Science.gov

Sample records for passive nondestructive assay

  1. Passive neutron techniques for the nondestructive assay of nuclear material 

    E-print Network

    Mapili, Gabriel

    2000-01-01

    Three drums containing potentially contaminated lead bricks were assayed with the Segmented Gamma Scan Neutron Assay System (SGSNAS) at Pacific Northwest National Laboratory's (PNNL) Nondestructive Assay Center. The assay ...

  2. Standard test method for nondestructive assay of plutonium by passive neutron multiplicity counting

    E-print Network

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method describes the nondestructive assay of plutonium in forms such as metal, oxide, scrap, residue, or waste using passive neutron multiplicity counting. This test method provides results that are usually more accurate than conventional neutron coincidence counting. The method can be applied to a large variety of plutonium items in various containers including cans, 208-L drums, or 1900-L Standard Waste Boxes. It has been used to assay items whose plutonium content ranges from 1 g to 1000s of g. 1.2 There are several electronics or mathematical approaches available for multiplicity analysis, including the multiplicity shift register, the Euratom Time Correlation Analyzer, and the List Mode Module, as described briefly in Ref. (1). 1.3 This test method is primarily intended to address the assay of 240Pu-effective by moments-based multiplicity analysis using shift register electronics (1, 2, 3) and high efficiency neutron counters specifically designed for multiplicity analysis. 1.4 This tes...

  3. Passive Neutron Non-Destructive Assay for Remediation of Radiological Waste at Hanford Burial Grounds- 13189

    SciTech Connect

    Simpson, A.; Pitts, M.; Ludowise, J.D.; Valentinelli, P.; Grando, C.J.; Haggard, D.L.

    2013-07-01

    The Hanford burial grounds contains a broad spectrum of low activity radioactive wastes, transuranic (TRU) wastes, and hazardous wastes including fission products, byproduct material (thorium and uranium), plutonium and laboratory chemicals. A passive neutron non-destructive assay technique has been developed for characterization of shielded concreted drums exhumed from the burial grounds. This method facilitates the separation of low activity radiological waste containers from TRU waste containers exhumed from the burial grounds. Two identical total neutron counting systems have been deployed, each consisting of He-3 detectors surrounded by a polyethylene moderator. The counts are processed through a statistical filter that removes outliers in order to suppress cosmic spallation events and electronic noise. Upon completion of processing, a 'GO / NO GO' signal is provided to the operator based on a threshold level equivalent to 0.5 grams of weapons grade plutonium in the container being evaluated. This approach allows instantaneous decisions to be made on how to proceed with the waste. The counting systems have been set up using initial on-site measurements (neutron emitting standards loaded into surrogate waste containers) combined with Monte Carlo modeling techniques. The benefit of this approach is to allow the systems to extend their measurement ranges, in terms of applicable matrix types and container sizes, with minimal interruption to the operations at the burial grounds. (authors)

  4. Application of gamma-ray active and passive computed tomography to nondestructively assay TRU waste

    SciTech Connect

    Martz, H.E.; Decman, D.J.; Roberson, G.P.; Johansson, E.M.; Keto, E.R.

    1996-05-01

    The authors have developed an active and passive computed tomography scanner for assaying radioactive waste drums. They describe the hardware and software components of the system used for data acquisition, gamma-ray spectroscopy analysis, and image reconstruction. They have measured the performance of the system using mock waste drums and calibrated radioactive sources. They describe the results of measurements using this system to assay a real TRU waste drum with relatively low Pu content.

  5. Non-destructive assay of spent nuclear fuel using passive neutron Albedo reactivity

    SciTech Connect

    Evans, L G; Schear, M A; Croft, S; Tobin, S J; Swinhoe, M T; Menlove, H O

    2010-01-01

    Passive Neutron Albedo Reactivity (PNAR) is one of fourteen techniques that has been researched and evaluated to form part of a comprehensive and integrated detection system for the non-destructive assay (NDA) of spent nuclear fuel. PNAR implemented with {sup 3}He tubes for neutron detection (PNAR-{sup 3}He) is the measurement of time correlated neutrons from a spent fuel assembly with and without a Cadmium (Cd) layer surrounding the assembly. PNAR utilizes the self-interrogation of the fuel via reflection of neutrons born in the fuel assembly back in to the fuel assembly. The neutrons originate primarily from spontaneous fission events within the fuel itself (Curium-244) but are amplified by multiplication. The presence and removal of the Cd provides two measurement conditions with different neutron energy spectra and therefore different interrogating neutron characteristics. Cd has a high cross-section of absorption for slow neutrons and therefore greatly reduces the low energy (thermal) neutron fluence rate returning. The ratios of the Singles, Doubles and Triples count rates obtained in each case are known as the Cd ratios, which are related to fissile content. A potential safeguards application for which PNAR-{sup 3}He is particularly suited is 'fingerprinting'. Fingerprinting could function as an alternative to plutonium (Pu) mass determination; providing confidence that material was not diverted during transport between sites. PNAR-{sup 3}He has six primary NDA signatures: Singles, Doubles and Triples count rates measured with two energy spectra at both shipping and receiving sites. This is to uniquely identify the fuel assembly, and confirm no changes have taken place during transport. Changes may indicate all attempt to divert material for example. Here, the physics of the PNAR-{sup 3}He concept will be explained, alongside a discussion on the development of a prototypical PNAR-{sup 3}He instrument using simulation. The capabilities and performance of the conceptual instrument will be summarized, in the context of (a) quantifying Pu mass in spent fuel assemblies and (b) detecting pin diversion (through a discrepancy between declared and measured properties of the fuel assembly) when the instrument is deployed. These quantitative capabilities are complementary to the 'fingerprinting' capability which is part of ensuring continuity of knowledge and custody of spent nuclear fuel.

  6. Nondestructive assay of TRU waste using gamma-ray active and passive computed tomography

    SciTech Connect

    Roberson, G.P.; Decman, D.; Martz, H.; Keto, E.R.; Johansson, E.M.

    1995-10-04

    The authors have developed an active and passive computed tomography (A and PCT) scanner for assaying radioactive waste drums. Here they describe the hardware components of their system and the software used for data acquisition, gamma-ray spectroscopy analysis, and image reconstruction. They have measured the performance of the system using ``mock`` waste drums and calibrated radioactive sources. They also describe the results of measurements using this system to assay a real TRU waste drum with relatively low Pu content. The results are compared with X-ray NDE studies of the same TRU waste drum as well as assay results from segmented gamma scanner (SGS) measurements.

  7. Quantifying the passive gamma signal from spent nuclear fuel in support of determining the plutonium content in spent nuclear fuel with nondestructive assay

    SciTech Connect

    Fensin, Michael L; Tobin, Steven J; Menlove, Howard O; Swinhoe, Martyn T

    2009-01-01

    The objective of safeguarding nuclear material is to deter diversions of significant quantities of nuclear materials by timely monitoring and detection. There are a variety of motivations for quantifying plutonium in spent fuel (SF), by means of nondestructive assay (NDA), in order to meet this goal. These motivations include the following: strengthening the capabilities of the International Atomic Energy Agencies ability to safeguard nuclear facilities, shipper/receiver difference, input accountability at reprocessing facilities and burnup credit at repositories. Many NDA techniques exist for measuring signatures from SF; however, no single NDA technique can, in isolation, quantify elemental plutonium in SF. A study has been undertaken to determine the best integrated combination of 13 NDA techniques for characterizing Pu mass in spent fuel. This paper focuses on the development of a passive gamma measurement system in support the spent fuel assay system. Gamma ray detection for fresh nuclear fuel focuses on gamma ray emissions that directly coincide with the actinides of interest to the assay. For example, the 186-keV gamma ray is generally used for {sup 235}U assay and the 384-keV complex is generally used for assaying plutonium. In spent nuclear fuel, these signatures cannot be detected as the Compton continuum created from the fission products dominates the signal in this energy range. For SF, the measured gamma signatures from key fission products ({sup 134}Cs, {sup 137}Cs, {sup 154}Eu) are used to ascertain burnup, cooling time, and fissile content information. In this paper the Monte Carlo modeling set-up for a passive gamma spent fuel assay system will be described. The set-up of the system includes a germanium detector and an ion chamber and will be used to gain passive gamma information that will be integrated into a system for determining Pu in SF. The passive gamma signal will be determined from a library of {approx} 100 assemblies that have been created to examine the capability of all 13 NDA techniques. Presented in this paper is a description of the passive gamma monitoring instrument, explanation of the work completed thus far involving the source set up methodology and the design optimization process, details of key fission product ratios of interest, limitations and key strengths of the measurement technique, and considerations for integrating this technique with other NDA techniques in order to develop a complete spent fuel assay strategy.

  8. Expert system technology for nondestructive waste assay

    SciTech Connect

    Becker, G.K.; Determan, J.C.

    1998-07-01

    Nondestructive assay waste characterization data generated for use in the National TRU Program must be of known and demonstrable quality. Each measurement is required to receive an independent technical review by a qualified expert. An expert system prototype has been developed to automate waste NDA data review of a passive/active neutron drum counter system. The expert system is designed to yield a confidence rating regarding measurement validity. Expert system rules are derived from data in a process involving data clustering, fuzzy logic, and genetic algorithms. Expert system performance is assessed against confidence assignments elicited from waste NDA domain experts. Performance levels varied for the active, passive shielded, and passive system assay modes of the drum counter system, ranging from 78% to 94% correct classifications.

  9. Standard test method for nondestructive assay of nuclear material in scrap and waste by passive-Active neutron counting using 252Cf shuffler

    E-print Network

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the nondestructive assay of scrap and waste items for U, Pu, or both, using a 252Cf shuffler. Shuffler measurements have been applied to a variety of matrix materials in containers of up to several 100 L. Corrections are made for the effects of matrix material. Applications of this test method include measurements for safeguards, accountability, TRU, and U waste segregation, disposal, and process control purposes (1, 2, 3). 1.1.1 This test method uses passive neutron coincidence counting (4) to measure the 240Pu-effective mass. It has been used to assay items with total Pu contents between 0.03 g and 1000 g. It could be used to measure other spontaneously fissioning isotopes such as Cm and Cf. It specifically describes the approach used with shift register electronics; however, it can be adapted to other electronics. 1.1.2 This test method uses neutron irradiation with a moveable Cf source and counting of the delayed neutrons from the induced fissions to measure the 235U equiva...

  10. Operational Experience with an Imaging Passive/Active Neutron System (IPAN{sup TM}) in a Mature Production Application to Perform WIPP Certified Non-destructive Assays

    SciTech Connect

    Simpson, A.P.; West, J.M.; Carlton, T.; Peterson, T.; Harvill, J.

    2006-07-01

    BIL Solutions Inc. have deployed and operated an Imaging Passive/Active Neutron System (IPANTM) System at the Savannah River Site (SRS) in South Carolina for the purpose of performing non-destructive assays on contact handled transuranic (CH-TRU) waste in 55-gallon containers. During the four-plus years of operation (May 2001 through August 2005), a vast amount of experience has been gained, with approximately 8950 waste containers assayed. This experience has provided the knowledge base for the evolution of improvements in the assay technique and instrument maintenance and troubleshooting. Additionally, operational experience provides for very reliable characterization of the robustness and applicability of this assay technique for a wide variety of waste streams and provides for assessment of the achievable production output capabilities over a long period of time in a production environment. The assay technique combines passive/active neutron data with gamma energy analysis (GEA) data and acceptable knowledge (AK) data to provide Waste Isolation Pilot Plant (WIPP) compliant quantification of the required nuclides within the waste. These data are incorporated through system software, which automate the data analysis process. However, due to the complex nature of NDA and the potential for a wide variety of interferences, each analysis is reviewed by an Expert Analyst (EA). The software allows the EA to interact with the data analysis process to provide regulatory compliant and defensible results. This technique has evolved with time as a vast array of waste and isotopic compositions have been encountered During 1555 days from the beginning of production operations, the system maintenance log indicates 63 days of downtime due to hardware problems. This translates to an operational availability of 96%. Given the extensive length of time represented by this availability data, 96% availability would represent a very reliable estimate for future applications. Additionally, evolving improvements in troubleshooting techniques and stocking of spare parts could improve the availability. The 8950 production assays performed at SRS falls far short of predicted system throughput, even with allowance for performance of non-production assays such as Quality Assurance (QA) / Quality Control (QC) and WIPP Performance Demonstration Program (PDP) assays. It should be noted that production was significantly altered by site constraints and interruptions in availability of containers. The overall assessment of the instrumentation in conjunction with the assay technique is that this method has a wide range of applicability over a wide range of waste streams. The capability of the EA to interactively interact in the data analysis provides for successful analysis of a wide variety of exception conditions and/or isotopic compositions. The instrument has demonstrated reliable and regulatory compliant operation over a long period of production operations. This assay technique should be suitable for future applications for most TRU or low-level (LLW) waste streams, including remote handled (RH) waste. (authors)

  11. Nondestructive assay confirmatory assessment experiments: mixed oxide

    SciTech Connect

    Lemming, J.F.

    1980-04-30

    The confirmatory assessment experiments demonstrate traceable nondestructive assay (NDA) measurements of plutonium in mixed oxide powder using commercially available spontaneous-fission assay systems. The experiments illustrate two major concepts: the production of calibration materials using calorimetric assay, and the use of paired measurements for measurement assurance. Two batches of well-characterized mixed oxide powder were used to establish the random and systematic error components. The major components of an NDA measurement assurance technique to establish and maintain traceability are identified and their functions are demonstrated. 20 refs., 10 figs., 10 tabs.

  12. Overview of the latest nondestructive assay technology

    SciTech Connect

    Geist, William H; Santi, Peter A; Swinhoe, Martyn T

    2009-01-01

    Nondestructive Assay (NDA) techniques are an important tool for the safeguarding of nuclear materials. NDA techniques are used by inspectors from both domestic agencies and international agencies such as the International Atomic Energy Agency as well as site level nuclear material management programs to verify that inventories of nuclear materials. This technology has been in development for over 40 years and significant improvements in detector capabilities, electronics processing and data analysis has lead to new detection capabilities and greatly improved quantification of nuclear materials. Many of the improvements over the last decade have resulted from improved computing power. This has lead to the ability to collect and analyze data in ways not possible only years ago. This poster will present some of the improvements of nondestructive assay technologies over the past several years and the implementation of these technologies in nuclear safeguards programs.

  13. Standard test method for nondestructive assay of special nuclear material in low density scrap and waste by segmented passive gamma-Ray scanning

    E-print Network

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the transmission-corrected nondestructive assay (NDA) of gamma-ray emitting special nuclear materials (SNMs), most commonly 235U, 239Pu, and 241Am, in low-density scrap or waste, packaged in cylindrical containers. The method can also be applied to NDA of other gamma-emitting nuclides including fission products. High-resolution gamma-ray spectroscopy is used to detect and measure the nuclides of interest and to measure and correct for gamma-ray attenuation in a series of horizontal segments (collimated gamma detector views) of the container. Corrections are also made for counting losses occasioned by signal processing limitations (1-3). 1.2 There are currently several systems in use or under development for determining the attenuation corrections for NDA of radioisotopic materials (4-8). A related technique, tomographic gamma-ray scanning (TGS), is not included in this test method (9, 10, 11). 1.2.1 This test method will cover two implementations of the Segmented Gamma Scanning ...

  14. Determining plutonium in spent fuel with nondestructive assay techniques

    SciTech Connect

    Tobin, Stephen J; Charlton, William S; Fensin, Michael L; Menlove, Howard O; Hoover, A S; Quiter, B J; Rajasingam, A; Swinhoe, M T; Thompson, S J; Charlton, W S; Ehinger, M H; Sandoval, N P; Saavedra, S F; Strohmeyer, D

    2009-01-01

    There are a variety of motivations for quantifying plutonium in used (spent) fuel assemblies by means of nondestructive assay including the following: shipper/receiver difference, input accountability at reprocessing facilities and burnup credit at repositories or fuel storage facilities. Twelve NDA techniques were identified that provide information about the composition of an assembly. Unfortunately, none of these techniques is capable of determining the Pu mass in an assembly on its own. However, it is expected that the Pu mass can be quantified by combining a few of the techniques. Determining which techniques to combine and estimating the expected performance of such a system is the purpose of the research effort recently begun. The research presented here is a complimentarily experimental effort. This paper will focus on experimental results of one of the twelve non-destructive assay techniques - passive neutron albedo reactivity. The passive neutron albedo reactivity techniques work by changing the multiplication the pin experiences between two separate measurements. Since a single spent fuel pin has very little multiplication, this is a challenging measurement situation for the technique. Singles and Doubles neutron count rate were measured at Oak Ridge National Laboratory for three different burnup pins to test the capability of the passive neutron albedo reactivity technique.

  15. Nondestructive assay measurements of GNEP related materials

    SciTech Connect

    Santi, Peter A; Crooks, William J.; Geist, William H.; Gonzales, Robert; Helland, Carolyn A.; Jackson, Jay M.; Frame, Katherine C.; Martinez, Michael M.; Scherer, Caroylnn P.; Vo, Duc T.

    2008-06-12

    Because the reprocessing technologies that are currently being considered for the Global Nuclear Energy Partnership (GNEP) will keep various actinides commingled with plutonium at all times throughout the process, the resulting nuclear fuel that is intended for the Advanced Burner Reactor will present unique measurement challenges for the various Nondestructive Assay (NDA) techniques. In order to begin clarifying which types of materials and measurement scenarios that may exist within GNEP require the development of new measurement technologies, an initial series of measurements have been performed on materials with radiation properties that are similar to those being considered within GNEP.

  16. The USDOE mobile non-destructive assay and examination system

    SciTech Connect

    Dowdy, E.J.

    1988-01-01

    A mobile system for non-destructive assay (NDA) and non-destructive examination (NDE), developed at the Los Alamos National Laboratory, provides accurate and sensitive determination of quantities of transuranic (TRU) isotopes contained in 208-/ell/ drums of wastes and furnishes images of the contents for further sorting purposes. The NDA unit consists of four major subsystems: an assay chamber, counting and digital electronics, data acquisition, and a neutron generator. It performs both active and passive neutron measurements for the determination of the amount of fissile isotopes at a sensitivity level of 1 mg plutonium, and the determination of the spontaneous fission and (..cap alpha..,n) isotopes at a comparable level. A complete assay consists of sequential active and passive measurements. The data analysis includes various matrix corrections and a determination that the drum does or does not exceed the 100-nCi/g threshold for TRU wastes. The NDE unit is used to examine for liquids and other materials that are prohibited for long term storage of the drums. An x-ray camera images the contents of 208-/ell/ drums that are brought into the system on a conveyor and rotated in front of an x-ray source. Free liquids can be detected by shaking the drum and observing liquid motion on the video screen. Made to fit on flatbed trailers, the entire system can be transported to a Department of Energy (DOE) facility and be ready for operations within 5 hours after arrival. Field tests have been performed on three separate occasions, accomplishing more than 1800 waste drum examinations. 8 refs., 9 figs., 1 tab.

  17. Nondestructive Assay Options for Spent Fuel Encapsulation

    SciTech Connect

    Tobin, Stephen J.; Jansson, Peter

    2014-10-02

    This report describes the role that nondestructive assay (NDA) techniques and systems of NDA techniques may have in the context of an encapsulation and deep geological repository. The potential NDA needs of an encapsulation and repository facility include safeguards, heat content, and criticality. Some discussion of the facility needs is given, with the majority of the report concentrating on the capability and characteristics of individual NDA instruments and techniques currently available or under development. Particular emphasis is given to how the NDA techniques can be used to determine the heat production of an assembly, as well as meet the dual safeguards needs of 1) determining the declared parameters of initial enrichment, burn-up, and cooling time and 2) detecting defects (total, partial, and bias). The report concludes with the recommendation of three integrated systems that might meet the combined NDA needs of the encapsulation/repository facility.

  18. Nondestructive techniques for assaying fuel debris in piping at Three Mile Island Unit 2

    SciTech Connect

    Vinjamuri, K.; McIsaac, C.V.; Beller, L.S.; Isaacson, L.; Mandler, J.W.; Hobbins, R.R. Jr.

    1981-11-01

    Four major categories of nondestructive techniques - ultrasonic, passive gamma ray, infrared detection, and remote video examination - have been determined to be feasible for assaying fuel debris in the primary coolant system of the Three Mile Island Unit 2 (TMI-2) Reactor. Passive gamma ray detection is the most suitable technique for the TMI-2 piping; however, further development of this technique is needed for specific application to TMI-2.

  19. Standard terminology of C26.10 nondestructive assay methods

    E-print Network

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 The terminology defined in this document is associated with nondestructive assay of nuclear material. 1.2 All of the definitions are associated with measurement techniques that measure nuclear emissions (that is, neutrons, gamma-rays, or heat) directly or indirectly. 1.3 definitions are relevant to any standards and guides written by subcommittee C26.10.

  20. Kalman filter analysis of delayed neutron nondestructive assay measurements.

    SciTech Connect

    Aumeier, S. E.

    1998-04-29

    The ability to nondestructively determine the presence and quantity of fissile and fertile nuclei in various matrices is important in several nuclear applications including international and domestics safeguards, radioactive waste characterization and nuclear facility operations. Material irradiation followed by delayed neutron counting is a well known and useful nondestructive assay technique used to determine the fissile-effective content of assay samples. Previous studies have demonstrated the feasibility of using Kalman filters to unfold individual isotopic contributions to delayed neutron measurements resulting from the assay of mixes of uranium and plutonium isotopes. However, the studies in question used simulated measurement data and idealized parameters. We present the results of the Kalman filter analysis of several measurements of U/Pu mixes taken using Argonne National Laboratory's delayed neutron nondestructive assay device. The results demonstrate the use of Kalman filters as a signal processing tool to determine the fissile and fertile isotopic content of an assay sample from the aggregate delayed neutron response following neutron irradiation.

  1. Mobile nondestructive examination and assay instruments

    SciTech Connect

    Bieri, J.M.; Caldwell, J.T.

    1988-01-01

    A compact system that evaluates radioactive materials can furnish a big savings to taxpayers by ensuring that only properly identified nuclear waste is sent to a Department of Energy (DOE) radioactive waste storage area. The Los Alamos National Laboratory's Advanced Nuclear Technology Group has developed and field tested two easily transportable, self-contained modules: one performs real-time radiography of special 208-/l/ shipment containers, the other assays the contents. The examination and assay system is a simple, portable solution to a complex problem that ensures only properly packaged transuranic (TRU) waste is shipped to the Department of Energy's Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. 3 refs., 6 figs.

  2. Mobile nondestructive assay and examination instruments

    SciTech Connect

    Bieri, J.M.; Caldwell, J.T.; Audas, J.H.; Butterfield, K.B.; France, S.W.; Garcia, C. Jr.; Hastings, R.D.; Herrera, G.C.; Kuckertz, T.H.; Kunz, W.E.

    1986-01-01

    A compact system that evaluates radioactive materials can furnish a big savings to taxpayers by ensuring that only properly identified nuclear waste is sent to a Department of Energy (DOE) radioactive waste storage area. The Los Alamos National Laboratory's Advanced Nuclear Technology Group has developed and field tested two esily transportable, self-contained modules: one x-rays the contents of special 208-l shipment containers, the other assays the contents. The assay and evaluation system is a simple, portable solution to a complex problem that ensures that only properly packaged transuranic (TRU) wste is shipped to the Department of Energy's Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Caustic chemicals, liquids, and other objects or materials tht could cause a container leak during shipment are the objects of an x-ray and video camera used in the system. The camera inspects the contents of 208-l drums that are brought into the system on a conveyor and rotated, one at a time, in front of the x-ray source. Free liquids can be detected by shaking the drum; the sloshing liquid is visible on the video screen. After the drum is x-rayed, it is conveyed to the assay module where precision instruments measure the amounts of TRU isotopes present in the waste. If the drum contains fissile TRU isotopes above the safety limit, it is rejected and sent to an appropriate facility for repackaging; if the drum contains less than the 100 nCi/g lower-level limit for TRU, it is rejected and sent to a low-level nuclear waste burial site. Drums whose contents fall between these limits are accepted and certified for shipment to the WIPP. Made to fit on flatbed trailers, the entire system can be transported to a DOE facility and be ready for operations within 5 hours after arrival.

  3. Determination of Plutonium Content in Spent Fuel with Nondestructive Assay

    SciTech Connect

    Tobin, S. J.; Sandoval, N. P.; Fensin, M. L.; Lee, S. Y.; Ludewigt, Bernhard A.; Menlovea, H. O.; Quiter, B. J.; Rajasingume, A.; Schearf, M. A.; Smith, L. E.; Swinhoe, M. T.; Thompson, S. J.

    2009-06-30

    There are a variety of reasons for quantifying plutonium (Pu) in spent fuel such as independently verifying the Pu content declared by a regulated facility, making shipper/receiver mass declarations, and quantifying the input mass at a reprocessing facility. As part of the Next Generation Safeguards Initiative, NA-241 has recently funded a multilab/university collaboration to determine the elemental Pu mass in spent fuel assemblies. This research effort is anticipated to be a five year effort: the first part of which is a two years Monte Carlo modeling effort to integrate and down-select among 13 nondestructive assay (NDA) technologies, followed by one year for fabricating instruments and then two years for measuring spent fuel. This paper gives a brief overview of the approach being taken for the Monte Carlo research effort. In addition, preliminary results for the first NDA instrument studied in detail, delayed neutron detection, will be presented. In order to cost effectively and robustly model the performance of several NDA techniques, an"assembly library" was created that contains a diverse range of pressurized water reactor spent fuel assemblies (burnup, enrichment, cooling time) similar to that which exists in spent pools today and in the future, diversion scenarios that capture a range of possible rod removal options, spatial and isotopic detail needed to accurately quantify the capability of all the NDA techniques so as to enable integration. Integration is being designed into this study from the beginning since it is expected that the best performance will be obtained by combining a few NDA techniques. The performance of each instrument will be quantified for the full assembly library in three different media: air, water and borated water. In this paper the preliminary capability of delayed neutron detection will be quantified for the spent fuel library for all three media. The 13 NDA techniques being researched are the following: Delayed Gamma, Delayed Neutrons, Differential Die-Away, Differential Die-Away Self-Interrogation, Lead Slowing Down Spectrometer, Neutron Multiplicity, Nuclear Resonance Fluorescence, Passive Prompt Gamma, Passive Neutron Albedo Reactivity, Self-integration Neutron Resonance Densitometry, Total Neutron (Gross Neutron), X-Ray Fluorescence, 252Cf Interrogation with Prompt Neutron Detection.

  4. Conceptual Ideas for New Nondestructive UF6 Cylinder Assay Techniques

    SciTech Connect

    Miller, Karen A.

    2012-05-02

    Nondestructive assay (NDA) measurements of uranium cylinders play an important role in helping the International Atomic Energy Agency (IAEA) safeguard uranium enrichment plants. Traditionally, these measurements have consisted of a scale or load cell to determine the mass of UF{sub 6} in the cylinder combined with a gamma-ray measurement of the 186 keV peak from {sup 235}U to determine enrichment. More recently, Los Alamos National Laboratory (LANL) and Pacific Northwest National Laboratory (PNNL) have developed systems that exploit the passive neutron signal from UF{sub 6} to determine uranium mass and/or enrichment. These include the Uranium Cylinder Assay System (UCAS), the Passive Neutron Enrichment Meter (PNEM), and the Hybrid Enrichment Verification Array (HEVA). The purpose of this report is to provide the IAEA with new ideas on technologies that may or may not be under active development but could be useful for UF{sub 6} cylinder assay. To begin, we have included two feasibility studies of active interrogation techniques. There is a long history of active interrogation in the field of nuclear safeguards, especially for uranium assay. Both of the active techniques provide a direct measure of {sup 235}U content. The first is an active neutron method based on the existing PNEM design that uses a correlated {sup 252}Cf interrogation source. This technique shows great promise for UF{sub 6} cylinder assay and is based on advanced technology that could be implemented in the field in the near term. The second active technique is nuclear resonance fluorescence (NRF). In the NRF technique, a bremsstrahlung photon beam could be used to illuminate the cylinder, and high-resolution gamma-ray detectors would detect the characteristic de-excitation photons. The results of the feasibility study show that under certain measurement geometries, NRF is impractical for UF6 cylinder assay, but the 'grazing transmission' and 'secant transmission' geometries have more potential for this application and should be assessed quantitatively. The next set of techniques leverage scintillator detectors that are sensitive to both neutron and gamma radiation. The first is the BC-523A capture-gated organic liquid scintillator. The detector response from several different neutron energies has been characterized and is included in the study. The BC-523A has not yet been tested with UF{sub 6} cylinders, but the application appears to be well suited for this technology. The second detector type is a relatively new inorganic scintillator called CLYC. CLYC provides a complementary detection approach to the HEVA and PNEM systems that could be used to determine uranium enrichment in UF{sub 6} cylinders. In this section, the conceptual idea for an integrated CLYC-HEVA/PNEM system is explored that could yield more precision and robustness against systemic uncertainties than any one of the systems by itself. This is followed by a feasibility study on using alpha-particle-induced reaction gamma-rays as a way to estimate {sup 234}U abundance in UF{sub 6}. Until now, there has been no readily available estimate of the strength of these reaction gamma-rays. Thick target yields of the chief reaction gammas are computed and show that they are too weak for practical safeguards applications. In special circumstances where long count times are permissible, the 1,275 keV F({alpha},x{gamma}) is observable. Its strength could help verify an operator declaration provided other knowledge is available (especially the age). The other F({alpha},x{gamma}) lines are concealed by the dominant uranium line spectrum and associated continuum. Finally, the last section provides several ideas for electromagnetic and acoustic nondestructive evaluation (NDE) techniques. These can be used to measure cylinder wall thickness, which is a source of systematic uncertainty for gamma-ray-based NDA techniques; characterize the UF{sub 6} filling profile inside the cylinder, which is a source of systematic uncertainty for neutron-based NDA techniques; locate hidden objects inside the cylinder; a

  5. Passive and active thermal nondestructive imaging of materials

    NASA Astrophysics Data System (ADS)

    Avdelidis, Nicolas P.; Moropoulou, Antonia; Almond, Darryl P.

    2004-12-01

    Thermal non-destructive approaches, passive and active, are widely used due to the outstanding advantages that offer in a number of applications and particularly for the assessment of materials and structures. In this work, different applications, employing either MWIR or LWIR thermographic testing, as well as passive and/or active approaches, depending on the application, concerning the assessment of various materials are presented. In a few instances, thermal modelling is also discussed and compared with the outcome of experimental testing. The following applications are reviewed: × Emissivity measurements. × Moisture impact assessment in porous materials. × Evaluation of conservation interventions, concerning: - Consolidation interventions on porous stone. - Cleaning of architectural surfaces. × Assessment of airport pavements. × Investigation of repaired aircraft panels. × Through skin sensing assessment on aircraft composite structures. Real time monitoring of all features was obtained using passive imaging or transient thermographic analysis (active imaging). However, in the composite repairs and through skin imaging cases thermal modelling was also used with the intention of providing supplementary results, as well as to demonstrate the importance of thermal contact resistance between two surfaces (skin and strut in through skin sensing). Finally, in order to obtain useful information from the surveys, various properties (thermal, optical, physical) of the examined materials were taken into account.

  6. Total Gamma Count Rate Analysis Method for Nondestructive Assay Characterization

    SciTech Connect

    Cecilia R. Hoffman; Yale D. Harker

    2006-03-01

    A new approach to nondestructively characterize waste for disposal, based on total gamma response, has been developed at the Idaho Cleanup Project by CH2M-WG Idaho, LLC and Idaho State University, and is called the total gamma count rate analysis method. The total gamma count rate analysis method measures gamma interactions that produce energetic electrons or positrons in a detector. Based on previous experience with waste assays, the radionuclide content of the waste container is then determined. This approach potentially can yield minimum detection limits of less than 10 nCi/g. The importance of this method is twofold. First, determination of transuranic activity can be made for waste containers that are below the traditional minimum detection limits. Second, waste above 10 nCi/g and below 100 nCi/g can be identified, and a potential path for disposal resolved.

  7. Preparation of pure neptunium oxide for nondestructive assay standards

    SciTech Connect

    Yarbro, S.L.; Dunn, S.L.; Schreiber, S.B.

    1991-03-01

    Accurate nondestructive assay (NDA) measurements, particularly with gamma spectrometry, require pure material standards. The purity of materials used as standards is verified by reliable chemical techniques, and these materials are then used to calibrate and certify NDA instruments. So that they can be used for this purpose, impure NpO{sub 2} and metal were each purified by a different procedure. The NpO{sub 2}, which contained more than 2500 ppm plutonium, was purified by a double peroxide precipitation, followed by ion exchange and oxalate precipitation of the eluate. All impurities, including plutonium, were below 10 ppm in the product. The metal, which contained more than 10,000 ppm of tantalum, was dissolved in 12 M HCl and then precipitated as the Np(4) oxalate. The final product was below 100 ppm of all impurities except calcium. 1 ref., 2 tabs.

  8. Non-destructive assay measurement for the verification of uranium oxide powders

    NASA Astrophysics Data System (ADS)

    Badawy, I.; Youssef, A. S.; El-Kazzaz, SH; El-Gammal, W. A.

    2000-10-01

    A passive non-destructive assay technique is employed in the present investigation for precise measurement of 235U enrichment of uranium oxide powders used for nuclear fuel fabrication. The technique would not require nuclear material Standards for the measurement of 235U enrichment. It uses a gamma-ray spectrometer composed of a high-resolution germanium detector system and associated electronics. A new mathematical analysis - based on Monte Carlo calculations - has been developed for the estimation of 235U enrichment. The obtained results are found to be of comparable accuracy with the results obtained by the relative methods which necessitate the use of nuclear material Standards. This work would be very useful for nuclear material control at the production level, and for inventory verification and safeguards purposes.

  9. Nondestructive Spent Fuel Assay Using Nuclear Resonance Fluorescence

    SciTech Connect

    Quiter, Brian; Ludewigt, Bernhard; Mozin, Vladimir; Tobin, Steven

    2009-07-01

    Quantifying the isotopic composition of spent fuel is an important challenge and essential for many nuclear safeguards applications, such as independent verification of the Pu content declared by a regulated facility, shipper/receiver measurements, and quantifying isotopic input masses at a reprocessing facility. As part of the Next Generation Safeguards Initiative, NA-241 has recently funded a multilab/university collaboration to investigate a variety of nondestructive methods for determining the elemental Pu mass in spent fuel assemblies. Nuclear resonance fluorescence (NRF) is one of the methods being investigated. First modeling studies have been performed to investigate the feasibility of assaying a single fuel pin using a bremsstrahlung photon source. MCNPX modeling results indicate that NRF signals are significantly more intense than the background due to scattered interrogation photons even for isotopes with concentrations below 1percent. However, the studies revealed that the dominant contribution to the background is elastic scattering, which is currently not simulated by MCNPX. Critical to this effort, we have added existing NRF data to the MCNPX photonuclear data files and are now able to incorporate NRF physics into MCNPX simulations. Addition of the non-resonant elastic scattering data to MCNPX is in progress. Assaying fuel assemblies with NRF poses additional challenges: photon penetration through the assembly is small and the spent fuel radioactive decay and neutron activity lead to significantly higher backgrounds. First modeling studies to evaluate the efficacy of NRF for assaying assemblies have been initiated using the spent fuel assembly library created at the Los Alamos National Laboratory (LANL).

  10. Preliminary report of the comparison of multiple non-destructive assay techniques on LANL Plutonium Facility waste drums

    SciTech Connect

    Bonner, C.; Schanfein, M.; Estep, R.

    1999-03-01

    Prior to disposal, nuclear waste must be accurately characterized to identify and quantify the radioactive content. The DOE Complex faces the daunting task of measuring nuclear material with both a wide range of masses and matrices. Similarly daunting can be the selection of a non-destructive assay (NDA) technique(s) to efficiently perform the quantitative assay over the entire waste population. In fulfilling its role of a DOE Defense Programs nuclear User Facility/Technology Development Center, the Los Alamos National Laboratory Plutonium Facility recently tested three commercially built and owned, mobile nondestructive assay (NDA) systems with special nuclear materials (SNM). Two independent commercial companies financed the testing of their three mobile NDA systems at the site. Contained within a single trailer is Canberra Industries segmented gamma scanner/waste assay system (SGS/WAS) and neutron waste drum assay system (WDAS). The third system is a BNFL Instruments Inc. (formerly known as Pajarito Scientific Corporation) differential die-away imaging passive/active neutron (IPAN) counter. In an effort to increase the value of this comparison, additional NDA techniques at LANL were also used to measure these same drums. These are comprised of three tomographic gamma scanners (one mobile unit and two stationary) and one developmental differential die-away system. Although not certified standards, the authors hope that such a comparison will provide valuable data for those considering these different NDA techniques to measure their waste as well as the developers of the techniques.

  11. Transuranic and Low-Level Boxed Waste Form Nondestructive Assay Technology Overview and Assessment

    SciTech Connect

    G. Becker; M. Connolly; M. McIlwain

    1999-02-01

    The Mixed Waste Focus Area (MWFA) identified the need to perform an assessment of the functionality and performance of existing nondestructive assay (NDA) techniques relative to the low-level and transuranic waste inventory packaged in large-volume box-type containers. The primary objectives of this assessment were to: (1) determine the capability of existing boxed waste form NDA technology to comply with applicable waste radiological characterization requirements, (2) determine deficiencies associated with existing boxed waste assay technology implementation strategies, and (3) recommend a path forward for future technology development activities, if required. Based on this assessment, it is recommended that a boxed waste NDA development and demonstration project that expands the existing boxed waste NDA capability to accommodate the indicated deficiency set be implemented. To ensure that technology will be commercially available in a timely fashion, it is recommended this development and demonstration project be directed to the private sector. It is further recommended that the box NDA technology be of an innovative design incorporating sufficient NDA modalities, e.g., passive neutron, gamma, etc., to address the majority of the boxed waste inventory. The overall design should be modular such that subsets of the overall NDA system can be combined in optimal configurations tailored to differing waste types.

  12. Nondestructive verification and assay systems for spent fuels

    SciTech Connect

    Cobb, D.D.; Phillips, J.R.; Bosler, G.E.; Eccleston, G.W.; Halbig, J.K.; Hatcher, C.R.; Hsue, S.T.

    1982-04-01

    This is an interim report of a study concerning the potential application of nondestructive measurements on irradiated light-water-reactor (LWR) fuels at spent-fuel storage facilities. It describes nondestructive measurement techniques and instruments that can provide useful data for more effective in-plant nuclear materials management, better safeguards and criticality safety, and more efficient storage of spent LWR fuel. In particular, several nondestructive measurement devices are already available so that utilities can implement new fuel-management and storage technologies for better use of existing spent-fuel storage capacity. The design of an engineered prototype in-plant spent-fuel measurement system is approx. 80% complete. This system would support improved spent-fuel storage and also efficient fissile recovery if spent-fuel reprocessing becomes a reality.

  13. Nondestructive verification and assay systems for spent fuels. Technical appendixes

    SciTech Connect

    Cobb, D.D.; Phillips, J.R.; Baker, M.P.

    1982-04-01

    Six technical appendixes are presented that provide important supporting technical information for the study of the application of nondestructive measurements to spent-fuel storage. Each appendix addresses a particular technical subject in a reasonably self-contained fashion. Appendix A is a comparison of spent-fuel data predicted by reactor operators with measured data from reprocessors. This comparison indicates a rather high level of uncertainty in previous burnup calculations. Appendix B describes a series of nondestructive measurements at the GE-Morris Operation Spent-Fuel Storage Facility. This series of experiments successfully demonstrated a technique for reproducible positioning of fuel assemblies for nondestructive measurement. The experimental results indicate the importance of measuring the axial and angular burnup profiles of irradiated fuel assemblies for quantitative determination of spent-fuel parameters. Appendix C is a reasonably comprehensive bibliography of reports and symposia papers on spent-fuel nondestructive measurements to April 1981. Appendix D is a compendium of spent-fuel calculations that includes isotope production and depletion calculations using the EPRI-CINDER code, calculations of neutron and gamma-ray source terms, and correlations of these sources with burnup and plutonium content. Appendix E describes the pulsed-neutron technique and its potential application to spent-fuel measurements. Although not yet developed, the technique holds the promise of providing separate measurements of the uranium and plutonium fissile isotopes. Appendix F describes the experimental program and facilities at Los Alamos for the development of spent-fuel nondestructive measurement systems. Measurements are reported showing that the active neutron method is sensitive to the replacement of a single fuel rod with a dummy rod in an unirradiated uranium fuel assembly.

  14. RoboCal: An automated nondestructive assay system

    SciTech Connect

    Staley, H.C.; Hollen, R.M.; Bonner, C.A.

    1990-01-01

    The manager of a facility handling special nuclear material (SNM) is caught in a squeeze between increased state and federal regulations and tighter funding. RoboCal uses a robot to manipulate canisters containing SNM to lower worker radiation exposure and to provide increased utilization of expensive assay equipment. In addition, it helps with accountability and material tracking. It consists of a hierarchical network of more than a dozen computers and provides a single point of contact for the user to accomplish multiple assays.

  15. Automated Nondestructive Assay of UF6 Cylinders: Detector Characterization and Initial Measurements

    SciTech Connect

    Mace, Emily K.; Smith, Leon E.

    2011-10-01

    International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders assumed to be representative of the facility's entire cylinder inventory. These measurements are time-consuming and assay only a small fraction of the total cylinder volume. An automated nondestructive assay system capable of providing enrichment measurements over the full volume of the cylinder could improve upon current verification practices in terms of manpower and assay accuracy. Pacific Northwest National Laboratory is developing an Integrated Cylinder Verification System (ICVS) intended for this purpose and has developed a field prototype of the nondestructive assay (NDA) components of an ICVS. The nondestructive assay methods would combine the 'traditional' enrichment-meter signature (i.e. 186-keV emission from 235U) as well as 'non-traditional' high-energy photon signatures derived from neutrons produced primarily by 19F({alpha},n) reactions. This paper describes the design, calibration and characterization of the NaI(Tl) and LaBr3(Ce) spectrometers utilized in the field prototype. An overview of a recent field measurement campaign is then provided, supported by example gamma-ray pulse-height spectra collected on cylinders of known enrichment.

  16. Integrated nondestructive assay solutions for plutonium measurement problems of the 21st century

    SciTech Connect

    Sampson, T.E.; Cremers, T.L.

    1997-08-01

    The authors describe automated and integrated NDA systems configured to measure many of the materials that will be found in the DOE complex in the dismantlement, disposition, residue stabilization, immobilization, and MOX fuel programs. These systems are typified by the ARIES (Advanced Recovery and Integrated Extraction System) nondestructive assay system which is under construction at Los Alamos to measure the outputs of a weapon component dismantlement system.

  17. Development of Gamma-Ray Nondestructive Detection and Assay Systems for Nuclear Safeguards and Security at JAEA

    NASA Astrophysics Data System (ADS)

    Hajima, Ryoichi

    2015-10-01

    Nondestructive detection and assay of nuclide is one of the promising applications of energy-tunable gamma-rays from laser Compton scattering. In JAEA, we are developing technologies relevant to the gamma-ray non-destructive assay, which include a high-brightness gamma-ray source based on advanced laser and accelerator technologies and gamma-ray measurement techniques optimized for highly radioactive samples. In this paper, the status of the above R&D's is reviewed.

  18. Verification of nuclear fuel plates by a developed non-destructive assay method

    NASA Astrophysics Data System (ADS)

    El-Gammal, W.; El-Nagdy, M.; Rizk, M.; Shawky, S.; Samei, M. A.

    2005-11-01

    Nuclear material (NM) verification is a main target for NM accounting and control. In this work a new relative non-destructive assay technique has been developed to verify the uranium mass content in nuclear fuel. The technique uses a planar high-resolution germanium gamma ray spectrometer in combination with the MCNP-4B Monte Carlo transport code. A standard NM sample was used to simulate the assayed NM and to determine the average intrinsic full energy peak efficiency of the detector for assayed configuration. The developed technique was found to be capable of verifying the operator declarations with an average accuracy of about 2.8% within a precision of better than 4%.

  19. Nondestructive assay (NDA) of fissile material solutions in tanks at Rocky Flats Environmental Technology Site

    SciTech Connect

    Fleissner, J.G.; Lamb, F.W.; Maul, M.R.

    1995-07-01

    Nondestructive assay of holdup in solution tanks at Rocky Flats has been performed to address criticality safety concerns since 1974. Destructive analysis techniques were used for quantification of the fissile material content of the tanks. With termination of operations in 1989, including sparging and sampling of tanks, a need arose for nondestructive assay of solutions in tanks to confirm previous inventory values. Gamma ray measurement methodologies were investigated and several techniques, including Poor Man`s Densitometry were implemented. These techniques have been applied to several different types of tanks including: annular, raschig ring filled, and pencil tanks. For the annular tanks ``Poor Man`s Densitometry`` is used, with the densities of the measured solutions normalized to the value of one ``accepted`` concentration tank. Measurement uncertainties for this technique has been better than was anticipated. Measurements are also performed at several levels to attempt to detect variations in density. For the current tank draining program, solution in tanks is assayed by the NDA gamma-ray technique before draining. Measurement results were obtained for plutonium, uranium, and mixtures of U/Pu solutions for concentrations ranging from less than 0.5 g/l to 150 g/l. Tanks with expected concentrations were used to establish a relationship between concentration and count rate. ``Bootstrapping`` calibration techniques were used in some cases to obtain quantitative results.

  20. Gamma ray scanner systems for nondestructive assay of heterogeneous waste barrels

    SciTech Connect

    Martz, H.E.; Roberson, G.P.; Decman, D.J.; Camp, D.C.; Levai, F.

    1997-08-01

    Traditional gamma measurement errors are related to non-uniform measurement responses associated with unknown radioactive source and matrix material distributions. These errors can be reduced by application of tomographic techniques that measure these distributions. LLNL has developed two tomographic-based waste assay systems. They use external radioactive sources and tomography-protocol to map the attenuation within a waste barrel as a function of mono-energetic gamma-ray energy in waste containers. Passive tomography is used to localize and identify specific radioactive waste contents within the same waste containers. Reconstruction of the passive data via the active images allows internal waste radioactivities in a barrel to be corrected for any overlying heterogeneous materials, thus yielding an absolute assay of the waste radioactivities. Calibration of both systems requires only point source measurements and are independent of matrix materials.

  1. Investigations of the performance and nondestructive assay applications of the EMR/Schlumberger neutron generator

    SciTech Connect

    Pickrell, M.M.; Mahdavi, M.; Pfutzner, H.

    1993-08-01

    Los Alamos and EMR/Schlumberger, are jointly investigating nondestructive assay applications using the EMR neutron generator system. This system is based on the instrument fielded by Schlumberger for oil well logging. This technology has been adapted into a complete system and package, which is intended for a variety of above-ground applications such as basic research, nuclear waste assay, activation analysis, and nuclear material analysis in both field and laboratory. The system has certain features, which have made it attractive for applications in the Los Alamos safeguards program. We will describe the neutron generator system and the over-all experimental equipment that will be used to explore some of these applications. We will also describe the general performance and some specific performance tests conducted at Los Alamos.

  2. The impact of gate width setting and gate utilization factors on plutonium assay in passive correlated neutron counting

    NASA Astrophysics Data System (ADS)

    Henzlova, D.; Menlove, H. O.; Croft, S.; Favalli, A.; Santi, P.

    2015-10-01

    In the field of nuclear safeguards, passive neutron multiplicity counting (PNMC) is a method typically employed in non-destructive assay (NDA) of special nuclear material (SNM) for nonproliferation, verification and accountability purposes. PNMC is generally performed using a well-type thermal neutron counter and relies on the detection of correlated pairs or higher order multiplets of neutrons emitted by an assayed item. To assay SNM, a set of parameters for a given well-counter is required to link the measured multiplicity rates to the assayed item properties. Detection efficiency, die-away time, gate utilization factors (tightly connected to die-away time) as well as optimum gate width setting are among the key parameters. These parameters along with the underlying model assumptions directly affect the accuracy of the SNM assay. In this paper we examine the role of gate utilization factors and the single exponential die-away time assumption and their impact on the measurements for a range of plutonium materials. In addition, we examine the importance of item-optimized coincidence gate width setting as opposed to using a universal gate width value. Finally, the traditional PNMC based on multiplicity shift register electronics is extended to Feynman-type analysis and application of this approach to Pu mass assay is demonstrated.

  3. Remote-controlled NDA (nondestructive assay) systems for process areas in a MOX (mixed oxide) facility

    SciTech Connect

    Miller, M.C.; Menlove, H.O.; Augustson, R.H.; Ohtani, T.; Seya, M.; Takahashi, S.; Abedin-Zadeh, R.

    1989-01-01

    Nondestructive assay (NDA) systems have been designed and installed in the process area of an automated mixed-oxide (MOX) fuel fabrication facility. These instruments employ neutron coincidence counting methods to measure the spontaneous-fission rate of plutonium in the powders, pellets, and fuel pins in the process area. The spontaneous fission rate and the plutonium isotopic ratios determine the mass of plutonium in the sample. Measurements can be either attended or unattended. The fuel-pin assay system (FPAS) resides above the robotic conveyor system and measures the plutonium content in fuel-pin trays containing up to 24 pins (/approximately/1 kg of plutonium). The material accountancy glove-box (MAGB) counters consist of two slab detectors mounted on the sides of the glove box to measure samples of powder or pellets as they are brought to the load cell. Samples measured by the MAGB counters may contain up to 18 kg of MOX. This paper describes the design and performance of four systems: the fuel-pin assay system and three separate MAGB systems. The paper also discusses the role of Monte Carlo transport techniques in the detector design and subsequent instrument calibration. 5 refs., 11 figs., 6 tabs.

  4. Uncertainty quantification in application of the enrichment meter principle for nondestructive assay of special nuclear material

    DOE PAGESBeta

    Burr, Tom; Croft, Stephen; Jarman, Kenneth D.

    2015-09-05

    The various methods of nondestructive assay (NDA) of special nuclear material (SNM) have applications in nuclear nonproliferation, including detection and identification of illicit SNM at border crossings, and quantifying SNM at nuclear facilities for safeguards. No assay method is complete without “error bars,” which provide one way of expressing confidence in the assay result. Consequently, NDA specialists typically quantify total uncertainty in terms of “random” and “systematic” components, and then specify error bars for the total mass estimate in multiple items. Uncertainty quantification (UQ) for NDA has always been important, but it is recognized that greater rigor is needed andmore »achievable using modern statistical methods. To this end, we describe the extent to which the guideline for expressing uncertainty in measurements (GUM) can be used for NDA. Also, we propose improvements over GUM for NDA by illustrating UQ challenges that it does not address, including calibration with errors in predictors, model error, and item-specific biases. A case study is presented using low-resolution NaI spectra and applying the enrichment meter principle to estimate the U-235 mass in an item. The case study illustrates how to update the current American Society for Testing and Materials guide for application of the enrichment meter principle using gamma spectra from a NaI detector.« less

  5. Uncertainty quantification in application of the enrichment meter principle for nondestructive assay of special nuclear material

    SciTech Connect

    Burr, Tom; Croft, Stephen; Jarman, Kenneth D.

    2015-09-05

    The various methods of nondestructive assay (NDA) of special nuclear material (SNM) have applications in nuclear nonproliferation, including detection and identification of illicit SNM at border crossings, and quantifying SNM at nuclear facilities for safeguards. No assay method is complete without “error bars,” which provide one way of expressing confidence in the assay result. Consequently, NDA specialists typically quantify total uncertainty in terms of “random” and “systematic” components, and then specify error bars for the total mass estimate in multiple items. Uncertainty quantification (UQ) for NDA has always been important, but it is recognized that greater rigor is needed and achievable using modern statistical methods. To this end, we describe the extent to which the guideline for expressing uncertainty in measurements (GUM) can be used for NDA. Also, we propose improvements over GUM for NDA by illustrating UQ challenges that it does not address, including calibration with errors in predictors, model error, and item-specific biases. A case study is presented using low-resolution NaI spectra and applying the enrichment meter principle to estimate the U-235 mass in an item. The case study illustrates how to update the current American Society for Testing and Materials guide for application of the enrichment meter principle using gamma spectra from a NaI detector.

