Science.gov

Sample records for passivated aluminum interconnect

  1. Hermetic aluminum radio frequency interconnection and method for making

    DOEpatents

    Kilgo, Riley D.; Kovacic, Larry; Brow, Richard K.

    2000-01-01

    The present invention provides a light-weight, hermetic coaxial radio-frequency (RF) interconnection having an electrically conductive outer housing made of aluminum or an aluminum alloy, a central electrical conductor made of ferrous or non-ferrous material, and a cylinder of dielectric material comprising a low-melting-temperature, high-thermal-expansion aluminophosphate glass composition for hermetically sealing between the aluminum-alloy outer housing and the ferrous or non-ferrous center conductor. The entire RF interconnection assembly is made permanently hermetic by thermally fusing the center conductor, glass, and housing concurrently by bringing the glass to the melt point by way of exposure to an atmospheric temperature sufficient to melt the glass, less than 540.degree. C., but that does not melt the center conductor or the outer aluminum or aluminum alloy housing. The composition of the glass used is controlled to provide a suitable low dielectric constant so that an appropriate electrical characteristic impedance, for example 50 ohms, can be achieved for an electrical interconnection that performs well at high radio frequencies and also provides an interconnection maintaining a relatively small physical size.

  2. Asymptotic Stability of Interconnected Passive Non-Linear Systems

    NASA Technical Reports Server (NTRS)

    Isidori, A.; Joshi, S. M.; Kelkar, A. G.

    1999-01-01

    This paper addresses the problem of stabilization of a class of internally passive non-linear time-invariant dynamic systems. A class of non-linear marginally strictly passive (MSP) systems is defined, which is less restrictive than input-strictly passive systems. It is shown that the interconnection of a non-linear passive system and a non-linear MSP system is globally asymptotically stable. The result generalizes and weakens the conditions of the passivity theorem, which requires one of the systems to be input-strictly passive. In the case of linear time-invariant systems, it is shown that the MSP property is equivalent to the marginally strictly positive real (MSPR) property, which is much simpler to check.

  3. Strain measurements in aluminum interconnects by x-ray microdiffraction

    NASA Astrophysics Data System (ADS)

    Hwang, Keith J.

    2000-10-01

    Reliability of metal interconnects in integrated circuits is a major concern to the microelectronics industry. Understanding the impact of stress and strain in metal lines is crucial for improving their reliability. Because of thermal expansion mismatches between the interconnect, substrate, and passivation material, high tensile stresses are developed during processing. In addition, stress gradients develop due to electromigration because of the high current densities passing through the lines. X-ray diffraction is an ideal technique for directly measuring these stresses. However, most of the earlier measurements were performed using millimeter size x-ray beams, allowing only macroscopic determinations of stress. Spatially resolved measurements of stresses in interconnects were not possible. A synchrotron-based white beam x-ray microdiffraction technique was developed and applied for localized strain mapping on polycrystalline thin film interconnects. The system was shown to achieve micron-scale spatial resolution and strain sensitivities on the order of 2 x 10-4. Two methods for performing in-situ calibration of the detector angles utilizing the (001) silicon substrate were presented: the energy method and the interplanar angle method. Various (hkl) reflections were measured from the (001) silicon substrate and the displacement of the x-ray beam was determined. Although discrepancies arose between these methods, both proved satisfactory to correct the Al (hkl) d-spacing measurements. Thermal and electromigration-induced hydrostatic stress distributions in a 2.6 mum wide passivated A1 line were investigated. The Al line exhibited thermal stress behavior consistent with confinement by the silicon/silicon dioxide interface. The electromigration-induced stress evolution indicated the presence of bamboo grains acting as blocking boundaries.

  4. Passivated aluminum nanohole arrays for label-free biosensing applications.

    PubMed

    Canalejas-Tejero, Víctor; Herranz, Sonia; Bellingham, Alyssa; Moreno-Bondi, María Cruz; Barrios, Carlos Angulo

    2014-01-22

    We report the fabrication and performance of a surface plasmon resonance aluminum nanohole array refractometric biosensor. An aluminum surface passivation treatment based on oxygen plasma is developed in order to circumvent the undesired effects of oxidation and corrosion usually found in aluminum-based biosensors. Immersion tests in deionized water and device simulations are used to evaluate the effectiveness of the passivation process. A label-free bioassay based on biotin analysis through biotin-functionalized dextran-lipase conjugates immobilized on the biosensor-passivated surface in aqueous media is performed as a proof of concept to demonstrate the suitability of these nanostructured aluminum films for biosensing. PMID:24354280

  5. Enhanced active aluminum content and thermal behaviour of nano-aluminum particles passivated during synthesis using thermal plasma route

    NASA Astrophysics Data System (ADS)

    Mathe, Vikas L.; Varma, Vijay; Raut, Suyog; Nandi, Amiya Kumar; Pant, Arti; Prasanth, Hima; Pandey, R. K.; Bhoraskar, Sudha V.; Das, Asoka K.

    2016-04-01

    Here, we report synthesis and in situ passivation of aluminum nanoparticles using thermal plasma reactor. Both air and palmitc acid passivation was carried out during the synthesis in the thermal plasma reactor. The passivated nanoparticles have been characterized for their structural and morphological properties using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. In order to understand nature of passivation vibrational spectroscopic analysis have been carried out. The enhancement in active aluminum content and shelf life for a palmitic acid passivated nano-aluminum particles in comparison to the air passivated samples and commercially available nano Al powder (ALEX) has been observed. Thermo-gravimetric analysis was used to estimate active aluminum content of all the samples under investigation. In addition cerimetric back titration method was also used to estimate AAC and the shelf life of passivated aluminum particles. Structural, microstructural and thermogravomateric analysis of four year aged passivated sample also depicts effectiveness of palmitic acid passivation.

  6. Application of selective CVD tungsten for low contact resistance via filling to aluminum multilayer interconnection

    NASA Astrophysics Data System (ADS)

    Rang, S.; Chow, R.; Wilson, R. H.; Gorowitz, B.; Williams, A. G.

    1988-05-01

    Process parameters for selective chemical vapor deposition of tungsten to fill vias between aluminum or aluminum alloy multilevel metallization have been identified and demonstrated. By controlling two competing parallel reactions: Aluminum and hydrogen reductions of tungsten hexafluoride in one reduction step process, the specific contact resistivity was found to be in the range of 2.5 to 8.0 x 10-9 ohm-cm2 for 1.8 micron diameter vias. This is at least one order of magnitude lower than the values reported by the previous workers. It was also observed that alloying the aluminum did not appear to affect the contact resistance significantly. In this experiment one cold wall experimental reactor, two cold wall production systems of two different models and one hot wall tube furnace were used to deposit selective CVD tungsten on aluminum or aluminum with 1% silicon first level metal. As a consequence of these findings, problems associated with filling straight wall vias of high aspect ratio in VLSI multilevel interconnection (i.e., high contact resistance, poor step coverage, electromigration, etc.) can now be alleviated or resolved. Therefore, the use of selective CVD tungsten in the existing aluminum IC metallization becomes very attractive and feasible.

  7. Passivation effects of atomic-layer-deposited aluminum oxide

    NASA Astrophysics Data System (ADS)

    Kotipalli, R.; Delamare, R.; Poncelet, O.; Tang, X.; Francis, L. A.; Flandre, D.

    2013-09-01

    Atomic-layer-deposited (ALD) aluminum oxide (Al2O3) has recently demonstrated an excellent surface passivation for both n- and p-type c-Si solar cells thanks to the presence of high negative fixed charges (Qf ~ 1012-1013 cm-2) in combination with a low density of interface states (Dit). This paper investigates the passivation quality of thin (15 nm) Al2O3 films deposited by two different techniques: plasma-enhanced atomic layer deposition (PE-ALD) and Thermal atomic layer deposition (T-ALD). Other dielectric materials taken into account for comparison include: thermally-grown silicon dioxide (SiO2) (20 nm), SiO2 (20 nm) deposited by plasma-enhanced chemical vapour deposition (PECVD) and hydrogenated amorphous silicon nitride (a-SiNx:H) (20 nm) also deposited by PECVD. With the above-mentioned dielectric layers, Metal Insulator Semiconductor (MIS) capacitors were fabricated for Qf and Dit extraction through Capacitance-Voltage-Conductance (C-V-G) measurements. In addition, lifetime measurements were carried out to evaluate the effective surface recombination velocity (SRV). The influence of extracted C-V-G parameters (Qf,Dit) on the injection dependent lifetime measurements τ(Δn), and the dominant passivation mechanism involved have been discussed. Furthermore we have also studied the influence of the SiO2 interfacial layer thickness between the Al2O3 and silicon surface on the field-effect passivation mechanism. It is shown that the field effect passivation in accumulation mode is more predominant when compared to surface defect passivation.

  8. CWDM based HDMI interconnect incorporating passively aligned POF linked optical subassembly modules

    NASA Astrophysics Data System (ADS)

    Lee, Hak-Soon; Lee, Sang-Shin; Son, Yung-Sung

    2011-08-01

    A four-channel transmitter OSA (TOSA) and a receiver optical sub-assembly (ROSA) module were presented. They take advantage of a coarse WDM (CWDM) scheme, employing two types of VCSELs at 780 and 850 nm, where no wavelength filters are involved in the TOSA. The ROSA and TOSA were constructed through a fully passive alignment process using components produced by virtue of a cost effective plastic injection molding technique. In order to build a high quality optical HDMI interconnect, four channel optical links between these modules ware established via two graded-index plastic optical fibers (GI-POFs). The HDMI interconnect was thoroughly evaluated in terms of the alignment tolerance, the light beam propagation, and the data transmission capability. For the ROSA, the measured tolerance, as affected by the photodiode alignment, was ~45 μm and over 200 μm for the transverse and longitudinal directions, respectively. For the TOSA, the tolerance, which is mostly dependent upon the VCSEL alignment, was ~20 μm and more than 200 μm for the transverse and longitudinal directions, respectively. The beam profiles for the TOSA and ROSA were monitored to confirm their feasibility from the optical coupling perspective. A digital signal at 2.5 Gb/s was efficiently transmitted through the HDMI interconnect with a bit error ratio of below 10-16. A 1080p HDMI signal from a Blu-ray player was delivered through the interconnect to an LCD monitor and successfully displayed a high quality video.

  9. Thermal- and electromigration-induced stresses in passivated Al- and AlSiCu-interconnects

    SciTech Connect

    Beckers, D.; Schroeder, H.; Schilling, W.; Eppler, I.

    1997-05-01

    Mechanical stresses in microelectronic devices are of special interest because of degradation effects in microelectronic circuits such as stress induced voiding or electromigration. Al and al-alloys are commonly used as interconnect materials in integrated electronic devices. Stress induced voiding and degradation of metal lines by electromigration are closely related to the stresses in the lines. The authors have studied the strain and stress evolution during thermal cycling, isothermal relaxation and due to electromigration in passivated Al and AlSi(1%)Cu(0.5%) lines by X-Ray diffraction with variation of experimental parameters such as the aspect ratio and the electrical current density. Furthermore the extent of voiding and plastic shear deformation has been determined from the experimental metal strains with the help of finite element calculations. Main results are: (1) During thermal cycling the voiding is less than 2 {center_dot} 10{sup {minus}3}. The extent of plastic shear deformation increases with increasing line width and with decreasing flowstress. (2) During isothermal relaxation void growth occurs but no significant change in the plastic shear deformation. (3) An electric current in the lines causes no measurable additional change of the volume averaged stresses up to line failure.

  10. Silicon diffusion in aluminum for rear passivated solar cells

    SciTech Connect

    Urrejola, Elias; Peter, Kristian; Plagwitz, Heiko; Schubert, Gunnar

    2011-04-11

    We show that the lateral spread of silicon in a screen-printed aluminum layer increases by (1.50{+-}0.06) {mu}m/ deg. C, when increasing the peak firing temperature within an industrially applicable range. In this way, the maximum spread limit of diffused silicon in aluminum is predictable and does not depend on the contact area size but on the firing temperature. Therefore, the geometry of the rear side pattern can influence not only series resistance losses within the solar cell but the process of contact formation itself. In addition, too fast cooling lead to Kirkendall void formations instead of an eutectic layer.

  11. Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin

    NASA Astrophysics Data System (ADS)

    Kwon, Young-Soon; Gromov, Alexander A.; Strokova, Julia I.

    2007-04-01

    The results of investigation and analysis of electro-exploded aluminum nanopowders, whose surface were passivated with the following substances: liquids - nitrocellulose (NC), oleic acid (C 17H 33COOH) and stearic acid (C 17H 35COOH), suspended in kerosene and ethanol, fluoropolymer; solids - boron and nickel; gases - N 2, CO 2 and air (for a comparison) are discussed. The surface protection for the aluminum nanopowders by coatings of different chemical origins leads to the some advantages of the powders properties for an application in energetic systems, e.g. solid propellants and "green" propellants (Al-H 2O). Aluminum nanopowders with a protected surface showed the increased stability to oxidation in air during the storage period and higher reactivity by heating. The TEM-visual diagram of the formation and stabilization of the coatings on the particles has been proposed on the basis of experimental results. The kinetics of the interaction of aluminum nanopowders with air has been discussed. The recommendations concerning an efficiency of the protective "non-Al 2O 3" layers on aluminum nanoparticles were proposed.

  12. Mechanical Effects of Hafnium and Boron Addition to Aluminum Alloy Films for Submicrometer LSI Interconnects

    NASA Astrophysics Data System (ADS)

    Onoda, Hiroshi; Takahashi, Eishi; Kawai, Yasuaki; Madokoro, Shoji; Fukuyo, Hideaki; Sawada, Susumu

    1993-11-01

    This is the first report on the mechanical properties of hafnium- and boron-added Al-Si-Cu alloy film for LSI interconnects. Two to three hundred ppm of hafnium and boron addition into Al-Si-Cu alloy film does not influence the Al alloy properties for metal lines as LSI interconnects, such as its low resistivity, low ohmic contact resistance with Si, and fine-line patterning feasibility. The mechanical properties of the Al alloy film, however, change greatly. Vertical hillock and lateral hillock formation is considerably suppressed during heat treatments used in LSI fabrication processes. Stress-induced void formation is also reduced during aging test at 125°C. These effects due to hafnium and boron addition are considered to be an impurity precipitation effect ihat was confirmed by X-ray diffraction analysis and electron probe microanalysis.

  13. Passivation of aluminum nanoparticles by plasma-enhanced chemical vapor deposition for energetic nanomaterials.

    PubMed

    Shahravan, Anaram; Desai, Tapan; Matsoukas, Themis

    2014-05-28

    We have produced passivating coatings on 80-nm aluminum particles by plasma-enhanced chemical vapor deposition (PECVD). Three organic precursors--isopropyl alcohol, toluene, and perfluorodecalin--were used to fabricate thin films with thicknesses ranging from 5 nm to 30 nm. The coated samples and one untreated sample were exposed to 85% humidity at 25 °C for two months, and the active Al content was determined by thermogravimetric analysis (TGA) in the presence of oxygen. The results were compared with an uncoated sample stored in a glovebox under argon for the same period. We find that all three coatings provide protection against humidity, compared to the control, and their efficacy ranks in the following order: isopropyl alcohol < toluene < perfluorodecalin. This order also correlates with increasing water contact angle of the three solid coatings. The amount of heat released in the oxidation, measured by differential scanning calorimetry (DSC), was found to increase in the same order. Perfluorodecalin resulted in providing the best protection, and it produced the maximum enthalpy of combustion, ΔH = 4.65 kJ/g. This value is higher than that of uncoated aluminum stored in the glovebox, indicating that the coatings promote more complete oxidation of the core. Overall, we conclude that the plasma polymer coatings of this study are suitable passivating thin film for aluminum nanoparticles by providing protection against oxidation while facilitating the complete oxidation of the metallic core at elevated temperature. PMID:24787245

  14. Viewing Integrated-Circuit Interconnections By SEM

    NASA Technical Reports Server (NTRS)

    Lawton, Russel A.; Gauldin, Robert E.; Ruiz, Ronald P.

    1990-01-01

    Back-scattering of energetic electrons reveals hidden metal layers. Experiment shows that with suitable operating adjustments, scanning electron microscopy (SEM) used to look for defects in aluminum interconnections in integrated circuits. Enables monitoring, in situ, of changes in defects caused by changes in temperature. Gives truer picture of defects, as etching can change stress field of metal-and-passivation pattern, causing changes in defects.

  15. Aluminum oxide passivated radial junction sub-micrometre pillar array textured silicon solar cells

    NASA Astrophysics Data System (ADS)

    Pudasaini, Pushpa Raj; Elam, David; Ayon, Arturo A.

    2013-06-01

    We report radial, p-n junction, sub-micrometre, pillar array textured solar cells, fabricated on an n-type Czochralski silicon wafer. Relatively simple processing schemes such as metal-assisted chemical etching and spin on dopant techniques were employed for the fabrication of the proposed solar cells. Atomic layer deposition (ALD) grown aluminum oxide (Al2O3) was employed as a surface passivation layer on the B-doped emitter surface. In spite of the fact that the sub-micrometre pillar array textured surface has a relatively high surface-to-volume ratio, we observed an open circuit voltage (VOC) and a short circuit current density (JSC) as high as 572 mV and 29.9 mA cm-2, respectively, which leads to a power conversion efficiency in excess of 11.30%, for the optimized structure of the solar cell described herein. Broadband omnidirectional antireflection effects along with the light trapping property of the sub-micrometre, pillar array textured surface and the excellent passivation quality of the ALD-grown Al2O3 on the B-doped emitter surface were responsible for the enhanced electrical performance of the proposed solar cells.

  16. Passivation properties of aluminum oxide films deposited by mist chemical vapor deposition for solar cell applications

    NASA Astrophysics Data System (ADS)

    Miki, Shohei; Iguchi, Koji; Kitano, Sho; Hayakashi, Koki; Hotta, Yasushi; Yoshida, Haruhiko; Ogura, Atsushi; Satoh, Shin-ichi; Arafune, Koji

    2015-08-01

    Aluminum oxide (AlOx) films were deposited by mist chemical vapor deposition (MCVD) in air for p-type crystalline silicon, and the effects of the deposition temperature (Tdep) and AlOx film thickness on the maximum surface recombination velocities (Smax) were evaluated. It was found that Smax was improved with increasing Tdep. The AlOx film deposited at 400 °C exhibited the best Smax value of 2.8 cm/s, and the passivation quality was comparable to that of AlOx deposited by other vacuum-based techniques. Smax was also improved with increasing film thickness. When the film thickness was above 10 nm, Smax was approximately 10 cm/s. From the Fourier transform infrared spectra, it was found that the AlOx films deposited by MCVD consisted of an AlOx layer and a Si-diffused AlOx layer. In addition, it is important for the layers to be thick enough to obtain high-quality passivation.

  17. Grain orientation and strain measurements in sub-micron wide passivated individual aluminum test structures

    SciTech Connect

    Tamura, N.; Valek, B.C.; Spolenak, R.; MacDowell, A.A.; Celestre, R.S.; Padmore, H.A.; Brown, W.L.; Marieb, T.; Bravman, J.C.; Batterman, B.W.; Patel, J.R.

    2001-03-01

    An X-ray microdiffraction dedicated beamline, combining white and monochromatic beam capabilities, has been built at the Advanced Light Source. The purpose of this beamline is to address the myriad of problems in Materials Science and Physics that require submicron x-ray beams for structural characterization. Many such problems are found in the general area of thin films and nano-materials. For instance, the ability to characterize the orientation and strain state in individual grains of thin films allows us to measure structural changes at a very local level. These microstructural changes are influenced heavily by such parameters as deposition conditions and subsequent treatment. The accurate measurement of strain gradients at the micron and sub-micron level finds many applications ranging from the strain state under nano-indenters to gradients at crack tips. Undoubtedly many other applications will unfold in the future as we gain experience with the capabilities and limitations of this instrument. We have applied this technique to measure grain orientation and residual stress in single grains of pure Al interconnect lines and preliminary results on post-electromigration test experiments are presented. It is shown that measurements with this instrument can be used to resolve the complete stress tensor (6 components) in a submicron volume inside a single grain of Al under a passivation layer with an overall precision of about 20 MPa. The microstructure of passivated lines appears to be complex, with grains divided into identifiable subgrains and noticeable local variations of both tensile/compressive and shear stresses within single grains.

  18. High-Temperature Dielectric Properties of Aluminum Nitride Ceramic for Wireless Passive Sensing Applications

    PubMed Central

    Liu, Jun; Yuan, Yukun; Ren, Zhong; Tan, Qiulin; Xiong, Jijun

    2015-01-01

    The accurate characterization of the temperature-dependent permittivity of aluminum nitride (AlN) ceramic is quite critical to the application of wireless passive sensors for harsh environments. Since the change of the temperature-dependent permittivity will vary the ceramic-based capacitance, which can be converted into the change of the resonant frequency, an LC resonator, based on AlN ceramic, is prepared by the thick film technology. The dielectric properties of AlN ceramic are measured by the wireless coupling method, and discussed within the temperature range of 12 °C (room temperature) to 600 °C. The results show that the extracted relative permittivity of ceramic at room temperature is 2.3% higher than the nominal value of 9, and increases from 9.21 to 10.79, and the quality factor Q is decreased from 29.77 at room temperature to 3.61 at 600 °C within the temperature range. PMID:26370999

  19. Identity of Passive Film Formed on Aluminum in Li-ion BatteryElectrolytes with LiPF6

    SciTech Connect

    Zhang, Xueyuan; Devine, T.M.

    2006-09-01

    The passive film that forms on aluminum in 1:1 ethylene carbonate + ethylmethyl carbonate with 1.2M LiPF{sub 6} and 1:1 ethylene carbonate + dimethyl carbonate with 1.0M LiPF{sub 6} was investigated by a combination of electrochemical quartz crystal microbalance measurements (EQCM), electrochemical impedance spectroscopy (EIS), and x-ray photoelectron spectroscopy. During anodic polarization of aluminum a film of AlF{sub 3} forms on top of the air-formed oxide, creating a duplex, or two-layered film. The thickness of the AlF{sub 3} increases with the applied potential. Independent measurements of film thickness by EQCM and EIS indicate that at a potential of 5.5V vs. Li/Li{sup +}, the thickness of the AlF{sub 3} is approximately 1 nm.

  20. Refractory metal superalloys: Design of yttrium aluminum garnet passivating niobium alloys

    NASA Astrophysics Data System (ADS)

    Bryan, David

    A systems-based approach, integrating computational modeling with experimental techniques to approach engineering problems in a time and cost efficient manner, was employed to design a Nb-based refractory superalloy for use at 1300°C. Ashby-type selection criteria for both thermodynamic and kinetic parameters were employed to identify a suitable protective oxide for Nb alloys. Yttrium aluminum garnet (YAG) was selected as the most promising candidate for its excellent combination of desirable properties. The alloy microstructural concept was based upon the gamma - gamma' nickel-based superalloys in which the multifunctional gamma' phase serves as both a creep strengthening dispersion and a source of reactive elements for oxide passivation. Candidate ternary Pd-Y-Al and Pt-Y-Al compounds were fabricated and characterized by XRD and DTA. Of the intermetallics studied, only PtYAl had a high enough melting point (1580°C) for use in an alloy operating at 1300°C. The alloy matrix design was based upon Wahl's extension of Wagner's criterion for protective oxidation, requiring a reduction of the product N ODO/DAl by 5 orders of magnitude relative to binary Nb-Al. A thermodynamic and kinetic analysis identified elements with large oxygen affinities as the most beneficial for reducing the magnitude of the quantity NOD O. Construction of a combined thermodynamic and mobility database identified increased Al solubility as the best approach for increasing D Al. Utilizing the thermodynamic and mobility databases, obtained from a combination of model alloys, oxidation experiments, and first principles calculations, theoretical designs predicted the large changes in solubility and transport parameters were achievable. Several prototype alloys were then fabricated and evaluated via oxidation tests at both 1300°C and 1100°C. YAG formation was demonstrated as part of multicomponent oxide scales in the alloys that exhibited the greatest reduction in oxidation rates. The oxidation

  1. Self-stabilized and dispersion-compensated passively mode-locked Yb:Yttrium aluminum garnet laser

    NASA Astrophysics Data System (ADS)

    Agnesi, A.; Guandalini, A.; Reali, G.

    2005-04-01

    Self-stabilized passive mode-locking of a diode-pumped Yb:yttrium aluminum garnet laser with a semiconductor saturable absorber was achieved using an off-phase-matching second-harmonic crystal. According to the numerical model, such a condition is accomplished by self-defocusing in the nonlinear crystal in the presence of positive intracavity dispersion. Robust mode locking with Fourier-limited 1.0-ps pulses was obtained, whereas mode locking, unassisted by the nonlinear crystal, yielded 2.2-ps pulses, with the laser operating near the edge of the stability region in order to minimize the saturation energy of the semiconductor device.

  2. Passivation of Aluminum in Lithium-ion Battery Electrolytes withLiBOB

    SciTech Connect

    Zhang, Xueyuan; Devine, Thomas M.

    2006-09-09

    A combination of cyclic polarization tests, electrochemical impedance spectroscopy, and electrochemical quartz crystal microbalance (EQCM) measurements indicate a film is formed when aluminum is polarized above 4.5V in 1:1 EC+DMC with 1M LiBOB. The quantity of film that is formed increases with increasing applied potential. Results of EQCM tests suggest the film is AlBO{sub 3}. The film is very protective against corrosion and inhibits pitting corrosion of aluminum in normally corrosive 1M LiTFSI.

  3. Fully passive-alignment pluggable compact parallel optical interconnection modules based on a direct-butt-coupling structure for fiber-optic applications

    NASA Astrophysics Data System (ADS)

    Lim, Kwon-Seob; Park, Hyoung-Jun; Kang, Hyun Seo; Kim, Young Sun; Jang, Jae-Hyung

    2016-02-01

    A low-cost packaging method utilizing a fully passive optical alignment and surface-mounting method is demonstrated for pluggable compact and slim multichannel optical interconnection modules using a VCSEL/PIN-PD chip array. The modules are based on a nonplanar bent right-angle electrical signal path on a silicon platform and direct-butt-optical coupling without a bulky and expensive microlens array. The measured optical direct-butt-coupling efficiencies of each channel without any bulky optics are as high as 33% and 95% for the transmitter and receiver, respectively. Excellent lateral optical alignment tolerance of larger than 60 μm for both the transmitter and receiver module significantly reduces the manufacturing and material costs as well as the packaging time. The clear eye diagrams, extinction ratios higher than 8 dB at 10.3 Gbps for the transmitter module, and receiver sensitivity of better than -13.1 dBm at 10.3 Gbps and a bit error rate of 10-12 for all channels are demonstrated. Considering that the optical output power of the transmitter is greater than 0 dBm, the module has a sufficient power margin of about 13 dB for 10.3 Gbps operations for all channels.

  4. Improving dielectric performance in anodic aluminum oxide via detection and passivation of defect states

    SciTech Connect

    Mibus, M.; Zangari, G.; Jensen, C.; Hu, X.; Reed, M. L.; Knospe, C.

    2014-06-16

    The electronic and ionic transports in 32–56 nm thick anodic aluminum oxide films are investigated before and after a 1-h anneal at 200–400 °C in argon. Results are correlated to their defect density as measured by the Mott-Schottky technique. Solid state measurements show that electronic conduction upon annealing is hindered by an increase in the Schottky emission barrier, induced by a reduction in dopant density. Using an electrochemical contact, the films fail rapidly under cathodic polarization, unless defect density is decreased down to 10{sup 17} cm{sup −3}, resulting in a three order of magnitude reduction in current and no visible gas evolution. Under anodic polarization, the decrease in defect density delays the onset of ionic conduction as well as further oxide growth and failure.

  5. Composition of incipient passivating layers on heat-rejecting aluminum in carboxylate- and silicate-inhibited coolants: Correlation with ASTM D 4340 weight losses

    SciTech Connect

    Wagner, F.T.; Moylan, T.E.; Simko, S.J.; Militello, M.C.

    1999-08-01

    X-ray photoelectron spectroscopy identified compositional differences between passivating layers initially formed in carboxylated coolants, in silicated coolants, and in a mixture thereof on well-controlled 319 aluminum surfaces under heat-rejecting conditions. The layer formed in silicated coolant was primarily silica, while that in carboxylated coolant was primarily hydrated alumina. Competition between inhibitor packages when carboxylated coolant was contaminated from the start with low levels of silicated coolant produced films which were not simply patchwise mixtures of the pure-coolant film types. The surface analytical results aid the interpretation of subtle differences in weight losses under the ASTM Standard Test Method for Corrosion of Cast Aluminum Alloys in Engine Coolants Under Heat-Rejecting Conditions (D 4340) in carboxylated versus silicated coolants that became more pronounced when testing was carried out at a vehicle-like 50% coolant concentration. Results from time-resolved D4340 measurements and from a two-step cleaning procedure further contribute towards proper evaluation of D4340 weight losses in the different coolant types.

  6. Influence of a Passivated Nanodimensional Aluminum Powder on Physical and Chemical Characteristics of Combustion of Metal Compositions

    NASA Astrophysics Data System (ADS)

    Komarova, M. V.; Vorozhtsov, A. B.

    2014-11-01

    The influence of various nanodimensional metal powders on the linear combustion rate of metal compositions is analyzed. It is demonstrated that passivation of nanoaluminum with glycine not only provides its physical and chemical compatibility with other components of a high-energy material and its subsequent physical and chemical stability, but also does not influence the main integral combustion characteristic that opens possibilities for its application as a fuel in high-energy compositions.

  7. Electrical interconnect

    DOEpatents

    Frost, John S.; Brandt, Randolph J.; Hebert, Peter; Al Taher, Omar

    2015-10-06

    An interconnect includes a first set of connector pads, a second set of connector pads, and a continuous central portion. A first plurality of legs extends at a first angle from the continuous central portion. Each leg of the first plurality of legs is connected to a connector pad of a first set of connector pads. A second plurality of legs extends at a second angle from the continuous central portion. Each leg of the second plurality of legs is connected to a connector pad of the second set of connector pads. Gaps are defined between legs. The gaps enable movement of the first set of connector pads relative to the second set of connector pads.

  8. Advanced Interconnect Development

    SciTech Connect

    Yang, Z.G.; Maupin, G.; Simner, S.; Singh, P.; Stevenson, J.; Xia, G.

    2005-01-27

    The objectives of this project are to develop cost-effective, optimized materials for intermediate temperature SOFC interconnect and interconnect/electrode interface applications and identify and understand degradation processes in interconnects and at their interfaces with electrodes.

  9. Interconnected semiconductor devices

    DOEpatents

    Grimmer, Derrick P.; Paulson, Kenneth R.; Gilbert, James R.

    1990-10-23

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  10. Interconnection networks

    DOEpatents

    Faber, V.; Moore, J.W.

    1988-06-20

    A network of interconnected processors is formed from a vertex symmetric graph selected from graphs GAMMA/sub d/(k) with degree d, diameter k, and (d + 1)exclamation/ (d /minus/ k + 1)exclamation processors for each d greater than or equal to k and GAMMA/sub d/(k, /minus/1) with degree d /minus/ 1, diameter k + 1, and (d + 1)exclamation/(d /minus/ k + 1)exclamation processors for each d greater than or equal to k greater than or equal to 4. Each processor has an address formed by one of the permutations from a predetermined sequence of letters chosen a selected number of letters at a time, and an extended address formed by appending to the address the remaining ones of the predetermined sequence of letters. A plurality of transmission channels is provided from each of the processors, where each processor has one less channel than the selected number of letters forming the sequence. Where a network GAMMA/sub d/(k, /minus/1) is provided, no processor has a channel connected to form an edge in a direction delta/sub 1/. Each of the channels has an identification number selected from the sequence of letters and connected from a first processor having a first extended address to a second processor having a second address formed from a second extended address defined by moving to the front of the first extended address the letter found in the position within the first extended address defined by the channel identification number. The second address is then formed by selecting the first elements of the second extended address corresponding to the selected number used to form the address permutations. 9 figs.

  11. Healing Voids In Interconnections In Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Cuddihy, Edward F.; Lawton, Russell A.; Gavin, Thomas

    1989-01-01

    Unusual heat treatment heals voids in aluminum interconnections on integrated circuits (IC's). Treatment consists of heating IC to temperature between 200 degrees C and 400 degrees C, holding it at that temperature, and then plunging IC immediately into liquid nitrogen. Typical holding time at evaluated temperature is 30 minutes.

  12. Platinum-Enhanced Electron Transfer and Surface Passivation through Ultrathin Film Aluminum Oxide (Al₂O₃) on Si(111)-CH₃ Photoelectrodes.

    PubMed

    Kim, Hark Jin; Kearney, Kara L; Le, Luc H; Pekarek, Ryan T; Rose, Michael J

    2015-04-29

    We report the preparation, stability, and utility of Si(111)-CH3 photoelectrodes protected with thin films of aluminum oxide (Al2O3) prepared by atomic layer deposition (ALD). The photoelectrodes have been characterized by X-ray photoelectron spectroscopy (XPS), photoelectrochemistry (Fc in MeCN, Fc-OH in H2O), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) simulation. XPS analysis of the growing Al2O3 layer affords both the thickness, and information regarding two-dimensional versus three-dimensional mode of growth. Impedance measurements on Si(111)|CH3|Al2O3 devices reveal that the nascent films (5-30 Å) exhibit significant capacitance, which is attenuated upon surpassing the bulk threshold (∼30 Å). The Al2O3 layer provides enhanced photoelectrochemical (PEC) stability evidenced by an increase in the anodic window of operation in MeCN (up to +0.5 V vs Ag) and enhanced stability in aqueous electrolyte (up to +0.2 V vs Ag). XPS analysis before and after PEC confirms the Al2O3 layer is persistent and prevents surface corrosion (SiOx). Sweep-rate dependent CVs in MeCN at varying thicknesses exhibit a trend of increasingly broad features, characteristic of slow electron transport kinetics. Simulations were modeled as slow electron transfer through a partially resistive and electroactive Al2O3 layer. Lastly, we find that the Al2O3 ultrathin film serves as a support for the ALD deposition of Pt nanoparticles (d ≈ 8 nm) that enhance electron transfer through the Al2O3 layer. Surface recombination velocity (SRV) measurements on the assembled Si(111)|CH3|Al2O3-15 device affords an S value of 4170 cm s(-1) (τ = 4.2 μs) comparable to the bare Si(111)-CH3 surface (3950 cm s(-1); τ = 4.4 μs). Overall, the results indicate that high electronic quality and low surface defect densities can be retained throughout a multistep assembly of an integrated and passivated semiconductor|thin-film|metal device. PMID:25880534

  13. Electric Current Induced Thermomechanical Fatigue Testing of Interconnects

    NASA Astrophysics Data System (ADS)

    Keller, R. R.; Geiss, R. H.; Cheng, Y.-W.; Read, D. T.

    2005-09-01

    We demonstrate the use of electrical methods for evaluating the thermomechanical fatigue properties of patterned aluminum and copper interconnects on silicon-based substrates. Through a careful selection of alternating current frequency and current density, we used controlled Joule heating to simulate in an accelerated manner the type of low frequency thermal stress cycles that an interconnect structure may undergo. Sources of such stressing may include power cycling, energy-saving modes, or application-specific fluctuations, as opposed to stressing at chip operating frequencies. The thermal stresses are caused by differences in thermal expansion properties between the metal and constraining substrate or passivation. Test conditions included a frequency of 100 Hz and current density of 11 - 16 MA/cm2, which led to a cyclic temperature amplitude of approximately 100 K, and corresponding cyclic stress amplitude in excess of 100 MPa for Al-1Si and Cu lines on oxidized silicon. The failure mechanism differs from that observed in direct current electromigration studies, and involves formation of localized plasticity, which causes topography changes on the less-constrained surfaces of the interconnect. Open circuit eventually took place by melting at a region of severely reduced cross-sectional area. In these studies, both Al-1Si and Cu responded to power cycling by deforming in a manner that was highly dependent upon variations in grain size and orientation. Isolated patches of damage appeared early within the confines of individual grains or clusters of grains, as determined by automated electron backscatter diffraction. With increased cycling or with increased current density, the extent of damage became more severe and widespread. We discuss the utility of electrical methods for accelerated testing of mechanical reliability.

  14. Copper metallization for on-chip interconnects

    NASA Astrophysics Data System (ADS)

    Gelatos, A. V.; Nguyen, Bich-Yen; Perry, Kathleen A.; Marsh, R.; Peschke, J.; Filipiak, Stanley M.; Travis, Edward O.; Thompson, Matthew A.; Saaranen, T.; Tobin, Phil J.; Mogab, C. J.

    1996-09-01

    Continued dimensional scaling of the elements of integrated circuits places significant restrictions on the width, density and current carrying capability of metallic interconnects. It is expected that, by the year 2000, the transistor channel length will be at 0.l8piri [1], while microprocessors will pack more than 15 million transistors over an area of '-700mm2. To conserve area, interconnects will continue to be stacked at an increasing number of levels (6 by the year 2000, vs 4 in todays leading microprocessors) and the minimum spacing and width within an interconnect layer will shrink to 0.3.tm. In addition, it is expected that future interconnects will need to sustain increasingly higher current densities without electromigration failures [2]. Aluminum alloys are the conductors of choice in present-day interconnects, and much effort is focused n means to extend the usefulness of aluminum through improvements in reliability, either by new alloy formulations [3], or by the development of complicated multimetal stacks [4. A more radical approach, which is gaining increased attention, is the replacement of aluminum altogether by copper. The bulk resistivity of copper is significantly lower than that of aluminum (1.7.tW-cm for Cu vs. 3.0iW-cm for Al-Cu), which is expected to translate to interconnects of higher performance because of reduction in signal propagation delay. In addition, the significantly higher melting temperature of copper (.-1100°C vs. -600°C for Al-Cu alloys) and its higher atomic weight are expected to translate to improved resistance to electromigration [5]. However, as with any new process trying to break into the mainstream, significant improvement in reliability and performance over that achievable with aluminum alloys must be demonstrated first. Towards this purpose, processes need to be developed that deposit conformal copper films of high purity with acceptable throughput, and integration schemes need to be developed which produce

  15. Printed Module Interconnects

    SciTech Connect

    Stockert, Talysa R.; Fields, Jeremy D.; Pach, Gregory F.; Mauger, Scott A.; van Hest, Maikel F. A. M.

    2015-06-14

    Monolithic interconnects in photovoltaic modules connect adjacent cells in series, and are typically formed sequentially involving multiple deposition and scribing steps. Interconnect widths of 500 um every 10 mm result in 5% dead area, which does not contribute to power generation in an interconnected solar panel. This work expands on previous work that introduced an alternative interconnection method capable of producing interconnect widths less than 100 um. The interconnect is added to the module in a single step after deposition of the photovoltaic stack, eliminating the need for scribe alignment. This alternative method can be used for all types of thin film photovoltaic modules. Voltage addition with copper-indium-gallium-diselenide (CIGS) solar cells using a 2-scribe printed interconnect approach is demonstrated. Additionally, interconnect widths of 250 um are shown.

  16. Ultralight Interconnected Metal Oxide Nanotube Networks.

    PubMed

    Stano, Kelly L; Faraji, Shaghayegh; Hodges, Ryan; Yildiz, Ozkan; Wells, Brian; Akyildiz, Halil I; Zhao, Junjie; Jur, Jesse; Bradford, Philip D

    2016-05-01

    Record-breaking ultralow density aluminum oxide structures are prepared using a novel templating technique. The alumina structures are unique in that they are comprised by highly aligned and interconnected nanotubes yielding anisotropic behavior. Large-scale network structures with complex form-factors can easily be made using this technique. The application of the low density networks as humidity sensing materials as well as thermal insulation is demonstrated. PMID:26969860

  17. Perforation patterned electrical interconnects

    SciTech Connect

    Frey, Jonathan

    2014-01-28

    This disclosure describes systems and methods for increasing the usable surface area of electrical contacts within a device, such as a thin film solid state device, through the implementation of electrically conductive interconnects. Embodiments described herein include the use of a plurality of electrically conductive interconnects that penetrate through a top contact layer, through one or more multiple layers, and into a bottom contact layer. The plurality of conductive interconnects may form horizontal and vertical cross-sectional patterns. The use of lasers to form the plurality of electrically conductive interconnects from reflowed layer material further aids in the manufacturing process of a device.

  18. Alignability of Optical Interconnects

    NASA Astrophysics Data System (ADS)

    Beech, Russell Scott

    With the continuing drive towards higher speed, density, and functionality in electronics, electrical interconnects become inadequate. Due to optics' high speed and bandwidth, freedom from capacitive loading effects, and freedom from crosstalk, optical interconnects can meet more stringent interconnect requirements. But, an optical interconnect requires additional components, such as an optical source and detector, lenses, holographic elements, etc. Fabrication and assembly of an optical interconnect requires precise alignment of these components. The successful development and deployment of optical interconnects depend on how easily the interconnect components can be aligned and/or how tolerant the interconnect is to misalignments. In this thesis, a method of quantitatively specifying the relative difficulty of properly aligning an optical interconnect is described. Ways of using this theory of alignment to obtain design and packaging guidelines for optical interconnects are examined. The measure of the ease with which an optical interconnect can be aligned, called the alignability, uses the efficiency of power transfer as a measure of alignment quality. The alignability is related to interconnect package design through the overall cost measure, which depends upon various physical parameters of the interconnect, such as the cost of the components and the time required for fabrication and alignment. Through a mutual dependence on detector size, the relationship between an interconnect's alignability and its bandwidth, signal-to-noise ratio, and bit-error -rate is examined. The results indicate that a range of device sizes exists for which given performance threshold values are satisfied. Next, the alignability of integrated planar-optic backplanes is analyzed in detail. The resulting data show that the alignability can be optimized by varying the substrate thickness or the angle of reflection. By including the effects of crosstalk, in a multi-channel backplane, the

  19. Solar cell array interconnects

    DOEpatents

    Carey, P.G.; Thompson, J.B.; Colella, N.J.; Williams, K.A.

    1995-11-14

    Electrical interconnects are disclosed for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value. 4 figs.

  20. Solar cell array interconnects

    DOEpatents

    Carey, Paul G.; Thompson, Jesse B.; Colella, Nicolas J.; Williams, Kenneth A.

    1995-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  1. Micro-fluidic interconnect

    DOEpatents

    Okandan, Murat; Galambos, Paul C.; Benavides, Gilbert L.; Hetherington, Dale L.

    2006-02-28

    An apparatus for simultaneously aligning and interconnecting microfluidic ports is presented. Such interconnections are required to utilize microfluidic devices fabricated in Micro-Electromechanical-Systems (MEMS) technologies, that have multiple fluidic access ports (e.g. 100 micron diameter) within a small footprint, (e.g. 3 mm.times.6 mm). Fanout of the small ports of a microfluidic device to a larger diameter (e.g. 500 microns) facilitates packaging and interconnection of the microfluidic device to printed wiring boards, electronics packages, fluidic manifolds etc.

  2. The 31S0-33P0 transition in the aluminum isotope ion 26A1+: a potentially superior passive laser frequency standard and spectrum analyzer.

    PubMed Central

    Yu, N; Dehmelt, H; Nagourney, W

    1992-01-01

    The aluminum 26 isotope ion is proposed here as a possible candidate for a superior atomic clock. For this even isotope, the extraordinarily long lifetime of the 33P0 state offers a potential clock transition (31S0-33P0) linewidth of 300 microHz. The mF = 0 --> 0 transition has only a quadratic Zeeman shift approximately 4 x 10(-18) at 0.1 Gauss magnetic field, compared to approximately 10(-8) for the hydrogen maser. Electronic quadrupole moments vanish for both J and J' states and with them shifts due to electric field gradients. All shifts have been estimated and are orders of magnitude less than for Hg+ and Ba+, which are being studied as atomic clock elements. PMID:11607314

  3. The effect of interconnection resistance on the performance enhancement of liquid-nitrogen-cooled CMOS circuits

    SciTech Connect

    Watt, J.T. ); Plummer, J.D. . Center for Integrated Systems)

    1989-08-01

    The effect of interconnection resistance on CMOS circuit performance is examined at room temperature and liquid-nitrogen temperature. The interconnection is modeled as a distributed RLC line driven by an optimal configuration of cascaded inverters. The thin-film resistivity of pure aluminum has been measured to allow accurate prediction of the effect of interconnection resistance on performance. A critical interconnect length is defined as the point at which interconnect resistance begins to dominate propagation delay time. The critical interconnect length is computed at room temperature and liquid-nitrogen temperature for present-day and scaled CMOS technologies and compared to the maximum interconnect length expected in state-of-the-art VLSI circuits. Conclusions are drawn concerning the importance of interconnection resistance in determining the enhancement in performance achieved through reduced-temperature operation of CMOS integrated circuits.

  4. LTCC interconnects in microsystems

    NASA Astrophysics Data System (ADS)

    Rusu, Cristina; Persson, Katrin; Ottosson, Britta; Billger, Dag

    2006-06-01

    Different microelectromechanical system (MEMS) packaging strategies towards high packaging density of MEMS devices and lower expenditure exist both in the market and in research. For example, electrical interconnections and low stress wafer level packaging are essential for improving device performance. Hybrid integration of low temperature co-fired ceramics (LTCC) with Si can be a way for an easier packaging system with integrated electrical interconnection, and as well towards lower costs. Our research on LTCC-Si integration is reported in this paper.

  5. Stress-induced voiding study in integrated circuit interconnects

    NASA Astrophysics Data System (ADS)

    Hou, Yuejin; Tan, Cher Ming

    2008-07-01

    An analytical equation for an ultralarge-scale integration interconnect lifetime due to stress-induced voiding (SIV) is derived from the energy perspective. It is shown that the SIV lifetime is strongly dependent on the passivation quality at the cap layer/interconnect interface, the confinement effect by the surrounding materials to the interconnects, and the available diffusion paths in the interconnects. Contrary to the traditional power-law creep model, we find that the temperature exponent in SIV lifetime formulation is determined by the available diffusion paths for the interconnect atoms and the interconnect geometries. The critical temperature for the SIV is found to be independent of passivation integrity and dielectric confinement effect. Actual stress-free temperature (SFT) during the SIV process is also found to be different from the dielectric/cap layer deposition temperature or the final annealing temperature of the metallization, and it can be evaluated analytically once the activation energy, temperature exponent and critical temperature are determined experimentally. The smaller actual SFT indicates that a strong stress relaxation occurs before the high temperature storage test. Our results show that our SIV lifetime model can be used to predict the SIV lifetime in nano-interconnects.

