the years. A well defined progression model of accumulation of genetic alterations ranging from single point mutations to gross chromosomal abnormalities has been introduced to describe the origin of this disease. However, due to the its subtle nature and concurring events PDAC cure remains elusive. Nuclear receptors (NR) are members of a large superfamily of evolutionarily conserved ligand-regulated DNA-binding transcription factors functionally involved in important cellular functions ranging from regulation of metabolism, to growth and development. Given the nature of their ligands, NR are very tempting drug targets and their pharmacological modulation has been widely exploited for the treatment of metabolic and inflammatory diseases. There are now clear evidences that both classical ligand-activated and orphan NR are involved in the pathogenesis of PDAC from its very early stages; nonetheless many aspects of their role are not fully understood. The purpose of this review is to highlight the striking connections that link peroxisome proliferator activated receptors, retinoic acid receptors, retinoid X receptor, androgen receptor, estrogen receptors and the orphan NR Nur, chicken ovalbumin upstream promoter transcription factor II and the liver receptor homologue-1 receptor to PDAC development, connections that could lead to the identification of novel therapies for this disease. PMID:25232244

  17. Using Nuclear Receptor Activity to Stratify Hepatocarcinogens

    EPA Science Inventory

    Nuclear receptors (NR) are a superfamily of ligand-activated transcription factors that control a range of cellular processes. Persistent stimulation of some NR is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. Here we report on a systematic an...

  18. Sister Lab Program Prospective Partner Nuclear Profile: Malaysia

    SciTech Connect

    Bissani, M; Tyson, S

    2006-12-14

    The Malaysian Deputy Prime Minister Tun Dr Ismail Abdul Rahman suggested in the early 1970s that Malaysia should have a role in the development of nuclear science and technology for peaceful purposes. Accordingly, the Center for the Application of Nuclear Energy (CRANE) was established, with a focus on the development of a scientific and technical pool critical to a national nuclear power program. The Malaysian Cabinet next established the Tun Ismail Atomic Research Center (TIARC) under the Ministry of Science, Technology and the Environment on 19 September 1972, at a site in Bangi, about 35 km south of Kuala Lampur. On 28 June 1982, the PUSPATI reactor, a 1-MW TRIGA MK-II research reactor, first reached criticality. On 10 August 1994, TIARC was officially renamed as the Malaysian Institute for Nuclear Technology Research (MINT). In addition to radioisotope production and neutron radiography conducted at the PUSPATI research reactor, MINT also supports numerous programs employing nuclear technology for medicine, agriculture and industry, and has been involved in both bilateral and multilateral technical cooperation to extend its capabilities. As an energy exporting country, Malaysia has felt little incentive to develop a nuclear energy program, and high level opposition within the government discouraged it further. A recent statement by Malaysia's Science, Technology and Innovation Minister supported this view, indicating that only a near-catastrophic jump in world oil prices might change the government's view. However, the rate at which Malaysia is using its natural gas and oil reserves is expected to force it to reassess the role of nuclear energy in the near future. In addition, the government does intend to construct a radioactive waste repository to dispose of naturally occurring radioactive materials (extracted during tin mining, in particular). Also, Malaysia's growing economy could encourage expansion in Malaysia's existing nuclear-applications programs

  19. Using Nuclear Receptor Activity to Stratify Hepatocarcinogens

    PubMed Central

    Shah, Imran; Houck, Keith; Judson, Richard S.; Kavlock, Robert J.; Martin, Matthew T.; Reif, David M.; Wambaugh, John; Dix, David J.

    2011-01-01

    Background Nuclear receptors (NR) are a superfamily of ligand-activated transcription factors that control a range of cellular processes. Persistent stimulation of some NR is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. Here we report on a systematic analysis of new in vitro human NR activity data on 309 environmental chemicals in relationship to their liver cancer-related chronic outcomes in rodents. Results The effects of 309 environmental chemicals on human constitutive androstane receptors (CAR/NR1I3), pregnane X receptor (PXR/NR1I2), aryl hydrocarbon receptor (AhR), peroxisome proliferator-activated receptors (PPAR/NR1C), liver X receptors (LXR/NR1H), retinoic X receptors (RXR/NR2B) and steroid receptors (SR/NR3) were determined using in vitro data. Hepatic histopathology, observed in rodents after two years of chronic treatment for 171 of the 309 chemicals, was summarized by a cancer lesion progression grade. Chemicals that caused proliferative liver lesions in both rat and mouse were generally more active for the human receptors, relative to the compounds that only affected one rodent species, and these changes were significant for PPAR (p0.001), PXR (p0.01) and CAR (p0.05). Though most chemicals exhibited receptor promiscuity, multivariate analysis clustered them into relatively few NR activity combinations. The human NR activity pattern of chemicals weakly associated with the severity of rodent liver cancer lesion progression (p0.05). Conclusions The rodent carcinogens had higher in vitro potency for human NR relative to non-carcinogens. Structurally diverse chemicals with similar NR promiscuity patterns weakly associated with the severity of rodent liver cancer progression. While these results do not prove the role of NR activation in human liver cancer, they do have implications for nuclear receptor chemical biology and provide insights into putative toxicity pathways. More importantly, these findings suggest the

  20. Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins.

    PubMed

    Sahin, Umut; Ferhi, Omar; Jeanne, Marion; Benhenda, Shirine; Berthier, Caroline; Jollivet, Florence; Niwa-Kawakita, Michiko; Faklaris, Orestis; Setterblad, Niclas; de Thé, Hugues; Lallemand-Breitenbach, Valérie

    2014-03-17

    The promyelocytic leukemia (PML) protein organizes PML nuclear bodies (NBs), which are stress-responsive domains where many partner proteins accumulate. Here, we clarify the basis for NB formation and identify stress-induced partner sumoylation as the primary NB function. NB nucleation does not rely primarily on intermolecular interactions between the PML SUMO-interacting motif (SIM) and SUMO, but instead results from oxidation-mediated PML multimerization. Oxidized PML spherical meshes recruit UBC9, which enhances PML sumoylation, allow partner recruitment through SIM interactions, and ultimately enhance partner sumoylation. Intermolecular SUMO-SIM interactions then enforce partner sequestration within the NB inner core. Accordingly, oxidative stress enhances NB formation and global sumoylation in vivo. Some NB-associated sumoylated partners also become polyubiquitinated by RNF4, precipitating their proteasomal degradation. As several partners are protein-modifying enzymes, NBs could act as sensors that facilitate and confer oxidative stress sensitivity not only to sumoylation but also to other post-translational modifications, thereby explaining alterations of stress response upon PML or NB loss. PMID:24637324

  1. Calreticulin Is a Receptor for Nuclear Export

    PubMed Central

    Holaska, James M.; Black, Ben E.; Love, Dona C.; Hanover, John A.; Leszyk, John; Paschal, Bryce M.

    2001-01-01

    In previous work, we used a permeabilized cell assay that reconstitutes nuclear export of protein kinase inhibitor (PKI) to show that cytosol contains an export activity that is distinct from Crm1 (Holaska, J.M., and B.M. Paschal. 1995. Proc. Natl. Acad. Sci. USA. 95: 14739–14744). Here, we describe the purification and characterization of the activity as calreticulin (CRT), a protein previously ascribed to functions in the lumen of the ER. We show that cells contain both ER and cytosolic pools of CRT. The mechanism of CRT-dependent export of PKI requires a functional nuclear export signal (NES) in PKI and involves formation of an export complex that contains RanGTP. Previous studies linking CRT to downregulation of steroid hormone receptor function led us to examine its potential role in nuclear export of the glucocorticoid receptor (GR). We found that CRT mediates nuclear export of GR in permeabilized cell, microinjection, and transfection assays. GR export is insensitive to the Crm1 inhibitor leptomycin B in vivo, and it does not rely on a leucine-rich NES. Rather, GR export is facilitated by its DNA-binding domain, which is shown to function as an NES when transplanted to a green fluorescent protein reporter. CRT defines a new export pathway that may regulate the transcriptional activity of steroid hormone receptors. PMID:11149926

  2. Calreticulin Is a receptor for nuclear export.

    PubMed

    Holaska, J M; Black, B E; Love, D C; Hanover, J A; Leszyk, J; Paschal, B M

    2001-01-01

    In previous work, we used a permeabilized cell assay that reconstitutes nuclear export of protein kinase inhibitor (PKI) to show that cytosol contains an export activity that is distinct from Crm1 (Holaska, J.M., and B.M. Paschal. 1995. Proc. Natl. Acad. Sci. USA. 95: 14739-14744). Here, we describe the purification and characterization of the activity as calreticulin (CRT), a protein previously ascribed to functions in the lumen of the ER. We show that cells contain both ER and cytosolic pools of CRT. The mechanism of CRT-dependent export of PKI requires a functional nuclear export signal (NES) in PKI and involves formation of an export complex that contains RanGTP. Previous studies linking CRT to downregulation of steroid hormone receptor function led us to examine its potential role in nuclear export of the glucocorticoid receptor (GR). We found that CRT mediates nuclear export of GR in permeabilized cell, microinjection, and transfection assays. GR export is insensitive to the Crm1 inhibitor leptomycin B in vivo, and it does not rely on a leucine-rich NES. Rather, GR export is facilitated by its DNA-binding domain, which is shown to function as an NES when transplanted to a green fluorescent protein reporter. CRT defines a new export pathway that may regulate the transcriptional activity of steroid hormone receptors. PMID:11149926

  3. Emerging roles of orphan nuclear receptors in cancer.

    PubMed

    Baek, Sung Hee; Kim, Keun Il

    2014-01-01

    A growing body of evidence suggests that a subset of orphan nuclear receptors are amplified and prognostic for some human cancers. However, the specific roles of these orphan nuclear receptors in tumor progression and their utility as drug targets are not fully understood. In this review, we summarize recent progress in elucidating the direct and indirect involvement of orphan nuclear receptors in cancer as well as their therapeutic potential in a variety of human cancers. Furthermore, we contrast the role of orphan nuclear receptors in cancer with the known roles of estrogen receptor and androgen receptor in hormone-dependent cancers. PMID:24215441

  4. Nuclear Receptors and Endocrine Disruptors in Fetal and Neonatal Testes: A Gapped Landscape

    PubMed Central

    Rouiller-Fabre, Virginie; Guerquin, Marie Justine; N’Tumba-Byn, Thierry; Muczynski, Vincent; Moison, Delphine; Tourpin, Sophie; Messiaen, Sébastien; Habert, René; Livera, Gabriel

    2015-01-01

    During the last decades, many studies reported that male reproductive disorders are increasing among humans. It is currently acknowledged that these abnormalities can result from fetal exposure to environmental chemicals that are progressively becoming more concentrated and widespread in our environment. Among the chemicals present in the environment (air, water, food, and many consumer products), several can act as endocrine disrupting compounds (EDCs), thus interfering with the endocrine system. Phthalates, bisphenol A (BPA), and diethylstilbestrol (DES) have been largely incriminated, particularly during the fetal and neonatal period, due to their estrogenic and/or anti-androgenic properties. Indeed, many epidemiological and experimental studies have highlighted their deleterious impact on fetal and neonatal testis development. As EDCs can affect many different genomic and non-genomic pathways, the mechanisms underlying the adverse effects of EDC exposure are difficult to elucidate. Using literature data and results from our laboratory, in the present review, we discuss the role of classical nuclear receptors (genomic pathway) in the fetal and neonatal testis response to EDC exposure, particularly to phthalates, BPA, and DES. Among the nuclear receptors, we focused on some of the most likely candidates, such as peroxisome-proliferator activated receptor (PPAR), androgen receptor (AR), estrogen receptors (ERα and β), liver X receptors (LXR), and small heterodimer partner (SHP). First, we describe the expression and potential functions (based on data from studies using receptor agonists and mouse knockout models) of these nuclear receptors in the developing testis. Then, for each EDC studied, we summarize the main evidences indicating that the reprotoxic effect of each EDC under study is mediated through a specific nuclear receptor(s). We also point-out the involvement of other receptors and nuclear receptor-independent pathways. PMID:25999913

  5. The Orphan Nuclear Receptor TR4 Is a Vitamin A-activated Nuclear Receptor

    SciTech Connect

    Zhou, X. Edward; Suino-Powell, Kelly M.; Xu, Yong; Chan, Cee-Wah; Tanabe, Osamu; Kruse, Schoen W.; Reynolds, Ross; Engel, James Douglas; Xu, H. Eric

    2015-11-30

    Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibits constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.

  6. Nuclear Receptors in Bone Physiology and Diseases

    PubMed Central

    Youn, Min-Young; Inoue, Kazuki; Takada, Ichiro; Kouzmenko, Alexander; Kato, Shigeaki

    2013-01-01

    During the last decade, our view on the skeleton as a mere solid physical support structure has been transformed, as bone emerged as a dynamic, constantly remodeling tissue with systemic regulatory functions including those of an endocrine organ. Reflecting this remarkable functional complexity, distinct classes of humoral and intracellular regulatory factors have been shown to control vital processes in the bone. Among these regulators, nuclear receptors (NRs) play fundamental roles in bone development, growth, and maintenance. NRs are DNA-binding transcription factors that act as intracellular transducers of the respective ligand signaling pathways through modulation of expression of specific sets of cognate target genes. Aberrant NR signaling caused by receptor or ligand deficiency may profoundly affect bone health and compromise skeletal functions. Ligand dependency of NR action underlies a major strategy of therapeutic intervention to correct aberrant NR signaling, and significant efforts have been made to design novel synthetic NR ligands with enhanced beneficial properties and reduced potential negative side effects. As an example, estrogen deficiency causes bone loss and leads to development of osteoporosis, the most prevalent skeletal disorder in postmenopausal women. Since administration of natural estrogens for the treatment of osteoporosis often associates with undesirable side effects, several synthetic estrogen receptor ligands have been developed with higher therapeutic efficacy and specificity. This review presents current progress in our understanding of the roles of various nuclear receptor-mediated signaling pathways in bone physiology and disease, and in development of advanced NR ligands for treatment of common skeletal disorders. PMID:23589826

  7. Sister Lab Program Prospective Partner Nuclear Profile: Vietnam

    SciTech Connect

    Bissani, M; Tyson, S

    2006-12-14

    Vietnam's nuclear program began in the 1960s with the installation at Dalat of a 250 kW TRIGA Mk-II research reactor under the U.S. Atoms for Peace Program. The reactor was shut down and its core removed only a few years later, and the nuclear research program was suspended until after the end of the civil war in the late 1970s. The Soviet Union assisted Vietnam in restoring the Dalat reactor to an operational status in 1984, trained a cadre of scientific and technical staff in its operation, and contributed to the development of nuclear science for the medical and agricultural sectors. In the agricultural area in particular, Vietnamese experts have been very successful in developing mutant strains of rice, and continue to work with the IAEA to yield strains that have a shorter growing period, increased resistance to disease, and other desirable characteristics. Rice has always been the main crop in Vietnam, but technical cooperation with the IAEA and other states has enabled the country to become one of the top rice producers in the world, exporting much of its annual crop to over two dozen countries annually. More recently, Vietnam's government has shown increasing interest in developing a civil nuclear program to supplement its fossil fuel and other energy resources. Projections from a variety of open sources, ranging from the IAEA, the U.S. Department of Energy's Energy Information Administration (EIA), the Vietnamese government, energy corporations, and think tanks all predict a massive increase in energy consumption--especially electricity--within Vietnam and the region as a whole. This growth in consumption will require a corresponding increase in energy production, which in Vietnam is currently satisfied mainly by fossil fuels (coal) and renewable energy (hydropower and biomass); Vietnam has a refining capacity of about 800 barrels/day. Most of its crude oil is exported to generate export income, and is not used to generate electricity. Although Vietnam is

  8. New Insights into Orphan Nuclear Receptor SHP in Liver Cancer

    PubMed Central

    Zou, An; Lehn, Sarah; Magee, Nancy; Zhang, Yuxia

    2015-01-01

    Small heterodimer partner (SHP; NR0B2) is a unique orphan nuclear receptor (NR) that contains a putative ligand-binding domain but lacks a DNA-binding domain. SHP is a transcriptional corepressor affecting diverse metabolic processes including bile acid synthesis, cholesterol and lipid metabolism, glucose and energy homeostasis, and reproductive biology via interaction with multiple NRs and transcriptional factors (TFs). Hepatocellular carcinoma (HCC) is one of the most deadly human cancers worldwide with few therapeutic options and poor prognosis. Recently, it is becoming clear that SHP plays an antitumor role in the development of liver cancer. In this review, we summarize the most recent findings regarding the new SHP interaction partners, new structural insights into SHP’s gene repressing activity, and SHP protein posttranslational modifications by bile acids. We also discuss the pleiotropic role of SHP in regulating cell proliferation, apoptosis, DNA methylation, and inflammation that are related to antitumor role of SHP in HCC. Improving our understanding of SHP’s antitumor role in the development of liver cancer will provide new insights into developing novel treatments or prevention strategies. Future research will focus on developing more efficacious and specific synthetic SHP ligands for pharmaceutical applications in liver cancer and several metabolic diseases such as hypercholesterolemia, obesity, diabetes, and fatty liver disease. PMID:26504773

  9. Non-canonical modulators of nuclear receptors.

    PubMed

    Tice, Colin M; Zheng, Ya-Jun

    2016-09-01

    Like G protein-coupled receptors (GPCRs) and protein kinases, nuclear receptors (NRs) are a rich source of pharmaceutical targets. Over 80 NR-targeting drugs have been approved for 18 NRs. The focus of drug discovery in NRs has hitherto been on identifying ligands that bind to the canonical ligand binding pockets of the C-terminal ligand binding domains (LBDs). Due to the development of drug resistance and selectivity concerns, there has been considerable interest in exploring other, non-canonical ligand binding sites. Unfortunately, the potencies of compounds binding at other sites have generally not been sufficient for clinical development. However, the situation has changed dramatically over the last 3years, as compounds with sufficient potency have been reported for several NR targets. Here we review recent developments in this area from a medicinal chemistry point of view in the hope of stimulating further interest in this area of research. PMID:27503683

  10. Prediction of nuclear hormone receptor response elements.

    PubMed

    Sandelin, Albin; Wasserman, Wyeth W

    2005-03-01

    The nuclear receptor (NR) class of transcription factors controls critical regulatory events in key developmental processes, homeostasis maintenance, and medically important diseases and conditions. Identification of the members of a regulon controlled by a NR could provide an accelerated understanding of development and disease. New bioinformatics methods for the analysis of regulatory sequences are required to address the complex properties associated with known regulatory elements targeted by the receptors because the standard methods for binding site prediction fail to reflect the diverse target site configurations. We have constructed a flexible Hidden Markov Model framework capable of predicting NHR binding sites. The model allows for variable spacing and orientation of half-sites. In a genome-scale analysis enabled by the model, we show that NRs in Fugu rubripes have a significant cross-regulatory potential. The model is implemented in a web interface, freely available for academic researchers, available at http://mordor.cgb.ki.se/NHR-scan. PMID:15563547

  11. Intestinal nuclear receptors in HDL cholesterol metabolism

    PubMed Central

    Degirolamo, Chiara; Sabbà, Carlo; Moschetta, Antonio

    2015-01-01

    The intestine plays a pivotal role in cholesterol homeostasis by functioning as an absorptive and secretory organ in the reverse cholesterol transport pathway. Enterocytes control cholesterol absorption, apoAI synthesis, HDL biogenesis, and nonbiliary cholesterol fecal disposal. Thus, intestine-based therapeutic interventions may hold promise in the management of diseases driven by cholesterol overload. Lipid-sensing nuclear receptors (NRs) are highly expressed in the intestinal epithelium and regulate transcriptionally the handling of cholesterol by the enterocytes. Here, we discuss the NR regulation of cholesterol fluxes across the enterocytes with special emphasis on NR exploitation as a bona fide novel HDL-raising strategy. PMID:25070952

  12. Intestinal nuclear receptors in HDL cholesterol metabolism.

    PubMed

    Degirolamo, Chiara; Sabbà, Carlo; Moschetta, Antonio

    2015-07-01

    The intestine plays a pivotal role in cholesterol homeostasis by functioning as an absorptive and secretory organ in the reverse cholesterol transport pathway. Enterocytes control cholesterol absorption, apoAI synthesis, HDL biogenesis, and nonbiliary cholesterol fecal disposal. Thus, intestine-based therapeutic interventions may hold promise in the management of diseases driven by cholesterol overload. Lipid-sensing nuclear receptors (NRs) are highly expressed in the intestinal epithelium and regulate transcriptionally the handling of cholesterol by the enterocytes. Here, we discuss the NR regulation of cholesterol fluxes across the enterocytes with special emphasis on NR exploitation as a bona fide novel HDL-raising strategy. PMID:25070952

  13. Regulation of cytochrome P450 (CYP) genes by nuclear receptors.

    PubMed Central

    Honkakoski, P; Negishi, M

    2000-01-01

    Members of the nuclear-receptor superfamily mediate crucial physiological functions by regulating the synthesis of their target genes. Nuclear receptors are usually activated by ligand binding. Cytochrome P450 (CYP) isoforms often catalyse both formation and degradation of these ligands. CYPs also metabolize many exogenous compounds, some of which may act as activators of nuclear receptors and disruptors of endocrine and cellular homoeostasis. This review summarizes recent findings that indicate that major classes of CYP genes are selectively regulated by certain ligand-activated nuclear receptors, thus creating tightly controlled networks. PMID:10749660

  14. Ubiquitylation of Nuclear Receptors: New Linkages and Therapeutic Implications

    PubMed Central

    Helzer, Kyle T.; Hooper, Christopher; Miyamoto, Shigeki; Alarid, Elaine T.

    2015-01-01

    The nuclear receptor superfamily is a group of transcriptional regulators that control multiple aspects of both physiology and pathology, and are broadly recognized as viable therapeutic targets. While receptor-modulating drugs have been successful in many cases, the discovery of new drug targets is still an active area of research, because resistance to nuclear receptor-targeting therapies remains a significant clinical challenge. Many successful targeted therapies have harnessed the control of receptor activity by targeting events within the nuclear receptor signaling pathway. In this review, we explore the role of nuclear receptor ubiquitylation and discuss how the expanding roles of ubiquitin might be leveraged to identify additional entry points to control receptor function for future therapeutic development. PMID:25943391

  15. Nuclear hormone receptors put immunity on sterols.

    PubMed

    Santori, Fabio R

    2015-10-01

    Nuclear hormone receptors (NHRs) are transcription factors regulated by small molecules. The functions of NHRs range from development of primary and secondary lymphoid organs, to regulation of differentiation and function of DCs, macrophages and T cells. The human genome has 48 classic (hormone and vitamin receptors) and nonclassic (all others) NHRs; 17 nonclassic receptors are orphans, meaning that the endogenous ligand is unknown. Understanding the function of orphan NHRs requires the identification of their natural ligands. The mevalonate pathway, including its sterol and nonsterol intermediates and derivatives, is a source of ligands for many classic and nonclassic NHRs. For example, cholesterol biosynthetic intermediates (CBIs) are natural ligands for RORγ/γt. CBIs are universal endogenous metabolites in mammalian cells, and to study NHRs that bind CBIs requires ligand-free reporters system in sterol auxotroph cells. Furthermore, RORγ/γt shows broad specificity to sterol lipids, suggesting that RORγ/γt is either a general sterol sensor or specificity is defined by an abundant endogenous ligand. Unlike other NHRs, which regulate specific metabolic pathways, there is no connection between the genetic programs induced by RORγ/γt and ligand biosynthesis. In this review, we summarize the roles of nonclassic NHRs and their potential ligands in the immune system. PMID:26222181

  16. In Situ Detection of Interactions Between Nuclear Envelope Proteins and Partners.

    PubMed

    Barateau, Alice; Buendia, Brigitte

    2016-01-01

    Proximity ligation assay (PLA) appears as a quick and easy technique to visualize within fixed cells the occurrence and in situ distribution of protein complexes. PLA has been validated to detect protein-protein interactions within the nuclear compartment. Here, we describe a protocol which allows the detection of interactions between A-type nuclear lamins and either LEM-domain proteins (such as emerin, integrated within the inner nuclear membrane, and LAP2α which accumulates within the nucleoplasm) or gene regulatory factors (e.g., the transcription factor SREBP1). The distinct amounts and patterns of PLA signals obtained for various complexes highlight the pertinence of using PLA to reveal in situ where and to which extent nuclear envelope proteins bind specific partners. PMID:27147040

  17. Role of Nuclear Receptor SHP in Metabolism and Cancer

    PubMed Central

    Zhang, Yuxia; Hagedorn, Curt H.; Wang, Li

    2010-01-01

    Small heterodimer partner (SHP, NR0B2) is a unique member of the nuclear receptor (NR) superfamily that contains the dimerization and ligand-binding domain found in other family members, but lacks the conserved DNA binding domain. The ability of SHP to bind directly to multiple NRs is crucial for its physiological function as a transcriptional inhibitor of gene expression. A wide variety of interacting partners for SHP have been identified, indicating the potential for SHP to regulate an array of genes in different biological pathways. In this review, we summarize studies concerning the structure and target genes of SHP and discuss recent progress in understanding the function of SHP in bile acid, cholesterol, triglyceride, glucose, and drug metabolism. In addition, we review the regulatory role of SHP in microRNA (miRNA) regulation, liver fibrosis and cancer progression. The fact that SHP controls a complex set of genes in multiple metabolic pathways suggests the intriguing possibility of developing new therapeutics for metabolic diseases, including fatty liver, dyslipidemia and obesity, by regulating SHP with small molecules. To achieve this goal, more progress regarding SHP ligands and protein structure will be required. Besides its metabolic regulatory function, studies by us and other groups provide strong evidence that SHP plays a critical role in the development of cancer, particularly liver and breast cancer. An increased understanding of the fundamental mechanisms by which SHP regulates the development of cancers will be critical in applying knowledge of SHP in diagnostic, therapeutic or preventive strategies for specific cancers. PMID:20970497

  18. A nuclear-receptor-dependent phosphatidylcholine pathway with antidiabetic effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nuclear hormone receptors regulate diverse metabolic pathways and the orphan nuclear receptor LRH-1 (also known as NR5A2) regulates bile acid biosynthesis. Structural studies have identified phospholipids as potential LRH-1 ligands, but their functional relevance is unclear. Here we show that an unu...

  19. REV-ERB and ROR nuclear receptors as drug targets

    PubMed Central

    Kojetin, Douglas J.; Burris, Thomas P.

    2016-01-01

    The nuclear receptors REV-ERB (consisting of REV-ERBα and REV-ERBβ) and retinoic acid receptor-related orphan receptors (RORs; consisting of RORα, RORβ and RORγ) are involved in many physiological processes, including regulation of metabolism, development and immunity as well as the circadian rhythm. The recent characterization of endogenous ligands for these former orphan nuclear receptors has stimulated the development of synthetic ligands and opened up the possibility of targeting these receptors to treat several diseases, including diabetes, atherosclerosis, autoimmunity and cancer. This Review focuses on the latest developments in ROR and REV-ERB pharmacology indicating that these nuclear receptors are druggable targets and that ligands targeting these receptors may be useful in the treatment of several disorders. PMID:24577401

  20. Research Resources for Nuclear Receptor Signaling Pathways.

    PubMed

    McKenna, Neil J

    2016-08-01

    Nuclear receptor (NR) signaling pathways impact cellular function in a broad variety of tissues in both normal physiology and disease states. The complex tissue-specific biology of these pathways is an enduring impediment to the development of clinical NR small-molecule modulators that combine therapeutically desirable effects in specific target tissues with suppression of off-target effects in other tissues. Supporting the important primary research in this area is a variety of web-based resources that assist researchers in gaining an appreciation of the molecular determinants of the pharmacology of a NR pathway in a given tissue. In this study, selected representative examples of these tools are reviewed, along with discussions on how current and future generations of tools might optimally adapt to the future of NR signaling research. PMID:27216565

  1. Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1).

    PubMed

    Terranova, Christopher; Narla, Sridhar T; Lee, Yu-Wei; Bard, Jonathan; Parikh, Abhirath; Stachowiak, Ewa K; Tzanakakis, Emmanuel S; Buck, Michael J; Birkaya, Barbara; Stachowiak, Michal K

    2015-01-01

    Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes. Nuclear FGFR1 targets genes in developmental pathways represented by Wnt/β-catenin, CREB, BMP, the cell cycle and cancer-related TP53 pathway, neuroectodermal and mesodermal programing networks, axonal growth and synaptic plasticity pathways. Nuclear FGFR1 targets the consensus sequences of transcription factors known to engage CREB-binding protein, a common coregulator of transcription and established binding partner of nuclear FGFR1. This investigation reveals the role of nuclear FGFR1 as a global genomic programmer of cell, neural and muscle development. PMID:25923916

  2. Orphan nuclear receptors in breast cancer pathogenesis and therapeutic response.

    PubMed

    Riggins, Rebecca B; Mazzotta, Mary M; Maniya, Omar Z; Clarke, Robert

    2010-09-01

    Nuclear receptors comprise a large family of highly conserved transcription factors that regulate many key processes in normal and neoplastic tissues. Most nuclear receptors share a common, highly conserved domain structure that includes a carboxy-terminal ligand-binding domain. However, a subgroup of this gene family is known as the orphan nuclear receptors because to date there are no known natural ligands that regulate their activity. Many of the 25 nuclear receptors classified as orphan play critical roles in embryonic development, metabolism, and the regulation of circadian rhythm. Here, we review the emerging role(s) of orphan nuclear receptors in breast cancer, with a particular focus on two of the estrogen-related receptors (ERRalpha and ERRgamma) and several others implicated in clinical outcome and response or resistance to cytotoxic or endocrine therapies, including the chicken ovalbumin upstream promoter transcription factors, nerve growth factor-induced B, DAX-1, liver receptor homolog-1, and retinoic acid-related orphan receptor alpha. We also propose that a clearer understanding of the function of orphan nuclear receptors in mammary gland development and normal mammary tissues could significantly improve our ability to diagnose, treat, and prevent breast cancer. PMID:20576803

  3. Identification of Gene Markers for Activation of the Nuclear Receptor Pregnane X Receptor

    EPA Science Inventory

    Many environmentally-relevant chemicals and drugs activate the nuclear receptor pregnane X receptor (PXR). Activation of PXR in the mouse liver can lead to increases in liver weight in part through increased hepatocyte replication similar to chemicals that activate other nuclear ...

  4. Nuclear receptors constitutive androstane receptor and pregnane X receptor ameliorate cholestatic liver injury

    PubMed Central

    Stedman, Catherine A. M.; Liddle, Christopher; Coulter, Sally A.; Sonoda, Junichiro; Alvarez, Jacqueline G. A.; Moore, David D.; Evans, Ronald M.; Downes, Michael

    2005-01-01

    Cholestasis is associated with accumulation of bile acids and lipids, and liver injury. The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic nuclear receptors that coordinate protective hepatic responses to potentially toxic stimuli, including bile acids. We investigated the role of these receptors in the regulation of bile acid and lipid metabolism in a bile duct ligation (BDL) model of cholestasis applied to receptor knockout mice. Hepatic damage from bile acid accumulation was increased in both CAR knockout (CARKO) and PXR knockout mice, but bile acid concentrations were lower in CARKO mice. High-density lipoprotein (HDL) cholesterol was elevated in CARKO mice, and serum total cholesterol increased less in CARKO or PXR knockout mice than WT mice after BDL. Gene expression analysis of the BDL knockout animals demonstrated that, in response to cholestasis, PXR and CAR both repressed and induced the specific hepatic membrane transporters Oatp-c (organic anion transporting polypeptide C) and Oatp2 (Na+-dependent organic anion transporter 2), respectively. Induction of the xenobiotic transporter multidrug resistance protein 1 in cholestasis was independent of either PXR or CAR, in contrast to the known pattern of induction of multidrug resistance protein 1 by xenobiotics. These results demonstrate that CAR and PXR influence cholesterol metabolism and bile acid synthesis, as well as multiple detoxification pathways, and suggest their potential role as therapeutic targets for the treatment of cholestasis and lipid disorders. PMID:15684063

  5. Orphan nuclear receptor oestrogen-related receptor γ (ERRγ) plays a key role in hepatic cannabinoid receptor type 1-mediated induction of CYP7A1 gene expression.