  6. Standard test method for nondestructive assay of radioactive material by tomographic gamma scanning

    E-print Network

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method describes the nondestructive assay (NDA) of gamma ray emitting radionuclides inside containers using tomographic gamma scanning (TGS). High resolution gamma ray spectroscopy is used to detect and quantify the radionuclides of interest. The attenuation of an external gamma ray transmission source is used to correct the measurement of the emission gamma rays from radionuclides to arrive at a quantitative determination of the radionuclides present in the item. 1.2 The TGS technique covered by the test method may be used to assay scrap or waste material in cans or drums in the 1 to 500 litre volume range. Other items may be assayed as well. 1.3 The test method will cover two implementations of the TGS procedure: (1) Isotope Specific Calibration that uses standards of known radionuclide masses (or activities) to determine system response in a mass (or activity) versus corrected count rate calibration, that applies to only those specific radionuclides for which it is calibrated, and (2) Respo...

  7. Design of ERL Spoke Cavity For Non-Destructive Assay Research

    NASA Astrophysics Data System (ADS)

    Sawamura, M.; Nagai, R.; Nishimori, N.; Hajima, R.

    2015-10-01

    We are proposing non-destructive assay system of nuclear materials with laser Compton scattering combined with an energy-recovery linac (ERL) and a laser. Since constructing accelerator system for nuclear safe guard and security requires small cavities, spoke cavities have many advantages such as shortening the distance between cavities, small frequency detune due to micro-phonics and easy adjustment of field distribution for strong cell coupling. Calculations of optimized cavity shape and HOM coupler shape have been performed and rf properties with aluminum spoke cavity model have been also measured. Considering refrigerator system required for superconducting accelerator, we are planning to develop 325MHz spoke cavity which can be practically operated with 4K liquid helium. We have started to fabricate the niobium one-spoke cavity.

  8. Guide to nondestructive assay standards: Preparation criteria, availability, and practical considerations

    SciTech Connect

    Hsue, S.T.; Stewart, J.E.; Sampson, T.E.; Butler, G.W.; Rudy, C.R.; Rinard, P.M.

    1997-10-01

    For certification and measurement control, nondestructive assay (NDA) instruments and methods used for verification measurements of special nuclear materials (SNMs) require calibrations based on certified reference materials (CRMs), or working reference materials (WRMs), traceable to the national system of measurements, and adequately characteristic of the unknowns. The Department of Energy Office of Safeguards and Security is sponsoring production of a comprehensive guide to preparation of NDA standards. The scope of the report includes preparation criteria, current availability of CRMs and WRMs, practical considerations for preparation and characterization, and an extensive bibliography. In preparing the report, based primarily on experience at Los Alamos, they have found that standards preparation is highly dependent on the particular NDA method being applied. They therefore include sections that contain information specific to commonly used neutron and gamma-ray NDA techniques. They also present approaches that are alternatives to, or minimize requirements for physical standards.

  9. Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program

    SciTech Connect

    N /A

    2009-04-01

    Each testing and analytical facility performing waste characterization activities for the Waste Isolation Pilot Plant (WIPP) participates in the Performance Demonstration Program (PDP) to comply with the Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC) (DOE/WIPP-02-3122) and the Quality Assurance Program Document (QAPD) (CBFO-94-1012). The PDP serves as a quality control check for data generated in the characterization of waste destined for WIPP. Single blind audit samples are prepared and distributed to each of the facilities participating in the PDP. The PDP evaluates analyses of simulated headspace gases, constituents of the Resource Conservation and Recovery Act (RCRA), and transuranic (TRU) radionuclides using nondestructive assay (NDA) techniques.

  10. Performance Demonstration Program Plan for Nondestructive Assay of Boxed Wastes for the TRU Waste Characterization Program

    SciTech Connect

    N /A

    2009-10-01

    Each testing and analytical facility performing waste characterization activities for the Waste Isolation Pilot Plant (WIPP) participates in the Performance Demonstration Program (PDP) to comply with the Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC) (DOE/WIPP-02-3122) and the Quality Assurance Program Document (QAPD) (CBFO-94-1012). The PDP serves as a quality control check for data generated in the characterization of waste destined for WIPP. Single-blind audit samples are prepared and distributed to each of the facilities participating in the PDP. Different PDPs evaluate the analyses of simulated headspace gases (HSGs), constituents of the Resource Conservation and Recovery Act (RCRA), and transuranic (TRU) radionuclides using nondestructive assay (NDA) techniques.

  11. Status Report on the Passive Neutron Enrichment Meter (PNEM) for UF6 Cylinder Assay

    SciTech Connect

    Miller, Karen A.; Swinhoe, Martyn T.; Menlove, Howard O.; Marlow, Johnna B.

    2012-05-02

    The Passive Neutron Enrichment Meter (PNEM) is a nondestructive assay (NDA) system being developed at Los Alamos National Laboratory (LANL). It was designed to determine {sup 235}U mass and enrichment of uranium hexafluoride (UF{sub 6}) in product, feed, and tails cylinders (i.e., 30B and 48Y cylinders). These cylinders are found in the nuclear fuel cycle at uranium conversion, enrichment, and fuel fabrication facilities. The PNEM is a {sup 3}He-based neutron detection system that consists of two briefcase-sized detector pods. A photograph of the system during characterization at LANL is shown in Fig. 1. Several signatures are currently being studied to determine the most effective measurement and data reduction technique for unfolding {sup 235}U mass and enrichment. The system collects total neutron and coincidence data for both bare and cadmium-covered detector pods. The measurement concept grew out of the success of the Uranium Cylinder Assay System (UCAS), which is an operator system at Rokkasho Enrichment Plant (REP) that uses total neutron counting to determine {sup 235}U mass in UF{sub 6} cylinders. The PNEM system was designed with higher efficiency than the UCAS in order to add coincidence counting functionality for the enrichment determination. A photograph of the UCAS with a 48Y cylinder at REP is shown in Fig. 2, and the calibration measurement data for 30B product and 48Y feed and tails cylinders is shown in Fig. 3. The data was collected in a low-background environment, meaning there is very little scatter in the data. The PNEM measurement concept was first presented at the 2010 Institute of Nuclear Materials Management (INMM) Annual Meeting. The physics design and uncertainty analysis were presented at the 2010 International Atomic Energy Agency (IAEA) Safeguards Symposium, and the mechanical and electrical designs and characterization measurements were published in the ESARDA Bulletin in 2011.

  12. A new facility for Non-Destructive Assay with a time-tagged {sup 252}Cf source

    SciTech Connect

    Stevanato, L.; Caldogno, M.; Hao Xin; Dima, R.; Fabris, D.; Nebbia, G.; Lunardon, M.; Moretto, S.; Pesente, S.; Viesti, G.; Sajo-Bohus, L.

    2010-08-04

    A new facility for non-destructive assay using a time-tagged {sup 252}Cf source is presented. The system is designed to analyze samples having maximum size of about 15x20 cm{sup 2}, the material recognition being obtained by measuring simultaneously transmission of neutrons and gamma rays.

  13. Prototype Radiation Detector Positioning System For The Automated Nondestructive Assay Of Uf6 Cylinders

    SciTech Connect

    Hatchell, Brian K.; Valdez, Patrick LJ; Orton, Christopher R.; Mace, Emily K.

    2011-08-07

    International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility’s entire cylinder inventory. These measurements are time-consuming, expensive, and assay only a small fraction of the total cylinder volume. An automated nondestructive assay system capable of providing enrichment measurements over the full volume of the cylinder could improve upon current verification practices in terms of efficiency and assay accuracy. This paper describes an approach denoted the Integrated Cylinder Verification Station (ICVS) that supports 100% cylinder verification, provides volume-averaged cylinder enrichment assay, and reduces inspector manpower needs. To allow field measurements to be collected to validate data collection algorithms, a prototype radiation detector positioning system was constructed. The system was designed to accurately position an array of radiation detectors along the length of a cylinder to measure UF6 enrichment. A number of alternative radiation shields for the detectors were included with the system. A collimated gamma-ray spectrometer module that allows translation of the detectors in the surrounding shielding to adjust the field of view, and a collimating plug in the end to further reduce the low-energy field of view, were also developed. Proof-of-principle measurements of neutron and high-energy gamma-ray signatures, using moderated neutron detectors and large-volume spectrometers in a fixed-geometry, portal-like configuration, supported an early assessment of the viability of the concept. The system has been used successfully on two testing campaigns at an AREVA fuel fabrication plant to scan over 30 product cylinders. This paper will describe the overall design of the detector positioning system and provide an overview of the Integrated Cylinder Verification Station (ICVS) approach.

  14. Proficiency test for non-destructive assay of 220 liter radioactive waste drums by gamma assay systems

    SciTech Connect

    Van Velzen, L.P.M.; Bruggeman, M.; Botte, J.

    2007-07-01

    The European Network of Testing Facilities for the Quality Checking of Radioactive Waste Packages (ENTRAP) initiated a feasibility study on how to organize in the most cost effective way an international proficiency tests for non-destructive, gamma-ray based, assay of 220 liter radioactive waste drums in the European Union at a regular time interval of 2 or 3 years. This feasibility study addresses all aspects of proficiency testing on radioactive waste packages including the design of a commonly accepted reference 220 liter drum. This design, based on the international response on a send out questionnaire, includes matrixes, radioactive sources; a solution to overcome the tedious and expensive international transport costs of real or even simulated waste packages, general cost estimation for the organization of, and the participation in the proficiency test. The proposed concept for the proficiency testing and the estimated costs are presented. The participation costs of the first proficiency test are mainly determined by the manufacturing of the non-radioactive 220 liter drum ({+-} 55%). Applied reference sources, transport of the drum and reference sources and participation costs in the proficiency test contribute each about {+-} 15%. (authors)

  15. Statistical uncertainties of nondestructive assay for spent nuclear fuel by using nuclear resonance fluorescence

    NASA Astrophysics Data System (ADS)

    Shizuma, Toshiyuki; Hayakawa, Takehito; Angell, Christopher T.; Hajima, Ryoichi; Minato, Futoshi; Suyama, Kenya; Seya, Michio; Johnson, Micah S.; McNabb, Dennis P.

    2014-02-01

    We estimated statistical uncertainties of a nondestructive assay system using nuclear resonance fluorescence (NRF) for spent nuclear fuel including low-concentrations of actinide nuclei with an intense, mono-energetic photon beam. Background counts from radioactive materials inside the spent fuel were calculated with the ORIGEN2.2-UPJ burn-up computer code. Coherent scattering contribution associated with Rayleigh, nuclear Thomson, and Delbrück scattering was also considered. The energy of the coherent scattering overlaps with that of NRF transitions to the ground state. Here, we propose to measure NRF transitions to the first excited state to avoid the coherent scattering contribution. Assuming that the total NRF cross-sections are in the range of 3-100 eV b at excitation energies of 2.25, 3.5, and 5 MeV, statistical uncertainties of the NRF measurement were estimated. We concluded that it is possible to assay 1% actinide content in the spent fuel with 2.2-3.2% statistical precision during 4000 s measurement time for the total integrated cross-section of 30 eV b at excitation energies of 3.5-5 MeV by using a photon beam with an intensity of 106 photons/s/eV. We also examined both the experimental and theoretical NRF cross-sections for actinide nuclei. The calculation based on the quasi-particle random phase approximation suggests the existence of strong magnetic dipole resonances at excitation energies ranging from 2 to 6 MeV with the scattering cross-sections of tens eV b around 5 MeV in 238U.

  16. Development of a neutron measurement system in unified non-destructive assay for the PRIDE facility

    NASA Astrophysics Data System (ADS)

    Seo, Hee; Park, Se-Hwan; Won, Byung-Hee; Ahn, Seong-Kyu; Shin, Hee-Sung; Na, Sang-Ho; Song, Dae-Yong; Kim, Ho-Dong; Lee, Seung Kyu

    2013-12-01

    The Korea Atomic Energy Research Institute (KAERI) has made an effort to develop pyroprocessing technology to resolve an on-going problem in Korea, i.e., the management of spent nuclear fuels. To this end, a test-bed facility for pyroprocessing, called PRIDE (PyRoprocessing Integrated inactive DEmonstration facility), is being constructed at KAERI. The main objective of PRIDE is to evaluate the performance of the unit processes, remote operation, maintenance, and proliferation resistance. In addition, integrating all unit processes into a one-step process is also one of the main goals. PRIDE can also provide a good opportunity to test safeguards instrumentations for a pyroprocessing facility such as nuclear material accounting devices, surveillance systems, radiation monitoring systems, and process monitoring systems. In the present study, a non-destructive assay (NDA) system for the testing of nuclear material accountancy of PRIDE was designed by integrating three different NDA techniques, i.e., neutron, gamma-ray, and mass measurements. The developed neutron detection module consists of 56 3He tubes and 16 AMPTEK A111 signal processing circuits. The amplifiers were matched in terms of the gain and showed good uniformity after a gain-matching procedure (%RSD=0.37%). The axial and the radial efficiency distributions within the cavity were then measured using a 252Cf neutron source and were compared with the MCNPX calculation results. The measured efficiency distributions showed excellent agreement with the calculations, which confirmed the accuracy of the MCNPX model of the system.

  17. Total Measurement Uncertainty (TMU) for Nondestructive Assay of Transuranic (TRU) Waste at the WRAP Facility

    SciTech Connect

    CANTALOUB, M.G.

    2000-10-20

    At the WRAP facility, there are two identical imaging passive/active neutron (IPAN) assay systems and two identical gamma energy assay (GEA) systems. Currently, only the GEA systems are used to characterize waste, therefore, only the GEA systems are addressed in this document. This document contains the limiting factors relating to the waste drum analysis for shipments destined for WIPP. The TMU document provides the uncertainty basis in the NDA analysis of waste containers at the WRAP facility. The defined limitations for the current analysis scheme are as follows: (1) The WRAP waste stream debris is from the Hanford Plutonium Finishing Plant's process lines, primarily combustible materials. (2) Plutonium analysis range is from the minimum detectable concentration (MDC), Reference 6, to 200 grams (g). (3) The GEA system calibration density ranges from 0.013 g/cc to 1.6 g/cc. (4) PDP Plutonium drum densities were evaluated from 0.065 g/cc to 0.305 g/cc. (5) PDP Plutonium source weights ranged from 0.030 g to 318 g, in both empty and combustibles matrix drums. (6) The GEA system design density correction mass absorption coefficient table (MAC) is Lucite, a material representative of combustible waste. (7) Drums with material not fitting the debris waste criteria are targeted for additional calculations, reviews, and potential re-analysis using a calibration suited for the waste type.

  18. Total Measurement Uncertainty (TMU) for Nondestructive Assay of Transuranic (TRU) Waste at the WRAP Facility

    SciTech Connect

    CANTALOUB, M.G.

    2000-05-22

    At the WRAP facility, there are two identical imaging passive/active neutron (IPAN) assay systems and two identical gamma energy assay (GEA) systems. Currently, only the GEA systems are used to characterize waste, therefore, only the GEA systems are addressed in this document. This document contains the limiting factors relating to the waste drum analysis for shipments destined for WIPP. The TMU document provides the uncertainty basis in the NDA analysis of waste containers at the WRAP facility. The defined limitations for the current analysis scheme are as follows: The WRAP waste stream debris is from the Hanford Plutonium Finishing Plant's process lines, primarily combustible materials. Plutonium analysis range is from the minimum detectable concentration (MDC), Reference 6, to 160 grams (8). The GEA system calibration density ranges from 0.013 g/cc to 1.6 g/cc. PDP Plutonium drum densities were evaluated from 0.065 g/cc to 0.305 gkc. PDP Plutonium source weights ranged from 0.030 g to 3 18 g, in both empty and combustibles matrix drums. The GEA system design density correction macroscopic absorption cross section table (MAC) is Lucite, a material representative of combustible waste. Drums with material not fitting the debris waste criteria are targeted for additional calculations, reviews, and potential re-analysis using a calibration suited for the waste type.

  19. A New Facility For Non-Destructive Assay With A Time-Tagged {sup 252}Cf Source

    SciTech Connect

    Stevanato, L.; Caldogno, M.; Hao, Xin; Dima, R.; Fabris, D.; Nebbia, G.; Lunardon, M.; Moretto, S.; Pesente, S.; Viesti, G.; Sajo-Bohus, L.

    2011-06-01

    A new facility for Non-Destructive Assay based on a time-tagged {sup 252}Cf spontaneous fission source is now in operation at the Padova University. The system is designed to analyze samples with dimensions on the order of 20x20 cm{sup 2}, the material recognition being obtained by measuring simultaneously transmission of neutrons and gamma rays as a function of energy.

  20. Total Measurement Uncertainty (TMU) for Nondestructive Assay of Transuranic (TRU) Waste at the WRAP Facility

    SciTech Connect

    WILLS, C.E.

    2000-02-24

    The Waste Receiving and Processing (WRAP) facility, located on the Hanford Site in southeast Washington, is a key link in the certification of Hanford's transuranic (TRU) waste for shipment to the Waste Isolation Pilot Plant (WIPP). Waste characterization is one of the vital functions performed at WRAP, and nondestructive assay (NDA) measurements of TRU waste containers is one of two required methods used for waste characterization (Reference 1). Various programs exist to ensure the validity of waste characterization data; all of these cite the need for clearly defined knowledge of uncertainty, associated with any measurements taken. All measurements have an inherent uncertainty associated with them. The combined effect of all uncertainties associated with a measurement is referred to as the Total Measurement Uncertainty (TMU). The NDA measurement uncertainties can be numerous and complex. In addition to system-induced measurement uncertainty, other factors contribute to the TMU, each associated with a particular measurement. The NDA measurements at WRAP are based on processes (radioactive decay and induced fission) which are statistical in nature. As a result, the proper statistical summation of the various uncertainty components is essential. This report examines the contributing factors to NDA measurement uncertainty at WRAP. The significance of each factor on the TMU is analyzed, and a final method is given for determining the TMU for NDA measurements at WRAP. As more data becomes available, and WRAP gains in operational experience, this report will be reviewed semi-annually and updated as necessary. This report also includes the data flow paths for the analytical process in the radiometric determinations.

  1. Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program

    SciTech Connect

    DOE Carlsbad Field Office

    2001-04-06

    The Performance Demonstration Program (PDP) for nondestructive assay (NDA) consists of a series of tests to evaluate the capability for NDA of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements obtained from NDA systems used to characterize the radiological constituents of TRU waste. The primary documents governing the conduct of the PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC; DOE 1999a) and the Quality Assurance Program Document (QAPD; DOE 1999b). The WAC requires participation in the PDP; the PDP must comply with the QAPD and the WAC. The WAC contains technical and quality requirements for acceptable NDA. This plan implements the general requirements of the QAPD and applicable requirements of the WAC for the NDA PDP. Measurement facilities demonstrate acceptable performance by the successful testing of simulated waste containers according to the criteria set by this PDP Plan. Comparison among DOE measurement groups and commercial assay services is achieved by comparing the results of measurements on similar simulated waste containers reported by the different measurement facilities. These tests are used as an independent means to assess the performance of measurement groups regarding compliance with established quality assurance objectives (QAO's). Measurement facilities must analyze the simulated waste containers using the same procedures used for normal waste characterization activities. For the drummed waste PDP, a simulated waste container consists of a 55-gallon matrix drum emplaced with radioactive standards and fabricated matrix inserts. These PDP sample components are distributed to the participating measurement facilities that have been designated and authorized by the Carlsbad Field Office (CBFO). The NDA Drum PDP materials are stored at these sites under secure conditions to protect them from loss, tampering, or accidental damage. Using removable PDP radioactive standards, isotopic activities in the simulated waste containers are varied to the extent possible over the range of concentrations anticipated in actual waste characterization situations. Manufactured matrices simulate expected waste matrix conditions and provide acceptable consistency in the sample preparation process at each measurement facility. Analyses that are required by the Waste Isolation Pilot Plant (WIPP) to demonstrate compliance with various regulatory requirements and that are included in the PDP may only be performed by measurement facilities that demonstrate acceptable performance in the PDP. These analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes in this document.

  2. Performance Demonstration Program Plan for Nondestructive Assay of Boxed Wastes for the TRU Waste Characterization Program

    SciTech Connect

    Carlsbad Field Office

    2001-01-31

    The Performance Demonstration Program (PDP) for nondestructive assay (NDA) consists of a series of tests to evaluate the capability for NDA of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements obtained from NDA systems used to characterize the radiological constituents of TRU waste. The primary documents governing the conduct of the PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC; DOE 1999a) and the Quality Assurance Program Document (QAPD; DOE 1999b). The WAC requires participation in the PDP; the PDP must comply with the QAPD and the WAC. The WAC contains technical and quality requirements for acceptable NDA. This plan implements the general requirements of the QAPD and applicable requirements of the WAC for the NDA PDP for boxed waste assay systems. Measurement facilities demonstrate acceptable performance by the successful testing of simulated waste containers according to the criteria set by this PDP Plan. Comparison among DOE measurement groups and commercial assay services is achieved by comparing the results of measurements on similar simulated waste containers reported by the different measurement facilities. These tests are used as an independent means to assess the performance of measurement groups regarding compliance with established quality assurance objectives (QAO’s). Measurement facilities must analyze the simulated waste containers using the same procedures used for normal waste characterization activities. For the boxed waste PDP, a simulated waste container consists of a modified standard waste box (SWB) emplaced with radioactive standards and fabricated matrix inserts. An SWB is a waste box with ends designed specifically to fit the TRUPACT-II shipping container. SWB’s will be used to package a substantial volume of the TRU waste for disposal. These PDP sample components are distributed to the participating measurement facilities that have been designated and authorized by the Carlsbad Field Office (CBFO). The NDA Box PDP materials are stored at these sites under secure conditions to protect them from loss, tampering, or accidental damage. Using removable PDP radioactive standards, isotopic activities in the simulated waste containers are varied to the extent possible over the range of concentrations anticipated in actual waste characterization situations. Manufactured matrices simulate expected waste matrix configurations and provide acceptable consistency in the sample preparation process at each measurement facility. Analyses that are required by the Waste Isolation Pilot Plant (WIPP) to demonstrate compliance with various regulatory requirements and that are included in the PDP may only be performed by measurement facilities that demonstrate acceptable performance in the PDP. These analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes in this document.

  3. Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program

    SciTech Connect

    Carlsbad Field Office

    2005-08-03

    The Performance Demonstration Program (PDP) for Nondestructive Assay (NDA) is a test program designed to yield data on measurement system capability to characterize drummed transuranic (TRU) waste generated throughout the Department of Energy (DOE) complex. The tests are conducted periodically and provide a mechanism for the independent and objective assessment of NDA system performance and capability relative to the radiological characterization objectives and criteria of the Office of Characterization and Transportation (OCT). The primary documents requiring an NDA PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC), which requires annual characterization facility participation in the PDP, and the Quality Assurance Program Document (QAPD). This NDA PDP implements the general requirements of the QAPD and applicable requirements of the WAC. Measurement facilities must demonstrate acceptable radiological characterization performance through measurement of test samples comprised of pre-specified PDP matrix drum/radioactive source configurations. Measurement facilities are required to analyze the NDA PDP drum samples using the same procedures approved and implemented for routine operational waste characterization activities. The test samples provide an independent means to assess NDA measurement system performance and compliance per criteria delineated in the NDA PDP Plan. General inter-comparison of NDA measurement system performance among DOE measurement facilities and commercial NDA services can also be evaluated using measurement results on similar NDA PDP test samples. A PDP test sample consists of a 55-gallon matrix drum containing a waste matrix type representative of a particular category of the DOE waste inventory and nuclear material standards of known radionuclide and isotopic composition typical of DOE radioactive material. The PDP sample components are made available to participating measurement facilities as designated by the Carlsbad Field Office (CBFO). The nuclear material type, mass and associated alpha activity of the NDA PDP radioactive standard sets have been specified and fabricated to allow assembly of PDP samples that simulate TRU alpha activity concentrations, radionuclidic/isotopic distributions and physical forms typical of the DOE TRU waste inventory. The PDP matrix drum waste matrix types were derived from an evaluation of information contained in the Transuranic Waste Baseline Inventory Report (TWBIR) to ensure representation of prevalent waste types and their associated matrix characteristics in NDA PDP testing. NDA drum analyses required by the Waste Isolation Pilot Plant (WIPP) may only be performed by measurement facilities that comply with the performance criteria as set forth in the NDA PDP Plan. In this document, these analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes.

  4. Droplet-interface-bilayer assays in microfluidic passive networks

    PubMed Central

    Schlicht, Bárbara; Zagnoni, Michele

    2015-01-01

    Basic biophysical studies and pharmacological processes can be investigated by mimicking the intracellular and extracellular environments across an artificial cell membrane construct. The ability to reproduce in vitro simplified scenarios found in live cell membranes in an automated manner has great potential for a variety of synthetic biology and compound screening applications. Here, we present a fully integrated microfluidic system for the production of artificial lipid bilayers based on the miniaturisation of droplet-interface-bilayer (DIB) techniques. The platform uses a microfluidic design that enables the controlled positioning and storage of phospholipid-stabilized water-in-oil droplets, leading successfully to the scalable and automated formation of arrays of DIBs to mimic cell membrane processes. To ensure robustness of operation, we have investigated how lipid concentration, immiscible phase flow velocities and the device geometrical parameters affect the system performance. Finally, we produced proof-of-concept data showing that diffusive transport of molecules and ions across on-chip DIBs can be studied and quantified using fluorescence-based assays. PMID:25909686

  5. Non-destructive assay of fissile materials through active neutron interrogation technique using pulsed neutron (plasma focus) device

    NASA Astrophysics Data System (ADS)

    Tomar, B. S.; Kaushik, T. C.; Andola, Sanjay; Ramniranjan; Rout, R. K.; Kumar, Ashwani; Paranjape, D. B.; Kumar, Pradeep; Ramakumar, K. L.; Gupta, S. C.; Sinha, R. K.

    2013-03-01

    Pulsed neutrons emitted from a plasma focus (PF) device have been used for the first time for the non-destructive assay of 235U content in different chemical forms (oxide and metal). The PF device generates (1.2±0.3)×109 D-D fusion neutrons per shot with a pulse width of 46±5 ns. The method involves the measurement of delayed neutrons from an irradiated sample 50 ms after exposure to the neutron pulse for a time of about 100 s in the multichannel scaling (MCS) mode. The calibration of the active interrogation delayed neutron counter (AIDNEC) system was carried out by irradiating U3O8 samples of varying amounts (0.1-40 g) containing enriched 235U (14.8%) in the device. The delayed neutrons were monitored using a bank of six 3He detectors. The sensitivity of the system was found to be about 100 counts/s/g over the accumulation time of 25 s per neutron pulse of ˜109. The detection limit of the system is estimated to be 18 mg of 235U. The system can be suitably modified for applications toward non-destructive assay of fissile content in waste packets.

  6. Neutron Resonance Transmission Analysis (NRTA): A Nondestructive Assay Technique for the Next Generation Safeguards Initiative’s Plutonium Assay Challenge

    SciTech Connect

    J. W. Sterbentz; D. L. Chichester

    2010-12-01

    This is an end-of-year report for a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The first-year goals for this project were modest and included: 1) developing a zero-order MCNP model for the NRTA technique, simulating data results presented in the literature, 2) completing a preliminary set of studies investigating important design and performance characteristics for the NRTA measurement technique, and 3) documentation of this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes a nine month period of work.

  7. A state-of-the-art passive gamma-ray assay system

    SciTech Connect

    Sampson, T.E.; Parker, J.L.; Cowder, L.R.; Kern, E.A.; Garcia, D.L.; Ensslin, N.

    1987-01-01

    We report details of the development of a high-accuracy, high-precision system for the non-destructive assay of /sup 235/U in solution. The system can measure samples with concentrations ranging from 0.0001 to 500 g /sup 235/U/l using 200-ml samples at low concentrations, 30-ml samples at high concentrations, and 1000-s measurement times. The accuracy and precision goals of 0.1% were essentially attained for concentrations above 100 g/l. This at-line system, designed for a production plant environment, represents a significant improvement in the state of the art.

  8. Californium interrogation prompt neutron (CIPN) instrument for non-destructive assay of spent nuclear fuel-Design concept and experimental demonstration

    NASA Astrophysics Data System (ADS)

    Henzlova, D.; Menlove, H. O.; Rael, C. D.; Trellue, H. R.; Tobin, S. J.; Park, Se-Hwan; Oh, Jong-Myeong; Lee, Seung-Kyu; Ahn, Seong-Kyu; Kwon, In-Chan; Kim, Ho-Dong

    2016-01-01

    This paper presents results of the first experimental demonstration of the Californium Interrogation Prompt Neutron (CIPN) instrument developed within a multi-year effort launched by the Next Generation Safeguards Initiative Spent Fuel Project of the United States Department of Energy. The goals of this project focused on developing viable non-destructive assay techniques with capabilities to improve an independent verification of spent fuel assembly characteristics. For this purpose, the CIPN instrument combines active and passive neutron interrogation, along with passive gamma-ray measurements, to provide three independent observables. This paper describes the initial feasibility demonstration of the CIPN instrument, which involved measurements of four pressurized-water-reactor spent fuel assemblies with different levels of burnup and two initial enrichments. The measurements were performed at the Post-Irradiation Examination Facility at the Korea Atomic Energy Institute in the Republic of Korea. The key aim of the demonstration was to evaluate CIPN instrument performance under realistic deployment conditions, with the focus on a detailed assessment of systematic uncertainties that are best evaluated experimentally. The measurements revealed good positioning reproducibility, as well as a high degree of insensitivity of the CIPN instrument's response to irregularities in a radial burnup profile. Systematic uncertainty of individual CIPN instrument signals due to assembly rotation was found to be <4.5%, even for assemblies with fairly extreme gradients in the radial burnup profile. These features suggest that the CIPN instrument is capable of providing a good representation of assembly average characteristics, independent of assembly orientation in the instrument.

  9. An integrated approach for determining plutonium mass in spent fuel assemblies with nondestructive assay

    SciTech Connect

    Swinhoe, Martyn T; Tobin, Stephen J; Fensin, Mike L; Menlove, Howard O

    2009-01-01

    There are a variety of reasons for quantifying plutonium (Pu) in spent fuel. Below, five motivations are listed: (1) To verify the Pu content of spent fuel without depending on unverified information from the facility, as requested by the IAEA ('independent verification'). New spent fuel measurement techniques have the potential to allow the IAEA to recover continuity of knowledge and to better detect diversion. (2) To assure regulators that all of the nuclear material of interest leaving a nuclear facility actually arrives at another nuclear facility ('shipper/receiver'). Given the large stockpile of nuclear fuel at reactor sites around the world, it is clear that in the coming decades, spent fuel will need to be moved to either reprocessing facilities or storage sites. Safeguarding this transportation is of significant interest. (3) To quantify the Pu in spent fuel that is not considered 'self-protecting.' Fuel is considered self-protecting by some regulatory bodies when the dose that the fuel emits is above a given level. If the fuel is not self-protecting, then the Pu content of the fuel needs to be determined and the Pu mass recorded in the facility's accounting system. This subject area is of particular interest to facilities that have research-reactor spent fuel or old light-water reactor (LWR) fuel. It is also of interest to regulators considering changing the level at which fuel is considered self-protecting. (4) To determine the input accountability value at an electrochemical processing facility. It is not expected that an electrochemical reprocessing facility will have an input accountability tank, as is typical in an aqueous reprocessing facility. As such, one possible means of determining the input accountability value is to measure the Pu content in the spent fuel that arrives at the facility. (5) To fully understand the composition of the fuel in order to efficiently and safely pack spent fuel into a long-term repository. The NDA of spent fuel can be part of a system that cost-effectively meets the burnup credit needs of a repository. Behind each of these reasons is a regulatory structure with MC&A requirements. In the case of the IAEA, the accountable quantity is elemental plutonium. The material in spent fuel (fissile isotopes, fission products, etc.) emits signatures that provide information about the content and history of the fuel. A variety of nondestructive assay (NDA) techniques are available to quantify these signatures. The effort presented in this paper is investigation of the capabilities of 12 NDA techniques. For these 12, none is conceptually capable of independently determining the Pu content in a spent fuel assembly while at the same time being able to detect the diversion of a significant quantity of rods. For this reason the authors are investigating the capability of 12 NDA techniques with the end goal of integrating a few techniques together into a system that is capable of measuring Pu mass in an assembly. The work described here is the beginning of what is anticipated to be a five year effort: (1) two years of modeling to select the best technologies, (2) one year fabricating instruments and (3) two years measuring spent fuel. This paper describes the first two years of this work. In order to cost effectively and robustly model the performance of the 12 NDA techniques, an 'assembly library' was created. The library contains the following: (a) A diverse range of PWR spent fuel assemblies (burnup, enrichment, cooling time) similar to that which exists in spent pools today and in the future. (b) Diversion scenarios that capture a range of possible rod removal options. (c) The spatial and isotopic detail needed to accurately quantify the capability of all the NDA techniques so as to enable integration. It is our intention to make this library available to other researchers in the field for inter-comparison purposes. The performance of each instrument will be quantified for the full assembly library for measurements in three different media: air, water and borated water. The 12 NDA te

  10. Nondestructive assay of fluorine in geological and other materials by instrumental photon activation analysis with a microtron

    NASA Astrophysics Data System (ADS)

    Krausová, Ivana; Mizera, Ji?í; ?anda, Zden?k; Chvátil, David; Krist, Pavel

    2015-01-01

    Reliable determination of low concentrations of fluorine in geological and coal samples is difficult. It usually requires tedious decomposition and dissolution of the sample followed by chemical conversion of fluorine into its anionic form. The present paper examines possibilities of non-destructive determination of fluorine, mainly in minerals, rocks and coal, by instrumental photon activation analysis (IPAA) using the MT-25 microtron. The fluorine assay consists of counting the positron-electron annihilation line of 18F at 511 keV, which is a product of the photonuclear reaction 19F(?, n)18F and a pure positron emitter. The assay is complicated by the simultaneous formation of other positron emitters. The main contributors to interference in geological samples are from 45Ti and 34mCl, whereas those from 44Sc and 89Zr are minor. Optimizing beam energy and irradiation-decay-counting times, together with using interfering element calibration standards, allowed reliable IPAA determination of fluorine in selected USGS and CRPG geochemical reference materials, NIST coal reference materials, and NIST RM 8414 Bovine Muscle. In agreement with the published data obtained by PIGE, the results of the F assay by IPAA have revealed erroneous reference values provided for the NIST reference materials SRM 1632 Bituminous Coal and RM 8414 Bovine Muscle. The detection limits in rock and coal samples are in the range of 10-100 ?g g-1.

  11. Nondestructive Assay Measurements Using the RPI Lead Slowing-Down Spectrometer

    E-print Network

    Danon, Yaron

    of spent fuel is important for nuclear safeguards and for determining the fuel burnup level in view fuel pins to analyze their fissile content. In Europe, Interatom designed and the Karlsruhe Nuclear in the past to assay fresh 233U- and 235U-enriched fuel pins.3,4*E-mail: danony@rpi.edu NUCLEAR SCIENCE

  12. REBOCOL (Robotic Calorimetry): An automated NDA (Nondestructive assay) calorimetry and gamma isotopic system

    SciTech Connect

    Hurd, J.R.; Bonner, C.A.; Ostenak, C.A.; Phelan, P.F.; Powell, W.D.; Sheer, N.L.; Schneider, D.N.; Staley, H.C.

    1989-01-01

    ROBOCAL, which is presently being developed and tested at Los Alamos National Laboratory, is a full-scale, prototypical robotic system, for remote calorimetric and gamma-ray analysis of special nuclear materials. It integrates a fully automated, multi-drawer, vertical stacker-retriever system for staging unmeasured nuclear materials, and a fully automated gantry robot for computer-based selection and transfer of nuclear materials to calorimetric and gamma-ray measurement stations. Since ROBOCAL is designed for minimal operator intervention, a completely programmed user interface and data-base system are provided to interact with the automated mechanical and assay systems. The assay system is designed to completely integrate calorimetric and gamma-ray data acquisition and to perform state-of-the-art analyses on both homogeneous and heterogeneous distributions of nuclear materials in a wide variety of matrices. 10 refs., 10 figs., 4 tabs.

  13. Determining plutonium mass in spent fuel with non-destructive assay techniques - NGSU research overview and update on 6 NDA techniques

    SciTech Connect

    Tobin, Stephen J; Conlin, Jeremy L; Evans, Louise G; Hu, Jianwei; Blanc, Pauline C; Lafleur, Adrienne M; Menlove, Howard O; Schear, Melissa A; Swinhoe, Martyn T; Croft, Stephen; Fensin, Michael L; Freeman, Corey R; Koehler, William E; Mozin, V; Sandoval, N P; Lee, T H; Cambell, L W; Cheatham, J R; Gesh, C J; Hunt, A; Ludewigt, B A; Smith, L E; Sterbentz, J

    2010-09-15

    This poster is one of two complementary posters. The Next Generation Safeguards Initiative (NGSI) of the U.S. DOE has initiated a multi-lab/university collaboration to quantify the plutonium (Pu) mass in, and detect the diversion of pins from, spent nuclear fuel assemblies with non-destructive assay (NDA). This research effort has the goal of quantifying the capability of 14 NDA techniques as well as training a future generation of safeguards practitioners. By November of 2010, we will be 1.5 years into the first phase (2.5 years) of work. This first phase involves primarily Monte Carlo modelling while the second phase (also 2.5 years) will focus on experimental work. The goal of phase one is to quantify the detection capability of the various techniques for the benefit of safeguard technology developers, regulators, and policy makers as well as to determine what integrated techniques merit experimental work, We are considering a wide range of possible technologies since our research horizon is longer term than the focus of most regulator bodies. The capability of all of the NDA techniques will be determined for a library of 64 17 x 17 PWR assemblies [burnups (15, 30, 45, 60 GWd/tU), initial enrichments (2, 3, 4, 5%) and cooling times (1, 5, 20, 80 years)]. The burnup and cooling time were simulated with each fuel pin being comprised of four radial regions. In this paper an overview of the purpose will be given as well as a technical update on the following 6 neutron techniques: {sup 252}Cf Interrogation with Prompt Neutron Detection, Delayed Neutrons, Differential Die-Away, Differential Die-Away Self-Interrogation, Passive Neutron Albedo Reactivity, Self-Integration Neutron Resonance Densitometry. The technical update will quantify the anticipated performance of each technique for the 64 assemblies of the spent fuel library.

  14. Production and radiometric measurements of the large particle plutonium oxide non-destructive assay standards

    NASA Astrophysics Data System (ADS)

    Thronas, Denise L.; Wong, Amy S.; Mecklenburg, Sandra L.; Marshall, Robert S.

    2000-07-01

    The Analytical Chemistry Group at Los Alamos National Laboratory (LANL) has produced several sets of working reference materials (WRMs) for the National TRU Waste Program (NTWP) NDA PDP(Non-Destructive Assay Performance Demonstration Program). This paper describes the first example of production of traceable, certified standards containing plutonium oxide in large particle form for the DOE complex. Discussion of the production and radiometric measurements of these NDA standards is included herein.

  15. Non-destructive assay of {sup 242}Pu by resonance neutron capture

    SciTech Connect

    Kane, W.R.; Lu, Ming-Shih; Aronson, A.; Forman, L.; Vanier, P.E.

    1995-08-01

    For the accurate assay of plutonium by neutron correlation measurements, especially for material derived from high-burnup reactor fuel, the content of {sup 242}Pu in a sample must be determined. Since {sup 242}Pu has a long half-life (387,000 yr) and decays to {sup 238}U by alpha particle emission with the accompanying emission of only weak, low-energy gamma rays, gamma-ray spectrometry methods which are ordinarily employed to determine the isotopic composition of a plutonium sample are not feasible for {sup 242}Pu. The existence of a resonance in the neutron capture cross section of {sup 242}Pu at an energy of 2.67 electron volts (eV) with a large (72, 000 barn) cross section affords the possibility for the quantitative assay of this isotope by epithermal neutron capture. Essential for this purpose is an appropriately designed geometry of neutron moderators and absorbers which will provide maximum flux in the eV region while suppressing thermal neutron capture by the fissile plutonium isotopes. Signatures for neutron capture in {sup 242}Pu include the decay of {sup 243}Pu (4.9 hr), prompt capture gamma rays (total energy 5.034 MeV), and the decay of an isomeric state (330 nanosecond). Experiments to determine the feasibility of this approach are currently in progress.

  16. Compton suppressed LaBr3 detection system for use in nondestructive spent fuel assay

    NASA Astrophysics Data System (ADS)

    Bender, S.; Heidrich, B.; Ünlü, K.

    2015-06-01

    Current methods for safeguarding and accounting for spent nuclear fuel in reprocessing facilities are extremely resource and time intensive. The incorporation of autonomous passive gamma-ray detectors into the procedure could make the process significantly less burdensome. In measured gamma-ray spectra from spent nuclear fuel, the Compton continuum from dominant fission product photopeaks obscure the lower energy lines from other isotopes. The application of Compton suppression to gamma-ray measurements of spent fuel may reduce this effect and allow other less intense, lower energy peaks to be detected, potentially improving the accuracy of multivariate analysis algorithms. Compton suppressed spectroscopic measurements of spent nuclear fuel using HPGe, LaBr3, and NaI(Tl) primary detectors were performed. Irradiated fuel was measured in two configurations: as intact fuel elements viewed through a collimator and as feed solutions in a laboratory to simulate the measurement of a dissolved process stream. These two configurations allowed the direct assessment and quantification of the differences in measured gamma-ray spectra from the application of Compton suppression. In the first configuration, several irradiated fuel elements of varying cooling times from the Penn State Breazeale Reactor spent fuel inventory were measured using the three collimated Compton suppression systems. In the second geometry, Compton suppressed measurements of two samples of Approved Test Material commercial fuel elements were recorded inside the guard detector annulus to simulate the siphoning of small quantities from the main process stream for long dwell measurement periods. Compton suppression was found to improve measured gamma-ray spectra of spent fuel for multivariate analysis by notably lowering the Compton continuum from dominant photopeaks such as 137Cs and 140La, due to scattered interactions in the detector, which allowed more spectral features to be resolved. There was a significant advantage demonstrated when measurements were recorded using the beam source configuration as opposed to the standard, enclosed Compton suppression system geometry.

  17. Conceptual design for a receiving station for the nondestructive assay of PuO/sub 2/ at the fuels and materials examination facility

    SciTech Connect

    Sampson, T.E.; Speir, L.G.; Ensslin, N.; Hsue, S.T.; Johnson, S.S.; Bourret, S.; Parker, J.L.

    1981-11-01

    We propose a conceptual design for a receiving station for input accountability measurements on PuO/sub 2/ received at the Fuels and Materials Examination Facility at the Hanford Engineering Development Laboratory. Nondestructive assay techniques are proposed, including neutron coincidence counting, calorimetry, and isotopic determination by gamma-ray spectroscopy, in a versatile data acquisition system to perform input accountability measurements with precisions better than 1% at throughputs of up to 2 M.T./yr of PuO/sub 2/.

  18. Advanced Non-Destructive Assay Systems and Special Instrumentation Requirements for Spent Nuclear Fuel Recycling Facilities

    SciTech Connect

    Simpson, A.P.; Clapham, M.J.; Swinson, B.

    2008-07-01

    The safe and efficient operation of the next generation of Spent Nuclear Fuel (SNF) recycling / reprocessing facilities is dependent upon the availability of high performance real time Non- Destructive Assay (NDA) systems at key in-line points. A diverse variety of such special instrument systems have been developed and commissioned at reprocessing plants worldwide over the past fifty years.. The measurement purpose, technique and plant performance for selected key systems have been reviewed. Obsolescence issues and areas for development are identified in the context of the measurements needs of future recycling facilities and their associated waste treatment plants. Areas of concern include (i) Materials Accountancy and Safeguards, (ii) Head End process control and feed envelope verification, (iii) Real-time monitoring at the Product Finishing Stages, (iv) Criticality safety and (v) Radioactive waste characterization. Common characteristics of the traditional NDA systems in historical recycling facilities are (i) In-house development of bespoke instruments resulting in equipment that if often unique to a given facility and generally not commercially available, (ii) Use of 'novel' techniques - not widely deployed in other applications, (iii) Design features that are tailored to the specific plant requirements of the facility operator, (iv) Systems and software implementation that was not always carried out to modern industry standards and (v) A tendency to be overly complex - refined by on-plant operational usage and experience. Although these systems were 'validated in use' and are generally fit for purpose, there are a number of potential problems in transferring technology that was developed ten or more years ago to the new build SNF recycling facilities of the future. These issues include (i) Obsolescence of components - particularly with respect to computer hardware and data acquisition electronics, (ii) Availability of Intellectual Property and design drawings and documentation (iii) Lack of compatibility with modern computers, software, data transfer networks, digital protocols and electrical code standards, (iv) Non-compliance with current and future mandatory standards and regulations for nuclear facilities (v) Design focused on measurement and control points that may be specific to the facility process (vi) Lack of utilization of recent technological advances where better performing, less complex and more cost-effective options are now available. Key radiometric measurement drivers and control points for future recycling facilities have been determined and a review of the adequacy of existing instrumentation has been performed. Areas where recent technology improvements may be more effectively deployed and future technology development may be appropriate are identified. (author)

  19. Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques -- Preliminary Modeling Results Emphasizing Integration among Techniques

    SciTech Connect

    Tobin, S. J.; Fensin, M. L.; Ludewigt, B. A.; Menlove, H. O.; Quiter, B. J.; Sandoval, N. P.; Swinhoe, M. T.; Thompson, S. J.

    2009-08-03

    There are a variety of motivations for quantifying Pu in spent (used) fuel assemblies by means of nondestructive assay (NDA) including the following: strengthen the capabilities of the International Atomic Energy Agencies to safeguards nuclear facilities, quantifying shipper/receiver difference, determining the input accountability value at reprocessing facilities and providing quantitative input to burnup credit determination for repositories. For the purpose of determining the Pu mass in spent fuel assemblies, twelve NDA techniques were identified that provide information about the composition of an assembly. A key point motivating the present research path is the realization that none of these techniques, in isolation, is capable of both (1) quantifying the elemental Pu mass of an assembly and (2) detecting the diversion of a significant number of pins. As such, the focus of this work is determining how to best integrate 2 or 3 techniques into a system that can quantify elemental Pu and to assess how well this system can detect material diversion. Furthermore, it is important economically to down-select among the various techniques before advancing to the experimental phase. In order to achieve this dual goal of integration and down-selection, a Monte Carlo library of PWR assemblies was created and is described in another paper at Global 2009 (Fensin et al.). The research presented here emphasizes integration among techniques. An overview of a five year research plan starting in 2009 is given. Preliminary modeling results for the Monte Carlo assembly library are presented for 3 NDA techniques: Delayed Neutrons, Differential Die-Away, and Nuclear Resonance Fluorescence. As part of the focus on integration, the concept of"Pu isotopic correlation" is discussed and the role of cooling time determination.

  20. Design and operation of a passive neutron monitor for assaying the TRU content of solid wastes

    SciTech Connect

    Brodzinski, R.L.; Brown, D.P.; Rieck, H.G. Jr.; Rogers, L.A.

    1984-02-01

    A passive neutron monitor has been designed and built for determining the residual transuranic (TRU) and plutonium content of chopped leached fuel hulls and other solid wastes from spent Fast Flux Test Facility (FFTF) fuel. The system was designed to measure as little as 8 g of plutonium or 88 mg of TRU in a waste package as large as a 208-l drum which could be emitting up to 220,000 R/hr of gamma radiation. For practical purposes, maximum assay times were chosen to be 10,000 sec. The monitor consists of 96 /sup 10/BF/sub 3/ neutron sensitive proportional counting tubes each 5.08 cm in diameter and 183 cm in active length. Tables of neutron emission rates from both spontaneous fission and (..cap alpha..,n) reactions on oxygen are given for all contributing isotopes expected to be present in spent FFTF fuel. Tables of neutron yeilds from isotopic compositions predicted for various exposures and cooling times are also given. Methods of data reduction and sources, magnitude, and control of errors are discussed. Backgrounds and efficiencies have been measured and are reported. A section describing step-by-step operational procedures is included. Guidelines and procedures for quality control and troubleshooting are also given. 13 references, 15 figures, 4 tables.

  1. Degradation of the ethyl glucuronide content in hair by hydrogen peroxide and a non-destructive assay for oxidative hair treatment using infra-red spectroscopy.

    PubMed

    Ammann, Dominic; Becker, Roland; Kohl, Anka; Hänisch, Jessica; Nehls, Irene

    2014-11-01

    The assessment of quantification results of the alcohol abuse marker ethyl glucuronide (EtG) in hair in comparison to the cut-off values for the drinking behavior may be complicated by cosmetic hair bleaching. Thus, the impact of increasing exposure to hydrogen peroxide on the EtG content of hair was investigated. Simultaneously, the change of absorbance in the range of 1000-1100 cm(-1) indicative for the oxidation of cystine was investigated non-destructively by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) using pulverized portions of the respective hair samples. Hair samples treated with hydrogen peroxide consistently displayed a significantly increased absorbance at 1040 cm(-1) associated with the formation of cysteic acid. The EtG content decreased significantly if the hair was treated with alkaline hydrogen peroxide as during cosmetic bleaching. It could be shown that ATR-FTIR is capable of detecting an exposure to hydrogen peroxide when still no brightening was visible and already before the EtG content deteriorated significantly. Thus, hair samples suspected of having been exposed to oxidative treatment may be checked non-destructively by a readily available technique. This assay is also possible retrospectively after EtG extraction and using archived samples. PMID:25180828

  2. A Paradigm for the Nondestructive Assay of Spent Fuel Assemblies and Similar Large Objects, with Emphasis on the Role of Photon-Based Techniques

    NASA Astrophysics Data System (ADS)

    Bolind, Alan Michael

    2015-10-01

    The practice of nondestructive assay (NDA) of nuclear materials has, until now, been focused primarily (1) on smaller objects (2) with less fissile material and (3) with less self-generated radiation. The transition to the application of NDA to spent fuel assemblies and similar large objects violates these three conditions, thereby bringing the assumptions and paradigm of traditional NDA practice into question for the new applications. In this paper, a new paradigm for these new applications is presented which is based on the fundamental principles of nuclear engineering. It is shown that the NDA of spent fuel assemblies is mostly a three-dimensional problem that requires the integration of three independent NDA measurements in order to achieve a unique and accurate assay. The only NDA techniques that can avoid this requirement are those that analyze signals that are characteristic to specific isotopes (such as those caused by characteristic resonance interactions), and that are neither distorted nor overly attenuated by the other surrounding material. Some photon-based NDA techniques fall into this exceptional category. Such exceptional NDA techniques become essential to employ when assaying large objects that, unlike spent fuel assemblies, do not have a consistent geometry. With this new NDA paradigm, the advanced photon-based NDA techniques can be put into their proper context, and their development can thereby be properly motivated.

  3. Standard test method for nondestructive assay of special nuclear material holdup using Gamma-Ray spectroscopic methods

    E-print Network

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This test method describes gamma-ray methods used to nondestructively measure the quantity of 235U, or 239Pu remaining as holdup in nuclear facilities. Holdup occurs in all facilities where nuclear material is processed, in process equipment, in exhaust ventilation systems and in building walls and floors. 1.2 This test method includes information useful for management, planning, selection of equipment, consideration of interferences, measurement program definition, and the utilization of resources (1, 2, 3, 4). 1.3 The measurement of nuclear material hold up in process equipment requires a scientific knowledge of radiation sources and detectors, transmission of radiation, calibration, facility operations and error analysis. It is subject to the constraints of the facility, management, budget, and schedule; plus health and safety requirements; as well as the laws of physics. The measurement process includes defining measurement uncertainties and is sensitive to the form and distribution of the material...

  4. Nondestructive assay of small PuO{sub 2} samples by neutron-gamma counting-expectations and achievements

    SciTech Connect

    Ottmar, H.; Schubert, A.; Cromboom, O.; Eberle, H.

    1995-12-31

    The accurate determination of the plutonium content in samples of plutonium oxide powders will constitute an important part of the analytical work at future on-site laboratories (OSL) to be installed at the Sellafield and the La Hague reprocessing plants. In this concept, the major part of the work has been assigned to neutron-gamma counter combining the techniques of passive neutron-coincidence counting and high-resolution gamma spectrometry. This paper reviews the development of this technique.

  5. A non-destructive in ovo assay to quantify EROD activity in embryo-larval Fundulus heteroclitus

    SciTech Connect

    Nacci, D.; Kuhn-Hines, A.; Coiro, L.; Munns, W.R. Jr.; Cooper, K.