  6. Zee electrical interconnect

    NASA Technical Reports Server (NTRS)

    Rust, Thomas M. (Inventor); Gaddy, Edward M. (Inventor); Herriage, Michael J. (Inventor); Patterson, Robert E. (Inventor); Partin, Richard D. (Inventor)

    2001-01-01

    An interconnect, having some length, that reliably connects two conductors separated by the length of the interconnect when the connection is made but in which one length if unstressed would change relative to the other in operation. The interconnect comprises a base element an intermediate element and a top element. Each element is rectangular and formed of a conducting material and has opposed ends. The elements are arranged in a generally Z-shape with the base element having one end adapted to be connected to one conductor. The top element has one end adapted to be connected to another conductor and the intermediate element has its ends disposed against the other end of the base and the top element. Brazes mechanically and electrically interconnect the intermediate element to the base and the top elements proximate the corresponding ends of the elements. When the respective ends of the base and the top elements are connected to the conductors, an electrical connection is formed therebetween, and when the conductors are relatively moved or the interconnect elements change length the elements accommodate the changes and the associated compression and tension forces in such a way that the interconnect does not mechanically fatigue.

  7. Electromigration of damascene copper of IC interconnect

    NASA Astrophysics Data System (ADS)

    Meyer, William Kevin

    Copper metallization patterned with multi-level damascene process is prone to electromigration failure, which affects the reliability and performance of IC interconnect. In typical products, interconnect that is not already constrained by I·R drop or Joule self-heating operates at 'near threshold' conditions. Measurement of electromigration damage near threshold is very difficult due to slow degradation requiring greatly extended stress times, or high currents that cause thermal anomalies. Software simulations of the electromigration mechanism combined with characterization of temperature profiles allows extracting material parameters and calculation of design rules to ensure reliable interconnect. Test structures capable of demonstrating Blech threshold effects while allowing thermal characterization were designed and processed. Electromigration stress tests at various conditions were performed to extract both shortline (threshold) and long-line (above threshold) performance values. The resistance increase time constant shows immortality below Je·L (product of current density and segment length) of 3200 amp/cm. Statistical analysis of times-to-failure show that long lines last 105 hours at 3.1 mA/mum2 (120°C). While this is more robust than aluminum interconnect, the semiconductor industry will be challenged to improve that performance as future products require.

  8. Release Resistant Electrical Interconnections For Mems Devices

    DOEpatents

    Peterson, Kenneth A.; Garrett, Stephen E.; Reber, Cathleen A.

    2005-02-22

    A release resistant electrical interconnection comprising a gold-based electrical conductor compression bonded directly to a highly-doped polysilicon bonding pad in a MEMS, IMEMS, or MOEMS device, without using any intermediate layers of aluminum, titanium, solder, or conductive adhesive disposed in-between the conductor and polysilicon pad. After the initial compression bond has been formed, subsequent heat treatment of the joint above 363 C creates a liquid eutectic phase at the bondline comprising gold plus approximately 3 wt % silicon, which, upon re-solidification, significantly improves the bond strength by reforming and enhancing the initial bond. This type of electrical interconnection is resistant to chemical attack from acids used for releasing MEMS elements (HF, HCL), thereby enabling the use of a "package-first, release-second" sequence for fabricating MEMS devices. Likewise, the bond strength of an Au--Ge compression bond may be increased by forming a transient liquid eutectic phase comprising Au-12 wt % Ge.

  9. SOFC INTERCONNECT DEVELOPMENT

    SciTech Connect

    Diane M. England

    2004-03-16

    An interconnect for an SOFC stack is used to connect fuel cells into a stack. SOFC stacks are expected to run for 40,000 hours and 10 thermal cycles for the stationary application and 10,000 hours and 7000 thermal cycles for the transportation application. The interconnect of a stack must be economical and robust enough to survive the SOFC stack operation temperature of 750 C and must maintain the electrical connection to the fuel cells throughout the lifetime and under thermal cycling conditions. Ferritic and austenitic stainless steels, and nickel-based superalloys were investigated as possible interconnect materials for solid oxide fuel cell (SOFC) stacks. The alloys were thermally cycled in air and in a wet nitrogen-argon-hydrogen (N2-Ar-H2-H2O) atmosphere. Thermogravimetry was used to determine the parabolic oxidation rate constants of the alloys in both atmospheres. The area-specific resistance of the oxide scale and metal substrates were measured using a two-probe technique with platinum contacts. The study identifies two new interconnect designs which can be used with both bonded and compressive stack sealing mechanisms. The new interconnect designs offer a solution to chromium vaporization, which can lead to degradation of some (chromium-sensitive) SOFC cathodes.

  10. Optically interconnected phased arrays

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Kunath, Richard R.

    1988-01-01

    Phased-array antennas are required for many future NASA missions. They will provide agile electronic beam forming for communications and tracking in the range of 1 to 100 GHz. Such phased arrays are expected to use several hundred GaAs monolithic integrated circuits (MMICs) as transmitting and receiving elements. However, the interconnections of these elements by conventional coaxial cables and waveguides add weight, reduce flexibility, and increase electrical interference. Alternative interconnections based on optical fibers, optical processing, and holography are under evaluation as possible solutions. In this paper, the current status of these techniques is described. Since high-frequency optical components such as photodetectors, lasers, and modulators are key elements in these interconnections, their performance and limitations are discussed.

  11. SOFC INTERCONNECT DEVELOPMENT

    SciTech Connect

    Diane M. England

    2003-06-06

    This report summarizes the interconnect work being performed at Delphi. Materials were chosen for this interconnect project were chosen from ferritic and austenitic stainless steels, and nickel-based superalloys. The alloys are thermally cycled in air and a wet hydrogen atmosphere. The oxide scale adherence, electrical resistance and oxidation resistance are determined after long-term oxidation of each alloy. The oxide scale adherence will be observed using a scanning electron microscope. The electrical resistance of the oxidized alloys will be determined using an electrical resistance measurement apparatus which has been designed and is currently being built. Data from the electrical resistance measurement is expected to be provided in the second quarter.

  12. Central American electrical interconnection

    SciTech Connect

    Not Available

    1988-12-01

    A technical cooperation grant of $2.25 million, designed to strengthen the capacity of Central American countries to operate their regional interconnected electrical system, was announced by the Inter-American Development Bank (IDB). The grant, extended from the banks Fund for Special Operations, will help improve the capacity of the regions electric power companies to achieve economical, safe operation of the interconnected electric power systems. The funds will also be used to finance regional studies of the accords, procedures, regulations, and supervisory mechanisms for the system, as well as program development and data bases.

  13. Polymer optical interconnect technology (POINT): optoelectronic packaging and interconnect for board and backplane applications

    NASA Astrophysics Data System (ADS)

    Liu, Yung S.; Wojnarowski, R. J.; Hennessy, W. A.; Bristow, Julian P.; Liu, Yue; Peczalski, Andrzej; Rowlette, John R.; Plotts, Alan; Stack, Jared D.; Yardley, James T.; Eldada, L.; Osgood, Richard M.; Scarmozzino, Robert; Lee, Sing H.; Ozguz, Volkan H.

    1996-01-01

    The polymer optical interconnect technology (POINT) represents a major collaborative effort among GE, Honeywell, AMP, AlliedSignal, Columbia University and the University of California at San Diego (UCSD), sponsored by ARPA, in developing affordable optoelectronic module packaging and interconnect technologies for board- and backplane-level optical interconnect applications for a wide range of military and commercial applications. The POINT program takes a novel development approach by fully leveraging the existing electronic design, processing, fabrication, and module packaging technologies to optoelectronic module packaging. The POINT program further incorporates several state-of- the-art optoelectronic technologies that include high-speed VCSEL for multichannel array data transmission; flexible optical polymers such as PolyguideTM or coupling of device-to- fiber using a passive alignment process; a low-loss polymer for backplane interconnect to provide a high I/O density; low-cost diffractive optical elements (DOE) for board-to-backplane interconnect; and use of molded MT array ferrule to reduce overall system size, weight, and cost. In addition to further reducing design and fabrication cycle times, computer simulation tools for optical waveguide and mechanical modeling will be advanced under the POINT program.

  14. Aluminum Hydroxide

    MedlinePlus

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  15. Open Systems Interconnection.

    ERIC Educational Resources Information Center

    Denenberg, Ray

    1985-01-01

    Discusses the need for standards allowing computer-to-computer communication and gives examples of technical issues. The seven-layer framework of the Open Systems Interconnection (OSI) Reference Model is explained and illustrated. Sidebars feature public data networks and Recommendation X.25, OSI standards, OSI layer functions, and a glossary.…

  16. Interconnecting with VIPs

    ERIC Educational Resources Information Center

    Collins, Robert

    2013-01-01

    Interconnectedness changes lives. It can even save lives. Recently the author got to witness and be part of something in his role as a teacher of primary science that has changed lives: it may even have saved lives. It involved primary science teaching--and the climate. Robert Collins describes how it is all interconnected. The "Toilet…

  17. Capillary interconnect device

    SciTech Connect

    Renzi, Ronald F

    2013-11-19

    An interconnecting device for connecting a plurality of first fluid-bearing conduits to a corresponding plurality of second fluid-bearing conduits thereby providing fluid communication between the first fluid-bearing conduits and the second fluid-bearing conduits. The device includes a manifold and one or two ferrule plates that are held by compressive axial forces.

  18. CAISSON: Interconnect Network Simulator

    NASA Technical Reports Server (NTRS)

    Springer, Paul L.

    2006-01-01

    Cray response to HPCS initiative. Model future petaflop computer interconnect. Parallel discrete event simulation techniques for large scale network simulation. Built on WarpIV engine. Run on laptop and Altix 3000. Can be sized up to 1000 simulated nodes per host node. Good parallel scaling characteristics. Flexible: multiple injectors, arbitration strategies, queue iterators, network topologies.

  19. Optical Interconnection Networks

    NASA Astrophysics Data System (ADS)

    Bergman, Keren; Hughes, Gary

    2004-07-01

    In current high-performance computing and communications systems an emerging need for ultra-high-capacity, low-latency interconnection networks has led investigators to consider insertion of optical-domain switching fabrics. The use of optical technology for the physical switching layer within data communication systems is clearly advantageous in providing maximum bandwidth per cable particularly through the exploitation of DWDM. Furthermore, the transparency offered in the optical domain allows potentially wide flexibility in the data encoding and protocols. However, many key challenges remain to the successful implementation of optical packet routing, as optical signals cannot be processed efficiently or buffered for an arbitrary time. Clearly, innovative architectures, switching fabrics, and packet processing subsystems that employ optical technologies in synergetic fashions with powerful electronic techniques would be poised to harvest the immense transmission bandwidth of optics creating the ultimate "unlimited-capacity" interconnection network.

  20. Optical Interconnection Networks

    NASA Astrophysics Data System (ADS)

    Bergman, Keren; Hughes, Gary

    2004-05-01

    In current high-performance computing and communications systems an emerging need for ultra-high-capacity, low-latency interconnection networks has led investigators to consider insertion of optical-domain switching fabrics. The use of optical technology for the physical switching layer within data communication systems is clearly advantageous in providing maximum bandwidth per cable particularly through the exploitation of DWDM. Furthermore, the transparency offered in the optical domain allows potentially wide flexibility in the data encoding and protocols. However, many key challenges remain to the successful implementation of optical packet routing, as optical signals cannot be processed efficiently or buffered for an arbitrary time. Clearly, innovative architectures, switching fabrics, and packet processing subsystems that employ optical technologies in synergetic fashions with powerful electronic techniques would be poised to harvest the immense transmission bandwidth of optics creating the ultimate "unlimited-capacity" interconnection network.

  1. Optical Interconnection Networks

    NASA Astrophysics Data System (ADS)

    Bergman, Keren; Hughes, Gary

    2004-06-01

    In current high-performance computing and communications systems an emerging need for ultra-high-capacity, low-latency interconnection networks has led investigators to consider insertion of optical-domain switching fabrics. The use of optical technology for the physical switching layer within data communication systems is clearly advantageous in providing maximum bandwidth per cable particularly through the exploitation of DWDM. Furthermore, the transparency offered in the optical domain allows potentially wide flexibility in the data encoding and protocols. However, many key challenges remain to the successful implementation of optical packet routing, as optical signals cannot be processed efficiently or buffered for an arbitrary time. Clearly, innovative architectures, switching fabrics, and packet processing subsystems that employ optical technologies in synergetic fashions with powerful electronic techniques would be poised to harvest the immense transmission bandwidth of optics creating the ultimate "unlimited-capacity" interconnection network.

  2. Anodized aluminum on LDEF: A current status of measurements on chromic acid anodized aluminum

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    1992-01-01

    Chromic acid anodize was used as the exterior coating for aluminum surfaces on LDEF to provide passive thermal control. Chromic acid anodized aluminum was also used as test specimens in thermal control coatings experiments. The following is a compilation and analysis of the data obtained thus far.

  3. Development of chip passivated monolithic complementary MISFET circuits with beam leads

    NASA Technical Reports Server (NTRS)

    Ragonese, L. J.; Kim, M. J.; Corrie, B. L.; Brouillette, J. W.; Warr, R. E.

    1972-01-01

    Fabrication method is described for alumina passivated silicon MISFET arrays. Technique involves total passivation beam-lead approach and provides completely sealed chip with double level interconnect capability. Refractory metal alloy is used to form interconnect system and obtain metal contacts that withstand temperatures of 873 K for short periods of time.

  4. Carbon Nanotube Interconnect

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Meyyappan, Meyya (Inventor)

    2006-01-01

    Method and system for fabricating an electrical interconnect capable of supporting very high current densities ( 10(exp 6)-10(exp 10) Amps/sq cm), using an array of one or more carbon nanotubes (CNTs). The CNT array is grown in a selected spaced apart pattern, preferably with multi-wall CNTs, and a selected insulating material, such as SiOw, or SiuNv is deposited using CVD to encapsulate each CNT in the array. An exposed surface of the insulating material is planarized to provide one or more exposed electrical contacts for one or more CNTs.

  5. Polymeric optoelectronic interconnects

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.

    2000-04-01

    Electrical interconnects are reaching their fundamental limits and are becoming the speed bottleneck as processor speeds are increasing. A polymer-based interconnect technology was developed for affordable integrated optical circuits that address the optical signal processing needs in the telecom, datacom, and performance computing industries. We engineered organic polymers that can be readily made into single-mode, multimode, and micro-optical waveguide structures of controlled numerical apertures and geometries. These materials are formed from highly-crosslinked acrylate monomers with specific linkages that determine properties such as flexibility, robustness, optical loss, thermal stability, and humidity resistance. These monomers are intermiscible, providing for precise continuous adjustment of the refractive index over a wide range. In polymer form, they exhibit state-of-the-art loss values and exceptional environmental stability, enabling use in a variety of demanding applications. A wide range of rigid and flexible substrates can be used, including glass, quartz, silicon, glass-filled epoxy printed circuit board substrates, and flexible plastic films. The devices we describe include a variety of routing elements that can be sued as part of a massively parallel photonic integrated circuit on the MCM, board, or backplane level.

  6. On the State of the Art of Metal Interconnects for SOFC Application

    SciTech Connect

    Jablonski@netl.doe.gov

    2011-02-27

    One of the recent developments for Solid Oxide Fuel Cells (SOFC) is oxide component materials capable of operating at lower temperatures such as 700-800C. This lower temperature range has provided for the consideration of metallic interconnects which have several advantages over ceramic interconnects: low cost, ease in manufacturing, and high conductivity. Most metals and alloys will oxidize under both the anode and cathode conditions within an SOFC, thus a chief requirement is that the base metal oxide scale must be electrically conductive since this constitutes the majority of the electrical resistance in a metallic interconnect. Common high temperature alloys form scales that contain chrome, silicon and aluminum oxides among others. Under SOFC operating conditions chrome oxide is a semi-conductor while silicon and aluminum oxides are insulators. In this talk we will review the evolution in candidate alloys and surface modifications which constitute an engineered solution for SOFC interconnect applications.

  7. Policy issues in interconnecting networks

    NASA Technical Reports Server (NTRS)

    Leiner, Barry M.

    1989-01-01

    To support the activities of the Federal Research Coordinating Committee (FRICC) in creating an interconnected set of networks to serve the research community, two workshops were held to address the technical support of policy issues that arise when interconnecting such networks. The workshops addressed the required and feasible technologies and architectures that could be used to satisfy the desired policies for interconnection. The results of the workshop are documented.

  8. Fuel cell system with interconnect

    SciTech Connect

    Liu, Zhien; Goettler, Richard

    2015-09-29

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  9. Fuel cell system with interconnect

    SciTech Connect

    Goettler, Richard; Liu, Zhien

    2015-08-11

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  10. Fuel cell system with interconnect

    SciTech Connect

    Goettler, Richard; Liu, Zhien

    2015-03-10

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  11. Passive tamper-indicating secure container

    SciTech Connect

    Bartberger, J.C.

    1993-07-01

    This paper describes a passive tamper-indicating secure container that has been designed to demonstrate concepts, features, and materials that can be used in passive container applications. (In a passive security system, physical phenomena provide visual indication of tampering.) The basic container {open_quotes}volume within a volume{close_quotes} assembly consists of a transparent plastic outer container and an aluminum inner container. Both containers incorporate passive, fingerprinted layers as part of the tamper-indicating container system. Many of the tamper-indicating features can be visually inspected without disassembling the container. The status of container development and potential applications for the container are addressed.

  12. Solar cell welded interconnection development program. [parallel gap and ultrasonic metal-metal bonding

    NASA Technical Reports Server (NTRS)

    Katzeff, J. S.

    1974-01-01

    Parallel gap welding and ultrasonic bonding techniques were developed for joining selected interconnect materials (silver, aluminum, copper, silver plated molybdenum and Kovar) to silver-titanium and aluminum contact cells. All process variables have been evaluated leading to establishment of optimum solar cell, interconnect, electrodes and equipment criteria for obtainment of consistent high quality welds. Applicability of nondestructive testing of solar cell welds has been studied. A pre-weld monitoring system is being built and will be utilized in the numerically controlled parallel gap weld station.

  13. Stability of a class of interconnected evolution systems

    NASA Technical Reports Server (NTRS)

    Wen, John T.

    1992-01-01

    Stability conditions for a class of interconnected systems modeled by linear abstract evolution equations and a memoryless nonlinearity are derived. These conditions are stated in terms of the passivity of each of the subsystems and can be considered as a partial generalization of the hyperstability theorem. A Liapunov function approach is used in the proof without requiring the positive definiteness of the Liapunov function. Application to the robustness analysis of the infinite-dimensional linear quadratic regulator is also discussed.

  14. Aluminum Analysis.

    ERIC Educational Resources Information Center

    Sumrall, William J.

    1998-01-01

    Presents three problems based on the price of aluminum designed to encourage students to be cooperative and to use an investigative approach to learning. Students collect and synthesize information, analyze results, and draw conclusions. (AIM)

  15. Aluminum Hydroxide

    MedlinePlus

    ... penicillamine (Cuprimine, Depen), prednisone (Deltasone, Orasone), products containing iron, tetracycline (Sumycin, Tetracap, and others), ticlopidine (Ticlid), and vitamins.be aware that aluminum hydroxide may interfere with other medicines, making them less effective. Take your other medications 1 ...

  16. Process for electrically interconnecting electrodes

    DOEpatents

    Carey, Paul G.; Thompson, Jesse B.; Colella, Nicolas J.; Williams, Kenneth A.

    2002-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb--Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb--Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  17. Polyguide polymeric technology for optical interconnect circuits and components

    NASA Astrophysics Data System (ADS)

    Booth, Bruce L.; Marchegiano, Joseph E.; Chang, Catherine T.; Furmanak, Robert J.; Graham, Douglas M.; Wagner, Richard G.

    1997-04-01

    The expanding information revolution has been made possible by the development of optical communication technology. To meet the escalating demand for information transmitted and processed at high data rates and the need to circumvent the growing electronic circuit bottlenecks, mass deployment of not only optical fiber networks but manufacturable optical interconnect circuits, components and connectors for interfacing fibers and electronics that meet economic and performance constraints are absolutely necessary. Polymeric waveguide optical interconnection are considered increasingly important to meet these market needs. DuPont's polyguide polymeric integrated optic channel waveguide system is thought by many to have considerable potential for a broad range of passive optical interconnect applications. In this paper the recent advances, status, and unique attributes of the technology are reviewed. Product and technology developments currently in progress including parallel optical ink organization and polymer optical interconnect technology developments funded by DARPA are used as examples to describe polyguide breadth and potential for manufacture and deployment of optical interconnection products for single and multimode telecom and datacom waveguide applications.

  18. High-Reliability Copper Interconnects through Dry Etching Process

    NASA Astrophysics Data System (ADS)

    Igarashi, Yasushi; Yamanobe, Tomomi; Ito, Toshio

    1995-02-01

    A modified high-temperature dry etching technique, which enables anisotropic patterning with a high etching selectivity and self-aligned passivation of a sidewall of an interconnect simultaneously, has been developed for fabrication of sub-quarter-micron Cu interconnects. Resistivities of the resulting Cu interconnects are in the range of 1.7 to 2.2 µΩ· cm for the linewidth of 0.2-3.0 µ m. As a result of electromigration (EM) tests, it has been observed that median time to failure (MTF) of the Cu interconnects depends on their linewidth. This behavior is considered to be caused by their grain structure, such as a bamboo-type structure for linewidths narrower than 0.3 µ m. In comparison with a MTF of a conventional Al-1%Si line, these Cu interconnects have at least 100 times longer lifetime. Activation energy for EM damage of the 0.7-µ m-wide line is 0.88 eV.

  19. Interconnecting heterogeneous database management systems

    NASA Technical Reports Server (NTRS)

    Gligor, V. D.; Luckenbaugh, G. L.

    1984-01-01

    It is pointed out that there is still a great need for the development of improved communication between remote, heterogeneous database management systems (DBMS). Problems regarding the effective communication between distributed DBMSs are primarily related to significant differences between local data managers, local data models and representations, and local transaction managers. A system of interconnected DBMSs which exhibit such differences is called a network of distributed, heterogeneous DBMSs. In order to achieve effective interconnection of remote, heterogeneous DBMSs, the users must have uniform, integrated access to the different DBMs. The present investigation is mainly concerned with an analysis of the existing approaches to interconnecting heterogeneous DBMSs, taking into account four experimental DBMS projects.

  20. Interconnect resistance of photovoltaic submodules

    NASA Technical Reports Server (NTRS)

    Volltrauer, H.; Eser, E.; Delahoy, A. E.

    1985-01-01

    Small area amorphous silicon solar cells generally have higher efficiencies than large interconnected submodules. Among the reasons for the differences in performance are the lack of large area uniformity, the effect of nonzero tin oxide sheet resistance, and possibly pinholes in the various layers. Another and usually small effect that can contribute to reduced performance of interconnected cells is the resistance of the interconnection i.e., the series resistance introduced by the metal to tin oxide contact through silicon. Proper processing problems to avoid poor contacts are discussed.

  1. Aluminum alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  2. Renewable Systems Interconnection: Executive Summary

    SciTech Connect

    Kroposki, B.; Margolis, R.; Kuswa, G.; Torres, J.; Bower, W.; Key, T.; Ton, D.

    2008-02-01

    The U.S. Department of Energy launched the Renewable Systems Interconnection (RSI) study in 2007 to address the challenges to high penetrations of distributed renewable energy technologies. The RSI study consists of 14 additional reports.

  3. Aluminum phosphide

    Integrated Risk Information System (IRIS)

    Aluminum phosphide ; CASRN 20859 - 73 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  4. Misalignment corrections in optical interconnects

    NASA Astrophysics Data System (ADS)

    Song, Deqiang

    Optical interconnects are considered a promising solution for long distance and high bitrate data transmissions, outperforming electrical interconnects in terms of loss and dispersion. Due to the bandwidth and distance advantage of optical interconnects, longer links have been implemented with optics. Recent studies show that optical interconnects have clear advantages even at very short distances---intra system interconnects. The biggest challenge for such optical interconnects is the alignment tolerance. Many free space optical components require very precise assembly and installation, and therefore the overall cost could be increased. This thesis studied the misalignment tolerance and possible alignment correction solutions for optical interconnects at backplane or board level. First the alignment tolerance for free space couplers was simulated and the result indicated the most critical alignments occur between the VCSEL, waveguide and microlens arrays. An in-situ microlens array fabrication method was designed and experimentally demonstrated, with no observable misalignment with the waveguide array. At the receiver side, conical lens arrays were proposed to replace simple microlens arrays for a larger angular alignment tolerance. Multilayer simulation models in CodeV were built to optimized the refractive index and shape profiles of the conical lens arrays. Conical lenses fabricated with micro injection molding machine and fiber etching were characterized. Active component VCSOA was used to correct misalignment in optical connectors between the board and backplane. The alignment correction capability were characterized for both DC and AC (1GHz) optical signal. The speed and bandwidth of the VCSOA was measured and compared with a same structure VCSEL. Based on the optical inverter being studied in our lab, an all-optical flip-flop was demonstrated using a pair of VCSOAs. This memory cell with random access ability can store one bit optical signal with set or

  5. Improvement of polysilicon solar cells by aluminum diffusion

    SciTech Connect

    Sundaresan, R.; Burk, D.E.; Fossum, J.G.

    1982-09-01

    Experimental results are presented that imply potential improvements afforded by aluminum diffusion in both bulk and thin-film polysilicon solar cells. With regard to bulk cells, gettering of intragrain defects by high-temperature aluminum diffusion, i.e., Al-Si alloying, is suggested. With regard to thin-film cells, substantial grain-boundary passivation by low-temperature aluminum diffusion (from the front surface) is indicated, and evaluated using EBIC measurements interpreted via numerical analysis of the underlying carrier transport problem. The actual benefit of the grain-boundary passivation to the open-circuit voltage of a thin-film cell is discussed.

  6. Passive Accelerometer

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.; Baugher, Charles; Alexander, Iwan

    1992-01-01

    Motion of ball in liquid indicates acceleration. Passive accelerometer measures small accelerations along cylindrical axis. Principle of operation based on Stokes' law. Provides accurate measurements of small quasi-steady accelerations. Additional advantage, automatically integrates out unwanted higher-frequency components of acceleration.

  7. Manufacturing of planar ceramic interconnects

    SciTech Connect

    Armstrong, B.L.; Coffey, G.W.; Meinhardt, K.D.; Armstrong, T.R.

    1996-12-31

    The fabrication of ceramic interconnects for solid oxide fuel cells (SOFC) and separator plates for electrochemical separation devices has been a perennial challenge facing developers. Electrochemical vapor deposition (EVD), plasma spraying, pressing, tape casting and tape calendering are processes that are typically utilized to fabricate separator plates or interconnects for the various SOFC designs and electrochemical separation devices. For sake of brevity and the selection of a planar fuel cell or gas separation device design, pressing will be the only fabrication technique discussed here. This paper reports on the effect of the characteristics of two doped lanthanum manganite powders used in the initial studies as a planar porous separator for a fuel cell cathode and as a dense interconnect for an oxygen generator.

  8. Electric currents in networks of interconnected memristors

    NASA Astrophysics Data System (ADS)

    Nedaaee Oskoee, Ehsan; Sahimi, Muhammad

    2011-03-01

    Chua [IEEE Trans. Circuit TheoryIECTAF0018-932410.1109/TCT.1971.1083337 1, 507 (1971).] argued that, in addition to the standard resistors, capacitors, and inductors, there must be a fourth fundamental element in electrical circuits, which he called a memory resistor or memristor. Strukov [Nature (London)NATUAS0028-083610.1038/nature06932 453, 80 (2008)] showed how memristive behavior arises in some thin semiconducting films. Unlike other passive elements, however, a memristor with large sizes cannot be fabricated, because scale up of a memristor to dimensions of the order of microns causes loss of the memristive effect by decreasing the width of the doped region relative to the overall size of the memristor. A microscale memristor is, however, essential to most of the potential applications. One way of fabricating such a microscale memristor without losing the memristive effect is to make a network of very small interconnected memristors. We report the results of numerical simulations of electrical currents in such networks of interconnected memristors, as well as memristors and Ohmic conductors. The memristor networks exhibit a rich variety of interesting properties, including weakly and strongly memristive regimes, a possible first-order transition at the connectivity threshold, generation of second harmonics in the strongly memristive regime, and the universal dependence of the network’s strength on the frequency. Moreover, we show that the polarity of the memristors can play an important role in the overall properties of the memristor network, in particular its speed of switching, which may have a potentially important application to faster computers. None of these properties are exhibited by linear resistor networks, or even by nonlinear resistor networks without a memory effect.

  9. Electric currents in networks of interconnected memristors.

    PubMed

    Nedaaee Oskoee, Ehsan; Sahimi, Muhammad

    2011-03-01

    Chua [IEEE Trans. Circuit Theory 1, 507 (1971).] argued that, in addition to the standard resistors, capacitors, and inductors, there must be a fourth fundamental element in electrical circuits, which he called a memory resistor or memristor. Strukov et al. [Nature (London) 453, 80 (2008)] showed how memristive behavior arises in some thin semiconducting films. Unlike other passive elements, however, a memristor with large sizes cannot be fabricated, because scale up of a memristor to dimensions of the order of microns causes loss of the memristive effect by decreasing the width of the doped region relative to the overall size of the memristor. A microscale memristor is, however, essential to most of the potential applications. One way of fabricating such a microscale memristor without losing the memristive effect is to make a network of very small interconnected memristors. We report the results of numerical simulations of electrical currents in such networks of interconnected memristors, as well as memristors and Ohmic conductors. The memristor networks exhibit a rich variety of interesting properties, including weakly and strongly memristive regimes, a possible first-order transition at the connectivity threshold, generation of second harmonics in the strongly memristive regime, and the universal dependence of the network's strength on the frequency. Moreover, we show that the polarity of the memristors can play an important role in the overall properties of the memristor network, in particular its speed of switching, which may have a potentially important application to faster computers. None of these properties are exhibited by linear resistor networks, or even by nonlinear resistor networks without a memory effect. PMID:21517452

  10. 47 CFR 64.1401 - Expanded interconnection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission... interconnectors' fiber optic systems or microwave radio transmission facilities (where reasonably feasible) with... interconnection of fiber optic facilities, local exchange carriers shall provide: (1) An interconnection point...

  11. 47 CFR 64.1401 - Expanded interconnection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission... interconnectors' fiber optic systems or microwave radio transmission facilities (where reasonably feasible) with... interconnection of fiber optic facilities, local exchange carriers shall provide: (1) An interconnection point...

  12. 47 CFR 64.1401 - Expanded interconnection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission... interconnectors' fiber optic systems or microwave radio transmission facilities (where reasonably feasible) with... interconnection of fiber optic facilities, local exchange carriers shall provide: (1) An interconnection point...

  13. 47 CFR 64.1401 - Expanded interconnection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission... interconnectors' fiber optic systems or microwave radio transmission facilities (where reasonably feasible) with... interconnection of fiber optic facilities, local exchange carriers shall provide: (1) An interconnection point...

  14. 47 CFR 64.1401 - Expanded interconnection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission... interconnectors' fiber optic systems or microwave radio transmission facilities (where reasonably feasible) with... interconnection of fiber optic facilities, local exchange carriers shall provide: (1) An interconnection point...

  15. Immortality of Cu damascene interconnects

    NASA Astrophysics Data System (ADS)

    Hau-Riege, Stefan P.

    2002-04-01

    We have studied short-line effects in fully-integrated Cu damascene interconnects through electromigration experiments on lines of various lengths and embedded in different dielectric materials. We compare these results with results from analogous experiments on subtractively-etched Al-based interconnects. It is known that Al-based interconnects exhibit three different behaviors, depending on the magnitude of the product of current density, j, and line length, L: For small values of (jL), no void nucleation occurs, and the line is immortal. For intermediate values, voids nucleate, but the line does not fail because the current can flow through the higher-resistivity refractory-metal-based shunt layers. Here, the resistance of the line increases but eventually saturates, and the relative resistance increase is proportional to (jL/B), where B is the effective elastic modulus of the metallization system. For large values of (jL/B), voiding leads to an unacceptably high resistance increase, and the line is considered failed. By contrast, we observed only two regimes for Cu-based interconnects: Either the resistance of the line stays constant during the duration of the experiment, and the line is considered immortal, or the line fails due to an abrupt open-circuit failure. The absence of an intermediate regime in which the resistance saturates is due to the absence of a shunt layer that is able to support a large amount of current once voiding occurs. Since voids nucleate much more easily in Cu- than in Al-based interconnects, a small fraction of short Cu lines fails even at low current densities. It is therefore more appropriate to consider the probability of immortality in the case of Cu rather than assuming a sharp boundary between mortality and immortality. The probability of immortality decreases with increasing amount of material depleted from the cathode, which is proportional to (jL2/B) at steady state. By contrast, the immortality of Al-based interconnects is

  16. Formation of interconnections to microfluidic devices

    DOEpatents

    Matzke, Carolyn M.; Ashby, Carol I. H.; Griego, Leonardo

    2003-07-29

    A method is disclosed to form external interconnections to a microfluidic device for coupling of a fluid or light or both into a microchannel of the device. This method can be used to form optical or fluidic interconnections to microchannels previously formed on a substrate, or to form both the interconnections and microchannels during the same process steps. The optical and fluidic interconnections are formed parallel to the plane of the substrate, and are fluid tight.

  17. 18 CFR 292.306 - Interconnection costs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Interconnection costs... § 292.306 Interconnection costs. (a) Obligation to pay. Each qualifying facility shall be obligated to pay any interconnection costs which the State regulatory authority (with respect to any...

  18. 47 CFR 90.477 - Interconnected systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Interconnected systems. 90.477 Section 90.477 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Interconnected Systems § 90.477 Interconnected systems. (a) Applicants for new land stations to...

  19. 47 CFR 90.477 - Interconnected systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Interconnected systems. 90.477 Section 90.477 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Interconnected Systems § 90.477 Interconnected systems. (a) Applicants for new land stations to...

  20. 47 CFR 90.477 - Interconnected systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Interconnected systems. 90.477 Section 90.477... MOBILE RADIO SERVICES Transmitter Control Interconnected Systems § 90.477 Interconnected systems. (a... switched telephone network only after modifying their license. See § 1.929 of this chapter. In all cases...

  1. 47 CFR 90.477 - Interconnected systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Interconnected systems. 90.477 Section 90.477... MOBILE RADIO SERVICES Transmitter Control Interconnected Systems § 90.477 Interconnected systems. (a... switched telephone network only after modifying their license. See § 1.929 of this chapter. In all cases...

  2. 18 CFR 292.306 - Interconnection costs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Interconnection costs... § 292.306 Interconnection costs. (a) Obligation to pay. Each qualifying facility shall be obligated to pay any interconnection costs which the State regulatory authority (with respect to any...

  3. 18 CFR 292.306 - Interconnection costs.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Interconnection costs... § 292.306 Interconnection costs. (a) Obligation to pay. Each qualifying facility shall be obligated to pay any interconnection costs which the State regulatory authority (with respect to any...

  4. 47 CFR 51.305 - Interconnection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Interconnection. 51.305 Section 51.305 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Additional Obligations of Incumbent Local Exchange Carriers § 51.305 Interconnection. (a) An incumbent LEC shall provide, for the...

  5. 47 CFR 51.305 - Interconnection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Interconnection. 51.305 Section 51.305 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Additional Obligations of Incumbent Local Exchange Carriers § 51.305 Interconnection. (a) An incumbent LEC shall provide, for the...

  6. 47 CFR 51.305 - Interconnection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Interconnection. 51.305 Section 51.305 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Additional Obligations of Incumbent Local Exchange Carriers § 51.305 Interconnection. (a) An incumbent LEC shall provide, for the...

  7. 47 CFR 51.305 - Interconnection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 3 2012-10-01 2012-10-01 false Interconnection. 51.305 Section 51.305 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Additional Obligations of Incumbent Local Exchange Carriers § 51.305 Interconnection. (a) An incumbent LEC shall provide, for the...

  8. 14 CFR 29.674 - Interconnected controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Interconnected controls. 29.674 Section 29... Interconnected controls. Each primary flight control system must provide for safe flight and landing and operate independently after a malfunction, failure, or jam of any auxiliary interconnected control....

  9. 14 CFR 27.674 - Interconnected controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Interconnected controls. 27.674 Section 27... Interconnected controls. Each primary flight control system must provide for safe flight and landing and operate independently after a malfunction, failure, or jam of any auxiliary interconnected control....

  10. Flexible interconnects for fuel cell stacks

    DOEpatents

    Lenz, David J.; Chung, Brandon W.; Pham, Ai Quoc

    2004-11-09

    An interconnect that facilitates electrical connection and mechanical support with minimal mechanical stress for fuel cell stacks. The interconnects are flexible and provide mechanically robust fuel cell stacks with higher stack performance at lower cost. The flexible interconnects replace the prior rigid rib interconnects with flexible "fingers" or contact pads which will accommodate the imperfect flatness of the ceramic fuel cells. Also, the mechanical stress of stacked fuel cells will be smaller due to the flexibility of the fingers. The interconnects can be one-sided or double-sided.

  11. Interconnects for nanoscale MOSFET technology: a review

    NASA Astrophysics Data System (ADS)

    Chaudhry, Amit

    2013-06-01

    In this paper, a review of Cu/low-k, carbon nanotube (CNT), graphene nanoribbon (GNR) and optical based interconnect technologies has been done. Interconnect models, challenges and solutions have also been discussed. Of all the four technologies, CNT interconnects satisfy most of the challenges and they are most suited for nanometer scale technologies, despite some minor drawbacks. It is concluded that beyond 32 nm technology, a paradigm shift in the interconnect material is required as Cu/low-k interconnects are approaching fundamental limits.

  12. Design for aluminum recycling

    SciTech Connect

    Not Available

    1993-10-01

    This article describes the increasing use of aluminum in automobiles and the need to recycle to benefit further growth of aluminum applications by assuring an economical, high-quality source of metal. The article emphasizes that coordination of material specifications among designers can raise aluminum scrap value and facilitate recycling. Applications of aluminum in automobile construction are discussed.

  13. Passivity and Dissipativity as Design and Analysis Tools for Networked Control Systems

    ERIC Educational Resources Information Center

    Yu, Han

    2012-01-01

    In this dissertation, several control problems are studied that arise when passive or dissipative systems are interconnected and controlled over a communication network. Since communication networks can impact the systems' stability and performance, there is a need to extend the results on control of passive or dissipative systems to networked…

  14. Double interconnection fuel cell array

    DOEpatents

    Draper, Robert; Zymboly, Gregory E.

    1993-01-01

    A fuel cell array (10) is made, containing number of tubular, elongated fuel cells (12) which are placed next to each other in rows (A, B, C, D), where each cell contains inner electrodes (14) and outer electrodes (18 and 18'), with solid electrolyte (16 and 16') between the electrodes, where the electrolyte and outer electrode are discontinuous, having two portions, and providing at least two opposed discontinuities which contain at least two oppositely opposed interconnections (20 and 20') contacting the inner electrode (14), each cell (12) having only three metallic felt electrical connectors (22) which contact surrounding cells, where each row is electrically connected to the other.

  15. IETI - Isogeometric Tearing and Interconnecting.

    PubMed

    Kleiss, Stefan K; Pechstein, Clemens; Jüttler, Bert; Tomar, Satyendra

    2012-11-01

    Finite Element Tearing and Interconnecting (FETI) methods are a powerful approach to designing solvers for large-scale problems in computational mechanics. The numerical simulation problem is subdivided into a number of independent sub-problems, which are then coupled in appropriate ways. NURBS- (Non-Uniform Rational B-spline) based isogeometric analysis (IGA) applied to complex geometries requires to represent the computational domain as a collection of several NURBS geometries. Since there is a natural decomposition of the computational domain into several subdomains, NURBS-based IGA is particularly well suited for using FETI methods. This paper proposes the new IsogEometric Tearing and Interconnecting (IETI) method, which combines the advanced solver design of FETI with the exact geometry representation of IGA. We describe the IETI framework for two classes of simple model problems (Poisson and linearized elasticity) and discuss the coupling of the subdomains along interfaces (both for matching interfaces and for interfaces with T-joints, i.e. hanging nodes). Special attention is paid to the construction of a suitable preconditioner for the iterative linear solver used for the interface problem. We report several computational experiments to demonstrate the performance of the proposed IETI method. PMID:24511167

  16. Interconnect fatigue design for terrestrial photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1982-01-01

    The results of comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable (1) the prediction of cumulative interconnect failures during the design life of an array field, and (2) the unambiguous--ie., quantitative--interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field.

  17. Interconnect fatigue design for terrestrial photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1982-03-01

    The results of comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable (1) the prediction of cumulative interconnect failures during the design life of an array field, and (2) the unambiguous--ie., quantitative--interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field.

  18. 47 CFR 90.477 - Interconnected systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Beach, California 34°03′15.0″ 118°14′31.3″ Chicago, Illinois-Northwestern Indiana 41°52′28.1″ 87°38′22.2... 47 Telecommunication 5 2012-10-01 2012-10-01 false Interconnected systems. 90.477 Section 90.477... MOBILE RADIO SERVICES Transmitter Control Interconnected Systems § 90.477 Interconnected systems....

  19. Cascade solar cell having conductive interconnects

    DOEpatents

    Borden, Peter G.; Saxena, Ram R.

    1982-10-26

    Direct ohmic contact between the cells in an epitaxially grown cascade solar cell is obtained by means of conductive interconnects formed through grooves etched intermittently in the upper cell. The base of the upper cell is directly connected by the conductive interconnects to the emitter of the bottom cell. The conductive interconnects preferably terminate on a ledge formed in the base of the upper cell.

  20. Gold-based electrical interconnections for microelectronic devices

    DOEpatents

    Peterson, Kenneth A.; Garrett, Stephen E.; Reber, Cathleen A.; Watson, Robert D.

    2002-01-01

    A method of making an electrical interconnection from a microelectronic device to a package, comprising ball or wedge compression bonding a gold-based conductor directly to a silicon surface, such as a polysilicon bonding pad in a MEMS or IMEMS device, without using layers of aluminum or titanium disposed in-between the conductor and the silicon surface. After compression bonding, optional heating of the bond above 363 C. allows formation of a liquid gold-silicon eutectic phase containing approximately 3% (by weight) silicon, which significantly improves the bond strength by reforming and enhancing the initial compression bond. The same process can be used for improving the bond strength of Au--Ge bonds by forming a liquid Au-12Ge eutectic phase.

  1. Development and characterization of multilevel metal interconnection etch process

    NASA Astrophysics Data System (ADS)

    Dang, Kim

    1997-08-01

    A more robust chlorine chemistry based reactive ion etch (RIE) process was developed, characterized and optimized to anisotropically etch the interconnecting metal layers for use in the fabrication of CMOS and BiCMOS IC devices, using the Lam 4600 single wafer etcher. The titanium nitride and titanium silicide buried layer, used in the metal 1 structure, present unique constraints on etch selectivity to the underlying film. The process must clear metal stringers with minimal lateral etching of the aluminum during the tiN/Ti etch and overetch steps. The new optimized process meets all requirements imposed by advanced technologies, such as vertical metal sidewalls, wide process latitude, tight CD control, minimal of TEOS oxide underlayer, less sensitivity to photoresist pattern, excellent reliability and reproducibility, and lower level of polymer (reaction by- product) build-up in reactor chamber which could lead to metal corrosion and cluster defects.

  2. Visualizing interconnections among climate risks

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Yokohata, T.; Nishina, K.; Takahashi, K.; Emori, S.; Kiguchi, M.; Iseri, Y.; Honda, Y.; Okada, M.; Masaki, Y.; Yamamoto, A.; Shigemitsu, M.; Yoshimori, M.; Sueyoshi, T.; Hanasaki, N.; Ito, A.; Sakurai, G.; Iizumi, T.; Nishimori, M.; Lim, W. H.; Miyazaki, C.; Kanae, S.; Oki, T.

    2015-12-01

    It is now widely recognized that climate change is affecting various sectors of the world. Climate change impact on one sector may spread out to other sectors including those seemingly remote, which we call "interconnections of climate risks". While a number of climate risks have been identified in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5), there has been no attempt to explore their interconnections comprehensively. Here we present a first and most exhaustive visualization of climate risks drawn based on a systematic literature survey. Our risk network diagrams depict that changes in the climate system impact natural capitals (terrestrial water, crop, and agricultural land) as well as social infrastructures, influencing the socio-economic system and ultimately our access to food, water, and energy. Our findings suggest the importance of incorporating climate risk interconnections into impact and vulnerability assessments and call into question the widely used damage function approaches, which address a limited number of climate change impacts in isolation. Furthermore, the diagram is useful to educate decision makers, stakeholders, and general public about cascading risks that can be triggered by the climate change. Socio-economic activities today are becoming increasingly more inter-dependent because of the rapid technological progress, urbanization, and the globalization among others. Equally complex is the ecosystem that is susceptible to climate change, which comprises interwoven processes affecting one another. In the context of climate change, a number of climate risks have been identified and classified according to regions and sectors. These reports, however, did not fully address the inter-relations among risks because of the complexity inherent in this issue. Climate risks may ripple through sectors in the present inter-dependent world, posing a challenge ahead of us to maintain the resilience of the system. It is

  3. Passive solar technology

    SciTech Connect

    Watson, D

    1981-04-01

    The present status of passive solar technology is summarized, including passive solar heating, cooling and daylighting. The key roles of the passive solar system designer and of innovation in the building industry are described. After definitions of passive design and a summary of passive design principles are given, performance and costs of passive solar technology are discussed. Passive energy design concepts or methods are then considered in the context of the overall process by which building decisions are made to achieve the integration of new techniques into conventional design. (LEW).