    PubMed

    Zhang, Yaochen; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Jeong, Won-Il; Kim, Seong Heon; Lee, In-Kyu; Lee, Chul-Ho; Chiang, John Y L; Choi, Hueng-Sik

    2015-09-01

    Bile acids are primarily synthesized from cholesterol in the liver and have important roles in dietary lipid absorption and cholesterol homoeostasis. Detailed roles of the orphan nuclear receptors regulating cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis, have not yet been fully elucidated. In the present study, we report that oestrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of CYP7A1 expression. Activation of cannabinoid receptor type 1 (CB1 receptor) signalling induced ERRγ-mediated transcription of the CYP7A1 gene. Overexpression of ERRγ increased CYP7A1 expression in vitro and in vivo, whereas knockdown of ERRγ attenuated CYP7A1 expression. Deletion analysis of the CYP7A1 gene promoter and a ChIP assay revealed an ERRγ-binding site on the CYP7A1 gene promoter. Small heterodimer partner (SHP) inhibited the transcriptional activity of ERRγ and thus regulated CYP7A1 expression. Overexpression of ERRγ led to increased bile acid levels, whereas an inverse agonist of ERRγ, GSK5182, reduced CYP7A1 expression and bile acid synthesis. Finally, GSK5182 significantly reduced hepatic CB1 receptor-mediated induction of CYP7A1 expression and bile acid synthesis in alcohol-treated mice. These results provide the molecular mechanism linking ERRγ and bile acid metabolism. PMID:26348907

  6. The Orphan Nuclear Receptors at Their 25th Year Reunion

    PubMed Central

    Mullican, Shannon E.; DiSpirito, Joanna R.; Lazar, Mitchell A.

    2013-01-01

    The Nuclear Receptor superfamily includes many receptors identified based on their similarity to steroid hormone receptors but without a known ligand. The study of how these receptors are diversely regulated to interact with genomic regions to control a plethora of biological processes has provided critical insight into development, physiology and the molecular pathology of disease. Here we provide a compendium of these so-called Orphan Receptors, and focus on what has been learned about their modes of action, physiological functions, and therapeutic promise. PMID:24096517

  7. Nuclear receptor variants in liver disease.

    PubMed

    Zimmer, Vincent; Liebe, Roman; Lammert, Frank

    2015-01-01

    This snapshot reviews the current state of knowledge on genetic variants of nuclear receptors (NRs) involved in regulating various aspects of liver metabolism. Interindividual differences in responses to diet and other 'in-' and environmental stressors can be caused by variants in components of the NR regulatory gene network. We recapitulate recent evidence for the application of NRs in genetic diagnosis of monogenic liver disease. Genetic analysis of multifactorial liver diseases, such as nonalcoholic fatty liver disease and diabetes mellitus, pinpoints key players in disease predisposition and progression. In particular, NR1H4 variants have been associated with intrahepatic cholestasis of pregnancy and gallstone disease. Other examples include studies of NR1I2 and NR1I3 polymorphisms in patients with drug-induced liver injury and NR5A2 variation in cholangiocarcinoma. Associations of NR gene variants have been identified in patients with dyslipidemia and other metabolic syndrome-associated traits by genome-wide studies. Evidence from these analyses confirms a role for NR variation in common diseases, linking regulatory networks to complex and variable phenotypes. These new insights into the impact of NR variants offer perspectives for their future use in diagnosis and treatment of common diseases. PMID:26045277

  8. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways.

    PubMed

    Becnel, Lauren B; Darlington, Yolanda F; Ochsner, Scott A; Easton-Marks, Jeremy R; Watkins, Christopher M; McOwiti, Apollo; Kankanamge, Wasula H; Wise, Michael W; DeHart, Michael; Margolis, Ronald N; McKenna, Neil J

    2015-01-01

    Signaling pathways involving nuclear receptors (NRs), their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA) is a Consortium focused around a Hub website (www.nursa.org) that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs). These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field. PMID:26325041

  9. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways

    PubMed Central

    Becnel, Lauren B.; Darlington, Yolanda F.; Ochsner, Scott A.; Easton-Marks, Jeremy R.; Watkins, Christopher M.; McOwiti, Apollo; Kankanamge, Wasula H.; Wise, Michael W.; DeHart, Michael; Margolis, Ronald N.; McKenna, Neil J.

    2015-01-01

    Signaling pathways involving nuclear receptors (NRs), their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA) is a Consortium focused around a Hub website (www.nursa.org) that annotates and integrates diverse ‘omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs). These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy “Web 2.0” technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA’s Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field. PMID:26325041

  10. CC chemokine receptor 10 cell surface presentation in melanocytes is regulated by the novel interaction partner S100A10

    PubMed Central

    Hessner, F.; Dlugos, C. P.; Chehab, T.; Schaefer, C.; Homey, B.; Gerke, V.; Weide, T.; Pavenstädt, H.; Rescher, U.

    2016-01-01

    The superfamily of G-protein-coupled receptors (GPCR) conveys signals in response to various endogenous and exogenous stimuli. Consequently, GPCRs are the most important drug targets. CCR10, the receptor for the chemokines CCL27/CTACK and CCL28/MEC, belongs to the chemokine receptor subfamily of GPCRs and is thought to function in immune responses and tumour progression. However, there is only limited information on the intracellular regulation of CCR10. We find that S100A10, a member of the S100 family of Ca2+ binding proteins, binds directly to the C-terminal cytoplasmic tail of CCR10 and that this interaction regulates the CCR10 cell surface presentation. This identifies S100A10 as a novel interaction partner and regulator of CCR10 that might serve as a target for therapeutic intervention. PMID:26941067

  11. Flavonoids as dietary regulators of nuclear receptor activity

    PubMed Central

    Avior, Yishai; Bomze, David; Ramon, Ory

    2013-01-01

    Metabolic diseases such as obesity, type II diabetes, and dyslipidemia are a rising cause of mortality worldwide. The progression of many metabolic diseases is fundamentally regulated on the transcriptional level by a family of ligand-activated transcription factors, called nuclear receptors, which detect and respond to metabolic changes. Their role in maintaining metabolic homeostasis makes nuclear receptors an important pharmaceutical and dietary target. This review will present the growing evidence that flavonoids, natural secondary plant metabolites, are important regulators of nuclear receptor activity. Structural similarities between flavonoids and cholesterol derivatives combined with the promiscuous nature of most nuclear receptors provide a wealth of possibilities for pharmaceutical and dietary modulation of metabolism. While the challenges of bringing flavonoid-derived therapeutics to the market are significant, we consider this rapidly growing field to be an essential aspect of the functional food initiative and an important mine for pharmaceutical compounds. PMID:23598551

  12. Hairless is a nuclear receptor corepressor essential for skin function

    PubMed Central

    Thompson, Catherine C.

    2009-01-01

    The activity of nuclear receptors is modulated by numerous coregulatory factors. Corepressors can either mediate the ability of nuclear receptors to repress transcription, or can inhibit transactivation by nuclear receptors. As we learn more about the mechanisms of transcriptional repression, the importance of repression by nuclear receptors in development and disease has become clear. The protein encoded by the mammalian Hairless (Hr) gene was shown to be a corepressor by virtue of its functional similarity to the well-established corepressors N-CoR and SMRT. Mutation of the Hr gene results in congenital hair loss in both mice and men. Investigation of Hairless function both in vitro and in mouse models in vivo has revealed a critical role in maintaining skin and hair by regulating the differentiation of epithelial stem cells, as well as a putative role in regulating gene expression via chromatin remodeling. PMID:20087431

  13. Small heterodimer partner SHP mediates liver X receptor (LXR)-dependent suppression of inflammatory signaling by promoting LXR SUMOylation specifically in astrocytes.

    PubMed

    Lee, Jee Hoon; Kim, Hyunmi; Park, Soo Jung; Woo, Joo Hong; Joe, Eun-Hye; Jou, Ilo

    2016-01-01

    Liver X receptors (LXRs) suppress the expression of inflammatory genes in a context-specific manner. In astrocytes, SUMOylation of LXRs promotes their anti-inflammatory effects. We found that small heterodimer partner (SHP), also known as NR0B2 (nuclear receptor subfamily 0, group B, member 2), facilitates the anti-inflammatory actions of LXRs by promoting their SUMOylation. Knockdown of SHP abrogated SUMOylation of LXRs, preventing their anti-inflammatory effects, in primary rat astrocytes but not macrophages. The underlying mechanisms differed according to LXR isoform. SHP promoted SUMO2 and SUMO3 attachment to LXRα by interacting directly with the histone deacetylase and E3 SUMO ligase HDAC4. In contrast, SHP promoted SUMO1 attachment to LXRβ by stabilizing the E3 SUMO ligase PIAS1. SHP bound PIAS1 and disrupted its interaction with the E3 ubiquitin ligase SIAH1. Knocking down SIAH1 rescued LXRβ SUMOylation in SHP-deficient astrocytes. Our data collectively suggested that SHP mediates the anti-inflammatory actions of LXRs through differential regulation of receptor SUMOylation specifically in astrocytes, thereby revealing potential avenues for therapeutic development in diseases associated with brain inflammation. PMID:27485016

  14. Differential effect of glucocorticoid receptor antagonists on glucocorticoid receptor nuclear translocation and DNA binding

    PubMed Central

    Spiga, Francesca; Knight, David M; Droste, Susanne K; Conway-Campbell, Becky; Kershaw, Yvonne; MacSweeney, Cliona P; Thomson, Fiona J; Craighead, Mark; Peeters, Bernard WMM; Lightman, Stafford L

    2016-01-01

    The effects of RU486 and S-P, a more selective glucocorticoid receptor antagonist from Schering-Plough, were investigated on glucocorticoid receptor nuclear translocation and DNA binding. In the in vitro study, AtT20 cells were treated with vehicle or with RU486, S-P or corticosterone (3–300 nM) or co-treated with vehicle or glucocorticoid receptor antagonists (3–300 nM) and 30 nM corticosterone. Both glucocorticoid receptor antagonists induced glucocorticoid receptor nuclear translocation but only RU486 induced DNA binding. RU486 potentiated the effect of corticosterone on glucocorticoid receptor nuclear translocation and DNA binding, S-P inhibited corticosterone-induced glucocorticoid receptor nuclear translocation, but not glucocorticoid receptor-DNA binding. In the in vivo study, adrenalectomized rats were treated with vehicle, RU486 (20 mg/kg) and S-P (50 mg/kg) alone or in combination with corticosterone (3 mg/kg). RU486 induced glucocorticoid receptor nuclear translocation in the pituitary, hippocampus and prefrontal cortex and glucocorticoid receptor-DNA binding in the hippocampus, whereas no effect of S-P on glucocorticoid receptor nuclear translocation or DNA binding was observed in any of the areas analysed. These findings reveal differential effects of RU486 and S-P on areas involved in regulation of hypothalamic–pituitary–adrenal axis activity in vivo and they are important in light of the potential use of this class of compounds in the treatment of disorders associated with hyperactivity of the hypothalamic–pituitary–adrenal axis. PMID:20093322

  15. ROR nuclear receptors: structures, related diseases, and drug discovery

    PubMed Central

    Zhang, Yan; Luo, Xiao-yu; Wu, Dong-hai; Xu, Yong

    2015-01-01

    Nuclear receptors (NRs) are ligand-regulated transcription factors that regulate metabolism, development and immunity. The NR superfamily is one of the major classes of drug targets for human diseases. Retinoic acid receptor-related orphan receptor (ROR) α, β and γ belong to the NR superfamily, and these receptors are still considered as 'orphan' receptors because the identification of their endogenous ligands has been controversial. Recent studies have demonstrated that these receptors are regulated by synthetic ligands, thus emerge as important drug targets for the treatment of multiple sclerosis, rheumatoid arthritis, psoriasis, etc. Studying the structural basis and ligand development of RORs will pave the way for a better understanding of the roles of these receptors in human diseases. Here, we review the structural basis, disease relevance, strategies for ligand identification, and current status of development of therapeutic ligands for RORs. PMID:25500868

  16. Rational discovery of novel nuclear hormone receptor antagonists

    NASA Astrophysics Data System (ADS)

    Schapira, Matthieu; Raaka, Bruce M.; Samuels, Herbert H.; Abagyan, Ruben

    2000-02-01

    Nuclear hormone receptors (NRs) are potential targets for therapeutic approaches to many clinical conditions, including cancer, diabetes, and neurological diseases. The crystal structure of the ligand binding domain of agonist-bound NRs enables the design of compounds with agonist activity. However, with the exception of the human estrogen receptor-, the lack of antagonist-bound "inactive" receptor structures hinders the rational design of receptor antagonists. In this study, we present a strategy for designing such antagonists. We constructed a model of the inactive conformation of human retinoic acid receptor- by using information derived from antagonist-bound estrogen receptor-α and applied a computer-based virtual screening algorithm to identify retinoic acid receptor antagonists. Thus, the currently available crystal structures of NRs may be used for the rational design of antagonists, which could lead to the development of novel drugs for a variety of diseases.

  17. Toll Receptors Instruct Axon and Dendrite Targeting and Participate in Synaptic Partner Matching in a Drosophila Olfactory Circuit

    PubMed Central

    Ward, Alex; Hong, Weizhe; Favaloro, Vincenzo; Luo, Liqun

    2015-01-01

    SUMMARY Our understanding of the mechanisms that establish wiring specificity of complex neural circuits is far from complete. During Drosophila olfactory circuit assembly, axons of 50 olfactory receptor neuron (ORN) classes and dendrites of 50 projection neuron (PN) classes precisely target to 50 discrete glomeruli, forming parallel information-processing pathways. Here we show that Toll-6 and Toll-7, members of the Toll receptor family best known for functions in innate immunity and embryonic patterning, cell-autonomously instruct the targeting of specific classes of PN dendrites and ORN axons, respectively. The canonical ligands and downstream partners of Toll receptors in embryonic patterning and innate immunity are not required for the function of Toll-6/Toll-7 in wiring specificity, nor are their cytoplasmic domains. Interestingly, both Toll-6 and Toll-7 participate in synaptic partner matching between ORN axons and PN dendrites. Our investigations reveal that olfactory circuit assembly involves dynamic and long-range interactions between PN dendrites and ORN axons. PMID:25741726

  18. Toll receptors instruct axon and dendrite targeting and participate in synaptic partner matching in a Drosophila olfactory circuit.

    PubMed

    Ward, Alex; Hong, Weizhe; Favaloro, Vincenzo; Luo, Liqun

    2015-03-01

    Our understanding of the mechanisms that establish wiring specificity of complex neural circuits is far from complete. During Drosophila olfactory circuit assembly, axons of 50 olfactory receptor neuron (ORN) classes and dendrites of 50 projection neuron (PN) classes precisely target to 50 discrete glomeruli, forming parallel information-processing pathways. Here we show that Toll-6 and Toll-7, members of the Toll receptor family best known for functions in innate immunity and embryonic patterning, cell autonomously instruct the targeting of specific classes of PN dendrites and ORN axons, respectively. The canonical ligands and downstream partners of Toll receptors in embryonic patterning and innate immunity are not required for the function of Toll-6/Toll-7 in wiring specificity, nor are their cytoplasmic domains. Interestingly, both Toll-6 and Toll-7 participate in synaptic partner matching between ORN axons and PN dendrites. Our investigations reveal that olfactory circuit assembly involves dynamic and long-range interactions between PN dendrites and ORN axons. PMID:25741726

  19. Progesterone receptors in human breast cancer. Stoichiometric translocation and nuclear receptor processing.

    PubMed

    Mockus, M B; Horwitz, K B

    1983-04-25

    In a subline of T47D human breast cancer cells, progesterone receptors (PR) are synthesized at very high levels, but their synthesis is not estrogen-dependent. Despite the unusual control of synthesis, the physicochemical properties of PR are normal. These are, therefore, ideal cells to study PR regulation by progesterone, free of estrogen effects. In this paper, we show that nuclear translocation of PR is stoichiometric, and that an unusual and very rapid nuclear turnover, or processing step, characterizes receptor-DNA interactions. In intact T47D cells, PR are translocated to the nucleus only by progestins; 70-90% of cytoplasmic receptors are depleted at 37 degrees C within 5 min of progestin addition. After PR are translocated by 0.1 muM progesterone, they can be quantitatively recovered from nuclei only in the first 5 min; thereafter, a rapid nuclear processing step results in loss of 50-80% of the newly translocated sites. Rapid processing may be inherent to PR; it also occurs in PR of MCF-7 cells. The extent of receptor translocation and of nuclear receptor processing is dependent on the progesterone concentration and on the treatment time, and can be masked by endogenous hormones. Proteolytic enzyme inhibitors (leupeptin, antipain) do not prevent nuclear PR loss. G-C specific DNA intercalators that prevent nuclear estrogen receptor processing (actinomycin D, chromomycin A3) also fail to prevent PR loss, but some A-T specific DNA-binding dyes (chloroquine, primaquine, quinacrine) protect 50-75% of nuclear PR. We conclude that translocated nuclear PR can be quantitatively measured only at early time points because the nuclear receptors are rapidly processed. Furthermore, the processing step may involve an interaction of receptors with DNA since it can be partially blocked by DNA-binding agents. PMID:6833276

  20. Ligands for the Nuclear Peroxisome Proliferator-Activated Receptor Gamma.

    PubMed

    Sauer, Sascha

    2015-10-01

    Nuclear receptors are ligand-activated transcription factors, which represent a primary class of drug targets. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is a key player in various biological processes. PPARγ is widely known as the target protein of the thiazolidinediones for treating type 2 diabetes. Moreover, PPARγ ligands can induce anti-inflammatory and potentially additional beneficial effects. Recent mechanistic insights of PPARγ modulation give hope the next generation of efficient PPARγ-based drugs with fewer side effects can be developed. Furthermore, chemical approaches that make use of synergistic action of combinatorial ligands are promising alternatives for providing tailored medicine. Lessons learned from fine-tuning the action of PPARγ can provide avenues for efficient molecular intervention via many other nuclear receptors to combat common diseases. PMID:26435213

  1. Nuclear Receptors as Drug Targets for Metabolic Disease

    PubMed Central

    2010-01-01

    Nuclear hormone receptors comprise a superfamily of ligand-activated transcription factors that control development, differentiation, and homeostasis. Over the last 15 years a growing number of nuclear receptors have been identified that coordinate genetic networks regulating lipid metabolism and energy utilization. Several of these receptors directly sample the levels of metabolic intermediates including fatty acids and cholesterol derivatives and use this information to regulate the synthesis, transport, and breakdown of the metabolite of interest. In contrast, other family members sense metabolic activity via the presence or absence of interacting proteins. The ability of these nuclear receptors to impact metabolism will be discussed and the challenges facing drug discovery efforts for this class of targets will be highlighted. PMID:20655343

  2. Importin-11, a nuclear import receptor for the ubiquitin-conjugating enzyme, UbcM2.

    PubMed

    Plafker, S M; Macara, I G

    2000-10-16

    Importins are members of a family of transport receptors (karyopherins) that mediate the nucleocytoplasmic transport of protein and RNA cargoes. We identified importin-11 as a potential new human member of this family, on the basis of limited similarity to the Saccharomyces cerevisiae protein, Lph2p, and cloned the complete open reading frame. Importin-11 interacts with the Ran GTPase, and constitutively shuttles between the nuclear and cytoplasmic compartments. A yeast dihybrid screen identified UbcM2, an E2-type ubiquitin-conjugating enzyme, as a binding partner and potential transport cargo for importin-11. Importin-11 and UbcM2 interact directly, and the complex is disassembled by Ran:GTP but not by Ran:GDP. UbcM2 is constitutively nuclear and shuttles between the nuclear and cytoplasmic compartments. Nuclear import of UbcM2 requires Ran and importin-11, and is inhibited by wheatgerm agglutinin, energy depletion or dominant interfering mutants of Ran and importin-beta. These data establish importin-11 as a new member of the karyopherin family of transport receptors, and identify UbcM2 as a nuclear member of the E2 ubiquitin-conjugating enzyme family. PMID:11032817

  3. Nitric oxide coordinates metabolism, growth, and development via the nuclear receptor E75.

    PubMed

    Cáceres, Lucía; Necakov, Aleksandar S; Schwartz, Carol; Kimber, Sandra; Roberts, Ian J H; Krause, Henry M

    2011-07-15

    Nitric oxide gas acts as a short-range signaling molecule in a vast array of important physiological processes, many of which include major changes in gene expression. How these genomic responses are induced, however, is poorly understood. Here, using genetic and chemical manipulations, we show that nitric oxide is produced in the Drosophila prothoracic gland, where it acts via the nuclear receptor ecdysone-induced protein 75 (E75), reversing its ability to interfere with its heterodimer partner, Drosophila hormone receptor 3 (DHR3). Manipulation of these interactions leads to gross alterations in feeding behavior, fat deposition, and developmental timing. These neuroendocrine interactions and consequences appear to be conserved in vertebrates. PMID:21715559

  4. The function of histamine receptor H4R in the brain revealed by interaction partners.

    PubMed

    Moya-Garcia, Aurelio A; Rodriguez, Carlos E; Morilla, Ian; Sanchez-Jimenez, Francisca; Ranea, Juan A G

    2011-01-01

    The histamine H4 receptor is mainly expressed in haematopoietic cells, hence is linked to inflammatory and immune system conditions. It has been recently discovered that the receptor is expressed also in the mammalian central nervous system (CNS), but its role in the brain remains unclear. We address the potential functions of the histamine H4 receptor in the human brain using a 'guilty by association' logic, by close examination of protein-protein functional associations networks in the human proteome. PMID:21622255

  5. Pan-cancer analyses of the nuclear receptor superfamily

    PubMed Central

    Long, Mark D.; Campbell, Moray J.

    2016-01-01

    Nuclear receptors (NR) act as an integrated conduit for environmental and hormonal signals to govern genomic responses, which relate to cell fate decisions. We review how their integrated actions with each other, shared co-factors and other transcription factors are disrupted in cancer. Steroid hormone nuclear receptors are oncogenic drivers in breast and prostate cancer and blockade of signaling is a major therapeutic goal. By contrast to blockade of receptors, in other cancers enhanced receptor function is attractive, as illustrated initially with targeting of retinoic acid receptors in leukemia. In the post-genomic era large consortia, such as The Cancer Genome Atlas, have developed a remarkable volume of genomic data with which to examine multiple aspects of nuclear receptor status in a pan-cancer manner. Therefore to extend the review of NR function we have also undertaken bioinformatics analyses of NR expression in over 3000 tumors, spread across six different tumor types (bladder, breast, colon, head and neck, liver and prostate). Specifically, to ask how the NR expression was distorted (altered expression, mutation and CNV) we have applied bootstrapping approaches to simulate data for comparison, and also compared these NR findings to 12 other transcription factor families. Nuclear receptors were uniquely and uniformly downregulated across all six tumor types, more than predicted by chance. These approaches also revealed that each tumor type had a specific NR expression profile but these were most similar between breast and prostate cancer. Some NRs were down-regulated in at least five tumor types (e.g. NR3C2/MR and NR5A2/LRH-1)) whereas others were uniquely down-regulated in one tumor (e.g. NR1B3/RARG). The downregulation was not driven by copy number variation or mutation and epigenetic mechanisms maybe responsible for the altered nuclear receptor expression. PMID:27200367

  6. Dancing with the dead: Eph receptors and their kinase-null partners.

    PubMed

    Truitt, Luke; Freywald, Andrew

    2011-04-01

    Eph receptor tyrosine kinases and their ligands, ephrins, are membrane proteins coordinating a wide range of biological functions both in developing embryos and in adult multicellular organisms. Numerous studies have implicated Eph receptors in the induction of opposing responses, including cell adhesion or repulsion, support or inhibition of cell proliferation and cell migration, and progression or suppression of multiple malignancies. Similar to other receptor tyrosine kinases, Eph receptors rely on their ability to catalyze tyrosine phosphorylation for signal transduction. Interestingly, however, Eph receptors also actively utilize three kinase-deficient receptor tyrosine kinases, EphB6, EphA10, and Ryk, in their signaling network. The accumulating evidence suggests that the unusual flexibility of the Eph family, allowing it to initiate antagonistic responses, might be partially explained by the influence of the kinase-dead participants and that the exact outcome of an Eph-mediated action is likely to be defined by the balance between the signaling of catalytically potent and catalytically null receptors. We discuss in this minireview the emerging functions of the kinase-dead EphB6, EphA10, and Ryk receptors both in normal biological responses and in malignancy, and analyze currently available information related to the molecular mechanisms of their action in the context of the Eph family. PMID:21455264

  7. Recent progress on nuclear receptor RORγ modulators.

    PubMed

    Cyr, Patrick; Bronner, Sarah M; Crawford, James J

    2016-09-15

    The retinoic acid receptor-related orphan receptor RORγ plays key roles in the development and differentiation of TH17 cells, and thus in IL-17 expression, thymocyte development and regulation of metabolism. With the recent progression into phase 2 clinical trials of both oral and topically administered inverse agonists, and with others close behind, there is significant interest in the discovery of RORγ modulators. This digest covers key developments around RORγ agonists, antagonists and inverse agonists; orthosteric and allosteric binders; and aims to summarize the available information concerning the potential utility of RORγ modulators. PMID:27542308

  8. ERAP140, a conserved tissue-specific nuclear receptor coactivator.

    PubMed

    Shao, Wenlin; Halachmi, Shlomit; Brown, Myles

    2002-05-01

    We report here the identification and characterization of a novel nuclear receptor coactivator, ERAP140. ERAP140 was isolated in a screen for ER alpha-interacting proteins using the ER alpha ligand binding domain as a probe. The ERAP140 protein shares no sequence and has little structural homology with other nuclear receptor cofactors. However, homologues of ERAP140 have been identified in mouse, Drosophila, and Caenorhabditis elegans. The expression of ERAP140 is cell and tissue type specific and is most abundant in the brain, where its expression is restricted to neurons. In addition to interacting with ER alpha, ERAP140 also binds ER beta, TR beta, PPAR gamma, and RAR alpha. ERAP140 interacts with ER alpha via a noncanonical interaction motif. The ER alpha-ERAP140 association can be competed by coactivator NR boxes, indicating ERAP140 binds ER alpha on a surface similar to that of other coactivators. ERAP140 can enhance the transcriptional activities of nuclear receptors with which it interacts. In vivo, ERAP140 is recruited by estrogen-bound ER alpha to the promoter region of endogenous ER alpha target genes. Furthermore, the E(2)-induced recruitment of ERAP140 to the promoter follows a cyclic pattern similar to that of other coactivators. Our results suggest that ERAP140 represents a distinct class of nuclear receptor coactivators that mediates receptor signaling in specific target tissues. PMID:11971969

  9. Regulation of the cytosolic sulfotransferases by nuclear receptors

    PubMed Central

    Runge-Morris, Melissa; Kocarek, Thomas A.; Falany, Charles N.

    2013-01-01

    The cytosolic sulfotransferases (SULTs) are a multigene family of enzymes that catalyze the transfer of a sulfonate group from the physiologic sulfate donor, 3′-phosphoadenosine-5′-phosphosulfate, to a nucleophilic substrate to generate a polar product that is more amenable to elimination from the body. As catalysts of both xenobiotic and endogenous metabolism, the SULTs are major points of contact between the external and physiological environments, and modulation of SULT-catalyzed metabolism can not only affect xenobiotic disposition, but it can also alter endogenous metabolic processes. Therefore, it is not surprising that SULT expression is regulated by numerous members of the nuclear receptor (NR) superfamily that function as sensors of xenobiotics as well as endogenous molecules, such as fatty acids, bile acids, and oxysterols. These NRs include the peroxisome proliferator-activated receptors, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, liver X receptors, farnesoid X receptor, retinoid-related orphan receptors, and estrogen-related receptors. This review summarizes current information about NR regulation of SULT expression. Because species differences in SULT subfamily composition and tissue-, sex-, development-, and inducer-dependent regulation are prominent, these differences will be emphasized throughout the review. In addition, because of the central role of the SULTs in cellular physiology, the effect of NR-mediated SULT regulation on physiological and pathophysiological processes will be discussed. Gaps in current knowledge that require further investigation are also highlighted. PMID:23330539

  10. Nuclear receptor SHP inhibition of Dnmt1 expression via ERRγ.

    PubMed

    Zhang, Yuxia; Wang, Li

    2011-05-01

    We describe a transcriptional mechanism regulating the expression of Dnmt1 by nuclear receptors. We show that ERRγ functions as a transcriptional activator of mouse and human Dnmt1 expression by direct binding to its response elements (ERE1/ERE2) in the dnmt1/DNMT1 promoters. The induction of Dnmt1 by ERRγ is repressed by SHP through SHP inhibition of ERRγ transactivity, diminishing ERRγ recruitment to the Dnmt1 promoter, and altering the conformation of local chromatin from an active mode by ERRγ to an inactive mode. Our study provides the first evidence for nuclear receptor mediated regulation of Dnmt1 expression through ERRγ and SHP crosstalk. PMID:21459093

  11. Nuclear receptor SHP inhibition of Dnmt1 expression via ERRγ

    PubMed Central

    Zhang, Yuxia; Wang, Li

    2011-01-01

    We describe a transcriptional mechanism regulating the expression of Dnmt1 by nuclear receptors. We show that ERRγ functions as a transcriptional activator of mouse and human Dnmt1 expression by direct binding to its response elements (ERE1/ERE2) in the dnmt1/DNMT1 promoters. The induction of Dnmt1 by ERRγ is repressed by SHP through SHP inhibition of ERRγ transactivity, diminishing ERRγ recruitment to the Dnmt1 promoter, and altering the conformation of local chromatin from an active mode by ERRγ to an inactive mode. Our study provides the first evidence for nuclear receptor mediated regulation of Dnmt1 expression through ERRγ and SHP crosstalk. PMID:21459093

  12. Orphan Nuclear Receptors as Targets for Drug Development

    PubMed Central

    Mukherjee, Subhajit

    2012-01-01

    Orphan nuclear receptors regulate diverse biological processes. These important molecules are ligand-activated transcription factors that act as natural sensors for a wide range of steroid hormones and xenobiotic ligands. Because of their importance in regulating various novel signaling pathways, recent research has focused on identifying xenobiotics targeting these receptors for the treatment of multiple human diseases. In this review, we will highlight these receptors in several physiologic and pathophysiologic actions and demonstrate how their functions can be exploited for the successful development of newer drugs. PMID:20372994

  13. Radioligand binding assay for accurate determination of nuclear retinoid X receptors: A case of triorganotin endocrine disrupting ligands.

    PubMed

    Toporova, Lucia; Macejova, Dana; Brtko, Julius

    2016-07-01

    Nuclear 9-cis retinoic acid receptors (retinoid X receptors, RXR) are promiscuous dimerization partners for a number of nuclear receptors. In the present study, we established a novel in vitro method for quantitative determination of the nuclear retinoid X receptors in rat liver. One type of high affinity and limited capacity RXR specific binding sites with the Ka value ranging from 1.011 to 1.727×10(9)l/mol and the Bmax value ranging from 0.346 to 0.567pmol/mg, was demonstrated. Maximal 9-cis retinoic acid (9cRA) specific binding to nuclear retinoid X receptors was achieved at 20°C, and the optimal incubation time for the 9cRA-RXR complex formation was 120min. From a number of endocrine disruptors, tributyltins and triphenyltins are known as RXR ligands. Our data confirmed the property of tributyltin chloride or triphenyltin chloride to bind to a high affinity and limited capacity RXR binding sites. Described optimal conditions for ligand binding to RXR molecules enabled us to calculate maximal binding capacity (Bmax) and affinity (Ka) values. This study provides an original RXR radioligand binding assay that can be employed for investigation of novel RXR ligands that comprise both drugs and endocrine disruptors. PMID:27153798

  14. Female breast carcinomas: nuclear and cytoplasmic proteins versus steroid receptors.

    PubMed

    Bryś, M; Romanowicz-Makowska, H; Nawrocka, A; Krajewska, W M

    2000-01-01

    Nuclear and cytoplasmic proteins of human female breast cancer were analysed by one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Oestrogen receptor and progesterone receptor expression was determined by semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) method. The electropherograms were developed by silver nitrate staining and quantitative analysis was carried out by video densitometer using the software Gel-Pro Analyzer. Nuclear and cytoplasmic proteins of breast carcinomas and normal tissue differed both qualitatively and quantitatively. Nuclear polypeptides of 108, 53 and 48 kD as well as the 36 kD cytoplasmic polypeptide were specific for tumour samples, while the 51 kD nuclear polypeptide was detected only in normal tissue. Quantitative differences in band density were noted in the 32 kD nuclear polypeptide. This polypeptide was expressed in greatest concentration in infiltrating ductal carcinomas which also indicated the greatest oestrogen receptor gene expression. This relationship appeared to be statistically significant (p < 0.005). No correlations were evident between the 32 kD protein expression and the progesterone receptor gene expression in any of the tissue types examined, nor between the 32 kD protein and the patient's age or tumour grade. PMID:10756981

  15. Structures and regulation of non-X orphan nuclear receptors: A retinoid hypothesis.

    PubMed

    Zhi, Xiaoyong; Zhou, X Edward; Melcher, Karsten; Xu, H Eric

    2016-03-01

    Nuclear receptors are defined as a family of ligand regulated transcription factors [1-6]. While this definition reflects that ligand binding is a key property of nuclear receptors, it is still a heated subject of debate if all the nuclear receptors (48 human members) can bind ligands (ligands referred here to both physiological and synthetic ligands). Recent studies in nuclear receptor structure biology and pharmacology have undoubtedly increased our knowledge of nuclear receptor functions and their regulation. As a result, they point to new avenues for the discovery and development of nuclear receptor regulators, including nuclear receptor ligands. Here we review the recent literature on orphan nuclear receptor structural analysis and ligand identification, particularly on the orphan nuclear receptors that do not heterodimerize with retinoid X receptors, which we term as non-X orphan receptors. We also propose a speculative "retinoid hypothesis" for a subset of non-X orphan nuclear receptors, which we hope to help shed light on orphan nuclear receptor biology and drug discovery. This article is part of a Special Issue entitled 'Orphan Nuclear Receptors'. PMID:26159912

  16. The HR97 (NR1L) group of nuclear receptors: a new group of nuclear receptors discovered in Daphnia species.

    PubMed

    Li, Yangchun; Ginjupalli, Gautam K; Baldwin, William S

    2014-09-15

    The recently sequenced Daphnia pulex genome revealed the NR1L nuclear receptor group consisting of three novel receptors. Phylogenetic studies show that this group is related to the NR1I group (CAR/PXR/VDR) and the NR1J group (HR96), and were subsequently named HR97a/b/g. Each of the HR97 paralogs from Daphnia magna, a commonly used crustacean in toxicity testing, was cloned, sequenced, and partially characterized. Phylogenetic analysis indicates that the HR97 receptors are present in primitive arthropods such as the chelicerates but lost in insects. qPCR and immunohistochemistry demonstrate that each of the receptors is expressed near or at reproductive maturity, and that HR97g, the most ancient of the HR97 receptors, is primarily expressed in the gastrointestinal tract, mandibular region, and ovaries, consistent with a role in reproduction. Transactivation assays using an HR97a/b/g-GAL4 chimera indicate that unlike Daphnia HR96 that is promiscuous with respect to ligand recognition, the HR97 receptors do not respond to many of the ligands that activate CAR/PXR/HR96 nuclear receptors. Only three putative ligands of HR97 receptors were identified in this study: pyriproxyfen, methyl farnesoate, and arachidonic acid. Only arachidonic acid, which acts as an inverse agonist, alters HR97g activity at concentrations that would be considered within physiologically relevant ranges. Overall, this study demonstrates that, although closely related to the promiscuous receptors in the NR1I and NR1J groups, the HR97 receptors are mostly likely not multi-xenobiotic sensors, but rather may perform physiological functions, potentially in reproduction, unique to crustaceans and other non-insect arthropod groups. PMID:25092536

  17. Central oxytocin receptors mediate mating-induced partner preferences and enhance correlated activation across forebrain nuclei in male prairie voles.