    1995-12-31

    Sensitive embryo-larval estuarine fish exposed to organic contaminants such as polyaromatic hydrocarbons and polyhalogenated aromatic hydrocarbons (PHAHs) have been shown to demonstrate characteristic biochemical responses, and impaired development and reduced survival. One of the best studied of these biochemical responses is induction of cytochrome P450 enzymes, e.g., CYP1A, frequently assessed as ethoxyresorufin-o-deethylase (EROD) activity. Standard methods to measure EROD activity in embryo-larval fish require destructive samples, composited from many embryos, precluding information on individual variation in EROD activity or concurrent observation of health effects. A novel method has been developed that employs the non-destructive observation in individual embryos of EROD activity, demonstrated by the production and accumulation in the embryonic bladder of the fluorescent product, resorufin. EROD activity in a living embryo is quantified by bladder fluorescence using microfluorometric instrumentation. Using this technique, the authors were able to follow individual fish throughout embryonic and early larval development making temporal observations of EROD activity as well as developmental progress, lesion characterization, hatch rate and success, and post-hatch growth and survival. Results were used to examine differential responsiveness to EROD-inducing organic contaminants of embryo-larval fish from parental populations inhabiting PHAH-contaminated or uncontaminated environments.

  6. High sensitivity assay of cement encapsulated spent nuclear fuel sludge using the Imaging Passive Active Neutron (IPAN) system

    SciTech Connect

    Simpson, A.P.; Abdurrahman, N.M.

    2007-07-01

    A new technique has been developed for high sensitivity assay of grouted spent nuclear fuel (SNF) sludge waste in 208 liter drums. The method uses the Imaging Passive Active Neutron (IPAN{sup TM}) system to provide regulatory acceptable measurements. At the Waste Receiving and Processing (WRAP) Facility in Hanford, two IPAN{sup TM} systems have been successfully calibrated and validated for assay of SNF grouted sludge drums (encapsulated with a cement mixture). The systems have been demonstrated to be capable of performing low level waste (LLW) / transuranic (TRU) waste sorting even in the presence of high gamma radiation fields emitted by the fission and activation products associated with SNF. The active and passive modes of the IPAN{sup TM} provide a wide dynamic range of assay: from below the TRU/LLW sorting threshold (100 nCi/g or 3700 Bq/g) up to several hundred grams of Weapons Grade Pu Equivalent. A new calibration technique was developed that uses a radial weighted average method to define the imaging response matrix. This method provides the required sensitivity to the height distribution of special nuclear material within the 208 liter drum, and makes use of the uniform radial distribution that will occur for a distribution of a large population of small particles in a homogeneous matrix. Extensive validation and testing with specially designed surrogate grouted sludge drums and radioactive standards have resulted in regulatory acceptance of this technique, permitting ultimate disposal of the SNF sludge drums at the Waste Isolation Pilot Plant. (authors)

  7. A technical review of non-destructive assay research for the characterization of spent nuclear fuel assemblies being conducted under the US DOE NGSI

    SciTech Connect

    Croft, Stephen; Tobin, Stephen J

    2010-12-06

    There is a growing belief that expansion of nuclear energy generation will be needed in the coming decades as part of a mixed supply chain to meet global energy demand. At stake is the health of the economic engine that delivers human prosperity. As a consequence renewed interest is being paid to the safe management of spent nuclear fuel (SNF) and the plutonium it contains. In addition to being an economically valuable resource because it can be used to construct explosive devices, Pu must be placed on an inventory and handled securely. A multiinstitutional team of diverse specialists has been assembled under a project funded by the US Department of Energy (DOE) Next Generation Safeguards Initiative (NGSI) to address ways to nondestructively quantify the plutonium content of spent nuclear fuel assemblies, and to also detect the potential diversion of pins from those assemblies. Studies are underway using mostly Monte Carlo tools to assess the feasibility, individual and collective performance capability of some fourteen nondestructive assay methods. Some of the methods are familiar but are being applied in a new way against a challenging target which is being represented with a higher degree of realism in simulation space than has been done before, while other methods are novel. In this work we provide a brief review of the techniques being studied and highlight the main achievements to date. We also draw attention to the deficiencies identified in for example modeling capability and available basic nuclear data. We conclude that this is an exciting time to be working in the NDA field and that much work, both fundamental and applied, remains ahead if we are to advance the state of the practice to meet the challenges posed to domestic and international safeguards by the expansion of nuclear energy together with the emergence of alternative fuel cycles.

  8. Development of a lentivirus vector-based assay for non-destructive monitoring of cell fusion activity.

    PubMed

    Neshati, Zeinab; Liu, Jia; Zhou, Guangqian; Schalij, Martin J; de Vries, Antoine A F

    2014-01-01

    Cell-to-cell fusion can be quantified by endowing acceptor and donor cells with latent reporter genes/proteins and activators of these genes/proteins, respectively. One way to accomplish this goal is by using a bipartite lentivirus vector (LV)-based cell fusion assay system in which the cellular fusion partners are transduced with a flippase-activatable Photinus pyralis luciferase (PpLuc) expression unit (acceptor cells) or with a recombinant gene encoding FLPeNLS+, a nuclear-targeted and molecularly evolved version of flippase (donor cells). Fusion of both cell populations will lead to the FLPe-dependent generation of a functional PpLuc gene. PpLuc activity is typically measured in cell lysates, precluding consecutive analysis of one cell culture. Therefore, in this study the PpLuc-coding sequence was replaced by that of Gaussia princeps luciferase (GpLuc), a secretory protein allowing repeated analysis of the same cell culture. In myotubes the spread of FLPeNLS+ may be limited due to its nuclear localization signal (NLS) causing low signal outputs. To test this hypothesis, myoblasts were transduced with LVs encoding either FLPeNLS+ or an NLS-less version of FLPe (FLPeNLS-) and subsequently co-cultured in different ratios with myoblasts containing the FLPe-activatable GpLuc expression cassette. At different times after induction of cell-to-cell fusion the GpLuc activity in the culture medium was determined. FLPeNLS+ and FLPeNLS- both activated the latent GpLuc gene but when the percentage of FLPe-expressing myoblasts was limiting, FLPeNLS+ generally yielded slightly higher signals than FLPeNLS- while at low acceptor-to-donor cell ratios FLPeNLS- was usually superior. The ability of FLPeNLS+ to spread through myofibers and to induce reporter gene expression is thus not limited by its NLS. However, at high FLPe concentrations the presence of the NLS negatively affected reporter gene expression. In summary, a rapid and simple chemiluminescence assay for quantifying cell-to-cell fusion progression based on GpLuc has been developed. PMID:25028973

  9. Development of a Lentivirus Vector-Based Assay for Non-Destructive Monitoring of Cell Fusion Activity

    PubMed Central

    Neshati, Zeinab; Liu, Jia; Zhou, Guangqian; Schalij, Martin J.; de Vries, Antoine A. F.

    2014-01-01

    Cell-to-cell fusion can be quantified by endowing acceptor and donor cells with latent reporter genes/proteins and activators of these genes/proteins, respectively. One way to accomplish this goal is by using a bipartite lentivirus vector (LV)-based cell fusion assay system in which the cellular fusion partners are transduced with a flippase-activatable Photinus pyralis luciferase (PpLuc) expression unit (acceptor cells) or with a recombinant gene encoding FLPeNLS+, a nuclear-targeted and molecularly evolved version of flippase (donor cells). Fusion of both cell populations will lead to the FLPe-dependent generation of a functional PpLuc gene. PpLuc activity is typically measured in cell lysates, precluding consecutive analysis of one cell culture. Therefore, in this study the PpLuc-coding sequence was replaced by that of Gaussia princeps luciferase (GpLuc), a secretory protein allowing repeated analysis of the same cell culture. In myotubes the spread of FLPeNLS+ may be limited due to its nuclear localization signal (NLS) causing low signal outputs. To test this hypothesis, myoblasts were transduced with LVs encoding either FLPeNLS+ or an NLS-less version of FLPe (FLPeNLS?) and subsequently co-cultured in different ratios with myoblasts containing the FLPe-activatable GpLuc expression cassette. At different times after induction of cell-to-cell fusion the GpLuc activity in the culture medium was determined. FLPeNLS+ and FLPeNLS? both activated the latent GpLuc gene but when the percentage of FLPe-expressing myoblasts was limiting, FLPeNLS+ generally yielded slightly higher signals than FLPeNLS? while at low acceptor-to-donor cell ratios FLPeNLS? was usually superior. The ability of FLPeNLS+ to spread through myofibers and to induce reporter gene expression is thus not limited by its NLS. However, at high FLPe concentrations the presence of the NLS negatively affected reporter gene expression. In summary, a rapid and simple chemiluminescence assay for quantifying cell-to-cell fusion progression based on GpLuc has been developed. PMID:25028973

  10. Progress and goals for INMM ASC N15 consensus standard ""Administrative practices for the determination and reporting of results of non-destructive assay measurements of nuclear material in situ for safeguards nuclear criticality safety and other purposes

    SciTech Connect

    Bracken, David S; Lamb, Frank W

    2009-01-01

    This paper will discuss the goals and progress to date on the development of INMM Accredited Standard Committee (ASC) N15 consensus standard Administrative Practices for the Determination and Reporting of Results of Non-Destructive Assay Measurements of Nuclear Material in situ for Safeguards, Nuclear Criticality Safety, and Other Purposes. This standard will define administrative practices in the areas of data generation and reporting of NDA assay of holdup deposits with consideration of the stakeholders of the reported results. These stakeholders may include nuclear material accounting and safeguards, nuclear criticality safety, waste management, health physics, facility characterization, authorization basis, radiation safety, and site licensing authorities. Stakeholder input will be solicited from interested parties and incorporated during the development of the document. Currently only one consensus standard exists that explicitly deals with NDA holdup measurements: ASTM C1455 Standard Test Method for Nondestructive Assay of Special Nuclear Material Holdup Using Gamma-Ray Spectroscopic Methods. The ASTM International standard emphasizes the activities involved in actually making measurements, and was developed by safeguards and NDA experts. This new INMM ASC N15 standard will complement the existing ASTM international standard. One of the largest driving factors for writing this new standard was the recent emphasis on in situ NDA measurements by the safeguards community due to the Defense Nuclear Facility Safety Board (DNFSB) recommendation 2007-1 on in situ NDA measurements. Specifically, DNFSB recommendation 2007-1 referenced the lack of programmatic requirements for accurate in situ measurements and the use of measurement results for compliance with safety based requirements. That being the case, this paper will also discuss the progress made on the Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2007-1 Safety-Related In Situ Nondestructive Assay of Radioactive Materials. Some of the information that will be presented includes observations made during site visits, how information useful to all facilities using nondestructive assay to determine holdup material quantities will be disseminated, and preliminary results of a gap analysis performed on current in situ nondestructive assay holdup measurements.

  11. Nondestructive evaluation

    SciTech Connect

    Martz, H.E.

    1997-02-01

    Research reported in the thrust area of nondestructive evaluation includes: advanced 3-D imaging technologies; new techniques in laser ultrasonic testing; infrared computed tomography for thermal NDE of materials, structures, sources, and processes; automated defect detection for large laser optics; multistatic micropower impulse radar imaging for nondestructive evaluation; and multi-modal NDE for AVLIS pod shielding components.

  12. Passive dosing versus solvent spiking for controlling and maintaining hydrophobic organic compound exposure in the Microtox® assay.

    PubMed

    Smith, Kilian E C; Jeong, Yoonah; Kim, Jongwoon

    2015-11-01

    Microbial toxicity bioassays such as the Microtox® test are ubiquitously applied to measure the toxicity of chemicals and environmental samples. In many ways their operation is conducive to the testing of organic chemicals. They are of short duration, use glass cuvettes and take place at reduced temperatures in medium lacking sorbing components. All of these are expected to reduce sorptive and volatile losses, but particularly for hydrophobic organics the role of such losses in determining the bioassay response remains unclear. This study determined the response of the Microtox® test when using solvent spiking compared to passive dosing for introducing the model hydrophobic compounds acenaphthene, phenanthrene, fluoranthene and benzo(a)pyrene. Compared to solvent spiking, the apparent sensitivity of the Microtox® test with passive dosing was 3.4 and 12.4 times higher for acenaphthene and phenanthrene, respectively. Furthermore, fluoranthene only gave a consistent response with passive dosing. Benzo(a)pyrene did not result in a response with either spiking or passive dosing even at aqueous solubility. Such differences in the apparent sensitivity of the Microtox® test can be traced back to the precise definition of the dissolved exposure concentrations and the buffering of losses with passive dosing. This highlights the importance of exposure control even in simple and short-term microbial bioassays such as the Microtox® test. PMID:26117202

  13. Evaluation of enzyme-linked immunosorbent assay and reversed passive hemagglutination for detection of Crimean-Congo hemorrhagic fever virus antigen.

    PubMed Central

    Shepherd, A J; Swanepoel, R; Gill, D E

    1988-01-01

    Enzyme-linked immunosorbent assay (ELISA) and a reversed passive hemagglutination (RPHA) test were evaluated for rapid detection of Crimean-Congo hemorrhagic fever (CCHF) virus antigens. Both RPHA and ELISA detected CCHF antigen in the brains of infant mice 2 to 3 days after infection, several days before the animals sickened and died. Antigen was also detected after 1 to 2 days in infected cell culture extracts and after 2 to 4 days in culture supernatant fluids. Both tests detected CCHF antigen at threshold values of approximately 2.5 log10 tissue culture infective doses per ml and were more sensitive than complement fixation, immunodiffusion, or immunofluorescence. In a comparative study on specimens from CCHF patients, virus was isolated from 38 of 49 sera and 23 of 28 patients. Antigen was detected in 20 of 49 sera (15 of 28 patients) by RPHA and in 29 of 49 sera (18 of 28 patients) by ELISA. Antigenemia was detected more frequently in fatal cases (9 of 11) than in nonfatal cases (9 of 17). Although the antigen detection assays offered a more rapid approach than infectivity assays for diagnosing CCHF, the latter test was more sensitive. The results suggest that RPHA and ELISA may be of use in rapid diagnosis of CCHF infection, particularly in severe cases, in which the danger of nosocomial spread is greatest. PMID:3125221

  14. The Contribution of and Uncertainty Associated with Self-Multiplication when Assaying Plutonium in Waste by Passive Neutron Coincidence Counting

    SciTech Connect

    Croft, S.; Phillips, S.; McElroy, R.D.; Bosko, A.

    2008-07-01

    When Pu is present in waste items as lumps, the Reals neutron coincidence signal may be bolstered by virtue of self induced fission events. This gives rise to a positive bias to the assay result and leads to a one sided contribution to the total measurement uncertainty. In the general it is not feasible to determine to magnitude of this effect experimentally and allowance for it must therefore be estimated using separate ad hoc rules. In this paper we to develop a simple model for the self-multiplication enhancement in small lumps allowing the importance of the effect in waste assay to be quantified. In addition, an approach is suggested for how to propagate an uncertainty contribution in to the final result. In conclusion: By introducing a generic scheme we have taken the first pragmatic steps to accounting for multiplication effects in the TMU in the determination of Pu-240 eff-mass by PNCC in waste. We have used a simple physical model to derive the underlying relationships needed. A first order expression suitable for small, dense lumps was set out, primarily for instructive reasons, but this is not a restriction of the method. The method is readily scaleable to material of different isotopic composition, density and a. Numerical parameters suitable for practical applications have been established and we feel the approach is fit for the intended purpose reflecting operational experiences and the general state of knowledge of waste items. (authors)

  15. Defining the needs for non-destructive assay of UF6 feed, product, and tails at gas centrifuge enrichment plants and possible next steps

    SciTech Connect

    Boyer, Brian D; Swinhoe, Martyn T; Moran, Bruce W; Lebrun, Alain

    2009-01-01

    Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to detect undeclared LEU production with adequate detection probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of UF{sub 6} bulk material used in the process of enrichment at GCEPS. The inspectors also take destructive assay (DA) samples for analysis off-site which provide accurate, on the order of 0.1 % to 0.5% uncertainty, data on the enrichment of the UF{sub 6} feed, tails, and product. However, DA sample taking is a much more labor intensive and resource intensive exercise for the operator and inspector. Furthermore, the operator must ship the samples off-site to the IAEA laboratory which delays the timeliness of the results and contains the possibility of the loss of the continuity of knowledge of the samples during the storage and transit of the material. Use of the IAEA's inspection sampling algorithm shows that while total sample size is fixed by the total population of potential samples and its intrinsic qualities, the split of the samples into NDA or DA samples is determined by the uncertainties in the NDA measurements. Therefore, the larger the uncertainties in the NDA methods, more of the sample taken must be DA samples. Since the DA sampling is arduous and costly, improvements in NDA methods would reduce the number of DA samples needed. Furthermore, if methods of on-site analysis of the samples could be developed that have uncertainties in the 1-2% range, a lot of the problems inherent in DA sampling could be removed. The use of an unattended system that could give an overview of the entire process giving complementary data on the enrichment process as well as accurate measures of enrichment and weights of the UF{sub 6} feed, tails, and product would be a major step in enhancing the ability of NDA beyond present attended systems. The possibility of monitoring the feed, tails, and product header pipes in such a way as to gain safeguards relevant flow and enrichment information without compromising the intellectual property of the operator including proprietary equipment and operational parameters would be a huge step forward. This paper contains an analysis of possible improvements in unattended and attended NDA systems including such process monitoring and possible on-site analysis of DA samples that could reduce the uncertainty of the inspector measurements reducing the difference between the operator's and inspector's measurements providing more effective and efficient IAEA GeEPs safeguards.

  16. Technologies for sorting, assaying, classifying, and certifying transuranic waste within the United States

    SciTech Connect

    Pound, D.G. )

    1990-01-01

    At the Idaho National Engineering Laboratory (INEL), the Stored Waste Examination Pilot Plant (SWEPP) was developed to provide nondestructive examination and assay techniques for examining and certifying TRU wastes without opening the waste container. This technology was developed, primarily for stored TRU waste, to evaluate waste package compliance with Waste Disposal Acceptance Criteria and Transportation requirements prior to shipment. These techniques include real-time x-ray radiography, passive and active neutron assay, and ultrasonic container integrity examination. These techniques provide the necessary information to ensure safe transportation, handling, and disposal of the waste at the Waste Isolation Pilot Plant (WIPP). 1 ref., 3 figs.

  17. Nondestructive evaluations

    SciTech Connect

    Kulkarni, S.

    1993-03-01

    This report discusses Nondestructive Evaluation (NDE) thrust area which supports initiatives that advance inspection science and technology. The goal of the NDE thrust area is to provide cutting-edge technologies that have promise of inspection tools three to five years in the future. In selecting projects, the thrust area anticipates the needs of existing and future Lawrence Livermore National Laboratory (LLNL) programs. NDE provides materials characterization inspections, finished parts, and complex objects to find flaws and fabrication defects and to determine their physical and chemical characteristics. NDE also encompasses process monitoring and control sensors and the monitoring of in-service damage. For concurrent engineering, NDE becomes a frontline technology and strongly impacts issues of certification and of life prediction and extension. In FY-92, in addition to supporting LLNL programs and the activities of nuclear weapons contractors, NDE has initiated several projects with government agencies and private industries to study aging infrastructures and to advance manufacturing processes. Examples of these projects are (1) the Aging Airplanes Inspection Program for the Federal Aviation Administration, (2) Signal Processing of Acoustic Signatures of Heart Valves for Shiley, Inc.; and (3) Turbine Blade Inspection for the Air Force, jointly with Southwest Research Institute and Garrett. In FY-92, the primary contributions of the NDE thrust area, described in this report were in fieldable chemical sensor systems, computed tomography, and laser generation and detection of ultrasonic energy.

  18. Characterization of waste drums using nonintrusive active and passive computed tomography

    SciTech Connect

    Roberson, G.P.; Martz, H.E.; Decman, D.J.; Camp, D.C.; Azevedo, S.G.; Keto, E.R.

    1994-08-01

    We have developed a data acquisition scanner for gamma-ray nondestructive assay (NDA) active and passive computed tomography (A&PCT) along with associated computational techniques for image reconstruction, analysis, and display. We are using this scanner to acquire data sets of mock-waste drums at Lawrence Livermore National Laboratory (LLNIL). In this paper, we discuss some issues associated with gamma-ray spectroscopy assay, NDA imaging, describe the design and construction of an NDA drum scanner and report on code development for image reconstruction. We also present representative A&PCT assay results of well characterized mock-waste drums. These preliminary results suggest that A&PCT imaging can be used to produce accurate absolute assays of radioactivity in real-waste drums.

  19. Nondestructive Tests for Weed Seedbank Studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed conditions and burial fates are usually unknown at the onset of experiments because viability and germinability are determined through destructive assays. We hypothesized that conductivity of seed steep can be used to nondestructively differentiate germinable, dormant, and dead seeds within see...

  20. Nondestructive biomarkers in ecotoxicology.

    PubMed Central

    Fossi, M C

    1994-01-01

    The aim of this article is to attempt a concise review of the state of the art of the nondestructive biomarkers approach in vertebrates, establishing a consensus on the most useful and sensitive nondestructive biomarker techniques, and proposing research priorities for the development and validation of this promising methodology. The following topics are discussed: the advantages of the use of nondestructive strategies in biomonitoring programs and the research fields in which nondestructive biomarkers can be applied; the biological materials suitable for nondestructive biomarkers and residue analysis in vertebrates; which biomarkers lend themselves to noninvasive techniques; and the validation and implementation strategy of the nondestructive biomarker approach. Examples of applications of this methodology in the hazard assessment of endangered species are also presented. Images Figure 1. C PMID:7713034

  1. DOE assay methods used for characterization of contact-handled transuranic waste

    SciTech Connect

    Schultz, F.J. ); Caldwell, J.T. )

    1991-08-01

    US Department of Energy methods used for characterization of contact-handled transuranic (CH-TRU) waste prior to shipment to the Waste Isolation Pilot Plant (WIPP) are described and listed by contractor site. The methods described are part of the certification process. All CH-TRU waste must be assayed for determination of fissile material content and decay heat values prior to shipment and prior to storage on-site. Both nondestructive assay (NDA) and destructive assay methods are discussed, and new NDA developments such as passive-action neutron (PAN) crate counter improvements and neutron imaging are detailed. Specifically addressed are assay method physics; applicability to CH-TRU wastes; calibration standards and implementation; operator training requirements and practices; assay procedures; assay precision, bias, and limit of detection; and assay limitation. While PAN is a new technique and does not yet have established American Society for Testing and Materials. American National Standards Institute, or Nuclear Regulatory Commission guidelines or methods describing proper calibration procedures, equipment setup, etc., comparisons of PAN data with the more established assay methods (e.g., segmented gamma scanning) have demonstrated its reliability and accuracy. Assay methods employed by DOE have been shown to reliable and accurate in determining fissile, radionuclide, alpha-curie content, and decay heat values of CH-TRU wastes. These parameters are therefore used to characterize packaged waste for use in certification programs such as that used in shipment of CH-TRU waste to the WIPP. 36 refs., 10 figs., 7 tabs.

  2. [Nondestructive Evaluation (NDE) Capabilities

    NASA Technical Reports Server (NTRS)

    Born, Martin

    2010-01-01

    These poster boards display the United Space Alliance's (USA) systems and equipment used for Nondestructive Evaluation. These include: (1) the Robotic Inspection Facility, (2) CAT-Scan and Laminography, (3) Laser Surface Profilometry, (4) Remote Eddy Current, (5) Ultrasonic Phased Array, (7) Infrared Flash Thermography, and (8) Backscatter X-Ray (BSX)

  3. /sup 125/I-Fibrin deposition in contact sensitivity reactions in the mouse. Sensitivity of the assay for quantitating reactions after active or passive sensitization

    SciTech Connect

    Mekori, Y.A.; Dvorak, H.F.; Galli, S.J.

    1986-03-15

    The clotting associated with delayed hypersensitivity (DH) responses in the mouse by sensitizing the animals to the contactant oxazolone (Ox), and then administering /sup 125/I-guinea pig fibrinogen i.v. 10 to 30 min before antigen challenge 5 days later. Early (4 to 8 hr) contact sensitivity (CS) responses in immunized mice were barely detectable by three conventional measures of CS, but the total /sup 125/I-cpm in ears challenged with hapten was 3.6 to 4.5 x that in control ears challenged with vehicle alone; moreover, the amount of urea-insoluble cpm (cross-linked /sup 125/I-fibrin-associated cpm) in the reactions to Ox was 6.5-fold to 8.2-fold that present in the control reactions. In 24 hr reactions that were near peak intensity by measurements of ear swelling, ear weight ratios, and ratios of /sup 125/I-5-iodo-2-deoxyuridine-labeled leukocyte infiltration, the cpm in antigen-challenged ears exceeded that in control ears by 13-fold to 53-fold. In addition, antigen-challenged ears contained 27 to 300 x the urea-insoluble cpm present in control ears. /sup 125/I-Fibrin deposition was not a specific characteristic of CS reactions, because a small amount of urea-insoluble reactivity was also detected in some reactions to Ox in native mice. Nevertheless, the assay was exquisitely sensitive and readily detected quantitative differences between the immunologically specific and nonspecific reactions at very early intervals after challenge or with suboptimal doses of antigen.

  4. Nondestructive analysis and development

    NASA Technical Reports Server (NTRS)

    Moslehy, Faissal A.

    1993-01-01

    This final report summarizes the achievements of project #4 of the NASA/UCF Cooperative Agreement from January 1990 to December 1992. The objectives of this project are to review NASA's NDE program at Kennedy Space Center (KSC) and recommend means for enhancing the present testing capabilities through the use of improved or new technologies. During the period of the project, extensive development of a reliable nondestructive, non-contact vibration technique to determine and quantify the bond condition of the thermal protection system (TPS) tiles of the Space Shuttle Orbiter was undertaken. Experimental modal analysis (EMA) is used as a non-destructive technique for the evaluation of Space Shuttle thermal protection system (TPS) tile bond integrity. Finite element (FE) models for tile systems were developed and were used to generate their vibration characteristics (i.e. natural frequencies and mode shapes). Various TPS tile assembly configurations as well as different bond conditions were analyzed. Results of finite element analyses demonstrated a drop in natural frequencies and a change in mode shapes which correlate with both size and location of disbond. Results of experimental testing of tile panels correlated with FE results and demonstrated the feasibility of EMA as a viable technique for tile bond verification. Finally, testing performed on the Space Shuttle Columbia using a laser doppler velocimeter demonstrated the application of EMA, when combined with FE modeling, as a non-contact, non-destructive bond evaluation technique.

  5. Nondestructive testing with thermography

    NASA Astrophysics Data System (ADS)

    Ibarra-Castanedo, Clemente; Tarpani, José Ricardo; Maldague, Xavier P. V.

    2013-11-01

    Thermography is a nondestructive testing (NDT) technique based on the principle that two dissimilar materials, i.e., possessing different thermo-physical properties, would produce two distinctive thermal signatures that can be revealed by an infrared sensor, such as a thermal camera. The fields of NDT applications are expanding from classical building or electronic components monitoring to more recent ones such as inspection of artworks or composite materials. Furthermore, thermography can be conveniently used as a didactic tool for physics education in universities given that it provides the possibility of visualizing fundamental principles, such as thermal physics and mechanics among others.

  6. Nondestructive characterization of low-level transuranic waste

    SciTech Connect

    Barna, B.A.; Reinhardt, W.W.

    1981-10-01

    The use of nondestructive evaluation (NDE) methods is proposed for characterization of transuranic (TRU) waste stored at the Radioactive Waste Management Complex. These NDE methods include real-time x-ray radiography, real-time neutron radiography, x-ray and neutron computed tomography, thermal imaging, container weighing, visual examination, and acoustic measurements. An integrated NDE system is proposed for characterization and certification of TRU waste destined for eventual shipment to the Waste Isolation Pilot Plant in New Mexico. Methods for automating both the classification waste and control of a complete nondestructive evaluation/nondestructive assay system are presented. Feasibility testing of the different NDE methods, including real-time x-ray radiography, and development of automated waste classification techniques are covered as part of a five year effort designed to yield a production waste characterization system.

  7. Nondestructive evaluation technique guide

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1973-01-01

    A total of 70 individual nondestructive evaluation (NDE) techniques are described. Information is presented that permits ease of comparison of the merits and limitations of each technique with respect to various NDE problems. An NDE technique classification system is presented. It is based on the system that was adopted by the National Materials Advisory Board (NMAB). The classification system presented follows the NMAB system closely with the exception of additional categories that have been added to cover more advanced techniques presently in use. The rationale of the technique is explained. The format provides for a concise description of each technique, the physical principles involved, objectives of interrogation, example applications, limitations of each technique, a schematic illustration, and key reference material. Cross-index tabulations are also provided so that particular NDE problems can be referred to appropriate techniques.

  8. Direct fissile assay of enriched uranium using random self-interrogation and neutron coincidence response

    DOEpatents

    Menlove, Howard O. (Los Alamos, NM); Stewart, James E. (Los Alamos, NM)

    1986-01-01

    Apparatus and method for the direct, nondestructive evaluation of the .sup.235 U nuclide content of samples containing UF.sub.6, UF.sub.4, or UO.sub.2 utilizing the passive neutron self-interrogation of the sample resulting from the intrinsic production of neutrons therein. The ratio of the emitted neutron coincidence count rate to the total emitted neutron count rate is determined and yields a measure of the bulk fissile mass. The accuracy of the method is 6.8% (1.sigma.) for cylinders containing UF.sub.6 with enrichments ranging from 6% to 98% with measurement times varying from 3-6 min. The samples contained from below 1 kg to greater than 16 kg. Since the subject invention relies on fast neutron self-interrogation, complete sampling of the UF.sub.6 takes place, reducing difficulties arising from inhomogeneity of the sample which adversely affects other assay procedures.

  9. Direct fissile assay of enriched uranium using random self-interrogation and neutron coincidence response

    DOEpatents

    Menlove, H.O.; Stewart, J.E.

    1985-02-04

    Apparatus and method for the direct, nondestructive evaluation of the /sup 235/U nuclide content of samples containing UF/sub 6/, UF/sub 4/, or UO/sub 2/ utilizing the passive neutron self-interrogation of the sample resulting from the intrinsic production of neutrons therein. The ratio of the emitted neutron coincidence count rate to the total emitted neutron count rate is determined and yields a measure of the bulk fissile mass. The accuracy of the method is 6.8% (1sigma) for cylinders containing UF/sub 6/ with enrichments ranging from 6% to 98% with measurement times varying from 3-6 min. The samples contained from below 1 kg to greater than 16 kg. Since the subject invention relies on fast neutron self-interrogation, complete sampling of the UF/sub 6/ takes place, reducing difficulties arising from inhomogeneity of the sample which adversely affects other assay procedures. 4 figs., 1 tab.

  10. Non-Destructive Testing for Control of Radioactive Waste Package

    NASA Astrophysics Data System (ADS)

    Plumeri, S.; Carrel, F.

    2015-10-01

    Characterization and control of radioactive waste packages are important issues in the management of a radioactive waste repository. Therefore, Andra performs quality control inspection on radwaste package before disposal to ensure the compliance of the radwast characteristics with Andra waste disposal specifications and to check the consistency between Andra measurements results and producer declared properties. Objectives of this quality control are: assessment and improvement of producer radwaste packages quality mastery, guarantee of the radwaste disposal safety, maintain of the public confidence. To control radiological characteristics of radwaste package, non-destructive passive methods (gamma spectrometry and neutrons counting) are commonly used. These passive methods may not be sufficient, for instance to control the mass of fissile material contained inside radwaste package. This is particularly true for large concrete hull of heterogeneous radwaste containing several actinides mixed with fission products like 137Cs. Non-destructive active methods, like measurement of photofission delayed neutrons, allow to quantify the global mass of actinides and is a promising method to quantify mass of fissile material. Andra has performed different non-destructive measurements on concrete intermediate-level short lived nuclear waste (ILW-SL) package to control its nuclear material content. These tests have allowed Andra to have a first evaluation of the performance of photofission delayed neutron measurement and to identify development needed to have a reliable method, especially for fissile material mass control in intermediate-level long lived waste package.

  11. Evaluation of nondestructive tensile testing

    NASA Technical Reports Server (NTRS)

    Bowe, J. J.; Polcari, S. M.

    1971-01-01

    The results of a series of experiments performed in the evaluation of nondestructive tensile testing of chip and wire bonds are presented. Semiconductor devices were subjected to time-temperature excursions, static-load life testing and multiple pre-stressing loads to determine the feasibility of a nondestructive tensile testing approach. The report emphasizes the importance of the breaking angle in determining the ultimate tensile strength of a wire bond, a factor not generally recognized nor implemented in such determinations.

  12. Nondestructive evaluation sourcebook

    SciTech Connect

    Ammirato, F.V.; Walker, S.M.; Nottingham, L.D.; Stephens, H.; Shankar, R.; Krzywosz, K.; Gothard, M. Applied Research Co., Charlotte, NC )

    1991-09-01

    Utility executives and upper level managers often make decisions based on inspection data and opinions of inspection personnel regarding inservice inspections of critical components such as pressure vessels, piping, steam generators, and turbine-generator rotors. Few utility executives and upper level managers, however, are well versed in the non-destructive evaluation (NDE) technology that is applied in their nuclear plants. The capabilities and limitations of NDE technology, even though well established and documented for many applications, are not well known at the upper management level. The purpose of this sourcebook is to provide utility upper management and executives with information that explains how NDE is performed in their plants, how the NDE data is used, what training and qualifications are required for NDE personnel, and where and how to get more information. The sourcebook is not intended as an NDE textbook or training manual; its main objective, rather, is to provide an overview of NDE and to give the reader access to the wide selection of available, detailed information on NDE and its application in nuclear plants. Although the sourcebook addresses mainly nuclear plant NDE, much of the information is applicable to fossil plants. 6 refs.

  13. Mobile Nondestructive Assay (NDA) Measurements of Standard Waste Boxes (SWB)

    SciTech Connect

    Mozhayev, Andrey V.; Berg, Randal K.; Haggard, Daniel L.; Hilliard, James R.; Mapili, Gabriel M.

    2006-11-01

    A mobile NDA system was composed and qualified for Safeguards measurements of multiple standard waste boxes (SWB) generated as a result of clean-out activities at Hanford’s Plutonium Finishing Plant (PFP). The system included a neutron slab counter and high purity germanium (HPGe) detector. PC/FRAM software was used to determine the isotopic composition of plutonium residue contained in the waste in order to interpret two independent measurement results provided by total neutron counting and gamma energy analysis (GEA). The measurement procedure developed to estimate transuranic (TRU) content of boxes was based on assumptions about characteristics of the matrix and material distribution. The neutron slab counter was calibrated with various plutonium working standards that were placed in a surrogate SWB specifically made to simulate miscellaneous waste debris. Transmission measurements with a californium source were used to correct for the matrix effects. An In-Situ Object Counting System (ISOCS) was used to acquire spectra from SWBs and ISOCS software was applied to generate the efficiency curve of the HPGe detector. Infinite energy extrapolation was introduced to correct GEA results for self-attenuation. The gamma and neutron results obtained on multiple SWBs are compared and discussed in the paper. Revised measurement positions for the detector and the transmission source are also suggested based on experience gained during the measurements.

  14. An expert system framework for nondestructive waste assay

    SciTech Connect

    Becker, G.K.

    1996-10-01

    Management and disposition of transuranic (RU) waste forms necessitates determining entrained RU and associated radioactive material quantities as per National RU Waste Characterization Program requirements. Technical justification and demonstration of a given NDA method used to determine RU mass and uncertainty in accordance with program quality assurance is difficult for many waste forms. Difficulties are typically founded in waste NDA methods that employ standards compensation and/or employment of simplifying assumptions on waste form configurations. Capability to determine and justify RU mass and mass uncertainty can be enhanced through integration of waste container data/information using expert system and empirical data-driven techniques with conventional data acquisition and analysis. Presented is a preliminary expert system framework that integrates the waste form data base, alogrithmic techniques, statistical analyses, expert domain knowledge bases, and empirical artificial intelligence modules into a cohesive system. The framework design and bases in addition to module development activities are discussed.

  15. Passive smoking.

    PubMed

    Lee, P N

    1982-04-01

    Before 1980 the argument that passive smoking was a serious health hazard was rather tenuous. It was claimed that it produced allergic reactions, impaired driving ability, reduced exercise tolerance in patients with cardiorespiratory disease and increased the risk of bronchitis and pneumonia in first-year children. However, none of these claims provided convincing evidence relevant to the normal healthy adult nonsmoker. Many studies indicate that nonsmokers are unlikely to inhale more than a very small amount of those components of tobacco smoke traditionally considered harmful. It was surprising, therefore, when a study carried out in the USA showed reduced airways function and studies from Japan and Greece showed an increased lung cancer incidence, in nonsmokers passively exposed to tobacco smoke in comparison with nonsmokers not so exposed. A review of the detail of these studies suggests that none provides conclusive evidence that passive smoking is seriously harmful, a view supported by a recent large study that was carried out in the USA and in which no significant relationship was found between passive smoking and lung cancer. More research is urgently needed, particularly to explore the influence of potentially confounding factors. PMID:7200942

  16. Automated UF6 Cylinder Enrichment Assay: Status of the Hybrid Enrichment Verification Array (HEVA) Project: POTAS Phase II

    SciTech Connect

    Jordan, David V.; Orton, Christopher R.; Mace, Emily K.; McDonald, Benjamin S.; Kulisek, Jonathan A.; Smith, Leon E.

    2012-06-01

    Pacific Northwest National Laboratory (PNNL) intends to automate the UF6 cylinder nondestructive assay (NDA) verification currently performed by the International Atomic Energy Agency (IAEA) at enrichment plants. PNNL is proposing the installation of a portal monitor at a key measurement point to positively identify each cylinder, measure its mass and enrichment, store the data along with operator inputs in a secure database, and maintain continuity of knowledge on measured cylinders until inspector arrival. This report summarizes the status of the research and development of an enrichment assay methodology supporting the cylinder verification concept. The enrichment assay approach exploits a hybrid of two passively-detected ionizing-radiation signatures: the traditional enrichment meter signature (186-keV photon peak area) and a non-traditional signature, manifested in the high-energy (3 to 8 MeV) gamma-ray continuum, generated by neutron emission from UF6. PNNL has designed, fabricated, and field-tested several prototype assay sensor packages in an effort to demonstrate proof-of-principle for the hybrid assay approach, quantify the expected assay precision for various categories of cylinder contents, and assess the potential for unsupervised deployment of the technology in a portal-monitor form factor. We refer to recent sensor-package prototypes as the Hybrid Enrichment Verification Array (HEVA). The report provides an overview of the assay signatures and summarizes the results of several HEVA field measurement campaigns on populations of Type 30B UF6 cylinders containing low-enriched uranium (LEU), natural uranium (NU), and depleted uranium (DU). Approaches to performance optimization of the assay technique via radiation transport modeling are briefly described, as are spectroscopic and data-analysis algorithms.

  17. Topoisomerase Assays

    PubMed Central

    Nitiss, John L.; Soans, Eroica; Rogojina, Anna; Seth, Aman; Mishina, Margarita

    2012-01-01

    Topoisomerases are nuclear enzymes that play essential roles in DNA replication, transcription, chromosome segregation, and recombination. All cells have two major forms of topoisomerases: type I, which makes single-stranded cuts in DNA, and type II enzymes, which cut and pass double-stranded DNA. DNA topoisomerases are important targets of approved and experimental anti-cancer agents. The protocols described in this unit are of assays used to assess new chemical entities for their ability to inhibit both forms of DNA topoisomerase. Included are an in vitro assay for topoisomerase I activity based on relaxation of supercoiled DNA and an assay for topoisomerase II based on the decatenation of double-stranded DNA. The preparation of mammalian cell extracts for assaying topoisomerase activity is described, along with a protocol for an ICE assay for examining topoisomerase covalent complexes in vivo and an assay for measuring DNA cleavage in vitro. PMID:22684721

  18. 49 CFR 192.243 - Nondestructive testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Nondestructive testing. 192.243 Section 192.243... testing. (a) Nondestructive testing of welds must be performed by any process, other than trepanning, that will clearly indicate defects that may affect the integrity of the weld. (b) Nondestructive testing...

  19. 49 CFR 192.243 - Nondestructive testing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Nondestructive testing. 192.243 Section 192.243... testing. (a) Nondestructive testing of welds must be performed by any process, other than trepanning, that will clearly indicate defects that may affect the integrity of the weld. (b) Nondestructive testing...

  20. 49 CFR 192.243 - Nondestructive testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Nondestructive testing. 192.243 Section 192.243... testing. (a) Nondestructive testing of welds must be performed by any process, other than trepanning, that will clearly indicate defects that may affect the integrity of the weld. (b) Nondestructive testing...

  1. 49 CFR 192.243 - Nondestructive testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Nondestructive testing. 192.243 Section 192.243... testing. (a) Nondestructive testing of welds must be performed by any process, other than trepanning, that will clearly indicate defects that may affect the integrity of the weld. (b) Nondestructive testing...

  2. 49 CFR 192.243 - Nondestructive testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Nondestructive testing. 192.243 Section 192.243... testing. (a) Nondestructive testing of welds must be performed by any process, other than trepanning, that will clearly indicate defects that may affect the integrity of the weld. (b) Nondestructive testing...

  3. Nondestructive test of regenerative chambers

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Stauffis, R.; Wood, R.

    1972-01-01

    Flat panels simulating internally cooled regenerative thrust chamber walls were fabricated by electroforming, brazing and diffusion bonding to evaluate the feasibility of nondestructive evaluation techniques to detect bonds of various strength integrities. Ultrasonics, holography, and acoustic emission were investigated and found to yield useful and informative data regarding the presence of bond defects in these structures.

  4. Microwave holography for nondestructive testing

    NASA Technical Reports Server (NTRS)

    Cribbs, R. W.; Lamb, B. L.

    1973-01-01

    Holographic methods permit use of very large effective apertures so that weak signals can be collected over wide area and integrated to form image. Technique, modification of side-looking radar principle, can be used at very short ranges needed for nondestructive inspection of test specimens.

  5. RAS Assays

    Cancer.gov

    The proportion of oncogenic mutants of KRAS proteins that are in the "active" (GTP-bound) form is far higher than that of wild-type RAS proteins. Scientists at the National Lab are developing high-throughput in vitro assays to measure interactions of GTP-loaded KRAS and effectors, such as CRAF and calmodulin, as well as imaging assays that can detect oncogenic KRAS interactions inside cells.

  6. Simulation of Rate-Related (Dead-Time) Losses In Passive Neutron Multiplicity Counting Systems

    SciTech Connect

    Evans, L.G.; Norman, P.I.; Leadbeater, T.W.; Croft, S.; Philips, S.

    2008-07-01

    Passive Neutron Multiplicity Counting (PNMC) based on Multiplicity Shift Register (MSR) electronics (a form of time correlation analysis) is a widely used non-destructive assay technique for quantifying spontaneously fissile materials such as Pu. At high event rates, dead-time losses perturb the count rates with the Singles, Doubles and Triples being increasingly affected. Without correction these perturbations are a major source of inaccuracy in the measured count rates and assay values derived from them. This paper presents the simulation of dead-time losses and investigates the effect of applying different dead-time models on the observed MSR data. Monte Carlo methods have been used to simulate neutron pulse trains for a variety of source intensities and with ideal detection geometry, providing an event by event record of the time distribution of neutron captures within the detection system. The action of the MSR electronics was modelled in software to analyse these pulse trains. Stored pulse trains were perturbed in software to apply the effects of dead-time according to the chosen physical process; for example, the ideal paralysable (extending) and non-paralysable models with an arbitrary dead-time parameter. Results of the simulations demonstrate the change in the observed MSR data when the system dead-time parameter is varied. In addition, the paralysable and non-paralysable models of deadtime are compared. These results form part of a larger study to evaluate existing dead-time corrections and to extend their application to correlated sources. (authors)

  7. Overview of nondestructive evaluation technologies

    SciTech Connect

    Thomas, G.

    1995-04-01

    The infrastructure in the US and the world is aging. There is an increasing awareness of the need to assess the severity of the damage occurring to the infrastructure. Limited resources preclude the replacement of all structures that need repairs or have exceeded their life times. Methods to assess the amount and severity of damage are crucial to implementing a systematic, cost effective approach to repair and/or replace the damaged structures. The challenges of inspecting aging structures without impairing their usefulness rely on a variety of technologies and techniques for nondestructive evaluation (NDE). This paper will briefly describe several nondestructive evaluation technologies that are required for inspecting a variety of systems and structures.

  8. Nondestructive evaluation of advanced ceramics

    NASA Technical Reports Server (NTRS)

    Klima, Stanley J.; Kautz, Harold E.

    1988-01-01

    A review is presented of Lewis Research Center efforts to develop nondestructive evaluation techniques for characterizing advanced ceramic materials. Various approaches involved the use of analytical ultrasonics to characterize monolythic ceramic microstructures, acousto-ultrasonics for characterizing ceramic matrix composites, damage monitoring in impact specimens by microfocus X-ray radiography and scanning ultrasonics, and high resolution computed X-ray tomography to identify structural features in fiber reinforced ceramics.

  9. Holographic system for nondestructive testing

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L. (inventor)

    1975-01-01

    A description is given of a holographic system for nondestructive testing. The system is comprised of a mirror which illuminates the test object surface; the mirror is positionable to direct illumination on an object at varying angles with respect to a line normal to the surface of the object. In this manner holograms may be produced with varying degrees of sensitivity enabling optimum observation of dimensions of deformation of an object occurring between test exposures.

  10. SWEPP Assay System Version 2.0 software design description

    SciTech Connect

    East, L.V.; Marwil, E.S.

    1996-08-01

    The Idaho National Engineering Laboratory (INEL) Stored Waste Examination Pilot Plant (SWEPP) operations staff use nondestructive analysis methods to characterize the radiological contents of contact-handled radioactive waste containers. Containers of waste from Rocky Flats Environmental Technology Site and other Department of Energy (DOE) sites are currently stored at SWEPP. Before these containers can be shipped to the Waste Isolation Pilot Plant (WIPP), SWEPP must verify compliance with storage, shipping, and disposal requirements. This program has been in operation since 1985 at the INEL Radioactive Waste Management Complex (RWMC). One part of the SWEPP program measures neutron emissions from the containers and estimates the mass of plutonium and other transuranic (TRU) isotopes present. A Passive/Active Neutron (PAN) assay system developed at the Los Alamos National Laboratory is used to perform these measurements. A computer program named NEUT2 was originally used to perform the data acquisition and reduction functions for the neutron measurements. This program was originally developed at Los Alamos and extensively modified by a commercial vendor of PAN systems and by personnel at the INEL. NEUT2 uses the analysis methodology outlined, but no formal documentation exists on the program itself. The SWEPP Assay System (SAS) computer program replaced the NEUT2 program in early 1994. The SAS software was developed using an `object model` approach and is documented in accordance with American National Standards Institute (ANSI) and Institute of Electrical and Electronic Engineers (IEEE) standards. The new program incorporates the basic analysis algorithms found in NEUT2. Additional functionality and improvements include a graphical user interface, the ability to change analysis parameters without program code modification, an `object model` design approach and other features for improved flexibility and maintainability.

  11. Determination of total Pu content in a Spent Fuel Assembly by Measuring Passive Neutron Count rate and Multiplication with the Differential Die-Away Instrument

    SciTech Connect

    Henzl, Vladimir; Croft, Stephen; Swinhoe, Martyn T.; Tobin, Stephen J.

    2012-07-18

    A key objective of the Next Generation Safeguards Initiative (NGSI) is to evaluate and develop non-destructive assay (NDA) techniques to determine the elemental plutonium content in a commercial-grade nuclear spent fuel assembly (SFA) [1]. Within this framework, we investigate by simulation a novel analytical approach based on combined information from passive measurement of the total neutron count rate of a SFA and its multiplication determined by the active interrogation using an instrument based on a Differential Die-Away technique (DDA). We use detailed MCNPX simulations across an extensive set of SFA characteristics to establish the approach and demonstrate its robustness. It is predicted that Pu content can be determined by the proposed method to a few %.

  12. Passive solar technology

    SciTech Connect

    Watson, D

    1981-04-01

    The present status of passive solar technology is summarized, including passive solar heating, cooling and daylighting. The key roles of the passive solar system designer and of innovation in the building industry are described. After definitions of passive design and a summary of passive design principles are given, performance and costs of passive solar technology are discussed. Passive energy design concepts or methods are then considered in the context of the overall process by which building decisions are made to achieve the integration of new techniques into conventional design. (LEW).

  13. Nondestructive evaluation of electrodeposited chromium

    NASA Astrophysics Data System (ADS)

    Todaro, Mark E.

    1992-11-01

    Benet Laboratories is pursuing methods for nondestructively evaluating the quality and adhesion of electrodeposited chromium coatings on the bore of large caliber gun tubes. The Army currently has no suitable means for testing such coatings nondestructively. A poor quality or poorly adherent coating shows up only when several test rounds are fired through the tube, removing portions of the coating and exposing the steel underneath. Recent in-house work has investigated both photothermal and ultrasonic methods. The photothermal method involves briefly heating the surface of the chromium with a laser pulse. After the initial heating, the surface temperature decreases as heat diffuses into the coating and substrate. The characteristics of the coating, interface, and substrate affect the surface temperature profile in distinct ways. The temperature of the surface can be measured by observing the emitted infrared radiation with a focused detector or an infrared scanner. Although no experimental data using the photothermal technique has been obtained yet, a one-dimensional finite difference algorithm was used to model temperature changes on the surface of a chromium coating on steel due to an incident energy pulse. The model verifies that with a suitable choice of laser pulse width, one could measure the thermal characteristics of the coating and detect the presence of a thermal discontinuity at the interface.

  14. 49 CFR 193.2321 - Nondestructive tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Nondestructive tests. 193.2321 Section 193.2321 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY...: FEDERAL SAFETY STANDARDS Construction § 193.2321 Nondestructive tests. (a) The butt welds in metal...

  15. Nondestructive examination using neutron activated positron annihilation

    DOEpatents

    Akers, Douglas W. (Idaho Falls, ID); Denison, Arthur B. (Idaho Falls, ID)

    2001-01-01

    A method is provided for performing nondestructive examination of a metal specimen using neutron activated positron annihilation wherein the positron emitter source is formed within the metal specimen. The method permits in situ nondestructive examination and has the advantage of being capable of performing bulk analysis to determine embrittlement, fatigue and dislocation within a metal specimen.

  16. The Nuclear Renaissance — Implications on Quantitative Nondestructive Evaluations

    NASA Astrophysics Data System (ADS)

    Matzie, Regis A.

    2007-03-01

    The world demand for energy is growing rapidly, particularly in developing countries that are trying to raise the standard of living for billions of people, many of whom do not even have access to electricity. With this increased energy demand and the high and volatile price of fossil fuels, nuclear energy is experiencing resurgence. This so-called nuclear renaissance is broad based, reaching across Asia, the United States, Europe, as well as selected countries in Africa and South America. Some countries, such as Italy, that have actually turned away from nuclear energy are reconsidering the advisability of this design. This renaissance provides the opportunity to deploy more advanced reactor designs that are operating today, with improved safety, economy, and operations. In this keynote address, I will briefly present three such advanced reactor designs in whose development Westinghouse is participating. These designs include the advanced passive PWR, AP1000, which recently received design certification for the US Nuclear Regulatory Commission; the Pebble Bed Modular reactor (PBMR) which is being demonstrated in South Africa; and the International Reactor Innovative and Secure (IRIS), which was showcased in the US Department of Energy's recently announced Global Nuclear Energy Partnership (GNEP), program. The salient features of these designs that impact future requirements on quantitative nondestructive evaluations will be discussed. Such features as reactor vessel materials, operating temperature regimes, and new geometric configurations will be described, and mention will be made of the impact on quantitative nondestructive evaluation (NDE) approaches.

  17. 46 CFR 151.03-38 - Nondestructive testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-38 Nondestructive testing. Nondestructive testing includes ultrasonic examination, liquid penetrant examination, magnetic particle examination, radiographic examination, eddy current,...

  18. 46 CFR 151.03-38 - Nondestructive testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-38 Nondestructive testing. Nondestructive testing includes ultrasonic examination, liquid penetrant examination, magnetic particle examination, radiographic examination, eddy current,...

  19. 46 CFR 151.03-38 - Nondestructive testing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-38 Nondestructive testing. Nondestructive testing includes ultrasonic examination, liquid penetrant examination, magnetic particle examination, radiographic examination, eddy current,...

  20. 46 CFR 151.03-38 - Nondestructive testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-38 Nondestructive testing. Nondestructive testing includes ultrasonic examination, liquid penetrant examination, magnetic particle examination, radiographic examination, eddy current,...

  1. Fundamental studies of passivity and passivity breakdown

    SciTech Connect

    Macdonald, D.D.; Urquidi-Macdonald, M.; Song, H.; Biaggio-Rocha, S.; Searson, P.