  4. Breathing synchronization in interconnected networks

    PubMed Central

    Louzada, V. H. P.; Araújo, N. A. M.; Andrade, J. S.; Herrmann, H. J.

    2013-01-01

    Global synchronization in a complex network of oscillators emerges from the interplay between its topology and the dynamics of the pairwise interactions among its numerous components. When oscillators are spatially separated, however, a time delay appears in the interaction which might obstruct synchronization. Here we study the synchronization properties of interconnected networks of oscillators with a time delay between networks and analyze the dynamics as a function of the couplings and communication lag. We discover a new breathing synchronization regime, where two groups appear in each network synchronized at different frequencies. Each group has a counterpart in the opposite network, one group is in phase and the other in anti-phase with their counterpart. For strong couplings, instead, networks are internally synchronized but a phase shift between them might occur. The implications of our findings on several socio-technical and biological systems are discussed. PMID:24256765

  5. Comparison of large guided-wave interconnection networks for optical computation systems

    NASA Astrophysics Data System (ADS)

    Schneider, Eric G.; Michalson, William R.

    1993-07-01

    Seven common interconnection architectures are evaluated for use as guided-wave interconnection networks. Comparisons are based on characteristics such as the number of switching elements, number of stages or path length, number of layers, number of waveguide crossings, connectivity and routing algorithms. Investigation of the active splitter/active combiner, passive splitter/active combiner, crossbar, n-stage, buddy type multistage interconnection network (MIN), duobanyan and Benes architectures reveals a trade space which is both complicated and previously not well explored. Even among the topologically equivalent MINs such as the baseline, reverse baseline, regular SW banyan with S equals F equals 2, indirect binary n-cube, modified data manipulator, omega or flip networks, the number of waveguide crossings varies while other properties remain constant. Analysis of this larger set of factors reveals more complex trade offs, and presents these architectures in a new perspective.

  6. Long-term performance of aluminum anodes in seawater and marine soil

    SciTech Connect

    Baptista, W.; Costa, J.C.M. da )

    1999-01-01

    Four manufacturers' aluminum sacrificial anodes protecting bare steel specimens were exposed for 6 months in seawater and two types of marine soil to determine their relative electrochemical efficiencies. The operating potentials and currents, and the electrochemical efficiencies of each anode were measured. A cathodic protection system with aluminum and zinc anodes to protect the same cathode also was tested, in a protection system with aluminum and zinc, the zinc anodes became passivated.

  7. Aluminum and Young Artists.

    ERIC Educational Resources Information Center

    Anderson, Thomas

    1980-01-01

    The author suggests a variety of ways in which aluminum and aluminum foil can be used in elementary and junior high art classes: relief drawing and rubbing; printing; repousse; sculpture; mobiles; foil sculpture; and three dimensional design. Sources of aluminum supplies are suggested. (SJL)

  8. Flexible Chip Scale Package and Interconnect for Implantable MEMS Movable Microelectrodes for the Brain

    PubMed Central

    Jackson, Nathan; Muthuswamy, Jit

    2009-01-01

    We report here a novel approach called MEMS microflex interconnect (MMFI) technology for packaging a new generation of Bio-MEMS devices that involve movable microelectrodes implanted in brain tissue. MMFI addresses the need for (i) operating space for movable parts and (ii) flexible interconnects for mechanical isolation. We fabricated a thin polyimide substrate with embedded bond-pads, vias, and conducting traces for the interconnect with a backside dry etch, so that the flexible substrate can act as a thin-film cap for the MEMS package. A double gold stud bump rivet bonding mechanism was used to form electrical connections to the chip and also to provide a spacing of approximately 15–20 µm for the movable parts. The MMFI approach achieved a chip scale package (CSP) that is lightweight, biocompatible, having flexible interconnects, without an underfill. Reliability tests demonstrated minimal increases of 0.35 mΩ, 0.23 mΩ and 0.15 mΩ in mean contact resistances under high humidity, thermal cycling, and thermal shock conditions respectively. High temperature tests resulted in an increase in resistance of > 90 mΩ when aluminum bond pads were used, but an increase of ~ 4.2 mΩ with gold bond pads. The mean-time-to-failure (MTTF) was estimated to be at least one year under physiological conditions. We conclude that MMFI technology is a feasible and reliable approach for packaging and interconnecting Bio-MEMS devices. PMID:20160981

  9. Selective broadcast interconnection - A novel scheme for fiber-optic local-area networks

    NASA Technical Reports Server (NTRS)

    Marhic, M. E.; Birk, Y.; Tobagi, F. A.

    1985-01-01

    A passive, unswitched scheme is introduced for directly interconnecting N stations, each of which has C transmitters and receivers. Implementations using fiber optics with spatial multiplexing and optionally wavelength multiplexing are discussed. This scheme utilizes the same resources as standard topologies with C parallel buses but outperforms them in two respects: (1) the aggregate throughput is proportional to C squared rather than to C; and (2) the power of each transmitter need reach only N/C, instead of N, receivers.

  10. Resistive switching of aluminum oxide for flexible memory

    SciTech Connect

    Kim, Sungho; Choi, Yang-Kyu

    2008-06-02

    The unipolar resistive switching of the Al/Al{sub x}O{sub y}/Al structure is investigated for nonvolatile memory. Following the production of aluminum oxide film (Al{sub x}O{sub y}) by plasma oxidation, a high ratio of on-state and off-state currents ({>=}10{sup 4}) is achieved, and characteristics of switching endurance are reported. Due to the good ductility of aluminum, the performance of resistive switching on a flexible substrate is not degraded by severe substrate bending. The low process temperature of the plasma oxidation process is advantageous for the fabrication of flexible electronic devices and modern interconnection processes.

  11. 47 CFR 101.519 - Interconnection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SERVICES 24 GHz Service and Digital Electronic Message Service § 101.519 Interconnection. (a) All DEMS licensees must make available to the public all information necessary to allow the manufacture of user... the public all information necessary to allow interconnection of DEMS networks....

  12. 47 CFR 101.519 - Interconnection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SERVICES 24 GHz Service and Digital Electronic Message Service § 101.519 Interconnection. (a) All DEMS licensees must make available to the public all information necessary to allow the manufacture of user... the public all information necessary to allow interconnection of DEMS networks....

  13. 14 CFR 29.674 - Interconnected controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Interconnected controls. 29.674 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.674 Interconnected controls. Each primary flight control system must provide for safe flight and landing and...

  14. 14 CFR 27.674 - Interconnected controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Interconnected controls. 27.674 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.674 Interconnected controls. Each primary flight control system must provide for safe flight and landing and...

  15. 14 CFR 23.701 - Flap interconnection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flap interconnection. 23.701 Section 23.701... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.701 Flap interconnection. (a) The main wing flaps and related movable surfaces as a...

  16. 14 CFR 23.701 - Flap interconnection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flap interconnection. 23.701 Section 23.701... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.701 Flap interconnection. (a) The main wing flaps and related movable surfaces as a...

  17. 14 CFR 23.701 - Flap interconnection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flap interconnection. 23.701 Section 23.701... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.701 Flap interconnection. (a) The main wing flaps and related movable surfaces as a...

  18. 47 CFR 69.124 - Interconnection charge.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Interconnection charge. 69.124 Section 69.124 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) ACCESS CHARGES Computation of Charges § 69.124 Interconnection charge. (a) Until December 31, 2001, local exchange...

  19. 47 CFR 69.124 - Interconnection charge.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Interconnection charge. 69.124 Section 69.124 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) ACCESS CHARGES Computation of Charges § 69.124 Interconnection charge. (a) Until December 31, 2001, local exchange...

  20. Interconnect fatigue design for terrestrial photovoltaic modules

    SciTech Connect

    Mon, G. R.; Moore, D. M.; Ross, Jr., R. G.

    1982-03-01

    Fatigue of solar cell electrical interconnects due to thermal cycling has historically been a major failure mechanism in photovoltaic arrays; the results of a comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data gathered in this study indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable: (1) the prediction of cumulative interconnect failures during the design life of an array field; and (2) the unambiguous - i.e., quantitative - interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field. This procedure yields not only the minimum break-even cost of delivered energy, but also the required degree of interconnect redundancy and an estimate of array power degradation during the design life of the array field. The usefulness of the design algorithms is demonstrated with realistic examples of design optimization, prediction, and service qualification testing.

  1. Updating Technical Screens for PV Interconnection: Preprint

    SciTech Connect

    Coddington, M.; Ellis, A.; Lynn, K.; Razon, A.; Key, T.; Kroposki, B.; Mather, B.; Hill, R.; Nicole, K.; Smith, J.

    2012-08-01

    Solar photovoltaics (PV) is the dominant type of distributed generation (DG) technology interconnected to electric distribution systems in the United States, and deployment of PV systems continues to increase rapidly. Considering the rapid growth and widespread deployment of PV systems in United States electric distribution grids, it is important that interconnection procedures be as streamlined as possible to avoid unnecessary interconnection studies, costs, and delays. Because many PV interconnection applications involve high penetration scenarios, the process needs to allow for a sufficiently rigorous technical evaluation to identify and address possible system impacts. Existing interconnection procedures are designed to balance the need for efficiency and technical rigor for all DG. However, there is an implicit expectation that those procedures will be updated over time in order to remain relevant with respect to evolving standards, technology, and practical experience. Modifications to interconnection screens and procedures must focus on maintaining or improving safety and reliability, as well as accurately allocating costs and improving expediency of the interconnection process. This paper evaluates the origins and usefulness of the capacity penetration screen, offers potential short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen.

  2. 47 CFR 101.519 - Interconnection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Interconnection. 101.519 Section 101.519 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.519 Interconnection. (a) All...

  3. Durability of Metallic Interconnects and Protective Coatings

    SciTech Connect

    Yang, Zhenguo; Stevenson, Jeffry W.

    2009-12-15

    To build up a useful voltage, a number of solid oxide fuel cells (SOFCs) are electrically connected into series in a stack via interconnects, which are placed between adjacent cells. In addition to functioning as a bi-polar electrical connector, the interconnect also acts as a separator plate that separates the fuel at the anode side of one cell from the air at the cathode side on an adjacent cell. During SOFC operation at the high temperatures, the interconnects are thus simultaneously exposed to the oxidizing air at one side and a reducing fuel that can be either hydrogen or hydrocarbon at the other. Besides, they are in contact with adjacent components, such as electrodes or electrical contacts, seals, etc. With steady reduction in SOFC operating temperatures into the low or intermediate range 600-850oC, oxidation resistant alloys are often used to construct interconnects. However, the metallic interconnects may degrade via interactions at their interfaces with surrounding environments or adjacent components, potentially affecting the stability and performance of interconnects and the SOFC stacks. Thus protection layers are applied to metallic interconnects that also intend to mitigate or prevent chromium migration into cells and the cell poisoning. This chapter provides a comprehensive review of materials for metallic interconnects, their degradation and coating protection.

  4. Fundamental studies of passivity and passivity breakdown

    SciTech Connect

    Macdonald, D.D.; Urquidi-Macdonald, M.; Song, H.; Biaggio-Rocha, S.; Searson, P.

    1991-11-01

    This report summarizes the findings of our fundamental research program on passivity and passivity breakdown. During the past three and one half years in this program (including the three year incrementally-funded grant prior to the present grant), we developed and experimentally tested various physical models for the growth and breakdown of passive films on metal surfaces. These models belong to a general class termed point defects models'' (PDMs), in which the growth and breakdown of passive films are described in terms of the movement of anion and cation vacancies.

  5. African electricity infrastructure, interconnections and exchanges

    SciTech Connect

    Hammons, T.J.; Taher, F.; Gulstone, A.B.; Blyden, B.K.; Johnston, R.; Isekemanga, E.; Paluku, K.; Calitz, A.C.; Simanga, N.N.

    1997-01-01

    A 1996 IEEE PES Summer Meeting panel session focused on African Electricity Infrastructure, Interconnections, and Electricity Exchanges. The session was sponsored by the PES Energy Development and Power Generation Committee and organized/moderated by T.J. Hammons, chair of the International Practices Subcommittee. Panelists discussed energy resources, feasibility studies to interconnect power systems, the present state of the electric power sector, future expansion of African power systems, interconnections and power exchanges, and the impact of the private sector on electricity supply. The presentations were as follows: Prospects of the Evolution of a Unified Interconnection Power System in Africa, Fouad Taher; The World Bank`s Involvement with African Electricity Infrastructure, Alfred Gulstone; Towards the implementation of an Integrated African Grid, Bai K. Blyden, Raymond Johnston; Grand Inga Interconnection Projects, Elese Isekemanga, K. Paluku; The Innovative Southern African Kilowatt Hour, Andries C. Calitz; Report on Burundi, Rwanda, and Zaire, Ngove-Ngulu Simanga.

  6. Modeling interconnect corners under double patterning misalignment

    NASA Astrophysics Data System (ADS)

    Hyun, Daijoon; Shin, Youngsoo

    2016-03-01

    Publisher's Note: This paper, originally published on March 16th, was replaced with a corrected/revised version on March 28th. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. Interconnect corners should accurately reflect the effect of misalingment in LELE double patterning process. Misalignment is usually considered separately from interconnect structure variations; this incurs too much pessimism and fails to reflect a large increase in total capacitance for asymmetric interconnect structure. We model interconnect corners by taking account of misalignment in conjunction with interconnect structure variations; we also characterize misalignment effect more accurately by handling metal pitch at both sides of a target metal independently. Identifying metal space at both sides of a target metal.

  7. Aluminum reference electrode

    DOEpatents

    Sadoway, Donald R.

    1988-01-01

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  8. Aluminum reference electrode

    DOEpatents

    Sadoway, D.R.

    1988-08-16

    A stable reference electrode is described for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na[sub 3]AlF[sub 6], wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution. 1 fig.

  9. The high speed interconnect system architecture and operation

    NASA Astrophysics Data System (ADS)

    Anderson, Steven C.

    The design and operation of a fiber-optic high-speed interconnect system (HSIS) being developed to meet the requirements of future avionics and flight-control hardware with distributed-system architectures are discussed. The HSIS is intended for 100-Mb/s operation of a local-area network with up to 256 stations. It comprises a bus transmission system (passive star couplers and linear media linked by active elements) and network interface units (NIUs). Each NIU is designed to perform the physical, data link, network, and transport functions defined by the ISO OSI Basic Reference Model (1982 and 1983) and incorporates a fiber-optic transceiver, a high-speed protocol based on the SAE AE-9B linear token-passing data bus (1986), and a specialized application interface unit. The operating modes and capabilities of HSIS are described in detail and illustrated with diagrams.

  10. Design of scalable optical interconnection network using wavelength division multiplexing

    NASA Astrophysics Data System (ADS)

    Jing, Wencai; Tian, Jindong; Zhou, Ge; Zhang, Yimo; Liu, Wei; Zhang, Xun

    2000-04-01

    This paper describes the two-layer scalable wavelength routing optical interconnection network being developed in Tianjin University. The top layer of the network is multi- wavelength bi-directional optical bus, which has high bandwidth and low latency. The optical bus is made up of passive components, no wavelength-tunable devices have been sued. As a result, the optical bus has low communication latency that is mainly decided by the optical fiber length. The sub-layer of the network is single-wavelength ring, which has low communication latency and high-scalability. In each ring, a wavelength routing node is used for data transmission between the ring and the optical bus. Each node computer is connected to the ring using an optical network interface card, which is based on peripheral component interconnect bus. The communication latency inside the ring is decreased using synchronous pipelining transmission technique. The scale of the ring is mainly limited by the efficient bandwidth required by each node computer. The number of rings is mainly decided by the optical power of the laser diodes and the sensitivity of the optical detectors. If Erbium doped fiber amplifier is used in the optical bus, the scale of the network can be further developed.

  11. Fundamental studies on passivity and passivity breakdown

    SciTech Connect

    Macdonald, D.D.; Urquidi-Macdonald, M.

    1993-06-01

    Using photoelectrochemical impedance and admittance spectroscopies, a fundamental and quantitative understanding of the mechanisms for the growth and breakdown of passive films on metal and alloy surfaces in contact with aqueous environments is being developed. A point defect model has been extended to explain the breakdown of passive films, leading to pitting and crack growth and thus development of damage due to localized corrosion.

  12. Surface passivation of an implantable semiconductor multielectrode array

    NASA Astrophysics Data System (ADS)

    Ernst, Steven P.

    1986-12-01

    An effective passivation material was needed for the protection of a semiconductor multielectrode array during long-term bio-implantations. The following properties were required: a large electrical resistivity, a small relative dielectric constant, good adhesion to silicon dioxide and aluminum, impermeability to water and ionic contaminants, chemical stability in water, and a thermal coefficient of expansion compatible with those of aluminum and silicon dioxide. Three materials were examined: Du Pont PI-2555, Accuglass 407, and Diffusion Technology U-1A. The first is a polyimide, and the latter two are polysiloxanes. The latter were found to be permeable to ionic contaminants and eliminated. The polyimide possesses all of the desired properties. Several multielectrode arrays were passivated with polyimide using conventional photolithography and wet etching techniques. These arrays were tested in vitro in a saline solution for thirty days. The aluminum metallization on the multielectrode array was heavily corroded by the saline solution, resulting in changes in the integrated circuits's electrical parameters.

  13. Aluminum: Recycling of Aluminum Dross/Saltcake

    SciTech Connect

    Blazek, S.

    1999-01-29

    As this NICE3 publication details, the objective of this project is to commercialize the process technology to eliminate all landfill waste associated with black dross and saltcake generated from aluminum recycling in the United States.

  14. Aluminum powder metallurgy processing

    NASA Astrophysics Data System (ADS)

    Flumerfelt, Joel Fredrick

    In recent years, the aluminum powder industry has expanded into non-aerospace applications. However, the alumina and aluminum hydroxide in the surface oxide film on aluminum powder require high cost powder processing routes. A driving force for this research is to broaden the knowledge base about aluminum powder metallurgy to provide ideas for fabricating low cost aluminum powder components. The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization commercial inert gas atomization and gas atomization reaction synthesis (GARS). The commercial atomization methods are bench marks of current aluminum powder technology. The GARS process is a laboratory scale inert gas atomization facility. A benefit of using pure aluminum powders is an unambiguous interpretation of the results without considering the effects of alloy elements. A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a

  15. Tropospheric Passive Remote Sensing

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr. (Editor)

    1982-01-01

    The long term role of airborne/spaceborne passive remote sensing systems for tropospheric air quality research and the identification of technology advances required to improve the performance of passive remote sensing systems were discussed.

  16. Passive storage technologies

    NASA Astrophysics Data System (ADS)

    Kittel, P.

    1984-04-01

    Advances in storage technology and how passive techniques could be applied to the storage of propellants at the space station are described. The devices considered are passive orbital disconnect struts, cooled shield optimization, liftweight shields and catalytic converters.

  17. Passive storage technologies

    NASA Technical Reports Server (NTRS)

    Kittel, P.

    1984-01-01

    Advances in storage technology and how passive techniques could be applied to the storage of propellants at the space station are described. The devices considered are passive orbital disconnect struts, cooled shield optimization, liftweight shields and catalytic converters.

  18. Crosstalk analysis of carbon nanotube bundle interconnects.

    PubMed

    Zhang, Kailiang; Tian, Bo; Zhu, Xiaosong; Wang, Fang; Wei, Jun

    2012-01-01

    Carbon nanotube (CNT) has been considered as an ideal interconnect material for replacing copper for future nanoscale IC technology due to its outstanding current carrying capability, thermal conductivity, and mechanical robustness. In this paper, crosstalk problems for single-walled carbon nanotube (SWCNT) bundle interconnects are investigated; the interconnect parameters for SWCNT bundle are calculated first, and then the equivalent circuit has been developed to perform the crosstalk analysis. Based on the simulation results using SPICE simulator, the voltage of the crosstalk-induced glitch can be reduced by decreasing the line length, increasing the spacing between adjacent lines, or increasing the diameter of SWCNT. PMID:22340628

  19. Gigabit optical interconnects for LAN applications

    NASA Astrophysics Data System (ADS)

    Boncek, Raymond K.; Krol, Mark F.; Johns, Steven T.; Stacy, John L.; Hayduk, Michael J.

    1994-06-01

    We report on the results of experiments performed in areas of technology required to develop gigabit optical interconnects for communication at 1.3 micrometers wavelength. The goal of this work was to develop interconnects not only with very high bandwidth, but with serve to multiple channels having multiple access and simple processing algorithms so as not to rely on high bandwidth electronics, as well. Optical correlation switches (i.e. optical `AND' gates) for use in time-division optical interconnects achieve these goals.

  20. Synchrotron X-Ray Microdiffraction Studies of Electromigration in Interconnect lines at the Advanced Light Source

    SciTech Connect

    Tamura, Nobumichi; Chen, Kai; Kunz, Martin

    2009-05-01

    Synchrotron polychromatic X-ray microdiffraction is a particularly suitable technique to study in situ the effect of electromigration in metal interconnects as add spatial resolution to grain orientation and strain sensitivity. This technique has been extensively used at the Advanced Light Source to monitor changes in aluminum and copper interconnect test structures while high-density current is passed into them during accelerated tests at elevated temperature. One of the principal findings is the observation of electromigration-induced plasticity in the metal lines that appear during the very early stages of electromigration. In some of the lines, high density of geometrically necessary dislocation are formed leading to additional diffusion paths causing an enhancement of electromigration effect at test temperature. This paper presents an overview of the principal results obtained from X-ray microdiffraction studies of electromigration effects on aluminum and copper interconnects at the ALS throughout continuous efforts that spanned over a decade (1998-2008) from approximately 40 weeks of combined beamtime.

  1. Interlanguage Passive Construction

    ERIC Educational Resources Information Center

    Simargool, Nirada

    2008-01-01

    Because the appearance of the passive construction varies cross linguistically, differences exist in the interlanguage (IL) passives attempted by learners of English. One such difference is the widely studied IL pseudo passive, as in "*new cars must keep inside" produced by Chinese speakers. The belief that this is a reflection of L1 language…

  2. Method for fabricating an interconnected array of semiconductor devices

    DOEpatents

    Grimmer, Derrick P.; Paulson, Kenneth R.; Gilbert, James R.

    1989-10-10

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  3. Optical Backplane Interconnect Technology (OBIT)

    NASA Technical Reports Server (NTRS)

    Hammer, J. M.

    1988-01-01

    We describe and analyze a novel approach to implementing an Optical Backplane Interconnect Technology (OBIT) that is capable of optically connecting any row of a 32x32 backplane array to any row of a second 32x32 array. Each backplane array is formed monolithically on a wafer. The technology is based on the use of Grating Surface Emitting (GSE) waveguides formed on a wafer containing quantum-well and separate confinement waveguide layers. These layers are used for transverse guiding, gain, modulation, detection, and for the formation of wavelength tunable distributed-Bragg reflector lasers. The required surface structures are formed photolithographically. The GSE waveguides act as efficient antennae that radiate light at angles selected by tuning the wavelength of the lasers. The same waveguides may be used as the receiving antennae when the array is used in the receiving mode. Thus, wavelength tuning is used to direct each row of the transmitting array to the desired row of the receiving array. In summary: The optical backplane array will have the following characteristics: Any row of a 32x32 GSE array may be optically connected to any row of a second 32x32 array. Only one switch decision is required to switch 32 parallel connections to any one of 32 positions. Each monolithic array can be used as both transmitter and receiver by switching the bias on the quantum-well switch-detectors. Separate transmitting and receiving structures could be provided for duplex operation. For a bit error rate of 10 sup 9 at 100-MHz data rate, a required laser power of 12 mW is calculated based on an estimated total optical loss of 40 dB.

  4. Aspects of aluminum toxicity

    SciTech Connect

    Hewitt, C.D.; Savory, J.; Wills, M.R. )

    1990-06-01

    Aluminum is the most abundant metal in the earth's crust. The widespread occurrence of aluminum, both in the environment and in foodstuffs, makes it virtually impossible for man to avoid exposure to this metal ion. Attention was first drawn to the potential role of aluminum as a toxic metal over 50 years ago, but was dismissed as a toxic agent as recently as 15 years ago. The accumulation of aluminum, in some patients with chronic renal failure, is associated with the development of toxic phenomena; dialysis encephalopathy, osteomalacic dialysis osteodystrophy, and an anemia. Aluminum accumulation also occurs in patients who are not on dialysis, predominantly infants and children with immature or impaired renal function. Aluminum has also been implicated as a toxic agent in the etiology of Alzheimer's disease, Guamiam amyotrophic lateral sclerosis, and parkinsonism-dementia. 119 references.

  5. BONDING ALUMINUM METALS

    DOEpatents

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  6. Aluminum powder metallurgy processing

    SciTech Connect

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  7. Implementation of optical interconnections for VLSI

    NASA Technical Reports Server (NTRS)

    Wu, Wennie H.; Bergman, Larry A.; Johnston, Alan R.; Guest, Clark C.; Esener, Sadik C.

    1987-01-01

    This paper reports on the progress in implementing optical interconnections for VLSI. Four areas are covered: (1) the holographic optical element (HOE), (2) the laser sources, (3) the detectors and associated circuits forming an optically addressed gate, and (4) interconnection experiments in which five gates are actuated from one source. A laser scanner system with a resolution of 12 x 20 microns has been utilized to generate the HOEs. Diffraction efficiency of the HOE and diffracted spot size have been measured. Stock lasers have been modified with a high-frequency package for interconnect experiments, and buried heterostructure fabrication techniques have been pursued. Measurements have been made on the fabricated photodetectors to determine dark current, responsivity, and response time. The optical gates and the overall chip have been driven successfully with an input light beam, as well as with the optical signal interconnected through the one to five holograms.

  8. INTERCONNECTIONS BETWEEN HUMAN HEALTH AND ECOLOGICAL INTEGRITY

    EPA Science Inventory

    Interconnections between Human Health and Ecological Integrity emanates from a June 2000 Pellston Workshop in Snowbird, Utah, USA. Jointly sponsored by the Society of Environmental Toxicology and Chemistry (SETAC) and the Society of Toxicology (SOT), the workshop was motivated by...

  9. Traffic congestion in interconnected complex networks

    NASA Astrophysics Data System (ADS)

    Tan, Fei; Wu, Jiajing; Xia, Yongxiang; Tse, Chi K.

    2014-06-01

    Traffic congestion in isolated complex networks has been investigated extensively over the last decade. Coupled network models have recently been developed to facilitate further understanding of real complex systems. Analysis of traffic congestion in coupled complex networks, however, is still relatively unexplored. In this paper, we try to explore the effect of interconnections on traffic congestion in interconnected Barabási-Albert scale-free networks. We find that assortative coupling can alleviate traffic congestion more readily than disassortative and random coupling when the node processing capacity is allocated based on node usage probability. Furthermore, the optimal coupling probability can be found for assortative coupling. However, three types of coupling preferences achieve similar traffic performance if all nodes share the same processing capacity. We analyze interconnected Internet autonomous-system-level graphs of South Korea and Japan and obtain similar results. Some practical suggestions are presented to optimize such real-world interconnected networks accordingly.

  10. Recent Development of SOFC Metallic Interconnect

    SciTech Connect

    Wu JW, Liu XB

    2010-04-01

    Interest in solid oxide fuel cells (SOFC) stems from their higher e±ciencies and lower levels of emitted pollu- tants, compared to traditional power production methods. Interconnects are a critical part in SOFC stacks, which connect cells in series electrically, and also separate air or oxygen at the cathode side from fuel at the anode side. Therefore, the requirements of interconnects are the most demanding, i:e:, to maintain high elec- trical conductivity, good stability in both reducing and oxidizing atmospheres, and close coe±cient of thermal expansion (CTE) match and good compatibility with other SOFC ceramic components. The paper reviewed the interconnect materials, and coatings for metallic interconnect materials.

  11. Removing Barriers to Utility Interconnected Photovoltaic Inverters

    SciTech Connect

    Gonzalez, S.; Bonn, R.H.; Ginn, J.W.

    2000-10-03

    The Million Solar Roofs Initiative has motivated a renewed interest in the development of utility interconnected photovoltaic (UIPV) inverters. Government-sponsored programs (PVMaT, PVBONUS) and competition among utility interconnected inverter manufacturers have stimulated innovations and improved the performance of existing technologies. With this resurgence, Sandia National Laboratories (SNL) has developed a program to assist industry initiatives to overcome barriers to UIPV inverters. In accordance with newly adopted IEEE 929-2000, the utility interconnected PV inverters are required to cease energizing the utility grid when either a significant disturbance occurs or the utility experiences an interruption in service. Compliance with IEEE 929-2000 is being widely adopted by utilities as a minimum requirement for utility interconnection. This report summarizes work done at the SNL balance-of-systems laboratory to support the development of IEEE 929-2000 and to assist manufacturers in meeting its requirements.

  12. Extended Range Passive Wireless Tag System and Method

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Kennedy, Timothy F. (Inventor); Lin, Gregory Y. (Inventor)

    2013-01-01

    A passive wireless tag assembly comprises a plurality of antennas and transmission lines interconnected with circuitry and constructed and arranged in a Van Atta array or configuration to reflect an interrogator signal in the direction from where it came. The circuitry may comprise at least one surface acoustic wave (SAW)-based circuit that functions as a signal reflector and is operatively connected with an information circuit. In another embodiment, at least one delay circuit and/or at least one passive modulation circuit(s) are utilized. In yet another embodiment, antennas connected to SAW-based devices are mounted to at least one of the orthogonal surfaces of a corner reflector.

  13. Navigability of interconnected networks under random failures

    PubMed Central

    De Domenico, Manlio; Solé-Ribalta, Albert; Gómez, Sergio; Arenas, Alex

    2014-01-01

    Assessing the navigability of interconnected networks (transporting information, people, or goods) under eventual random failures is of utmost importance to design and protect critical infrastructures. Random walks are a good proxy to determine this navigability, specifically the coverage time of random walks, which is a measure of the dynamical functionality of the network. Here, we introduce the theoretical tools required to describe random walks in interconnected networks accounting for structure and dynamics inherent to real systems. We develop an analytical approach for the covering time of random walks in interconnected networks and compare it with extensive Monte Carlo simulations. Generally speaking, interconnected networks are more resilient to random failures than their individual layers per se, and we are able to quantify this effect. As an application––which we illustrate by considering the public transport of London––we show how the efficiency in exploring the multiplex critically depends on layers’ topology, interconnection strengths, and walk strategy. Our findings are corroborated by data-driven simulations, where the empirical distribution of check-ins and checks-out is considered and passengers travel along fastest paths in a network affected by real disruptions. These findings are fundamental for further development of searching and navigability strategies in real interconnected systems. PMID:24912174

  14. Metastable nanosized aluminum powder as a reactant in energetic formulations

    SciTech Connect

    Katz, J.; Tepper, F.; Ivanov, G.V.; Lerner, M.I.; Davidovich, V.

    1998-12-01

    Aluminum powder is an important ingredient in many propellant, explosives and pyrotechnic applications. The production of nanosized aluminum powder by the electroexplosion of metal wire has been practices in the former USSR since the mid 1970`s. Differential scanning calorimetry, differential thermal analysis and x-ray phase analysis was performed on aluminum powder both before and after air passivation, as well as aluminum that was protected under kerosene, pentane, toluene and hexane. Earlier Soviet reports of unexplained thermal releases and metastable behavior have been investigated. Anomalous behavior previously reported included phase transformations at temperatures far below melting with the release of heat and chemoluminescence and self sintering of particles with a heat release large enough to melt the powders.

  15. Carbothermic Aluminum Production Using Scrap Aluminum As A Coolant

    DOEpatents

    LaCamera, Alfred F.

    2002-11-05

    A process for producing aluminum metal by carbothermic reduction of alumina ore. Alumina ore is heated in the presence of carbon at an elevated temperature to produce an aluminum metal body contaminated with about 10-30% by wt. aluminum carbide. Aluminum metal or aluminum alloy scrap then is added to bring the temperature to about 900-1000.degree. C. and precipitate out aluminum carbide. The precipitated aluminum carbide is filtered, decanted, or fluxed with salt to form a molten body having reduced aluminum carbide content.

  16. MTBE OXIDATION BY BIFUNCTIONAL ALUMINUM

    EPA Science Inventory

    Bifunctional aluminum, prepared by sulfating zero-valent aluminum with sulfuric acid, has a dual functionality of simultaneously decomposing both reductively- and oxidatively-degradable contaminants. In this work, the use of bifunctional aluminum for the degradation of methyl te...

  17. Studies on aluminum neurotoxicity

    SciTech Connect

    Cho, S.

    1988-01-01

    This work reports the inhibitory effects of aluminum on glucose-6-phosphate dehydrogenase (G6PD) from yeast and brains. The aluminum contents and several enzyme activities in aluminum-fed rat brain homogenates were compared with those in age-matched control groups. The concentration of aluminum in the homogenates of the aluminum-fed groups were twice of that of the controls. Acetylcholinesterase activities were the same as in both groups but hexokinase and G6PD activities in the aluminum-fed group were about 73% and 70% of the control, respectively. Further studies on the inhibitory effects of aluminum on G6PD were performed with the enzymes purified from human and pig brains. Two forms of G6PD isozymes were purified from human and pig brain by ammonium sulfate fractionation, hydroxylapatite chromatography, affinity chromatography with NADP-agarose and Blue-Sepharose CL-6B, and gel filtration with Sephadex S-300. The two forms of isozymes (isozyme I and II), purified to be homogeneous, had a molecular weight of 220,000, and composed of 4 subunits of molecular weight of 57,000. HPLC peptide maps of tryptic digests and amino acid analyses of the isozymes showed extensive homologies between the isozymes. Interestingly, only the isozyme II in human and pig brain were active with 6-phosphogluconate as a substrate. No such an activity was found in isozyme I. Aluminum inactivated G6PD activity of the human and pig brain isozyme I and isozyme II without affecting the 6-phosphogluconate dehydrogenase activity of the isozyme II. Circular dichroism studies showed that the binding of aluminum to G6PD induced a decrease in {alpha}-helix and {beta}-sheet and a increase in random coil. Therefore it is suggested that inactivation of G6PD by aluminum is due to the conformational change induced by aluminum binding.

  18. Synchrotron X-Ray Microdiffraction Studies of Electromigration in Interconnect lines at the Advanced Light Source

    SciTech Connect

    Tamura, Nobumichi; Chen, Kai; Kunz, Martin

    2009-12-01

    Synchrotron polychromatic X-ray microdiffraction is a particularly suitable technique to study in situ the effect of electromigration in metal interconnects as add spatial resolution to grain orientation and strain sensitivity. This technique has been extensively used at the Advanced Light Source to monitor changes in aluminum and copper interconnect test structures while high-density current is passed into them during accelerated tests at elevated temperature. One of the principal findings is the observation of electromigration-induced plasticity in the metal lines that appear during the very early stages of electromigration. In some of the lines, high density of geometrically necessary dislocation are formed leading to additional diffusion paths causing an enhancement of electromigration effect at test temperature.

  19. Anodization control for barrier-oxide thinning and 3D interconnected pores and direct electrodeposition of nanowire networks on native aluminium substrates.

    PubMed

    Gillette, Eleanor; Wittenberg, Stefanie; Graham, Lauren; Lee, Kwijong; Rubloff, Gary; Banerjee, Parag; Lee, Sang Bok

    2015-02-01

    Here we report a strategy for combining techniques for pore branching and barrier layer thinning to produce 3D porous anodized aluminum oxide films with direct ohmic contact to the native aluminum. This method provides an example of a rationally designed template which need not be removed from the aluminum, but which is also not constrained to traditional 2D pore geometry. We first demonstrate the barrier layer removal and pore branching techniques independently, and then combine them to produce free standing arrays of interconnected Ni nanostructures. Nickel nanostructures are deposited directly onto the aluminum to demonstrate the success of the structural modification, and showcase the potential for these films to be used as templates. This approach is the first to demonstrate the design and execution of multiple pore modification techniques in the same membrane, and demonstrates the first directly deposited 3D structures on aluminum substrates. PMID:25562070

  20. Aluminum: Reducing chloride emissions from aluminum production

    SciTech Connect

    Simon, P.

    1999-09-29

    Reynolds Metals Company (RMC), with assistance from a NICE{sup 3} grant, is developing for commercialization a closed-loop control process that greatly reduces chlorine emissions and increases plant efficiency while maintaining metal quality. The process still utilizes chlorine to remove impurities during aluminum processing, but is more effective than current methods. With the new technology chlorine in the stack is monitored and input chlorine is adjusted continuously. This optimization of chlorine use results in substantially less waste because less chlorine has to be bought or produced by aluminum manufacturers. This innovation is a significant improvement over conventional aluminum treatments, in which chlorine is injected in a more costly and wasteful manner. By the year 2010, the new technology has the potential to reduce the energy it takes to create chlorine by 8.4 billion Btu per year and to cut greenhouse gas emissions by 1,377 tons per year.

  1. Passive damping for space truss structures

    NASA Technical Reports Server (NTRS)

    Chen, Gun-Shing; Wada, Ben K.

    1988-01-01

    Theoretical and experimental studies of passive damping techniques in truss-type structures are presented, with emphasis on the use of viscoelastic damping in the parallel load path. The constraining member length is shown to be a convenient design variable for enhancing damping performance. Results are presented for integral damping members made of thin-wall aluminum tubes, concentric constraining members, and viscoelastic materials in a six-bay truss structure at low frequency and low dynamic strain conditions. Integral members with graphite/epoxy constraining members exhibited relatively low damping values due to the possible polymer interaction during the cocure stage.

  2. Aluminum space frame technology

    SciTech Connect

    Birch, S.

    1994-01-01

    This article examines the increased application of aluminum to the construction of automobile frames. The topics of the article include a joint venture between Audi and Alcoa, forms in which aluminum is used, new alloys and construction methods, meeting rigidity and safety levels, manufacturing techniques, the use of extrusions, die casting, joining techniques, and pollution control during manufacturing.

  3. Anodizing Aluminum with Frills.

    ERIC Educational Resources Information Center

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are also…

  4. Cast aluminum denture base.

    PubMed

    Barco, M T; Dembert, M L

    1987-08-01

    The laboratory procedures for a cast aluminum base denture have been presented. If an induction casting machine is not available, the "two-oven technique" works well, provided the casting arm is kept spinning manually for 4 minutes after casting. If laboratory procedures are executed precisely and with care, the aluminum base denture can be cast with good results. PMID:3305884

  5. Is the Aluminum Hypothesis Dead?

    PubMed Central

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed with concern by some of the public. This review article discusses reasons that mainstream science has largely abandoned the Aluminum Hypothesis and explores a possible reason for some in the general public continuing to view aluminum with mistrust. PMID:24806729

  6. Temperature dependent stability model for graphene nanoribbon interconnects

    NASA Astrophysics Data System (ADS)

    Chanu, Waikhom Mona; Das, Debaprasad

    2016-04-01

    In this paper, a temperature dependent equivalent circuit model for graphene nanoribbon (GNR) interconnects is proposed. The stability analysis of GNR interconnects is performed using this proposed model and its performance is compared with respect to that of the copper based interconnects. The analysis is performed for different interconnect systems for 16nm ITRS technology node. With increase in the length of interconnects, the relative stability increases. GNR interconnect shows less increase of resistance with the increase in temperature as compared to Cu interconnects.

  7. Committed regional electrical interconnection projects in the Middle East

    SciTech Connect

    Azzam, M.; Al-Said, A.

    1994-12-01

    Due to the well-known advantages of electrical interconnections and their consequent benefits, Jordan considers the interconnection of its electrical network with the neighboring electrical networks as one of its main corporate strategies. At present the electrical interconnection project of the networks of Egypt, Iraq, Jordan, Syria, and Turkey is progressing. To achieve this interconnection project, two feasibility studies were conducted: interconnection of the Egyptian and Jordanian electrical power systems; interconnection of the electrical networks of Egypt, Iraq, Jordan, Syria, and Turkey (EIJST interconnection). This presentation reviews these studies and their results.

  8. The aluminum smelting process.

    PubMed

    Kvande, Halvor

    2014-05-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development. PMID:24806722

  9. Aluminum structural applications

    SciTech Connect

    Lucas, G.

    1996-05-01

    Extensive research by aluminum producers and automakers in the 1980s resulted in the development of technologies that enable building of aluminum cars that meet and exceed all the expectations of today`s drivers and passengers, yet weigh several hundred pounds less than their steel counterparts. The Acura NSX sports car, the Audi A8, and the Jaguar XJ220 have all been introduced. Ford has built 40 aluminum-intensive automobiles based on the Taurus/Sable for test purposes, and General Motors recently announced an aluminum-structured electric vehicle. The design flexibility that aluminum allows is shown by these examples. Each uses a somewhat different technology that is particularly suited to the vehicle and its market.

  10. The Aluminum Smelting Process

    PubMed Central

    2014-01-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development. PMID:24806722

  11. Hierarchical interconnection networks for multicomputer systems

    SciTech Connect

    Dandamudi, S.P. ); Eager, D.L. )

    1990-06-01

    Multicomputer systems are distributed-memory MIMD systems. Communication in these systems occurs through explicit message passing. Therefore, the underlying processor interconnection network plays an important and direct role in determining their performance. Several types f interconnection networks have been proposed. Unfortunately, no network is universally better. Ideally, therefore, systems should use more than one such network. Furthermore, systems that have large numbers of processors should be able to exploit locality in communication in order to obtain improved performance. This paper proposes the use of hierarchical interconnection networks to meet both these requirements. A performance analysis of a class of hierarchical interconnection networks is presented. This analysis includes both static analysis (queuing delays are neglected) and queuing analysis. In both cases, the hierarchical networks are shown to have better cost-benefit ratios. The queuing analysis is also validated (within our model) by several simulation experiments. The impact of two performance enhancement schemes---replication of links and improved routing algorithms---on hierarchical interconnection network performance is also presented.

  12. Roll and pitch independently tuned interconnected suspension: modelling and dynamic analysis

    NASA Astrophysics Data System (ADS)

    Xu, Guangzhong; Zhang, Nong; Roser, Holger M.

    2015-12-01

    In this paper, a roll and pitch independently tuned hydraulically interconnected passive suspension is presented. Due to decoupling of vibration modes and the improved lateral and longitudinal stability, the stiffness of individual suspension spring can be reduced for improving ride comfort and road grip. A generalised 14 degree-of-freedom nonlinear vehicle model with anti-roll bars is established to investigate the vehicle ride and handling dynamic responses. The nonlinear fluidic model of the hydraulically interconnected suspension is developed and integrated with the full vehicle model to investigate the anti-roll and anti-pitch characteristics. Time domain analysis of the vehicle model with the proposed suspension is conducted under different road excitations and steering/braking manoeuvres. The dynamic responses are compared with conventional suspensions to demonstrate the potential of enhanced ride and handling performance. The results illustrate the model-decoupling property of the hydraulically interconnected system. The anti-roll and anti-pitch performance could be tuned independently by the interconnected systems. With the improved anti-roll and anti-pitch characteristics, the bounce stiffness and ride damping can be optimised for better ride comfort and tyre grip.

  13. Communication Requirements and Interconnect Optimization forHigh-End Scientific Applications

    SciTech Connect

    Kamil, Shoaib; Oliker, Leonid; Pinar, Ali; Shalf, John

    2007-11-12

    The path towards realizing peta-scale computing isincreasingly dependent on building supercomputers with unprecedentednumbers of processors. To prevent the interconnect from dominating theoverall cost of these ultra-scale systems, there is a critical need forhigh-performance network solutions whose costs scale linearly with systemsize. This work makes several unique contributions towards attaining thatgoal. First, we conduct one of the broadest studies to date of high-endapplication communication requirements, whose computational methodsinclude: finite-difference, lattice-bolzmann, particle in cell, sparselinear algebra, particle mesh ewald, and FFT-based solvers. Toefficiently collect this data, we use the IPM (Integrated PerformanceMonitoring) profiling layer to gather detailed messaging statistics withminimal impact to code performance. Using the derived communicationcharacterizations, we next present fit-trees interconnects, a novelapproach for designing network infrastructure at a fraction of thecomponent cost of traditional fat-tree solutions. Finally, we propose theHybrid Flexibly Assignable Switch Topology (HFAST) infrastructure, whichuses both passive (circuit) and active (packet) commodity switchcomponents to dynamically reconfigure interconnects to suit thetopological requirements of scientific applications. Overall ourexploration leads to a promising directions for practically addressingthe interconnect requirements of future peta-scale systems.

  14. Susceptibility of Aluminum Alloys to Corrosion in Simulated Fuel Blends Containing Ethanol

    SciTech Connect

    Thomson, Jeffery K; Pawel, Steven J; Wilson, Dane F

    2013-01-01

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined was accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  15. Clinical biochemistry of aluminum

    SciTech Connect

    King, S.W.; Savory, J.; Wills, M.R.

    1981-05-01

    Aluminum toxicity has been implicated in the pathogenesis of a number of clinical disorders in patients with chronic renal failure on long-term intermittent hemodialysis treatment. The predominant disorders have been those involving either bone (osteomalacic dialysis osteodystrophy) or brain (dialysis encephalopathy). In nonuremic patients, an increased brain aluminum concentration has been implicated as a neurotoxic agent in the pathogenesis of Alzheimer's disease and was associated with experimental neurofibrillary degeneration in animals. The brain aluminum concentrations of patients dying with the syndrome of dialysis encephalopathy (dialysis dementia) are significantly higher than in dialyzed patients without the syndrome and in nondialyzed patients. Two potential sources for the increased tissue content of aluminum in patients on hemodialysis have been proposed: (1) intestinal absorption from aluminum containing phosphate-binding gels, and (2) transfer across the dialysis membrane from aluminum in the water used to prepare the dialysate. These findings, coupled with our everyday exposure to the ubiquitous occurrence of aluminum in nature, have created concerns over the potential toxicity of this metal.

  16. The motion of interconnected flexible bodies

    NASA Technical Reports Server (NTRS)

    Hopkins, A. S.