    PubMed

    Johnson, Zachary V; Walum, Hasse; Jamal, Yaseen A; Xiao, Yao; Keebaugh, Alaine C; Inoue, Kiyoshi; Young, Larry J

    2016-03-01

    Oxytocin (OT) is a deeply conserved nonapeptide that acts both peripherally and centrally to modulate reproductive physiology and sociosexual behavior across divergent taxa, including humans. In vertebrates, the distribution of the oxytocin receptor (OTR) in the brain is variable within and across species, and OTR signaling is critical for a variety of species-typical social and reproductive behaviors, including affiliative and pair bonding behaviors in multiple socially monogamous lineages of fishes, birds, and mammals. Early work in prairie voles suggested that the endogenous OT system modulates mating-induced partner preference formation in females but not males; however, there is significant evidence that central OTRs may modulate pair bonding behavior in both sexes. In addition, it remains unclear how transient windows of central OTR signaling during sociosexual interaction modulate neural activity to produce enduring shifts in sociobehavioral phenotypes, including the formation of selective social bonds. Here we re-examine the role of the central OT system in partner preference formation in male prairie voles using a selective OTR antagonist delivered intracranially. We then use the same antagonist to examine how central OTRs modulate behavior and immediate early gene (Fos) expression, a metric of neuronal activation, in males during brief sociosexual interaction with a female. Our results suggest that, as in females, OTR signaling is critical for partner preference formation in males and enhances correlated activation across sensory and reward processing brain areas during sociosexual interaction. These results are consistent with the hypothesis that central OTR signaling facilitates social bond formation by coordinating activity across a pair bonding neural network. PMID:26643557

  18. Comparison between different forms of estrogen cytosol receptor and the nuclear receptor extracted by micrococcal nuclease.

    PubMed

    Rochefort, H; André, J

    1978-11-01

    As an approach to the mechanism of the nuclear translocation of estrogen receptor, the estradiol nuclear receptor (RN) of lamb endometrium was extracted with micrococcal nuclease at 2--4 degrees and compared to the "native" 8S and to the Ca2+-transformed cytosol receptors. After extensive digestion of chromatin, giving up to 10% perchloric acid-soluble DNA and a majority of nucleosome monomers, up to 80% of the RN was extracted and under low ionic strength. This RN was found to be completely different from the partially proteolyzed Ca2+-transformed cytosol receptor. It migrated with a sedimentation constant of 4 and 6 S. The Stokes radius of the predominant form as determined by ACA 34 chromatography was 5.3 nm. The calculated apparent molecular weights were 130,000 and 90,000, respectively. The RN was able to bind DNA and was eluted from a diethylaminoethyl cellulose column at 0.23 and 0.30 M KCl. We conclude that the mechanism proposed by Puca et al., according to which the Ca2+-transformed cytosol receptor is split by a Ca2+ receptor-transforming factor into a smaller form able to cross the nuclear membrane, is very unlikely. PMID:698961

  19. Alternative sumoylation sites in the Drosophila nuclear receptor Usp.

    PubMed

    Bielska, Katarzyna; Seliga, Justyna; Wieczorek, Elżbieta; Kędracka-Krok, Sylwia; Niedenthal, Rainer; Ożyhar, Andrzej

    2012-11-01

    The ultraspiracle protein (Usp), together with an ecdysone receptor (EcR) forms a heterodimeric ecdysteroid receptor complex, which controls metamorphosis in Drosophila melanogaster. Although the ecdysteroid receptor is considered to be a source of elements for ecdysteroid inducible gene switches in mammals, nothing is known about posttranslational modifications of the receptor constituents in mammalian cells. Up until now there has been no study about Usp sumoylation. Using Ubc9 fusion-directed sumoylation system, we identified Usp as a new target of SUMO1 and SUMO3 modification. Mutagenesis studies on the fragments of Usp indicated that sumoylation can occur alternatively on several defined Lys residues, i.e. three (Lys16, Lys20, Lys37) in A/B region, one (Lys424) in E region and one (Lys506) in F region. However, sumoylation of one Lys residue within A/B region prevents modification of other residues in this region. This was also observed for Lys residues in carboxyl-terminal fragment of Usp, i.e. comprising E and F regions. Mass spectrometry analysis of the full-length Usp indicated that the main SUMO attachment site is at Lys20. EcR, the heterodimerization partner of Usp, and muristerone A, the EcR ligand, do not influence sumoylation patterns of Usp. Another heterodimerization partner of Usp - HR38 fused with Ubc9 interacts with Usp in HEK293 cells and allows sumoylation of Usp independent of the direct fusion to Ubc9. Taken together, we propose that sumoylation of DmUsp can be an important factor in modulating its activity by changing molecular interactions. PMID:22676916

  20. Nuclear Receptor Activity and Liver Cancer Lesion Progression

    EPA Science Inventory

    Nuclear receptors (NRs) are ligand-activated transcription factors that control diverse cellular processes. Chronic stimulation of some NRs is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. We explored this question using human CAR, PXR, PPARα,...

  1. Nuclear receptor coregulators as a new paradigm for therapeutic targeting

    PubMed Central

    Hsia, Elaine Y.; Goodson, Michael L.; Zou, June X.; Privalsky, Martin L.; Chen, Hong-Wu

    2012-01-01

    The complex function and regulation of nuclear receptors cannot be fully understood without a thorough knowledge of the receptor-associated coregulators that either enhance (coactivators) or inhibit (corepressors) transcription. While nuclear receptors themselves have garnered much attention as therapeutic targets, the clinical and etiological relevance of the coregulators to human diseases is increasingly recognized. Aberrant expression or function of coactivators and corepressors has been associated with malignant and metabolic disease development. Many of them are key epigenetic regulators and utilize enzymatic activities to modify chromatin through histone acetylation/deacetylation, histone methylation/demethylation or chromatin remodeling. In this review, we showcase and evaluate coregulators with the most promising therapeutic potential based on their physiological roles and involvement in various diseases that are revealed thus far. We also describe the structural features of the coactivator and corepressor functional domains and highlight areas that can be further explored for molecular targeting. PMID:20933027

  2. Nuclear bile acid signaling through the farnesoid X receptor.

    PubMed

    Mazuy, Claire; Helleboid, Audrey; Staels, Bart; Lefebvre, Philippe

    2015-05-01

    Bile acids (BAs) are amphipathic molecules produced from cholesterol by the liver. Expelled from the gallbladder upon meal ingestion, BAs serve as fat solubilizers in the intestine. BAs are reabsorbed in the ileum and return via the portal vein to the liver where, together with nutrients, they provide signals to coordinate metabolic responses. BAs act on energy and metabolic homeostasis through the activation of membrane and nuclear receptors, among which the nuclear receptor farnesoid X receptor (FXR) is an important regulator of several metabolic pathways. Highly expressed in the liver and the small intestine, FXR contributes to BA effects on metabolism, inflammation and cell cycle control. The pharmacological modulation of its activity has emerged as a potential therapeutic strategy for liver and metabolic diseases. This review highlights recent advances regarding the mechanisms by which the BA sensor FXR contributes to global signaling effects of BAs, and how FXR activity may be regulated by nutrient-sensitive signaling pathways. PMID:25511198

  3. Re-adopting classical nuclear receptors by cholesterol metabolites.

    PubMed

    Umetani, Michihisa

    2016-03-01

    Since the first cloning of the human estrogen receptor (ER) α in 1986 and the subsequent cloning of human ERβ, there has been extensive investigation of the role of estrogen/ER. Estrogens/ER play important roles not only in sexual development and reproduction but also in a variety of other functions in multiple tissues. Selective Estrogen Receptor Modulators (SERMs) are ER lignds that act as agonists or antagonists depending on the target genes and tissues, and until recently, only synthetic SERMs have been recognized. However, the discovery of the first endogenous SERM, 27-hydroxycholesterol (27HC), opened a new dimension of ER action in health and disease. In addition to the identification of 27HC as a SERM, oxysterols have been recently demonstrated as indirect modulators of ER through interaction with the nuclear receptor Liver X Receptor (LXR) β. In this review, the recent progress on these novel roles of oxysterols in ER modulation is summarized. PMID:26563834

  4. Nuclear tristetraprolin acts as a corepressor of multiple steroid nuclear receptors in breast cancer cells

    PubMed Central

    Barrios-García, Tonatiuh; Gómez-Romero, Vania; Tecalco-Cruz, Ángeles; Valadéz-Graham, Viviana; León-Del-Río, Alfonso

    2016-01-01

    Tristetraprolin (TTP) is a 34-kDa, zinc finger-containing factor that in mammalian cells acts as a tumor suppressor protein through two different mechanisms. In the cytoplasm TTP promotes the decay of hundreds of mRNAs encoding cell factors involved in inflammation, tissue invasion, and metastasis. In the cell nucleus TTP has been identified as a transcriptional corepressor of the estrogen receptor alpha (ERα), which has been associated to the development and progression of the majority of breast cancer tumors. In this work we report that nuclear TTP modulates the transactivation activity of progesterone receptor (PR), glucocorticoid receptor (GR) and androgen receptor (AR). In recent years these steroid nuclear receptors have been shown to be of clinical and therapeutical relevance in breast cancer. The functional association between TTP and steroid nuclear receptors is supported by the finding that TTP physically interacts with ERα, PR, GR and AR in vivo. We also show that TTP overexpression attenuates the transactivation of all the steroid nuclear receptors tested. In contrast, siRNA-mediated reduction of endogenous TTP expression in MCF-7 cells produced an increase in the transcriptional activities of ERα, PR, GR and AR. Taken together, these results suggest that the function of nuclear TTP in breast cancer cells is to act as a corepressor of ERα, PR, GR and AR. We propose that the reduction of TTP expression observed in different types of breast cancer tumors may contribute to the development of this disease by producing a dysregulation of the transactivation activity of multiple steroid nuclear receptors. PMID:27114912

  5. Nuclear tristetraprolin acts as a corepressor of multiple steroid nuclear receptors in breast cancer cells.

    PubMed

    Barrios-García, Tonatiuh; Gómez-Romero, Vania; Tecalco-Cruz, Ángeles; Valadéz-Graham, Viviana; León-Del-Río, Alfonso

    2016-06-01

    Tristetraprolin (TTP) is a 34-kDa, zinc finger-containing factor that in mammalian cells acts as a tumor suppressor protein through two different mechanisms. In the cytoplasm TTP promotes the decay of hundreds of mRNAs encoding cell factors involved in inflammation, tissue invasion, and metastasis. In the cell nucleus TTP has been identified as a transcriptional corepressor of the estrogen receptor alpha (ERα), which has been associated to the development and progression of the majority of breast cancer tumors. In this work we report that nuclear TTP modulates the transactivation activity of progesterone receptor (PR), glucocorticoid receptor (GR) and androgen receptor (AR). In recent years these steroid nuclear receptors have been shown to be of clinical and therapeutical relevance in breast cancer. The functional association between TTP and steroid nuclear receptors is supported by the finding that TTP physically interacts with ERα, PR, GR and AR in vivo. We also show that TTP overexpression attenuates the transactivation of all the steroid nuclear receptors tested. In contrast, siRNA-mediated reduction of endogenous TTP expression in MCF-7 cells produced an increase in the transcriptional activities of ERα, PR, GR and AR. Taken together, these results suggest that the function of nuclear TTP in breast cancer cells is to act as a corepressor of ERα, PR, GR and AR. We propose that the reduction of TTP expression observed in different types of breast cancer tumors may contribute to the development of this disease by producing a dysregulation of the transactivation activity of multiple steroid nuclear receptors. PMID:27114912

  6. Nuclear receptors CAR and PXR: Molecular, functional, and biomedical aspects.

    PubMed

    di Masi, Alessandra; De Marinis, Elisabetta; Ascenzi, Paolo; Marino, Maria

    2009-10-01

    Nuclear receptors (NRs) are ligand-activated transcription factors sharing a common evolutionary history and having similar sequence features at the protein level. Selective ligand(s) for some NRs is not known, therefore these NRs have been named "orphan receptors". Whenever ligands have been recognized for any of the orphan receptor, it has been categorized and grouped as "adopted" orphan receptor. This group includes the constitutive androstane receptor (CAR) and the pregnane X receptor (PXR). They function as sensors of toxic byproducts derived from endogenous metabolites and of exogenous chemicals, in order to enhance their elimination. This unique function of CAR and PXR sets them apart from the steroid hormone receptors. The broad response profile has established that CAR and PXR are xenobiotic sensors that coordinately regulate xenobiotic clearance in the liver and intestine via induction of genes involved in drug and xenobiotic metabolism. In the past few years, research has revealed new and mostly unsuspected roles for CAR and PXR in modulating hormone, lipid, and energy homeostasis as well as cancer and liver steatosis. The purpose of this review is to highlight the structural and molecular bases of CAR and PXR impact on human health, providing information on mechanisms through which diet, chemical exposure, and environment ultimately impact health and disease. PMID:19427329

  7. Retinoic Acid-mediated Nuclear Receptor Activation and Hepatocyte Proliferation

    PubMed Central

    Bushue, Nathan; Wan, Yu-Jui Yvonne

    2016-01-01

    Due to their well-known differentiation and apoptosis-inducing abilities, retinoic acid (RA) and its analogs have strong anti-cancer efficacy in human cancers. However, in vivo RA is a liver mitogen. While speculation has persisted that RA-mediated signaling is likely involved in hepatocyte proliferation during liver regeneration, direct evidence is still required. Findings in support of this proposition include observations that a release of retinyl palmitate (the precursor of RA) occurs in liver stellate cells following liver injury. Nevertheless, the biological action of this released vitamin A is virtually unknown. More likely is that the released vitamin A is converted to RA, the biological form, and then bound to a specific receptor (retinoid x receptor; RXRα), which is most abundantly expressed in the liver. Considering the mitogenic effects of RA, the RA-activated RXRα would likely then influence hepatocyte proliferation and liver tissue repair. At present, the mechanism by which RA stimulates hepatocyte proliferation is largely unknown. This review summarizes the activation of nuclear receptors (peroxisome proliferator activated receptor-α, pregnane x receptor, constitutive androstane receptor, and farnesoid x receptor) in an RXRα dependent manner to induce hepatocyte proliferation, providing a link between RA and its proliferative role.

  8. Nuclear Receptor Coactivators Are Coexpressed with Steroid Receptors and Regulated by Estradiol in Mouse Brain

    PubMed Central

    Tognoni, Christina M.; Chadwick, Joseph G.; Ackeifi, Courtney A.; Tetel, Marc J.

    2011-01-01

    Background/Aims The steroid hormones, including estradiol (E) and progesterone, act in the brain to regulate female reproductive behavior and physiology. These hormones mediate many of their biological effects by binding to their respective intracellular receptors. The receptors for estrogens (ER) and progestins (PR) interact with nuclear receptor coactivators to initiate transcription of steroid-responsive genes. Work from our laboratory and others reveals that nuclear receptor coactivators, including steroid receptor coactivator-1 (SRC-1) and SRC-2, function in brain to modulate ER-mediated induction of the PR gene and hormone-dependent behaviors. In order for steroid receptors and coactivators to function together, both must be expressed in the same cells. Methods Triple-label immunofluorescence was used to determine if E-induced PR cells also express SRC-1 or SRC-2 in reproductively relevant brain regions of the female mouse. Results The majority of E-induced PR cells in the medial preoptic area (61%), ventromedial nucleus of the hypothalamus (63%) and arcuate nucleus (76%) coexpressed both SRC-1 and SRC-2. A smaller proportion of PR cells expressed either SRC-1 or SRC-2, while a few PR cells expressed neither coactivator. In addition, compared to control animals, 17β-estradiol benzoate (EB) treatment increased SRC-1 levels in the arcuate nucleus, but not the medial preoptic area or the ventromedial nucleus of the hypothalamus. EB did not alter SRC-2 expression in any of the three brain regions analyzed. Conclusions Taken together, the present findings identify a population of cells in which steroid receptors and nuclear receptor coactivators may interact to modulate steroid sensitivity in brain and regulate hormone-dependent behaviors in female mice. Given that cell culture studies reveal that SRC-1 and SRC-2 can mediate distinct steroid-signaling pathways, the present findings suggest that steroids can produce a variety of complex responses in these

  9. Isolation and characterization of the ecdysone receptor and its heterodimeric partner ultraspiracle through development in Sciara coprophila

    PubMed Central

    Foulk, Michael S.; Waggener, John M.; Johnson, Janell M.; Yamamoto, Yutaka; Liew, Gerald M.; Urnov, Fyodor D.; Young, Yuki; Lee, Genee; Smith, Heidi S.

    2014-01-01

    Regulation of DNA replication is critical, and loss of control can lead to DNA amplification. Naturally occurring, developmentally regulated DNA amplification occurs in the DNA puffs of the late larval salivary gland giant polytene chromosomes in the fungus fly, Sciara coprophila. The steroid hormone ecdysone induces DNA amplification in Sciara, and the amplification origin of DNA puff II/9A contains a putative binding site for the ecdysone receptor (EcR). We report here the isolation, cloning, and characterizing of two ecdysone receptor isoforms in Sciara (ScEcR-A and ScEcR-B) and the heterodimeric partner, ultraspiracle (ScUSP). ScEcR-A is the predominant isoform in larval tissues and ScEcR-B in adult tissues, contrary to the pattern in Drosophila. Moreover, ScEcR-A is produced at amplification but is absent just prior. We discuss these results in relation to the model of ecdysone regulation of DNA amplification. PMID:23321980

  10. Proteolytic cleavage, trafficking, and functions of nuclear receptor tyrosine kinases.

    PubMed

    Chen, Mei-Kuang; Hung, Mien-Chie

    2015-10-01

    Intracellular localization has been reported for over three-quarters of receptor tyrosine kinase (RTK) families in response to environmental stimuli. Internalized RTK may bind to non-canonical substrates and affect various cellular processes. Many of the intracellular RTKs exist as fragmented forms that are generated by γ-secretase cleavage of the full-length receptor, shedding, alternative splicing, or alternative translation initiation. Soluble RTK fragments are stabilized and intracellularly transported into subcellular compartments, such as the nucleus, by binding to chaperone or transcription factors, while membrane-bound RTKs (full-length or truncated) are transported from the plasma membrane to the ER through the well-established Rab- or clathrin adaptor protein-coated vesicle retrograde trafficking pathways. Subsequent nuclear transport of membrane-bound RTK may occur via two pathways, INFS or INTERNET, with the former characterized by release of receptors from the ER into the cytosol and the latter characterized by release of membrane-bound receptor from the ER into the nucleoplasm through the inner nuclear membrane. Although most non-canonical intracellular RTK signaling is related to transcriptional regulation, there may be other functions that have yet to be discovered. In this review, we summarize the proteolytic processing, intracellular trafficking and nuclear functions of RTKs, and discuss how they promote cancer progression, and their clinical implications. PMID:26096795

  11. Identification of COUP-TFII Orphan Nuclear Receptor as a Retinoic Acid-Activated Receptor

    SciTech Connect

    Kruse, Schoen W; Suino-Powell, Kelly; Zhou, X Edward; Kretschman, Jennifer E; Reynolds, Ross; Vonrhein, Clemens; Xu, Yong; Wang, Liliang; Tsai, Sophia Y; Tsai, Ming-Jer; Xu, H Eric

    2010-01-12

    The chicken ovalbumin upstream promoter-transcription factors (COUP-TFI and II) make up the most conserved subfamily of nuclear receptors that play key roles in angiogenesis, neuronal development, organogenesis, cell fate determination, and metabolic homeostasis. Although the biological functions of COUP-TFs have been studied extensively, little is known of their structural features or aspects of ligand regulation. Here we report the ligand-free 1.48 {angstrom} crystal structure of the human COUP-TFII ligand-binding domain. The structure reveals an autorepressed conformation of the receptor, where helix {alpha}10 is bent into the ligand-binding pocket and the activation function-2 helix is folded into the cofactor binding site, thus preventing the recruitment of coactivators. In contrast, in multiple cell lines, COUP-TFII exhibits constitutive transcriptional activity, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, and ligand binding, substantially reduce the COUP-TFII transcriptional activity. Importantly, retinoid acids are able to promote COUP-TFII to recruit coactivators and activate a COUP-TF reporter construct. Although the concentration needed is higher than the physiological levels of retinoic acids, these findings demonstrate that COUP-TFII is a ligand-regulated nuclear receptor, in which ligands activate the receptor by releasing it from the autorepressed conformation.

  12. Nuclear receptor corepressor complexes in cancer: mechanism, function and regulation

    PubMed Central

    Wong, Madeline M; Guo, Chun; Zhang, Jinsong

    2014-01-01

    Nuclear receptor corepressor (NCoR) and silencing mediator for retinoid and thyroid hormone receptors (SMRT) function as corepressors for diverse transcription factors including nuclear receptors such as estrogen receptors and androgen receptors. Deregulated functions of NCoR and SMRT have been observed in many types of cancers and leukemias. NCoR and SMRT directly bind to transcription factors and nucleate the formation of stable complexes that include histone deacetylase 3, transducin b-like protein 1/TBL1-related protein 1, and G-protein pathway suppressor 2. These NCoR/SMRT-interacting proteins also show deregulated functions in cancers. In this review, we summarize the literature on the mechanism, regulation, and function of the core components of NCoR/SMRT complexes in the context of their involvement in cancers and leukemias. While the current studies support the view that the corepressors are promising targets for cancer treatment, elucidation of the mechanisms of corepressors involved in individual types of cancers is likely required for effective therapy. PMID:25374920

  13. Novel roles of nuclear angiotensin receptors and signaling mechanisms.

    PubMed

    Gwathmey, TanYa M; Alzayadneh, Ebaa M; Pendergrass, Karl D; Chappell, Mark C

    2012-03-01

    The renin-angiotensin system (RAS) constitutes an important hormonal system in the physiological regulation of blood pressure. The dysregulation of the RAS is considered a major influence in the development and progression of cardiovascular disease and other pathologies. Indeed, experimental and clinical evidence indicates that blockade of this system with angiotensin-converting enzyme (ACE) inhibitors or angiotensin type 1 receptor (AT1R) antagonists is an effective therapy to attenuate hypertension and diabetic renal injury, and to improve heart failure. Originally defined as a circulating system, multiple tissues express a complete RAS, and compelling evidence now favors an intracellular system involved in cell signaling and function. Within the kidney, intracellular expression of the three predominant ANG receptor subtypes is evident in the nuclear compartment. The ANG type 1 receptor (AT1R) is coupled to the generation of reactive oxygen species (ROS) through the activation of phosphoinositol-3 kinase (PI3K) and PKC. In contrast, both ANG type 2 (AT2R) and ANG-(1-7) (AT7R) receptors stimulate nitric oxide (NO) formation, which may involve nuclear endothelial NO synthase (eNOS). Moreover, blockade of either ACE2-the enzyme that converts ANG II to ANG-(1-7)-or the AT7 receptor exacerbates the ANG II-ROS response on renal nuclei. Finally, in a model of fetal programmed hypertension, the nuclear ROS response to ANG II is enhanced, while both AT2 and AT7 stimulation of NO is attenuated, suggesting that an imbalance in the intracellular RAS may contribute to the development of programming events. We conclude that a functional intracellular or nuclear RAS may have important implications in the therapeutic approaches to cardiovascular disease. PMID:22170620

  14. Ig Superfamily Ligand and Receptor Pairs Expressed in Synaptic Partners in Drosophila.

    PubMed

    Tan, Liming; Zhang, Kelvin Xi; Pecot, Matthew Y; Nagarkar-Jaiswal, Sonal; Lee, Pei-Tseng; Takemura, Shin-Ya; McEwen, Jason M; Nern, Aljoscha; Xu, Shuwa; Tadros, Wael; Chen, Zhenqing; Zinn, Kai; Bellen, Hugo J; Morey, Marta; Zipursky, S Lawrence

    2015-12-17

    Information processing relies on precise patterns of synapses between neurons. The cellular recognition mechanisms regulating this specificity are poorly understood. In the medulla of the Drosophila visual system, different neurons form synaptic connections in different layers. Here, we sought to identify candidate cell recognition molecules underlying this specificity. Using RNA sequencing (RNA-seq), we show that neurons with different synaptic specificities express unique combinations of mRNAs encoding hundreds of cell surface and secreted proteins. Using RNA-seq and protein tagging, we demonstrate that 21 paralogs of the Dpr family, a subclass of immunoglobulin (Ig)-domain containing proteins, are expressed in unique combinations in homologous neurons with different layer-specific synaptic connections. Dpr interacting proteins (DIPs), comprising nine paralogs of another subclass of Ig-containing proteins, are expressed in a complementary layer-specific fashion in a subset of synaptic partners. We propose that pairs of Dpr/DIP paralogs contribute to layer-specific patterns of synaptic connectivity. PMID:26687360

  15. Clearance Kinetics and Matrix Binding Partners of the Receptor for Advanced Glycation End Products

    PubMed Central

    Milutinovic, Pavle S.; Englert, Judson M.; Crum, Lauren T.; Mason, Neale S.; Ramsgaard, Lasse; Enghild, Jan J.; Sparvero, Louis J.; Lotze, Michael T.; Oury, Tim D.

    2014-01-01

    Elucidating the sites and mechanisms of sRAGE action in the healthy state is vital to better understand the biological importance of the receptor for advanced glycation end products (RAGE). Previous studies in animal models of disease have demonstrated that exogenous sRAGE has an anti-inflammatory effect, which has been reasoned to arise from sequestration of pro-inflammatory ligands away from membrane-bound RAGE isoforms. We show here that sRAGE exhibits in vitro binding with high affinity and reversibly to extracellular matrix components collagen I, collagen IV, and laminin. Soluble RAGE administered intratracheally, intravenously, or intraperitoneally, does not distribute in a specific fashion to any healthy mouse tissue, suggesting against the existence of accessible sRAGE sinks and receptors in the healthy mouse. Intratracheal administration is the only effective means of delivering exogenous sRAGE to the lung, the organ in which RAGE is most highly expressed; clearance of sRAGE from lung does not differ appreciably from that of albumin. PMID:24642901

  16. Clearance kinetics and matrix binding partners of the receptor for advanced glycation end products.

    PubMed

    Milutinovic, Pavle S; Englert, Judson M; Crum, Lauren T; Mason, Neale S; Ramsgaard, Lasse; Enghild, Jan J; Sparvero, Louis J; Lotze, Michael T; Oury, Tim D

    2014-01-01

    Elucidating the sites and mechanisms of sRAGE action in the healthy state is vital to better understand the biological importance of the receptor for advanced glycation end products (RAGE). Previous studies in animal models of disease have demonstrated that exogenous sRAGE has an anti-inflammatory effect, which has been reasoned to arise from sequestration of pro-inflammatory ligands away from membrane-bound RAGE isoforms. We show here that sRAGE exhibits in vitro binding with high affinity and reversibly to extracellular matrix components collagen I, collagen IV, and laminin. Soluble RAGE administered intratracheally, intravenously, or intraperitoneally, does not distribute in a specific fashion to any healthy mouse tissue, suggesting against the existence of accessible sRAGE sinks and receptors in the healthy mouse. Intratracheal administration is the only effective means of delivering exogenous sRAGE to the lung, the organ in which RAGE is most highly expressed; clearance of sRAGE from lung does not differ appreciably from that of albumin. PMID:24642901

  17. Actin and Keratin are Binding Partners of the 1,25D3-MARRS Receptor/PDIA3/ERp57

    PubMed Central

    LeBlanc, Tremaine; Nemere, lka

    2014-01-01

    We have shown that the 1,25D3-MARRS receptor is necessary for the rapid, pre-genomic effects of 1,25(OH)2D3 on phosphate and/or calcium absorption in chick intestines. However, a clear understanding of the proteins involved in the signaling mechanisms by which the 1,25D3-MARRS receptor facilitates 1,25(OH)2D3-mediated phosphate or calcium uptake, as well as other cellular effects, is still under investigation. We used co-immunoprecipitation studies and mass spectroscopy to identify actin and keratin as proteins that interact with the 1,25D3-MARRS receptor. Using confocal microscopy, we visualized 1,25(OH)2D3- MARRS receptor localizations relative to actin and/or keratin distribution in chick enterocytes. Cells cultured in media containing phenol red had the 1,25D3-MARRS receptor and actin localized largely in the nucleus, which was dispersed upon addition of (OH)2 1,25(OH)2D3. In the absence of phenol red, staining was cytoplasmic. Addition of steroid caused diminished staining at 10 s and 30 s, with a return of intensity between 1 and 5 min. Nuclear staining was observed after 1 min. We found that F-actin concentrations are maximal when 1,25D3-MARRS receptor localizations within enterocytes are low suggesting that cyclical conversions of F-actin to G-actin are involved in the 1,25(OH)2D3-mediated redistribution of the 1,25D3-MARRS receptor within the cell. We also found that keratin distribution remains constant with 1,25(OH)2D3 exposure when Factin depolymerizes into G-actin, which suggests that actin and keratin work in concert to facilitate hormonemediated redistribution of the 1,25D3-MARRS receptor. We subsequently investigated whether the cyclical redistribution was related to either 1,25(OH)2D3-stimulated phosphate or calcium uptake, but no congruent pattern was found. PMID:26029286

  18. Label-Free Proteomic Identification of Endogenous, Insulin-Stimulated Interaction Partners of Insulin Receptor Substrate-1

    NASA Astrophysics Data System (ADS)

    Geetha, Thangiah; Langlais, Paul; Luo, Moulun; Mapes, Rebekka; Lefort, Natalie; Chen, Shu-Chuan; Mandarino, Lawrence J.; Yi, Zhengping

    2011-03-01

    Protein-protein interactions are key to most cellular processes. Tandem mass spectrometry (MS/MS)-based proteomics combined with co-immunoprecipitation (CO-IP) has emerged as a powerful approach for studying protein complexes. However, a majority of systematic proteomics studies on protein-protein interactions involve the use of protein overexpression and/or epitope-tagged bait proteins, which might affect binding stoichiometry and lead to higher false positives. Here, we report an application of a straightforward, label-free CO-IP-MS/MS method, without the use of protein overexpression or protein tags, to the investigation of changes in the abundance of endogenous proteins associated with a bait protein, which is in this case insulin receptor substrate-1 (IRS-1), under basal and insulin stimulated conditions. IRS-1 plays a central role in the insulin signaling cascade. Defects in the protein-protein interactions involving IRS-1 may lead to the development of insulin resistance and type 2 diabetes. HPLC-ESI-MS/MS analyses identified eleven novel endogenous insulin-stimulated IRS-1 interaction partners in L6 myotubes reproducibly, including proteins play an important role in protein dephosphorylation [protein phosphatase 1 regulatory subunit 12A, (PPP1R12A)], muscle contraction and actin cytoskeleton rearrangement, endoplasmic reticulum stress, and protein folding, as well as protein synthesis. This novel application of label-free CO-IP-MS/MS quantification to assess endogenous interaction partners of a specific protein will prove useful for understanding how various cell stimuli regulate insulin signal transduction.