    1991-11-01

    This report summarizes the findings of our fundamental research program on passivity and passivity breakdown. During the past three and one half years in this program (including the three year incrementally-funded grant prior to the present grant), we developed and experimentally tested various physical models for the growth and breakdown of passive films on metal surfaces. These models belong to a general class termed point defects models'' (PDMs), in which the growth and breakdown of passive films are described in terms of the movement of anion and cation vacancies.

  2. Assaying mechanosensation*

    PubMed Central

    Chalfie, Martin; Hart, Anne C.; Rankin, Catharine H.; Goodman, Miriam B.

    2015-01-01

    C. elegans detect and respond to diverse mechanical stimuli using neuronal circuitry that has been defined by decades of work by C. elegans researchers. In this WormMethods chapter, we review and comment on the techniques currently used to assess mechanosensory response. This methods review is intended both as an introduction for those new to the field and a convenient compendium for the expert. A brief discussion of commonly used mechanosensory assays is provided, along with a discussion of the neural circuits involved, consideration of critical protocol details, and references to the primary literature. PMID:25093996

  3. Nondestructive evaluation of structural ceramics

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1986-01-01

    Research on nondestructive evaluation (NDE) of structural ceramics for heat engine applications is reviewed. Microfocus radiography and scanning laser acoustic microscopy are the NDE techniques highlighted. The techniques were applied to research samples of sintered silicon nitride and silicon carbide in the form of modulus-of-rupture (MOR) bars. The strength and limitations of the aforementioned techniques are given in terms of probablility of detection for voids in green and sintered MOR bars. Voids for this purpose were introduced by seeding green ceramic bars and characterizing each void in terms of its size, shape, location, and nature before and after sintering. The effects of material density, microstructure, surface finish, thickness, void depth, and size characteristics on detectability are summarized.

  4. Nondestructive evaluation of structural ceramics

    NASA Technical Reports Server (NTRS)

    Klima, Stanley J.; Baaklini, George Y.; Abel, Phillip B.

    1987-01-01

    A review is presented on research and development of techniques for nondestructive evaluation and characterization of advanced ceramics for heat engine applications. Highlighted in this review are Lewis Research Center efforts in microfocus radiography, scanning laser acoustic microscopy (SLAM), scanning acoustic microscopy (SAM), scanning electron acoustic microscopy (SEAM), and photoacoustic microscopy (PAM). The techniques were evaluated by applying them to research samples of green and sintered silicon nitride and silicon carbide in the form of modulus-of-rupture bars containing seeded voids. Probabilities of detection of voids were determined for diameters as small as 20 microns for microfucus radiography, SLAM, and SAM. Strengths and limitations of the techniques for ceramic applications are identified. Application of ultrasonics for characterizing ceramic microstructures is also discussed.

  5. Non-Destructive Testing Scanner

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Bio-Imaging Research's technology that originated in an aerospace program has come full circle with a new aerospace adaptation called the Advanced Computed Tomography Inspection System, or ACTIS. The medical version of CT scans the human body for tumors or other abnormalities, the ACTIS system finds imperfections in aerospace structures and components, such as castings, assemblies, rocket motors and nozzles. ACTIS is described by its developer as the most versatile CT scanner available for non-destructive testing applications. ACTIS is a variable geometry system. ACTIS source and detectors can be moved closer together or farther apart to optimize the geometry for different sizes of test objects. The combination of variable geometry, three sources, and focusing detectors makes ACTIS cost effective for a broad range of applications. System can scan anything from very small turbine blades to large rocket assemblies.

  6. Angiogenesis Assays.

    PubMed

    Nambiar, Dhanya K; Kujur, Praveen K; Singh, Rana P

    2016-01-01

    Neoangiogenesis constitutes one of the first steps of tumor progression beyond a critical size of tumor growth, which supplies a dormant mass of cancerous cells with the required nutrient supply and gaseous exchange through blood vessels essentially needed for their sustained and aggressive growth. In order to understand any biological process, it becomes imperative that we use models, which could mimic the actual biological system as closely as possible. Hence, finding the most appropriate model is always a vital part of any experimental design. Angiogenesis research has also been much affected due to lack of simple, reliable, and relevant models which could be easily quantitated. The angiogenesis models have been used extensively for studying the action of various molecules for agonist or antagonistic behaviour and associated mechanisms. Here, we have described two protocols or models which have been popularly utilized for studying angiogenic parameters. Rat aortic ring assay tends to bridge the gap between in vitro and in vivo models. The chorioallantoic membrane (CAM) assay is one of the most utilized in vivo model system for angiogenesis-related studies. The CAM is highly vascularized tissue of the avian embryo and serves as a good model to study the effects of various test compounds on neoangiogenesis. PMID:26608294

  7. Expert system for transuranic waste assay

    SciTech Connect

    Zoolalian, M.L.; Gibbs, A.; Kuhns, J.D.

    1989-01-01

    Transuranic wastes are generated at the Savannah River Site (SRS) as a result of routine production of nuclear materials. These wastes contain Pu-238 and Pu-239 and are placed into lined 55-gallon waste drums. The drums are placed on monitored storage pads pending shipment to the Waste Isolation Pilot Plant in New Mexico. A passive-active neutron (PAN) assay system is used to determine the mass of the radioactive material within the waste drums. Assay results are used to classify the wastes as either low-level or transuranic (TRU). During assays, the PAN assay system communicates with an IBM-AT computer. A Fortran computer program, called NEUT, controls and performs all data analyses. Unassisted, the NEUT program cannot adequately interpret assay results. To eliminate this limitation, an expert system shell was used to write a new algorithm, called the Transuranic Expert System (TRUX), to drive the NEUT program and add decision making capabilities for analysis of the assay results. The TRUX knowledge base was formulated by consulting with human experts in the field of neutron assay, by direct experimentation on the PAN assay system, and by observing operations on a daily basis. TRUX, with its improved ability to interpret assay results, has eliminated the need for close supervision by a human expert, allowing skilled technicians to operate the PAN assay system. 4 refs., 1 fig., 4 tabs.

  8. Tropospheric Passive Remote Sensing

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr. (editor)

    1982-01-01

    The long term role of airborne/spaceborne passive remote sensing systems for tropospheric air quality research and the identification of technology advances required to improve the performance of passive remote sensing systems were discussed.

  9. 46 CFR 98.25-97 - Nondestructive testing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Nondestructive testing. 98.25-97 Section 98.25-97... § 98.25-97 Nondestructive testing. (a) Before nondestructive testing may be conducted to meet § 98.25...) Nondestructive testing is performed by personnel meeting ASNT “Recommended Practice No. SNT-TC-1A...

  10. 46 CFR 98.25-97 - Nondestructive testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Nondestructive testing. 98.25-97 Section 98.25-97... § 98.25-97 Nondestructive testing. (a) Before nondestructive testing may be conducted to meet § 98.25...) Nondestructive testing is performed by personnel meeting ASNT “Recommended Practice No. SNT-TC-1A...

  11. 46 CFR 98.25-97 - Nondestructive testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Nondestructive testing. 98.25-97 Section 98.25-97... § 98.25-97 Nondestructive testing. (a) Before nondestructive testing may be conducted to meet § 98.25...) Nondestructive testing is performed by personnel meeting ASNT “Recommended Practice No. SNT-TC-1A...

  12. 46 CFR 98.25-97 - Nondestructive testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Nondestructive testing. 98.25-97 Section 98.25-97... § 98.25-97 Nondestructive testing. (a) Before nondestructive testing may be conducted to meet § 98.25...) Nondestructive testing is performed by personnel meeting ASNT “Recommended Practice No. SNT-TC-1A...

  13. Review of progress in quantitative nondestructive evaluation. Volume 6B

    SciTech Connect

    Thompson, D.O.; Chimenti, D.E.

    1987-01-01

    This volume comprises the second half of the proceedings of the Thirteenth Annual Review of Progress in Quantitative Nondestructive Evaluation and consists of 87 papers on the following topics: nondestructive property, defect and processing evaluation and monitoring of advanced composites; nondestructive testing of electronic materials and devices; nondestructive materials characterization for mechanical and microstructural properties along with acoustoelasticity, stress, and texture; nondestructive evaluation for cracks and deformation; and nondestructive evaluation for ferromagnetic materials and weldments and bonds. The nondestructive techniques employed range from ultrasonic, thermal, eddy current and electromagnetic to x-ray radiography procedures.

  14. Interlanguage Passive Construction

    ERIC Educational Resources Information Center

    Simargool, Nirada

    2008-01-01

    Because the appearance of the passive construction varies cross linguistically, differences exist in the interlanguage (IL) passives attempted by learners of English. One such difference is the widely studied IL pseudo passive, as in "*new cars must keep inside" produced by Chinese speakers. The belief that this is a reflection of L1 language…

  15. Nondestructive inspection requirements for aboveground storage tanks

    SciTech Connect

    Sherlock, C.N.

    1996-02-01

    Aboveground storage tanks (ASTs) are designed, built, and nondestructively inspected to a variety of codes and standards. This discussion deals only with the nondestructive inspection requirements for the more common codes and standards generated in the US for these type structures. Standards and codes for which nondestructive inspection or nondestructive testing (NDT) requirements will be reviewed are listed. This article reviews the NDT applications, acceptance criteria, and personnel requirements for welds or components for radiography, ultrasonic alternatives to radiography, magnetic particle, liquid penetrant, visual, and leak testing for the above standards and codes. The problems of how to communicate to the NDT technician the required inspection or testing information within these standard or code documents for both new ASTs and repaired, reconstructed, or altered ASTs are discussed.

  16. Study Of Nondestructive Techniques For Testing Composites

    NASA Technical Reports Server (NTRS)

    Roth, D.; Kautz, H.; Draper, S.; Bansal, N.; Bowles, K.; Bashyam, M.; Bishop, C.

    1995-01-01

    Study evaluates some nondestructive methods for characterizing ceramic-, metal-, and polymer-matrix composite materials. Results demonstrated utility of two ultrasonic methods for obtaining quantitative data on microstructural anomalies in composite materials.

  17. 29 CFR 1919.78 - Nondestructive examinations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...and advisable to avoid disassembly of equipment, removal of pins, etc., examination of structure or parts by electronic, ultrasonic, or other nondestructive methods may be carried out, provided that the procedure followed is acceptable to the Assistant...

  18. 29 CFR 1919.78 - Nondestructive examinations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...and advisable to avoid disassembly of equipment, removal of pins, etc., examination of structure or parts by electronic, ultrasonic, or other nondestructive methods may be carried out, provided that the procedure followed is acceptable to the Assistant...

  19. 29 CFR 1919.78 - Nondestructive examinations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...and advisable to avoid disassembly of equipment, removal of pins, etc., examination of structure or parts by electronic, ultrasonic, or other nondestructive methods may be carried out, provided that the procedure followed is acceptable to the Assistant...

  20. NONDESTRUCTIVE MULTIELEMENT INSTRUMENTAL NEUTRON ACTIVATION ANALYSIS

    EPA Science Inventory

    A nondestructive instrumental neutron activation analysis procedure permitted accurate and sensitive measurement of most elements with atomic numbers between 11 and 92. The sensitivity of the procedure was dependent on each element's intrinsic characteristics and the sample matri...

  1. A non-destructive transformer oil tester

    E-print Network

    Cargol, Timothy L. (Timothy Lawrence), 1976-

    2000-01-01

    A new non-destructive test of transformer oil dielectric strength is a promising technique to automate and make more reliable a diagnostic that presently involves intensive manual efforts. This thesis focuses some of the ...

  2. 6 Nondestructive Estimation of Foliar Pigment

    E-print Network

    Gitelson, Anatoly

    141 6 Nondestructive Estimation of Foliar Pigment (Chlorophylls, Carotenoids, and Anthocyanins, carotenoids, and anthocyanins. The chlorophyll-a and chlorophyll-b are essential pigments for the conversion............................................................................................................... 143 6.2.3 Anthocyanins

  3. Nondestructive Testing of Rail Tunnel Linings 

    E-print Network

    Williams, Nathan Douglas

    2014-11-14

    of problems that occur below the surface. Therefore, nondestructive testing methods need to be implemented into inspection techniques to provide information below the surface of the lining. The best approach would be to use relatively fast methods to determine...

  4. Instruction manuals for radiographic nondestructive testing

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Six new handbooks on the fundamentals of nondestructive test techniques supply recent information for instructing inspectors and technicians, and can be used effectively in shops or laboratories, technical schools, or home study programs.

  5. Electromagnetic Imaging Methods for Nondestructive Evaluation Applications

    PubMed Central

    Deng, Yiming; Liu, Xin

    2011-01-01

    Electromagnetic nondestructive tests are important and widely used within the field of nondestructive evaluation (NDE). The recent advances in sensing technology, hardware and software development dedicated to imaging and image processing, and material sciences have greatly expanded the application fields, sophisticated the systems design and made the potential of electromagnetic NDE imaging seemingly unlimited. This review provides a comprehensive summary of research works on electromagnetic imaging methods for NDE applications, followed by the summary and discussions on future directions. PMID:22247693

  6. Nondestructive Characterization of Aged Components

    SciTech Connect

    Panetta, Paul D.; Toloczko, Mychailo B.; Garner, Francis A.; Balachov, Iouri I.

    2003-10-21

    It is known that high energy radiation can have numerous effects on materials. In metals and alloys, the effects include, but may not be limited to, mechanical property changes, physical property changes, compositional changes, phase changes, and dimensional changes. Metals and alloys which undergo high energy self-irradiation are also susceptible to these changes. One of the greatest concerns with irradiation of materials is the phenomenon of void swelling which has been observed in a wide variety of metals and alloys. Irradiation causes the formation of a high concentration point defects and microclusters of vacancies and interstitials. With the assistance of an inert atom such as helium, the vacancy-type defects can coalesce to form a stable bubble. This bubble will continue to grow through the net absorption of more vacancy-type defects and helium atoms, and upon reaching a certain critical size, the bubble will begin to grow at an accelerated rate without the assistance of inert atom absorption. The bubble is then said to be an unstably growing void. Depending on the alloy system and environment, swelling values can reach in excess of 50% !V/Vo where Vo is the initial volume of the material. Along with dimensional changes resulting from the formation of bubbles and voids comes changes in the macroscopically observed speed of sound, moduli, electrical resistivity, yield strength, and other properties. These effects can be detrimental to the designed operation of the aged components. In situations where irradiation has sufficient time to cause degradation to materials used in critical applications such as nuclear reactor core structural materials, it is advisable to regularly survey the material properties. It is common practice to use surveillance specimens, but this is not always possible. When surveillance materials are not available, other means for surveying the material properties must be utilized. Sometimes it is possible to core out a small sample which may be used for material properties measurements. A more appealing solution is to use nondestructive evaluation (NDE) methods.

  7. Second harmonic generation for contactless non-destructive characterization of silicon on insulator wafers

    NASA Astrophysics Data System (ADS)

    Damianos, D.; Pirro, L.; Soylu, G.; Ionica, I.; Nguyen, V.; Vitrant, G.; Kaminski, A.; Blanc-Pelissier, D.; Onestas, L.; Changala, J.; Kryger, M.; Cristoloveanu, S.

    2016-01-01

    In this work we investigate a non-invasive, non-destructive characterization technique for monitoring the quality of film, oxide and interfaces in silicon-on-insulator (SOI) wafers. This technique is based on optical Second Harmonic Generation (SHG). The principles of SHG and the experimental setup will be thoroughly described. The experimental parameters best suited for testing SOI wafers with SHG are identified. SOI geometry, as well as the passivation of the top surface, both have an impact on the observed SHG signal. The back-gate bias applied on the substrate is shown to modulate the SHG signal.

  8. Summary of nondestructive testing theory and practice

    NASA Technical Reports Server (NTRS)

    Meister, R. P.; Randall, M. D.; Mitchell, D. K.; Williams, L. P.; Pattee, H. E.

    1972-01-01

    The ability to fabricate design critical and man-rated aerospace structures using materials near the limits of their capabilities requires a comprehensive and dependable assurance program. The quality assurance program must rely heavily on nondestructive testing methods for thorough inspection to assess properties and quality of hardware items. A survey of nondestructive testing methods is presented to provide space program managers, supervisors and engineers who are unfamiliar with this technical area with appropriate insight into the commonly accepted nondestructive testing methods available, their interrelationships, used, advantages and limitations. Primary emphasis is placed on the most common methods: liquid penetrant, magnetic particle, radiography, ultrasonics and eddy current. A number of the newer test techniques including thermal, acoustic emission, holography, microwaves, eddy-sonic and exo-electron emission, which are beginning to be used in applications of interest to NASA, are also discussed briefly.

  9. Nondestructive testing of electro thermal devices

    NASA Technical Reports Server (NTRS)

    Earnest, J. E., Jr.; Murphy, A. J., Jr.

    1973-01-01

    This paper describes the results of a recent investigation into 'thermal time constant' nondestructive testing of high reliability electrical fuses. The use of established nondestructive test technology for examining the quality and firing characteristics of electro-explosive devices has been successfully applied to the inspection and prediction of the functional performance of electrical fuses. The technique requires application of a low level current pulse to the electrical fuse with an oscilloscope display of the curve as generated by the temperature coefficient of resistance feedback. The heating curve of temperature vs time is composed of one predominant thermal time constant, which is the product of the test unit's thermal capacity and thermal resistance. It has been found that the quality of the individual electrical fuse, for instance, the relative condition of the critical internal weld or solder joint, can be examined nondestructively.

  10. NONDESTRUCTIVE EVALUATION (NDE) OF DAMAGED STRUCTURAL CERAMICS

    SciTech Connect

    Brennan, R. E.; Green, W. H.; Sands, J. M.; Yu, J. H.

    2009-03-03

    A combination of destructive and nondestructive testing methods was utilized to evaluate the impact velocity and energy conditions that caused fracture in alumina structural ceramics. Drop tower testing was used for low velocity impact with a high mass indenter and fragment simulating projectile testing was used for high velocity impact with a low mass projectile. The damaged samples were nondestructively evaluated using digital radiography and ultrasound C-scan imaging. The bulk damage detected by these techniques was compared to surface damage observed by visual inspection.

  11. Advancing technologies and applications in nondestructive evaluation

    SciTech Connect

    Logan, C.

    1997-12-01

    The methods used to inspect and evaluate materials, decides, and products are now based on imaging systems that collect digital data and process and interpret them through specially developed computer algorithms. Lawrence Livermore`s Nondestructive and Materials Evaluation Section has been developing a wide range of imaging systems, implementing them through a range of technologies, including digital radiography, computed tomography, machine vision, ultrasonics, and infrared computer thermography. Applications of these various technologies are described in the article. They demonstrate the range and increasing flexibility of the concept of nondestructive evaluation.

  12. 46 CFR 98.25-97 - Nondestructive testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk § 98.25-97 Nondestructive testing. (a) Before nondestructive testing may be conducted to meet §...

  13. 46 CFR 98.25-97 - Nondestructive testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk § 98.25-97 Nondestructive testing. (a) Before nondestructive testing may be conducted to meet §...

  14. 46 CFR 98.25-97 - Nondestructive testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk § 98.25-97 Nondestructive testing. (a) Before nondestructive testing may be conducted to meet §...

  15. 46 CFR 98.25-97 - Nondestructive testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk § 98.25-97 Nondestructive testing. (a) Before nondestructive testing may be conducted to meet §...

  16. 46 CFR 98.25-97 - Nondestructive testing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk § 98.25-97 Nondestructive testing. (a) Before nondestructive testing may be conducted to meet §...

  17. Passive magnetic bearing configurations

    DOEpatents

    Post, Richard F. (Walnut Creek, CA)

    2011-01-25

    A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

  18. Passive solar construction handbook

    SciTech Connect

    Levy, E.; Evans, D.; Gardstein, C.

    1981-08-01

    Many of the basic elements of passive solar design are reviewed. The unique design constraints presented in passive homes are introduced and many of the salient issues influencing design decisions are described briefly. Passive solar construction is described for each passive system type: direct gain, thermal storage wall, attached sunspace, thermal storage roof, and convective loop. For each system type, important design and construction issues are discussed and case studies illustrating designed and built examples of the system type are presented. Construction details are given and construction and thermal performance information is given for the materials used in collector components, storage components, and control components. Included are glazing materials, framing systems, caulking and sealants, concrete masonry, concrete, brick, shading, reflectors, and insulators. The Load Collector Ratio method for estimating passive system performance is appended, and other analysis methods are briefly summarized. (LEW)

  19. Featured Research Nondestructive Testing of Early Age Concrete

    E-print Network

    Featured Research Nondestructive Testing of Early Age Concrete Thomas Voigt and Surendra P. Shah, Northwestern University Introduction The nondestructive, in-situ testing of early-age concrete properties. A nondestructive, ultrasonic technique, which measures the reflection coefficient of ultrasonic transverse waves

  20. 46 CFR 151.04-7 - Nondestructive testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Nondestructive testing. 151.04-7 Section 151.04-7... testing. (a) Before nondestructive testing may be conducted to meet § 151.04-5 (d) and (l), the owner... that— (1) The proposal is followed; and (2) Nondestructive testing is performed by personnel...

  1. 46 CFR 151.04-7 - Nondestructive testing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Nondestructive testing. 151.04-7 Section 151.04-7... testing. (a) Before nondestructive testing may be conducted to meet § 151.04-5 (d) and (l), the owner... that— (1) The proposal is followed; and (2) Nondestructive testing is performed by personnel...

  2. 46 CFR 151.03-38 - Nondestructive testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Nondestructive testing. 151.03-38 Section 151.03-38... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-38 Nondestructive testing. Nondestructive testing includes ultrasonic examination, liquid penetrant examination, magnetic...

  3. 46 CFR 151.03-38 - Nondestructive testing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Nondestructive testing. 151.03-38 Section 151.03-38... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-38 Nondestructive testing. Nondestructive testing includes ultrasonic examination, liquid penetrant examination, magnetic...

  4. 46 CFR 151.03-38 - Nondestructive testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-38 Nondestructive testing. Nondestructive testing includes ultrasonic examination, liquid penetrant examination, magnetic particle... 46 Shipping 5 2012-10-01 2012-10-01 false Nondestructive testing. 151.03-38 Section...

  5. 46 CFR 151.03-38 - Nondestructive testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-38 Nondestructive testing. Nondestructive testing includes ultrasonic examination, liquid penetrant examination, magnetic particle... 46 Shipping 5 2013-10-01 2013-10-01 false Nondestructive testing. 151.03-38 Section...

  6. 46 CFR 151.03-38 - Nondestructive testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-38 Nondestructive testing. Nondestructive testing includes ultrasonic examination, liquid penetrant examination, magnetic particle... 46 Shipping 5 2014-10-01 2014-10-01 false Nondestructive testing. 151.03-38 Section...

  7. 49 CFR 195.234 - Welds: Nondestructive testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welds: Nondestructive testing. 195.234 Section 195... HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.234 Welds: Nondestructive testing. (a) A weld may be... weld. (b) Any nondestructive testing of welds must be performed— (1) In accordance with a written...

  8. 49 CFR 195.234 - Welds: Nondestructive testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welds: Nondestructive testing. 195.234 Section 195... HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.234 Welds: Nondestructive testing. (a) A weld may be... weld. (b) Any nondestructive testing of welds must be performed— (1) In accordance with a written...

  9. 49 CFR 195.234 - Welds: Nondestructive testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welds: Nondestructive testing. 195.234 Section 195... HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.234 Welds: Nondestructive testing. (a) A weld may be... weld. (b) Any nondestructive testing of welds must be performed— (1) In accordance with a written...

  10. 49 CFR 195.234 - Welds: Nondestructive testing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welds: Nondestructive testing. 195.234 Section 195... HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.234 Welds: Nondestructive testing. (a) A weld may be... weld. (b) Any nondestructive testing of welds must be performed— (1) In accordance with a written...

  11. 49 CFR 195.234 - Welds: Nondestructive testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welds: Nondestructive testing. 195.234 Section 195... HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.234 Welds: Nondestructive testing. (a) A weld may be... weld. (b) Any nondestructive testing of welds must be performed— (1) In accordance with a written...

  12. Visualizing Industrial CT Volume Data for Nondestructive Testing Applications

    E-print Network

    Ma, Kwan-Liu

    Visualizing Industrial CT Volume Data for Nondestructive Testing Applications Runzhen Huang Kwan, interac- tive visualization, nondestructive testing and evaluation, sci- entific visualization, surface of a mechanical toy (512×512×2048 voxels). diagnosis and surgical planning, but also in nondestructive testing

  13. 46 CFR 151.04-7 - Nondestructive testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Nondestructive testing. 151.04-7 Section 151.04-7... testing. (a) Before nondestructive testing may be conducted to meet § 151.04-5 (d) and (l), the owner... that— (1) The proposal is followed; and (2) Nondestructive testing is performed by personnel...

  14. 46 CFR 151.04-7 - Nondestructive testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Nondestructive testing. 151.04-7 Section 151.04-7... testing. (a) Before nondestructive testing may be conducted to meet § 151.04-5 (d) and (l), the owner... that— (1) The proposal is followed; and (2) Nondestructive testing is performed by personnel...

  15. 46 CFR 151.04-7 - Nondestructive testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Nondestructive testing. 151.04-7 Section 151.04-7... testing. (a) Before nondestructive testing may be conducted to meet § 151.04-5 (d) and (l), the owner... that— (1) The proposal is followed; and (2) Nondestructive testing is performed by personnel...

  16. Handbooks for nondestructive testing using ultrasonics

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Four handbooks have been prepared for use in teaching metal parts inspectors and quality assurance technicians the fundamentals of nondestructive testing using ultrasonic detection methods. The handbooks may be used in the shop or laboratory, or as study texts in technical schools and in the home.

  17. Nondestructive examination development and demonstration plan

    SciTech Connect

    Weber, J.R.

    1991-08-21

    Nondestructive examination (NDE) of waste matrices using penetrating radiation is by nature very subjective. Two candidate systems of examination have been identified for use in WRAP 1. This test plan describes a method for a comparative evaluation of different x-ray examination systems and techniques.

  18. 49 CFR 192.243 - Nondestructive testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.243 Nondestructive testing...Except for a welder whose work is isolated from the principal welding activity, a sample of each welder's work for each day...

  19. 49 CFR 192.243 - Nondestructive testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.243 Nondestructive testing...Except for a welder whose work is isolated from the principal welding activity, a sample of each welder's work for each day...

  20. 49 CFR 192.243 - Nondestructive testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.243 Nondestructive testing...Except for a welder whose work is isolated from the principal welding activity, a sample of each welder's work for each day...

  1. 49 CFR 192.243 - Nondestructive testing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.243 Nondestructive testing...Except for a welder whose work is isolated from the principal welding activity, a sample of each welder's work for each day...

  2. 49 CFR 192.243 - Nondestructive testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.243 Nondestructive testing...Except for a welder whose work is isolated from the principal welding activity, a sample of each welder's work for each day...

  3. Method for non-destructive testing

    DOEpatents

    Akers, Douglas W. (Idaho Falls, ID)

    2011-08-30

    Non-destructive testing method may include providing a source material that emits positrons in response to bombardment of the source material with photons. The source material is exposed to photons. The source material is positioned adjacent the specimen, the specimen being exposed to at least some of the positrons emitted by the source material. Annihilation gamma rays emitted by the specimen are detected.

  4. Instruction manuals for liquid penetrant nondestructive testing

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Manuals provide quality control and test personnel with basic information on liquid penetrant testing. Topics covered include scope of application, equipment and materials used, test procedures, safety precautions, quality control, and comparison of liquid penetrant testing with other nondestructive testing processes.

  5. Nondestructive testing of brazed rocket engine components

    NASA Technical Reports Server (NTRS)

    Adams, C. J.; Hagemaier, D. J.; Meyer, J. A.

    1968-01-01

    Report details study made of nondestructive radiographic, ultrasonic, thermographic, and leak test methods used to inspect and evaluate the quality of the various brazed joints in liquid-propellant rocket engine components and assemblies. Descriptions of some of the unique equipment and methods developed are included.

  6. Most energetic passive states

    NASA Astrophysics Data System (ADS)

    Perarnau-Llobet, Martí; Hovhannisyan, Karen V.; Huber, Marcus; Skrzypczyk, Paul; Tura, Jordi; Acín, Antonio

    2015-10-01

    Passive states are defined as those states that do not allow for work extraction in a cyclic (unitary) process. Within the set of passive states, thermal states are the most stable ones: they maximize the entropy for a given energy, and similarly they minimize the energy for a given entropy. Here we find the passive states lying in the other extreme, i.e., those that maximize the energy for a given entropy, which we show also minimize the entropy when the energy is fixed. These extremal properties make these states useful to obtain fundamental bounds for the thermodynamics of finite-dimensional quantum systems, which we show in several scenarios.

  7. Passive microfluidic interconnects

    E-print Network

    Jonnalagadda, Aparna S

    2005-01-01

    Equipment and procedures were developed to test two passive microfluidic interconnect rings held together by the friction forces on the contact surfaces. The second design forms fluid seals by means of thin flared rings ...

  8. Hood River Passive House

    SciTech Connect

    Hales, D.

    2013-03-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project.

  9. Nondestructive inspection requirements aboveground storage tanks (ASTs)

    SciTech Connect

    Sherlock, C.N.

    1995-12-31

    Aboveground storage tanks (ASTs) are designed, built and nondestructively inspected to a variety of Standards and Codes. This discussion deals only with the nondestructive inspection requirements for the more common Standards and Codes generated in the United States for these type structures. The problems of how to communicate to the NDT technician the required inspection or testing information within these Standard or Code documents for both new ASTs and repaired, reconstructed or altered ASTs are discussed. In the presentation of this paper, NDT applications, acceptance criteria and personnel requirements for welds or components for radiography, ultrasonic alternatives to radiography, magnetic particle, liquid penetrant, visual and leak testing for the mentioned Standards and Codes will be reviewed.

  10. Nondestructive imaging of an ultracold lattice gas

    NASA Astrophysics Data System (ADS)

    Patil, Y. S.; Chakram, S.; Aycock, L. M.; Vengalattore, M.

    2014-09-01

    We demonstrate the nondestructive imaging of a lattice gas of ultracold bosons. Atomic fluorescence is induced in the simultaneous presence of degenerate Raman sideband cooling. The combined influence of these processes controllably cycles an atom between a dark state and a fluorescing state while eliminating heating and loss. Through spatially resolved sideband spectroscopy following the imaging sequence, we demonstrate the efficacy of this imaging technique in various regimes of lattice depth and fluorescence acquisition rate. Our work provides an important extension of quantum gas imaging to the nondestructive detection, control, and manipulation of atoms in optical lattices. In addition, our technique can also be extended to atomic species that are less amenable to molasses-based lattice imaging.

  11. Hybrid holographic non-destructive test system

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L. (inventor)

    1978-01-01

    An automatic hybrid holographic non-destructive testing (HNDT) method and system capable of detecting flaws or debonds contained within certain materials are described. This system incorporates the techniques of optical holography, acoustical/optical holography and holographic correlation in determining the structural integrity of a test object. An automatic processing system including a detector and automatic data processor is used in conjunction with the three holographic techniques for correlating and interpreting the information supplied by the non-destructive systems. The automatic system also includes a sensor which directly translates an optical data format produced by the holographic techniques into electrical signals and then transmits this information to a digital computer for indicating the structural properties of the test object. The computer interprets the data gathered and determines whether further testing is necessary as well as the format of this new testing procedure.

  12. Emerging nondestructive inspection methods for aging aircraft

    SciTech Connect

    Beattie, A; Dahlke, L; Gieske, J

    1994-01-01

    This report identifies and describes emerging nondestructive inspection (NDI) methods that can potentially be used to inspect commercial transport and commuter aircraft for structural damage. The nine categories of emerging NDI techniques are: acoustic emission, x-ray computed tomography, backscatter radiation, reverse geometry x-ray, advanced electromagnetics, including magnetooptic imaging and advanced eddy current techniques, coherent optics, advanced ultrasonics, advanced visual, and infrared thermography. The physical principles, generalized performance characteristics, and typical applications associated with each method are described. In addition, aircraft inspection applications are discussed along with the associated technical considerations. Finally, the status of each technique is presented, with a discussion on when it may be available for use in actual aircraft maintenance programs. It should be noted that this is a companion document to DOT/FAA/CT-91/5, Current Nondestructive Inspection Methods for Aging Aircraft.

  13. Continuous Nondestructive Detection of Individual Photons

    NASA Astrophysics Data System (ADS)

    Beck, Kristin; Hosseini, Mahdi; Duan, Yiheng; Chen, Wenlan; Vuleti?, Vladan

    2015-05-01

    The nondestructive detection of optical photons is an enabling technology with applications in quantum information, simulation and communication. We present a detection scheme that continuously detects photons without destroying them. Photons to be measured (signal photons) are sent through an ensemble of 133Cs atoms, where they travel as slow-light polaritons that are, in turn, coupled to a high finesse optical cavity. The atomic component of the polariton rotates the polarization of light that is transmitted through the cavity, which we detect. We show that the system is capable of non-destructively detecting individual signal photons by measuring a second-order correlation function between the signal and detection paths of g2(0) > 5 .

  14. Nondestructive technique for detecting diseased poultry carcasses

    NASA Astrophysics Data System (ADS)

    Chen, Yud-Ren

    1993-04-01

    In response to the need of the U.S. Food Safety and Inspection Service, the Agriculture Research Service has undertaken a project to develop an accurate, reliable, and nondestructive sensor for detecting poultry diseased carcasses on-line at poultry processing plants. This paper presents some results of a study on the development of a nondestructive technique for the detection of abnormal poultry carcasses based on the spectroscopy of the carcasses. A diode array spectrophotometer equipped with a fiber optic probe was used to obtain optical spectra of the breasts of normal, septicemic, and cadaver poultry carcasses in visible and near-infrared regions (500 - 1100 nm). Optimal wavelengths of reflectance and interactance in the range of 500 to 850 nm were obtained for classifying the carcasses into normal and abnormal (septicemic and cadaver) classes. A back-propagation neural network model was used to develop classifiers for the classification of poultry carcasses into normal, septicemic, and cadaver classes.

  15. Nondestructive evaluation by acousto-ultrasonics

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1988-01-01

    Acousto-ultrasonics is an ultrasonic technique that was originally devised to cope with the particular problems associated with nondestructive evaluation (NDE) of fiber/polymer composite structures. The fiber/polymer composites are more attenuating to ultrasound than any other material presently of interest. This limits the applicability of high-frequency ultrasonics. A common use of ultrasound is the imaging of flaws internal to a structure by scattering from the interface with the flaw. However, structural features of composites can scatter ultrasound internally, thus obscuring the flaws. A need relative to composites is to be able to nondestructively measure the strength of laminar boundaries in order to assess the integrity of a structure. Acousto-ultrasonics has exhibited the ability to use the internal scattering to provide information for determining the strength of laminar boundaries. Analysis of acousto-ultrasonic signals by the wave ray paths that compose it leads to waveform partitioning that enhances the sensitivity to mechanical strength parameters.

  16. Magnetic nondestructive testing of rotor blade tips

    NASA Astrophysics Data System (ADS)

    Cardelli, E.; Faba, A.; Marsili, R.; Rossi, G.; Tomassini, R.

    2015-05-01

    This paper deals with a particular magnetic nondestructive technique applied to the control of the position of the steel blades in rotating parts of turbines and engines. The working principle is based on a bridge of four identical magneto-resistive sensors. One sensor is placed near the blades, and the change in magnetic field produced by a permanent magnet and deviated by the change in position of the blade is detected by the sensor bridge. The position of the sensor is indicated, via dedicated FEM simulations, in order to have high sensitivity to the position change and high output signal. The accuracy and effectiveness of the proposed method are shown by experimental tests carried out in our laboratories. In particular, the tests indicate that the proposed magnetic nondestructive technique can be used in an almost large velocity range, and for quite different values of blade tip. The method seems also promising for the detection of blade vibrations.

  17. Nondestructive measurement of fruit and vegetable quality.

    PubMed

    Nicolaï, Bart M; Defraeye, Thijs; De Ketelaere, Bart; Herremans, Els; Hertog, Maarten L A T M; Saeys, Wouter; Torricelli, Alessandro; Vandendriessche, Thomas; Verboven, Pieter

    2014-01-01

    We review nondestructive techniques for measuring internal and external quality attributes of fruit and vegetables, such as color, size and shape, flavor, texture, and absence of defects. The different techniques are organized according to their physical measurement principle. We first describe each technique and then list some examples. As many of these techniques rely on mathematical models and particular data processing methods, we discuss these where needed. We pay particular attention to techniques that can be implemented online in grading lines. PMID:24387604

  18. Interrelationship of nondestructive testing to fault determination.

    NASA Technical Reports Server (NTRS)

    Menichelli, V. J.; Rosenthal, L. A.

    1971-01-01

    Several nondestructive test techniques have been developed for electroexplosive devices. The bridgewire will respond, when pulsed with a safe level current, by generating a characteristic heating curve. The response is indicative of the electrothermal behavior of the bridgewire-explosive interface. Bridgewires which deviate from the characteristic heating curve have been dissected and examined to determine the cause for the abnormality. Deliberate faults have been fabricated into squibs. The relationship of the specific abnormality and the fault associated with it is discussed.

  19. Local-Level Prognostics Health Management Systems Framework for Passive AdvSMR Components – Interim Report

    SciTech Connect

    Ramuhalli, Pradeep; Roy, Surajit; Hirt, Evelyn H.; Pardini, Allan F.; Jones, Anthony M.; Deibler, John E.; Pitman, Stan G.; Tucker, Joseph C.; Prowant, Matthew S.; Suter, Jonathan D.

    2014-09-12

    This report describes research results to date in support of the integration and demonstration of diagnostics technologies for prototypical AdvSMR passive components (to establish condition indices for monitoring) with model-based prognostics methods. The focus of the PHM methodology and algorithm development in this study is at the localized scale. Multiple localized measurements of material condition (using advanced nondestructive measurement methods), along with available measurements of the stressor environment, enhance the performance of localized diagnostics and prognostics of passive AdvSMR components and systems.

  20. Nondestructive Evaluation of Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Nayeb-Hashemi, Hamid; Rossettos, J. N.

    1997-01-01

    The final report consists of 5 published papers in referred journals and a technical letter to the technical monitor. These papers include the following: (1) Comparison of the effects of debonds and voids in adhesive; (2) On the peak shear stresses in adhesive joints with voids; (3) Nondestructive evaluation of adhesively bonded joints by acousto-ultrasonic technique and acoustic emission; (4) Multiaxial fatigue life evaluation of tubular adhesively bonded joints; (5) Theoretical and experimental evaluation of the bond strength under peeling loads. The letter outlines the progress of the research. Also included is preliminary information on the study of nondestructive evaluation of composite materials subjected to localized heat damage. The investigators studied the effects of localized heat on unidirectional fiber glass epoxy composite panels. Specimens of the fiber glass epoxy composites were subjected to 400 C heat for varying lengths of time. The specimens were subjected to nondestructive tests. The specimens were then pulled to their failure and acoustic emission of these specimens were measured. The analysis of the data was continuing as of the writing of the letter, and includes a finite element stress analysis of the problem.

  1. Development of instrumentation for magnetic nondestructive evaluation

    SciTech Connect

    Hariharan, S.

    1991-09-23

    The use of failure-prone components in critical applications has been traditionally governed by removing such components from service prior to the expiration of their predicted life expectancy. Such early retirement of materials does not guarantee that a particular sample will not fail in actual usage. The increasing cost of such life expectancy based operation and increased demand for improved reliability in industrial settings has necessitated an alternate form of quality control. Modern applications employ nondestructive evaluation (NDE), also known as nondestructive testing (NDT), as a means of monitoring the levels and growth of defects in a material throughout its operational life. This thesis describes the modifications made to existing instrumentation used for magnetic measurements at the Center for Nondestructive Evaluation at Iowa State University. Development of a new portable instrument is also given. An overview of the structure and operation of this instrumentation is presented. This thesis discusses the application of the magnetic hysteresis and Barkhausen measurement techniques, described in Sections 1.3.1 and 1.3.2 respectively, to a number of ferromagnetic specimens. Specifically, measurements were made on a number of railroad steel specimens for fatigue characterization, and on specimens of Damascus steel and Terfenol-D for materials evaluation. 60 refs., 51 figs., 5 tabs.

  2. Schultheiss, Schiepe, & Rawolle Hormone assays 1 Running head: HORMONE ASSAYS

    E-print Network

    Schultheiss, Oliver C.

    Schultheiss, Schiepe, & Rawolle Hormone assays 1 Running head: HORMONE ASSAYS Hormone assays Oliver: Schultheiss, O. C., Schiepe, A., & Rawolle, M. (2012). Hormone assays. In H. Cooper, P. M. Camic, D. L. Long Association. #12;Schultheiss, Schiepe, & Rawolle Hormone assays 2 Hormone assays Hormones can be assayed from

  3. Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging

    NASA Astrophysics Data System (ADS)

    Pan, Wen-Juan; Wang, Xia; Deng, Yong-Ren; Li, Jia-Hang; Chen, Wei; Chiang, John Y.; Yang, Jian-Bo; Zheng, Lei

    2015-06-01

    The circadian clock, synchronized by daily cyclic environmental cues, regulates diverse aspects of plant growth and development and increases plant fitness. Even though much is known regarding the molecular mechanism of circadian clock, it remains challenging to quantify the temporal variation of major photosynthesis products as well as their metabolic output in higher plants in a real-time, nondestructive and intuitive manner. In order to reveal the spatial-temporal scenarios of photosynthesis and yield formation regulated by circadian clock, multispectral imaging technique has been employed for nondestructive determination of circadian chlorophyll rhythms in soybean leaves. By utilizing partial least square regression analysis, the determination coefficients R2, 0.9483 for chlorophyll a and 0.8906 for chlorophyll b, were reached, respectively. The predicted chlorophyll contents extracted from multispectral data showed an approximately 24-h rhythm which could be entrained by external light conditions, consistent with the chlorophyll contents measured by chemical analyses. Visualization of chlorophyll map in each pixel offers an effective way to analyse spatial-temporal distribution of chlorophyll. Our results revealed the potentiality of multispectral imaging as a feasible nondestructive universal assay for examining clock function and robustness, as well as monitoring chlorophyll a and b and other biochemical components in plants.

  4. Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging.

    PubMed

    Pan, Wen-Juan; Wang, Xia; Deng, Yong-Ren; Li, Jia-Hang; Chen, Wei; Chiang, John Y; Yang, Jian-Bo; Zheng, Lei

    2015-01-01

    The circadian clock, synchronized by daily cyclic environmental cues, regulates diverse aspects of plant growth and development and increases plant fitness. Even though much is known regarding the molecular mechanism of circadian clock, it remains challenging to quantify the temporal variation of major photosynthesis products as well as their metabolic output in higher plants in a real-time, nondestructive and intuitive manner. In order to reveal the spatial-temporal scenarios of photosynthesis and yield formation regulated by circadian clock, multispectral imaging technique has been employed for nondestructive determination of circadian chlorophyll rhythms in soybean leaves. By utilizing partial least square regression analysis, the determination coefficients R(2), 0.9483 for chlorophyll a and 0.8906 for chlorophyll b, were reached, respectively. The predicted chlorophyll contents extracted from multispectral data showed an approximately 24-h rhythm which could be entrained by external light conditions, consistent with the chlorophyll contents measured by chemical analyses. Visualization of chlorophyll map in each pixel offers an effective way to analyse spatial-temporal distribution of chlorophyll. Our results revealed the potentiality of multispectral imaging as a feasible nondestructive universal assay for examining clock function and robustness, as well as monitoring chlorophyll a and b and other biochemical components in plants. PMID:26059057

  5. Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging

    PubMed Central

    Pan, Wen-Juan; Wang, Xia; Deng, Yong-Ren; Li, Jia-Hang; Chen, Wei; Chiang, John Y.; Yang, Jian-Bo; Zheng, Lei

    2015-01-01

    The circadian clock, synchronized by daily cyclic environmental cues, regulates diverse aspects of plant growth and development and increases plant fitness. Even though much is known regarding the molecular mechanism of circadian clock, it remains challenging to quantify the temporal variation of major photosynthesis products as well as their metabolic output in higher plants in a real-time, nondestructive and intuitive manner. In order to reveal the spatial-temporal scenarios of photosynthesis and yield formation regulated by circadian clock, multispectral imaging technique has been employed for nondestructive determination of circadian chlorophyll rhythms in soybean leaves. By utilizing partial least square regression analysis, the determination coefficients R2, 0.9483 for chlorophyll a and 0.8906 for chlorophyll b, were reached, respectively. The predicted chlorophyll contents extracted from multispectral data showed an approximately 24-h rhythm which could be entrained by external light conditions, consistent with the chlorophyll contents measured by chemical analyses. Visualization of chlorophyll map in each pixel offers an effective way to analyse spatial-temporal distribution of chlorophyll. Our results revealed the potentiality of multispectral imaging as a feasible nondestructive universal assay for examining clock function and robustness, as well as monitoring chlorophyll a and b and other biochemical components in plants. PMID:26059057

  6. Using Nuclear Resonance Fluorescence for Nondestructive Isotopic Analysis

    SciTech Connect

    Ludewigt, Bernhard A.; Mozin, Vladimir; Haefner, Andrew; Quiter, Brian

    2010-07-14

    Nuclear resonance fluorescence (NRF) has been studied as one of the nondestructive analysis (NDA) techniques currently being investigated by a multi-laboratory collaboration for the determination of Pu mass in spent fuel. In NRF measurements specific isotopes are identified by their characteristic lines in recorded gamma spectra. The concentration of an isotope in a material can be determined from measured NRF signal intensities if NRF cross sections and assay geometries are known. The potential of NRF to quantify isotopic content and Pu mass in spent fuel has been studied. The addition of NRF data to MCNPX and an improved treatment of the elastic photon scattering at backward angles has enabled us to more accurately simulate NRF measurements on spent fuel assemblies. Using assembly models from the spent fuel assembly library generated at LANL, NRF measurements are simulated to find the best measurement configurations, and to determine measurement sensitivities and times, and photon source and gamma detector requirements. A first proof-of-principal measurement on a mock-up assembly with a bremsstrahlung photon source demonstrated isotopic sensitivity to approximately 1% limited by counting statistics. Data collection rates are likely a limiting factor of NRF-based measurements of fuel assemblies but new technological advances may lead to drastic improvements.

  7. Nondestructive NMR technique for moisture determination in radioactive materials.

    SciTech Connect

    Aumeier, S.; Gerald, R.E. II; Growney, E.; Nunez, L.; Kaminski, M.

    1998-12-04

    This progress report focuses on experimental and computational studies used to evaluate nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) for detecting, quantifying, and monitoring hydrogen and other magnetically active nuclei ({sup 3}H, {sup 3}He, {sup 239}Pu, {sup 241}Pu) in Spent nuclear fuels and packaging materials. The detection of moisture by using a toroid cavity NMR imager has been demonstrated in SiO{sub 2} and UO{sub 2} systems. The total moisture was quantified by means of {sup 1}H NMR detection of H{sub 2}O with a sensitivity of 100 ppm. In addition, an MRI technique that was used to determine the moisture distribution also enabled investigators to discriminate between bulk and stationary water sorbed on the particles. This imaging feature is unavailable in any other nondestructive assay (NDA) technique. Following the initial success of this program, the NMR detector volume was scaled up from the original design by a factor of 2000. The capacity of this detector exceeds the size specified by DOE-STD-3013-96.

  8. Nondestructive tests of regenerative chambers. [evaluating nondestructive methods of determining metal bond integrity

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Vecchies, L.; Wood, R.

    1974-01-01

    The capabilities and limitations of nondestructive evaluation methods were studied to detect and locate bond deficiencies in regeneratively cooled thrust chambers for rocket engines. Flat test panels and a cylinder were produced to simulate regeneratively cooled thrust chamber walls. Planned defects with various bond integrities were produced in the panels to evaluate the sensitivity, accuracy, and limitations of nondestructive methods to define and locate bond anomalies. Holography, acoustic emission, and ultrasonic scan were found to yield sufficient data to discern bond quality when used in combination and in selected sequences. Bonding techniques included electroforming and brazing. Materials of construction included electroformed nickel bonded to Nickel 200 and OFHC copper, electroformed copper bonded to OFHC copper, and 300 series stainless steel brazed to OFHC copper. Variations in outer wall strength, wall thickness, and defect size were evaluated for nondestructive test response.

  9. Method of passivating semiconductor surfaces

    DOEpatents

    Wanlass, M.W.

    1990-06-19

    A method is described for passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  10. Wireless passive radiation sensor

    DOEpatents

    Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G; Limmer, Steven J

    2013-12-03

    A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

  11. 46 CFR 151.03-38 - Nondestructive testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...Nondestructive testing includes ultrasonic examination, liquid penetrant examination, magnetic particle examination, radiographic examination, eddy current, and acoustic emission. [CGD 85-061, 54 FR 50965, Dec. 11,...

  12. FIRST 100 T NON-DESTRUCTIVE MAGNET

    SciTech Connect

    J. R. SIMS; ET AL

    1999-10-01

    The first 100 T non-destructive (100 T ND) magnet and power supplies as currently designed are described. This magnet will be installed as part of the user facility research equipment at the National High Magnetic Field Laboratory (NHMFL) Pulsed Field Facility at Los Alamos National Laboratory. The 100 T ND magnet will provide a 100 T pulsed field of 5 ms duration (above 90% of full field) in a 15 mm diameter bore once per hour. Magnet operation will be non-destructive. The magnet will consist of a controlled power outer coil set which produces a 47 T platform field in a 225 mm diameter bore. Located within the outer coil set will be a 220 mm outer diameter capacitor powered insert coil. Using inertial energy storage a synchronous motor/generator will provide ac power to a set of seven ac-dc converters rated at 64 MW/80 MVA each. These converters will energize three independent coil circuits to create 170 MJ of field energy in the outer coil set at the platform field of 47 T. The insert will then be energized to produce the balance of the 100 T peak field using a 2.3 MJ, 18 kV (charged to 15 kV), 14.4 mF capacitor bank controlled with solid-state switches. The magnet will be the first of its kind and the first non-destructive, reusable 100 T pulsed magnet. The operation of the magnet will be described along with special features of its design and construction.

  13. Nondestructive photolithography of conducting polymer structures

    NASA Astrophysics Data System (ADS)

    Chan, J. R.; Huang, X. Q.; Song, A. M.

    2006-01-01

    We have demonstrated a nondestructive method using ultraviolet (UV) photolithography to fabricate micrometer-sized conducting polymer structures. By coating a polymer film on patterned photoresist and then performing liftoff, UV exposure to the conducting polymer film was prevented throughout the lithography processes. We created features down to 1 ?m with high yield. Such complementary metal-oxide-semiconductor-compatible microfabrication can be applied generally to various organic films, and may allow the speed of organic electronics to be improved. Organic thin-film transistors (OTFTs) were fabricated using poly(3-hexylthiophene) as the active material, and typical OTFT characteristics were obtained.

  14. Automation for nondestructive inspection of aircraft

    NASA Technical Reports Server (NTRS)

    Siegel, M. W.

    1994-01-01

    We discuss the motivation and an architectural framework for using small mobile robots as automated aids to operators of nondestructive inspection (NDI) equipment. We review the need for aircraft skin inspection, and identify the constraints in commercial airlines operations that make small mobile robots the most attractive alternative for automated aids for NDI procedures. We describe the design and performance of the robot (ANDI) that we designed, built, and are testing for deployment of eddy current probes in prescribed commercial aircraft inspections. We discuss recent work aimed at also providing robotic aids for visual inspection.

  15. Quantitative nondestructive evaluation of materials and structures

    NASA Technical Reports Server (NTRS)

    Smith, Barry T.

    1991-01-01

    An experimental investigation was undertaken to quantify damage tolerance and resistance in composite materials impacted using the drop-weight method. Tests were conducted on laminates of several different carbon-fiber composite systems, such as epoxies, modified epoxies, and amorphous and semicrystalline thermoplastics. Impacted composite specimens were examined using destructive and non-destructive techniques to establish the characteristic damage states. Specifically, optical microscopy, ultrasonic, and scanning electron microscopy techniques were used to identify impact induced damage mechanisms. Damage propagation during post impact compression was also studied.

  16. Nondestructive measurement of environmental radioactive strontium

    NASA Astrophysics Data System (ADS)

    Saiba, Shuntaro; Okamiya, Tomohiro; Tanaka, Saki; Tanuma, Ryosuke; Totsuka, Yumi; Murata, Jiro

    2014-03-01

    The Fukushima Daiichi nuclear power plant accident was triggered by the 2011 Great East Japan Earthquake. The main radioactivity concerns after the accident are I-131 (half-life: 8.0 days), Cs-134 (2.1 years), Cs-137 (30 years), Sr-89 (51 days), and Sr-90 (29 years). We are aiming to establish a new nondestructive measurement and detection technique that will enable us to realize a quantitative evaluation of strontium radioactivity without chemical separation processing. This technique is needed to detect radiation contained in foods, environmental water, and soil, to prevent us from undesired internal exposure to radiation.