    1975-01-01

    The equations of motion for an arbitrarily interconnected collection of substructures are derived. The substructures are elastic bodies which may be idealized as finite element assemblies and are subject to small deformations relative to a nominal state. Interconnections between the elastic substructures permit large relative translations and rotations between substructures, governed by Pfaffian constraints describing the connections. Screw connections (permitting rotation about and translation along a single axis) eliminate constraint forces and incorporate modal coupling. The problem of flexible spacecraft simulation is discussed. Hurty's component mode approach is extended by permitting interconnected elastic substructures large motions relative to each other and relative to inertial space. The hybrid coordinate methods are generalized by permitting all substructures to be flexible (rather than only the terminal members of a topological tree of substructures). The basic relationships of continuum mechanics are developed.

  17. Interconnection Testing of Distributed Resources: Preprint

    SciTech Connect

    Kroposki, B.; Basso, T.; DeBlasio, R.

    2004-02-01

    With the publication of IEEE 1547-2003(TM) Standard for Interconnecting Distributed Resources With Electric Power Systems, the electric power industry has a need to develop tests and procedures to verify that interconnection equipment meets 1547 technical requirements. A new standard, IEEE P1547.1(TM), is being written to give detailed tests and procedures for confirming that equipment meets the interconnection requirements. The National Renewable Energy Laboratory has been validating test procedures being developed as part of IEEE P1547.1. As work progresses on the validation of those procedures, information and test reports are passed on to the working group of IEEE P1547.1 for future revisions.

  18. Optical transceivers for interconnections in satellite payloads

    NASA Astrophysics Data System (ADS)

    Karppinen, Mikko; Heikkinen, Veli; Juntunen, Eveliina; Kautio, Kari; Ollila, Jyrki; Sitomaniemi, Aila; Tanskanen, Antti

    2013-02-01

    The increasing data rates and processing on board satellites call for the use of photonic interconnects providing high-bitrate performance as well as valuable savings in mass and volume. Therefore, optical transmitter and receiver technology is developed for aerospace applications. The metal-ceramic-packaging with hermetic fiber pigtails enables robustness for the harsh spacecraft environment, while the 850-nm VCSEL-based transceiver technology meets the high bit-rate and low power requirements. The developed components include 6 Gbps SpaceFibre duplex transceivers for intra-satellite data links and 40 Gbps parallel optical transceivers for board-to-board interconnects. Also, integration concept of interchip optical interconnects for onboard processor ICs is presented.

  19. Automotion of domain walls for spintronic interconnects

    SciTech Connect

    Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.

    2014-06-07

    We simulate “automotion,” the transport of a magnetic domain wall under the influence of demagnetization and magnetic anisotropy, in nanoscale spintronic interconnects. In contrast to spin transfer driven magnetic domain wall motion, the proposed interconnects operate without longitudinal charge current transfer, with only a transient current pulse at domain wall creation and have favorable scaling down to the 20 nm dimension. Cases of both in-plane and out-of-plane magnetization are considered. Analytical dependence of the velocity of domain walls on the angle of magnetization are compared with full micromagnetic simulations. Deceleration, attenuation and disappearance, and reflection of domain walls are demonstrated through simulation. Dependences of the magnetization angle on the current pulse parameters are studied. The energy and delay analysis suggests that automotion is an attractive option for spintronic logic interconnects.

  20. Random walk centrality in interconnected multilayer networks

    NASA Astrophysics Data System (ADS)

    Solé-Ribalta, Albert; De Domenico, Manlio; Gómez, Sergio; Arenas, Alex

    2016-06-01

    Real-world complex systems exhibit multiple levels of relationships. In many cases they require to be modeled as interconnected multilayer networks, characterizing interactions of several types simultaneously. It is of crucial importance in many fields, from economics to biology and from urban planning to social sciences, to identify the most (or the less) influent nodes in a network using centrality measures. However, defining the centrality of actors in interconnected complex networks is not trivial. In this paper, we rely on the tensorial formalism recently proposed to characterize and investigate this kind of complex topologies, and extend two well known random walk centrality measures, the random walk betweenness and closeness centrality, to interconnected multilayer networks. For each of the measures we provide analytical expressions that completely agree with numerically results.

  1. Automotion of domain walls for spintronic interconnects

    NASA Astrophysics Data System (ADS)

    Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.

    2014-06-01

    We simulate "automotion," the transport of a magnetic domain wall under the influence of demagnetization and magnetic anisotropy, in nanoscale spintronic interconnects. In contrast to spin transfer driven magnetic domain wall motion, the proposed interconnects operate without longitudinal charge current transfer, with only a transient current pulse at domain wall creation and have favorable scaling down to the 20 nm dimension. Cases of both in-plane and out-of-plane magnetization are considered. Analytical dependence of the velocity of domain walls on the angle of magnetization are compared with full micromagnetic simulations. Deceleration, attenuation and disappearance, and reflection of domain walls are demonstrated through simulation. Dependences of the magnetization angle on the current pulse parameters are studied. The energy and delay analysis suggests that automotion is an attractive option for spintronic logic interconnects.

  2. Nanotrench for nano and microparticle electrical interconnects

    NASA Astrophysics Data System (ADS)

    Dayen, J.-F.; Faramarzi, V.; Pauly, M.; Kemp, N. T.; Barbero, M.; Pichon, B. P.; Majjad, H.; Begin-Colin, S.; Doudin, B.

    2010-08-01

    We present a simple and versatile patterning procedure for the reliable and reproducible fabrication of high aspect ratio (104) electrical interconnects that have separation distances down to 20 nm and lengths of several hundreds of microns. The process uses standard optical lithography techniques and allows parallel processing of many junctions, making it easily scalable and industrially relevant. We demonstrate the suitability of these nanotrenches as electrical interconnects for addressing micro and nanoparticles by realizing several circuits with integrated species. Furthermore, low impedance metal-metal low contacts are shown to be obtained when trapping a single metal-coated microsphere in the gap, emphasizing the intrinsic good electrical conductivity of the interconnects, even though a wet process is used. Highly resistive magnetite-based nanoparticles networks also demonstrate the advantage of the high aspect ratio of the nanotrenches for providing access to electrical properties of highly resistive materials, with leakage current levels below 1 pA.

  3. Laser printing of 3D metallic interconnects

    NASA Astrophysics Data System (ADS)

    Beniam, Iyoel; Mathews, Scott A.; Charipar, Nicholas A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2016-04-01

    The use of laser-induced forward transfer (LIFT) techniques for the printing of functional materials has been demonstrated for numerous applications. The printing gives rise to patterns, which can be used to fabricate planar interconnects. More recently, various groups have demonstrated electrical interconnects from laser-printed 3D structures. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or of pastes containing dispersed metallic particles. However, the generated 3D structures do not posses the same metallic conductivity as a bulk metal interconnect of the same cross-section and length as those formed by wire bonding or tab welding. An alternative is to laser transfer entire 3D structures using a technique known as lase-and-place. Lase-and-place is a LIFT process whereby whole components and parts can be transferred from a donor substrate onto a desired location with one single laser pulse. This paper will describe the use of LIFT to laser print freestanding, solid metal foils or beams precisely over the contact pads of discrete devices to interconnect them into fully functional circuits. Furthermore, this paper will also show how the same laser can be used to bend or fold the bulk metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief for the circuits under flexing or during motion from thermal mismatch. These interconnect "ridges" can span wide gaps (on the order of a millimeter) and accommodate height differences of tens of microns between adjacent devices. Examples of these laser printed 3D metallic bridges and their role in the development of next generation electronics by additive manufacturing will be presented.

  4. Exabits/s integrated photonic interconnection technology for flexible data-centric optical networks

    NASA Astrophysics Data System (ADS)

    Binh, Le N.; Tao, Thomas W.; Ning, Gordon L.

    2016-03-01

    Optical networking is evolving from classical service-provider base data-center centric (DCC) internetworking environment with massive capacity, hence demanding novel optical switching and interconnecting technologies. The traditional telecom networks are under a flattening transformation to meet challenges from DCC networks for massive capacity serving in order of multi-Pb/s. We present proposed distributed and concentric data center based networks and the essential optical interconnection technologies, from the photonic kernels to electronic and optoelectronic server clusters, in both passive and active structures. Optical switching devices and integrated matrices are proposed composing of tunable (bandwidth and center wavelength) optical filters and switches as well as resonant microring modulators (μRM)(switching and spectral demux/mux) for multi-wavelength flexible-bandwidth optical channels of aggregate capacity reaching Ebps. The design principles and some experimental results are also reported.

  5. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1989-03-21

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration. 6 figs.

  6. Graphene Nanoribbons (GNRs) for Future Interconnect

    NASA Astrophysics Data System (ADS)

    Saptono Duryat, Rahmat

    2016-05-01

    Selecting and developing materials for the future devices require a sound understanding of design requirements. Miniaturization of electronic devices, as commonly expressed by Moore Law, has involved the integration level. Increase of the level has caused some consequences in the design and selection of materials for interconnection. The present paper deals with the challenge of materials design and selection beyond the nanoscale limit and the ability of traditional materials to cope with. One of the emerging materials, i.e. Graphene, will be reviewed with particular reference to its characteristics and potentials for future interconnection.

  7. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, David B.

    1987-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  8. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, David B.

    1989-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  9. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1985-08-23

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  10. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1985-06-24

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping lase pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  11. Purifying Aluminum by Vacuum Distillation

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1985-01-01

    Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.

  12. Direct electron beam patterning of sub-5nm monolayer graphene interconnects

    NASA Astrophysics Data System (ADS)

    Qi, Zhengqing J.; Rodríguez-Manzo, Julio A.; Hong, Sung Ju; Park, Yung Woo; Stach, Eric A.; Drndić, Marija; Johnson, A. T. Charlie

    2013-03-01

    The industry's march towards higher transistor density has called for an ever-increasing number of interconnect levels in logic devices. The historic transition from aluminum to copper was necessary in reducing timing delays while future technology nodes presents an opportunity for new materials and patterning techniques. One material for consideration is graphene, a single atomic layer of carbon atoms. Graphene is known to have excellent electrical properties [1], driving strong interest in its integration into the wafer fabrication processes for future electronics [2], and its ballistic transport properties give promise for use in on-chip interconnects [3]. This study demonstrates the feasibility of a direct electron beam lithography technique to pattern sub-5nm metallic graphene ribbons, without using a mask or photoresist, to act as next generation interconnects. Sub-5nm monolayer and multilayer graphene ribbons were patterned using a focused electron beam in a transmission electron microscope (TEM) through direct knock-on ejection of carbon atoms. These ribbons were measured during fabrication to quantify their electrical performance. Multilayered graphene nanoribbons were found to sustain current densities in excess of 109 A/cm2, orders of magnitude higher than copper, while monolayer graphene provides comparable performance to copper but at the level of a single atomic layer. High volume manufacturing could utilize wafer-size chemical vapor deposition (CVD) graphene [4] transferred directly onto the substrate paired with a direct write multi-beam tool to knock off carbon atoms for patterning of nanometer sized interconnects. The patterning technique introduced here allows for the fabrication of small foot-print high performance next generation graphene interconnects that bypass the use of a mask and resist process.

  13. Passive magnetic bearing configurations

    DOEpatents

    Post, Richard F.

    2011-01-25

    A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

  14. Protecting aluminum in atmosphere through galvanic coupling to zinc

    SciTech Connect

    Raman, A.; Huang, X.; Diwan, R.

    1999-07-01

    Electrochemical polarization data for the individual thin film electrodes Al and Zn as well as in galvanic couple connecting the two together have been generated using atmospheric corrosion sensors developed recently. Thin films of these metals were subjected to cyclic fog testing and to continuous immersion in selected electrolytes corresponding to atmospheric condensates and were tested also in actual atmospheric exposure under bold (totally open and subject to direct hit by rain and sun light) and sheltered (not hit by rain and sun light) conditions. Results generally indicate that zinc corrodes by very large amount tending to protect aluminum in the process. Aluminum corrodes by the least and remains passivated under test conditions involving only plain water. In the presence of chloride ion, pitting is activated, though zinc provides initial protection and tends to stabilize passivation. Under open bold conditions, zinc electrode experiences the largest corrosion current densities and passivates itself and Al remains also in the passive state. The potentials of both electrodes converge to nearly the same value around +100 mV measured against an open silver film. Under the sheltered locations, both the corrosion potentials and current densities oscillate, possibly due to repeated tendencies of passivation and depassivation and attainment of a totally protected state for Al may require secondary protection measures along with the use of zinc.

  15. Passive solar construction handbook

    SciTech Connect

    Levy, E.; Evans, D.; Gardstein, C.

    1981-08-01

    Many of the basic elements of passive solar design are reviewed. The unique design constraints presented in passive homes are introduced and many of the salient issues influencing design decisions are described briefly. Passive solar construction is described for each passive system type: direct gain, thermal storage wall, attached sunspace, thermal storage roof, and convective loop. For each system type, important design and construction issues are discussed and case studies illustrating designed and built examples of the system type are presented. Construction details are given and construction and thermal performance information is given for the materials used in collector components, storage components, and control components. Included are glazing materials, framing systems, caulking and sealants, concrete masonry, concrete, brick, shading, reflectors, and insulators. The Load Collector Ratio method for estimating passive system performance is appended, and other analysis methods are briefly summarized. (LEW)

  16. Advances in aluminum anodizing

    NASA Technical Reports Server (NTRS)

    Dale, K. H.

    1969-01-01

    White anodize is applied to aluminum alloy surfaces by specific surface preparation, anodizing, pigmentation, and sealing techniques. The development techniques resulted in alloys, which are used in space vehicles, with good reflectance values and excellent corrosive resistance.

  17. Walnut Hulls Clean Aluminum

    NASA Technical Reports Server (NTRS)

    Colberg, W. R.; Gordon, G. H.; Jackson, C. H.

    1984-01-01

    Hulls inflict minimal substrate damage. Walnut hulls found to be best abrasive for cleaning aluminum surfaces prior to painting. Samples blasted with walnut hulls showed no compressive stress of surface.

  18. Corrosion Inhibitors for Aluminum.

    ERIC Educational Resources Information Center

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  19. CORROSION PROTECTION OF ALUMINUM

    DOEpatents

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  20. Corrosion Protection of Aluminum

    DOEpatents

    Dalrymple, R. S.; Nelson, W. B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred.

  1. Light weight aluminum optics

    NASA Astrophysics Data System (ADS)

    Catura, R. C.; Vieira, J. R.

    1985-09-01

    Light weight mirror blanks were fabricated by dip-brazing a core of low mass aluminum foam material to thin face sheets of solid aluminum. The blanks weigh 40% of an equivalent size solid mirror and were diamond turned to provide reflective surfaces. Optical interferometry was used to assess their dimensional stability over 7 months. No changes in flatness are observed (to the sensitivity of the measurements of a half wavelength of red light).

  2. Optical interconnections to focal plane arrays

    SciTech Connect

    Rienstra, J.L.; Hinckley, M.K.

    2000-11-01

    The authors have successfully demonstrated an optical data interconnection from the output of a focal plane array to the downstream data acquisition electronics. The demonstrated approach included a continuous wave laser beam directed at a multiple quantum well reflectance modulator connected to the focal plane array analog output. The output waveform from the optical interconnect was observed on an oscilloscope to be a replica of the input signal. They fed the output of the optical data link to the same data acquisition system used to characterize focal plane array performance. Measurements of the signal to noise ratio at the input and output of the optical interconnection showed that the signal to noise ratio was reduced by a factor of 10 or more. Analysis of the noise and link gain showed that the primary contributors to the additional noise were laser intensity noise and photodetector receiver noise. Subsequent efforts should be able to reduce these noise sources considerably and should result in substantially improved signal to noise performance. They also observed significant photocurrent generation in the reflectance modulator that imposes a current load on the focal plane array output amplifier. This current loading is an issue with the demonstrated approach because it tends to negate the power saving feature of the reflectance modulator interconnection concept.

  3. Laser printed interconnects for flexible electronics

    NASA Astrophysics Data System (ADS)

    Pique, Alberto; Beniam, Iyoel; Mathews, Scott; Charipar, Nicholas

    Laser-induced forward transfer (LIFT) can be used to generate microscale 3D structures for interconnect applications non-lithographically. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or dispersed metallic nanoparticles. However, the resulting 3D structures do not achieve the bulk conductivity of metal interconnects of the same cross-section and length as those formed by wire bonding or tab welding. It is possible, however, to laser transfer entire structures using a LIFT technique known as lase-and-place. Lase-and-place allows whole components and parts to be transferred from a donor substrate onto a desired location with one single laser pulse. This talk will present the use of LIFT to laser print freestanding solid metal interconnects to connect individual devices into functional circuits. Furthermore, the same laser can bend or fold the thin metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief due to flexing or thermal mismatch. Examples of these laser printed 3D metallic bridges and their role in the development of next generation flexible electronics by additive manufacturing will be presented. This work was funded by the Office of Naval Research (ONR) through the Naval Research Laboratory Basic Research Program.

  4. Electric network interconnection of Mashreq Arab Countries

    SciTech Connect

    El-Amin, I.M.; Al-Shehri, A.M.; Opoku, G.; Al-Baiyat, S.A.; Zedan, F.M.

    1994-12-01

    Power system interconnection is a well established practice for a variety of technical and economical reasons. Several interconnected networks exist worldwide for a number of factors. Some of these networks cross international boundaries. This presentation discusses the future developments of the power systems of Mashreq Arab Countries (MAC). MAC consists of Bahrain, Egypt, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, United Arab Emirates (UAE), and Yemen. Mac power systems are operated by government or semigovernment bodies. Many of these countries have national or regional electric grids but are generally isolated from each other. With the exception of Saudi Arabia power systems, which employ 60 Hz, all other MAC utilities use 50 Hz frequency. Each country is served by one utility, except Saudi Arabia, which is served by four major utilities and some smaller utilities serving remote towns and small load centers. The major utilities are the Saudi Consolidated electric Company in the Eastern Province (SCECO East), SCECO Center, SCECO West, and SCECO South. These are the ones considered in this study. The energy resources in MAC are varied. Countries such as Egypt, Iraq, and Syria have significant hydro resources.The gulf countries and Iraq have abundant fossil fuel, The variation in energy resources as well as the characteristics of the electric load make it essential to look into interconnections beyond the national boundaries. Most of the existing or planned interconnections involve few power systems. A study involving 12 countries and over 20 utilities with different characteristics represents a very large scale undertaking.

  5. 14 CFR 23.701 - Flap interconnection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flap interconnection. 23.701 Section 23.701 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.701 Flap...

  6. 14 CFR 23.701 - Flap interconnection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flap interconnection. 23.701 Section 23.701 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.701 Flap...

  7. 47 CFR 51.305 - Interconnection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... interface or protocol standards shall constitute evidence of the substantial similarity of network..., interconnection with the incumbent LEC's network: (1) For the transmission and routing of telephone exchange...'s network including, at a minimum: (i) The line-side of a local switch; (ii) The trunk-side of...

  8. A continuum model for interconnected lattice trusses

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1992-01-01

    A continuum model for interconnected lattice trusses based on the 1D Timoshenko beam approximation is developed using the NASA-LRC Phase Zero Evolutionary Model. The continuum model dynamics is presented in the canonical wave-equation form in a Hilbert space.

  9. Vector Lyapunov Functions for Stochastic Interconnected Systems

    NASA Technical Reports Server (NTRS)

    Boussalis, D.

    1985-01-01

    Theoretical paper presents set of sufficient conditions for asymptotic and exponential stability with probability 1 for class of stochastic interconnected systems. Theory applicable to complicated, large-scale mechanical or electrical systems, and, for several design problems, it reduces computational difficulty by relating stability criteria to fundamental structural features of system.

  10. 47 CFR 95.1313 - Interconnection prohibited.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... prohibited. MURS stations are prohibited from interconnection with the public switched network... facilities of the public switched telephone network to permit the transmission of messages or signals between points in the wireline or radio network of a public telephone company and persons served by...

  11. Probabilistic immortality of Cu damascene interconnects

    NASA Astrophysics Data System (ADS)

    Hau-Riege, Stefan P.

    2002-02-01

    We have studied electromigration short-line effects in Cu damascene interconnects through experiments on lines of various lengths L, stressed at a variety of current densities j, and embedded in different dielectric materials. We observed two modes of resistance evolution: Either the resistance of the lines remains constant for the duration of the test, so that the lines are considered immortal, or the lines fail due to abrupt open-circuit failure. The resistance was not observed to gradually increase and then saturate, as commonly observed in Al-based interconnects, because the barrier is too thin and resistive to serve as a redundant current path should voiding occur. The critical stress for void nucleation was found to be smaller than 41 MPa, since voiding occurred even under the mildest test conditions of j=2 MA/cm2 and L=10.5 μm at 300 °C. A small fraction of short Cu lines failed even at low current densities, which deems necessary a concept of probabilistic immortality rather than deterministic immortality. Experiments and modeling suggest that the probability of immortality is described by (jL2/B), where B is the effective elastic modulus of the metallization scheme. By contrast, the immortality of Al-based interconnects with shunt layers is described by (jL) if no voids nucleate, and (jL/B) if voids do nucleate. Even though the phenomenology of short-line effects differs for Al- and Cu-based interconnects, the immortality of interconnects of either materials system can be explained by the phenomena of nucleation barriers for void formation and void-growth saturation. The differences are due solely to the absence of a shunt layer and the low critical stress for void nucleation in the case of Cu.

  12. Characterization of phosphate films on aluminum surfaces

    SciTech Connect

    Cheng, B.; Ramamurthy, S.; McIntyre, N.S.

    1997-08-01

    A thin layer of phosphate conversion coating was formed on pure aluminum in a commercial zinc-manganese phosphating bath. A number of surface analytical techniques were used to characterize the phosphate thin films formed after immersion times ranging from 30 s to 10 min. The coating contained mainly a crystalline structure with dispersed micrometer-scale cavities. The major constituents of the phosphate film were zinc, phosphorus, and oxygen; a small amount of manganese was also detected. Based on these results, a three-stage mechanism was proposed for the formation and the growth of phosphate conversion coatings on aluminum. Electrochemical impedance spectroscopy was used to evaluate the corrosion performance of phosphated and uncoated aluminum samples in 0.50 M Na{sub 2}SO{sub 4} and 0.10 M H{sub 2}SO{sub 4} solutions. Both types of samples exhibited a passive state in the neutral solution and general corrosion behavior in the acid solution.

  13. Interconnect assembly for an electronic assembly and assembly method therefor

    DOEpatents

    Gerbsch, Erich William

    2003-06-10

    An interconnect assembly and method for a semiconductor device, in which the interconnect assembly can be used in lieu of wirebond connections to form an electronic assembly. The interconnect assembly includes first and second interconnect members. The first interconnect member has a first surface with a first contact and a second surface with a second contact electrically connected to the first contact, while the second interconnect member has a flexible finger contacting the second contact of the first interconnect member. The first interconnect member is adapted to be aligned and registered with a semiconductor device having a contact on a first surface thereof, so that the first contact of the first interconnect member electrically contacts the contact of the semiconductor device. Consequently, the assembly method does not require any wirebonds, but instead merely entails aligning and registering the first interconnect member with the semiconductor device so that the contacts of the first interconnect member and the semiconductor device make electrically contact, and then contacting the second contact of the first interconnect member with the flexible finger of the second interconnect member.

  14. Tuning of the droplet motion in interconnected microfluidic devices

    NASA Astrophysics Data System (ADS)

    Hu, Guoqing; Song, Kui; Zhang, Li

    2010-11-01

    The problem of controlling the droplet motions in multiphase flows on the microscale has gained increasing attention because the droplet-based microfluidic devices provide great potentials for chemical/biological applications such as drug discovery, chemical kinetics study, material synthesis, and DNA/cell assays. It is critical to understand the relevant physics on droplet hydrodynamics and thus control the generation, motion, splitting, and coalescence of droplets in complex microfluidic networks. The operation of those applications sometimes requires the arrival of droplets from different branch microchannels at a designated location within a transit time. We propose a simple design for interconnected microfluidic devices that implement the feedback mechanism to synchronize the droplet motion via a passive way. Numerical simulations using the Volume of Fluid (VOF) algorithm are conducted to investigate the time-dependent dynamics of droplets in both gas-liquid and liquid-liquid systems. An analytical mode based on the electronic-hydraulic analogy is also developed to describe the transit behavior of the droplet traffic. Both the numerical and theoretical results agree well with the corresponding experimental results. Furthermore, we optimize the microfluidic networks to control the motion of a series of droplets.

  15. National Offshore Wind Energy Grid Interconnection Study Full Report

    SciTech Connect

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Gregory; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  16. High temperature solid electrolyte fuel cell configurations and interconnections

    DOEpatents

    Isenberg, Arnold O.

    1984-01-01

    High temperature fuel cell configurations and interconnections are made including annular cells having a solid electrolyte sandwiched between thin film electrodes. The cells are electrically interconnected along an elongated axial outer surface.

  17. National Offshore Wind Energy Grid Interconnection Study Executive Summary

    SciTech Connect

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Gregory; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  18. Aluminum, parathyroid hormone, and osteomalacia

    SciTech Connect

    Burnatowska-Hledin, M.A.; Kaiser, L.; Mayor, G.H.

    1983-01-01

    Aluminum exposure in man is unavoidable. The occurrence of dialysis dementia, vitamin D-resistant osteomalacia, and hypochromic microcytic anemia in dialysis patients underscores the potential for aluminum toxicity. Although exposure via dialysate and hyperalimentation leads to significant tissue aluminum accumulation, the ubiquitous occurrence of aluminum and the severe pathology associated with large aluminum burdens suggest that smaller exposures via the gastrointestinal tract and lungs could represent an important, though largely unrecognized, public health problem. It is clear that some aluminum absorption occurs with the ingestion of small amounts of aluminum in the diet and medicines, and even greater aluminum absorption is seen in individuals consuming large amounts of aluminum present in antacids. Aluminum absorption is enhanced in the presence of elevated circulating parathyroid hormone. In addition, elevated PTH leads to the preferential deposition of aluminum in brain and bone. Consequently, PTH is likely to be involved in the pathogenesis of toxicities in those organs. PTH excess also seems to lead to the deposition of aluminum in the parathyroid gland. The in vitro demonstration that aluminum inhibits parathyroid hormone release is consistent with the findings of a euparathyroid state in dialysis patients with aluminum related vitamin D-resistant osteomalacia. Nevertheless, it seems likely that hyperparathyroidism is at least initially involved in the pathogenesis of aluminum neurotoxicity and osteomalacia; the increases in tissue aluminum stores are followed by suppression of parathyroid hormone release, which is required for the evolution of osteomalacia. Impaired renal function is not a prerequisite for increased tissue aluminum burdens, nor for aluminum-related organ toxicity. Consequently, it is likely that these diseases will be observed in populations other than those with chronic renal disease.

  19. Thermal Stress Behavior of Aluminum Nanofilms under Heat Cycling

    SciTech Connect

    Kusaka, Kazuya; Hanabusa, Takao; Shingubara, Shoso; Matsue, Tatsuya; Sakata, Osami; Noda, Kazuhiro; Hataya, Mitsuhiko

    2004-12-08

    In-situ thermal stress in aluminum nanofilms with silicon oxide glass (SOG) passivation was investigated by using synchrotron radiation at the SPring-8. Aluminum films of varying thickness (10, 20, 50 nm) were deposited on thermally oxidized silicon wafers by RF magnetron sputtering. Each specimen was heated in air over two cycles between room temperature and 300 deg. C. The following results were obtained: (1) {l_brace}111{r_brace} planes of aluminum nanofilm crystals were oriented parallel to the substrate normal; (2) the intensity of 111 diffraction was almost independent of temperature except in the case of the 50-nm-thick film; (3) the FWHM of 111 diffraction was almost independent of temperature at any given film thickness; and (4) for all films, the thermal stress varied linearly with heating temperature, and the hysteresis between the heating and cooling steps disappeared.

  20. Integrated silicon photonic interconnect with surface-normal optical interface

    NASA Astrophysics Data System (ADS)

    Zhang, Zanyun; Huang, Beiju; Zhang, Zan; Cheng, Chuantong; Liu, Hongwei; Li, Hongqiang; Chen, Hongda

    2016-05-01

    An integrated silicon photonic interconnect with surface-normal optical interface is demonstrated by connecting a bidirectional grating based E-O modulator and a germanium waveguide photodetector. To investigate this photonic interconnect, both static and dynamic performance of the discrete devices are characterized respectively. Based on the characterization work, data transmission experiment is carried out for the photonic interconnect. Eye diagram results indicate the photonic interconnect can operate up to 7 Gb/s.

  1. Immunizations: Active vs. Passive

    MedlinePlus

    ... they’ve been exposed. For example, the passive rabies immunization (rabies immune globulin) is commonly used after a certain ... of your pediatrician. There may be variations in treatment that your pediatrician may recommend based on individual ...

  2. Hood River Passive House

    SciTech Connect

    Hales, D.

    2013-03-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project.

  3. Grain Boundary Passivation of Multicrystalline Silicon Using Hydrogen Sulfide as a Sulfur Source

    NASA Astrophysics Data System (ADS)

    Saha, Arunodoy

    Hydrogen sulfide (H2S) has been identified as a potential ingredient for grain boundary passivation of multicrystalline silicon. Sulfur is already established as a good surface passivation material for crystalline silicon (c-Si). Sulfur can be used both from solution and hydrogen sulfide gas. For multicrystalline silicon (mc-Si) solar cells, increasing efficiency is a major challenge because passivation of mc-Si wafers is more difficult due to its randomly orientated crystal grains and the principal source of recombination is contributed by the defects in the bulk of the wafer and surface. In this work, a new technique for grain boundary passivation for multicrystalline silicon using hydrogen sulfide has been developed which is accompanied by a compatible Aluminum oxide (Al2O3) surface passivation. Minority carrier lifetime measurement of the passivated samples has been performed and the analysis shows that success has been achieved in terms of passivation and compared to already existing hydrogen passivation, hydrogen sulfide passivation is actually better. Also the surface passivation by Al 2O3 helps to increase the lifetime even more after post-annealing and this helps to attain stability for the bulk passivated samples. Minority carrier lifetime is directly related to the internal quantum efficiency of solar cells. Incorporation of this technique in making mc-Si solar cells is supposed to result in higher efficiency cells. Additional research is required in this field for the use of this technique in commercial solar cells.

  4. 14 CFR 29.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flow between interconnected tanks. 29.957... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where tank outlets are interconnected and allow fuel to flow...

  5. 14 CFR 23.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flow between interconnected tanks. 23.957... Fuel System § 23.957 Flow between interconnected tanks. (a) It must be impossible, in a gravity feed system with interconnected tank outlets, for enough fuel to flow between the tanks to cause an...

  6. ALUMINUM RECLAMATION BY ACIDIC EXTRACTION OF ALUMINUM-ANODIZING SLUDGES

    EPA Science Inventory

    Extraction of aluminum-anodizing sludges with sulfuric acid was examined to determine the potential for production of commercial-strength solutions of aluminum sulfate, that is liquid alum. The research established kinetic and stoichiometric relationships and evaluates product qu...

  7. Passive Resonant Bidirectional Converter with Galvanic Barrier

    NASA Technical Reports Server (NTRS)

    Rosenblad, Nathan S. (Inventor)

    2014-01-01

    A passive resonant bidirectional converter system that transports energy across a galvanic barrier includes a converter using at least first and second converter sections, each section including a pair of transfer terminals, a center tapped winding; a chopper circuit interconnected between the center tapped winding and one of the transfer terminals; an inductance feed winding interconnected between the other of the transfer terminals and the center tap and a resonant tank circuit including at least the inductance of the center tap winding and the parasitic capacitance of the chopper circuit for operating the converter section at resonance; the center tapped windings of the first and second converter sections being disposed on a first common winding core and the inductance feed windings of the first and second converter sections being disposed on a second common winding core for automatically synchronizing the resonant oscillation of the first and second converter sections and transferring energy between the converter sections until the voltage across the pairs of transfer terminals achieves the turns ratio of the center tapped windings.

  8. Development of Interconnect Technologies for Particle Detectors

    SciTech Connect

    Tripathi, Mani

    2015-01-29

    This final report covers the three years of this grant, for the funding period 9/1/2010 - 8/31/2013. The project consisted of generic detector R&D work at UC Davis, with an emphasis on developing interconnect technologies for applications in HEP. Much of the work is done at our Facility for Interconnect Technologies (FIT) at UC Davis. FIT was established using ARRA funds, with further studies supported by this grant. Besides generic R&D work at UC Davis, FIT is engaged in providing bump bonding help to several DOE supported detector R&D efforts. Some of the developmental work was also supported by funding from other sources: continuing CMS project funds and the Linear Collider R&D funds. The latter program is now terminated. The three year program saw a good deal of progress on several fronts, which are reported here.

  9. Epidemic spread on interconnected metapopulation networks

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Tanaka, Gouhei; Suzuki, Hideyuki; Aihara, Kazuyuki

    2014-09-01

    Numerous real-world networks have been observed to interact with each other, resulting in interconnected networks that exhibit diverse, nontrivial behavior with dynamical processes. Here we investigate epidemic spreading on interconnected networks at the level of metapopulation. Through a mean-field approximation for a metapopulation model, we find that both the interaction network topology and the mobility probabilities between subnetworks jointly influence the epidemic spread. Depending on the interaction between subnetworks, proper controls of mobility can efficiently mitigate epidemics, whereas an extremely biased mobility to one subnetwork will typically cause a severe outbreak and promote the epidemic spreading. Our analysis provides a basic framework for better understanding of epidemic behavior in related transportation systems as well as for better control of epidemics by guiding human mobility patterns.

  10. Epidemic spread on interconnected metapopulation networks.

    PubMed

    Wang, Bing; Tanaka, Gouhei; Suzuki, Hideyuki; Aihara, Kazuyuki

    2014-09-01

    Numerous real-world networks have been observed to interact with each other, resulting in interconnected networks that exhibit diverse, nontrivial behavior with dynamical processes. Here we investigate epidemic spreading on interconnected networks at the level of metapopulation. Through a mean-field approximation for a metapopulation model, we find that both the interaction network topology and the mobility probabilities between subnetworks jointly influence the epidemic spread. Depending on the interaction between subnetworks, proper controls of mobility can efficiently mitigate epidemics, whereas an extremely biased mobility to one subnetwork will typically cause a severe outbreak and promote the epidemic spreading. Our analysis provides a basic framework for better understanding of epidemic behavior in related transportation systems as well as for better control of epidemics by guiding human mobility patterns. PMID:25314481

  11. Architecture for on-die interconnect

    DOEpatents

    Khare, Surhud; More, Ankit; Somasekhar, Dinesh; Dunning, David S.

    2016-03-15

    In an embodiment, an apparatus includes: a plurality of islands configured on a semiconductor die, each of the plurality of islands having a plurality of cores; and a plurality of network switches configured on the semiconductor die and each associated with one of the plurality of islands, where each network switch includes a plurality of output ports, a first set of the output ports are each to couple to the associated network switch of an island via a point-to-point interconnect and a second set of the output ports are each to couple to the associated network switches of a plurality of islands via a point-to-multipoint interconnect. Other embodiments are described and claimed.

  12. Interconnection of bundled solid oxide fuel cells

    SciTech Connect

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  13. Copper Nanowire Production for Interconnect Applications

    NASA Technical Reports Server (NTRS)

    Han, Jin-Woo (Inventor); Meyyappan, Meyya (Inventor)

    2014-01-01

    A method of fabricating metallic Cu nanowires with lengths up to about 25 micrometers and diameters in a range 20-100 nanometers, or greater if desired. Vertically oriented or laterally oriented copper oxide structures (CuO and/or Cu2O) are grown on a Cu substrate. The copper oxide structures are reduced with 99+ percent H or H2, and in this reduction process the lengths decrease (to no more than about 25 micrometers), the density of surviving nanostructures on a substrate decreases, and the diameters of the surviving nanostructures have a range, of about 20-100 nanometers. The resulting nanowires are substantially pure Cu and can be oriented laterally (for local or global interconnects) or can be oriented vertically (for standard vertical interconnects).

  14. A covariance analysis algorithm for interconnected systems

    NASA Technical Reports Server (NTRS)

    Cheng, Victor H. L.; Curley, Robert D.; Lin, Ching-An

    1987-01-01

    A covariance analysis algorithm for propagation of signal statistics in arbitrarily interconnected nonlinear systems is presented which is applied to six-degree-of-freedom systems. The algorithm uses statistical linearization theory to linearize the nonlinear subsystems, and the resulting linearized subsystems are considered in the original interconnection framework for propagation of the signal statistics. Some nonlinearities commonly encountered in six-degree-of-freedom space-vehicle models are referred to in order to illustrate the limitations of this method, along with problems not encountered in standard deterministic simulation analysis. Moreover, the performance of the algorithm shall be numerically exhibited by comparing results using such techniques to Monte Carlo analysis results, both applied to a simple two-dimensional space-intercept problem.

  15. Folded fibre bus interconnects with distributed amplification

    NASA Astrophysics Data System (ADS)

    Lorenzo, Raul Hernandez; Urquhart, Paul; Lopez-Amo, Manuel

    1998-06-01

    An optical fibre network for application as an interconnect within major nodes is investigated theoretically. The network is configured as a folded bus in which the spine consists of erbium doped fibre to overcome the power division at the couplers. It is argued that high received powers with a narrow dynamic range can be obtained simultaneously with bit rates in the order of 10 Gbit/s and bit error rates of 10 -12 or less.

  16. Bioactive macroporous titanium implants highly interconnected.

    PubMed

    Caparrós, Cristina; Ortiz-Hernandez, Mónica; Molmeneu, Meritxell; Punset, Miguel; Calero, José Antonio; Aparicio, Conrado; Fernández-Fairén, Mariano; Perez, Román; Gil, Francisco Javier

    2016-10-01

    Intervertebral implants should be designed with low load requirements, high friction coefficient and low elastic modulus in order to avoid the stress shielding effect on bone. Furthermore, the presence of a highly interconnected porous structure allows stimulating bone in-growth and enhancing implant-bone fixation. The aim of this study was to obtain bioactive porous titanium implants with highly interconnected pores with a total porosity of approximately 57 %. Porous Titanium implants were produced by powder sintering route using the space holder technique with a binder phase and were then evaluated in an in vivo study. The size of the interconnection diameter between the macropores was about 210 μm in order to guarantee bone in-growth through osteblastic cell penetration. Surface roughness and mechanical properties were analyzed. Stiffness was reduced as a result of the powder sintering technique which allowed the formation of a porous network. Compression and fatigue tests exhibited suitable properties in order to guarantee a proper compromise between mechanical properties and pore interconnectivity. Bioactivity treatment effect in novel sintered porous titanium materials was studied by thermo-chemical treatments and were compared with the same material that had undergone different bioactive treatments. Bioactive thermo-chemical treatment was confirmed by the presence of sodium titanates on the surface of the implants as well as inside the porous network. Raman spectroscopy results suggested that the identified titanate structures would enhance in vivo apatite formation by promoting ion exchange for the apatite formation process. In vivo results demonstrated that the bioactive titanium achieved over 75 % tissue colonization compared to the 40 % value for the untreated titanium. PMID:27582071

  17. Aluminum for plasmonics.

    PubMed

    Knight, Mark W; King, Nicholas S; Liu, Lifei; Everitt, Henry O; Nordlander, Peter; Halas, Naomi J

    2014-01-28

    Unlike silver and gold, aluminum has material properties that enable strong plasmon resonances spanning much of the visible region of the spectrum and into the ultraviolet. This extended response, combined with its natural abundance, low cost, and amenability to manufacturing processes, makes aluminum a highly promising material for commercial applications. Fabricating Al-based nanostructures whose optical properties correspond with theoretical predictions, however, can be a challenge. In this work, the Al plasmon resonance is observed to be remarkably sensitive to the presence of oxide within the metal. For Al nanodisks, we observe that the energy of the plasmon resonance is determined by, and serves as an optical reporter of, the percentage of oxide present within the Al. This understanding paves the way toward the use of aluminum as a low-cost plasmonic material with properties and potential applications similar to those of the coinage metals. PMID:24274662

  18. Implementation of interconnect simulation tools in spice

    NASA Technical Reports Server (NTRS)

    Satsangi, H.; Schutt-Aine, J. E.

    1993-01-01

    Accurate computer simulation of high speed digital computer circuits and communication circuits requires a multimode approach to simulate both the devices and the interconnects between devices. Classical circuit analysis algorithms (lumped parameter) are needed for circuit devices and the network formed by the interconnected devices. The interconnects, however, have to be modeled as transmission lines which incorporate electromagnetic field analysis. An approach to writing a multimode simulator is to take an existing software package which performs either lumped parameter analysis or field analysis and add the missing type of analysis routines to the package. In this work a traditionally lumped parameter simulator, SPICE, is modified so that it will perform lossy transmission line analysis using a different model approach. Modifying SPICE3E2 or any other large software package is not a trivial task. An understanding of the programming conventions used, simulation software, and simulation algorithms is required. This thesis was written to clarify the procedure for installing a device into SPICE3E2. The installation of three devices is documented and the installations of the first two provide a foundation for installation of the lossy line which is the third device. The details of discussions are specific to SPICE, but the concepts will be helpful when performing installations into other circuit analysis packages.

  19. Modeling and synthesis of multicomputer interconnection networks

    NASA Technical Reports Server (NTRS)

    Standley, Hilda M.; Auxter, D. Steve

    1990-01-01

    The type of interconnection network employed has a profound effect on the performance of a multicomputer and multiprocessor design. Adequate models are needed to aid in the design and development of interconnection networks. A novel modeling approach using statistical and optimization techniques is described. This method represents an attempt to compare diverse interconnection network designs in a way that allows not only the best of existing designs to be identified but to suggest other, perhaps hybrid, networks that may offer better performance. Stepwise linear regression is used to develop a polynomial surface representation of performance in a (k+1) space with a total of k quantitative and qualitative independent variables describing graph-theoretic characteristics such as size, average degree, diameter, radius, girth, node-connectivity, edge-connectivity, minimum dominating set size, and maximum number of prime node and edge cutsets. Dependent variables used to measure performance are average message delay and the ratio of message completion rate to network connection cost. Response Surface Methodology (RSM) optimizes a response variable from a polynomial function of several independent variables. Steepest ascent path may also be used to approach optimum points.

  20. Resistive synaptic interconnects for electronic neural networks

    NASA Technical Reports Server (NTRS)

    Lamb, J. L.; Thakoor, A. P.; Moopenn, A.; Khanna, S. K.

    1987-01-01

    The use of the alpha-Ge(1-x):Al(x) and alpha-Ge(1-x):Cu(x) alloys and Pt/Al2O3 cermet thin films as resistive interconnects for binary synaptic memory arrays is evaluated. The fabrication of the 10-20 microns long, 10 microns wide, and 0.1 micron thick interconnects from the alloys and cermet is described. The current-voltage and switching characteristics of the as-deposited films and the patterned test structure are studied. The resistivity, uniformity, stability, and compatibility of the interconnects are examined. It is observed that alpha-Ge(1-x):Cu(x) alloys have a wide resistivity range and low temperature coefficients of resistance; however, their long-term stability is limited due to their low crystallization temperature. It is detected that the alpha-Ge(1-x):Al(x) alloys have higher crystallization temperatures and their resistivity is not greatly affected by large changes in metal content. The Pt/Al2O3 samples display excellent stability, easy fabrication, and control of resistivity with metal content.

  1. Optical interconnections on printed circuit boards

    NASA Astrophysics Data System (ADS)

    Griese, Elmar

    2000-05-01

    In this paper an optical interconnection technology for high-speed printed circuit board application is presented. This technology is widely compatible with the existing design and manufacturing technologies of conventional multi- layer pc boards and it combines electrical and optical interconnects on pc board level. Using this interconnection technology on-board bandwidth of several Gbps can be realized. As conventional pc board technology provides sufficient performance characteristics for the majority of all on-board signals only a hybrid technology which is compatible to the existing printed circuit board design and manufacturing processes is able to lead to a practical solution at reasonable cost. This compatibility demand results in different technological, functional, and economic requirements which also consider potential application for high performance computing and telecommunication hardware. In this paper an overview is given on the requirements, on the basic technologies for manufacturing electrical-optical pc boards as well as on the extended design process with its modeling and simulation methodologies and strategies.

  2. Dimensioning of nearby substations interconnected ground system

    SciTech Connect

    Sobral, S.T. ); Costa, V.S. ); Campos, M.S.; Goldman, B. ); Mukhedkar, D. )

    1988-10-01

    This paper deals with the ground mat dimensioning of two or more neighbor interconnected substations, a situation that is very common in the Electrical Industry. The paper recalls that the external ground circuits connected to the ground grid of each substation can drastically reduce the percentage of total ground current injected into the soil through the mat (from 40% up to 2% of the total fault current). The paper presents a set of specific calculation procedures to deal with nearby interconnected ground mats. These procedures correspond to a particular illustration of the general ''Decoupled Method'' (3,4,5), showing how to apply its 8 sequencial steps to solve this type of circuit. The paper shows that the electric neighborhood of nearby substations depends on the ''Space Constant'' (or ''Characteristic Length'') of the ground circuits interconnecting them such as transmission line ground-wires, power cable sheaths, etc. This paper complements also Ref. (3,4), introducing the complete derivation of useful expressions used to solve lumped parameter ladder circuits of any size (from one pi to an infinite number of pis). The derivation of these expressions also used in (3,4) were not included in these References due to lack of space. In the paper it is also shown a simple procedure to determine the suitable number of ACSR ground-wire spans near a substation necessary to allow a reduction of the ground grid conductor extension.

  3. Regeneration of aluminum hydride

    DOEpatents

    Graetz, Jason Allan; Reilly, James J; Wegrzyn, James E

    2012-09-18

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  4. Regeneration of aluminum hydride

    DOEpatents

    Graetz, Jason Allan; Reilly, James J.