  19. Atypical nuclear localization of VIP receptors in glioma cell lines and patients

    SciTech Connect

    Barbarin, Alice; Séité, Paule; Godet, Julie; Bensalma, Souheyla; Muller, Jean-Marc; Chadéneau, Corinne

    2014-11-28

    Highlights: • The VIP receptor VPAC1 contains a putative NLS signal. • VPAC1 is predominantly nuclear in GBM cell lines but not VPAC2. • Non-nuclear VPAC1/2 protein expression is correlated with glioma grade. • Nuclear VPAC1 is observed in 50% of stage IV glioma (GBM). - Abstract: An increasing number of G protein-coupled receptors, like receptors for vasoactive intestinal peptide (VIP), are found in cell nucleus. As VIP receptors are involved in the regulation of glioma cell proliferation and migration, we investigated the expression and the nuclear localization of the VIP receptors VPAC1 and VPAC2 in this cancer. First, by applying Western blot and immunofluorescence detection in three human glioblastoma (GBM) cell lines, we observed a strong nuclear staining for the VPAC1 receptor and a weak nuclear VPAC2 receptor staining. Second, immunohistochemical staining of VPAC1 and VPAC2 on tissue microarrays (TMA) showed that the two receptors were expressed in normal brain and glioma tissues. Expression in the non-nuclear compartment of the two receptors significantly increased with the grade of the tumors. Analysis of nuclear staining revealed a significant increase of VPAC1 staining with glioma grade, with up to 50% of GBM displaying strong VPAC1 nuclear staining, whereas nuclear VPAC2 staining remained marginal. The increase in VPAC receptor expression with glioma grades and the enhanced nuclear localization of the VPAC1 receptors in GBM might be of importance for glioma progression.

  20. The yeast nuclear import receptor is required for mitosis.

    PubMed Central

    Loeb, J D; Schlenstedt, G; Pellman, D; Kornitzer, D; Silver, P A; Fink, G R

    1995-01-01

    The nuclear import system is highly conserved among eukaryotes. Here we report the effects of a conditional mutation in SRP1, which encodes a Saccharomyces cerevisiae homolog of the vertebrate nuclear import receptor importin. Importin was isolated as a factor required for the initial targeting step of a nuclear import substrate to the nuclear envelope in a mammalian in vitro assay. We show that yeast Srp1 is similarly required for protein import. In addition, Srp1 is also required for the execution of mitosis: we demonstrate that cells containing a conditional mutation of SRP1 arrest with a G2/M phenotype in a manner analogous to classic cdc mutants. This defect may be due to the failure of the mutant to degrade the mitotic cyclin Clb2 and other proteins required for mitosis. The requirement of a nuclear import receptor for cell cycle-regulated proteolysis implies that import of cell cycle regulators into the nucleus is critical for cell cycle progression. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7644471

  1. Nuclear receptors linking circadian rhythms and cardiometabolic control

    PubMed Central

    Duez, Hélène; Staels, Bart

    2010-01-01

    Many behavioral and physiological processes, including locomotor activity, blood pressure, body temperature, sleep(fasting)/wake(feeding) cycles as well as metabolic regulation display diurnal rhythms. The biological clock ensures proper metabolic alignment of energy substrate availability and processing. Studies in animals and humans highlight a strong link between circadian disorders and altered metabolic responses and cardiovascular events. Shiftwork, for instance, increases the risk to develop metabolic abnormalities resembling the Metabolic Syndrome. Nuclear receptors have long been known as metabolic regulators. Several of them (ie. Rev-erbα, RORα, PPARs) are subjected to circadian variations and are integral components of the molecular clock machinery. In turn, these nuclear receptors regulate downstream target genes in a circadian manner, acting to properly gate metabolic events to the appropriate circadian time window. PMID:20631353

  2. An evolving understanding of nuclear receptor coregulator proteins

    PubMed Central

    Millard, Christopher J.; Watson, Peter J.; Fairall, Louise; Schwabe, John W.R.

    2014-01-01

    Nuclear receptors are transcription factors that regulate gene expression through the ligand-controlled recruitment of a diverse group of proteins known as coregulators. Most nuclear receptor coregulators function in large multi-protein complexes that modify chromatin and thereby regulate the transcription of target genes. Structural and functional studies are beginning to reveal how these complexes are assembled bringing together multiple functionalities that mediate: recruitment to specific genomic loci through interaction with transcription factors; recruitment of enzymatic activities that either modify or remodel chromatin; and targeting the complexes to their chromatin substrate. These activities are regulated by post-translational modifications, alternative splicing and small signalling molecules. This review focuses on our current understanding of coregulator complexes and aims to highlight the common principles that are beginning to emerge. PMID:24203923

  3. The DHR96 nuclear receptor controls triacylglycerol homeostasis in Drosophila.

    PubMed

    Sieber, Matthew H; Thummel, Carl S

    2009-12-01

    Triacylglycerol (TAG) homeostasis is an integral part of normal physiology and essential for proper energy metabolism. Here we show that the single Drosophila ortholog of the PXR and CAR nuclear receptors, DHR96, plays an essential role in TAG homeostasis. DHR96 mutants are sensitive to starvation, have reduced levels of TAG in the fat body and midgut, and are resistant to diet-induced obesity, while DHR96 overexpression leads to starvation resistance and increased TAG levels. We show that DHR96 function is required in the midgut for the breakdown of dietary fat and that it exerts this effect through the CG5932 gastric lipase, which is essential for TAG homeostasis. This study provides insights into the regulation of dietary fat metabolism in Drosophila and demonstrates that the regulation of lipid metabolism is an ancestral function of the PXR/CAR/DHR96 nuclear receptor subfamily. PMID:19945405

  4. Nuclear shuttling precedes dimerization in mineralocorticoid receptor signaling.

    PubMed

    Grossmann, Claudia; Ruhs, Stefanie; Langenbruch, Lisa; Mildenberger, Sigrid; Strätz, Nicole; Schumann, Katja; Gekle, Michael

    2012-06-22

    The mineralocorticoid receptor (MR), a member of the steroid receptor superfamily, regulates water-electrolyte balance and mediates pathophysiological effects in the renocardiovascular system. Previously, it was assumed that after binding aldosterone, the MR dissociates from HSP90, forms homodimers, and then translocates into the nucleus where it acts as a transcription factor (Guiochon-Mantel et al., 1989; Robertson et al., 1993; Savory et al., 2001). We found that, during aldosterone-induced nuclear translocation, MR is bound to HSP90 both in the cytosol and the nucleus. Homodimerization measured by eBRET and FRET takes place when the MR is already predominantly nuclear. In vitro binding of MR to DNA was independent of ligand but could be partially inhibited by geldanamycin. Overall, here we provide insights into classical MR signaling necessary for elucidating the mechanisms of pathophysiological MR effects and MR specificity. PMID:22726688

  5. Inositol 1,4,5‐trisphosphate receptors and their protein partners as signalling hubs

    PubMed Central

    Taylor, Colin W.

    2016-01-01

    Abstract Inositol 1,4,5‐trisphosphate receptors (IP3Rs) are expressed in nearly all animal cells, where they mediate the release of Ca2+ from intracellular stores. The complex spatial and temporal organization of the ensuing intracellular Ca2+ signals allows selective regulation of diverse physiological responses. Interactions of IP3Rs with other proteins contribute to the specificity and speed of Ca2+ signalling pathways, and to their capacity to integrate information from other signalling pathways. In this review, we provide a comprehensive survey of the proteins proposed to interact with IP3Rs and the functional effects that these interactions produce. Interacting proteins can determine the activity of IP3Rs, facilitate their regulation by multiple signalling pathways and direct the Ca2+ that they release to specific targets. We suggest that IP3Rs function as signalling hubs through which diverse inputs are processed and then emerge as cytosolic Ca2+ signals. PMID:26830355

  6. A comprehensive nuclear receptor network for breast cancer cells.

    PubMed

    Kittler, Ralf; Zhou, Jie; Hua, Sujun; Ma, Lijia; Liu, Yuwen; Pendleton, Elisha; Cheng, Chao; Gerstein, Mark; White, Kevin P

    2013-02-21

    In breast cancer, nuclear receptors (NRs) play a prominent role in governing gene expression, have prognostic utility, and are therapeutic targets. We built a regulatory map for 24 NRs, six chromatin state markers, and 14 breast-cancer-associated transcription factors (TFs) that are expressed in the breast cancer cell line MCF-7. The resulting network reveals a highly interconnected regulatory matrix where extensive crosstalk occurs among NRs and other breast -cancer-associated TFs. We show that large numbers of factors are coordinately bound to highly occupied target regions throughout the genome, and these regions are associated with active chromatin state and hormone-responsive gene expression. This network also provides a framework for stratifying and predicting patient outcomes, and we use it to show that the peroxisome proliferator-activated receptor delta binds to a set of genes also regulated by the retinoic acid receptors and whose expression is associated with poor prognosis in breast cancer. PMID:23375374

  7. Improving the classification of nuclear receptors with feature selection.

    PubMed

    Gao, Qing-Bin; Jin, Zhi-Chao; Ye, Xiao-Fei; Wu, Cheng; Lu, Jian; He, Jia

    2009-01-01

    Nuclear receptors are involved in multiple cellular signaling pathways that affect and regulate processes. Because of their physiology and pathophysiology significance, classification of nuclear receptors is essential for the proper understanding of their functions. Bhasin and Raghava have shown that the subfamilies of nuclear receptors are closely correlated with their amino acid composition and dipeptide composition [29]. They characterized each protein by a 400 dimensional feature vector. However, using high dimensional feature vectors for characterization of protein sequences will increase the computational cost as well as the risk of overfitting. Therefore, using only those features that are most relevant to the present task might improve the prediction system, and might also provide us with some biologically useful knowledge. In this paper a feature selection approach was proposed to identify relevant features and a prediction engine of support vector machines was developed to estimate the prediction accuracy of classification using the selected features. A reduced subset containing 30 features was accepted to characterize the protein sequences in view of its good discriminative power towards the classes, in which 18 are of amino acid composition and 12 are of dipeptide composition. This reduced feature subset resulted in an overall accuracy of 98.9% in a 5-fold cross-validation test, higher than 88.7% of amino acid composition based method and almost as high as 99.3% of dipeptide composition based method. Moreover, an overall accuracy of 93.7% was reached when it was evaluated on a blind data set of 63 nuclear receptors. On the other hand, an overall accuracy of 96.1% and 95.2% based on the reduced 12 dipeptide compositions was observed simultaneously in the 5-fold cross-validation test and the blind data set test, respectively. These results demonstrate the effectiveness of the present method. PMID:19601913

  8. Synergistic regulation of the mouse orphan nuclear receptor SHP gene promoter by CLOCK-BMAL1 and LRH-1

    SciTech Connect

    Oiwa, Ako; Kakizawa, Tomoko . E-mail: tkaki@hsp.md.shinshu-u.ac.jp; Miyamoto, Takahide; Yamashita, Koh; Jiang, Wei; Takeda, Teiji; Suzuki, Satoru; Hashizume, Kiyoshi

    2007-02-23

    Small heterodimer partner (SHP; NR0B2) is an orphan nuclear receptor and acts as a repressor for wide variety of nuclear hormone receptors. We demonstrated here that mouse SHP mRNA showed a circadian expression pattern in the liver. Transient transfection of the mSHP promoter demonstrated that CLOCK-BMAL1, core circadian clock components, bound to E-box (CACGTG), and stimulated the promoter activity by 4-fold. Liver receptor homologue-1 (LRH-1; NR5A2) stimulated the mSHP promoter, and CLOCK-BMAL1 synergistically enhanced the LRH-1-mediated transactivation. Interestingly, SHP did not affect the CLOCK-BMAL1-mediated promoter activity, but strongly repressed the synergistic activation of CLOCK-BMAL1 and LRH-1. Furthermore, in vitro pull-down assays revealed the existence of direct protein-protein interaction between LRH-1 and CLOCK. In summary, this study shows that CLOCK-BMAL1, LRH-1 and SHP coordinately regulate the mSHP gene to generate the circadian oscillation. The cyclic expression of mSHP may affect daily activity of other nuclear receptors and contribute to circadian liver functions.

  9. Pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factors as emerging players in cancer precision medicine.

    PubMed

    De Mattia, Elena; Cecchin, Erika; Roncato, Rossana; Toffoli, Giuseppe

    2016-09-01

    Great research effort has been focused on elucidating the contribution of host genetic variability on pharmacological outcomes in cancer. Nuclear receptors have emerged as mediators between environmental stimuli and drug pharmacokinetics and pharmacodynamics. The pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factors have been reported to regulate transcription of genes that encode drug metabolizing enzymes and transporters. Altered nuclear receptor expression has been shown to affect the metabolism and pharmacological profile of traditional chemotherapeutics and targeted agents. Accordingly, polymorphic variants in these genes have been studied as pharmacogenetic markers of outcome variability. This review summarizes the state of knowledge about the roles played by pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factor expression and genetics as predictive markers of anticancer drug toxicity and efficacy, which can improve cancer precision medicine. PMID:27561454

  10. Transcriptional activation of nuclear estrogen receptor and progesterone receptor and its regulation.

    PubMed

    Xin, Qi-Liang; Qiu, Jing-Tao; Cui, Sheng; Xia, Guo-Liang; Wang, Hai-Bin

    2016-08-25

    Estrogen receptor (ER) and progesterone receptor (PR) are two important members of steroid receptors family, an evolutionarily conserved family of transcription factors. Upon binding to their ligands, ER and PR enter cell nucleus to interact with specific DNA element in the context of chromatin to initiate the transcription of diverse target genes, which largely depends on the timely recruitment of a wide range of cofactors. Moreover, the interactions between steroid hormones and their respective receptors also trigger post-translational modifications on these receptors to fine-tune their transcriptional activities. Besides the well-known phosphorylation modifications on tyrosine and serine/threonine residues, recent studies have identified several other covalent modifications, such as ubiquitylation and sumoylation. These post-translational modifications of steroid receptors affect its stability, subcellular localization, and/or cofactor recruitment; eventually influence the duration and extent of transcriptional activation. This review is to focus on the recent research progress on the transcriptional activation of nuclear ER and PR as well as their physiological functions in early pregnancy, which may help us to better understand related female reproductive diseases. PMID:27546504

  11. Nuclear receptor coactivators: Essential players in steroid hormone action in brain and behavior

    PubMed Central

    Tetel, Marc J.

    2009-01-01

    Steroid hormones act in brain and throughout the body to influence behavior and physiology. Many of these effects of steroid hormones are elicited by transcriptional events mediated by their respective receptors. A variety of cell culture studies reveal that nuclear receptor coactivators are critical in modulating steroid receptor-dependent transcription. Thus, in addition to the availability of the hormone and the expression of its receptor, nuclear receptor coactivators are essential for steroid-dependent transactivation of genes. This review will discuss the mounting evidence that nuclear receptor coactivators are critical in modulating steroid hormone action in brain and the regulation of behavior. PMID:19207820

  12. Laminin receptor is an interacting partner for viral outer capsid protein VP5 in grass carp reovirus infection.

    PubMed

    Wang, Hao; Yu, Fei; Li, Jiale; Lu, Liqun

    2016-03-01

    Grass carp reovirus (GCRV) is responsible for viral hemorrhagic disease in cultured grass carp Ctenopharyngon idellus. Through yeast two-hybrid screen, laminin receptor (LamR) was identified as a potential interacting partner for the outer capsid protein VP5 of GCRV. We cloned and sequenced the gene encoding grass carp LamR. Viral attachment assay demonstrated the involvement of membrane-associated LamR in GCRV infection. Solid-phase overlay assays demonstrated that GCRV interacted with GST-tagged LamR in vitro. In contrast to VP7, GST-tagged VP5 was shown to associate with LamR in both pull-down and solid-phase blot overlay assays. With the reduction of LamR expression in CIK cells achieved by RNAi, remarkably reduced infection efficiency of GCRV was observed. CIK cells pretreated with polyclonal antibody against LamR resulted in dose-dependent inhibition of GCRV infection. These results collectively indicated that grass carp LamR was involved in GCRV infection by interacting with viral outer capsid protein VP5. PMID:26848829

  13. Biglycan is a novel binding partner of fibroblast growth factor receptor 3c (FGFR3c) in the human testis.

    PubMed

    Winge, S B; Nielsen, J; Jørgensen, A; Owczarek, S; Ewen, K A; Nielsen, J E; Juul, A; Berezin, V; Rajpert-De Meyts, E

    2015-01-01

    Regulation of spermatogonial maintenance in the human testis is currently not well understood. One pathway suggested to be involved is activated by fibroblast growth factor receptor 3 (FGFR3), which is expressed in a subset of spermatogonia. FGFR3-activating mutations have been identified in spermatocytic seminoma, thought to originate from clonal expansion of spermatogonia. In this study we aimed to characterize potential binding partners of FGFR3, and specifically its mesenchymal "c" splice isoform, in human spermatogonia. Based on expression patterns and homology to the binding site, we identified FGF1, FGF2, and FGF9 as the best candidates for natural ligands of FGFR3c in the testis. In addition, we screened non-FGF proteins and found that a proteoglycan biglycan (BGN) contains a sequence homologous to the FGFR3c binding site on FGF1, and is expressed in peritubular cells adjacent to FGFR3-expressing spermatogonia. Experiments in a cell-free system confirmed that BGN binds to FGFR3c and FGF1. In conclusion, our findings further clarify the complex regulation of FGFR3c in the human testis. We postulate that BGN is a factor secreted by peritubular cells to modulate FGFR3c signaling and thus contributes to the regulation of spermatogonial maintenance. PMID:25260943

  14. Harnessing the nuclear receptor PPARγ to inhibit the growth of lung adenocarcinoma by rewiring metabolic circuitries

    PubMed Central

    Yenerall, Paul; Kittler, Ralf

    2015-01-01

    Altered metabolism and nuclear receptor activity have been reported in various cancer types. Here, we discuss our recent finding that the metabolic state of lung adenocarcinoma cells expressing the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) can be modulated by thiazolidinediones, culminating in accumulation of reactive oxygen species and decreased proliferation. PMID:27308443

  15. Nuclear receptors and their relevance to diseases related to lipid metabolism.

    PubMed

    Berkenstam, Anders; Gustafsson, Jan-Ake

    2005-04-01

    Drugs that target the nuclear hormone receptor family constitute one of the largest and most potent groups of pharmaceuticals currently in use. However, although many of these human nuclear receptors have been clearly demonstrated to be key sensors and regulators of lipid metabolism, the full pharmacological potential of this drug target class has not been fully explored. There are two main reasons for this. First, a rationale approach is needed to identify pharmacologically selective drug candidates to nuclear receptors that have a large therapeutic window between the beneficial effects and the unwanted side effects. This appears to apply to all ligand-regulated nuclear receptors, including those nuclear receptors more recently proposed as novel targets for diseases related to lipid metabolism such as the peroxisome proliferator-activated receptors, liver X receptors and farnesoid X-activated receptor. The second reason is that any sub-group of nuclear receptors important for the regulation of lipid metabolism might be pharmacologically inaccessible by conventional low molecular weight compounds, owing to the lack of a classical ligand-binding-pocket, as recently revealed by X-ray crystallography. Accordingly, targeting of classical nuclear receptor family members with better characterized endocrinology and roles in lipid metabolism, such as the thyroid and steroid hormone receptors, could become of renewed pharmacological interest, as these targets provide well-characterized alternatives to the more recently discovered nuclear receptors. PMID:15780827

  16. Harnessing the nuclear receptor PPARγ to inhibit the growth of lung adenocarcinoma by rewiring metabolic circuitries.

    PubMed

    Yenerall, Paul; Kittler, Ralf

    2015-01-01

    Altered metabolism and nuclear receptor activity have been reported in various cancer types. Here, we discuss our recent finding that the metabolic state of lung adenocarcinoma cells expressing the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) can be modulated by thiazolidinediones, culminating in accumulation of reactive oxygen species and decreased proliferation. PMID:27308443

  17. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor.

    PubMed

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick; Negishi, Masahiko

    2016-05-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)-forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally. PMID:26994072

  18. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor

    PubMed Central

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick

    2016-01-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)–forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally. PMID:26994072

  19. Regulation of hepatic energy metabolism by the nuclear receptor PXR.

    PubMed

    Hakkola, Jukka; Rysä, Jaana; Hukkanen, Janne

    2016-09-01

    The pregnane X receptor (PXR) is a nuclear receptor that is traditionally thought to be specialized for sensing xenobiotic exposure. In concurrence with this feature PXR was originally identified to regulate drug-metabolizing enzymes and transporters. During the last ten years it has become clear that PXR harbors broader functions. Evidence obtained both in experimental animals and humans indicate that ligand-activated PXR regulates hepatic glucose and lipid metabolism and affects whole body metabolic homeostasis. Currently, the consequences of PXR activation on overall metabolic health are not yet fully understood and varying results on the effect of PXR activation or knockout on metabolic disorders and weight gain have been published in mouse models. Rifampicin and St. John's wort, the prototypical human PXR agonists, impair glucose tolerance in healthy volunteers. Chronic exposure to PXR agonists could potentially represent a risk factor for diabetes and metabolic syndrome. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. PMID:27041449

  20. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma.

    PubMed

    Johansson, Erik; Zhai, Qiwei; Zeng, Zhao-Jun; Yoshida, Takeshi; Funa, Keiko

    2016-05-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. PMID:27048878

  1. Post-translational modifications of nuclear receptors and human disease

    PubMed Central

    Anbalagan, Muralidharan; Huderson, Brandy; Murphy, Leigh; Rowan, Brian G.

    2012-01-01

    Nuclear receptors (NR) impact a myriad of physiological processes including homeostasis, reproduction, development, and metabolism. NRs are regulated by post-translational modifications (PTM) that markedly impact receptor function. Recent studies have identified NR PTMs that are involved in the onset and progression of human diseases, including cancer. The majority of evidence linking NR PTMs with disease has been demonstrated for phosphorylation, acetylation and sumoylation of androgen receptor (AR), estrogen receptor α (ERα), glucocorticoid receptor (GR) and peroxisome proliferator activated receptor γ (PPARγ). Phosphorylation of AR has been associated with hormone refractory prostate cancer and decreased disease-specific survival. AR acetylation and sumoylation increased growth of prostate cancer tumor models. AR phosphorylation reduced the toxicity of the expanded polyglutamine AR in Kennedy’s Disease as a consequence of reduced ligand binding. A comprehensive evaluation of ERα phosphorylation in breast cancer revealed several sites associated with better clinical outcome to tamoxifen therapy, whereas other phosphorylation sites were associated with poorer clinical outcome. ERα acetylation and sumoylation may also have predictive value for breast cancer. GR phosphorylation and acetylation impact GR responsiveness to glucocorticoids that are used as anti-inflammatory drugs. PPARγ phosphorylation can regulate the balance between growth and differentiation in adipose tissue that is linked to obesity and insulin resistance. Sumoylation of PPARγ is linked to repression of inflammatory genes important in patients with inflammatory diseases. NR PTMs provide an additional measure of NR function that can be used as both biomarkers of disease progression, and predictive markers for patient response to NR-directed treatments. PMID:22438791

  2. Modulation of steroid action in the central and peripheral nervous systems by nuclear receptor coactivators

    PubMed Central

    Tetel, Marc J.

    2009-01-01

    Steroid hormones act in the central and peripheral nervous systems to regulate a variety of functions, including development, cell proliferation, cognition and behavior. Many of these effects of steroid hormones are mediated by their respective receptors, which are members of the nuclear receptor superfamily of transcriptional activators. A variety of cell culture studies reveal that nuclear receptor coactivators are recruited to the steroid receptor complex and are critical in modulating steroid-dependent transcription. Thus, in addition to the availability of the hormone and its receptor, the expression of nuclear receptor coactivators is essential for modulating steroid receptor mediated transcription. This review will discuss the significance of nuclear receptor coactivators in modulating steroid-dependent gene expression in the central and peripheral nervous systems and the regulation of behavior. PMID:19541426

  3. Human Xenobiotic Nuclear Receptor PXR Augments Mycobacterium tuberculosis Survival.

    PubMed

    Bhagyaraj, Ella; Nanduri, Ravikanth; Saini, Ankita; Dkhar, Hedwin Kitdorlang; Ahuja, Nancy; Chandra, Vemika; Mahajan, Sahil; Kalra, Rashi; Tiwari, Drishti; Sharma, Charu; Janmeja, Ashok Kumar; Gupta, Pawan

    2016-07-01

    Mycobacterium tuberculosis can evade host defense processes, thereby ensuring its survival and pathogenesis. In this study, we investigated the role of nuclear receptor, pregnane X receptor (PXR), in M. tuberculosis infection in human monocyte-derived macrophages. In this study, we demonstrate that PXR augments M. tuberculosis survival inside the host macrophages by promoting the foamy macrophage formation and abrogating phagolysosomal fusion, inflammation, and apoptosis. Additionally, M. tuberculosis cell wall lipids, particularly mycolic acids, crosstalk with human PXR (hPXR) by interacting with its promiscuous ligand binding domain. To confirm our in vitro findings and to avoid the reported species barrier in PXR function, we adopted an in vivo mouse model expressing hPXR, wherein expression of hPXR in mice promotes M. tuberculosis survival. Therefore, pharmacological intervention and designing antagonists to hPXR may prove to be a promising adjunct therapy for tuberculosis. PMID:27233963

  4. Allosteric Pathways in the PPARγ-RXRα nuclear receptor complex

    NASA Astrophysics Data System (ADS)

    Ricci, Clarisse G.; Silveira, Rodrigo L.; Rivalta, Ivan; Batista, Victor S.; Skaf, Munir S.

    2016-01-01

    Understanding the nature of allostery in DNA-nuclear receptor (NR) complexes is of fundamental importance for drug development since NRs regulate the transcription of a myriad of genes in humans and other metazoans. Here, we investigate allostery in the peroxisome proliferator-activated/retinoid X receptor heterodimer. This important NR complex is a target for antidiabetic drugs since it binds to DNA and functions as a transcription factor essential for insulin sensitization and lipid metabolism. We find evidence of interdependent motions of Ω-loops and PPARγ-DNA binding domain with contacts susceptible to conformational changes and mutations, critical for regulating transcriptional functions in response to sequence-dependent DNA dynamics. Statistical network analysis of the correlated motions, observed in molecular dynamics simulations, shows preferential allosteric pathways with convergence centers comprised of polar amino acid residues. These findings are particularly relevant for the design of allosteric modulators of ligand-dependent transcription factors.

  5. Bile acid nuclear receptor FXR and digestive system diseases

    PubMed Central

    Ding, Lili; Yang, Li; Wang, Zhengtao; Huang, Wendong

    2015-01-01

    Bile acids (BAs) are not only digestive surfactants but also important cell signaling molecules, which stimulate several signaling pathways to regulate some important biological processes. The bile-acid-activated nuclear receptor, farnesoid X receptor (FXR), plays a pivotal role in regulating bile acid, lipid and glucose homeostasis as well as in regulating the inflammatory responses, barrier function and prevention of bacterial translocation in the intestinal tract. As expected, FXR is involved in the pathophysiology of a wide range of diseases of gastrointestinal tract, including inflammatory bowel disease, colorectal cancer and type 2 diabetes. In this review, we discuss current knowledge of the roles of FXR in physiology of the digestive system and the related diseases. Better understanding of the roles of FXR in digestive system will accelerate the development of FXR ligands/modulators for the treatment of digestive system diseases. PMID:26579439

  6. Allosteric Pathways in the PPARγ-RXRα nuclear receptor complex

    PubMed Central

    Ricci, Clarisse G.; Silveira, Rodrigo L.; Rivalta, Ivan; Batista, Victor S.; Skaf, Munir S.

    2016-01-01

    Understanding the nature of allostery in DNA-nuclear receptor (NR) complexes is of fundamental importance for drug development since NRs regulate the transcription of a myriad of genes in humans and other metazoans. Here, we investigate allostery in the peroxisome proliferator-activated/retinoid X receptor heterodimer. This important NR complex is a target for antidiabetic drugs since it binds to DNA and functions as a transcription factor essential for insulin sensitization and lipid metabolism. We find evidence of interdependent motions of Ω-loops and PPARγ-DNA binding domain with contacts susceptible to conformational changes and mutations, critical for regulating transcriptional functions in response to sequence-dependent DNA dynamics. Statistical network analysis of the correlated motions, observed in molecular dynamics simulations, shows preferential allosteric pathways with convergence centers comprised of polar amino acid residues. These findings are particularly relevant for the design of allosteric modulators of ligand-dependent transcription factors. PMID:26823026

  7. Bile acid nuclear receptor FXR and digestive system diseases.

    PubMed

    Ding, Lili; Yang, Li; Wang, Zhengtao; Huang, Wendong

    2015-03-01

    Bile acids (BAs) are not only digestive surfactants but also important cell signaling molecules, which stimulate several signaling pathways to regulate some important biological processes. The bile-acid-activated nuclear receptor, farnesoid X receptor (FXR), plays a pivotal role in regulating bile acid, lipid and glucose homeostasis as well as in regulating the inflammatory responses, barrier function and prevention of bacterial translocation in the intestinal tract. As expected, FXR is involved in the pathophysiology of a wide range of diseases of gastrointestinal tract, including inflammatory bowel disease, colorectal cancer and type 2 diabetes. In this review, we discuss current knowledge of the roles of FXR in physiology of the digestive system and the related diseases. Better understanding of the roles of FXR in digestive system will accelerate the development of FXR ligands/modulators for the treatment of digestive system diseases. PMID:26579439

  8. p35 Regulates the CRM1-Dependent Nucleocytoplasmic Shuttling of Nuclear Hormone Receptor Coregulator-Interacting Factor 1 (NIF-1)

    PubMed Central

    Zhao, Xiao-Su; Fu, Wing-Yu; Chien, Winnie W. Y.; Li, Zhen; Fu, Amy K. Y.; Ip, Nancy Y.

    2014-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC)-interacting factor 1 (NIF-1), is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators. PMID:25329792

  9. Characterization of DNA complexes formed by the nuclear receptor constitutive androstane receptor.

    PubMed

    Frank, Christian; Gonzalez, Manuel Macias; Oinonen, Carita; Dunlop, Thomas W; Carlberg, Carsten

    2003-10-31

    The nuclear receptor constitutive androstane receptor (CAR) acts as a xenobiotic sensor and regulates the expression of enzymes, such as several cytochromes P450s and the UDP-glucuronosyltransferase (UGT) type 1A1. CAR binds as a heterodimer with the retinoid X receptor (RXR) to specific DNA sites, called response elements (REs). Clusters of CAR REs, referred to as phenobarbital response enhancer modules (PBREMs), have been identified in several CAR target genes. In this study we confirm that REs formed by direct repeats of two AGTTCA hexamers with 4 spacing nucleotides are optimal for the binding of CAR-RXR heterodimers. In addition, we found that the heterodimers also form complexes on everted repeat-type arrangements with 8 spacing nucleotides. We also observed that CAR is able to bind DNA as a monomer and to interact in this form with different coregulators even in the presence of RXR. Systematic variation of the nucleotides 5'-flanking to both AGTTCA hexamers showed that the dinucleotide sequence modulates the DNA complex formation of CAR monomers and CAR-RXR heterodimer by a factor of up to 20. The highest preference was found for the sequence AG and lowest for CC. The increased DNA affinity of CAR is mediated by the positively charged arginines 90 and 91 located in the carboxyl-terminal extension of the DNA-binding domain of the receptor. Furthermore, we show that one of the three CAR REs of the human UGT1A1 PBREM is exclusively bound by CAR monomers and this is regulated by ligands that bind to this nuclear receptor. This points to a physiological role for CAR monomers. Therefore, both CAR-RXR heterodimers and CAR monomers can contribute to the gene activating function of PBREMs in CAR target genes. PMID:12896978

  10. Mode of Action and Human Relevance Analysis for Nuclear Receptor-Mediated Liver Toxicity: A Case Study with Phenobarbital as a Model Constitutive Androstane Receptor (CAR) Activator

    EPA Science Inventory

    The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are key nuclear receptors involved in the regulation of cellular responses. to exposure to many xenobiotics and various physiological processes. Phenobarbital (PB) is a non­ genotoxic i...