  17. Full depth profile of passive films on 316L stainless steel based on high resolution HAXPES in combination with ARXPS

    NASA Astrophysics Data System (ADS)

    Fredriksson, W.; Malmgren, S.; Gustafsson, T.; Gorgoi, M.; Edström, K.

    2012-05-01

    Depth profiles of the passive films on stainless steel were based on analysis with the non-destructive hard X-ray photoelectron spectroscopy (HAXPES) technique in combination with the angular resolved X-ray photoelectron spectroscopy (ARXPS). The analysis depth with ARXPS is within the passive film thickness, while the HAXPES technique uses higher excitation energies (between 2 and 12 keV) also non-destructively probing the chemical content underneath the film. Depth profiles were done within and underneath the passive film of 316L polarized in acidic solution. The passive film thickness was estimated to 2.6 nm for a sample that was polarized at 0.6 V and the main component in the passive film is, as expected, chromium. From the high resolution HAXPES spectra we suggest chromium in three different oxidation states present. Also for iron three oxides were detected. Gradients of chromium and iron concentrations and oxidation states within the film and an enrichment of nickel within a 0.5 nm layer directly underneath the passive film are some of the results discussed.

  18. Hood River Passive House

    SciTech Connect

    Hales, D.

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  19. Hood River Passive House

    SciTech Connect

    Hales, David

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  20. Passive control Carles Batlle

    E-print Network

    Batlle, Carles

    and Damping Assignment Passivity Based Control (IDA-PBC) Magnetic levitation system How to solve quasilinear, we can try to select Ja and Ra to make its solution easier #12;Magnetic levitation system u i ym g + 1 2m x2 3 - mgx2 magnetic co-energy expresed in energy variables (coincides with energy due

  1. Instrumentation, Nondestructive Testing, and Finite-Element Model Updating for Bridge

    E-print Network

    Hines, Eric

    Instrumentation, Nondestructive Testing, and Finite-Element Model Updating for Bridge Evaluation was developed for bridge management and calibration using nondestructive test data. The model calibration: Bridges; Superstructures; Full-scale tests; Field tests; Nondestructive tests; Strain; Measurement; Finite

  2. Industrialized passive: two case studies

    SciTech Connect

    Levy, M.E.; Winter, S.; Marks, R.; Gardstein, C.

    1980-01-01

    Modular homes present unique constraints to the incorporation of passive solar concepts. A series of passive soalr modular designs were developed. Two of the designs developed and slated for construction are described here. In particular those characteristics unique to the interface of passive solar design with modular home technology are discussed.

  3. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K. (Pleasanton, CA); Snyderman, Neal J. (Berkeley, CA); Rowland, Mark S. (Alamo, CA)

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  4. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K. (Pleasanton, CA); Snyderman, Neal J. (Berkeley, CA); Rowland, Mark S. (Alamo, CA)

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  5. Simulated Performance of the Integrated Passive Neutron Albedo Reactivity and Self-Interrogation Neutron Resonance Densitometry Detector Designed for Spent Fuel Measurement at the Fugen Reactor in Japan

    SciTech Connect

    Ulrich, Timothy J. II; Lafleur, Adrienne M.; Menlove, Howard O.; Swinhoe, Martyn T.; Tobin, Stephen J.; Seya, Michio; Bolind, Alan M.

    2012-07-16

    An integrated nondestructive assay instrument, which combined the Passive Neutron Albedo Reactivity (PNAR) and the Self-Interrogation Neutron Resonance Densitometry (SINRD) techniques, is the research focus for a collaborative effort between Los Alamos National Laboratory (LANL) and the Japanese Atomic Energy Agency as part of the Next Generation Safeguard Initiative. We will quantify the anticipated performance of this experimental system in two physical environments: (1) At LANL we will measure fresh Low Enriched Uranium (LEU) assemblies for which the average enrichment can be varied from 0.2% to 3.2% and for which Gd laced rods will be included. (2) At Fugen we will measure spent Mixed Oxide (MOX-B) and LEU spent fuel assemblies from the heavy water moderated Fugen reactor. The MOX-B assemblies will vary in burnup from {approx}3 GWd/tHM to {approx}20 GWd/tHM while the LEU assemblies ({approx}1.9% initial enrichment) will vary from {approx}2 GWd/tHM to {approx}7 GWd/tHM. The estimated count rates will be calculated using MCNPX. These preliminary results will help the finalization of the hardware design and also serve a guide for the experiment. The hardware of the detector is expected to be fabricated in 2012 with measurements expected to take place in 2012 and 2013. This work is supported by the Next Generation Safeguards Initiative, Office of Nuclear Safeguards and Security, National Nuclear Security Administration.

  6. Monte-Carlo Application for Nondestructive Nuclear Waste Analysis

    NASA Astrophysics Data System (ADS)

    Carasco, C.; Engels, R.; Frank, M.; Furletov, S.; Furletova, J.; Genreith, C.; Havenith, A.; Kemmerling, G.; Kettler, J.; Krings, T.; Ma, J.-L.; Mauerhofer, E.; Neike, D.; Payan, E.; Perot, B.; Rossbach, M.; Schitthelm, O.; Schumann, M.; Vasquez, R.

    2014-06-01

    Radioactive waste has to undergo a process of quality checking in order to check its conformance with national regulations prior to its transport, intermediate storage and final disposal. Within the quality checking of radioactive waste packages non-destructive assays are required to characterize their radio-toxic and chemo-toxic contents. The Institute of Energy and Climate Research - Nuclear Waste Management and Reactor Safety of the Forschungszentrum Jülich develops in the framework of cooperation nondestructive analytical techniques for the routine characterization of radioactive waste packages at industrial-scale. During the phase of research and development Monte Carlo techniques are used to simulate the transport of particle, especially photons, electrons and neutrons, through matter and to obtain the response of detection systems. The radiological characterization of low and intermediate level radioactive waste drums is performed by segmented ?-scanning (SGS). To precisely and accurately reconstruct the isotope specific activity content in waste drums by SGS measurement, an innovative method called SGSreco was developed. The Geant4 code was used to simulate the response of the collimated detection system for waste drums with different activity and matrix configurations. These simulations allow a far more detailed optimization, validation and benchmark of SGSreco, since the construction of test drums covering a broad range of activity and matrix properties is time consuming and cost intensive. The MEDINA (Multi Element Detection based on Instrumental Neutron Activation) test facility was developed to identify and quantify non-radioactive elements and substances in radioactive waste drums. MEDINA is based on prompt and delayed gamma neutron activation analysis (P&DGNAA) using a 14 MeV neutron generator. MCNP simulations were carried out to study the response of the MEDINA facility in terms of gamma spectra, time dependence of the neutron energy spectrum, neutron flux distribution. The validation of the measurements simulations with Mont-Carlo transport codes for the design, optimization and data analysis of further P&DGNAA facilities is performed in collaboration with LMN CEA Cadarache. The performance of the prompt gamma neutron activation analysis (PGNAA) for the nondestructive determination of actinides in small samples is investigated. The quantitative determination of actinides relies on the precise knowledge of partial neutron capture cross sections. Up to today these cross sections are not very accurate for analytical purpose. The goal of the TANDEM (Trans-uranium Actinides' Nuclear Data - Evaluation and Measurement) Collaboration is the evaluation of these cross sections. Cross sections are measured using prompt gamma activation analysis facilities in Budapest and Munich. Geant4 is used to optimally design the detection system with Compton suppression. Furthermore, for the evaluation of the cross sections it is strongly needed to correct the results to the self-attenuation of the prompt gammas within the sample. In the framework of cooperation RWTH Aachen University, Forschungszentrum Jülich and the Siemens AG will study the feasibility of a compact Neutron Imaging System for Radioactive waste Analysis (NISRA). The system is based on a 14 MeV neutron source and an advanced detector system (a-Si flat panel) linked to an exclusive converter/scintillator for fast neutrons. For shielding and radioprotection studies the codes MCNPX and Geant4 were used. The two codes were benchmarked in processing time and accuracy in the neutron and gamma fluxes. Also the detector response was simulated with Geant4 to optimize components of the system.

  7. Applications of aerospace technology in industry: A technology transfer profile, nondestructive testing

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of nondestructive testing procedures by NASA and the transfer of nondestructive testing to technology to civilian industry are discussed. The subjects presented are: (1) an overview of the nondestructive testing field, (2) NASA contributions to the field of nondestructive testing, (3) dissemination of NASA contributions, and (4) a transfer profile. Attachments are included which provide a brief description of common nondestructive testing methods and summarize the technology transfer reports involving NASA generated nondestructive testing technology.

  8. Nondestructive evaluation of thick concrete structures

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight A.

    2015-03-01

    Concrete has been used in the construction of nuclear power plants (NPPs) due to three primary properties: its low cost, structural strength, and ability to shield radiation. Examples of concrete structures important to the safety of Light Water Reactor (LWR) plants include the containment building, spent fuel pool, and cooling towers. Use in these structures has made concrete's long-term performance crucial for the safe operation of commercial NPPs. Extending LWR operating period to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. New mechanisms of materials degradation are also possible. This creates the need to be able to nondestructively evaluate the current subsurface concrete condition of aging concrete material in NPP structures. The size and complexity of NPP containment structures and heterogeneity of Portland cement concrete make characterization of the degradation extent a difficult task. Specially designed and fabricated test specimens can provide realistic flaws that are similar to actual flaws in terms of how they interact with a particular nondestructive evaluation (NDE) technique. Artificial test blocks allow the isolation of certain testing problems as well as the variation of certain parameters. Representative large heavily reinforced concrete specimens would allow for comparative testing to evaluate the state-of-the-art NDE in this area and to identify additional developments necessary to address the challenges potentially found in NPPs.

  9. Use of robotics in nondestructive inspection

    SciTech Connect

    Sartell, R.J.; Richards, W.J.

    1987-01-01

    Until very recently, nondestructive inspection of aircraft components at McClellan Air Force Base had been done in the traditional way. Ultrasonic inspections have been performed using hand-held equipment. X-ray inspections were performed using film radiography with the x-ray tubes being held on cradles, tripods, or suspended from pendant-operated or manual overhead crane-type fixtures. Implementation of advanced ultrasonic and real-time x-ray systems required that new equipment handling and parts handling methods be devised. Aircraft flight safety considerations demanded that neutron radiography be implemented as an inspection technique in order to find low levels of moisture and corrosion in the F-111 aircraft structure and aerodynamic surfaces. Traditional nondestructive inspection (NDI) methods require removal of suspect panels from the aircraft, including some panels that were not designed to be removed. The solution to these problems was to implement NDI systems that would allow inspection of intact aircraft. A new NDI facility especially designed for the latest in technology is under construction. It will house two large maneuverable x- and n-ray systems. The approx. 90-ft-span gantry robots will scan intact aircraft with real-time x-ray and near real-time n-ray systems. A unique floor/rail-mounted n-ray system will automatically inspect the F-111 aircraft engine bays.

  10. Nondestructive evaluation techniques for enhanced bridge inspection

    SciTech Connect

    Thomas, G.; Benson, S.; Durbin, P.; Del Grande, N.; Haskins, J.; Brown, A.; Schneberk, D.

    1993-10-01

    Nondestructive evaluation of bridges is a critical aspect in the US aging infrastructure problem. For example in California there are 26,000 bridges, 3000 are made of steel, and of the steel bridges, 1000 are fracture critical. California Department of Transportation (Caltrans), Federal Highway Administration, and Lawrence Livermore National Laboratory (LLNL) are collaborating to develop and field NDE techniques to improve bridge inspections. We have demonstrated our NDE technologies on several bridge inspection applications. An early collaboration was to ultrasonically evaluate the steel pins in the E-9 pier on the San Francisco Bay Bridge. Following the Loma-Prieta earthquake in 1989 and the road way collapse at the E-9 pier, a complete nondestructive evaluation was conducted by Caltrans inspectors and several ultrasonic indications were noted. LLNL worked with Caltrans to help identify the source of these reflections. Another project was to digitally enhance high energy radiographs of bridge components such as cable end caps. We demonstrated our ability to improve the detection of corrosion and fiber breakage inside the end cap. An extension of this technology is limited view computer tomography (CT). We implemented our limited view CT software and produced cross-sectional views of bridge cables from digitized radiographic films. Most recently, we are developing dual band infrared imaging techniques to assess bridge decks for delaminations. We have demonstrated the potential of our NDE technology for enhancing the inspection of the country`s aging bridges.

  11. Nondestructive Evaluation of Nuclear-Grade Graphite

    SciTech Connect

    Dennis C. Kunerth; Timothy R. McJunkin

    2011-07-01

    Nondestructive Evaluation of Nuclear Grade Graphite Dennis C. Kunerth and Timothy R. McJunkin Idaho National Laboratory Idaho Falls, ID, 83415 This paper discusses the nondestructive evaluation of nuclear grade graphite performed at the Idaho National Laboratory. Graphite is a composite material highly dependent on the base material and manufacturing methods. As a result, material variations are expected within individual billets as well billet to billet and lot to lot. Several methods of evaluating the material have been explored. Particular technologies each provide a subset of information about the material. This paper focuses on techniques that are applicable to in-service inspection of nuclear energy plant components. Eddy current examination of the available surfaces provides information on potential near surface structural defects and although limited, ultrasonics can be utilized in conventional volumetric inspection. Material condition (e.g. micro-cracking and porosity induced by radiation and stress) can be derived from backscatter or acousto-ultrasound (AU) methods. Novel approaches utilizing phased array ultrasonics have been attempted to expand the abilities of AU techniques. By combining variable placement of apertures, angle and depth of focus, the techniques provide the potential to obtain parameters at various depths in the material. Initial results of the study and possible procedures for application of the techniques are discussed.

  12. Nondestructive ultrasonic characterization of engineering materials

    NASA Technical Reports Server (NTRS)

    Salama, K.

    1985-01-01

    The development of an ultrasonic method for the nondestructive characterization of mechanical properties of engineering material is described. The method utilizes the nonlinearity parameter measurement which describes the anharmonic behavior of the solid through measurements of amplitudes of the fundamental and of the generated second harmonic ultrasonic waves. The nonlinearity parameter is also directly related to the acoustoelastic constant of the solid which can be determined by measuring the linear dependence of ultrasonic velocity on stress. A major advantage of measurements of the nonlinearity parameter over that of the acoustoelastic constant is that it may be determined without the application of stress on the material, which makes it more applicable for in-service nondestructive characterization. The relationships between the nonlinearity parameter of second-harmonic generation and the percentage of solid solution phase in engineering materials such as heat treatable aluminum alloys was established. The acoustoelastic constants are measured on these alloys for comparison and confirmation. A linear relationship between the nonlinearity parameter and the volume fraction of second phase precipitates in the alloys is indicated.

  13. Neutron measurement techniques for the nondestructive analysis of irradiated fuel assemblies

    SciTech Connect

    Phillips, J.R.; Bosler, G.E.; Halbig, J.K.; Klosterbuer, S.F.; Lee, D.M.; Menlove, H.O.

    1981-11-01

    Nondestructive measurement of the passive neutron signatures of irradiated light-water reactor fuel assemblies is a rapid and simple technique for verifying operator-declared exposure values. Fuel assemblies from four different reactor facilities have been measured to establish the functional relationship between the operator-declared exposure values and the experimentally measured neutron emission rates. Experimentally measured neutron emission rates of small fuel rod sections have been shown to agree with the predicted results from our calculational model. Destructive results for the actinide isotopes also agreed very well with our prediction. Neutron emission rates varied by 30 to 40% between opposite corners of the source fuel assembly. Symmetrical neutron detector systems that measure all sides simultaneously were evaluated.

  14. Passive Smoke Exposure and Circulating Carotenoids in the CARDIA Study

    PubMed Central

    Widome, Rachel; Jacobs, David R.; Hozawa, Atsushi; Sijtsma, Femke; Gross, Myron; Schreiner, Pamela J.; Iribarren, Carlos

    2010-01-01

    Background/Aims Our objective was to assess associations between passive smoke exposure in various venues and serum carotenoid concentrations. Methods CARDIA is an ongoing longitudinal study of the risk factors for subclinical and clinical cardiovascular disease. At baseline in 1985/1986, serum carotenoids were assayed and passive smoke exposure inside and outside of the home and diet were assessed by self-report. Our analytic sample consisted of 2,633 black and white non-smoking adults aged 18–30 years. Results Greater total passive smoke exposure was associated with lower levels of the sum of the three provitamin A carotenoids, ?-carotene, ?-carotene, and ?-cryptoxanthin (–0.048 nmol/l per hour of passive smoke exposure, p = 0.001), unassociated with lutein/zeaxanthin, and associated with higher levels of lycopene (0.027 nmol/l per hour of passive smoke exposure, p = 0.010) after adjustment for demographics, diet, lipid profile, and supplement use. Exposure in both home and non-home spaces was also associated with lower levels of the provitamin A carotenoid index. Conclusion Cross-sectionally, in 1985/86, passive smoke exposure in various venues was associated with reduced levels of provitamin A serum carotenoids. PMID:20110671

  15. Interval Methods in NonDestructive Testing of Material Structures

    E-print Network

    Kreinovich, Vladik

    Interval Methods in Non­Destructive Testing of Material Structures Keith Worden 1 ; Roberto at the early stage, when it is still possible to cure it. Several non­destructive testing techniques situations, e.g., in aerospace applications and in mammography, it is important to test the structural

  16. 46 CFR 98.25-97 - Nondestructive testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Nondestructive testing. 98.25-97 Section 98.25-97 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk § 98.25-97 Nondestructive testing....

  17. Optimal Source Control and Resolution in Nondestructive Testing

    E-print Network

    Cherkaev, Elena

    Optimal Source Control and Resolution in Nondestructive Testing Elena Cherkaeva Department on the amount of damaged material. Key words: nondestructive testing, generalized eigenvalue problem, res of damage detection arising in nondestruc­ tive testing. A conclusion about a presence of damage inside

  18. Monte Carlo calculations of the neutron coincidence gate utilisation factor for passive neutron coincidence counting

    NASA Astrophysics Data System (ADS)

    Bourva, L. C.-A.; Croft, S.

    1999-07-01

    The general purpose neutron-photon-electron Monte Carlo N-Particle code, MCNP TM, has been used to simulate the neutronic characteristics of the on-site laboratory passive neutron coincidence counter to be installed, under Euratom Safeguards Directorate supervision, at the Sellafield reprocessing plant in Cumbria, UK. This detector is part of a series of nondestructive assay instruments to be installed for the accurate determination of the plutonium content of nuclear materials. The present work focuses on one aspect of this task, namely, the accurate calculation of the coincidence gate utilisation factor. This parameter is an important term in the interpretative model used to analyse the passive neutron coincidence count data acquired using pulse train deconvolution electronics based on the shift register technique. It accounts for the limited proportion of neutrons detected within the time interval for which the electronics gate is open. The Monte Carlo code MCF, presented in this work, represents a new evaluation technique for the estimation of gate utilisation factors. It uses the die-away profile of a neutron coincidence chamber generated either by MCNP TM, or by other means, to simulate the neutron detection arrival time pattern originating from independent spontaneous fission events. A shift register simulation algorithm, embedded in the MCF code, then calculates the coincidence counts scored within the electronics gate. The gate utilisation factor is then deduced by dividing the coincidence counts obtained with that obtained in the same Monte Carlo run, but for an ideal detection system with a coincidence gate utilisation factor equal to unity. The MCF code has been benchmarked against analytical results calculated for both single and double exponential die-away profiles. These results are presented along with the development of the closed form algebraic expressions for the two cases. Results of this validity check showed very good agreement. On this basis, previously published analytical results for the double exponential case are thought to be in error. As derived analytically, the numerical calculations have been found to be both independent of the detector's efficiency and of the spontaneous fission neutron multiplicity distribution used in the Monte Carlo calculations. Extension of the MCF calculations to multiplicity counting, and in particular to triple coincidence counting, confirmed that, for a single exponential die-away profile, the triple gate utilisation factor is equal to the square of the real gate utilisation factor. For other profiles this relation no longer holds. An analytical expression is given for the case of a double exponential profile. Comparison of the MCF results with earlier calculated estimates of the gate utilisation factor for the on-site laboratory neutron coincidence chamber showed a significant difference. Use of the MCF results led to much better agreement between the observed and calculated specific reals coincidence rate of the on-site laboratory counter for the assay of plutonium samples. Moreover, the present work constitutes a further step towards the improvement of the accuracy of absolute Monte Carlo calculations for active or passive neutron measurements of nuclear materials.

  19. Hybrid chemical and nondestructive analysis technique

    SciTech Connect

    Hsue, S.T.; Marsh, S.F.; Marks, T.

    1983-01-01

    A hybrid chemical/NDA technique has been applied at the Los Alamos National Laboratory to the assay of plutonium in ion-exchange effluents. Typical effluent solutions contain low concentrations of plutonium and high concentrations of americium. A simple trioctylphosphine oxide (TOPO) separation can remove 99.9% of the americium. The organic phase that contains the separated plutonium can be accurately assayed by monitoring the uranium L x-ray intensities.

  20. Hybrid chemical and nondestructive-analysis technique

    SciTech Connect

    Hsue, S.T.; Marsh, S.F.; Marks, T.

    1982-01-01

    A hybrid chemical/NDA technique has been applied at the Los Alamos National Laboratory to the assay of plutonium in ion-exchange effluents. Typical effluent solutions contain low concentrations of plutonium and high concentrations of americium. A simple trioctylphosphine oxide (TOPO) separation can remove 99.9% of the americium. The organic phase that contains the separated plutonium can be accurately assayed by monitoring the uranium L x-ray intensities.

  1. DC Protein Assay Instruction

    E-print Network

    Lebendiker, Mario

    the addition of reagents. The assay is based on the reaction of protein with an alkaline copper tartrate: The reaction between protein and copper in an alkaline medium, and the subsequent reduction of Folin reagentDC Protein Assay Instruction Manual For Technical Service Call Your Local Bio-Rad Office

  2. Passivated niobium cavities

    DOEpatents

    Myneni, Ganapati Rao (Yorktown, VA); Hjorvarsson, Bjorgvin (Lagga Arby, SE); Ciovati, Gianluigi (Newport News, VA)

    2006-12-19

    A niobium cavity exhibiting high quality factors at high gradients is provided by treating a niobium cavity through a process comprising: 1) removing surface oxides by plasma etching or a similar process; 2) removing hydrogen or other gases absorbed in the bulk niobium by high temperature treatment of the cavity under ultra high vacuum to achieve hydrogen outgassing; and 3) assuring the long term chemical stability of the niobium cavity by applying a passivating layer of a superconducting material having a superconducting transition temperature higher than niobium thereby reducing losses from electron (cooper pair) scattering in the near surface region of the interior of the niobium cavity. According to a preferred embodiment, the passivating layer comprises niobium nitride (NbN) applied by reactive sputtering.

  3. The use of TI-208 gamma rays for safeguards, nondestructive-assay (NDA) measurements

    SciTech Connect

    Oberer, R. B.; Chiang, L. G.; Norris, M. J.; Gunn, C. A.; Adaline, B. C.

    2009-05-26

    This paper examines two cases where gamma rays from Tl-208, including the 2614keV gamma ray, were used to detect anomalies in waste material. In addition to the characterization of waste for waste acceptance, and compliance with environmental and transportation laws, there is a safeguards element as well. The more sophisticated method of NDA at Y-12 includes a means to detect shielded special nuclear material (SNM). Excess count rates in the 2614keV gamma ray from Tl-208 are an indication of potential shielded HEU in waste as well as other containers. The 2614keV gamma ray is easy to monitor routinely. When a large 2614keV peak is detected, further investigation can be conducted from the gamma spectrum. This paper describes this further investigation in two cases. In one case self-shielded HEU was detected. In the other case the Tl-208 gamma rays came from a piece of Th-232 metal.

  4. Total Measurement Uncertainty (TMU) for Nondestructive Assay of Transuranic (TRU) Waste at the WRAP Facility

    SciTech Connect

    WILLS, C.E.

    1999-12-06

    This report examines the contributing factors to NDA measurement uncertainty at WRAP. The significance of each factor on the TMU is analyzed, and a final method is given for determining the TMU for NDA measurements at WRAP. As more data becomes available, and WRAP gains in operational experience, this report will be reviewed semi-annually and updated as necessary.

  5. Total Measurement Uncertainty (TMU) for Nondestructive Assay of Transuranic (TRU) Waste at the WRAP Facility

    SciTech Connect

    WILLS, C.E.

    1999-09-20

    This report examines the contributing factors to NDA measurement uncertainty at WRAP. The significance of each factor on the TMU is analyzed, and a final method is given for determining the TMU for NDA measurements at WRAP. As more data becomes available, and WRAP gains in operational experience, this report will be reviewed semi-annually and updated as necessary.

  6. Total Measurement Uncertainty (TMU) for Nondestructive Assay of Transuranic (TRU) Waste at the WRAP Facility

    SciTech Connect

    WILLS, C.E.

    2000-01-06

    This report examines the contributing factors to NDA measurement uncertainty at WRAP The significance of each factor on the TMU is analyzed and a final method is given for determining the TMU for NDA measurements at WRAP. As more data becomes available and WRAP gains in operational experience this report will be reviewed semi annually and updated as necessary.

  7. Non-destructive assay of EBR-II blanket elements using resonance transmission analysis.

    SciTech Connect

    Klann, R.T.; Poenitz, W.P.

    1998-09-11

    Resonance transmission analysis utilizing a faltered reactor beam was examined as a means of determining the {sup 239}Pu content in Experimental Breeder Reactor-II depleted uranium blanket elements. The technique uses cadmium and gadolinium falters along with a {sup 239}Pu fission chamber to isolate the 0.3 eV resonance in {sup 239}Pu. In the energy range of this resonance (0.1 eV to 0.5 ev), the total microscopic cross-section of {sup 239}Pu is significantly greater than the cross-sections of {sup 238}U and {sup 235}U. This large difference allows small changes in the {sup 239}Pu content of a sample to result in large changes in the mass signal response. Tests with small stacks of depleted uranium and {sup 239}Pu foils indicate a significant change in response based on the {sup 239}Pu content of the foil stack. In addition, the tests indicate good agreement between the measured and predicted values of {sup 239}Pu up to approximately two weight percent.

  8. Non-destructive assay of mechanical components using gamma-rays and thermal neutrons

    SciTech Connect

    Souza, Erica Silvani; Avelino, Mila R.

    2013-05-06

    This work presents the results obtained in the inspection of several mechanical components through neutron and gamma-ray transmission radiography. The 4.46 Multiplication-Sign 10{sup 5} n.cm{sup -2}.s{sup -1} thermal neutron flux available at the main port of the Argonauta research reactor in Instituto de Engenharia Nuclear has been used as source for the neutron radiographic imaging. The 412 keV {gamma}-ray emitted by {sup 198}Au, also produced in that reactor, has been used as interrogation agent for the gamma radiography. Imaging Plates - IP specifically designed to operate with thermal neutrons or with X-rays have been employed as detectors and storage devices for each of these radiations.

  9. Passive fetal monitoring sensor

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (inventor); Hall, Earl T. (inventor); Baker, Donald A. (inventor); Bryant, Timothy D. (inventor)

    1992-01-01

    An ambulatory, passive sensor for use in a fetal monitoring system is discussed. The invention is comprised of a piezoelectric polymer film, combined with a metallic mounting plate fastened to a belt, and electrically connected to a signal processing unit by means of a shielded cable. The purpose of the sensor is to receive pressure pulses emitted by a fetus inside an expectant mother. Additionally, the monitor will filter out pressure pulses arising from other sources, such as the maternal heart.

  10. Rapid mercury assays

    SciTech Connect

    Szurdoki, S.; Kido, H.; Hammock, B.D.

    1996-10-01

    We have developed rapid assays with the potential of detecting mercury in environmental samples. our methods combine the simple ELISA-format with the selective, high affinity complexation of mercuric ions by sulfur-containing ligands. The first assay is based on a sandwich chelate formed by a protein-bound ligand immobilized on the wells of a microliter plate, mercuric ion of the analyzed sample, and another ligand conjugated to a reporter enzyme. The second assay involves competition between mercuric ions and an organomercury-conjugate to bind to a chelating conjugate. Several sulfur containing chelators (e.g., dithiocarbamates) and organomercurials linked to macromolecular carriers have been investigated in these assay formats. The assays detect mercuric ions in ppb/high ppt concentrations with high selectivity.

  11. Single-cell assays

    PubMed Central

    Ryan, Declan; Ren, Kangning; Wu, Hongkai

    2011-01-01

    This review presents an overview of literature that describes the applications of microfluidics to assay individual cells. We quantify the content of an individual mammalian cell, so that we can understand what criteria a single-cell assay must satisfy to be successful. We put in context the justification for single-cell assays and identify the characteristics that are relevant to single-cell assays. We review the literature from the past 24 months that describe the methods that use microfabrication—conventional or otherwise—and microfluidics in particular to study individual cells, and we present our views on how an increasing emphasis on three-dimensional cell culture and the demonstration of the first chemically defined cell might impact single-cell assays. PMID:21559238

  12. NONDESTRUCTIVE EVALUATION OF CERAMIC CANDLE FILTERS

    SciTech Connect

    Roger H.L. Chen, Ph.D.; Alejandro Kiriakidis

    1999-09-01

    Nondestructive evaluation (NDE) techniques have been used to reduce the potential mechanical failures and to improve the reliability of a structure. Failure of a structure is usually initiated at some type of flaw in the material. NDE techniques have been developed to determine the presence of flaws larger than an acceptable size and to estimate the remaining stiffness of a damaged structure (Chen, et. al, 1995). Ceramic candle filters have been tested for use in coal-fueled gas turbine systems. They protect gas turbine components from damage due to erosion. A total of one hundred and one candle filters were nondestructively evaluated in this study. Ninety-eight ceramic candle filters and three ceramic composite filters have been nondestructively inspected using dynamic characterization technique. These ceramic filters include twelve unused Coors alumina/mullite, twenty-four unused and fifteen used Schumacher-Dia-Schumalith TF-20, twenty-five unused and nine used Refractron 326, eight unused and three used Refractron 442T, one new Schumacher-T 10-20, and one used Schumacher-Dia-Schumalith F-40. All filters were subjected to a small excitation and the dynamic response was picked up by a piezoelectric accelerometer. The evaluation of experimental results was processed using digital signal analysis technique including various forms of data transformation. The modal parameters for damage assessment for the unexposed (unused) vs. exposed (used) specimen were based on two vibration parameters: natural frequencies and mode shapes. Finite Element models were built for each specimen type to understand its dynamic response. Linear elastic modal analysis was performed using eight nodes, three-dimensional isotropic solid elements. Conclusions based on our study indicate that dynamic characterization is a feasible NDE technique in studying structural properties of ceramic candle filters. It has been shown that the degradation of the filters due to long working hours (or excessive back pulsing conditions and high temperature transient) could be reflected from the shift of vibration frequencies. These shifts are due to changes in structural properties such as stiffness, which are directly related to the Young's modulus of the candle filters. Further studies are necessary in implementing and verifying the applicability of dynamic NDE characterization methods for actual in-situ conditions, and in establishing a systematic testing procedure for field applications. Also investigations on the filter's natural frequency due to the effect of dust cake or due to the change of boundary conditions may provide insight as to how the filter will perform in the field.

  13. CPTAC Assay Portal: a repository of targeted proteomic assays

    SciTech Connect

    Whiteaker, Jeffrey R.; Halusa, Goran; Hoofnagle, Andrew N.; Sharma, Vagisha; MacLean, Brendan; Yan, Ping; Wrobel, John; Kennedy, Jacob; Mani, DR; Zimmerman, Lisa J.; Meyer, Matthew R.; Mesri, Mehdi; Rodriguez, Henry; Abbateillo, Susan E.; Boja, Emily; Carr, Steven A.; Chan, Daniel W.; Chen, Xian; Chen, Jing; Davies, Sherri; Ellis, Matthew; Fenyo, David; Hiltket, Tara; Ketchum, Karen; Kinsinger, Christopher; Kuhn, Eric; Liebler, Daniel; Lin, De; Liu, Tao; Loss, Michael; MacCoss, Michael; Qian, Weijun; Rivers, Robert; Rodland, Karin D.; Ruggles, Kelly; Scott, Mitchell; Smith, Richard D.; Thomas, Stefani N.; Townsend, Reid; Whiteley, Gordon; Wu, Chaochao; Zhang, Hui; Zhang, Zhen; Paulovich, Amanda G.

    2014-06-27

    To address these issues, the Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute (NCI) has launched an Assay Portal (http://assays.cancer.gov) to serve as a public repository of well-characterized quantitative, MS-based, targeted proteomic assays. The purpose of the CPTAC Assay Portal is to facilitate widespread adoption of targeted MS assays by disseminating SOPs, reagents, and assay characterization data for highly characterized assays. A primary aim of the NCI-supported portal is to bring together clinicians or biologists and analytical chemists to answer hypothesis-driven questions using targeted, MS-based assays. Assay content is easily accessed through queries and filters, enabling investigators to find assays to proteins relevant to their areas of interest. Detailed characterization data are available for each assay, enabling researchers to evaluate assay performance prior to launching the assay in their own laboratory.

  14. Preliminary nondestructive evaluation manual for the space shuttle. [preliminary nondestructive evaluation

    NASA Technical Reports Server (NTRS)

    Pless, W. M.

    1974-01-01

    Nondestructive evaluation (NDE) requirements are presented for some 134 potential fracture-critical structural areas identified, for the entire space shuttle vehicle system, as those possibly needing inspection during refurbishment/turnaround and prelaunch operations. The requirements include critical area and defect descriptions, access factors, recommended NDE techniques, and descriptive artwork. Requirements discussed include: Orbiter structure, external tank, solid rocket booster, and thermal protection system (development area).

  15. Projection Registration Applied to Nondestructive Testing

    SciTech Connect

    Bingham, Philip R; Arrowood, Lloyd

    2010-01-01

    Registration of radiographic and computed tomography (CT) data has the potential to allow automated metrology and defect detection. While registration of the three-dimensional reconstructed data is a common task in the medical industry for registration of data sets from multiple detection systems, registration of projection sets has only seen development in the area of tomotherapy. Efforts in projection registration have employed a method named Fourier phase matching (FPM). This work discusses implementation and results for the application of the FPM method to industrial applications for the nondestructive testing (NDT) community. The FPM method has been implemented and modified for industrial application. Testing with simulated and experimental x-ray CT data shows excellent performance with respect to the resolution of the imaging system.

  16. Thermographic nondestructive evaluation: overview of recent progress

    NASA Astrophysics Data System (ADS)

    Ibarra-Castanedo, Clemente; Galmiche, Francois; Darabi, Akbar; Pilla, Mariacristina; Klein, Matthieu; Ziadi, Adel; Vallerand, Steve; Pelletier, Jean-François; Maldague, Xavier P.

    2003-04-01

    This paper presents a summary of recent research activities carried out at our laboratory in the field of Infrared Thermography for Nondestructive Evaluation (TNDE). First, we explore the latest developments in signal improvement. We describe three approaches: multiple pulse stimulation; the use of Synthetic Data for de-noising of the signal; and a new approach derived from the Fourier diffusion equation called the Differentiated Absolute Contrast method (DAC). Secondly, we examine the advances carried out in inverse solutions. We describe the use of the Wavelet Transform to manage pulsed thermographic data, and we present a summary on Neural Networks for TNDE. Finally, we look at the problem of complex geometry inspection. In this case, due to surface shape, heat variations might be incorrectly identified as flaws. We describe the Shape-from-Heating approach and we propose some potential research avenues to deal with this problem.

  17. Problems associated with nondestructive evaluation of bridges

    NASA Astrophysics Data System (ADS)

    Prine, David W.

    1995-05-01

    The US has 542,000 bridges that consume billions of dollars per year in construction, rehabilitation, and maintenance funds and which are the lifelines of US commerce. The 1992 ISTEA (Intermodal Surface Transportation Efficiency Act) mandates the implementation of a quantitative computerized bridge management system by 1996. A prime need of such a system are quantitative bridge inspection methods to feed accurate reliable condition information to the huge database of bridges. Nondestructive evaluation (NDE) will fill a critical need in the implementation of effective bridge management. However, many serious barriers exist to the widespread routine application of this technology to bridges. This paper provides an overview of the typical problems associated with applying NDE to bridges.

  18. Non-destructive evaluation of composites

    NASA Technical Reports Server (NTRS)

    Chu, Tsuchin Philip

    1996-01-01

    The composite materials have been used in aerospace industries for quite some time. Several non-destructive evaluation (NDE) methods have been developed to inspect composites in order to detect flaws, matrix cracking, and delamination. These methods include ultrasonics, acoustic emission, shearography, thermography, X-ray, and digital image correlation. The NDE Branch of Marshall Space Flight Center has recently acquired a thermal imaging NDE system. The same system has been used at NASA Langley Research Center for detecting disbonds. In order to compare different NDE methods, three carbon/carbon composite panels were used for experiment using ultrasonic C-scan, shearography, and thermography methods. These panels have teflon inserts to simulate the delamination between plies in a composite panel. All three methods have successfully located the insert. The experiment and results are presented in the following sections.

  19. Nondestructive Evaluation of Trunnion Bearing Pins

    NASA Astrophysics Data System (ADS)

    Story, B.; Fry, G. T.; Hurlebaus, S.

    2010-02-01

    Currently, there are several issues plaguing the bridge infrastructure in the United States. These structures are aging and reaching the end of their original design life while simultaneously experiencing increases in train speed, axle load, and train length. As a result of reaching the end of their original design lives, special attention must be given to evaluate the effects of deterioration such as corrosion and fatigue. This research project investigates the integrity of trunnion bearing pins using ultrasonic techniques that (1) minimize disassembling of the bearing, (2) minimize the lock time of the bridge, and (3) are nondestructive. The proposed technique uses an ultrasonic probe to inspect the bearing pin from the center hole as well as an ultrasonic transducer to inspect the pins from their faces. The results of this project show that the proposed method is capable of detecting discontinuities in the bearing pin such as the keyholes.

  20. [Evaluation of walnut by terahertz nondestructive technology].

    PubMed

    Qi, Shu-Ye; Zhang, Zhen-Wei; Zhao, Kun; Han, Dong-Hai

    2012-12-01

    The deterioration and shell thickness of walnut were studied using the terahertz time domain spectroscopy. Firstly, the THz spectra of moth-eaten, moldy and normal walnuts were compared, and the bad walnuts were properly rejected due to the differences of absorption peaks. Secondly, the transmission-type and reflection-type terahertz time domain spectroscopy system was used simultaneously, and a new formula to calculate shell thickness of walnut was built in the THz system. Then the authors measured the shell thickness based on the detectable refractive index of walnut, and the relative error was 3.7%. Consequently, the quality of walnut was evaluated nondestructively according to physical and chemical indicators from walnut THz spectra respectively. PMID:23427574

  1. Quantitative nondestructive evaluation: Requirements for tomorrow's reliability

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.

    1991-01-01

    Quantitative Nondestructive Evaluation (QNDE) is the technology of measurement, analysis, and prediction of the state of material/structural systems for safety, reliability, and mission assurance. QNDE has impact on everyday life from the cars we drive, the planes we fly, the buildings we work or live in, literally to the infrastructure of our world. Here, researchers highlight some of the new sciences and technologies that are part of a safer, cost effective tomorrow. Specific technologies that are discussed are thermal QNDE of aircraft structural integrity, ultrasonic QNDE for materials characterization, and technology spinoffs from aerospace to the medical sector. In each case, examples are given of how new requirements result in enabling measurement technologies, which in turn change the boundaries of design/practice.

  2. Non-destructive evaluation of composites

    SciTech Connect

    Chu, T.P.

    1996-02-01

    The composite materials have been used in aerospace industries for quite some time. Several non-destructive evaluation (NDE) methods have been developed to inspect composites in order to detect flaws, matrix cracking, and delamination. These methods include ultrasonics, acoustic emission, shearography, thermography, X-ray, and digital image correlation. The NDE Branch of Marshall Space Flight Center has recently acquired a thermal imaging NDE system. The same system has been used at NASA Langley Research Center for detecting disbonds. In order to compare different NDE methods, three carbon/carbon composite panels were used for experiment using ultrasonic C-scan, shearography, and thermography methods. These panels have teflon inserts to simulate the delamination between plies in a composite panel. All three methods have successfully located the insert.

  3. Non-destructive testing method and apparatus

    DOEpatents

    Akers, Douglas W. (Idaho Falls, ID)

    2011-10-04

    Non-destructive testing apparatus may comprise a photon source and a source material that emits positrons in response to bombardment of the source material with photons. The source material is positionable adjacent the photon source and a specimen so that when the source material is positioned adjacent the photon source it is exposed to photons produced thereby. When the source material is positioned adjacent the specimen, the specimen is exposed to at least some of the positrons emitted by the source material. A detector system positioned adjacent the specimen detects annihilation gamma rays emitted by the specimen. Another embodiment comprises a neutron source and a source material that emits positrons in response to neutron bombardment.

  4. Nondestructive evaluation of nuclear-grade graphite

    SciTech Connect

    Kunerth, D. C.; McJunkin, T. R.

    2012-05-17

    The material of choice for the core of the high-temperature gas-cooled reactors being developed by the U.S. Department of Energy's Next Generation Nuclear Plant Program is graphite. Graphite is a composite material whose properties are highly dependent on the base material and manufacturing methods. In addition to the material variations intrinsic to the manufacturing process, graphite will also undergo changes in material properties resulting from radiation damage and possible oxidation within the reactor. Idaho National Laboratory is presently evaluating the viability of conventional nondestructive evaluation techniques to characterize the material variations inherent to manufacturing and in-service degradation. Approaches of interest include x-ray radiography, eddy currents, and ultrasonics.

  5. Nondestructive evaluation of fatigue in titanium alloys

    SciTech Connect

    Roesner, H.; Meyendorf, N.; Sathish, S.; Matikas, T.E.

    2000-07-01

    Dissipated heat has been measured by thermographic technique during fatigue experiments on Ti-6Al-4V. Surface temperature of the specimen was found sensitive to the amount of fatigue damage accumulated in the material. An increased heat dissipation due to fatigue can be related to continuous change in the microstructure (increased dislocation density, stacking faults, etc.) of the material. A method based on passive thermography can be proposed to monitor damage accumulation in Ti-6Al-4V due to cyclic loading.

  6. Infrared thermography standards for nondestructive testing

    SciTech Connect

    Bruening, R.; Mordfin, L.

    1994-12-31

    Although infrared thermography is a well developed technology, its applications to nondestructive testing (NDT) are only now beginning to approach maturity. The efforts of many to have infrared thermography recognized by the NDT community, as a powerful and reliable tool for the inspection of materials, structures, and assemblies, has been inhibited by the absence of recognized standards for the method. The unavailability of standard test methods, standard practices, and even a standard terminology, has undoubtedly been responsible, to some extent, for the fact that neither the American national standard for the qualification and certification of NDT personnel, nor the comparable ISO standard, include infrared thermography among the recognized NDT methods. To remedy this situation, a group of infrared and nondestructive testing professionals initiated an ASTM activity to develop consensus standards relating to thermal imaging equipment and test methods. The first project undertaken by the group was directed toward standard test methods for evaluating those performance characteristics of thermal imaging systems that are important for NDT applications. The first part of this project was a study, sponsored by the National Institute of Standards and Technology, to define the performance criteria of thermal imaging systems that are important for NDT applications. This study resulted in a paper presented at Thermosense VI, in which three such criteria were identified. Through the sustained efforts of the ASTM task group, standard test methods have now been promulgated for evaluating each of these characteristics in terms meaningful to the NDT community. The three Standard Test Methods developed so far are: (1) The Minimum Detectable Temperature Difference for Thermal Imaging Systems, (2) The Minimum Resolvable Temperature Difference for Thermal Imaging Systems, and (3) The Noise Equivalent Temperature Difference of Thermal Imaging Systems.

  7. Fundamental studies of passivity and passivity breakdown. Final report

    SciTech Connect

    Macdonald, D.D.; Urquidi-Macdonald, M.; Song, H.; Biaggio-Rocha, S.; Searson, P.

    1991-11-01

    This report summarizes the findings of our fundamental research program on passivity and passivity breakdown. During the past three and one half years in this program (including the three year incrementally-funded grant prior to the present grant), we developed and experimentally tested various physical models for the growth and breakdown of passive films on metal surfaces. These models belong to a general class termed ``point defects models`` (PDMs), in which the growth and breakdown of passive films are described in terms of the movement of anion and cation vacancies.

  8. Nondestructive evaluation of composite materials - A design philosophy

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Henneke, E. G., II; Stinchcomb, W. W.; Reifsnider, K. L.

    1984-01-01

    Efficient and reliable structural design utilizing fiber reinforced composite materials may only be accomplished if the materials used may be nondestructively evaluated. There are two major reasons for this requirement: (1) composite materials are formed at the time the structure is fabricated and (2) at practical strain levels damage, changes in the condition of the material, that influence the structure's mechanical performance is present. The fundamental basis of such a nondestructive evaluation capability is presented. A discussion of means of assessing nondestructively the material condition as well as a damage mechanics theory that interprets the material condition in terms of its influence on the mechanical response, stiffness, strength and life is provided.

  9. HUMAN HEALTH EFFECTS ASSAYS

    EPA Science Inventory

    The use of assays to evaluate and assist in predicting potentially adverse human health effects associated with exposure to pollutants in water (that is, municipal wastewater, sewage sludge, ambient water, and drinking water) is the focus of this review.

  10. Passive Immunization Against Poliomyelitis

    PubMed Central

    Rinaldo, Charles R.

    2005-01-01

    Poliomyelitis has gone from being one of the worst scourges of the 20th century to nearing eradication in the 21st. This success is well known to be attributable to the Salk inactivated and Sabin attenuated poliovirus vaccines. However, before introduction of these vaccines, William McDowall Hammon of the University of Pittsburgh Graduate School of Public Health led the first major breakthrough in prevention of the disease by using passive immunization in one of the earliest double-blind, placebo-controlled clinical trials. This study provided the first evidence that antibodies to poliovirus could prevent the disease in humans. PMID:15855454

  11. Doped colorimetric assay liposomes

    DOEpatents

    Charych, Deborah (Albany, CA); Stevens, Raymond C. (Albany, CA)

    2001-01-01

    The present invention provides compositions comprising colorimetric assay liposomes. The present invention also provides methods for producing colorimetric liposomes and calorimetric liposome assay systems. In preferred embodiments, these calorimetric liposome systems provide high levels of sensitivity through the use of dopant molecules. As these dopants allow the controlled destabilization of the liposome structure, upon exposure of the doped liposomes to analyte(s) of interest, the indicator color change is facilitated and more easily recognized.

  12. 46 CFR 38.25-3 - Nondestructive testing-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Nondestructive testing-TB/ALL. 38.25-3 Section 38.25-3... and Inspections § 38.25-3 Nondestructive testing—TB/ALL. (a) Before nondestructive testing may be...; and (2) Nondestructive testing is performed by personnel meeting ASNT “Recommended Practice No....

  13. 46 CFR 38.25-3 - Nondestructive testing-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Nondestructive testing-TB/ALL. 38.25-3 Section 38.25-3... and Inspections § 38.25-3 Nondestructive testing—TB/ALL. (a) Before nondestructive testing may be...; and (2) Nondestructive testing is performed by personnel meeting ASNT “Recommended Practice No....

  14. 46 CFR 38.25-3 - Nondestructive testing-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Nondestructive testing-TB/ALL. 38.25-3 Section 38.25-3... and Inspections § 38.25-3 Nondestructive testing—TB/ALL. (a) Before nondestructive testing may be...; and (2) Nondestructive testing is performed by personnel meeting ASNT “Recommended Practice No....

  15. 46 CFR 38.25-3 - Nondestructive testing-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Nondestructive testing-TB/ALL. 38.25-3 Section 38.25-3... and Inspections § 38.25-3 Nondestructive testing—TB/ALL. (a) Before nondestructive testing may be...; and (2) Nondestructive testing is performed by personnel meeting ASNT “Recommended Practice No....

  16. 46 CFR 38.25-3 - Nondestructive testing-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Nondestructive testing-TB/ALL. 38.25-3 Section 38.25-3... and Inspections § 38.25-3 Nondestructive testing—TB/ALL. (a) Before nondestructive testing may be...; and (2) Nondestructive testing is performed by personnel meeting ASNT “Recommended Practice No....

  17. Passive-solar construction handbook

    SciTech Connect

    Levy, E.; Evans, D.; Gardstein, C.

    1981-02-01

    Many of the basic elements of passive solar design are reviewed. Passive solar construction is covered according to system type, each system type discussion including a general discussion of the important design and construction issues which apply to the particular system and case studies illustrating designed and built examples of the system type. The three basic types of passive solar systems discussed are direct gain, thermal storage wall, and attached sunspace. Thermal performance and construction information is presented for typical materials used in passive solar collector components, storage components, and control components. Appended are an overview of analysis methods and a technique for estimating performance. (LEW)

  18. Passive films on magnesium anodes in primary batteries

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.

    1988-01-01

    The characteristics of the passive films over Mg anodes, which essentially govern the voltage delay of the latter, have been determined nondestructively from an analysis of the transient and steady-state response of the electrode potential to low amplitude galvanostatic polarization under various experimental conditions viz., with different corrosion inhibitor coatings on Mg, after various periods of ageing of anode in solutions containing corrosion inhibitors, at various low temperatures etc. Using these parameters, the kinetics of film build-up or dissolution under these conditions have been monitored. The morphology of the anode film has been verified with scanning electron microscopy. Similar transients at low temperatures point out a steep rise in the film resistivity which is essentially responsible for the severe voltage delay. Finally, possible application of this technique in secondary Li batteries to improve cycling characteristics of the Li anode has been pointed out.

  19. Mechanical passive logic module

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanay; Caulfield, H. John

    2015-02-01

    Nothing from nothing gives simple simile, but something from nothing is an interesting and challenging task. Adolf Lohmann once proposed 'do nothing machine' in optics, which only copies input to output. Passive logic module (PALM) is a special type of 'do nothing machine' which can converts inputs into one of 16 possible binary outputs. This logic module is not like the conventional irreversible one. It is a simple type of reversible Turing machine. In this manuscript we discussed and demonstrated PALM using mechanical movement of plane mirrors. Also we discussed the theoretical model of micro electro mechanical system (MEMS) based PALM in this manuscript. It may have several valuable properties such as passive operation (no need for nonlinear elements as other logic device require) and modular logic (one device implementing any Boolean logic function with simple internal changes). The result is obtained from the demonstration by only looking up the output. No calculation is required to get the result. Not only that, PALM is a simple type of the famous 'billiard ball machine', which also discussed in this manuscript.

  20. Fly ash carbon passivation

    DOEpatents

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  1. 46 CFR 151.04-7 - Nondestructive testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...04-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Inspection and Certification § 151.04-7 Nondestructive...

  2. Nondestructive evaluation of composite rods using ultrasonic wave propagation

    E-print Network

    Pharr, Vanea R. (Vanea Ryann)

    2015-01-01

    Nondestructive Evaluation (NDE) is a branch of applied science that is concerned with assessing the properties and serviceability of materials and structures without causing collateral damage or depreciation. This study ...

  3. Non-Destructive Classification Approaches for Equilibrated Ordinary Chondrites

    NASA Astrophysics Data System (ADS)

    Righter, K.; Harrington, R.; Schroeder, C.; Morris, R. V.

    2013-09-01

    In order to compare a few non-destructive classification techniques with the standard approaches, we have characterized a group of chondrites from the Larkman Nunatak region using magnetic susceptibility and Mössbauer spectroscopy.

  4. NON-DESTRUCTIVE TESTING METHODS FOR GEOTHERMAL PIPING.

    SciTech Connect

    BERNDT,M.L.

    2001-03-23

    Non-destructive testing is a key component of optimized plant inspection and maintenance programs. Risk based inspection, condition based maintenance and reliability centered maintenance systems all require detection, location and sizing of defects or flaws by non-destructive methods. Internal damage of geothermal piping by corrosion and erosion-corrosion is an ongoing problem requiring inspection and subsequent maintenance decisions to ensure safe and reliable performance. Conventional manual ultrasonic testing to determine remaining wall thickness has major limitations, particularly when damage is of a random and localized nature. Therefore, it is necessary to explore alternative non-destructive methods that offer potential benefits in terms of accurate quantification of size, shape and location of damage, probability of detection, ability to use on-line over long ranges, and economics. A review of non-destructive methods and their applicability to geothermal piping was performed. Based on this, ongoing research will concentrate on long range guided wave and dynamic methods.