    2009-04-21

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  5. Elevated temperature aluminum alloys

    NASA Technical Reports Server (NTRS)

    Meschter, Peter (Inventor); Lederich, Richard J. (Inventor); O'Neal, James E. (Inventor)

    1989-01-01

    Three aluminum-lithium alloys are provided for high performance aircraft structures and engines. All three alloys contain 3 wt % copper, 2 wt % lithium, 1 wt % magnesium, and 0.2 wt % zirconium. Alloy 1 has no further alloying elements. Alloy 2 has the addition of 1 wt % iron and 1 wt % nickel. Alloy 3 has the addition of 1.6 wt % chromium to the shared alloy composition of the three alloys. The balance of the three alloys, except for incidentql impurities, is aluminum. These alloys have low densities and improved strengths at temperatures up to 260.degree. C. for long periods of time.

  6. Aluminum Hydroxide and Magnesium Hydroxide

    MedlinePlus

    Aluminum Hydroxide, Magnesium Hydroxide are antacids used together to relieve heartburn, acid indigestion, and upset stomach. They ... They combine with stomach acid and neutralize it. Aluminum Hydroxide, Magnesium Hydroxide are available without a prescription. ...

  7. Surface passivation of high efficiency silicon solar cells

    NASA Astrophysics Data System (ADS)

    Aberle, A.; Warta, W.; Knobloch, J.; Voss, B.

    Theoretically and experimentally determined design guides for significantly reducing recombination at the emitter and rear surfaces of full-area Al-BSF (back-surface region) and oxide-passivated bifacial cells are given. The impact of emitter thickness and surface dopant concentration on emitter saturation current and solar cell efficiency is outlined. A modified emitter structure (locally deep diffused below the metal contacts) is predicted to have superior performance. Measured Voc values reveal the potential of deep emitter cells to achieve efficiencies above 20 percent in spite of high metallization factors. Experimentally, a strong dependence of passivation quality on oxide thickness and base doping concentration is found. The BSF quality of a diffused aluminum layer decreases strongly with increasing drive-in time. For SiO2-passivated rear surfaces of bifacial cells, measurements of the dependence of the surface recombination velocity on the excess carrier concentration are presented.

  8. Potential roles of optical interconnections within broadband switching modules

    NASA Astrophysics Data System (ADS)

    Lalk, Gail R.; Habiby, Sarry F.; Hartman, Davis H.; Krchnavek, Robert R.; Wilson, Donald K.; Young, Kenneth C., Jr.

    1991-04-01

    An investigation of potential physical design bottlenecks in future broadband telecommunication switches has led to the identification of several areas where optical interconnections may play a role in the practical realization of required system performance. In the model used the speed and interconnection densities as well as requirements for ease-of-access and efficient power utilization challenge conventional partitioning and packaging strategies. Potential areas where optical interconnections may relieve some of the physical design bottlenecks include fiber management at the customer interface to the switch routing and distribution of high-density interconnections within the fabric of the switch and backplane interconnections to increase system throughput.

  9. PROCESS FOR REMOVING ALUMINUM COATINGS

    DOEpatents

    Flox, J.

    1959-07-01

    A process is presented for removing aluminum jackets or cans from uranium slugs. This is accomplished by immersing the aluminum coated uranium slugs in an aqueous solution of 9 to 20% sodium hydroxide and 35 to 12% sodium nitrate to selectively dissolve the aluminum coating, the amount of solution being such as to obtain a molar ratio of sodium hydroxide to aluminum of at least

  10. Fiber optic interconnect and optoelectronic packaging challenges for future generation avionics

    NASA Astrophysics Data System (ADS)

    Beranek, Mark W.

    2007-02-01

    Forecasting avionics industry fiber optic interconnect and optoelectronic packaging challenges that lie ahead first requires an assumption that military avionics architectures will evolve from today's centralized/unified concept based on gigabit laser, optical-to-electrical-to-optical switching and optical backplane technology, to a future federated/distributed or centralized/unified concept based on gigabit tunable laser, electro-optical switch and add-drop wavelength division multiplexing (WDM) technology. The requirement to incorporate avionics optical built-in test (BIT) in military avionics fiber optic systems is also assumed to be correct. Taking these assumptions further indicates that future avionics systems engineering will use WDM technology combined with photonic circuit integration and advanced packaging to form the technical basis of the next generation military avionics onboard local area network (LAN). Following this theme, fiber optic cable plants will evolve from today's multimode interconnect solution to a single mode interconnect solution that is highly installable, maintainable, reliable and supportable. Ultimately optical BIT for fiber optic fault detection and isolation will be incorporated as an integral part of a total WDM-based avionics LAN solution. Cost-efficient single mode active and passive photonic component integration and packaging integration is needed to enable reliable operation in the harsh military avionics application environment. Rugged multimode fiber-based transmitters and receivers (transceivers) with in-package optical BIT capability are also needed to enable fully BIT capable single-wavelength fiber optic links on both legacy and future aerospace platforms.

  11. RECLAMATION OF ALUMINUM FINISHING SLUDGES

    EPA Science Inventory

    The research study of the reclamation of aluminum-anodizing sludges was conducted in two sequential phases focused on enhanced dewatering of aluminum-anodizing sludges to produce commercial-strength solutions of aluminum sulfate, i.e., liquid alum. The use of high-pressure (14 to...

  12. Electrically conductive anodized aluminum coatings

    NASA Technical Reports Server (NTRS)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  13. Mapping the global journey of anthropogenic aluminum: a trade-linked multilevel material flow analysis.

    PubMed

    Liu, Gang; Müller, Daniel B

    2013-10-15

    Material cycles have become increasingly coupled and interconnected in a globalizing era. While material flow analysis (MFA) has been widely used to characterize stocks and flows along technological life cycle within a specific geographical area, trade networks among individual cycles have remained largely unexplored. Here we developed a trade-linked multilevel MFA model to map the contemporary global journey of anthropogenic aluminum. We demonstrate that the anthropogenic aluminum cycle depends substantially on international trade of aluminum in all forms and becomes highly interconnected in nature. While the Southern hemisphere is the main primary resource supplier, aluminum production and consumption concentrate in the Northern hemisphere, where we also find the largest potential for recycling. The more developed countries tend to have a substantial and increasing presence throughout the stages after bauxite refining and possess highly consumption-based cycles, thus maintaining advantages both economically and environmentally. A small group of countries plays a key role in the global redistribution of aluminum and in the connectivity of the network, which may render some countries vulnerable to supply disruption. The model provides potential insights to inform government and industry policies in resource criticality, supply chain security, value chain management, and cross-boundary environmental impacts mitigation. PMID:24025046

  14. Analysis design and measurement of guided wave optical backplane interconnection

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, Ioannis

    Optics has been long regarded as the prominent alternative to electronics, to address the serious interconnects bottleneck in high-speed backplane printed circuit boards. In this thesis, we present our work towards the realization of a robust and cost effective 10 Gb/s optically interconnected backplane aimed at switching and storage applications. In the course of this work, we experimentally analyzed optical waveguides and advanced electromagnetic theories and algorithms to explain light propagation phenomena. We experimentally characterized the insertion loss for dielectric waveguide bends of rectangular cross-section for a range of radii of curvature and waveguide widths and generated useful design rules. We then used the Beam Propagation Method (BPM) to separate insertion loss into its individual loss components and developed a ray-tracing model to gain further insight into propagation in waveguide bends. We developed a novel waveguiding component called the tapered bend, which integrated a tapered waveguide with a bend. We expanded intrinsic mode theory, widely known in the acoustic wave field, to explain adiabatic propagation phenomena in tapered bends before, at and after modal cut-off. The proposed electromagnetic theory has significant implications since it can be used for tapered waveguides in general inhomogeneous media. We experimentally measured the insertion loss of the tapered bend and characterized the coupling efficiency tolerance under source misalignment for a range of radii and taper ratios. We developed a semi-analytic algorithm to calculate the radiation modes of rectangular waveguides, based on a non-liner transformation of the wave equation and a Fourier decomposition method. The proposed method is very powerful and can be used in waveguides of arbitrary shape with some additional computational complexity. We applied the coupled mode theory to the computed radiation modes and we calculated the equilibrium distance, the steady state power

  15. Aluminum battery alloys

    DOEpatents

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  16. Mechanisms of aluminum tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum (Al) toxicity limits agricultural productivity over much of the world’s arable land by inhibiting root growth and development. Affected plants have difficulty in acquiring adequate water and nutrition from their soil environments and thus have stunted shoot development and diminished yield....

  17. Maize aluminum tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize is one of the most economically important food crops grown on acid soils, where aluminum (Al) toxicity greatly limits crop yields. Considerable variation for Al tolerance exists in maize, and this variation has been exploited for many years by plant breeders to enhance maize Al tolerance. Curr...

  18. Aluminum-ferricyanide battery

    SciTech Connect

    Marsh, C.; Licht, S.L.

    1993-11-29

    A battery capable of producing high current densities with high charge capacity is described which includes an aluminum anode, a ferricyanide electrolyte and a second electrode capable of reducing ferricyanide electrolyte which is either dissolved in an alkaline solution or alkaline seawater solution. The performance of the battery is enhanced by high temperature and high electrolyte flow rates.

  19. Aluminum Sulfate 18 Hydrate

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  20. Fluxless aluminum brazing

    DOEpatents

    Werner, W.J.

    1974-01-01

    This invention relates to a fluxless brazing alloy for use in forming brazed composites made from members of aluminum and its alloys. The brazing alloy consists of 35-55% Al, 10--20% Si, 25-60% Ge; 65-88% Al, 2-20% Si, 2--18% In; 65--80% Al, 15-- 25% Si, 5- 15% Y. (0fficial Gazette)

  1. Aluminum battery alloys

    DOEpatents

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  2. REMOVAL OF ALUMINUM COATINGS

    DOEpatents

    Peterson, J.H.

    1959-08-25

    A process is presented for dissolving aluminum jackets from uranium fuel elements without attack of the uranium in a boiling nitric acid-mercuric nitrate solution containing up to 50% by weight of nitrtc acid and mercuric nitrate in a concentration of between 0.05 and 1% by weight.

  3. Building an aluminum car

    SciTech Connect

    Ashley, S.

    1994-05-01

    This article examines the increasing use of aluminum in automobiles to decrease weight and consequently increase fuel economy. The topics of the article include federal fuel economy goals, the development of optimum body structure and manufacturing techniques, comparison with steel, cost of materials, weight reduction and recycling of materials.

  4. Upgrade of the LHC magnet interconnections thermal shielding

    SciTech Connect

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Craen, Arnaud Vande; Villiger, Gilles; Chrul, Anna; Damianoglou, Dimitrios; Strychalski, Michał; Wright, Loren

    2014-01-29

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  5. Upgrade of the LHC magnet interconnections thermal shielding

    NASA Astrophysics Data System (ADS)

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Chrul, Anna; Damianoglou, Dimitrios; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Strychalski, Michał; Craen, Arnaud Vande; Villiger, Gilles; Wright, Loren

    2014-01-01

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  6. Mesoporous aluminum phosphite

    SciTech Connect

    El Haskouri, Jamal; Perez-Cabero, Monica; Guillem, Carmen; Latorre, Julio; Beltran, Aurelio; Beltran, Daniel; Amoros, Pedro

    2009-08-15

    High surface area pure mesoporous aluminum-phosphorus oxide-based derivatives have been synthesized through an S{sup +}I{sup -} surfactant-assisted cooperative mechanism by means of a one-pot preparative procedure from aqueous solution and starting from aluminum atrane complexes and phosphoric and/or phosphorous acids. A soft chemical extraction procedure allows opening the pore system of the parent as-prepared materials by exchanging the surfactant without mesostructure collapse. The nature of the pore wall can be modulated from mesoporous aluminum phosphate (ALPO) up to total incorporation of phosphite entities (mesoporous aluminum phosphite), which results in a gradual evolution of the acidic properties of the final materials. While phosphate groups in ALPO act as network building blocks (bridging Al atoms), the phosphite entities become basically attached to the pore surface, what gives practically empty channels. The mesoporous nature of the final materials is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and N{sub 2} adsorption-desorption isotherms. The materials present regular unimodal pore systems whose order decreases as the phosphite content increases. NMR spectroscopic results confirm the incorporation of oxo-phosphorus entities to the framework of these materials and also provide us useful information concerning the mechanism through which they are formed. - Abstract: TEM image of the mesoporous aluminum phosphite showing the hexagonal disordered pore array that is generated by using surfactant micelles as template. Also a scheme emphasizing the presence of an alumina-rich core and an ALPO-like pore surface is presented.

  7. Investigation of the Influence of the Local Microstructure of Copper Interconnects on Void Formation and Evolution during Electromigration Testing

    SciTech Connect

    Meyer, M. A.; Engelmann, H.-J.; Langer, E.; Zschech, E.; Grafe, M.

    2006-02-07

    The electromigration-induced void evolution has been investigated in-situ on fully embedded inlaid copper test structures inside a SEM, utilizing the method described elsewhere. After the failure of the test structure or after significant voiding had been observed the cathode via region of the samples was prepared for subsequent TEM and/or EBSD analysis in order to reveal the position of grain boundaries and the orientations of the grains in the neighborhood of a void. It was confirmed that intersections of grain boundaries with interfaces of the interconnect lines or clusters of small grains can act as nucleation sites for initial void formation or as trapping sites on which voids can be stopped. Furthermore, it was found that for interconnects with strengthened top interface, where the diffusion rate is significantly lower due to the changed chemical bonding, that the void movement occurs mainly along the copper/liner interface. Such interconnects show significantly longer lifetimes. In this paper, local alloying of copper interconnects with aluminum is reported.

  8. SOLDERING OF ALUMINUM BASE METALS

    DOEpatents

    Erickson, G.F.

    1958-02-25

    This patent deals with the soldering of aluminum to metals of different types, such as copper, brass, and iron. This is accomplished by heating the aluminum metal to be soldered to slightly above 30 deg C, rubbing a small amount of metallic gallium into the part of the surface to be soldered, whereby an aluminum--gallium alloy forms on the surface, and then heating the aluminum piece to the melting point of lead--tin soft solder, applying lead--tin soft solder to this alloyed surface, and combining the aluminum with the other metal to which it is to be soldered.

  9. Wireless passive radiation sensor

    SciTech Connect

    Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G; Limmer, Steven J

    2013-12-03

    A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

  10. Supramolecular Organic Nanowires as Plasmonic Interconnects.

    PubMed

    Armao, Joseph J; Domoto, Yuya; Umehara, Teruhiko; Maaloum, Mounir; Contal, Christophe; Fuks, Gad; Moulin, Emilie; Decher, Gero; Javahiraly, Nicolas; Giuseppone, Nicolas

    2016-02-23

    Metallic nanostructures are able to interact with an incident electromagnetic field at subwavelength scales by plasmon resonance which involves the collective oscillation of conduction electrons localized at their surfaces. Among several possible applications of this phenomenon, the theoretical prediction is that optical circuits connecting multiple plasmonic elements will surpass classical electronic circuits at nanoscale because of their much faster light-based information processing. However, the placement and coupling of metallic elements smaller than optical wavelengths currently remain a formidable challenge by top-down manipulations. Here, we show that organic supramolecular triarylamine nanowires of ≈1 nm in diameter are able to act as plasmonic waveguides. Their self-assembly into plasmonic interconnects between arrays of gold nanoparticles leads to the bottom-up construction of basic optical nanocircuits. When the resonance modes of these metallic nanoparticles are coupled through the organic nanowires, the optical conductivity of the plasmonic layer dramatically increases from 259 to 4271 Ω(-1)·cm(-1). We explain this effect by the coupling of a hot electron/hole pair in the nanoparticle antenna with the half-filled polaronic band of the organic nanowire. We also demonstrate that the whole hybrid system can be described by using the abstraction of the lumped circuit theory, with a far field optical response which depends on the number of interconnects. Overall, our supramolecular bottom-up approach opens the possibility to implement processable, soft, and low cost organic plasmonic interconnects into a large number of applications going from sensing to metamaterials and information technologies. PMID:26814600

  11. Development of Ceramic Interconnect Materials for SOFC

    SciTech Connect

    Yoon, Kyung J.; Stevenson, Jeffry W.; Marina, Olga A.

    2010-08-05

    Currently, acceptor-doped lanthanum chromite is the state-of-the-art ceramic interconnect material for high temperature solid oxide fuel cells (SOFCs) due to its fairly good electronic conductivity and chemical stability in both oxidizing and reducing atmospheres, and thermal compatibility with other cell components. The major challenge for acceptor-doped lanthanum chromite for SOFC interconnect applications is its inferior sintering behavior in air, which has been attributed to the development of a thin layer of Cr2O3 at the interparticle necks during the initial stages of sintering. In addition, lanthanum chromite is reactive with YSZ electrolyte at high temperatures, forming a highly resistive lanthanum zirconate phase (La2Zr2O7), which further complicates co-firing processes. Acceptor-doped yttrium chromite is considered to be one of the promising alternatives to acceptor-doped lanthanum chromite because it is more stable with respect to the formation of hydroxides in SOFC operating conditions, and the formation of impurity phases can be effectively avoided at co-firing temperatures. In addition, calcium-doped yttrium chromite exhibits higher mechanical strength than lanthanum chromite-based materials. The major drawback of yttrium chromite is considered to be its lower electrical conductivity than lanthanum chromite. The properties of yttrium chromites could possibly be improved and optimized by partial substitution of chromium with various transition metals. During FY10, PNNL investigated the effect of various transition metal doping on chemical stability, sintering and thermal expansion behavior, microstructure, electronic and ionic conductivity, and chemical compatibility with other cell components to develop the optimized ceramic interconnect material.

  12. EVALUATION OF A TWO-STAGE PASSIVE TREATMENT APPROACH FOR MINING INFLUENCE WATERS

    EPA Science Inventory

    A two-stage passive treatment approach was assessed at bench-scale using two Colorado Mining Influenced Waters (MIWs). The first-stage was a limestone drain with the purpose of removing iron and aluminum and mitigating the potential effects of mineral acidity. The second stage w...

  13. Spatial-light-modulator interconnected computers

    SciTech Connect

    Mc Aulay, A.D.

    1987-10-01

    Optical technologies perform the basic computer operations of communications, switching, and storage, have already proven superior to electronics for many communications situations, and advances in devices and materials suggest that optics are important for switching and storage. The spatial light modulator (SLM) is one of the devices expected to play an important role in optical computing. An SLM acts as a piece of film whose transmittance or reflectance may be varied spatially and temporally by electronic or optical means. Types of SLMs, the use of optics for computation and three proposed, as well as diverse optical computing systems that use SLMs for interconnections are described in this article.

  14. Repairable chip bonding/interconnect process

    DOEpatents

    Bernhardt, Anthony F.; Contolini, Robert J.; Malba, Vincent; Riddle, Robert A.

    1997-01-01

    A repairable, chip-to-board interconnect process which addresses cost and testability issues in the multi-chip modules. This process can be carried out using a chip-on-sacrificial-substrate technique, involving laser processing. This process avoids the curing/solvent evolution problems encountered in prior approaches, as well is resolving prior plating problems and the requirements for fillets. For repairable high speed chip-to-board connection, transmission lines can be formed on the sides of the chip from chip bond pads, ending in a gull wing at the bottom of the chip for subsequent solder.

  15. Repairable chip bonding/interconnect process

    DOEpatents

    Bernhardt, A.F.; Contolini, R.J.; Malba, V.; Riddle, R.A.

    1997-08-05

    A repairable, chip-to-board interconnect process which addresses cost and testability issues in the multi-chip modules is disclosed. This process can be carried out using a chip-on-sacrificial-substrate technique, involving laser processing. This process avoids the curing/solvent evolution problems encountered in prior approaches, as well is resolving prior plating problems and the requirements for fillets. For repairable high speed chip-to-board connection, transmission lines can be formed on the sides of the chip from chip bond pads, ending in a gull wing at the bottom of the chip for subsequent solder. 10 figs.

  16. Environmental Regulation Impacts on Eastern Interconnection Performance

    SciTech Connect

    Markham, Penn N; Liu, Yilu; Young II, Marcus Aaron

    2013-07-01

    In the United States, recent environmental regulations will likely result in the removal of nearly 30 GW of oil and coal-fired generation from the power grid, mostly in the Eastern Interconnection (EI). The effects of this transition on voltage stability and transmission line flows have previously not been studied from a system-wide perspective. This report discusses the results of power flow studies designed to simulate the evolution of the EI over the next few years as traditional generation sources are replaced with environmentally friendlier ones such as natural gas and wind.

  17. Updating Interconnection Screens for PV System Integration

    SciTech Connect

    Coddington, M.; Mather, B.; Kroposki, B.; Lynn, K.; Razon, A.; Ellis, A.; Hill, R.; Key, T.; Nicole, K.; Smith, J.

    2012-02-01

    This white paper evaluates the origins and usefulness of the capacity penetration screen, offer short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen. Short-term and longer-term alternatives approaches are offered as examples; however, specific modifications to screening procedures should be discussed with stakeholders and must ultimately be adopted by state and federal regulatory bodies.

  18. The metal interconnected cascade solar cell

    SciTech Connect

    LaRue, R.A.; Borden, P.G.; Dietze, W.T.; Gregory, P.E.; Ludowise, M.J.

    1982-09-01

    A cascade cell employing a new type of interconnect is described. It uses a groove etch and metallization process to connect the base of the top cell to the emitter of the bottom cell. The best cell yielded 21.3% efficiency under conditions of AM3, 130 suns, 50/sup 0/C, with the result not corrected for grid coverage. Other features include a 1.2-micron thick 1.82-eV ALGaAs top cell with a BSF under the base and an n/p heteroface GaAs bottom cell that is stable during top cell growth.

  19. Optical Interconnection Via Computer-Generated Holograms

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Zhou, Shaomin

    1995-01-01

    Method of free-space optical interconnection developed for data-processing applications like parallel optical computing, neural-network computing, and switching in optical communication networks. In method, multiple optical connections between multiple sources of light in one array and multiple photodetectors in another array made via computer-generated holograms in electrically addressed spatial light modulators (ESLMs). Offers potential advantages of massive parallelism, high space-bandwidth product, high time-bandwidth product, low power consumption, low cross talk, and low time skew. Also offers advantage of programmability with flexibility of reconfiguration, including variation of strengths of optical connections in real time.

  20. Metallic Nanowire Interconnections for Integrated Circuit Fabrication

    NASA Technical Reports Server (NTRS)

    Ng, Hou Tee (Inventor); Li, Jun (Inventor); Meyyappan, Meyya (Inventor)

    2007-01-01

    A method for fabricating an electrical interconnect between two or more electrical components. A conductive layer is provided on a substarte and a thin, patterned catalyst array is deposited on an exposed surface of the conductive layer. A gas or vapor of a metallic precursor of a metal nanowire (MeNW) is provided around the catalyst array, and MeNWs grow between the conductive layer and the catalyst array. The catalyst array and a portion of each of the MeNWs are removed to provide exposed ends of the MeNWs.

  1. Method of passivating semiconductor surfaces

    DOEpatents

    Wanlass, M.W.

    1990-06-19

    A method is described for passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  2. Method of passivating semiconductor surfaces

    DOEpatents

    Wanlass, Mark W.

    1990-01-01

    A method of passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  3. Passive Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1983-01-01

    Magnetic bearing for limited rotation devices requires no feedback control system to sense and correct shaft position. Passive Magnetic Torsion Bearing requires no power supply and has no rubbing parts. Torsion wire restrains against axial instability. Magnetic flux geometry chosen to assure lateral stability with radial restoring force that maintains alignment.

  4. Hood River Passive House

    SciTech Connect

    Hales, D.

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  5. Hood River Passive House

    SciTech Connect

    Hales, David

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  6. A portable air-aluminum power source with an alkaline electrolytic solution

    NASA Astrophysics Data System (ADS)

    Alekseenko, S. V.; Galkin, P. S.; Kashinskii, O. N.; Markovich, D. M.; Novopashin, S. A.; Randin, V. V.; Kharlamov, S. M.

    2014-04-01

    The results from development of a portable air-aluminum chemical power source (AA CPS) with an alkaline electrolytic solution without any additional service circuits are presented. The feasibility of making air cathodes on the basis of a metal-carbon composite produced by the plasma method has been shown. Special features of the operational conditions of a portable AA CPS have been investigated. It has been found that the aluminum cathode passivation when aluminum hydroxide precipitates from a solution significantly restricts the specific capacity of such power sources. It was shown that it is possible to overcome the anode passivation and to considerably increase the specific capacity of an AA CPS with an alkaline electrolytic solution by means of modifying an anode alloy.

  7. Potential improvement of polysilicon solar cells by grain boundary and intragrain diffusion of aluminum

    SciTech Connect

    Sundaresan, R.; Burk, D.E.; Fossum, J.G.

    1984-02-15

    Experimental results are presented that imply potential improvements afforded by aluminum diffusion in both bulk and thin-film polysilicon solar cells. For bulk cells, a high-temperature aluminum diffusion (alloying) is shown to increase the minority-carrier diffusion length by gettering intragrain impurities. The role of the grain boundaries in this process and the influence of a light bias on the carrier lifetime are discussed. For thin-film cells, a low-temperature aluminum diffusion is shown to substantially passivate grain boundaries and hence decrease the recombination velocity. The decrease is evaluated using electron-beam-induced-current (EBIC) measurements interpreted via numerical analysis of the underlying carrier-transport problem. The actual benefit of the grain-boundary passivation to the open-circuit voltage of a thin-film cell is discussed.

  8. Thermoelectric Coolers with Sintered Silver Interconnects

    NASA Astrophysics Data System (ADS)

    Kähler, Julian; Stranz, Andrej; Waag, Andreas; Peiner, Erwin

    2014-06-01

    The fabrication and performance of a sintered Peltier cooler (SPC) based on bismuth telluride with sintered silver interconnects are described. Miniature SPC modules with a footprint of 20 mm2 were assembled using pick-and-place pressure-assisted silver sintering at low pressure (5.5 N/mm2) and moderate temperature (250°C to 270°C). A modified flip-chip bonder combined with screen/stencil printing for paste transfer was used for the pick-and-place process, enabling high positioning accuracy, easy handling of the tiny bismuth telluride pellets, and immediate visual process control. A specific contact resistance of (1.4 ± 0.1) × 10-5 Ω cm2 was found, which is in the range of values reported for high-temperature solder interconnects of bismuth telluride pellets. The realized SPCs were evaluated from room temperature to 300°C, considerably outperforming the operating temperature range of standard commercial Peltier coolers. Temperature cycling capability was investigated from 100°C to 235°C over more than 200 h, i.e., 850 cycles, during which no degradation of module resistance or cooling performance occurred.

  9. IETI – Isogeometric Tearing and Interconnecting

    PubMed Central

    Kleiss, Stefan K.; Pechstein, Clemens; Jüttler, Bert; Tomar, Satyendra

    2012-01-01

    Finite Element Tearing and Interconnecting (FETI) methods are a powerful approach to designing solvers for large-scale problems in computational mechanics. The numerical simulation problem is subdivided into a number of independent sub-problems, which are then coupled in appropriate ways. NURBS- (Non-Uniform Rational B-spline) based isogeometric analysis (IGA) applied to complex geometries requires to represent the computational domain as a collection of several NURBS geometries. Since there is a natural decomposition of the computational domain into several subdomains, NURBS-based IGA is particularly well suited for using FETI methods. This paper proposes the new IsogEometric Tearing and Interconnecting (IETI) method, which combines the advanced solver design of FETI with the exact geometry representation of IGA. We describe the IETI framework for two classes of simple model problems (Poisson and linearized elasticity) and discuss the coupling of the subdomains along interfaces (both for matching interfaces and for interfaces with T-joints, i.e. hanging nodes). Special attention is paid to the construction of a suitable preconditioner for the iterative linear solver used for the interface problem. We report several computational experiments to demonstrate the performance of the proposed IETI method. PMID:24511167

  10. Towards energy aware optical networks and interconnects

    NASA Astrophysics Data System (ADS)

    Glesk, Ivan; Osadola, Tolulope; Idris, Siti

    2013-10-01

    In a today's world, information technology has been identified as one of the major factors driving economic prosperity. Datacenters businesses have been growing significantly in the past few years. The equipments in these datacenters need to be efficiently connected to each other and also to the outside world in order to enable effective exchange of information. This is why there is need for highly scalable, energy savvy and reliable network connectivity infrastructure that is capable of accommodating the large volume of data being exchanged at any time within the datacenter network and the outside network in general. These devices that can ensure such effective connectivity currently require large amount of energy in order to meet up with these increasing demands. In this paper, an overview of works being done towards realizing energy aware optical networks and interconnects for datacenters is presented. Also an OCDMA approach is discussed as potential multiple access technique for future optical network interconnections. We also presented some challenges that might inhibit effective implementation of the OCDMA multiplexing scheme.

  11. Interconnected ponds operation for flood hazard distribution

    NASA Astrophysics Data System (ADS)

    Putra, S. S.; Ridwan, B. W.

    2016-05-01

    The climatic anomaly, which comes with extreme rainfall, will increase the flood hazard in an area within a short period of time. The river capacity in discharging the flood is not continuous along the river stretch and sensitive to the flood peak. This paper contains the alternatives on how to locate the flood retention pond that are physically feasible to reduce the flood peak. The flood ponds were designed based on flood curve number criteria (TR-55, USDA) with the aim of rapid flood peak capturing and gradual flood retuning back to the river. As a case study, the hydrologic condition of upper Ciliwung river basin with several presumed flood pond locations was conceptually designed. A fundamental tank model that reproducing the operation of interconnected ponds was elaborated to achieve the designed flood discharge that will flows to the downstream area. The flood hazard distribution status, as the model performance criteria, will be computed within Ciliwung river reach in Manggarai Sluice Gate spot. The predicted hazard reduction with the operation of the interconnected retention area result had been bench marked with the normal flow condition.

  12. National Offshore Wind Energy Grid Interconnection Study

    SciTech Connect

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Greg; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

  13. Aspects of short-range interconnect packaging

    NASA Astrophysics Data System (ADS)

    Wohlfeld, Denis; Brenner, Karl-Heinz

    2012-01-01

    In short-range interconnect applications, one question arises frequently: When should optical solutions be chosen over electrical wiring? The answer to this question of course depends on several factors like costs, performance, reliability, availability of testing equipment and knowledge about optical technologies, and last but not least, it strongly depends on the application itself. Networking in high performance computing (HPC) is one such example. With bit rates around 10 Gbit/s per channel and cable length above 2 m, the high attenuation of electrical cables leads to a clear preference of optical or active optical cables (AOC) for most planned HPC systems. For AOCs, the electro-optical conversion is realized inside the connector housing, while for purely optical cables, the conversion is done at the edge of the board. Proceeding to 25 Gbit/s and higher, attenuation and loss of signal quality become critical. Therefore, either significantly more effort has to be spent on the electrical side, or the package for conversion has to be integrated closer to the chip, thus requiring new packaging technologies. The paper provides a state of the art overview of packaging concepts for short range interconnects, it describes the main challenges of optical package integration and illustrates new concepts and trends in this research area.

  14. Message Passing Framework for Globally Interconnected Clusters

    NASA Astrophysics Data System (ADS)

    Hafeez, M.; Asghar, S.; Malik, U. A.; Rehman, A.; Riaz, N.

    2011-12-01

    In prevailing technology trends it is apparent that the network requirements and technologies will advance in future. Therefore the need of High Performance Computing (HPC) based implementation for interconnecting clusters is comprehensible for scalability of clusters. Grid computing provides global infrastructure of interconnecting clusters consisting of dispersed computing resources over Internet. On the other hand the leading model for HPC programming is Message Passing Interface (MPI). As compared to Grid computing, MPI is better suited for solving most of the complex computational problems. MPI itself is restricted to a single cluster. It does not support message passing over the internet to use the computing resources of different clusters in an optimal way. We propose a model that provides message passing capabilities between parallel applications over the internet. The proposed model is based on Architecture for Java Universal Message Passing (A-JUMP) framework and Enterprise Service Bus (ESB) named as High Performance Computing Bus. The HPC Bus is built using ActiveMQ. HPC Bus is responsible for communication and message passing in an asynchronous manner. Asynchronous mode of communication offers an assurance for message delivery as well as a fault tolerance mechanism for message passing. The idea presented in this paper effectively utilizes wide-area intercluster networks. It also provides scheduling, dynamic resource discovery and allocation, and sub-clustering of resources for different jobs. Performance analysis and comparison study of the proposed framework with P2P-MPI are also presented in this paper.

  15. European Transmission Interconnection; Eurasian power grid

    SciTech Connect

    Posch, J. )

    1991-09-01

    Systems and philosophies perceived on a grand scale, encompassing new ideas, are often characterized as a dream. But in fact, such dreams often lead to the first step to fruitful development. This article is based on a preliminary study of the existing electrical high-tension networks of Western Europe, Eastern Europe and the Soviet Union - which, as explained herein, may be merged into a multinational energy supply system. Such a system would constitute a completely interconnected Eurasian Power Grid. The idea of a Eurasian super grid, spanning from the Atlantic to the Ural and Siberia, is not new. Various studies have been conducted by both western Europe and the Soviet Union on this topic. Our world is currently in an era of extra high voltage (EHV) and ultra high voltage (UHV) electrical systems. This translates into existing UHV lines of 1150 kV which have already been proven in successful operation. Such UHV systems are capable of transmitting thousands of megawatts over a distance of a 1000 miles. Furthermore, national boundaries are not more a hindrance than the challenge of interconnecting complete networks into an overall synchronized working system with load exchange capabilities in all directions.

  16. Method of doping interconnections for electrochemical cells

    DOEpatents

    Pal, Uday B.; Singhal, Subhash C.; Moon, David M.; Folser, George R.

    1990-01-01

    A dense, electronically conductive interconnection layer 26 is bonded on a porous, tubular, electronically conductive air electrode structure 16, optionally supported by a ceramic support 22, by (A) forming a layer of oxide particles of at least one of the metals Ca, Sr, Co, Ba or Mg on a part 24 of a first surface of the air electrode 16, (B) heating the electrode structure, (C) applying a halide vapor containing at least lanthanum halide and chromium halide to the first surface and applying a source of oxygen to a second opposite surface of the air electrode so that they contact at said first surface, to cause a reaction of the oxygen and halide and cause a dense lanthanum-chromium oxide structure to grow, from the first electrode surface, between and around the oxide particles, where the metal oxide particles get incoporated into the lanthanum-chromium oxide structure as it grows thicker with time, and the metal ions in the oxide particles diffuse into the bulk of the lanthamum-chromium oxide structure, to provide a dense, top, interconnection layer 26 on top of the air electrode 16. A solid electrolyte layer 18 can be applied to the uncovered portion of the air electrode, and a fuel electrode 20 can be applied to the solid electrolyte, to provide an electrochemical cell 10.

  17. Simulation of void formation in interconnect lines

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, Alireza; Heitzinger, Clemens; Puchner, Helmut; Badrieh, Fuad; Selberherr, Siegfried

    2003-04-01

    The predictive simulation of the formation of voids in interconnect lines is important for improving capacitance and timing in current memory cells. The cells considered are used in wireless applications such as cell phones, pagers, radios, handheld games, and GPS systems. In backend processes for memory cells, ILD (interlayer dielectric) materials and processes result in void formation during gap fill. This approach lowers the overall k-value of a given metal layer and is economically advantageous. The effect of the voids on the overall capacitive load is tremendous. In order to simulate the shape and positions of the voids and thus the overall capacitance, the topography simulator ELSA (Enhanced Level Set Applications) has been developed which consists of three modules, a level set module, a radiosity module, and a surface reaction module. The deposition process considered is deposition of silicon nitride. Test structures of interconnect lines of memory cells were fabricated and several SEM images thereof were used to validate the corresponding simulations.

  18. Digital High Speed Interconnects: A Study Of The Optical Alternative

    NASA Astrophysics Data System (ADS)

    Hartman, Davis H.

    1986-10-01

    The use of optics as an alternative method for achieving very high speed (10 Gb/s > bit rate > 500 Mb/s) electrical interconnects is the subject of this paper. Optical interconnect media considered include plastic channel waveguides, glass waveguides, fibers, and free-space interconnects. Typical interconnection distances considered are inches or less. The problems of cou-pling and interconnecting and their overall effect on system power budgets are also discussed. As a means of quantifying the results, link budgets for a 565 Mb/s, a 2.3 Gb/s, and a 4.6 Gb/s interconnect scenario are made. Multipoint as well as single-point-to-single-point situations are considered.

  19. Reconfigurable optical interconnections via dynamic computer-generated holograms

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor); Zhou, Shaomin (Inventor)

    1994-01-01

    A system is proposed for optically providing one-to-many irregular interconnections, and strength-adjustable many-to-many irregular interconnections which may be provided with strengths (weights) w(sub ij) using multiple laser beams which address multiple holograms and means for combining the beams modified by the holograms to form multiple interconnections, such as a cross-bar switching network. The optical means for interconnection is based on entering a series of complex computer-generated holograms on an electrically addressed spatial light modulator for real-time reconfigurations, thus providing flexibility for interconnection networks for largescale practical use. By employing multiple sources and holograms, the number of interconnection patterns achieved is increased greatly.

  20. Reconfigurable Optical Interconnections Via Dynamic Computer-Generated Holograms

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor); Zhou, Shao-Min (Inventor)

    1996-01-01

    A system is presented for optically providing one-to-many irregular interconnections, and strength-adjustable many-to-many irregular interconnections which may be provided with strengths (weights) w(sub ij) using multiple laser beams which address multiple holograms and means for combining the beams modified by the holograms to form multiple interconnections, such as a cross-bar switching network. The optical means for interconnection is based on entering a series of complex computer-generated holograms on an electrically addressed spatial light modulator for real-time reconfigurations, thus providing flexibility for interconnection networks for large-scale practical use. By employing multiple sources and holograms, the number of interconnection patterns achieved is increased greatly.

  1. Aluminum permanganate battery

    SciTech Connect

    Marsh, C.; Licht, S.L.

    1993-11-30

    A battery is provided comprising an aluminum anode, an aqueous solution of permanganate as the cathodic species and a second electrode capable of reducing permanganate. Such a battery system is characterized by its high energy density and low polarization losses when operating at high temperatures in a strong caustic electrolyte, i.e., high concentration of hydroxyl ions. A variety of anode and electrocatalyst materials are suitable for the efficient oxidation-reduction process and are elucidated.

  2. Aluminum microstructures on anodic alumina for aluminum wiring boards.

    PubMed

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki

    2010-03-01

    The paper demonstrates simple methods for the fabrication of aluminum microstructures on the anodic oxide film of aluminum. The aluminum sheets were first engraved (patterned) either by laser beam or by embossing to form deep grooves on the surface. One side of the sheet was then anodized, blocking the other side by using polymer mask to form the anodic alumina. Because of the lower thickness at the bottom part of the grooves, the part was completely anodized before the complete oxidation of the other parts. Such selectively complete anodizing resulted in the patterns of metallic aluminum on anodic alumina. Using the technique, we fabricated microstructures such as line patterns and a simple wiring circuit-board-like structure on the anodic alumina. The aluminum microstructures fabricated by the techniques were embedded in anodic alumina/aluminum sheet, and this technique is promising for applications in electronic packaging and devices. PMID:20356280

  3. Application of optical interconnect technology at Lawrence Livermore National Laboratory

    SciTech Connect

    Haigh, R.E.; Lowry, M.E.; McCammon, K.; Hills, R.; Mitchell, R.; Sweider, D.

    1995-08-10

    Optical interconnects will be required to meet the information bandwidth requirements of future communication and computing applications. At Lawrence Livermore National Laboratory, the authors are involved in applying optical interconnect technologies in two distinct application areas: Multi-Gigabit/sec Computer Backplanes and Gigabit/sec Wide Area Networking using Wavelength Division Multiplexing. In this paper, the authors discuss their efforts to integrate optical interconnect technologies into prototype computing and communication systems.

  4. Probability density function modeling for sub-powered interconnects

    NASA Astrophysics Data System (ADS)

    Pater, Flavius; Amaricǎi, Alexandru

    2016-06-01

    This paper proposes three mathematical models for reliability probability density function modeling the interconnect supplied at sub-threshold voltages: spline curve approximations, Gaussian models,and sine interpolation. The proposed analysis aims at determining the most appropriate fitting for the switching delay - probability of correct switching for sub-powered interconnects. We compare the three mathematical models with the Monte-Carlo simulations of interconnects for 45 nm CMOS technology supplied at 0.25V.

  5. A charge transport study in diamond, surface passivated by high-k dielectric oxides

    SciTech Connect

    Kovi, Kiran Kumar Majdi, Saman; Gabrysch, Markus; Isberg, Jan

    2014-11-17

    The recent progress in the growth of high-quality single-crystalline diamond films has sparked interest in the realization of efficient diamond power electronic devices. However, finding a suitable passivation is essential to improve the reliability and electrical performance of devices. In the current work, high-k dielectric materials such as aluminum oxide and hafnium oxide were deposited by atomic layer deposition on intrinsic diamond as a surface passivation layer. The hole transport properties in the diamond films were evaluated and compared to unpassivated films using the lateral time-of-flight technique. An enhancement of the near surface hole mobility in diamond films of up to 27% is observed when using aluminum oxide passivation.

  6. Optical passive athermalization for infrared zoom system

    NASA Astrophysics Data System (ADS)

    Li, Shenghui; Yang, Changcheng; Zheng, Jia; Lan, Ning; Xiong, Tao; Li, Yong

    2007-12-01

    In an infrared zoom system, it is difficult to obtain the best thermal compensation for all effective focal length (EFL) simultaneously by moving a single lens group. According to the principle of optical passive athermalization, the equations of focal length, achromatization and athermalization of both long and short EFL are established respectively. By analyzing the thermal aberration value relations between long EFL and short EFL, the thermal aberration values of the switching groups for short EFL athermalization are calculated. Firstly, the athermalization of long EFL is designed. Then through reasonable optical materials matching of the switching groups, the short EFL achieves athermalization as well. In this paper, a re-imaging switching zoom system is designed. It has a relative aperture of f/4.0, 100% cold shield efficiency, the EFL of 180mm/30mm at 3.7-4.8μm. The long EFL includes four refractive elements and one hybrid refractive/diffractive element. The switching groups of short EFL have two types, one is composed of four refractive elements, and the other is composed of two refractive elements and one hybrid refractive/diffractive element. Both of the short EFL achieve athermalization. With the aluminum materials of system structures, the zoom system achieves optical passive athermalization. It has the diffraction limited image quality and stable image plane from -30°C to 70°C.

  7. Oscillations in interconnected complex networks under intentional attack

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Ping; Xia, Yongxiang; Tan, Fei

    2016-01-01

    Many real-world networks are interconnected with each other. In this paper, we study the traffic dynamics in interconnected complex networks under an intentional attack. We find that with the shortest time delay routing strategy, the traffic dynamics can show the stable state, periodic, quasi-periodic and chaotic oscillations, when the capacity redundancy parameter changes. Moreover, compared with isolated complex networks, oscillations always take place in interconnected networks more easily. Thirdly, in interconnected networks, oscillations are affected strongly by the coupling probability and coupling preference.

  8. Reaction-diffusion processes on interconnected scale-free networks

    NASA Astrophysics Data System (ADS)

    Garas, Antonios

    2015-08-01

    We study the two-particle annihilation reaction A +B →∅ on interconnected scale-free networks, using different interconnecting strategies. We explore how the mixing of particles and the process evolution are influenced by the number of interconnecting links, by their functional properties, and by the interconnectivity strategies in use. We show that the reaction rates on this system are faster than what was observed in other topologies, due to the better particle mixing that suppresses the segregation effect, in line with previous studies performed on single scale-free networks.

  9. Aluminum Carbothermic Technology

    SciTech Connect

    Bruno, Marshall J.

    2005-03-31

    This report documents the non-proprietary research and development conducted on the Aluminum Carbothermic Technology (ACT) project from contract inception on July 01, 2000 to termination on December 31, 2004. The objectives of the program were to demonstrate the technical and economic feasibility of a new carbothermic process for producing commercial grade aluminum, designated as the ''Advanced Reactor Process'' (ARP). The scope of the program ranged from fundamental research through small scale laboratory experiments (65 kW power input) to larger scale test modules at up to 1600 kW power input. The tasks included work on four components of the process, Stages 1 and 2 of the reactor, vapor recovery and metal alloy decarbonization; development of computer models; and economic analyses of capital and operating costs. Justification for developing a new, carbothermic route to aluminum production is defined by the potential benefits in reduced energy, lower costs and more favorable environmental characteristics than the conventional Hall-Heroult process presently used by the industry. The estimated metrics for these advantages include energy rates at approximately 10 kWh/kg Al (versus over 13 kWh/kg Al for Hall-Heroult), capital costs as low as $1250 per MTY (versus 4,000 per MTY for Hall-Heroult), operating cost reductions of over 10%, and up to 37% reduction in CO2 emissions for fossil-fuel power plants. Realization of these benefits would be critical to sustaining the US aluminum industries position as a global leader in primary aluminum production. One very attractive incentive for ARP is its perceived ability to cost effectively produce metal over a range of smelter sizes, not feasible for Hall-Heroult plants which must be large, 240,000 TPY or more, to be economical. Lower capacity stand alone carbothermic smelters could be utilized to supply molten metal at fabrication facilities similar to the mini-mill concept employed by the steel industry. Major

  10. Compact Interconnection Networks Based on Quantum Dots

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Toomarian, Nikzad; Modarress, Katayoon; Spotnitz, Matthew

    2003-01-01

    Architectures that would exploit the distinct characteristics of quantum-dot cellular automata (QCA) have been proposed for digital communication networks that connect advanced digital computing circuits. In comparison with networks of wires in conventional very-large-scale integrated (VLSI) circuitry, the networks according to the proposed architectures would be more compact. The proposed architectures would make it possible to implement complex interconnection schemes that are required for some advanced parallel-computing algorithms and that are difficult (and in many cases impractical) to implement in VLSI circuitry. The difficulty of implementation in VLSI and the major potential advantage afforded by QCA were described previously in Implementing Permutation Matrices by Use of Quantum Dots (NPO-20801), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 42. To recapitulate: Wherever two wires in a conventional VLSI circuit cross each other and are required not to be in electrical contact with each other, there must be a layer of electrical insulation between them. This, in turn, makes it necessary to resort to a noncoplanar and possibly a multilayer design, which can be complex, expensive, and even impractical. As a result, much of the cost of designing VLSI circuits is associated with minimization of data routing and assignment of layers to minimize crossing of wires. Heretofore, these considerations have impeded the development of VLSI circuitry to implement complex, advanced interconnection schemes. On the other hand, with suitable design and under suitable operating conditions, QCA-based signal paths can be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes. The proposed architectures require two advances in QCA-based circuitry beyond basic QCA-based binary

  11. Extracting aluminum from dross tailings

    NASA Astrophysics Data System (ADS)

    Amer, A. M.