  11. Minireview: Nuclear Receptor and Coregulator Proteomics—2012 and Beyond

    PubMed Central

    Malovannaya, Anna; Qin, Jun

    2012-01-01

    The focus of our decade-long National Institutes of Health-sponsored NURSA Proteomics Atlas was to catalog and understand the composition of the steady-state interactome for all nuclear receptor coregulator complexes in a human cell. In this Perspective, we present a summary of the proteomics of coregulator complexes with examples of how one might use the NURSA data for future exploitation. The application of this information to the identification of the coregulator proteins that contribute to the molecular basis of polygenic diseases is emphasized. PMID:22745194

  12. Farnesoid X Receptor Agonist Represses Cytochrome P450 2D6 Expression by Upregulating Small Heterodimer Partner.

    PubMed

    Pan, Xian; Lee, Yoon-Kwang; Jeong, Hyunyoung

    2015-07-01

    Cytochrome P450 2D6 (CYP2D6) is a major drug-metabolizing enzyme responsible for eliminating approximately 20% of marketed drugs. Studies have shown that differential transcriptional regulation of CYP2D6 may contribute to large interindividual variability in CYP2D6-mediated drug metabolism. However, the factors governing CYP2D6 transcription are largely unknown. We previously demonstrated small heterodimer partner (SHP) as a novel transcriptional repressor of CYP2D6 expression. SHP is a representative target gene of the farnesoid X receptor (FXR). The objective of this study is to investigate whether an agonist of FXR, 3-(2,6-dichlorophenyl)-4-(3'-carboxy-2-chlorostilben-4-yl)oxymethyl-5-isopropylisoxazole (GW4064), alters CYP2D6 expression and activity. In CYP2D6-humanized transgenic mice, GW4064 decreased hepatic CYP2D6 expression and activity (by 2-fold) while increasing SHP expression (by 2-fold) and SHP recruitment to the CYP2D6 promoter. CYP2D6 repression by GW4064 was abrogated in Shp(-/-);CYP2D6 mice, indicating a critical role of SHP in CYP2D6 regulation by GW4064. Also, GW4064 decreased CYP2D6 expression (by 2-fold) in primary human hepatocytes, suggesting that the results obtained in CYP2D6-humanized transgenic mice can be translated to humans. This proof of concept study provides evidence for CYP2D6 regulation by an inducer of SHP expression, namely, the FXR agonist GW4064. PMID:25926433

  13. Nuclear localization signal receptor importin alpha associates with the cytoskeleton.

    PubMed Central

    Smith, H M; Raikhel, N V

    1998-01-01

    Importin alpha is the nuclear localization signal (NLS) receptor that is involved in the nuclear import of proteins containing basic NLSs. Using importin alpha as a tool, we were interested in determining whether the cytoskeleton could function in the transport of NLS-containing proteins from the cytoplasm to the nucleus. Double-labeling immunofluorescence studies showed that most of the cytoplasmic importin alpha coaligned with microtubules and microfilaments in tobacco protoplasts. Treatment of tobacco protoplasts with microtubule- or microfilament-depolymerizing agents disrupted the strands of importin alpha in the cytoplasm, whereas a microtubule-stabilizing agent had no effect. Biochemical analysis showed that importin alpha associated with microtubules and microfilaments in vitro in an NLS-dependent manner. The interaction of importin alpha with the cytoskeleton could be an essential element of protein transport from the cytoplasm to the nucleus in vivo. PMID:9811789

  14. Dynamic correlation networks in human peroxisome proliferator-activated receptornuclear receptor protein.

    PubMed

    Fidelak, Jeremy; Ferrer, Silvia; Oberlin, Michael; Moras, Dino; Dejaegere, Annick; Stote, Roland H

    2010-10-01

    Peroxisome proliferator-activated receptornuclear receptor (PPAR-γ) belongs to the superfamily of nuclear receptor proteins that function as ligand-dependent transcription factors and plays a specific physiological role as a regulator of lipid metabolism. A number of experimental studies have suggested that allostery plays an important role in the functioning of PPAR-γ. Here we use normal-mode analysis of PPAR-γ to characterize a network of dynamically coupled amino acids that link physiologically relevant binding surfaces such as the ligand-dependent activation domain AF-2 with the ligand binding site and the heterodimer interface. Multiple calculations were done in both the presence and absence of the agonist rosiglitazone, and the differences in dynamics were characterized. The global dynamics of the ligand binding domain were affected by the ligand, and in particular, changes to the network of dynamically correlated amino acids were observed with only small changes in conformation. These results suggest that changes in dynamic couplings can be functionally significant with respect to the transmission of allosteric signals. PMID:20496064

  15. HER kinase axis receptor dimer partner switching occurs in response to EGFR tyrosine kinase inhibition despite failure to block cellular proliferation.

    PubMed

    Jain, Anjali; Penuel, Elicia; Mink, Sheldon; Schmidt, Joanna; Hodge, Amanda; Favero, Kristin; Tindell, Charles; Agus, David B

    2010-03-01

    The human epidermal receptor (HER) axis consists of a dynamic, interconnected family of receptors that make critical contributions to a number of malignancies. Therapeutics targeting epidermal growth factor receptor (EGFR) are unable to effectively inhibit tumor growth in a majority of cases. These tumors are assumed to possess primary resistance to anti-EGFR therapies, but the consequence of inhibiting EGFR in these tumors is unclear. We established isogenic cell lines by prolonged gefitinib treatment at concentrations that are in excess of that which is required for complete EGFR kinase inhibition but only minimally affected growth. Subsequently, we monitored the ligand-dependent HER profiles based on receptor expression, phosphorylation, and dimerization in conjunction with measurements of cellular susceptibility to gefitinib. Chronic EGFR kinase inhibition rapidly switched the HER network from dependence on EGFR to HER2. However, both receptors activated the critical signaling proteins AKT and mitogen-activated protein kinase, and in both cases, HER3 was the common association partner. Remarkably, the switch in receptor dimers caused diminished susceptibility to EGFR-targeted inhibitors gefitinib and cetuximab but acquired susceptibility to the HER2-targeted inhibitor pertuzumab. Overall, our study indicates that the EGFR pathway is responsive to EGFR inhibiting therapies that are not dependent on EGFR for their growth and survival, thus challenging the current definition of primary therapeutic resistance. Furthermore, EGFR kinase inhibition induces HER kinase receptors to engage in alternative dimerization that can ultimately influence therapeutic selection and responsiveness. PMID:20160029

  16. The Promiscuity of Allosteric Regulation of Nuclear Receptors by Retinoid X Receptor.

    PubMed

    Clark, Alexander K; Wilder, J Heath; Grayson, Aaron W; Johnson, Quentin R; Lindsay, Richard J; Nellas, Ricky B; Fernandez, Elias J; Shen, Tongye

    2016-08-25

    The promiscuous protein retinoid X receptor (RXR) displays essential allosteric regulation of several members in the nuclear hormone receptor superfamily via heterodimerization and (anti)cooperative binding of cognate ligands. Here, the structural basis of the positive allostery of RXR and constitutive androstane receptor (CAR) is revealed. In contrast, a similar computational approach had previously revealed the mechanism for negative allostery in the complex of RXR and thyroid receptor (TR). By comparing the positive and negative allostery of RXR complexed with CAR and TR respectively, we reported the promiscuous allosteric control involving RXR. We characterize the allosteric mechanism by expressing the correlated dynamics of selected residue-residue contacts which was extracted from atomistic molecular dynamics simulation and statistical analysis. While the same set of residues in the binding pocket of RXR may initiate the residue-residue interaction network, RXR uses largely different sets of contacts (only about one-third identical) and allosteric modes to regulate TR and CAR. The promiscuity of RXR control may originate from multiple factors, including (1) the frustrated fit of cognate ligand 9c to the RXR binding pocket and (2) the different ligand-binding features of TR (loose) versus CAR (tight) to their corresponding cognate ligands. PMID:27110634

  17. Functional interaction of nuclear receptor coactivator 4 with aryl hydrocarbon receptor

    SciTech Connect

    Kollara, Alexandra; Brown, Theodore J. . E-mail: brown@mshri.on.ca

    2006-07-28

    Aryl hydrocarbon receptor (AhR) transcriptional activity is enhanced by interaction with p160 coactivators. We demonstrate here that NcoA4, a nuclear receptor coactivator, interacts with and amplifies AhR action. NcoA4-AhR and NcoA4-ARNT interactions were demonstrated by immunoprecipitation in T47D breast cancer and COS cells and was independent of ligand. Overexpression of NcoA4 enhanced AhR transcriptional activity 3.2-fold in the presence of dioxin, whereas overexpression of a splice variant, NcoA4{beta}, as well as a variant lacking the C-terminal region enhanced AhR transcriptional activity by only 1.6-fold. Enhanced AhR signaling by NcoA4 was independent of the LXXLL and FXXLF motifs or of the activation domain. NcoA4 protein localized to cytoplasm in the absence of dioxin and in both the cytoplasm and nucleus following dioxin treatment. NcoA4-facilitation of AhR activity was abolished by overexpression of androgen receptor, suggesting a potential competition of AhR and androgen receptor for NcoA4. These findings thus demonstrate a functional interaction between NcoA4 and AhR that may alter AhR activity to affect disease development and progression.

  18. Who’s in charge? Nuclear receptor coactivator and corepressor function in brain and behavior

    PubMed Central

    Tetel, Marc J.; Auger, Anthony P.; Charlier, Thierry D.

    2009-01-01

    Steroid hormones act in brain and throughout the body to regulate a variety of functions, including development, reproduction, stress and behavior. Many of these effects of steroid hormones are mediated by their respective receptors, which are members of the steroid/nuclear receptor superfamily of transcriptional activators. A variety of studies in cell lines reveal that nuclear receptor coregulators are critical in modulating steroid receptor-dependent transcription. Thus, in addition to the availability of the hormone and the expression of its receptor, nuclear receptor coregulators are essential for efficient steroid-dependent transactivation of genes. This review will highlight the importance of nuclear receptor coregulators in modulating steroid-dependent gene expression in brain and the regulation of behavior. PMID:19401208

  19. Role of nuclear receptors in breast cancer stem cells

    PubMed Central

    Papi, Alessio; Orlandi, Marina

    2016-01-01

    The recapitulation of primary tumour heterogenity and the existence of a minor sub-population of cancer cells, capable of initiating tumour growth in xenografts on serial passages, led to the hypothesis that cancer stem cells (CSCs) exist. CSCs are present in many tumours, among which is breast cancer. Breast CSCs (BCSCs) are likely to sustain the growth of the primary tumour mass, as well as to be responsible for disease relapse and metastatic spreading. Consequently, BCSCs represent the most significant target for new drugs in breast cancer therapy. Both the hypoxic condition in BCSCs biology and pro-inflammatory cytokine network has gained increasing importance in the recent past. Breast stromal cells are crucial components of the tumours milieu and are a major source of inflammatory mediators. Recently, the anti-inflammatory role of some nuclear receptors ligands has emerged in several diseases, including breast cancer. Therefore, the use of nuclear receptors ligands may be a valid strategy to inhibit BCSCs viability and consequently breast cancer growth and disease relapse. PMID:27022437

  20. Nuclear Receptor Regulation of Aquaporin-2 in the Kidney.

    PubMed

    Zhang, Xiao-Yan; Wang, Bing; Guan, You-Fei

    2016-01-01

    Aquaporin-2 (AQP2) is a vasopressin-regulated water channel responsible for regulating water reabsorption through the apical plasma membrane of the principal cells of renal collecting ducts. It has been found that dysregulation and dysfunction of AQP2 cause many disorders related to water balance in people and animals, including polyuria and dilutional hyponatremia. Classically, AQP2 mRNA and protein expression and its membrane translocation are regulated by systemic vasopressin involving short-term regulation of AQP2 trafficking to and from the apical plasma membrane and long-term regulation of the total amount of the AQP2 protein in the cell. Recently, increasing evidence has demonstrated that collecting duct AQP2 expression and membrane translocation are also under the control of many other local factors, especially nuclear receptors. Here, we briefly review the progress of studies in this area and discuss the role of nuclear receptors in the regulation of water reabsorption via affecting AQP2 expression and function. PMID:27409611

  1. Role of nuclear receptors in breast cancer stem cells.

    PubMed

    Papi, Alessio; Orlandi, Marina

    2016-03-26

    The recapitulation of primary tumour heterogenity and the existence of a minor sub-population of cancer cells, capable of initiating tumour growth in xenografts on serial passages, led to the hypothesis that cancer stem cells (CSCs) exist. CSCs are present in many tumours, among which is breast cancer. Breast CSCs (BCSCs) are likely to sustain the growth of the primary tumour mass, as well as to be responsible for disease relapse and metastatic spreading. Consequently, BCSCs represent the most significant target for new drugs in breast cancer therapy. Both the hypoxic condition in BCSCs biology and pro-inflammatory cytokine network has gained increasing importance in the recent past. Breast stromal cells are crucial components of the tumours milieu and are a major source of inflammatory mediators. Recently, the anti-inflammatory role of some nuclear receptors ligands has emerged in several diseases, including breast cancer. Therefore, the use of nuclear receptors ligands may be a valid strategy to inhibit BCSCs viability and consequently breast cancer growth and disease relapse. PMID:27022437

  2. Nuclear Receptor Regulation of Aquaporin-2 in the Kidney

    PubMed Central

    Zhang, Xiao-Yan; Wang, Bing; Guan, You-Fei

    2016-01-01

    Aquaporin-2 (AQP2) is a vasopressin-regulated water channel responsible for regulating water reabsorption through the apical plasma membrane of the principal cells of renal collecting ducts. It has been found that dysregulation and dysfunction of AQP2 cause many disorders related to water balance in people and animals, including polyuria and dilutional hyponatremia. Classically, AQP2 mRNA and protein expression and its membrane translocation are regulated by systemic vasopressin involving short-term regulation of AQP2 trafficking to and from the apical plasma membrane and long-term regulation of the total amount of the AQP2 protein in the cell. Recently, increasing evidence has demonstrated that collecting duct AQP2 expression and membrane translocation are also under the control of many other local factors, especially nuclear receptors. Here, we briefly review the progress of studies in this area and discuss the role of nuclear receptors in the regulation of water reabsorption via affecting AQP2 expression and function. PMID:27409611

  3. The role of nuclear hormone receptors in cutaneous wound repair

    PubMed Central

    Rieger, Sandra; Zhao, Hengguang; Martin, Paige; Abe, Koichiro; Lisse, Thomas S.

    2015-01-01

    The cutaneous wound repair process involves balancing a dynamic series of events ranging from inflammation, oxidative stress, cell migration, proliferation, survival and differentiation. A complex series of secreted trophic factors, cytokines, surface and intracellular proteins are expressed in a temporospatial manner to restore skin integrity after wounding. Impaired initiation, maintenance or termination of the tissue repair processes can lead to perturbed healing, necrosis, fibrosis or even cancer. Nuclear hormone receptors (NHRs) in the cutaneous environment regulate tissue repair processes such as fibroplasia and angiogenesis. Defects in functional NHRs and their ligands are associated with the clinical phenotypes of chronic non-healing wounds and skin endocrine disorders. The functional relationship between NHRs and skin niche cells such as epidermal keratinocytes and dermal fibroblasts is pivotal for successful wound closure and permanent repair. The aim of this review is to delineate the cutaneous effects and cross-talk of various nuclear receptors upon injury towards functional tissue restoration. Copyright © 2014 John Wiley & Sons, Ltd. PMID:25529612

  4. Deciphering the nuclear bile acid receptor FXR paradigm

    PubMed Central

    Modica, Salvatore; Gadaleta, Raffaella M.; Moschetta, Antonio

    2010-01-01

    Originally called retinoid X receptor interacting protein 14 (RIP14), the farnesoid X receptor (FXR) was renamed after the ability of its rat form to bind supra-physiological concentrations of farnesol. In 1999 FXR was de-orphanized since primary bile acids were identified as natural ligands. Strongly expressed in the liver and intestine, FXR has been shown to be the master transcriptional regulator of several entero-hepatic metabolic pathways with relevance to the pathophysiology of conditions such as cholestasis, fatty liver disease, cholesterol gallstone disease, intestinal inflammation and tumors. Furthermore, given the importance of FXR in the gut-liver axis feedbacks regulating lipid and glucose homeostasis, FXR modulation appears to have great input in diseases such as metabolic syndrome and diabetes. Exciting results from several cellular and animal models have provided the impetus to develop synthetic FXR ligands as novel pharmacological agents. Fourteen years from its discovery, FXR has gone from bench to bedside; a novel nuclear receptor ligand is going into clinical use. PMID:21383957

  5. Immunological quantitation of nuclear steroid receptors to optimize the biological classification of breast tumors.

    PubMed

    Díez-Gibert, O; Huguet, J; Rosel, P; Bonnín, M R; Navarro, M A

    1998-01-01

    We used immunological methods to determine cytosolic and nuclear steroid receptors to evaluate the advantages of nuclear receptor measurement in the selection of breast cancer patients for treatment. Around 75% of tumors showed coincidence between nuclear and cytosolic receptors (+/+ or -/-) for estrogen receptor (ER) and for progesterone receptor (PgR). Only cytosolic receptors were detected in around 20% of tumors. Distributed in the ER/PgR phenotypes according to the nuclear or cytosolic receptors, 64% of tumors remained in the same subgroup, whereas 16% of tumors were classified as hormone dependent according to cytosolic and independent according to nuclear receptors, which could be considered as 'false-positive' results. 6% of tumors would be classified as negative according to cytosolic receptors but positive according to nuclear receptors and would correspond to 'false-negative' results by conventional methods. Cytosolic receptor results may overrate the hormone dependence and cause some 'misclassifications' of patients. This could partially explain the lack of response to therapy in some cases. PMID:9679731

  6. Combined therapeutic potential of nuclear receptors with receptor tyrosine kinase inhibitors in lung cancer

    SciTech Connect

    Wairagu, Peninah M.; Park, Kwang Hwa; Kim, Jihye; Choi, Jong-Whan; Kim, Hyun-Won; Yeh, Byung-Il; Jung, Soon-Hee; Yong, Suk-Joong; Jeong, Yangsik

    2014-05-09

    Highlights: • The 48 NR genes and 48 biological anti-cancer targets are profiled in paired-cells. • Growth inhibition by NR ligands or TKIs is target receptor level-dependent. • T0901317 with gefitinib/PHA665752 shows additive growth inhibition in lung cells. - Abstract: Cancer heterogeneity is a big hurdle in achieving complete cancer treatment, which has led to the emergence of combinational therapy. In this study, we investigated the potential use of nuclear receptor (NR) ligands for combinational therapy with other anti-cancer drugs. We first profiled all 48 NRs and 48 biological anti-cancer targets in four pairs of lung cell lines, where each pair was obtained from the same patient. Two sets of cell lines were normal and the corresponding tumor cell lines while the other two sets consisted of primary versus metastatic tumor cell lines. Analysis of the expression profile revealed 11 NRs and 15 cancer targets from the two pairs of normal versus tumor cell lines, and 9 NRs and 9 cancer targets from the primary versus metastatic tumor cell lines had distinct expression patterns in each category. Finally, the evaluation of nuclear receptor ligand T0901317 for liver X receptor (LXR) demonstrated its combined therapeutic potential with tyrosine kinase inhibitors. The combined treatment of cMET inhibitor PHA665752 or EGFR inhibitor gefitinib with T0901317 showed additive growth inhibition in both H2073 and H1993 cells. Mechanistically, the combined treatment suppressed cell cycle progression by inhibiting cyclinD1 and cyclinB expression. Taken together, this study provides insight into the potential use of NR ligands in combined therapeutics with other biological anti-cancer drugs.

  7. Transcription regulation of nuclear receptor PXR: Role of SUMO-1 modification and NDSM in receptor function.

    PubMed

    Priyanka; Kotiya, Deepak; Rana, Manjul; Subbarao, N; Puri, Niti; Tyagi, Rakesh K

    2016-01-15

    Pregnane & Xenobiotic Receptor (PXR) is one of the 48 members of the nuclear receptor superfamily of ligand-modulated transcription factors. PXR plays an important role in metabolism and elimination of diverse noxious endobiotics and xenobiotics. Like in case of some nuclear receptors its function may also be differentially altered, positively or negatively, by various post-translational modifications. In this context, regulation of PXR function by SUMOylation is the subject of present investigation. Here, we report that human PXR is modified by SUMO-1 resulting in its enhanced transcriptional activity. RT-PCR analysis showed that PXR SUMOylation in presence of rifampicin also enhances the endogenous expression levels of key PXR-regulated genes like CYP3A4, CYP2C9, MDR1 and UGT1A1. In addition, mammalian two-hybrid assay exhibited enhanced interaction between PXR and co-activator SRC-1. EMSA results revealed that SUMOylation has no influence on the DNA binding ability of PXR. In silico analysis suggested that PXR protein contains four putative SUMOylation sites, centered at K108, K129, K160 and K170. In addition to this, we identified the presence of NDSM (Negative charge amino acid Dependent SUMOylation Motif) in PXR. Substitution of all its four putative lysine residues along with NDSM abolished the effect of SUMO-1-mediated transactivation function of PXR. Furthermore, we show that interaction between PXR and E2-conjugation enzyme UBCh9, an important step for implementation of SUMOylation event, was reduced in case of NDSM mutant PXRD115A. Overall, our results suggest that SUMOylation at specific sites on PXR protein are involved in enhancement of transcription function of this receptor. PMID:26549688

  8. Identification of two functional nuclear localization signals mediating nuclear import of liver receptor homologue-1.

    PubMed

    Yang, Feng-Ming; Lin, Yu-Chi; Hu, Meng-Chun

    2011-04-01

    Liver receptor homologue-1 (LRH-1) is a member of the nuclear receptor superfamily. We characterized two functional nuclear localization signals (NLSs) in LRH-1. NLS1 (residues 117-168) overlaps the second zinc finger in the DNA binding domain. Mutagenesis showed that the zinc finger structure and two basic clusters on either side of the zinc finger loop are critical for nuclear import of NLS1. NLS2 (residues 169-204) is located in the Ftz-F1 box that contains a bipartite signal. In full-length LRH-1, mutation of either NLS1 or NLS2 had no effect on nuclear localization, but disruption of both NLS1 and NLS2 resulted in the cytoplasmic accumulation of LRH-1. Either NLS1 or NLS2 alone was sufficient to target LRH-1 to the nucleus. Both NLS1 and NLS2 mediate nuclear transport by a mechanism involving importin α/β. Finally, we showed that three crucial basic clusters in the NLSs are involved in the DNA binding and transcriptional activities of LRH-1. PMID:20853131

  9. A New STAT3-binding Partner, ARL3, Enhances the Phosphorylation and Nuclear Accumulation of STAT3.

    PubMed

    Togi, Sumihito; Muromoto, Ryuta; Hirashima, Koki; Kitai, Yuichi; Okayama, Taichiro; Ikeda, Osamu; Matsumoto, Naoki; Kon, Shigeyuki; Sekine, Yuichi; Oritani, Kenji; Matsuda, Tadashi

    2016-05-20

    Signal transducer and activator of transcription 3 (STAT3) is involved in cell proliferation, differentiation, and cell survival during immune responses, hematopoiesis, neurogenesis, and other biological processes. STAT3 activity is regulated by a variety of mechanisms, including phosphorylation and nuclear translocation. To clarify the molecular mechanisms underlying the regulation of STAT3 activity, we performed yeast two-hybrid screening. We identified ARL3 (ADP-ribosylation factor-like 3) as a novel STAT3-binding partner. ARL3 recognizes the DNA-binding domain as well as the C-terminal region of STAT3 in vivo, and their binding was the strongest when both proteins were activated. Importantly, small interfering RNA-mediated reduction of endogenous ARL3 expression decreased IL-6-induced tyrosine phosphorylation, nuclear accumulation, and transcriptional activity of STAT3. These results indicate that ARL3 interacts with STAT3 and regulates the transcriptional activation of STAT3 by influencing its nuclear accumulation of STAT3. PMID:27048653

  10. Bmal1 is a direct transcriptional target of the orphan nuclear receptor, NR2F1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Orphan nuclear receptor NR2F1 (also known as COUP-TFI, Chicken Ovalbumin Upstream Promoter Transcription Factor I) is a highly conserved member of the nuclear receptor superfamily. NR2F1 plays a critical role during embryonic development, particularly in the central and peripheral nervous systems a...

  11. Nuclear hormone receptor functions in keratinocyte and melanocyte homeostasis, epidermal carcinogenesis and melanomagenesis

    PubMed Central

    Hyter, Stephen; Indra, Arup K

    2013-01-01

    Skin homeostasis is maintained, in part, through regulation of gene expression orchestrated by type II nuclear hormone receptors in a cell and context specific manner. This group of transcriptional regulators is implicated in various cellular processes including epidermal proliferation, differentiation, permeability barrier formation, follicular cycling and inflammatory responses. Endogenous ligands for the receptors regulate actions during skin development and maintenance of tissue homeostasis. Type II nuclear receptor signaling is also important for cellular crosstalk between multiple cell types in the skin. Overall, these nuclear receptors are critical players in keratinocyte and melanocyte biology and present targets for cutaneous disease management. PMID:23395795

  12. Identification of Farnesoid X Receptor β as a Novel Mammalian Nuclear Receptor Sensing Lanosterol

    PubMed Central

    Otte, Kerstin; Kranz, Harald; Kober, Ingo; Thompson, Paul; Hoefer, Michael; Haubold, Bernhard; Remmel, Bettina; Voss, Hartmut; Kaiser, Carmen; Albers, Michael; Cheruvallath, Zaccharias; Jackson, David; Casari, Georg; Koegl, Manfred; Pääbo, Svante; Mous, Jan; Kremoser, Claus; Deuschle, Ulrich

    2003-01-01

    Nuclear receptors are ligand-modulated transcription factors. On the basis of the completed human genome sequence, this family was thought to contain 48 functional members. However, by mining human and mouse genomic sequences, we identified FXRβ as a novel family member. It is a functional receptor in mice, rats, rabbits, and dogs but constitutes a pseudogene in humans and primates. Murine FXRβ is widely coexpressed with FXR in embryonic and adult tissues. It heterodimerizes with RXRα and stimulates transcription through specific DNA response elements upon addition of 9-cis-retinoic acid. Finally, we identified lanosterol as a candidate endogenous ligand that induces coactivator recruitment and transcriptional activation by mFXRβ. Lanosterol is an intermediate of cholesterol biosynthesis, which suggests a direct role in the control of cholesterol biosynthesis in nonprimates. The identification of FXRβ as a novel functional receptor in nonprimate animals sheds new light on the species differences in cholesterol metabolism and has strong implications for the interpretation of genetic and pharmacological studies of FXR-directed physiologies and drug discovery programs. PMID:12529392

  13. The orphan nuclear receptor estrogen receptor-related receptor gamma negatively regulates BMP2-induced osteoblast differentiation and bone formation.

    PubMed

    Jeong, Byung-Chul; Lee, Yong-Soo; Park, Yun-Yong; Bae, In-Ho; Kim, Don-Kyu; Koo, Seung-Hoi; Choi, Hong-Ran; Kim, Sun-Hun; Franceschi, Renny T; Koh, Jeong-Tae; Choi, Hueng-Sik

    2009-05-22

    Estrogen receptor-related receptor gamma (ERRgamma/ERR3/NR3B3) is a member of the orphan nuclear receptor with important functions in development and homeostasis. Recently it has been reported that ERRalpha is involved in osteoblast differentiation and bone formation. In the present study we examined the role of ERRgamma in osteoblast differentiation. Here, we showed that ERRgamma is expressed in osteoblast progenitors and primary osteoblasts, and its expression is increased temporarily by BMP2. Overexpression of ERRgamma reduced BMP2-induced alkaline phosphatase activity and osteocalcin production as well as calcified nodule formation, whereas inhibition of ERRgamma expression significantly enhanced BMP2-induced osteogenic differentiation and mineralization, suggesting that endogenous ERRgamma plays an important role in osteoblast differentiation. In addition, ERRgamma significantly repressed Runx2 transactivity on osteocalcin and bone sialoprotein promoters. We also observed that ERRgamma physically interacts with Runx2 in vitro and in vivo and competes with p300 to repress Runx2 transactivity. Notably, intramuscular injection of ERRgamma strongly inhibited BMP2-induced ectopic bone formation in a dose-dependent manner. Taken together, these results suggest that ERRgamma is a novel negative regulator of osteoblast differentiation and bone formation via its regulation of Runx2 transactivity. PMID:19324883

  14. The Orphan Nuclear Receptor Estrogen Receptor-related Receptor γ Negatively Regulates BMP2-induced Osteoblast Differentiation and Bone Formation*

    PubMed Central

    Jeong, Byung-Chul; Lee, Yong-Soo; Park, Yun-Yong; Bae, In-Ho; Kim, Don-Kyu; Koo, Seung-Hoi; Choi, Hong-Ran; Kim, Sun-Hun; Franceschi, Renny T.; Koh, Jeong-Tae; Choi, Hueng-Sik

    2009-01-01

    Estrogen receptor-related receptor γ (ERRγ/ERR3/NR3B3) is a member of the orphan nuclear receptor with important functions in development and homeostasis. Recently it has been reported that ERRα is involved in osteoblast differentiation and bone formation. In the present study we examined the role of ERRγ in osteoblast differentiation. Here, we showed that ERRγ is expressed in osteoblast progenitors and primary osteoblasts, and its expression is increased temporarily by BMP2. Overexpression of ERRγ reduced BMP2-induced alkaline phosphatase activity and osteocalcin production as well as calcified nodule formation, whereas inhibition of ERRγ expression significantly enhanced BMP2-induced osteogenic differentiation and mineralization, suggesting that endogenous ERRγ plays an important role in osteoblast differentiation. In addition, ERRγ significantly repressed Runx2 transactivity on osteocalcin and bone sialoprotein promoters. We also observed that ERRγ physically interacts with Runx2 in vitro and in vivo and competes with p300 to repress Runx2 transactivity. Notably, intramuscular injection of ERRγ strongly inhibited BMP2-induced ectopic bone formation in a dose-dependent manner. Taken together, these results suggest that ERRγ is a novel negative regulator of osteoblast differentiation and bone formation via its regulation of Runx2 transactivity. PMID:19324883

  15. Optical spectroscopic approach as a rapid tool to characterize the interactions of retinoids with human nuclear receptors

    NASA Astrophysics Data System (ADS)

    Morjani, Hamid; Sockalingum, Ganesh D.; Beljebbar, Abdelilah; Manfait, Michel

    1998-04-01

    Retinoids are potent molecules that can affect a variety of fundamental biological processes including cell differentiation and proliferation and apoptosis. These molecules elicit their biological effects by activating a family of nuclear receptors which act as ligand-inducible transcription factors belonging to the steroid/thyroid receptor superfamily. Retinoic acid receptors form heterodimers in which response to ligand binding, both partners contribute to transactivation and/or DNA binding in vivo. Surface-enhanced Raman scattering (SERS), Fourier transform-SERS (FT-SERS), fluorescence and circular dichroism are proposed to rapidly give information on the interaction of the different RARs and RXRs with their specific ligands at physiological concentrations. FT-SERS data reveal a significant attenuation in intensity of the bands originating from the retinoic polyenic chain upon complexation. The spectrum is dominantly of the (Beta) - ionone ring. Fluorescence measurements supported the hydrophobic character of the ligand binding pocket and the circular dichroic data indicate that the protein helices extend upon ligand binding. These novel spectroscopic information are fully consistent with published x-ray crystallographic results and suggest that these techniques may be valuable additional tools to characterize the interactions of agonists and antagonists with residues of the ligand binding pocket retinoid receptor homo- and hetero-dimers.