  5. Automatic system nondestructively monitors and records fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Hoppe, F.; Inman, N. S.

    1968-01-01

    Ultrasonic reflection system automatically and nondestructively detects and records the propagation of fatigue cracks in test specimens undergoing fatigue cycling. A reflector plate obtains a reference signal and monitors the location of the tip of a propagating fatigue crack.

  6. Partially Nondestructive Continuous Detection of Individual Traveling Optical Photons

    E-print Network

    Mahdi Hosseini; Kristin M. Beck; Yiheng Duan; Wenlan Chen; Vladan Vuleti?

    2015-11-25

    We report the continuous and partially nondestructive measurement of optical photons. For a weak light pulse traveling through a slow-light optical medium (signal), the associated atomic-excitation component is detected by another light beam (probe) with the aid of an optical cavity. We observe strong correlations of $g^{(2)}_{sp}=4.4(5)$ between the transmitted signal and probe photons. The observed (intrinsic) conditional nondestructive quantum efficiency ranges between 13% and 1% (65% and 5%) for a signal transmission range of 2% to 35%, at a typical time resolution of 2.5 $\\mu$s. The maximal observed (intrinsic) device nondestructive quantum efficiency, defined as the product of the conditional nondestructive quantum efficiency and the signal transmission, is 0.5% (2.4%). The normalized cross-correlation function violates the Cauchy-Schwarz inequality, confirming the non-classical character of the correlations.

  7. Ultrasonic recording scanner used for nondestructive weld inspection

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Portable ultrasonic recording scanner is used for nondestructive inspection of welds. It is adaptable to continuous operation in one direction while maintaining oscillatory motion at a right angle to this direction. The scanning speed and oscillation frequency are independently adjustable.

  8. Nondestructive testing using stress waves: wave propagation in layered media 

    E-print Network

    Ortega, Jose Alberto

    2013-02-22

    The use of stress waves in several civil engineering applications such as nondestructive testing of soil deposits or pavement systems has become extremely popular over the last few years. In all cases, a dynamic impulse is applied to the surface...

  9. Ultrasonic Nondestructive Characterization of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Qu, Jianmin

    1999-01-01

    Adhesives and adhesive joints are widely used in various industrial applications to reduce weight and costs, and to increase reliability. For example, advances in aerospace technology have been made possible, in part, through the use of lightweight materials and weight-saving structural designs. Joints, in particular, have been and continue to be areas in which weight can be trimmed from an airframe through the use of novel attachment techniques. In order to save weight over traditional riveted designs, to avoid the introduction of stress concentrations associated with rivet holes, and to take full advantage of advanced composite materials, engineers and designers have been specifying an ever-increasing number of adhesively bonded joints for use on airframes. Nondestructive characterization for quality control and remaining life prediction has been a key enabling technology for the effective use of adhesive joints. Conventional linear ultrasonic techniques generally can only detect flaws (delamination, cracks, voids, etc) in the joint assembly. However, more important to structural reliability is the bond strength. Although strength, in principle, cannot be measured nondestructively, a slight change in material nonlinearity may indicate the onset of failure. Furthermore, microstructural variations due to aging or under-curing may also cause changes in the third order elastic constants, which are related to the ultrasonic nonlinear parameter of the polymer adhesive. It is therefore reasonable to anticipate a correlation between changes in the ultrasonic nonlinear acoustic parameter and the remaining bond strength. It has been observed that higher harmonics of the fundamental frequency are generated when an ultrasonic wave passes through a nonlinear material. It seems that such nonlinearity can be effectively used to characterize bond strength. Several theories have been developed to model this nonlinear effect. Based on a microscopic description of the nonlinear interface binding force, a quantitative method was presented. Recently, a comparison between the experimental and simulated results based on a similar theoretical model was presented. A through-transmission setup for water immersion mode-converted shear waves was used to analyze the ultrasonic nonlinear parameter of an adhesive bond. In addition, ultrasonic guided waves have been used to analyze adhesive or diffusion bonded joints. In this paper, the ultrasonic nonlinear parameter is used to characterize the curing state of a polymer/aluminum adhesive joint. Ultrasonic through-transmission tests were conducted on samples cured under various conditions. The magnitude of the second order harmonic was measured and the corresponding ultrasonic nonlinear parameter was evaluated. A fairly good correlation between the curing condition and the nonlinear parameter is observed. The results show that the nonlinear parameter might be used as a good indicator of the cure state for adhesive joints.

  10. Advanced Instrumentation, Information, and Control System Technologies: Nondestructive Examination Technologies - FY11 Report

    SciTech Connect

    Meyer, Ryan M.; Coble, Jamie B.; Ramuhalli, Pradeep; Bond, Leonard J.

    2011-08-30

    Licensees of commercial nuclear power plants in the US are expected to submit license renewal applications for the period of operation of 60 to 80 years which has also been referred to as long term operation (LTO). The greatest challenges to LTO are associated with degradation of passive components as active components are routinely maintained and repaired or placed through maintenance programs. Some passive component degradation concerns include stress corrosion cracking (SCC) of metal components, radiation induced embrittlement of the reactor pressure vessel (RPV), degradation of buried piping, degradation of concrete containment structures, and degradation of cables. Proactive management of passive component aging employs three important elements including online monitoring of degradation, early detection of degradation at precursor stages, and application of prognostics for the prediction of remaining useful life (RUL). This document assesses several nondestructive examination (NDE) measurement technologies for integration into proactive aging management programs. The assessment is performed by discussing the three elements of proactive aging management identified above, considering the current state of the industry with respect to adopting these key elements, and analyzing measurement technologies for monitoring large cracks in metal components, monitoring early degradation at precursor stages, monitoring the degradation of concrete containment structures, and monitoring the degradation of cables. Specific and general needs have been identified through this assessment. General needs identified include the need for environmentally rugged sensors are needed that can operate reliably in an operating reactor environment, the need to identify parameters from precursor monitoring technologies that are unambiguously correlated with the level of pre-macro defect damage, and a methodology for identifying regions where precursor damage is most likely to initiate.

  11. Gamma neutron assay method and apparatus

    DOEpatents

    Cole, Jerald D. (Idaho Falls, ID); Aryaeinejad, Rahmat (Idaho Falls, ID); Greenwood, Reginald C. (Idaho Falls, ID)

    1995-01-01

    The gamma neutron assay technique is an alternative method to standard safeguards techniques for the identification and assaying of special nuclear materials in a field or laboratory environment, as a tool for dismantlement and destruction of nuclear weapons, and to determine the isotopic ratios for a blend-down program on uranium. It is capable of determining the isotopic ratios of fissionable material from the spontaneous or induced fission of a sample to within approximately 0.5%. This is based upon the prompt coincidence relationships that occur in the fission process and the proton conservation and quasi-conservation of nuclear mass (A) that exists between the two fission fragments. The system is used in both passive (without an external neutron source and active (with an external neutron source) mode. The apparatus consists of an array of neutron and gamma-ray detectors electronically connected to determine coincident events. The method can also be used to assay radioactive waste which contains fissile material, even in the presence of a high background radiation field.

  12. Gamma neutron assay method and apparatus

    DOEpatents

    Cole, J.D.; Aryaeinejad, R.; Greenwood, R.C.

    1995-01-03

    The gamma neutron assay technique is an alternative method to standard safeguards techniques for the identification and assaying of special nuclear materials in a field or laboratory environment, as a tool for dismantlement and destruction of nuclear weapons, and to determine the isotopic ratios for a blend-down program on uranium. It is capable of determining the isotopic ratios of fissionable material from the spontaneous or induced fission of a sample to within approximately 0.5%. This is based upon the prompt coincidence relationships that occur in the fission process and the proton conservation and quasi-conservation of nuclear mass (A) that exists between the two fission fragments. The system is used in both passive (without an external neutron source) and active (with an external neutron source) mode. The apparatus consists of an array of neutron and gamma-ray detectors electronically connected to determine coincident events. The method can also be used to assay radioactive waste which contains fissile material, even in the presence of a high background radiation field. 7 figures.

  13. Modeling for quantitative non-destructive evaluation.

    PubMed

    Achenbach, Jan D

    2002-05-01

    A quantitative approach to non-destructive evaluation (NDE) must be based on models of the measurement processes. A model's purpose is to predict, from first principles, the measurement system's response to material properties and anomalies in a material or structure. For the ultrasonic case a measurement model should include modeling of the generation, propagation and reception of ultrasonic signals, and the ultrasonic interactions that generate the system's response function. A measurement model has many benefits, which are discussed in the paper. Three examples of the productive use of quantitative modeling in conjunction with measured data are presented: the detection and sizing of fatigue cracks which emanate from weep holes in the risers of wing panels in the interior of an aircraft wing by the use of ultrasound generated on the exterior surface of the wing, the determination of the elastic constants of anisotropic thin films deposited on a substrate, and the detection and sizing of surface-breaking cracks by the use of the laser-source scanning technique for laser generated and detected ultrasound. PMID:12159913

  14. Nondestructive evaluation development for process control

    SciTech Connect

    Ellingson, W.A.; Holloway, D.L.; Sivers, E.A.; Ling, J.; Pollinger, J.P.; Yeh, H.C.

    1991-12-31

    A joint project between Garrett Ceramic Components (GCC) of Allied Signal Aerospace Corporation and Argonne National Laboratory (ANL) is ongoing to evaluate nondestructive characterization (NDC) methods to detect and measure process-induced variations in ceramic materials. The process methods of current focus on slip-casting and injection molding and the NDC methods being evaluated are microfocus X-ray computed tomography (XCT) and nuclear magnetic resonance computed tomography (MRCT). As part of this work, SiC whisker reinforced Si{sub 3}N{sub 4} (GCC`s GN-10 material) has been pressure slip-cast at two casting pressures, 15 and 40 psi; and at length/diameter ratios of 1.5, 2.5 and 3.0 with whisker contents of 20, 23, 27 and 30 wt %. Three-dimensional microfocus XCT has been used to study density variations in billets produced by different process conditions. Destructive measurement of density variation has been compared to the XCT measurements and correlations established. XCT has been shown to be able to detect <5% variations in as-cast density and these were destructively verified.

  15. Nondestructive evaluation development for process control

    SciTech Connect

    Ellingson, W.A.; Holloway, D.L.; Sivers, E.A. ); Ling, J. . Inst. for Ceramics); Pollinger, J.P.; Yeh, H.C. . Garrett Ceramic Components Div.)

    1991-01-01

    A joint project between Garrett Ceramic Components (GCC) of Allied Signal Aerospace Corporation and Argonne National Laboratory (ANL) is ongoing to evaluate nondestructive characterization (NDC) methods to detect and measure process-induced variations in ceramic materials. The process methods of current focus on slip-casting and injection molding and the NDC methods being evaluated are microfocus X-ray computed tomography (XCT) and nuclear magnetic resonance computed tomography (MRCT). As part of this work, SiC whisker reinforced Si{sub 3}N{sub 4} (GCC's GN-10 material) has been pressure slip-cast at two casting pressures, 15 and 40 psi; and at length/diameter ratios of 1.5, 2.5 and 3.0 with whisker contents of 20, 23, 27 and 30 wt %. Three-dimensional microfocus XCT has been used to study density variations in billets produced by different process conditions. Destructive measurement of density variation has been compared to the XCT measurements and correlations established. XCT has been shown to be able to detect <5% variations in as-cast density and these were destructively verified.

  16. Standard specification for agencies performing nondestructive testing

    E-print Network

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This specification covers minimum requirements for agencies performing nondestructive testing (NDT). 1.2 When using this specification to assess the capability of, or to accredit NDT agencies, Guide E 1359 shall be used as a basis for the survey. It can be supplemented as necessary with more detail in order to meet the auditor's specific needs. 1.3 This specification can be used as a basis to evaluate testing or inspection agencies, or both, and is intended for use for the qualifying or accrediting, or both, of testing or inspection agencies, public or private. 1.4 The use of SI or inch-pound units, or combination thereof, will be the responsibility of the technical committee whose standards are referred to in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to...

  17. Passive retrofits for Navy housing

    SciTech Connect

    Hibbert, R.; Miles, C.; Jones, R.; Peck, C.; Anderson, J.; Jacobson, V.; Dale, A.M.

    1985-01-01

    A project to assess and initiate passive solar energy retrofits to US Navy family housing is described. The current data base for Navy housing (ECOP), and its enhancement for passive solar purposes options proposed for Navy housing are explained. The analysis goals and methods to evaluate the retrofits are discussed. An educational package to explain the retrofits is described.

  18. Temperature initiated passive cooling system

    DOEpatents

    Forsberg, Charles W. (Oak Ridge, TN)

    1994-01-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  19. Temperature initiated passive cooling system

    DOEpatents

    Forsberg, C.W.

    1994-11-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

  20. Modularization of passive solar

    SciTech Connect

    Maloney, T.

    1980-01-01

    Ways of modularizing component parts of passive soalr systems for the manufactured housing industry are discussed. Site-filled water mass modules installed in south-facing stud spaces, glazing systems, sun-rooms and roof apertures are being explored and constructed. Even though the houses are being designed without pre-selected sites, they are expected to perform well given the variable deployment of the south-facing wall system. Any facade of the house will be able to accept the sun's energy. While some of the solutions involve specific products and techniques, it is the general conclusion that low-cost, modular solar components can be worked into solar building designs without great regard for the final site. This makes marketing easier and costs lower with the result of more installations.

  1. Passive magnetic bearing system

    DOEpatents

    Post, Richard F.

    2014-09-02

    An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.

  2. Passive containment cooling system

    DOEpatents

    Billig, P.F.; Cooke, F.E.; Fitch, J.R.

    1994-01-25

    A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA. 1 figure.

  3. Passive containment cooling system

    DOEpatents

    Billig, Paul F. (San Jose, CA); Cooke, Franklin E. (San Jose, CA); Fitch, James R. (San Jose, CA)

    1994-01-01

    A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA.

  4. Passive seismic experiment

    NASA Technical Reports Server (NTRS)

    Latham, G. V.; Ewing, M.; Press, F.; Sutton, G.; Dorman, J.; Nakamura, Y.; Toksoz, N.; Lammlein, D.; Duennebier, F.

    1972-01-01

    The design, deployment, and operation of the Apollo 16 passive seismic experiment (PSE) are discussed. Since activation, all elements of the PSE have operated as planned, with the exception of the sensor thermal control system. Significant progress in the measurement of meteoroid flux in near-earth space has been made, along with dilineation of active moonquake source regions. The data obtained indicate that moonquakes are concentrated at great depth (800 to 1000 km) and that the apparent disparity between meteoroid flux estimtes based on lunar crater counts and those from earth-based observations can be resolved by seismic measurements in favor of the lower flux indicated by the crater count method. The results obtained from the PSE are summarized and their significance is discussed in detail.

  5. Maintaining the Constant Exposure Condition for an Acute Caenorhabditis elegans Mortality Test Using Passive Dosing

    PubMed Central

    Kwon, Hyuck-Chul; Roh, Ji-Yeon; Lim, Dongyoung; Choi, Jinhee

    2011-01-01

    Objectives Maintaining the constant exposure to hydrophobic organic compouds in acute toxicity tests is one of the most difficult issues in the evaluation of their toxicity and corresponding risks. Passive dosing is an emerging tool to keep constant aqueous concentration because of the overwhelming mass loaded in the dosing phase. The primary objectives of this study were to develop the constant exposure condition for an acute mortality test and to compare the performance of the passive dosing method with the conventional spiking with co-solvent. Methods A custom cut polydimethylsiloxane (PDMS) tubing loaded with benzyl butyl phthalate (BBP) was placed in each well of a 24-well plate containing assay medium. The rate of the release of BBP from PDMS was evaluated by measuring the change in the concentration of BBP in the assay medium. The efficiency of maintaining constant exposure condition was also evaluated using a simple two-compartment mass transport model employing a film-diffusion theory. An acute mortality test using 10 C. elegans in each well was conducted for the evaluation of the validity of passive dosing and the comparative evaluation of the passive dosing method and the conventional spiking method. Results Free concentration in the assay medium reached 95% steady state value within 2.2 hours without test organisms, indicating that this passive dosing method is useful for an acute toxicity test in 24 hours. The measured concentration after the mortality test agreed well with the estimated values from partitioning between PDMS and the assay medium. However, the difference between the nominal and the free concentration became larger as the spiked concentration approached water solubility, indicating the instability of the conventional spiking with a co-solvent. Conclusions The results in this study support that passive dosing provides a stable exposure condition for an acute toxicity test. Thus, it is likely that more reliable toxicity assessment can be made for hydrophobic chemicals using passive dosing. PMID:22125776

  6. Lateral flow strip assay

    DOEpatents

    Miles, Robin R. (Danville, CA); Benett, William J. (Livermore, CA); Coleman, Matthew A. (Oakland, CA); Pearson, Francesca S. (Livermore, CA); Nasarabadi, Shanavaz L. (Livermore, CA)

    2011-03-08

    A lateral flow strip assay apparatus comprising a housing; a lateral flow strip in the housing, the lateral flow strip having a receiving portion; a sample collection unit; and a reagent reservoir. Saliva and/or buccal cells are collected from an individual using the sample collection unit. The sample collection unit is immersed in the reagent reservoir. The tip of the lateral flow strip is immersed in the reservoir and the reagent/sample mixture wicks up into the lateral flow strip to perform the assay.

  7. Nondestructive Evaluation Correlated with Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Abdul-Azid, Ali; Baaklini, George Y.

    1999-01-01

    Advanced materials are being developed for use in high-temperature gas turbine applications. For these new materials to be fully utilized, their deformation properties, their nondestructive evaluation (NDE) quality and material durability, and their creep and fatigue fracture characteristics need to be determined by suitable experiments. The experimental findings must be analyzed, characterized, modeled and translated into constitutive equations for stress analysis and life prediction. Only when these ingredients - together with the appropriate computational tools - are available, can durability analysis be performed in the design stage, long before the component is built. One of the many structural components being evaluated by the NDE group at the NASA Lewis Research Center is the flywheel system. It is being considered as an energy storage device for advanced space vehicles. Such devices offer advantages over electrochemical batteries in situations demanding high power delivery and high energy storage per unit weight. In addition, flywheels have potentially higher efficiency and longer lifetimes with proper motor-generator and rotor design. Flywheels made of fiber-reinforced polymer composite material show great promise for energy applications because of the high energy and power densities that they can achieve along with a burst failure mode that is relatively benign in comparison to those of flywheels made of metallic materials Therefore, to help improve durability and reduce structural uncertainties, we are developing a comprehensive analytical approach to predict the reliability and life of these components under these harsh loading conditions. The combination of NDE and two- and three-dimensional finite element analyses (e.g., stress analyses and fracture mechanics) is expected to set a standardized procedure to accurately assess the applicability of using various composite materials to design a suitable rotor/flywheel assembly.

  8. A Nondestructive Method of Grain Microstructure Determination

    SciTech Connect

    Lai, J.

    2004-09-03

    Customarily, a material has been sectioned to study its internal grain microstructure and thus in the process is destroyed. Using x-rays, however, there are two nondestructive methods of determining the sources of diffraction spots and hence the internal grain microstructure of a sample. One technique consists of placing a wire in the path of a diffracted ray so that its image is prevented from appearing on the detector screen. Ray-tracing is then done to locate the source within the sample from whence the rays emanate. In this experiment, we investigate the other technique of determining source location by recording diffraction patterns at ten equally-spaced detector distances and then graphing the data with reasonable-fit lines using the least-squares fitting routine. We then perform a ray-tracing triangulation technique to pinpoint the location of the source from which the rays are coming. Cluster analyses are employed and plots of ray number versus pixel position of certain points at some particular detector distances are created. An error propagation analysis is then carried out as a check to the cluster analyses and graphs of error deviation along the detector path versus ray number are constructed. With statistical error analyses and construction of error boxes using chosen pixel error deviations and delta z error values, the best error measurement using the detector method was found to be plus/minus 100 microns. In this study, it was found that the detector method provided a much poorer resolution than the traditional wire technique of which there is a source size precision of within 1-5 microns. The detector method, though, is sufficient for large-grain material studies.

  9. Guided wave nuances for ultrasonic nondestructive evaluation.

    PubMed

    Rose, J L

    2000-01-01

    Recent developments in guided wave generation, reception, and mode control show that increased penetration power and sensitivity are possible. A tone burst function generator and appropriate signal processing are generally used. Variable angle beam and comb-type transducers are the key to this effort. Problems in tubing, piping, hidden corrosion detection in aging aircraft, adhesive and diffusion bonding, and ice detection are discussed. Additionally, sample configurations, inspection objectives, and logic are being developed for such sample problems as defect detection and analysis in lap splice joints, tear straps, cracks in a second layer, hidden corrosion in multiple layers, cracks from rivet holes, transverse cracking in a beam, and cracks in landing gear assembly. Theoretical and experimental aspects of guided wave analysis include phase velocity, group velocity, and attenuation dispersion curves; boundary element model analysis for reflection and transmission factor analysis; use of wave structure for defect detection sensitivity; source influence on the phase velocity spectrum, and the use of angle beam and comb transducer technology. Probe design and modeling considerations are being explored. Utilization of in-plane and out-of-plane displacement patterns on the surface and longitudinal power distribution across the structural cross-section are considered for improved sensitivity, penetration power, and resolution in nondestructive evaluation. Methods of controlling the phase velocity spectrum for mode and frequency selection are available. Such features as group velocity change, mode cut-off measurements, mode conversion, amplitude ratios of transmission, and reflection factors of specific mode and frequency as input will be introduced for their ability to be used in flaw and material characterization analysis. PMID:18238584

  10. Cryogenic Storage Tank Non-Destructive Evaluation

    NASA Technical Reports Server (NTRS)

    Arens, Ellen

    2010-01-01

    This slide presentation reviews the work in non-destructive evaluation (NDE) of cryogenic storage tanks. Four large cryogenic tanks, constructed in 1965 with perlite insulation in the annular regions, are of concern. The construction of the tanks, two Liquid Oxygen (LOX) and two Liquid Hydrogen (LH2), are described. The loss rate for the LOX tank at Pad A is slightly higher than that for the one at Pad B. The concerns for the LH2 tank at Pad B are that there is a significantly higher boil-off rate than that at Pad A, that there is mold growth, indicative of increased heat flow, that there is a long down-time needed for repairs, and that 3 of 5 full thermal cycles have been used on the Pad B LH2 tank. The advantages and disadvantages of thermal imaging are given. A detailed description of what is visible of the structures in the infra-red is given and views of the thermal images are included. Missing Perlite is given as the probable cause of the cold spot on the Pad B LH2 tank. There is no indications of problematic cold regions on the Pad A LH2 tank, as shown by the thermal images given in the presentation. There is definite indication of a cold region on the Pad A LOX tank. There is however concerns with thermal imaging, as thermal images can be significantly effected by environmental conditions, image differences on similar days but with different wind speeds. Other effects that must be considered include ambient temperature, humidity levels/dew, and cloud reflections

  11. Non-destructive decontamination of building materials

    NASA Astrophysics Data System (ADS)

    Holecek, Josef; Otahal, Petr

    2015-11-01

    For nondestructive radiation decontamination of surfaces it is necessary to use varnishes, such as ARGONNE, DG1101, DG1108, etc. This text evaluates the use of manufactured strippable coatings for radiation decontamination. To evaluate decontamination capability of such coatings the following varnishes were selected and subsequently used: AZ 1-700 and AXAL 1807S. The varnishes were tested on different building materials surfaces contaminated by short-term radioisotopes of Na-24 or La-140, in water soluble or water insoluble forms. Decontamination quality was assessed by the decontamination efficiency value, defined as the proportion of removed activity to the applied activity. It was found that decontamination efficiency of both used varnishes depends not only on the form of contaminant, but in the case of application of AXAL 1807S varnish it also depends on the method of its application on the contaminated surface. The values of the decontamination efficiency for AZ1-700 varnish range from 46% for decontamination of a soluble form of the radioisotope from concrete surface to 98% for the decontamination of a soluble form of the radioisotope from ceramic tile surface. The decontamination efficiency values determined for AXAL 1807S varnish range from 48% for decontamination of a soluble form of the radioisotope from concrete surface to 96% for decontamination of an insoluble form of the radioisotope from ceramic tile surface. Comparing these values to the values given for the decontaminating varnishes we can conclude that AXAL 1807S varnish is possible to use on all materials, except highly porous materials, such as plasterboard or breeze blocks, or plastic materials. AZ 1-700 varnish can be used for all dry materials except plasterboard.

  12. Kinetic tetrazolium microtiter assay

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L. (inventor); Stowe, Raymond P. (inventor); Koeing, David W. (inventor)

    1992-01-01

    A method for conducting an in vitro cell assay using a tetrazolium indicator is disclosed. The indicator includes a nonionic detergent which solubilizes a tetrazolium reduction product in vitro and has low toxicity for the cells. The incubation of test cells in the presence of zolium bromide and octoxynol (TRITON X-100) permits kinetics of the cell metabolism to be determined.

  13. Sigma Receptor Binding Assays.

    PubMed

    Chu, Uyen B; Ruoho, Arnold E

    2015-01-01

    Sigma receptors, both Sigma-1(S1R) and Sigma-2 (S2R), are small molecule-regulated, primarily endoplasmic reticulum (ER) membrane-associated sites. A number of drugs bind to sigma receptors, including the antipsychotic haloperidol and (+)-pentazocine, an opioid analgesic. Sigma receptors are implicated in many central nervous system disorders, in particular Alzheimer's disease and conditions associated with motor control, such as Amyotrophic Lateral Sclerosis (ALS). Described in this unit are radioligand binding assays used for the pharmacological characterization of S1R and S2R. Methods detailed include a radioligand saturation binding assay for defining receptor densities and a competitive inhibition binding assay employing [(3) H]-(+)-pentazocine for identifying and characterizing novel ligands that interact with S1R. Procedures using [(3) H]-1,3-di(2-tolyl)guanidine ([(3) H]-DTG), a nonselective sigma receptor ligand, are described for conducting a saturation binding and competitive inhibition assays for the S2R site. These protocols are of value in drug discovery in identifying new sigma ligands and in the characterization of these receptors. © 2015 by John Wiley & Sons, Inc. PMID:26646191

  14. CMR Shuffler System: Passive Mode Calibration and Certification Report

    SciTech Connect

    Frame, Katherine C.; Gomez, Cipriano D.; Salazar, William R.; Mayo, Douglas R.; Vigil, Georgiana M.; Crooks, William J.; Stange, Sy

    2012-07-20

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1 to 2 inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the vessels. As debris is removed from the vessels, material will be placed in waste drums. Far-field gamma ray assay will be used to determine when a drum is nearing a {sup 239}Pu equivalent mass of less than 200 g. The drum will then be assayed using a waste drum shuffler operated in passive mode using a neutron coincidence counting method for accountability. This report focuses on the testing and calibration of the CMR waste drum shuffler in passive mode operation. Initial testing was performed to confirm previously accepted measurement parameters. The system was then calibrated using a set of weapons grade Pu (WGPu, {sup 239}Pu > 93%) oxide standards placed inside a 55 gallon drum. The calibration data ranges from Pu mass of 0.5 g to 188.9 g. The CMR waste drum shuffler has been tested and calibrated in passive mode in preparation for safeguards accountability measurements of waste drums containing material removed from CVs for the CVD project.

  15. Passive blast pressure sensor

    DOEpatents

    King, Michael J.; Sanchez, Roberto J.; Moss, William C.

    2013-03-19

    A passive blast pressure sensor for detecting blast overpressures of at least a predetermined minimum threshold pressure. The blast pressure sensor includes a piston-cylinder arrangement with one end of the piston having a detection surface exposed to a blast event monitored medium through one end of the cylinder and the other end of the piston having a striker surface positioned to impact a contact stress sensitive film that is positioned against a strike surface of a rigid body, such as a backing plate. The contact stress sensitive film is of a type which changes color in response to at least a predetermined minimum contact stress which is defined as a product of the predetermined minimum threshold pressure and an amplification factor of the piston. In this manner, a color change in the film arising from impact of the piston accelerated by a blast event provides visual indication that a blast overpressure encountered from the blast event was not less than the predetermined minimum threshold pressure.

  16. Passive Vaporizing Heat Sink

    NASA Technical Reports Server (NTRS)

    Knowles, TImothy R.; Ashford, Victor A.; Carpenter, Michael G.; Bier, Thomas M.

    2011-01-01

    A passive vaporizing heat sink has been developed as a relatively lightweight, compact alternative to related prior heat sinks based, variously, on evaporation of sprayed liquids or on sublimation of solids. This heat sink is designed for short-term dissipation of a large amount of heat and was originally intended for use in regulating the temperature of spacecraft equipment during launch or re-entry. It could also be useful in a terrestrial setting in which there is a requirement for a lightweight, compact means of short-term cooling. This heat sink includes a hermetic package closed with a pressure-relief valve and containing an expendable and rechargeable coolant liquid (e.g., water) and a conductive carbon-fiber wick. The vapor of the liquid escapes when the temperature exceeds the boiling point corresponding to the vapor pressure determined by the setting of the pressure-relief valve. The great advantage of this heat sink over a melting-paraffin or similar phase-change heat sink of equal capacity is that by virtue of the =10x greater latent heat of vaporization, a coolant-liquid volume equal to =1/10 of the paraffin volume can suffice.

  17. Passive-solar greenhouse

    SciTech Connect

    Not Available

    1982-01-01

    Our project objective was to design, construct, and operate a commercialized (16' x 50') passive, solar greenhouse. The structure was originally intended as a vegetable forcing facility to produce vegetable crops in the off-season. Building and size constraints and economic considerations convinced us to use the greenhouse for producing bedding plants and vegetable starts in the spring, high value vegetables (tomatoes, cucumbers) in the fall and forced bulbs in the winter. This crop sequence allows us to use the greenhouse all year without additional heat as the crops are adopted to the temperature regime of the greenhouse during each particular season. In our first season, the greenhouse performed beautifully. The lowest temperature recorded was 38/sup 0/F after 4 cold, cloudy days in February. The production of bedding plants has allowed us to diversify our products and the early transplants we produced were a great asset to our vegetable farming operation. Although construction cost (4.57 sq. ft.) is higher than that of a conventional polyethylene-covered, quonset-type greenhouse (approx. $1.92 sq. ft.), our annual operating cost is cheaper than that of a conventional greenhouse (0.49 cents sq. ft. versus 0.67 cents sq. ft.) due to a longer usable lifetime of the structure and the elimination of heating costs. Our structure has been toured by interested individuals, school and farm groups. We plan to publicize the structure and its advantages by promoting more visits to the site.

  18. Passive magnetic screening.

    PubMed

    Andrew, E R

    1991-01-01

    It is shown that a passive magnetic shield for a 1.5-T whole-body magnet requires about 20 tons of iron. Moreover, to first order, the amount of shielding material is independent of the radius of the shield. The choice between a thick shield fitting tightly round the magnet and a thinner shield of larger radius is determined by considerations of available space and the need for the highest uniformity of field in the bore. Very high permeability materials such as mu-metal are useful only in special circumstances. Multiple shields are valuable if a high degree of shielding is required, but the spacing between the shields needs careful attention. Although exact reciprocity of internal and external shielding is not found in the general case, the degree of shielding will be of the same order in both cases. The complete behavior of cylindrical shields around superconducting magnets can be determined by analytical solution of Maxwell's equations; for less regular shapes, solutions may be determined numerically by computer. PMID:2067396

  19. Passive Acoustic Vessel Localization

    NASA Astrophysics Data System (ADS)

    Suwal, Pasang Sherpa

    This thesis investigates the development of a low-cost passive acoustic system for localizing moving vessels to monitor areas where human activities such as fishing, snorkeling and poaching are restricted. The system uses several off-the-shelf sensors with unsynchronized clocks where the Time Difference of Arrival (TDOA) or time delay is extracted by cross-correlation of the signal between paired sensors. The cross-correlation function uses phase correlation or Phase Transform (PHAT) which whitens the cross-spectrum in order to de-emphasize dominant frequency components. Using the locations of pairs of sensors as foci, hyperbolic equations can be defined using the time delay between them. With three or more sensors, multiple hyperbolic functions can be calculated which intersect at a unique point: the boat's location. It is also found that increasing separation distances between sensors decreased the correlation between the signals. However larger separation distances have better localization capability than with small distances. Experimental results from the Columbia and Willamette Rivers are presented to demonstrate performance.

  20. Orion Passive Thermal: Control Overview

    NASA Technical Reports Server (NTRS)

    Alvarez-Hermandez, Angel; Miller, Stephen W.

    2009-01-01

    A general overview of the NASA Orion Passive Thermal Control System (PTCS) is presented. The topics include: 1) Orion in CxP Hierarchy; 2) General Orion Description/Orientation; and 3) Orion PTCS Overview.

  1. Sidewall passivation layer thickness and composition profiles of etched silicon patterns from angle resolved x-ray photoelectron spectroscopy analysis

    SciTech Connect

    Haass, Moritz; Darnon, Maxime; Joubert, Olivier

    2012-06-15

    In this study, we present a technique to analyze side wall passivation layers formed on silicon sidewalls after plasma processing. The thickness and chemical composition are derived from angle resolved x-ray photoelectron spectroscopy analyses. It is a non-destructive, quasi in situ method to determine profiles of the thickness and the chemical composition of passivation layers in trenches up to an aspect ratio of about 3. The performance of this technique to quantify the passivation layer thickness is compared to a standard technique using secondary electron microscopy images with respect to two different samples and is found to be at least equivalent. The possible uncertainties and limitations of this technique are discussed as well.

  2. Ultrasonic nondestructive evaluation of armor ceramics

    NASA Astrophysics Data System (ADS)

    Brennan, Raymond Edwin, IV

    Ceramic materials have been incorporated into armor systems to reduce their weight while providing high hardness, strength, and elastic response to stress. However, the presence of defects and flaws in armor ceramics can lead to ballistic failure. Nondestructive evaluation (NDE) techniques have been studied to locate and characterize defects and inhomogeneities in these materials. High frequency ultrasound NDE has been explored for detecting and locating micron-range defects and identifying microstructural changes in dense armor ceramics such as silicon carbide (SiC). Ultrasound parameters such as transducer frequency have been analyzed to determine system conditions necessary for obtaining C-scan image maps based on differences in intensity of the collected ultrasound signals (reflected signal amplitudes) or transit time of ultrasound energy through materials (time-of-flight TOF). While TOF has have been used to evaluate changes in thickness, velocity, density, and acoustic impedance, reflected signal amplitude has been used to analyze attenuation, or loss, through a test specimen. Reflected signal amplitude and TOF C-scan imaging have been useful for identifying and locating isolated defects and microstructural differences. Elastic property maps have been developed to plot differences in Poisson's ratio, elastic modulus, shear modulus, and bulk modulus. Quantitative analysis techniques have been used to evaluate cumulative effects of reflected signal amplitude and TOF changes over scanned regions and their distributions over selected areas. Amplitude and TOF histogram curves, which have been characterized by area-under-the-curve values, full-width at half-maximum values, and critical tail regions, have provided a valuable means of sample comparison. Generally, more narrow distributions of amplitude and TOF values have corresponded to high density armor-grade samples, while broad distributions have indicated defects or inhomogeneous regions in the samples. In addition to developing techniques for determining individual defect size distributions within a bulk specimen, histogram simulations have been explored to study amplitude and TOF distribution trends by analyzing how the addition of defects of varying size, quantity, and acoustic impedance affect histogram characteristics. These data have been utilized to establish a representative materials fingerprint that provides defect input data which can be further quantified and applied to property, design, and performance modeling of armor ceramic materials.

  3. NON-DESTRUCTIVE SOIL CARBON ANALYZER.

    SciTech Connect

    Wielopolski, Lucian; Hendrey, G.; Orion, I.; Prior, S.; Rogers, H.; Runion, B.; Torbert, A.

    2004-02-01

    This report describes the feasibility, calibration, and safety considerations of a non-destructive, in situ, quantitative, volumetric soil carbon analytical method based on inelastic neutron scattering (INS). The method can quantify values as low as 0.018 gC/cc, or about 1.2% carbon by weight with high precision under the instrument's configuration and operating conditions reported here. INS is safe and easy to use, residual soil activation declines to background values in under an hour, and no radiological requirements are needed for transporting the instrument. The labor required to obtain soil-carbon data is about 10-fold less than with other methods, and the instrument offers a nearly instantaneous rate of output of carbon-content values. Furthermore, it has the potential to quantify other elements, particularly nitrogen. New instrumentation was developed in response to a research solicitation from the U.S. Department of Energy (DOE LAB 00-09 Carbon Sequestration Research Program) supporting the Terrestrial Carbon Processes (TCP) program of the Office of Science, Biological and Environmental Research (BER). The solicitation called for developing and demonstrating novel techniques for quantitatively measuring changes in soil carbon. The report includes raw data and analyses of a set of proof-of-concept, double-blind studies to evaluate the INS approach in the first phase of developing the instrument. Managing soils so that they sequester massive amounts of carbon was suggested as a means to mitigate the atmospheric buildup of anthropogenic CO{sub 2}. Quantifying changes in the soils' carbon stocks will be essential to evaluating such schemes and documenting their performance. Current methods for quantifying carbon in soil by excavation and core sampling are invasive, slow, labor-intensive and locally destroy the system being observed. Newly emerging technologies, such as Laser Induced Breakdown Spectroscopy and Near-Infrared Spectroscopy, offer soil-carbon analysis; however, these also are invasive and destructive techniques. The INS approach permits quantification in a relatively large volume of soil without disrupting the measurement site. The technique is very fast and provides nearly instantaneous results thereby reducing the cost, and speeding up the rate of analysis. It also has the potential to cover large areas in a mobile scanning mode. These capabilities will significantly advance the tracking carbon sequestration and offer a tool for research in agronomy, forestry, soil ecology and biogeochemistry.

  4. Kinetic Tetrazolium Microtiter Assay

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Stowe, Raymond; Koenig, David

    1993-01-01

    Kinetic tetrazolium microtiter assay (KTMA) involves use of tetrazolium salts and Triton X-100 (or equivalent), nontoxic, in vitro color developer solubilizing colored metabolite formazan without injuring or killing metabolizing cells. Provides for continuous measurement of metabolism and makes possible to determine rate of action of antimicrobial agent in real time as well as determines effective inhibitory concentrations. Used to monitor growth after addition of stimulatory compounds. Provides for kinetic determination of efficacy of biocide, greatly increasing reliability and precision of results. Also used to determine relative effectiveness of antimicrobial agent as function of time. Capability of generating results on day of test extremely important in treatment of water and waste, disinfection of hospital rooms, and in pharmaceutical, agricultural, and food-processing industries. Assay also used in many aspects of cell biology.

  5. Electrophoretic Mobility Shift Assays.

    PubMed

    Rowe, Sarah E; O'Gara, James P

    2016-01-01

    Experimental demonstration of regulatory protein interactions with the sequences upstream of potential target genes is an important element in gene expression studies. These experiments termed electrophoretic mobility shift assays (EMSAs) provide valuable insight into the mechanism of action of transcription factors. EMSAs combined with downstream applications such as transcriptional analysis help uncover precisely how regulatory proteins control target gene expression. This chapter comprises a guideline for expression and purification of recombinant transcription factor proteins followed by a detailed protocol for EMSAs. PMID:26194709

  6. Characterization of Nitinol Laser-Weld Joints by Nondestructive Testing

    NASA Astrophysics Data System (ADS)

    Wohlschlögel, Markus; Gläßel, Gunter; Sanchez, Daniela; Schüßler, Andreas; Dillenz, Alexander; Saal, David; Mayr, Peter

    2015-11-01

    Joining technology is an integral part of today's Nitinol medical device manufacturing. Besides crimping and riveting, laser welding is often applied to join components made from Nitinol to Nitinol, as well as Nitinol components to dissimilar materials. Other Nitinol joining techniques include adhesive bonding, soldering, and brazing. Typically, the performance of joints is assessed by destructive mechanical testing, on a process validation base. In this study, a nondestructive testing method—photothermal radiometry—is applied to characterize small Nitinol laser-weld joints used to connect two wire ends via a sleeve. Two different wire diameters are investigated. Effective joint connection cross sections are visualized using metallography techniques. Results of the nondestructive testing are correlated to data from destructive torsion testing, where the maximum torque at fracture is evaluated for the same joints and criteria for the differentiation of good and poor laser-welding quality by nondestructive testing are established.

  7. Cavity-free nondestructive detection of a single optical photon

    E-print Network

    Keyu Xia; Mattias Johnsson; Peter L. Knight; Jason Twamley

    2015-06-21

    Detecting a single photon without absorbing it is a long standing challenge in quantum optics. All experiments demonstrating the nondestructive detection of a photon make use of a high quality cavity. We present a cavity free scheme for nondestructive single-photon detection. By pumping a nonlinear medium we implement an inter-field Rabi-oscillation which leads to a ?pi phase shift on weak probe coherent laser field in the presence of a single signal photon without destroying the signal photon. Our cavity-free scheme operates with a fast intrinsic time scale in comparison with similar cavity-based schemes. We implement a full real-space multimode numerical analysis of the interacting photonic modes and confirm the validity of our nondestructive scheme in the multimode case.

  8. Method and apparatus for nondestructive in vivo measurement of photosynthesis

    DOEpatents

    Greenbaum, Elias (Oak Ridge, TN)

    1988-01-01

    A device for in situ, nondestructive measurement of photosynthesis in live plants and photosynthetic microorganisms is disclosed which comprises a Clark-type oxygen electrode having a substantially transparent cathode comprised of an optical fiber having a metallic grid microetched onto its front face and sides, an anode, a substantially transparent electrolyte film, and a substantially transparent oxygen permeable membrane. The device is designed to be placed in direct contact with a photosynthetic portion of a living plant, and nondestructive, noninvasive measurement of photosynthetic oxygen production from the plant can be taken by passing light through the fiber-optic cathode, transparent electroyte and transparent membrane, and onto the plant so that photosynthesis occurs. The oxygen thus produced by the plant is measured polargraphically by the electrode. The present invention allows for rapid, nondestructive measurements of photosynthesis in living plants in a manner heretofore impossible using prior art methods.

  9. Method and apparatus for nondestructive in vivo measurement of photosynthesis

    DOEpatents

    Greenbaum, E.

    1988-02-22

    A device for in situ, nondestructive measurement of photosynthesis in live plants and photosynthetic microorganisms is disclosed which comprises a Clark-type oxygen electrode having a substantially transparent cathode comprised of an optical fiber having a metallic grid microetched onto its front face and sides, an anode, a substantially transparent electrolyte film, and a substantially transparent oxygen permeable membrane. The device is designed to be placed in direct contact with a photosynthetic portion of a living plant, and nondestructive, noninvasive measurement of photosynthetic oxygen production from the plant can be taken by passing light through the fiber-optic cathode, transparent electrolyte and transparent membrane, and onto the plant so that photosynthesis occurs. The oxygen thus produced by the plant is measured polarographically by the electrode. The present invention allows for rapid, nondestructive measurements of photosynthesis in living plants in a manner heretofore impossible using prior art methods. 6 figs.

  10. Chloramphenicol acetyltransferase assay.

    PubMed

    Smale, Stephen T

    2010-05-01

    When a transient or stable transfection assay is developed for a promoter, a primary objective is to quantify promoter strength. Because transfection efficiency in such assays can be low, promoters are commonly fused to heterologous reporter genes that encode enzymes that can be quantified using highly sensitive assays. The reporter protein's activity or fluorescence within a transfected cell population is approximately proportional to the steady-state mRNA level. In this protocol, cells transfected with an Escherichia coli transposon chloramphenicol acetyltransferase (CAT) reporter plasmid are lysed by repeated cycles of freezing and thawing and cellular debris is removed by centrifugation. The lysate is incubated with [(14)C]chloramphenicol and acetyl-coenzyme A; CAT catalyzes the acetylation of chloramphenicol. The acetylated products and the unmodified reactants are separated from the aqueous solution by organic extraction with ethyl acetate. Acetylation is monitored by autoradiography following thin-layer chromatography (TLC) to separate the acetylated from the unacetylated forms. The percent conversion of [(14)C]chloramphenicol to acetyl-[(14)C]chloramphenicol can be measured by PhosphorImager analysis of the TLC plate, by excising the radioactive spots from the TLC plate and counting in a scintillation counter, or by densitometry analysis of an autoradiograph. The acetylated (14)C-labeled product can also be quantified without TLC by organic extraction and scintillation counting using reagent-grade chemicals. PMID:20439409

  11. Practical applications of nondestructive evaluation for airport pavement analysis

    NASA Astrophysics Data System (ADS)

    McQueen, Roy D.; Guo, Edward

    1995-07-01

    This paper discusses the equipment and methodologies currently used for nondestructive testing (NDT) and nondestructive evaluation (NDE) of the structural capacity of military and civil airport pavements, including: (1) commonly used equipment and test methods for measuring pavement response to dynamic loads; (2) qualitative and quantitative evaluation of NDT data; (3) methods for back-calculating layer properties from NDT data; (4) layered elastic methods for evaluating pavement performance using processed NDT data; and (5) application of analytical results for developing pavement rehabilitation and management strategies.

  12. Biosensors: Viruses for ultrasensitive assays

    NASA Astrophysics Data System (ADS)

    Donath, Edwin

    2009-04-01

    A three-dimensional assay based on genetically engineered viral nanoparticles and nickel nanohairs can detect much lower levels of protein markers associated with heart attacks than conventional assays.

  13. Quantitative non-destructive evaluation of composite materials based on ultrasonic parameters

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1987-01-01

    Research into the nondestructive evaluation of advanced reinforced composite laminates is summarized. The applicability of the Framers-Kronig equations to the nondestructive evaluation of composite materials is described.

  14. NONDESTRUCTIVE DAMAGE EVALUATION OF ELECTRO-MECHANICAL COMPONENTS USING A HYBRID,

    E-print Network

    Furlong, Cosme

    NONDESTRUCTIVE DAMAGE EVALUATION OF ELECTRO-MECHANICAL COMPONENTS USING A HYBRID, COMPUTATIONAL. This, in turn, indicates a need for effective quantitative testing methodologies. In this paper, a novel hybridized use of nondestructive, noninvasive, remote, full field of view, quantitative opto

  15. A Modeling-Based Technique for Nondestructive Evaluation of Metal Powders Undergoing Microwave Sintering

    E-print Network

    Yakovlev, Vadim

    , microwave imaging, neural network applications, nondestructive testing. I. INTRODUCTION Microwave (MWA Modeling-Based Technique for Nondestructive Evaluation of Metal Powders Undergoing Microwave of MW sintering raises demand on the techniques of testing/monitoring the state of powder samples

  16. TOTAL CULTURABLE VIRUS QUANTAL ASSAY

    EPA Science Inventory

    This chapter describes a quantal method for assaying culturable human enteric viruses from water matrices. The assay differs from the plaque assay described in Chapter 10 (December 1987 Revision) in that it is based upon the direct microscopic viewing of cells for virus-induced ...

  17. Passive Wake Vortex Control

    SciTech Connect

    Ortega, J M

    2001-10-18

    The collapse of the Soviet Union and ending of the Cold War brought about many significant changes in military submarine operations. The enemies that the US Navy faces today and in the future will not likely be superpowers armed with nuclear submarines, but rather smaller, rogue nations employing cheaper diesel/electric submarines with advanced air-independent propulsion systems. Unlike Cold War submarine operations, which occurred in deep-water environments, future submarine conflicts are anticipated to occur in shallow, littoral regions that are complex and noisy. Consequently, non-acoustic signatures will become increasingly important and the submarine stealth technology designed for deep-water operations may not be effective in these environments. One such non-acoustic signature is the surface detection of a submarine's trailing vortex wake. If a submarine runs in a slightly buoyant condition, its diving planes must be inclined at a negative angle of attack to generate sufficient downforce, which keeps the submarine from rising to the surface. As a result, the diving planes produce a pair of counter-rotating trailing vortices that propagate to the water surface. In previous deep-water operations, this was not an issue since the submarines could dive deep enough so that the vortex pair became incoherent before it reached the water surface. However, in shallow, littoral environments, submarines do not have the option of diving deep and, hence, the vortex pair can rise to the surface and leave a distinct signature that might be detectable by synthetic aperture radar. Such detection would jeopardize not only the mission of the submarine, but also the lives of military personnel on board. There has been another attempt to solve this problem and reduce the intensity of trailing vortices in the wakes of military submarines. The research of Quackenbush et al. over the past few years has been directed towards an idea called ''vortex leveraging.'' This active concept works by placing shape memory alloy (SMA) control surfaces on the submarine's diving planes and periodically oscillating them. The modulated control vortices generated by these surfaces interact with the tip vortices on the diving planes, causing an instability to rapidly occur. Though several numerical simulations have been presented, experimental verification does not appear to be available in the open literature. The authors address this problem through a concept called passive wake vortex control (PWVC), which has been demonstrated to rapidly break apart a trailing vortex wake and render it incoherent. PWVC functions by introducing unequal strength, counter-rotating control vortices next to the tip vortices. The presence of these control vortices destabilizes the vortex wake and produces a rapidly growing wake instability.

  18. Microgravity Passive Phase Separator

    NASA Technical Reports Server (NTRS)

    Paragano, Matthew; Indoe, William; Darmetko, Jeffrey

    2012-01-01

    A new invention disclosure discusses a structure and process for separating gas from liquids in microgravity. The Microgravity Passive Phase Separator consists of two concentric, pleated, woven stainless- steel screens (25-micrometer nominal pore) with an axial inlet, and an annular outlet between both screens (see figure). Water enters at one end of the center screen at high velocity, eventually passing through the inner screen and out through the annular exit. As gas is introduced into the flow stream, the drag force exerted on the bubble pushes it downstream until flow stagnation or until it reaches an equilibrium point between the surface tension holding bubble to the screen and the drag force. Gas bubbles of a given size will form a front that is moved further down the length of the inner screen with increasing velocity. As more bubbles are added, the front location will remain fixed, but additional bubbles will move to the end of the unit, eventually coming to rest in the large cavity between the unit housing and the outer screen (storage area). Owing to the small size of the pores and the hydrophilic nature of the screen material, gas does not pass through the screen and is retained within the unit for emptying during ground processing. If debris is picked up on the screen, the area closest to the inlet will become clogged, so high-velocity flow will persist farther down the length of the center screen, pushing the bubble front further from the inlet of the inner screen. It is desired to keep the velocity high enough so that, for any bubble size, an area of clean screen exists between the bubbles and the debris. The primary benefits of this innovation are the lack of any need for additional power, strip gas, or location for venting the separated gas. As the unit contains no membrane, the transport fluid will not be lost due to evaporation in the process of gas separation. Separation is performed with relatively low pressure drop based on the large surface area of the separating screen. Additionally, there are no moving parts, and there are no failure modes that involve fluid loss. A patent application has been filed.

  19. Growth cone collapse assay.

    PubMed

    Cook, Geoffrey M W; Jareonsettasin, Prem; Keynes, Roger J

    2014-01-01

    The growth cone collapse assay has proved invaluable in detecting and purifying axonal repellents. Glycoproteins/proteins present in detergent extracts of biological tissues are incorporated into liposomes, added to growth cones in culture and changes in morphology are then assessed. Alternatively purified or recombinant molecules in aqueous solution may be added directly to the cultures. In both cases after a defined period of time (up to 1 h), the cultures are fixed and then assessed by inverted phase contrast microscopy for the percentage of growth cones showing a collapsed profile with loss of flattened morphology, filopodia, and lamellipodia. PMID:24838959

  20. Application of time reverse modeling on ultrasonic non-destructive testing of concrete

    E-print Network

    Application of time reverse modeling on ultrasonic non-destructive testing of concrete Erik H-differences Wave propagation Source localization Non-destructive testing a b s t r a c t Time reverse modeling (TRM is to transform a method within exploration geo- physics to non-destructive testing. In contrast to previous time

  1. Multiresponse Parameter Estimation for Finite-Element Model Updating Using Nondestructive Test Data

    E-print Network

    Hines, Eric

    Multiresponse Parameter Estimation for Finite-Element Model Updating Using Nondestructive Test Data for parameter estimation is developed for simultaneous use of static and modal nondestructive test data called. This paper presents full integration of static and modal nondestructive test data using both stiffness

  2. High-speed terahertz reflection three-dimensional imaging for nondestructive

    E-print Network

    .4290) Nondestructive testing. References and links 1. W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, IHigh-speed terahertz reflection three- dimensional imaging for nondestructive evaluation Kyong Hwan of the imaging system to nondestructive evaluation, a THz reflection 3D image of an artificially made sample

  3. THE AMERICAN SOCIETY FOR NONDESTRUCTIVE TESTING, INC. Date: 11 November 2015

    E-print Network

    Guo, Dongning

    THE AMERICAN SOCIETY FOR NONDESTRUCTIVE TESTING, INC. Date: 11 November 2015 To: Educational undergraduate students enrolled in an ABET accredited program and choosing nondestructive testing and evaluation Society for Nondestructive Testing, Inc. Jessica VanDervort, Program Coordinator 1711 Arlingate Lane, P

  4. Are 0. 1%-accurate gamma-ray assays possible for /sup 235/U solutions

    SciTech Connect

    Parker, J.L.