    2002-11-01

    Aluminum dross tailings, an industrial waste, from the Egyptian Aluminium Company (Egyptalum) was used to produce two types of alums: aluminum-sulfate alum [itAl2(SO4)3.12H2O] and ammonium-aluminum alum [ (NH 4)2SO4AL2(SO4)3.24H2O]. This was carried out in two processes. The first process is leaching the impurities using diluted H2SO4 with different solid/liquid ratios at different temperatures to dissolve the impurities present in the starting material in the form of solute sulfates. The second process is the extraction of aluminum (as aluminum sulfate) from the purifi ed aluminum dross tailings thus produced. The effects of temperature, time of reaction, and acid concentration on leaching and extraction processes were studied. The product alums were analyzed using x-ray diffraction and thermal analysis techniques.

  12. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  13. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  14. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  15. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  16. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  17. Quasicrystalline particulate reinforced aluminum composite

    SciTech Connect

    Anderson, I.E.; Biner, S.B.; Sordelet, D.J.; Unal, O.

    1997-07-01

    Particulate reinforced aluminum and aluminum alloy composites are rapidly emerging as new commercial materials for aerospace, automotive, electronic packaging and other high performance applications. However, their low processing ductility and difficulty in recyclability have been the key concern. In this study, two composite systems having the same aluminum alloy matrix, one reinforced with quasicrystals and the other reinforced with the conventional SiC reinforcements were produced with identical processing routes. Their processing characteristics and tensile mechanical properties were compared.

  18. Cathodic phenomena in aluminum electrowinning

    NASA Astrophysics Data System (ADS)

    Bouteillon, J.; Poignet, J. C.; Rameau, J. J.

    1993-02-01

    Although aluminum is one of the world's highest production-volume primary metals, it is particularly costly to produce for a variety of factors, not the least of which are the expenses associated with electrolytic reduction. Based on the scale of global aluminum processing, even minor improvements in the electrowinning technology can result in significant savings of resources. Thus, from this perspective, the following reviews recent studies of cathodic phenomena in aluminum electrowinning.

  19. Passive broadband acoustic thermometry

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Belyaev, R. V.; Klin'shov, V. V.; Mansfel'd, A. D.; Subochev, P. V.

    2016-04-01

    The 1D internal (core) temperature profiles for the model object (plasticine) and the human hand are reconstructed using the passive acoustothermometric broadband probing data. Thermal acoustic radiation is detected by a broadband (0.8-3.5 MHz) acoustic radiometer. The temperature distribution is reconstructed using a priori information corresponding to the experimental conditions. The temperature distribution for the heated model object is assumed to be monotonic. For the hand, we assume that the temperature distribution satisfies the heat-conduction equation taking into account the blood flow. The average error of reconstruction determined for plasticine from the results of independent temperature measurements is 0.6 K for a measuring time of 25 s. The reconstructed value of the core temperature of the hand (36°C) generally corresponds to physiological data. The obtained results make it possible to use passive broadband acoustic probing for measuring the core temperatures in medical procedures associated with heating of human organism tissues.

  20. Passivated niobium cavities

    DOEpatents

    Myneni, Ganapati Rao; Hjorvarsson, Bjorgvin; Ciovati, Gianluigi

    2006-12-19

    A niobium cavity exhibiting high quality factors at high gradients is provided by treating a niobium cavity through a process comprising: 1) removing surface oxides by plasma etching or a similar process; 2) removing hydrogen or other gases absorbed in the bulk niobium by high temperature treatment of the cavity under ultra high vacuum to achieve hydrogen outgassing; and 3) assuring the long term chemical stability of the niobium cavity by applying a passivating layer of a superconducting material having a superconducting transition temperature higher than niobium thereby reducing losses from electron (cooper pair) scattering in the near surface region of the interior of the niobium cavity. According to a preferred embodiment, the passivating layer comprises niobium nitride (NbN) applied by reactive sputtering.

  1. High throughput network for multiprocessor interconnections

    NASA Astrophysics Data System (ADS)

    Raatikainen, Pertti; Zidbeck, Juha

    1993-05-01

    Multiprocessor architectures are needed to support modern broadband applications, since traditional bus structures are not capable of providing high throughput. New bus structures are needed, especially in the area of network components and terminals. A study to find an efficient and cost effective interconnection topology for the future high speed products is presented. The most common bus topologies are introduced, and their characteristics are estimated to decide which one of them offers best performance and lowest implementation cost. The ring topology is chosen to be studied in more detail. Four competing bus access schemes for the high throughput ring are introduced as well as simulation models for each of them. Using transfer delay and throughput results, as well as keeping the implementation point of view in mind, the best candidate is selected to be studied and experimented in the succeeding research project.

  2. SIDES - Segment Interconnect Diagnostic Expert System

    SciTech Connect

    Booth, A.W.; Forster, R.; Gustafsson, L.; Ho, N.

    1989-02-01

    It is well known that the FASTBUS Segment Interconnect (SI) provides a communication path between two otherwise independent, asynchronous bus segments. The SI is probably the most important module in any FASTBUS data acquisition network since it's failure to function can cause whole segments of the network to be inaccessible and sometimes inoperable. This paper describes SIDES, an intelligent program designed to diagnose SI's both in situ as they operate in a data acquisition network, and in the laboratory in an acceptance/repair environment. The paper discusses important issues such as knowledge acquisition; extracting knowledge from human experts and other knowledge sources. SIDES can benefit high energy physics experiments, where SI problems can be diagnosed and solved more quickly. Equipment pool technicians can also benefit from SIDES, first by decreasing the number of SI's erroneously turned in for repair, and secondly as SIDES acts as an intelligent assistant to the technician in the diagnosis and repair process.

  3. Interconnection capacitance models for VLSI circuits

    NASA Astrophysics Data System (ADS)

    Wong, Shyh-Chyi; Liu, Patrick S.; Ru, Jien-Wen; Lin, Shi-Tron

    1998-06-01

    A new set of capacitance models is developed for delay estimation of VLSI interconnections. The set of models is derived for five representative wiring structures, with their combinations covering arbitrary VLSI layouts. A semi-empirical approach is adopted to deal with complicated geometry nature in VLSI and to allow for closed-form capacitance formulas to be developed to provide direct observation of capacitance variation vs process parameters as well as computational efficiency for circuit simulation. The formulas are given explicitly in terms of wire width, wire thickness, dielectric thickness and inter-wire spacing. The models show good agreement with numerical solutions from RAPHAEL and measurement data of fabricated capacitance test structures. The models are further applied and validated on a ring oscillator. It is shown that the frequency of the ring oscillator obtained from HSPICE simulation with our models agrees well with the bench measurement.

  4. Virtual interconnection platform initiative scoping study

    SciTech Connect

    Liu, Yong; Kou, Gefei; Pan, Zuohong; Liu, Yilu; King Jr., Thomas J.

    2016-01-01

    Due to security and liability concerns, the research community has limited access to realistic large-scale power grid models to test and validate new operation and control methodologies. It is also difficult for industry to evaluate the relative value of competing new tools without a common platform for comparison. This report proposes to develop a large-scale virtual power grid model that retains basic features and represents future trends of major U.S. electric interconnections. This model will include realistic power flow and dynamics information as well as a relevant geospatial distribution of assets. This model will be made widely available to the research community for various power system stability and control studies and can be used as a common platform for comparing the efficacies of various new technologies.

  5. Interconnecting conductively coated coverslides. [for ISEE-1

    NASA Technical Reports Server (NTRS)

    Gaddy, E. M.; Bass, J. A.

    1978-01-01

    The International Sun Earth Explorer-1 has the requirement that the entire outer surface of the spacecraft be conductive. A transparent coating of indium oxide was deposited for that reason on the satellite's solar cell coverglasses in order to give them a conductive surface, and the surfaces were interconnected to ground. This paper examines the interconnector attachment problem. On the ISEE-1, wires were bonded to the coverglasses by using a conductive epoxy; the resistance of these bonds increased dramatically with time. A program was initiated to find the functional cause of the resistance increase and to flight-qualify an alternative method of bonding. It was found the tests initiated were insufficient to find the cause of resistance increase and that an alternative solution of using indium solder is acceptable for bonding wires directly to indium oxide.

  6. Interconnecting compressors control coalbed gas production

    SciTech Connect

    Payton, R.; Niederhofer, J. )

    1992-10-05

    This paper reports that centralized compressors afford Taurus Exploration Inc.'s coalbed gas operations optimum control of gas production. Unlike satellite stations, the centralized system allows methane gas to e shifted from station to station via the interconnecting low-pressure pipeline network. The operations area encompasses approximately 40,000 acres, about 40 miles southwest of Birmingham, Ala. The project includes about 250-miles of low-pressure gas flow lines to almost 400 wells. The centralized system is less costly than a satellite station to build and operate. Unlike a satellite station that requires each compressor to have a complete set of ancillary equipment, the centralized system requires only one suction manifold, one dehydration setup, and one metering facility for every five compressor sets.

  7. Microfabricated structures with electrical isolation and interconnections

    NASA Technical Reports Server (NTRS)

    Clark, William A. (Inventor); Juneau, Thor N. (Inventor); Roessig, Allen W. (Inventor); Lemkin, Mark A. (Inventor)

    2001-01-01

    The invention is directed to a microfabricated device. The device includes a substrate that is etched to define mechanical structures at least some of which are anchored laterally to the remainder of the substrate. Electrical isolation at points where mechanical structures are attached to the substrate is provided by filled isolation trenches. Filled trenches may also be used to electrically isolate structure elements from each other at points where mechanical attachment of structure elements is desired. The performance of microelectromechanical devices is improved by 1) having a high-aspect-ratio between vertical and lateral dimensions of the mechanical elements, 2) integrating electronics on the same substrate as the mechanical elements, 3) good electrical isolation among mechanical elements and circuits except where electrical interconnection is desired.

  8. Passively actuated valve

    SciTech Connect

    Modro, S. Michael; Ougouag, Abderrafi M.

    2005-09-20

    A passively actuated valve for isolating a high pressure zone from a low pressure zone and discontinuing the isolation when the pressure in the high pressure zone drops below a preset threshold. If the pressure in the high pressure zone drops below the preset threshold, the valve opens and allows flow from the high pressure zone to the low pressure zone. The valve remains open allowing pressure equalization and back-flow should a pressure inversion between the two pressure zone occur.

  9. Passive fetal monitoring sensor

    NASA Astrophysics Data System (ADS)

    Zuckerwar, Allan J.; Hall, Earl T.; Baker, Donald A.; Bryant, Timothy D.

    1992-08-01

    An ambulatory, passive sensor for use in a fetal monitoring system is discussed. The invention is comprised of a piezoelectric polymer film, combined with a metallic mounting plate fastened to a belt, and electrically connected to a signal processing unit by means of a shielded cable. The purpose of the sensor is to receive pressure pulses emitted by a fetus inside an expectant mother. Additionally, the monitor will filter out pressure pulses arising from other sources, such as the maternal heart.

  10. Passive fetal monitoring sensor

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Hall, Earl T. (Inventor); Baker, Donald A. (Inventor); Bryant, Timothy D. (Inventor)

    1992-01-01

    An ambulatory, passive sensor for use in a fetal monitoring system is discussed. The invention is comprised of a piezoelectric polymer film, combined with a metallic mounting plate fastened to a belt, and electrically connected to a signal processing unit by means of a shielded cable. The purpose of the sensor is to receive pressure pulses emitted by a fetus inside an expectant mother. Additionally, the monitor will filter out pressure pulses arising from other sources, such as the maternal heart.

  11. Laser welding of aluminum alloys

    SciTech Connect

    Leong, K.H.; Sabo, K.R.; Sanders, P.G.; Spawr, W.J.

    1997-03-01

    Recent interest in reducing the weight of automobiles to increase fuel mileage has focused attention on the use of aluminum and associated joining technologies. Laser beam welding is one of the more promising methods for high speed welding of aluminum. Consequently, substantial effort has been expended in attempting to develop a robust laser beam welding process. Early results have not been very consistent in the process requirements but more definitive data has been produced recently. This paper reviews the process parameters needed to obtain consistent laser welds on 5,000 series aluminum alloys and discusses the research necessary to make laser processing of aluminum a reality for automotive applications.

  12. Mineral of the month: aluminum

    USGS Publications Warehouse

    Plunkert, Patricia A.

    2005-01-01

    Aluminum is the second most abundant metallic element in Earth’s crust after silicon. Even so, it is a comparatively new industrial metal that has been produced in commercial quantities for little more than 100 years. Aluminum is lightweight, ductile, malleable and corrosion resistant, and is a good conductor of heat and electricity. Weighing about one-third as much as steel or copper per unit of volume, aluminum is used more than any other metal except iron. Aluminum can be fabricated into desired forms and shapes by every major metalworking technique to add to its versatility.

  13. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOEpatents

    Jansen, Kai W.; Maley, Nagi

    2000-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  14. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOEpatents

    Jansen, Kai W.; Maley, Nagi

    2001-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  15. Fundamental studies on electrochemical production of dendrite-free aluminum and titanium-aluminum alloys

    NASA Astrophysics Data System (ADS)

    Pradhan, Debabrata

    -Al alloys were determined. The Ti-Al alloys containing about 13-27 atom % Ti were produced using both electrolytes. The current efficiency of AlCl3-BMIC was varies between 79-87%. But lower current efficiency (25-38%) was obtained for AlCl3-BMIC-TiCl4 electrolytes due to the formation of TiCl3 passive layer on the electrodes. To increase the productivity, constant current method (160-210 A/m2) was implemented. This fundamental study on low temperature production of dendrite-free aluminum and Al-Ti alloys is not only efficient but also opens a novel route in aluminum and titanium process metallurgy.

  16. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1982-04-01

    Metallic aluminum may be produced by the electrolysis of Al/sub 2/S/sub 3/ at 700 to 800/sup 0/C in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  17. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  18. Critical properties of aluminum.

    PubMed

    Bhatt, Divesh; Jasper, Ahren W; Schultz, Nathan E; Siepmann, J Ilja; Truhlar, Donald G

    2006-04-01

    Gibbs ensemble Monte Carlo calculations are performed using a validated embedded-atom potential to obtain the vapor-liquid coexistence curve for elemental aluminum in good agreement with available experimental data up to the boiling point. These calculations are then extended to make a reliable prediction of the critical temperature, pressure, and density of Al, which have previously been known only with very large uncertainties. This demonstrates the ability of modern simulations to predict fundamental physical properties that are extremely difficult to measure directly. PMID:16568986

  19. ENVIRONMENTAL-HUMAN HEALTH INTERCONNECTIONS: A WORKSHOP REPORT

    EPA Science Inventory

    A Pellston Workshop jointly sponsored by SETAC and SOT to discuss this topic of "Interconnections" was held in June, 2000 in Snowbird, Utah. This workshop was motivated by a deep concern shared by many human health, environmental, and social scientists for the interconnections, ...

  20. Massive parallel optical systems with nearest-neighbor interconnections

    NASA Astrophysics Data System (ADS)

    Giglmayr, Josef

    1995-08-01

    Two basic architectures are deduced from 1D multistage architectures with nearest-neighbor (NN) interconnection of switches and extended into 2D architectures by a mathematical transformation. These two architectures are the Spanke-Benes (SB) network and the NN multistage interconnection network of switches (NN-MIN). The properties and applications of the two 2D architectures are described.

  1. Updating Small Generator Interconnection Procedures for New Market Conditions

    SciTech Connect

    Coddington, M.; Fox, K.; Stanfield, S.; Varnado, L.; Culley, T.; Sheehan, M.

    2012-12-01

    Federal and state regulators are faced with the challenge of keeping interconnection procedures updated against a backdrop of evolving technology, new codes and standards, and considerably transformed market conditions. This report is intended to educate policymakers and stakeholders on beneficial reforms that will keep interconnection processes efficient and cost-effective while maintaining a safe and reliable power system.

  2. 14 CFR 25.701 - Flap and slat interconnection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... sides of the plane of symmetry must be synchronized by a mechanical interconnection or approved... engines on one side of the plane of symmetry inoperative and the remaining engines at takeoff power. (c... resulting when interconnected flap or slat surfaces on one side of the plane of symmetry are jammed...

  3. Determining the Utility Value of Water-Supply Interconnections.

    ERIC Educational Resources Information Center

    Hardman, James L.; Cheremisinoff, Paul N.

    1979-01-01

    This article is the third in a series which discusses a mathematical methodology for evaluating interconnections of water supply systems. The model can be used to analyze the carrying capacity of proposed links or predict the impact of abandoning interconnections. (AS)

  4. Computer Network Interconnection: Problems and Prospects. Computer Science & Technology Series.

    ERIC Educational Resources Information Center

    Cotton, Ira W.

    This report examines the current situation regarding the interconnection of computer networks, especially packet switched networks (PSNs). The emphasis is on idntifying the barriers to interconnection and on surveying approaches to a solution, rather than recommending any single course of action. Sufficient organizational and technical background…

  5. Solar-cell interconnect design for terrestrial photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1984-01-01

    Useful solar cell interconnect reliability design and life prediction algorithms are presented, together with experimental data indicating that the classical strain cycle (fatigue) curve for the interconnect material does not account for the statistical scatter that is required in reliability predictions. This shortcoming is presently addressed by fitting a functional form to experimental cumulative interconnect failure rate data, which thereby yields statistical fatigue curves enabling not only the prediction of cumulative interconnect failures during the design life of an array field, but also the quantitative interpretation of data from accelerated thermal cycling tests. Optimal interconnect cost reliability design algorithms are also derived which may allow the minimization of energy cost over the design life of the array field.

  6. Clad metals, roll bonding and their applications for SOFC interconnects

    NASA Astrophysics Data System (ADS)

    Chen, Lichun; Yang, Zhenguo; Jha, Bijendra; Xia, Guanguang; Stevenson, Jeffry W.

    Metallic interconnects have been becoming an increasingly interesting topic in the development in intermediate temperature solid oxide fuel cells (SOFC). High temperature oxidation resistant alloys are currently considered as candidate materials. Among these alloys however, different groups of alloys demonstrate different advantages and disadvantages, and few if any can completely satisfy the stringent requirements for the application. To integrate the advantages and avoid the disadvantages of different groups of alloys, clad metal has been proposed for SOFC interconnect applications and interconnect structures. This paper gives a brief overview of the cladding approach and its applications, and discuss the viability of this technology to fabricate the metallic layered-structure interconnects. To examine the feasibility of this approach, the austenitic Ni-base alloy Haynes 230 and the ferritic stainless steel AL 453 were selected as examples and manufactured into a clad metal. Its suitability as an interconnect construction material was investigated.

  7. Clad Metals, Roll Bonding and their Applications for SOFC Interconnects

    SciTech Connect

    Chen, L.; Yang, Zhenguo; Jha, B.; Xia, Guanguang; Stevenson, Jeffry W.

    2005-12-01

    High temperature oxidation resistant alloys are currently considered as candidate materials for construction of interconnects in intermediate temperature SOFCs. Among these alloys however, different groups of alloys demonstrate different advantages and disadvantages for the interconnect applications, and few if any can completely satisfied the stringent requirements for the applications. To integrate the advantages and avoid the disadvantages of different groups of alloys, cladding has been proposed as the approach to fabricate metallic layered interconnect structures. To examine the feasibility of this approach, the austenitic Ni-base alloy Haynes 230 and the ferritic stainless steel AL453 were selected as examples and manufactured into a clad metal. It’s suitability as interconnect construction materials were investigated. This paper will give a brief overview of the cladding approach and discuss the viability of this technology to fabricate the metallic layered-structure interconnects.

  8. Clad metals by roll bonding for SOFC interconnects

    SciTech Connect

    Chen, L.; Jha, B; Yang, Z Gary; Xia, Gordon; Stevenson, Jeffry W.; Singh, Prabhakar

    2006-08-01

    Metallic interconnects have been becoming an increasingly interesting topic in the development in intermediate temperature solid oxide fuel cells (SOFC). High temperature oxidation resistant alloys are currently considered as candidate materials. Among these alloys however, different groups of alloys demonstrate different advantages and disadvantages, and few if any can completely satisfy the stringent requirements for the application. To integrate the advantages and avoid the disadvantages of different groups of alloys, clad metal has been proposed for SOFC interconnect applications and interconnect structures. This paper gives a brief overview of the cladding approach and its applications, and discuss the viability of this technology to fabricate the metallic layered-structure interconnects. To examine the feasibility of this approach, the austenitic Ni-base alloy Haynes 230 and the ferritic stainless steel AL 453 were selected as examples and manufactured into a clad metal. Its suitability as an interconnect construction material was investigated.

  9. Solid-state energy storage module employing integrated interconnect board

    DOEpatents

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2004-09-28

    An electrochemical energy storage device includes a number of solid-state thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  10. Solid-state energy storage module employing integrated interconnect board

    DOEpatents

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2003-11-04

    The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. Fuses and various electrical and electromechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  11. Solar-cell interconnect design for terrestrial photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1984-11-01

    Useful solar cell interconnect reliability design and life prediction algorithms are presented, together with experimental data indicating that the classical strain cycle (fatigue) curve for the interconnect material does not account for the statistical scatter that is required in reliability predictions. This shortcoming is presently addressed by fitting a functional form to experimental cumulative interconnect failure rate data, which thereby yields statistical fatigue curves enabling not only the prediction of cumulative interconnect failures during the design life of an array field, but also the quantitative interpretation of data from accelerated thermal cycling tests. Optimal interconnect cost reliability design algorithms are also derived which may allow the minimization of energy cost over the design life of the array field.

  12. , Analysis of U.S. Net Metering and Interconnection Policy

    SciTech Connect

    Haynes, Rusty; Cook, Chris

    2006-07-01

    Historically, the absence of interconnection standards has been one of the primary barriers to the deployment of distributed generation (DG) in the United States. Although significant progress in the development of interconnection standards was achieved at both the federal and state levels in 2005, interconnection policy and net-metering policy continue to confound regulators, lawmakers, DG businesses, clean-energy advocates and consumers. For this reason it is critical to keep track of developments related to these issues. The North Carolina Solar Center (NCSC) is home to two Interstate Renewable Energy Council (IREC) projects -- the National Interconnection Project and the Database of State Incentives for Renewable Energy (DSIRE). This paper will present the major federal and state level policy developments in interconnection and net metering in 2005 and early 2006. It will also present conclusions based an analysis of data collected by these two projects.

  13. Fuel cell electrode interconnect contact material encapsulation and method

    DOEpatents

    Derose, Anthony J.; Haltiner, Jr., Karl J.; Gudyka, Russell A.; Bonadies, Joseph V.; Silvis, Thomas W.

    2016-05-31

    A fuel cell stack includes a plurality of fuel cell cassettes each including a fuel cell with an anode and a cathode. Each fuel cell cassette also includes an electrode interconnect adjacent to the anode or the cathode for providing electrical communication between an adjacent fuel cell cassette and the anode or the cathode. The interconnect includes a plurality of electrode interconnect protrusions defining a flow passage along the anode or the cathode for communicating oxidant or fuel to the anode or the cathode. An electrically conductive material is disposed between at least one of the electrode interconnect protrusions and the anode or the cathode in order to provide a stable electrical contact between the electrode interconnect and the anode or cathode. An encapsulating arrangement segregates the electrically conductive material from the flow passage thereby, preventing volatilization of the electrically conductive material in use of the fuel cell stack.

  14. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    SciTech Connect

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  15. Energy and water in the Western and Texas interconnects.

    SciTech Connect

    Tidwell, Vincent Carroll

    2010-08-01

    The Department of Energy's Office of Electricity has initiated a $60M program to assist the electric industry in interconnection-level analysis and planning. The objective of this effort is to facilitate the development or strengthening of capabilities in each of the three interconnections serving the lower 48 states of the United States, to prepare analyses of transmission requirements under a broad range of alternative futures and develop long-term interconnection-wide transmission expansion plans. The interconnections are the Western Interconnection, the Eastern Interconnection, and the Texas Interconnection. One element of this program address the support and development of an integrated energy-water Decision Support System (DSS) that will enable planners in the Western and Texas Interconnections to analyze the potential implications of water stress for transmission and resource planning (the Eastern Interconnection is not participating in this element). Specific objectives include: (1) Develop an integrated Energy-Water Decision Support System (DSS) that will enable planners in the Western and Texas Interconnections to analyze the potential implications of water stress for transmission and resource planning. (2) Pursue the formulation and development of the Energy-Water DSS through a strongly collaborative process between members of this proposal team and the Western Electricity Coordinating Council (WECC), Western Governors Association (WGA), the Electric Reliability Council of Texas (ERCOT) and their associated stakeholder teams. (3) Exercise the Energy-Water DSS to investigate water stress implications of the transmission planning scenarios put forward by WECC, WGA, and ERCOT. The goals of this project are: (1) Develop an integrated Energy-Water Decision Support System (DSS) that will enable planners to analyze the potential implications of water stress for transmission and resource planning. (2) Pursue the formulation and development of the Energy

  16. Aluminum Nanoholes for Optical Biosensing.

    PubMed

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor; Herranz, Sonia; Urraca, Javier; Moreno-Bondi, María Cruz; Avella-Oliver, Miquel; Maquieira, Ángel; Puchades, Rosa

    2015-01-01

    Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation--which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports--the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs. PMID:26184330

  17. The Benefits of Aluminum Windows.

    ERIC Educational Resources Information Center

    Goyal, R. C.

    2002-01-01

    Discusses benefits of aluminum windows for college construction and renovation projects, including that aluminum is the most successfully recycled material, that it meets architectural glass deflection standards, that it has positive thermal energy performance, and that it is a preferred exterior surface. (EV)

  18. Primary Aluminum Plants Worldwide - 1998

    USGS Publications Warehouse

    1999-01-01

    The 1990 U.S. Bureau of Mines publication, Primary Aluminum Plants Worldwide, has been updated and is now available. The 1998 USGS edition of Primary Aluminum Plants Worldwide is published in two parts. Part I—Detail contains information on individual primary smelter capacity, location, ownership, sources of energy, and other miscellaneous information. Part II—Summary summarizes the capacity data by country

  19. Lost-Soap Aluminum Casting.

    ERIC Educational Resources Information Center

    Mihalow, Paula

    1980-01-01

    Lost-wax casting in sterling silver is a costly experience for the average high school student. However, this jewelry process can be learned at no cost if scrap aluminum is used instead of silver, and soap bars are used instead of wax. This lost-soap aluminum casting process is described. (Author/KC)

  20. Boron carbide-aluminum cermets

    SciTech Connect

    Halverson, D.C.

    1986-09-03

    We have developed boron carbide-aluminum cermets by means of thermodynamic, kinetic, and processing studies. Our research indicates that boron carbide-aluminum cermets offer ''tailorable'' microstructures with designable properties through process control. This new class of cermets has the potential to become a very important material with wide industrial applications.

  1. Aluminum Nanoholes for Optical Biosensing

    PubMed Central

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor; Herranz, Sonia; Urraca, Javier; Moreno-Bondi, María Cruz; Avella-Oliver, Miquel; Maquieira, Ángel; Puchades, Rosa

    2015-01-01

    Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs. PMID:26184330

  2. Multi-level single mode 2D polymer waveguide optical interconnects using nano-imprint lithography.

    PubMed

    Khan, Muhammad Umar; Justice, John; Petäjä, Jarno; Korhonen, Tia; Boersma, Arjen; Wiegersma, Sjoukje; Karppinen, Mikko; Corbett, Brian

    2015-06-01

    Single and multi-layer passive optical interconnects using single mode polymer waveguides are demonstrated using UV nano-imprint lithography. The fabrication tolerances associated with imprint lithography are investigated and we show a way to experimentally quantify a small variation in index contrast between core and cladding of fabricated devices. 1x2 splitting devices based on directional couplers and multimode interference interferometers are demonstrated to have less than 0.45 dB insertion loss with 0.02 ± 0.01 dB power imbalance between the outputs. We demonstrate an 'optical via' with an insertion loss less than 0.45 dB to transfer light from one optical signal plane to another. A 1x4 two-dimensional optical port is experimentally demonstrated to spatially split the input power with an insertion loss of 1.2 dB. PMID:26072823

  3. Fabrication of superhydrophobic surface with improved corrosion inhibition on 6061 aluminum alloy substrate

    NASA Astrophysics Data System (ADS)

    Li, Xuewu; Zhang, Qiaoxin; Guo, Zheng; Shi, Tian; Yu, Jingui; Tang, Mingkai; Huang, Xingjiu

    2015-07-01

    This work has developed a simple and low-cost method to render 6061 aluminum alloy surface superhydrophobicity and excellent corrosion inhibition. The superhydrophobic aluminum alloy surface has been fabricated by hydrochloric acid etching, potassium permanganate passivation and fluoroalkyl-silane modification. Meanwhile, the effect of the etching and passivation time on the wettability and corrosion inhibition of the fabricated surface has also been investigated. Results show that with the etching time of 6 min and passivation time of 180 min the fabricated micro/nano-scale terrace-like hierarchical structures accompanying with the nanoscale coral-like network bulge structures after being modified can result in superhydrophobicity with a water contact angle (CA) of 155.7°. Moreover, an extremely weak adhesive force to droplets as well as an outstanding self-cleaning behavior of the superhydrophobic surface has also been proved. Finally, corrosion inhibition in seawater of the as-prepared aluminum alloy surface is characterized by potentiodynamic polarization curves and electrochemical impedance spectroscopy. Evidently, the fabricated superhydrophobic surface attained an improved corrosion inhibition efficiency of 83.37% compared with the traditional two-step processing consisting of etching and modification, which will extend the further applications of aluminum alloy especially in marine engineering fields.

  4. Mapping of interconnection of climate risks

    NASA Astrophysics Data System (ADS)

    Yokohata, Tokuta; Tanaka, Katsumasa; Nishina, Kazuya; Takanashi, Kiyoshi; Emori, Seita; Kiguchi, Masashi; Iseri, Yoshihiko; Honda, Yasushi; Okada, Masashi; Masaki, Yoshimitsu; Yamamoto, Akitomo; Shigemitsu, Masahito; Yoshimori, Masakazu; Sueyoshi, Tetsuo; Iwase, Kenta; Hanasaki, Naota; Ito, Akihiko; Sakurai, Gen; Iizumi, Toshichika; Oki, Taikan

    2015-04-01

    Anthropogenic climate change possibly causes various impacts on human society and ecosystem. Here, we call possible damages or benefits caused by the future climate change as "climate risks". Many climate risks are closely interconnected with each other by direct cause-effect relationship. In this study, the major climate risks are comprehensively summarized based on the survey of studies in the literature using IPCC AR5 etc, and their cause-effect relationship are visualized by a "network diagram". This research is conducted by the collaboration between the experts of various fields, such as water, energy, agriculture, health, society, and eco-system under the project called ICA-RUS (Integrated Climate Assessment - Risks, Uncertainties and Society). First, the climate risks are classified into 9 categories (water, energy, food, health, disaster, industry, society, ecosystem, and tipping elements). Second, researchers of these fields in our project survey the research articles, and pick up items of climate risks, and possible cause-effect relationship between the risk items. A long list of the climate risks is summarized into ~130, and that of possible cause-effect relationship between the risk items is summarized into ~300, because the network diagram would be illegible if the number of the risk items and cause-effect relationship is too large. Here, we only consider the risks that could occur if climate mitigation policies are not conducted. Finally, the chain of climate risks is visualized by creating a "network diagram" based on a network graph theory (Fruchtman & Reingold algorithm). Through the analysis of network diagram, we find that climate risks at various sectors are closely related. For example, the decrease in the precipitation under the global climate change possibly causes the decrease in river runoff and the decrease in soil moisture, which causes the changes in crop production. The changes in crop production can have an impact on society by

  5. Fundamental studies of passivity and passivity breakdown. Final report

    SciTech Connect

    Macdonald, D.D.; Urquidi-Macdonald, M.; Song, H.; Biaggio-Rocha, S.; Searson, P.

    1991-11-01

    This report summarizes the findings of our fundamental research program on passivity and passivity breakdown. During the past three and one half years in this program (including the three year incrementally-funded grant prior to the present grant), we developed and experimentally tested various physical models for the growth and breakdown of passive films on metal surfaces. These models belong to a general class termed ``point defects models`` (PDMs), in which the growth and breakdown of passive films are described in terms of the movement of anion and cation vacancies.

  6. Channeling of aluminum in silicon

    SciTech Connect

    Wilson, R.G.; Hopkins, C.G.

    1985-05-15

    A systematic study of channeling of aluminum in the silicon crystal is reported. Depth distributions measured by secondary ion mass spectrometry are reported for 40-, 75-, and 150-keV aluminum channeled in the <100> and <110> directions of silicon. The profile dependence on alignment angle is shown for 150-keV aluminum in the <110> of silicon. Aluminum has low electronic stopping in silicon and corresponding deep channeled profiles are observed for aligned implants and deep channeling tails are observed on random implants. The maximum channeling range for 150-keV Al in <100> silicon is about 2.8 ..mu..m and is about 6.4 ..mu..m in <110> silicon. Some ions will reach the maximum channeling range even for 2/sup 0/ misalignment. Many of the deep channeling tails and ''supertails'' reported in earlier literature can be explained by the normal channeling of aluminum in silicon.

  7. Passive propellant system

    NASA Technical Reports Server (NTRS)

    Hess, D. A.; Regnier, W. W.; Jacobs, V. L. (Inventor)

    1979-01-01

    A passive propellant acquisition and feed system is disclosed which acquires and feeds gas-free propellant in low or zero-g environments during orbital maneuvers and retains this propellant under high axially directed acceleration such as may be experienced during launch of a space vehicle and orbit-to-orbit transfer is described. The propellant system includes a dual compartment propellant tank with independent surface tension acquisition channels in each compartment to provide gas-free flow of pressurized liquid propellant from one compartment to the other in one direction only.

  8. Passive Immunization Against Poliomyelitis

    PubMed Central

    Rinaldo, Charles R.

    2005-01-01

    Poliomyelitis has gone from being one of the worst scourges of the 20th century to nearing eradication in the 21st. This success is well known to be attributable to the Salk inactivated and Sabin attenuated poliovirus vaccines. However, before introduction of these vaccines, William McDowall Hammon of the University of Pittsburgh Graduate School of Public Health led the first major breakthrough in prevention of the disease by using passive immunization in one of the earliest double-blind, placebo-controlled clinical trials. This study provided the first evidence that antibodies to poliovirus could prevent the disease in humans. PMID:15855454

  9. 10+ Gb/s board-level optical interconnects: fabrication, assembly, and testing

    NASA Astrophysics Data System (ADS)

    Glebov, Alexei L.; Lee, Michael G.; Yokouchi, Kishio

    2006-04-01

    Fabrication and assembly technologies for high-speed board-to-board optical interconnect (B2OI) systems are presented. In the system architecture, the transmitters and receivers are placed on the linecards and the optical signals are routed to the optically passive backplane through the optical jumpers with MTP connectors. The backplane contains an optical layer with embedded polymer waveguides and 45° reflector micromirrors. The waveguides are fabricated by direct lithographic patterning and have propagation losses as low as 0.05 dB/cm at 850 nm. Hot-embossing is also evaluated for the waveguide fabrication demonstrating the waveguide propagation losses in the range of 0.06-0.1 dB/cm but rather poor channel-to-channel uniformity. The wedge dicing technology is developed for fabrication of the 45° reflector micromirrors with 0.5 dB losses. The pluggable optical connectors with microlens adaptors are used to couple the light from the optical jumpers into the backplane waveguides. The fabricated prototype optical interconnect modules with integrated channel waveguides, mirrors, and assembled connectors demonstrate insertion losses of 5-6 dB. The modules successfully pass high-speed transmission tests at data rates up to 11 Gb/s.

  10. Passive standoff detection of chemical warfare agents on surfaces.

    PubMed

    Thériault, Jean-Marc; Puckrin, Eldon; Hancock, Jim; Lecavalier, Pierre; Lepage, Carmela Jackson; Jensen, James O

    2004-11-01

    Results are presented on the passive standoff detection and identification of chemical warfare (CW) liquid agents on surfaces by the Fourier-transform IR radiometry. This study was performed during surface contamination trials at Defence Research and Development Canada-Suffield in September 2002. The goal was to verify that passive long-wave IR spectrometric sensors can potentially remotely detect surfaces contaminated with CW agents. The passive sensor, the Compact Atmospheric Sounding Interferometer, was used in the trial to obtain laboratory and field measurements of CW liquid agents, HD and VX. The agents were applied to high-reflectivity surfaces of aluminum, low-reflectivity surfaces of Mylar, and several other materials including an armored personnel carrier. The field measurements were obtained at a standoff distance of 60 m from the target surfaces. Results indicate that liquid contaminant agents deposited on high-reflectivity surfaces can be detected, identified, and possibly quantified with passive sensors. For low-reflectivity surfaces the presence of the contaminants can usually be detected; however, their identification based on simple correlations with the absorption spectrum of the pure contaminant is not possible. PMID:15540446

  11. Passive Standoff Detection of Chemical Warfare Agents on Surfaces

    NASA Astrophysics Data System (ADS)

    Thériault, Jean-Marc; Puckrin, Eldon; Hancock, Jim; Lecavalier, Pierre; Lepage, Carmela Jackson; Jensen, James O.

    2004-11-01

    Results are presented on the passive standoff detection and identification of chemical warfare (CW) liquid agents on surfaces by the Fourier-transform IR radiometry. This study was performed during surface contamination trials at Defence Research and Development Canada-Suffield in September 2002. The goal was to verify that passive long-wave IR spectrometric sensors can potentially remotely detect surfaces contaminated with CW agents. The passive sensor, the Compact Atmospheric Sounding Interferometer, was used in the trial to obtain laboratory and field measurements of CW liquid agents, HD and VX. The agents were applied to high-reflectivity surfaces of aluminum, low-reflectivity surfaces of Mylar, and several other materials including an armored personnel carrier. The field measurements were obtained at a standoff distance of 60 m from the target surfaces. Results indicate that liquid contaminant agents deposited on high-reflectivity surfaces can be detected, identified, and possibly quantified with passive sensors. For low-reflectivity surfaces the presence of the contaminants can usually be detected; however, their identification based on simple correlations with the absorption spectrum of the pure contaminant is not possible.

  12. Adaptive optical interconnects: the ADDAPT project

    NASA Astrophysics Data System (ADS)

    Henker, Ronny; Pliva, Jan; Khafaji, Mahdi; Ellinger, Frank; Toifl, Thomas; Offrein, Bert; Cevrero, Alessandro; Oezkaya, Ilter; Seifried, Marc; Ledentsov, Nikolay; Kropp, Joerg-R.; Shchukin, Vitaly; Zoldak, Martin; Halmo, Leos; Turkiewicz, Jaroslaw; Meredith, Wyn; Eddie, Iain; Georgiades, Michael; Charalambides, Savvas; Duis, Jeroen; van Leeuwen, Pieter

    2015-09-01

    Existing optical networks are driven by dynamic user and application demands but operate statically at their maximum performance. Thus, optical links do not offer much adaptability and are not very energy-efficient. In this paper a novel approach of implementing performance and power adaptivity from system down to optical device, electrical circuit and transistor level is proposed. Depending on the actual data load, the number of activated link paths and individual device parameters like bandwidth, clock rate, modulation format and gain are adapted to enable lowering the components supply power. This enables flexible energy-efficient optical transmission links which pave the way for massive reductions of CO2 emission and operating costs in data center and high performance computing applications. Within the FP7 research project Adaptive Data and Power Aware Transceivers for Optical Communications (ADDAPT) dynamic high-speed energy-efficient transceiver subsystems are developed for short-range optical interconnects taking up new adaptive technologies and methods. The research of eight partners from industry, research and education spanning seven European countries includes the investigation of several adaptive control types and algorithms, the development of a full transceiver system, the design and fabrication of optical components and integrated circuits as well as the development of high-speed, low loss packaging solutions. This paper describes and discusses the idea of ADDAPT and provides an overview about the latest research results in this field.

  13. PCB with fully integrated optical interconnects

    NASA Astrophysics Data System (ADS)

    Langer, Gregor; Satzinger, Valentin; Schmidt, Volker; Schmid, Gerhard; Leeb, Walter R.

    2011-01-01

    The increasing demand for miniaturization and design flexibility of polymer optical waveguides integrated into electrical printed circuit boards (PCB) calls for new coupling and integration concepts. We report on a method that allows the coupling of optical waveguides to electro-optical components as well as the integration of an entire optical link into the PCB. The electro-optical devices such as lasers and photodiodes are assembled on the PCB and then embedded in an optically transparent material. A focused femtosecond laser beam stimulates a polymerization reaction based on a two-photon absorption effect in the optical material and locally increases the refractive index of the material. In this way waveguide cores can be realized and the embedded components can be connected optically. This approach does not only allow a precise alignment of the waveguide end faces to the components but also offers a truly 3-dimensional routing capability of the waveguides. Using this technology we were able to realize butt-coupling and mirror-coupling interface solutions in several demonstrators. We were also manufacturing demonstrator boards with fully integrated driver and preamplifier chips, which show very low power consumption of down to 10 mW for about 2.5 Gbit/s. Furthermore, demonstrators with interconnects at two different optical layers were realized.

  14. Maximizing algebraic connectivity in interconnected networks

    NASA Astrophysics Data System (ADS)

    Shakeri, Heman; Albin, Nathan; Darabi Sahneh, Faryad; Poggi-Corradini, Pietro; Scoglio, Caterina

    2016-03-01

    Algebraic connectivity, the second eigenvalue of the Laplacian matrix, is a measure of node and link connectivity on networks. When studying interconnected networks it is useful to consider a multiplex model, where the component networks operate together with interlayer links among them. In order to have a well-connected multilayer structure, it is necessary to optimally design these interlayer links considering realistic constraints. In this work, we solve the problem of finding an optimal weight distribution for one-to-one interlayer links under budget constraint. We show that for the special multiplex configurations with identical layers, the uniform weight distribution is always optimal. On the other hand, when the two layers are arbitrary, increasing the budget reveals the existence of two different regimes. Up to a certain threshold budget, the second eigenvalue of the supra-Laplacian is simple, the optimal weight distribution is uniform, and the Fiedler vector is constant on each layer. Increasing the budget past the threshold, the optimal weight distribution can be nonuniform. The interesting consequence of this result is that there is no need to solve the optimization problem when the available budget is less than the threshold, which can be easily found analytically.

  15. Ceramic Interconnects with Low Sintering Temperature

    NASA Technical Reports Server (NTRS)

    Zhong, Zhi-Min; Goldsby, Jon C.

    2004-01-01

    Ceramic interconnects for use in solid oxide he1 cells are expected to operate between 900 to approximately 1000 C, sinter below 1400 C to allow co-firing and meet a number thermal mechanical requirements. The pervoskite type (ABO3) lanthanum chromite based materials have emerged as a leading candidate that will meet these criteria by varying the composition on the A and B sites. A need therefore exists to determine this material's temperature dependent electrical and mechanical properties with respect to these site substitutions. In this investigation oxide powders were prepared by the glycine-nitrate process. Ionic substitutions were carried out on A sites with Ca or Sr, and B sites with Co and Al, respectively. Only stoichiometric compositions were considered for the sake of stability. The powders and their ability to sinter were investigated by XRD, SEM, dilatometry and density measurements. The sintered materials were further examined by SEM, thermal expansion and electric conductivity measurements in order to elucidate the resulting microstructure, electrical and mechanical properties. In addition quantum mechanical calculations were performed to obtain insight into the effects of these dopants on the materials electronic band structure and lattice parameter.

  16. Interconnected Cavernous Structure of Bacterial Fruiting Bodies

    PubMed Central

    Harvey, Cameron W.; Du, Huijing; Xu, Zhiliang; Kaiser, Dale; Aranson, Igor; Alber, Mark

    2012-01-01

    The formation of spore-filled fruiting bodies by myxobacteria is a fascinating case of multicellular self-organization by bacteria. The organization of Myxococcus xanthus into fruiting bodies has long been studied not only as an important example of collective motion of bacteria, but also as a simplified model for developmental morphogenesis. Sporulation within the nascent fruiting body requires signaling between moving cells in order that the rod-shaped self-propelled cells differentiate into spores at the appropriate time. Probing the three-dimensional structure of myxobacteria fruiting bodies has previously presented a challenge due to limitations of different imaging methods. A new technique using Infrared Optical Coherence Tomography (OCT) revealed previously unknown details of the internal structure of M. xanthus fruiting bodies consisting of interconnected pockets of relative high and low spore density regions. To make sense of the experimentally observed structure, modeling and computer simulations were used to test a hypothesized mechanism that could produce high-density pockets of spores. The mechanism consists of self-propelled cells aligning with each other and signaling by end-to-end contact to coordinate the process of differentiation resulting in a pattern of clusters observed in the experiment. The integration of novel OCT experimental techniques with computational simulations can provide new insight into the mechanisms that can give rise to the pattern formation seen in other biological systems such as dictyostelids, social amoeba known to form multicellular aggregates observed as slugs under starvation conditions. PMID:23300427

  17. Backplane photonic interconnect modules with optical jumpers

    NASA Astrophysics Data System (ADS)

    Glebov, Alexei L.; Lee, Michael G.; Yokouchi, Kishio

    2005-03-01

    Prototypes of optical interconnect (OI) modules for backplane applications are presented. The transceivers attached to the linecards E/O convert the signals that are passed to and from the backplane by optical jumpers terminated with MTP-type connectors. The connectors plug into adaptors attached to the backplane and the microlens arrays mounted in the adaptors couple the light between the fibers and waveguides. Planar polymer channel waveguides with 30-50 μm cross-sections route the optical signals across the board with propagation losses as low as 0.05 dB/cm @ 850 nm. The 45¦-tapered integrated micromirrors reflect the light in and out of the waveguide plane with the loss of 0.8 dB per mirror. The connector displacement measurements indicate that the adaptor lateral assembly accuracy can be at least +/-10 μm for the excess loss not exceeding 1 dB. Insertion losses of the test modules with integrated waveguides, 45¦ mirrors, and pluggable optical jumper connectors are about 5 dB. Eye diagrams at 10.7 Gb/s have typical width and height of 70 ps and 400 mV, respectively, and jitter of about 20 ps.