  16. Nuclear receptors and metabolism: from feast to famine.

    PubMed

    Hong, Suk-Hyun; Ahmadian, Maryam; Yu, Ruth T; Atkins, Annette R; Downes, Michael; Evans, Ronald M

    2014-05-01

    The ability to adapt to cycles of feast and famine is critical for survival. Communication between multiple metabolic organs must be integrated to properly metabolise nutrients. By controlling networks of genes in major metabolic organs, nuclear hormone receptors (NHRs) play central roles in regulating metabolism in a tissue-specific manner. NHRs also establish daily rhythmicity by controlling the expression of core clock genes both centrally and peripherally. Recent findings show that many of the metabolic effects of NHRs are mediated through certain members of the fibroblast growth factor (FGF) family. This review focuses on the roles of NHRs in critical metabolic organs, including adipose tissue, liver and muscle, during the fed and fasted states, as well as their roles in circadian metabolism and downstream regulation of FGFs. PMID:24619218

  17. Nuclear receptors and AMPK: can exercise mimetics cure diabetes?

    PubMed

    Wall, Christopher E; Yu, Ruth T; Atkins, Anne R; Downes, Michael; Evans, Ronald M

    2016-07-01

    Endurance exercise can lead to systemic improvements in insulin sensitivity and metabolic homeostasis, and is an effective approach to combat metabolic diseases. Pharmacological compounds that recapitulate the beneficial effects of exercise, also known as 'exercise mimetics', have the potential to improve disease symptoms of metabolic syndrome. These drugs, which can increase energy expenditure, suppress hepatic gluconeogenesis, and induce insulin sensitization, have accordingly been highly scrutinized for their utility in treating metabolic diseases including diabetes. Nevertheless, the identity of an efficacious exercise mimetic still remains elusive. In this review, we highlight several nuclear receptors and cofactors that are putative molecular targets for exercise mimetics, and review recent studies that provide advancements in our mechanistic understanding of how exercise mimetics exert their beneficial effects. We also discuss evidence from clinical trials using these compounds in human subjects to evaluate their efficacy in treating diabetes. PMID:27106806

  18. HER-kinase Axis Receptor Dimer Partner Switching Occurs in Response to EGFR Tyrosine Kinase Inhibition Despite Failure to Block Cellular Proliferation

    PubMed Central

    Jain, Anjali; Penuel, Elicia; Mink, Sheldon; Schmidt, Joanna; Hodge, Amanda; Favero, Kristin; Tindell, Charles; Agus, David B.

    2010-01-01

    The HER-axis consists of a dynamic, interconnected family of receptors that make critical contributions to a number of malignancies. Therapeutics targeting EGFR, are unable to effectively inhibit tumor growth in a majority of cases. These tumors are assumed to possess primary resistance to anti-EGFR therapies but the consequence of inhibiting EGFR in these tumors is unclear. We established isogenic cell lines by prolonged gefitinib treatment at concentrations that are in excess of that which is required for complete EGFR kinase inhibition but only minimally effected growth. Subsequently, we monitored the ligand-dependent HER profiles based on receptor expression, phosphorylation and dimerization in conjunction with measurements of cellular susceptibility to gefitinib. Chronic EGFR kinase inhibition rapidly switched the HER network from dependence on EGFR to HER2. However, both receptors activated the critical signaling proteins, AKT and MAPK and in both cases HER3 was the common association partner. Remarkably, the switch in receptor dimers caused diminished susceptibility to EGFR-targeted inhibitors, gefitinib and cetuximab, but acquired susceptibility to the HER2-targeted inhibitor, pertuzumab. Overall, our study indicates that the EGFR pathway is responsive to EGFR inhibiting therapies that are not dependent on EGFR for their growth and survival thus challenging the current definition of primary therapeutic resistance. Further, EGFR kinase inhibition induces HER-kinase receptors to engage in alternative dimerization that can ultimately influence therapeutic selection and responsiveness. PMID:20160029

  19. Regulation of Caenorhabditis elegans Male Mate Searching Behavior by the Nuclear Receptor DAF-12

    PubMed Central

    Kleemann, Gunnar; Jia, Lingyun; Emmons, Scott W.

    2008-01-01

    Coordination of animal behavior with reproductive status is often achieved through elaboration of hormones by the gonad. In the nematode Caenorhabditis elegans, adult males explore their environment to locate mates. Mate searching is regulated by presence of mates, nutritional status, and a signal from the gonad. Here we show that the gonadal signal acts via the nuclear receptor DAF-12, a protein known to regulate several C. elegans life-history traits. DAF-12 has both activational and organizational functions to stimulate exploratory behavior and acts downstream of the gonadal signal, outside of the gonad. DAF-12 acts upstream of sensory input from mating partners and physiological signals indicating nutritional status. Mate searching was rescued in germ-line ablated animals, but not if both germ line and somatic gonad were ablated, by a precursor of the DAF-12 ligand, dafachronic acid (DA). The results are interpreted to suggest that the germ line produces a DA precursor that is converted to DA outside of the germ line, possibly in the somatic gonad. As it does in other pathways in which it functions, in regulation of male mate searching behavior DAF-12 acts at a choice point between alternatives favoring reproduction (mate searching) vs. survival (remaining on food). PMID:18854588

  20. Nuclear Receptors in Drug Metabolism, Drug Response and Drug Interactions

    PubMed Central

    Prakash, Chandra; Zuniga, Baltazar; Song, Chung Seog; Jiang, Shoulei; Cropper, Jodie; Park, Sulgi; Chatterjee, Bandana

    2016-01-01

    Orally delivered small-molecule therapeutics are metabolized in the liver and intestine by phase I and phase II drug-metabolizing enzymes (DMEs), and transport proteins coordinate drug influx (phase 0) and drug/drug-metabolite efflux (phase III). Genes involved in drug metabolism and disposition are induced by xenobiotic-activated nuclear receptors (NRs), i.e. PXR (pregnane X receptor) and CAR (constitutive androstane receptor), and by the 1α, 25-dihydroxy vitamin D3-activated vitamin D receptor (VDR), due to transactivation of xenobiotic-response elements (XREs) present in phase 0-III genes. Additional NRs, like HNF4-α, FXR, LXR-α play important roles in drug metabolism in certain settings, such as in relation to cholesterol and bile acid metabolism. The phase I enzymes CYP3A4/A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, CYP1A2, CYP2C8, CYP2A6, CYP2J2, and CYP2E1 metabolize >90% of all prescription drugs, and phase II conjugation of hydrophilic functional groups (with/without phase I modification) facilitates drug clearance. The conjugation step is mediated by broad-specificity transferases like UGTs, SULTs, GSTs. This review delves into our current understanding of PXR/CAR/VDR-mediated regulation of DME and transporter expression, as well as effects of single nucleotide polymorphism (SNP) and epigenome (specified by promoter methylation, histone modification, microRNAs, long non coding RNAs) on the expression of PXR/CAR/VDR and phase 0-III mediators, and their impacts on variable drug response. Therapeutic agents that target epigenetic regulation and the molecular basis and consequences (overdosing, underdosing, or beneficial outcome) of drug-drug/drug-food/drug-herb interactions are also discussed. Precision medicine requires understanding of a drug’s impact on DME and transporter activity and their NR-regulated expression in order to achieve optimal drug efficacy without adverse drug reactions. In future drug screening, new tools such as humanized mouse models and

  1. Enhanced ethanol catabolism in orphan nuclear receptor SHP-null mice.

    PubMed

    Park, Jung Eun; Lee, Mikang; Mifflin, Ryan; Lee, Yoon Kwang

    2016-05-15

    Deficiency of the orphan nuclear hormone receptor small heterodimer partner (SHP, NR0B2) protects mice from diet-induced hepatic steatosis, in part, via repression of peroxisome proliferator-activated receptor (PPAR)-γ2 (Pparg2) gene expression. Alcoholic fatty liver diseases (AFLD) share many common pathophysiological features with non-AFLD. To study the role of SHP and PPARγ2 in AFLD, we used a strategy of chronic ethanol feeding plus a single binge ethanol feeding to challenge wild-type (WT) and SHP-null (SHP(-/-)) mice with ethanol. The ethanol feeding induced liver fat accumulation and mRNA expression of hepatic Pparg2 in WT mice, which suggests that a high level of PPARγ2 is a common driving force for fat accumulation induced by ethanol or a high-fat diet. Interestingly, ethanol-fed SHP(-/-) mice displayed hepatic fat accumulation similar to that of ethanol-fed WT mice, even though their Pparg2 expression level remained lower. Mortality of SHP(-/-) mice after ethanol binge feeding was significantly reduced and their acetaldehyde dehydrogenase (Aldh2) mRNA level was higher than that of their WT counterparts. After an intoxicating dose of ethanol, SHP(-/-) mice exhibited faster blood ethanol clearance and earlier wake-up time than WT mice. Higher blood acetate, the end product of ethanol metabolism, and lower acetaldehyde levels were evident in the ethanol-challenged SHP(-/-) than WT mice. Ethanol-induced inflammatory responses and lipid peroxidation were also lower in SHP(-/-) mice. The current data show faster ethanol catabolism and extra fat storage through conversion of acetate to acetyl-CoA before its release into the circulation in this ethanol-feeding model in SHP(-/-) mice. PMID:26968209

  2. In silico modelling of prostacyclin and other lipid mediators to nuclear receptors reveal novel thyroid hormone receptor antagonist properties.

    PubMed

    Perez Diaz, Noelia; Zloh, Mire; Patel, Pryank; Mackenzie, Louise S

    2016-01-01

    Prostacyclin (PGI2) is a key mediator involved in cardiovascular homeostasis, acting predominantly on two receptor types; cell surface IP receptor and cytosolic peroxisome proliferator activated receptor (PPAR) β/δ. Having a very short half-life, direct methods to determine its long term effects on cells is difficult, and little is known of its interactions with nuclear receptors. Here we used computational chemistry methods to investigate the potential for PGI2, beraprost (IP receptor agonist), and GW0742 (PPARβ/δ agonist), to bind to nuclear receptors, confirmed with pharmacological methods. In silico screening predicted that PGI2, beraprost, and GW0742 have the potential to bind to different nuclear receptors, in particular thyroid hormone β receptor (TRβ) and thyroid hormone α receptor (TRα). Docking analysis predicts a binding profile to residues thought to have allosteric control on the TR ligand binding site. Luciferase reporter assays confirmed that beraprost and GW0742 display TRβ and TRα antagonistic properties; beraprost IC50 6.3×10(-5)mol/L and GW0742 IC50 4.9×10(-6)mol/L. Changes to triiodothyronine (T3) induced vasodilation of rat mesenteric arteries measured on the wire myograph were measured in the presence of the TR antagonist MLS000389544 (10(-5)mol/L), beraprost (10(-5)mol/L) and GW0742 (10(-5)mol/L); all significantly inhibited T3 induced vasodilation compared to controls. We have shown that both beraprost and GW0742 exhibit TRβ and TRα antagonist behaviour, and suggests that PGI2 has the ability to affect the long term function of cells through binding to and inactivating thyroid hormone receptors. PMID:26686607

  3. Global partnering related to nuclear materials safeguards and security - A pragmatic approach to international safeguards work

    SciTech Connect

    Stanford, Dennis

    2007-07-01

    This paper documents issues Nuclear Fuel Services, Inc. has addressed in the performance of international work to safeguards and security work. It begins with a description of the package we put together for a sample proposal for the Global Threat Reduction Initiative, for which we were ranked number one for technical approach and cost, and concludes with a discussion of approaches that we have taken to performing this work, including issues related to performing the work as part of a team. The primary focus is on communication, workforce, equipment, and coordination issues. Finally, the paper documents the rules that we use to assure the work is performed safely and successfully. (author)

  4. Elevated NCOR1 disrupts a network of dietary-sensing nuclear receptors in bladder cancer cells

    PubMed Central

    Abedin, S. Asad; Thorne, James L.; Battaglia, Sebastiano; Maguire, Orla; Hornung, Laura B.; Doherty, Alan P.; Mills, Ian G.; Campbell, Moray J.

    2009-01-01

    Increasingly invasive bladder cancer cells lines displayed insensitivity toward a panel of dietary-derived ligands for members of the nuclear receptor superfamily. Insensitivity was defined through altered gene regulatory actions and cell proliferation and reflected both reduced receptor expression and elevated nuclear receptor corepressor 1 (NCOR1) expression. Stable overexpression of NCOR1 in sensitive cells (RT4) resulted in a panel of clones that recapitulated the resistant phenotype in terms of gene regulatory actions and proliferative responses toward ligand. Similarly, silencing RNA approaches to NCOR1 in resistant cells (EJ28) enhanced ligand gene regulatory and proliferation responses, including those mediated by peroxisome proliferator-activated receptor (PPAR) γ and vitamin D receptor (VDR) receptors. Elevated NCOR1 levels generate an epigenetic lesion to target in resistant cells using the histone deacetylase inhibitor vorinostat, in combination with nuclear receptor ligands. Such treatments revealed strong-additive interactions toward the PPARγ, VDR and Farnesoid X-activated receptors. Genome-wide microarray and microfluidic quantitative real-time, reverse transcription–polymerase chain reaction approaches, following the targeting of NCOR1 activity and expression, revealed the selective capacity of this corepressor to govern common transcriptional events of underlying networks. Combined these findings suggest that NCOR1 is a selective regulator of nuclear receptors, notably PPARγ and VDR, and contributes to their loss of sensitivity. Combinations of epigenetic therapies that target NCOR1 may prove effective, even when receptor expression is reduced. PMID:19126649

  5. Current in vitro high throughput screening approaches to assess nuclear receptor activation.

    PubMed

    Raucy, Judy L; Lasker, Jerome M

    2010-11-01

    The screening of new drug candidates for nuclear receptor activation can identify agents with the potential to produce drug-drug interactions or elicit adverse drug effects. The nuclear receptors of interest are those that control the expression of drug metabolizing enzymes and drug transporters, and include the constitutive androstane receptor (CAR, NR1I3), the pregnane X receptor (PXR, NR1I2) and the aryl hydrocarbon receptor (AhR). This review will focus on the methods currently used to assess activation of these receptors. Assessment of nuclear receptor activation can be accomplished using direct or indirect approaches. Indirect methods quantify specific gene products that result from nuclear receptor activation while direct approaches measure either the binding of ligands to the receptors or the transcriptional events produced by ligand binding. Assays that directly quantify nuclear receptor activation are growing in popularity and, importantly, are amenable to high throughput screening (HTS). Several ligand binding assays are currently being utilized, including radioligand competition binding, where compounds compete with radiolabelled ligand for binding to PXR or CAR, such as the scintillation proximity binding assay that measures the reaction of ligands with receptor-coated beads. A fluorescence resonance energy transfer assay has also been developed, where the fluorescent signal is generated via the ligand-dependent interaction between the fluorescently-labeled ligand binding domain of a nuclear receptor and co-activator proteins. Other in vitro activation assays include transient- and stably-transfected cell lines incorporating an expression vector for PXR, CAR or AhR plus a reporter gene vector containing response elements. The methods focused on in this review will be limited to the more direct in vitro approaches that are amenable to high throughput screening. PMID:21189134

  6. Farnesoid X receptor, the bile acid sensing nuclear receptor, in liver regeneration

    PubMed Central

    Li, Guodong; L. Guo, Grace

    2015-01-01

    The liver is unique in regenerative potential, which could recover the lost mass and function after injury from ischemia and resection. The underlying molecular mechanisms of liver regeneration have been extensively studied in the past using the partial hepatectomy (PH) model in rodents, where 2/3 PH is carried out by removing two lobes. The whole process of liver regeneration is complicated, orchestrated event involving a network of connected interactions, which still remain fully elusive. Bile acids (BAs) are ligands of farnesoid X receptor (FXR), a nuclear receptor of ligand-activated transcription factor. FXR has been shown to be highly involved in liver regeneration. BAs and FXR not only interact with each other but also regulate various downstream targets independently during liver regeneration. Moreover, recent findings suggest that tissue-specific FXR also contributes to liver regeneration significantly. These novel findings suggest that FXR has much broader role than regulating BA, cholesterol, lipid and glucose metabolism. Therefore, these researches highlight FXR as an important pharmaceutical target for potential use of FXR ligands to regulate liver regeneration in clinic. This review focuses on the roles of BAs and FXR in liver regeneration and the current underlying molecular mechanisms which contribute to liver regeneration. PMID:26579433

  7. Orphan nuclear receptor estrogen-related receptor γ (ERRγ) is key regulator of hepatic gluconeogenesis.

    PubMed

    Kim, Don-Kyu; Ryu, Dongryeol; Koh, Minseob; Lee, Min-Woo; Lim, Donghyun; Kim, Min-Jung; Kim, Yong-Hoon; Cho, Won-Jea; Lee, Chul-Ho; Park, Seung Bum; Koo, Seung-Hoi; Choi, Hueng-Sik

    2012-06-22

    Glucose homeostasis is tightly controlled by hormonal regulation of hepatic glucose production. Dysregulation of this system is often associated with insulin resistance and diabetes, resulting in hyperglycemia in mammals. Here, we show that the orphan nuclear receptor estrogen-related receptor γ (ERRγ) is a novel downstream mediator of glucagon action in hepatic gluconeogenesis and demonstrate a beneficial impact of the inverse agonist GSK5182. Hepatic ERRγ expression was increased by fasting-dependent activation of the cAMP-response element-binding protein-CRTC2 pathway. Overexpression of ERRγ induced Pck1 and G6PC gene expression and glucose production in primary hepatocytes, whereas abolition of ERRγ gene expression attenuated forskolin-mediated induction of gluconeogenic gene expression. Deletion and mutation analyses of the Pck1 promoter showed that ERRγ directly regulates the Pck1 gene transcription via ERR response elements of the Pck1 promoter as confirmed by ChIP assay and in vivo imaging analysis. We also demonstrate that GSK5182, an inverse agonist of ERRγ, specifically inhibits the transcriptional activity of ERRγ in a PGC-1α dependent manner. Finally, the ERRγ inverse agonist ameliorated hyperglycemia through inhibition of hepatic gluconeogenesis in db/db mice. Control of hepatic glucose production by an ERRγ-specific inverse agonist is a new potential therapeutic approach for the treatment of type 2 diabetes. PMID:22549789

  8. Orphan Nuclear Receptor Estrogen-Related Receptor γ (ERRγ) Is Key Regulator of Hepatic Gluconeogenesis*

    PubMed Central

    Kim, Don-Kyu; Ryu, Dongryeol; Koh, Minseob; Lee, Min-Woo; Lim, Donghyun; Kim, Min-Jung; Kim, Yong-Hoon; Cho, Won-Jea; Lee, Chul-Ho; Park, Seung Bum; Koo, Seung-Hoi; Choi, Hueng-Sik

    2012-01-01

    Glucose homeostasis is tightly controlled by hormonal regulation of hepatic glucose production. Dysregulation of this system is often associated with insulin resistance and diabetes, resulting in hyperglycemia in mammals. Here, we show that the orphan nuclear receptor estrogen-related receptor γ (ERRγ) is a novel downstream mediator of glucagon action in hepatic gluconeogenesis and demonstrate a beneficial impact of the inverse agonist GSK5182. Hepatic ERRγ expression was increased by fasting-dependent activation of the cAMP-response element-binding protein-CRTC2 pathway. Overexpression of ERRγ induced Pck1 and G6PC gene expression and glucose production in primary hepatocytes, whereas abolition of ERRγ gene expression attenuated forskolin-mediated induction of gluconeogenic gene expression. Deletion and mutation analyses of the Pck1 promoter showed that ERRγ directly regulates the Pck1 gene transcription via ERR response elements of the Pck1 promoter as confirmed by ChIP assay and in vivo imaging analysis. We also demonstrate that GSK5182, an inverse agonist of ERRγ, specifically inhibits the transcriptional activity of ERRγ in a PGC-1α dependent manner. Finally, the ERRγ inverse agonist ameliorated hyperglycemia through inhibition of hepatic gluconeogenesis in db/db mice. Control of hepatic glucose production by an ERRγ-specific inverse agonist is a new potential therapeutic approach for the treatment of type 2 diabetes. PMID:22549789

  9. Xenobiotic-sensing nuclear receptors involved in drug metabolism: a structural perspective

    PubMed Central

    Wallace, Bret D.; Redinbo, Matthew R.

    2016-01-01

    Xenobiotic compounds undergo a critical range of biotransformations performed by the phase I, II, and III drug-metabolizing enzymes. The oxidation, conjugation, and transportation of potentially harmful xenobiotic and endobiotic compounds achieved by these catalytic systems are significantly regulated, at the gene expression level, by members of the nuclear receptor (NR) family of ligand-modulated transcription factors. Activation of NRs by a variety of endo- and exogenous chemicals are elemental to induction and repression of drug-metabolism pathways. The master xenobiotic sensing NRs, the promiscuous pregnane X receptor and less-promiscuous constitutive androstane receptor are crucial to initial ligand recognition, jump-starting the metabolic process. Other receptors, including farnesoid X receptor, vitamin D receptor, hepatocyte nuclear factor 4 alpha, peroxisome proliferator activated receptor, glucocorticoid receptor, liver X receptor, and RAR-related orphan receptor, are not directly linked to promiscuous xenobiotic binding, but clearly play important roles in the modulation of metabolic gene expression. Crystallographic studies of the ligand-binding domains of nine NRs involved in drug metabolism provide key insights into ligand-based and constitutive activity, coregulator recruitment, and gene regulation. Structures of other, noncanonical transcription factors also shed light on secondary, but important, pathways of control. Pharmacological targeting of some of these nuclear and atypical receptors has been instituted as a means to treat metabolic and developmental disorders and provides a future avenue to be explored for other members of the xenobiotic-sensing NRs. PMID:23210723

  10. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR

    PubMed Central

    2013-01-01

    Nuclear receptors are integrators of hormonal and nutritional signals, mediating changes to metabolic pathways within the body. Given that modulation of lipid and glucose metabolism has been linked to diseases including type 2 diabetes, obesity and atherosclerosis, a greater understanding of pathways that regulate metabolism in physiology and disease is crucial. The liver X receptors (LXRs) and the farnesoid X receptors (FXRs) are activated by oxysterols and bile acids, respectively. Mounting evidence indicates that these nuclear receptors have essential roles, not only in the regulation of cholesterol and bile acid metabolism but also in the integration of sterol, fatty acid and glucose metabolism. PMID:22414897

  11. Analysis of the Heat Shock Response in Mouse Liver Reveals Transcriptional Dependence on the Nuclear Receptor Peroxisome Proliferator-Activated Receptor alpha (PPARα)

    EPA Science Inventory

    BACKGROUND: The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha) regulates responses to chemical or physical stress in part by altering expression of genes involved in proteome maintenance. Many of these genes are also transcriptionally regulated by h...

  12. Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor α (PPARα) in a Mouse Liver Gene Expression Compendium

    EPA Science Inventory

    The nuclear receptor family member peroxisome proliferator-activated receptor α (PPARα) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPARα in rodents inc...

  13. ATP-dependent release of glucocorticoid receptors from the nuclear matrix.

    PubMed Central

    Tang, Y; DeFranco, D B

    1996-01-01

    Glucocorticoid receptors (GRs) have the capacity to shuttle between the nuclear and cytoplasmic compartments, sharing that trait with other steroid receptors and unrelated nuclear proteins of diverse function. Although nuclear import of steroid receptors, like that of nearly all other karyophilic proteins examined to date, requires ATP, there appear to be different energetic requirements for export of proteins, including steroid receptors, from nuclei. In an attempt to reveal which steps, if any, in the nuclear export pathway utilized by steroid receptors require ATP, we have used indirect immunofluorescence to visualize GRs within cells subjected to a reversible ATP depletion. Under conditions which lead to >95% depletion of cellular ATP levels within 90 min, GRs remain localized within nuclei and do not efflux into the cytoplasm. Under analogous conditions of ATP depletion, transfected progesterone receptors are also retained within nuclei. Importantly, GRs which accumulate within nuclei of ATP-depleted cells are distinguished from nuclear receptors in metabolically active cells by their resistance to in situ extraction with a hypotonic, detergent-containing buffer. GRs in ATP-depleted cells are not permanently trapped in this nuclear compartment, as nuclear receptors rapidly regain their capacity to be extracted upon restoration of cellular ATP, even in the absence of de novo protein synthesis. More extensive extraction of cells with high salt and detergent, coupled with DNase I digestion, established that a significant fraction of GRs in ATP-depleted cells are associated with an RNA-containing nuclear matrix. Quantitative Western blot (immunoblot) analysis confirmed the dramatic increase in GR binding to the nuclear matrix of ATP-depleted cells, while confocal microscopy revealed that GRs are bound to the matrix throughout all planes of the nucleus. ATP depletion does not lead to wholesale collapse of nuclear proteins onto the matrix, as the interaction of a

  14. Road to Exercise Mimetics: Targeting Nuclear Receptors in Skeletal Muscle

    PubMed Central

    Fan, Weiwei; Atkins, Annette R; Yu, Ruth T.; Downes, Michael; Evans, Ronald M.

    2014-01-01

    Skeletal muscle comprises the largest organ in the human body and is the major site for energy expenditure. It exhibits remarkable plasticity in response to physiological stimuli such as exercise. Physical exercise remodels skeletal muscle and enhances its capability to burn calories, which has been shown to be beneficial for many clinical conditions including metabolic syndrome and cancer. Nuclear receptors (NRs) comprise a class of transcription factors found only in metazoans that regulate major biological processes such as reproduction, development, and metabolism. Recent studies have demonstrated crucial roles for NRs and their co-regulators in regulating skeletal muscle energy metabolism and exercise-induced muscle remodeling. While nothing can fully replace exercise, development of exercise mimetics that enhance or even substitute for the beneficial effects of physical exercise would be of great benefit. The unique property of NRs that allows modulation by endogenous or synthetic ligands makes them bona fide therapeutic targets. In this review, we present an overview of the current understanding of NRs and their co-regulators in skeletal muscle oxidative metabolism and summarize recent progress in the development of exercise mimetics that target NRs and their co-regulators. PMID:24280961

  15. Nuclear receptor coregulators: modulators of pathology and therapeutic targets

    PubMed Central

    Lonard, David M.; O’Malley, Bert W.

    2013-01-01

    The nuclear receptor superfamily includes transcription factors that transduce steroid, thyroid and retinoid hormones and other ligands in conjunction with coregulators. To date, over 350 coregulators have been reported in the literature, and advances in proteomic analyses of coregulator protein complexes have revealed that a far greater number of coregulator-interacting proteins also exist. Coregulator dysfunction has been implicated in diverse pathological states, genetic syndromes and cancer. A hallmark of disease related to the disruption of normal coregulator function is the pleiotropic effect on animal physiology, which is frequently manifested as the dysregulation of metabolic and neurological systems. Coregulators have broad physiological and pathological functions that make them promising new drug targets for diseases such as hormone-dependent cancers. Advances in proteomics, genomics and transcriptomics have provided novel insights into the biology of coregulators at a system-wide level and will lead the way to a new understanding of how coregulators can be evaluated in the context of complex and multifaceted genetic factors, hormones, diet, the environment and stress. Ultimately, better knowledge of the associations that exist between coregulator function and human diseases is expected to expand the indications for the use of future coregulator-targeted drugs. PMID:22733267

  16. Binding of type II nuclear receptors and estrogen receptor to full and half-site estrogen response elements in vitro.

    PubMed Central

    Klinge, C M; Bodenner, D L; Desai, D; Niles, R M; Traish, A M

    1997-01-01

    The mechanism by which retinoids, thyroid hormone (T3) and estrogens modulate the growth of breast cancer cells is unclear. Since nuclear type II nuclear receptors, including retinoic acid receptor (RAR), retinoid X receptor (RXR) and thyroid hormone receptor (TR), bind direct repeats (DR) of the estrogen response elements (ERE) half-site (5'-AGGTCA-3'), we examined the ability of estrogen receptor (ER) versus type II nuclear receptors, i.e. RARalpha, beta and gamma, RXRbeta, TRalpha and TRbeta, to bind various EREs in vitro . ER bound a consensus ERE, containing a perfectly palindromic 17 bp inverted repeat (IR), as a homodimer. In contrast, ER did not bind to a single ERE half-site. Likewise, ER did not bind two tandem (38 bp apart) half-sites, but low ER binding was detected to three tandem copies of the same half-site. RARalpha,beta or gamma bound both ERE and half-site constructs as a homodimer. RXRbeta did not bind full or half-site EREs, nor did RXRbeta enhance RARalpha binding to a full ERE. However, RARalpha and RXRbeta bound a half-site ERE cooperatively forming a dimeric complex. The RARalpha-RXRbeta heterodimer bound the Xenopus vitellogenin B1 estrogen responsive unit, with two non-consensus EREs, with higher affinity than one or two copies of the full or half-site ERE. Both TRalpha and TRbeta bound the full and the half-site ERE as monomers and homodimers and cooperatively as heterodimers with RXRbeta. We suggest that the cellular concentrations of nuclear receptors and their ligands, and the nature of the ERE or half-site sequence and those of its flanking sequences determine the occupation of EREs in estrogen-regulated genes in vivo . PMID:9115356

  17. Expression of glucocorticoid and progesterone nuclear receptor genes in archival breast cancer tissue

    PubMed Central

    Smith, Robert A; Lea, Rod A; Curran, Joanne E; Weinstein, Stephen R; Griffiths, Lyn R

    2003-01-01

    Background Previous studies in our laboratory have shown associations of specific nuclear receptor gene variants with sporadic breast cancer. In order to investigate these findings further, we conducted the present study to determine whether expression levels of the progesterone and glucocorticoid nuclear receptor genes vary in different breast cancer grades. Methods RNA was extracted from paraffin-embedded archival breast tumour tissue and converted into cDNA. Sample cDNA underwent PCR using labelled primers to enable quantitation of mRNA expression. Expression data were normalized against the 18S ribosomal gene multiplex and analyzed using analysis of variance. Results Analysis of variance indicated a variable level of expression of both genes with regard to breast cancer grade (P = 0.00033 for glucocorticoid receptor and P = 0.023 for progesterone receptor). Conclusion Statistical analysis indicated that expression of the progesterone nuclear receptor is elevated in late grade breast cancer tissue. PMID:12559052

  18. Evidence for triclosan-induced activation of human and rodent xenobiotic nuclear receptors

    EPA Science Inventory

    The bacteriostat triclosan (2,4,40-trichloro-20-hydroxydiphenylether) (TCS) decreases rat serum thyroxine via putative nuclear receptor (NR) interaction(s) and subsequent transcriptional up-regulation of hepatic catabolism and clearance. However, due to the evolutionary divergenc...

  19. A Boolean Network Model of Nuclear Receptor Mediated Cell Cycle Progression (S)

    EPA Science Inventory

    Nuclear receptors (NRs) are ligand-activated transcription factors that regulate a broad range of cellular processes. Hormones, lipids and xenobiotics have been shown to activate NRs with a range of consequences on development, metabolism, oxidative stress, apoptosis, and prolif...

  20. A Boolean Network Model of Nuclear Receptor Mediated Cell Cycle Progression

    EPA Science Inventory

    Nuclear receptors (NRs) are ligand-activated transcription factors that regulate a broad range of cellular processes. Hormones, lipids and xenobiotics have been shown to activate NRs with a range of consequences on development, metabolism, oxidative stress, apoptosis, and prolif...

  1. LASSO-ing Potential Nuclear Receptor Agonists and Antagonists: A New Computational Method for Database Screening

    EPA Science Inventory

    Nuclear receptors (NRs) are important biological macromolecular transcription factors that are implicated in multiple biological pathways and may interact with other xenobiotics that are endocrine disruptors present in the environment. Examples of important NRs include the androg...

  2. SMRT isoforms mediate repression and anti-repression of nuclear receptor heterodimers.

    PubMed Central

    Chen, J D; Umesono, K; Evans, R M

    1996-01-01

    Transcriptional repression represents an important component in the regulation of cell differentiation and oncogenesis mediated by nuclear hormone receptors. Hormones act to relieve repression, thus allowing receptors to function as transcriptional activators. The transcriptional corepressor SMRT was identified as a silencing mediator for retinoid and thyroid hormone receptors. SMRT is highly related to another corepressor, N-CoR, suggesting the existence of a new family of receptor-interacting proteins. We demonstrate that SMRT is a ubiquitous nuclear protein that interacts with unliganded receptor heterodimers in mammalian cells. Furthermore, expression of the receptor-interacting domain of SMRT acts as an antirepressor, suggesting the potential importance of splicing variants as modulators of thyroid hormone and retinoic acid signaling. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:8755515

  3. Identification of clathrin heavy chain as a direct interaction partner for the gamma-aminobutyric acid type A receptor associated protein.

    PubMed

    Mohrlüder, Jeannine; Hoffmann, Yvonne; Stangler, Thomas; Hänel, Karen; Willbold, Dieter

    2007-12-18

    Gamma-aminobutyric acid type A receptors (GABAA receptors) are the major sites of GABA-mediated fast synaptic inhibition in the central nervous system. Variation of the cell surface receptor count is postulated to be of importance in modulating inhibitory synaptic transmission. The GABAA receptor associated protein (GABARAP) is a ubiquitin-like modifier, implicated in GABAA receptor clustering, trafficking, and turnover. GABARAP pull-down experiments with brain lysate identified clathrin heavy chain to be GABARAP-associated. Phage display screening of a randomized peptide library for GABARAP ligands yielded a sequence motif which characterizes the peptide binding specificity of GABARAP. Sequence database searches with this motif revealed clathrin heavy chain as a protein containing the identified sequence motif within its residues 510-522, supporting the result of the pull-down experiments. Calreticulin, which was identified recently as a GABARAP ligand, contains a very similar sequence motif. We demonstrate that calreticulin indeed competes with clathrin heavy chain for GABARAP binding. Finally, employing nuclear magnetic resonance spectroscopy, we mapped the GABARAP residues responsible for binding to clathrin. The hereby mapped GABARAP regions overlap very well with the homologue residues in yeast Atg8 that were recently shown to be important for autophagy. Together with the knowledge that GABARAP and clathrin are known to be involved in GABAA receptor trafficking within the cell, this strongly suggests a clear physiological relevance of the direct interaction of GABARAP with clathrin heavy chain. PMID:18027972

  4. The HR97 (NR1L) Group of Nuclear Receptors: A New Group up of Nuclear Receptors Discovered in Daphnia species

    PubMed Central

    Li, Yangchun; Ginjupalli, Gautam K.; Baldwin, William S.