    1983-01-01

    The factors influencing the accuracy of passive gamma-ray assay of uniform, homogeneous solution samples have been studied in some detail, particularly for the assay of /sup 235/U in uranium solutions. Factors considered are the overall long-term electronic stability, the information losses caused by the rate-related electronic processes of pulse pileup and dead-time, and the self-attenuation of gamma rays within the samples. Both experimental and computational studies indicate that gamma-ray assay procedures for solution samples of moderate size (from approx. 10 to perhaps a few hundred milliliters) are now capable of accuracies approaching 0.1% in many practical cases.

  5. HIGH ENERGY DELAYED GAMMA SPECTROSCOPY FOR PLUTONIUM ASSAY OF SPENT REACTOR FUEL

    SciTech Connect

    Campbell, Luke W.; Smith, L. E.; Misner, Alex C.

    2011-07-18

    Nuclear safeguards requires accountancy of plutonium present in spent reactor fuels. Current non-destructive methods do not directly measure plutonium content but instead rely on indirect measurements that require operator declarations of the fuel history. Delayed gamma spectroscopy is one method being investigated which can overcome these limitations. Delayed gamma rays from fission depend on the isotopic fission yield of the fissile isotope, and thus can be used to fingerprint the isotopes undergoing fission. However, difficulties arise because of the intense background due to long lived fission radionuclides already present in the fuel. We report on progress on simulated measurements of the delayed gamma spectrum in the presence of this background, using neutrons from a D-T source thermalized in an interrogation chamber slipped over a fuel assembly. By focusing on delayed gammas in the 3 to 4 MeV range, the passive spectrum becomes negligible, while allowing the preferential attenuation of the passive background to acceptable levels.

  6. Pressure Bag Molding: Manufacturing, Mechanical Testing, Non-Destructive

    E-print Network

    Pressure Bag Molding: Manufacturing, Mechanical Testing, Non-Destructive Evaluation, and Analysis Eric Barnholt Larsen Abstract Process limitations in Resin Transfer Molding (RTM) have been identified. The first was "pressure bag molding," a variation of RTM designed to remedy limitations inherent with RTM

  7. TOPOLOGICAL SENSITIVITY ANALYSIS IN THE CONTEXT OF ULTRASONIC NONDESTRUCTIVE TESTING

    E-print Network

    Samuel, Amstutz

    TOPOLOGICAL SENSITIVITY ANALYSIS IN THE CONTEXT OF ULTRASONIC NONDESTRUCTIVE TESTING SAMUEL AMSTUTZ in the context of the detection of defects in metallic plates by means of ultrasonic probing. 1. Introduction, their applications to inspection problems such as nondestruc- tive testing or medical imaging are today relatively

  8. Evaluation of methods for nondestructive testing of brazed joints

    NASA Technical Reports Server (NTRS)

    Kanno, A.

    1968-01-01

    Evaluation of nondestructive methods of testing brazed joints reveals that ultrasonic testing is effective in the detection of nonbonds in diffusion bonded samples. Radiography provides excellent resolutions of void or inclusion defects, and the neutron radiographic technique shows particular advantage for brazing materials containing cadmium.

  9. Nondestructive method for measuring residual stresses in metals, a concept

    NASA Technical Reports Server (NTRS)

    Schwebel, C. D.

    1968-01-01

    Nondestructive direct measurement of residual surface stresses in metals can be made because metal under stress has a different electrochemical solution potential than in the unstressed condition. The method uses two matched electrolytic cells to cancel extraneous effects on the actual solution potential of the metal specimen.

  10. AUTOMATION FOR NONDESTRUCTIVE INSPECTION OF AIRCRAFT M. W. Siegel*

    E-print Network

    Siegel, Mel

    of manufacturing problems, e.g., measuring composition gradients in large process tanks, transportation problems, e manufacturers, and the FAA1, 2, 3. Structural effects of aging in other areas, such as engines, fuel tanksAUTOMATION FOR NONDESTRUCTIVE INSPECTION OF AIRCRAFT M. W. Siegel* Carnegie Mellon University

  11. Non-Destructive Damage Evaluation Based on Element Strain Energies 

    E-print Network

    Li, Ran

    2013-05-01

    The objective of this thesis is to develop a nondestructive evaluation method that could accurately locate and size damage in structures. The method is to be based on pre-damage and post-damage strain energies of beam and column elements. The method...

  12. Non-destructive methods for food texture assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food texture is important to the successful marketing and profitability of food products. Non-destructive sensing would allow food producers and processors to inspect, sort, grade, or track individual product items, so that they can deliver consistent, superior food products to the marketplace. Over...

  13. AUTOMATION FOR NONDESTRUCTIVE INSPECTION OF AIRCRAFT M. W. Siegel*

    E-print Network

    Siegel, Mel

    AUTOMATION FOR NONDESTRUCTIVE INSPECTION OF AIRCRAFT M. W. Siegel* Carnegie Mellon University the need for aircraft skin inspection, and identify the constraints in commercial airlines operations for deployment of eddy current probes in prescribed commercial aircraft inspections. We discuss recent work aimed

  14. Automatic, nondestructive test monitors in-process weld quality

    NASA Technical Reports Server (NTRS)

    Deal, F. C.

    1968-01-01

    Instrument automatically and nondestructively monitors the quality of welds produced in microresistance welding. It measures the infrared energy generated in the weld as the weld is made and compares this energy with maximum and minimum limits of infrared energy values previously correlated with acceptable weld-strength tolerances.

  15. Training manuals for nondestructive testing using magnetic particles

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Training manuals containing the fundamentals of nondestructive testing using magnetic particle as detection media are used by metal parts inspectors and quality assurance specialists. Magnetic particle testing involves magnetization of the test specimen, application of the magnetic particle and interpretation of the patterns formed.

  16. An Instructional Program for Training Nondestructive Testing and Inspection Technicians.

    ERIC Educational Resources Information Center

    Stokes, Vernon L.

    This document, the second portion of a two-part study, is designed to provide a guide for the formal training of technicians for nondestructive testing and inspection. Information in the guide is based on results of the industrial survey discussed in Part I. The subject matter is intended to be both flexible and comprehensive, and instructional…

  17. Airborne Ultrasonics for Nondestructive Evaluation of Leather Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our recent research has shown that besides Acoustic Emission (AE), Airborne Ultrasonics (AU) can also be applied for the nondestructive evaluation (NDE) of leather quality. Implementation of these methods in the manufacturing process could save a considerable amount of money, decrease the use of ch...

  18. Interval Methods in NonDestructive Testing of Material Structures

    E-print Network

    Kreinovich, Vladik

    is not OK, then the whole battery of often expensive and time­consuming tests is used to detect what exactlyInterval Methods in Non­Destructive Testing of Material Structures Keith Worden 1 ; Roberto situations, e.g., in aerospace applications and in mammography, it is important to test the structural

  19. Non-destructive test of turbine blade by SANS

    NASA Astrophysics Data System (ADS)

    Bianchi, P.; Carsughi, F.; D'Angelo, D.; Magnani, M.; Olchini, A.; Rustichelli, F.; Stefanon, M.

    1989-01-01

    Small Angle Neutron Scattering (SANS) was used to investigate, in a non-destructive way, the effect of a thermomechanical treatment on UDIMET 720 nickel superalloy, in order to study the evolution of the ?' precipitation, connected to the strengthening of the material, which suffers a very high temperature and corrosive attack.

  20. Nondestructive Crack Detection in a Fuel System Component

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay; Ruffino, Norman; Wincheski, Russell; Prosser, William; Winfree, William; Russell, Richard; Bryson, Craig; Devries, Robert; Engel, James; Landy, James

    2010-01-01

    The presentation examines the background and objective of nondestructive crack detection, flow control valve assembly and poppet post flight evaluation, poppet properties. magnetic property characterization of lab data, NDE, eddy current inspection, simulation, eddy current criteria, poppet cycle testing and NDE criteria, and the use of ultrasonic surface wave for crack detection.

  1. Infrared thermography as a nondestructive tool for materials characterisation and assessment

    NASA Astrophysics Data System (ADS)

    Avdelidis, N. P.; Gan, T.-H.; Ibarra-Castanedo, C.; Maldague, X. P. V.

    2011-05-01

    Thermographic approaches, passive and active, are widely used due to the outstanding advantages that offer in a number of applications and particularly for the assessment of materials. Nonetheless, there are limitations; depending upon the approach used, as well as on the materials thermal, optical and physical properties, proper assessment (detection and/or quantification) is feasible. In thermal non-destructive evaluation (NDE), the active approach of infrared thermography where an excitation source, such as optical flash lamps, heat lamps, hot or cold air guns, etc., is employed with the intention of inducing thermal contrasts, has several applications. The temperature differences during the transient phase appear on the material surface and so detection of subsurface defects is possible (areas of different temperatures when compared to the sound part(s) due to the different thermal diffusivity). Since the heating or cooling features of the stimulus source are identifiable (in time and amplitude) by considering the time factor quantitative assessment is also feasible. However, when a material is heated, the thermal waves penetrate the material's surface. These waves are generally of various amplitudes and frequencies and are launched into the specimen, in a transient mode (i.e. transient thermography). In this work, different applications, employing transient thermographic testing, concerning the assessment of various composite materials and components are presented. Real time NDE is presented using various transient thermography approaches, i.e. pulsed thermography (PT), pulsed phase thermography (PPT) and/or thermal modelling (TM).

  2. Improving shuffler assay accuracy

    SciTech Connect

    Rinard, P.M.

    1995-07-01

    Drums of uranium waste should be disposed of in an economical and environmentally sound manner. The most accurate possible assays of the uranium masses in the drums are required for proper disposal. The accuracies of assays from a shuffler are affected by the type of matrix material in the drums. Non-hydrogenous matrices have little effect on neutron transport and accuracies are very good. If self-shielding is known to be a minor problem, good accuracies are also obtained with hydrogenous matrices when a polyethylene sleeve is placed around the drums. But for those cases where self-shielding may be a problem, matrices are hydrogenous, and uranium distributions are non-uniform throughout the drums, the accuracies are degraded. They can be greatly improved by determining the distributions of the uranium and then applying correction factors based on the distributions. This paper describes a technique for determining uranium distributions by using the neutron count rates in detector banks around the waste drum and solving a set of overdetermined linear equations. Other approaches were studied to determine the distributions and are described briefly. Implementation of this correction is anticipated on an existing shuffler next year.

  3. Enrichment Assay Methods for a UF6 Cylinder Verification Station

    SciTech Connect

    Smith, Leon E.; Jordan, David V.; Misner, Alex C.; Mace, Emily K.; Orton, Christopher R.

    2010-11-30

    International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility’s entire cylinder inventory. These enrichment assay methods interrogate only a small fraction of the total cylinder volume, and are time-consuming and expensive to execute for inspectors. Pacific Northwest National Laboratory (PNNL) is developing an unattended measurement system capable of automated enrichment measurements over the full volume of Type 30B and Type 48 cylinders. This Integrated Cylinder Verification System (ICVS) could be located at key measurement points to positively identify each cylinder, measure its mass and enrichment, store the collected data in a secure database, and maintain continuity of knowledge on measured cylinders until IAEA inspector arrival. The focus of this paper is the development of nondestructive assay (NDA) methods that combine “traditional” enrichment signatures (e.g. 185-keV emission from U-235) and more-penetrating “non-traditional” signatures (e.g. high-energy neutron-induced gamma rays spawned primarily from U-234 alpha emission) collected by medium-resolution gamma-ray spectrometers (i.e. sodium iodide or lanthanum bromide). The potential of these NDA methods for the automated assay of feed, tail and product cylinders is explored through MCNP modeling and with field measurements on a cylinder population ranging from 0.2% to 5% in U-235 enrichment.

  4. Passivation of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  5. Indoor localization using passive RFID

    NASA Astrophysics Data System (ADS)

    Vastianos, George E.; Kyriazanos, Dimitris M.; Segou, Olga E.; Mitilineos, Stelios A.; Thomopoulos, Stelios C. A.

    2011-06-01

    Radio frequency identification (RFID) systems based on passive tags are used successfully in a wide range of object identification applications. However, the increasing needs to meet new demands on applications of localization and tracking create a new field for evolution of the RFID technology. This paper presents the design, implementation, and evaluation of a cost-effective localization system for in-building usage that is able to localize objects that carry passive RFID tags. The RFID reading is performed by a single Reader and an array of directional antennas through multiplexing. Evaluation and experimental results from three localization algorithms based on RSSI are presented.

  6. Cholesterol efflux assay.

    PubMed

    Low, Hann; Hoang, Anh; Sviridov, Dmitri

    2012-01-01

    Cholesterol content of cells must be maintained within the very tight limits, too much or too little cholesterol in a cell results in disruption of cellular membranes, apoptosis and necrosis. Cells can source cholesterol from intracellular synthesis and from plasma lipoproteins, both sources are sufficient to fully satisfy cells' requirements for cholesterol. The processes of cholesterol synthesis and uptake are tightly regulated and deficiencies of cholesterol are rare. Excessive cholesterol is more common problem. With the exception of hepatocytes and to some degree adrenocortical cells, cells are unable to degrade cholesterol. Cells have two options to reduce their cholesterol content: to convert cholesterol into cholesteryl esters, an option with limited capacity as overloading cells with cholesteryl esters is also toxic, and cholesterol efflux, an option with potentially unlimited capacity. Cholesterol efflux is a specific process that is regulated by a number of intracellular transporters, such as ATP binding cassette transporter proteins A1 (ABCA1) and G1 (ABCG1) and scavenger receptor type B1. The natural acceptor of cholesterol in plasma is high density lipoprotein (HDL) and apolipoprotein A-I. The cholesterol efflux assay is designed to quantitate the rate of cholesterol efflux from cultured cells. It measures the capacity of cells to maintain cholesterol efflux and/or the capacity of plasma acceptors to accept cholesterol released from cells. The assay consists of the following steps. Step 1: labelling cellular cholesterol by adding labelled cholesterol to serum-containing medium and incubating with cells for 24-48 h. This step may be combined with loading of cells with cholesterol. Step 2: incubation of cells in serum-free medium to equilibrate labelled cholesterol among all intracellular cholesterol pools. This stage may be combined with activation of cellular cholesterol transporters. Step 3: incubation of cells with extracellular acceptor and quantitation of movement of labelled cholesterol from cells to the acceptor. If cholesterol precursors were used to label newly synthesized cholesterol, a fourth step, purification of cholesterol, may be required. The assay delivers the following information: (i) how a particular treatment (a mutation, a knock-down, an overexpression or a treatment) affects the capacity of cell to efflux cholesterol and (ii) how the capacity of plasma acceptors to accept cholesterol is affected by a disease or a treatment. This method is often used in context of cardiovascular research, metabolic and neurodegenerative disorders, infectious and reproductive diseases. PMID:22414908

  7. Chemotaxis: Under Agarose Assay.

    PubMed

    Brazill, Derrick

    2016-01-01

    The unicellular eukaryote Dictyostelium discoideum represents a superb model for examining chemotaxis. Under vegetative conditions, the amoebae are chemotactically responsive to pterins, such as folate. Under starved conditions, they lose their sensitivity to pterins, and become chemotactically responsive to cAMP. As an NIH model system, Dictyostelium offers a variety of advantages in studying chemotaxis, including its conservation of mammalian signaling pathways, its ease of growth, and its genetic tractability. In this chapter, we describe the use of the under agarose chemotaxis assay to identify proteins involved in controlling motility and directional sensing in Dictyostelium discoideum. Given the similarities between Dictyostelium and mammalian cells, this allows us to dissect the conserved pathways involved in eukaryotic chemotaxis. PMID:26498795

  8. 21 CFR 225.158 - Laboratory assays.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Laboratory assays. 225.158 Section 225.158 Food and...Quality Assurance § 225.158 Laboratory assays. Where the results of laboratory assays of drug components, including assays by...

  9. Non-destructive investigations at the Dionisiac Frieze in the Villa of Mysteries, Pompeii

    NASA Astrophysics Data System (ADS)

    Cristiano, Luigia; Erkul, Ercan; Jepsen, Kalle; Meier, Thomas; Vanacore, Stefano; Stefani, Grete

    2014-05-01

    The Villa of Mysteries with its Dionisiac Frieze is one of the well-known buildings of ancient Pompeii. It has been excavated in the early 20th century. Since then many initiatives have been taken for its preservation. Currently, the Frieze is investigated in detail and tests have been made to clean the wall paintings. Non-destructive investigations as infrared thermography (IR), Ground penetrating radar (GPR), and ultrasonic measurements have been performed in order to test if these methods are well suited to reveal the walls' and paintings' structure and to identify the detachments or cracks. IR, GPR and ultrasonic measurements have different penetration capabilities and resolution in depths. So, using these three methods simultaneously can improve the knowledge of the investigated structures at several depths from millimetres and centimetres to metres. It has been tested if detachments of the paintings, cracks, or alterations of the paintings can be detected by passive and active IR measurements. 6 passive and 3 active measurements have been conducted on the Dionisiac Frieze. Lateral temperature differences present at the Frieze are mapped by passive measurements. Here, we show that temperature differences up to about 0.3°C are present and detectable. These small changes in temperature may be related to detachments, cracks, or wet areas. By active IR measurements the paintings are artificially heated by about 1°C and the cooling to normal temperature is observed and analyzed. Lateral differences in the heating and cooling behavior are related to variability in the heat absorption properties and in thermal conductivity. It is shown that detachments as well as restorative treatments are associated with changes in the thermal behavior. In order to image the construction and the condition of the investigated walls, Ground Penetrating Radar (GPR) was measured with a 2 GHz antenna. Each profile was 1.2 m long, the spacing cross-line was 3 cm and in-line 1 mm. The vertical sections contain reflection horizons of the plaster layer, the second wall layer and the back wall. Additional diffractions of objects with high differences in electrical properties i.e. bricks, cavities, cracks enables to estimate the travelling velocity of electromagnetic waves and the deep penetration. In addition, calculated time slices show areas with concentrated high and low reflection energy of different depth layers of the wall inside structure, which can related to changes in the composition and the water saturation. Ultrasonic experiments with frequencies between about 5 kHz and 500 kHz may be applied to non-destructive testing of structures made of natural stone for example facades, engineering structures, Usually, traveltimes of first-arriving P-waves are measured in ultrasonic transmission experiments. The resolution for changes of uppermost structures in transmission configuration is however limited. Therefore, we firstly perform surface measurements and secondly the full waveform is investigated. That means source and receiver are coupled to nearly plane parts of the object's surface and the receiver is moved along profiles with lengths between about 10 cm to 30 cm. These measurements are simple to perform because the object under consideration has to be accessible only from one side and the source and receiver configuration is easier to control. In this configuration, P-waves show generally very low signal-to-noise ratios but surface waves propagating along the free surface - here Rayleigh waves - show large amplitudes and are well suited for the investigation of superficial layering. Furthermore, surface wave dispersion is sensitive also to gradual changes of the structure with depth as usually present in real structures. This is another advantage of ultrasonic surface wave studies as body waves are not reflected by gradual internal changes in the structure and methods based on reflected body waves may not be applied in these cases. Here, we show examples for ultrasonic surface measurements that are generally of high quality. Forward mo

  10. HCI gesture tracking using wearable passive tags

    E-print Network

    Bainbridge, Rachel M

    2010-01-01

    In this thesis. a wearable system is developed to track hand gestures with passive RFID sensor tags. This system was composed of an ultra-high frequency reader and small, passive, finger-worn tags powered by scavenged RFID ...

  11. Passive mm-wave imaging

    NASA Astrophysics Data System (ADS)

    Appleby, R.; Lettington, A. H.

    This paper discusses the current status of Passive Millimeter Wave Radiometry as an imaging technique. The major problems are poor spatial resolution and lack of thermal sensitivity. Techniques for overcoming these difficulties are identified, including the use of aperture synthesis, multichannel receivers, correlation and inverse transform techniques.

  12. Passive millimetre-wave imaging

    NASA Astrophysics Data System (ADS)

    Appleby, Roger; Lettington, Alan H.

    1990-04-01

    This paper discusses the current status of Passive Millimetre Wave Radiometry as an imaging technique. The major problems are poor spatial resolution and lack of thermal sensitivity. Techniques for overcoming these difficulties are identified, including the use of aperture synthesis, multichannel receivers, correlation and inverse transform techniques.

  13. Neutron Generators for Spent Fuel Assay

    SciTech Connect

    Ludewigt, Bernhard A

    2010-12-30

    The Next Generation Safeguards Initiative (NGSI) of the U.S. DOE has initiated a multi-lab/university collaboration to quantify the plutonium (Pu) mass in, and detect the diversion of pins from, spent nuclear fuel (SNF) assemblies with non-destructive assay (NDA). The 14 NDA techniques being studied include several that require an external neutron source: Delayed Neutrons (DN), Differential Die-Away (DDA), Delayed Gammas (DG), and Lead Slowing-Down Spectroscopy (LSDS). This report provides a survey of currently available neutron sources and their underlying technology that may be suitable for NDA of SNF assemblies. The neutron sources considered here fall into two broad categories. The term 'neutron generator' is commonly used for sealed devices that operate at relatively low acceleration voltages of less than 150 kV. Systems that employ an acceleration structure to produce ion beam energies from hundreds of keV to several MeV, and that are pumped down to vacuum during operation, rather than being sealed units, are usually referred to as 'accelerator-driven neutron sources.' Currently available neutron sources and future options are evaluated within the parameter space of the neutron generator/source requirements as currently understood and summarized in section 2. Applicable neutron source technologies are described in section 3. Commercially available neutron generators and other source options that could be made available in the near future with some further development and customization are discussed in sections 4 and 5, respectively. The pros and cons of the various options and possible ways forward are discussed in section 6. Selection of the best approach must take a number of parameters into account including cost, size, lifetime, and power consumption, as well as neutron flux, neutron energy spectrum, and pulse structure that satisfy the requirements of the NDA instrument to be built.

  14. Passivation Of High-Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P.

    1991-01-01

    Surfaces of high-temperature superconductors passivated with native iodides, sulfides, or sulfates formed by chemical treatments after superconductors grown. Passivating compounds nearly insoluble in and unreactive with water and protect underlying superconductors from effects of moisture. Layers of cuprous iodide and of barium sulfate grown. Other candidate passivating surface films: iodides and sulfides of bismuth, strontium, and thallium. Other proposed techniques for formation of passivating layers include deposition and gas-phase reaction.

  15. Passive Scalar Evolution in Peripheral Region

    E-print Network

    V. V. Lebedev; K. S. Turitsyn

    2003-09-05

    We consider evolution of a passive scalar (concentration of pollutants or temperature) in a chaotic (turbulent) flow. A universal asymptotic behavior of the passive scalar decay (homogenization) related to peripheral regions (near walls) is established. The passive scalar moments and its pair correlation function in the peripheral region are analyzed. A special case investigated in our paper is the passive scalar decay along a pipe.

  16. Antenna for passive RFID tags

    NASA Astrophysics Data System (ADS)

    Schiopu, Paul; Manea, Adrian; Cristea, Ionica; Grosu, Neculai; Vladescu, Marian; Craciun, Anca-Ileana; Craciun, Alexandru

    2015-02-01

    Minuscule devices, called RFID tags are attached to objects and persons and emit information which positioned readers may capture wirelessly. Many methods of identification have been used, but that of most common is to use a unique serial number for identification of person or object. RFID tags can be characterized as either active or passive [1,2]. Traditional passive tags are typically in "sleep" state until awakened by the reader's emitted field. In passive tags, the reader's field acts to charge the capacitor that powers the badge and this can be a combination of antenna and barcodes obtained with SAW( Surface Acoustic Wave) devices [1,2,3] . The antenna in an RFID tag is a conductive element that permits the tag to exchange data with the reader. The paper contribution are targeted to antenna for passive RFID tags. The electromagnetic field generated by the reader is somehow oriented by the reader antenna and power is induced in the tag only if the orientation of the tag antenna is appropriate. A tag placed orthogonal to the reader yield field will not be read. This is the reason that guided manufacturers to build circular polarized antenna capable of propagating a field that is alternatively polarized on all planes passing on the diffusion axis. Passive RFID tags are operated at the UHF frequencies of 868MHz (Europe) and 915MHz (USA) and at the microwave frequencies of 2,45 GHz and 5,8 GHz . Because the tags are small dimensions, in paper, we present the possibility to use circular polarization microstrip antenna with fractal edge [2].

  17. Bond Graph Based Approach to Passive Teleoperation

    E-print Network

    Li, Perry Y.

    is a well utilized concept in electromechanical robotic systems, investiga- tion of electrohydraulic control stores and dissipates energy but cannot generate energy of its own. Passive systems are easier and safer,4 , Cobot 5 and Passive Trajectory Enhancing Ro- bot 6 . While passivity is widely used in electromechanical

  18. Nondestructive characterization of as-fabricated composite ceramic panels

    SciTech Connect

    Green, W. H.; Brennan, R. E.

    2011-06-23

    Decreasing the weight of protective systems, while minimizing the decrease in ballistic performance, is an ongoing goal of the Army. Ceramic materials are currently combined with other materials in these types of structures in order to decrease weight without losing ballistic performance. This includes structures in which the ceramic material is confined in some way and in which the ceramic material is completely encapsulated. Confinement or encapsulation of ceramic material within a structure generally adds complexity and cost. Relatively simple panel specimens fabricated with ceramic tiles on aluminum backings and side confinement using steel were evaluated using nondestructive methods, including x-ray computed tomography and ultrasonic testing. The nondestructive evaluation results will be discussed and compared, including the detectability and mapping of fabrication features.

  19. An assessment of nondestructive testing technologies for chemical weapons monitoring

    SciTech Connect

    Taylor, T.T.

    1993-05-01

    The US Department of Energy (DOE), with the US Army Chemical Research, Development and Engineering Center (CRDEC) under the sponsorship of the Defense Nuclear Agency (DNA), completed testing of Nondestructive Evaluation (NDE) technology on live agent systems. The tests were conducted at Tooele Army Depot during August 1992. The Nondestructive Evaluation systems were tested for potential use in verifying chemical treaty requirements. Five technologies, two neutron and three acoustic, were developed at DOE laboratories. Two systems from the United Kingdom (one neutron and one acoustic) were also included in the field trials. All systems tested showed the ability to distinguish among the VX, GB, and Mustard. Three of the systems (two acoustic and one neutron) were used by On-Site Inspection Agency (OSIA) personnel.

  20. Materials and Nondestructive Evaluation Laboratoriers: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Schaschl, Leslie

    2011-01-01

    The Materials and Nondestructive Evaluation Laboratory process, milestones and inputs are unknowns to first-time users. The Materials and Nondestructive Evaluation Laboratory Planning Guide aids in establishing expectations for both NASA and non- NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware developers. It is intended to assist their project engineering personnel in materials analysis planning and execution. Material covered includes a roadmap of the analysis process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, products, and inputs necessary to define scope of analysis, cost, and schedule are included as an appendix to the guide.

  1. Non-destructive examination system of vitreous body

    NASA Astrophysics Data System (ADS)

    Shibata, Takuma; Gong, Jin; Watanabe, Yosuke; Kabir, M. Hasnat; Masato, Makino; Furukawa, Hidemitsu; Nishitsuka, Koichi

    2014-04-01

    Eyeball plays a quite important role in acquiring the vision. Vitreous body occupies the largest part of the eyeball and consists of biological, elastic, transparent, gel materials. In the present medical examination, the non-destructive examination method of the vitreous body has not been well established. Here, we focus on an application of dynamic light scattering to this topic. We tried to apply our lab-made apparatus, scanning microscopic light scattering (SMILS), which was specially designed for observing the nanometer-scale network structure in gel materials. In order to examine the vitreous body using SMILS method, a commercial apparatus, nano Partica (Horiba Co. Ltd.) was also customized. We analyzed vitreous body using both the SMILS and the customized nano Partica. We successfully examined the vitreous bodies of healthy pigs in non-destructive way.

  2. Infrared Thermography for Temperature Measurement and Non-Destructive Testing

    PubMed Central

    Usamentiaga, Rubèn; Venegas, Pablo; Guerediaga, Jon; Vega, Laura; Molleda, Julio; Bulnes, Francisco G.

    2014-01-01

    The intensity of the infrared radiation emitted by objects is mainly a function of their temperature. In infrared thermography, this feature is used for multiple purposes: as a health indicator in medical applications, as a sign of malfunction in mechanical and electrical maintenance or as an indicator of heat loss in buildings. This paper presents a review of infrared thermography especially focused on two applications: temperature measurement and non-destructive testing, two of the main fields where infrared thermography-based sensors are used. A general introduction to infrared thermography and the common procedures for temperature measurement and non-destructive testing are presented. Furthermore, developments in these fields and recent advances are reviewed. PMID:25014096

  3. Review of progress in quantitative nondestructive evaluation. Volume 6A

    SciTech Connect

    Thompson, D.O.; Chimenti, D.E.

    1987-01-01

    This volume consists of the keynote address and the first 116 papers presented at the annual Review of Progress in Quantitative Nondestructive Evaluation conference. The first chapter includes papers which discuss generic techniques and fundamentals in ultrasonic, eddy current, thermal wave, acoustic emission, x-ray, computerized tomographic, NMR and other nondestructive testing methods. Papers included in the second chapter describe imaging,microscopy, inversion and reconstruction techniques, while those in the third chapter investigate various ultrasonic and electromagnetic sensors and probes. Chapter 4 discusses image analysis, signal processing and artificial intelligence applications to NDE. Chapter 5 presents various NDE systems and approaches for determining their reliability. Evaluation of aircraft and reactor components are among the applications discussed. A companion volume--Volume 6B--contains the remaining half of the conference proceedings.

  4. Non-destructive techniques based on eddy current testing.

    PubMed

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754

  5. Uranium holdup in concrete floors: a comparison of nondestructive methods

    SciTech Connect

    Hardt, T.L.; Dedo, M.P.

    1986-01-01

    In 1978, Babcock and Wilcox ceased operations at its high-enriched uranium conversion facility in Apollo, Pennsylvania. Incorporated in the Company's action was the responsibility to clean up, recover and/or identify any an all uranium that might be held up in processing equipment, piping, and the building. By 1980, most of the historical inventory difference had been recovered from the equipment and piping, which had been removed from the plant. It was anticipated that over the 20-yr history of this facility, some special nuclear material (SNM) would be embedded in the floors of the building. The objective of this work was to develop a method to measure this material nondestructively and as accurately as possible. This paper illustrates two nondestructive methods used at the Apollo facility and then presents a comparison of the NDA to the results of destructive recovery.

  6. Non-Destructive Techniques Based on Eddy Current Testing

    PubMed Central

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754

  7. Nondestructive methods for quality evaluation of livestock products.

    PubMed

    Narsaiah, K; Jha, Shyam N

    2012-06-01

    The muscles derived from livestock are highly perishable. Rapid and nondestructive methods are essential for quality assurance of such products. Potential nondestructive methods, which can supplement or replace many of traditional time consuming destructive methods, include colour and computer image analysis, NIR spectroscopy, NMRI, electronic nose, ultrasound, X-ray imaging and biosensors. These methods are briefly described and the research work involving them for products derived from livestock is reviewed. These methods will be helpful in rapid screening of large number of samples, monitoring distribution networks, quick product recall and enhance traceability in the value chain of livestock products. With new developments in the areas of basic science related to these methods, colour, image processing, NIR spectroscopy, biosensors and ultrasonic analysis are expected to be widespread and cost effective for large scale meat quality evaluation in near future. PMID:23729854

  8. Nondestructive Damage Evaluation in Ceramic Matrix Composites for Aerospace Applications

    PubMed Central

    Dassios, Konstantinos G.; Kordatos, Evangelos Z.; Aggelis, Dimitrios G.; Matikas, Theodore E.

    2013-01-01

    Infrared thermography (IRT) and acoustic emission (AE) are the two major nondestructive methodologies for evaluating damage in ceramic matrix composites (CMCs) for aerospace applications. The two techniques are applied herein to assess and monitor damage formation and evolution in a SiC-fiber reinforced CMC loaded under cyclic and fatigue loading. The paper explains how IRT and AE can be used for the assessment of the material's performance under fatigue. IRT and AE parameters are specifically used for the characterization of the complex damage mechanisms that occur during CMC fracture, and they enable the identification of the micromechanical processes that control material failure, mainly crack formation and propagation. Additionally, these nondestructive parameters help in early prediction of the residual life of the material and in establishing the fatigue limit of materials rapidly and accurately. PMID:23935428

  9. Nondestructive damage evaluation in ceramic matrix composites for aerospace applications.

    PubMed

    Dassios, Konstantinos G; Kordatos, Evangelos Z; Aggelis, Dimitrios G; Matikas, Theodore E

    2013-01-01

    Infrared thermography (IRT) and acoustic emission (AE) are the two major nondestructive methodologies for evaluating damage in ceramic matrix composites (CMCs) for aerospace applications. The two techniques are applied herein to assess and monitor damage formation and evolution in a SiC-fiber reinforced CMC loaded under cyclic and fatigue loading. The paper explains how IRT and AE can be used for the assessment of the material's performance under fatigue. IRT and AE parameters are specifically used for the characterization of the complex damage mechanisms that occur during CMC fracture, and they enable the identification of the micromechanical processes that control material failure, mainly crack formation and propagation. Additionally, these nondestructive parameters help in early prediction of the residual life of the material and in establishing the fatigue limit of materials rapidly and accurately. PMID:23935428

  10. Aging management of major LWR components with nondestructive evaluation

    SciTech Connect

    Shah, V.N.; MacDonald, P.E.; Akers, D.W.; Sellers, C.; Murty, K.L.; Miraglia, P.Q.; Mathew, M.D.; Haggag, F.M.

    1997-12-31

    Nondestructive evaluation of material damage can contribute to continued safe, reliable, and economical operation of nuclear power plants through their current and renewed license period. The aging mechanisms active in the major light water reactor components are radiation embrittlement, thermal aging, stress corrosion cracking, flow-accelerated corrosion, and fatigue, which reduce fracture toughness, structural strength, or fatigue resistance of the components and challenge structural integrity of the pressure boundary. This paper reviews four nondestructive evaluation methods with the potential for in situ assessment of damage caused by these mechanisms: stress-strain microprobe for determining mechanical properties of reactor pressure vessel and cast stainless materials, magnetic methods for estimating thermal aging damage in cast stainless steel, positron annihilation measurements for estimating early fatigue damage in reactor coolant system piping, and ultrasonic guided wave technique for detecting cracks and wall thinning in tubes and pipes and corrosion damage to embedded portion of metal containments.

  11. Passive inhalation of marijuana smoke: urinalysis and room air levels of delta-9-tetrahydrocannabinol

    SciTech Connect

    Cone, E.J.; Johnson, R.E.; Darwin, W.D.; Yousefnejad, D.; Mell, L.D.; Paul, B.D.; Mitchell, J.

    1987-05-01

    In two separate studies, 5 drug-free male volunteers with a history of marijuana use were passively exposed to the sidestream smoke of 4 and 16 marijuana cigarettes (2.8% delta-9-tetrahydrocannabinol (THC)) for 1 h each day for 6 consecutive days. A third study was similarly performed with 2 marijuana-naive subjects passively exposed to the smoke of 16 marijuana cigarettes. Passive smoke exposure was conducted in a small, unventilated room. Room air levels of THC and CO were monitored frequently. All urine specimens were collected and analyzed by EMIT d.a.u. assay, Abuscreen radioimmunoassay and GC/MS. The studies show that significant amounts of THC were absorbed by all subjects at the higher level of passive smoke exposure (eg., smoke from 16 marijuana cigarettes), resulting in urinary excretion of significant amounts of cannabinoid metabolites. However, it seems improbable that subjects would unknowingly tolerate the noxious smoke conditions produced by this exposure. At the lower level of passive marijuana-smoke exposure, specimens tested positive only infrequently or were negative. Room air levels of THC during passive smoke exposure appeared to be the most critical factor in determining whether a subject produced cannabinoid-positive urine specimens.

  12. Optical Nondestructive Controlled-NOT Gate without Using Entangled Photons

    E-print Network

    Xiao-Hui Bao; Teng-Yun Chen; Qiang Zhang; Jian Yang; Han Zhang; Tao Yang; Jian-Wei Pan

    2007-05-08

    We present and experimentally demonstrate a novel optical nondestructive controlled-NOT gate without using entangled ancilla. With much fewer measurements compared with quantum process tomography, we get a good estimation of the gate fidelity. The result shows a great improvement compared with previous experiments. Moreover, we also show that quantum parallelism is achieved in our gate and the performance of the gate can not be reproduced by local operations and classical communications.

  13. Non-destructive ultrasonic measurements of case depth. [in steel

    NASA Technical Reports Server (NTRS)

    Flambard, C.; Lambert, A.

    1978-01-01

    Two ultrasonic methods for nondestructive measurements of the depth of a case-hardened layer in steel are described. One method involves analysis of ultrasonic waves diffused back from the bulk of the workpiece. The other method involves finding the speed of propagation of ultrasonic waves launched on the surface of the work. Procedures followed in the two methods for measuring case depth are described.

  14. Current nondestructive inspection methods for aging aircraft. Final Report

    SciTech Connect

    Ansley, G.; Bakanas, S.; Castronuova, M.; Grant, T.; Vichi, F.

    1992-06-01

    This report identifies and describes current methods used during the nondestructive inspection (NDI) of commercial transport aircraft for structural damage. The six most prevalent NDI methods identified are visual, eddy current, radiography, ultrasonic, penetrant, and magnetic particle. The physical principles, generalized performance characteristics, and typical applications associated with each method are described. In addition, descriptions of specific airframe and engine inspection practices are also presented.

  15. Non-destructive metallurgical analysis of astrolabes utilizing synchrotron radiation.

    SciTech Connect

    Newbury, B.; Stephenson, B.; Almer, J. D.; Notis, M.; Haeffner, D. R.; Slade Cargill, G., III

    2002-05-22

    From the experiments performed it is possible to determine a wide range of information about the metallurgy of the astrolabes studied. It was found that different brass alloys were used for components that were cast and those that were mechanically deformed. Chemical composition, forming history, and thickness measurements are all determined non-destructively, illustrating that this technique could be useful for many applications with metal artifact analysis where non-intrusive methods are required.

  16. Nondestructive quantitative stress characterization of wire rope and steel cables

    NASA Astrophysics Data System (ADS)

    Brauss, Michael E.; Pineault, James A.; Belassel, M.; Teodoropol, Stefan I.

    1998-03-01

    This paper describes a new approach to nondestructive and quantitative characterization of residual and applied stress (absolute stress) on wire rope and steel cable. Examples are given from both field work as well as laboratory tests, including stress characterization of post-tensioning cables, bridge suspension cables, wire rope and thin strand steel wire. The approach is based on x-ray diffraction techniques. A detailed description of the results and the methodologies used to obtain them are provided.

  17. NASA CR-2120 - Summary of nondestructive testing theory and practice

    NASA Technical Reports Server (NTRS)

    Meister, R. P.

    1974-01-01

    This is a familiarization report of nondestructive testing (ndt) prepared by staff of the Battelle Columbus Laboratories on a NASA contract. There is a short introduction, a chapter on applicability of ndt which is illustrated with examples of typical defects and includes tables comparing the characteristics, interrelationships, and costs of the different techniques. There are chapters dealing with penetrants, magnetic particle radiography, ultrasonics, and eddy currents. New techniques are described.

  18. Federal laboratory nondestructive testing research and development applicable to industry

    SciTech Connect

    Smith, S.A.; Moore, N.L.

    1987-02-01

    This document presents the results of a survey of nondestructive testing (NDT) and related sensor technology research and development (R and D) at selected federal laboratories. Objective was to identify and characterize NDT activities that could be applied to improving energy efficiency and overall productivity in US manufacturing. Numerous federally supported R and D programs were identified in areas such as acoustic emissions, eddy current, radiography, computer tomography and ultrasonics. A Preliminary Findings Report was sent to industry representatives, which generated considerable interest.

  19. Development of and assay methodology for antibodies to benzo(a) pyrene (BP)

    SciTech Connect

    Griffin, G.D.; Thomason, R.; Murchison, C.; St. Wecker, P.; Kurka, K.; Ambrose, K.R.

    1986-05-01

    Rabbits, rats and mice have been immunized with BP-bovine serum albumin (BSA) conjugates, administered subcutaneously in Freund's adjuvant. Activity and specificity of antisera preparations from immunized animals was determined by: Double immunodiffusion, passive hemagglutination, enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay (RIA). All techniques could be successfully used to demonstrate the presence of BP antibodies in immune sera. The fist three assays were used only with BP antigen coupled to a protein. If BSA was used, cross-reactivity against BSA was observed, but differences in extent of reactivity toward BP-BSA and BSA were readily apparent. Antisera from highly immune animals showed anti-BP reactivity at 1-10 x 10/sup 6/ dilutions in the ELISA assay, but did not produce positive reactions in the passive hemagglutination assay at >1:256 dilutions. The RIA assay was used with either /sup 14/C-or /sup 3/H-BP, and relied upon an activated charcoal separation step to effectively remove (>98% efficiency) free BP from antibody-bound BP. Using this RIA assay, estimates of amounts of BP antibodies in antisera (0.1-1% of the immunoglobulin fraction) and antibody specificity for BP structural determinants could be made. These antibodies may form the basis for a novel detection system for BP and/or other polycyclic compounds.

  20. Interior design for passive solar homes

    NASA Astrophysics Data System (ADS)

    Breen, J. C.

    1981-07-01

    The increasing emphasis on refinement of passive solar systems brought recognition to interior design as an integral part of passive solar architecture. Interior design can be used as a finetuning tool minimizing many of the problems associated with passive solar energy use in residential buildings. In addition, treatment of interior space in solar model homes may be a prime factor in determining sales success. A new style of interior design is evolving in response to changes in building from incorporating passive solar design features. The psychology behind passive solar architecture is reflected in interiors, and selection of interior components increasingly depends on the functional suitably of various interior elements.

  1. Interior design for passive solar homes

    SciTech Connect

    Breen, J. C.

    1981-07-01

    The increasing emphasis on refinement of passive solar systems has brought recognition to interior design as an integral part of passive solar architecture. Interior design can be used as a finetuning tool minimizing many of the problems associated with passive solar energy use in residential buildings. In addition, treatment of interior space in solar model homes may be a prime factor in determining sales success. A new style of interior design is evolving in response to changes in building form incorporating passive solar design features. The psychology behind passive solar architecture is reflected in interiors, and selection of interior components increasingly depends on the functional suitability of various interior elements.

  2. Evaluation of Alternate Surface Passivation Methods (U)

    SciTech Connect

    Clark, E

    2005-05-31

    Stainless steel containers were assembled from parts passivated by four commercial vendors using three passivation methods. The performance of these containers in storing hydrogen isotope mixtures was evaluated by monitoring the composition of initially 50% H{sub 2} 50% D{sub 2} gas with time using mass spectroscopy. Commercial passivation by electropolishing appears to result in surfaces that do not catalyze hydrogen isotope exchange. This method of surface passivation shows promise for tritium service, and should be studied further and considered for use. On the other hand, nitric acid passivation and citric acid passivation may not result in surfaces that do not catalyze the isotope exchange reaction H{sub 2} + D{sub 2} {yields} 2HD. These methods should not be considered to replace the proprietary passivation processes of the two current vendors used at the Savannah River Site Tritium Facility.

  3. Operability test procedure for TRUSAF assayer software upgrade

    SciTech Connect

    Cejka, C.C.

    1995-02-14

    This OTP is to be used to ensure the operability of the Transuranic Waste Assay System (TRUWAS). The system was upgraded and requires a retest to assure satisfactory operation. The upgrade consists of an AST 486 computer to replace the IBM-PC/XT, and a software upgrade (CNEUT). The software calculations are performed in the same manner as in the previous system (NEUT), however, the new software is written in C Assembly Language. CNEUT is easier to use and far more powerful than the previous program. The TRUWAS is used to verify the TRU content of waste packages sent for storage in the Transuranic Storage and Assay Facility (TRUSAF). The TRUSAF is part of Westinghouse Hanford`s certification program for waste to be shipped to the Waste Isolation Pilot Plant (WIPP) in New Mexico. The Transuranic Waste Assayer uses a combination passive-active neutron interrogation system to determine the TRU content of 55-gallon waste drums. The system consists of a shielded assay chamber; Deuterium-Tritium neutron generator; Helium-3 proportional counters; drum handling system; electronics including preamplifier, amplifier, and discriminator for each of the counter packages; and an AST 486 computer/printer system for data acquisition and analysis. The system can detect down to TRU levels of 10 nCi/g in the waste matrix. The equipment to be tested is: Assay Chamber Door Drum Turntable and Automatic Loading Platform Interlocks Assayer Software; and IBM computer/printer software. The objective of the test is to verify that the system is operational with the AST 486 computer, the software used in the new computer system correctly calculates TRU levels, and the new computer system is capable of storing and retrieving data.

  4. Driven active and passive nematics

    E-print Network

    Thampi, Sumesh P; Yeomans, Julia M

    2015-01-01

    We investigate similarities in the micro-structural dynamics between externally driven and actively driven nematics. Walls, lines of strong deformations in the director field, and topological defects are characteristic features of an active nematic. Similar structures form in driven passive nematics when there are inhomogeneities in imposed velocity gradients due to non-linear flow fields or geometrical constraints. Specifically, pressure driven flow of a tumbling passive nematic in an expanding-contracting channel produces walls and defects similar to those seen in active nematics. We also study the response of active nematics to external driving, confirming that imposed shear suppresses the hydrodynamic instabilities. We show that shear fields can lead to wall alignments and the localisation of active turbulence.

  5. All-passive nonreciprocal metastructure.

    PubMed

    Mahmoud, Ahmed M; Davoyan, Arthur R; Engheta, Nader

    2015-01-01

    One-way propagation of light, analogous to the directional flow of electrons in the presence of electric potential difference, has been an important goal in the wave-matter interaction. Breaking time-reversal symmetry in photonic flows is faced with challenges different from those for electron flows. In recent years several approaches and methods have been offered towards achieving this goal. Here we investigate another systematic approach to design all-passive relatively high-throughput metastructures that exhibit nonreciprocal properties and achieve wave-flow isolation. Moreover, we build on those findings and propose a paradigm for a quasi-two-dimensional metastructure that mimics the nonreciprocal property of Faraday rotation without using any magnetic or electric biasing. We envision that the proposed approaches may serve as a building block for all-passive time-reversal symmetry breaking with potential applications for future nonreciprocal systems and devices. PMID:26414528

  6. New England style passive solar

    SciTech Connect

    Kriescher, P.

    2000-06-01

    There are homeowners throughout New England who planned for and built homes that allow them to avoid the sting of winter's high heating bills. These climate-responsive homes rely on passive solar heating, cooling and lighting. An example of such a climate-responsive/passive solar house is the home that Arthur and Terry Becker build on 6 beautiful acres (2.4 hectares) of rolling farm and woodland southeast of Andover, Connecticut, in 1981. They worked very closely with their designer, Al Eggan of K.T. Lear and Associates, to ensure that they would never have to pay for home heating oil, and that they would enjoy a level of year-round comfort that they had not experienced in conventionally built homes.

  7. All-passive nonreciprocal metastructure

    PubMed Central

    Mahmoud, Ahmed M.; Davoyan, Arthur R.; Engheta, Nader

    2015-01-01

    One-way propagation of light, analogous to the directional flow of electrons in the presence of electric potential difference, has been an important goal in the wave–matter interaction. Breaking time-reversal symmetry in photonic flows is faced with challenges different from those for electron flows. In recent years several approaches and methods have been offered towards achieving this goal. Here we investigate another systematic approach to design all-passive relatively high-throughput metastructures that exhibit nonreciprocal properties and achieve wave-flow isolation. Moreover, we build on those findings and propose a paradigm for a quasi-two-dimensional metastructure that mimics the nonreciprocal property of Faraday rotation without using any magnetic or electric biasing. We envision that the proposed approaches may serve as a building block for all-passive time-reversal symmetry breaking with potential applications for future nonreciprocal systems and devices PMID:26414528

  8. Myths in passive solar design

    SciTech Connect

    Hastings, S.R.

    1995-12-31

    For years passive solar design principles have been perpetuated without being reexamined or questioned regarding their relevance in the context of new materials and constructions. Rarely does an architect get quantitative feedback on system or concept performance after the building is built. The result has been the perpetuation of beliefs among conference papers, text books and popular articles, all too often based only on belief. In this paper examples of premises which likely deserve to be kept passive rather than acted on are challenged. Designers are encouraged to ask three questions when applying a commonly held rule or assumption: Does it address the right issue? Does it apply, given the properties of new components and materials? If the premise is violated, how badly is comfort or the energy balance affected? Examples taken from monitoring and sensitivity studies illustrate the importance of asking `stupid` questions. 9 refs., 5 figs.

  9. All-passive nonreciprocal metastructure

    NASA Astrophysics Data System (ADS)

    Mahmoud, Ahmed M.; Davoyan, Arthur R.; Engheta, Nader

    2015-09-01

    One-way propagation of light, analogous to the directional flow of electrons in the presence of electric potential difference, has been an important goal in the wave-matter interaction. Breaking time-reversal symmetry in photonic flows is faced with challenges different from those for electron flows. In recent years several approaches and methods have been offered towards achieving this goal. Here we investigate another systematic approach to design all-passive relatively high-throughput metastructures that exhibit nonreciprocal properties and achieve wave-flow isolation. Moreover, we build on those findings and propose a paradigm for a quasi-two-dimensional metastructure that mimics the nonreciprocal property of Faraday rotation without using any magnetic or electric biasing. We envision that the proposed approaches may serve as a building block for all-passive time-reversal symmetry breaking with potential applications for future nonreciprocal systems and devices

  10. Nitrogen concentration estimation in tomato leaves by VIS-NIR non-destructive spectroscopy.

    PubMed

    Ulissi, Valentina; Antonucci, Francesca; Benincasa, Paolo; Farneselli, Michela; Tosti, Giacomo; Guiducci, Marcello; Tei, Francesco; Costa, Corrado; Pallottino, Federico; Pari, Luigi; Menesatti, Paolo

    2011-01-01

    Nitrogen concentration in plants is normally determined by expensive and time consuming chemical analyses. As an alternative, chlorophyll meter readings and N-NO(3) concentration determination in petiole sap were proposed, but these assays are not always satisfactory. Spectral reflectance values of tomato leaves obtained by visible-near infrared spectrophotometry are reported to be a powerful tool for the diagnosis of plant nutritional status. The aim of the study was to evaluate the possibility and the accuracy of the estimation of tomato leaf nitrogen concentration performed through a rapid, portable and non-destructive system, in comparison with chemical standard analyses, chlorophyll meter readings and N-NO(3) concentration in petiole sap. Mean reflectance leaf values were compared to each reference chemical value by partial least squares chemometric multivariate methods. The correlation between predicted values from spectral reflectance analysis and the observed chemical values showed in the independent test highly significant correlation coefficient (r = 0.94). The utilization of the proposed system, increasing efficiency, allows better knowledge of nutritional status of tomato plants, with more detailed and sharp information and on wider areas. More detailed information both in space and time is an essential tool to increase and stabilize crop quality levels and to optimize the nutrient use efficiency. PMID:22163962

  11. Target recognition in passive terahertz image of human body

    NASA Astrophysics Data System (ADS)

    Zhao, Ran; Zhao, Yuan-meng; Deng, Chao; Zhang, Cun-lin; Li, Yue

    2014-11-01

    THz radiation can penetrate through many nonpolar dielectric materials and can be used for nondestructive/noninvasive sensing and imaging of targets under nonpolar, nonmetallic covers or containers. Thus using THz systems to "see through" concealing barriers (i.e. packaging, corrugated cardboard, clothing) has been proposed as a new security screening method. Objects that can be detected by THz include concealed weapons, explosives, and chemical agents under clothing. Passive THz imaging system can detect THz wave from human body without transmit any electromagnetic wave, and the suspicious objects will become visible because the THz wave is blocked by this items. We can find out whether or not someone is carrying dangerous objects through this image. In this paper, the THz image enhancement, segmentation and contour extraction algorithms were studied to achieve effective target image detection. First, the terahertz images are enhanced and their grayscales are stretched. Then we apply global threshold segmentation to extract the target, and finally the targets are marked on the image. Experimental results showed that the algorithm proposed in this paper can extract and mark targets effectively, so that people can identify suspicious objects under clothing quickly. The algorithm can significantly improve the usefulness of the terahertz security apparatus.