  18. Manipulator interactive design with interconnected flexible elements

    NASA Technical Reports Server (NTRS)

    Singh, R. P.; Likins, P. W.

    1983-01-01

    This paper describes the development of an analysis tool for the interactive design of control systems for manipulators and similar electro-mechanical systems amenable to representation as structures in a topological chain. The chain consists of a series of elastic bodies subject to small deformations and arbitrary displacements. The bodies are connected by hinges which permit kinematic constraints, control, or relative motion with six degrees of freedom. The equations of motion for the chain configuration are derived via Kane's method, extended for application to interconnected flexible bodies with time-varying boundary conditions. A corresponding set of modal coordinates has been selected. The motion equations are imbedded within a simulation that transforms the vector-dyadic equations into scalar form for numerical integration. The simulation also includes a linear, time-invariant controler specified in transfer function format and a set of sensors and actuators that interface between the structure and controller. The simulation is driven by an interactive set-up program resulting in an easy-to-use analysis tool.

  19. Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or gamma-polyglutamate.

    PubMed

    Ornek, D; Jayaraman, A; Syrett, B C; Hsu, C-H; Mansfeld, F B; Wood, T K

    2002-04-01

    Pitting corrosion of aluminum 2024 in Luria Bertani medium was reduced by the secretion of anionic peptides by engineered and natural Bacillus biofilms and was studied in continuous reactors using electrochemical impedance spectroscopy. Compared to sterile controls, pitting was reduced dramatically by the presence of the biofilms. The secretion of a 20 amino acid polyaspartate peptide by an engineered Bacillus subtilis WB600/pBE92-Asp biofilm slightly reduced the corrosion rate of the passive aluminum alloy at pH 6.5; however, the secretion of gamma-polyglutamate by a Bacillus licheniformis biofilm reduced the corrosion rate by 90% (compared to the B. subtilis WB600/pBE92 biofilm which did not secrete polyaspartate or gamma-polyglutamate). The corrosion potential ( E(corr)) of aluminum 2024 was increased by about 0.15-0.44 V due to the formation of B. subtilis and B. licheniformis biofilms as compared to sterile controls. The increase of E(corr) and the observed prevention of pitting indicate that the pitting potential ( E(pit)) had increased. This result and the further decrease of corrosion rates for the passive aluminum alloy suggest that the rate of the anodic metal dissolution reaction was reduced by an inhibitor produced by the biofilms. Purified gamma-polyglutamate also decreased the corrosion rates of aluminum 2024. PMID:11956749

  20. Passive field reflectance measurements

    NASA Astrophysics Data System (ADS)

    Weber, Christian; Schinca, Daniel C.; Tocho, Jorge O.; Videla, Fabian

    2008-10-01

    The results of reflectance measurements performed with a three-band passive radiometer with independent channels for solar irradiance reference are presented. Comparative operation between the traditional method that uses downward-looking field and reference white panel measurements and the new approach involving duplicated downward- and upward-looking spectral channels (each latter one with its own diffuser) is analyzed. The results indicate that the latter method performs in very good agreement with the standard method and is more suitable for passive sensors under rapidly changing atmospheric conditions (such as clouds, dust, mist, smog and other scatterers), since a more reliable synchronous recording of reference and incident light is achieved. Besides, having separate channels for the reference and the signal allows a better balancing of gains in the amplifiers for each spectral channel. We show the results obtained in the determination of the normalized difference vegetation index (NDVI) corresponding to the period 2004-2007 field experiments concerning weed detection in soybean stubbles and fertilizer level assessment in wheat. The method may be used to refine sensor-based nitrogen fertilizer rate recommendations and to determine suitable zones for herbicide applications.

  1. Fly ash carbon passivation

    DOEpatents

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  2. Passive bistatic radar analysis

    NASA Astrophysics Data System (ADS)

    O'Hagan, Daniel W.; Kuschel, H.; Schiller, Joachim

    2009-06-01

    Passive Bistatic Radar (PBR) research is at its zenith with several notable PBR systems currently operational, or available for deployment. Such PBRs include the Manastash Ridge Radar (MRR) developed for and by academia; Silent Sentry developed as a commercial concern by Lockheed Martin; and Homeland Alerter (HA100) also a commercial system developed by Thales. However at present, despite the existence of numerous PBR prototypes, take up of commercial passive radar technology remains slow. This is due in part to technology immaturity, in part to politics, and particularly due to the fact that monostatic radars perform so well. If PBRs are to enjoy longevity as a viable technology then it is imperative that they address certain niche application areas, with the aforementioned MRR being one prime example of this. The focus of this paper will be an analysis of a PBR system that utilised FM radio signals of opportunity to detect aircraft targets with an RCS generally not lower than 20 m2. The paper will demonstrate the theoretical detection coverage of an FM based PBR operating in a severe interference environment.

  3. Mechanical passive logic module

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanay; Caulfield, H. John

    2015-02-01

    Nothing from nothing gives simple simile, but something from nothing is an interesting and challenging task. Adolf Lohmann once proposed 'do nothing machine' in optics, which only copies input to output. Passive logic module (PALM) is a special type of 'do nothing machine' which can converts inputs into one of 16 possible binary outputs. This logic module is not like the conventional irreversible one. It is a simple type of reversible Turing machine. In this manuscript we discussed and demonstrated PALM using mechanical movement of plane mirrors. Also we discussed the theoretical model of micro electro mechanical system (MEMS) based PALM in this manuscript. It may have several valuable properties such as passive operation (no need for nonlinear elements as other logic device require) and modular logic (one device implementing any Boolean logic function with simple internal changes). The result is obtained from the demonstration by only looking up the output. No calculation is required to get the result. Not only that, PALM is a simple type of the famous 'billiard ball machine', which also discussed in this manuscript.

  4. Volcanic passive margins

    NASA Astrophysics Data System (ADS)

    Geoffroy, Laurent

    2005-12-01

    Compared to non-volcanic ones, volcanic passive margins mark continental break-up over a hotter mantle, probably subject to small-scale convection. They present distinctive genetic and structural features. High-rate extension of the lithosphere is associated with catastrophic mantle melting responsible for the accretion of a thick igneous crust. Distinctive structural features of volcanic margins are syn-magmatic and continentward-dipping crustal faults accommodating the seaward flexure of the igneous crust. Volcanic margins present along-axis a magmatic and tectonic segmentation with wavelength similar to adjacent slow-spreading ridges. Their 3D organisation suggests a connection between loci of mantle melting at depths and zones of strain concentration within the lithosphere. Break-up would start and propagate from localized thermally-softened lithospheric zones. These 'soft points' could be localized over small-scale convection cells found at the bottom of the lithosphere, where adiabatic mantle melting would specifically occur. The particular structure of the brittle crust at volcanic passive margins could be interpreted by active and sudden oceanward flow of both the unstable hot mantle and the ductile part of the lithosphere during the break-up stage. To cite this article: L. Geoffroy, C. R. Geoscience 337 (2005).

  5. Aluminum Zintl anion moieties within sodium aluminum clusters

    SciTech Connect

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Grubisic, Andrej; Li, Xiang; Ganteför, Gerd; Bowen, Kit H. E-mail: kiran@mcneese.edu; Schnöckel, Hansgeorg; Eichhorn, Bryan W.; Lee, Mal-Soon; Jena, P.; Kandalam, Anil K. E-mail: kiran@mcneese.edu; Kiran, Boggavarapu E-mail: kiran@mcneese.edu

    2014-02-07

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium–aluminum cluster anions, Na{sub m}Al{sub n}{sup −}, were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams.

  6. Aluminum Zintl anion moieties within sodium aluminum clusters

    NASA Astrophysics Data System (ADS)

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Grubisic, Andrej; Li, Xiang; Ganteför, Gerd; Schnöckel, Hansgeorg; Eichhorn, Bryan W.; Lee, Mal-Soon; Jena, P.; Kandalam, Anil K.; Kiran, Boggavarapu; Bowen, Kit H.

    2014-02-01

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium-aluminum cluster anions, NamAln-, were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams.

  7. Aluminum Zintl anion moieties within sodium aluminum clusters.

    PubMed

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Grubisic, Andrej; Li, Xiang; Ganteför, Gerd; Schnöckel, Hansgeorg; Eichhorn, Bryan W; Lee, Mal-Soon; Jena, P; Kandalam, Anil K; Kiran, Boggavarapu; Bowen, Kit H

    2014-02-01

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium-aluminum cluster anions, Na(m)Al(n)(-), were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams. PMID:24511934

  8. First principles pseudopotential calculations on aluminum and aluminum alloys

    SciTech Connect

    Davenport, J.W.; Chetty, N.; Marr, R.B.; Narasimhan, S.; Pasciak, J.E.; Peierls, R.F.; Weinert, M.

    1993-12-31

    Recent advances in computational techniques have led to the possibility of performing first principles calculations of the energetics of alloy formation on systems involving several hundred atoms. This includes impurity concentrations in the 1% range as well as realistic models of disordered materials (including liquids), vacancies, and grain boundaries. The new techniques involve the use of soft, fully nonlocal pseudopotentials, iterative diagonalization, and parallel computing algorithms. This approach has been pioneered by Car and Parrinello. Here the authors give a review of recent results using parallel and serial algorithms on metallic systems including liquid aluminum and liquid sodium, and also new results on vacancies in aluminum and on aluminum-magnesium alloys.

  9. Optics vs copper: from the perspective of "Thunderbolt" interconnect technology

    NASA Astrophysics Data System (ADS)

    Cheng, Hengju; Krause, Christine; Ko, Jamyuen; Gao, Miaobin; Liu, Guobin; Wu, Huichin; Qi, Mike; Lam, Chun-Chit

    2013-02-01

    Interconnect technology has been progressed at a very fast pace for the past decade. The signaling rates have steadily increased from 100:Mb/s to 25Gb/s. In every generation of interconnect technology evolution, optics always seems to take over at first, however, at the end, the cost advantage of copper wins over. Because of this, optical interconnects are limited to longer distance links where the attenuation in copper cable is too large for the integrated circuits to compensate. Optical interconnect has long been viewed as the premier solution in compared with copper interconnect. With the release of Thunderbolt technology, we are entering a new era in consumer electronics that runs at 10Gb/s line rate (20Gb/s throughput per connector interface). Thunderbolt interconnect technology includes both active copper cables and active optical cables as the transmission media which have very different physical characteristics. In order for optics to succeed in consumer electronics, several technology hurdles need to be cleared. For example, the optical cable needs to handle the consumer abuses such as pinch and bend. Also, the optical engine used in the active optical cable needs to be physically very small so that we don't change the looks and feels of the cable/connector. Most importantly, the cost of optics needs to come down significantly to effectively compete with the copper solution. Two interconnect technologies are compared and discussed on the relative cost, power consumption, form factor, density, and future scalability.

  10. Solder joint reliability of indium-alloy interconnection

    NASA Astrophysics Data System (ADS)

    Shimizu, Kozo; Nakanishi, Teru; Karasawa, Kazuaki; Hashimoto, Kaoru; Niwa, Koichi

    1995-01-01

    Recent high-density very large scale integrated (VLSI) interconnections in multichip modules require high-reliability solder interconnection to enable us to achieve small interconnect size andlarge number of input/output terminals, and to minimize soft errors in VLSIs induced by α-particle emission from solder. Lead-free solders such as indium (In)-alloy solders are a possible alternative to conventional lead-tin (Pb-Sn) solders. To realize reliable interconnections using In-alloy solders, fatigue behavior, finite element method (FEM) simulations, and dissolution and reaction between solder and metallization were studied with flip-chip interconnection models. We measured the fatigue life of solder joints and the mechanical properties of solders, and compared the results with a computer simulation based on the FEM. Indium-alloy solders have better mechanical properties for solder joints, and their flip-chip interconnection models showed a longer fatigue life than that of Pb-Sn solder in thermal shock tests between liquid nitrogen and room temperatures. The fatigue characteristics obtained by experiment agree with that given by FEM analysis. Dissolution tests show that Pt film is resistant to dissolution into In solder, indicating that Pt is an adequate barrier layer material for In solder. This test also shows that Au dissolution into the In-Sn solder raises its melting point; however, Ag addition to In-Sn solder prevents melting point rise. Experimental results show that In-alloy solders are suitable for fabricating reliable interconnections.

  11. Passive-solar construction handbook

    SciTech Connect

    Levy, E.; Evans, D.; Gardstein, C.

    1981-02-01

    Many of the basic elements of passive solar design are reviewed. Passive solar construction is covered according to system type, each system type discussion including a general discussion of the important design and construction issues which apply to the particular system and case studies illustrating designed and built examples of the system type. The three basic types of passive solar systems discussed are direct gain, thermal storage wall, and attached sunspace. Thermal performance and construction information is presented for typical materials used in passive solar collector components, storage components, and control components. Appended are an overview of analysis methods and a technique for estimating performance. (LEW)

  12. Process Developed for Generating Ceramic Interconnects With Low Sintering Temperatures for Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Zhong, Zhi-Min; Goldsby, Jon C.

    2005-01-01

    Solid oxide fuel cells (SOFCs) have been considered as premium future power generation devices because they have demonstrated high energy-conversion efficiency, high power density, and extremely low pollution, and have the flexibility of using hydrocarbon fuel. The Solid-State Energy Conversion Alliance (SECA) initiative, supported by the U.S. Department of Energy and private industries, is leading the development and commercialization of SOFCs for low-cost stationary and automotive markets. The targeted power density for the initiative is rather low, so that the SECA SOFC can be operated at a relatively low temperature (approx. 700 C) and inexpensive metallic interconnects can be utilized in the SOFC stack. As only NASA can, the agency is investigating SOFCs for aerospace applications. Considerable high power density is required for the applications. As a result, the NASA SOFC will be operated at a high temperature (approx. 900 C) and ceramic interconnects will be employed. Lanthanum chromite-based materials have emerged as a leading candidate for the ceramic interconnects. The interconnects are expected to co-sinter with zirconia electrolyte to mitigate the interface electric resistance and to simplify the processing procedure. Lanthanum chromites made by the traditional method are sintered at 1500 C or above. They react with zirconia electrolytes (which typically sinter between 1300 and 1400 C) at the sintering temperature of lanthanum chromites. It has been envisioned that lanthanum chromites with lower sintering temperatures can be co-fired with zirconia electrolyte. Nonstoichiometric lanthanum chromites can be sintered at lower temperatures, but they are unstable and react with zirconia electrolyte during co-sintering. NASA Glenn Research Center s Ceramics Branch investigated a glycine nitrate process to generate fine powder of the lanthanum-chromite-based materials. By simultaneously doping calcium on the lanthanum site, and cobalt and aluminum on the

  13. Aluminum plasmonic photocatalysis

    PubMed Central

    Hao, Qi; Wang, Chenxi; Huang, Hao; Li, Wan; Du, Deyang; Han, Di; Qiu, Teng; Chu, Paul K.

    2015-01-01

    The effectiveness of photocatalytic processes is dictated largely by plasmonic materials with the capability to enhance light absorption as well as the energy conversion efficiency. Herein, we demonstrate how to improve the plasmonic photocatalytic properties of TiO2/Al nano-void arrays by overlapping the localized surface plasmon resonance (LSPR) modes with the TiO2 band gap. The plasmonic TiO2/Al arrays exhibit superior photocatalytic activity boasting an enhancement of 7.2 folds. The underlying mechanisms concerning the radiative energy transfer and interface energy transfer processes are discussed. Both processes occur at the TiO2/Al interface and their contributions to photocatalysis are evaluated. The results are important to the optimization of aluminum plasmonic materials in photocatalytic applications. PMID:26497411

  14. Spray Rolling Aluminum Strip

    SciTech Connect

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  15. Aluminum toxicity. Hematological effects.

    PubMed

    Mahieu, S; del Carmen Contini, M; Gonzalez, M; Millen, N; Elias, M M

    2000-01-01

    Sequential effects of intoxication with aluminum hydroxide (Al) (80 mg/Kg body weight, i.p., three times a week), were studied on rats from weaning and up to 28 weeks. The study was carried out on hematological and iron metabolism-related parameters on peripheral blood, at the end of the 1st, 2nd, 3rd, 4th, 5th and 6th months of exposure. As it was described that hematotoxic effects of Al are mainly seen together with high levels of uremia, renal function was measured at the same periods. The animals treated developed a microcytosis and was accompanied by a decrease in mean corpuscular hemoglobin (MCH). Significantly lower red blood cell counts (RBC million/microl) were found in rats treated during the 1st month. These values matched those obtained for control rats during the 2nd month. From the 3rd month onwards, a significant increase was observed as compared to control groups, and the following values were obtained by the 6th month: (T) 10.0 +/- 0.3 versus (C) 8.7 +/- 0.2 (million/microl). Both MCH and mean corpuscular volume (MCV) were found to be significantly lower in groups treated from the 2nd month. At the end of the 6th month the following values were found: MCH (T) 13.3 +/- 0.1 versus (C) 16.9 +/- 0.3 (pg); MCV (T) 42.1 +/- 0.7 versus (C) 51.8 +/- 0.9 (fl). Al was found responsible for lower serum iron concentration levels and in the percentage of transferrin saturation. Thus, although microcytic anemia constitutes an evidence of chronic aluminum exposure, prolonged exposure could lead to a recovery of hematocrit and hemoglobin concentration values with an increase in red cell number. Nevertheless, both microcytosis and the decrease of MCH would persist. These modifications took place without changes being observed in the renal function during the observation period. PMID:10643868

  16. Aluminum: Industry of the future

    SciTech Connect

    1998-11-01

    For over a century, the US aluminum industry has led the global market with advances in technology, product development, and marketing. Industry leaders recognize both the opportunities and challenges they face as they head into the 21st century, and that cooperative R and D is key to their success. In a unique partnership, aluminum industry leaders have teamed with the US Department of Energy`s Office of Industrial Technologies (OIT) to focus on innovative technologies that will help to strengthen the competitive position of the US aluminum industry and, at the same time, further important national goals. This industry-led partnership, the Aluminum Industry of the Future, promotes technologies that optimize the use of energy and materials in operations and reduce wastes and energy-related emissions. Led by The Aluminum Association, industry leaders began by developing a unified vision of future market, business, energy, and environmental goals. Their vision document, Partnerships for the Future, articulates a compelling vision for the next 20 years: to maintain and grow the aluminum industry through the manufacture and sale of competitively priced, socially desirable, and ecologically sustainable products. Continued global leadership in materials markets will require the combined resources of industry, universities, and government laboratories. By developing a unified vision, the aluminum industry has provided a framework for the next step in the Industries of the Future process, the development of a technology roadmap designed to facilitate cooperative R and D.

  17. New approach to improve interconnection relaying for IPPs

    SciTech Connect

    Hartmann, W.G.; Mirchandani, H.; Callender, M.

    1999-11-01

    This paper discusses the interconnection protective relaying practices of Independent Power Producers (IPPs) with the utility grid. Specifically addressed are smaller IPPs in the kW and lower MW range (typically less than 10 MW), where relaying at the interconnection may function without the aid of sophisticated and expensive communication links to the utility substation. A novel protection tactic employing frequency rate-of-change is introduced as a possible method of increasing the security, reliability and speed of the IPP interconnection protection.

  18. Subsurface Aluminum Nitride Formation in Iron-Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Bott, June H.

    Transformation-induced plasticity (TRIP) steels containing higher amounts of aluminum than conventional steels are ideal for structural automotive parts due to their mechanical properties. However, the aluminum tends to react with any processing environment at high temperatures and therefore presents significant challenges during manufacturing. One such challenge occurs during secondary cooling, reheating, and hot-rolling and is caused by a reaction with nitrogen-rich atmospheres wherein subsurface aluminum nitride forms in addition to internal and external oxides. The nitrides are detrimental to mechanical properties and cause surface cracks. It is important to understand how these nitrides and oxides form and their consequences for the quality of steel products. This study looks at model iron-aluminum (up to 8 wt.% aluminum) alloys and uses confocal laser scanning microscopy, x-ray diffraction, scanning electron microscopy with energy dispersive x-ray spectrometry, and transmission electron microscopy to study the effect of various conditions on the growth and development of these precipitates in a subsurface oxygen-depleted region. By using model alloys and controlling the experimental atmosphere, this study is able to understand some of the more fundamental materials science behind aluminum nitride formation in aluminum-rich iron alloys and the relationship between internal nitride and oxide precipitation and external oxide scale morphology and composition. The iron-aluminum alloys were heated in N2 atmospheres containing oxygen impurities. It was found that nitrides formed when bulk aluminum content was below 8 wt.% when oxygen was sufficiently depleted due to the internal oxidation. In the samples containing 1 wt.% aluminum, the depth of the internal oxide and nitride zones were in agreement with a diffusion-based model. Increasing aluminum content to 3 and 5 wt% had the effects of modifying the surface-oxide scale composition and increasing its continuity

  19. [Microbiological corrosion of aluminum alloys].

    PubMed

    Smirnov, V F; Belov, D V; Sokolova, T N; Kuzina, O V; Kartashov, V R

    2008-01-01

    Biological corrosion of ADO quality aluminum and aluminum-based construction materials (alloys V65, D16, and D16T) was studied. Thirteen microscopic fungus species and six bacterial species proved to be able to attack aluminum and its alloys. It was found that biocorrosion of metals by microscopic fungi and bacteria was mediated by certain exometabolites. Experiments on biocorrosion of the materials by the microscopic fungus Alternaria alternata, the most active biodegrader, demonstrated that the micromycete attack started with the appearance of exudate with pH 8-9 on end faces of the samples. PMID:18669265

  20. Plasma Source Ion Implantation of Aluminum and Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Walter, Kevin Carl

    Three plasma source ion implantation (PSII) schemes applied to three aluminum systems have been studied. Pure aluminum, and aluminum alloys 7075 (Al-Cu-Mg-Zn) and A390 (Al-17Si-Cu-Fe) were (1) argon ion sputter-cleaned and nitrogen-implanted, (2) nitrogen-implanted without sputter -cleaning, and (3) argon-implanted. Nitrogen implantation was performed with the goal of modifying the surface properties by transformation of the surface to aluminum-nitride. Argon implantation was performed with the goal of modifying the surface properties by inducing radiation damage. All implantation schemes were accomplished using a glow discharge mode of the PSII process. Implanted surfaces were investigated using Auger depth profiling and Transmission Electron Microscopy. The profiles indicated a stoichiometric layer, ~ 0.15 μm thick, of AlN on the nitrogen-implanted samples. Electron microscopy confirmed the complete conversion of the aluminum surface to AlN. Knoop microhardness tests showed an increase in surface hardness, especially at low loads. The improvements were independent of prior sputter-cleaning and were approximately equal for the studied aluminum systems. Pin-on-disk wear tests were conducted using a ruby stylus and isopropanol lubrication. Argon implantation decreased the wear resistance of pure aluminum and 7075. Nitrogen implantation improved the wear rates by a factor of ~10 for pure aluminum and 7075. These improvements were independent of prior sputter-cleaning. The coefficient of friction was not significantly influenced by the implantation schemes. Due to a coarse microstructure, tribological tests of ion-implanted A390 were inconclusive. Corrosion studies performed in a 3.5 wt% NaCl solution (seawater) indicated nitrogen implantation gave pure aluminum improved corrosion resistance. The improvement is due to the complete conversion of the aluminum surface to AlN. Because of pre-existing precipitates, the corrosion properties of 7075 and A390 were not

  1. Novel structures in ceramic interconnect technology.

    SciTech Connect

    Peterson, Kenneth Allen; Rohde, Steven Barney; Casias, Adrian Luther; Stokes, Robert Neal; Turner, Timothy Shawn

    2003-02-01

    Ceramic interconnect technology has been adapted to new structures. In particular, the ability to customize processing order and material choices in Low Temperature Cofired Ceramic (LTCC) has enabled new features to be constructed, which address needs in MEMS packaging as well as other novel structures. Unique shapes in LTCC permit the simplification of complete systems, as in the case of a miniature ion mobility spectrometer (IMS). In this case, a rolled tube has been employed to provide hermetic external contacts to electrodes and structures internal to the tube. Integral windows in LTCC have been fabricated for use in both lids and circuits where either a short term need for observation or a long-term need for functionality exists. These windows are fabricated without adhesive, are fully compatible with LTCC processing, and remain optically clear. Both vented and encapsulated functional volumes have been fabricated using a sacrificial material technique. These hold promise for self-assembly of systems, as well as complex internal structures in cavities, micro fluidic and optical channels, and multilevel integration techniques. Separation of the burnout and firing cycles has permitted custom internal environments to be established. Existing commercial High Temperature Cofired Ceramic (HTCC) and LTCC systems can also be rendered to have improved properties. A rapid prototyping technique for patterned HTCC packages has permitted prototypes to be realized in a few days, and has further applications to micro fluidics, heat pipes, and MEMS, among others. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  2. Hybrid silicon evanescent approach to optical interconnects

    NASA Astrophysics Data System (ADS)

    Liang, Di; Fang, Alexander W.; Chen, Hui-Wen; Sysak, Matthew N.; Koch, Brian R.; Lively, Erica; Raday, Omri; Kuo, Ying-Hao; Jones, Richard; Bowers, John E.

    2009-06-01

    We discuss the recently developed hybrid silicon evanescent platform (HSEP), and its application as a promising candidate for optical interconnects in silicon. A number of key discrete components and a wafer-scale integration process are reviewed. The motivation behind this work is to realize silicon-based photonic integrated circuits possessing unique advantages of III-V materials and silicon-on-insulator waveguides simultaneously through a complementary metal-oxide semiconductor fabrication process. Electrically pumped hybrid silicon distributed feedback and distributed Bragg reflector lasers with integrated hybrid silicon photodetectors are demonstrated coupled to SOI waveguides, serving as the reliable on-chip single-frequency light sources. For the external signal processing, Mach-Zehnder interferometer modulators are demonstrated, showing a resistance-capacitance-limited, 3 dB electrical bandwidth up to 8 GHz and a modulation efficiency of 1.5 V mm. The successful implementation of quantum well intermixing technique opens up the possibility to realize multiple III-V bandgaps in this platform. Sampled grating DBR devices integrated with electroabsorption modulators (EAM) are fabricated, where the bandgaps in gain, mirror, and EAM regions are 1520, 1440 and 1480 nm, respectively. The high-temperature operation characteristics of the HSEP are studied experimentally and theoretically. An overall characteristic temperature ( T 0) of 51°C, an above threshold characteristic temperature ( T 1) of 100°C, and a thermal impedance ( Z T ) of 41.8°C/W, which agrees with the theoretical prediction of 43.5°C/W, are extracted from the Fabry-Perot devices. Scaling this platform to larger dimensions is demonstrated up to 150 mm wafer diameter. A vertical outgassing channel design is developed to accomplish high-quality III-V epitaxial transfer to silicon in a timely and dimension-independent fashion.

  3. Hydraulically interconnected vehicle suspension: handling performance

    NASA Astrophysics Data System (ADS)

    Smith, Wade A.; Zhang, Nong; Hu, William

    2011-02-01

    This paper extends recent research on vehicles with hydraulically interconnected suspension (HIS) systems. Such suspension schemes have received considerable attention in the research community over the last few years. This is due, in part, to their reported ability to provide stiffness and damping rates dependent on the suspension mode of operation (i.e. the bounce, roll, pitch or articulation of the unsprung masses relative to the sprung mass), rather than relying on the stiffness and damping characteristics of the single wheel stations. The paper uses a nine-degrees-of-freedom (DOF) vehicle model and simulations of a fishhook manoeuvre to assess the handling performance of a vehicle when it is fitted with: (a) a conventional independent suspension, and (b) an HIS. In the case of the latter, the fluid subsystem is modelled using a nonlinear finite-element approach, resulting in a set of coupled, first-order nonlinear differential equations, which describe the dynamics of the integrated mechanical-hydraulic vehicle system. The simulation results indicate that, in general, the HIS-equipped vehicle possesses superior handling, as measured by the sprung mass roll angle, roll rate, roll acceleration, lateral acceleration and the vehicle's Rollover Critical Factor. The potential effects of the suspension set-up on ride performance are also considered by studying the transient response when one side of the vehicle traverses a half-sine bump. The obtained results are then discussed, and it is shown that they are consistent with previous findings, both by the authors and other researchers. The presented work outlines an alternative approach for studying the dynamics of HIS-equipped vehicles, particularly suited to analyses in the time domain.

  4. A new class of rearrangeable interconnection networks

    SciTech Connect

    Douglass, B.G.

    1989-01-01

    With the current interest in general purpose multiprocessing systems and distributed processing networks, a need exists for rearrangeable interconnection networks. These networks can simultaneously transmit information from all sources to all destinations, for all possible combinations of destinations. Such networks exist, and among these the Benes network is of asymptotically optimal hardware complexity. However, this network requires excessive time to recompute the switch settings each time a new set of transmissions is requested by the source processors. Some algorithms exist to reduce this time overhead but they require excessive hardware to compute the settings. This thesis introduces a new class of rearrangeable networks, called reduced networks, based on an extension of Clos three-stage networks. It is shown that the switches in the first and third stages of Clos networks can be constructed as unique path logarithmic networks. Only the center-stage switches must be rearrangeable. This fact is then used to develop a compact network structure. The routing properties of this structure are defined, and it is shown that there is a connectivity in the setting of the switches for any Clos network. An upper and lower bound on this connectivity are established, leading to a fast routing algorithm, with a trade off between the routing time and the network hardware complexity. This can be exploited by the network designer to achieve the best combination of hardware cost and data transfer rate for the particular application. For network sizes contemplated within the foreseeable future, the resulting design will in most cases be closer to the ideal combination than any other network.

  5. Stability of chromite interconnections in dual environments

    SciTech Connect

    Armstrong, T.R.; Stevenson, J.W.; Raney, P.; Pederson, L.R.

    1994-11-01

    One of the most critical technical concerns in high-temperature SOFCs is the physical, chemical, and electrical stability of the interconnect (typically a doped lanthanum chromite) in the dual (oxidizing and reducing atmosphere) SOFC environment. The reducing or fuel side may experience oxygen partial pressures (P(O{sub 2})) from 10{sup {minus}18} to 10{sup {minus}6} atmospheres, while the oxidizing side may have P(O{sub 2}) from 10{sup {minus}6} to greater than 1 atm. These conditions limit the possible candidate materials to lanthanum or yttrium chromites. In the past decade, much work has centered on development of air-sinterable chromites and understanding their physical properties; little work, however, has focused on the stability of these chromites in dual environments. Chromite powders were synthesized using the glycine-nitrate process. The powders were calcined at 1,000 C for 1 hour and then uniaxially pressed into bars (46mm x 16mm x 3mm) at 55 MPa and isostatically pressed at 138 MPa. Samples were sintered in air. The dependence of the physical properties of sintered lanthanum chromites upon ambient P(O{sub 2}) and temperature (using dilatometry, thermogravimetric analysis, and oxygen permeation measurements) were studied. La{sub 1{minus}x}A{sub x}CrO{sub 3} and Y{sub 1{minus}x}Ca{sub x}CrO{sub 3}, where A is Ca or Sr and x was varied from 0.1 to 0.4 were evaluated in this study. The P(O{sub 2}) was varied using a buffered CO{sub 2}/Ar-4%H{sub 2} gas system, enabling expansion measurements to be made over a partial pressure range from 10{sup {minus}5} to 10{sup {minus}18} atmosphere at 800, 900, and 1,000 C.

  6. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  7. Commentary on "Capturing the Evasive Passive"

    ERIC Educational Resources Information Center

    Lillo-Martin, Diane; Snyder, William

    2009-01-01

    Passives has been the focus of much research in language acquisition since the 1970s. It has been clear from this research that young children seldom produce passives spontaneously, particularly "long" or "full" passives with a by-phrase; and they usually perform poorly on experimental tests of the comprehension of passives, especially passives of…

  8. 1064 nm laser emission of highly doped Nd: Yttrium aluminum garnet under 885 nm diode laser pumping

    NASA Astrophysics Data System (ADS)

    Lupei, V.; Pavel, N.; Taira, T.

    2002-06-01

    Highly efficient 1064 nm continuous-wave laser emission under 885 nm diode pumping in concentrated Nd: Yttrium aluminum garnet (YAG) crystals (up to 3.5 at. % Nd) and ceramics (up to 3.8 at. % Nd) is reported. A highly doped (2.4 at. %) Nd:YAG laser, passively Q switched by a Cr4+:YAG saturable absorber, is demonstrated.

  9. Passive magnetic bearing system

    DOEpatents

    Post, Richard F.

    2014-09-02

    An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.

  10. Passive containment cooling system

    DOEpatents

    Billig, P.F.; Cooke, F.E.; Fitch, J.R.

    1994-01-25

    A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA. 1 figure.

  11. Passive Ball Capture Joint

    NASA Technical Reports Server (NTRS)

    Cloyd, Richard A. (Inventor); Bryan, Thomas C. (Inventor)

    2003-01-01

    A passive ball capture joint has a sleeve with a plurality of bores distributed about a circumference thereof and formed therethrough at an acute angle relative to the sleeve's longitudinal axis. A spring-loaded retainer is slidingly fitted in each bore and is biased such that, if allowed, will extend at least partially into the sleeve to retain a ball therein. A ring, rotatably mounted about the bores, has an interior wall defining a plurality of shaped races that bear against the spring-loaded retainers. A mechanized rotational force producer is coupled to the ring. The ring can be rotated from a first position (that presses the retainers into the sleeve to lock the ball in place) to a second position (that allows the retainers to springback out of the sleeve to release the ball).

  12. Passive containment cooling system

    DOEpatents

    Billig, Paul F.; Cooke, Franklin E.; Fitch, James R.

    1994-01-01

    A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA.

  13. Effect of sulfur passivation of silicon (100) on Schottky barrier height: Surface states versus surface dipole

    NASA Astrophysics Data System (ADS)

    Ali, Muhammad Yusuf; Tao, Meng

    2007-05-01

    Aluminum and nickel contacts were prepared by evaporation on sulfur-passivated n- and p-type Si(100) substrates. The Schottky diodes were characterized by current-voltage, capacitance-voltage, and activation-energy measurements. Due to the passivation of Si dangling bonds by S, surface states are reduced to a great extent and Schottky barriers formed by Al and Ni on Si(100) substrates show greater sensitivity to their respective work functions. Aluminum, a low work function metal, shows a barrier height of <0.11 eV on S-passivated n-type Si(100) and ˜0.80 eV on S-passivated p-type Si(100), as compared to 0.56 and ˜0.66 eV for nonpassivated n- and p-type Si(100), respectively. Nickel, a high work function metal, shows ˜0.72 and ˜0.51 eV on S-passivated n and p-type Si(100), respectively, as compared to ˜0.61 and ˜0.54 eV on nonpassivated n and p-type Si(100), respectively. Though a surface dipole forms due to the adsorption of S on Si(100), our experimental results indicate that the effect of surface states is the dominant factor in controlling the Schottky barrier height in these metal-Si systems.

  14. Temperature initiated passive cooling system

    DOEpatents

    Forsberg, C.W.

    1994-11-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

  15. Temperature initiated passive cooling system

    DOEpatents

    Forsberg, Charles W.

    1994-01-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  16. 14. Control Area, Interconnecting Corridor and Frequency Changer and Generator ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Control Area, Interconnecting Corridor and Frequency Changer and Generator Building, general view VIEW SOUTHWEST, NORTH ELEVATION - NIKE Missile Battery PR-79, Control Area, Tucker Hollow Road south of State Route 101, Foster, Providence County, RI

  17. Design of an optical interconnect for photonic backplane applications.

    PubMed

    Robertson, B

    1998-05-10

    A compact alignment-tolerant interconnect has been developed for use within a prototype modulator-based free-space photonic backplane. The interconnect design encompasses several unique features. Microlens arrays are used, and several beams share each microlens by clustering the optical input-output in a small field about the optical axis of each lens. For simplifying the layout, the optical input and output of each smart-pixel array are clustered separately, thereby allowing a Fourier plane patterned-mirror array to be used in the beam-combination optics. This allows a suitable balance between high interconnection densities and reasonable optical relay distances between adjacent boards to be achieved. The primary advantages of this scheme are the simplicity of the optical design and its alignability, making it ideally suited for high-density interconnection applications. PMID:18273244

  18. Free-Space Optical Interconnect Employing VCSEL Diodes

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Savich, Gregory R.; Torres, Heidi

    2009-01-01

    Sensor signal processing is widely used on aircraft and spacecraft. The scheme employs multiple input/output nodes for data acquisition and CPU (central processing unit) nodes for data processing. To connect 110 nodes and CPU nodes, scalable interconnections such as backplanes are desired because the number of nodes depends on requirements of each mission. An optical backplane consisting of vertical-cavity surface-emitting lasers (VCSELs), VCSEL drivers, photodetectors, and transimpedance amplifiers is the preferred approach since it can handle several hundred megabits per second data throughput.The next generation of satellite-borne systems will require transceivers and processors that can handle several Gb/s of data. Optical interconnects have been praised for both their speed and functionality with hopes that light can relieve the electrical bottleneck predicted for the near future. Optoelectronic interconnects provide a factor of ten improvement over electrical interconnects.

  19. Fault-tolerant interconnection networks for multiprocessor systems

    SciTech Connect

    Nassar, H.M.

    1989-01-01

    Interconnection networks represent the backbone of multiprocessor systems. A failure in the network, therefore, could seriously degrade the system performance. For this reason, fault tolerance has been regarded as a major consideration in interconnection network design. This thesis presents two novel techniques to provide fault tolerance capabilities to three major networks: the Beneline network and the Clos network. First, the Simple Fault Tolerance Technique (SFT) is presented. The SFT technique is in fact the result of merging two widely known interconnection mechanisms: a normal interconnection network and a shared bus. This technique is most suitable for networks with small switches, such as the Baseline network and the Benes network. For the Clos network, whose switches may be large for the SFT, another technique is developed to produce the Fault-Tolerant Clos (FTC) network. In the FTC, one switch is added to each stage. The two techniques are described and thoroughly analyzed.

  20. Clad metals by roll bonding for SOFC interconnects

    NASA Astrophysics Data System (ADS)

    Chen, L.; Jha, B.; Yang, Zhenguo; Xia, Guang-Guang; Stevenson, Jeffry W.; Singh, Prabhakar

    2006-08-01

    High-temperature oxidation-resistant alloys are currently considered as a candidate material for construction of interconnects in intermediate-temperature solid oxide fuel cells. Among these alloys, however, different groups of alloys demonstrate different advantages and disadvantages, and few, if any, can completely satisfy the stringent requirements for the application. To integrate the advantages and avoid the disadvantages of different groups of alloys, cladding has been proposed as one approach in fabricating metallic layered interconnect structures. To examine the feasibility of this approach, the austenitic Ni-base alloy Haynes 230 and the ferritic stainless steel AL 453 were selected as examples and manufactured into a clad metal. Its suitability as an interconnect construction material was investigated. This paper provides a brief overview of the cladding approach and discusses the viability of this technology to fabricate the metallic layered-structure interconnects.

  1. Controlled fracture of Cu/ultralow-k interconnects

    NASA Astrophysics Data System (ADS)

    Li, Han; Kobrinsky, Mauro J.; Shariq, Ahmed; Richards, John; Liu, Jimmy; Kuhn, Markus

    2013-12-01

    Mechanical failures of on-chip interconnects in the forms of delamination and cracking are among the most critical challenges for integrating ultralow-dielectric-constant (ultralow-"k") materials in advanced integrated circuits. Designing a mechanically robust interconnect stack against fabrication and packaging stresses requires quantitative characterization of the fracture properties of the integrated structure and its component materials. In this Letter, we demonstrate a simple method to control crack propagation in Cu/ultralow-k interconnect and thereby extract the fracture properties of the metal vias and interlayer dielectrics from integrated structures. Important implications of the method are discussed for interconnect technology development and for fundamental study of fracture behaviors of materials having nano-scale structures.

  2. Delay model for dynamically switching coupled RLC interconnects

    NASA Astrophysics Data System (ADS)

    Sharma, Devendra Kumar; Kaushik, Brajesh Kumar; Sharma, Rajender Kumar

    2014-04-01

    With the evolution of integrated circuit technology, the interconnect parasitics can be the limiting factor in high speed signal transmission. With increasing frequency of operation, length of interconnect and fast transition time of the signal, the RC models are not sufficient to estimate the delay accurately. To mitigate this problem, accurate delay models for coupled interconnects are very much required. This paper proposes an analytical model for estimating propagation delay in lossy coupled RLC interconnect lines for simultaneously switching scenario. To verify the proposed model, the analytical results are compared with those of FDTD and SPICE results for the two cases of inputs switching under consideration. An average error of 2.07% is observed which shows an excellent agreement with SPICE simulation and FDTD computations.

  3. 14 CFR 25.701 - Flap and slat interconnection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... equivalent means. (b) If a wing flap or slat interconnection or equivalent means is used, it must be designed... be designed for the loads imposed when the wing flaps or slats on one side are carrying the...

  4. Printing Stretchable Spiral Interconnects Using Reactive Ink Chemistries.

    PubMed

    Mamidanna, Avinash; Song, Zeming; Lv, Cheng; Lefky, Christopher S; Jiang, Hanqing; Hildreth, Owen J

    2016-05-25

    Stretchable electronics have important applications in health monitoring and integrated lab-on-a-chip devices. This paper discusses the performance of serpentine stretchable interconnects printed using self-reducing, silver reactive inks. It details process optimization, device fabrication, and device characterization, while demonstrating the potential applications for reactive inks and new design strategies in stretchable electronics. Devices were printed with an ethanol stabilized silver diamine reactive ink and cycled to stretch ratios of 140 and 160% over 1000 cycles with less than 2.5% variation in electrical resistance. Maximum deformation before failure was measured at 180% elongation. Additionally, interconnect deformation was compared to finite element analysis (FEA) simulations to show that FEA can be used to accurately model the deformation of low-strain printed interconnects. Overall, this paper demonstrates a simple and affordable route toward stretchable electrical interconnects. PMID:27158736

  5. In-Plane Biocompatible Microfluidic Interconnects for Implantable Microsystems

    PubMed Central

    Johnson, Dean G.; Frisina, Robert D.; Borkholder, David A.

    2011-01-01

    Small mammals, particularly mice, are very useful animal models for biomedical research. Extremely small anatomical dimensions, however, make design of implantable microsystems quite challenging. A method for coupling external fluidic systems to microfluidic channels via in-plane interconnects is presented. Capillary tubing is inserted into channels etched in the surface of a Si wafer with a seal created by Parylene-C deposition. Prediction of Parylene-C deposition into tapered channels based on Knudsen diffusion and deposition characterizations allows for design optimization. Low-volume interconnects using biocompatible, chemical resistant materials have been demonstrated and shown to withstand pressure as high as 827 kPa (120 psi) with an average pull test strength of 2.9 N. Each interconnect consumes less than 0.018 mm3 (18 nL) of volume. The low added volume makes this an ideal interconnect technology for medical applications where implant volume is critical. PMID:21147591

  6. Network motifs emerge from interconnections that favour stability

    NASA Astrophysics Data System (ADS)

    Angulo, Marco Tulio; Liu, Yang-Yu; Slotine, Jean-Jacques

    2015-10-01

    The microscopic principles organizing dynamic units in complex networks--from proteins to power generators--can be understood in terms of network `motifs’: small interconnection patterns that appear much more frequently in real networks than expected in random networks. When considered as small subgraphs isolated from a large network, these motifs are more robust to parameter variations, easier to synchronize than other possible subgraphs, and can provide specific functionalities. But one can isolate these subgraphs only by assuming, for example, a significant separation of timescales, and the origin of network motifs and their functionalities when embedded in larger networks remain unclear. Here we show that most motifs emerge from interconnection patterns that best exploit the intrinsic stability characteristics at different scales of interconnection, from simple nodes to whole modules. This functionality suggests an efficient mechanism to stably build complex systems by recursively interconnecting nodes and modules as motifs. We present direct evidence of this mechanism in several biological networks.

  7. Manufacturing and quality control of interconnecting wire harnesses, Volume 2

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Interconnecting wire harnesses defined in the design standard are considered, including type 4, open bundle (not enclosed). Knowledge gained through experience on the Saturn 5 program coupled with recent advances in techniques, materials, and processes was incorporated into the document.

  8. High-bandwidth and low-loss multimode polymer waveguides and waveguide components for high-speed board-level optical interconnects

    NASA Astrophysics Data System (ADS)

    Bamiedakis, N.; Chen, J.; Penty, R. V.; White, I. H.

    2016-03-01

    Multimode polymer waveguides are being increasingly considered for use in short-reach board-level optical interconnects as they exhibit favourable optical properties and allow direct integration onto standard PCBs with conventional methods of the electronics industry. Siloxane-based multimode waveguides have been demonstrated with excellent optical transmission performance, while a wide range of passive waveguide components that offer routing flexibility and enable the implementation of complex on-board interconnection architectures has been reported. In recent work, we have demonstrated that these polymer waveguides can exhibit very high bandwidth-length products in excess of 30 GHz×m despite their highly-multimoded nature, while it has been shown that even larger values of > 60 GHz×m can be achieved by adjusting their refractive index profile. Furthermore, the combination of refractive index engineering and launch conditioning schemes can ensure high bandwidth (> 100 GHz×m) and high coupling efficiency (<1 dB) with standard multimode fibre inputs with relatively large alignment tolerances (~17×15 μm2). In the work presented here, we investigate the effects of refractive index engineering on the performance of passive waveguide components (crossings, bends) and provide suitable design rules for their on-board use. It is shown that, depending on the interconnection layout and link requirements, appropriate choice of refractive index profile can provide enhanced component performance, ensuring low loss interconnection and adequate link bandwidth. The results highlight the strong potential of this versatile optical technology for the formation of high-performance board-level optical interconnects with high routing flexibility.