    2014-01-01

    The recently sequenced Daphnia pulex genome revealed the NR1L nuclear receptor group consisting of three novel receptors. Phylogenetic studies show that this group is related to the NR1I group (CAR/PXR/VDR) and the NR1J group (HR96), and were subsequently named HR97a/b/g. Each of the HR97 paralogs from Daphnia magna, a commonly used crustacean in toxicity testing, was cloned, sequenced, and partially characterized. Phylogenetic analysis indicates that the HR97 receptors are present in primitive arthropods such as the chelicerates but lost in insects. qPCR and immunohistochemistry demonstrate that each of the receptors is expressed near or at reproductive maturity, and that HR97g, the most ancient of the HR97 receptors, is primarily expressed in the gastrointestinal tract, mandibular region, and ovaries, consistent with a role in reproduction. Transactivation assays using an HR97a/b/g-GAL4 chimera indicate that unlike Daphnia HR96 that is promiscuous with respect to ligand recognition, the HR97 receptors do not respond to many of the ligands that activate CAR/PXR/HR96 nuclear receptors. Only three putative ligands of HR97 receptors were identified in this study: pyriproxyfen, methyl farnesoate, and arachidonic acid. Only arachidonic acid, which acts as an inverse agonist, alters HR97g activity at concentrations that would be considered within physiologically relevant ranges. Overall, this study demonstrates that, although closely related to the promiscuous receptors in the NR1I and NR1J groups, the HR97 receptors are mostly likely not multi-xenobiotic sensors, but rather may perform physiological functions, potentially in reproduction, unique to crustaceans and other non-insect arthropod groups. PMID:25092536

  5. Nuclear receptors of the honey bee: annotation and expression in the adult brain

    PubMed Central

    Velarde, Rodrigo A; Robinson, Gene E; Fahrbach, Susan E

    2006-01-01

    The Drosophila genome encodes 18 canonical nuclear receptors. All of the Drosophila nuclear receptors are here shown to be present in the genome of the honey bee (Apis mellifera). Given that the time since divergence of the Drosophila and Apis lineages is measured in hundreds of millions of years, the identification of matched orthologous nuclear receptors in the two genomes reveals the fundamental set of nuclear receptors required to ‘make’ an endopterygote insect. The single novelty is the presence in the A. mellifera genome of a third insect gene similar to vertebrate photoreceptor-specific nuclear receptor (PNR). Phylogenetic analysis indicates that this novel gene, which we have named AmPNR-like, is a new member of the NR2 subfamily not found in the Drosophila or human genomes. This gene is expressed in the developing compound eye of the honey bee. Like their vertebrate counterparts, arthropod nuclear receptors play key roles in embryonic and postembryonic development. Studies in Drosophila have focused primarily on the role of these transcription factors in embryogenesis and metamorphosis. Examination of an expressed sequence tag library developed from the adult bee brain and analysis of transcript expression in brain using in situ hybridization and quantitative RT-PCR revealed that several members of the nuclear receptor family (AmSVP, AmUSP, AmERR, AmHr46, AmFtz-F1, and AmHnf-4) are expressed in the brain of the adult bee. Further analysis of the expression of AmUSP and AmSVP in the mushroom bodies, the major insect brain centre for learning and memory, revealed changes in transcript abundance and, in the case of AmUSP, changes in transcript localization, during the development of foraging behaviour in the adult. Study of the honey bee therefore provides a model for understanding nuclear receptor function in the adult brain. PMID:17069634

  6. A Steroid Receptor Coactivator Acts as the DNA-binding Partner of the Methoprene-tolerant Protein in Regulating Juvenile Hormone Response Genes

    PubMed Central

    Li, Meng; Liu, Pengcheng; Wiley, Jessica D.; Ojani, Reyhaneh; Bevan, David R.; Li, Jianyong; Zhu, Jinsong

    2014-01-01

    Methoprene-tolerant (Met) protein is a juvenile hormone (JH) receptor in insects. JH-bound Met forms a complex with the βFtz-F1-interacting steroid receptor coactivator (FISC) and together they regulate JH response genes in mosquitoes. Both proteins contain basic-helix-loop-helix (bHLH) and PAS motifs. Here we demonstrated that FISC is the obligatory partner of Met for binding to JH-response elements (JHREs). Met or FISC alone could not bind a previously characterized JHRE, while formation of the Met-FISC complex was necessary and sufficient to bind to the JHRE. This binding required participation of the DNA-binding domains of both Met and FISC. The optimal DNA sequence recognized by Met and FISC contained a core consensus sequence GCACGTG. While formation of the Met-FISC complex in mosquito cells was induced by JH, heterodimerization and DNA binding of bacterially expressed Met and FISC were JH-independent, implying that additional mosquito proteins were required to modulate formation of the receptor complex. PMID:25004255

  7. A steroid receptor coactivator acts as the DNA-binding partner of the methoprene-tolerant protein in regulating juvenile hormone response genes.

    PubMed

    Li, Meng; Liu, Pengcheng; Wiley, Jessica D; Ojani, Reyhaneh; Bevan, David R; Li, Jianyong; Zhu, Jinsong

    2014-08-25

    Methoprene-tolerant (Met) protein is a juvenile hormone (JH) receptor in insects. JH-bound Met forms a complex with the βFtz-F1-interacting steroid receptor coactivator (FISC) and together they regulate JH response genes in mosquitoes. Both proteins contain basic helix-loop-helix (bHLH) and PAS motifs. Here we demonstrated that FISC is the obligatory partner of Met for binding to JH-response elements (JHREs). Met or FISC alone could not bind a previously characterized JHRE, while formation of the Met-FISC complex was necessary and sufficient to bind to the JHRE. This binding required participation of the DNA-binding domains of both Met and FISC. The optimal DNA sequence recognized by Met and FISC contained a core consensus sequence GCACGTG. While formation of the Met-FISC complex in mosquito cells was induced by JH, heterodimerization and DNA binding of bacterially expressed Met and FISC were JH-independent, implying that additional mosquito proteins were required to modulate formation of the receptor complex. PMID:25004255

  8. The xenobiotic-sensing nuclear receptors pregnane X receptor, constitutive androstane receptor, and orphan nuclear receptor hepatocyte nuclear factor 4alpha in the regulation of human steroid-/bile acid-sulfotransferase.

    PubMed

    Echchgadda, Ibtissam; Song, Chung S; Oh, Taesung; Ahmed, Mohamed; De La Cruz, Isidro John; Chatterjee, Bandana

    2007-09-01

    The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are the primary transcription factors coordinating induced expression of the enzymes and proteins directing oxidative, conjugative, and transport phases of endobiotic and xenobiotic metabolism, whereas hepatocyte nuclear factor 4alpha (HNF4alpha), a regulator of hepatic lipid homeostasis, can modify the PXR/CAR response. Steroid- and bile acid-sulfotransferase (SULT2A1) promotes phase II metabolism through its sulfonating action on certain endobiotics, including steroids and bile acids, and on diverse xenobiotics, including therapeutic drugs. This study describes characterization of a PXR- and CAR-inducible composite element in the human SULT2A1 promoter and its synergistic interaction with HNF4alpha. Inverted and direct repeats of AG(G/T)TCA (IR2 and DR4), both binding to PXR and CAR, define the composite element. Differential recognition of the composite element by PXR and CAR is evident because single-site mutation at either IR2 or DR4 in the natural gene abolished the PXR response, whereas mutations at both repeats were necessary to abrogate completely the CAR response. The composite element conferred xenobiotic response to a heterologous promoter, and the cognate ligands induced PXR and CAR recruitment to the chromatin-associated response region. An HNF4alpha element adjacent to the -30 position enhanced basal promoter activity. Although functioning as a synergizer, the HNF4alpha element was not essential for the PXR/CAR response. An emerging role of SULT2A1 in lipid and caloric homeostasis suggests that illumination on the regulatory interactions driving human SULT2A1 expression may reveal new avenues to control certain metabolic disorders. PMID:17595319

  9. Minireview: Pathophysiological roles of the TR4 nuclear receptor: lessons learned from mice lacking TR4.

    PubMed

    Lin, Shin-Jen; Zhang, Yanqing; Liu, Ning-Chun; Yang, Dong-Rong; Li, Gonghui; Chang, Chawnshang

    2014-06-01

    Testicular nuclear receptor 4 (TR4), also known as NR2C2, belongs to the nuclear receptor superfamily and shares high homology with the testicular nuclear receptor 2. The natural ligands of TR4 remained unclear until the recent discoveries of several energy/lipid sensors including the polyunsaturated fatty acid metabolites, 13-hydroxyoctadecadienoic acid and 15-hydroxyeicosatetraenoic acid, and their synthetic ligands, thiazolidinediones, used for treatment of diabetes. TR4 is widely expressed throughout the body and particularly concentrated in the testis, prostate, cerebellum, and hippocampus. It has been shown to play important roles in cerebellar development, forebrain myelination, folliculogenesis, gluconeogenesis, lipogenesis, muscle development, bone development, and prostate cancer progression. Here we provide a comprehensive summary of TR4 signaling including its upstream ligands/activators/suppressors, transcriptional coactivators/repressors, downstream targets, and their in vivo functions with potential impacts on TR4-related diseases. Importantly, TR4 shares similar ligands/activators with another key nuclear receptor, peroxisome proliferator-activated receptor γ, which raised several interesting questions about how these 2 nuclear receptors may collaborate with or counteract each other's function in their related diseases. Clear dissection of such molecular mechanisms and their differential roles in various diseases may help researchers to design new potential drugs with better efficacy and fewer side effects to battle TR4 and peroxisome proliferator-activated receptor γ involved diseases. PMID:24702179

  10. Mechanisms of progesterone receptor export from nuclei: role of nuclear localization signal, nuclear export signal, and ran guanosine triphosphate.

    PubMed

    Tyagi, R K; Amazit, L; Lescop, P; Milgrom, E; Guiochon-Mantel, A

    1998-11-01

    Steroid hormone receptors are, in most cases, mainly nuclear proteins that undergo a continuous nucleocytoplasmic shuttling. The mechanism of the nuclear export of these proteins remains largely unknown. To approach this problem experimentally in vivo, we have prepared cell lines permanently coexpressing the wild-type nuclear progesterone receptor (PR) and a cytoplasmic receptor mutant deleted of its nuclear localization signal (NLS) [(deltaNLS)PR]. Each receptor species was deleted from the epitope recognized by a specific monoclonal antibody, thus allowing separated observation of the two receptor forms in the same cells. Administration of hormone provoked formation of heterodimers during nucleocytoplasmic shuttling and import of (deltaNLS)PR into the nucleus. Washing out of the hormone allowed us to follow the export of (deltaNLS)PR into the cytoplasm. Microinjection of BSA coupled to a NLS inhibited the export of (deltaNLS)PR. On the contrary, microinjection of BSA coupled to a nuclear export signal (NES) was without effect. Moreover, leptomycin B, which inhibits NES-mediated export, was also without effect. tsBN2 cells contain a thermosensitive RCC1 protein (Ran GTP exchange protein). At the nonpermissive temperature, the nuclear export of (deltaNLS)PR could be observed, whereas the export of NES-BSA was suppressed. Microinjection of GTPgammaS confirmed that the export of (deltaNLS)PR was not dependent on GTP hydrolysis. These experiments show that the nuclear export of PR is not NES mediated but probably involves the NLS. It does not involve Ran GTP, and it is not dependent on the hydrolysis of GTP. The nucleocytoplasmic shuttling of steroid hormone receptors thus appears to utilize mechanisms different from those previously described for some viral, regulatory, and heterogeneous ribonuclear proteins. PMID:9817595

  11. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors.

    PubMed

    Goto, Tsuyoshi; Kim, Young-Il; Takahashi, Nobuyuki; Kawada, Teruo

    2013-01-01

    Obesity causes excess fat accumulation in various tissues, most notoriously in the adipose tissue, along with other insulin-responsive organs such as skeletal muscle and the liver, which predisposes an individual to the development of metabolic abnormalities. The molecular mechanisms underlying obesity-induced metabolic abnormalities have not been completely elucidated; however, in recent years, the search for therapies to prevent the development of obesity and obesity-associated metabolic disorders has increased. It is known that several nuclear receptors, when activated by specific ligands, regulate carbohydrate and lipid metabolism at the transcriptional level. The expression of lipid metabolism-related enzymes is directly regulated by the activity of various nuclear receptors via their interaction with specific response elements in promoters of those genes. Many natural compounds act as ligands of nuclear receptors and regulate carbohydrate and lipid metabolism by regulating the activities of these nuclear receptors. In this review, we describe our current knowledge of obesity, the role of lipid-sensing nuclear receptors in energy metabolism, and several examples of food factors that act as agonists or antagonists of nuclear receptors, which may be useful for the management of obesity and the accompanying energy metabolism abnormalities. PMID:23180608

  12. How does oxygen rise drive evolution? Clues from oxygen-dependent biosynthesis of nuclear receptor ligands

    SciTech Connect

    Jiang, Ying-Ying; Kong, De-Xin; Qin, Tao; Zhang, Hong-Yu

    2010-01-08

    It is well known that oxygen rise greatly facilitated biological evolution. However, the underlying mechanisms remain elusive. Recently, Raymond and Segre revealed that molecular oxygen allows 1000 more metabolic reactions than can occur in anoxic conditions. From the novel metabolites produced in aerobic metabolism, we serendipitously found that some of the metabolites are signaling molecules that target nuclear receptors. Since nuclear signaling systems are indispensable to superior organisms, we speculated that aerobic metabolism may facilitate biological evolution through promoting the establishment of nuclear signaling systems. This hypothesis is validated by the observation that most (97.5%) nuclear receptor ligands are produced by aerobic metabolism, which is further explained in terms of the chemical criteria (appropriate volume and rather high hydrophobicity) of nuclear receptor ligands that aerobic metabolites are more ready than anaerobic counterparts to satisfy these criteria.

  13. Transcriptomine, a web resource for nuclear receptor signaling transcriptomes.

    PubMed

    Ochsner, Scott A; Watkins, Christopher M; McOwiti, Apollo; Xu, Xueping; Darlington, Yolanda F; Dehart, Michael D; Cooney, Austin J; Steffen, David L; Becnel, Lauren B; McKenna, Neil J

    2012-09-01

    The nuclear receptor (NR) superfamily of ligand-regulated transcription factors directs ligand- and tissue-specific transcriptomes in myriad developmental, metabolic, immunological, and reproductive processes. The NR signaling field has generated a wealth of genome-wide expression data points, but due to deficits in their accessibility, annotation, and integration, the full potential of these studies has not yet been realized. We searched public gene expression databases and MEDLINE for global transcriptomic datasets relevant to NRs, their ligands, and coregulators. We carried out extensive, deep reannotation of the datasets using controlled vocabularies for RNA Source and regulating molecule and resolved disparate gene identifiers to official gene symbols to facilitate comparison of fold changes and their significance across multiple datasets. We assembled these data points into a database, Transcriptomine (http://www.nursa.org/transcriptomine), that allows for multiple, menu-driven querying strategies of this transcriptomic "superdataset," including single and multiple genes, Gene Ontology terms, disease terms, and uploaded custom gene lists. Experimental variables such as regulating molecule, RNA Source, as well as fold-change and P value cutoff values can be modified, and full data records can be either browsed or downloaded for downstream analysis. We demonstrate the utility of Transcriptomine as a hypothesis generation and validation tool using in silico and experimental use cases. Our resource empowers users to instantly and routinely mine the collective biology of millions of previously disparate transcriptomic data points. By incorporating future transcriptome-wide datasets in the NR signaling field, we anticipate Transcriptomine developing into a powerful resource for the NR- and other signal transduction research communities. PMID:22786849

  14. The nuclear receptor NR2E1/TLX controls senescence

    PubMed Central

    Krusche, Benjamin; Pemberton, Helen; Alonso, Marta M.; Chandler, Hollie; Brookes, Sharon; Parrinello, Simona; Peters, Gordon; Gil, Jesús

    2014-01-01

    The nuclear receptor NR2E1 (also known as TLX or tailless) controls the self-renewal of neural stem cells (NSCs) and has been implied as an oncogene which initiates brain tumours including glioblastomas. Despite NR2E1 regulating targets like p21CIP1 or PTEN we still lack a full explanation for its role in NSC self-renewal and tumorigenesis. We know that Polycomb repressive complexes (PRC) also control stem cell self-renewal and tumorigenesis, but so far, no formal connection has been established between NR2E1 and PRCs. In a screen for transcription factors regulating the expression of the Polycomb protein CBX7, we identified NR2E1 as one of its more prominent regulators. NR2E1 binds at the CBX7 promoter, inducing its expression. Notably CBX7 represses NR2E1 as part of a regulatory loop. Ectopic NR2E1 expression inhibits cellular senescence, extending cellular lifespan in fibroblasts via CBX7-mediated regulation of p16INK4a and direct repression of p21CIP1. In addition NR2E1 expression also counteracts oncogene-induced senescence (OIS). The importance of NR2E1 to restrain senescence is highlighted through the process of knocking down its expression, which causes premature senescence in human fibroblasts and epithelial cells. We also confirmed that NR2E1 regulates CBX7 and restrains senescence in NSCs. Finally, we observed that the expression of NR2E1 directly correlates with that of CBX7 in human glioblastoma multiforme. Overall we identified control of senescence and regulation of Polycomb action as two possible mechanisms that can join those so far invoked to explain the role of NR2E1 in control of NSC self-renewal and cancer. PMID:25328137

  15. Origin and evolution of the ligand-binding ability of nuclear receptors.

    PubMed

    Markov, Gabriel V; Laudet, Vincent

    2011-03-01

    The origin of the ligand-binding ability of nuclear receptors is still a matter of discussion. Current opposing models are the early evolution of an ancestral receptor that would bind a specific ligand with high affinity and the early evolution of an ancestral orphan that was a constitutive transcription factor. Here we review the arguments in favour or against these two hypotheses, and we discuss an alternative possibility that the ancestor was a ligand sensor, which would be able to explain the apparently contradictory data generated in previous models for the evolution of ligand binding in nuclear receptors. PMID:21055443

  16. Small Heterodimer Partner and Innate Immune Regulation

    PubMed Central

    Jin, Hyo Sun

    2016-01-01

    The nuclear receptor superfamily consists of the steroid and non-steroid hormone receptors and the orphan nuclear receptors. Small heterodimer partner (SHP) is an orphan family nuclear receptor that plays an essential role in the regulation of glucose and cholesterol metabolism. Recent studies reported a previously unidentified role for SHP in the regulation of innate immunity and inflammation. The innate immune system has a critical function in the initial response against a variety of microbial and danger signals. Activation of the innate immune response results in the induction of inflammatory cytokines and chemokines to promote anti-microbial effects. An excessive or uncontrolled inflammatory response is potentially harmful to the host, and can cause tissue damage or pathological threat. Therefore, the innate immune response should be tightly regulated to enhance host defense while preventing unwanted immune pathologic responses. In this review, we discuss recent studies showing that SHP is involved in the negative regulation of toll-like receptor-induced and NLRP3 (NACHT, LRR and PYD domains-containing protein 3)-mediated inflammatory responses in innate immune cells. Understanding the function of SHP in innate immune cells will allow us to prevent or modulate acute and chronic inflammation processes in cases where dysregulated innate immune activation results in damage to normal tissues. PMID:26754583

  17. Small Heterodimer Partner and Innate Immune Regulation.

    PubMed

    Yuk, Jae Min; Jin, Hyo Sun; Jo, Eun Kyeong

    2016-03-01

    The nuclear receptor superfamily consists of the steroid and non-steroid hormone receptors and the orphan nuclear receptors. Small heterodimer partner (SHP) is an orphan family nuclear receptor that plays an essential role in the regulation of glucose and cholesterol metabolism. Recent studies reported a previously unidentified role for SHP in the regulation of innate immunity and inflammation. The innate immune system has a critical function in the initial response against a variety of microbial and danger signals. Activation of the innate immune response results in the induction of inflammatory cytokines and chemokines to promote anti-microbial effects. An excessive or uncontrolled inflammatory response is potentially harmful to the host, and can cause tissue damage or pathological threat. Therefore, the innate immune response should be tightly regulated to enhance host defense while preventing unwanted immune pathologic responses. In this review, we discuss recent studies showing that SHP is involved in the negative regulation of toll-like receptor-induced and NLRP3 (NACHT, LRR and PYD domains-containing protein 3)-mediated inflammatory responses in innate immune cells. Understanding the function of SHP in innate immune cells will allow us to prevent or modulate acute and chronic inflammation processes in cases where dysregulated innate immune activation results in damage to normal tissues. PMID:26754583

  18. GW4064, an agonist of farnesoid X receptor, represses CYP3A4 expression in human hepatocytes by inducing small heterodimer partner expression.

    PubMed

    Zhang, Shu; Pan, Xian; Jeong, Hyunyoung

    2015-05-01

    Farnesoid X receptor (FXR) functions as a regulator of bile acid and lipid homeostasis and is recognized as a promising therapeutic target for metabolic diseases. The biologic function of FXR is mediated in part by a small heterodimer partner (SHP); ligand-activated FXR enhances SHP expression, and SHP in turn represses the activity of multiple transcription factors. This study aimed to investigate the effect of FXR activation on expression of the major drug-metabolizing enzyme CYP3A4. The effects of 3-(2,6-dichlorophenyl)-4-(3'-carboxy-2-chlorostilben-4-yl)oxymethyl-5-isopropylisoxazole (GW4064), a synthetic agonist of FXR, on the expression and activity of CYP3A4 were examined in primary human hepatocytes by using quantitative real-time polymerase chain reaction and S9 phenotyping. In human hepatocytes, treatment of GW4064 (1 μM) for 48 hours resulted in a 75% decrease in CYP3A4 mRNA expression and a 25% decrease in CYP3A4 activity, accompanied by ∼3-fold increase in SHP mRNA expression. In HepG2 cells, SHP repressed transactivation of CYP3A4 promoter by pregnane X receptor (PXR), constitutive androstane receptor (CAR), and glucocorticoid receptor. Interestingly, GW4064 did not repress expression of CYP2B6, another target gene of PXR and CAR; GW4064 enhanced CYP2B6 promoter activity. In conclusion, GW4064 represses CYP3A4 expression in human hepatocytes, potentially through upregulation of SHP expression and subsequent repression of CYP3A4 promoter activity. Clinically significant drug-drug interaction involving FXR agonists and CYP3A4 substrates may occur. PMID:25725071

  19. Dietary regulation of adiponectin by direct and indirect lipid activators of nuclear hormone receptors.

    PubMed

    Rühl, R; Landrier, J F

    2016-01-01

    Adiponectin is an adipokine mainly secreted by adipocytes that presents antidiabetic, anti-inflammatory, and antiatherogenic functions. Therefore, modulation of adiponectin expression represents a promising target for prevention or treatment of several diseases including insulin resistance and type II diabetes. Pharmacological agents such as the nuclear hormone receptor synthetic agonists like peroxisome proliferator activated receptor γ agonists are of particular interest in therapeutic strategies due to their ability to increase the plasma adiponectin concentration. Nutritional approaches are also of particular interest, especially in primary prevention, since some active compounds of our diet (notably vitamins, carotenoids, or other essential nutrients) are direct or indirect lipid-activators of nuclear hormone receptors and are modifiers of adiponectin expression and secretion. The aim of the present review is to summarize current knowledge about the nutritional regulation of adiponectin by derivatives of active compounds naturally present in the diet acting as indirect or direct activators of nuclear hormone receptors. PMID:26610729

  20. Nuclear Receptor Cofactors in PPARγ-Mediated Adipogenesis and Adipocyte Energy Metabolism

    PubMed Central

    Powell, Emily; Kuhn, Peter; Xu, Wei

    2007-01-01

    Transcriptional cofactors are integral to the proper function and regulation of nuclear receptors. Members of the peroxisome proliferator-activated receptor (PPAR) family of nuclear receptors are involved in the regulation of lipid and carbohydrate metabolism. They modulate gene transcription in response to a wide variety of ligands, a process that is mediated by transcriptional coactivators and corepressors. The mechanisms by which these cofactors mediate transcriptional regulation of nuclear receptor function are still being elucidated. The rapidly increasing array of cofactors has brought into focus the need for a clear understanding of how these cofactors interact in ligand- and cell-specific manners. This review highlights the differential effects of the assorted cofactors regulating the transcriptional action of PPARγ and summarizes the recent advances in understanding the physiological functions of corepressors and coactivators. PMID:17389765

  1. Minireview: The Role of Nuclear Receptors in Photoreceptor Differentiation and Disease

    PubMed Central

    Swaroop, Anand

    2012-01-01

    Rod and cone photoreceptors are specialized sensory cells that mediate vision. Transcriptional controls are critical for the development and long-term survival of photoreceptors; when these controls become ineffective, retinal dysfunction or degenerative disease may result. This review discusses the role of nuclear receptors, a class of ligand-regulated transcription factors, at key stages of photoreceptor life in the mammalian retina. Nuclear receptors with known ligands, such as retinoids or thyroid hormone, together with several orphan receptors without identified physiological ligands, complement other classes of transcription factors in directing the differentiation and functional maintenance of photoreceptors. The potential of nuclear receptors to respond to ligands introduces versatility into the control of photoreceptor development and function and may suggest new opportunities for treatments of photoreceptor disease. PMID:22556342

  2. Molecular Mechanisms Underlying the Link between Nuclear Receptor Function and Cholesterol Gallstone Formation

    PubMed Central

    Vázquez, Mary Carmen; Rigotti, Attilio; Zanlungo, Silvana

    2012-01-01

    Cholesterol gallstone disease is highly prevalent in western countries, particularly in women and some specific ethnic groups. The formation of water-insoluble cholesterol crystals is due to a misbalance between the three major lipids present in the bile: cholesterol, bile salts, and phospholipids. Many proteins implicated in biliary lipid secretion in the liver are regulated by several transcription factors, including nuclear receptors LXR and FXR. Human and murine genetic, physiological, pathophysiological, and pharmacological evidence is consistent with the relevance of these nuclear receptors in gallstone formation. In addition, there is emerging data that also suggests a role for estrogen receptor ESR1 in abnormal cholesterol metabolism leading to gallstone disease. A better comprehension of the role of nuclear receptor function in gallstone formation may help to design new and more effective therapeutic strategies for this highly prevalent disease condition. PMID:22132343

  3. Nuclear receptor coactivators: Regulators of steroid action in brain and behavior

    PubMed Central

    Tetel, Marc J.; Acharya, Kalpana D.

    2013-01-01

    Steroid hormones act in specific regions of the brain to alter behavior and physiology. While it has been well established that the bioavailability of the steroid and the expression of its receptor is critical to understanding steroid action in brain, the importance of nuclear receptor coactivators in brain is becoming more apparent. This review will focus on the function of the p160 family of coactivators, which includes steroid receptor coactivator-1 (SRC-1), SRC-2 and SRC-3, in steroid receptor action in brain. The expression, regulation and function of these coactivators in steroid-dependent gene expression in brain and behavior will be discussed. PMID:23795583

  4. Nuclear receptor function in skin health and disease: therapeutic opportunities in the orphan and adopted receptor classes.

    PubMed

    Yin, Kelvin; Smith, Aaron G

    2016-10-01

    The skin forms a vital barrier between an organism's external environment, providing protection from pathogens and numerous physical and chemical threats. Moreover, the intact barrier is essential to prevent water and electrolyte loss without which terrestrial life could not be maintained. Accordingly, acute disruption of the skin through physical or chemical trauma needs to be repaired timely and efficiently as sustained skin pathologies ranging from mild irritations and inflammation through to malignancy impact considerably on morbidity and mortality. The Nuclear Hormone Receptor Family of transcriptional regulators has proven to be highly valuable targets for addressing a range of pathologies, including metabolic syndrome and cancer. Indeed members of the classic endocrine sub-group, such as the glucocorticoid, retinoid, and Vitamin D receptors, represent mainstay treatment strategies for numerous inflammatory skin disorders, though side effects from prolonged use are common. Emerging evidence has now highlighted important functional roles for nuclear receptors belonging to the adopted and orphan subgroups in skin physiology and patho-physiology. This review will focus on these subgroups and explore the current evidence that suggests these nuclear receptor hold great promise as future stand-alone or complementary drug targets in treating common skin diseases and maintaining skin homeostasis. PMID:27544210

  5. Hepatocyte nuclear factor-4α, a multifunctional nuclear receptor associated with cardiovascular disease and cholesterol catabolism.

    PubMed

    Tavares-Sanchez, Olga Lidia; Rodriguez, Carmen; Gortares-Moroyoqui, Pablo; Estrada, Maria Isabel

    2015-01-01

    Cardiovascular diseases (CVDs), the leading cause of death worldwide, are associated with high plasma cholesterol levels. The conversion of cholesterol to bile acids (BAs) accounts for about 50% of total cholesterol elimination from the body. This phenomenon occurs in the liver and is regulated by nuclear receptors such as hepatocyte nuclear factor-4α (HNF-4α). Therefore, special emphasis is given to HNF-4α properties and its multifunctional role, particularly in the conversion of cholesterol to BAs. HNF-4α is a highly conserved transcription factor that has the potential capacity to transactivate a vast number of genes, including CYP7 which codes for cholesterol 7α-hydroxylase (CYP7A1; EC 1.14.13.17), the rate-limiting enzyme of BA biosynthesis. The fact that HNF-4α transactivation potential can be modulated via phosporylation is of particular interest. Additional findings on structural and functional characteristics of HNF-4α may eventually present alternatives to control the levels of cholesterol in the body and consequently reduce the risk of CVDs. PMID:24848804

  6. Structural and functional insights into the ligand-binding domain of a nonduplicated retinoid X nuclear receptor from the invertebrate chordate amphioxus.