  12. Active and Passive Hybrid Sensor

    NASA Technical Reports Server (NTRS)

    Carswell, James R.

    2010-01-01

    A hybrid ocean wind sensor (HOWS) can map ocean vector wind in low to hurricane-level winds, and non-precipitating and precipitating conditions. It can acquire active and passive measurements through a single aperture at two wavelengths, two polarizations, and multiple incidence angles. Its low profile, compact geometry, and low power consumption permits installation on air craft platforms, including high-altitude unmanned aerial vehicles (UAVs).

  13. Passive Neutron Detection at Borders

    SciTech Connect

    Kouzes, Richard T.; Siciliano, Edward R.; Ely, James H.; Keller, Paul E.; McConn, Ronald J.

    2008-03-01

    Radiation portal monitor systems have been deployed to screen for illicit trafficking of radioactive materials at international border crossings. This report reviews some of the neutron detection requirements and capabilities of passive detection systems used for such applications. Simulations show the effects of cargo materials on neutron spectra, different detector geometries, using a large-array of neutron detectors, and the effects of backgrounds including “ship effect” neutrons.

  14. Study of passive MMW personnel imaging with respect to suspicious and common concealed objects for security applications

    NASA Astrophysics Data System (ADS)

    Dill, Stephan; Peichl, Markus; Süß, Helmut

    2008-10-01

    Microwaves in the range of 1-300 GHz are used in many respects for remote sensing applications. Besides radar sensors particularly passive measurement methods are used for two-dimensional imaging. The imaging of persons and critical infrastructures for security purposes is of increasing interest particularly for transportation services or public events. Personnel inspection with respect to weapons and explosives becomes an important mean concerning terrorist attacks. Microwaves can penetrate clothing and a multitude of other materials and allow the detection of hidden objects by monitoring dielectric anomalies. Passive microwave remote sensing allows a daytime independent non-destructive observation and examination of the objects of interest under nearly all weather conditions without artificial exposure of persons or areas. Some millimeter-wave radiometric imaging devices with respect to low cost are investigated. Measurement results of some typical personnel screening scenarios are discussed. Requirements for future operational systems are outlined.

  15. Passive monitoring using traffic noise recordings - case study on the Steinachtal Bridge

    NASA Astrophysics Data System (ADS)

    Salvermoser, Johannes; Stähler, Simon; Hadziioannou, Céline

    2015-04-01

    Civil structures age continuously. The early recognition of potentially critical damages is an important economical issue, but also one of public safety. Continuous tracking of small changes in the medium by using passive methods would offer an extension to established active non-destructive testing procedures at relatively low cost. Here we present a case study of structural monitoring using continuous recordings of traffic noise on a 200 meter long reinforced concrete highway bridge in Germany. Over two months of continuos geophone records are used in the frequency range of 2-8 Hz. Using passive image interferometry, evaluation of hourly cross-correlations between recordings at pairs of receivers yield velocity variations in the range of -1.5% to +2.1%. We were able to correlate our outcomes with temperature measurements of the same two month period. The measured velocity changes scale with the temperature variations with on average a dv/v of 0.064% per degree Celsius. This value is in accordance with other studies of concrete response to temperature, confirming that we are able to observe subtle changes with physical origin. It is shown that traffic noise is temporally homogenenous enough to fulfill the requirements of passive image interferometry.

  16. Comet Assay measurements: a perspective.

    PubMed

    Kumaravel, T S; Vilhar, Barbara; Faux, Stephen P; Jha, Awadhesh N

    2009-02-01

    The Comet Assay or single cell gel electrophoresis assay is one of the very widely used assays to microscopically detect DNA damage at the level of a single cell. The determination of damage is carried out either through visual scoring of cells (after classification into different categories on the basis of tail length and shape) or by using different commercially available or public domain software (which automatically recognise the extent of damage). In this assay, the shape, size and amount of DNA within the 'comet' play important roles in the determination of the level of damage. The use of a software in particular also provides a range of different parameters, many of which might not be relevant in determining the extent of DNA damage. As a large number of factors could influence the shape, size, identification and determination of induced damage, which includes the scoring criteria, staining techniques, selection of parameters (whilst using the software packages) and appearance of 'hedgehog' or 'clouds', this article aims (a) to provide an overview of evolution of measurements of DNA damage using the Comet Assay and (b) to summarise and critically analyse the advantages and disadvantages of different approaches currently being adopted whilst using this assay. It is suggested that judicious selection of different parameters, staining methods along with inter-laboratory validation and harmonisation of methodologies will further help in making this assay more robust and widely acceptable for scientific as well as regulatory studies. PMID:18040874

  17. The assay of diphtheria toxin

    PubMed Central

    Gerwing, Julia; Long, D. A.; Mussett, Marjorie V.

    1957-01-01

    A precise assay of diphtheria toxin is described, based on the linear relationship between the diameter of the skin reaction to, and logarithm of the dose of, toxin. It eliminates the need for preliminary titrations, is economical, provides information about the slope of the log-dose response lines and, therefore, of the validity of the assay, and yields limits of error of potency from the internal evidence of the assay. A study has been made of the effects of avidity, combining power, toxicity and buffering on the assay of diphtheria toxins against the International Standards for both Diphtheria Antitoxin and Schick-Test Toxin. All the toxins assayed against the standard toxin, whatever their other properties might be, gave log-dose response lines of similar slope provided that they were diluted in buffered physiological saline. The assays were therefore valid. These experiments were repeated concurrently in non-immune and in actively immunized guinea-pigs, and comparable figures for potency obtained in both groups. The result was not significantly affected by the avidity or combining power of the toxin. However, non-avid toxins gave low values in Schick units when assayed, by the Römer & Sames technique, in terms of the International Standard for Diphtheria Antitoxin. The problem of the ultimate standard and the implications of these findings are discussed. PMID:13511133

  18. Transporter assays and assay ontologies: useful tools for drug discovery.

    PubMed

    Zdrazil, Barbara; Chichester, Christine; Zander Balderud, Linda; Engkvist, Ola; Gaulton, Anna; Overington, John P

    2014-06-01

    Transport proteins represent an eminent class of drug targets and ADMET (absorption, distribution, metabolism, excretion, toxicity) associated genes. There exists a large number of distinct activity assays for transport proteins, depending on not only the measurement needed (e.g. transport activity, strength of ligand–protein interaction), but also due to heterogeneous assay setups used by different research groups. Efforts to systematically organize this (divergent) bioassay data have large potential impact in Public-Private partnership and conventional commercial drug discovery. In this short review, we highlight some of the frequently used high-throughput assays for transport proteins, and we discuss emerging assay ontologies and their application to this field. Focusing on human P-glycoprotein (Multidrug resistance protein 1; gene name: ABCB1, MDR1), we exemplify how annotation of bioassay data per target class could improve and add to existing ontologies, and we propose to include an additional layer of metadata supporting data fusion across different bioassays. PMID:25027375

  19. Highly simplified lateral flow-based nucleic acid sample preparation and passive fluid flow control

    DOEpatents

    Cary, Robert E.

    2015-12-08

    Highly simplified lateral flow chromatographic nucleic acid sample preparation methods, devices, and integrated systems are provided for the efficient concentration of trace samples and the removal of nucleic acid amplification inhibitors. Methods for capturing and reducing inhibitors of nucleic acid amplification reactions, such as humic acid, using polyvinylpyrrolidone treated elements of the lateral flow device are also provided. Further provided are passive fluid control methods and systems for use in lateral flow assays.

  20. PRESSURE BAG MOLDING: MANUFACTURING, MECHANICAL TESTING, NON-DESTRUCTIVE EVALUATION, AND ANALYSIS

    E-print Network

    PRESSURE BAG MOLDING: MANUFACTURING, MECHANICAL TESTING, NON-DESTRUCTIVE EVALUATION, AND ANALYSIS..........................................................................................................4 Pressure Bag Molding-up ..............................................................................................................13 Resin Transfer Molding

  1. Life extension of structural components via an improved nondestructive testing methodology

    E-print Network

    Hohmann, Brian P. (Brian Patrick)

    2010-01-01

    An experimental study was performed to determine the flaw detection sensitivity of advanced nondestructive testing (NDT) techniques with respect to structural applications. The techniques analyzed exemplify the incorporation ...

  2. Exploratory loading techniques. [in holographic nondestructive testing of flat metal plates

    NASA Technical Reports Server (NTRS)

    Martin, A. M., III

    1976-01-01

    Interferometric holographic nondestructive testing of aluminum, copper, and steel flat plates is reported. Structural weaknesses under positive pressure, negative pressure, heating, and cooling are discussed.

  3. Integrated non-destructive assessment of relevant structural elements of an Italian heritage site: the Carthusian monastery of Trisulti

    NASA Astrophysics Data System (ADS)

    Rainieri, C.; Marra, A.; Rainieri, G. M.; Gargaro, D.; Pepe, M.; Fabbrocino, G.

    2015-07-01

    The analysis of historical structures in need of preservation and restoration interventions is a very complex task due to the large uncertainties in the characterization of structural properties and detailing in view of the structural response. Moreover, the predictive performance of numerical analyses and simulations depend on the availability of information about the constructional properties of the architectural complex, crack patterns and active degradation phenomena. In particular, local changes in material properties or damage due to past events (such as earthquakes) can affect individual structural elements. They can be hardly detected as a result of the maintenance interventions carried out over the centuries and the possibility to carry out limited or even no destructive investigations due to the historical relevance of the structure. Thus, non-destructive investigations play a fundamental role in the assessment of historical structures minimizing, at the same time, the invasiveness of interventions. The present paper deals with an explanatory case study concerning the structural investigations carried out in view of the seismic assessment of an Italian historical monument, the Carthusian monastery of Trisulti in Collepardo, erected in 1204 under Pope Innocenzo HI. The relevance of the case study is due to the application, in combination, of different NDT methods, such as sonic tests, and active and passive infrared thermography, in order to characterize relevant masonry elements. Moreover, an advanced system for the in-situ nondestructive vibration-based estimation of the tensile loads in ancient tie-rods is described and the main results obtained from its application for the characterization of the tie-rods of the cloister are presented.

  4. Doug Berndt Evaluated Bacterial Assay

    USGS Multimedia Gallery

    USGS microbiology technician evaluates a bacterial assay to determine the cause of a wildlife mortality. The USGS National Wildlife Health Center works to identify, track, and prevent wildlife disease....

  5. Rational design of digital assays.

    PubMed

    Debski, Pawel R; Gewartowski, Kamil; Sulima, Magdalena; Kaminski, Tomasz S; Garstecki, Piotr

    2015-08-18

    Optimum algorithm for digital assays treats chemical compartments as bits of probabilistic information and arranges these bits in a fractional positional system. Maximization of information gain reduces, by orders of magnitude, the number of partitions required to achieve the requested dynamic range and precision of the assay. The method simplifies the execution of digital analytical methods providing for more accessible use of absolute quantization in research and in diagnostics. PMID:26189596

  6. Three dimensional ultrasonic imaging: An aging aircraft nondestructive inspection tool

    SciTech Connect

    Thomas, G.H.; Benson, S.; Crawford, S.

    1993-07-01

    Ultrasonic nondestructive evaluation is a valuable technique for finding defects in aircraft structures. It can detect unbonds, corrosion damage and cracks in various aircraft components. Ultrasonic nondestructive evaluation techniques interrogate materials with high frequency acoustic energy. A piezoelectric transducer generates acoustic energy and converts returned acoustic energy into electrical signals which can be processed to identify the reflector. The acoustic energy propagates through the component and is reflected by abrupt changes in modulus and/or density that can be caused by a defect. Ultrasonic nondestructive evaluation typically provides a two dimensional image of internal defects. These images are either a planar view (C-scan) or a cross-sectional view (B-scan) of the component. The planar view is generated by raster scanning an ultrasonic transducer over the area of interest and capturing the peak amplitude of internal reflections. Depth information is generally ignored. The crass-sectional view is generated by scanning the transducer along a line and capturing the amplitude and time of flight for each internal reflection. The amplitude and time of flight information is converted into an image of the cross section of the component. By fusing the C-scan information with the B-scan information a three dimension image of the internal structure of the component can be produced. The three dimensional image can be manipulated by rotating and slicing to produce the optimal view of the internal structure. Visualizing defects in three dimensions aids the interpretation of the severity of defects and helps confirm the need to repair or replace components.

  7. Design of benign matrix drums for the non-destructive assay performance demonstration program for the National TRU Program

    SciTech Connect

    Becker, G.K.

    1996-09-01

    Regulatory compliance programs associated with the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Transuranic (TRU) Waste Characterization Program (the Program) require the collection of waste characterization data of known quality to support repository performance assessment, permitting, and associated activities. Blind audit samples, referred to as PDP (performance demonstration program) samples, are devices used in the NDA PDP program to acquire waste NDA system performance data per defined measurement routines. As defined under the current NDA PDP Program Plan, a PDP sample consists of a DOT 17C 55-gallon PDP matrix drum configured with insertable radioactive standards, working reference materials (WRMs). The particular manner in which the matrix drum and PDP standard(s) are combined is a function of the waste NDA system performance test objectives of a given cycle. The scope of this document is confined to the design of the PDP drum radioactive standard internal support structure, the matrix type and the as installed configuration. The term benign is used to designate a matrix possessing properties which are nominally non-interfering to waste NDA measurement techniques. Measurement interference sources are technique specific but include attributes such as: high matrix density, heterogeneous matrix distributions, matrix compositions containing high moderator/high Z element concentrations, etc. To the extent practicable the matrix drum design should not unduly bias one NDA modality over another due to the manner in which the matrix drum configuration manifests itself to the measurement system. To this end the PDP matrix drum configuration and composition detailed below is driven primarily by the intent to minimize the incorporation of matrix attributes known to interfere with fundamental waste NDA modalities, i.e. neutron and gamma based techniques.

  8. Microbiological assay using bioluminescent organism

    SciTech Connect

    Stiffey, A.V.

    1987-12-21

    This invention relates to testing processes for toxicity involving microorganisms and, more particularly, to testing processes for toxicity involving bioluminescent organisms. The present known method of testing oil-well drilling fluids for toxicity employs the mysid shrimp (Mysidopsis bahia) as the assay organism. The shrimp are difficult to raise and handle as laboratory assay organisms. This method is labor-intensive, because it requires a assay time of about 96 hours. Summary of the Invention: A microbiological assay in which the assay organism is the dinoflagellate, Pyrocystis lunula. A sample of a substance to be assayed is added to known numbers of the bioluminescent dinoflagellate and the mixture is agitated to subject the organisms to a shear stress causing them to emit light. The amount of light emitted is measured and compared with the amount of light emitted by a known non-toxic control mixture to determine if there is diminution or non-diminution of light emitted by the sample under test which is an indication of the presence or absence of toxicity, respectively. Accordingly, an object of the present invention is the provision of an improved method of testing substances for toxicity. A further object of the invention is the provision of an improved method of testing oil-well drilling fluids for toxicity using bioluminescent dinoflagellate (Pyrocystis lunula).

  9. 21 CFR 864.7250 - Erythropoietin assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Erythropoietin assay. 864.7250 Section 864.7250 Food...and Packages § 864.7250 Erythropoietin assay. (a) Identification. A erythropoietin assay is a device that measures the...

  10. 21 CFR 866.3210 - Endotoxin assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Endotoxin assay. 866.3210 Section 866.3210 Food and...Serological Reagents § 866.3210 Endotoxin assay. (a) Identification. An endotoxin assay is a device that uses serological...

  11. 21 CFR 864.7425 - Carboxyhemoglobin assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 false Carboxyhemoglobin assay. 864.7425 Section 864.7425 Food...Packages § 864.7425 Carboxyhemoglobin assay. (a) Identification. A carboxyhemoglobin assay is a device used to determine the...

  12. 21 CFR 864.7490 - Sulfhemoglobin assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Sulfhemoglobin assay. 864.7490 Section 864.7490 Food...and Packages § 864.7490 Sulfhemoglobin assay. (a) Identification. A sulfhemoglobin assay is a device consisting of the...

  13. Multimodal Plane Wave Imaging for Non-destructive Testing

    NASA Astrophysics Data System (ADS)

    Le Jeune, Léonard; Robert, Sébastien; Villaverde, Eduardo Lopez; Prada, Claire

    Ultrasonic imaging with high frame rates is of great interest in Non-Destructive Testing (NDT) to perform fast inspections. In this communication, we propose a new fast imaging method for NDT which is derived from the medical Plane Wave Imaging (PWI). The PWI method is applied to immersion-testing configurations (plane or complex water/steel interface between the probe and the image area) and to different imaging modes (imaging with direct or half-skip wave paths) according to the type of defects (point-like or extended crack-types defects).

  14. Nondestructive inspection of Piper PA25 forward spar fittings

    SciTech Connect

    Moore, D.G.

    1995-07-01

    The Federal Aviation Administration`s (FAA`s) Aging Aircraft NDI Validation Center (AANC) at Sandia National Laboratories applied two nondestructive inspection (NDI) techniques to inspect a forward spar fuselage attachment fitting. The techniques used were based on radiography and ultrasonic test methods. The combination of these techniques did reveal material thinning of two spar fittings from Piper PA25 aircraft. However, crack detection near a notch design feature could not be performed. Based on the results of these experiments, an ultrasonic test procedure was subsequently developed for the material thinning. The procedure has since been incorporated by the FAA into a revision of Airworthiness Directive 93-21-12.

  15. Nondestructive characterization of corrosion protective coatings on aluminum alloy substrates

    SciTech Connect

    Hoffmann, J.; Sathish, S.; Khobaib, M.; Meyendorf, N.; Netzelmann, U.; Matikas, T.E.

    2000-07-01

    This paper describes the initial phase of the development of a nondestructive, multisensor approach for detecting, quantifying and monitoring degradation of organic coatings applied to aluminum surfaces. Descriptions of the purposes and chemical compositions of layered coatings used on aircraft structures are provided. The discussion then concentrates on ultrasonic thickness measurements. One is the well-established pulse/echo scanning acoustic microscopy and, as a proposed alternative, continuous acoustic waves measurements with a probe in contract to the sample. Advantages and disadvantages of the two methods and their potential as in field applications are discussed.

  16. Development of Nondestructive Measuring Technique of Environmental Radioactive Strontium

    NASA Astrophysics Data System (ADS)

    Saiba, Shuntaro; Okamiya, Tomohiro; Tanaka, Saki; Tanuma, Ryosuke; Yoshida, Tatsuru; Murata, Jiro

    The Fukushima first nuclear power plant accident was triggered by the Japanese big earthquake in 2011. The main radioactivity concerned after the accident are I-131 (half-life 8.0 days), Cs-134 (2.1 years) and 137 (30 years), Sr-89 (51 days) and 90 (29 years). We are aiming to establish a new detection technique which enables us to realize quantitative evaluation of the strontium radioactivity by means of nondestructive measurement without chemical separation processing, which is concerned to be included inside foods, environmental water and soil around us, in order to prevent us from undesired internal exposure to the radiation.

  17. Real-time nondestructive imaging with THz waves

    NASA Astrophysics Data System (ADS)

    Zhang, LiangLiang; Karpowicz, Nick; Zhang, CunLin; Zhao, YueJin; Zhang, XiCheng

    2008-03-01

    We present a real-time imaging measurement in the terahertz (THz) frequency region. The dynamic subtraction technique is used to reduce long-term optical background drift. The reflective images of two targets, a Nikon camera's lens cap and a plastic toy gun, are obtained. For the lens cap, the image data were processed to be false-color images. For the toy gun, we show that even under an optically opaque canvas bag, a clear terahertz image is obtained. It is shown that terahertz real-time imaging can be used to nondestructively detect concealed objects.

  18. Terahertz real-time imaging for nondestructive detection

    NASA Astrophysics Data System (ADS)

    Zhang, LiangLiang; Karpowicz, Nick; Zhang, CunLin; Zhao, YueJin; Zhang, XiCheng

    2008-03-01

    We present a real time imaging measurement in the terahertz (THz) frequency region. The dynamic subtraction technique is used to reduce long-term optical background drift. The reflective images of two targets, a Nikon camera's lens cap and a plastic toy gun, are obtained. For the lens cap, the image data were processed to be false color images. For the toy gun, we show that even under an optically opaque canvas bag, a clear terahertz image is obtained. It is shown that terahertz real time imaging can be used to nondestructively detect concealed objects.

  19. Nondestructive Evaluation of Ceramic Matrix Composite Combustor Components

    NASA Technical Reports Server (NTRS)

    Sun, J. G.; Verrilli, M. J.; Stephan, R.; Barnett, T. R.; Ojard, G.

    2003-01-01

    Combustor liners fabricated from a SiC/SiC composite were nondestructively interrogated before and after combustion rig testing by X-ray, ultrasonic and thermographic techniques. In addition, mechanical test results were obtained from witness coupons, representing the as-manufactured liners, and from coupons machined from the components after combustion exposure. Thermography indications were found to correlate with reduced material properties obtained after rig testing. The thermography indications in the SiC/SiC liners were delaminations and damaged fiber tows, as determined through microstructural examinations. [copyright] 2003 American Institute of Physics

  20. Efficient Nondestructive Evaluation of Prototype Carbon Fiber Reinforced Structures

    NASA Technical Reports Server (NTRS)

    Russell, Samuel S.; Walker, James L.; Workman, Gary; Thom, Robert (Technical Monitor)

    2002-01-01

    Thermography inspection is an optic based technology that can reduce the time and cost required to inspect propellant tanks or aero structures fabricated from composite materials. Usually areas identified as suspect in the thermography inspection are examined with ultrasonic methods to better define depth, orientation and the nature of the anomaly. This combination of nondestructive evaluation techniques results in a rapid and comprehensive inspection of composite structures. Examples of application of this inspection philosophy to prototype will be presented. Methods organizing the inspection and evaluating the results will be considered.

  1. Nondestructive evaluation of ceramic matrix composite combustor components.

    SciTech Connect

    Sun, J. G.; Verrilli, M. J.; Stephan, R.; Barnett, T. R.; Ojard, G.

    2002-11-08

    Combustor liners fabricated from a SiC/SiC composite were nondestructively interrogated before and after combustion rig testing. The combustor liners were inspected by X-ray, ultrasonic and thermographic techniques. In addition, mechanical test results were obtained from witness coupons, representing the as-manufactured liners, and from coupons machined from the components after combustion exposure. Thermography indications were found to correlate with reduced material properties obtained after rig testing. Microstructural examination of the SiC/SiC liners revealed the thermography indications to be delaminations and damaged fiber tows.

  2. Experimental implementation of reverse time migration for nondestructive evaluation applications.

    PubMed

    Anderson, Brian E; Griffa, Michele; Bas, Pierre-Yves Le; Ulrich, Timothy J; Johnson, Paul A

    2011-01-01

    Reverse time migration (RTM) is a commonly employed imaging technique in seismic applications (e.g., to image reservoirs of oil). Its standard implementation cannot account for multiple scattering/reverberation. For this reason it has not yet found application in nondestructive evaluation (NDE). This paper applies RTM imaging to NDE applications in bounded samples, where reverberation is always present. This paper presents a fully experimental implementation of RTM, whereas in seismic applications, only part of the procedure is done experimentally. A modified RTM imaging condition is able to localize scatterers and locations of disbonding. Experiments are conducted on aluminum samples with controlled scatterers. PMID:21302980

  3. Needs and opportunities: nondestructive evaluation for energy systems

    NASA Astrophysics Data System (ADS)

    Bond, Leonard J.

    2015-03-01

    Advanced manufacturing and new energy systems are presenting a wide variety of challenges for nondestructive testing and evaluation (NDT/NDE). This paper discusses the state of the art, needs and opportunities for NDE to provide reliable, effective and economic inspection and monitoring for energy systems. It introduces issues of materials, defects and allowables, the evolution of advanced NDT and NDE and then considers examples of NDE for energy systems. These include applications in the petrochemical industry, advanced and additive manufacturing, solar cells, wind turbines, nuclear systems and some underlying issues of large scale composites, pipes and concrete.

  4. Non-destructive method for determining neutron exposure

    DOEpatents

    Gold, R.; McElroy, W.N.

    1983-11-01

    A non-destructive method for determination of neutron exposure in an object, such as a reactor pressure vessel, is based on the observation of characteristic gamma-rays emitted by activation products in the object by using a unique continuous gamma-ray spectrometer. The spectrometer views the object through appropriate collimators to determine the absolute emission rate of these characteristic gamma-rays, thereby ascertaining the absolute activity of given activation products in the object. These data can then be used to deduce the spatial and angular dependence of neutron exposure at regions of interest within the object.

  5. Concealed identification symbols and nondestructive determination of the identification symbols

    SciTech Connect

    Nance, Thomas A.; Gibbs, Kenneth M.

    2014-09-16

    The concealing of one or more identification symbols into a target object and the subsequent determination or reading of such symbols through non-destructive testing is described. The symbols can be concealed in a manner so that they are not visible to the human eye and/or cannot be readily revealed to the human eye without damage or destruction of the target object. The identification symbols can be determined after concealment by e.g., the compilation of multiple X-ray images. As such, the present invention can also provide e.g., a deterrent to theft and the recovery of lost or stolen objects.

  6. Liberty Bell 7 Recovery Evaluation and Nondestructive Testing

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Smith, William L.

    1999-01-01

    An inspection of the Mercury capsule, Liberty Bell 7, and its contents was made on September 1 and 2, 1999. The condition of the capsule and its contents was consistent with long-term exposure to salt water and high pressures at the bottom of the ocean. Many of the metallic materials suffered corrosion, whereas the polymer-based materials seem to have survived remarkably well. No identifiable items or structures were found that appeared to have any scientific value. At this time, no further nondestructive evaluation appears to be justified.

  7. Nondestructive evaluation of Ni-Ti shape memory alloy

    SciTech Connect

    Meir, S.; Gordon, S.; Karsh, M.; Ayers, R.; Olson, D. L.; Wiezman, A.

    2011-06-23

    The nondestructive evaluation of nickel titanium (Ni-Ti) alloys for applications such as heat treatment for biomaterials applications (dental) and welding was investigated. Ni-Ti alloys and its ternary alloys are valued for mechanical properties in addition to the shape memory effect. Two analytical approaches were perused in this work. Assessment of the microstructure of the alloy that determines the martensitic start temperature (Ms) of Ni-Ti alloy as a function of heat treatment, and secondly, an attempt to evaluate a Friction Stir Welding, which involves thermo-mechanical processing of the alloy.

  8. The passive-aggressive organization.

    PubMed

    Kaplan, Robert S; Norton, David P

    2005-10-01

    Passive-aggressive organizations are friendly places to work: People are congenial, conflict is rare, and consensus is easy to reach. But, at the end of the day, even the best proposals fail to gain traction, and a company can go nowhere so imperturbably that it's easy to pretend everything is fine. Such companies are not necessarily saddled with mulishly passive-aggressive employees. Rather, they are filled with mostly well-intentioned people who are the victirms of flawed processes and policies. Commonly, a growing company's halfhearted or poorly thought-out attempts to decentralize give rise to multiple layers of managers, whose authority for making decisions becomes increasingly unclear. Some managers, as a result, hang back, while others won't own up to the calls they've made, inviting colleagues to second-guess or overturn the decisions. In such organizations, information does not circulate freely, and that makes it difficult for workers to understand the impact of their actions on company performance and for managers to correctly appraise employees' value to the organization. A failure to accurately match incentives to performance stifles initiative, and people do just enough to get by. Breaking free from this pattern is hard; a long history of seeing corporate initiatives ignored and then fade away tends to make people cynical. Often it's best to bring in an outsider to signal that this time things will be different. He or she will need to address every obstacle all at once: clarify decision rights; see to it that decisions stick; and reward people for sharing information and adding value, not for successfully negotiating corporate politics. If those steps are not taken, it's only a matter of time before the diseased elements of a passive-aggressive organization overwhelm the remaining healthy ones and drive the company into financial distress. PMID:16250627

  9. Integration of TGS and CTEN assays using the CTEN{_}FIT analysis and databasing program

    SciTech Connect

    Estep, R.

    2000-05-01

    The CTEN{_}FIT program, written for Windows 9x/NT in C++, performs databasing and analysis of combined thermal/epithermal neutron (CTEN) passive and active neutron assay data and integrates that with isotopics results and gamma-ray data from methods such as tomographic gamma scanning (TGS). The binary database is reflected in a companion Excel database that allows extensive customization via Visual Basic for Applications macros. Automated analysis options make the analysis of the data transparent to the assay system operator. Various record browsers and information displays simplified record keeping tasks.

  10. Passive solar in China: traditional and new

    SciTech Connect

    Balcomb, J.D.; Balcomb, S.A.

    1986-04-01

    The authors' observations of a tradition of passive solar architecture in northern China are described. Tendencies for modern buildings to depart from this tradition are noted. Major passive solar research programs are discussed and experimental buildings are illustrated. It is concluded that the Chinese could realize a major advantage by combining their strong tradition of passive solar architecture with modern insulation methods and improved glazing systems.

  11. Passive solar reflector satellite revisited

    NASA Technical Reports Server (NTRS)

    Polk, C.; Daly, J. C.

    1980-01-01

    Passive light weight reflectors in space which direct the incident solar energy to a specified location on the Earth surface are proposed as an alternative system for the solar power satellite to overcome conversion losses and to avoid the need for photovoltaic cells. On Earth, either photovoltaic cells or a steam turbine alternator on a solar tower, or a similar conventional, relatively high efficiency cycle are used for electricity generation. The constraints which apply to the design of the optical system if a single satellite is placed in geostationary orbit are outlined. A single lens and a two lens system are discussed.

  12. Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging

    NASA Astrophysics Data System (ADS)

    Barty, C. P. J.

    2015-10-01

    Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.

  13. Estimating primaries from passive seismic data

    NASA Astrophysics Data System (ADS)

    Cheng, Hao; Wang, De-Li; Feng, Fei; Zhu, Heng

    2015-12-01

    Passive seismic sources can generally be divided into transient sources and noise sources. Noise sources are particularly the continuous, random small bursts, like background noise. The virtual-shot gathers obtained by the traditional cross-correlation algorithm from passive seismic data not only contain primaries, but also include surface-related multiples. Through estimating primaries by sparse inversion, we can directly obtain primaries from passive seismic data activated by transient sources, which are free of surface-related multiples. The problem of estimating primaries from passive seismic data activated by noise sources has not been discussed to date. First, by introducing the optimisation problem via the L1-norm constraint, this paper makes the traditional method of estimating primaries by sparse inversion from passive seismic data activated by transient sources improved, which overcomes the time-window problem. During the sparse inversion, the sparsifying transform, S = C2?W, is introduced. In the sparsifying-transform domain, the transformed data is more sparse, so the solution becomes more accurate. Second, this paper proposes estimating primaries from passive seismic data activated by noise sources. In the case of the sparse assumption not holding, we use the least-squares method based on the principle of minimum energy to estimate primaries from passive seismic data using the noise sources. Finally, we compare the primaries estimated from passive seismic data using transient sources and noise sources and analyse the characteristics of the estimated primaries obtained from two passive seismic data.

  14. Passive component manufacturing in Asia

    NASA Astrophysics Data System (ADS)

    Yen, Walter

    2005-01-01

    The serious downturn of optical fiber communication industry in the past three years speeds up the consolidation of passive component manufacturing. Automation activity and investment stopped due to no driving force from the volume demand. A lot of skillful but low cost labors must be needed in the future for manufacturing when the demand comes back. Except MEMS based VOA, most of components based on advanced technology seem to get delayed in most applications. Furthermore, the highly integrated products are also delayed and become uncertain, especially AWG technology. Most of the manufacturing of passive components already moved or are moving to Asia especially China. Browave already built its manufacturing factory and is almost doing all the manufacturing in Zhong Shan. Browave tries to optimize the value of Taiwan plus China, i.e., Tawan provides superior management system, quality systems and manufacturing engineering support where China provides a lot of skillful but low cost labors. Browave is now not only providing the basic elements like Couplers, Isolators, TFF add/drop filter, Thin Film based GFF (Gain Flattened Filters), but also providing "Dedicated Lines" for the components/modules/subsystems for the players who need the value as mentioned above.

  15. Passive electroreception in aquatic mammals.

    PubMed

    Czech-Damal, Nicole U; Dehnhardt, Guido; Manger, Paul; Hanke, Wolf

    2013-06-01

    Passive electroreception is a sensory modality in many aquatic vertebrates, predominantly fishes. Using passive electroreception, the animal can detect and analyze electric fields in its environment. Most electric fields in the environment are of biogenic origin, often produced by prey items. These electric fields can be relatively strong and can be a highly valuable source of information for a predator, as underlined by the fact that electroreception has evolved multiple times independently. The only mammals that possess electroreception are the platypus (Ornithorhynchus anatinus) and the echidnas (Tachyglossidae) from the monotreme order, and, recently discovered, the Guiana dolphin (Sotalia guianensis) from the cetacean order. Here we review the morphology, function and origin of the electroreceptors in the two aquatic species, the platypus and the Guiana dolphin. The morphology shows certain similarities, also similar to ampullary electroreceptors in fishes, that provide cues for the search for electroreceptors in more vertebrate and invertebrate species. The function of these organs appears to be very similar. Both species search for prey animals in low-visibility conditions or while digging in the substrate, and sensory thresholds are within one order of magnitude. The electroreceptors in both species are innervated by the trigeminal nerve. The origin of the accessory structures, however, is completely different; electroreceptors in the platypus have developed from skin glands, in the Guiana dolphin, from the vibrissal system. PMID:23187861

  16. On-orbit Passive Thermography

    NASA Technical Reports Server (NTRS)

    Howell, Patricia A.; Winfree, William P.; Cramer, K. Elliott

    2008-01-01

    On July 12, 2006, British-born astronaut Piers Sellers became the first person to conduct thermal nondestructive evaluation experiments in space, demonstrating the feasibility of a new tool for detecting damage to the reinforced carbon-carbon (RCC) structures of the Shuttle. This new tool was an EVA (Extravehicular Activity, or spacewalk) compatible infrared camera developed by NASA engineers. Data was collected both on the wing leading edge of the Orbiter and on pre-damaged samples mounted in the Shuttle s cargo bay. A total of 10 infrared movies were collected during the EVA totaling over 250 megabytes of data. Images were downloaded from the orbiting Shuttle to Johnson Space Center for analysis and processing. Results are shown to be comparable to ground-based thermal inspections performed in the laboratory with the same type of camera and simulated solar heating. The EVA camera system detected flat-bottom holes as small as 2.54cm in diameter with 50% material loss from the back (hidden) surface in RCC during this first test of the EVA IR Camera. Data for the time history of the specimen temperature and the capability of the inspection system for imaging impact damage are presented.

  17. Nondestructive Detection of Cracks in Ceramics Using Vicinal Illumination

    NASA Technical Reports Server (NTRS)

    Hull, Scott M.

    1999-01-01

    Cracks and other defects in ceramic materials can be difficult or impossible to examine and photograph due to the extreme lack of contrast. A method for inspecting translucent ceramics using scattered light, also known as vicinal illumination, will be described. This method has been known in the ceramics industry for quite some time, but is not well known in the testing and failure analysis community. Electronics applications include substrates, packages, multilayer capacitors, and thin film resistors. Ceramic materials are used in electronic applications as microcircuit packages and substrates which carry signals and power between microcircuits. Fine cracks in ceramic materials can result in mechanical failures, electrical failures, and loss of hermeticity. Often, fine cracks are difficult or impossible to detect using standard nondestructive inspection techniques such as visual inspection, ultrasonic inspection, or vapor crack detection. Dye penetrant inspection is usually effective, but contaminates the part, which is unacceptable for space flight hardware. One effective nondestructive inspection method of detecting cracks involves examining the way in which light scatters through the ceramic material when viewed with a standard bright field reflected light microscope. This method, termed vicinal illumination, has been used for detecting cracks during failure analyses of several part types, and screening of space flight hardware. The technique has proven effective on several different types of ceramic materials as well. A related method for use with dark field equipment has also been used to successfully locate otherwise invisible cracks.

  18. Nondestructive Degradation Evaluation of Ceramic Candle Filters Using Vibration Signatures

    SciTech Connect

    Chen, R.H.L.; Parthasarathy, B.

    1996-12-31

    The structural integrity of ceramic candle filters is a key element for hot gas cleanup systems, They protect the heat exchanger and gas turbine components from getting clogged and also prevent erosion. Ceramic candle filters used in the recent demonstration plant have experienced degradation and fracturing. Preliminary examination of these ceramic filters indicated that damage of the filters may have resulted from strength degradation at consistent high temperature operation, thermal transient events, excessive ash accumulation and bridging and pulse cleaning. The ceramic candle filter is a slender structure made of layers of porous materials. The structure has high acoustic attenuation which has greatly limited the conventional ultrasonic detection capability. In general, stiffness reduction of a structure will cause the change of the modal parameters of the structure. This study proposes a nondestructive approach for evaluating the structural properties of the ceramic filters using dynamic characterization method. The vibration signatures of the ceramic filters at different degradation levels are established using transient impact-response technique. Results from this study indicate that the vibration signatures of the filters can be used as an index to quantify the darnage condition of the filters. The results also indicate the feasibility of using the vibration mode shapes to predict the damage location. The application of this study can be implemented to develop a nondestructive evaluation method for future in-situ inspection of the ceramic filters.

  19. Nondestructive ultrasonic characterization of two-phase materials

    NASA Technical Reports Server (NTRS)

    Salama, Kamel

    1987-01-01

    The development of ultrasonic methods for the nondestructive characterization of mechanical properties of two phase engineering materials are described. The primary goal was to establish relationships between the nonlinearity parameter and the percentage of solid solution phase in two phase systems such as heat treatable aluminum alloys. The acoustoelastic constant was also measured on these alloys. A major advantage of the nonlinearity parameter over that of the acoustoelastic constant is that it may be determined without the application of stress on the material, which makes the method more applicable to inservice nondestructive characterization. The results obtained on the heat treatable 7075 and the work hardenable 5086 and 5456 aluminum alloys show that both the acoustoelastic constant and the acoustic nonlinearity parameter change considerable with the volume fraction of second phase precipitates in these aluminum alloys. A mathematical model was also developed to relate the effective acoustic nonlinearity parameter to volume fraction of second phase precipitates in an alloy. The equation is approximated to within experimental error by a linear expression for volume fractions up to approx. 10%.

  20. Holographic Nondestructive Testing: Review Of A Laser Inspection Tool

    NASA Astrophysics Data System (ADS)

    Erf, Robert K.

    1982-10-01

    A great deal has been written about holography, especially in the years since Gabor won the Nobel Prize (1971) for his "invention and development" of the method. While it is fairly safe to state that the movie and T.V. industries are not on the verge of a revolution as a result of the highly touted three-dimensional characteristics of the process, it can be said that holography may offer considerable scientific potential in such diverse areas as computer storage, display systems, correlation techniques, medical diagnostics (acoustical holography) and radar (microwave holography), to mention just a few. Another promising application of holography, and one that has been given considerable attention at United Technologies Corporation and other industrial laboratories, is nondestructive testing. Consideration shall be given to this subject in the present paper by starting with a very brief review of holography (The Basic Tool), followed by a description of interferometric hologra-phy (Preparing the Tool for Use), and how it can be employed to nondestructively identify defects (Applying the Tool). This sets the stage for two final topics which establish the holographic process as a viable NDT technique: pulsed holography (Adapting the Tool to the Industrial Environment) and special HNDT techniques (Simplifying and Diversifying Tool Application).

  1. New trends in non-destructive assessment of aerospace structures

    NASA Astrophysics Data System (ADS)

    Ostachowicz, Wieslaw M.; Malinowski, Pawel H.; Wandowski, Tomasz

    2015-03-01

    The scope of the paper includes non-destructive assessment of the structure's material condition, for the aerospace structures during its useful lifetime. The paper presents multidisciplinary technologies devoted to development and implementation of methods and systems that realize inspection and damage detection by non-destructive methods. The paper covers several disciplines which are based on topics such as piezoelectric transducers, elastic waves propagation phenomenon, structural vibrations analysis, electro-mechanical impedance method, terahertz technique, laser induced fluorescence and 3D laser vibrometry applications. Among various techniques available the paper presents selected numerical simulations and experimental validations of considered structures. Authors address also the problem of adhesive bonding in the case of carbon fiber reinforced polymers (CFRP). Techniques for detection of weak bonds are presented together with signal processing approaches. The reported investigations concern weak adhesive bonds caused by both manufacturing (e.g. release agent, poor curing) and in-service contaminations (e.g. moisture). Also the paper provides helpful information about dispersion, mode conversion and wave scattering from stiffeners and boundaries. It addresses the problem of optimisation of excitation signal parameters and sensor placement, as well as analysis of signals reflected from damage. It also includes a variety of techniques being related to diagnostics (damage size estimation and damage type recognition) and prognostics.

  2. Nondestructive tribochemistry-assisted nanofabrication on GaAs surface

    PubMed Central

    Song, Chenfei; Li, Xiaoying; Dong, Hanshan; Yu, Bingjun; Wang, Zhiming; Qian, Linmao

    2015-01-01

    A tribochemistry-assisted method has been developed for nondestructive surface nanofabrication on GaAs. Without any applied electric field and post etching, hollow nanostructures can be directly fabricated on GaAs surfaces by sliding a SiO2 microsphere under an ultralow contact pressure in humid air. TEM observation on the cross-section of the fabricated area shows that there is no appreciable plastic deformation under a 4?nm groove, confirming that GaAs can be removed without destruction. Further analysis suggests that the fabrication relies on the tribochemistry with the participation of vapor in humid air. It is proposed that the formation and breakage of GaAs-O-Si bonding bridges are responsible for the removal of GaAs material during the sliding process. As a nondestructive and conductivity-independent method, it will open up new opportunities to fabricate defect-free and well-ordered nucleation positions for quantum dots on GaAs surfaces. PMID:25761910

  3. Microwave nondestructive detection of chloride in cement based materials

    SciTech Connect

    Benally, Aaron D.; Bois, Karl J.; Zoughi, Reza; Nowak, Paul S.

    1999-12-02

    Preliminary results pertaining to the near-field microwave nondestructive detection and evaluation of chloride in cement paste and mortar specimens are presented. The technique used for this purpose utilizes an open-ended rectangular waveguide at the aperture of which the reflection properties of the specimens are measured. It is shown that the magnitude of reflection coefficient is a useful parameter for detecting chloride in these specimens. Furthermore, the difference in the amount of chloride present in these various specimens, at the time of mixing, can also be determined. Reflection property measurements were conducted in S-band (2.6 GHz-3.95 GHz) and X-band (8.2-12.4 GHz) for two sets of four mortar specimens with 0.50 and 0.60 water-to-cement ratio and varying salt (NaCl) contents added to the mixing water used in producing these specimens. It is shown that the reflection properties of these materials vary considerably as a function of their chloride content. Also, by monitoring the daily variation in the reflection coefficient of each specimen during the curing period, the effect of chloride on curing can be nondestructively ascertained. Finally, it is shown that the detection and evaluation of chloride content in cement based materials can be performed using a simple comparative process with respect to a non-contaminated specimen.

  4. Nondestructive evaluation of repairs on aircraft composite structures

    NASA Astrophysics Data System (ADS)

    Hsu, David K.; Barnard, Daniel J.; Peters, John J.

    2001-08-01

    Composite sandwiches have been used widely in flight controls of aircraft for many years; solid laminates have also begun to appear in primary structures such as the empennage. In their normal service life, composite parts may suffer damages and require repair and post-repair inspection. Nondestructive inspection is also needed for many of the rebuilt and refurbished parts in the maintenance, repair and overhaul industry. This paper describes the development of fieldable nondestructive inspection methods and instruments for composite structures and their repairs. For composite sandwiches the method developed is an instrumented tap test using the Computer Aided Tap Test (CATT) system. For repairs in solid laminates, the method used is ultrasonic pulse-echo C-scan using the Dripless Bubbler. The CATT system maps out the repaired region and produces an image of the local stiffness. Such images reveal voids and unbonds in a repair as areas of anomalously low stiffness; it also maps out areas of increased stiffness due to core potting and splicing. A number of examples of composite repairs inspected with the CATT system will be described. For engineered flaws in solid laminate repair panels from Boeing, scan images obtained with the Dripless Bubbler as a function of depth will be shown.

  5. Nondestructive determination of flesh color in clingstone peaches D.C. Slaughter a,

    E-print Network

    Crisosto, Carlos H.

    Nondestructive determination of flesh color in clingstone peaches D.C. Slaughter a, , C.H. Crisosto Keywords: Clingstone peach Visible­NIR spectroscopy Nondestructive Flesh color a b s t r a c for rapid determination of flesh color in clingstone peaches. Flesh color is currently used

  6. Nondestructive Probing of Rabi Oscillations on the Cesium Clock Transition near the Standard Quantum Limit

    E-print Network

    Saffman, Mark

    Nondestructive Probing of Rabi Oscillations on the Cesium Clock Transition near the Standard March 2008) We report on the nondestructive observation of Rabi oscillations on the Cs clock transition. Such Rabi oscillations are routinely ob- served in quantum dots [4], Josephson junction qubits [5], nitrogen

  7. Nuclear Technology. Course 26: Nondestructive Examination (NDE) Techniques I. Module 26-6, Radiography Inspection.

    ERIC Educational Resources Information Center

    Pelton, Rick; Espy, John

    This sixth in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I explains radiographic inspection as a means of nondestructively examining components, assemblies, structures, and fabricated piping. The module follows a typical format that includes the following sections: (1) introduction, (2) module…

  8. Automated Nondestructive Evaluation Method for Characterizing Ceramic and Metallic Hot Gas Filters

    SciTech Connect

    Ellingson, W.A.; Pastila, P.; Koehl, E.R.; Wheeler, B.; Deemer, C.; Forster, G.A.

    2002-09-19

    The objective of this work was to develop a nondestructive (NDE), cost-effective and reliable method to assess the condition of rigid ceramic hot gas filters. The work was intended to provide an end user, as well as filter producers, with a nondestructive method to assess the ''quality'' or status of the filters.

  9. Recent advances in the use of non-destructive near infrared spectroscopy on intact olive fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this review is to illustrate the state of the art in the use of non-destructive near infrared (NIR) spectroscopy for quality evaluation of intact fruit in the olive industry. First, the most recent studies regarding the application of non-destructive NIR spectroscopy methods to asse...

  10. Non-destructive determination of maize leaf and canopy chlorophyll content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to develop a rapid non-destructive technique to estimate total chlorophyll (Chl) content in a maize canopy using Chl content in a single leaf. The approach was (1) to calibrate and validate a reflectance-based non-destructive technique to estimate leaf Chl in maize; (...

  11. Quantitative non-destructive evaluation of composite materials based on ultrasonic wave propagation

    NASA Technical Reports Server (NTRS)

    Miller, J. G.

    1986-01-01

    The application and interpretation of specific ultrasonic nondestructive evaluation techniques are studied. The Kramers-Kronig or generalized dispersion relationships are applied to nondestructive techniques. Progress was made on an improved determination of material properties of composites inferred from elastic constant measurements.

  12. Nondestructive In Situ Identification of Crystal Orientation of Anisotropic ZnO

    E-print Network

    Wang, Zhong L.

    Nondestructive In Situ Identification of Crystal Orientation of Anisotropic ZnO Nanostructures, a fast, unambiguous, and nondestructive technique for identification of the crystalline orientation- opment and testing of devices for new applications. As known, Raman scattering is an excel- lent

  13. HIV-1 Capsid Stabilization Assay.

    PubMed

    Fricke, Thomas; Diaz-Griffero, Felipe

    2016-01-01

    The stability of the HIV-1 core in the cytoplasm is crucial for productive HIV-1 infection. Mutations that stabilize or destabilize the core showed defects in HIV-1 reverse transcription and infection. We developed a novel and simple assay to measure stability of in vitro-assembled HIV-1 CA-NC complexes. This assay allowed us to demonstrate that cytosolic extracts strongly stabilize the HIV-1 core (Fricke et al., J Virol 87:10587-10597, 2013). By using our novel assay, one can measure the ability of different drugs to modulate the stability of in vitro-assembled HIV-1 CA-NC complexes, such as PF74, CAP-1, IXN-053, cyclosporine A, Bi2, and the peptide CAI. We also found that purified CPSF6 (1-321) protein stabilizes in vitro-assembled HIV-1 CA-NC complexes (Fricke et al., J Virol 87:10587-10597, 2013). Here we describe in detail the use of this capsid stability assay. We believe that our assay can be a powerful tool to assess HIV-1 capsid stability in vitro. PMID:26714703

  14. Passive tracking with sensors of opportunity using passive coherent location

    NASA Astrophysics Data System (ADS)

    Subramaniam, Mahes; Tharmarasa, R.; McDonald, Mike; Kirubarajan, T.

    2008-04-01

    Passive coherent location (PCL), which uses the commercial signals as illuminators of opportunity, is an emerging technology in air defense systems. The advantages of PCL are low cost, low vulnerability to electronic counter measures, early detection of stealthy targets and low-altitude detection. However, limitations of PCL include lack of control over illuminators, poor bearing accuracy, time-varying sensor parameters and limited observability. In this paper, multiple target tracking using PCL with high bearing error is considered. In this case, the challenge is to handle high nonlinearity due to high measurement error. In this paper, we implement the converted measurement Kalman filter, unscented Kalman filter and particle filter based PHD filter for PCL radar measurements and compare their performances.

  15. Immunoturbidimetric assay of glycated hemoglobin.

    PubMed

    Metus, P; Ruzzante, N; Bonvicini, P; Meneghetti, M; Zaninotto, M; Plebani, M

    1999-01-01

    We investigated the performances of HbA1c determination by a latex enhanced turbidimetric immunoassay using the specific monoclonal antibodies (Unimate, Roche) against the beta-N-terminal fragments. The coefficients of variation ranges from 1.7 to 3.8% within assay (n = 30) and from 3.9 to 4.9% between assay (n = 20). The assay was linear from 2.5 to 14.9% of HbA1c. No interferences was found from fetal, carbamylated, or variant (S) hemoglobins and from labile Schiff adduct with glucose. The following relationship was derived from fresh sample comparison between HPLC (Diamat-BioRad) (x) and immunoassay (y) method: y = 0.971 x + 0.87%, r=0.98, n = 115. The immunoassay provides a highly precise and specific method for HbA1c. PMID:10025731

  16. Imaging passive seismic data Brad Artman

    E-print Network

    Imaging passive seismic data Brad Artman brad@sep.stanford.edu Submitted to Geophysics March 2005, CA 94305-2215 ABSTRACT Passive seismic imaging is the process of synthesizing the wealth been developed for the manipulation of reflection seismic data. With a correlation-based imaging

  17. Ambient stability of chemically passivated germanium interfaces

    E-print Network

    Borguet, Eric

    Ambient stability of chemically passivated germanium interfaces D. Bodlaki, H. Yamamoto, D sulfidation or alkylation of Ge surfaces, SHG appears far less sensitive to H and Cl passivation of germanium surfaces than to silicon surfaces. Investigation of the stability of chemically modified germanium surfaces

  18. Passive ice freezing-releasing heat pipe

    DOEpatents

    Gorski, Anthony J. (Lemont, IL); Schertz, William W. (Batavia, IL)

    1982-01-01

    A heat pipe device has been developed which permits completely passive ice formation and periodic release of ice without requiring the ambient temperature to rise above the melting point of water. This passive design enables the maximum amount of cooling capacity to be stored in the tank.

  19. Passive Microwave Systems (Rees Chapter 7)

    E-print Network

    Sandwell, David T.

    Passive Microwave Systems (Rees Chapter 7) At wavelengths greater than about 2 cm and less than 10 radiation from the Earth dominates". Microwaves penetrate clouds and since the signal is from thermal emissions, passive microwave measurements can be made in all weather and in daytime or nighttime

  20. EVALUATION OF PASSIVE SAMPLING DEVICES (PSDS)

    EPA Science Inventory

    The basic objectives of this study were to evaluate the performance of the EPA passive sampling device (PSD) for sampling of ambient level volatile organic compounds (VOC's); to develop an understanding of the mechanics of passive sampling using reversible adsorption; and to appl...