  9. Developing Generic Dynamic Models for the 2030 Eastern Interconnection Grid

    SciTech Connect

    Kou, Gefei; Hadley, Stanton W; Markham, Penn N; Liu, Yilu

    2013-12-01

    The Eastern Interconnection Planning Collaborative (EIPC) has built three major power flow cases for the 2030 Eastern Interconnection (EI) based on various levels of energy/environmental policy conditions, technology advances, and load growth. Using the power flow cases, this report documents the process of developing the generic 2030 dynamic models using typical dynamic parameters. The constructed model was validated indirectly using the synchronized phasor measurements by removing the wind generation temporarily.

  10. Preliminary reliability evaluation of flip chip on flex interconnect technology

    NASA Technical Reports Server (NTRS)

    Shaw, Jack J.; Virmani, Naresh

    1997-01-01

    The study was carried out to evaluate the flip-chip-on-flex (FCOF) interconnection process in order to determine its feasibility for space flight applications. The key objectives were to: develop and apply simple and cost effective process steps needed to manufacture FCOFs and build test samples; perform a preliminary technology validation, and determine any initial environmental or application risks. The FCOF was shown to be simpler and more economical than other chip interconnection schemes.

  11. The organization of permutation architectures with bussed interconnections

    NASA Astrophysics Data System (ADS)

    Kilian, Joe; Kipnis, Sholomo; Leiserson, Charles E.

    1989-01-01

    The problem of efficiently permuting data stored in VLSI chips is explored in accordance with a predetermined set of permutations. By connecting chips with shared bus interconnections, as opposed to point-to-point interconnections, it is shown that the number of pins per chip can often be reduced. Uniform permutation architectures were also considered that realize permutations in several clock ticks, instead of one, and show that further savings in the number of pins per chip can be obtained.

  12. The organization of permutation architectures with bused interconnections

    NASA Astrophysics Data System (ADS)

    Kilian, Joe; Kipnis, Shlomo; Leiserson, Charles E.

    1990-11-01

    The problem of efficiently permuting data stored in VLSI chips is explored, in accordance with a predetermined set of permutations. By connecting chips with shared bus interconnections, as opposed to point-to-point interconnections, it is shown that the number of pins per chip can often be reduced. Uniform permutation architectures are also considered that realize permutations in several clock ticks, instead of one, and it is demonstrated that further savings in the number of pins per chip can be obtained.

  13. Method for fabricating an interconnected array of semiconductor devices

    NASA Technical Reports Server (NTRS)

    Grimmer, Derrick P. (Inventor)

    1995-01-01

    A method of forming an array of interconnected solar cells. A flexible substrate carrying semiconductor and conductive layers is divided into individual devices by slitting the substrate along the web length. The individual devices are then connected with one another in series by laminating the substrate onto an insulating backing and by depositing conducting interconnection layers which join the lower conductor of one device with the top conductor of the adjoining device.

  14. Monolithic microwave integrated circuits: Interconnections and packaging considerations

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Downey, A. N.; Ponchak, G. E.; Romanofsky, R. R.; Anzic, G.; Connolly, D. J.

    1984-01-01

    Monolithic microwave integrated circuits (MMIC's) above 18 GHz were developed because of important potential system benefits in cost reliability, reproducibility, and control of circuit parameters. The importance of interconnection and packaging techniques that do not compromise these MMIC virtues is emphasized. Currently available microwave transmission media are evaluated to determine their suitability for MMIC interconnections. An antipodal finline type of microstrip waveguide transition's performance is presented. Packaging requirements for MMIC's are discussed for thermal, mechanical, and electrical parameters for optimum desired performance.

  15. Capacitance extraction from complex 3D interconnect structures

    SciTech Connect

    Cartwright, D.; Csanak, G.; George, D.; Walker, R.; Kuprat, A.; Dengi, A.; Grobman, W.

    1999-06-01

    A new tool has been developed for calculating the capacitance matrix for complex 3D interconnect structures involving multiple layers of irregularly shaped interconnect, imbedded in different dielectric materials. This method utilizes a new 3D adaptive unstructured grid capability, and a linear finite element algorithm. The capacitance is determined from the minimum in the total system energy as the nodes are varied to minimize the error in the electric field in the dielectric(s).

  16. Electrolyte treatment for aluminum reduction

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-01-01

    A method of treating an electrolyte for use in the electrolytic reduction of alumina to aluminum employing an anode and a cathode, the alumina dissolved in the electrolyte, the treating improving wetting of the cathode with molten aluminum during electrolysis. The method comprises the steps of providing a molten electrolyte comprised of ALF.sub.3 and at least one salt selected from the group consisting of NaF, KF and LiF, and treating the electrolyte by providing therein 0.004 to 0.2 wt. % of a transition metal or transition metal compound for improved wettability of the cathode with molten aluminum during subsequent electrolysis to reduce alumina to aluminum.

  17. Chrome - Free Aluminum Coating System

    NASA Technical Reports Server (NTRS)

    Bailey, John H.; Gugel, Jeffrey D.

    2010-01-01

    This slide presentation concerns the program to qualify a chrome free coating for aluminum. The program was required due to findings by OSHA and EPA, that hexavalent chromium, used to mitigate corrosion in aerospace aluminum alloys, poses hazards for personnel. This qualification consisted of over 4,000 tests. The tests revealed that a move away from Cr+6, required a system rather than individual components and that the maximum corrosion protection required pretreatment, primer and topcoat.

  18. Feasibility of optically interconnected parallel processors using wavelength division multiplexing

    SciTech Connect

    Deri, R.J.; De Groot, A.J.; Haigh, R.E.

    1996-03-01

    New national security demands require enhanced computing systems for nearly ab initio simulations of extremely complex systems and analyzing unprecedented quantities of remote sensing data. This computational performance is being sought using parallel processing systems, in which many less powerful processors are ganged together to achieve high aggregate performance. Such systems require increased capability to communicate information between individual processor and memory elements. As it is likely that the limited performance of today`s electronic interconnects will prevent the system from achieving its ultimate performance, there is great interest in using fiber optic technology to improve interconnect communication. However, little information is available to quantify the requirements on fiber optical hardware technology for this application. Furthermore, we have sought to explore interconnect architectures that use the complete communication richness of the optical domain rather than using optics as a simple replacement for electronic interconnects. These considerations have led us to study the performance of a moderate size parallel processor with optical interconnects using multiple optical wavelengths. We quantify the bandwidth, latency, and concurrency requirements which allow a bus-type interconnect to achieve scalable computing performance using up to 256 nodes, each operating at GFLOP performance. Our key conclusion is that scalable performance, to {approx}150 GFLOPS, is achievable for several scientific codes using an optical bus with a small number of WDM channels (8 to 32), only one WDM channel received per node, and achievable optoelectronic bandwidth and latency requirements. 21 refs. , 10 figs.

  19. Reconfigurable Hybrid Interconnection for Static and DynamicScientific Applications

    SciTech Connect

    Kamil, Shoaib; Pinar, Ali; Gunter, Daniel; Lijewski, Michael; Oliker, Leonid; Shalf, John; Skinner, David

    2006-04-25

    As we enter the era of petascale computing, system architects must plan for machines composed of tens of thousands or even hundreds of thousands of processors. Although fully connected networks such as fat-tree interconnects currently dominate HPC network designs, such approaches are inadequate for thousands of processors due to the superlinear growth of component costs. Traditional low-degree interconnect topologies, such as the 3D torus, have reemerged as a competitive solution because the number of switch components scales linearly with the node count, but such networks are poorly suited for the requirements of many scientific applications. We present our latest work on a hybrid switch architecture called HFAST that uses circuit switches to dynamically reconfigure a lower-degree interconnect to suit the topological requirements of each scientific application. This paper expands upon our prior work on the requirements of non-adaptive applications by analyzing the communication characteristics of dynamically adapting AMR code and presents a methodology that captures the evolving communication requirements. We also present a new optimization that computes the under-utilization of fat-tree interconnects for a given communication topology, showing the potential of constructing a ''fit-tree'' for the application by using the HFAST circuit switches to provision an optimal interconnect topology for each application. Finally, we apply our new optimization technique to the communication requirements of the AMR code to demonstrate the potential of using dynamic reconfiguration of the HFAST interconnect between the communication intensive phases of a dynamically adapting application.

  20. Scaling of Metal Interconnects: Challenges to Functionality and Reliability

    SciTech Connect

    Engelhardt, M.; Schindler, G.; Traving, M.; Stich, A.; Gabric, Z.; Pamler, W.; Hoenlein, W.

    2006-02-07

    Copper-based nano interconnects featuring CDs well beyond today's chip generations and air gap structures were fabricated and subjected to electrical characterization and tests to get already today insight on functionality and reliability aspects of metallization schemes in future semiconductor products. Size effects observed already in today's advanced products will definitely limit the resistivity in future interconnects. Copper diffusion barrier layers were scaled down to the 1nm regime of thicknesses without observable degradation effects regarding adhesion properties and functionality. Interconnect reliability was found to decrease with decreasing barrier thickness. Worst results regarding adhesion properties and interconnect reliability were obtained for vanishing barrier thickness which promotes unrestricted mass flow of copper along the interconnect line. Air gaps were developed and characterized as an alternative approach to porous ultra low-k materials. They allowed the realization of effective k-values of the insulation of 2.4, which meet requirements of chip generations far in the future, while avoiding the integration issues associated with these soft materials. First reliability results obtained with air gaps are comparable with those obtained on full structures. Whereas leakage current behavior with electrical field strength expected to be present between neighboring lines in chip generations during the next 10 years were similar for air gaps and oxide, interconnects insulated by air gaps displayed lower breakdown fields than those insulated by oxide.

  1. Solid-state energy storage module employing integrated interconnect board

    DOEpatents

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2000-01-01

    The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. In one embodiment, a sheet of conductive material is processed by employing a known milling, stamping, or chemical etching technique to include a connection pattern which provides for flexible and selective interconnecting of individual electrochemical cells within the housing, which may be a hermetically sealed housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  2. Chip-to-board interconnects for high-performance computing

    NASA Astrophysics Data System (ADS)

    Riester, Markus B. K.; Houbertz-Krauss, Ruth; Steenhusen, Sönke

    2013-02-01

    Super computing is reaching out to ExaFLOP processing speeds, creating fundamental challenges for the way that computing systems are designed and built. One governing topic is the reduction of power used for operating the system, and eliminating the excess heat generated from the system. Current thinking sees optical interconnects on most interconnect levels to be a feasible solution to many of the challenges, although there are still limitations to the technical solutions, in particular with regard to manufacturability. This paper explores drivers for enabling optical interconnect technologies to advance into the module and chip level. The introduction of optical links into High Performance Computing (HPC) could be an option to allow scaling the manufacturing technology to large volume manufacturing. This will drive the need for manufacturability of optical interconnects, giving rise to other challenges that add to the realization of this type of interconnection. This paper describes a solution that allows the creation of optical components on module level, integrating optical chips, laser diodes or PIN diodes as components much like the well known SMD components used for electrical components. The paper shows the main challenges and potential solutions to this challenge and proposes a fundamental paradigm shift in the manufacturing of 3-dimensional optical links for the level 1 interconnect (chip package).

  3. Cascading failures in interconnected networks with dynamical redistribution of loads

    NASA Astrophysics Data System (ADS)

    Zhao, Zhuang; Zhang, Peng; Yang, Hujiang

    2015-09-01

    Cascading failures of loads in isolated networks and coupled networks have been studied in the past few years. In most of the corresponding results, the topologies of the networks are destroyed. Here, we present an interconnected network model considering cascading failures based on the dynamic redistribution of flow in the networks. Compared with the results of single scale-free networks, we find that interconnected scale-free networks have higher vulnerability. Additionally, the network heterogeneity plays an important role in the robustness of interconnected networks under intentional attacks. Considering the effects of various coupling preferences, the results show that there are almost no differences. Finally, the application of our model to the Beijing interconnected traffic network, which consists of a subway network and a bus network, shows that the subway network suffers more damage under the attack. Moreover, the interconnected traffic network may be more exposed to damage after initial attacks on the bus network. These discussions are important for the design and optimization of interconnected networks.

  4. Antireflection/Passivation Step For Silicon Cell

    NASA Technical Reports Server (NTRS)

    Crotty, Gerald T.; Kachare, Akaram H.; Daud, Taher

    1988-01-01

    New process excludes usual silicon oxide passivation. Changes in principal electrical parameters during two kinds of processing suggest antireflection treatment almost as effective as oxide treatment in passivating cells. Does so without disadvantages of SiOx passivation.

  5. Aluminum laser welding optimization

    NASA Astrophysics Data System (ADS)

    Chmelíčková, Hana; Halenka, Viktor; Lapšanská, Hana; Havelková, Martina

    2007-04-01

    Pulsed Nd:YAG laser with maximal power 150 W is used in our laboratory to cut, drill and weld metal and non-metal thin materials to thickness 2 mm. Welding is realized by fixed processing head or movable fiber one with beam diameter 0,6 mm in focus plane. Welding of stainless and low-carbon steel was tested before and results are publicized and used in practice. Now the goal of our experiment was optimization of process parameters for aluminum that has other physical properties than steels, lower density, higher heat conductivity and surface reflexivity. Pure alumina specimen 0,8 mm and Al-Mg-Si alloy 0,5 mm prepared for butt welds. Problem with surface layer of Al IIO 3 was overcome by sanding and chemical cleaning with grinding paste. Critical parameters for good weld shape are specimen position from beam focus plane, pulse length and energy, pulse frequency and the motion velocity that determines percentage of pulse overlap. Argon as protective gas was used with speed 6 liters per second. Thermal distribution in material can be modeled by numerical simulation. Software tool SYSWELD makes possible to fit laser as surface heat source, define weld geometry, and make meshing of specimen to finite elements and compute heat conduction during process. Color isotherms, vectors, mechanical deformations and others results can be study in post-processing.

  6. Anodized aluminum on LDEF

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    1993-01-01

    A compilation of reported analyses and results obtained for anodized aluminum flown on the Long Duration Exposure Facility (LDEF) was prepared. Chromic acid, sulfuric acid, and dyed sulfuric acid anodized surfaces were exposed to the space environment. The vast majority of the anodized surface on LDEF was chromic acid anodize because of its selection as a thermal control coating for use on the spacecraft primary structure, trays, tray clamps, and space end thermal covers. Reports indicate that the chromic acid anodize was stable in solar absorptance and thermal emittance, but that contamination effects caused increases in absorptance on surfaces exposed to low atomic oxygen fluences. There were some discrepancies, however, in that some chromic acid anodized specimens exhibited significant increases in absorptance. Sulfuric acid anodized surfaces also appeared stable, although very little surface area was available for evaluation. One type of dyed sulfuric acid anodize was assessed as an optical baffle coating and was observed to have improved infrared absorptance characteristics with exposure on LDEF.

  7. Managing aluminum phosphide poisonings

    PubMed Central

    Gurjar, Mohan; Baronia, Arvind K; Azim, Afzal; Sharma, Kalpana

    2011-01-01

    Aluminum phosphide (AlP) is a cheap, effective and commonly used pesticide. However, unfortunately, it is now one of the most common causes of poisoning among agricultural pesticides. It liberates lethal phosphine gas when it comes in contact either with atmospheric moisture or with hydrochloric acid in the stomach. The mechanism of toxicity includes cellular hypoxia due to the effect on mitochondria, inhibition of cytochrome C oxidase and formation of highly reactive hydroxyl radicals. The signs and symptoms are nonspecific and instantaneous. The toxicity of AlP particularly affects the cardiac and vascular tissues, which manifest as profound and refractory hypotension, congestive heart failure and electrocardiographic abnormalities. The diagnosis of AlP usually depends on clinical suspicion or history, but can be made easily by the simple silver nitrate test on gastric content or on breath. Due to no known specific antidote, management remains primarily supportive care. Early arrival, resuscitation, diagnosis, decrease the exposure of poison (by gastric lavage with KMnO4, coconut oil), intensive monitoring and supportive therapy may result in good outcome. Prompt and adequate cardiovascular support is important and core in the management to attain adequate tissue perfusion, oxygenation and physiologic metabolic milieu compatible with life until the tissue poison levels are reduced and spontaneous circulation is restored. In most of the studies, poor prognostic factors were presence of acidosis and shock. The overall outcome improved in the last decade due to better and advanced intensive care management. PMID:21887030

  8. Managing aluminum phosphide poisonings.

    PubMed

    Gurjar, Mohan; Baronia, Arvind K; Azim, Afzal; Sharma, Kalpana

    2011-07-01

    Aluminum phosphide (AlP) is a cheap, effective and commonly used pesticide. However, unfortunately, it is now one of the most common causes of poisoning among agricultural pesticides. It liberates lethal phosphine gas when it comes in contact either with atmospheric moisture or with hydrochloric acid in the stomach. The mechanism of toxicity includes cellular hypoxia due to the effect on mitochondria, inhibition of cytochrome C oxidase and formation of highly reactive hydroxyl radicals. The signs and symptoms are nonspecific and instantaneous. The toxicity of AlP particularly affects the cardiac and vascular tissues, which manifest as profound and refractory hypotension, congestive heart failure and electrocardiographic abnormalities. The diagnosis of AlP usually depends on clinical suspicion or history, but can be made easily by the simple silver nitrate test on gastric content or on breath. Due to no known specific antidote, management remains primarily supportive care. Early arrival, resuscitation, diagnosis, decrease the exposure of poison (by gastric lavage with KMnO(4), coconut oil), intensive monitoring and supportive therapy may result in good outcome. Prompt and adequate cardiovascular support is important and core in the management to attain adequate tissue perfusion, oxygenation and physiologic metabolic milieu compatible with life until the tissue poison levels are reduced and spontaneous circulation is restored. In most of the studies, poor prognostic factors were presence of acidosis and shock. The overall outcome improved in the last decade due to better and advanced intensive care management. PMID:21887030

  9. Engineering Glass Passivation Layers -Model Results

    SciTech Connect

    Skorski, Daniel C.; Ryan, Joseph V.; Strachan, Denis M.; Lepry, William C.

    2011-08-08

    The immobilization of radioactive waste into glass waste forms is a baseline process of nuclear waste management not only in the United States, but worldwide. The rate of radionuclide release from these glasses is a critical measure of the quality of the waste form. Over long-term tests and using extrapolations of ancient analogues, it has been shown that well designed glasses exhibit a dissolution rate that quickly decreases to a slow residual rate for the lifetime of the glass. The mechanistic cause of this decreased corrosion rate is a subject of debate, with one of the major theories suggesting that the decrease is caused by the formation of corrosion products in such a manner as to present a diffusion barrier on the surface of the glass. Although there is much evidence of this type of mechanism, there has been no attempt to engineer the effect to maximize the passivating qualities of the corrosion products. This study represents the first attempt to engineer the creation of passivating phases on the surface of glasses. Our approach utilizes interactions between the dissolving glass and elements from the disposal environment to create impermeable capping layers. By drawing from other corrosion studies in areas where passivation layers have been successfully engineered to protect the bulk material, we present here a report on mineral phases that are likely have a morphological tendency to encrust the surface of the glass. Our modeling has focused on using the AFCI glass system in a carbonate, sulfate, and phosphate rich environment. We evaluate the minerals predicted to form to determine the likelihood of the formation of a protective layer on the surface of the glass. We have also modeled individual ions in solutions vs. pH and the addition of aluminum and silicon. These results allow us to understand the pH and ion concentration dependence of mineral formation. We have determined that iron minerals are likely to form a complete incrustation layer and we plan

  10. Photodiode-Based, Passive Ultraviolet Dosimeters

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason A.; Gray, Perry

    2004-01-01

    Simple, passive instruments have been developed for measuring the exposure of material specimens to vacuum ultraviolet (VUV) radiation from the Sun. Each instrument contains a silicon photodiode and a coulometer. The photocharge generated in the photodiode is stored in the coulometer. The accumulated electric charge measured by use of the coulometer is assumed to be proportional to the cumulative dose of VUV radiation expressed in such convenient units as equivalent Sun hours (ESH) [defined as the number of hours of exposure to sunlight at normal incidence]. Intended originally for use aboard spacecraft, these instruments could also be adapted to such terrestrial uses as monitoring the curing of ultraviolet-curable epoxies. Each instrument includes a photodiode and a coulometer assembly mounted on an interface plate (see figure). The photodiode assembly includes an aluminum housing that holds the photodiode, a poly(tetrafluoroehylene) cosine receptor, and a narrow-band optical filter. The cosine receptor ensures that the angular response of the instrument approximates the ideal angular response (proportional to the cosine of the angle of incidence). The filter is chosen to pass the ultraviolet wavelength of interest in a specific experiment. The photodiode is electrically connected to the coulometer. The factor of proportionality between the charge stored in the coulometer and ultraviolet dosage (in units of ESH) is established, prior to use, in calibration experiments that involve the use of lamps and current sources traceable to the National Institute of Standards and Technology.

  11. Passive Vaporizing Heat Sink

    NASA Technical Reports Server (NTRS)

    Knowles, TImothy R.; Ashford, Victor A.; Carpenter, Michael G.; Bier, Thomas M.

    2011-01-01

    A passive vaporizing heat sink has been developed as a relatively lightweight, compact alternative to related prior heat sinks based, variously, on evaporation of sprayed liquids or on sublimation of solids. This heat sink is designed for short-term dissipation of a large amount of heat and was originally intended for use in regulating the temperature of spacecraft equipment during launch or re-entry. It could also be useful in a terrestrial setting in which there is a requirement for a lightweight, compact means of short-term cooling. This heat sink includes a hermetic package closed with a pressure-relief valve and containing an expendable and rechargeable coolant liquid (e.g., water) and a conductive carbon-fiber wick. The vapor of the liquid escapes when the temperature exceeds the boiling point corresponding to the vapor pressure determined by the setting of the pressure-relief valve. The great advantage of this heat sink over a melting-paraffin or similar phase-change heat sink of equal capacity is that by virtue of the =10x greater latent heat of vaporization, a coolant-liquid volume equal to =1/10 of the paraffin volume can suffice.

  12. Passive-solar greenhouse

    SciTech Connect

    Not Available

    1982-01-01

    Our project objective was to design, construct, and operate a commercialized (16' x 50') passive, solar greenhouse. The structure was originally intended as a vegetable forcing facility to produce vegetable crops in the off-season. Building and size constraints and economic considerations convinced us to use the greenhouse for producing bedding plants and vegetable starts in the spring, high value vegetables (tomatoes, cucumbers) in the fall and forced bulbs in the winter. This crop sequence allows us to use the greenhouse all year without additional heat as the crops are adopted to the temperature regime of the greenhouse during each particular season. In our first season, the greenhouse performed beautifully. The lowest temperature recorded was 38/sup 0/F after 4 cold, cloudy days in February. The production of bedding plants has allowed us to diversify our products and the early transplants we produced were a great asset to our vegetable farming operation. Although construction cost (4.57 sq. ft.) is higher than that of a conventional polyethylene-covered, quonset-type greenhouse (approx. $1.92 sq. ft.), our annual operating cost is cheaper than that of a conventional greenhouse (0.49 cents sq. ft. versus 0.67 cents sq. ft.) due to a longer usable lifetime of the structure and the elimination of heating costs. Our structure has been toured by interested individuals, school and farm groups. We plan to publicize the structure and its advantages by promoting more visits to the site.

  13. Passive blast pressure sensor

    DOEpatents

    King, Michael J.; Sanchez, Roberto J.; Moss, William C.

    2013-03-19

    A passive blast pressure sensor for detecting blast overpressures of at least a predetermined minimum threshold pressure. The blast pressure sensor includes a piston-cylinder arrangement with one end of the piston having a detection surface exposed to a blast event monitored medium through one end of the cylinder and the other end of the piston having a striker surface positioned to impact a contact stress sensitive film that is positioned against a strike surface of a rigid body, such as a backing plate. The contact stress sensitive film is of a type which changes color in response to at least a predetermined minimum contact stress which is defined as a product of the predetermined minimum threshold pressure and an amplification factor of the piston. In this manner, a color change in the film arising from impact of the piston accelerated by a blast event provides visual indication that a blast overpressure encountered from the blast event was not less than the predetermined minimum threshold pressure.

  14. Low-aluminum content iron-aluminum alloys

    SciTech Connect

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  15. Imparting passivity to vapor deposited magnesium alloys

    NASA Astrophysics Data System (ADS)

    Wolfe, Ryan C.

    Magnesium has the lowest density of all structural metals. Utilization of low density materials is advantageous from a design standpoint, because lower weight translates into improved performance of engineered products (i.e., notebook computers are more portable, vehicles achieve better gas mileage, and aircraft can carry more payload). Despite their low density and high strength to weight ratio, however, the widespread implementation of magnesium alloys is currently hindered by their relatively poor corrosion resistance. The objective of this research dissertation is to develop a scientific basis for the creation of a corrosion resistant magnesium alloy. The corrosion resistance of magnesium alloys is affected by several interrelated factors. Among these are alloying, microstructure, impurities, galvanic corrosion effects, and service conditions, among others. Alloying and modification of the microstructure are primary approaches to controlling corrosion. Furthermore, nonequilibrium alloying of magnesium via physical vapor deposition allows for the formation of single-phase magnesium alloys with supersaturated concentrations of passivity-enhancing elements. The microstructure and surface morphology is also modifiable during physical vapor deposition through the variation of evaporation power, pressure, temperature, ion bombardment, and the source-to-substrate distance. Aluminum, titanium, yttrium, and zirconium were initially chosen as candidates likely to impart passivity on vapor deposited magnesium alloys. Prior to this research, alloys of this type have never before been produced, much less studied. All of these metals were observed to afford some degree of corrosion resistance to magnesium. Due to the especially promising results from nonequilibrium alloying of magnesium with yttrium and titanium, the ternary magnesium-yttrium-titanium system was investigated in depth. While all of the alloys are lustrous, surface morphology is observed under the scanning

  16. Imparting passivity to vapor deposited magnesium alloys

    NASA Astrophysics Data System (ADS)

    Wolfe, Ryan C.

    Magnesium has the lowest density of all structural metals. Utilization of low density materials is advantageous from a design standpoint, because lower weight translates into improved performance of engineered products (i.e., notebook computers are more portable, vehicles achieve better gas mileage, and aircraft can carry more payload). Despite their low density and high strength to weight ratio, however, the widespread implementation of magnesium alloys is currently hindered by their relatively poor corrosion resistance. The objective of this research dissertation is to develop a scientific basis for the creation of a corrosion resistant magnesium alloy. The corrosion resistance of magnesium alloys is affected by several interrelated factors. Among these are alloying, microstructure, impurities, galvanic corrosion effects, and service conditions, among others. Alloying and modification of the microstructure are primary approaches to controlling corrosion. Furthermore, nonequilibrium alloying of magnesium via physical vapor deposition allows for the formation of single-phase magnesium alloys with supersaturated concentrations of passivity-enhancing elements. The microstructure and surface morphology is also modifiable during physical vapor deposition through the variation of evaporation power, pressure, temperature, ion bombardment, and the source-to-substrate distance. Aluminum, titanium, yttrium, and zirconium were initially chosen as candidates likely to impart passivity on vapor deposited magnesium alloys. Prior to this research, alloys of this type have never before been produced, much less studied. All of these metals were observed to afford some degree of corrosion resistance to magnesium. Due to the especially promising results from nonequilibrium alloying of magnesium with yttrium and titanium, the ternary magnesium-yttrium-titanium system was investigated in depth. While all of the alloys are lustrous, surface morphology is observed under the scanning

  17. Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations;

    SciTech Connect

    Not Available

    2006-04-01

    DOE Industrial Technologies Program case study describes the savings possible if Commonwealth Aluminum (now Aleris Rolled Products) makes improvements noted in energy assessments at two aluminum mills.

  18. Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations

    SciTech Connect

    2006-04-01

    DOE Industrial Technologies Program case study describes the savings possible if Commonwealth Aluminum (now Aleris Rolled Products) makes improvements noted in energy assessments at two aluminum mills.

  19. Electronic interconnects and devices with topological surface states and methods for fabricating same

    DOEpatents

    Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.

    2016-05-03

    An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.

  20. Electrode and interconnect for miniature fuel cells using direct methanol feed

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor); Clara, Filiberto (Inventor)

    2004-01-01

    An improved system for interconnects in a fuel cell. In one embodiment, the membranes are located in parallel with one another, and current flow between them is facilitated by interconnects. In another embodiment, all of the current flow is through the interconnects which are located on the membranes. The interconnects are located between two electrodes.

  1. 47 CFR 90.483 - Permissible methods and requirements of interconnecting private and public systems of...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Transmitter Control Interconnected Systems § 90.483 Permissible methods and requirements of interconnecting... the following provisions: (a) Where a system is interconnected manually at a fixed control point, the... interconnected automatically it may be supervised at the control point or in mobile units. (1) For control...

  2. First principles pseudopotential calculations on aluminum and aluminum alloys

    SciTech Connect

    Davenport, J.W.; Chetty, N.; Marr, R.B.; Narasimhan, S.; Pasciak, J.E.; Peierls, R.F.; Weinert, M.; Rahman, T.S.

    1994-12-31

    Recent advances in computational techniques have led to the possibility of performing first principles calculations of the energetics of alloy formation on systems involving several hundred atoms. This includes impurity concentrations in the 1% range as well as realistic models of disordered materials (including liquids), vacancies, and grain boundaries. The new techniques involve the use of soft, fully nonlocal pseudopotentials, iterative diagonalization, and parallel computing algorithms. This approach has been pioneered by Car and Parrinello. Here the authors give a review of recent results using parallel and serial algorithms by their group on metallic systems including liquid aluminum and liquid sodium, and also new results on vacancies in aluminum and on aluminum-magnesium alloys.

  3. Nanoporous Anodic Edge Passivation of Si Solar Cells.

    PubMed

    Choi, Jaeho; Palei, Srikanta; Parida, Bhaskar; Ko, Seuk Yong; Kim, Keunjoo

    2015-11-01

    We investigated the anodization effect on edge passivation of Si solar cells. The Si anodization allowed SiO2 formation on the edges of the cell for electrical passivation. The edge passivated cell showed enhanced conversion efficiency with reduced carrier recombination which was observed from photoluminescence and electroluminescence images. The luminescences were reduced at the edges indicating prevention of edge current leakage. However, when the rear Al paste layer of a sample was contacted to the solution during the anodization process, the conversion efficiency of the cell was reduced. We characterized oxide thin films by performing the anodization process for front Al thin film layer deposited by evaporation and rear Al paste layer. The front anodic aluminum oxide covering the Si emitter layer showed the excellent phototransmission with small photoreflectance lower than 5% and the anodization of Al paste showed the formation of a thin SiO2 film as well as nanoporous Al2O3 layer originating from the microspherical Al paste. The rear Al paste anodization allowed the Al microspheres to be filled with the nanopores in the inner empty space. PMID:26726608

  4. Weld Repair of Thin Aluminum Sheet

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Mitchell, M. J.

    1986-01-01

    Weld repairing of thin aluminum sheets now possible, using niobium shield and copper heat sinks. Refractory niobium shield protects aluminum adjacent to hole, while copper heat sinks help conduct heat away from repair site. Technique limits tungsten/inert-gas (TIG) welding bombardment zone to melt area, leaving surrounding areas around weld unaffected. Used successfully to repair aluminum cold plates on Space Shuttle, Commercial applications, especially in sealing fractures, dents, and holes in thin aluminum face sheets or clad brazing sheet in cold plates, heat exchangers, coolers, and Solar panels. While particularly suited to thin aluminum sheet, this process also used in thicker aluminum material to prevent surface damage near weld area.

  5. Passive Solar Is Common Sense.

    ERIC Educational Resources Information Center

    Robison, Rita

    1979-01-01

    A checklist of concepts concerning passive solar energy techniques. Many can be applied immediately to existing buildings, while others should be brought into the initial planning of buildings. (Author/MLF)

  6. Orion Passive Thermal: Control Overview

    NASA Technical Reports Server (NTRS)

    Alvarez-Hermandez, Angel; Miller, Stephen W.

    2009-01-01

    A general overview of the NASA Orion Passive Thermal Control System (PTCS) is presented. The topics include: 1) Orion in CxP Hierarchy; 2) General Orion Description/Orientation; and 3) Orion PTCS Overview.

  7. Scaleable Clean Aluminum Melting Systems

    SciTech Connect

    Han, Q.; Das, S.K.

    2008-02-15

    The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

  8. Impact of photolithography and mask variability on interconnect parasitics

    NASA Astrophysics Data System (ADS)

    Tian, Yuxin; Shi, Weiping; Mercer, M. Ray

    2005-11-01

    Due to photolithography effects and manufacture process variations, the actual features printed on wafer are different from the designed ones. This difference results in the inaccuracy on parasitic extraction, which is critical for timing verification and design for manufacturability. Most of the current layout parasitic extraction (LPE) tools ignore these effects and can cause as high as 20% errors. This paper proposes a new strategy to extract interconnect parasitics with the consideration of photolithography effects and process variations. Based on the feedback from lithography simulation, a shape correction process is setup to adjust the interconnect structure for LPE tools. Compared with the traditional extraction methodology, the parasitics extracted from this adjusted geometry are more accurate. This method can be implanted into the current design flow with minimum change. Meanwhile, this paper studies the impacts of mask critical dimension (CD) variations on interconnect parasitics. The variability analysis is based on PROLITH lithography simulation software and is tested on RAPHAEL interconnect library. The results show a high nonlinear relationship between the mask variation and the interconnect parasitics.

  9. Microcoil Spring Interconnects for Ceramic Grid Array Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Strickland, S. M.; Hester, J. D.; Gowan, A. K.; Montgomery, R. K.; Geist, D. L.; Blanche, J. F.; McGuire, G. D.; Nash, T. S.

    2011-01-01

    As integrated circuit miniaturization trends continue, they drive the need for smaller higher input/output (I/O) packages. Hermetically sealed ceramic area array parts are the package of choice by the space community for high reliability space flight electronic hardware. Unfortunately, the coefficient of thermal expansion mismatch between the ceramic area array package and the epoxy glass printed wiring board limits the life of the interconnecting solder joint. This work presents the results of an investigation by Marshall Space Flight Center into a method to increase the life of this second level interconnection by the use of compliant microcoil springs. The design of the spring and its attachment process are presented along with thermal cycling results of microcoil springs (MCS) compared with state-of-the-art ball and column interconnections. Vibration testing has been conducted on MCS and high lead column parts. Radio frequency simulation and measurements have been made and the MCS has been modeled and a stress analysis performed. Thermal cycling and vibration testing have shown MCS interconnects to be significantly more reliable than solder columns. Also, MCS interconnects are less prone to handling damage than solder columns. Future work that includes shock testing, incorporation into a digital signal processor board, and process evaluation of expansion from a 400 I/O device to a device with over 1,100 I/O is identified.

  10. Cluster system using fiber channel as an interconnection network analysis

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Cao, Mingcui; Luo, Zhixiang

    2005-02-01

    In the parallel processing system, large numbers of processors are interconnected in order to improve the performance of the computer, such as the symmetric multiprocessor (SMP) architecture. When the basic node is an SMP or a computer having a single processor, the characteristics of an interconnection networks are important factors which influence the performance of the entire system. Fibre Channel (FC) has a lot advantages, such as excellent scalability; the bandwidth is large; delay time is short and fault tolerance is large. It is assumed that an SMP is used for a basic node. We construct the cluster system using FC as interconnection network, which are a fabric method and a FC Arbitrated Loop (FC-AL) method. According the method, if the number of nodes supported by the interconnection network is small, the addition of extra nodes can be added at small expense. The bandwidth of each node is large, the delay time is short, and the fault tolerance effect is large in the interconnection network. In the case of connecting to a shared disk, a large bandwidth is provided and time required for gaining access to the shared disk becomes short.

  11. Metal/ceramic composites via infiltration of an interconnected wood-derived ceramic

    NASA Astrophysics Data System (ADS)

    Wilkes, Thomas E.

    The use of composites is increasing as they afford scientists and engineers the ability to combine the advantageous properties of each constituent phase, e.g. metal ductility and ceramic stiffness. With respect to materials design, biomimetics is garnering increasing attention due to the complex, yet efficient, natural microstructures. One such biomimetic, or in this case 'bio-derived,' curiosity is wood-derived ceramic, which is made by either replicating or converting wood into a ceramic. The resulting porous and anisotropic material retains the precursor microstructure. The wide variety of precursors can yield materials with a range of pore sizes and distribution of pores. The purpose of this work was to study the processing, microstructure, and properties of aluminum/silicon carbide composites. The composites were made by infiltrating molten aluminum into porous wood-derived SIC, which was produced by the reactive melt-infiltration of silicon into pyrolyzed wood. The composite microstructure consisted of interconnected SiC surrounding Al-alloy 'fibers.' The strength, modulus, and toughness were measured in both longitudinal and transverse orientations. The Al → SiC load transfer was investigated with high-energy X-ray diffraction in combination with in-situ compressive loading. The properties in flexure were found to decrease with increasing temperature. Despite the complex microstructure, predictions of the composite flexural modulus and longitudinal fracture toughness were obtained using simple models: Halpin-Tsai bounds and the Ashby et al. model of the effect of ductile particle-reinforcements on the toughness of brittle materials (Ashby et al. 1989), respectively. In addition, the Al/SiC research inspired the investigation of carbon-reinforced copper composites. The goal was to explore the feasibility of making a high-thermal conductivity composite by infiltrating copper into wood-derived carbon. Results indicated that Cu/C composites could be made with

  12. Passive vapor extraction feasibility study

    SciTech Connect

    Rohay, V.J.

    1994-06-30

    Demonstration of a passive vapor extraction remediation system is planned for sites in the 200 West Area used in the past for the disposal of waste liquids containing carbon tetrachloride. The passive vapor extraction units will consist of a 4-in.-diameter pipe, a check valve, a canister filled with granular activated carbon, and a wind turbine. The check valve will prevent inflow of air that otherwise would dilute the soil gas and make its subsequent extraction less efficient. The granular activated carbon is used to adsorb the carbon tetrachloride from the air. The wind turbine enhances extraction rates on windy days. Passive vapor extraction units will be designed and operated to meet all applicable or relevant and appropriate requirements. Based on a cost analysis, passive vapor extraction was found to be a cost-effective method for remediation of soils containing lower concentrations of volatile contaminants. Passive vapor extraction used on wells that average 10-stdft{sup 3}/min air flow rates was found to be more cost effective than active vapor extraction for concentrations below 500 parts per million by volume (ppm) of carbon tetrachloride. For wells that average 5-stdft{sup 3}/min air flow rates, passive vapor extraction is more cost effective below 100 ppm.

  13. 76 FR 46793 - PJM Interconnection, L.L.C.; PJM Power Providers Group v. PJM Interconnection, L.L.C.; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ... Energy Regulatory Commission PJM Interconnection, L.L.C.; PJM Power Providers Group v. PJM Interconnection, L.L.C.; Notice Establishing Post-Technical Comment Period As indicated in the June 29, 2011... issues related to PJM Interconnection, L.L.C. (PJM)'s Minimum Offer Price Rule (MOPR) and...

  14. PREPARATION OF DIBASIC ALUMINUM NITRATE

    DOEpatents

    Gresky, A.T.; Nurmi, E.O.; Foster, D.L.; Wischow, R.P.; Savolainen, J.E.

    1960-04-01

    A method is given for the preparation and recovery of basic aluminum nltrates having an OH: Al ratio of at least two, comprising two steps. First, metallic aluminum is dissolved in aqueous Al(NO/sub 3/)/sub 3/, in the presence of a small quantity of elemental or ionic mercury, to increase its Al: NO/sub 3/ ratio into the range 1 to 1.2. The resulting aqueous solution is then added to an excess of a special organic solvent, typically a mixture of five parts methanol and six parts diethyl ether, whereupon the basic aluminum nitrate, e.g. Al/sub 6/(OH)/sub 13/-(NO/sub 3/)/sub 5/, recoverably precipitates.

  15. Rechargeable Aluminum-Ion Batteries

    SciTech Connect

    Paranthaman, Mariappan Parans; Liu, Hansan; Sun, Xiao-Guang; Dai, Sheng; Brown, Gilbert M

    2015-01-01

    This chapter reports on the development of rechargeable aluminum-ion batteries. A possible concept of rechargeable aluminum/aluminum-ion battery based on low-cost, earth-abundant Al anode, ionic liquid EMImCl:AlCl3 (1-ethyl-3-methyl imidazolium chloroaluminate) electrolytes and MnO2 cathode has been proposed. Al anode has been reported to show good reversibility in acid melts. However, due to the problems in demonstrating the reversibility in cathodes, alternate battery cathodes and battery concepts have also been presented. New ionic liquid electrolytes for reversible Al dissolution and deposition are needed in the future for replacing corrosive EMImCl:AlCl3 electrolytes.

  16. Cadmium-Aluminum Layered Double Hydroxide Microspheres for Photocatalytic CO2 Reduction.

    PubMed

    Saliba, Daniel; Ezzeddine, Alaa; Sougrat, Rachid; Khashab, Niveen M; Hmadeh, Mohamad; Al-Ghoul, Mazen

    2016-04-21

    We report the synthesis of cadmium-aluminum layered double hydroxide (CdAl LDH) using the reaction-diffusion framework. As the hydroxide anions diffuse into an agar gel matrix containing the mixture of aluminum and cadmium salts at a given ratio, they react to give the LDH. The LDH self-assembles inside the pores of the gel matrix into a unique spherical-porous shaped microstructure. The internal and external morphologies of the particles are studied by electron microscopy and tomography revealing interconnected channels and a high surface area. This material is shown to exhibit a promising performance in the photoreduction of carbon dioxide using solar light. Moreover, the palladium-decorated version shows a significant improvement in its reduction potential at room temperature. PMID:27028104

  17. Dynamically reconfigurable optical interconnect architecture for parallel multiprocessor systems

    NASA Astrophysics Data System (ADS)

    Girard, Mary M.; Husbands, Charles R.; Antoszewska, Reza

    1991-12-01

    The progress in parallel processing technology in recent years has resulted in increased requirements to process large amounts of data in real time. The massively parallel architectures proposed for these applications require the use of a high speed interconnect system to achieve processor-to-processor connectivity without incurring excessive delays. The characteristics of optical components permit high speed operation while the nonconductive nature of the optical medium eliminates ground loop and transmission line problems normally associated with a conductive medium. The MITRE Corp. is evaluating an optical wavelength division multiple access interconnect network design to improve interconnectivity within parallel processor systems and to allow reconfigurability of processor communication paths. This paper describes the architecture and control of and highlights the results from an 8- channel multiprocessor prototype with effective throughput of 3.2 Gigabits per second (Gbps).

  18. Net Metering and Interconnection Procedures-- Incorporating Best Practices

    SciTech Connect

    Jason Keyes, Kevin Fox, Joseph Wiedman, Staff at North Carolina Solar Center

    2009-04-01

    State utility commissions and utilities themselves are actively developing and revising their procedures for the interconnection and net metering of distributed generation. However, the procedures most often used by regulators and utilities as models have not been updated in the past three years, in which time most of the distributed solar facilities in the United States have been installed. In that period, the Interstate Renewable Energy Council (IREC) has been a participant in more than thirty state utility commission rulemakings regarding interconnection and net metering of distributed generation. With the knowledge gained from this experience, IREC has updated its model procedures to incorporate current best practices. This paper presents the most significant changes made to IREC’s model interconnection and net metering procedures.

  19. An application of carbon nanotubes for integrated circuit interconnects

    NASA Astrophysics Data System (ADS)

    Coiffic, J. C.; Foa Torres, L. E.; Le Poche, H.; Fayolle, M.; Roche, S.; Maitrejean, S.; Roualdes, S.; Ayral, A.

    2008-08-01

    Integrated circuits fabrication is soon reaching strong limitations. Help could come from using carbon nanotubes as conducting wires for interconnects. Although this solution was proposed six years ago, researchers still come up with many obstacles such as localization, low temperature growth on copper, contacting and reproducibility. The integration processes exposed here intend to meet the industrial requirements. Two approaches are then possibly followed. Either using densely packed single wall (SWCNT) (or very tiny multiwall) nanotubes, or filling up the whole interconnect diameter with a single large multiwall (MWCNT) nanotube. In this work, we focus on the integration of multiwall vertical interconnects. Densely packed MWCNTs are grown in via holes by CVD. Alternatively, we have developed a method to obtain a single large nanofibre grown by PECVD (MWCNF) in each via hole. Electrical measurements are performed on CVD and PECVD grown carbon nanotubes. The role of electron-phonon interaction in these devices is also briefly discussed.

  20. Parallel optical interconnects utilizing VLSI/FLC spatial light modulators

    NASA Astrophysics Data System (ADS)

    Genco, Sheryl M.

    1991-12-01

    Interconnection architectures are a cornerstone of parallel computing systems. However, interconnections can be a bottleneck in conventional computer architectures because of queuing structures that are necessary to handle the traffic through a switch at very high data rates and bandwidths. These issues must find new solutions to advance the state of the art in computing beyond the fundamental limit of silicon logic technology. Today's optoelectronic (OE) technology in particular VLSI/FLC spatial light modulators (SLMs) can provide a unique and innovative solution to these issues. This paper reports on the motivations for the system, describes the major areas of architectural requirements, discusses interconnection topologies and processor element alternatives, and documents an optical arbitration (i.e., control) scheme using `smart' SLMs and optical logic gates. The network topology is given in section 2.1 `Architectural Requirements -- Networks,' but it should be noted that the emphasis is on the optical control scheme (section 2.4) and the system.