    PubMed

    Tocchini-Valentini, Giuseppe D; Rochel, Natacha; Escriva, Hector; Germain, Pierre; Peluso-Iltis, Carole; Paris, Mathilde; Sanglier-Cianferani, Sarah; Van Dorsselaer, Alain; Moras, Dino; Laudet, Vincent

    2009-01-16

    Retinoid X nuclear receptors (RXRs), as well as their insect orthologue, ultraspiracle protein (USP), play an important role in the transcription regulation mediated by the nuclear receptors as the common partner of many other nuclear receptors. Phylogenetic and structural studies have shown that the several evolutionary shifts have modified the ligand binding ability of RXRs. To understand the vertebrate-specific character of RXRs, we have studied the RXR ligand-binding domain of the cephalochordate amphioxus (Branchiostoma floridae), an invertebrate chordate that predates the genome duplication that produced the three vertebrates RXRs (alpha, beta, and gamma). Here we report the crystal structure of a novel apotetramer conformation of the AmphiRXR ligand-binding domain, which shows some similarity with the structures of the arthropods RXR/USPs. AmphiRXR adopts an apo antagonist conformation with a peculiar conformation of helix H11 filling the binding pocket. In contrast to the arthropods RXR/USPs, which cannot be activated by any RXR ligands, our functional data show that AmphiRXR, like the vertebrates/mollusk RXRs, is able to bind and be activated by RXR ligands but less efficiently than vertebrate RXRs. Our data suggest that amphioxus RXR is, functionally, an intermediate between arthropods RXR/USPs and vertebrate RXRs. PMID:18986992

  7. Structural Overview of the Nuclear Receptor Superfamily: Insights into Physiology and Therapeutics

    PubMed Central

    Huang, Pengxiang; Chandra, Vikas; Rastinejad, Fraydoon

    2013-01-01

    As ligand-regulated transcription factors, the nuclear hormone receptors are nearly ideal drug targets, with internal pockets that bind to hydrophobic, drug-like molecules and well-characterized ligand-induced conformational changes that recruit transcriptional coregulators to promoter elements. Yet, due to the multitude of genes under the control of a single receptor, the major challenge has been the identification of ligands with gene-selective actions, impacting disease outcomes through a narrow subset of target genes and not across their entire gene-regulatory repertoire. Here, we summarize the concepts and work to date underlying the development of steroidal and nonsteroidal receptor ligands, including the use of crystal structures, high-throughput screens, and rational design approaches for finding useful therapeutic molecules. Difficulties in finding selective receptor modulators require a more complete understanding of receptor interdomain communications, posttranslational modifications, and receptor-protein interactions that could be exploited for target gene selectivity. PMID:20148675

  8. Molecular cloning and characterization of a nuclear androgen receptor activated by 11-ketotestosterone

    PubMed Central

    Olsson, Per-Erik; Berg, A Håkan; von Hofsten, Jonas; Grahn, Birgitta; Hellqvist, Anna; Larsson, Anders; Karlsson, Johnny; Modig, Carina; Borg, Bertil; Thomas, Peter

    2005-01-01

    Although 11-ketotestosterone is a potent androgen and induces male secondary sex characteristics in many teleosts, androgen receptors with high binding affinity for 11-ketotestosterone or preferential activation by 11-ketotestosterone have not been identified. So, the mechanism by which 11-ketotestosterone exhibits such high potency remains unclear. Recently we cloned the cDNA of an 11-ketotestosterone regulated protein, spiggin, from three-spined stickleback renal tissue. As spiggin is the only identified gene product regulated by 11-ketotestosterone, the stickleback kidney is ideal for determination of the mechanism of 11-ketotestosterone gene regulation. A single androgen receptor gene with two splicing variants, belonging to the androgen receptor-β subfamily was cloned from stickleback kidney. A high affinity, saturable, single class of androgen specific binding sites, with the characteristics of an androgen receptor, was identified in renal cytosolic and nuclear fractions. Measurement of ligand binding moieties in the cytosolic and nuclear fractions as well as to the recombinant receptor revealed lower affinity for 11-ketotestosterone than for dihydrotestosterone. Treatment with different androgens did not up-regulate androgen receptor mRNA level or increase receptor abundance, suggesting that auto-regulation is not involved in differential ligand activation. However, comparison of the trans-activation potential of the stickleback androgen receptor with the human androgen receptor, in both human HepG2 cells and zebrafish ZFL cells, revealed preferential activation by 11-ketotestosterone of the stickleback receptor, but not of the human receptor. These findings demonstrate the presence of a receptor preferentially activated by 11-ketotestosterone in the three-spined stickleback, so far the only one known in any animal. PMID:16107211

  9. Nuclear-cytoplasmic transport of EGFR involves receptor endocytosis, importin beta1 and CRM1.

    PubMed

    Lo, Hui-Wen; Ali-Seyed, Mohamed; Wu, Yadi; Bartholomeusz, Geoffrey; Hsu, Sheng-Chieh; Hung, Mien-Chie

    2006-08-15

    Many receptor tyrosine kinases (RTKs) can be detected in the cell nucleus, such as EGFR, HER-2, HER-3, HER-4, and fibroblast growth factor receptor. EGFR, HER-2 and HER-4 contain transactivational activity and function as transcription co-factors to activate gene promoters. High EGFR in tumor nuclei correlates with increased tumor proliferation and poor survival in cancer patients. However, the mechanism by which cell-surface EGFR translocates into the cell nucleus remains largely unknown. Here, we found that EGFR co-localizes and interacts with importins alpha1/beta1, carriers that are critical for macromolecules nuclear import. EGFR variant mutated at the nuclear localization signal (NLS) is defective in associating with importins and in entering the nuclei indicating that EGFR's NLS is critical for EGFR/importins interaction and EGFR nuclear import. Moreover, disruption of receptor internalization process using chemicals and forced expression of dominant-negative Dynamin II mutant suppressed nuclear entry of EGFR. Additional evidences suggest an involvement of endosomal sorting machinery in EGFR nuclear translocalization. Finally, we found that nuclear export of EGFR may involve CRM1 exportin as we detected EGFR/CRM1 interaction and markedly increased nuclear EGFR following exposure to leptomycin B, a CRM1 inhibitor. Collectively, these data suggest the importance of receptor endocytosis, endosomal sorting machinery, interaction with importins alpha1/beta1, and exportin CRM1 in EGFR nuclear-cytoplasmic trafficking. Together, our work sheds light into the nature and regulation of the nuclear EGFR pathway and provides a plausible mechanism by which cells shuttle cell-surface EGFR and potentially other RTKs through the nuclear pore complex and into the nuclear compartment. PMID:16552725

  10. Gain-of-Function Alleles in Caenorhabditis elegans Nuclear Hormone Receptor nhr-49 Are Functionally Distinct.

    PubMed

    Lee, Kayoung; Goh, Grace Ying Shyen; Wong, Marcus Andrew; Klassen, Tara Leah; Taubert, Stefan

    2016-01-01

    Nuclear hormone receptors (NHRs) are transcription factors that regulate numerous physiological and developmental processes and represent important drug targets. NHR-49, an ortholog of Hepatocyte Nuclear Factor 4 (HNF4), has emerged as a key regulator of lipid metabolism and life span in the nematode worm Caenorhabditis elegans. However, many aspects of NHR-49 function remain poorly understood, including whether and how it regulates individual sets of target genes and whether its activity is modulated by a ligand. A recent study identified three gain-of-function (gof) missense mutations in nhr-49 (nhr-49(et7), nhr-49(et8), and nhr-49(et13), respectively). These substitutions all affect the ligand-binding domain (LBD), which is critical for ligand binding and protein interactions. Thus, these alleles provide an opportunity to test how three specific residues contribute to NHR-49 dependent gene regulation. We used computational and molecular methods to delineate how these mutations alter NHR-49 activity. We find that despite originating from a screen favoring the activation of specific NHR-49 targets, all three gof alleles cause broad upregulation of NHR-49 regulated genes. Interestingly, nhr-49(et7) and nhr-49(et8) exclusively affect nhr-49 dependent activation, whereas the nhr-49(et13) surprisingly affects both nhr-49 mediated activation and repression, implicating the affected residue as dually important. We also observed phenotypic non-equivalence of these alleles, as they unexpectedly caused a long, short, and normal life span, respectively. Mechanistically, the gof substitutions altered neither protein interactions with the repressive partner NHR-66 and the coactivator MDT-15 nor the subcellular localization or expression of NHR-49. However, in silico structural modeling revealed that NHR-49 likely interacts with small molecule ligands and that the missense mutations might alter ligand binding, providing a possible explanation for increased NHR-49 activity. In

  11. Transcriptional regulation via nuclear receptor crosstalk required for the Drosophila circadian clock.

    PubMed

    Jaumouillé, Edouard; Machado Almeida, Pedro; Stähli, Patrick; Koch, Rafael; Nagoshi, Emi

    2015-06-01

    Circadian clocks in large part rely on transcriptional feedback loops. At the core of the clock machinery, the transcriptional activators CLOCK/BMAL1 (in mammals) and CLOCK/CYCLE (CLK/CYC) (in Drosophila) drive the expression of the period (per) family genes. The PER-containing complexes inhibit the activity of CLOCK/BMAL1 or CLK/CYC, thereby forming a negative feedback loop [1]. In mammals, the ROR and REV-ERB family nuclear receptors add positive and negative transcriptional regulation to this core negative feedback loop to ensure the generation of robust circadian molecular oscillation [2]. Despite the overall similarities between mammalian and Drosophila clocks, whether comparable mechanisms via nuclear receptors are required for the Drosophila clock remains unknown. We show here that the nuclear receptor E75, the fly homolog of REV-ERB α and REV-ERB β, and the NR2E3 subfamily nuclear receptor UNF are components of the molecular clocks in the Drosophila pacemaker neurons. In vivo assays in conjunction with the in vitro experiments demonstrate that E75 and UNF bind to per regulatory sequences and act together to enhance the CLK/CYC-mediated transcription of the per gene, thereby completing the core transcriptional feedback loop necessary for the free-running clockwork. Our results identify a missing link in the Drosophila clock and highlight the significance of the transcriptional regulation via nuclear receptors in metazoan circadian clocks. PMID:26004759

  12. Transcriptional Regulation via Nuclear Receptor Crosstalk Required for the Drosophila Circadian Clock

    PubMed Central

    Jaumouillé, Edouard; Machado Almeida, Pedro; Stähli, Patrick; Koch, Rafael; Nagoshi, Emi

    2015-01-01

    Summary Circadian clocks in large part rely on transcriptional feedback loops. At the core of the clock machinery, the transcriptional activators CLOCK/BMAL1 (in mammals) and CLOCK/CYCLE (CLK/CYC) (in Drosophila) drive the expression of the period (per) family genes. The PER-containing complexes inhibit the activity of CLOCK/BMAL1 or CLK/CYC, thereby forming a negative feedback loop [1]. In mammals, the ROR and REV-ERB family nuclear receptors add positive and negative transcriptional regulation to this core negative feedback loop to ensure the generation of robust circadian molecular oscillation [2]. Despite the overall similarities between mammalian and Drosophila clocks, whether comparable mechanisms via nuclear receptors are required for the Drosophila clock remains unknown. We show here that the nuclear receptor E75, the fly homolog of REV-ERB α and REV-ERB β, and the NR2E3 subfamily nuclear receptor UNF are components of the molecular clocks in the Drosophila pacemaker neurons. In vivo assays in conjunction with the in vitro experiments demonstrate that E75 and UNF bind to per regulatory sequences and act together to enhance the CLK/CYC-mediated transcription of the per gene, thereby completing the core transcriptional feedback loop necessary for the free-running clockwork. Our results identify a missing link in the Drosophila clock and highlight the significance of the transcriptional regulation via nuclear receptors in metazoan circadian clocks. PMID:26004759

  13. Nuclear localization of Formyl-Peptide Receptor 2 in human cancer cells.

    PubMed

    Cattaneo, Fabio; Parisi, Melania; Fioretti, Tiziana; Sarnataro, Daniela; Esposito, Gabriella; Ammendola, Rosario

    2016-08-01

    Current models of G protein-coupled receptors (GPCRs) signaling describe binding of external agonists to cell surface receptors which, in turn, trigger several biological responses. New paradigms indicate that GPCRs localize to and signal at the nucleus, thus regulating distinct signaling cascades. The formyl-peptide receptor FPR2 belongs to the GPCR super-family and is coupled to PTX-sensitive Gi proteins. We show by western blot analysis, immunofluorescence experiments and radioligand binding assays that FPR2 is expressed at nuclear level in CaLu-6 and AGS cells. Nuclear FPR2 is a functional receptor, since it participates in intra-nuclear signaling, as assessed by decreased G protein-FPR2 association and enhanced ERK2, c-Jun and c-Myc phosphorylation upon stimulation of intact nuclei with the FPR2 agonist, WKYMVm. We analyzed FPR2 sequence for the search of a nuclear localization sequence (NLS) and we found a stretch of basic aminoacids (227-KIHKK-231) in the third cytoplasmic loop of the receptor. We performed single (K230A) and multiple (H229A/K230A/K231A) mutagenesis of NLS. The constructs were individually overexpressed in HEK293 cells and immunofluorescence and western blot analysis showed that nuclear localization or translocation of FPR2 depends on the integrity of the H(229) and K(231) residues within the NLS. PMID:27177968

  14. Nuclear Receptor Modulation for the Treatment of Nonalcoholic Fatty Liver Disease.

    PubMed

    Fuchs, Claudia D; Traussnigg, Stefan A; Trauner, Michael

    2016-02-01

    Nuclear receptors (NRs) are ligand-activated transcriptional regulators of several key metabolic processes including hepatic lipid and glucose metabolism, bile acid homeostasis, and energy expenditure as well as inflammation, fibrosis, and cellular proliferation in the liver. Dysregulation of these processes contributes to the pathogenesis and progression of nonalcoholic fatty liver disease (NAFLD). This places NRs at the forefront of novel therapeutic approaches for NAFLD. Some NRs are already pharmacologically targeted in metabolic disorders such as hyperlipidemia (peroxisomal proliferator-activated receptor α [PPARα], fibrates) and diabetes (PPARγ, glitazones) with potential applications for NAFLD. Other NRs with potential therapeutic implications are the vitamin D receptor (VDR) and xenobiotic sensors such as constitutive androstane receptor (CAR) and pregnane X receptor (PXR). Further new perspectives include combined ligands for NR isoforms such as PPARα/δ ligands. Other novel key players represent the nuclear bile acid receptor farnesoid X receptor (FXR; targeted by synthetic FXR ligands such as obeticholic acid) and RAR-related orphan receptor gamma two (RORγt). In this review the authors provide an overview of the preclinical and clinical evidence of current and future treatment strategies targeting NRs in metabolism, inflammation, and fibrogenesis of NAFLD. PMID:26870934

  15. Orphan nuclear receptors as drug targets for the treatment of prostate and breast cancers.

    PubMed

    Roshan-Moniri, Mani; Hsing, Michael; Butler, Miriam S; Cherkasov, Artem; Rennie, Paul S

    2014-12-01

    Nuclear receptors (NRs), a family of 48 transcriptional factors, have been studied intensively for their roles in cancer development and progression. The presence of distinctive ligand binding sites capable of interacting with small molecules has made NRs attractive targets for developing cancer therapeutics. In particular, a number of drugs have been developed over the years to target human androgen- and estrogen receptors for the treatment of prostate cancer and breast cancer. In contrast, orphan nuclear receptors (ONRs), which in many cases lack known biological functions or ligands, are still largely under investigated. This review is a summary on ONRs that have been implicated in prostate and breast cancers, specifically retinoic acid-receptor-related orphan receptors (RORs), liver X receptors (LXRs), chicken ovalbumin upstream promoter transcription factors (COUP-TFs), estrogen related receptors (ERRs), nerve growth factor 1B-like receptors, and ‘‘dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1’’ (DAX1). Discovery and development of small molecules that can bind at various functional sites on these ONRs will help determine their biological functions. In addition, these molecules have the potential to act as prototypes for future drug development. Ultimately, the therapeutic value of targeting the ONRs may go well beyond prostate and breast cancers. PMID:25455729

  16. The G Protein-Coupled Estrogen Receptor Agonist G-1 Inhibits Nuclear Estrogen Receptor Activity and Stimulates Novel Phosphoproteomic Signatures.

    PubMed

    Smith, L Cody; Ralston-Hooper, Kimberly J; Ferguson, P Lee; Sabo-Attwood, Tara

    2016-06-01

    Estrogen exerts cellular effects through both nuclear (ESR1 and ESR2) and membrane-bound estrogen receptors (G-protein coupled estrogen receptor, GPER); however, it is unclear if they act independently or engage in crosstalk to influence hormonal responses. To investigate each receptor's role in proliferation, transcriptional activation, and protein phosphorylation in breast cancer cells (MCF-7), we employed selective agonists for ESR1 propyl-pyrazole-triol (PPT), ESR2 diarylpropionitrile (DPN), and GPER (G-1) and also determined the impact of xenoestrogens bisphenol-A (BPA) and genistein on these effects. As anticipated, 17β-estradiol (E2), PPT, DPN, BPA, and genistein each enhanced proliferation and activation of an ERE-driven reporter gene whereas G-1 had no significant impact. However, G-1 significantly reduced E2-, PPT-, DPN-, BPA-, and genistein-induced proliferation and ERE activation at doses greater than 500 nM indicating that G-1 mediated inhibition is not ESR isotype specific. As membrane receptors initiate cascades of phosphorylation events, we performed a global phosphoproteomic analysis on cells exposed to E2 or G-1 to identify potential targets of receptor crosstalk via downstream protein phosphorylation targets. Of the 211 phosphorylated proteins identified, 40 and 13 phosphoproteins were specifically modified by E2 and G-1, respectively. Subnetwork enrichment analysis revealed several processes related to cell cycle were specifically enriched by G-1 compared with E2. Further there existed a number of newly identified proteins that were specifically phosphorylated by G-1. These phosphorylation networks highlight specific proteins that may modulate the inhibitory effects of G-1 and suggest a novel role for interference with nuclear receptor activity driven by E2 and xenoestrogens. PMID:27026707

  17. LeSTIG1, an extracellular binding partner for the pollen receptor kinases LePRK1 and LePRK2, promotes pollen tube growth in vitro.

    PubMed

    Tang, Weihua; Kelley, Dior; Ezcurra, Inés; Cotter, Robyn; McCormick, Sheila

    2004-08-01

    As pollen tubes grow through the pistil they are thought to perceive and respond to diverse signals. The tomato pollen-specific receptor kinases LePRK1 and LePRK2 might participate in signaling during pollen tube growth. We previously showed that the extracellular domain of LePRK2 interacts with a pollen protein, LAT52, before but not after pollen germination. To determine whether LePRK2 might have different binding partner(s) after pollen germination, we characterized two more proteins that, like LAT52, were identified in yeast two-hybrid screens using the extracellular domains of LePRK1 and LePRK2 as baits. We show that LeSHY, a leucine-rich repeat protein from pollen, and LeSTIG1, a small cysteine-rich protein from pistil, can bind the extracellular domains of both LePRK1 and LePRK2 in vitro. In vitro binding assays with the extracellular domain of LePRK2 suggested that LeSTIG1 could displace binding of LAT52, consistent with the idea that LePRK1 and LePRK2 might interact with different ligands at different stages of pollen tube growth. Exogenous LeSTIG1 promotes pollen tube growth in vitro. The interaction of these pollen kinases with LeSTIG1 supports the notion that LePRK1 and LePRK2 are involved in mediating pollen-pistil interactions. PMID:15255864

  18. Sulfotransferase genes: Regulation by nuclear receptors in response to xeno/endo-biotics

    PubMed Central

    Kodama, Susumu; Negishi, Masahiko

    2014-01-01

    Pregnane X receptor (PXR) and constitutive active/androstane receptor (CAR), members of the nuclear receptor superfamily, are two major xeno-sensing transcription factors. They can be activated by a broad range of lipophilic xenobiotics including therapeutics drugs. In addition to xenobiotics, endogenous compounds such as steroid hormones and bile acids can also activate PXR and/or CAR. These nuclear receptors regulate genes that encode enzymes and transporters that metabolize and excrete both xenobiotics and endobiotics. Sulfotransferases (SULTs) are a group of these enzymes and sulfate xenobiotics for detoxification. In general, inactivation by sulfation constitutes the mechanism to maintain homeostasis of endobiotics. Thus, deciphering the molecular mechanism by which PXR and CAR regulate SULT genes is critical for understanding the roles of SULTs in the alterations of physiological and pathophysiological processes caused by drug treatment or environmental exposures. PMID:24025090

  19. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration.

    PubMed

    Huang, Wendong; Ma, Ke; Zhang, Jun; Qatanani, Mohammed; Cuvillier, James; Liu, Jun; Dong, Bingning; Huang, Xiongfei; Moore, David D

    2006-04-14

    Liver mass depends on one or more unidentified humoral signals that drive regeneration when liver functional capacity is diminished. Bile acids are important liver products, and their levels are tightly regulated. Here, we identify a role for nuclear receptor-dependent bile acid signaling in normal liver regeneration. Elevated bile acid levels accelerate regeneration, and decreased levels inhibit liver regrowth, as does the absence of the primary nuclear bile acid receptor FXR. We propose that FXR activation by increased bile acid flux is a signal of decreased functional capacity of the liver. FXR, and possibly other nuclear receptors, may promote homeostasis not only by regulating expression of appropriate metabolic target genes but also by driving homeotrophic liver growth. PMID:16614213

  20. Importin {beta}-type nuclear transport receptors have distinct binding affinities for Ran-GTP

    SciTech Connect

    Hahn, Silvia; Schlenstedt, Gabriel

    2011-03-18

    Highlights: {yields} Determination of binding properties of nuclear transport receptor/Ran-GTP complexes. {yields} Biosensor measurements provide constants for dissociation, on-rates, and off-rates. {yields} The affinity of receptors for Ran-GTP is widely divergent. {yields} Dissociation constants differ for three orders of magnitude. {yields} The cellular concentration of yeast Ran is not limiting. -- Abstract: Cargos destined to enter or leave the cell nucleus are typically transported by receptors of the importin {beta} family to pass the nuclear pore complex. The yeast Saccharomyces cerevisiae comprises 14 members of this protein family, which can be divided in importins and exportins. The Ran GTPase regulates the association and dissociation of receptors and cargos as well as the transport direction through the nuclear pore. All receptors bind to Ran exclusively in its GTP-bound state and this event is restricted to the nuclear compartment. We determined the Ran-GTP binding properties of all yeast transport receptors by biosensor measurements and observed that the affinity of importins for Ran-GTP differs significantly. The dissociation constants range from 230 pM to 270 nM, which is mostly based on a variability of the off-rate constants. The divergent affinity of importins for Ran-GTP suggests the existence of a novel mode of nucleocytoplasmic transport regulation. Furthermore, the cellular concentration of {beta}-receptors and of other Ran-binding proteins was determined. We found that the number of {beta}-receptors altogether about equals the amounts of yeast Ran, but Ran-GTP is not limiting in the nucleus. The implications of our results for nucleocytoplasmic transport mechanisms are discussed.

  1. A novel method for visualizing nuclear hormone receptor networks relevant to drug metabolism.

    PubMed

    Ekins, Sean; Kirillov, Eugene; Rakhmatulin, Eugene A; Nikolskaya, Tatiana

    2005-03-01

    The increasing generation of biological data represents a challenge to understanding the complexity of systems, resulting in scientists increasingly focused on a relatively narrow area of study, thereby limiting insight that can be gained from a broader perspective. In the field of drug metabolism and toxicology we are witnessing the characterization of many proteins. Most of the key enzymes and transporters are recognized as transcriptionally regulated by the nuclear hormone receptors such as pregnane X receptor, constitutive androstane receptor, vitamin D receptor, glucocorticoid receptor, and others. There is apparent cross talk in regulation, since multiple receptors may modulate expression of a single enzyme or transporter, representing one of many areas of active research interest. We have used published data on nuclear hormone receptors, enzymes, ligands, and other biological information to manually annotate an Oracle database, forming the basis of a platform for querying (MetaDrug). Using algorithms, we have demonstrated how nuclear hormone receptors alone can form a network of direct interactions, and when expanded, this network increases in complexity to describe the interactions with target genes as well as small molecules known to bind a receptor, enzyme, or transporter. We have also described how the database can be used for visualizing high-throughput microarray data derived from a published study of MCF-7 cells treated with 4-hydroxytamoxifen, to highlight potential downstream effects of molecule treatment. The database represents a novel knowledge mining and analytical tool that, to be relevant, requires continual updating to evolve alongside other key storage systems and sources of biological knowledge. PMID:15608136

  2. Xenobiotic-sensing nuclear receptors CAR and PXR as drug targets in cholestatic liver disease.

    PubMed

    Kakizaki, Satoru; Takizawa, Daichi; Tojima, Hiroki; Yamazaki, Yuichi; Mori, Masatomo

    2009-11-01

    Cholestasis results in the intrahepatic retention of cytotoxic bile acid and it can thus lead to liver injury and/or liver fibrosis. Cholestatic liver damage is counteracted by a variety of intrinsic hepatoprotective mechanisms including a complex network of drug metabolizing enzymes and transporters. During the last decade, much progress has been made in dissecting the mechanisms which regulate the hepatic xeno- and endobiotic metabolism by nuclear receptors. The xenobiotic receptors CAR and PXR are two important members of the NR1I nuclear receptor family. They function as sensors of toxic byproducts derived from the endogenous metabolism and of exogenous chemicals, in order to enhance their elimination. Ligands for both receptors, including phenobarbital, have already been used to treat cholestatic liver diseases before the mechanisms of these receptors were revealed. Furthermore, Yin Zhi Huang, a traditional Chinese herbal medicine, which has been used to prevent and treat neonatal jaundice, was identified to be a CAR ligand which also accelerates bilirubin clearance. Therefore, CAR and PXR have a protective effect on cholestasis by activating both detoxification enzymes and transporters. As a result, novel compounds targeting CAR and PXR with specific effects and fewer side effects will therefore be useful for the treatment of cholestatic liver diseases. This article will review the current knowledge on xenobiotic-sensing nuclear receptors CAR and PXR, while also discussing their potential role in the treatment of cholestatic liver diseases. PMID:19925451

  3. Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism.

    PubMed

    Gan, Zhenji; Rumsey, John; Hazen, Bethany C; Lai, Ling; Leone, Teresa C; Vega, Rick B; Xie, Hui; Conley, Kevin E; Auwerx, Johan; Smith, Steven R; Olson, Eric N; Kralli, Anastasia; Kelly, Daniel P

    2013-06-01

    The mechanisms involved in the coordinate regulation of the metabolic and structural programs controlling muscle fitness and endurance are unknown. Recently, the nuclear receptor PPARβ/δ was shown to activate muscle endurance programs in transgenic mice. In contrast, muscle-specific transgenic overexpression of the related nuclear receptor, PPARα, results in reduced capacity for endurance exercise. We took advantage of the divergent actions of PPARβ/δ and PPARα to explore the downstream regulatory circuitry that orchestrates the programs linking muscle fiber type with energy metabolism. Our results indicate that, in addition to the well-established role in transcriptional control of muscle metabolic genes, PPARβ/δ and PPARα participate in programs that exert opposing actions upon the type I fiber program through a distinct muscle microRNA (miRNA) network, dependent on the actions of another nuclear receptor, estrogen-related receptor γ (ERRγ). Gain-of-function and loss-of-function strategies in mice, together with assessment of muscle biopsies from humans, demonstrated that type I muscle fiber proportion is increased via the stimulatory actions of ERRγ on the expression of miR-499 and miR-208b. This nuclear receptor/miRNA regulatory circuit shows promise for the identification of therapeutic targets aimed at maintaining muscle fitness in a variety of chronic disease states, such as obesity, skeletal myopathies, and heart failure. PMID:23676496

  4. Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism

    PubMed Central

    Gan, Zhenji; Rumsey, John; Hazen, Bethany C.; Lai, Ling; Leone, Teresa C.; Vega, Rick B.; Xie, Hui; Conley, Kevin E.; Auwerx, Johan; Smith, Steven R.; Olson, Eric N.; Kralli, Anastasia; Kelly, Daniel P.

    2013-01-01

    The mechanisms involved in the coordinate regulation of the metabolic and structural programs controlling muscle fitness and endurance are unknown. Recently, the nuclear receptor PPARβ/δ was shown to activate muscle endurance programs in transgenic mice. In contrast, muscle-specific transgenic overexpression of the related nuclear receptor, PPARα, results in reduced capacity for endurance exercise. We took advantage of the divergent actions of PPARβ/δ and PPARα to explore the downstream regulatory circuitry that orchestrates the programs linking muscle fiber type with energy metabolism. Our results indicate that, in addition to the well-established role in transcriptional control of muscle metabolic genes, PPARβ/δ and PPARα participate in programs that exert opposing actions upon the type I fiber program through a distinct muscle microRNA (miRNA) network, dependent on the actions of another nuclear receptor, estrogen-related receptor γ (ERRγ). Gain-of-function and loss-of-function strategies in mice, together with assessment of muscle biopsies from humans, demonstrated that type I muscle fiber proportion is increased via the stimulatory actions of ERRγ on the expression of miR-499 and miR-208b. This nuclear receptor/miRNA regulatory circuit shows promise for the identification of therapeutic targets aimed at maintaining muscle fitness in a variety of chronic disease states, such as obesity, skeletal myopathies, and heart failure. PMID:23676496

  5. Elevated copper impairs hepatic nuclear receptor function in Wilson’s disease

    PubMed Central

    Wooton-Kee, Clavia Ruth; Jain, Ajay K.; Wagner, Martin; Grusak, Michael A.; Finegold, Milton J.; Lutsenko, Svetlana; Moore, David D.

    2015-01-01

    Wilson’s disease (WD) is an autosomal recessive disorder that results in accumulation of copper in the liver as a consequence of mutations in the gene encoding the copper-transporting P-type ATPase (ATP7B). WD is a chronic liver disorder, and individuals with the disease present with a variety of complications, including steatosis, cholestasis, cirrhosis, and liver failure. Similar to patients with WD, Atp7b–/– mice have markedly elevated levels of hepatic copper and liver pathology. Previous studies have demonstrated that replacement of zinc in the DNA-binding domain of the estrogen receptor (ER) with copper disrupts specific binding to DNA response elements. Here, we found decreased binding of the nuclear receptors FXR, RXR, HNF4α, and LRH-1 to promoter response elements and decreased mRNA expression of nuclear receptor target genes in Atp7b–/– mice, as well as in adult and pediatric WD patients. Excessive hepatic copper has been described in progressive familial cholestasis (PFIC), and we found that similar to individuals with WD, patients with PFIC2 or PFIC3 who have clinically elevated hepatic copper levels exhibit impaired nuclear receptor activity. Together, these data demonstrate that copper-mediated nuclear receptor dysfunction disrupts liver function in WD and potentially in other disorders associated with increased hepatic copper levels. PMID:26241054

  6. Oncogenic conversion of a novel orphan nuclear receptor by chromosome translocation.

    PubMed

    Labelle, Y; Zucman, J; Stenman, G; Kindblom, L G; Knight, J; Turc-Carel, C; Dockhorn-Dworniczak, B; Mandahl, N; Desmaze, C; Peter, M

    1995-12-01

    A recurrent t(9;22) (q22;q12) chromosome translocation has been described in extraskeletal myxoid chondrosarcoma (EMC). Fluorescent in situ hybridization experiments performed on one EMC tumour indicated that the chromosome 22 breakpoint occurred in the EWS gene. Northern blot analysis revealed an aberrant EWS transcript which is cloned by a modified RT-PCR procedure. This transcript consists of an in-frame fusion of the 5' end of EWS to a previously unidentified gene, which was named TEC. This fusion transcript was detected in six of eight EMC studied, and three different junction types between the two genes were found. In all junction types, the putative translation product contained the amino-terminal transactivation domain of EWS linked to the entire TEC protein. Homology analysis showed that the predicted TEC protein contains a DNA-binding domain characteristic of nuclear receptors. The highest identity scores were observed with the NURR1 family of orphan nuclear receptors. These receptors are involved in the control of cell proliferation and differentiation by modulating the response to growth factors and retinoic acid. This work provides, after the PML/RAR alpha gene fusion, the second example of the oncogenic conversion of a nuclear receptor and the first example involving the orphan subfamily. Analysis of the disturbance induced by the EWS/TEc protein in the nuclear receptor network and their target genes may lead to new approaches for EMC treatment. PMID:8634690

  7. The pERK of being a target: Kinase regulation of the orphan nuclear receptor ERRγ

    PubMed Central

    Riggins, Rebecca B.

    2015-01-01

    Estrogen-related receptors (ERRs) are orphan members of the nuclear receptor superfamily that are important regulators of mitochondrial metabolism with emerging roles in cancer. In the absence of an endogenous ligand, ERRs are reliant upon other regulatory mechanisms that include protein/protein interactions and post-translational modification, though the cellular and clinical significance of this latter mechanism is unclear. We recently published a study in which we establish estrogen-related receptor gamma (ERRγ) as a target for extracellular signal-regulated kinase (ERK), and show that regulation of ERRγ by ERK has important consequences for the function of this receptor in cellular models of estrogen receptor-positive (ER+) breast cancer. In this Research Highlight, we discuss the implications of these findings from a molecular and clinical perspective. PMID:26005698

  8. Development of a peptide-based inducer of nuclear receptors degradation.

    PubMed

    Demizu, Yosuke; Ohoka, Nobumichi; Nagakubo, Takaya; Yamashita, Hiroko; Misawa, Takashi; Okuhira, Keiichiro; Naito, Mikihiko; Kurihara, Masaaki

    2016-06-01

    A peptide-based protein knockdown system for inducing nuclear receptors degradation via the ubiquitin-proteasome system was developed. Specifically, the designed molecules were composed of two biologically active scaffolds: a peptide that binds to the estrogen receptor α (ERα) surface and an MV1 molecule that binds to cellular inhibitors of apoptosis proteins (IAP: cIAP1/cIAP2/XIAP) to induce ubiquitylation of the ERα. The hybrid peptides induced IAP-mediated ubiquitylation followed by proteasomal degradation of the ERα. Those peptides were also applicable for inducing androgen receptor (AR) degradation. PMID:27086122

  9. Importin alpha: a multipurpose nuclear-transport receptor.

    PubMed

    Goldfarb, David S; Corbett, Anita H; Mason, D Adam; Harreman, Michelle T; Adam, Stephen A

    2004-09-01

    The importin alpha/beta heterodimer targets hundreds of proteins to the nuclear-pore complex (NPC) and facilitates their translocation across the nuclear envelope. Importin alpha binds to classical nuclear localization signal (cNLS)-containing proteins and links them to importin beta, the karyopherin that ferries the ternary complex through the NPC. A second karyopherin, the exportin CAS, recycles importin alpha back to the cytoplasm. In this article, we discuss control mechanisms that importin alpha exerts over the assembly and disassembly of the ternary complex and we describe how new groups of importin alpha genes arose during the evolution of metazoan animals to function in development and differentiation. We also describe activities of importin alpha that seem to be distinct from its housekeeping functions in nuclear transport. PMID:15350979

  10. The Nuclear Receptors of Biomphalaria glabrata and Lottia gigantea: Implications for Developing New Model Organisms

    PubMed Central

    Kaur, Satwant; Jobling, Susan; Jones, Catherine S.; Noble, Leslie R.; Routledge, Edwin J.; Lockyer, Anne E.

    2015-01-01

    Nuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different. PMID:25849443